xref: /openbmc/linux/net/ipv4/tcp_input.c (revision b03afaa8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 			     unsigned int len)
143 {
144 	static bool __once __read_mostly;
145 
146 	if (!__once) {
147 		struct net_device *dev;
148 
149 		__once = true;
150 
151 		rcu_read_lock();
152 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 		if (!dev || len >= dev->mtu)
154 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 				dev ? dev->name : "Unknown driver");
156 		rcu_read_unlock();
157 	}
158 }
159 
160 /* Adapt the MSS value used to make delayed ack decision to the
161  * real world.
162  */
163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 	unsigned int len;
168 
169 	icsk->icsk_ack.last_seg_size = 0;
170 
171 	/* skb->len may jitter because of SACKs, even if peer
172 	 * sends good full-sized frames.
173 	 */
174 	len = skb_shinfo(skb)->gso_size ? : skb->len;
175 	if (len >= icsk->icsk_ack.rcv_mss) {
176 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 					       tcp_sk(sk)->advmss);
178 		/* Account for possibly-removed options */
179 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 				   MAX_TCP_OPTION_SPACE))
181 			tcp_gro_dev_warn(sk, skb, len);
182 	} else {
183 		/* Otherwise, we make more careful check taking into account,
184 		 * that SACKs block is variable.
185 		 *
186 		 * "len" is invariant segment length, including TCP header.
187 		 */
188 		len += skb->data - skb_transport_header(skb);
189 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
190 		    /* If PSH is not set, packet should be
191 		     * full sized, provided peer TCP is not badly broken.
192 		     * This observation (if it is correct 8)) allows
193 		     * to handle super-low mtu links fairly.
194 		     */
195 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
196 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
197 			/* Subtract also invariant (if peer is RFC compliant),
198 			 * tcp header plus fixed timestamp option length.
199 			 * Resulting "len" is MSS free of SACK jitter.
200 			 */
201 			len -= tcp_sk(sk)->tcp_header_len;
202 			icsk->icsk_ack.last_seg_size = len;
203 			if (len == lss) {
204 				icsk->icsk_ack.rcv_mss = len;
205 				return;
206 			}
207 		}
208 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
209 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
210 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
211 	}
212 }
213 
214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
215 {
216 	struct inet_connection_sock *icsk = inet_csk(sk);
217 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
218 
219 	if (quickacks == 0)
220 		quickacks = 2;
221 	quickacks = min(quickacks, max_quickacks);
222 	if (quickacks > icsk->icsk_ack.quick)
223 		icsk->icsk_ack.quick = quickacks;
224 }
225 
226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 
230 	tcp_incr_quickack(sk, max_quickacks);
231 	inet_csk_exit_pingpong_mode(sk);
232 	icsk->icsk_ack.ato = TCP_ATO_MIN;
233 }
234 EXPORT_SYMBOL(tcp_enter_quickack_mode);
235 
236 /* Send ACKs quickly, if "quick" count is not exhausted
237  * and the session is not interactive.
238  */
239 
240 static bool tcp_in_quickack_mode(struct sock *sk)
241 {
242 	const struct inet_connection_sock *icsk = inet_csk(sk);
243 	const struct dst_entry *dst = __sk_dst_get(sk);
244 
245 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
246 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
247 }
248 
249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
250 {
251 	if (tp->ecn_flags & TCP_ECN_OK)
252 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
253 }
254 
255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
256 {
257 	if (tcp_hdr(skb)->cwr) {
258 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
259 
260 		/* If the sender is telling us it has entered CWR, then its
261 		 * cwnd may be very low (even just 1 packet), so we should ACK
262 		 * immediately.
263 		 */
264 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
265 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
266 	}
267 }
268 
269 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
270 {
271 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
272 }
273 
274 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
275 {
276 	struct tcp_sock *tp = tcp_sk(sk);
277 
278 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
279 	case INET_ECN_NOT_ECT:
280 		/* Funny extension: if ECT is not set on a segment,
281 		 * and we already seen ECT on a previous segment,
282 		 * it is probably a retransmit.
283 		 */
284 		if (tp->ecn_flags & TCP_ECN_SEEN)
285 			tcp_enter_quickack_mode(sk, 2);
286 		break;
287 	case INET_ECN_CE:
288 		if (tcp_ca_needs_ecn(sk))
289 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
290 
291 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
292 			/* Better not delay acks, sender can have a very low cwnd */
293 			tcp_enter_quickack_mode(sk, 2);
294 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
295 		}
296 		tp->ecn_flags |= TCP_ECN_SEEN;
297 		break;
298 	default:
299 		if (tcp_ca_needs_ecn(sk))
300 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
301 		tp->ecn_flags |= TCP_ECN_SEEN;
302 		break;
303 	}
304 }
305 
306 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
307 {
308 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
309 		__tcp_ecn_check_ce(sk, skb);
310 }
311 
312 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
313 {
314 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
315 		tp->ecn_flags &= ~TCP_ECN_OK;
316 }
317 
318 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
319 {
320 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
321 		tp->ecn_flags &= ~TCP_ECN_OK;
322 }
323 
324 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
325 {
326 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
327 		return true;
328 	return false;
329 }
330 
331 /* Buffer size and advertised window tuning.
332  *
333  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
334  */
335 
336 static void tcp_sndbuf_expand(struct sock *sk)
337 {
338 	const struct tcp_sock *tp = tcp_sk(sk);
339 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
340 	int sndmem, per_mss;
341 	u32 nr_segs;
342 
343 	/* Worst case is non GSO/TSO : each frame consumes one skb
344 	 * and skb->head is kmalloced using power of two area of memory
345 	 */
346 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
347 		  MAX_TCP_HEADER +
348 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
349 
350 	per_mss = roundup_pow_of_two(per_mss) +
351 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
352 
353 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
354 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
355 
356 	/* Fast Recovery (RFC 5681 3.2) :
357 	 * Cubic needs 1.7 factor, rounded to 2 to include
358 	 * extra cushion (application might react slowly to EPOLLOUT)
359 	 */
360 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
361 	sndmem *= nr_segs * per_mss;
362 
363 	if (sk->sk_sndbuf < sndmem)
364 		WRITE_ONCE(sk->sk_sndbuf,
365 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
366 }
367 
368 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
369  *
370  * All tcp_full_space() is split to two parts: "network" buffer, allocated
371  * forward and advertised in receiver window (tp->rcv_wnd) and
372  * "application buffer", required to isolate scheduling/application
373  * latencies from network.
374  * window_clamp is maximal advertised window. It can be less than
375  * tcp_full_space(), in this case tcp_full_space() - window_clamp
376  * is reserved for "application" buffer. The less window_clamp is
377  * the smoother our behaviour from viewpoint of network, but the lower
378  * throughput and the higher sensitivity of the connection to losses. 8)
379  *
380  * rcv_ssthresh is more strict window_clamp used at "slow start"
381  * phase to predict further behaviour of this connection.
382  * It is used for two goals:
383  * - to enforce header prediction at sender, even when application
384  *   requires some significant "application buffer". It is check #1.
385  * - to prevent pruning of receive queue because of misprediction
386  *   of receiver window. Check #2.
387  *
388  * The scheme does not work when sender sends good segments opening
389  * window and then starts to feed us spaghetti. But it should work
390  * in common situations. Otherwise, we have to rely on queue collapsing.
391  */
392 
393 /* Slow part of check#2. */
394 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
395 {
396 	struct tcp_sock *tp = tcp_sk(sk);
397 	/* Optimize this! */
398 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
399 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
400 
401 	while (tp->rcv_ssthresh <= window) {
402 		if (truesize <= skb->len)
403 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
404 
405 		truesize >>= 1;
406 		window >>= 1;
407 	}
408 	return 0;
409 }
410 
411 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	int room;
415 
416 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
417 
418 	/* Check #1 */
419 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
420 		int incr;
421 
422 		/* Check #2. Increase window, if skb with such overhead
423 		 * will fit to rcvbuf in future.
424 		 */
425 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
426 			incr = 2 * tp->advmss;
427 		else
428 			incr = __tcp_grow_window(sk, skb);
429 
430 		if (incr) {
431 			incr = max_t(int, incr, 2 * skb->len);
432 			tp->rcv_ssthresh += min(room, incr);
433 			inet_csk(sk)->icsk_ack.quick |= 1;
434 		}
435 	}
436 }
437 
438 /* 3. Try to fixup all. It is made immediately after connection enters
439  *    established state.
440  */
441 static void tcp_init_buffer_space(struct sock *sk)
442 {
443 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
444 	struct tcp_sock *tp = tcp_sk(sk);
445 	int maxwin;
446 
447 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
448 		tcp_sndbuf_expand(sk);
449 
450 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
451 	tcp_mstamp_refresh(tp);
452 	tp->rcvq_space.time = tp->tcp_mstamp;
453 	tp->rcvq_space.seq = tp->copied_seq;
454 
455 	maxwin = tcp_full_space(sk);
456 
457 	if (tp->window_clamp >= maxwin) {
458 		tp->window_clamp = maxwin;
459 
460 		if (tcp_app_win && maxwin > 4 * tp->advmss)
461 			tp->window_clamp = max(maxwin -
462 					       (maxwin >> tcp_app_win),
463 					       4 * tp->advmss);
464 	}
465 
466 	/* Force reservation of one segment. */
467 	if (tcp_app_win &&
468 	    tp->window_clamp > 2 * tp->advmss &&
469 	    tp->window_clamp + tp->advmss > maxwin)
470 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
471 
472 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
473 	tp->snd_cwnd_stamp = tcp_jiffies32;
474 }
475 
476 /* 4. Recalculate window clamp after socket hit its memory bounds. */
477 static void tcp_clamp_window(struct sock *sk)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	struct inet_connection_sock *icsk = inet_csk(sk);
481 	struct net *net = sock_net(sk);
482 
483 	icsk->icsk_ack.quick = 0;
484 
485 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
486 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
487 	    !tcp_under_memory_pressure(sk) &&
488 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
489 		WRITE_ONCE(sk->sk_rcvbuf,
490 			   min(atomic_read(&sk->sk_rmem_alloc),
491 			       net->ipv4.sysctl_tcp_rmem[2]));
492 	}
493 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
494 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
495 }
496 
497 /* Initialize RCV_MSS value.
498  * RCV_MSS is an our guess about MSS used by the peer.
499  * We haven't any direct information about the MSS.
500  * It's better to underestimate the RCV_MSS rather than overestimate.
501  * Overestimations make us ACKing less frequently than needed.
502  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
503  */
504 void tcp_initialize_rcv_mss(struct sock *sk)
505 {
506 	const struct tcp_sock *tp = tcp_sk(sk);
507 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
508 
509 	hint = min(hint, tp->rcv_wnd / 2);
510 	hint = min(hint, TCP_MSS_DEFAULT);
511 	hint = max(hint, TCP_MIN_MSS);
512 
513 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
514 }
515 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
516 
517 /* Receiver "autotuning" code.
518  *
519  * The algorithm for RTT estimation w/o timestamps is based on
520  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
521  * <https://public.lanl.gov/radiant/pubs.html#DRS>
522  *
523  * More detail on this code can be found at
524  * <http://staff.psc.edu/jheffner/>,
525  * though this reference is out of date.  A new paper
526  * is pending.
527  */
528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
529 {
530 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
531 	long m = sample;
532 
533 	if (new_sample != 0) {
534 		/* If we sample in larger samples in the non-timestamp
535 		 * case, we could grossly overestimate the RTT especially
536 		 * with chatty applications or bulk transfer apps which
537 		 * are stalled on filesystem I/O.
538 		 *
539 		 * Also, since we are only going for a minimum in the
540 		 * non-timestamp case, we do not smooth things out
541 		 * else with timestamps disabled convergence takes too
542 		 * long.
543 		 */
544 		if (!win_dep) {
545 			m -= (new_sample >> 3);
546 			new_sample += m;
547 		} else {
548 			m <<= 3;
549 			if (m < new_sample)
550 				new_sample = m;
551 		}
552 	} else {
553 		/* No previous measure. */
554 		new_sample = m << 3;
555 	}
556 
557 	tp->rcv_rtt_est.rtt_us = new_sample;
558 }
559 
560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
561 {
562 	u32 delta_us;
563 
564 	if (tp->rcv_rtt_est.time == 0)
565 		goto new_measure;
566 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
567 		return;
568 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
569 	if (!delta_us)
570 		delta_us = 1;
571 	tcp_rcv_rtt_update(tp, delta_us, 1);
572 
573 new_measure:
574 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
575 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
576 }
577 
578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
579 					  const struct sk_buff *skb)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 
583 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
584 		return;
585 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
586 
587 	if (TCP_SKB_CB(skb)->end_seq -
588 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
589 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
590 		u32 delta_us;
591 
592 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
593 			if (!delta)
594 				delta = 1;
595 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
596 			tcp_rcv_rtt_update(tp, delta_us, 0);
597 		}
598 	}
599 }
600 
601 /*
602  * This function should be called every time data is copied to user space.
603  * It calculates the appropriate TCP receive buffer space.
604  */
605 void tcp_rcv_space_adjust(struct sock *sk)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	u32 copied;
609 	int time;
610 
611 	trace_tcp_rcv_space_adjust(sk);
612 
613 	tcp_mstamp_refresh(tp);
614 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
615 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
616 		return;
617 
618 	/* Number of bytes copied to user in last RTT */
619 	copied = tp->copied_seq - tp->rcvq_space.seq;
620 	if (copied <= tp->rcvq_space.space)
621 		goto new_measure;
622 
623 	/* A bit of theory :
624 	 * copied = bytes received in previous RTT, our base window
625 	 * To cope with packet losses, we need a 2x factor
626 	 * To cope with slow start, and sender growing its cwin by 100 %
627 	 * every RTT, we need a 4x factor, because the ACK we are sending
628 	 * now is for the next RTT, not the current one :
629 	 * <prev RTT . ><current RTT .. ><next RTT .... >
630 	 */
631 
632 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
633 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
634 		int rcvmem, rcvbuf;
635 		u64 rcvwin, grow;
636 
637 		/* minimal window to cope with packet losses, assuming
638 		 * steady state. Add some cushion because of small variations.
639 		 */
640 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
641 
642 		/* Accommodate for sender rate increase (eg. slow start) */
643 		grow = rcvwin * (copied - tp->rcvq_space.space);
644 		do_div(grow, tp->rcvq_space.space);
645 		rcvwin += (grow << 1);
646 
647 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
648 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
649 			rcvmem += 128;
650 
651 		do_div(rcvwin, tp->advmss);
652 		rcvbuf = min_t(u64, rcvwin * rcvmem,
653 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
654 		if (rcvbuf > sk->sk_rcvbuf) {
655 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
656 
657 			/* Make the window clamp follow along.  */
658 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
659 		}
660 	}
661 	tp->rcvq_space.space = copied;
662 
663 new_measure:
664 	tp->rcvq_space.seq = tp->copied_seq;
665 	tp->rcvq_space.time = tp->tcp_mstamp;
666 }
667 
668 /* There is something which you must keep in mind when you analyze the
669  * behavior of the tp->ato delayed ack timeout interval.  When a
670  * connection starts up, we want to ack as quickly as possible.  The
671  * problem is that "good" TCP's do slow start at the beginning of data
672  * transmission.  The means that until we send the first few ACK's the
673  * sender will sit on his end and only queue most of his data, because
674  * he can only send snd_cwnd unacked packets at any given time.  For
675  * each ACK we send, he increments snd_cwnd and transmits more of his
676  * queue.  -DaveM
677  */
678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct inet_connection_sock *icsk = inet_csk(sk);
682 	u32 now;
683 
684 	inet_csk_schedule_ack(sk);
685 
686 	tcp_measure_rcv_mss(sk, skb);
687 
688 	tcp_rcv_rtt_measure(tp);
689 
690 	now = tcp_jiffies32;
691 
692 	if (!icsk->icsk_ack.ato) {
693 		/* The _first_ data packet received, initialize
694 		 * delayed ACK engine.
695 		 */
696 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
697 		icsk->icsk_ack.ato = TCP_ATO_MIN;
698 	} else {
699 		int m = now - icsk->icsk_ack.lrcvtime;
700 
701 		if (m <= TCP_ATO_MIN / 2) {
702 			/* The fastest case is the first. */
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
704 		} else if (m < icsk->icsk_ack.ato) {
705 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
706 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
707 				icsk->icsk_ack.ato = icsk->icsk_rto;
708 		} else if (m > icsk->icsk_rto) {
709 			/* Too long gap. Apparently sender failed to
710 			 * restart window, so that we send ACKs quickly.
711 			 */
712 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
713 			sk_mem_reclaim(sk);
714 		}
715 	}
716 	icsk->icsk_ack.lrcvtime = now;
717 
718 	tcp_ecn_check_ce(sk, skb);
719 
720 	if (skb->len >= 128)
721 		tcp_grow_window(sk, skb);
722 }
723 
724 /* Called to compute a smoothed rtt estimate. The data fed to this
725  * routine either comes from timestamps, or from segments that were
726  * known _not_ to have been retransmitted [see Karn/Partridge
727  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
728  * piece by Van Jacobson.
729  * NOTE: the next three routines used to be one big routine.
730  * To save cycles in the RFC 1323 implementation it was better to break
731  * it up into three procedures. -- erics
732  */
733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
734 {
735 	struct tcp_sock *tp = tcp_sk(sk);
736 	long m = mrtt_us; /* RTT */
737 	u32 srtt = tp->srtt_us;
738 
739 	/*	The following amusing code comes from Jacobson's
740 	 *	article in SIGCOMM '88.  Note that rtt and mdev
741 	 *	are scaled versions of rtt and mean deviation.
742 	 *	This is designed to be as fast as possible
743 	 *	m stands for "measurement".
744 	 *
745 	 *	On a 1990 paper the rto value is changed to:
746 	 *	RTO = rtt + 4 * mdev
747 	 *
748 	 * Funny. This algorithm seems to be very broken.
749 	 * These formulae increase RTO, when it should be decreased, increase
750 	 * too slowly, when it should be increased quickly, decrease too quickly
751 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
752 	 * does not matter how to _calculate_ it. Seems, it was trap
753 	 * that VJ failed to avoid. 8)
754 	 */
755 	if (srtt != 0) {
756 		m -= (srtt >> 3);	/* m is now error in rtt est */
757 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
758 		if (m < 0) {
759 			m = -m;		/* m is now abs(error) */
760 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
761 			/* This is similar to one of Eifel findings.
762 			 * Eifel blocks mdev updates when rtt decreases.
763 			 * This solution is a bit different: we use finer gain
764 			 * for mdev in this case (alpha*beta).
765 			 * Like Eifel it also prevents growth of rto,
766 			 * but also it limits too fast rto decreases,
767 			 * happening in pure Eifel.
768 			 */
769 			if (m > 0)
770 				m >>= 3;
771 		} else {
772 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
773 		}
774 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
775 		if (tp->mdev_us > tp->mdev_max_us) {
776 			tp->mdev_max_us = tp->mdev_us;
777 			if (tp->mdev_max_us > tp->rttvar_us)
778 				tp->rttvar_us = tp->mdev_max_us;
779 		}
780 		if (after(tp->snd_una, tp->rtt_seq)) {
781 			if (tp->mdev_max_us < tp->rttvar_us)
782 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
783 			tp->rtt_seq = tp->snd_nxt;
784 			tp->mdev_max_us = tcp_rto_min_us(sk);
785 
786 			tcp_bpf_rtt(sk);
787 		}
788 	} else {
789 		/* no previous measure. */
790 		srtt = m << 3;		/* take the measured time to be rtt */
791 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
792 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
793 		tp->mdev_max_us = tp->rttvar_us;
794 		tp->rtt_seq = tp->snd_nxt;
795 
796 		tcp_bpf_rtt(sk);
797 	}
798 	tp->srtt_us = max(1U, srtt);
799 }
800 
801 static void tcp_update_pacing_rate(struct sock *sk)
802 {
803 	const struct tcp_sock *tp = tcp_sk(sk);
804 	u64 rate;
805 
806 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
807 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
808 
809 	/* current rate is (cwnd * mss) / srtt
810 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
811 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
812 	 *
813 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
814 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
815 	 *	 end of slow start and should slow down.
816 	 */
817 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
818 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
819 	else
820 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
821 
822 	rate *= max(tp->snd_cwnd, tp->packets_out);
823 
824 	if (likely(tp->srtt_us))
825 		do_div(rate, tp->srtt_us);
826 
827 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
828 	 * without any lock. We want to make sure compiler wont store
829 	 * intermediate values in this location.
830 	 */
831 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
832 					     sk->sk_max_pacing_rate));
833 }
834 
835 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
836  * routine referred to above.
837  */
838 static void tcp_set_rto(struct sock *sk)
839 {
840 	const struct tcp_sock *tp = tcp_sk(sk);
841 	/* Old crap is replaced with new one. 8)
842 	 *
843 	 * More seriously:
844 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
845 	 *    It cannot be less due to utterly erratic ACK generation made
846 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
847 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
848 	 *    is invisible. Actually, Linux-2.4 also generates erratic
849 	 *    ACKs in some circumstances.
850 	 */
851 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
852 
853 	/* 2. Fixups made earlier cannot be right.
854 	 *    If we do not estimate RTO correctly without them,
855 	 *    all the algo is pure shit and should be replaced
856 	 *    with correct one. It is exactly, which we pretend to do.
857 	 */
858 
859 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
860 	 * guarantees that rto is higher.
861 	 */
862 	tcp_bound_rto(sk);
863 }
864 
865 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
866 {
867 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
868 
869 	if (!cwnd)
870 		cwnd = TCP_INIT_CWND;
871 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
872 }
873 
874 struct tcp_sacktag_state {
875 	/* Timestamps for earliest and latest never-retransmitted segment
876 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
877 	 * but congestion control should still get an accurate delay signal.
878 	 */
879 	u64	first_sackt;
880 	u64	last_sackt;
881 	u32	reord;
882 	u32	sack_delivered;
883 	int	flag;
884 	unsigned int mss_now;
885 	struct rate_sample *rate;
886 };
887 
888 /* Take a notice that peer is sending D-SACKs */
889 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
890 			  u32 end_seq, struct tcp_sacktag_state *state)
891 {
892 	u32 seq_len, dup_segs = 1;
893 
894 	if (before(start_seq, end_seq)) {
895 		seq_len = end_seq - start_seq;
896 		if (seq_len > tp->mss_cache)
897 			dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
898 	}
899 
900 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
901 	tp->rack.dsack_seen = 1;
902 	tp->dsack_dups += dup_segs;
903 
904 	state->flag |= FLAG_DSACKING_ACK;
905 	/* A spurious retransmission is delivered */
906 	state->sack_delivered += dup_segs;
907 
908 	return dup_segs;
909 }
910 
911 /* It's reordering when higher sequence was delivered (i.e. sacked) before
912  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
913  * distance is approximated in full-mss packet distance ("reordering").
914  */
915 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
916 				      const int ts)
917 {
918 	struct tcp_sock *tp = tcp_sk(sk);
919 	const u32 mss = tp->mss_cache;
920 	u32 fack, metric;
921 
922 	fack = tcp_highest_sack_seq(tp);
923 	if (!before(low_seq, fack))
924 		return;
925 
926 	metric = fack - low_seq;
927 	if ((metric > tp->reordering * mss) && mss) {
928 #if FASTRETRANS_DEBUG > 1
929 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
930 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
931 			 tp->reordering,
932 			 0,
933 			 tp->sacked_out,
934 			 tp->undo_marker ? tp->undo_retrans : 0);
935 #endif
936 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
937 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
938 	}
939 
940 	/* This exciting event is worth to be remembered. 8) */
941 	tp->reord_seen++;
942 	NET_INC_STATS(sock_net(sk),
943 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
944 }
945 
946 /* This must be called before lost_out is incremented */
947 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
948 {
949 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
950 	    (tp->retransmit_skb_hint &&
951 	     before(TCP_SKB_CB(skb)->seq,
952 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
953 		tp->retransmit_skb_hint = skb;
954 }
955 
956 /* Sum the number of packets on the wire we have marked as lost.
957  * There are two cases we care about here:
958  * a) Packet hasn't been marked lost (nor retransmitted),
959  *    and this is the first loss.
960  * b) Packet has been marked both lost and retransmitted,
961  *    and this means we think it was lost again.
962  */
963 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
964 {
965 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
966 
967 	if (!(sacked & TCPCB_LOST) ||
968 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
969 		tp->lost += tcp_skb_pcount(skb);
970 }
971 
972 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
973 {
974 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
975 		tcp_verify_retransmit_hint(tp, skb);
976 
977 		tp->lost_out += tcp_skb_pcount(skb);
978 		tcp_sum_lost(tp, skb);
979 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
980 	}
981 }
982 
983 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985 	tcp_verify_retransmit_hint(tp, skb);
986 
987 	tcp_sum_lost(tp, skb);
988 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
989 		tp->lost_out += tcp_skb_pcount(skb);
990 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
991 	}
992 }
993 
994 /* Updates the delivered and delivered_ce counts */
995 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
996 				bool ece_ack)
997 {
998 	tp->delivered += delivered;
999 	if (ece_ack)
1000 		tp->delivered_ce += delivered;
1001 }
1002 
1003 /* This procedure tags the retransmission queue when SACKs arrive.
1004  *
1005  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1006  * Packets in queue with these bits set are counted in variables
1007  * sacked_out, retrans_out and lost_out, correspondingly.
1008  *
1009  * Valid combinations are:
1010  * Tag  InFlight	Description
1011  * 0	1		- orig segment is in flight.
1012  * S	0		- nothing flies, orig reached receiver.
1013  * L	0		- nothing flies, orig lost by net.
1014  * R	2		- both orig and retransmit are in flight.
1015  * L|R	1		- orig is lost, retransmit is in flight.
1016  * S|R  1		- orig reached receiver, retrans is still in flight.
