xref: /openbmc/linux/net/ipv4/tcp_input.c (revision afb46f79)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 
97 int sysctl_tcp_thin_dupack __read_mostly;
98 
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 	if (!(tp->ecn_flags & TCP_ECN_OK))
223 		return;
224 
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 			/* Better not delay acks, sender can have a very low cwnd */
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 		}
240 		/* fallinto */
241 	default:
242 		tp->ecn_flags |= TCP_ECN_SEEN;
243 	}
244 }
245 
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 		tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251 
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 		tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257 
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 		return true;
262 	return false;
263 }
264 
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269 
270 static void tcp_sndbuf_expand(struct sock *sk)
271 {
272 	const struct tcp_sock *tp = tcp_sk(sk);
273 	int sndmem, per_mss;
274 	u32 nr_segs;
275 
276 	/* Worst case is non GSO/TSO : each frame consumes one skb
277 	 * and skb->head is kmalloced using power of two area of memory
278 	 */
279 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
280 		  MAX_TCP_HEADER +
281 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
282 
283 	per_mss = roundup_pow_of_two(per_mss) +
284 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
285 
286 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
287 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
288 
289 	/* Fast Recovery (RFC 5681 3.2) :
290 	 * Cubic needs 1.7 factor, rounded to 2 to include
291 	 * extra cushion (application might react slowly to POLLOUT)
292 	 */
293 	sndmem = 2 * nr_segs * per_mss;
294 
295 	if (sk->sk_sndbuf < sndmem)
296 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
297 }
298 
299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
300  *
301  * All tcp_full_space() is split to two parts: "network" buffer, allocated
302  * forward and advertised in receiver window (tp->rcv_wnd) and
303  * "application buffer", required to isolate scheduling/application
304  * latencies from network.
305  * window_clamp is maximal advertised window. It can be less than
306  * tcp_full_space(), in this case tcp_full_space() - window_clamp
307  * is reserved for "application" buffer. The less window_clamp is
308  * the smoother our behaviour from viewpoint of network, but the lower
309  * throughput and the higher sensitivity of the connection to losses. 8)
310  *
311  * rcv_ssthresh is more strict window_clamp used at "slow start"
312  * phase to predict further behaviour of this connection.
313  * It is used for two goals:
314  * - to enforce header prediction at sender, even when application
315  *   requires some significant "application buffer". It is check #1.
316  * - to prevent pruning of receive queue because of misprediction
317  *   of receiver window. Check #2.
318  *
319  * The scheme does not work when sender sends good segments opening
320  * window and then starts to feed us spaghetti. But it should work
321  * in common situations. Otherwise, we have to rely on queue collapsing.
322  */
323 
324 /* Slow part of check#2. */
325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 	/* Optimize this! */
329 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
330 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
331 
332 	while (tp->rcv_ssthresh <= window) {
333 		if (truesize <= skb->len)
334 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
335 
336 		truesize >>= 1;
337 		window >>= 1;
338 	}
339 	return 0;
340 }
341 
342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
343 {
344 	struct tcp_sock *tp = tcp_sk(sk);
345 
346 	/* Check #1 */
347 	if (tp->rcv_ssthresh < tp->window_clamp &&
348 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
349 	    !sk_under_memory_pressure(sk)) {
350 		int incr;
351 
352 		/* Check #2. Increase window, if skb with such overhead
353 		 * will fit to rcvbuf in future.
354 		 */
355 		if (tcp_win_from_space(skb->truesize) <= skb->len)
356 			incr = 2 * tp->advmss;
357 		else
358 			incr = __tcp_grow_window(sk, skb);
359 
360 		if (incr) {
361 			incr = max_t(int, incr, 2 * skb->len);
362 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
363 					       tp->window_clamp);
364 			inet_csk(sk)->icsk_ack.quick |= 1;
365 		}
366 	}
367 }
368 
369 /* 3. Tuning rcvbuf, when connection enters established state. */
370 static void tcp_fixup_rcvbuf(struct sock *sk)
371 {
372 	u32 mss = tcp_sk(sk)->advmss;
373 	int rcvmem;
374 
375 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
376 		 tcp_default_init_rwnd(mss);
377 
378 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
379 	 * Allow enough cushion so that sender is not limited by our window
380 	 */
381 	if (sysctl_tcp_moderate_rcvbuf)
382 		rcvmem <<= 2;
383 
384 	if (sk->sk_rcvbuf < rcvmem)
385 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
386 }
387 
388 /* 4. Try to fixup all. It is made immediately after connection enters
389  *    established state.
390  */
391 void tcp_init_buffer_space(struct sock *sk)
392 {
393 	struct tcp_sock *tp = tcp_sk(sk);
394 	int maxwin;
395 
396 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
397 		tcp_fixup_rcvbuf(sk);
398 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
399 		tcp_sndbuf_expand(sk);
400 
401 	tp->rcvq_space.space = tp->rcv_wnd;
402 	tp->rcvq_space.time = tcp_time_stamp;
403 	tp->rcvq_space.seq = tp->copied_seq;
404 
405 	maxwin = tcp_full_space(sk);
406 
407 	if (tp->window_clamp >= maxwin) {
408 		tp->window_clamp = maxwin;
409 
410 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
411 			tp->window_clamp = max(maxwin -
412 					       (maxwin >> sysctl_tcp_app_win),
413 					       4 * tp->advmss);
414 	}
415 
416 	/* Force reservation of one segment. */
417 	if (sysctl_tcp_app_win &&
418 	    tp->window_clamp > 2 * tp->advmss &&
419 	    tp->window_clamp + tp->advmss > maxwin)
420 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
421 
422 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
423 	tp->snd_cwnd_stamp = tcp_time_stamp;
424 }
425 
426 /* 5. Recalculate window clamp after socket hit its memory bounds. */
427 static void tcp_clamp_window(struct sock *sk)
428 {
429 	struct tcp_sock *tp = tcp_sk(sk);
430 	struct inet_connection_sock *icsk = inet_csk(sk);
431 
432 	icsk->icsk_ack.quick = 0;
433 
434 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
435 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
436 	    !sk_under_memory_pressure(sk) &&
437 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
438 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
439 				    sysctl_tcp_rmem[2]);
440 	}
441 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
442 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
443 }
444 
445 /* Initialize RCV_MSS value.
446  * RCV_MSS is an our guess about MSS used by the peer.
447  * We haven't any direct information about the MSS.
448  * It's better to underestimate the RCV_MSS rather than overestimate.
449  * Overestimations make us ACKing less frequently than needed.
450  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
451  */
452 void tcp_initialize_rcv_mss(struct sock *sk)
453 {
454 	const struct tcp_sock *tp = tcp_sk(sk);
455 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
456 
457 	hint = min(hint, tp->rcv_wnd / 2);
458 	hint = min(hint, TCP_MSS_DEFAULT);
459 	hint = max(hint, TCP_MIN_MSS);
460 
461 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
462 }
463 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
464 
465 /* Receiver "autotuning" code.
466  *
467  * The algorithm for RTT estimation w/o timestamps is based on
468  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
469  * <http://public.lanl.gov/radiant/pubs.html#DRS>
470  *
471  * More detail on this code can be found at
472  * <http://staff.psc.edu/jheffner/>,
473  * though this reference is out of date.  A new paper
474  * is pending.
475  */
476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
477 {
478 	u32 new_sample = tp->rcv_rtt_est.rtt;
479 	long m = sample;
480 
481 	if (m == 0)
482 		m = 1;
483 
484 	if (new_sample != 0) {
485 		/* If we sample in larger samples in the non-timestamp
486 		 * case, we could grossly overestimate the RTT especially
487 		 * with chatty applications or bulk transfer apps which
488 		 * are stalled on filesystem I/O.
489 		 *
490 		 * Also, since we are only going for a minimum in the
491 		 * non-timestamp case, we do not smooth things out
492 		 * else with timestamps disabled convergence takes too
493 		 * long.
494 		 */
495 		if (!win_dep) {
496 			m -= (new_sample >> 3);
497 			new_sample += m;
498 		} else {
499 			m <<= 3;
500 			if (m < new_sample)
501 				new_sample = m;
502 		}
503 	} else {
504 		/* No previous measure. */
505 		new_sample = m << 3;
506 	}
507 
508 	if (tp->rcv_rtt_est.rtt != new_sample)
509 		tp->rcv_rtt_est.rtt = new_sample;
510 }
511 
512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
513 {
514 	if (tp->rcv_rtt_est.time == 0)
515 		goto new_measure;
516 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
517 		return;
518 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
519 
520 new_measure:
521 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
522 	tp->rcv_rtt_est.time = tcp_time_stamp;
523 }
524 
525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
526 					  const struct sk_buff *skb)
527 {
528 	struct tcp_sock *tp = tcp_sk(sk);
529 	if (tp->rx_opt.rcv_tsecr &&
530 	    (TCP_SKB_CB(skb)->end_seq -
531 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
532 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
533 }
534 
535 /*
536  * This function should be called every time data is copied to user space.
537  * It calculates the appropriate TCP receive buffer space.
538  */
539 void tcp_rcv_space_adjust(struct sock *sk)
540 {
541 	struct tcp_sock *tp = tcp_sk(sk);
542 	int time;
543 	int copied;
544 
545 	time = tcp_time_stamp - tp->rcvq_space.time;
546 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
547 		return;
548 
549 	/* Number of bytes copied to user in last RTT */
550 	copied = tp->copied_seq - tp->rcvq_space.seq;
551 	if (copied <= tp->rcvq_space.space)
552 		goto new_measure;
553 
554 	/* A bit of theory :
555 	 * copied = bytes received in previous RTT, our base window
556 	 * To cope with packet losses, we need a 2x factor
557 	 * To cope with slow start, and sender growing its cwin by 100 %
558 	 * every RTT, we need a 4x factor, because the ACK we are sending
559 	 * now is for the next RTT, not the current one :
560 	 * <prev RTT . ><current RTT .. ><next RTT .... >
561 	 */
562 
563 	if (sysctl_tcp_moderate_rcvbuf &&
564 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
565 		int rcvwin, rcvmem, rcvbuf;
566 
567 		/* minimal window to cope with packet losses, assuming
568 		 * steady state. Add some cushion because of small variations.
569 		 */
570 		rcvwin = (copied << 1) + 16 * tp->advmss;
571 
572 		/* If rate increased by 25%,
573 		 *	assume slow start, rcvwin = 3 * copied
574 		 * If rate increased by 50%,
575 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
576 		 */
577 		if (copied >=
578 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
579 			if (copied >=
580 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
581 				rcvwin <<= 1;
582 			else
583 				rcvwin += (rcvwin >> 1);
584 		}
585 
586 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
587 		while (tcp_win_from_space(rcvmem) < tp->advmss)
588 			rcvmem += 128;
589 
590 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
591 		if (rcvbuf > sk->sk_rcvbuf) {
592 			sk->sk_rcvbuf = rcvbuf;
593 
594 			/* Make the window clamp follow along.  */
595 			tp->window_clamp = rcvwin;
596 		}
597 	}
598 	tp->rcvq_space.space = copied;
599 
600 new_measure:
601 	tp->rcvq_space.seq = tp->copied_seq;
602 	tp->rcvq_space.time = tcp_time_stamp;
603 }
604 
605 /* There is something which you must keep in mind when you analyze the
606  * behavior of the tp->ato delayed ack timeout interval.  When a
607  * connection starts up, we want to ack as quickly as possible.  The
608  * problem is that "good" TCP's do slow start at the beginning of data
609  * transmission.  The means that until we send the first few ACK's the
610  * sender will sit on his end and only queue most of his data, because
611  * he can only send snd_cwnd unacked packets at any given time.  For
612  * each ACK we send, he increments snd_cwnd and transmits more of his
613  * queue.  -DaveM
614  */
615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
616 {
617 	struct tcp_sock *tp = tcp_sk(sk);
618 	struct inet_connection_sock *icsk = inet_csk(sk);
619 	u32 now;
620 
621 	inet_csk_schedule_ack(sk);
622 
623 	tcp_measure_rcv_mss(sk, skb);
624 
625 	tcp_rcv_rtt_measure(tp);
626 
627 	now = tcp_time_stamp;
628 
629 	if (!icsk->icsk_ack.ato) {
630 		/* The _first_ data packet received, initialize
631 		 * delayed ACK engine.
632 		 */
633 		tcp_incr_quickack(sk);
634 		icsk->icsk_ack.ato = TCP_ATO_MIN;
635 	} else {
636 		int m = now - icsk->icsk_ack.lrcvtime;
637 
638 		if (m <= TCP_ATO_MIN / 2) {
639 			/* The fastest case is the first. */
640 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
641 		} else if (m < icsk->icsk_ack.ato) {
642 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
643 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
644 				icsk->icsk_ack.ato = icsk->icsk_rto;
645 		} else if (m > icsk->icsk_rto) {
646 			/* Too long gap. Apparently sender failed to
647 			 * restart window, so that we send ACKs quickly.
648 			 */
649 			tcp_incr_quickack(sk);
650 			sk_mem_reclaim(sk);
651 		}
652 	}
653 	icsk->icsk_ack.lrcvtime = now;
654 
655 	TCP_ECN_check_ce(tp, skb);
656 
657 	if (skb->len >= 128)
658 		tcp_grow_window(sk, skb);
659 }
660 
661 /* Called to compute a smoothed rtt estimate. The data fed to this
662  * routine either comes from timestamps, or from segments that were
663  * known _not_ to have been retransmitted [see Karn/Partridge
664  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
665  * piece by Van Jacobson.
666  * NOTE: the next three routines used to be one big routine.
667  * To save cycles in the RFC 1323 implementation it was better to break
668  * it up into three procedures. -- erics
669  */
670 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
671 {
672 	struct tcp_sock *tp = tcp_sk(sk);
673 	long m = mrtt_us; /* RTT */
674 	u32 srtt = tp->srtt_us;
675 
676 	/*	The following amusing code comes from Jacobson's
677 	 *	article in SIGCOMM '88.  Note that rtt and mdev
678 	 *	are scaled versions of rtt and mean deviation.
679 	 *	This is designed to be as fast as possible
680 	 *	m stands for "measurement".
681 	 *
682 	 *	On a 1990 paper the rto value is changed to:
683 	 *	RTO = rtt + 4 * mdev
684 	 *
685 	 * Funny. This algorithm seems to be very broken.
686 	 * These formulae increase RTO, when it should be decreased, increase
687 	 * too slowly, when it should be increased quickly, decrease too quickly
688 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
689 	 * does not matter how to _calculate_ it. Seems, it was trap
690 	 * that VJ failed to avoid. 8)
691 	 */
692 	if (srtt != 0) {
693 		m -= (srtt >> 3);	/* m is now error in rtt est */
694 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
695 		if (m < 0) {
696 			m = -m;		/* m is now abs(error) */
697 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
698 			/* This is similar to one of Eifel findings.
699 			 * Eifel blocks mdev updates when rtt decreases.
700 			 * This solution is a bit different: we use finer gain
701 			 * for mdev in this case (alpha*beta).
702 			 * Like Eifel it also prevents growth of rto,
703 			 * but also it limits too fast rto decreases,
704 			 * happening in pure Eifel.
705 			 */
706 			if (m > 0)
707 				m >>= 3;
708 		} else {
709 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
710 		}
711 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
712 		if (tp->mdev_us > tp->mdev_max_us) {
713 			tp->mdev_max_us = tp->mdev_us;
714 			if (tp->mdev_max_us > tp->rttvar_us)
715 				tp->rttvar_us = tp->mdev_max_us;
716 		}
717 		if (after(tp->snd_una, tp->rtt_seq)) {
718 			if (tp->mdev_max_us < tp->rttvar_us)
719 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
720 			tp->rtt_seq = tp->snd_nxt;
721 			tp->mdev_max_us = tcp_rto_min_us(sk);
722 		}
723 	} else {
724 		/* no previous measure. */
725 		srtt = m << 3;		/* take the measured time to be rtt */
726 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
727 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
728 		tp->mdev_max_us = tp->rttvar_us;
729 		tp->rtt_seq = tp->snd_nxt;
730 	}
731 	tp->srtt_us = max(1U, srtt);
732 }
733 
734 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
735  * Note: TCP stack does not yet implement pacing.
736  * FQ packet scheduler can be used to implement cheap but effective
737  * TCP pacing, to smooth the burst on large writes when packets
738  * in flight is significantly lower than cwnd (or rwin)
739  */
740 static void tcp_update_pacing_rate(struct sock *sk)
741 {
742 	const struct tcp_sock *tp = tcp_sk(sk);
743 	u64 rate;
744 
745 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
746 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
747 
748 	rate *= max(tp->snd_cwnd, tp->packets_out);
749 
750 	if (likely(tp->srtt_us))
751 		do_div(rate, tp->srtt_us);
752 
753 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
754 	 * without any lock. We want to make sure compiler wont store
755 	 * intermediate values in this location.
756 	 */
757 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
758 						sk->sk_max_pacing_rate);
759 }
760 
761 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
762  * routine referred to above.
763  */
764 static void tcp_set_rto(struct sock *sk)
765 {
766 	const struct tcp_sock *tp = tcp_sk(sk);
767 	/* Old crap is replaced with new one. 8)
768 	 *
769 	 * More seriously:
770 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
771 	 *    It cannot be less due to utterly erratic ACK generation made
772 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
773 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
774 	 *    is invisible. Actually, Linux-2.4 also generates erratic
775 	 *    ACKs in some circumstances.
776 	 */
777 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
778 
779 	/* 2. Fixups made earlier cannot be right.
780 	 *    If we do not estimate RTO correctly without them,
781 	 *    all the algo is pure shit and should be replaced
782 	 *    with correct one. It is exactly, which we pretend to do.
783 	 */
784 
785 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
786 	 * guarantees that rto is higher.
787 	 */
788 	tcp_bound_rto(sk);
789 }
790 
791 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
792 {
793 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
794 
795 	if (!cwnd)
796 		cwnd = TCP_INIT_CWND;
797 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
798 }
799 
800 /*
801  * Packet counting of FACK is based on in-order assumptions, therefore TCP
802  * disables it when reordering is detected
803  */
804 void tcp_disable_fack(struct tcp_sock *tp)
805 {
806 	/* RFC3517 uses different metric in lost marker => reset on change */
807 	if (tcp_is_fack(tp))
808 		tp->lost_skb_hint = NULL;
809 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
810 }
811 
812 /* Take a notice that peer is sending D-SACKs */
813 static void tcp_dsack_seen(struct tcp_sock *tp)
814 {
815 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
816 }
817 
818 static void tcp_update_reordering(struct sock *sk, const int metric,
819 				  const int ts)
820 {
821 	struct tcp_sock *tp = tcp_sk(sk);
822 	if (metric > tp->reordering) {
823 		int mib_idx;
824 
825 		tp->reordering = min(TCP_MAX_REORDERING, metric);
826 
827 		/* This exciting event is worth to be remembered. 8) */
828 		if (ts)
829 			mib_idx = LINUX_MIB_TCPTSREORDER;
830 		else if (tcp_is_reno(tp))
831 			mib_idx = LINUX_MIB_TCPRENOREORDER;
832 		else if (tcp_is_fack(tp))
833 			mib_idx = LINUX_MIB_TCPFACKREORDER;
834 		else
835 			mib_idx = LINUX_MIB_TCPSACKREORDER;
836 
837 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
838 #if FASTRETRANS_DEBUG > 1
839 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
840 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
841 			 tp->reordering,
842 			 tp->fackets_out,
843 			 tp->sacked_out,
844 			 tp->undo_marker ? tp->undo_retrans : 0);
845 #endif
846 		tcp_disable_fack(tp);
847 	}
848 
849 	if (metric > 0)
850 		tcp_disable_early_retrans(tp);
851 }
852 
853 /* This must be called before lost_out is incremented */
854 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
855 {
856 	if ((tp->retransmit_skb_hint == NULL) ||
857 	    before(TCP_SKB_CB(skb)->seq,
858 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
859 		tp->retransmit_skb_hint = skb;
860 
861 	if (!tp->lost_out ||
862 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
863 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
864 }
865 
866 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
867 {
868 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
869 		tcp_verify_retransmit_hint(tp, skb);
870 
871 		tp->lost_out += tcp_skb_pcount(skb);
872 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
873 	}
874 }
875 
876 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
877 					    struct sk_buff *skb)
878 {
879 	tcp_verify_retransmit_hint(tp, skb);
880 
881 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 		tp->lost_out += tcp_skb_pcount(skb);
883 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
884 	}
885 }
886 
887 /* This procedure tags the retransmission queue when SACKs arrive.
888  *
889  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
890  * Packets in queue with these bits set are counted in variables
891  * sacked_out, retrans_out and lost_out, correspondingly.
892  *
893  * Valid combinations are:
894  * Tag  InFlight	Description
895  * 0	1		- orig segment is in flight.
896  * S	0		- nothing flies, orig reached receiver.
897  * L	0		- nothing flies, orig lost by net.
898  * R	2		- both orig and retransmit are in flight.
899  * L|R	1		- orig is lost, retransmit is in flight.
900  * S|R  1		- orig reached receiver, retrans is still in flight.
901  * (L|S|R is logically valid, it could occur when L|R is sacked,
902  *  but it is equivalent to plain S and code short-curcuits it to S.
903  *  L|S is logically invalid, it would mean -1 packet in flight 8))
904  *
905  * These 6 states form finite state machine, controlled by the following events:
906  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
907  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
908  * 3. Loss detection event of two flavors:
909  *	A. Scoreboard estimator decided the packet is lost.
910  *	   A'. Reno "three dupacks" marks head of queue lost.
911  *	   A''. Its FACK modification, head until snd.fack is lost.
912  *	B. SACK arrives sacking SND.NXT at the moment, when the
913  *	   segment was retransmitted.
914  * 4. D-SACK added new rule: D-SACK changes any tag to S.
915  *
916  * It is pleasant to note, that state diagram turns out to be commutative,
917  * so that we are allowed not to be bothered by order of our actions,
918  * when multiple events arrive simultaneously. (see the function below).
919  *
920  * Reordering detection.
921  * --------------------
922  * Reordering metric is maximal distance, which a packet can be displaced
923  * in packet stream. With SACKs we can estimate it:
924  *
925  * 1. SACK fills old hole and the corresponding segment was not
926  *    ever retransmitted -> reordering. Alas, we cannot use it
927  *    when segment was retransmitted.
