xref: /openbmc/linux/net/ipv4/tcp_input.c (revision a971b42c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 			     unsigned int len)
143 {
144 	static bool __once __read_mostly;
145 
146 	if (!__once) {
147 		struct net_device *dev;
148 
149 		__once = true;
150 
151 		rcu_read_lock();
152 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 		if (!dev || len >= dev->mtu)
154 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 				dev ? dev->name : "Unknown driver");
156 		rcu_read_unlock();
157 	}
158 }
159 
160 /* Adapt the MSS value used to make delayed ack decision to the
161  * real world.
162  */
163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 	unsigned int len;
168 
169 	icsk->icsk_ack.last_seg_size = 0;
170 
171 	/* skb->len may jitter because of SACKs, even if peer
172 	 * sends good full-sized frames.
173 	 */
174 	len = skb_shinfo(skb)->gso_size ? : skb->len;
175 	if (len >= icsk->icsk_ack.rcv_mss) {
176 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 					       tcp_sk(sk)->advmss);
178 		/* Account for possibly-removed options */
179 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 				   MAX_TCP_OPTION_SPACE))
181 			tcp_gro_dev_warn(sk, skb, len);
182 	} else {
183 		/* Otherwise, we make more careful check taking into account,
184 		 * that SACKs block is variable.
185 		 *
186 		 * "len" is invariant segment length, including TCP header.
187 		 */
188 		len += skb->data - skb_transport_header(skb);
189 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
190 		    /* If PSH is not set, packet should be
191 		     * full sized, provided peer TCP is not badly broken.
192 		     * This observation (if it is correct 8)) allows
193 		     * to handle super-low mtu links fairly.
194 		     */
195 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
196 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
197 			/* Subtract also invariant (if peer is RFC compliant),
198 			 * tcp header plus fixed timestamp option length.
199 			 * Resulting "len" is MSS free of SACK jitter.
200 			 */
201 			len -= tcp_sk(sk)->tcp_header_len;
202 			icsk->icsk_ack.last_seg_size = len;
203 			if (len == lss) {
204 				icsk->icsk_ack.rcv_mss = len;
205 				return;
206 			}
207 		}
208 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
209 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
210 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
211 	}
212 }
213 
214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
215 {
216 	struct inet_connection_sock *icsk = inet_csk(sk);
217 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
218 
219 	if (quickacks == 0)
220 		quickacks = 2;
221 	quickacks = min(quickacks, max_quickacks);
222 	if (quickacks > icsk->icsk_ack.quick)
223 		icsk->icsk_ack.quick = quickacks;
224 }
225 
226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 
230 	tcp_incr_quickack(sk, max_quickacks);
231 	inet_csk_exit_pingpong_mode(sk);
232 	icsk->icsk_ack.ato = TCP_ATO_MIN;
233 }
234 EXPORT_SYMBOL(tcp_enter_quickack_mode);
235 
236 /* Send ACKs quickly, if "quick" count is not exhausted
237  * and the session is not interactive.
238  */
239 
240 static bool tcp_in_quickack_mode(struct sock *sk)
241 {
242 	const struct inet_connection_sock *icsk = inet_csk(sk);
243 	const struct dst_entry *dst = __sk_dst_get(sk);
244 
245 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
246 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
247 }
248 
249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
250 {
251 	if (tp->ecn_flags & TCP_ECN_OK)
252 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
253 }
254 
255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
256 {
257 	if (tcp_hdr(skb)->cwr) {
258 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
259 
260 		/* If the sender is telling us it has entered CWR, then its
261 		 * cwnd may be very low (even just 1 packet), so we should ACK
262 		 * immediately.
263 		 */
264 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
265 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
266 	}
267 }
268 
269 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
270 {
271 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
272 }
273 
274 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
275 {
276 	struct tcp_sock *tp = tcp_sk(sk);
277 
278 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
279 	case INET_ECN_NOT_ECT:
280 		/* Funny extension: if ECT is not set on a segment,
281 		 * and we already seen ECT on a previous segment,
282 		 * it is probably a retransmit.