1017  * (L|S|R is logically valid, it could occur when L|R is sacked,
1018  *  but it is equivalent to plain S and code short-curcuits it to S.
1019  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1020  *
1021  * These 6 states form finite state machine, controlled by the following events:
1022  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1023  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1024  * 3. Loss detection event of two flavors:
1025  *	A. Scoreboard estimator decided the packet is lost.
1026  *	   A'. Reno "three dupacks" marks head of queue lost.
1027  *	B. SACK arrives sacking SND.NXT at the moment, when the
1028  *	   segment was retransmitted.
1029  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1030  *
1031  * It is pleasant to note, that state diagram turns out to be commutative,
1032  * so that we are allowed not to be bothered by order of our actions,
1033  * when multiple events arrive simultaneously. (see the function below).
1034  *
1035  * Reordering detection.
1036  * --------------------
1037  * Reordering metric is maximal distance, which a packet can be displaced
1038  * in packet stream. With SACKs we can estimate it:
1039  *
1040  * 1. SACK fills old hole and the corresponding segment was not
1041  *    ever retransmitted -> reordering. Alas, we cannot use it
1042  *    when segment was retransmitted.
1043  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1044  *    for retransmitted and already SACKed segment -> reordering..
1045  * Both of these heuristics are not used in Loss state, when we cannot
1046  * account for retransmits accurately.
1047  *
1048  * SACK block validation.
1049  * ----------------------
1050  *
1051  * SACK block range validation checks that the received SACK block fits to
1052  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1053  * Note that SND.UNA is not included to the range though being valid because
1054  * it means that the receiver is rather inconsistent with itself reporting
1055  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1056  * perfectly valid, however, in light of RFC2018 which explicitly states
1057  * that "SACK block MUST reflect the newest segment.  Even if the newest
1058  * segment is going to be discarded ...", not that it looks very clever
1059  * in case of head skb. Due to potentional receiver driven attacks, we
1060  * choose to avoid immediate execution of a walk in write queue due to
1061  * reneging and defer head skb's loss recovery to standard loss recovery
1062  * procedure that will eventually trigger (nothing forbids us doing this).
1063  *
1064  * Implements also blockage to start_seq wrap-around. Problem lies in the
1065  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1066  * there's no guarantee that it will be before snd_nxt (n). The problem
1067  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1068  * wrap (s_w):
1069  *
1070  *         <- outs wnd ->                          <- wrapzone ->
1071  *         u     e      n                         u_w   e_w  s n_w
1072  *         |     |      |                          |     |   |  |
1073  * |<------------+------+----- TCP seqno space --------------+---------->|
1074  * ...-- <2^31 ->|                                           |<--------...
1075  * ...---- >2^31 ------>|                                    |<--------...
1076  *
1077  * Current code wouldn't be vulnerable but it's better still to discard such
1078  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1079  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1080  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1081  * equal to the ideal case (infinite seqno space without wrap caused issues).
1082  *
1083  * With D-SACK the lower bound is extended to cover sequence space below
1084  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1085  * again, D-SACK block must not to go across snd_una (for the same reason as
1086  * for the normal SACK blocks, explained above). But there all simplicity
1087  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1088  * fully below undo_marker they do not affect behavior in anyway and can
1089  * therefore be safely ignored. In rare cases (which are more or less
1090  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1091  * fragmentation and packet reordering past skb's retransmission. To consider
1092  * them correctly, the acceptable range must be extended even more though
1093  * the exact amount is rather hard to quantify. However, tp->max_window can
1094  * be used as an exaggerated estimate.
1095  */
1096 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1097 				   u32 start_seq, u32 end_seq)
1098 {
1099 	/* Too far in future, or reversed (interpretation is ambiguous) */
1100 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1101 		return false;
1102 
1103 	/* Nasty start_seq wrap-around check (see comments above) */
1104 	if (!before(start_seq, tp->snd_nxt))
1105 		return false;
1106 
1107 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1108 	 * start_seq == snd_una is non-sensical (see comments above)
1109 	 */
1110 	if (after(start_seq, tp->snd_una))
1111 		return true;
1112 
1113 	if (!is_dsack || !tp->undo_marker)
1114 		return false;
1115 
1116 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1117 	if (after(end_seq, tp->snd_una))
1118 		return false;
1119 
1120 	if (!before(start_seq, tp->undo_marker))
1121 		return true;
1122 
1123 	/* Too old */
1124 	if (!after(end_seq, tp->undo_marker))
1125 		return false;
1126 
1127 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1128 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1129 	 */
1130 	return !before(start_seq, end_seq - tp->max_window);
1131 }
1132 
1133 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1134 			    struct tcp_sack_block_wire *sp, int num_sacks,
1135 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1136 {
1137 	struct tcp_sock *tp = tcp_sk(sk);
1138 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1139 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1140 	u32 dup_segs;
1141 
1142 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1143 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1144 	} else if (num_sacks > 1) {
1145 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1146 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1147 
1148 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1149 			return false;
1150 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1151 	} else {
1152 		return false;
1153 	}
1154 
1155 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1156 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1157 
1158 	/* D-SACK for already forgotten data... Do dumb counting. */
1159 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1160 	    !after(end_seq_0, prior_snd_una) &&
1161 	    after(end_seq_0, tp->undo_marker))
1162 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1163 
1164 	return true;
1165 }
1166 
1167 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1168  * the incoming SACK may not exactly match but we can find smaller MSS
1169  * aligned portion of it that matches. Therefore we might need to fragment
1170  * which may fail and creates some hassle (caller must handle error case
1171  * returns).
1172  *
1173  * FIXME: this could be merged to shift decision code
1174  */
1175 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1176 				  u32 start_seq, u32 end_seq)
1177 {
1178 	int err;
1179 	bool in_sack;
1180 	unsigned int pkt_len;
1181 	unsigned int mss;
1182 
1183 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1184 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1185 
1186 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1187 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1188 		mss = tcp_skb_mss(skb);
1189 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1190 
1191 		if (!in_sack) {
1192 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1193 			if (pkt_len < mss)
1194 				pkt_len = mss;
1195 		} else {
1196 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1197 			if (pkt_len < mss)
1198 				return -EINVAL;
1199 		}
1200 
1201 		/* Round if necessary so that SACKs cover only full MSSes
1202 		 * and/or the remaining small portion (if present)
1203 		 */
1204 		if (pkt_len > mss) {
1205 			unsigned int new_len = (pkt_len / mss) * mss;
1206 			if (!in_sack && new_len < pkt_len)
1207 				new_len += mss;
1208 			pkt_len = new_len;
1209 		}
1210 
1211 		if (pkt_len >= skb->len && !in_sack)
1212 			return 0;
1213 
1214 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1215 				   pkt_len, mss, GFP_ATOMIC);
1216 		if (err < 0)
1217 			return err;
1218 	}
1219 
1220 	return in_sack;
1221 }
1222 
1223 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1224 static u8 tcp_sacktag_one(struct sock *sk,
1225 			  struct tcp_sacktag_state *state, u8 sacked,
1226 			  u32 start_seq, u32 end_seq,
1227 			  int dup_sack, int pcount,
1228 			  u64 xmit_time)
1229 {
1230 	struct tcp_sock *tp = tcp_sk(sk);
1231 
1232 	/* Account D-SACK for retransmitted packet. */
1233 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1234 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1235 		    after(end_seq, tp->undo_marker))
1236 			tp->undo_retrans--;
1237 		if ((sacked & TCPCB_SACKED_ACKED) &&
1238 		    before(start_seq, state->reord))
1239 				state->reord = start_seq;
1240 	}
1241 
1242 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1243 	if (!after(end_seq, tp->snd_una))
1244 		return sacked;
1245 
1246 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1247 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1248 
1249 		if (sacked & TCPCB_SACKED_RETRANS) {
1250 			/* If the segment is not tagged as lost,
1251 			 * we do not clear RETRANS, believing
1252 			 * that retransmission is still in flight.
1253 			 */
1254 			if (sacked & TCPCB_LOST) {
1255 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1256 				tp->lost_out -= pcount;
1257 				tp->retrans_out -= pcount;
1258 			}
1259 		} else {
1260 			if (!(sacked & TCPCB_RETRANS)) {
1261 				/* New sack for not retransmitted frame,
1262 				 * which was in hole. It is reordering.
1263 				 */
1264 				if (before(start_seq,
1265 					   tcp_highest_sack_seq(tp)) &&
1266 				    before(start_seq, state->reord))
1267 					state->reord = start_seq;
1268 
1269 				if (!after(end_seq, tp->high_seq))
1270 					state->flag |= FLAG_ORIG_SACK_ACKED;
1271 				if (state->first_sackt == 0)
1272 					state->first_sackt = xmit_time;
1273 				state->last_sackt = xmit_time;
1274 			}
1275 
1276 			if (sacked & TCPCB_LOST) {
1277 				sacked &= ~TCPCB_LOST;
1278 				tp->lost_out -= pcount;
1279 			}
1280 		}
1281 
1282 		sacked |= TCPCB_SACKED_ACKED;
1283 		state->flag |= FLAG_DATA_SACKED;
1284 		tp->sacked_out += pcount;
1285 		/* Out-of-order packets delivered */
1286 		state->sack_delivered += pcount;
1287 
1288 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1289 		if (tp->lost_skb_hint &&
1290 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1291 			tp->lost_cnt_hint += pcount;
1292 	}
1293 
1294 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1295 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1296 	 * are accounted above as well.
1297 	 */
1298 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1299 		sacked &= ~TCPCB_SACKED_RETRANS;
1300 		tp->retrans_out -= pcount;
1301 	}
1302 
1303 	return sacked;
1304 }
1305 
1306 /* Shift newly-SACKed bytes from this skb to the immediately previous
1307  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1308  */
1309 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1310 			    struct sk_buff *skb,
1311 			    struct tcp_sacktag_state *state,
1312 			    unsigned int pcount, int shifted, int mss,
1313 			    bool dup_sack)
1314 {
1315 	struct tcp_sock *tp = tcp_sk(sk);
1316 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1317 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1318 
1319 	BUG_ON(!pcount);
1320 
1321 	/* Adjust counters and hints for the newly sacked sequence
1322 	 * range but discard the return value since prev is already
1323 	 * marked. We must tag the range first because the seq
1324 	 * advancement below implicitly advances
1325 	 * tcp_highest_sack_seq() when skb is highest_sack.
1326 	 */
1327 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1328 			start_seq, end_seq, dup_sack, pcount,
1329 			tcp_skb_timestamp_us(skb));
1330 	tcp_rate_skb_delivered(sk, skb, state->rate);
1331 
1332 	if (skb == tp->lost_skb_hint)
1333 		tp->lost_cnt_hint += pcount;
1334 
1335 	TCP_SKB_CB(prev)->end_seq += shifted;
1336 	TCP_SKB_CB(skb)->seq += shifted;
1337 
1338 	tcp_skb_pcount_add(prev, pcount);
1339 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1340 	tcp_skb_pcount_add(skb, -pcount);
1341 
1342 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1343 	 * in theory this shouldn't be necessary but as long as DSACK
1344 	 * code can come after this skb later on it's better to keep
1345 	 * setting gso_size to something.
1346 	 */
1347 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1348 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1349 
1350 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1351 	if (tcp_skb_pcount(skb) <= 1)
1352 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1353 
1354 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1355 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1356 
1357 	if (skb->len > 0) {
1358 		BUG_ON(!tcp_skb_pcount(skb));
1359 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1360 		return false;
1361 	}
1362 
1363 	/* Whole SKB was eaten :-) */
1364 
1365 	if (skb == tp->retransmit_skb_hint)
1366 		tp->retransmit_skb_hint = prev;
1367 	if (skb == tp->lost_skb_hint) {
1368 		tp->lost_skb_hint = prev;
1369 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1370 	}
1371 
1372 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1373 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1374 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1375 		TCP_SKB_CB(prev)->end_seq++;
1376 
1377 	if (skb == tcp_highest_sack(sk))
1378 		tcp_advance_highest_sack(sk, skb);
1379 
1380 	tcp_skb_collapse_tstamp(prev, skb);
1381 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1382 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1383 
1384 	tcp_rtx_queue_unlink_and_free(skb, sk);
1385 
1386 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1387 
1388 	return true;
1389 }
1390 
1391 /* I wish gso_size would have a bit more sane initialization than
1392  * something-or-zero which complicates things
1393  */
1394 static int tcp_skb_seglen(const struct sk_buff *skb)
1395 {
1396 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1397 }
1398 
1399 /* Shifting pages past head area doesn't work */
1400 static int skb_can_shift(const struct sk_buff *skb)
1401 {
1402 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1403 }
1404 
1405 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1406 		  int pcount, int shiftlen)
1407 {
1408 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1409 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1410 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1411 	 * even if current MSS is bigger.
1412 	 */
1413 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1414 		return 0;
1415 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1416 		return 0;
1417 	return skb_shift(to, from, shiftlen);
1418 }
1419 
1420 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1421  * skb.
1422  */
1423 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1424 					  struct tcp_sacktag_state *state,
1425 					  u32 start_seq, u32 end_seq,
1426 					  bool dup_sack)
1427 {
1428 	struct tcp_sock *tp = tcp_sk(sk);
1429 	struct sk_buff *prev;
1430 	int mss;
1431 	int pcount = 0;
1432 	int len;
1433 	int in_sack;
1434 
1435 	/* Normally R but no L won't result in plain S */
1436 	if (!dup_sack &&
1437 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1438 		goto fallback;
1439 	if (!skb_can_shift(skb))
1440 		goto fallback;
1441 	/* This frame is about to be dropped (was ACKed). */
1442 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1443 		goto fallback;
1444 
1445 	/* Can only happen with delayed DSACK + discard craziness */
1446 	prev = skb_rb_prev(skb);
1447 	if (!prev)
1448 		goto fallback;
1449 
1450 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1451 		goto fallback;
1452 
1453 	if (!tcp_skb_can_collapse(prev, skb))
1454 		goto fallback;
1455 
1456 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1457 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1458 
1459 	if (in_sack) {
1460 		len = skb->len;
1461 		pcount = tcp_skb_pcount(skb);
1462 		mss = tcp_skb_seglen(skb);
1463 
1464 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1465 		 * drop this restriction as unnecessary
1466 		 */
1467 		if (mss != tcp_skb_seglen(prev))
1468 			goto fallback;
1469 	} else {
1470 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1471 			goto noop;
1472 		/* CHECKME: This is non-MSS split case only?, this will
1473 		 * cause skipped skbs due to advancing loop btw, original
1474 		 * has that feature too
1475 		 */
1476 		if (tcp_skb_pcount(skb) <= 1)
1477 			goto noop;
1478 
1479 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1480 		if (!in_sack) {
1481 			/* TODO: head merge to next could be attempted here
1482 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1483 			 * though it might not be worth of the additional hassle
1484 			 *
1485 			 * ...we can probably just fallback to what was done
1486 			 * previously. We could try merging non-SACKed ones
1487 			 * as well but it probably isn't going to buy off
1488 			 * because later SACKs might again split them, and
1489 			 * it would make skb timestamp tracking considerably
1490 			 * harder problem.
1491 			 */
1492 			goto fallback;
1493 		}
1494 
1495 		len = end_seq - TCP_SKB_CB(skb)->seq;
1496 		BUG_ON(len < 0);
1497 		BUG_ON(len > skb->len);
1498 
1499 		/* MSS boundaries should be honoured or else pcount will
1500 		 * severely break even though it makes things bit trickier.
1501 		 * Optimize common case to avoid most of the divides
1502 		 */
1503 		mss = tcp_skb_mss(skb);
1504 
1505 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1506 		 * drop this restriction as unnecessary
1507 		 */
1508 		if (mss != tcp_skb_seglen(prev))
1509 			goto fallback;
1510 
1511 		if (len == mss) {
1512 			pcount = 1;
1513 		} else if (len < mss) {
1514 			goto noop;
1515 		} else {
1516 			pcount = len / mss;
1517 			len = pcount * mss;
1518 		}
1519 	}
1520 
1521 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1522 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1523 		goto fallback;
1524 
1525 	if (!tcp_skb_shift(prev, skb, pcount, len))
1526 		goto fallback;
1527 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1528 		goto out;
1529 
1530 	/* Hole filled allows collapsing with the next as well, this is very
1531 	 * useful when hole on every nth skb pattern happens
1532 	 */
1533 	skb = skb_rb_next(prev);
1534 	if (!skb)
1535 		goto out;
1536 
1537 	if (!skb_can_shift(skb) ||
1538 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1539 	    (mss != tcp_skb_seglen(skb)))
1540 		goto out;
1541 
1542 	len = skb->len;
1543 	pcount = tcp_skb_pcount(skb);
1544 	if (tcp_skb_shift(prev, skb, pcount, len))
1545 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1546 				len, mss, 0);
1547 
1548 out:
1549 	return prev;
1550 
1551 noop:
1552 	return skb;
1553 
1554 fallback:
1555 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1556 	return NULL;
1557 }
1558 
1559 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1560 					struct tcp_sack_block *next_dup,
1561 					struct tcp_sacktag_state *state,
1562 					u32 start_seq, u32 end_seq,
1563 					bool dup_sack_in)
1564 {
1565 	struct tcp_sock *tp = tcp_sk(sk);
1566 	struct sk_buff *tmp;
1567 
1568 	skb_rbtree_walk_from(skb) {
1569 		int in_sack = 0;
1570 		bool dup_sack = dup_sack_in;
1571 
1572 		/* queue is in-order => we can short-circuit the walk early */
1573 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1574 			break;
1575 
1576 		if (next_dup  &&
1577 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1578 			in_sack = tcp_match_skb_to_sack(sk, skb,
1579 							next_dup->start_seq,
1580 							next_dup->end_seq);
1581 			if (in_sack > 0)
1582 				dup_sack = true;
1583 		}
1584 
1585 		/* skb reference here is a bit tricky to get right, since
1586 		 * shifting can eat and free both this skb and the next,
1587 		 * so not even _safe variant of the loop is enough.
1588 		 */
1589 		if (in_sack <= 0) {
1590 			tmp = tcp_shift_skb_data(sk, skb, state,
1591 						 start_seq, end_seq, dup_sack);
1592 			if (tmp) {
1593 				if (tmp != skb) {
1594 					skb = tmp;
1595 					continue;
1596 				}
1597 
1598 				in_sack = 0;
1599 			} else {
1600 				in_sack = tcp_match_skb_to_sack(sk, skb,
1601 								start_seq,
1602 								end_seq);
1603 			}
1604 		}
1605 
1606 		if (unlikely(in_sack < 0))
1607 			break;
1608 
1609 		if (in_sack) {
1610 			TCP_SKB_CB(skb)->sacked =
1611 				tcp_sacktag_one(sk,
1612 						state,
1613 						TCP_SKB_CB(skb)->sacked,
1614 						TCP_SKB_CB(skb)->seq,
1615 						TCP_SKB_CB(skb)->end_seq,
1616 						dup_sack,
1617 						tcp_skb_pcount(skb),
1618 						tcp_skb_timestamp_us(skb));
1619 			tcp_rate_skb_delivered(sk, skb, state->rate);
1620 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1621 				list_del_init(&skb->tcp_tsorted_anchor);
1622 
1623 			if (!before(TCP_SKB_CB(skb)->seq,
1624 				    tcp_highest_sack_seq(tp)))
1625 				tcp_advance_highest_sack(sk, skb);
1626 		}
1627 	}
1628 	return skb;
1629 }
1630 
1631 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1632 {
1633 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1634 	struct sk_buff *skb;
1635 
1636 	while (*p) {
1637 		parent = *p;
1638 		skb = rb_to_skb(parent);
1639 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1640 			p = &parent->rb_left;
1641 			continue;
1642 		}
1643 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1644 			p = &parent->rb_right;
1645 			continue;
1646 		}
1647 		return skb;
1648 	}
1649 	return NULL;
1650 }
1651 
1652 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1653 					u32 skip_to_seq)
1654 {
1655 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1656 		return skb;
1657 
1658 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1659 }
1660 
1661 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1662 						struct sock *sk,
1663 						struct tcp_sack_block *next_dup,
1664 						struct tcp_sacktag_state *state,
1665 						u32 skip_to_seq)
1666 {
1667 	if (!next_dup)
1668 		return skb;
1669 
1670 	if (before(next_dup->start_seq, skip_to_seq)) {
1671 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1672 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1673 				       next_dup->start_seq, next_dup->end_seq,
1674 				       1);
1675 	}
1676 
1677 	return skb;
1678 }
1679 
1680 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1681 {
1682 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1683 }
1684 
1685 static int
1686 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1687 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1688 {
1689 	struct tcp_sock *tp = tcp_sk(sk);
1690 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1691 				    TCP_SKB_CB(ack_skb)->sacked);
1692 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1693 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1694 	struct tcp_sack_block *cache;
1695 	struct sk_buff *skb;
1696 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1697 	int used_sacks;
1698 	bool found_dup_sack = false;
1699 	int i, j;
1700 	int first_sack_index;
1701 
1702 	state->flag = 0;
1703 	state->reord = tp->snd_nxt;
1704 
1705 	if (!tp->sacked_out)
1706 		tcp_highest_sack_reset(sk);
1707 
1708 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1709 					 num_sacks, prior_snd_una, state);
1710 
1711 	/* Eliminate too old ACKs, but take into
1712 	 * account more or less fresh ones, they can
1713 	 * contain valid SACK info.
1714 	 */
1715 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1716 		return 0;
1717 
1718 	if (!tp->packets_out)
1719 		goto out;
1720 
1721 	used_sacks = 0;
1722 	first_sack_index = 0;
1723 	for (i = 0; i < num_sacks; i++) {
1724 		bool dup_sack = !i && found_dup_sack;
1725 
1726 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1727 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1728 
1729 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1730 					    sp[used_sacks].start_seq,
1731 					    sp[used_sacks].end_seq)) {
1732 			int mib_idx;
1733 
1734 			if (dup_sack) {
1735 				if (!tp->undo_marker)
1736 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1737 				else
1738 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1739 			} else {
1740 				/* Don't count olds caused by ACK reordering */
1741 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1742 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1743 					continue;
1744 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1745 			}
1746 
1747 			NET_INC_STATS(sock_net(sk), mib_idx);
1748 			if (i == 0)
1749 				first_sack_index = -1;
1750 			continue;
1751 		}
1752 
1753 		/* Ignore very old stuff early */
1754 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1755 			if (i == 0)
1756 				first_sack_index = -1;
1757 			continue;
1758 		}
1759 
1760 		used_sacks++;
1761 	}
1762 
1763 	/* order SACK blocks to allow in order walk of the retrans queue */
1764 	for (i = used_sacks - 1; i > 0; i--) {
1765 		for (j = 0; j < i; j++) {
1766 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1767 				swap(sp[j], sp[j + 1]);
1768 
1769 				/* Track where the first SACK block goes to */
1770 				if (j == first_sack_index)
1771 					first_sack_index = j + 1;
1772 			}
1773 		}
1774 	}
1775 
1776 	state->mss_now = tcp_current_mss(sk);
1777 	skb = NULL;
1778 	i = 0;
1779 
1780 	if (!tp->sacked_out) {
1781 		/* It's already past, so skip checking against it */
1782 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1783 	} else {
1784 		cache = tp->recv_sack_cache;
1785 		/* Skip empty blocks in at head of the cache */
1786 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1787 		       !cache->end_seq)
1788 			cache++;
1789 	}
1790 
1791 	while (i < used_sacks) {
1792 		u32 start_seq = sp[i].start_seq;
1793 		u32 end_seq = sp[i].end_seq;
1794 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1795 		struct tcp_sack_block *next_dup = NULL;
1796 
1797 		if (found_dup_sack && ((i + 1) == first_sack_index))
1798 			next_dup = &sp[i + 1];
1799 
1800 		/* Skip too early cached blocks */
1801 		while (tcp_sack_cache_ok(tp, cache) &&
1802 		       !before(start_seq, cache->end_seq))
1803 			cache++;
1804 
1805 		/* Can skip some work by looking recv_sack_cache? */
1806 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1807 		    after(end_seq, cache->start_seq)) {
1808 
1809 			/* Head todo? */
1810 			if (before(start_seq, cache->start_seq)) {
1811 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1812 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1813 						       state,
1814 						       start_seq,
1815 						       cache->start_seq,
1816 						       dup_sack);
1817 			}
1818 
1819 			/* Rest of the block already fully processed? */
1820 			if (!after(end_seq, cache->end_seq))
1821 				goto advance_sp;
1822 
1823 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1824 						       state,
1825 						       cache->end_seq);
1826 
1827 			/* ...tail remains todo... */
1828 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1829 				/* ...but better entrypoint exists! */
1830 				skb = tcp_highest_sack(sk);
1831 				if (!skb)
1832 					break;
1833 				cache++;
1834 				goto walk;
1835 			}
1836 
1837 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1838 			/* Check overlap against next cached too (past this one already) */
1839 			cache++;
1840 			continue;
1841 		}
1842 
1843 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1844 			skb = tcp_highest_sack(sk);
1845 			if (!skb)
1846 				break;
1847 		}
1848 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1849 
1850 walk:
1851 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1852 				       start_seq, end_seq, dup_sack);
1853 
1854 advance_sp:
1855 		i++;
1856 	}
1857 
1858 	/* Clear the head of the cache sack blocks so we can skip it next time */
1859 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1860 		tp->recv_sack_cache[i].start_seq = 0;
1861 		tp->recv_sack_cache[i].end_seq = 0;
1862 	}
1863 	for (j = 0; j < used_sacks; j++)
1864 		tp->recv_sack_cache[i++] = sp[j];
1865 
1866 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1867 		tcp_check_sack_reordering(sk, state->reord, 0);
1868 
1869 	tcp_verify_left_out(tp);
1870 out:
1871 
1872 #if FASTRETRANS_DEBUG > 0
1873 	WARN_ON((int)tp->sacked_out < 0);
1874 	WARN_ON((int)tp->lost_out < 0);
1875 	WARN_ON((int)tp->retrans_out < 0);
1876 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1877 #endif
1878 	return state->flag;
1879 }
1880 
1881 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1882  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1883  */
1884 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1885 {
1886 	u32 holes;
1887 
1888 	holes = max(tp->lost_out, 1U);
1889 	holes = min(holes, tp->packets_out);
1890 
1891 	if ((tp->sacked_out + holes) > tp->packets_out) {
1892 		tp->sacked_out = tp->packets_out - holes;
1893 		return true;
1894 	}
1895 	return false;
1896 }
1897 
1898 /* If we receive more dupacks than we expected counting segments
1899  * in assumption of absent reordering, interpret this as reordering.