928  * 2. The last flaw is solved with D-SACK. D-SACK arrives
929  *    for retransmitted and already SACKed segment -> reordering..
930  * Both of these heuristics are not used in Loss state, when we cannot
931  * account for retransmits accurately.
932  *
933  * SACK block validation.
934  * ----------------------
935  *
936  * SACK block range validation checks that the received SACK block fits to
937  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
938  * Note that SND.UNA is not included to the range though being valid because
939  * it means that the receiver is rather inconsistent with itself reporting
940  * SACK reneging when it should advance SND.UNA. Such SACK block this is
941  * perfectly valid, however, in light of RFC2018 which explicitly states
942  * that "SACK block MUST reflect the newest segment.  Even if the newest
943  * segment is going to be discarded ...", not that it looks very clever
944  * in case of head skb. Due to potentional receiver driven attacks, we
945  * choose to avoid immediate execution of a walk in write queue due to
946  * reneging and defer head skb's loss recovery to standard loss recovery
947  * procedure that will eventually trigger (nothing forbids us doing this).
948  *
949  * Implements also blockage to start_seq wrap-around. Problem lies in the
950  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
951  * there's no guarantee that it will be before snd_nxt (n). The problem
952  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
953  * wrap (s_w):
954  *
955  *         <- outs wnd ->                          <- wrapzone ->
956  *         u     e      n                         u_w   e_w  s n_w
957  *         |     |      |                          |     |   |  |
958  * |<------------+------+----- TCP seqno space --------------+---------->|
959  * ...-- <2^31 ->|                                           |<--------...
960  * ...---- >2^31 ------>|                                    |<--------...
961  *
962  * Current code wouldn't be vulnerable but it's better still to discard such
963  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
964  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
965  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
966  * equal to the ideal case (infinite seqno space without wrap caused issues).
967  *
968  * With D-SACK the lower bound is extended to cover sequence space below
969  * SND.UNA down to undo_marker, which is the last point of interest. Yet
970  * again, D-SACK block must not to go across snd_una (for the same reason as
971  * for the normal SACK blocks, explained above). But there all simplicity
972  * ends, TCP might receive valid D-SACKs below that. As long as they reside
973  * fully below undo_marker they do not affect behavior in anyway and can
974  * therefore be safely ignored. In rare cases (which are more or less
975  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
976  * fragmentation and packet reordering past skb's retransmission. To consider
977  * them correctly, the acceptable range must be extended even more though
978  * the exact amount is rather hard to quantify. However, tp->max_window can
979  * be used as an exaggerated estimate.
980  */
981 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
982 				   u32 start_seq, u32 end_seq)
983 {
984 	/* Too far in future, or reversed (interpretation is ambiguous) */
985 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
986 		return false;
987 
988 	/* Nasty start_seq wrap-around check (see comments above) */
989 	if (!before(start_seq, tp->snd_nxt))
990 		return false;
991 
992 	/* In outstanding window? ...This is valid exit for D-SACKs too.
993 	 * start_seq == snd_una is non-sensical (see comments above)
994 	 */
995 	if (after(start_seq, tp->snd_una))
996 		return true;
997 
998 	if (!is_dsack || !tp->undo_marker)
999 		return false;
1000 
1001 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1002 	if (after(end_seq, tp->snd_una))
1003 		return false;
1004 
1005 	if (!before(start_seq, tp->undo_marker))
1006 		return true;
1007 
1008 	/* Too old */
1009 	if (!after(end_seq, tp->undo_marker))
1010 		return false;
1011 
1012 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1013 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1014 	 */
1015 	return !before(start_seq, end_seq - tp->max_window);
1016 }
1017 
1018 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1019  * Event "B". Later note: FACK people cheated me again 8), we have to account
1020  * for reordering! Ugly, but should help.
1021  *
1022  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1023  * less than what is now known to be received by the other end (derived from
1024  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1025  * retransmitted skbs to avoid some costly processing per ACKs.
1026  */
1027 static void tcp_mark_lost_retrans(struct sock *sk)
1028 {
1029 	const struct inet_connection_sock *icsk = inet_csk(sk);
1030 	struct tcp_sock *tp = tcp_sk(sk);
1031 	struct sk_buff *skb;
1032 	int cnt = 0;
1033 	u32 new_low_seq = tp->snd_nxt;
1034 	u32 received_upto = tcp_highest_sack_seq(tp);
1035 
1036 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1037 	    !after(received_upto, tp->lost_retrans_low) ||
1038 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1039 		return;
1040 
1041 	tcp_for_write_queue(skb, sk) {
1042 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1043 
1044 		if (skb == tcp_send_head(sk))
1045 			break;
1046 		if (cnt == tp->retrans_out)
1047 			break;
1048 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1049 			continue;
1050 
1051 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1052 			continue;
1053 
1054 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1055 		 * constraint here (see above) but figuring out that at
1056 		 * least tp->reordering SACK blocks reside between ack_seq
1057 		 * and received_upto is not easy task to do cheaply with
1058 		 * the available datastructures.
1059 		 *
1060 		 * Whether FACK should check here for tp->reordering segs
1061 		 * in-between one could argue for either way (it would be
1062 		 * rather simple to implement as we could count fack_count
1063 		 * during the walk and do tp->fackets_out - fack_count).
1064 		 */
1065 		if (after(received_upto, ack_seq)) {
1066 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1067 			tp->retrans_out -= tcp_skb_pcount(skb);
1068 
1069 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1070 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1071 		} else {
1072 			if (before(ack_seq, new_low_seq))
1073 				new_low_seq = ack_seq;
1074 			cnt += tcp_skb_pcount(skb);
1075 		}
1076 	}
1077 
1078 	if (tp->retrans_out)
1079 		tp->lost_retrans_low = new_low_seq;
1080 }
1081 
1082 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1083 			    struct tcp_sack_block_wire *sp, int num_sacks,
1084 			    u32 prior_snd_una)
1085 {
1086 	struct tcp_sock *tp = tcp_sk(sk);
1087 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1088 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1089 	bool dup_sack = false;
1090 
1091 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1092 		dup_sack = true;
1093 		tcp_dsack_seen(tp);
1094 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1095 	} else if (num_sacks > 1) {
1096 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1097 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1098 
1099 		if (!after(end_seq_0, end_seq_1) &&
1100 		    !before(start_seq_0, start_seq_1)) {
1101 			dup_sack = true;
1102 			tcp_dsack_seen(tp);
1103 			NET_INC_STATS_BH(sock_net(sk),
1104 					LINUX_MIB_TCPDSACKOFORECV);
1105 		}
1106 	}
1107 
1108 	/* D-SACK for already forgotten data... Do dumb counting. */
1109 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1110 	    !after(end_seq_0, prior_snd_una) &&
1111 	    after(end_seq_0, tp->undo_marker))
1112 		tp->undo_retrans--;
1113 
1114 	return dup_sack;
1115 }
1116 
1117 struct tcp_sacktag_state {
1118 	int	reord;
1119 	int	fack_count;
1120 	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1121 	int	flag;
1122 };
1123 
1124 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1125  * the incoming SACK may not exactly match but we can find smaller MSS
1126  * aligned portion of it that matches. Therefore we might need to fragment
1127  * which may fail and creates some hassle (caller must handle error case
1128  * returns).
1129  *
1130  * FIXME: this could be merged to shift decision code
1131  */
1132 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1133 				  u32 start_seq, u32 end_seq)
1134 {
1135 	int err;
1136 	bool in_sack;
1137 	unsigned int pkt_len;
1138 	unsigned int mss;
1139 
1140 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1141 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1142 
1143 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1144 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1145 		mss = tcp_skb_mss(skb);
1146 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1147 
1148 		if (!in_sack) {
1149 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1150 			if (pkt_len < mss)
1151 				pkt_len = mss;
1152 		} else {
1153 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1154 			if (pkt_len < mss)
1155 				return -EINVAL;
1156 		}
1157 
1158 		/* Round if necessary so that SACKs cover only full MSSes
1159 		 * and/or the remaining small portion (if present)
1160 		 */
1161 		if (pkt_len > mss) {
1162 			unsigned int new_len = (pkt_len / mss) * mss;
1163 			if (!in_sack && new_len < pkt_len) {
1164 				new_len += mss;
1165 				if (new_len > skb->len)
1166 					return 0;
1167 			}
1168 			pkt_len = new_len;
1169 		}
1170 		err = tcp_fragment(sk, skb, pkt_len, mss);
1171 		if (err < 0)
1172 			return err;
1173 	}
1174 
1175 	return in_sack;
1176 }
1177 
1178 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1179 static u8 tcp_sacktag_one(struct sock *sk,
1180 			  struct tcp_sacktag_state *state, u8 sacked,
1181 			  u32 start_seq, u32 end_seq,
1182 			  int dup_sack, int pcount,
1183 			  const struct skb_mstamp *xmit_time)
1184 {
1185 	struct tcp_sock *tp = tcp_sk(sk);
1186 	int fack_count = state->fack_count;
1187 
1188 	/* Account D-SACK for retransmitted packet. */
1189 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1190 		if (tp->undo_marker && tp->undo_retrans &&
1191 		    after(end_seq, tp->undo_marker))
1192 			tp->undo_retrans--;
1193 		if (sacked & TCPCB_SACKED_ACKED)
1194 			state->reord = min(fack_count, state->reord);
1195 	}
1196 
1197 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1198 	if (!after(end_seq, tp->snd_una))
1199 		return sacked;
1200 
1201 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1202 		if (sacked & TCPCB_SACKED_RETRANS) {
1203 			/* If the segment is not tagged as lost,
1204 			 * we do not clear RETRANS, believing
1205 			 * that retransmission is still in flight.
1206 			 */
1207 			if (sacked & TCPCB_LOST) {
1208 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1209 				tp->lost_out -= pcount;
1210 				tp->retrans_out -= pcount;
1211 			}
1212 		} else {
1213 			if (!(sacked & TCPCB_RETRANS)) {
1214 				/* New sack for not retransmitted frame,
1215 				 * which was in hole. It is reordering.
1216 				 */
1217 				if (before(start_seq,
1218 					   tcp_highest_sack_seq(tp)))
1219 					state->reord = min(fack_count,
1220 							   state->reord);
1221 				if (!after(end_seq, tp->high_seq))
1222 					state->flag |= FLAG_ORIG_SACK_ACKED;
1223 				/* Pick the earliest sequence sacked for RTT */
1224 				if (state->rtt_us < 0) {
1225 					struct skb_mstamp now;
1226 
1227 					skb_mstamp_get(&now);
1228 					state->rtt_us = skb_mstamp_us_delta(&now,
1229 								xmit_time);
1230 				}
1231 			}
1232 
1233 			if (sacked & TCPCB_LOST) {
1234 				sacked &= ~TCPCB_LOST;
1235 				tp->lost_out -= pcount;
1236 			}
1237 		}
1238 
1239 		sacked |= TCPCB_SACKED_ACKED;
1240 		state->flag |= FLAG_DATA_SACKED;
1241 		tp->sacked_out += pcount;
1242 
1243 		fack_count += pcount;
1244 
1245 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1246 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1247 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1248 			tp->lost_cnt_hint += pcount;
1249 
1250 		if (fack_count > tp->fackets_out)
1251 			tp->fackets_out = fack_count;
1252 	}
1253 
1254 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 	 * are accounted above as well.
1257 	 */
1258 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 		sacked &= ~TCPCB_SACKED_RETRANS;
1260 		tp->retrans_out -= pcount;
1261 	}
1262 
1263 	return sacked;
1264 }
1265 
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268  */
1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1270 			    struct tcp_sacktag_state *state,
1271 			    unsigned int pcount, int shifted, int mss,
1272 			    bool dup_sack)
1273 {
1274 	struct tcp_sock *tp = tcp_sk(sk);
1275 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1276 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1277 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1278 
1279 	BUG_ON(!pcount);
1280 
1281 	/* Adjust counters and hints for the newly sacked sequence
1282 	 * range but discard the return value since prev is already
1283 	 * marked. We must tag the range first because the seq
1284 	 * advancement below implicitly advances
1285 	 * tcp_highest_sack_seq() when skb is highest_sack.
1286 	 */
1287 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 			start_seq, end_seq, dup_sack, pcount,
1289 			&skb->skb_mstamp);
1290 
1291 	if (skb == tp->lost_skb_hint)
1292 		tp->lost_cnt_hint += pcount;
1293 
1294 	TCP_SKB_CB(prev)->end_seq += shifted;
1295 	TCP_SKB_CB(skb)->seq += shifted;
1296 
1297 	skb_shinfo(prev)->gso_segs += pcount;
1298 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1299 	skb_shinfo(skb)->gso_segs -= pcount;
1300 
1301 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1302 	 * in theory this shouldn't be necessary but as long as DSACK
1303 	 * code can come after this skb later on it's better to keep
1304 	 * setting gso_size to something.
1305 	 */
1306 	if (!skb_shinfo(prev)->gso_size) {
1307 		skb_shinfo(prev)->gso_size = mss;
1308 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1309 	}
1310 
1311 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1312 	if (skb_shinfo(skb)->gso_segs <= 1) {
1313 		skb_shinfo(skb)->gso_size = 0;
1314 		skb_shinfo(skb)->gso_type = 0;
1315 	}
1316 
1317 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1318 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1319 
1320 	if (skb->len > 0) {
1321 		BUG_ON(!tcp_skb_pcount(skb));
1322 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1323 		return false;
1324 	}
1325 
1326 	/* Whole SKB was eaten :-) */
1327 
1328 	if (skb == tp->retransmit_skb_hint)
1329 		tp->retransmit_skb_hint = prev;
1330 	if (skb == tp->lost_skb_hint) {
1331 		tp->lost_skb_hint = prev;
1332 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1333 	}
1334 
1335 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1336 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1337 		TCP_SKB_CB(prev)->end_seq++;
1338 
1339 	if (skb == tcp_highest_sack(sk))
1340 		tcp_advance_highest_sack(sk, skb);
1341 
1342 	tcp_unlink_write_queue(skb, sk);
1343 	sk_wmem_free_skb(sk, skb);
1344 
1345 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1346 
1347 	return true;
1348 }
1349 
1350 /* I wish gso_size would have a bit more sane initialization than
1351  * something-or-zero which complicates things
1352  */
1353 static int tcp_skb_seglen(const struct sk_buff *skb)
1354 {
1355 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1356 }
1357 
1358 /* Shifting pages past head area doesn't work */
1359 static int skb_can_shift(const struct sk_buff *skb)
1360 {
1361 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1362 }
1363 
1364 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1365  * skb.
1366  */
1367 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1368 					  struct tcp_sacktag_state *state,
1369 					  u32 start_seq, u32 end_seq,
1370 					  bool dup_sack)
1371 {
1372 	struct tcp_sock *tp = tcp_sk(sk);
1373 	struct sk_buff *prev;
1374 	int mss;
1375 	int pcount = 0;
1376 	int len;
1377 	int in_sack;
1378 
1379 	if (!sk_can_gso(sk))
1380 		goto fallback;
1381 
1382 	/* Normally R but no L won't result in plain S */
1383 	if (!dup_sack &&
1384 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1385 		goto fallback;
1386 	if (!skb_can_shift(skb))
1387 		goto fallback;
1388 	/* This frame is about to be dropped (was ACKed). */
1389 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1390 		goto fallback;
1391 
1392 	/* Can only happen with delayed DSACK + discard craziness */
1393 	if (unlikely(skb == tcp_write_queue_head(sk)))
1394 		goto fallback;
1395 	prev = tcp_write_queue_prev(sk, skb);
1396 
1397 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1398 		goto fallback;
1399 
1400 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402 
1403 	if (in_sack) {
1404 		len = skb->len;
1405 		pcount = tcp_skb_pcount(skb);
1406 		mss = tcp_skb_seglen(skb);
1407 
1408 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1409 		 * drop this restriction as unnecessary
1410 		 */
1411 		if (mss != tcp_skb_seglen(prev))
1412 			goto fallback;
1413 	} else {
1414 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415 			goto noop;
1416 		/* CHECKME: This is non-MSS split case only?, this will
1417 		 * cause skipped skbs due to advancing loop btw, original
1418 		 * has that feature too
1419 		 */
1420 		if (tcp_skb_pcount(skb) <= 1)
1421 			goto noop;
1422 
1423 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424 		if (!in_sack) {
1425 			/* TODO: head merge to next could be attempted here
1426 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427 			 * though it might not be worth of the additional hassle
1428 			 *
1429 			 * ...we can probably just fallback to what was done
1430 			 * previously. We could try merging non-SACKed ones
1431 			 * as well but it probably isn't going to buy off
1432 			 * because later SACKs might again split them, and
1433 			 * it would make skb timestamp tracking considerably
1434 			 * harder problem.
1435 			 */
1436 			goto fallback;
1437 		}
1438 
1439 		len = end_seq - TCP_SKB_CB(skb)->seq;
1440 		BUG_ON(len < 0);
1441 		BUG_ON(len > skb->len);
1442 
1443 		/* MSS boundaries should be honoured or else pcount will
1444 		 * severely break even though it makes things bit trickier.
1445 		 * Optimize common case to avoid most of the divides
1446 		 */
1447 		mss = tcp_skb_mss(skb);
1448 
1449 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1450 		 * drop this restriction as unnecessary
1451 		 */
1452 		if (mss != tcp_skb_seglen(prev))
1453 			goto fallback;
1454 
1455 		if (len == mss) {
1456 			pcount = 1;
1457 		} else if (len < mss) {
1458 			goto noop;
1459 		} else {
1460 			pcount = len / mss;
1461 			len = pcount * mss;
1462 		}
1463 	}
1464 
1465 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467 		goto fallback;
1468 
1469 	if (!skb_shift(prev, skb, len))
1470 		goto fallback;
1471 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1472 		goto out;
1473 
1474 	/* Hole filled allows collapsing with the next as well, this is very
1475 	 * useful when hole on every nth skb pattern happens
1476 	 */
1477 	if (prev == tcp_write_queue_tail(sk))
1478 		goto out;
1479 	skb = tcp_write_queue_next(sk, prev);
1480 
1481 	if (!skb_can_shift(skb) ||
1482 	    (skb == tcp_send_head(sk)) ||
1483 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 	    (mss != tcp_skb_seglen(skb)))
1485 		goto out;
1486 
1487 	len = skb->len;
1488 	if (skb_shift(prev, skb, len)) {
1489 		pcount += tcp_skb_pcount(skb);
1490 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1491 	}
1492 
1493 out:
1494 	state->fack_count += pcount;
1495 	return prev;
1496 
1497 noop:
1498 	return skb;
1499 
1500 fallback:
1501 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 	return NULL;
1503 }
1504 
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 					struct tcp_sack_block *next_dup,
1507 					struct tcp_sacktag_state *state,
1508 					u32 start_seq, u32 end_seq,
1509 					bool dup_sack_in)
1510 {
1511 	struct tcp_sock *tp = tcp_sk(sk);
1512 	struct sk_buff *tmp;
1513 
1514 	tcp_for_write_queue_from(skb, sk) {
1515 		int in_sack = 0;
1516 		bool dup_sack = dup_sack_in;
1517 
1518 		if (skb == tcp_send_head(sk))
1519 			break;
1520 
1521 		/* queue is in-order => we can short-circuit the walk early */
1522 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1523 			break;
1524 
1525 		if ((next_dup != NULL) &&
1526 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1527 			in_sack = tcp_match_skb_to_sack(sk, skb,
1528 							next_dup->start_seq,
1529 							next_dup->end_seq);
1530 			if (in_sack > 0)
1531 				dup_sack = true;
1532 		}
1533 
1534 		/* skb reference here is a bit tricky to get right, since
1535 		 * shifting can eat and free both this skb and the next,
1536 		 * so not even _safe variant of the loop is enough.
1537 		 */
1538 		if (in_sack <= 0) {
1539 			tmp = tcp_shift_skb_data(sk, skb, state,
1540 						 start_seq, end_seq, dup_sack);
1541 			if (tmp != NULL) {
1542 				if (tmp != skb) {
1543 					skb = tmp;
1544 					continue;
1545 				}
1546 
1547 				in_sack = 0;
1548 			} else {
1549 				in_sack = tcp_match_skb_to_sack(sk, skb,
1550 								start_seq,
1551 								end_seq);
1552 			}
1553 		}
1554 
1555 		if (unlikely(in_sack < 0))
1556 			break;
1557 
1558 		if (in_sack) {
1559 			TCP_SKB_CB(skb)->sacked =
1560 				tcp_sacktag_one(sk,
1561 						state,
1562 						TCP_SKB_CB(skb)->sacked,
1563 						TCP_SKB_CB(skb)->seq,
1564 						TCP_SKB_CB(skb)->end_seq,
1565 						dup_sack,
1566 						tcp_skb_pcount(skb),
1567 						&skb->skb_mstamp);
1568 
1569 			if (!before(TCP_SKB_CB(skb)->seq,
1570 				    tcp_highest_sack_seq(tp)))
1571 				tcp_advance_highest_sack(sk, skb);
1572 		}
1573 
1574 		state->fack_count += tcp_skb_pcount(skb);
1575 	}
1576 	return skb;
1577 }
1578 
1579 /* Avoid all extra work that is being done by sacktag while walking in
1580  * a normal way
1581  */
1582 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1583 					struct tcp_sacktag_state *state,
1584 					u32 skip_to_seq)
1585 {
1586 	tcp_for_write_queue_from(skb, sk) {
1587 		if (skb == tcp_send_head(sk))
1588 			break;
1589 
1590 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1591 			break;
1592 
1593 		state->fack_count += tcp_skb_pcount(skb);
1594 	}
1595 	return skb;
1596 }
1597 
1598 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1599 						struct sock *sk,
1600 						struct tcp_sack_block *next_dup,
1601 						struct tcp_sacktag_state *state,
1602 						u32 skip_to_seq)
1603 {
1604 	if (next_dup == NULL)
1605 		return skb;
1606 
1607 	if (before(next_dup->start_seq, skip_to_seq)) {
1608 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1609 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1610 				       next_dup->start_seq, next_dup->end_seq,
1611 				       1);
1612 	}
1613 
1614 	return skb;
1615 }
1616 
1617 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1618 {
1619 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1620 }
1621 
1622 static int
1623 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1624 			u32 prior_snd_una, long *sack_rtt_us)
1625 {
1626 	struct tcp_sock *tp = tcp_sk(sk);
1627 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1628 				    TCP_SKB_CB(ack_skb)->sacked);
1629 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1630 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1631 	struct tcp_sack_block *cache;
1632 	struct tcp_sacktag_state state;
1633 	struct sk_buff *skb;
1634 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1635 	int used_sacks;
1636 	bool found_dup_sack = false;
1637 	int i, j;
1638 	int first_sack_index;
1639 
1640 	state.flag = 0;
1641 	state.reord = tp->packets_out;
1642 	state.rtt_us = -1L;
1643 
1644 	if (!tp->sacked_out) {
1645 		if (WARN_ON(tp->fackets_out))
1646 			tp->fackets_out = 0;
1647 		tcp_highest_sack_reset(sk);
1648 	}
1649 
1650 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1651 					 num_sacks, prior_snd_una);
1652 	if (found_dup_sack)
1653 		state.flag |= FLAG_DSACKING_ACK;
1654 
1655 	/* Eliminate too old ACKs, but take into
1656 	 * account more or less fresh ones, they can
1657 	 * contain valid SACK info.
1658 	 */
1659 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1660 		return 0;
1661 
1662 	if (!tp->packets_out)
1663 		goto out;
1664 
1665 	used_sacks = 0;
1666 	first_sack_index = 0;
1667 	for (i = 0; i < num_sacks; i++) {
1668 		bool dup_sack = !i && found_dup_sack;
1669 
1670 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1671 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1672 
1673 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1674 					    sp[used_sacks].start_seq,
1675 					    sp[used_sacks].end_seq)) {
1676 			int mib_idx;
1677 
1678 			if (dup_sack) {
1679 				if (!tp->undo_marker)
1680 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1681 				else
1682 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1683 			} else {
1684 				/* Don't count olds caused by ACK reordering */
1685 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1686 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1687 					continue;
1688 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1689 			}
1690 
1691 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1692 			if (i == 0)
1693 				first_sack_index = -1;
1694 			continue;
1695 		}
1696 
1697 		/* Ignore very old stuff early */
1698 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1699 			continue;
1700 
1701 		used_sacks++;
1702 	}
1703 
1704 	/* order SACK blocks to allow in order walk of the retrans queue */
1705 	for (i = used_sacks - 1; i > 0; i--) {
1706 		for (j = 0; j < i; j++) {
1707 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1708 				swap(sp[j], sp[j + 1]);
1709 
1710 				/* Track where the first SACK block goes to */
1711 				if (j == first_sack_index)
1712 					first_sack_index = j + 1;
1713 			}
1714 		}
1715 	}
1716 
1717 	skb = tcp_write_queue_head(sk);
1718 	state.fack_count = 0;
1719 	i = 0;
1720 
1721 	if (!tp->sacked_out) {
1722 		/* It's already past, so skip checking against it */
1723 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1724 	} else {
1725 		cache = tp->recv_sack_cache;
1726 		/* Skip empty blocks in at head of the cache */
1727 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1728 		       !cache->end_seq)
1729 			cache++;
1730 	}
1731 
1732 	while (i < used_sacks) {
1733 		u32 start_seq = sp[i].start_seq;
1734 		u32 end_seq = sp[i].end_seq;
1735 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1736 		struct tcp_sack_block *next_dup = NULL;
1737 
1738 		if (found_dup_sack && ((i + 1) == first_sack_index))
1739 			next_dup = &sp[i + 1];
1740 
1741 		/* Skip too early cached blocks */
1742 		while (tcp_sack_cache_ok(tp, cache) &&
1743 		       !before(start_seq, cache->end_seq))
1744 			cache++;
1745 
1746 		/* Can skip some work by looking recv_sack_cache? */
1747 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1748 		    after(end_seq, cache->start_seq)) {
1749 
1750 			/* Head todo? */
1751 			if (before(start_seq, cache->start_seq)) {
1752 				skb = tcp_sacktag_skip(skb, sk, &state,
1753 						       start_seq);
1754 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1755 						       &state,
1756 						       start_seq,
1757 						       cache->start_seq,
1758 						       dup_sack);
1759 			}
1760 
1761 			/* Rest of the block already fully processed? */
1762 			if (!after(end_seq, cache->end_seq))
1763 				goto advance_sp;
1764 
1765 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1766 						       &state,
1767 						       cache->end_seq);
1768 
1769 			/* ...tail remains todo... */
1770 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1771 				/* ...but better entrypoint exists! */
1772 				skb = tcp_highest_sack(sk);
1773 				if (skb == NULL)
1774 					break;
1775 				state.fack_count = tp->fackets_out;
1776 				cache++;
1777 				goto walk;
1778 			}
1779 
1780 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1781 			/* Check overlap against next cached too (past this one already) */
1782 			cache++;
1783 			continue;
1784 		}
1785 
1786 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1787 			skb = tcp_highest_sack(sk);
1788 			if (skb == NULL)
1789 				break;
1790 			state.fack_count = tp->fackets_out;
1791 		}
1792 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1793 
1794 walk:
1795 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1796 				       start_seq, end_seq, dup_sack);
1797 
1798 advance_sp:
1799 		i++;
1800 	}
1801 
1802 	/* Clear the head of the cache sack blocks so we can skip it next time */
1803 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1804 		tp->recv_sack_cache[i].start_seq = 0;
1805 		tp->recv_sack_cache[i].end_seq = 0;
1806 	}
1807 	for (j = 0; j < used_sacks; j++)
1808 		tp->recv_sack_cache[i++] = sp[j];
1809 
1810 	tcp_mark_lost_retrans(sk);
1811 
1812 	tcp_verify_left_out(tp);
1813 
1814 	if ((state.reord < tp->fackets_out) &&
1815 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1816 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1817 
1818 out:
1819 
1820 #if FASTRETRANS_DEBUG > 0
1821 	WARN_ON((int)tp->sacked_out < 0);
1822 	WARN_ON((int)tp->lost_out < 0);
1823 	WARN_ON((int)tp->retrans_out < 0);
1824 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1825 #endif
1826 	*sack_rtt_us = state.rtt_us;
1827 	return state.flag;
1828 }
1829 
1830 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1831  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1832  */
1833 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1834 {
1835 	u32 holes;
1836 
1837 	holes = max(tp->lost_out, 1U);
1838 	holes = min(holes, tp->packets_out);
1839 
1840 	if ((tp->sacked_out + holes) > tp->packets_out) {
1841 		tp->sacked_out = tp->packets_out - holes;
1842 		return true;
1843 	}
1844 	return false;
1845 }
1846 
1847 /* If we receive more dupacks than we expected counting segments
1848  * in assumption of absent reordering, interpret this as reordering.
1849  * The only another reason could be bug in receiver TCP.
1850  */
1851 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1852 {
1853 	struct tcp_sock *tp = tcp_sk(sk);
1854 	if (tcp_limit_reno_sacked(tp))
1855 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1856 }
1857 
1858 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1859 
1860 static void tcp_add_reno_sack(struct sock *sk)
1861 {
1862 	struct tcp_sock *tp = tcp_sk(sk);
1863 	tp->sacked_out++;
1864 	tcp_check_reno_reordering(sk, 0);
1865 	tcp_verify_left_out(tp);
1866 }
1867 
1868 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1869 
1870 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1871 {
1872 	struct tcp_sock *tp = tcp_sk(sk);
1873 
1874 	if (acked > 0) {
1875 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1876 		if (acked - 1 >= tp->sacked_out)
1877 			tp->sacked_out = 0;
1878 		else
1879 			tp->sacked_out -= acked - 1;
1880 	}
1881 	tcp_check_reno_reordering(sk, acked);
1882 	tcp_verify_left_out(tp);
1883 }
1884 
1885 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1886 {
1887 	tp->sacked_out = 0;
1888 }
1889 
1890 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1891 {
1892 	tp->retrans_out = 0;
1893 	tp->lost_out = 0;
1894 
1895 	tp->undo_marker = 0;
1896 	tp->undo_retrans = 0;
1897 }
1898 
1899 void tcp_clear_retrans(struct tcp_sock *tp)
1900 {
1901 	tcp_clear_retrans_partial(tp);
1902 
1903 	tp->fackets_out = 0;
1904 	tp->sacked_out = 0;
1905 }
1906 
1907 /* Enter Loss state. If "how" is not zero, forget all SACK information
1908  * and reset tags completely, otherwise preserve SACKs. If receiver
1909  * dropped its ofo queue, we will know this due to reneging detection.
1910  */
1911 void tcp_enter_loss(struct sock *sk, int how)
1912 {
1913 	const struct inet_connection_sock *icsk = inet_csk(sk);
1914 	struct tcp_sock *tp = tcp_sk(sk);
1915 	struct sk_buff *skb;
1916 	bool new_recovery = false;
1917 
1918 	/* Reduce ssthresh if it has not yet been made inside this window. */
1919 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1920 	    !after(tp->high_seq, tp->snd_una) ||
1921 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1922 		new_recovery = true;
1923 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1924 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1925 		tcp_ca_event(sk, CA_EVENT_LOSS);
1926 	}
1927 	tp->snd_cwnd	   = 1;
1928 	tp->snd_cwnd_cnt   = 0;
1929 	tp->snd_cwnd_stamp = tcp_time_stamp;
1930 
1931 	tcp_clear_retrans_partial(tp);
1932 
1933 	if (tcp_is_reno(tp))
1934 		tcp_reset_reno_sack(tp);
1935 
1936 	tp->undo_marker = tp->snd_una;
1937 	if (how) {
1938 		tp->sacked_out = 0;
1939 		tp->fackets_out = 0;
1940 	}
1941 	tcp_clear_all_retrans_hints(tp);
1942 
1943 	tcp_for_write_queue(skb, sk) {
1944 		if (skb == tcp_send_head(sk))
1945 			break;
1946 
1947 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1948 			tp->undo_marker = 0;
1949 
1950 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1952 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 			tp->lost_out += tcp_skb_pcount(skb);
1955 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1956 		}
1957 	}
1958 	tcp_verify_left_out(tp);
1959 
1960 	/* Timeout in disordered state after receiving substantial DUPACKs
1961 	 * suggests that the degree of reordering is over-estimated.
1962 	 */
1963 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1964 	    tp->sacked_out >= sysctl_tcp_reordering)
1965 		tp->reordering = min_t(unsigned int, tp->reordering,
1966 				       sysctl_tcp_reordering);
1967 	tcp_set_ca_state(sk, TCP_CA_Loss);
1968 	tp->high_seq = tp->snd_nxt;
1969 	TCP_ECN_queue_cwr(tp);
1970 
1971 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1972 	 * loss recovery is underway except recurring timeout(s) on
1973 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1974 	 */
1975 	tp->frto = sysctl_tcp_frto &&
1976 		   (new_recovery || icsk->icsk_retransmits) &&
1977 		   !inet_csk(sk)->icsk_mtup.probe_size;
1978 }
1979 
1980 /* If ACK arrived pointing to a remembered SACK, it means that our
1981  * remembered SACKs do not reflect real state of receiver i.e.
1982  * receiver _host_ is heavily congested (or buggy).
1983  *
1984  * Do processing similar to RTO timeout.
1985  */
1986 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1987 {
1988 	if (flag & FLAG_SACK_RENEGING) {
1989 		struct inet_connection_sock *icsk = inet_csk(sk);
1990 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1991 
1992 		tcp_enter_loss(sk, 1);
1993 		icsk->icsk_retransmits++;
1994 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1995 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1996 					  icsk->icsk_rto, TCP_RTO_MAX);
1997 		return true;
1998 	}
1999 	return false;
2000 }
2001 
2002 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2003 {
2004 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2005 }
2006 
2007 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2008  * counter when SACK is enabled (without SACK, sacked_out is used for
2009  * that purpose).
2010  *
2011  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2012  * segments up to the highest received SACK block so far and holes in
2013  * between them.
2014  *
2015  * With reordering, holes may still be in flight, so RFC3517 recovery
2016  * uses pure sacked_out (total number of SACKed segments) even though
2017  * it violates the RFC that uses duplicate ACKs, often these are equal
2018  * but when e.g. out-of-window ACKs or packet duplication occurs,
2019  * they differ. Since neither occurs due to loss, TCP should really
2020  * ignore them.
2021  */
2022 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2023 {
2024 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2025 }
2026 
2027 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2028 {
2029 	struct tcp_sock *tp = tcp_sk(sk);
2030 	unsigned long delay;
2031 
2032 	/* Delay early retransmit and entering fast recovery for
2033 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2034 	 * available, or RTO is scheduled to fire first.
2035 	 */
2036 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2037 	    (flag & FLAG_ECE) || !tp->srtt_us)
2038 		return false;
2039 
2040 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2041 		    msecs_to_jiffies(2));
2042 
2043 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2044 		return false;
2045 
2046 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2047 				  TCP_RTO_MAX);
2048 	return true;
2049 }
2050 
2051 /* Linux NewReno/SACK/FACK/ECN state machine.
2052  * --------------------------------------
2053  *
2054  * "Open"	Normal state, no dubious events, fast path.
2055  * "Disorder"   In all the respects it is "Open",
2056  *		but requires a bit more attention. It is entered when
2057  *		we see some SACKs or dupacks. It is split of "Open"
2058  *		mainly to move some processing from fast path to slow one.
2059  * "CWR"	CWND was reduced due to some Congestion Notification event.
2060  *		It can be ECN, ICMP source quench, local device congestion.
2061  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2062  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2063  *
2064  * tcp_fastretrans_alert() is entered:
2065  * - each incoming ACK, if state is not "Open"
2066  * - when arrived ACK is unusual, namely:
2067  *	* SACK
2068  *	* Duplicate ACK.
2069  *	* ECN ECE.
2070  *
2071  * Counting packets in flight is pretty simple.
2072  *
2073  *	in_flight = packets_out - left_out + retrans_out
2074  *
2075  *	packets_out is SND.NXT-SND.UNA counted in packets.
2076  *
2077  *	retrans_out is number of retransmitted segments.
2078  *
2079  *	left_out is number of segments left network, but not ACKed yet.
2080  *
2081  *		left_out = sacked_out + lost_out
2082  *
2083  *     sacked_out: Packets, which arrived to receiver out of order
2084  *		   and hence not ACKed. With SACKs this number is simply
2085  *		   amount of SACKed data. Even without SACKs
2086  *		   it is easy to give pretty reliable estimate of this number,
2087  *		   counting duplicate ACKs.
2088  *
2089  *       lost_out: Packets lost by network. TCP has no explicit
2090  *		   "loss notification" feedback from network (for now).
2091  *		   It means that this number can be only _guessed_.
2092  *		   Actually, it is the heuristics to predict lossage that
2093  *		   distinguishes different algorithms.
2094  *
2095  *	F.e. after RTO, when all the queue is considered as lost,
2096  *	lost_out = packets_out and in_flight = retrans_out.
2097  *
2098  *		Essentially, we have now two algorithms counting
2099  *		lost packets.
2100  *
2101  *		FACK: It is the simplest heuristics. As soon as we decided
2102  *		that something is lost, we decide that _all_ not SACKed
2103  *		packets until the most forward SACK are lost. I.e.
2104  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2105  *		It is absolutely correct estimate, if network does not reorder
2106  *		packets. And it loses any connection to reality when reordering
2107  *		takes place. We use FACK by default until reordering
2108  *		is suspected on the path to this destination.
2109  *
2110  *		NewReno: when Recovery is entered, we assume that one segment
2111  *		is lost (classic Reno). While we are in Recovery and
2112  *		a partial ACK arrives, we assume that one more packet
2113  *		is lost (NewReno). This heuristics are the same in NewReno
2114  *		and SACK.
2115  *
2116  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2117  *  deflation etc. CWND is real congestion window, never inflated, changes
2118  *  only according to classic VJ rules.
2119  *
2120  * Really tricky (and requiring careful tuning) part of algorithm
2121  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2122  * The first determines the moment _when_ we should reduce CWND and,
2123  * hence, slow down forward transmission. In fact, it determines the moment
2124  * when we decide that hole is caused by loss, rather than by a reorder.
2125  *
2126  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2127  * holes, caused by lost packets.
2128  *
2129  * And the most logically complicated part of algorithm is undo
2130  * heuristics. We detect false retransmits due to both too early
2131  * fast retransmit (reordering) and underestimated RTO, analyzing
2132  * timestamps and D-SACKs. When we detect that some segments were
2133  * retransmitted by mistake and CWND reduction was wrong, we undo
2134  * window reduction and abort recovery phase. This logic is hidden
2135  * inside several functions named tcp_try_undo_<something>.
2136  */
2137 
2138 /* This function decides, when we should leave Disordered state
2139  * and enter Recovery phase, reducing congestion window.
2140  *
2141  * Main question: may we further continue forward transmission
2142  * with the same cwnd?
2143  */
2144 static bool tcp_time_to_recover(struct sock *sk, int flag)
2145 {
2146 	struct tcp_sock *tp = tcp_sk(sk);
2147 	__u32 packets_out;
2148 
2149 	/* Trick#1: The loss is proven. */
2150 	if (tp->lost_out)
2151 		return true;
2152 
2153 	/* Not-A-Trick#2 : Classic rule... */
2154 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2155 		return true;
2156 
2157 	/* Trick#4: It is still not OK... But will it be useful to delay
2158 	 * recovery more?
2159 	 */
2160 	packets_out = tp->packets_out;
2161 	if (packets_out <= tp->reordering &&
2162 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2163 	    !tcp_may_send_now(sk)) {
2164 		/* We have nothing to send. This connection is limited
2165 		 * either by receiver window or by application.
2166 		 */
2167 		return true;
2168 	}
2169 
2170 	/* If a thin stream is detected, retransmit after first
2171 	 * received dupack. Employ only if SACK is supported in order
2172 	 * to avoid possible corner-case series of spurious retransmissions
2173 	 * Use only if there are no unsent data.
2174 	 */
2175 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2176 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2177 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2178 		return true;
2179 
2180 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2181 	 * retransmissions due to small network reorderings, we implement
2182 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2183 	 * interval if appropriate.
2184 	 */
2185 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2186 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2187 	    !tcp_may_send_now(sk))
2188 		return !tcp_pause_early_retransmit(sk, flag);
2189 
2190 	return false;
2191 }
2192 
2193 /* Detect loss in event "A" above by marking head of queue up as lost.
2194  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2195  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2196  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2197  * the maximum SACKed segments to pass before reaching this limit.
2198  */
2199 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2200 {
2201 	struct tcp_sock *tp = tcp_sk(sk);
2202 	struct sk_buff *skb;
2203 	int cnt, oldcnt;
2204 	int err;
2205 	unsigned int mss;
2206 	/* Use SACK to deduce losses of new sequences sent during recovery */
2207 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2208 
2209 	WARN_ON(packets > tp->packets_out);
2210 	if (tp->lost_skb_hint) {
2211 		skb = tp->lost_skb_hint;
2212 		cnt = tp->lost_cnt_hint;
2213 		/* Head already handled? */
2214 		if (mark_head && skb != tcp_write_queue_head(sk))
2215 			return;
2216 	} else {
2217 		skb = tcp_write_queue_head(sk);
2218 		cnt = 0;
2219 	}
2220 
2221 	tcp_for_write_queue_from(skb, sk) {
2222 		if (skb == tcp_send_head(sk))
2223 			break;
2224 		/* TODO: do this better */
2225 		/* this is not the most efficient way to do this... */
2226 		tp->lost_skb_hint = skb;
2227 		tp->lost_cnt_hint = cnt;
2228 
2229 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2230 			break;
2231 
2232 		oldcnt = cnt;
2233 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2234 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2235 			cnt += tcp_skb_pcount(skb);
2236 
2237 		if (cnt > packets) {
2238 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2239 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2240 			    (oldcnt >= packets))
2241 				break;
2242 
2243 			mss = skb_shinfo(skb)->gso_size;
2244 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2245 			if (err < 0)
2246 				break;
2247 			cnt = packets;
2248 		}
2249 
2250 		tcp_skb_mark_lost(tp, skb);
2251 
2252 		if (mark_head)
2253 			break;
2254 	}
2255 	tcp_verify_left_out(tp);
2256 }
2257 
2258 /* Account newly detected lost packet(s) */
2259 
2260 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2261 {
2262 	struct tcp_sock *tp = tcp_sk(sk);
2263 
2264 	if (tcp_is_reno(tp)) {
2265 		tcp_mark_head_lost(sk, 1, 1);
2266 	} else if (tcp_is_fack(tp)) {
2267 		int lost = tp->fackets_out - tp->reordering;
2268 		if (lost <= 0)
2269 			lost = 1;
2270 		tcp_mark_head_lost(sk, lost, 0);
2271 	} else {
2272 		int sacked_upto = tp->sacked_out - tp->reordering;
2273 		if (sacked_upto >= 0)
2274 			tcp_mark_head_lost(sk, sacked_upto, 0);
2275 		else if (fast_rexmit)
2276 			tcp_mark_head_lost(sk, 1, 1);
2277 	}
2278 }
2279 
2280 /* CWND moderation, preventing bursts due to too big ACKs
2281  * in dubious situations.
2282  */
2283 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2284 {
2285 	tp->snd_cwnd = min(tp->snd_cwnd,
2286 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2287 	tp->snd_cwnd_stamp = tcp_time_stamp;
2288 }
2289 
2290 /* Nothing was retransmitted or returned timestamp is less
2291  * than timestamp of the first retransmission.