1900  * The only another reason could be bug in receiver TCP.
1901  */
1902 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1903 {
1904 	struct tcp_sock *tp = tcp_sk(sk);
1905 
1906 	if (!tcp_limit_reno_sacked(tp))
1907 		return;
1908 
1909 	tp->reordering = min_t(u32, tp->packets_out + addend,
1910 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1911 	tp->reord_seen++;
1912 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1913 }
1914 
1915 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1916 
1917 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1918 {
1919 	if (num_dupack) {
1920 		struct tcp_sock *tp = tcp_sk(sk);
1921 		u32 prior_sacked = tp->sacked_out;
1922 		s32 delivered;
1923 
1924 		tp->sacked_out += num_dupack;
1925 		tcp_check_reno_reordering(sk, 0);
1926 		delivered = tp->sacked_out - prior_sacked;
1927 		if (delivered > 0)
1928 			tcp_count_delivered(tp, delivered, ece_ack);
1929 		tcp_verify_left_out(tp);
1930 	}
1931 }
1932 
1933 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1934 
1935 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
1936 {
1937 	struct tcp_sock *tp = tcp_sk(sk);
1938 
1939 	if (acked > 0) {
1940 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1941 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
1942 				    ece_ack);
1943 		if (acked - 1 >= tp->sacked_out)
1944 			tp->sacked_out = 0;
1945 		else
1946 			tp->sacked_out -= acked - 1;
1947 	}
1948 	tcp_check_reno_reordering(sk, acked);
1949 	tcp_verify_left_out(tp);
1950 }
1951 
1952 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1953 {
1954 	tp->sacked_out = 0;
1955 }
1956 
1957 void tcp_clear_retrans(struct tcp_sock *tp)
1958 {
1959 	tp->retrans_out = 0;
1960 	tp->lost_out = 0;
1961 	tp->undo_marker = 0;
1962 	tp->undo_retrans = -1;
1963 	tp->sacked_out = 0;
1964 }
1965 
1966 static inline void tcp_init_undo(struct tcp_sock *tp)
1967 {
1968 	tp->undo_marker = tp->snd_una;
1969 	/* Retransmission still in flight may cause DSACKs later. */
1970 	tp->undo_retrans = tp->retrans_out ? : -1;
1971 }
1972 
1973 static bool tcp_is_rack(const struct sock *sk)
1974 {
1975 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1976 }
1977 
1978 /* If we detect SACK reneging, forget all SACK information
1979  * and reset tags completely, otherwise preserve SACKs. If receiver
1980  * dropped its ofo queue, we will know this due to reneging detection.
1981  */
1982 static void tcp_timeout_mark_lost(struct sock *sk)
1983 {
1984 	struct tcp_sock *tp = tcp_sk(sk);
1985 	struct sk_buff *skb, *head;
1986 	bool is_reneg;			/* is receiver reneging on SACKs? */
1987 
1988 	head = tcp_rtx_queue_head(sk);
1989 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1990 	if (is_reneg) {
1991 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1992 		tp->sacked_out = 0;
1993 		/* Mark SACK reneging until we recover from this loss event. */
1994 		tp->is_sack_reneg = 1;
1995 	} else if (tcp_is_reno(tp)) {
1996 		tcp_reset_reno_sack(tp);
1997 	}
1998 
1999 	skb = head;
2000 	skb_rbtree_walk_from(skb) {
2001 		if (is_reneg)
2002 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2003 		else if (tcp_is_rack(sk) && skb != head &&
2004 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2005 			continue; /* Don't mark recently sent ones lost yet */
2006 		tcp_mark_skb_lost(sk, skb);
2007 	}
2008 	tcp_verify_left_out(tp);
2009 	tcp_clear_all_retrans_hints(tp);
2010 }
2011 
2012 /* Enter Loss state. */
2013 void tcp_enter_loss(struct sock *sk)
2014 {
2015 	const struct inet_connection_sock *icsk = inet_csk(sk);
2016 	struct tcp_sock *tp = tcp_sk(sk);
2017 	struct net *net = sock_net(sk);
2018 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2019 
2020 	tcp_timeout_mark_lost(sk);
2021 
2022 	/* Reduce ssthresh if it has not yet been made inside this window. */
2023 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2024 	    !after(tp->high_seq, tp->snd_una) ||
2025 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2026 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2027 		tp->prior_cwnd = tp->snd_cwnd;
2028 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2029 		tcp_ca_event(sk, CA_EVENT_LOSS);
2030 		tcp_init_undo(tp);
2031 	}
2032 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2033 	tp->snd_cwnd_cnt   = 0;
2034 	tp->snd_cwnd_stamp = tcp_jiffies32;
2035 
2036 	/* Timeout in disordered state after receiving substantial DUPACKs
2037 	 * suggests that the degree of reordering is over-estimated.
2038 	 */
2039 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2040 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2041 		tp->reordering = min_t(unsigned int, tp->reordering,
2042 				       net->ipv4.sysctl_tcp_reordering);
2043 	tcp_set_ca_state(sk, TCP_CA_Loss);
2044 	tp->high_seq = tp->snd_nxt;
2045 	tcp_ecn_queue_cwr(tp);
2046 
2047 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2048 	 * loss recovery is underway except recurring timeout(s) on
2049 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2050 	 */
2051 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2052 		   (new_recovery || icsk->icsk_retransmits) &&
2053 		   !inet_csk(sk)->icsk_mtup.probe_size;
2054 }
2055 
2056 /* If ACK arrived pointing to a remembered SACK, it means that our
2057  * remembered SACKs do not reflect real state of receiver i.e.
2058  * receiver _host_ is heavily congested (or buggy).
2059  *
2060  * To avoid big spurious retransmission bursts due to transient SACK
2061  * scoreboard oddities that look like reneging, we give the receiver a
2062  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2063  * restore sanity to the SACK scoreboard. If the apparent reneging
2064  * persists until this RTO then we'll clear the SACK scoreboard.
2065  */
2066 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2067 {
2068 	if (flag & FLAG_SACK_RENEGING) {
2069 		struct tcp_sock *tp = tcp_sk(sk);
2070 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2071 					  msecs_to_jiffies(10));
2072 
2073 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2074 					  delay, TCP_RTO_MAX);
2075 		return true;
2076 	}
2077 	return false;
2078 }
2079 
2080 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2081  * counter when SACK is enabled (without SACK, sacked_out is used for
2082  * that purpose).
2083  *
2084  * With reordering, holes may still be in flight, so RFC3517 recovery
2085  * uses pure sacked_out (total number of SACKed segments) even though
2086  * it violates the RFC that uses duplicate ACKs, often these are equal
2087  * but when e.g. out-of-window ACKs or packet duplication occurs,
2088  * they differ. Since neither occurs due to loss, TCP should really
2089  * ignore them.
2090  */
2091 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2092 {
2093 	return tp->sacked_out + 1;
2094 }
2095 
2096 /* Linux NewReno/SACK/ECN state machine.
2097  * --------------------------------------
2098  *
2099  * "Open"	Normal state, no dubious events, fast path.
2100  * "Disorder"   In all the respects it is "Open",
2101  *		but requires a bit more attention. It is entered when
2102  *		we see some SACKs or dupacks. It is split of "Open"
2103  *		mainly to move some processing from fast path to slow one.
2104  * "CWR"	CWND was reduced due to some Congestion Notification event.
2105  *		It can be ECN, ICMP source quench, local device congestion.
2106  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2107  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2108  *
2109  * tcp_fastretrans_alert() is entered:
2110  * - each incoming ACK, if state is not "Open"
2111  * - when arrived ACK is unusual, namely:
2112  *	* SACK
2113  *	* Duplicate ACK.
2114  *	* ECN ECE.
2115  *
2116  * Counting packets in flight is pretty simple.
2117  *
2118  *	in_flight = packets_out - left_out + retrans_out
2119  *
2120  *	packets_out is SND.NXT-SND.UNA counted in packets.
2121  *
2122  *	retrans_out is number of retransmitted segments.
2123  *
2124  *	left_out is number of segments left network, but not ACKed yet.
2125  *
2126  *		left_out = sacked_out + lost_out
2127  *
2128  *     sacked_out: Packets, which arrived to receiver out of order
2129  *		   and hence not ACKed. With SACKs this number is simply
2130  *		   amount of SACKed data. Even without SACKs
2131  *		   it is easy to give pretty reliable estimate of this number,
2132  *		   counting duplicate ACKs.
2133  *
2134  *       lost_out: Packets lost by network. TCP has no explicit
2135  *		   "loss notification" feedback from network (for now).
2136  *		   It means that this number can be only _guessed_.
2137  *		   Actually, it is the heuristics to predict lossage that
2138  *		   distinguishes different algorithms.
2139  *
2140  *	F.e. after RTO, when all the queue is considered as lost,
2141  *	lost_out = packets_out and in_flight = retrans_out.
2142  *
2143  *		Essentially, we have now a few algorithms detecting
2144  *		lost packets.
2145  *
2146  *		If the receiver supports SACK:
2147  *
2148  *		RFC6675/3517: It is the conventional algorithm. A packet is
2149  *		considered lost if the number of higher sequence packets
2150  *		SACKed is greater than or equal the DUPACK thoreshold
2151  *		(reordering). This is implemented in tcp_mark_head_lost and
2152  *		tcp_update_scoreboard.
2153  *
2154  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2155  *		(2017-) that checks timing instead of counting DUPACKs.
2156  *		Essentially a packet is considered lost if it's not S/ACKed
2157  *		after RTT + reordering_window, where both metrics are
2158  *		dynamically measured and adjusted. This is implemented in
2159  *		tcp_rack_mark_lost.
2160  *
2161  *		If the receiver does not support SACK:
2162  *
2163  *		NewReno (RFC6582): in Recovery we assume that one segment
2164  *		is lost (classic Reno). While we are in Recovery and
2165  *		a partial ACK arrives, we assume that one more packet
2166  *		is lost (NewReno). This heuristics are the same in NewReno
2167  *		and SACK.
2168  *
2169  * Really tricky (and requiring careful tuning) part of algorithm
2170  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2171  * The first determines the moment _when_ we should reduce CWND and,
2172  * hence, slow down forward transmission. In fact, it determines the moment
2173  * when we decide that hole is caused by loss, rather than by a reorder.
2174  *
2175  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2176  * holes, caused by lost packets.
2177  *
2178  * And the most logically complicated part of algorithm is undo
2179  * heuristics. We detect false retransmits due to both too early
2180  * fast retransmit (reordering) and underestimated RTO, analyzing
2181  * timestamps and D-SACKs. When we detect that some segments were
2182  * retransmitted by mistake and CWND reduction was wrong, we undo
2183  * window reduction and abort recovery phase. This logic is hidden
2184  * inside several functions named tcp_try_undo_<something>.
2185  */
2186 
2187 /* This function decides, when we should leave Disordered state
2188  * and enter Recovery phase, reducing congestion window.
2189  *
2190  * Main question: may we further continue forward transmission
2191  * with the same cwnd?
2192  */
2193 static bool tcp_time_to_recover(struct sock *sk, int flag)
2194 {
2195 	struct tcp_sock *tp = tcp_sk(sk);
2196 
2197 	/* Trick#1: The loss is proven. */
2198 	if (tp->lost_out)
2199 		return true;
2200 
2201 	/* Not-A-Trick#2 : Classic rule... */
2202 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2203 		return true;
2204 
2205 	return false;
2206 }
2207 
2208 /* Detect loss in event "A" above by marking head of queue up as lost.
2209  * For RFC3517 SACK, a segment is considered lost if it
2210  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2211  * the maximum SACKed segments to pass before reaching this limit.
2212  */
2213 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2214 {
2215 	struct tcp_sock *tp = tcp_sk(sk);
2216 	struct sk_buff *skb;
2217 	int cnt;
2218 	/* Use SACK to deduce losses of new sequences sent during recovery */
2219 	const u32 loss_high = tp->snd_nxt;
2220 
2221 	WARN_ON(packets > tp->packets_out);
2222 	skb = tp->lost_skb_hint;
2223 	if (skb) {
2224 		/* Head already handled? */
2225 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2226 			return;
2227 		cnt = tp->lost_cnt_hint;
2228 	} else {
2229 		skb = tcp_rtx_queue_head(sk);
2230 		cnt = 0;
2231 	}
2232 
2233 	skb_rbtree_walk_from(skb) {
2234 		/* TODO: do this better */
2235 		/* this is not the most efficient way to do this... */
2236 		tp->lost_skb_hint = skb;
2237 		tp->lost_cnt_hint = cnt;
2238 
2239 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2240 			break;
2241 
2242 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2243 			cnt += tcp_skb_pcount(skb);
2244 
2245 		if (cnt > packets)
2246 			break;
2247 
2248 		tcp_skb_mark_lost(tp, skb);
2249 
2250 		if (mark_head)
2251 			break;
2252 	}
2253 	tcp_verify_left_out(tp);
2254 }
2255 
2256 /* Account newly detected lost packet(s) */
2257 
2258 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2259 {
2260 	struct tcp_sock *tp = tcp_sk(sk);
2261 
2262 	if (tcp_is_sack(tp)) {
2263 		int sacked_upto = tp->sacked_out - tp->reordering;
2264 		if (sacked_upto >= 0)
2265 			tcp_mark_head_lost(sk, sacked_upto, 0);
2266 		else if (fast_rexmit)
2267 			tcp_mark_head_lost(sk, 1, 1);
2268 	}
2269 }
2270 
2271 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2272 {
2273 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2274 	       before(tp->rx_opt.rcv_tsecr, when);
2275 }
2276 
2277 /* skb is spurious retransmitted if the returned timestamp echo
2278  * reply is prior to the skb transmission time
2279  */
2280 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2281 				     const struct sk_buff *skb)
2282 {
2283 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2284 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2285 }
2286 
2287 /* Nothing was retransmitted or returned timestamp is less
2288  * than timestamp of the first retransmission.
2289  */
2290 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2291 {
2292 	return tp->retrans_stamp &&
2293 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2294 }
2295 
2296 /* Undo procedures. */
2297 
2298 /* We can clear retrans_stamp when there are no retransmissions in the
2299  * window. It would seem that it is trivially available for us in
2300  * tp->retrans_out, however, that kind of assumptions doesn't consider
2301  * what will happen if errors occur when sending retransmission for the
2302  * second time. ...It could the that such segment has only
2303  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2304  * the head skb is enough except for some reneging corner cases that
2305  * are not worth the effort.
2306  *
2307  * Main reason for all this complexity is the fact that connection dying
2308  * time now depends on the validity of the retrans_stamp, in particular,
2309  * that successive retransmissions of a segment must not advance
2310  * retrans_stamp under any conditions.
2311  */
2312 static bool tcp_any_retrans_done(const struct sock *sk)
2313 {
2314 	const struct tcp_sock *tp = tcp_sk(sk);
2315 	struct sk_buff *skb;
2316 
2317 	if (tp->retrans_out)
2318 		return true;
2319 
2320 	skb = tcp_rtx_queue_head(sk);
2321 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2322 		return true;
2323 
2324 	return false;
2325 }
2326 
2327 static void DBGUNDO(struct sock *sk, const char *msg)
2328 {
2329 #if FASTRETRANS_DEBUG > 1
2330 	struct tcp_sock *tp = tcp_sk(sk);
2331 	struct inet_sock *inet = inet_sk(sk);
2332 
2333 	if (sk->sk_family == AF_INET) {
2334 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2335 			 msg,
2336 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2337 			 tp->snd_cwnd, tcp_left_out(tp),
2338 			 tp->snd_ssthresh, tp->prior_ssthresh,
2339 			 tp->packets_out);
2340 	}
2341 #if IS_ENABLED(CONFIG_IPV6)
2342 	else if (sk->sk_family == AF_INET6) {
2343 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2344 			 msg,
2345 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2346 			 tp->snd_cwnd, tcp_left_out(tp),
2347 			 tp->snd_ssthresh, tp->prior_ssthresh,
2348 			 tp->packets_out);
2349 	}
2350 #endif
2351 #endif
2352 }
2353 
2354 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2355 {
2356 	struct tcp_sock *tp = tcp_sk(sk);
2357 
2358 	if (unmark_loss) {
2359 		struct sk_buff *skb;
2360 
2361 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2362 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2363 		}
2364 		tp->lost_out = 0;
2365 		tcp_clear_all_retrans_hints(tp);
2366 	}
2367 
2368 	if (tp->prior_ssthresh) {
2369 		const struct inet_connection_sock *icsk = inet_csk(sk);
2370 
2371 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2372 
2373 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2374 			tp->snd_ssthresh = tp->prior_ssthresh;
2375 			tcp_ecn_withdraw_cwr(tp);
2376 		}
2377 	}
2378 	tp->snd_cwnd_stamp = tcp_jiffies32;
2379 	tp->undo_marker = 0;
2380 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2381 }
2382 
2383 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2384 {
2385 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2386 }
2387 
2388 /* People celebrate: "We love our President!" */
2389 static bool tcp_try_undo_recovery(struct sock *sk)
2390 {
2391 	struct tcp_sock *tp = tcp_sk(sk);
2392 
2393 	if (tcp_may_undo(tp)) {
2394 		int mib_idx;
2395 
2396 		/* Happy end! We did not retransmit anything
2397 		 * or our original transmission succeeded.
2398 		 */
2399 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2400 		tcp_undo_cwnd_reduction(sk, false);
2401 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2402 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2403 		else
2404 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2405 
2406 		NET_INC_STATS(sock_net(sk), mib_idx);
2407 	} else if (tp->rack.reo_wnd_persist) {
2408 		tp->rack.reo_wnd_persist--;
2409 	}
2410 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2411 		/* Hold old state until something *above* high_seq
2412 		 * is ACKed. For Reno it is MUST to prevent false
2413 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2414 		if (!tcp_any_retrans_done(sk))
2415 			tp->retrans_stamp = 0;
2416 		return true;
2417 	}
2418 	tcp_set_ca_state(sk, TCP_CA_Open);
2419 	tp->is_sack_reneg = 0;
2420 	return false;
2421 }
2422 
2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424 static bool tcp_try_undo_dsack(struct sock *sk)
2425 {
2426 	struct tcp_sock *tp = tcp_sk(sk);
2427 
2428 	if (tp->undo_marker && !tp->undo_retrans) {
2429 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2430 					       tp->rack.reo_wnd_persist + 1);
2431 		DBGUNDO(sk, "D-SACK");
2432 		tcp_undo_cwnd_reduction(sk, false);
2433 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2434 		return true;
2435 	}
2436 	return false;
2437 }
2438 
2439 /* Undo during loss recovery after partial ACK or using F-RTO. */
2440 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2441 {
2442 	struct tcp_sock *tp = tcp_sk(sk);
2443 
2444 	if (frto_undo || tcp_may_undo(tp)) {
2445 		tcp_undo_cwnd_reduction(sk, true);
2446 
2447 		DBGUNDO(sk, "partial loss");
2448 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2449 		if (frto_undo)
2450 			NET_INC_STATS(sock_net(sk),
2451 					LINUX_MIB_TCPSPURIOUSRTOS);
2452 		inet_csk(sk)->icsk_retransmits = 0;
2453 		if (frto_undo || tcp_is_sack(tp)) {
2454 			tcp_set_ca_state(sk, TCP_CA_Open);
2455 			tp->is_sack_reneg = 0;
2456 		}
2457 		return true;
2458 	}
2459 	return false;
2460 }
2461 
2462 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2463  * It computes the number of packets to send (sndcnt) based on packets newly
2464  * delivered:
2465  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2466  *	cwnd reductions across a full RTT.
2467  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2468  *      But when the retransmits are acked without further losses, PRR
2469  *      slow starts cwnd up to ssthresh to speed up the recovery.
2470  */
2471 static void tcp_init_cwnd_reduction(struct sock *sk)
2472 {
2473 	struct tcp_sock *tp = tcp_sk(sk);
2474 
2475 	tp->high_seq = tp->snd_nxt;
2476 	tp->tlp_high_seq = 0;
2477 	tp->snd_cwnd_cnt = 0;
2478 	tp->prior_cwnd = tp->snd_cwnd;
2479 	tp->prr_delivered = 0;
2480 	tp->prr_out = 0;
2481 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2482 	tcp_ecn_queue_cwr(tp);
2483 }
2484 
2485 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2486 {
2487 	struct tcp_sock *tp = tcp_sk(sk);
2488 	int sndcnt = 0;
2489 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2490 
2491 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2492 		return;
2493 
2494 	tp->prr_delivered += newly_acked_sacked;
2495 	if (delta < 0) {
2496 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2497 			       tp->prior_cwnd - 1;
2498 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2499 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2500 		   FLAG_RETRANS_DATA_ACKED) {
2501 		sndcnt = min_t(int, delta,
2502 			       max_t(int, tp->prr_delivered - tp->prr_out,
2503 				     newly_acked_sacked) + 1);
2504 	} else {
2505 		sndcnt = min(delta, newly_acked_sacked);
2506 	}
2507 	/* Force a fast retransmit upon entering fast recovery */
2508 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2509 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2510 }
2511 
2512 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2513 {
2514 	struct tcp_sock *tp = tcp_sk(sk);
2515 
2516 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2517 		return;
2518 
2519 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2520 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2521 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2522 		tp->snd_cwnd = tp->snd_ssthresh;
2523 		tp->snd_cwnd_stamp = tcp_jiffies32;
2524 	}
2525 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2526 }
2527 
2528 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2529 void tcp_enter_cwr(struct sock *sk)
2530 {
2531 	struct tcp_sock *tp = tcp_sk(sk);
2532 
2533 	tp->prior_ssthresh = 0;
2534 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2535 		tp->undo_marker = 0;
2536 		tcp_init_cwnd_reduction(sk);
2537 		tcp_set_ca_state(sk, TCP_CA_CWR);
2538 	}
2539 }
2540 EXPORT_SYMBOL(tcp_enter_cwr);
2541 
2542 static void tcp_try_keep_open(struct sock *sk)
2543 {
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 	int state = TCP_CA_Open;
2546 
2547 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2548 		state = TCP_CA_Disorder;
2549 
2550 	if (inet_csk(sk)->icsk_ca_state != state) {
2551 		tcp_set_ca_state(sk, state);
2552 		tp->high_seq = tp->snd_nxt;
2553 	}
2554 }
2555 
2556 static void tcp_try_to_open(struct sock *sk, int flag)
2557 {
2558 	struct tcp_sock *tp = tcp_sk(sk);
2559 
2560 	tcp_verify_left_out(tp);
2561 
2562 	if (!tcp_any_retrans_done(sk))
2563 		tp->retrans_stamp = 0;
2564 
2565 	if (flag & FLAG_ECE)
2566 		tcp_enter_cwr(sk);
2567 
2568 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2569 		tcp_try_keep_open(sk);
2570 	}
2571 }
2572 
2573 static void tcp_mtup_probe_failed(struct sock *sk)
2574 {
2575 	struct inet_connection_sock *icsk = inet_csk(sk);
2576 
2577 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2578 	icsk->icsk_mtup.probe_size = 0;
2579 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2580 }
2581 
2582 static void tcp_mtup_probe_success(struct sock *sk)
2583 {
2584 	struct tcp_sock *tp = tcp_sk(sk);
2585 	struct inet_connection_sock *icsk = inet_csk(sk);
2586 
2587 	/* FIXME: breaks with very large cwnd */
2588 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2589 	tp->snd_cwnd = tp->snd_cwnd *
2590 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2591 		       icsk->icsk_mtup.probe_size;
2592 	tp->snd_cwnd_cnt = 0;
2593 	tp->snd_cwnd_stamp = tcp_jiffies32;
2594 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2595 
2596 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2597 	icsk->icsk_mtup.probe_size = 0;
2598 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2599 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2600 }
2601 
2602 /* Do a simple retransmit without using the backoff mechanisms in
2603  * tcp_timer. This is used for path mtu discovery.
2604  * The socket is already locked here.
2605  */
2606 void tcp_simple_retransmit(struct sock *sk)
2607 {
2608 	const struct inet_connection_sock *icsk = inet_csk(sk);
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 	struct sk_buff *skb;
2611 	unsigned int mss = tcp_current_mss(sk);
2612 
2613 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2614 		if (tcp_skb_seglen(skb) > mss &&
2615 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2616 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2617 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2618 				tp->retrans_out -= tcp_skb_pcount(skb);
2619 			}
2620 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2621 		}
2622 	}
2623 
2624 	tcp_clear_retrans_hints_partial(tp);
2625 
2626 	if (!tp->lost_out)
2627 		return;
2628 
2629 	if (tcp_is_reno(tp))
2630 		tcp_limit_reno_sacked(tp);
2631 
2632 	tcp_verify_left_out(tp);
2633 
2634 	/* Don't muck with the congestion window here.
2635 	 * Reason is that we do not increase amount of _data_
2636 	 * in network, but units changed and effective
2637 	 * cwnd/ssthresh really reduced now.