2292  */
2293 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2294 {
2295 	return !tp->retrans_stamp ||
2296 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2297 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2298 }
2299 
2300 /* Undo procedures. */
2301 
2302 #if FASTRETRANS_DEBUG > 1
2303 static void DBGUNDO(struct sock *sk, const char *msg)
2304 {
2305 	struct tcp_sock *tp = tcp_sk(sk);
2306 	struct inet_sock *inet = inet_sk(sk);
2307 
2308 	if (sk->sk_family == AF_INET) {
2309 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2310 			 msg,
2311 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2312 			 tp->snd_cwnd, tcp_left_out(tp),
2313 			 tp->snd_ssthresh, tp->prior_ssthresh,
2314 			 tp->packets_out);
2315 	}
2316 #if IS_ENABLED(CONFIG_IPV6)
2317 	else if (sk->sk_family == AF_INET6) {
2318 		struct ipv6_pinfo *np = inet6_sk(sk);
2319 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2320 			 msg,
2321 			 &np->daddr, ntohs(inet->inet_dport),
2322 			 tp->snd_cwnd, tcp_left_out(tp),
2323 			 tp->snd_ssthresh, tp->prior_ssthresh,
2324 			 tp->packets_out);
2325 	}
2326 #endif
2327 }
2328 #else
2329 #define DBGUNDO(x...) do { } while (0)
2330 #endif
2331 
2332 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2333 {
2334 	struct tcp_sock *tp = tcp_sk(sk);
2335 
2336 	if (unmark_loss) {
2337 		struct sk_buff *skb;
2338 
2339 		tcp_for_write_queue(skb, sk) {
2340 			if (skb == tcp_send_head(sk))
2341 				break;
2342 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2343 		}
2344 		tp->lost_out = 0;
2345 		tcp_clear_all_retrans_hints(tp);
2346 	}
2347 
2348 	if (tp->prior_ssthresh) {
2349 		const struct inet_connection_sock *icsk = inet_csk(sk);
2350 
2351 		if (icsk->icsk_ca_ops->undo_cwnd)
2352 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2353 		else
2354 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2355 
2356 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2357 			tp->snd_ssthresh = tp->prior_ssthresh;
2358 			TCP_ECN_withdraw_cwr(tp);
2359 		}
2360 	} else {
2361 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2362 	}
2363 	tp->snd_cwnd_stamp = tcp_time_stamp;
2364 	tp->undo_marker = 0;
2365 }
2366 
2367 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2368 {
2369 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2370 }
2371 
2372 /* People celebrate: "We love our President!" */
2373 static bool tcp_try_undo_recovery(struct sock *sk)
2374 {
2375 	struct tcp_sock *tp = tcp_sk(sk);
2376 
2377 	if (tcp_may_undo(tp)) {
2378 		int mib_idx;
2379 
2380 		/* Happy end! We did not retransmit anything
2381 		 * or our original transmission succeeded.
2382 		 */
2383 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2384 		tcp_undo_cwnd_reduction(sk, false);
2385 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2386 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2387 		else
2388 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2389 
2390 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2391 	}
2392 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2393 		/* Hold old state until something *above* high_seq
2394 		 * is ACKed. For Reno it is MUST to prevent false
2395 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2396 		tcp_moderate_cwnd(tp);
2397 		return true;
2398 	}
2399 	tcp_set_ca_state(sk, TCP_CA_Open);
2400 	return false;
2401 }
2402 
2403 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2404 static bool tcp_try_undo_dsack(struct sock *sk)
2405 {
2406 	struct tcp_sock *tp = tcp_sk(sk);
2407 
2408 	if (tp->undo_marker && !tp->undo_retrans) {
2409 		DBGUNDO(sk, "D-SACK");
2410 		tcp_undo_cwnd_reduction(sk, false);
2411 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2412 		return true;
2413 	}
2414 	return false;
2415 }
2416 
2417 /* We can clear retrans_stamp when there are no retransmissions in the
2418  * window. It would seem that it is trivially available for us in
2419  * tp->retrans_out, however, that kind of assumptions doesn't consider
2420  * what will happen if errors occur when sending retransmission for the
2421  * second time. ...It could the that such segment has only
2422  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2423  * the head skb is enough except for some reneging corner cases that
2424  * are not worth the effort.
2425  *
2426  * Main reason for all this complexity is the fact that connection dying
2427  * time now depends on the validity of the retrans_stamp, in particular,
2428  * that successive retransmissions of a segment must not advance
2429  * retrans_stamp under any conditions.
2430  */
2431 static bool tcp_any_retrans_done(const struct sock *sk)
2432 {
2433 	const struct tcp_sock *tp = tcp_sk(sk);
2434 	struct sk_buff *skb;
2435 
2436 	if (tp->retrans_out)
2437 		return true;
2438 
2439 	skb = tcp_write_queue_head(sk);
2440 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2441 		return true;
2442 
2443 	return false;
2444 }
2445 
2446 /* Undo during loss recovery after partial ACK or using F-RTO. */
2447 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2448 {
2449 	struct tcp_sock *tp = tcp_sk(sk);
2450 
2451 	if (frto_undo || tcp_may_undo(tp)) {
2452 		tcp_undo_cwnd_reduction(sk, true);
2453 
2454 		DBGUNDO(sk, "partial loss");
2455 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2456 		if (frto_undo)
2457 			NET_INC_STATS_BH(sock_net(sk),
2458 					 LINUX_MIB_TCPSPURIOUSRTOS);
2459 		inet_csk(sk)->icsk_retransmits = 0;
2460 		if (frto_undo || tcp_is_sack(tp))
2461 			tcp_set_ca_state(sk, TCP_CA_Open);
2462 		return true;
2463 	}
2464 	return false;
2465 }
2466 
2467 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2468  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2469  * It computes the number of packets to send (sndcnt) based on packets newly
2470  * delivered:
2471  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2472  *	cwnd reductions across a full RTT.
2473  *   2) If packets in flight is lower than ssthresh (such as due to excess
2474  *	losses and/or application stalls), do not perform any further cwnd
2475  *	reductions, but instead slow start up to ssthresh.
2476  */
2477 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 
2481 	tp->high_seq = tp->snd_nxt;
2482 	tp->tlp_high_seq = 0;
2483 	tp->snd_cwnd_cnt = 0;
2484 	tp->prior_cwnd = tp->snd_cwnd;
2485 	tp->prr_delivered = 0;
2486 	tp->prr_out = 0;
2487 	if (set_ssthresh)
2488 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2489 	TCP_ECN_queue_cwr(tp);
2490 }
2491 
2492 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2493 			       int fast_rexmit)
2494 {
2495 	struct tcp_sock *tp = tcp_sk(sk);
2496 	int sndcnt = 0;
2497 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2498 	int newly_acked_sacked = prior_unsacked -
2499 				 (tp->packets_out - tp->sacked_out);
2500 
2501 	tp->prr_delivered += newly_acked_sacked;
2502 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2503 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2504 			       tp->prior_cwnd - 1;
2505 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2506 	} else {
2507 		sndcnt = min_t(int, delta,
2508 			       max_t(int, tp->prr_delivered - tp->prr_out,
2509 				     newly_acked_sacked) + 1);
2510 	}
2511 
2512 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2513 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2514 }
2515 
2516 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2517 {
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 
2520 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2521 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2522 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2523 		tp->snd_cwnd = tp->snd_ssthresh;
2524 		tp->snd_cwnd_stamp = tcp_time_stamp;
2525 	}
2526 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2527 }
2528 
2529 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2530 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2531 {
2532 	struct tcp_sock *tp = tcp_sk(sk);
2533 
2534 	tp->prior_ssthresh = 0;
2535 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2536 		tp->undo_marker = 0;
2537 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2538 		tcp_set_ca_state(sk, TCP_CA_CWR);
2539 	}
2540 }
2541 
2542 static void tcp_try_keep_open(struct sock *sk)
2543 {
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 	int state = TCP_CA_Open;
2546 
2547 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2548 		state = TCP_CA_Disorder;
2549 
2550 	if (inet_csk(sk)->icsk_ca_state != state) {
2551 		tcp_set_ca_state(sk, state);
2552 		tp->high_seq = tp->snd_nxt;
2553 	}
2554 }
2555 
2556 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2557 {
2558 	struct tcp_sock *tp = tcp_sk(sk);
2559 
2560 	tcp_verify_left_out(tp);
2561 
2562 	if (!tcp_any_retrans_done(sk))
2563 		tp->retrans_stamp = 0;
2564 
2565 	if (flag & FLAG_ECE)
2566 		tcp_enter_cwr(sk, 1);
2567 
2568 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2569 		tcp_try_keep_open(sk);
2570 	} else {
2571 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2572 	}
2573 }
2574 
2575 static void tcp_mtup_probe_failed(struct sock *sk)
2576 {
2577 	struct inet_connection_sock *icsk = inet_csk(sk);
2578 
2579 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2580 	icsk->icsk_mtup.probe_size = 0;
2581 }
2582 
2583 static void tcp_mtup_probe_success(struct sock *sk)
2584 {
2585 	struct tcp_sock *tp = tcp_sk(sk);
2586 	struct inet_connection_sock *icsk = inet_csk(sk);
2587 
2588 	/* FIXME: breaks with very large cwnd */
2589 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2590 	tp->snd_cwnd = tp->snd_cwnd *
2591 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2592 		       icsk->icsk_mtup.probe_size;
2593 	tp->snd_cwnd_cnt = 0;
2594 	tp->snd_cwnd_stamp = tcp_time_stamp;
2595 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2596 
2597 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2598 	icsk->icsk_mtup.probe_size = 0;
2599 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2600 }
2601 
2602 /* Do a simple retransmit without using the backoff mechanisms in
2603  * tcp_timer. This is used for path mtu discovery.
2604  * The socket is already locked here.
2605  */
2606 void tcp_simple_retransmit(struct sock *sk)
2607 {
2608 	const struct inet_connection_sock *icsk = inet_csk(sk);
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 	struct sk_buff *skb;
2611 	unsigned int mss = tcp_current_mss(sk);
2612 	u32 prior_lost = tp->lost_out;
2613 
2614 	tcp_for_write_queue(skb, sk) {
2615 		if (skb == tcp_send_head(sk))
2616 			break;
2617 		if (tcp_skb_seglen(skb) > mss &&
2618 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2619 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2620 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2621 				tp->retrans_out -= tcp_skb_pcount(skb);
2622 			}
2623 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2624 		}
2625 	}
2626 
2627 	tcp_clear_retrans_hints_partial(tp);
2628 
2629 	if (prior_lost == tp->lost_out)
2630 		return;
2631 
2632 	if (tcp_is_reno(tp))
2633 		tcp_limit_reno_sacked(tp);
2634 
2635 	tcp_verify_left_out(tp);
2636 
2637 	/* Don't muck with the congestion window here.
2638 	 * Reason is that we do not increase amount of _data_
2639 	 * in network, but units changed and effective
2640 	 * cwnd/ssthresh really reduced now.
2641 	 */
2642 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2643 		tp->high_seq = tp->snd_nxt;
2644 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2645 		tp->prior_ssthresh = 0;
2646 		tp->undo_marker = 0;
2647 		tcp_set_ca_state(sk, TCP_CA_Loss);
2648 	}
2649 	tcp_xmit_retransmit_queue(sk);
2650 }
2651 EXPORT_SYMBOL(tcp_simple_retransmit);
2652 
2653 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2654 {
2655 	struct tcp_sock *tp = tcp_sk(sk);
2656 	int mib_idx;
2657 
2658 	if (tcp_is_reno(tp))
2659 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2660 	else
2661 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2662 
2663 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2664 
2665 	tp->prior_ssthresh = 0;
2666 	tp->undo_marker = tp->snd_una;
2667 	tp->undo_retrans = tp->retrans_out;
2668 
2669 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2670 		if (!ece_ack)
2671 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2672 		tcp_init_cwnd_reduction(sk, true);
2673 	}
2674 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2675 }
2676 
2677 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2678  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2679  */
2680 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2681 {
2682 	struct inet_connection_sock *icsk = inet_csk(sk);
2683 	struct tcp_sock *tp = tcp_sk(sk);
2684 	bool recovered = !before(tp->snd_una, tp->high_seq);
2685 
2686 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2687 		if (flag & FLAG_ORIG_SACK_ACKED) {
2688 			/* Step 3.b. A timeout is spurious if not all data are
2689 			 * lost, i.e., never-retransmitted data are (s)acked.
2690 			 */
2691 			tcp_try_undo_loss(sk, true);
2692 			return;
2693 		}
2694 		if (after(tp->snd_nxt, tp->high_seq) &&
2695 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2696 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2697 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2698 			tp->high_seq = tp->snd_nxt;
2699 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2700 						  TCP_NAGLE_OFF);
2701 			if (after(tp->snd_nxt, tp->high_seq))
2702 				return; /* Step 2.b */
2703 			tp->frto = 0;
2704 		}
2705 	}
2706 
2707 	if (recovered) {
2708 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2709 		icsk->icsk_retransmits = 0;
2710 		tcp_try_undo_recovery(sk);
2711 		return;
2712 	}
2713 	if (flag & FLAG_DATA_ACKED)
2714 		icsk->icsk_retransmits = 0;
2715 	if (tcp_is_reno(tp)) {
2716 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2717 		 * delivered. Lower inflight to clock out (re)tranmissions.
2718 		 */
2719 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2720 			tcp_add_reno_sack(sk);
2721 		else if (flag & FLAG_SND_UNA_ADVANCED)
2722 			tcp_reset_reno_sack(tp);
2723 	}
2724 	if (tcp_try_undo_loss(sk, false))
2725 		return;
2726 	tcp_xmit_retransmit_queue(sk);
2727 }
2728 
2729 /* Undo during fast recovery after partial ACK. */
2730 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2731 				 const int prior_unsacked)
2732 {
2733 	struct tcp_sock *tp = tcp_sk(sk);
2734 
2735 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2736 		/* Plain luck! Hole if filled with delayed
2737 		 * packet, rather than with a retransmit.
2738 		 */
2739 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2740 
2741 		/* We are getting evidence that the reordering degree is higher
2742 		 * than we realized. If there are no retransmits out then we
2743 		 * can undo. Otherwise we clock out new packets but do not
2744 		 * mark more packets lost or retransmit more.
2745 		 */
2746 		if (tp->retrans_out) {
2747 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2748 			return true;
2749 		}
2750 
2751 		if (!tcp_any_retrans_done(sk))
2752 			tp->retrans_stamp = 0;
2753 
2754 		DBGUNDO(sk, "partial recovery");
2755 		tcp_undo_cwnd_reduction(sk, true);
2756 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2757 		tcp_try_keep_open(sk);
2758 		return true;
2759 	}
2760 	return false;
2761 }
2762 
2763 /* Process an event, which can update packets-in-flight not trivially.
2764  * Main goal of this function is to calculate new estimate for left_out,
2765  * taking into account both packets sitting in receiver's buffer and
2766  * packets lost by network.
2767  *
2768  * Besides that it does CWND reduction, when packet loss is detected
2769  * and changes state of machine.
2770  *
2771  * It does _not_ decide what to send, it is made in function
2772  * tcp_xmit_retransmit_queue().
2773  */
2774 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2775 				  const int prior_unsacked,
2776 				  bool is_dupack, int flag)
2777 {
2778 	struct inet_connection_sock *icsk = inet_csk(sk);
2779 	struct tcp_sock *tp = tcp_sk(sk);
2780 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2781 				    (tcp_fackets_out(tp) > tp->reordering));
2782 	int fast_rexmit = 0;
2783 
2784 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2785 		tp->sacked_out = 0;
2786 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2787 		tp->fackets_out = 0;
2788 
2789 	/* Now state machine starts.
2790 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2791 	if (flag & FLAG_ECE)
2792 		tp->prior_ssthresh = 0;
2793 
2794 	/* B. In all the states check for reneging SACKs. */
2795 	if (tcp_check_sack_reneging(sk, flag))
2796 		return;
2797 
2798 	/* C. Check consistency of the current state. */
2799 	tcp_verify_left_out(tp);
2800 
2801 	/* D. Check state exit conditions. State can be terminated
2802 	 *    when high_seq is ACKed. */
2803 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2804 		WARN_ON(tp->retrans_out != 0);
2805 		tp->retrans_stamp = 0;
2806 	} else if (!before(tp->snd_una, tp->high_seq)) {
2807 		switch (icsk->icsk_ca_state) {
2808 		case TCP_CA_CWR:
2809 			/* CWR is to be held something *above* high_seq
2810 			 * is ACKed for CWR bit to reach receiver. */
2811 			if (tp->snd_una != tp->high_seq) {
2812 				tcp_end_cwnd_reduction(sk);
2813 				tcp_set_ca_state(sk, TCP_CA_Open);
2814 			}
2815 			break;
2816 
2817 		case TCP_CA_Recovery:
2818 			if (tcp_is_reno(tp))
2819 				tcp_reset_reno_sack(tp);
2820 			if (tcp_try_undo_recovery(sk))
2821 				return;
2822 			tcp_end_cwnd_reduction(sk);
2823 			break;
2824 		}
2825 	}
2826 
2827 	/* E. Process state. */
2828 	switch (icsk->icsk_ca_state) {
2829 	case TCP_CA_Recovery:
2830 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2831 			if (tcp_is_reno(tp) && is_dupack)
2832 				tcp_add_reno_sack(sk);
2833 		} else {
2834 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2835 				return;
2836 			/* Partial ACK arrived. Force fast retransmit. */
2837 			do_lost = tcp_is_reno(tp) ||
2838 				  tcp_fackets_out(tp) > tp->reordering;
2839 		}
2840 		if (tcp_try_undo_dsack(sk)) {
2841 			tcp_try_keep_open(sk);
2842 			return;
2843 		}
2844 		break;
2845 	case TCP_CA_Loss:
2846 		tcp_process_loss(sk, flag, is_dupack);
2847 		if (icsk->icsk_ca_state != TCP_CA_Open)
2848 			return;
2849 		/* Fall through to processing in Open state. */
2850 	default:
2851 		if (tcp_is_reno(tp)) {
2852 			if (flag & FLAG_SND_UNA_ADVANCED)
2853 				tcp_reset_reno_sack(tp);
2854 			if (is_dupack)
2855 				tcp_add_reno_sack(sk);
2856 		}
2857 
2858 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2859 			tcp_try_undo_dsack(sk);
2860 
2861 		if (!tcp_time_to_recover(sk, flag)) {
2862 			tcp_try_to_open(sk, flag, prior_unsacked);
2863 			return;
2864 		}
2865 
2866 		/* MTU probe failure: don't reduce cwnd */
2867 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2868 		    icsk->icsk_mtup.probe_size &&
2869 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2870 			tcp_mtup_probe_failed(sk);
2871 			/* Restores the reduction we did in tcp_mtup_probe() */
2872 			tp->snd_cwnd++;
2873 			tcp_simple_retransmit(sk);
2874 			return;
2875 		}
2876 
2877 		/* Otherwise enter Recovery state */
2878 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2879 		fast_rexmit = 1;
2880 	}
2881 
2882 	if (do_lost)
2883 		tcp_update_scoreboard(sk, fast_rexmit);
2884 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2885 	tcp_xmit_retransmit_queue(sk);
2886 }
2887 
2888 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2889 				      long seq_rtt_us, long sack_rtt_us)
2890 {
2891 	const struct tcp_sock *tp = tcp_sk(sk);
2892 
2893 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2894 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2895 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2896 	 * is acked (RFC6298).
2897 	 */
2898 	if (flag & FLAG_RETRANS_DATA_ACKED)
2899 		seq_rtt_us = -1L;
2900 
2901 	if (seq_rtt_us < 0)
2902 		seq_rtt_us = sack_rtt_us;
2903 
2904 	/* RTTM Rule: A TSecr value received in a segment is used to
2905 	 * update the averaged RTT measurement only if the segment
2906 	 * acknowledges some new data, i.e., only if it advances the
2907 	 * left edge of the send window.
2908 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2909 	 */
2910 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2911 	    flag & FLAG_ACKED)
2912 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2913 
2914 	if (seq_rtt_us < 0)
2915 		return false;
2916 
2917 	tcp_rtt_estimator(sk, seq_rtt_us);
2918 	tcp_set_rto(sk);
2919 
2920 	/* RFC6298: only reset backoff on valid RTT measurement. */
2921 	inet_csk(sk)->icsk_backoff = 0;
2922 	return true;
2923 }
2924 
2925 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2926 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2927 {
2928 	struct tcp_sock *tp = tcp_sk(sk);
2929 	long seq_rtt_us = -1L;
2930 
2931 	if (synack_stamp && !tp->total_retrans)
2932 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2933 
2934 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2935 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2936 	 */
2937 	if (!tp->srtt_us)
2938 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2939 }
2940 
2941 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight)
2942 {
2943 	const struct inet_connection_sock *icsk = inet_csk(sk);
2944 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight);
2945 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2946 }
2947 
2948 /* Restart timer after forward progress on connection.
2949  * RFC2988 recommends to restart timer to now+rto.
2950  */
2951 void tcp_rearm_rto(struct sock *sk)
2952 {
2953 	const struct inet_connection_sock *icsk = inet_csk(sk);
2954 	struct tcp_sock *tp = tcp_sk(sk);
2955 
2956 	/* If the retrans timer is currently being used by Fast Open
2957 	 * for SYN-ACK retrans purpose, stay put.
2958 	 */
2959 	if (tp->fastopen_rsk)
2960 		return;
2961 
2962 	if (!tp->packets_out) {
2963 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2964 	} else {
2965 		u32 rto = inet_csk(sk)->icsk_rto;
2966 		/* Offset the time elapsed after installing regular RTO */
2967 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2968 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2969 			struct sk_buff *skb = tcp_write_queue_head(sk);
2970 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2971 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2972 			/* delta may not be positive if the socket is locked
2973 			 * when the retrans timer fires and is rescheduled.
2974 			 */
2975 			if (delta > 0)
2976 				rto = delta;
2977 		}
2978 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2979 					  TCP_RTO_MAX);
2980 	}
2981 }
2982 
2983 /* This function is called when the delayed ER timer fires. TCP enters
2984  * fast recovery and performs fast-retransmit.
2985  */
2986 void tcp_resume_early_retransmit(struct sock *sk)
2987 {
2988 	struct tcp_sock *tp = tcp_sk(sk);
2989 
2990 	tcp_rearm_rto(sk);
2991 
2992 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2993 	if (!tp->do_early_retrans)
2994 		return;
2995 
2996 	tcp_enter_recovery(sk, false);
2997 	tcp_update_scoreboard(sk, 1);
2998 	tcp_xmit_retransmit_queue(sk);
2999 }
3000 
3001 /* If we get here, the whole TSO packet has not been acked. */
3002 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3003 {
3004 	struct tcp_sock *tp = tcp_sk(sk);
3005 	u32 packets_acked;
3006 
3007 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3008 
3009 	packets_acked = tcp_skb_pcount(skb);
3010 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3011 		return 0;
3012 	packets_acked -= tcp_skb_pcount(skb);
3013 
3014 	if (packets_acked) {
3015 		BUG_ON(tcp_skb_pcount(skb) == 0);
3016 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3017 	}
3018 
3019 	return packets_acked;
3020 }
3021 
3022 /* Remove acknowledged frames from the retransmission queue. If our packet
3023  * is before the ack sequence we can discard it as it's confirmed to have
3024  * arrived at the other end.