2638 	 */
2639 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2640 		tp->high_seq = tp->snd_nxt;
2641 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2642 		tp->prior_ssthresh = 0;
2643 		tp->undo_marker = 0;
2644 		tcp_set_ca_state(sk, TCP_CA_Loss);
2645 	}
2646 	tcp_xmit_retransmit_queue(sk);
2647 }
2648 EXPORT_SYMBOL(tcp_simple_retransmit);
2649 
2650 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2651 {
2652 	struct tcp_sock *tp = tcp_sk(sk);
2653 	int mib_idx;
2654 
2655 	if (tcp_is_reno(tp))
2656 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2657 	else
2658 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2659 
2660 	NET_INC_STATS(sock_net(sk), mib_idx);
2661 
2662 	tp->prior_ssthresh = 0;
2663 	tcp_init_undo(tp);
2664 
2665 	if (!tcp_in_cwnd_reduction(sk)) {
2666 		if (!ece_ack)
2667 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2668 		tcp_init_cwnd_reduction(sk);
2669 	}
2670 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2671 }
2672 
2673 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2674  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2675  */
2676 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2677 			     int *rexmit)
2678 {
2679 	struct tcp_sock *tp = tcp_sk(sk);
2680 	bool recovered = !before(tp->snd_una, tp->high_seq);
2681 
2682 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2683 	    tcp_try_undo_loss(sk, false))
2684 		return;
2685 
2686 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2687 		/* Step 3.b. A timeout is spurious if not all data are
2688 		 * lost, i.e., never-retransmitted data are (s)acked.
2689 		 */
2690 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2691 		    tcp_try_undo_loss(sk, true))
2692 			return;
2693 
2694 		if (after(tp->snd_nxt, tp->high_seq)) {
2695 			if (flag & FLAG_DATA_SACKED || num_dupack)
2696 				tp->frto = 0; /* Step 3.a. loss was real */
2697 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2698 			tp->high_seq = tp->snd_nxt;
2699 			/* Step 2.b. Try send new data (but deferred until cwnd
2700 			 * is updated in tcp_ack()). Otherwise fall back to
2701 			 * the conventional recovery.
2702 			 */
2703 			if (!tcp_write_queue_empty(sk) &&
2704 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2705 				*rexmit = REXMIT_NEW;
2706 				return;
2707 			}
2708 			tp->frto = 0;
2709 		}
2710 	}
2711 
2712 	if (recovered) {
2713 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2714 		tcp_try_undo_recovery(sk);
2715 		return;
2716 	}
2717 	if (tcp_is_reno(tp)) {
2718 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2719 		 * delivered. Lower inflight to clock out (re)tranmissions.
2720 		 */
2721 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2722 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2723 		else if (flag & FLAG_SND_UNA_ADVANCED)
2724 			tcp_reset_reno_sack(tp);
2725 	}
2726 	*rexmit = REXMIT_LOST;
2727 }
2728 
2729 /* Undo during fast recovery after partial ACK. */
2730 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2731 {
2732 	struct tcp_sock *tp = tcp_sk(sk);
2733 
2734 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2735 		/* Plain luck! Hole if filled with delayed
2736 		 * packet, rather than with a retransmit. Check reordering.
2737 		 */
2738 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2739 
2740 		/* We are getting evidence that the reordering degree is higher
2741 		 * than we realized. If there are no retransmits out then we
2742 		 * can undo. Otherwise we clock out new packets but do not
2743 		 * mark more packets lost or retransmit more.
2744 		 */
2745 		if (tp->retrans_out)
2746 			return true;
2747 
2748 		if (!tcp_any_retrans_done(sk))
2749 			tp->retrans_stamp = 0;
2750 
2751 		DBGUNDO(sk, "partial recovery");
2752 		tcp_undo_cwnd_reduction(sk, true);
2753 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2754 		tcp_try_keep_open(sk);
2755 		return true;
2756 	}
2757 	return false;
2758 }
2759 
2760 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2761 {
2762 	struct tcp_sock *tp = tcp_sk(sk);
2763 
2764 	if (tcp_rtx_queue_empty(sk))
2765 		return;
2766 
2767 	if (unlikely(tcp_is_reno(tp))) {
2768 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2769 	} else if (tcp_is_rack(sk)) {
2770 		u32 prior_retrans = tp->retrans_out;
2771 
2772 		tcp_rack_mark_lost(sk);
2773 		if (prior_retrans > tp->retrans_out)
2774 			*ack_flag |= FLAG_LOST_RETRANS;
2775 	}
2776 }
2777 
2778 static bool tcp_force_fast_retransmit(struct sock *sk)
2779 {
2780 	struct tcp_sock *tp = tcp_sk(sk);
2781 
2782 	return after(tcp_highest_sack_seq(tp),
2783 		     tp->snd_una + tp->reordering * tp->mss_cache);
2784 }
2785 
2786 /* Process an event, which can update packets-in-flight not trivially.
2787  * Main goal of this function is to calculate new estimate for left_out,
2788  * taking into account both packets sitting in receiver's buffer and
2789  * packets lost by network.
2790  *
2791  * Besides that it updates the congestion state when packet loss or ECN
2792  * is detected. But it does not reduce the cwnd, it is done by the
2793  * congestion control later.
2794  *
2795  * It does _not_ decide what to send, it is made in function
2796  * tcp_xmit_retransmit_queue().
2797  */
2798 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2799 				  int num_dupack, int *ack_flag, int *rexmit)
2800 {
2801 	struct inet_connection_sock *icsk = inet_csk(sk);
2802 	struct tcp_sock *tp = tcp_sk(sk);
2803 	int fast_rexmit = 0, flag = *ack_flag;
2804 	bool ece_ack = flag & FLAG_ECE;
2805 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2806 				      tcp_force_fast_retransmit(sk));
2807 
2808 	if (!tp->packets_out && tp->sacked_out)
2809 		tp->sacked_out = 0;
2810 
2811 	/* Now state machine starts.
2812 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2813 	if (ece_ack)
2814 		tp->prior_ssthresh = 0;
2815 
2816 	/* B. In all the states check for reneging SACKs. */
2817 	if (tcp_check_sack_reneging(sk, flag))
2818 		return;
2819 
2820 	/* C. Check consistency of the current state. */
2821 	tcp_verify_left_out(tp);
2822 
2823 	/* D. Check state exit conditions. State can be terminated
2824 	 *    when high_seq is ACKed. */
2825 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2826 		WARN_ON(tp->retrans_out != 0);
2827 		tp->retrans_stamp = 0;
2828 	} else if (!before(tp->snd_una, tp->high_seq)) {
2829 		switch (icsk->icsk_ca_state) {
2830 		case TCP_CA_CWR:
2831 			/* CWR is to be held something *above* high_seq
2832 			 * is ACKed for CWR bit to reach receiver. */
2833 			if (tp->snd_una != tp->high_seq) {
2834 				tcp_end_cwnd_reduction(sk);
2835 				tcp_set_ca_state(sk, TCP_CA_Open);
2836 			}
2837 			break;
2838 
2839 		case TCP_CA_Recovery:
2840 			if (tcp_is_reno(tp))
2841 				tcp_reset_reno_sack(tp);
2842 			if (tcp_try_undo_recovery(sk))
2843 				return;
2844 			tcp_end_cwnd_reduction(sk);
2845 			break;
2846 		}
2847 	}
2848 
2849 	/* E. Process state. */
2850 	switch (icsk->icsk_ca_state) {
2851 	case TCP_CA_Recovery:
2852 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2853 			if (tcp_is_reno(tp))
2854 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2855 		} else {
2856 			if (tcp_try_undo_partial(sk, prior_snd_una))
2857 				return;
2858 			/* Partial ACK arrived. Force fast retransmit. */
2859 			do_lost = tcp_force_fast_retransmit(sk);
2860 		}
2861 		if (tcp_try_undo_dsack(sk)) {
2862 			tcp_try_keep_open(sk);
2863 			return;
2864 		}
2865 		tcp_identify_packet_loss(sk, ack_flag);
2866 		break;
2867 	case TCP_CA_Loss:
2868 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2869 		tcp_identify_packet_loss(sk, ack_flag);
2870 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2871 		      (*ack_flag & FLAG_LOST_RETRANS)))
2872 			return;
2873 		/* Change state if cwnd is undone or retransmits are lost */
2874 		fallthrough;
2875 	default:
2876 		if (tcp_is_reno(tp)) {
2877 			if (flag & FLAG_SND_UNA_ADVANCED)
2878 				tcp_reset_reno_sack(tp);
2879 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2880 		}
2881 
2882 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2883 			tcp_try_undo_dsack(sk);
2884 
2885 		tcp_identify_packet_loss(sk, ack_flag);
2886 		if (!tcp_time_to_recover(sk, flag)) {
2887 			tcp_try_to_open(sk, flag);
2888 			return;
2889 		}
2890 
2891 		/* MTU probe failure: don't reduce cwnd */
2892 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2893 		    icsk->icsk_mtup.probe_size &&
2894 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2895 			tcp_mtup_probe_failed(sk);
2896 			/* Restores the reduction we did in tcp_mtup_probe() */
2897 			tp->snd_cwnd++;
2898 			tcp_simple_retransmit(sk);
2899 			return;
2900 		}
2901 
2902 		/* Otherwise enter Recovery state */
2903 		tcp_enter_recovery(sk, ece_ack);
2904 		fast_rexmit = 1;
2905 	}
2906 
2907 	if (!tcp_is_rack(sk) && do_lost)
2908 		tcp_update_scoreboard(sk, fast_rexmit);
2909 	*rexmit = REXMIT_LOST;
2910 }
2911 
2912 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2913 {
2914 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2915 	struct tcp_sock *tp = tcp_sk(sk);
2916 
2917 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2918 		/* If the remote keeps returning delayed ACKs, eventually
2919 		 * the min filter would pick it up and overestimate the
2920 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2921 		 */
2922 		return;
2923 	}
2924 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2925 			   rtt_us ? : jiffies_to_usecs(1));
2926 }
2927 
2928 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2929 			       long seq_rtt_us, long sack_rtt_us,
2930 			       long ca_rtt_us, struct rate_sample *rs)
2931 {
2932 	const struct tcp_sock *tp = tcp_sk(sk);
2933 
2934 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2935 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2936 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2937 	 * is acked (RFC6298).
2938 	 */
2939 	if (seq_rtt_us < 0)
2940 		seq_rtt_us = sack_rtt_us;
2941 
2942 	/* RTTM Rule: A TSecr value received in a segment is used to
2943 	 * update the averaged RTT measurement only if the segment
2944 	 * acknowledges some new data, i.e., only if it advances the
2945 	 * left edge of the send window.
2946 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2947 	 */
2948 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2949 	    flag & FLAG_ACKED) {
2950 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2951 
2952 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2953 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2954 			ca_rtt_us = seq_rtt_us;
2955 		}
2956 	}
2957 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2958 	if (seq_rtt_us < 0)
2959 		return false;
2960 
2961 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2962 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2963 	 * values will be skipped with the seq_rtt_us < 0 check above.
2964 	 */
2965 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2966 	tcp_rtt_estimator(sk, seq_rtt_us);
2967 	tcp_set_rto(sk);
2968 
2969 	/* RFC6298: only reset backoff on valid RTT measurement. */
2970 	inet_csk(sk)->icsk_backoff = 0;
2971 	return true;
2972 }
2973 
2974 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2975 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2976 {
2977 	struct rate_sample rs;
2978 	long rtt_us = -1L;
2979 
2980 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2981 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2982 
2983 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2984 }
2985 
2986 
2987 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2988 {
2989 	const struct inet_connection_sock *icsk = inet_csk(sk);
2990 
2991 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2992 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2993 }
2994 
2995 /* Restart timer after forward progress on connection.
2996  * RFC2988 recommends to restart timer to now+rto.
2997  */
2998 void tcp_rearm_rto(struct sock *sk)
2999 {
3000 	const struct inet_connection_sock *icsk = inet_csk(sk);
3001 	struct tcp_sock *tp = tcp_sk(sk);
3002 
3003 	/* If the retrans timer is currently being used by Fast Open
3004 	 * for SYN-ACK retrans purpose, stay put.
3005 	 */
3006 	if (rcu_access_pointer(tp->fastopen_rsk))
3007 		return;
3008 
3009 	if (!tp->packets_out) {
3010 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3011 	} else {
3012 		u32 rto = inet_csk(sk)->icsk_rto;
3013 		/* Offset the time elapsed after installing regular RTO */
3014 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3015 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3016 			s64 delta_us = tcp_rto_delta_us(sk);
3017 			/* delta_us may not be positive if the socket is locked
3018 			 * when the retrans timer fires and is rescheduled.
3019 			 */
3020 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3021 		}
3022 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3023 				     TCP_RTO_MAX);
3024 	}
3025 }
3026 
3027 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3028 static void tcp_set_xmit_timer(struct sock *sk)
3029 {
3030 	if (!tcp_schedule_loss_probe(sk, true))
3031 		tcp_rearm_rto(sk);
3032 }
3033 
3034 /* If we get here, the whole TSO packet has not been acked. */
3035 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3036 {
3037 	struct tcp_sock *tp = tcp_sk(sk);
3038 	u32 packets_acked;
3039 
3040 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3041 
3042 	packets_acked = tcp_skb_pcount(skb);
3043 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3044 		return 0;
3045 	packets_acked -= tcp_skb_pcount(skb);
3046 
3047 	if (packets_acked) {
3048 		BUG_ON(tcp_skb_pcount(skb) == 0);
3049 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3050 	}
3051 
3052 	return packets_acked;
3053 }
3054 
3055 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3056 			   u32 prior_snd_una)
3057 {
3058 	const struct skb_shared_info *shinfo;
3059 
3060 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3061 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3062 		return;
3063 
3064 	shinfo = skb_shinfo(skb);
3065 	if (!before(shinfo->tskey, prior_snd_una) &&
3066 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3067 		tcp_skb_tsorted_save(skb) {
3068 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3069 		} tcp_skb_tsorted_restore(skb);
3070 	}
3071 }
3072 
3073 /* Remove acknowledged frames from the retransmission queue. If our packet
3074  * is before the ack sequence we can discard it as it's confirmed to have
3075  * arrived at the other end.
3076  */
3077 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3078 			       u32 prior_snd_una,
3079 			       struct tcp_sacktag_state *sack, bool ece_ack)
3080 {
3081 	const struct inet_connection_sock *icsk = inet_csk(sk);
3082 	u64 first_ackt, last_ackt;
3083 	struct tcp_sock *tp = tcp_sk(sk);
3084 	u32 prior_sacked = tp->sacked_out;
3085 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3086 	struct sk_buff *skb, *next;
3087 	bool fully_acked = true;
3088 	long sack_rtt_us = -1L;
3089 	long seq_rtt_us = -1L;
3090 	long ca_rtt_us = -1L;
3091 	u32 pkts_acked = 0;
3092 	u32 last_in_flight = 0;
3093 	bool rtt_update;
3094 	int flag = 0;
3095 
3096 	first_ackt = 0;
3097 
3098 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3099 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3100 		const u32 start_seq = scb->seq;
3101 		u8 sacked = scb->sacked;
3102 		u32 acked_pcount;
3103 
3104 		/* Determine how many packets and what bytes were acked, tso and else */
3105 		if (after(scb->end_seq, tp->snd_una)) {
3106 			if (tcp_skb_pcount(skb) == 1 ||
3107 			    !after(tp->snd_una, scb->seq))
3108 				break;
3109 
3110 			acked_pcount = tcp_tso_acked(sk, skb);
3111 			if (!acked_pcount)
3112 				break;
3113 			fully_acked = false;
3114 		} else {
3115 			acked_pcount = tcp_skb_pcount(skb);
3116 		}
3117 
3118 		if (unlikely(sacked & TCPCB_RETRANS)) {
3119 			if (sacked & TCPCB_SACKED_RETRANS)
3120 				tp->retrans_out -= acked_pcount;
3121 			flag |= FLAG_RETRANS_DATA_ACKED;
3122 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3123 			last_ackt = tcp_skb_timestamp_us(skb);
3124 			WARN_ON_ONCE(last_ackt == 0);
3125 			if (!first_ackt)
3126 				first_ackt = last_ackt;
3127 
3128 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3129 			if (before(start_seq, reord))
3130 				reord = start_seq;
3131 			if (!after(scb->end_seq, tp->high_seq))
3132 				flag |= FLAG_ORIG_SACK_ACKED;
3133 		}
3134 
3135 		if (sacked & TCPCB_SACKED_ACKED) {
3136 			tp->sacked_out -= acked_pcount;
3137 		} else if (tcp_is_sack(tp)) {
3138 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3139 			if (!tcp_skb_spurious_retrans(tp, skb))
3140 				tcp_rack_advance(tp, sacked, scb->end_seq,
3141 						 tcp_skb_timestamp_us(skb));
3142 		}
3143 		if (sacked & TCPCB_LOST)
3144 			tp->lost_out -= acked_pcount;
3145 
3146 		tp->packets_out -= acked_pcount;
3147 		pkts_acked += acked_pcount;
3148 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3149 
3150 		/* Initial outgoing SYN's get put onto the write_queue
3151 		 * just like anything else we transmit.  It is not
3152 		 * true data, and if we misinform our callers that
3153 		 * this ACK acks real data, we will erroneously exit
3154 		 * connection startup slow start one packet too
3155 		 * quickly.  This is severely frowned upon behavior.
3156 		 */
3157 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3158 			flag |= FLAG_DATA_ACKED;
3159 		} else {
3160 			flag |= FLAG_SYN_ACKED;
3161 			tp->retrans_stamp = 0;
3162 		}
3163 
3164 		if (!fully_acked)
3165 			break;
3166 
3167 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3168 
3169 		next = skb_rb_next(skb);
3170 		if (unlikely(skb == tp->retransmit_skb_hint))
3171 			tp->retransmit_skb_hint = NULL;
3172 		if (unlikely(skb == tp->lost_skb_hint))
3173 			tp->lost_skb_hint = NULL;
3174 		tcp_highest_sack_replace(sk, skb, next);
3175 		tcp_rtx_queue_unlink_and_free(skb, sk);
3176 	}
3177 
3178 	if (!skb)
3179 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3180 
3181 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3182 		tp->snd_up = tp->snd_una;
3183 
3184 	if (skb) {
3185 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3186 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3187 			flag |= FLAG_SACK_RENEGING;
3188 	}
3189 
3190 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3191 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3192 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3193 
3194 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3195 		    last_in_flight && !prior_sacked && fully_acked &&
3196 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3197 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3198 			/* Conservatively mark a delayed ACK. It's typically
3199 			 * from a lone runt packet over the round trip to
3200 			 * a receiver w/o out-of-order or CE events.
3201 			 */
3202 			flag |= FLAG_ACK_MAYBE_DELAYED;
3203 		}
3204 	}
3205 	if (sack->first_sackt) {
3206 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3207 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3208 	}
3209 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3210 					ca_rtt_us, sack->rate);
3211 
3212 	if (flag & FLAG_ACKED) {
3213 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3214 		if (unlikely(icsk->icsk_mtup.probe_size &&
3215 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3216 			tcp_mtup_probe_success(sk);
3217 		}
3218 
3219 		if (tcp_is_reno(tp)) {
3220 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3221 
3222 			/* If any of the cumulatively ACKed segments was
3223 			 * retransmitted, non-SACK case cannot confirm that
3224 			 * progress was due to original transmission due to
3225 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3226 			 * the packets may have been never retransmitted.
3227 			 */
3228 			if (flag & FLAG_RETRANS_DATA_ACKED)
3229 				flag &= ~FLAG_ORIG_SACK_ACKED;
3230 		} else {
3231 			int delta;
3232 
3233 			/* Non-retransmitted hole got filled? That's reordering */
3234 			if (before(reord, prior_fack))
3235 				tcp_check_sack_reordering(sk, reord, 0);
3236 
3237 			delta = prior_sacked - tp->sacked_out;
3238 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3239 		}
3240 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3241 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3242 						    tcp_skb_timestamp_us(skb))) {
3243 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3244 		 * after when the head was last (re)transmitted. Otherwise the
3245 		 * timeout may continue to extend in loss recovery.
3246 		 */
3247 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3248 	}
3249 
3250 	if (icsk->icsk_ca_ops->pkts_acked) {
3251 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3252 					     .rtt_us = sack->rate->rtt_us,
3253 					     .in_flight = last_in_flight };
3254 
3255 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3256 	}
3257 
3258 #if FASTRETRANS_DEBUG > 0
3259 	WARN_ON((int)tp->sacked_out < 0);
3260 	WARN_ON((int)tp->lost_out < 0);
3261 	WARN_ON((int)tp->retrans_out < 0);
3262 	if (!tp->packets_out && tcp_is_sack(tp)) {
3263 		icsk = inet_csk(sk);
3264 		if (tp->lost_out) {
3265 			pr_debug("Leak l=%u %d\n",
3266 				 tp->lost_out, icsk->icsk_ca_state);
3267 			tp->lost_out = 0;
3268 		}
3269 		if (tp->sacked_out) {
3270 			pr_debug("Leak s=%u %d\n",
3271 				 tp->sacked_out, icsk->icsk_ca_state);
3272 			tp->sacked_out = 0;
3273 		}
3274 		if (tp->retrans_out) {
3275 			pr_debug("Leak r=%u %d\n",
3276 				 tp->retrans_out, icsk->icsk_ca_state);
3277 			tp->retrans_out = 0;
3278 		}
3279 	}
3280 #endif
3281 	return flag;
3282 }
3283 
3284 static void tcp_ack_probe(struct sock *sk)
3285 {
3286 	struct inet_connection_sock *icsk = inet_csk(sk);
3287 	struct sk_buff *head = tcp_send_head(sk);
3288 	const struct tcp_sock *tp = tcp_sk(sk);
3289 
3290 	/* Was it a usable window open? */
3291 	if (!head)
3292 		return;
3293 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3294 		icsk->icsk_backoff = 0;
3295 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3296 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3297 		 * This function is not for random using!
3298 		 */
3299 	} else {
3300 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3301 
3302 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3303 				     when, TCP_RTO_MAX);
3304 	}
3305 }
3306 
3307 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3308 {
3309 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3310 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3311 }
3312 
3313 /* Decide wheather to run the increase function of congestion control. */
3314 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3315 {
3316 	/* If reordering is high then always grow cwnd whenever data is
3317 	 * delivered regardless of its ordering. Otherwise stay conservative
3318 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3319 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3320 	 * cwnd in tcp_fastretrans_alert() based on more states.
3321 	 */
3322 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3323 		return flag & FLAG_FORWARD_PROGRESS;
3324 
3325 	return flag & FLAG_DATA_ACKED;
3326 }
3327 
3328 /* The "ultimate" congestion control function that aims to replace the rigid
3329  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3330  * It's called toward the end of processing an ACK with precise rate
3331  * information. All transmission or retransmission are delayed afterwards.
3332  */
3333 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3334 			     int flag, const struct rate_sample *rs)
3335 {
3336 	const struct inet_connection_sock *icsk = inet_csk(sk);
3337 
3338 	if (icsk->icsk_ca_ops->cong_control) {
3339 		icsk->icsk_ca_ops->cong_control(sk, rs);
3340 		return;
3341 	}
3342 
3343 	if (tcp_in_cwnd_reduction(sk)) {
3344 		/* Reduce cwnd if state mandates */
3345 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3346 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3347 		/* Advance cwnd if state allows */
3348 		tcp_cong_avoid(sk, ack, acked_sacked);
3349 	}
3350 	tcp_update_pacing_rate(sk);
3351 }
3352 
3353 /* Check that window update is acceptable.
3354  * The function assumes that snd_una<=ack<=snd_next.
3355  */
3356 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3357 					const u32 ack, const u32 ack_seq,
3358 					const u32 nwin)
3359 {
3360 	return	after(ack, tp->snd_una) ||
3361 		after(ack_seq, tp->snd_wl1) ||
3362 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3363 }
3364 
3365 /* If we update tp->snd_una, also update tp->bytes_acked */
3366 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3367 {
3368 	u32 delta = ack - tp->snd_una;
3369 
3370 	sock_owned_by_me((struct sock *)tp);
3371 	tp->bytes_acked += delta;
3372 	tp->snd_una = ack;
3373 }
3374 
3375 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3376 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3377 {
3378 	u32 delta = seq - tp->rcv_nxt;
3379 
3380 	sock_owned_by_me((struct sock *)tp);
3381 	tp->bytes_received += delta;
3382 	WRITE_ONCE(tp->rcv_nxt, seq);
3383 }
3384 
3385 /* Update our send window.
3386  *
3387  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3388  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3389  */
3390 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3391 				 u32 ack_seq)
3392 {
3393 	struct tcp_sock *tp = tcp_sk(sk);
3394 	int flag = 0;
3395 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3396 
3397 	if (likely(!tcp_hdr(skb)->syn))
3398 		nwin <<= tp->rx_opt.snd_wscale;
3399 
3400 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3401 		flag |= FLAG_WIN_UPDATE;
3402 		tcp_update_wl(tp, ack_seq);
3403 
3404 		if (tp->snd_wnd != nwin) {
3405 			tp->snd_wnd = nwin;
3406 
3407 			/* Note, it is the only place, where
3408 			 * fast path is recovered for sending TCP.