3025  */
3026 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3027 			       u32 prior_snd_una, long sack_rtt_us)
3028 {
3029 	const struct inet_connection_sock *icsk = inet_csk(sk);
3030 	struct skb_mstamp first_ackt, last_ackt, now;
3031 	struct tcp_sock *tp = tcp_sk(sk);
3032 	u32 prior_sacked = tp->sacked_out;
3033 	u32 reord = tp->packets_out;
3034 	bool fully_acked = true;
3035 	long ca_seq_rtt_us = -1L;
3036 	long seq_rtt_us = -1L;
3037 	struct sk_buff *skb;
3038 	u32 pkts_acked = 0;
3039 	bool rtt_update;
3040 	int flag = 0;
3041 
3042 	first_ackt.v64 = 0;
3043 
3044 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3045 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3046 		u8 sacked = scb->sacked;
3047 		u32 acked_pcount;
3048 
3049 		/* Determine how many packets and what bytes were acked, tso and else */
3050 		if (after(scb->end_seq, tp->snd_una)) {
3051 			if (tcp_skb_pcount(skb) == 1 ||
3052 			    !after(tp->snd_una, scb->seq))
3053 				break;
3054 
3055 			acked_pcount = tcp_tso_acked(sk, skb);
3056 			if (!acked_pcount)
3057 				break;
3058 
3059 			fully_acked = false;
3060 		} else {
3061 			acked_pcount = tcp_skb_pcount(skb);
3062 		}
3063 
3064 		if (sacked & TCPCB_RETRANS) {
3065 			if (sacked & TCPCB_SACKED_RETRANS)
3066 				tp->retrans_out -= acked_pcount;
3067 			flag |= FLAG_RETRANS_DATA_ACKED;
3068 		} else {
3069 			last_ackt = skb->skb_mstamp;
3070 			WARN_ON_ONCE(last_ackt.v64 == 0);
3071 			if (!first_ackt.v64)
3072 				first_ackt = last_ackt;
3073 
3074 			if (!(sacked & TCPCB_SACKED_ACKED))
3075 				reord = min(pkts_acked, reord);
3076 			if (!after(scb->end_seq, tp->high_seq))
3077 				flag |= FLAG_ORIG_SACK_ACKED;
3078 		}
3079 
3080 		if (sacked & TCPCB_SACKED_ACKED)
3081 			tp->sacked_out -= acked_pcount;
3082 		if (sacked & TCPCB_LOST)
3083 			tp->lost_out -= acked_pcount;
3084 
3085 		tp->packets_out -= acked_pcount;
3086 		pkts_acked += acked_pcount;
3087 
3088 		/* Initial outgoing SYN's get put onto the write_queue
3089 		 * just like anything else we transmit.  It is not
3090 		 * true data, and if we misinform our callers that
3091 		 * this ACK acks real data, we will erroneously exit
3092 		 * connection startup slow start one packet too
3093 		 * quickly.  This is severely frowned upon behavior.
3094 		 */
3095 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3096 			flag |= FLAG_DATA_ACKED;
3097 		} else {
3098 			flag |= FLAG_SYN_ACKED;
3099 			tp->retrans_stamp = 0;
3100 		}
3101 
3102 		if (!fully_acked)
3103 			break;
3104 
3105 		tcp_unlink_write_queue(skb, sk);
3106 		sk_wmem_free_skb(sk, skb);
3107 		if (skb == tp->retransmit_skb_hint)
3108 			tp->retransmit_skb_hint = NULL;
3109 		if (skb == tp->lost_skb_hint)
3110 			tp->lost_skb_hint = NULL;
3111 	}
3112 
3113 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3114 		tp->snd_up = tp->snd_una;
3115 
3116 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3117 		flag |= FLAG_SACK_RENEGING;
3118 
3119 	skb_mstamp_get(&now);
3120 	if (first_ackt.v64) {
3121 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3122 		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3123 	}
3124 
3125 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3126 
3127 	if (flag & FLAG_ACKED) {
3128 		const struct tcp_congestion_ops *ca_ops
3129 			= inet_csk(sk)->icsk_ca_ops;
3130 
3131 		tcp_rearm_rto(sk);
3132 		if (unlikely(icsk->icsk_mtup.probe_size &&
3133 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3134 			tcp_mtup_probe_success(sk);
3135 		}
3136 
3137 		if (tcp_is_reno(tp)) {
3138 			tcp_remove_reno_sacks(sk, pkts_acked);
3139 		} else {
3140 			int delta;
3141 
3142 			/* Non-retransmitted hole got filled? That's reordering */
3143 			if (reord < prior_fackets)
3144 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3145 
3146 			delta = tcp_is_fack(tp) ? pkts_acked :
3147 						  prior_sacked - tp->sacked_out;
3148 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3149 		}
3150 
3151 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3152 
3153 		if (ca_ops->pkts_acked)
3154 			ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3155 
3156 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3157 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3158 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3159 		 * after when the head was last (re)transmitted. Otherwise the
3160 		 * timeout may continue to extend in loss recovery.
3161 		 */
3162 		tcp_rearm_rto(sk);
3163 	}
3164 
3165 #if FASTRETRANS_DEBUG > 0
3166 	WARN_ON((int)tp->sacked_out < 0);
3167 	WARN_ON((int)tp->lost_out < 0);
3168 	WARN_ON((int)tp->retrans_out < 0);
3169 	if (!tp->packets_out && tcp_is_sack(tp)) {
3170 		icsk = inet_csk(sk);
3171 		if (tp->lost_out) {
3172 			pr_debug("Leak l=%u %d\n",
3173 				 tp->lost_out, icsk->icsk_ca_state);
3174 			tp->lost_out = 0;
3175 		}
3176 		if (tp->sacked_out) {
3177 			pr_debug("Leak s=%u %d\n",
3178 				 tp->sacked_out, icsk->icsk_ca_state);
3179 			tp->sacked_out = 0;
3180 		}
3181 		if (tp->retrans_out) {
3182 			pr_debug("Leak r=%u %d\n",
3183 				 tp->retrans_out, icsk->icsk_ca_state);
3184 			tp->retrans_out = 0;
3185 		}
3186 	}
3187 #endif
3188 	return flag;
3189 }
3190 
3191 static void tcp_ack_probe(struct sock *sk)
3192 {
3193 	const struct tcp_sock *tp = tcp_sk(sk);
3194 	struct inet_connection_sock *icsk = inet_csk(sk);
3195 
3196 	/* Was it a usable window open? */
3197 
3198 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3199 		icsk->icsk_backoff = 0;
3200 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3201 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3202 		 * This function is not for random using!
3203 		 */
3204 	} else {
3205 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3206 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3207 					  TCP_RTO_MAX);
3208 	}
3209 }
3210 
3211 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3212 {
3213 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3214 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3215 }
3216 
3217 /* Decide wheather to run the increase function of congestion control. */
3218 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3219 {
3220 	if (tcp_in_cwnd_reduction(sk))
3221 		return false;
3222 
3223 	/* If reordering is high then always grow cwnd whenever data is
3224 	 * delivered regardless of its ordering. Otherwise stay conservative
3225 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3226 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3227 	 * cwnd in tcp_fastretrans_alert() based on more states.
3228 	 */
3229 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3230 		return flag & FLAG_FORWARD_PROGRESS;
3231 
3232 	return flag & FLAG_DATA_ACKED;
3233 }
3234 
3235 /* Check that window update is acceptable.
3236  * The function assumes that snd_una<=ack<=snd_next.
3237  */
3238 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3239 					const u32 ack, const u32 ack_seq,
3240 					const u32 nwin)
3241 {
3242 	return	after(ack, tp->snd_una) ||
3243 		after(ack_seq, tp->snd_wl1) ||
3244 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3245 }
3246 
3247 /* Update our send window.
3248  *
3249  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3250  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3251  */
3252 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3253 				 u32 ack_seq)
3254 {
3255 	struct tcp_sock *tp = tcp_sk(sk);
3256 	int flag = 0;
3257 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3258 
3259 	if (likely(!tcp_hdr(skb)->syn))
3260 		nwin <<= tp->rx_opt.snd_wscale;
3261 
3262 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3263 		flag |= FLAG_WIN_UPDATE;
3264 		tcp_update_wl(tp, ack_seq);
3265 
3266 		if (tp->snd_wnd != nwin) {
3267 			tp->snd_wnd = nwin;
3268 
3269 			/* Note, it is the only place, where
3270 			 * fast path is recovered for sending TCP.
3271 			 */
3272 			tp->pred_flags = 0;
3273 			tcp_fast_path_check(sk);
3274 
3275 			if (nwin > tp->max_window) {
3276 				tp->max_window = nwin;
3277 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3278 			}
3279 		}
3280 	}
3281 
3282 	tp->snd_una = ack;
3283 
3284 	return flag;
3285 }
3286 
3287 /* RFC 5961 7 [ACK Throttling] */
3288 static void tcp_send_challenge_ack(struct sock *sk)
3289 {
3290 	/* unprotected vars, we dont care of overwrites */
3291 	static u32 challenge_timestamp;
3292 	static unsigned int challenge_count;
3293 	u32 now = jiffies / HZ;
3294 
3295 	if (now != challenge_timestamp) {
3296 		challenge_timestamp = now;
3297 		challenge_count = 0;
3298 	}
3299 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3300 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3301 		tcp_send_ack(sk);
3302 	}
3303 }
3304 
3305 static void tcp_store_ts_recent(struct tcp_sock *tp)
3306 {
3307 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3308 	tp->rx_opt.ts_recent_stamp = get_seconds();
3309 }
3310 
3311 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3312 {
3313 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3314 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3315 		 * extra check below makes sure this can only happen
3316 		 * for pure ACK frames.  -DaveM
3317 		 *
3318 		 * Not only, also it occurs for expired timestamps.
3319 		 */
3320 
3321 		if (tcp_paws_check(&tp->rx_opt, 0))
3322 			tcp_store_ts_recent(tp);
3323 	}
3324 }
3325 
3326 /* This routine deals with acks during a TLP episode.
3327  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3328  */
3329 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3330 {
3331 	struct tcp_sock *tp = tcp_sk(sk);
3332 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3333 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3334 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3335 
3336 	/* Mark the end of TLP episode on receiving TLP dupack or when
3337 	 * ack is after tlp_high_seq.
3338 	 */
3339 	if (is_tlp_dupack) {
3340 		tp->tlp_high_seq = 0;
3341 		return;
3342 	}
3343 
3344 	if (after(ack, tp->tlp_high_seq)) {
3345 		tp->tlp_high_seq = 0;
3346 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3347 		if (!(flag & FLAG_DSACKING_ACK)) {
3348 			tcp_init_cwnd_reduction(sk, true);
3349 			tcp_set_ca_state(sk, TCP_CA_CWR);
3350 			tcp_end_cwnd_reduction(sk);
3351 			tcp_try_keep_open(sk);
3352 			NET_INC_STATS_BH(sock_net(sk),
3353 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3354 		}
3355 	}
3356 }
3357 
3358 /* This routine deals with incoming acks, but not outgoing ones. */
3359 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3360 {
3361 	struct inet_connection_sock *icsk = inet_csk(sk);
3362 	struct tcp_sock *tp = tcp_sk(sk);
3363 	u32 prior_snd_una = tp->snd_una;
3364 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3365 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3366 	bool is_dupack = false;
3367 	u32 prior_in_flight;
3368 	u32 prior_fackets;
3369 	int prior_packets = tp->packets_out;
3370 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3371 	int acked = 0; /* Number of packets newly acked */
3372 	long sack_rtt_us = -1L;
3373 
3374 	/* If the ack is older than previous acks
3375 	 * then we can probably ignore it.
3376 	 */
3377 	if (before(ack, prior_snd_una)) {
3378 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3379 		if (before(ack, prior_snd_una - tp->max_window)) {
3380 			tcp_send_challenge_ack(sk);
3381 			return -1;
3382 		}
3383 		goto old_ack;
3384 	}
3385 
3386 	/* If the ack includes data we haven't sent yet, discard
3387 	 * this segment (RFC793 Section 3.9).
3388 	 */
3389 	if (after(ack, tp->snd_nxt))
3390 		goto invalid_ack;
3391 
3392 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3393 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3394 		tcp_rearm_rto(sk);
3395 
3396 	if (after(ack, prior_snd_una))
3397 		flag |= FLAG_SND_UNA_ADVANCED;
3398 
3399 	prior_fackets = tp->fackets_out;
3400 	prior_in_flight = tcp_packets_in_flight(tp);
3401 
3402 	/* ts_recent update must be made after we are sure that the packet
3403 	 * is in window.
3404 	 */
3405 	if (flag & FLAG_UPDATE_TS_RECENT)
3406 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3407 
3408 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3409 		/* Window is constant, pure forward advance.
3410 		 * No more checks are required.
3411 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3412 		 */
3413 		tcp_update_wl(tp, ack_seq);
3414 		tp->snd_una = ack;
3415 		flag |= FLAG_WIN_UPDATE;
3416 
3417 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3418 
3419 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3420 	} else {
3421 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3422 			flag |= FLAG_DATA;
3423 		else
3424 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3425 
3426 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3427 
3428 		if (TCP_SKB_CB(skb)->sacked)
3429 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3430 							&sack_rtt_us);
3431 
3432 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3433 			flag |= FLAG_ECE;
3434 
3435 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3436 	}
3437 
3438 	/* We passed data and got it acked, remove any soft error
3439 	 * log. Something worked...
3440 	 */
3441 	sk->sk_err_soft = 0;
3442 	icsk->icsk_probes_out = 0;
3443 	tp->rcv_tstamp = tcp_time_stamp;
3444 	if (!prior_packets)
3445 		goto no_queue;
3446 
3447 	/* See if we can take anything off of the retransmit queue. */
3448 	acked = tp->packets_out;
3449 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3450 				    sack_rtt_us);
3451 	acked -= tp->packets_out;
3452 
3453 	/* Advance cwnd if state allows */
3454 	if (tcp_may_raise_cwnd(sk, flag))
3455 		tcp_cong_avoid(sk, ack, acked, prior_in_flight);
3456 
3457 	if (tcp_ack_is_dubious(sk, flag)) {
3458 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3459 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3460 				      is_dupack, flag);
3461 	}
3462 	if (tp->tlp_high_seq)
3463 		tcp_process_tlp_ack(sk, ack, flag);
3464 
3465 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3466 		struct dst_entry *dst = __sk_dst_get(sk);
3467 		if (dst)
3468 			dst_confirm(dst);
3469 	}
3470 
3471 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3472 		tcp_schedule_loss_probe(sk);
3473 	tcp_update_pacing_rate(sk);
3474 	return 1;
3475 
3476 no_queue:
3477 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3478 	if (flag & FLAG_DSACKING_ACK)
3479 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3480 				      is_dupack, flag);
3481 	/* If this ack opens up a zero window, clear backoff.  It was
3482 	 * being used to time the probes, and is probably far higher than
3483 	 * it needs to be for normal retransmission.
3484 	 */
3485 	if (tcp_send_head(sk))
3486 		tcp_ack_probe(sk);
3487 
3488 	if (tp->tlp_high_seq)
3489 		tcp_process_tlp_ack(sk, ack, flag);
3490 	return 1;
3491 
3492 invalid_ack:
3493 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3494 	return -1;
3495 
3496 old_ack:
3497 	/* If data was SACKed, tag it and see if we should send more data.
3498 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3499 	 */
3500 	if (TCP_SKB_CB(skb)->sacked) {
3501 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3502 						&sack_rtt_us);
3503 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3504 				      is_dupack, flag);
3505 	}
3506 
3507 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3508 	return 0;
3509 }
3510 
3511 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3512  * But, this can also be called on packets in the established flow when
3513  * the fast version below fails.
3514  */
3515 void tcp_parse_options(const struct sk_buff *skb,
3516 		       struct tcp_options_received *opt_rx, int estab,
3517 		       struct tcp_fastopen_cookie *foc)
3518 {
3519 	const unsigned char *ptr;
3520 	const struct tcphdr *th = tcp_hdr(skb);
3521 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3522 
3523 	ptr = (const unsigned char *)(th + 1);
3524 	opt_rx->saw_tstamp = 0;
3525 
3526 	while (length > 0) {
3527 		int opcode = *ptr++;
3528 		int opsize;
3529 
3530 		switch (opcode) {
3531 		case TCPOPT_EOL:
3532 			return;
3533 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3534 			length--;
3535 			continue;
3536 		default:
3537 			opsize = *ptr++;
3538 			if (opsize < 2) /* "silly options" */
3539 				return;
3540 			if (opsize > length)
3541 				return;	/* don't parse partial options */
3542 			switch (opcode) {
3543 			case TCPOPT_MSS:
3544 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3545 					u16 in_mss = get_unaligned_be16(ptr);
3546 					if (in_mss) {
3547 						if (opt_rx->user_mss &&
3548 						    opt_rx->user_mss < in_mss)
3549 							in_mss = opt_rx->user_mss;
3550 						opt_rx->mss_clamp = in_mss;
3551 					}
3552 				}
3553 				break;
3554 			case TCPOPT_WINDOW:
3555 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3556 				    !estab && sysctl_tcp_window_scaling) {
3557 					__u8 snd_wscale = *(__u8 *)ptr;
3558 					opt_rx->wscale_ok = 1;
3559 					if (snd_wscale > 14) {
3560 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3561 								     __func__,
3562 								     snd_wscale);
3563 						snd_wscale = 14;
3564 					}
3565 					opt_rx->snd_wscale = snd_wscale;
3566 				}
3567 				break;
3568 			case TCPOPT_TIMESTAMP:
3569 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3570 				    ((estab && opt_rx->tstamp_ok) ||
3571 				     (!estab && sysctl_tcp_timestamps))) {
3572 					opt_rx->saw_tstamp = 1;
3573 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3574 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3575 				}
3576 				break;
3577 			case TCPOPT_SACK_PERM:
3578 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3579 				    !estab && sysctl_tcp_sack) {
3580 					opt_rx->sack_ok = TCP_SACK_SEEN;
3581 					tcp_sack_reset(opt_rx);
3582 				}
3583 				break;
3584 
3585 			case TCPOPT_SACK:
3586 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3587 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3588 				   opt_rx->sack_ok) {
3589 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3590 				}
3591 				break;
3592 #ifdef CONFIG_TCP_MD5SIG
3593 			case TCPOPT_MD5SIG:
3594 				/*
3595 				 * The MD5 Hash has already been
3596 				 * checked (see tcp_v{4,6}_do_rcv()).
3597 				 */
3598 				break;
3599 #endif
3600 			case TCPOPT_EXP:
3601 				/* Fast Open option shares code 254 using a
3602 				 * 16 bits magic number. It's valid only in
3603 				 * SYN or SYN-ACK with an even size.
3604 				 */
3605 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3606 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3607 				    foc == NULL || !th->syn || (opsize & 1))
3608 					break;
3609 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3610 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3611 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3612 					memcpy(foc->val, ptr + 2, foc->len);
3613 				else if (foc->len != 0)
3614 					foc->len = -1;
3615 				break;
3616 
3617 			}
3618 			ptr += opsize-2;
3619 			length -= opsize;
3620 		}
3621 	}
3622 }
3623 EXPORT_SYMBOL(tcp_parse_options);
3624 
3625 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3626 {
3627 	const __be32 *ptr = (const __be32 *)(th + 1);
3628 
3629 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3630 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3631 		tp->rx_opt.saw_tstamp = 1;
3632 		++ptr;
3633 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3634 		++ptr;
3635 		if (*ptr)
3636 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3637 		else
3638 			tp->rx_opt.rcv_tsecr = 0;
3639 		return true;
3640 	}
3641 	return false;
3642 }
3643 
3644 /* Fast parse options. This hopes to only see timestamps.
3645  * If it is wrong it falls back on tcp_parse_options().
3646  */
3647 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3648 				   const struct tcphdr *th, struct tcp_sock *tp)
3649 {
3650 	/* In the spirit of fast parsing, compare doff directly to constant
3651 	 * values.  Because equality is used, short doff can be ignored here.
3652 	 */
3653 	if (th->doff == (sizeof(*th) / 4)) {
3654 		tp->rx_opt.saw_tstamp = 0;
3655 		return false;
3656 	} else if (tp->rx_opt.tstamp_ok &&
3657 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3658 		if (tcp_parse_aligned_timestamp(tp, th))
3659 			return true;
3660 	}
3661 
3662 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3663 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3664 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3665 
3666 	return true;
3667 }
3668 
3669 #ifdef CONFIG_TCP_MD5SIG
3670 /*
3671  * Parse MD5 Signature option
3672  */
3673 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3674 {
3675 	int length = (th->doff << 2) - sizeof(*th);
3676 	const u8 *ptr = (const u8 *)(th + 1);
3677 
3678 	/* If the TCP option is too short, we can short cut */
3679 	if (length < TCPOLEN_MD5SIG)
3680 		return NULL;
3681 
3682 	while (length > 0) {
3683 		int opcode = *ptr++;
3684 		int opsize;
3685 
3686 		switch (opcode) {
3687 		case TCPOPT_EOL:
3688 			return NULL;
3689 		case TCPOPT_NOP:
3690 			length--;
3691 			continue;
3692 		default:
3693 			opsize = *ptr++;
3694 			if (opsize < 2 || opsize > length)
3695 				return NULL;
3696 			if (opcode == TCPOPT_MD5SIG)
3697 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3698 		}
3699 		ptr += opsize - 2;
3700 		length -= opsize;
3701 	}
3702 	return NULL;
3703 }
3704 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3705 #endif
3706 
3707 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3708  *
3709  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3710  * it can pass through stack. So, the following predicate verifies that
3711  * this segment is not used for anything but congestion avoidance or
3712  * fast retransmit. Moreover, we even are able to eliminate most of such
3713  * second order effects, if we apply some small "replay" window (~RTO)
3714  * to timestamp space.
3715  *
3716  * All these measures still do not guarantee that we reject wrapped ACKs
3717  * on networks with high bandwidth, when sequence space is recycled fastly,
3718  * but it guarantees that such events will be very rare and do not affect
3719  * connection seriously. This doesn't look nice, but alas, PAWS is really
3720  * buggy extension.
3721  *
3722  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3723  * states that events when retransmit arrives after original data are rare.
3724  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3725  * the biggest problem on large power networks even with minor reordering.
3726  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3727  * up to bandwidth of 18Gigabit/sec. 8) ]
3728  */
3729 
3730 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3731 {
3732 	const struct tcp_sock *tp = tcp_sk(sk);
3733 	const struct tcphdr *th = tcp_hdr(skb);
3734 	u32 seq = TCP_SKB_CB(skb)->seq;
3735 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3736 
3737 	return (/* 1. Pure ACK with correct sequence number. */
3738 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3739 
3740 		/* 2. ... and duplicate ACK. */
3741 		ack == tp->snd_una &&
3742 
3743 		/* 3. ... and does not update window. */
3744 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3745 
3746 		/* 4. ... and sits in replay window. */
3747 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3748 }
3749 
3750 static inline bool tcp_paws_discard(const struct sock *sk,
3751 				   const struct sk_buff *skb)
3752 {
3753 	const struct tcp_sock *tp = tcp_sk(sk);
3754 
3755 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3756 	       !tcp_disordered_ack(sk, skb);
3757 }
3758 
3759 /* Check segment sequence number for validity.
3760  *
3761  * Segment controls are considered valid, if the segment
3762  * fits to the window after truncation to the window. Acceptability
3763  * of data (and SYN, FIN, of course) is checked separately.
3764  * See tcp_data_queue(), for example.
3765  *
3766  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3767  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3768  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3769  * (borrowed from freebsd)
3770  */
3771 
3772 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3773 {
3774 	return	!before(end_seq, tp->rcv_wup) &&
3775 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3776 }
3777 
3778 /* When we get a reset we do this. */
3779 void tcp_reset(struct sock *sk)
3780 {
3781 	/* We want the right error as BSD sees it (and indeed as we do). */
3782 	switch (sk->sk_state) {
3783 	case TCP_SYN_SENT:
3784 		sk->sk_err = ECONNREFUSED;
3785 		break;
3786 	case TCP_CLOSE_WAIT:
3787 		sk->sk_err = EPIPE;
3788 		break;
3789 	case TCP_CLOSE:
3790 		return;
3791 	default:
3792 		sk->sk_err = ECONNRESET;
3793 	}
3794 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3795 	smp_wmb();
3796 
3797 	if (!sock_flag(sk, SOCK_DEAD))
3798 		sk->sk_error_report(sk);
3799 
3800 	tcp_done(sk);
3801 }
3802 
3803 /*
3804  * 	Process the FIN bit. This now behaves as it is supposed to work
3805  *	and the FIN takes effect when it is validly part of sequence
3806  *	space. Not before when we get holes.
3807  *
3808  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3809  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3810  *	TIME-WAIT)
3811  *
3812  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3813  *	close and we go into CLOSING (and later onto TIME-WAIT)
3814  *
3815  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3816  */
3817 static void tcp_fin(struct sock *sk)
3818 {
3819 	struct tcp_sock *tp = tcp_sk(sk);
3820 	const struct dst_entry *dst;
3821 
3822 	inet_csk_schedule_ack(sk);
3823 
3824 	sk->sk_shutdown |= RCV_SHUTDOWN;
3825 	sock_set_flag(sk, SOCK_DONE);
3826 
3827 	switch (sk->sk_state) {
3828 	case TCP_SYN_RECV:
3829 	case TCP_ESTABLISHED:
3830 		/* Move to CLOSE_WAIT */
3831 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3832 		dst = __sk_dst_get(sk);
3833 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3834 			inet_csk(sk)->icsk_ack.pingpong = 1;
3835 		break;
3836 
3837 	case TCP_CLOSE_WAIT:
3838 	case TCP_CLOSING:
3839 		/* Received a retransmission of the FIN, do
3840 		 * nothing.
3841 		 */
3842 		break;
3843 	case TCP_LAST_ACK:
3844 		/* RFC793: Remain in the LAST-ACK state. */
3845 		break;
3846 
3847 	case TCP_FIN_WAIT1:
3848 		/* This case occurs when a simultaneous close
3849 		 * happens, we must ack the received FIN and
3850 		 * enter the CLOSING state.
3851 		 */
3852 		tcp_send_ack(sk);
3853 		tcp_set_state(sk, TCP_CLOSING);
3854 		break;
3855 	case TCP_FIN_WAIT2:
3856 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3857 		tcp_send_ack(sk);
3858 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3859 		break;
3860 	default:
3861 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3862 		 * cases we should never reach this piece of code.
3863 		 */
3864 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3865 		       __func__, sk->sk_state);
3866 		break;
3867 	}
3868 
3869 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3870 	 * Probably, we should reset in this case. For now drop them.
3871 	 */
3872 	__skb_queue_purge(&tp->out_of_order_queue);
3873 	if (tcp_is_sack(tp))
3874 		tcp_sack_reset(&tp->rx_opt);
3875 	sk_mem_reclaim(sk);
3876 
3877 	if (!sock_flag(sk, SOCK_DEAD)) {
3878 		sk->sk_state_change(sk);
3879 
3880 		/* Do not send POLL_HUP for half duplex close. */
3881 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3882 		    sk->sk_state == TCP_CLOSE)
3883 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3884 		else
3885 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3886 	}
3887 }
3888 
3889 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3890 				  u32 end_seq)
3891 {
3892 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3893 		if (before(seq, sp->start_seq))
3894 			sp->start_seq = seq;
3895 		if (after(end_seq, sp->end_seq))
3896 			sp->end_seq = end_seq;
3897 		return true;
3898 	}
3899 	return false;
3900 }
3901 
3902 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3903 {
3904 	struct tcp_sock *tp = tcp_sk(sk);
3905 
3906 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3907 		int mib_idx;
3908 
3909 		if (before(seq, tp->rcv_nxt))
3910 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3911 		else
3912 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3913 
3914 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3915 
3916 		tp->rx_opt.dsack = 1;
3917 		tp->duplicate_sack[0].start_seq = seq;
3918 		tp->duplicate_sack[0].end_seq = end_seq;
3919 	}
3920 }
3921 
3922 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3923 {
3924 	struct tcp_sock *tp = tcp_sk(sk);
3925 
3926 	if (!tp->rx_opt.dsack)
3927 		tcp_dsack_set(sk, seq, end_seq);
3928 	else
3929 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3930 }
3931 
3932 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3933 {
3934 	struct tcp_sock *tp = tcp_sk(sk);
3935 
3936 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3937 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3938 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3939 		tcp_enter_quickack_mode(sk);
3940 
3941 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3942 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3943 
3944 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3945 				end_seq = tp->rcv_nxt;
3946 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3947 		}
3948 	}
3949 
3950 	tcp_send_ack(sk);
3951 }
3952 
3953 /* These routines update the SACK block as out-of-order packets arrive or
3954  * in-order packets close up the sequence space.
3955  */
3956 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3957 {
3958 	int this_sack;
3959 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3960 	struct tcp_sack_block *swalk = sp + 1;
3961 
3962 	/* See if the recent change to the first SACK eats into
3963 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3964 	 */
3965 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3966 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3967 			int i;
3968 
3969 			/* Zap SWALK, by moving every further SACK up by one slot.
3970 			 * Decrease num_sacks.
3971 			 */
3972 			tp->rx_opt.num_sacks--;
3973 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3974 				sp[i] = sp[i + 1];
3975 			continue;
3976 		}
3977 		this_sack++, swalk++;
3978 	}
3979 }
3980 
3981 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3982 {
3983 	struct tcp_sock *tp = tcp_sk(sk);
3984 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3985 	int cur_sacks = tp->rx_opt.num_sacks;
3986 	int this_sack;
3987 
3988 	if (!cur_sacks)
3989 		goto new_sack;
3990 
3991 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3992 		if (tcp_sack_extend(sp, seq, end_seq)) {
3993 			/* Rotate this_sack to the first one. */
3994 			for (; this_sack > 0; this_sack--, sp--)
3995 				swap(*sp, *(sp - 1));
3996 			if (cur_sacks > 1)
3997 				tcp_sack_maybe_coalesce(tp);
3998 			return;
3999 		}
4000 	}
4001 
4002 	/* Could not find an adjacent existing SACK, build a new one,
4003 	 * put it at the front, and shift everyone else down.  We
4004 	 * always know there is at least one SACK present already here.
4005 	 *
4006 	 * If the sack array is full, forget about the last one.
4007 	 */
4008 	if (this_sack >= TCP_NUM_SACKS) {
4009 		this_sack--;
4010 		tp->rx_opt.num_sacks--;
4011 		sp--;
4012 	}
4013 	for (; this_sack > 0; this_sack--, sp--)
4014 		*sp = *(sp - 1);
4015 
4016 new_sack:
4017 	/* Build the new head SACK, and we're done. */
4018 	sp->start_seq = seq;
4019 	sp->end_seq = end_seq;
4020 	tp->rx_opt.num_sacks++;
4021 }
4022 
4023 /* RCV.NXT advances, some SACKs should be eaten. */
4024 
4025 static void tcp_sack_remove(struct tcp_sock *tp)
4026 {
4027 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4028 	int num_sacks = tp->rx_opt.num_sacks;
4029 	int this_sack;
4030 
4031 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4032 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4033 		tp->rx_opt.num_sacks = 0;
4034 		return;
4035 	}
4036 
4037 	for (this_sack = 0; this_sack < num_sacks;) {
4038 		/* Check if the start of the sack is covered by RCV.NXT. */
4039 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4040 			int i;
4041 
4042 			/* RCV.NXT must cover all the block! */
4043 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4044 
4045 			/* Zap this SACK, by moving forward any other SACKS. */
4046 			for (i = this_sack+1; i < num_sacks; i++)
4047 				tp->selective_acks[i-1] = tp->selective_acks[i];
4048 			num_sacks--;
4049 			continue;
4050 		}
4051 		this_sack++;
4052 		sp++;
4053 	}
4054 	tp->rx_opt.num_sacks = num_sacks;
4055 }
4056 
4057 /* This one checks to see if we can put data from the
4058  * out_of_order queue into the receive_queue.
4059  */
4060 static void tcp_ofo_queue(struct sock *sk)
4061 {
4062 	struct tcp_sock *tp = tcp_sk(sk);
4063 	__u32 dsack_high = tp->rcv_nxt;
4064 	struct sk_buff *skb;
4065 
4066 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4067 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4068 			break;
4069 
4070 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4071 			__u32 dsack = dsack_high;
4072 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4073 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4074 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4075 		}
4076 
4077 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4078 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4079 			__skb_unlink(skb, &tp->out_of_order_queue);
4080 			__kfree_skb(skb);
4081 			continue;
4082 		}
4083 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4084 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4085 			   TCP_SKB_CB(skb)->end_seq);
4086 
4087 		__skb_unlink(skb, &tp->out_of_order_queue);
4088 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4089 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4090 		if (tcp_hdr(skb)->fin)
4091 			tcp_fin(sk);
4092 	}
4093 }
4094 
4095 static bool tcp_prune_ofo_queue(struct sock *sk);
4096 static int tcp_prune_queue(struct sock *sk);
4097 
4098 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4099 				 unsigned int size)
4100 {
4101 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4102 	    !sk_rmem_schedule(sk, skb, size)) {
4103 
4104 		if (tcp_prune_queue(sk) < 0)
4105 			return -1;
4106 
4107 		if (!sk_rmem_schedule(sk, skb, size)) {
4108 			if (!tcp_prune_ofo_queue(sk))
4109 				return -1;
4110 
4111 			if (!sk_rmem_schedule(sk, skb, size))
4112 				return -1;
4113 		}
4114 	}
4115 	return 0;
4116 }
4117 
4118 /**
4119  * tcp_try_coalesce - try to merge skb to prior one
4120  * @sk: socket
4121  * @to: prior buffer
4122  * @from: buffer to add in queue
4123  * @fragstolen: pointer to boolean
4124  *
4125  * Before queueing skb @from after @to, try to merge them
4126  * to reduce overall memory use and queue lengths, if cost is small.
4127  * Packets in ofo or receive queues can stay a long time.
4128  * Better try to coalesce them right now to avoid future collapses.
4129  * Returns true if caller should free @from instead of queueing it
4130  */
4131 static bool tcp_try_coalesce(struct sock *sk,
4132 			     struct sk_buff *to,
4133 			     struct sk_buff *from,
4134 			     bool *fragstolen)
4135 {
4136 	int delta;
4137 
4138 	*fragstolen = false;
4139 
4140 	if (tcp_hdr(from)->fin)
4141 		return false;
4142 
4143 	/* Its possible this segment overlaps with prior segment in queue */
4144 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4145 		return false;
4146 
4147 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4148 		return false;
4149 
4150 	atomic_add(delta, &sk->sk_rmem_alloc);
4151 	sk_mem_charge(sk, delta);
4152 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4153 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4154 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4155 	return true;
4156 }
4157 
4158 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4159 {
4160 	struct tcp_sock *tp = tcp_sk(sk);
4161 	struct sk_buff *skb1;
4162 	u32 seq, end_seq;
4163 
4164 	TCP_ECN_check_ce(tp, skb);
4165 
4166 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4167 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4168 		__kfree_skb(skb);
4169 		return;
4170 	}
4171 
4172 	/* Disable header prediction. */
4173 	tp->pred_flags = 0;
4174 	inet_csk_schedule_ack(sk);
4175 
4176 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4177 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4178 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4179 
4180 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4181 	if (!skb1) {
4182 		/* Initial out of order segment, build 1 SACK. */
4183 		if (tcp_is_sack(tp)) {
4184 			tp->rx_opt.num_sacks = 1;
4185 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4186 			tp->selective_acks[0].end_seq =
4187 						TCP_SKB_CB(skb)->end_seq;
4188 		}
4189 		__skb_queue_head(&tp->out_of_order_queue, skb);
4190 		goto end;
4191 	}
4192 
4193 	seq = TCP_SKB_CB(skb)->seq;
4194 	end_seq = TCP_SKB_CB(skb)->end_seq;
4195 
4196 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4197 		bool fragstolen;
4198 
4199 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4200 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4201 		} else {
4202 			tcp_grow_window(sk, skb);
4203 			kfree_skb_partial(skb, fragstolen);
4204 			skb = NULL;
4205 		}
4206 
4207 		if (!tp->rx_opt.num_sacks ||
4208 		    tp->selective_acks[0].end_seq != seq)
4209 			goto add_sack;
4210 
4211 		/* Common case: data arrive in order after hole. */
4212 		tp->selective_acks[0].end_seq = end_seq;
4213 		goto end;
4214 	}
4215 
4216 	/* Find place to insert this segment. */
4217 	while (1) {
4218 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4219 			break;
4220 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4221 			skb1 = NULL;
4222 			break;
4223 		}
4224 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4225 	}
4226 
4227 	/* Do skb overlap to previous one? */
4228 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4229 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4230 			/* All the bits are present. Drop. */
4231 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4232 			__kfree_skb(skb);
4233 			skb = NULL;
4234 			tcp_dsack_set(sk, seq, end_seq);
4235 			goto add_sack;
4236 		}
4237 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4238 			/* Partial overlap. */
4239 			tcp_dsack_set(sk, seq,
4240 				      TCP_SKB_CB(skb1)->end_seq);
4241 		} else {
4242 			if (skb_queue_is_first(&tp->out_of_order_queue,
4243 					       skb1))
4244 				skb1 = NULL;
4245 			else
4246 				skb1 = skb_queue_prev(
4247 					&tp->out_of_order_queue,
4248 					skb1);
4249 		}
4250 	}
4251 	if (!skb1)
4252 		__skb_queue_head(&tp->out_of_order_queue, skb);
4253 	else
4254 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4255 
4256 	/* And clean segments covered by new one as whole. */
4257 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4258 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4259 
4260 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4261 			break;
4262 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4263 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4264 					 end_seq);
4265 			break;
4266 		}
4267 		__skb_unlink(skb1, &tp->out_of_order_queue);
4268 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4269 				 TCP_SKB_CB(skb1)->end_seq);
4270 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4271 		__kfree_skb(skb1);
4272 	}
4273 
4274 add_sack:
4275 	if (tcp_is_sack(tp))
4276 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4277 end:
4278 	if (skb) {
4279 		tcp_grow_window(sk, skb);
4280 		skb_set_owner_r(skb, sk);
4281 	}
4282 }
4283 
4284 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4285 		  bool *fragstolen)
4286 {
4287 	int eaten;
4288 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4289 
4290 	__skb_pull(skb, hdrlen);
4291 	eaten = (tail &&
4292 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4293 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4294 	if (!eaten) {
4295 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4296 		skb_set_owner_r(skb, sk);
4297 	}
4298 	return eaten;
4299 }
4300 
4301 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4302 {
4303 	struct sk_buff *skb = NULL;
4304 	struct tcphdr *th;
4305 	bool fragstolen;
4306 
4307 	if (size == 0)
4308 		return 0;
4309 
4310 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4311 	if (!skb)
4312 		goto err;
4313 
4314 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4315 		goto err_free;
4316 
4317 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4318 	skb_reset_transport_header(skb);
4319 	memset(th, 0, sizeof(*th));
4320 
4321 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4322 		goto err_free;
4323 
4324 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4325 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4326 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4327 
4328 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4329 		WARN_ON_ONCE(fragstolen); /* should not happen */
4330 		__kfree_skb(skb);
4331 	}
4332 	return size;
4333 
4334 err_free:
4335 	kfree_skb(skb);
4336 err:
4337 	return -ENOMEM;
4338 }
4339 
4340 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4341 {
4342 	const struct tcphdr *th = tcp_hdr(skb);
4343 	struct tcp_sock *tp = tcp_sk(sk);
4344 	int eaten = -1;
4345 	bool fragstolen = false;
4346 
4347 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4348 		goto drop;
4349 
4350 	skb_dst_drop(skb);
4351 	__skb_pull(skb, th->doff * 4);
4352 
4353 	TCP_ECN_accept_cwr(tp, skb);
4354 
4355 	tp->rx_opt.dsack = 0;
4356 
4357 	/*  Queue data for delivery to the user.
4358 	 *  Packets in sequence go to the receive queue.
4359 	 *  Out of sequence packets to the out_of_order_queue.
4360 	 */
4361 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4362 		if (tcp_receive_window(tp) == 0)
4363 			goto out_of_window;
4364 
4365 		/* Ok. In sequence. In window. */
4366 		if (tp->ucopy.task == current &&
4367 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4368 		    sock_owned_by_user(sk) && !tp->urg_data) {
4369 			int chunk = min_t(unsigned int, skb->len,
4370 					  tp->ucopy.len);
4371 
4372 			__set_current_state(TASK_RUNNING);
4373 
4374 			local_bh_enable();
4375 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4376 				tp->ucopy.len -= chunk;
4377 				tp->copied_seq += chunk;
4378 				eaten = (chunk == skb->len);
4379 				tcp_rcv_space_adjust(sk);
4380 			}
4381 			local_bh_disable();
4382 		}
4383 
4384 		if (eaten <= 0) {
4385 queue_and_out:
4386 			if (eaten < 0 &&
4387 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4388 				goto drop;
4389 
4390 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4391 		}
4392 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4393 		if (skb->len)
4394 			tcp_event_data_recv(sk, skb);
4395 		if (th->fin)
4396 			tcp_fin(sk);
4397 
4398 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4399 			tcp_ofo_queue(sk);
4400 
4401 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4402 			 * gap in queue is filled.
4403 			 */
4404 			if (skb_queue_empty(&tp->out_of_order_queue))
4405 				inet_csk(sk)->icsk_ack.pingpong = 0;
4406 		}
4407 
4408 		if (tp->rx_opt.num_sacks)
4409 			tcp_sack_remove(tp);
4410 
4411 		tcp_fast_path_check(sk);
4412 
4413 		if (eaten > 0)
4414 			kfree_skb_partial(skb, fragstolen);
4415 		if (!sock_flag(sk, SOCK_DEAD))
4416 			sk->sk_data_ready(sk);
4417 		return;
4418 	}
4419 
4420 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4421 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4422 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4423 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4424 
4425 out_of_window:
4426 		tcp_enter_quickack_mode(sk);
4427 		inet_csk_schedule_ack(sk);
4428 drop:
4429 		__kfree_skb(skb);
4430 		return;
4431 	}
4432 
4433 	/* Out of window. F.e. zero window probe. */
4434 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4435 		goto out_of_window;
4436 
4437 	tcp_enter_quickack_mode(sk);
4438 
4439 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4440 		/* Partial packet, seq < rcv_next < end_seq */
4441 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4442 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4443 			   TCP_SKB_CB(skb)->end_seq);
4444 
4445 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4446 
4447 		/* If window is closed, drop tail of packet. But after
4448 		 * remembering D-SACK for its head made in previous line.
4449 		 */
4450 		if (!tcp_receive_window(tp))
4451 			goto out_of_window;
4452 		goto queue_and_out;
4453 	}
4454 
4455 	tcp_data_queue_ofo(sk, skb);
4456 }
4457 
4458 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4459 					struct sk_buff_head *list)
4460 {
4461 	struct sk_buff *next = NULL;
4462 
4463 	if (!skb_queue_is_last(list, skb))
4464 		next = skb_queue_next(list, skb);
4465 
4466 	__skb_unlink(skb, list);
4467 	__kfree_skb(skb);
4468 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4469 
4470 	return next;
4471 }
4472 
4473 /* Collapse contiguous sequence of skbs head..tail with
4474  * sequence numbers start..end.
4475  *
4476  * If tail is NULL, this means until the end of the list.
4477  *
4478  * Segments with FIN/SYN are not collapsed (only because this
4479  * simplifies code)
4480  */
4481 static void
4482 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4483 	     struct sk_buff *head, struct sk_buff *tail,
4484 	     u32 start, u32 end)
4485 {
4486 	struct sk_buff *skb, *n;
4487 	bool end_of_skbs;
4488 
4489 	/* First, check that queue is collapsible and find
4490 	 * the point where collapsing can be useful. */
4491 	skb = head;
4492 restart:
4493 	end_of_skbs = true;
4494 	skb_queue_walk_from_safe(list, skb, n) {
4495 		if (skb == tail)
4496 			break;
4497 		/* No new bits? It is possible on ofo queue. */
4498 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4499 			skb = tcp_collapse_one(sk, skb, list);
4500 			if (!skb)
4501 				break;
4502 			goto restart;
4503 		}
4504 
4505 		/* The first skb to collapse is:
4506 		 * - not SYN/FIN and
4507 		 * - bloated or contains data before "start" or
4508 		 *   overlaps to the next one.