3409 			 */
3410 			tp->pred_flags = 0;
3411 			tcp_fast_path_check(sk);
3412 
3413 			if (!tcp_write_queue_empty(sk))
3414 				tcp_slow_start_after_idle_check(sk);
3415 
3416 			if (nwin > tp->max_window) {
3417 				tp->max_window = nwin;
3418 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3419 			}
3420 		}
3421 	}
3422 
3423 	tcp_snd_una_update(tp, ack);
3424 
3425 	return flag;
3426 }
3427 
3428 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3429 				   u32 *last_oow_ack_time)
3430 {
3431 	if (*last_oow_ack_time) {
3432 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3433 
3434 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3435 			NET_INC_STATS(net, mib_idx);
3436 			return true;	/* rate-limited: don't send yet! */
3437 		}
3438 	}
3439 
3440 	*last_oow_ack_time = tcp_jiffies32;
3441 
3442 	return false;	/* not rate-limited: go ahead, send dupack now! */
3443 }
3444 
3445 /* Return true if we're currently rate-limiting out-of-window ACKs and
3446  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3447  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3448  * attacks that send repeated SYNs or ACKs for the same connection. To
3449  * do this, we do not send a duplicate SYNACK or ACK if the remote
3450  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3451  */
3452 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3453 			  int mib_idx, u32 *last_oow_ack_time)
3454 {
3455 	/* Data packets without SYNs are not likely part of an ACK loop. */
3456 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3457 	    !tcp_hdr(skb)->syn)
3458 		return false;
3459 
3460 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3461 }
3462 
3463 /* RFC 5961 7 [ACK Throttling] */
3464 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3465 {
3466 	/* unprotected vars, we dont care of overwrites */
3467 	static u32 challenge_timestamp;
3468 	static unsigned int challenge_count;
3469 	struct tcp_sock *tp = tcp_sk(sk);
3470 	struct net *net = sock_net(sk);
3471 	u32 count, now;
3472 
3473 	/* First check our per-socket dupack rate limit. */
3474 	if (__tcp_oow_rate_limited(net,
3475 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3476 				   &tp->last_oow_ack_time))
3477 		return;
3478 
3479 	/* Then check host-wide RFC 5961 rate limit. */
3480 	now = jiffies / HZ;
3481 	if (now != challenge_timestamp) {
3482 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3483 		u32 half = (ack_limit + 1) >> 1;
3484 
3485 		challenge_timestamp = now;
3486 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3487 	}
3488 	count = READ_ONCE(challenge_count);
3489 	if (count > 0) {
3490 		WRITE_ONCE(challenge_count, count - 1);
3491 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3492 		tcp_send_ack(sk);
3493 	}
3494 }
3495 
3496 static void tcp_store_ts_recent(struct tcp_sock *tp)
3497 {
3498 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3499 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3500 }
3501 
3502 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3503 {
3504 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3505 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3506 		 * extra check below makes sure this can only happen
3507 		 * for pure ACK frames.  -DaveM
3508 		 *
3509 		 * Not only, also it occurs for expired timestamps.
3510 		 */
3511 
3512 		if (tcp_paws_check(&tp->rx_opt, 0))
3513 			tcp_store_ts_recent(tp);
3514 	}
3515 }
3516 
3517 /* This routine deals with acks during a TLP episode.
3518  * We mark the end of a TLP episode on receiving TLP dupack or when
3519  * ack is after tlp_high_seq.
3520  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3521  */
3522 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3523 {
3524 	struct tcp_sock *tp = tcp_sk(sk);
3525 
3526 	if (before(ack, tp->tlp_high_seq))
3527 		return;
3528 
3529 	if (flag & FLAG_DSACKING_ACK) {
3530 		/* This DSACK means original and TLP probe arrived; no loss */
3531 		tp->tlp_high_seq = 0;
3532 	} else if (after(ack, tp->tlp_high_seq)) {
3533 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3534 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3535 		 */
3536 		tcp_init_cwnd_reduction(sk);
3537 		tcp_set_ca_state(sk, TCP_CA_CWR);
3538 		tcp_end_cwnd_reduction(sk);
3539 		tcp_try_keep_open(sk);
3540 		NET_INC_STATS(sock_net(sk),
3541 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3542 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3543 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3544 		/* Pure dupack: original and TLP probe arrived; no loss */
3545 		tp->tlp_high_seq = 0;
3546 	}
3547 }
3548 
3549 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3550 {
3551 	const struct inet_connection_sock *icsk = inet_csk(sk);
3552 
3553 	if (icsk->icsk_ca_ops->in_ack_event)
3554 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3555 }
3556 
3557 /* Congestion control has updated the cwnd already. So if we're in
3558  * loss recovery then now we do any new sends (for FRTO) or
3559  * retransmits (for CA_Loss or CA_recovery) that make sense.
3560  */
3561 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3562 {
3563 	struct tcp_sock *tp = tcp_sk(sk);
3564 
3565 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3566 		return;
3567 
3568 	if (unlikely(rexmit == REXMIT_NEW)) {
3569 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3570 					  TCP_NAGLE_OFF);
3571 		if (after(tp->snd_nxt, tp->high_seq))
3572 			return;
3573 		tp->frto = 0;
3574 	}
3575 	tcp_xmit_retransmit_queue(sk);
3576 }
3577 
3578 /* Returns the number of packets newly acked or sacked by the current ACK */
3579 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3580 {
3581 	const struct net *net = sock_net(sk);
3582 	struct tcp_sock *tp = tcp_sk(sk);
3583 	u32 delivered;
3584 
3585 	delivered = tp->delivered - prior_delivered;
3586 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3587 	if (flag & FLAG_ECE)
3588 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3589 
3590 	return delivered;
3591 }
3592 
3593 /* This routine deals with incoming acks, but not outgoing ones. */
3594 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3595 {
3596 	struct inet_connection_sock *icsk = inet_csk(sk);
3597 	struct tcp_sock *tp = tcp_sk(sk);
3598 	struct tcp_sacktag_state sack_state;
3599 	struct rate_sample rs = { .prior_delivered = 0 };
3600 	u32 prior_snd_una = tp->snd_una;
3601 	bool is_sack_reneg = tp->is_sack_reneg;
3602 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3603 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3604 	int num_dupack = 0;
3605 	int prior_packets = tp->packets_out;
3606 	u32 delivered = tp->delivered;
3607 	u32 lost = tp->lost;
3608 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3609 	u32 prior_fack;
3610 
3611 	sack_state.first_sackt = 0;
3612 	sack_state.rate = &rs;
3613 	sack_state.sack_delivered = 0;
3614 
3615 	/* We very likely will need to access rtx queue. */
3616 	prefetch(sk->tcp_rtx_queue.rb_node);
3617 
3618 	/* If the ack is older than previous acks
3619 	 * then we can probably ignore it.
3620 	 */
3621 	if (before(ack, prior_snd_una)) {
3622 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3623 		if (before(ack, prior_snd_una - tp->max_window)) {
3624 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3625 				tcp_send_challenge_ack(sk, skb);
3626 			return -1;
3627 		}
3628 		goto old_ack;
3629 	}
3630 
3631 	/* If the ack includes data we haven't sent yet, discard
3632 	 * this segment (RFC793 Section 3.9).
3633 	 */
3634 	if (after(ack, tp->snd_nxt))
3635 		return -1;
3636 
3637 	if (after(ack, prior_snd_una)) {
3638 		flag |= FLAG_SND_UNA_ADVANCED;
3639 		icsk->icsk_retransmits = 0;
3640 
3641 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3642 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3643 			if (icsk->icsk_clean_acked)
3644 				icsk->icsk_clean_acked(sk, ack);
3645 #endif
3646 	}
3647 
3648 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3649 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3650 
3651 	/* ts_recent update must be made after we are sure that the packet
3652 	 * is in window.
3653 	 */
3654 	if (flag & FLAG_UPDATE_TS_RECENT)
3655 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3656 
3657 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3658 	    FLAG_SND_UNA_ADVANCED) {
3659 		/* Window is constant, pure forward advance.
3660 		 * No more checks are required.
3661 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3662 		 */
3663 		tcp_update_wl(tp, ack_seq);
3664 		tcp_snd_una_update(tp, ack);
3665 		flag |= FLAG_WIN_UPDATE;
3666 
3667 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3668 
3669 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3670 	} else {
3671 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3672 
3673 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3674 			flag |= FLAG_DATA;
3675 		else
3676 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3677 
3678 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3679 
3680 		if (TCP_SKB_CB(skb)->sacked)
3681 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3682 							&sack_state);
3683 
3684 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3685 			flag |= FLAG_ECE;
3686 			ack_ev_flags |= CA_ACK_ECE;
3687 		}
3688 
3689 		if (sack_state.sack_delivered)
3690 			tcp_count_delivered(tp, sack_state.sack_delivered,
3691 					    flag & FLAG_ECE);
3692 
3693 		if (flag & FLAG_WIN_UPDATE)
3694 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3695 
3696 		tcp_in_ack_event(sk, ack_ev_flags);
3697 	}
3698 
3699 	/* This is a deviation from RFC3168 since it states that:
3700 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3701 	 * the congestion window, it SHOULD set the CWR bit only on the first
3702 	 * new data packet that it transmits."
3703 	 * We accept CWR on pure ACKs to be more robust
3704 	 * with widely-deployed TCP implementations that do this.
3705 	 */
3706 	tcp_ecn_accept_cwr(sk, skb);
3707 
3708 	/* We passed data and got it acked, remove any soft error
3709 	 * log. Something worked...
3710 	 */
3711 	sk->sk_err_soft = 0;
3712 	icsk->icsk_probes_out = 0;
3713 	tp->rcv_tstamp = tcp_jiffies32;
3714 	if (!prior_packets)
3715 		goto no_queue;
3716 
3717 	/* See if we can take anything off of the retransmit queue. */
3718 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3719 				    flag & FLAG_ECE);
3720 
3721 	tcp_rack_update_reo_wnd(sk, &rs);
3722 
3723 	if (tp->tlp_high_seq)
3724 		tcp_process_tlp_ack(sk, ack, flag);
3725 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3726 	if (flag & FLAG_SET_XMIT_TIMER)
3727 		tcp_set_xmit_timer(sk);
3728 
3729 	if (tcp_ack_is_dubious(sk, flag)) {
3730 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3731 			num_dupack = 1;
3732 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3733 			if (!(flag & FLAG_DATA))
3734 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3735 		}
3736 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3737 				      &rexmit);
3738 	}
3739 
3740 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3741 		sk_dst_confirm(sk);
3742 
3743 	delivered = tcp_newly_delivered(sk, delivered, flag);
3744 	lost = tp->lost - lost;			/* freshly marked lost */
3745 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3746 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3747 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3748 	tcp_xmit_recovery(sk, rexmit);
3749 	return 1;
3750 
3751 no_queue:
3752 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3753 	if (flag & FLAG_DSACKING_ACK) {
3754 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3755 				      &rexmit);
3756 		tcp_newly_delivered(sk, delivered, flag);
3757 	}
3758 	/* If this ack opens up a zero window, clear backoff.  It was
3759 	 * being used to time the probes, and is probably far higher than
3760 	 * it needs to be for normal retransmission.
3761 	 */
3762 	tcp_ack_probe(sk);
3763 
3764 	if (tp->tlp_high_seq)
3765 		tcp_process_tlp_ack(sk, ack, flag);
3766 	return 1;
3767 
3768 old_ack:
3769 	/* If data was SACKed, tag it and see if we should send more data.
3770 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3771 	 */
3772 	if (TCP_SKB_CB(skb)->sacked) {
3773 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3774 						&sack_state);
3775 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3776 				      &rexmit);
3777 		tcp_newly_delivered(sk, delivered, flag);
3778 		tcp_xmit_recovery(sk, rexmit);
3779 	}
3780 
3781 	return 0;
3782 }
3783 
3784 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3785 				      bool syn, struct tcp_fastopen_cookie *foc,
3786 				      bool exp_opt)
3787 {
3788 	/* Valid only in SYN or SYN-ACK with an even length.  */
3789 	if (!foc || !syn || len < 0 || (len & 1))
3790 		return;
3791 
3792 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3793 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3794 		memcpy(foc->val, cookie, len);
3795 	else if (len != 0)
3796 		len = -1;
3797 	foc->len = len;
3798 	foc->exp = exp_opt;
3799 }
3800 
3801 static void smc_parse_options(const struct tcphdr *th,
3802 			      struct tcp_options_received *opt_rx,
3803 			      const unsigned char *ptr,
3804 			      int opsize)
3805 {
3806 #if IS_ENABLED(CONFIG_SMC)
3807 	if (static_branch_unlikely(&tcp_have_smc)) {
3808 		if (th->syn && !(opsize & 1) &&
3809 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3810 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3811 			opt_rx->smc_ok = 1;
3812 	}
3813 #endif
3814 }
3815 
3816 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3817  * value on success.
3818  */
3819 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3820 {
3821 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3822 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3823 	u16 mss = 0;
3824 
3825 	while (length > 0) {
3826 		int opcode = *ptr++;
3827 		int opsize;
3828 
3829 		switch (opcode) {
3830 		case TCPOPT_EOL:
3831 			return mss;
3832 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3833 			length--;
3834 			continue;
3835 		default:
3836 			if (length < 2)
3837 				return mss;
3838 			opsize = *ptr++;
3839 			if (opsize < 2) /* "silly options" */
3840 				return mss;
3841 			if (opsize > length)
3842 				return mss;	/* fail on partial options */
3843 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3844 				u16 in_mss = get_unaligned_be16(ptr);
3845 
3846 				if (in_mss) {
3847 					if (user_mss && user_mss < in_mss)
3848 						in_mss = user_mss;
3849 					mss = in_mss;
3850 				}
3851 			}
3852 			ptr += opsize - 2;
3853 			length -= opsize;
3854 		}
3855 	}
3856 	return mss;
3857 }
3858 
3859 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3860  * But, this can also be called on packets in the established flow when
3861  * the fast version below fails.
3862  */
3863 void tcp_parse_options(const struct net *net,
3864 		       const struct sk_buff *skb,
3865 		       struct tcp_options_received *opt_rx, int estab,
3866 		       struct tcp_fastopen_cookie *foc)
3867 {
3868 	const unsigned char *ptr;
3869 	const struct tcphdr *th = tcp_hdr(skb);
3870 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3871 
3872 	ptr = (const unsigned char *)(th + 1);
3873 	opt_rx->saw_tstamp = 0;
3874 
3875 	while (length > 0) {
3876 		int opcode = *ptr++;
3877 		int opsize;
3878 
3879 		switch (opcode) {
3880 		case TCPOPT_EOL:
3881 			return;
3882 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3883 			length--;
3884 			continue;
3885 		default:
3886 			if (length < 2)
3887 				return;
3888 			opsize = *ptr++;
3889 			if (opsize < 2) /* "silly options" */
3890 				return;
3891 			if (opsize > length)
3892 				return;	/* don't parse partial options */
3893 			switch (opcode) {
3894 			case TCPOPT_MSS:
3895 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3896 					u16 in_mss = get_unaligned_be16(ptr);
3897 					if (in_mss) {
3898 						if (opt_rx->user_mss &&
3899 						    opt_rx->user_mss < in_mss)
3900 							in_mss = opt_rx->user_mss;
3901 						opt_rx->mss_clamp = in_mss;
3902 					}
3903 				}
3904 				break;
3905 			case TCPOPT_WINDOW:
3906 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3907 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3908 					__u8 snd_wscale = *(__u8 *)ptr;
3909 					opt_rx->wscale_ok = 1;
3910 					if (snd_wscale > TCP_MAX_WSCALE) {
3911 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3912 								     __func__,
3913 								     snd_wscale,
3914 								     TCP_MAX_WSCALE);
3915 						snd_wscale = TCP_MAX_WSCALE;
3916 					}
3917 					opt_rx->snd_wscale = snd_wscale;
3918 				}
3919 				break;
3920 			case TCPOPT_TIMESTAMP:
3921 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3922 				    ((estab && opt_rx->tstamp_ok) ||
3923 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3924 					opt_rx->saw_tstamp = 1;
3925 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3926 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3927 				}
3928 				break;
3929 			case TCPOPT_SACK_PERM:
3930 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3931 				    !estab && net->ipv4.sysctl_tcp_sack) {
3932 					opt_rx->sack_ok = TCP_SACK_SEEN;
3933 					tcp_sack_reset(opt_rx);
3934 				}
3935 				break;
3936 
3937 			case TCPOPT_SACK:
3938 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3939 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3940 				   opt_rx->sack_ok) {
3941 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3942 				}
3943 				break;
3944 #ifdef CONFIG_TCP_MD5SIG
3945 			case TCPOPT_MD5SIG:
3946 				/*
3947 				 * The MD5 Hash has already been
3948 				 * checked (see tcp_v{4,6}_do_rcv()).
3949 				 */
3950 				break;
3951 #endif
3952 			case TCPOPT_FASTOPEN:
3953 				tcp_parse_fastopen_option(
3954 					opsize - TCPOLEN_FASTOPEN_BASE,
3955 					ptr, th->syn, foc, false);
3956 				break;
3957 
3958 			case TCPOPT_EXP:
3959 				/* Fast Open option shares code 254 using a
3960 				 * 16 bits magic number.
3961 				 */
3962 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3963 				    get_unaligned_be16(ptr) ==
3964 				    TCPOPT_FASTOPEN_MAGIC)
3965 					tcp_parse_fastopen_option(opsize -
3966 						TCPOLEN_EXP_FASTOPEN_BASE,
3967 						ptr + 2, th->syn, foc, true);
3968 				else
3969 					smc_parse_options(th, opt_rx, ptr,
3970 							  opsize);
3971 				break;
3972 
3973 			}
3974 			ptr += opsize-2;
3975 			length -= opsize;
3976 		}
3977 	}
3978 }
3979 EXPORT_SYMBOL(tcp_parse_options);
3980 
3981 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3982 {
3983 	const __be32 *ptr = (const __be32 *)(th + 1);
3984 
3985 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3986 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3987 		tp->rx_opt.saw_tstamp = 1;
3988 		++ptr;
3989 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3990 		++ptr;
3991 		if (*ptr)
3992 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3993 		else
3994 			tp->rx_opt.rcv_tsecr = 0;
3995 		return true;
3996 	}
3997 	return false;
3998 }
3999 
4000 /* Fast parse options. This hopes to only see timestamps.
4001  * If it is wrong it falls back on tcp_parse_options().
4002  */
4003 static bool tcp_fast_parse_options(const struct net *net,
4004 				   const struct sk_buff *skb,
4005 				   const struct tcphdr *th, struct tcp_sock *tp)
4006 {
4007 	/* In the spirit of fast parsing, compare doff directly to constant
4008 	 * values.  Because equality is used, short doff can be ignored here.
4009 	 */
4010 	if (th->doff == (sizeof(*th) / 4)) {
4011 		tp->rx_opt.saw_tstamp = 0;
4012 		return false;
4013 	} else if (tp->rx_opt.tstamp_ok &&
4014 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4015 		if (tcp_parse_aligned_timestamp(tp, th))
4016 			return true;
4017 	}
4018 
4019 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4020 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4021 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4022 
4023 	return true;
4024 }
4025 
4026 #ifdef CONFIG_TCP_MD5SIG
4027 /*
4028  * Parse MD5 Signature option
4029  */
4030 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4031 {
4032 	int length = (th->doff << 2) - sizeof(*th);
4033 	const u8 *ptr = (const u8 *)(th + 1);
4034 
4035 	/* If not enough data remaining, we can short cut */
4036 	while (length >= TCPOLEN_MD5SIG) {
4037 		int opcode = *ptr++;
4038 		int opsize;
4039 
4040 		switch (opcode) {
4041 		case TCPOPT_EOL:
4042 			return NULL;
4043 		case TCPOPT_NOP:
4044 			length--;
4045 			continue;
4046 		default:
4047 			opsize = *ptr++;
4048 			if (opsize < 2 || opsize > length)
4049 				return NULL;
4050 			if (opcode == TCPOPT_MD5SIG)
4051 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4052 		}
4053 		ptr += opsize - 2;
4054 		length -= opsize;
4055 	}
4056 	return NULL;
4057 }
4058 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4059 #endif
4060 
4061 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4062  *
4063  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4064  * it can pass through stack. So, the following predicate verifies that
4065  * this segment is not used for anything but congestion avoidance or
4066  * fast retransmit. Moreover, we even are able to eliminate most of such
4067  * second order effects, if we apply some small "replay" window (~RTO)
4068  * to timestamp space.
4069  *
4070  * All these measures still do not guarantee that we reject wrapped ACKs
4071  * on networks with high bandwidth, when sequence space is recycled fastly,
4072  * but it guarantees that such events will be very rare and do not affect
4073  * connection seriously. This doesn't look nice, but alas, PAWS is really
4074  * buggy extension.
4075  *
4076  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4077  * states that events when retransmit arrives after original data are rare.
4078  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4079  * the biggest problem on large power networks even with minor reordering.
4080  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4081  * up to bandwidth of 18Gigabit/sec. 8) ]
4082  */
4083 
4084 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4085 {
4086 	const struct tcp_sock *tp = tcp_sk(sk);
4087 	const struct tcphdr *th = tcp_hdr(skb);
4088 	u32 seq = TCP_SKB_CB(skb)->seq;
4089 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4090 
4091 	return (/* 1. Pure ACK with correct sequence number. */
4092 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4093 
4094 		/* 2. ... and duplicate ACK. */
4095 		ack == tp->snd_una &&
4096 
4097 		/* 3. ... and does not update window. */
4098 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4099 
4100 		/* 4. ... and sits in replay window. */
4101 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4102 }
4103 
4104 static inline bool tcp_paws_discard(const struct sock *sk,
4105 				   const struct sk_buff *skb)
4106 {
4107 	const struct tcp_sock *tp = tcp_sk(sk);
4108 
4109 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4110 	       !tcp_disordered_ack(sk, skb);
4111 }
4112 
4113 /* Check segment sequence number for validity.
4114  *
4115  * Segment controls are considered valid, if the segment
4116  * fits to the window after truncation to the window. Acceptability
4117  * of data (and SYN, FIN, of course) is checked separately.
4118  * See tcp_data_queue(), for example.
4119  *
4120  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4121  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4122  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4123  * (borrowed from freebsd)
4124  */
4125 
4126 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4127 {
4128 	return	!before(end_seq, tp->rcv_wup) &&
4129 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4130 }
4131 
4132 /* When we get a reset we do this. */
4133 void tcp_reset(struct sock *sk)
4134 {
4135 	trace_tcp_receive_reset(sk);
4136 
4137 	/* We want the right error as BSD sees it (and indeed as we do). */
4138 	switch (sk->sk_state) {
4139 	case TCP_SYN_SENT:
4140 		sk->sk_err = ECONNREFUSED;
4141 		break;
4142 	case TCP_CLOSE_WAIT:
4143 		sk->sk_err = EPIPE;
4144 		break;
4145 	case TCP_CLOSE:
4146 		return;
4147 	default:
4148 		sk->sk_err = ECONNRESET;
4149 	}
4150 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4151 	smp_wmb();
4152 
4153 	tcp_write_queue_purge(sk);
4154 	tcp_done(sk);
4155 
4156 	if (!sock_flag(sk, SOCK_DEAD))
4157 		sk->sk_error_report(sk);
4158 }
4159 
4160 /*
4161  * 	Process the FIN bit. This now behaves as it is supposed to work
4162  *	and the FIN takes effect when it is validly part of sequence
4163  *	space. Not before when we get holes.
4164  *
4165  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4166  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4167  *	TIME-WAIT)
4168  *
4169  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4170  *	close and we go into CLOSING (and later onto TIME-WAIT)
4171  *
4172  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4173  */
4174 void tcp_fin(struct sock *sk)
4175 {
4176 	struct tcp_sock *tp = tcp_sk(sk);
4177 
4178 	inet_csk_schedule_ack(sk);
4179 
4180 	sk->sk_shutdown |= RCV_SHUTDOWN;
4181 	sock_set_flag(sk, SOCK_DONE);
4182 
4183 	switch (sk->sk_state) {
4184 	case TCP_SYN_RECV:
4185 	case TCP_ESTABLISHED:
4186 		/* Move to CLOSE_WAIT */
4187 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4188 		inet_csk_enter_pingpong_mode(sk);
4189 		break;
4190 
4191 	case TCP_CLOSE_WAIT:
4192 	case TCP_CLOSING:
4193 		/* Received a retransmission of the FIN, do
4194 		 * nothing.
4195 		 */
4196 		break;
4197 	case TCP_LAST_ACK:
4198 		/* RFC793: Remain in the LAST-ACK state. */
4199 		break;
4200 
4201 	case TCP_FIN_WAIT1:
4202 		/* This case occurs when a simultaneous close
4203 		 * happens, we must ack the received FIN and
4204 		 * enter the CLOSING state.
4205 		 */
4206 		tcp_send_ack(sk);
4207 		tcp_set_state(sk, TCP_CLOSING);
4208 		break;
4209 	case TCP_FIN_WAIT2:
4210 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4211 		tcp_send_ack(sk);
4212 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4213 		break;
4214 	default:
4215 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4216 		 * cases we should never reach this piece of code.
4217 		 */
4218 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4219 		       __func__, sk->sk_state);
4220 		break;
4221 	}
4222 
4223 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4224 	 * Probably, we should reset in this case. For now drop them.
4225 	 */
4226 	skb_rbtree_purge(&tp->out_of_order_queue);
4227 	if (tcp_is_sack(tp))
4228 		tcp_sack_reset(&tp->rx_opt);
4229 	sk_mem_reclaim(sk);
4230 
4231 	if (!sock_flag(sk, SOCK_DEAD)) {
4232 		sk->sk_state_change(sk);
4233 
4234 		/* Do not send POLL_HUP for half duplex close. */
4235 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4236 		    sk->sk_state == TCP_CLOSE)
4237 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4238 		else
4239 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4240 	}
4241 }
4242 
4243 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4244 				  u32 end_seq)
4245 {
4246 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4247 		if (before(seq, sp->start_seq))
4248 			sp->start_seq = seq;
4249 		if (after(end_seq, sp->end_seq))
4250 			sp->end_seq = end_seq;
4251 		return true;
4252 	}
4253 	return false;
4254 }
4255 
4256 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4257 {
4258 	struct tcp_sock *tp = tcp_sk(sk);
4259 
4260 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4261 		int mib_idx;
4262 
4263 		if (before(seq, tp->rcv_nxt))
4264 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4265 		else
4266 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4267 
4268 		NET_INC_STATS(sock_net(sk), mib_idx);
4269 
4270 		tp->rx_opt.dsack = 1;
4271 		tp->duplicate_sack[0].start_seq = seq;
4272 		tp->duplicate_sack[0].end_seq = end_seq;
4273 	}
4274 }
4275 
4276 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4277 {
4278 	struct tcp_sock *tp = tcp_sk(sk);
4279 
4280 	if (!tp->rx_opt.dsack)
4281 		tcp_dsack_set(sk, seq, end_seq);
4282 	else
4283 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4284 }
4285 
4286 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4287 {
4288 	/* When the ACK path fails or drops most ACKs, the sender would
4289 	 * timeout and spuriously retransmit the same segment repeatedly.