4509 		 */
4510 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4511 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4512 		     before(TCP_SKB_CB(skb)->seq, start))) {
4513 			end_of_skbs = false;
4514 			break;
4515 		}
4516 
4517 		if (!skb_queue_is_last(list, skb)) {
4518 			struct sk_buff *next = skb_queue_next(list, skb);
4519 			if (next != tail &&
4520 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4521 				end_of_skbs = false;
4522 				break;
4523 			}
4524 		}
4525 
4526 		/* Decided to skip this, advance start seq. */
4527 		start = TCP_SKB_CB(skb)->end_seq;
4528 	}
4529 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4530 		return;
4531 
4532 	while (before(start, end)) {
4533 		struct sk_buff *nskb;
4534 		unsigned int header = skb_headroom(skb);
4535 		int copy = SKB_MAX_ORDER(header, 0);
4536 
4537 		/* Too big header? This can happen with IPv6. */
4538 		if (copy < 0)
4539 			return;
4540 		if (end - start < copy)
4541 			copy = end - start;
4542 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4543 		if (!nskb)
4544 			return;
4545 
4546 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4547 		skb_set_network_header(nskb, (skb_network_header(skb) -
4548 					      skb->head));
4549 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4550 						skb->head));
4551 		skb_reserve(nskb, header);
4552 		memcpy(nskb->head, skb->head, header);
4553 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4554 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4555 		__skb_queue_before(list, skb, nskb);
4556 		skb_set_owner_r(nskb, sk);
4557 
4558 		/* Copy data, releasing collapsed skbs. */
4559 		while (copy > 0) {
4560 			int offset = start - TCP_SKB_CB(skb)->seq;
4561 			int size = TCP_SKB_CB(skb)->end_seq - start;
4562 
4563 			BUG_ON(offset < 0);
4564 			if (size > 0) {
4565 				size = min(copy, size);
4566 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4567 					BUG();
4568 				TCP_SKB_CB(nskb)->end_seq += size;
4569 				copy -= size;
4570 				start += size;
4571 			}
4572 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4573 				skb = tcp_collapse_one(sk, skb, list);
4574 				if (!skb ||
4575 				    skb == tail ||
4576 				    tcp_hdr(skb)->syn ||
4577 				    tcp_hdr(skb)->fin)
4578 					return;
4579 			}
4580 		}
4581 	}
4582 }
4583 
4584 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4585  * and tcp_collapse() them until all the queue is collapsed.
4586  */
4587 static void tcp_collapse_ofo_queue(struct sock *sk)
4588 {
4589 	struct tcp_sock *tp = tcp_sk(sk);
4590 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4591 	struct sk_buff *head;
4592 	u32 start, end;
4593 
4594 	if (skb == NULL)
4595 		return;
4596 
4597 	start = TCP_SKB_CB(skb)->seq;
4598 	end = TCP_SKB_CB(skb)->end_seq;
4599 	head = skb;
4600 
4601 	for (;;) {
4602 		struct sk_buff *next = NULL;
4603 
4604 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4605 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4606 		skb = next;
4607 
4608 		/* Segment is terminated when we see gap or when
4609 		 * we are at the end of all the queue. */
4610 		if (!skb ||
4611 		    after(TCP_SKB_CB(skb)->seq, end) ||
4612 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4613 			tcp_collapse(sk, &tp->out_of_order_queue,
4614 				     head, skb, start, end);
4615 			head = skb;
4616 			if (!skb)
4617 				break;
4618 			/* Start new segment */
4619 			start = TCP_SKB_CB(skb)->seq;
4620 			end = TCP_SKB_CB(skb)->end_seq;
4621 		} else {
4622 			if (before(TCP_SKB_CB(skb)->seq, start))
4623 				start = TCP_SKB_CB(skb)->seq;
4624 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4625 				end = TCP_SKB_CB(skb)->end_seq;
4626 		}
4627 	}
4628 }
4629 
4630 /*
4631  * Purge the out-of-order queue.
4632  * Return true if queue was pruned.
4633  */
4634 static bool tcp_prune_ofo_queue(struct sock *sk)
4635 {
4636 	struct tcp_sock *tp = tcp_sk(sk);
4637 	bool res = false;
4638 
4639 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4640 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4641 		__skb_queue_purge(&tp->out_of_order_queue);
4642 
4643 		/* Reset SACK state.  A conforming SACK implementation will
4644 		 * do the same at a timeout based retransmit.  When a connection
4645 		 * is in a sad state like this, we care only about integrity
4646 		 * of the connection not performance.
4647 		 */
4648 		if (tp->rx_opt.sack_ok)
4649 			tcp_sack_reset(&tp->rx_opt);
4650 		sk_mem_reclaim(sk);
4651 		res = true;
4652 	}
4653 	return res;
4654 }
4655 
4656 /* Reduce allocated memory if we can, trying to get
4657  * the socket within its memory limits again.
4658  *
4659  * Return less than zero if we should start dropping frames
4660  * until the socket owning process reads some of the data
4661  * to stabilize the situation.
4662  */
4663 static int tcp_prune_queue(struct sock *sk)
4664 {
4665 	struct tcp_sock *tp = tcp_sk(sk);
4666 
4667 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4668 
4669 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4670 
4671 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4672 		tcp_clamp_window(sk);
4673 	else if (sk_under_memory_pressure(sk))
4674 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4675 
4676 	tcp_collapse_ofo_queue(sk);
4677 	if (!skb_queue_empty(&sk->sk_receive_queue))
4678 		tcp_collapse(sk, &sk->sk_receive_queue,
4679 			     skb_peek(&sk->sk_receive_queue),
4680 			     NULL,
4681 			     tp->copied_seq, tp->rcv_nxt);
4682 	sk_mem_reclaim(sk);
4683 
4684 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4685 		return 0;
4686 
4687 	/* Collapsing did not help, destructive actions follow.
4688 	 * This must not ever occur. */
4689 
4690 	tcp_prune_ofo_queue(sk);
4691 
4692 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4693 		return 0;
4694 
4695 	/* If we are really being abused, tell the caller to silently
4696 	 * drop receive data on the floor.  It will get retransmitted
4697 	 * and hopefully then we'll have sufficient space.
4698 	 */
4699 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4700 
4701 	/* Massive buffer overcommit. */
4702 	tp->pred_flags = 0;
4703 	return -1;
4704 }
4705 
4706 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4707  * As additional protections, we do not touch cwnd in retransmission phases,
4708  * and if application hit its sndbuf limit recently.
4709  */
4710 void tcp_cwnd_application_limited(struct sock *sk)
4711 {
4712 	struct tcp_sock *tp = tcp_sk(sk);
4713 
4714 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4715 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4716 		/* Limited by application or receiver window. */
4717 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4718 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4719 		if (win_used < tp->snd_cwnd) {
4720 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4721 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4722 		}
4723 		tp->snd_cwnd_used = 0;
4724 	}
4725 	tp->snd_cwnd_stamp = tcp_time_stamp;
4726 }
4727 
4728 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4729 {
4730 	const struct tcp_sock *tp = tcp_sk(sk);
4731 
4732 	/* If the user specified a specific send buffer setting, do
4733 	 * not modify it.
4734 	 */
4735 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4736 		return false;
4737 
4738 	/* If we are under global TCP memory pressure, do not expand.  */
4739 	if (sk_under_memory_pressure(sk))
4740 		return false;
4741 
4742 	/* If we are under soft global TCP memory pressure, do not expand.  */
4743 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4744 		return false;
4745 
4746 	/* If we filled the congestion window, do not expand.  */
4747 	if (tp->packets_out >= tp->snd_cwnd)
4748 		return false;
4749 
4750 	return true;
4751 }
4752 
4753 /* When incoming ACK allowed to free some skb from write_queue,
4754  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4755  * on the exit from tcp input handler.
4756  *
4757  * PROBLEM: sndbuf expansion does not work well with largesend.
4758  */
4759 static void tcp_new_space(struct sock *sk)
4760 {
4761 	struct tcp_sock *tp = tcp_sk(sk);
4762 
4763 	if (tcp_should_expand_sndbuf(sk)) {
4764 		tcp_sndbuf_expand(sk);
4765 		tp->snd_cwnd_stamp = tcp_time_stamp;
4766 	}
4767 
4768 	sk->sk_write_space(sk);
4769 }
4770 
4771 static void tcp_check_space(struct sock *sk)
4772 {
4773 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4774 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4775 		if (sk->sk_socket &&
4776 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4777 			tcp_new_space(sk);
4778 	}
4779 }
4780 
4781 static inline void tcp_data_snd_check(struct sock *sk)
4782 {
4783 	tcp_push_pending_frames(sk);
4784 	tcp_check_space(sk);
4785 }
4786 
4787 /*
4788  * Check if sending an ack is needed.
4789  */
4790 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4791 {
4792 	struct tcp_sock *tp = tcp_sk(sk);
4793 
4794 	    /* More than one full frame received... */
4795 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4796 	     /* ... and right edge of window advances far enough.
4797 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4798 	      */
4799 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4800 	    /* We ACK each frame or... */
4801 	    tcp_in_quickack_mode(sk) ||
4802 	    /* We have out of order data. */
4803 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4804 		/* Then ack it now */
4805 		tcp_send_ack(sk);
4806 	} else {
4807 		/* Else, send delayed ack. */
4808 		tcp_send_delayed_ack(sk);
4809 	}
4810 }
4811 
4812 static inline void tcp_ack_snd_check(struct sock *sk)
4813 {
4814 	if (!inet_csk_ack_scheduled(sk)) {
4815 		/* We sent a data segment already. */
4816 		return;
4817 	}
4818 	__tcp_ack_snd_check(sk, 1);
4819 }
4820 
4821 /*
4822  *	This routine is only called when we have urgent data
4823  *	signaled. Its the 'slow' part of tcp_urg. It could be
4824  *	moved inline now as tcp_urg is only called from one
4825  *	place. We handle URGent data wrong. We have to - as
4826  *	BSD still doesn't use the correction from RFC961.
4827  *	For 1003.1g we should support a new option TCP_STDURG to permit
4828  *	either form (or just set the sysctl tcp_stdurg).
4829  */
4830 
4831 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4832 {
4833 	struct tcp_sock *tp = tcp_sk(sk);
4834 	u32 ptr = ntohs(th->urg_ptr);
4835 
4836 	if (ptr && !sysctl_tcp_stdurg)
4837 		ptr--;
4838 	ptr += ntohl(th->seq);
4839 
4840 	/* Ignore urgent data that we've already seen and read. */
4841 	if (after(tp->copied_seq, ptr))
4842 		return;
4843 
4844 	/* Do not replay urg ptr.
4845 	 *
4846 	 * NOTE: interesting situation not covered by specs.
4847 	 * Misbehaving sender may send urg ptr, pointing to segment,
4848 	 * which we already have in ofo queue. We are not able to fetch
4849 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4850 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4851 	 * situations. But it is worth to think about possibility of some
4852 	 * DoSes using some hypothetical application level deadlock.
4853 	 */
4854 	if (before(ptr, tp->rcv_nxt))
4855 		return;
4856 
4857 	/* Do we already have a newer (or duplicate) urgent pointer? */
4858 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4859 		return;
4860 
4861 	/* Tell the world about our new urgent pointer. */
4862 	sk_send_sigurg(sk);
4863 
4864 	/* We may be adding urgent data when the last byte read was
4865 	 * urgent. To do this requires some care. We cannot just ignore
4866 	 * tp->copied_seq since we would read the last urgent byte again
4867 	 * as data, nor can we alter copied_seq until this data arrives
4868 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4869 	 *
4870 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4871 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4872 	 * and expect that both A and B disappear from stream. This is _wrong_.
4873 	 * Though this happens in BSD with high probability, this is occasional.
4874 	 * Any application relying on this is buggy. Note also, that fix "works"
4875 	 * only in this artificial test. Insert some normal data between A and B and we will
4876 	 * decline of BSD again. Verdict: it is better to remove to trap
4877 	 * buggy users.
4878 	 */
4879 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4880 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4881 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4882 		tp->copied_seq++;
4883 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4884 			__skb_unlink(skb, &sk->sk_receive_queue);
4885 			__kfree_skb(skb);
4886 		}
4887 	}
4888 
4889 	tp->urg_data = TCP_URG_NOTYET;
4890 	tp->urg_seq = ptr;
4891 
4892 	/* Disable header prediction. */
4893 	tp->pred_flags = 0;
4894 }
4895 
4896 /* This is the 'fast' part of urgent handling. */
4897 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4898 {
4899 	struct tcp_sock *tp = tcp_sk(sk);
4900 
4901 	/* Check if we get a new urgent pointer - normally not. */
4902 	if (th->urg)
4903 		tcp_check_urg(sk, th);
4904 
4905 	/* Do we wait for any urgent data? - normally not... */
4906 	if (tp->urg_data == TCP_URG_NOTYET) {
4907 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4908 			  th->syn;
4909 
4910 		/* Is the urgent pointer pointing into this packet? */
4911 		if (ptr < skb->len) {
4912 			u8 tmp;
4913 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4914 				BUG();
4915 			tp->urg_data = TCP_URG_VALID | tmp;
4916 			if (!sock_flag(sk, SOCK_DEAD))
4917 				sk->sk_data_ready(sk);
4918 		}
4919 	}
4920 }
4921 
4922 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4923 {
4924 	struct tcp_sock *tp = tcp_sk(sk);
4925 	int chunk = skb->len - hlen;
4926 	int err;
4927 
4928 	local_bh_enable();
4929 	if (skb_csum_unnecessary(skb))
4930 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4931 	else
4932 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4933 						       tp->ucopy.iov);
4934 
4935 	if (!err) {
4936 		tp->ucopy.len -= chunk;
4937 		tp->copied_seq += chunk;
4938 		tcp_rcv_space_adjust(sk);
4939 	}
4940 
4941 	local_bh_disable();
4942 	return err;
4943 }
4944 
4945 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4946 					    struct sk_buff *skb)
4947 {
4948 	__sum16 result;
4949 
4950 	if (sock_owned_by_user(sk)) {
4951 		local_bh_enable();
4952 		result = __tcp_checksum_complete(skb);
4953 		local_bh_disable();
4954 	} else {
4955 		result = __tcp_checksum_complete(skb);
4956 	}
4957 	return result;
4958 }
4959 
4960 static inline bool tcp_checksum_complete_user(struct sock *sk,
4961 					     struct sk_buff *skb)
4962 {
4963 	return !skb_csum_unnecessary(skb) &&
4964 	       __tcp_checksum_complete_user(sk, skb);
4965 }
4966 
4967 #ifdef CONFIG_NET_DMA
4968 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4969 				  int hlen)
4970 {
4971 	struct tcp_sock *tp = tcp_sk(sk);
4972 	int chunk = skb->len - hlen;
4973 	int dma_cookie;
4974 	bool copied_early = false;
4975 
4976 	if (tp->ucopy.wakeup)
4977 		return false;
4978 
4979 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4980 		tp->ucopy.dma_chan = net_dma_find_channel();
4981 
4982 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4983 
4984 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4985 							 skb, hlen,
4986 							 tp->ucopy.iov, chunk,
4987 							 tp->ucopy.pinned_list);
4988 
4989 		if (dma_cookie < 0)
4990 			goto out;
4991 
4992 		tp->ucopy.dma_cookie = dma_cookie;
4993 		copied_early = true;
4994 
4995 		tp->ucopy.len -= chunk;
4996 		tp->copied_seq += chunk;
4997 		tcp_rcv_space_adjust(sk);
4998 
4999 		if ((tp->ucopy.len == 0) ||
5000 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5001 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5002 			tp->ucopy.wakeup = 1;
5003 			sk->sk_data_ready(sk);
5004 		}
5005 	} else if (chunk > 0) {
5006 		tp->ucopy.wakeup = 1;
5007 		sk->sk_data_ready(sk);
5008 	}
5009 out:
5010 	return copied_early;
5011 }
5012 #endif /* CONFIG_NET_DMA */
5013 
5014 /* Does PAWS and seqno based validation of an incoming segment, flags will
5015  * play significant role here.
5016  */
5017 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5018 				  const struct tcphdr *th, int syn_inerr)
5019 {
5020 	struct tcp_sock *tp = tcp_sk(sk);
5021 
5022 	/* RFC1323: H1. Apply PAWS check first. */
5023 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5024 	    tcp_paws_discard(sk, skb)) {
5025 		if (!th->rst) {
5026 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5027 			tcp_send_dupack(sk, skb);
5028 			goto discard;
5029 		}
5030 		/* Reset is accepted even if it did not pass PAWS. */
5031 	}
5032 
5033 	/* Step 1: check sequence number */
5034 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5035 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5036 		 * (RST) segments are validated by checking their SEQ-fields."
5037 		 * And page 69: "If an incoming segment is not acceptable,
5038 		 * an acknowledgment should be sent in reply (unless the RST
5039 		 * bit is set, if so drop the segment and return)".
5040 		 */
5041 		if (!th->rst) {
5042 			if (th->syn)
5043 				goto syn_challenge;
5044 			tcp_send_dupack(sk, skb);
5045 		}
5046 		goto discard;
5047 	}
5048 
5049 	/* Step 2: check RST bit */
5050 	if (th->rst) {
5051 		/* RFC 5961 3.2 :
5052 		 * If sequence number exactly matches RCV.NXT, then
5053 		 *     RESET the connection
5054 		 * else
5055 		 *     Send a challenge ACK
5056 		 */
5057 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5058 			tcp_reset(sk);
5059 		else
5060 			tcp_send_challenge_ack(sk);
5061 		goto discard;
5062 	}
5063 
5064 	/* step 3: check security and precedence [ignored] */
5065 
5066 	/* step 4: Check for a SYN
5067 	 * RFC 5691 4.2 : Send a challenge ack
5068 	 */
5069 	if (th->syn) {
5070 syn_challenge:
5071 		if (syn_inerr)
5072 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5073 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5074 		tcp_send_challenge_ack(sk);
5075 		goto discard;
5076 	}
5077 
5078 	return true;
5079 
5080 discard:
5081 	__kfree_skb(skb);
5082 	return false;
5083 }
5084 
5085 /*
5086  *	TCP receive function for the ESTABLISHED state.
5087  *
5088  *	It is split into a fast path and a slow path. The fast path is
5089  * 	disabled when:
5090  *	- A zero window was announced from us - zero window probing
5091  *        is only handled properly in the slow path.
5092  *	- Out of order segments arrived.
5093  *	- Urgent data is expected.
5094  *	- There is no buffer space left
5095  *	- Unexpected TCP flags/window values/header lengths are received
5096  *	  (detected by checking the TCP header against pred_flags)
5097  *	- Data is sent in both directions. Fast path only supports pure senders
5098  *	  or pure receivers (this means either the sequence number or the ack
5099  *	  value must stay constant)
5100  *	- Unexpected TCP option.
5101  *
5102  *	When these conditions are not satisfied it drops into a standard
5103  *	receive procedure patterned after RFC793 to handle all cases.
5104  *	The first three cases are guaranteed by proper pred_flags setting,
5105  *	the rest is checked inline. Fast processing is turned on in
5106  *	tcp_data_queue when everything is OK.
5107  */
5108 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5109 			 const struct tcphdr *th, unsigned int len)
5110 {
5111 	struct tcp_sock *tp = tcp_sk(sk);
5112 
5113 	if (unlikely(sk->sk_rx_dst == NULL))
5114 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5115 	/*
5116 	 *	Header prediction.
5117 	 *	The code loosely follows the one in the famous
5118 	 *	"30 instruction TCP receive" Van Jacobson mail.
5119 	 *
5120 	 *	Van's trick is to deposit buffers into socket queue
5121 	 *	on a device interrupt, to call tcp_recv function
5122 	 *	on the receive process context and checksum and copy
5123 	 *	the buffer to user space. smart...
5124 	 *
5125 	 *	Our current scheme is not silly either but we take the
5126 	 *	extra cost of the net_bh soft interrupt processing...
5127 	 *	We do checksum and copy also but from device to kernel.
5128 	 */
5129 
5130 	tp->rx_opt.saw_tstamp = 0;
5131 
5132 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5133 	 *	if header_prediction is to be made
5134 	 *	'S' will always be tp->tcp_header_len >> 2
5135 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5136 	 *  turn it off	(when there are holes in the receive
5137 	 *	 space for instance)
5138 	 *	PSH flag is ignored.
5139 	 */
5140 
5141 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5142 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5143 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5144 		int tcp_header_len = tp->tcp_header_len;
5145 
5146 		/* Timestamp header prediction: tcp_header_len
5147 		 * is automatically equal to th->doff*4 due to pred_flags
5148 		 * match.
5149 		 */
5150 
5151 		/* Check timestamp */
5152 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5153 			/* No? Slow path! */
5154 			if (!tcp_parse_aligned_timestamp(tp, th))
5155 				goto slow_path;
5156 
5157 			/* If PAWS failed, check it more carefully in slow path */
5158 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5159 				goto slow_path;
5160 
5161 			/* DO NOT update ts_recent here, if checksum fails
5162 			 * and timestamp was corrupted part, it will result
5163 			 * in a hung connection since we will drop all
5164 			 * future packets due to the PAWS test.
5165 			 */
5166 		}
5167 
5168 		if (len <= tcp_header_len) {
5169 			/* Bulk data transfer: sender */
5170 			if (len == tcp_header_len) {
5171 				/* Predicted packet is in window by definition.
5172 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5173 				 * Hence, check seq<=rcv_wup reduces to:
5174 				 */
5175 				if (tcp_header_len ==
5176 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5177 				    tp->rcv_nxt == tp->rcv_wup)
5178 					tcp_store_ts_recent(tp);
5179 
5180 				/* We know that such packets are checksummed
5181 				 * on entry.
5182 				 */
5183 				tcp_ack(sk, skb, 0);
5184 				__kfree_skb(skb);
5185 				tcp_data_snd_check(sk);
5186 				return;
5187 			} else { /* Header too small */
5188 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5189 				goto discard;
5190 			}
5191 		} else {
5192 			int eaten = 0;
5193 			int copied_early = 0;
5194 			bool fragstolen = false;
5195 
5196 			if (tp->copied_seq == tp->rcv_nxt &&
5197 			    len - tcp_header_len <= tp->ucopy.len) {
5198 #ifdef CONFIG_NET_DMA
5199 				if (tp->ucopy.task == current &&
5200 				    sock_owned_by_user(sk) &&
5201 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5202 					copied_early = 1;
5203 					eaten = 1;
5204 				}
5205 #endif
5206 				if (tp->ucopy.task == current &&
5207 				    sock_owned_by_user(sk) && !copied_early) {
5208 					__set_current_state(TASK_RUNNING);
5209 
5210 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5211 						eaten = 1;
5212 				}
5213 				if (eaten) {
5214 					/* Predicted packet is in window by definition.