4290 	 * The receiver remembers and reflects via DSACKs. Leverage the
4291 	 * DSACK state and change the txhash to re-route speculatively.
4292 	 */
4293 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4294 		sk_rethink_txhash(sk);
4295 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4296 	}
4297 }
4298 
4299 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4300 {
4301 	struct tcp_sock *tp = tcp_sk(sk);
4302 
4303 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4304 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4306 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4307 
4308 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4309 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4310 
4311 			tcp_rcv_spurious_retrans(sk, skb);
4312 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4313 				end_seq = tp->rcv_nxt;
4314 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4315 		}
4316 	}
4317 
4318 	tcp_send_ack(sk);
4319 }
4320 
4321 /* These routines update the SACK block as out-of-order packets arrive or
4322  * in-order packets close up the sequence space.
4323  */
4324 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4325 {
4326 	int this_sack;
4327 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4328 	struct tcp_sack_block *swalk = sp + 1;
4329 
4330 	/* See if the recent change to the first SACK eats into
4331 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4332 	 */
4333 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4334 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4335 			int i;
4336 
4337 			/* Zap SWALK, by moving every further SACK up by one slot.
4338 			 * Decrease num_sacks.
4339 			 */
4340 			tp->rx_opt.num_sacks--;
4341 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4342 				sp[i] = sp[i + 1];
4343 			continue;
4344 		}
4345 		this_sack++, swalk++;
4346 	}
4347 }
4348 
4349 static void tcp_sack_compress_send_ack(struct sock *sk)
4350 {
4351 	struct tcp_sock *tp = tcp_sk(sk);
4352 
4353 	if (!tp->compressed_ack)
4354 		return;
4355 
4356 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4357 		__sock_put(sk);
4358 
4359 	/* Since we have to send one ack finally,
4360 	 * substract one from tp->compressed_ack to keep
4361 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4362 	 */
4363 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4364 		      tp->compressed_ack - 1);
4365 
4366 	tp->compressed_ack = 0;
4367 	tcp_send_ack(sk);
4368 }
4369 
4370 /* Reasonable amount of sack blocks included in TCP SACK option
4371  * The max is 4, but this becomes 3 if TCP timestamps are there.
4372  * Given that SACK packets might be lost, be conservative and use 2.
4373  */
4374 #define TCP_SACK_BLOCKS_EXPECTED 2
4375 
4376 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4377 {
4378 	struct tcp_sock *tp = tcp_sk(sk);
4379 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4380 	int cur_sacks = tp->rx_opt.num_sacks;
4381 	int this_sack;
4382 
4383 	if (!cur_sacks)
4384 		goto new_sack;
4385 
4386 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4387 		if (tcp_sack_extend(sp, seq, end_seq)) {
4388 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4389 				tcp_sack_compress_send_ack(sk);
4390 			/* Rotate this_sack to the first one. */
4391 			for (; this_sack > 0; this_sack--, sp--)
4392 				swap(*sp, *(sp - 1));
4393 			if (cur_sacks > 1)
4394 				tcp_sack_maybe_coalesce(tp);
4395 			return;
4396 		}
4397 	}
4398 
4399 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4400 		tcp_sack_compress_send_ack(sk);
4401 
4402 	/* Could not find an adjacent existing SACK, build a new one,
4403 	 * put it at the front, and shift everyone else down.  We
4404 	 * always know there is at least one SACK present already here.
4405 	 *
4406 	 * If the sack array is full, forget about the last one.
4407 	 */
4408 	if (this_sack >= TCP_NUM_SACKS) {
4409 		this_sack--;
4410 		tp->rx_opt.num_sacks--;
4411 		sp--;
4412 	}
4413 	for (; this_sack > 0; this_sack--, sp--)
4414 		*sp = *(sp - 1);
4415 
4416 new_sack:
4417 	/* Build the new head SACK, and we're done. */
4418 	sp->start_seq = seq;
4419 	sp->end_seq = end_seq;
4420 	tp->rx_opt.num_sacks++;
4421 }
4422 
4423 /* RCV.NXT advances, some SACKs should be eaten. */
4424 
4425 static void tcp_sack_remove(struct tcp_sock *tp)
4426 {
4427 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4428 	int num_sacks = tp->rx_opt.num_sacks;
4429 	int this_sack;
4430 
4431 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4432 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4433 		tp->rx_opt.num_sacks = 0;
4434 		return;
4435 	}
4436 
4437 	for (this_sack = 0; this_sack < num_sacks;) {
4438 		/* Check if the start of the sack is covered by RCV.NXT. */
4439 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4440 			int i;
4441 
4442 			/* RCV.NXT must cover all the block! */
4443 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4444 
4445 			/* Zap this SACK, by moving forward any other SACKS. */
4446 			for (i = this_sack+1; i < num_sacks; i++)
4447 				tp->selective_acks[i-1] = tp->selective_acks[i];
4448 			num_sacks--;
4449 			continue;
4450 		}
4451 		this_sack++;
4452 		sp++;
4453 	}
4454 	tp->rx_opt.num_sacks = num_sacks;
4455 }
4456 
4457 /**
4458  * tcp_try_coalesce - try to merge skb to prior one
4459  * @sk: socket
4460  * @to: prior buffer
4461  * @from: buffer to add in queue
4462  * @fragstolen: pointer to boolean
4463  *
4464  * Before queueing skb @from after @to, try to merge them
4465  * to reduce overall memory use and queue lengths, if cost is small.
4466  * Packets in ofo or receive queues can stay a long time.
4467  * Better try to coalesce them right now to avoid future collapses.
4468  * Returns true if caller should free @from instead of queueing it
4469  */
4470 static bool tcp_try_coalesce(struct sock *sk,
4471 			     struct sk_buff *to,
4472 			     struct sk_buff *from,
4473 			     bool *fragstolen)
4474 {
4475 	int delta;
4476 
4477 	*fragstolen = false;
4478 
4479 	/* Its possible this segment overlaps with prior segment in queue */
4480 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4481 		return false;
4482 
4483 	if (!mptcp_skb_can_collapse(to, from))
4484 		return false;
4485 
4486 #ifdef CONFIG_TLS_DEVICE
4487 	if (from->decrypted != to->decrypted)
4488 		return false;
4489 #endif
4490 
4491 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4492 		return false;
4493 
4494 	atomic_add(delta, &sk->sk_rmem_alloc);
4495 	sk_mem_charge(sk, delta);
4496 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4497 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4498 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4499 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4500 
4501 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4502 		TCP_SKB_CB(to)->has_rxtstamp = true;
4503 		to->tstamp = from->tstamp;
4504 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4505 	}
4506 
4507 	return true;
4508 }
4509 
4510 static bool tcp_ooo_try_coalesce(struct sock *sk,
4511 			     struct sk_buff *to,
4512 			     struct sk_buff *from,
4513 			     bool *fragstolen)
4514 {
4515 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4516 
4517 	/* In case tcp_drop() is called later, update to->gso_segs */
4518 	if (res) {
4519 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4520 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4521 
4522 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4523 	}
4524 	return res;
4525 }
4526 
4527 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4528 {
4529 	sk_drops_add(sk, skb);
4530 	__kfree_skb(skb);
4531 }
4532 
4533 /* This one checks to see if we can put data from the
4534  * out_of_order queue into the receive_queue.
4535  */
4536 static void tcp_ofo_queue(struct sock *sk)
4537 {
4538 	struct tcp_sock *tp = tcp_sk(sk);
4539 	__u32 dsack_high = tp->rcv_nxt;
4540 	bool fin, fragstolen, eaten;
4541 	struct sk_buff *skb, *tail;
4542 	struct rb_node *p;
4543 
4544 	p = rb_first(&tp->out_of_order_queue);
4545 	while (p) {
4546 		skb = rb_to_skb(p);
4547 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4548 			break;
4549 
4550 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4551 			__u32 dsack = dsack_high;
4552 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4553 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4554 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4555 		}
4556 		p = rb_next(p);
4557 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4558 
4559 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4560 			tcp_drop(sk, skb);
4561 			continue;
4562 		}
4563 
4564 		tail = skb_peek_tail(&sk->sk_receive_queue);
4565 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4566 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4567 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4568 		if (!eaten)
4569 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4570 		else
4571 			kfree_skb_partial(skb, fragstolen);
4572 
4573 		if (unlikely(fin)) {
4574 			tcp_fin(sk);
4575 			/* tcp_fin() purges tp->out_of_order_queue,
4576 			 * so we must end this loop right now.
4577 			 */
4578 			break;
4579 		}
4580 	}
4581 }
4582 
4583 static bool tcp_prune_ofo_queue(struct sock *sk);
4584 static int tcp_prune_queue(struct sock *sk);
4585 
4586 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4587 				 unsigned int size)
4588 {
4589 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4590 	    !sk_rmem_schedule(sk, skb, size)) {
4591 
4592 		if (tcp_prune_queue(sk) < 0)
4593 			return -1;
4594 
4595 		while (!sk_rmem_schedule(sk, skb, size)) {
4596 			if (!tcp_prune_ofo_queue(sk))
4597 				return -1;
4598 		}
4599 	}
4600 	return 0;
4601 }
4602 
4603 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4604 {
4605 	struct tcp_sock *tp = tcp_sk(sk);
4606 	struct rb_node **p, *parent;
4607 	struct sk_buff *skb1;
4608 	u32 seq, end_seq;
4609 	bool fragstolen;
4610 
4611 	tcp_ecn_check_ce(sk, skb);
4612 
4613 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4614 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4615 		sk->sk_data_ready(sk);
4616 		tcp_drop(sk, skb);
4617 		return;
4618 	}
4619 
4620 	/* Disable header prediction. */
4621 	tp->pred_flags = 0;
4622 	inet_csk_schedule_ack(sk);
4623 
4624 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4625 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4626 	seq = TCP_SKB_CB(skb)->seq;
4627 	end_seq = TCP_SKB_CB(skb)->end_seq;
4628 
4629 	p = &tp->out_of_order_queue.rb_node;
4630 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4631 		/* Initial out of order segment, build 1 SACK. */
4632 		if (tcp_is_sack(tp)) {
4633 			tp->rx_opt.num_sacks = 1;
4634 			tp->selective_acks[0].start_seq = seq;
4635 			tp->selective_acks[0].end_seq = end_seq;
4636 		}
4637 		rb_link_node(&skb->rbnode, NULL, p);
4638 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4639 		tp->ooo_last_skb = skb;
4640 		goto end;
4641 	}
4642 
4643 	/* In the typical case, we are adding an skb to the end of the list.
4644 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4645 	 */
4646 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4647 				 skb, &fragstolen)) {
4648 coalesce_done:
4649 		/* For non sack flows, do not grow window to force DUPACK
4650 		 * and trigger fast retransmit.
4651 		 */
4652 		if (tcp_is_sack(tp))
4653 			tcp_grow_window(sk, skb);
4654 		kfree_skb_partial(skb, fragstolen);
4655 		skb = NULL;
4656 		goto add_sack;
4657 	}
4658 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4659 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4660 		parent = &tp->ooo_last_skb->rbnode;
4661 		p = &parent->rb_right;
4662 		goto insert;
4663 	}
4664 
4665 	/* Find place to insert this segment. Handle overlaps on the way. */
4666 	parent = NULL;
4667 	while (*p) {
4668 		parent = *p;
4669 		skb1 = rb_to_skb(parent);
4670 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4671 			p = &parent->rb_left;
4672 			continue;
4673 		}
4674 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4675 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4676 				/* All the bits are present. Drop. */
4677 				NET_INC_STATS(sock_net(sk),
4678 					      LINUX_MIB_TCPOFOMERGE);
4679 				tcp_drop(sk, skb);
4680 				skb = NULL;
4681 				tcp_dsack_set(sk, seq, end_seq);
4682 				goto add_sack;
4683 			}
4684 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4685 				/* Partial overlap. */
4686 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4687 			} else {
4688 				/* skb's seq == skb1's seq and skb covers skb1.
4689 				 * Replace skb1 with skb.
4690 				 */
4691 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4692 						&tp->out_of_order_queue);
4693 				tcp_dsack_extend(sk,
4694 						 TCP_SKB_CB(skb1)->seq,
4695 						 TCP_SKB_CB(skb1)->end_seq);
4696 				NET_INC_STATS(sock_net(sk),
4697 					      LINUX_MIB_TCPOFOMERGE);
4698 				tcp_drop(sk, skb1);
4699 				goto merge_right;
4700 			}
4701 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4702 						skb, &fragstolen)) {
4703 			goto coalesce_done;
4704 		}
4705 		p = &parent->rb_right;
4706 	}
4707 insert:
4708 	/* Insert segment into RB tree. */
4709 	rb_link_node(&skb->rbnode, parent, p);
4710 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4711 
4712 merge_right:
4713 	/* Remove other segments covered by skb. */
4714 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4715 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4716 			break;
4717 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4718 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4719 					 end_seq);
4720 			break;
4721 		}
4722 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4723 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4724 				 TCP_SKB_CB(skb1)->end_seq);
4725 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4726 		tcp_drop(sk, skb1);
4727 	}
4728 	/* If there is no skb after us, we are the last_skb ! */
4729 	if (!skb1)
4730 		tp->ooo_last_skb = skb;
4731 
4732 add_sack:
4733 	if (tcp_is_sack(tp))
4734 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4735 end:
4736 	if (skb) {
4737 		/* For non sack flows, do not grow window to force DUPACK
4738 		 * and trigger fast retransmit.
4739 		 */
4740 		if (tcp_is_sack(tp))
4741 			tcp_grow_window(sk, skb);
4742 		skb_condense(skb);
4743 		skb_set_owner_r(skb, sk);
4744 	}
4745 }
4746 
4747 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4748 				      bool *fragstolen)
4749 {
4750 	int eaten;
4751 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4752 
4753 	eaten = (tail &&
4754 		 tcp_try_coalesce(sk, tail,
4755 				  skb, fragstolen)) ? 1 : 0;
4756 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4757 	if (!eaten) {
4758 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4759 		skb_set_owner_r(skb, sk);
4760 	}
4761 	return eaten;
4762 }
4763 
4764 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4765 {
4766 	struct sk_buff *skb;
4767 	int err = -ENOMEM;
4768 	int data_len = 0;
4769 	bool fragstolen;
4770 
4771 	if (size == 0)
4772 		return 0;
4773 
4774 	if (size > PAGE_SIZE) {
4775 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4776 
4777 		data_len = npages << PAGE_SHIFT;
4778 		size = data_len + (size & ~PAGE_MASK);
4779 	}
4780 	skb = alloc_skb_with_frags(size - data_len, data_len,
4781 				   PAGE_ALLOC_COSTLY_ORDER,
4782 				   &err, sk->sk_allocation);
4783 	if (!skb)
4784 		goto err;
4785 
4786 	skb_put(skb, size - data_len);
4787 	skb->data_len = data_len;
4788 	skb->len = size;
4789 
4790 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4791 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4792 		goto err_free;
4793 	}
4794 
4795 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4796 	if (err)
4797 		goto err_free;
4798 
4799 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4800 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4801 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4802 
4803 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4804 		WARN_ON_ONCE(fragstolen); /* should not happen */
4805 		__kfree_skb(skb);
4806 	}
4807 	return size;
4808 
4809 err_free:
4810 	kfree_skb(skb);
4811 err:
4812 	return err;
4813 
4814 }
4815 
4816 void tcp_data_ready(struct sock *sk)
4817 {
4818 	const struct tcp_sock *tp = tcp_sk(sk);
4819 	int avail = tp->rcv_nxt - tp->copied_seq;
4820 
4821 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4822 	    !sock_flag(sk, SOCK_DONE))
4823 		return;
4824 
4825 	sk->sk_data_ready(sk);
4826 }
4827 
4828 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4829 {
4830 	struct tcp_sock *tp = tcp_sk(sk);
4831 	bool fragstolen;
4832 	int eaten;
4833 
4834 	if (sk_is_mptcp(sk))
4835 		mptcp_incoming_options(sk, skb, &tp->rx_opt);
4836 
4837 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4838 		__kfree_skb(skb);
4839 		return;
4840 	}
4841 	skb_dst_drop(skb);
4842 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4843 
4844 	tp->rx_opt.dsack = 0;
4845 
4846 	/*  Queue data for delivery to the user.
4847 	 *  Packets in sequence go to the receive queue.
4848 	 *  Out of sequence packets to the out_of_order_queue.
4849 	 */
4850 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4851 		if (tcp_receive_window(tp) == 0) {
4852 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4853 			goto out_of_window;
4854 		}
4855 
4856 		/* Ok. In sequence. In window. */
4857 queue_and_out:
4858 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4859 			sk_forced_mem_schedule(sk, skb->truesize);
4860 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4861 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4862 			sk->sk_data_ready(sk);
4863 			goto drop;
4864 		}
4865 
4866 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4867 		if (skb->len)
4868 			tcp_event_data_recv(sk, skb);
4869 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4870 			tcp_fin(sk);
4871 
4872 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4873 			tcp_ofo_queue(sk);
4874 
4875 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4876 			 * gap in queue is filled.
4877 			 */
4878 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4879 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4880 		}
4881 
4882 		if (tp->rx_opt.num_sacks)
4883 			tcp_sack_remove(tp);
4884 
4885 		tcp_fast_path_check(sk);
4886 
4887 		if (eaten > 0)
4888 			kfree_skb_partial(skb, fragstolen);
4889 		if (!sock_flag(sk, SOCK_DEAD))
4890 			tcp_data_ready(sk);
4891 		return;
4892 	}
4893 
4894 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4895 		tcp_rcv_spurious_retrans(sk, skb);
4896 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4897 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4898 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4899 
4900 out_of_window:
4901 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4902 		inet_csk_schedule_ack(sk);
4903 drop:
4904 		tcp_drop(sk, skb);
4905 		return;
4906 	}
4907 
4908 	/* Out of window. F.e. zero window probe. */
4909 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4910 		goto out_of_window;
4911 
4912 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4913 		/* Partial packet, seq < rcv_next < end_seq */
4914 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4915 
4916 		/* If window is closed, drop tail of packet. But after
4917 		 * remembering D-SACK for its head made in previous line.
4918 		 */
4919 		if (!tcp_receive_window(tp)) {
4920 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4921 			goto out_of_window;
4922 		}
4923 		goto queue_and_out;
4924 	}
4925 
4926 	tcp_data_queue_ofo(sk, skb);
4927 }
4928 
4929 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4930 {
4931 	if (list)
4932 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4933 
4934 	return skb_rb_next(skb);
4935 }
4936 
4937 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4938 					struct sk_buff_head *list,
4939 					struct rb_root *root)
4940 {
4941 	struct sk_buff *next = tcp_skb_next(skb, list);
4942 
4943 	if (list)
4944 		__skb_unlink(skb, list);
4945 	else
4946 		rb_erase(&skb->rbnode, root);
4947 
4948 	__kfree_skb(skb);
4949 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4950 
4951 	return next;
4952 }
4953 
4954 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4955 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4956 {
4957 	struct rb_node **p = &root->rb_node;
4958 	struct rb_node *parent = NULL;
4959 	struct sk_buff *skb1;
4960 
4961 	while (*p) {
4962 		parent = *p;
4963 		skb1 = rb_to_skb(parent);
4964 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4965 			p = &parent->rb_left;
4966 		else
4967 			p = &parent->rb_right;
4968 	}
4969 	rb_link_node(&skb->rbnode, parent, p);
4970 	rb_insert_color(&skb->rbnode, root);
4971 }
4972 
4973 /* Collapse contiguous sequence of skbs head..tail with
4974  * sequence numbers start..end.
4975  *
4976  * If tail is NULL, this means until the end of the queue.
4977  *
4978  * Segments with FIN/SYN are not collapsed (only because this
4979  * simplifies code)
4980  */
4981 static void
4982 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4983 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4984 {
4985 	struct sk_buff *skb = head, *n;
4986 	struct sk_buff_head tmp;
4987 	bool end_of_skbs;
4988 
4989 	/* First, check that queue is collapsible and find
4990 	 * the point where collapsing can be useful.
4991 	 */
4992 restart:
4993 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4994 		n = tcp_skb_next(skb, list);
4995 
4996 		/* No new bits? It is possible on ofo queue. */
4997 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4998 			skb = tcp_collapse_one(sk, skb, list, root);
4999 			if (!skb)
5000 				break;
5001 			goto restart;
5002 		}
5003 
5004 		/* The first skb to collapse is:
5005 		 * - not SYN/FIN and
5006 		 * - bloated or contains data before "start" or
5007 		 *   overlaps to the next one and mptcp allow collapsing.
5008 		 */
5009 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5010 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5011 		     before(TCP_SKB_CB(skb)->seq, start))) {
5012 			end_of_skbs = false;
5013 			break;
5014 		}
5015 
5016 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5017 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5018 			end_of_skbs = false;
5019 			break;
5020 		}
5021 
5022 		/* Decided to skip this, advance start seq. */
5023 		start = TCP_SKB_CB(skb)->end_seq;
5024 	}
5025 	if (end_of_skbs ||
5026 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5027 		return;
5028 
5029 	__skb_queue_head_init(&tmp);
5030 
5031 	while (before(start, end)) {
5032 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5033 		struct sk_buff *nskb;
5034 
5035 		nskb = alloc_skb(copy, GFP_ATOMIC);
5036 		if (!nskb)
5037 			break;
5038 
5039 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5040 #ifdef CONFIG_TLS_DEVICE
5041 		nskb->decrypted = skb->decrypted;
5042 #endif
5043 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5044 		if (list)
5045 			__skb_queue_before(list, skb, nskb);
5046 		else
5047 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5048 		skb_set_owner_r(nskb, sk);
5049 		mptcp_skb_ext_move(nskb, skb);
5050 
5051 		/* Copy data, releasing collapsed skbs. */
5052 		while (copy > 0) {
5053 			int offset = start - TCP_SKB_CB(skb)->seq;
5054 			int size = TCP_SKB_CB(skb)->end_seq - start;
5055 
5056 			BUG_ON(offset < 0);
5057 			if (size > 0) {
5058 				size = min(copy, size);
5059 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5060 					BUG();
5061 				TCP_SKB_CB(nskb)->end_seq += size;
5062 				copy -= size;
5063 				start += size;
5064 			}
5065 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5066 				skb = tcp_collapse_one(sk, skb, list, root);
5067 				if (!skb ||
5068 				    skb == tail ||
5069 				    !mptcp_skb_can_collapse(nskb, skb) ||
5070 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5071 					goto end;
5072 #ifdef CONFIG_TLS_DEVICE
5073 				if (skb->decrypted != nskb->decrypted)
5074 					goto end;
5075 #endif
5076 			}
5077 		}
5078 	}
5079 end:
5080 	skb_queue_walk_safe(&tmp, skb, n)
5081 		tcp_rbtree_insert(root, skb);
5082 }
5083 
5084 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5085  * and tcp_collapse() them until all the queue is collapsed.
5086  */
5087 static void tcp_collapse_ofo_queue(struct sock *sk)
5088 {
5089 	struct tcp_sock *tp = tcp_sk(sk);
5090 	u32 range_truesize, sum_tiny = 0;
5091 	struct sk_buff *skb, *head;
5092 	u32 start, end;
5093 
5094 	skb = skb_rb_first(&tp->out_of_order_queue);
5095 new_range:
5096 	if (!skb) {
5097 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5098 		return;
5099 	}
5100 	start = TCP_SKB_CB(skb)->seq;
5101 	end = TCP_SKB_CB(skb)->end_seq;
5102 	range_truesize = skb->truesize;
5103 
5104 	for (head = skb;;) {
5105 		skb = skb_rb_next(skb);
5106 
5107 		/* Range is terminated when we see a gap or when
5108 		 * we are at the queue end.
5109 		 */
5110 		if (!skb ||
5111 		    after(TCP_SKB_CB(skb)->seq, end) ||
5112 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5113 			/* Do not attempt collapsing tiny skbs */
5114 			if (range_truesize != head->truesize ||
5115 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5116 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5117 					     head, skb, start, end);
5118 			} else {
5119 				sum_tiny += range_truesize;
5120 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5121 					return;
5122 			}
5123 			goto new_range;
5124 		}
5125 
5126 		range_truesize += skb->truesize;
5127 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5128 			start = TCP_SKB_CB(skb)->seq;
5129 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5130 			end = TCP_SKB_CB(skb)->end_seq;
5131 	}
5132 }
5133 
5134 /*
5135  * Clean the out-of-order queue to make room.
5136  * We drop high sequences packets to :
5137  * 1) Let a chance for holes to be filled.
5138  * 2) not add too big latencies if thousands of packets sit there.
5139  *    (But if application shrinks SO_RCVBUF, we could still end up
5140  *     freeing whole queue here)
5141  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5142  *
5143  * Return true if queue has shrunk.
5144  */
5145 static bool tcp_prune_ofo_queue(struct sock *sk)
5146 {
5147 	struct tcp_sock *tp = tcp_sk(sk);
5148 	struct rb_node *node, *prev;
5149 	int goal;
5150 
5151 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5152 		return false;
5153 
5154 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5155 	goal = sk->sk_rcvbuf >> 3;
5156 	node = &tp->ooo_last_skb->rbnode;
5157 	do {
5158 		prev = rb_prev(node);
5159 		rb_erase(node, &tp->out_of_order_queue);
5160 		goal -= rb_to_skb(node)->truesize;
5161 		tcp_drop(sk, rb_to_skb(node));
5162 		if (!prev || goal <= 0) {
5163 			sk_mem_reclaim(sk);
5164 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5165 			    !tcp_under_memory_pressure(sk))
5166 				break;
5167 			goal = sk->sk_rcvbuf >> 3;
5168 		}
5169 		node = prev;
5170 	} while (node);
5171 	tp->ooo_last_skb = rb_to_skb(prev);
5172 
5173 	/* Reset SACK state.  A conforming SACK implementation will
5174 	 * do the same at a timeout based retransmit.  When a connection
5175 	 * is in a sad state like this, we care only about integrity
5176 	 * of the connection not performance.
5177 	 */
5178 	if (tp->rx_opt.sack_ok)
5179 		tcp_sack_reset(&tp->rx_opt);
5180 	return true;
5181 }
5182 
5183 /* Reduce allocated memory if we can, trying to get
5184  * the socket within its memory limits again.
5185  *
5186  * Return less than zero if we should start dropping frames
5187  * until the socket owning process reads some of the data
5188  * to stabilize the situation.
5189  */
5190 static int tcp_prune_queue(struct sock *sk)
5191 {
5192 	struct tcp_sock *tp = tcp_sk(sk);
5193 
5194 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5195 
5196 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5197 		tcp_clamp_window(sk);
5198 	else if (tcp_under_memory_pressure(sk))
5199 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5200 
5201 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5202 		return 0;
5203 
5204 	tcp_collapse_ofo_queue(sk);
5205 	if (!skb_queue_empty(&sk->sk_receive_queue))
5206 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5207 			     skb_peek(&sk->sk_receive_queue),
5208 			     NULL,
5209 			     tp->copied_seq, tp->rcv_nxt);
5210 	sk_mem_reclaim(sk);
5211 
5212 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5213 		return 0;
5214 
5215 	/* Collapsing did not help, destructive actions follow.
5216 	 * This must not ever occur. */
5217 
5218 	tcp_prune_ofo_queue(sk);
5219 
5220 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5221 		return 0;
5222 
5223 	/* If we are really being abused, tell the caller to silently
5224 	 * drop receive data on the floor.  It will get retransmitted
5225 	 * and hopefully then we'll have sufficient space.
5226 	 */
5227 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5228 
5229 	/* Massive buffer overcommit. */
5230 	tp->pred_flags = 0;
5231 	return -1;
5232 }
5233 
5234 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5235 {
5236 	const struct tcp_sock *tp = tcp_sk(sk);
5237 
5238 	/* If the user specified a specific send buffer setting, do
5239 	 * not modify it.
5240 	 */
5241 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5242 		return false;
5243 
5244 	/* If we are under global TCP memory pressure, do not expand.  */
5245 	if (tcp_under_memory_pressure(sk))
5246 		return false;
5247 
5248 	/* If we are under soft global TCP memory pressure, do not expand.  */
5249 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5250 		return false;
5251 
5252 	/* If we filled the congestion window, do not expand.  */
5253 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5254 		return false;
5255 
5256 	return true;
5257 }
5258 
5259 /* When incoming ACK allowed to free some skb from write_queue,
5260  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5261  * on the exit from tcp input handler.
5262  *
5263  * PROBLEM: sndbuf expansion does not work well with largesend.
5264  */
5265 static void tcp_new_space(struct sock *sk)
5266 {
5267 	struct tcp_sock *tp = tcp_sk(sk);
5268 
5269 	if (tcp_should_expand_sndbuf(sk)) {
5270 		tcp_sndbuf_expand(sk);
5271 		tp->snd_cwnd_stamp = tcp_jiffies32;
5272 	}
5273 
5274 	sk->sk_write_space(sk);
5275 }
5276 
5277 static void tcp_check_space(struct sock *sk)
5278 {
5279 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5280 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5281 		/* pairs with tcp_poll() */
5282 		smp_mb();
5283 		if (sk->sk_socket &&
5284 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5285 			tcp_new_space(sk);
5286 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5287 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5288 		}
5289 	}
5290 }
5291 
5292 static inline void tcp_data_snd_check(struct sock *sk)
5293 {
5294 	tcp_push_pending_frames(sk);
5295 	tcp_check_space(sk);
5296 }
5297 
5298 /*
5299  * Check if sending an ack is needed.
5300  */
5301 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5302 {
5303 	struct tcp_sock *tp = tcp_sk(sk);
5304 	unsigned long rtt, delay;
5305 
5306 	    /* More than one full frame received... */
5307 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5308 	     /* ... and right edge of window advances far enough.
5309 	      * (tcp_recvmsg() will send ACK otherwise).
5310 	      * If application uses SO_RCVLOWAT, we want send ack now if
5311 	      * we have not received enough bytes to satisfy the condition.
5312 	      */
5313 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5314 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5315 	    /* We ACK each frame or... */
5316 	    tcp_in_quickack_mode(sk) ||
5317 	    /* Protocol state mandates a one-time immediate ACK */
5318 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5319 send_now:
5320 		tcp_send_ack(sk);
5321 		return;
5322 	}
5323 
5324 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5325 		tcp_send_delayed_ack(sk);
5326 		return;
5327 	}
5328 
5329 	if (!tcp_is_sack(tp) ||
5330 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5331 		goto send_now;
5332 
5333 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5334 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5335 		tp->dup_ack_counter = 0;
5336 	}
5337 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5338 		tp->dup_ack_counter++;
5339 		goto send_now;
5340 	}
5341 	tp->compressed_ack++;
5342 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5343 		return;
5344 
5345 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5346 
5347 	rtt = tp->rcv_rtt_est.rtt_us;
5348 	if (tp->srtt_us && tp->srtt_us < rtt)
5349 		rtt = tp->srtt_us;
5350 
5351 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5352 		      rtt * (NSEC_PER_USEC >> 3)/20);
5353 	sock_hold(sk);
5354 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5355 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5356 			       HRTIMER_MODE_REL_PINNED_SOFT);
5357 }
5358 
5359 static inline void tcp_ack_snd_check(struct sock *sk)
5360 {
5361 	if (!inet_csk_ack_scheduled(sk)) {
5362 		/* We sent a data segment already. */
5363 		return;
5364 	}
5365 	__tcp_ack_snd_check(sk, 1);
5366 }
5367 
5368 /*
5369  *	This routine is only called when we have urgent data
5370  *	signaled. Its the 'slow' part of tcp_urg. It could be
5371  *	moved inline now as tcp_urg is only called from one
5372  *	place. We handle URGent data wrong. We have to - as
5373  *	BSD still doesn't use the correction from RFC961.
5374  *	For 1003.1g we should support a new option TCP_STDURG to permit
5375  *	either form (or just set the sysctl tcp_stdurg).
5376  */
5377 
5378 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5379 {
5380 	struct tcp_sock *tp = tcp_sk(sk);
5381 	u32 ptr = ntohs(th->urg_ptr);
5382 
5383 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5384 		ptr--;
5385 	ptr += ntohl(th->seq);
5386 
5387 	/* Ignore urgent data that we've already seen and read. */
5388 	if (after(tp->copied_seq, ptr))
5389 		return;
5390 
5391 	/* Do not replay urg ptr.
5392 	 *
5393 	 * NOTE: interesting situation not covered by specs.
5394 	 * Misbehaving sender may send urg ptr, pointing to segment,
5395 	 * which we already have in ofo queue. We are not able to fetch
5396 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5397 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5398 	 * situations. But it is worth to think about possibility of some
5399 	 * DoSes using some hypothetical application level deadlock.
5400 	 */
5401 	if (before(ptr, tp->rcv_nxt))
5402 		return;
5403 
5404 	/* Do we already have a newer (or duplicate) urgent pointer? */
5405 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5406 		return;
5407 
5408 	/* Tell the world about our new urgent pointer. */
5409 	sk_send_sigurg(sk);
5410 
5411 	/* We may be adding urgent data when the last byte read was
5412 	 * urgent. To do this requires some care. We cannot just ignore
5413 	 * tp->copied_seq since we would read the last urgent byte again
5414 	 * as data, nor can we alter copied_seq until this data arrives
5415 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5416 	 *
5417 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5418 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5419 	 * and expect that both A and B disappear from stream. This is _wrong_.
5420 	 * Though this happens in BSD with high probability, this is occasional.
5421 	 * Any application relying on this is buggy. Note also, that fix "works"
5422 	 * only in this artificial test. Insert some normal data between A and B and we will
5423 	 * decline of BSD again. Verdict: it is better to remove to trap
5424 	 * buggy users.
5425 	 */
5426 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5427 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5428 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5429 		tp->copied_seq++;
5430 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5431 			__skb_unlink(skb, &sk->sk_receive_queue);
5432 			__kfree_skb(skb);
5433 		}
5434 	}
5435 
5436 	tp->urg_data = TCP_URG_NOTYET;
5437 	WRITE_ONCE(tp->urg_seq, ptr);
5438 
5439 	/* Disable header prediction. */
5440 	tp->pred_flags = 0;
5441 }
5442 
5443 /* This is the 'fast' part of urgent handling. */
5444 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5445 {
5446 	struct tcp_sock *tp = tcp_sk(sk);
5447 
5448 	/* Check if we get a new urgent pointer - normally not. */
5449 	if (th->urg)
5450 		tcp_check_urg(sk, th);
5451 
5452 	/* Do we wait for any urgent data? - normally not... */
5453 	if (tp->urg_data == TCP_URG_NOTYET) {
5454 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5455 			  th->syn;
5456 
5457 		/* Is the urgent pointer pointing into this packet? */
5458 		if (ptr < skb->len) {
5459 			u8 tmp;
5460 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5461 				BUG();
5462 			tp->urg_data = TCP_URG_VALID | tmp;
5463 			if (!sock_flag(sk, SOCK_DEAD))
5464 				sk->sk_data_ready(sk);
5465 		}
5466 	}
5467 }
5468 
5469 /* Accept RST for rcv_nxt - 1 after a FIN.
5470  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5471  * FIN is sent followed by a RST packet. The RST is sent with the same
5472  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5473  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5474  * ACKs on the closed socket. In addition middleboxes can drop either the
5475  * challenge ACK or a subsequent RST.
5476  */
5477 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5478 {
5479 	struct tcp_sock *tp = tcp_sk(sk);
5480 
5481 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5482 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5483 					       TCPF_CLOSING));
5484 }
5485 
5486 /* Does PAWS and seqno based validation of an incoming segment, flags will
5487  * play significant role here.
5488  */
5489 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5490 				  const struct tcphdr *th, int syn_inerr)
5491 {
5492 	struct tcp_sock *tp = tcp_sk(sk);
5493 	bool rst_seq_match = false;
5494 
5495 	/* RFC1323: H1. Apply PAWS check first. */
5496 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5497 	    tp->rx_opt.saw_tstamp &&
5498 	    tcp_paws_discard(sk, skb)) {
5499 		if (!th->rst) {
5500 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5501 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5502 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5503 						  &tp->last_oow_ack_time))
5504 				tcp_send_dupack(sk, skb);
5505 			goto discard;
5506 		}
5507 		/* Reset is accepted even if it did not pass PAWS. */
5508 	}
5509 
5510 	/* Step 1: check sequence number */
5511 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5512 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5513 		 * (RST) segments are validated by checking their SEQ-fields."
5514 		 * And page 69: "If an incoming segment is not acceptable,
5515 		 * an acknowledgment should be sent in reply (unless the RST
5516 		 * bit is set, if so drop the segment and return)".
5517 		 */
5518 		if (!th->rst) {
5519 			if (th->syn)
5520 				goto syn_challenge;
5521 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5522 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5523 						  &tp->last_oow_ack_time))
5524 				tcp_send_dupack(sk, skb);
5525 		} else if (tcp_reset_check(sk, skb)) {
5526 			tcp_reset(sk);
5527 		}
5528 		goto discard;
5529 	}
5530 
5531 	/* Step 2: check RST bit */
5532 	if (th->rst) {
5533 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5534 		 * FIN and SACK too if available):
5535 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5536 		 * the right-most SACK block,
5537 		 * then
5538 		 *     RESET the connection
5539 		 * else
5540 		 *     Send a challenge ACK
5541 		 */
5542 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5543 		    tcp_reset_check(sk, skb)) {
5544 			rst_seq_match = true;
5545 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5546 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5547 			int max_sack = sp[0].end_seq;
5548 			int this_sack;
5549 
5550 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5551 			     ++this_sack) {
5552 				max_sack = after(sp[this_sack].end_seq,
5553 						 max_sack) ?
5554 					sp[this_sack].end_seq : max_sack;
5555 			}
5556 
5557 			if (TCP_SKB_CB(skb)->seq == max_sack)
5558 				rst_seq_match = true;
5559 		}
5560 
5561 		if (rst_seq_match)
5562 			tcp_reset(sk);
5563 		else {
5564 			/* Disable TFO if RST is out-of-order
5565 			 * and no data has been received
5566 			 * for current active TFO socket
5567 			 */
5568 			if (tp->syn_fastopen && !tp->data_segs_in &&
5569 			    sk->sk_state == TCP_ESTABLISHED)
5570 				tcp_fastopen_active_disable(sk);
5571 			tcp_send_challenge_ack(sk, skb);
5572 		}
5573 		goto discard;
5574 	}
5575 
5576 	/* step 3: check security and precedence [ignored] */
5577 
5578 	/* step 4: Check for a SYN
5579 	 * RFC 5961 4.2 : Send a challenge ack
5580 	 */
5581 	if (th->syn) {
5582 syn_challenge:
5583 		if (syn_inerr)
5584 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5585 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5586 		tcp_send_challenge_ack(sk, skb);
5587 		goto discard;
5588 	}
5589 
5590 	return true;
5591 
5592 discard:
5593 	tcp_drop(sk, skb);
5594 	return false;
5595 }
5596 
5597 /*
5598  *	TCP receive function for the ESTABLISHED state.
5599  *
5600  *	It is split into a fast path and a slow path. The fast path is
5601  * 	disabled when:
5602  *	- A zero window was announced from us - zero window probing
5603  *        is only handled properly in the slow path.
5604  *	- Out of order segments arrived.
5605  *	- Urgent data is expected.
5606  *	- There is no buffer space left
5607  *	- Unexpected TCP flags/window values/header lengths are received
5608  *	  (detected by checking the TCP header against pred_flags)
5609  *	- Data is sent in both directions. Fast path only supports pure senders
5610  *	  or pure receivers (this means either the sequence number or the ack
5611  *	  value must stay constant)
5612  *	- Unexpected TCP option.
5613  *
5614  *	When these conditions are not satisfied it drops into a standard
5615  *	receive procedure patterned after RFC793 to handle all cases.
5616  *	The first three cases are guaranteed by proper pred_flags setting,
5617  *	the rest is checked inline. Fast processing is turned on in
5618  *	tcp_data_queue when everything is OK.
5619  */
5620 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5621 {
5622 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5623 	struct tcp_sock *tp = tcp_sk(sk);
5624 	unsigned int len = skb->len;
5625 
5626 	/* TCP congestion window tracking */
5627 	trace_tcp_probe(sk, skb);
5628 
5629 	tcp_mstamp_refresh(tp);
5630 	if (unlikely(!sk->sk_rx_dst))
5631 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5632 	/*
5633 	 *	Header prediction.
5634 	 *	The code loosely follows the one in the famous
5635 	 *	"30 instruction TCP receive" Van Jacobson mail.
5636 	 *
5637 	 *	Van's trick is to deposit buffers into socket queue
5638 	 *	on a device interrupt, to call tcp_recv function
5639 	 *	on the receive process context and checksum and copy
5640 	 *	the buffer to user space. smart...
5641 	 *
5642 	 *	Our current scheme is not silly either but we take the
5643 	 *	extra cost of the net_bh soft interrupt processing...
5644 	 *	We do checksum and copy also but from device to kernel.
5645 	 */
5646 
5647 	tp->rx_opt.saw_tstamp = 0;
5648 
5649 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5650 	 *	if header_prediction is to be made
5651 	 *	'S' will always be tp->tcp_header_len >> 2
5652 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5653 	 *  turn it off	(when there are holes in the receive
5654 	 *	 space for instance)
5655 	 *	PSH flag is ignored.
5656 	 */
5657 
5658 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5659 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5660 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5661 		int tcp_header_len = tp->tcp_header_len;
5662 
5663 		/* Timestamp header prediction: tcp_header_len
5664 		 * is automatically equal to th->doff*4 due to pred_flags
5665 		 * match.
5666 		 */
5667 
5668 		/* Check timestamp */
5669 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5670 			/* No? Slow path! */
5671 			if (!tcp_parse_aligned_timestamp(tp, th))
5672 				goto slow_path;
5673 
5674 			/* If PAWS failed, check it more carefully in slow path */
5675 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5676 				goto slow_path;
5677 
5678 			/* DO NOT update ts_recent here, if checksum fails
5679 			 * and timestamp was corrupted part, it will result
5680 			 * in a hung connection since we will drop all
5681 			 * future packets due to the PAWS test.
5682 			 */
5683 		}
5684 
5685 		if (len <= tcp_header_len) {
5686 			/* Bulk data transfer: sender */
5687 			if (len == tcp_header_len) {
5688 				/* Predicted packet is in window by definition.
5689 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5690 				 * Hence, check seq<=rcv_wup reduces to:
5691 				 */
5692 				if (tcp_header_len ==
5693 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5694 				    tp->rcv_nxt == tp->rcv_wup)
5695 					tcp_store_ts_recent(tp);
5696 
5697 				/* We know that such packets are checksummed
5698 				 * on entry.
5699 				 */
5700 				tcp_ack(sk, skb, 0);
5701 				__kfree_skb(skb);
5702 				tcp_data_snd_check(sk);
5703 				/* When receiving pure ack in fast path, update
5704 				 * last ts ecr directly instead of calling
5705 				 * tcp_rcv_rtt_measure_ts()
5706 				 */
5707 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5708 				return;
5709 			} else { /* Header too small */
5710 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5711 				goto discard;
5712 			}
5713 		} else {
5714 			int eaten = 0;
5715 			bool fragstolen = false;
5716 
5717 			if (tcp_checksum_complete(skb))
5718 				goto csum_error;
5719 
5720 			if ((int)skb->truesize > sk->sk_forward_alloc)
5721 				goto step5;
5722 
5723 			/* Predicted packet is in window by definition.
5724 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5725 			 * Hence, check seq<=rcv_wup reduces to:
5726 			 */
5727 			if (tcp_header_len ==
5728 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5729 			    tp->rcv_nxt == tp->rcv_wup)
5730 				tcp_store_ts_recent(tp);
5731 
5732 			tcp_rcv_rtt_measure_ts(sk, skb);
5733 
5734 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5735 
5736 			/* Bulk data transfer: receiver */
5737 			__skb_pull(skb, tcp_header_len);
5738 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5739 
5740 			tcp_event_data_recv(sk, skb);
5741 
5742 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5743 				/* Well, only one small jumplet in fast path... */
5744 				tcp_ack(sk, skb, FLAG_DATA);
5745 				tcp_data_snd_check(sk);
5746 				if (!inet_csk_ack_scheduled(sk))
5747 					goto no_ack;
5748 			}
5749 
5750 			__tcp_ack_snd_check(sk, 0);
5751 no_ack:
5752 			if (eaten)
5753 				kfree_skb_partial(skb, fragstolen);
5754 			tcp_data_ready(sk);
5755 			return;
5756 		}
5757 	}
5758 
5759 slow_path:
5760 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5761 		goto csum_error;
5762 
5763 	if (!th->ack && !th->rst && !th->syn)
5764 		goto discard;
5765 
5766 	/*
5767 	 *	Standard slow path.
5768 	 */
5769 
5770 	if (!tcp_validate_incoming(sk, skb, th, 1))
5771 		return;
5772 
5773 step5:
5774 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5775 		goto discard;
5776 
5777 	tcp_rcv_rtt_measure_ts(sk, skb);
5778 
5779 	/* Process urgent data. */
5780 	tcp_urg(sk, skb, th);
5781 
5782 	/* step 7: process the segment text */
5783 	tcp_data_queue(sk, skb);
5784 
5785 	tcp_data_snd_check(sk);
5786 	tcp_ack_snd_check(sk);
5787 	return;
5788 
5789 csum_error:
5790 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5791 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5792 
5793 discard:
5794 	tcp_drop(sk, skb);
5795 }
5796 EXPORT_SYMBOL(tcp_rcv_established);
5797 
5798 void tcp_init_transfer(struct sock *sk, int bpf_op)
5799 {
5800 	struct inet_connection_sock *icsk = inet_csk(sk);
5801 	struct tcp_sock *tp = tcp_sk(sk);
5802 
5803 	tcp_mtup_init(sk);
5804 	icsk->icsk_af_ops->rebuild_header(sk);
5805 	tcp_init_metrics(sk);
5806 
5807 	/* Initialize the congestion window to start the transfer.
5808 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5809 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5810 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5811 	 * retransmission has occurred.
5812 	 */
5813 	if (tp->total_retrans > 1 && tp->undo_marker)
5814 		tp->snd_cwnd = 1;
5815 	else
5816 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5817 	tp->snd_cwnd_stamp = tcp_jiffies32;
5818 
5819 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5820 	tcp_init_congestion_control(sk);
5821 	tcp_init_buffer_space(sk);
5822 }
5823 
5824 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5825 {
5826 	struct tcp_sock *tp = tcp_sk(sk);
5827 	struct inet_connection_sock *icsk = inet_csk(sk);
5828 
5829 	tcp_set_state(sk, TCP_ESTABLISHED);
5830 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5831 
5832 	if (skb) {
5833 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5834 		security_inet_conn_established(sk, skb);
5835 		sk_mark_napi_id(sk, skb);
5836 	}
5837 
5838 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5839 
5840 	/* Prevent spurious tcp_cwnd_restart() on first data
5841 	 * packet.
5842 	 */
5843 	tp->lsndtime = tcp_jiffies32;
5844 
5845 	if (sock_flag(sk, SOCK_KEEPOPEN))
5846 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5847 
5848 	if (!tp->rx_opt.snd_wscale)
5849 		__tcp_fast_path_on(tp, tp->snd_wnd);
5850 	else
5851 		tp->pred_flags = 0;
5852 }
5853 
5854 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5855 				    struct tcp_fastopen_cookie *cookie)
5856 {
5857 	struct tcp_sock *tp = tcp_sk(sk);
5858 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5859 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5860 	bool syn_drop = false;
5861 
5862 	if (mss == tp->rx_opt.user_mss) {
5863 		struct tcp_options_received opt;
5864 
5865 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5866 		tcp_clear_options(&opt);
5867 		opt.user_mss = opt.mss_clamp = 0;
5868 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5869 		mss = opt.mss_clamp;
5870 	}
5871 
5872 	if (!tp->syn_fastopen) {
5873 		/* Ignore an unsolicited cookie */
5874 		cookie->len = -1;
5875 	} else if (tp->total_retrans) {
5876 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5877 		 * acknowledges data. Presumably the remote received only
5878 		 * the retransmitted (regular) SYNs: either the original
5879 		 * SYN-data or the corresponding SYN-ACK was dropped.
5880 		 */
5881 		syn_drop = (cookie->len < 0 && data);
5882 	} else if (cookie->len < 0 && !tp->syn_data) {
5883 		/* We requested a cookie but didn't get it. If we did not use
5884 		 * the (old) exp opt format then try so next time (try_exp=1).
5885 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5886 		 */
5887 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5888 	}
5889 
5890 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5891 
5892 	if (data) { /* Retransmit unacked data in SYN */
5893 		if (tp->total_retrans)
5894 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5895 		else
5896 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5897 		skb_rbtree_walk_from(data) {
5898 			if (__tcp_retransmit_skb(sk, data, 1))
5899 				break;
5900 		}
5901 		tcp_rearm_rto(sk);
5902 		NET_INC_STATS(sock_net(sk),
5903 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5904 		return true;
5905 	}
5906 	tp->syn_data_acked = tp->syn_data;
5907 	if (tp->syn_data_acked) {
5908 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5909 		/* SYN-data is counted as two separate packets in tcp_ack() */
5910 		if (tp->delivered > 1)
5911 			--tp->delivered;
5912 	}
5913 
5914 	tcp_fastopen_add_skb(sk, synack);
5915 
5916 	return false;
5917 }
5918 
5919 static void smc_check_reset_syn(struct tcp_sock *tp)
5920 {
5921 #if IS_ENABLED(CONFIG_SMC)
5922 	if (static_branch_unlikely(&tcp_have_smc)) {
5923 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5924 			tp->syn_smc = 0;
5925 	}
5926 #endif
5927 }
5928 
5929 static void tcp_try_undo_spurious_syn(struct sock *sk)
5930 {
5931 	struct tcp_sock *tp = tcp_sk(sk);
5932 	u32 syn_stamp;
5933 
5934 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5935 	 * spurious if the ACK's timestamp option echo value matches the
5936 	 * original SYN timestamp.
5937 	 */
5938 	syn_stamp = tp->retrans_stamp;
5939 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5940 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5941 		tp->undo_marker = 0;
5942 }
5943 
5944 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5945 					 const struct tcphdr *th)
5946 {
5947 	struct inet_connection_sock *icsk = inet_csk(sk);
5948 	struct tcp_sock *tp = tcp_sk(sk);
5949 	struct tcp_fastopen_cookie foc = { .len = -1 };
5950 	int saved_clamp = tp->rx_opt.mss_clamp;
5951 	bool fastopen_fail;
5952 
5953 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5954 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5955 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5956 
5957 	if (th->ack) {
5958 		/* rfc793:
5959 		 * "If the state is SYN-SENT then
5960 		 *    first check the ACK bit
5961 		 *      If the ACK bit is set
5962 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5963 		 *        a reset (unless the RST bit is set, if so drop
5964 		 *        the segment and return)"
5965 		 */
5966 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5967 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5968 			/* Previous FIN/ACK or RST/ACK might be ignored. */
5969 			if (icsk->icsk_retransmits == 0)
5970 				inet_csk_reset_xmit_timer(sk,
5971 						ICSK_TIME_RETRANS,
5972 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
5973 			goto reset_and_undo;
5974 		}
5975 
5976 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5977 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5978 			     tcp_time_stamp(tp))) {
5979 			NET_INC_STATS(sock_net(sk),
5980 					LINUX_MIB_PAWSACTIVEREJECTED);
5981 			goto reset_and_undo;
5982 		}
5983 
5984 		/* Now ACK is acceptable.