5215 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5216 					 * Hence, check seq<=rcv_wup reduces to:
5217 					 */
5218 					if (tcp_header_len ==
5219 					    (sizeof(struct tcphdr) +
5220 					     TCPOLEN_TSTAMP_ALIGNED) &&
5221 					    tp->rcv_nxt == tp->rcv_wup)
5222 						tcp_store_ts_recent(tp);
5223 
5224 					tcp_rcv_rtt_measure_ts(sk, skb);
5225 
5226 					__skb_pull(skb, tcp_header_len);
5227 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5228 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5229 				}
5230 				if (copied_early)
5231 					tcp_cleanup_rbuf(sk, skb->len);
5232 			}
5233 			if (!eaten) {
5234 				if (tcp_checksum_complete_user(sk, skb))
5235 					goto csum_error;
5236 
5237 				if ((int)skb->truesize > sk->sk_forward_alloc)
5238 					goto step5;
5239 
5240 				/* Predicted packet is in window by definition.
5241 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5242 				 * Hence, check seq<=rcv_wup reduces to:
5243 				 */
5244 				if (tcp_header_len ==
5245 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5246 				    tp->rcv_nxt == tp->rcv_wup)
5247 					tcp_store_ts_recent(tp);
5248 
5249 				tcp_rcv_rtt_measure_ts(sk, skb);
5250 
5251 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5252 
5253 				/* Bulk data transfer: receiver */
5254 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5255 						      &fragstolen);
5256 			}
5257 
5258 			tcp_event_data_recv(sk, skb);
5259 
5260 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5261 				/* Well, only one small jumplet in fast path... */
5262 				tcp_ack(sk, skb, FLAG_DATA);
5263 				tcp_data_snd_check(sk);
5264 				if (!inet_csk_ack_scheduled(sk))
5265 					goto no_ack;
5266 			}
5267 
5268 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5269 				__tcp_ack_snd_check(sk, 0);
5270 no_ack:
5271 #ifdef CONFIG_NET_DMA
5272 			if (copied_early)
5273 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5274 			else
5275 #endif
5276 			if (eaten)
5277 				kfree_skb_partial(skb, fragstolen);
5278 			sk->sk_data_ready(sk);
5279 			return;
5280 		}
5281 	}
5282 
5283 slow_path:
5284 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5285 		goto csum_error;
5286 
5287 	if (!th->ack && !th->rst)
5288 		goto discard;
5289 
5290 	/*
5291 	 *	Standard slow path.
5292 	 */
5293 
5294 	if (!tcp_validate_incoming(sk, skb, th, 1))
5295 		return;
5296 
5297 step5:
5298 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5299 		goto discard;
5300 
5301 	tcp_rcv_rtt_measure_ts(sk, skb);
5302 
5303 	/* Process urgent data. */
5304 	tcp_urg(sk, skb, th);
5305 
5306 	/* step 7: process the segment text */
5307 	tcp_data_queue(sk, skb);
5308 
5309 	tcp_data_snd_check(sk);
5310 	tcp_ack_snd_check(sk);
5311 	return;
5312 
5313 csum_error:
5314 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5315 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5316 
5317 discard:
5318 	__kfree_skb(skb);
5319 }
5320 EXPORT_SYMBOL(tcp_rcv_established);
5321 
5322 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5323 {
5324 	struct tcp_sock *tp = tcp_sk(sk);
5325 	struct inet_connection_sock *icsk = inet_csk(sk);
5326 
5327 	tcp_set_state(sk, TCP_ESTABLISHED);
5328 
5329 	if (skb != NULL) {
5330 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5331 		security_inet_conn_established(sk, skb);
5332 	}
5333 
5334 	/* Make sure socket is routed, for correct metrics.  */
5335 	icsk->icsk_af_ops->rebuild_header(sk);
5336 
5337 	tcp_init_metrics(sk);
5338 
5339 	tcp_init_congestion_control(sk);
5340 
5341 	/* Prevent spurious tcp_cwnd_restart() on first data
5342 	 * packet.
5343 	 */
5344 	tp->lsndtime = tcp_time_stamp;
5345 
5346 	tcp_init_buffer_space(sk);
5347 
5348 	if (sock_flag(sk, SOCK_KEEPOPEN))
5349 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5350 
5351 	if (!tp->rx_opt.snd_wscale)
5352 		__tcp_fast_path_on(tp, tp->snd_wnd);
5353 	else
5354 		tp->pred_flags = 0;
5355 
5356 	if (!sock_flag(sk, SOCK_DEAD)) {
5357 		sk->sk_state_change(sk);
5358 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5359 	}
5360 }
5361 
5362 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5363 				    struct tcp_fastopen_cookie *cookie)
5364 {
5365 	struct tcp_sock *tp = tcp_sk(sk);
5366 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5367 	u16 mss = tp->rx_opt.mss_clamp;
5368 	bool syn_drop;
5369 
5370 	if (mss == tp->rx_opt.user_mss) {
5371 		struct tcp_options_received opt;
5372 
5373 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5374 		tcp_clear_options(&opt);
5375 		opt.user_mss = opt.mss_clamp = 0;
5376 		tcp_parse_options(synack, &opt, 0, NULL);
5377 		mss = opt.mss_clamp;
5378 	}
5379 
5380 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5381 		cookie->len = -1;
5382 
5383 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5384 	 * the remote receives only the retransmitted (regular) SYNs: either
5385 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5386 	 */
5387 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5388 
5389 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5390 
5391 	if (data) { /* Retransmit unacked data in SYN */
5392 		tcp_for_write_queue_from(data, sk) {
5393 			if (data == tcp_send_head(sk) ||
5394 			    __tcp_retransmit_skb(sk, data))
5395 				break;
5396 		}
5397 		tcp_rearm_rto(sk);
5398 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5399 		return true;
5400 	}
5401 	tp->syn_data_acked = tp->syn_data;
5402 	if (tp->syn_data_acked)
5403 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5404 	return false;
5405 }
5406 
5407 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5408 					 const struct tcphdr *th, unsigned int len)
5409 {
5410 	struct inet_connection_sock *icsk = inet_csk(sk);
5411 	struct tcp_sock *tp = tcp_sk(sk);
5412 	struct tcp_fastopen_cookie foc = { .len = -1 };
5413 	int saved_clamp = tp->rx_opt.mss_clamp;
5414 
5415 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5416 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5417 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5418 
5419 	if (th->ack) {
5420 		/* rfc793:
5421 		 * "If the state is SYN-SENT then
5422 		 *    first check the ACK bit
5423 		 *      If the ACK bit is set
5424 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5425 		 *        a reset (unless the RST bit is set, if so drop
5426 		 *        the segment and return)"
5427 		 */
5428 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5429 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5430 			goto reset_and_undo;
5431 
5432 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5433 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5434 			     tcp_time_stamp)) {
5435 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5436 			goto reset_and_undo;
5437 		}
5438 
5439 		/* Now ACK is acceptable.
5440 		 *
5441 		 * "If the RST bit is set
5442 		 *    If the ACK was acceptable then signal the user "error:
5443 		 *    connection reset", drop the segment, enter CLOSED state,
5444 		 *    delete TCB, and return."
5445 		 */
5446 
5447 		if (th->rst) {
5448 			tcp_reset(sk);
5449 			goto discard;
5450 		}
5451 
5452 		/* rfc793:
5453 		 *   "fifth, if neither of the SYN or RST bits is set then
5454 		 *    drop the segment and return."
5455 		 *
5456 		 *    See note below!
5457 		 *                                        --ANK(990513)
5458 		 */
5459 		if (!th->syn)
5460 			goto discard_and_undo;
5461 
5462 		/* rfc793:
5463 		 *   "If the SYN bit is on ...
5464 		 *    are acceptable then ...
5465 		 *    (our SYN has been ACKed), change the connection
5466 		 *    state to ESTABLISHED..."
5467 		 */
5468 
5469 		TCP_ECN_rcv_synack(tp, th);
5470 
5471 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5472 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5473 
5474 		/* Ok.. it's good. Set up sequence numbers and
5475 		 * move to established.
5476 		 */
5477 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5478 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5479 
5480 		/* RFC1323: The window in SYN & SYN/ACK segments is
5481 		 * never scaled.
5482 		 */
5483 		tp->snd_wnd = ntohs(th->window);
5484 
5485 		if (!tp->rx_opt.wscale_ok) {
5486 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5487 			tp->window_clamp = min(tp->window_clamp, 65535U);
5488 		}
5489 
5490 		if (tp->rx_opt.saw_tstamp) {
5491 			tp->rx_opt.tstamp_ok	   = 1;
5492 			tp->tcp_header_len =
5493 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5494 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5495 			tcp_store_ts_recent(tp);
5496 		} else {
5497 			tp->tcp_header_len = sizeof(struct tcphdr);
5498 		}
5499 
5500 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5501 			tcp_enable_fack(tp);
5502 
5503 		tcp_mtup_init(sk);
5504 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5505 		tcp_initialize_rcv_mss(sk);
5506 
5507 		/* Remember, tcp_poll() does not lock socket!
5508 		 * Change state from SYN-SENT only after copied_seq
5509 		 * is initialized. */
5510 		tp->copied_seq = tp->rcv_nxt;
5511 
5512 		smp_mb();
5513 
5514 		tcp_finish_connect(sk, skb);
5515 
5516 		if ((tp->syn_fastopen || tp->syn_data) &&
5517 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5518 			return -1;
5519 
5520 		if (sk->sk_write_pending ||
5521 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5522 		    icsk->icsk_ack.pingpong) {
5523 			/* Save one ACK. Data will be ready after
5524 			 * several ticks, if write_pending is set.
5525 			 *
5526 			 * It may be deleted, but with this feature tcpdumps
5527 			 * look so _wonderfully_ clever, that I was not able
5528 			 * to stand against the temptation 8)     --ANK
5529 			 */
5530 			inet_csk_schedule_ack(sk);
5531 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5532 			tcp_enter_quickack_mode(sk);
5533 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5534 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5535 
5536 discard:
5537 			__kfree_skb(skb);
5538 			return 0;
5539 		} else {
5540 			tcp_send_ack(sk);
5541 		}
5542 		return -1;
5543 	}
5544 
5545 	/* No ACK in the segment */
5546 
5547 	if (th->rst) {
5548 		/* rfc793:
5549 		 * "If the RST bit is set
5550 		 *
5551 		 *      Otherwise (no ACK) drop the segment and return."
5552 		 */
5553 
5554 		goto discard_and_undo;
5555 	}
5556 
5557 	/* PAWS check. */
5558 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5559 	    tcp_paws_reject(&tp->rx_opt, 0))
5560 		goto discard_and_undo;
5561 
5562 	if (th->syn) {
5563 		/* We see SYN without ACK. It is attempt of
5564 		 * simultaneous connect with crossed SYNs.
5565 		 * Particularly, it can be connect to self.
5566 		 */
5567 		tcp_set_state(sk, TCP_SYN_RECV);
5568 
5569 		if (tp->rx_opt.saw_tstamp) {
5570 			tp->rx_opt.tstamp_ok = 1;
5571 			tcp_store_ts_recent(tp);
5572 			tp->tcp_header_len =
5573 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5574 		} else {
5575 			tp->tcp_header_len = sizeof(struct tcphdr);
5576 		}
5577 
5578 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5579 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5580 
5581 		/* RFC1323: The window in SYN & SYN/ACK segments is
5582 		 * never scaled.
5583 		 */
5584 		tp->snd_wnd    = ntohs(th->window);
5585 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5586 		tp->max_window = tp->snd_wnd;
5587 
5588 		TCP_ECN_rcv_syn(tp, th);
5589 
5590 		tcp_mtup_init(sk);
5591 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5592 		tcp_initialize_rcv_mss(sk);
5593 
5594 		tcp_send_synack(sk);
5595 #if 0
5596 		/* Note, we could accept data and URG from this segment.
5597 		 * There are no obstacles to make this (except that we must
5598 		 * either change tcp_recvmsg() to prevent it from returning data
5599 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5600 		 *
5601 		 * However, if we ignore data in ACKless segments sometimes,
5602 		 * we have no reasons to accept it sometimes.
5603 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5604 		 * is not flawless. So, discard packet for sanity.
5605 		 * Uncomment this return to process the data.
5606 		 */
5607 		return -1;
5608 #else
5609 		goto discard;
5610 #endif
5611 	}
5612 	/* "fifth, if neither of the SYN or RST bits is set then
5613 	 * drop the segment and return."
5614 	 */
5615 
5616 discard_and_undo:
5617 	tcp_clear_options(&tp->rx_opt);
5618 	tp->rx_opt.mss_clamp = saved_clamp;
5619 	goto discard;
5620 
5621 reset_and_undo:
5622 	tcp_clear_options(&tp->rx_opt);
5623 	tp->rx_opt.mss_clamp = saved_clamp;
5624 	return 1;
5625 }
5626 
5627 /*
5628  *	This function implements the receiving procedure of RFC 793 for
5629  *	all states except ESTABLISHED and TIME_WAIT.
5630  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5631  *	address independent.
5632  */
5633 
5634 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5635 			  const struct tcphdr *th, unsigned int len)
5636 {
5637 	struct tcp_sock *tp = tcp_sk(sk);
5638 	struct inet_connection_sock *icsk = inet_csk(sk);
5639 	struct request_sock *req;
5640 	int queued = 0;
5641 	bool acceptable;
5642 	u32 synack_stamp;
5643 
5644 	tp->rx_opt.saw_tstamp = 0;
5645 
5646 	switch (sk->sk_state) {
5647 	case TCP_CLOSE:
5648 		goto discard;
5649 
5650 	case TCP_LISTEN:
5651 		if (th->ack)
5652 			return 1;
5653 
5654 		if (th->rst)
5655 			goto discard;
5656 
5657 		if (th->syn) {
5658 			if (th->fin)
5659 				goto discard;
5660 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5661 				return 1;
5662 
5663 			/* Now we have several options: In theory there is
5664 			 * nothing else in the frame. KA9Q has an option to
5665 			 * send data with the syn, BSD accepts data with the
5666 			 * syn up to the [to be] advertised window and
5667 			 * Solaris 2.1 gives you a protocol error. For now
5668 			 * we just ignore it, that fits the spec precisely
5669 			 * and avoids incompatibilities. It would be nice in
5670 			 * future to drop through and process the data.
5671 			 *
5672 			 * Now that TTCP is starting to be used we ought to
5673 			 * queue this data.
5674 			 * But, this leaves one open to an easy denial of
5675 			 * service attack, and SYN cookies can't defend
5676 			 * against this problem. So, we drop the data
5677 			 * in the interest of security over speed unless
5678 			 * it's still in use.
5679 			 */
5680 			kfree_skb(skb);
5681 			return 0;
5682 		}
5683 		goto discard;
5684 
5685 	case TCP_SYN_SENT:
5686 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5687 		if (queued >= 0)
5688 			return queued;
5689 
5690 		/* Do step6 onward by hand. */
5691 		tcp_urg(sk, skb, th);
5692 		__kfree_skb(skb);
5693 		tcp_data_snd_check(sk);
5694 		return 0;
5695 	}
5696 
5697 	req = tp->fastopen_rsk;
5698 	if (req != NULL) {
5699 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5700 		    sk->sk_state != TCP_FIN_WAIT1);
5701 
5702 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5703 			goto discard;
5704 	}
5705 
5706 	if (!th->ack && !th->rst)
5707 		goto discard;
5708 
5709 	if (!tcp_validate_incoming(sk, skb, th, 0))
5710 		return 0;
5711 
5712 	/* step 5: check the ACK field */
5713 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5714 				      FLAG_UPDATE_TS_RECENT) > 0;
5715 
5716 	switch (sk->sk_state) {
5717 	case TCP_SYN_RECV:
5718 		if (!acceptable)
5719 			return 1;
5720 
5721 		/* Once we leave TCP_SYN_RECV, we no longer need req
5722 		 * so release it.
5723 		 */
5724 		if (req) {
5725 			synack_stamp = tcp_rsk(req)->snt_synack;
5726 			tp->total_retrans = req->num_retrans;
5727 			reqsk_fastopen_remove(sk, req, false);
5728 		} else {
5729 			synack_stamp = tp->lsndtime;
5730 			/* Make sure socket is routed, for correct metrics. */
5731 			icsk->icsk_af_ops->rebuild_header(sk);
5732 			tcp_init_congestion_control(sk);
5733 
5734 			tcp_mtup_init(sk);
5735 			tp->copied_seq = tp->rcv_nxt;
5736 			tcp_init_buffer_space(sk);
5737 		}
5738 		smp_mb();
5739 		tcp_set_state(sk, TCP_ESTABLISHED);
5740 		sk->sk_state_change(sk);
5741 
5742 		/* Note, that this wakeup is only for marginal crossed SYN case.
5743 		 * Passively open sockets are not waked up, because
5744 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5745 		 */
5746 		if (sk->sk_socket)
5747 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5748 
5749 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5750 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5751 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5752 		tcp_synack_rtt_meas(sk, synack_stamp);
5753 
5754 		if (tp->rx_opt.tstamp_ok)
5755 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5756 
5757 		if (req) {
5758 			/* Re-arm the timer because data may have been sent out.
5759 			 * This is similar to the regular data transmission case
5760 			 * when new data has just been ack'ed.
5761 			 *
5762 			 * (TFO) - we could try to be more aggressive and
5763 			 * retransmitting any data sooner based on when they
5764 			 * are sent out.
5765 			 */
5766 			tcp_rearm_rto(sk);
5767 		} else
5768 			tcp_init_metrics(sk);
5769 
5770 		tcp_update_pacing_rate(sk);
5771 
5772 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5773 		tp->lsndtime = tcp_time_stamp;
5774 
5775 		tcp_initialize_rcv_mss(sk);
5776 		tcp_fast_path_on(tp);
5777 		break;
5778 
5779 	case TCP_FIN_WAIT1: {
5780 		struct dst_entry *dst;
5781 		int tmo;
5782 
5783 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5784 		 * Fast Open socket and this is the first acceptable
5785 		 * ACK we have received, this would have acknowledged
5786 		 * our SYNACK so stop the SYNACK timer.
5787 		 */
5788 		if (req != NULL) {
5789 			/* Return RST if ack_seq is invalid.
5790 			 * Note that RFC793 only says to generate a
5791 			 * DUPACK for it but for TCP Fast Open it seems
5792 			 * better to treat this case like TCP_SYN_RECV
5793 			 * above.
5794 			 */
5795 			if (!acceptable)
5796 				return 1;
5797 			/* We no longer need the request sock. */
5798 			reqsk_fastopen_remove(sk, req, false);
5799 			tcp_rearm_rto(sk);
5800 		}
5801 		if (tp->snd_una != tp->write_seq)
5802 			break;
5803 
5804 		tcp_set_state(sk, TCP_FIN_WAIT2);
5805 		sk->sk_shutdown |= SEND_SHUTDOWN;
5806 
5807 		dst = __sk_dst_get(sk);
5808 		if (dst)
5809 			dst_confirm(dst);
5810 
5811 		if (!sock_flag(sk, SOCK_DEAD)) {
5812 			/* Wake up lingering close() */
5813 			sk->sk_state_change(sk);
5814 			break;
5815 		}
5816 
5817 		if (tp->linger2 < 0 ||
5818 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5819 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5820 			tcp_done(sk);
5821 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5822 			return 1;
5823 		}
5824 
5825 		tmo = tcp_fin_time(sk);
5826 		if (tmo > TCP_TIMEWAIT_LEN) {
5827 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5828 		} else if (th->fin || sock_owned_by_user(sk)) {
5829 			/* Bad case. We could lose such FIN otherwise.
5830 			 * It is not a big problem, but it looks confusing
5831 			 * and not so rare event. We still can lose it now,
5832 			 * if it spins in bh_lock_sock(), but it is really
5833 			 * marginal case.
5834 			 */
5835 			inet_csk_reset_keepalive_timer(sk, tmo);
5836 		} else {
5837 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5838 			goto discard;
5839 		}
5840 		break;
5841 	}
5842 
5843 	case TCP_CLOSING:
5844 		if (tp->snd_una == tp->write_seq) {
5845 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5846 			goto discard;
5847 		}
5848 		break;
5849 
5850 	case TCP_LAST_ACK:
5851 		if (tp->snd_una == tp->write_seq) {
5852 			tcp_update_metrics(sk);
5853 			tcp_done(sk);
5854 			goto discard;
5855 		}
5856 		break;
5857 	}
5858 
5859 	/* step 6: check the URG bit */
5860 	tcp_urg(sk, skb, th);
5861 
5862 	/* step 7: process the segment text */
5863 	switch (sk->sk_state) {
5864 	case TCP_CLOSE_WAIT:
5865 	case TCP_CLOSING:
5866 	case TCP_LAST_ACK:
5867 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5868 			break;
5869 	case TCP_FIN_WAIT1:
5870 	case TCP_FIN_WAIT2:
5871 		/* RFC 793 says to queue data in these states,
5872 		 * RFC 1122 says we MUST send a reset.
5873 		 * BSD 4.4 also does reset.
5874 		 */
5875 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5876 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5877 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5878 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5879 				tcp_reset(sk);
5880 				return 1;
5881 			}
5882 		}
5883 		/* Fall through */
5884 	case TCP_ESTABLISHED:
5885 		tcp_data_queue(sk, skb);
5886 		queued = 1;
5887 		break;
5888 	}
5889 
5890 	/* tcp_data could move socket to TIME-WAIT */
5891 	if (sk->sk_state != TCP_CLOSE) {
5892 		tcp_data_snd_check(sk);
5893 		tcp_ack_snd_check(sk);
5894 	}
5895 
5896 	if (!queued) {
5897 discard:
5898 		__kfree_skb(skb);
5899 	}
5900 	return 0;
5901 }
5902 EXPORT_SYMBOL(tcp_rcv_state_process);
5903