5985 		 *
5986 		 * "If the RST bit is set
5987 		 *    If the ACK was acceptable then signal the user "error:
5988 		 *    connection reset", drop the segment, enter CLOSED state,
5989 		 *    delete TCB, and return."
5990 		 */
5991 
5992 		if (th->rst) {
5993 			tcp_reset(sk);
5994 			goto discard;
5995 		}
5996 
5997 		/* rfc793:
5998 		 *   "fifth, if neither of the SYN or RST bits is set then
5999 		 *    drop the segment and return."
6000 		 *
6001 		 *    See note below!
6002 		 *                                        --ANK(990513)
6003 		 */
6004 		if (!th->syn)
6005 			goto discard_and_undo;
6006 
6007 		/* rfc793:
6008 		 *   "If the SYN bit is on ...
6009 		 *    are acceptable then ...
6010 		 *    (our SYN has been ACKed), change the connection
6011 		 *    state to ESTABLISHED..."
6012 		 */
6013 
6014 		tcp_ecn_rcv_synack(tp, th);
6015 
6016 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6017 		tcp_try_undo_spurious_syn(sk);
6018 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6019 
6020 		/* Ok.. it's good. Set up sequence numbers and
6021 		 * move to established.
6022 		 */
6023 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6024 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6025 
6026 		/* RFC1323: The window in SYN & SYN/ACK segments is
6027 		 * never scaled.
6028 		 */
6029 		tp->snd_wnd = ntohs(th->window);
6030 
6031 		if (!tp->rx_opt.wscale_ok) {
6032 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6033 			tp->window_clamp = min(tp->window_clamp, 65535U);
6034 		}
6035 
6036 		if (tp->rx_opt.saw_tstamp) {
6037 			tp->rx_opt.tstamp_ok	   = 1;
6038 			tp->tcp_header_len =
6039 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6040 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6041 			tcp_store_ts_recent(tp);
6042 		} else {
6043 			tp->tcp_header_len = sizeof(struct tcphdr);
6044 		}
6045 
6046 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6047 		tcp_initialize_rcv_mss(sk);
6048 
6049 		/* Remember, tcp_poll() does not lock socket!
6050 		 * Change state from SYN-SENT only after copied_seq
6051 		 * is initialized. */
6052 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6053 
6054 		smc_check_reset_syn(tp);
6055 
6056 		smp_mb();
6057 
6058 		tcp_finish_connect(sk, skb);
6059 
6060 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6061 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6062 
6063 		if (!sock_flag(sk, SOCK_DEAD)) {
6064 			sk->sk_state_change(sk);
6065 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6066 		}
6067 		if (fastopen_fail)
6068 			return -1;
6069 		if (sk->sk_write_pending ||
6070 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6071 		    inet_csk_in_pingpong_mode(sk)) {
6072 			/* Save one ACK. Data will be ready after
6073 			 * several ticks, if write_pending is set.
6074 			 *
6075 			 * It may be deleted, but with this feature tcpdumps
6076 			 * look so _wonderfully_ clever, that I was not able
6077 			 * to stand against the temptation 8)     --ANK
6078 			 */
6079 			inet_csk_schedule_ack(sk);
6080 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6081 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6082 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6083 
6084 discard:
6085 			tcp_drop(sk, skb);
6086 			return 0;
6087 		} else {
6088 			tcp_send_ack(sk);
6089 		}
6090 		return -1;
6091 	}
6092 
6093 	/* No ACK in the segment */
6094 
6095 	if (th->rst) {
6096 		/* rfc793:
6097 		 * "If the RST bit is set
6098 		 *
6099 		 *      Otherwise (no ACK) drop the segment and return."
6100 		 */
6101 
6102 		goto discard_and_undo;
6103 	}
6104 
6105 	/* PAWS check. */
6106 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6107 	    tcp_paws_reject(&tp->rx_opt, 0))
6108 		goto discard_and_undo;
6109 
6110 	if (th->syn) {
6111 		/* We see SYN without ACK. It is attempt of
6112 		 * simultaneous connect with crossed SYNs.
6113 		 * Particularly, it can be connect to self.
6114 		 */
6115 		tcp_set_state(sk, TCP_SYN_RECV);
6116 
6117 		if (tp->rx_opt.saw_tstamp) {
6118 			tp->rx_opt.tstamp_ok = 1;
6119 			tcp_store_ts_recent(tp);
6120 			tp->tcp_header_len =
6121 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6122 		} else {
6123 			tp->tcp_header_len = sizeof(struct tcphdr);
6124 		}
6125 
6126 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6127 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6128 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6129 
6130 		/* RFC1323: The window in SYN & SYN/ACK segments is
6131 		 * never scaled.
6132 		 */
6133 		tp->snd_wnd    = ntohs(th->window);
6134 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6135 		tp->max_window = tp->snd_wnd;
6136 
6137 		tcp_ecn_rcv_syn(tp, th);
6138 
6139 		tcp_mtup_init(sk);
6140 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6141 		tcp_initialize_rcv_mss(sk);
6142 
6143 		tcp_send_synack(sk);
6144 #if 0
6145 		/* Note, we could accept data and URG from this segment.
6146 		 * There are no obstacles to make this (except that we must
6147 		 * either change tcp_recvmsg() to prevent it from returning data
6148 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6149 		 *
6150 		 * However, if we ignore data in ACKless segments sometimes,
6151 		 * we have no reasons to accept it sometimes.
6152 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6153 		 * is not flawless. So, discard packet for sanity.
6154 		 * Uncomment this return to process the data.
6155 		 */
6156 		return -1;
6157 #else
6158 		goto discard;
6159 #endif
6160 	}
6161 	/* "fifth, if neither of the SYN or RST bits is set then
6162 	 * drop the segment and return."
6163 	 */
6164 
6165 discard_and_undo:
6166 	tcp_clear_options(&tp->rx_opt);
6167 	tp->rx_opt.mss_clamp = saved_clamp;
6168 	goto discard;
6169 
6170 reset_and_undo:
6171 	tcp_clear_options(&tp->rx_opt);
6172 	tp->rx_opt.mss_clamp = saved_clamp;
6173 	return 1;
6174 }
6175 
6176 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6177 {
6178 	struct request_sock *req;
6179 
6180 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6181 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6182 	 */
6183 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6184 		tcp_try_undo_loss(sk, false);
6185 
6186 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6187 	tcp_sk(sk)->retrans_stamp = 0;
6188 	inet_csk(sk)->icsk_retransmits = 0;
6189 
6190 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6191 	 * we no longer need req so release it.
6192 	 */
6193 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6194 					lockdep_sock_is_held(sk));
6195 	reqsk_fastopen_remove(sk, req, false);
6196 
6197 	/* Re-arm the timer because data may have been sent out.
6198 	 * This is similar to the regular data transmission case
6199 	 * when new data has just been ack'ed.
6200 	 *
6201 	 * (TFO) - we could try to be more aggressive and
6202 	 * retransmitting any data sooner based on when they
6203 	 * are sent out.
6204 	 */
6205 	tcp_rearm_rto(sk);
6206 }
6207 
6208 /*
6209  *	This function implements the receiving procedure of RFC 793 for
6210  *	all states except ESTABLISHED and TIME_WAIT.
6211  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6212  *	address independent.
6213  */
6214 
6215 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6216 {
6217 	struct tcp_sock *tp = tcp_sk(sk);
6218 	struct inet_connection_sock *icsk = inet_csk(sk);
6219 	const struct tcphdr *th = tcp_hdr(skb);
6220 	struct request_sock *req;
6221 	int queued = 0;
6222 	bool acceptable;
6223 
6224 	switch (sk->sk_state) {
6225 	case TCP_CLOSE:
6226 		goto discard;
6227 
6228 	case TCP_LISTEN:
6229 		if (th->ack)
6230 			return 1;
6231 
6232 		if (th->rst)
6233 			goto discard;
6234 
6235 		if (th->syn) {
6236 			if (th->fin)
6237 				goto discard;
6238 			/* It is possible that we process SYN packets from backlog,
6239 			 * so we need to make sure to disable BH and RCU right there.
6240 			 */
6241 			rcu_read_lock();
6242 			local_bh_disable();
6243 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6244 			local_bh_enable();
6245 			rcu_read_unlock();
6246 
6247 			if (!acceptable)
6248 				return 1;
6249 			consume_skb(skb);
6250 			return 0;
6251 		}
6252 		goto discard;
6253 
6254 	case TCP_SYN_SENT:
6255 		tp->rx_opt.saw_tstamp = 0;
6256 		tcp_mstamp_refresh(tp);
6257 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6258 		if (queued >= 0)
6259 			return queued;
6260 
6261 		/* Do step6 onward by hand. */
6262 		tcp_urg(sk, skb, th);
6263 		__kfree_skb(skb);
6264 		tcp_data_snd_check(sk);
6265 		return 0;
6266 	}
6267 
6268 	tcp_mstamp_refresh(tp);
6269 	tp->rx_opt.saw_tstamp = 0;
6270 	req = rcu_dereference_protected(tp->fastopen_rsk,
6271 					lockdep_sock_is_held(sk));
6272 	if (req) {
6273 		bool req_stolen;
6274 
6275 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6276 		    sk->sk_state != TCP_FIN_WAIT1);
6277 
6278 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6279 			goto discard;
6280 	}
6281 
6282 	if (!th->ack && !th->rst && !th->syn)
6283 		goto discard;
6284 
6285 	if (!tcp_validate_incoming(sk, skb, th, 0))
6286 		return 0;
6287 
6288 	/* step 5: check the ACK field */
6289 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6290 				      FLAG_UPDATE_TS_RECENT |
6291 				      FLAG_NO_CHALLENGE_ACK) > 0;
6292 
6293 	if (!acceptable) {
6294 		if (sk->sk_state == TCP_SYN_RECV)
6295 			return 1;	/* send one RST */
6296 		tcp_send_challenge_ack(sk, skb);
6297 		goto discard;
6298 	}
6299 	switch (sk->sk_state) {
6300 	case TCP_SYN_RECV:
6301 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6302 		if (!tp->srtt_us)
6303 			tcp_synack_rtt_meas(sk, req);
6304 
6305 		if (req) {
6306 			tcp_rcv_synrecv_state_fastopen(sk);
6307 		} else {
6308 			tcp_try_undo_spurious_syn(sk);
6309 			tp->retrans_stamp = 0;
6310 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6311 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6312 		}
6313 		smp_mb();
6314 		tcp_set_state(sk, TCP_ESTABLISHED);
6315 		sk->sk_state_change(sk);
6316 
6317 		/* Note, that this wakeup is only for marginal crossed SYN case.
6318 		 * Passively open sockets are not waked up, because
6319 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6320 		 */
6321 		if (sk->sk_socket)
6322 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6323 
6324 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6325 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6326 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6327 
6328 		if (tp->rx_opt.tstamp_ok)
6329 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6330 
6331 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6332 			tcp_update_pacing_rate(sk);
6333 
6334 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6335 		tp->lsndtime = tcp_jiffies32;
6336 
6337 		tcp_initialize_rcv_mss(sk);
6338 		tcp_fast_path_on(tp);
6339 		break;
6340 
6341 	case TCP_FIN_WAIT1: {
6342 		int tmo;
6343 
6344 		if (req)
6345 			tcp_rcv_synrecv_state_fastopen(sk);
6346 
6347 		if (tp->snd_una != tp->write_seq)
6348 			break;
6349 
6350 		tcp_set_state(sk, TCP_FIN_WAIT2);
6351 		sk->sk_shutdown |= SEND_SHUTDOWN;
6352 
6353 		sk_dst_confirm(sk);
6354 
6355 		if (!sock_flag(sk, SOCK_DEAD)) {
6356 			/* Wake up lingering close() */
6357 			sk->sk_state_change(sk);
6358 			break;
6359 		}
6360 
6361 		if (tp->linger2 < 0) {
6362 			tcp_done(sk);
6363 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6364 			return 1;
6365 		}
6366 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6367 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6368 			/* Receive out of order FIN after close() */
6369 			if (tp->syn_fastopen && th->fin)
6370 				tcp_fastopen_active_disable(sk);
6371 			tcp_done(sk);
6372 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6373 			return 1;
6374 		}
6375 
6376 		tmo = tcp_fin_time(sk);
6377 		if (tmo > TCP_TIMEWAIT_LEN) {
6378 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6379 		} else if (th->fin || sock_owned_by_user(sk)) {
6380 			/* Bad case. We could lose such FIN otherwise.
6381 			 * It is not a big problem, but it looks confusing
6382 			 * and not so rare event. We still can lose it now,
6383 			 * if it spins in bh_lock_sock(), but it is really
6384 			 * marginal case.
6385 			 */
6386 			inet_csk_reset_keepalive_timer(sk, tmo);
6387 		} else {
6388 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6389 			goto discard;
6390 		}
6391 		break;
6392 	}
6393 
6394 	case TCP_CLOSING:
6395 		if (tp->snd_una == tp->write_seq) {
6396 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6397 			goto discard;
6398 		}
6399 		break;
6400 
6401 	case TCP_LAST_ACK:
6402 		if (tp->snd_una == tp->write_seq) {
6403 			tcp_update_metrics(sk);
6404 			tcp_done(sk);
6405 			goto discard;
6406 		}
6407 		break;
6408 	}
6409 
6410 	/* step 6: check the URG bit */
6411 	tcp_urg(sk, skb, th);
6412 
6413 	/* step 7: process the segment text */
6414 	switch (sk->sk_state) {
6415 	case TCP_CLOSE_WAIT:
6416 	case TCP_CLOSING:
6417 	case TCP_LAST_ACK:
6418 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6419 			if (sk_is_mptcp(sk))
6420 				mptcp_incoming_options(sk, skb, &tp->rx_opt);
6421 			break;
6422 		}
6423 		fallthrough;
6424 	case TCP_FIN_WAIT1:
6425 	case TCP_FIN_WAIT2:
6426 		/* RFC 793 says to queue data in these states,
6427 		 * RFC 1122 says we MUST send a reset.
6428 		 * BSD 4.4 also does reset.
6429 		 */
6430 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6431 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6432 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6433 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6434 				tcp_reset(sk);
6435 				return 1;
6436 			}
6437 		}
6438 		fallthrough;
6439 	case TCP_ESTABLISHED:
6440 		tcp_data_queue(sk, skb);
6441 		queued = 1;
6442 		break;
6443 	}
6444 
6445 	/* tcp_data could move socket to TIME-WAIT */
6446 	if (sk->sk_state != TCP_CLOSE) {
6447 		tcp_data_snd_check(sk);
6448 		tcp_ack_snd_check(sk);
6449 	}
6450 
6451 	if (!queued) {
6452 discard:
6453 		tcp_drop(sk, skb);
6454 	}
6455 	return 0;
6456 }
6457 EXPORT_SYMBOL(tcp_rcv_state_process);
6458 
6459 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6460 {
6461 	struct inet_request_sock *ireq = inet_rsk(req);
6462 
6463 	if (family == AF_INET)
6464 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6465 				    &ireq->ir_rmt_addr, port);
6466 #if IS_ENABLED(CONFIG_IPV6)
6467 	else if (family == AF_INET6)
6468 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6469 				    &ireq->ir_v6_rmt_addr, port);
6470 #endif
6471 }
6472 
6473 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6474  *
6475  * If we receive a SYN packet with these bits set, it means a
6476  * network is playing bad games with TOS bits. In order to
6477  * avoid possible false congestion notifications, we disable
6478  * TCP ECN negotiation.
6479  *
6480  * Exception: tcp_ca wants ECN. This is required for DCTCP
6481  * congestion control: Linux DCTCP asserts ECT on all packets,
6482  * including SYN, which is most optimal solution; however,
6483  * others, such as FreeBSD do not.
6484  *
6485  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6486  * set, indicating the use of a future TCP extension (such as AccECN). See
6487  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6488  * extensions.
6489  */
6490 static void tcp_ecn_create_request(struct request_sock *req,
6491 				   const struct sk_buff *skb,
6492 				   const struct sock *listen_sk,
6493 				   const struct dst_entry *dst)
6494 {
6495 	const struct tcphdr *th = tcp_hdr(skb);
6496 	const struct net *net = sock_net(listen_sk);
6497 	bool th_ecn = th->ece && th->cwr;
6498 	bool ect, ecn_ok;
6499 	u32 ecn_ok_dst;
6500 
6501 	if (!th_ecn)
6502 		return;
6503 
6504 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6505 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6506 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6507 
6508 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6509 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6510 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6511 		inet_rsk(req)->ecn_ok = 1;
6512 }
6513 
6514 static void tcp_openreq_init(struct request_sock *req,
6515 			     const struct tcp_options_received *rx_opt,
6516 			     struct sk_buff *skb, const struct sock *sk)
6517 {
6518 	struct inet_request_sock *ireq = inet_rsk(req);
6519 
6520 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6521 	req->cookie_ts = 0;
6522 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6523 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6524 	tcp_rsk(req)->snt_synack = 0;
6525 	tcp_rsk(req)->last_oow_ack_time = 0;
6526 	req->mss = rx_opt->mss_clamp;
6527 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6528 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6529 	ireq->sack_ok = rx_opt->sack_ok;
6530 	ireq->snd_wscale = rx_opt->snd_wscale;
6531 	ireq->wscale_ok = rx_opt->wscale_ok;
6532 	ireq->acked = 0;
6533 	ireq->ecn_ok = 0;
6534 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6535 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6536 	ireq->ir_mark = inet_request_mark(sk, skb);
6537 #if IS_ENABLED(CONFIG_SMC)
6538 	ireq->smc_ok = rx_opt->smc_ok;
6539 #endif
6540 }
6541 
6542 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6543 				      struct sock *sk_listener,
6544 				      bool attach_listener)
6545 {
6546 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6547 					       attach_listener);
6548 
6549 	if (req) {
6550 		struct inet_request_sock *ireq = inet_rsk(req);
6551 
6552 		ireq->ireq_opt = NULL;
6553 #if IS_ENABLED(CONFIG_IPV6)
6554 		ireq->pktopts = NULL;
6555 #endif
6556 		atomic64_set(&ireq->ir_cookie, 0);
6557 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6558 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6559 		ireq->ireq_family = sk_listener->sk_family;
6560 	}
6561 
6562 	return req;
6563 }
6564 EXPORT_SYMBOL(inet_reqsk_alloc);
6565 
6566 /*
6567  * Return true if a syncookie should be sent
6568  */
6569 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6570 {
6571 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6572 	const char *msg = "Dropping request";
6573 	bool want_cookie = false;
6574 	struct net *net = sock_net(sk);
6575 
6576 #ifdef CONFIG_SYN_COOKIES
6577 	if (net->ipv4.sysctl_tcp_syncookies) {
6578 		msg = "Sending cookies";
6579 		want_cookie = true;
6580 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6581 	} else
6582 #endif
6583 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6584 
6585 	if (!queue->synflood_warned &&
6586 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6587 	    xchg(&queue->synflood_warned, 1) == 0)
6588 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6589 				     proto, sk->sk_num, msg);
6590 
6591 	return want_cookie;
6592 }
6593 
6594 static void tcp_reqsk_record_syn(const struct sock *sk,
6595 				 struct request_sock *req,
6596 				 const struct sk_buff *skb)
6597 {
6598 	if (tcp_sk(sk)->save_syn) {
6599 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6600 		u32 *copy;
6601 
6602 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6603 		if (copy) {
6604 			copy[0] = len;
6605 			memcpy(&copy[1], skb_network_header(skb), len);
6606 			req->saved_syn = copy;
6607 		}
6608 	}
6609 }
6610 
6611 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6612  * used for SYN cookie generation.
6613  */
6614 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6615 			  const struct tcp_request_sock_ops *af_ops,
6616 			  struct sock *sk, struct tcphdr *th)
6617 {
6618 	struct tcp_sock *tp = tcp_sk(sk);
6619 	u16 mss;
6620 
6621 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6622 	    !inet_csk_reqsk_queue_is_full(sk))
6623 		return 0;
6624 
6625 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6626 		return 0;
6627 
6628 	if (sk_acceptq_is_full(sk)) {
6629 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6630 		return 0;
6631 	}
6632 
6633 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6634 	if (!mss)
6635 		mss = af_ops->mss_clamp;
6636 
6637 	return mss;
6638 }
6639 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6640 
6641 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6642 		     const struct tcp_request_sock_ops *af_ops,
6643 		     struct sock *sk, struct sk_buff *skb)
6644 {
6645 	struct tcp_fastopen_cookie foc = { .len = -1 };
6646 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6647 	struct tcp_options_received tmp_opt;
6648 	struct tcp_sock *tp = tcp_sk(sk);
6649 	struct net *net = sock_net(sk);
6650 	struct sock *fastopen_sk = NULL;
6651 	struct request_sock *req;
6652 	bool want_cookie = false;
6653 	struct dst_entry *dst;
6654 	struct flowi fl;
6655 
6656 	/* TW buckets are converted to open requests without
6657 	 * limitations, they conserve resources and peer is
6658 	 * evidently real one.
6659 	 */
6660 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6661 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6662 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6663 		if (!want_cookie)
6664 			goto drop;
6665 	}
6666 
6667 	if (sk_acceptq_is_full(sk)) {
6668 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6669 		goto drop;
6670 	}
6671 
6672 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6673 	if (!req)
6674 		goto drop;
6675 
6676 	tcp_rsk(req)->af_specific = af_ops;
6677 	tcp_rsk(req)->ts_off = 0;
6678 #if IS_ENABLED(CONFIG_MPTCP)
6679 	tcp_rsk(req)->is_mptcp = 0;
6680 #endif
6681 
6682 	tcp_clear_options(&tmp_opt);
6683 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6684 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6685 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6686 			  want_cookie ? NULL : &foc);
6687 
6688 	if (want_cookie && !tmp_opt.saw_tstamp)
6689 		tcp_clear_options(&tmp_opt);
6690 
6691 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6692 		tmp_opt.smc_ok = 0;
6693 
6694 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6695 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6696 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6697 
6698 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6699 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6700 
6701 	af_ops->init_req(req, sk, skb);
6702 
6703 	if (IS_ENABLED(CONFIG_MPTCP) && want_cookie)
6704 		tcp_rsk(req)->is_mptcp = 0;
6705 
6706 	if (security_inet_conn_request(sk, skb, req))
6707 		goto drop_and_free;
6708 
6709 	if (tmp_opt.tstamp_ok)
6710 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6711 
6712 	dst = af_ops->route_req(sk, &fl, req);
6713 	if (!dst)
6714 		goto drop_and_free;
6715 
6716 	if (!want_cookie && !isn) {
6717 		/* Kill the following clause, if you dislike this way. */
6718 		if (!net->ipv4.sysctl_tcp_syncookies &&
6719 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6720 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6721 		    !tcp_peer_is_proven(req, dst)) {
6722 			/* Without syncookies last quarter of
6723 			 * backlog is filled with destinations,
6724 			 * proven to be alive.
6725 			 * It means that we continue to communicate
6726 			 * to destinations, already remembered
6727 			 * to the moment of synflood.
6728 			 */
6729 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6730 				    rsk_ops->family);
6731 			goto drop_and_release;
6732 		}
6733 
6734 		isn = af_ops->init_seq(skb);
6735 	}
6736 
6737 	tcp_ecn_create_request(req, skb, sk, dst);
6738 
6739 	if (want_cookie) {
6740 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6741 		req->cookie_ts = tmp_opt.tstamp_ok;
6742 		if (!tmp_opt.tstamp_ok)
6743 			inet_rsk(req)->ecn_ok = 0;
6744 	}
6745 
6746 	tcp_rsk(req)->snt_isn = isn;
6747 	tcp_rsk(req)->txhash = net_tx_rndhash();
6748 	tcp_openreq_init_rwin(req, sk, dst);
6749 	sk_rx_queue_set(req_to_sk(req), skb);
6750 	if (!want_cookie) {
6751 		tcp_reqsk_record_syn(sk, req, skb);
6752 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6753 	}
6754 	if (fastopen_sk) {
6755 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6756 				    &foc, TCP_SYNACK_FASTOPEN);
6757 		/* Add the child socket directly into the accept queue */
6758 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6759 			reqsk_fastopen_remove(fastopen_sk, req, false);
6760 			bh_unlock_sock(fastopen_sk);
6761 			sock_put(fastopen_sk);
6762 			goto drop_and_free;
6763 		}
6764 		sk->sk_data_ready(sk);
6765 		bh_unlock_sock(fastopen_sk);
6766 		sock_put(fastopen_sk);
6767 	} else {
6768 		tcp_rsk(req)->tfo_listener = false;
6769 		if (!want_cookie)
6770 			inet_csk_reqsk_queue_hash_add(sk, req,
6771 				tcp_timeout_init((struct sock *)req));
6772 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6773 				    !want_cookie ? TCP_SYNACK_NORMAL :
6774 						   TCP_SYNACK_COOKIE);
6775 		if (want_cookie) {
6776 			reqsk_free(req);
6777 			return 0;
6778 		}
6779 	}
6780 	reqsk_put(req);
6781 	return 0;
6782 
6783 drop_and_release:
6784 	dst_release(dst);
6785 drop_and_free:
6786 	__reqsk_free(req);
6787 drop:
6788 	tcp_listendrop(sk);
6789 	return 0;
6790 }
6791 EXPORT_SYMBOL(tcp_conn_request);
6792