283 		 */
284 		if (tp->ecn_flags & TCP_ECN_SEEN)
285 			tcp_enter_quickack_mode(sk, 2);
286 		break;
287 	case INET_ECN_CE:
288 		if (tcp_ca_needs_ecn(sk))
289 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
290 
291 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
292 			/* Better not delay acks, sender can have a very low cwnd */
293 			tcp_enter_quickack_mode(sk, 2);
294 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
295 		}
296 		tp->ecn_flags |= TCP_ECN_SEEN;
297 		break;
298 	default:
299 		if (tcp_ca_needs_ecn(sk))
300 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
301 		tp->ecn_flags |= TCP_ECN_SEEN;
302 		break;
303 	}
304 }
305 
306 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
307 {
308 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
309 		__tcp_ecn_check_ce(sk, skb);
310 }
311 
312 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
313 {
314 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
315 		tp->ecn_flags &= ~TCP_ECN_OK;
316 }
317 
318 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
319 {
320 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
321 		tp->ecn_flags &= ~TCP_ECN_OK;
322 }
323 
324 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
325 {
326 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
327 		return true;
328 	return false;
329 }
330 
331 /* Buffer size and advertised window tuning.
332  *
333  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
334  */
335 
336 static void tcp_sndbuf_expand(struct sock *sk)
337 {
338 	const struct tcp_sock *tp = tcp_sk(sk);
339 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
340 	int sndmem, per_mss;
341 	u32 nr_segs;
342 
343 	/* Worst case is non GSO/TSO : each frame consumes one skb
344 	 * and skb->head is kmalloced using power of two area of memory
345 	 */
346 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
347 		  MAX_TCP_HEADER +
348 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
349 
350 	per_mss = roundup_pow_of_two(per_mss) +
351 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
352 
353 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
354 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
355 
356 	/* Fast Recovery (RFC 5681 3.2) :
357 	 * Cubic needs 1.7 factor, rounded to 2 to include
358 	 * extra cushion (application might react slowly to EPOLLOUT)
359 	 */
360 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
361 	sndmem *= nr_segs * per_mss;
362 
363 	if (sk->sk_sndbuf < sndmem)
364 		WRITE_ONCE(sk->sk_sndbuf,
365 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
366 }
367 
368 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
369  *
370  * All tcp_full_space() is split to two parts: "network" buffer, allocated
371  * forward and advertised in receiver window (tp->rcv_wnd) and
372  * "application buffer", required to isolate scheduling/application
373  * latencies from network.
374  * window_clamp is maximal advertised window. It can be less than
375  * tcp_full_space(), in this case tcp_full_space() - window_clamp
376  * is reserved for "application" buffer. The less window_clamp is
377  * the smoother our behaviour from viewpoint of network, but the lower
378  * throughput and the higher sensitivity of the connection to losses. 8)
379  *
380  * rcv_ssthresh is more strict window_clamp used at "slow start"
381  * phase to predict further behaviour of this connection.
382  * It is used for two goals:
383  * - to enforce header prediction at sender, even when application
384  *   requires some significant "application buffer". It is check #1.
385  * - to prevent pruning of receive queue because of misprediction
386  *   of receiver window. Check #2.
387  *
388  * The scheme does not work when sender sends good segments opening
389  * window and then starts to feed us spaghetti. But it should work
390  * in common situations. Otherwise, we have to rely on queue collapsing.
391  */
392 
393 /* Slow part of check#2. */
394 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
395 {
396 	struct tcp_sock *tp = tcp_sk(sk);
397 	/* Optimize this! */
398 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
399 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
400 
401 	while (tp->rcv_ssthresh <= window) {
402 		if (truesize <= skb->len)
403 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
404 
405 		truesize >>= 1;
406 		window >>= 1;
407 	}
408 	return 0;
409 }
410 
411 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	int room;
415 
416 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
417 
418 	/* Check #1 */
419 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
420 		int incr;
421 
422 		/* Check #2. Increase window, if skb with such overhead
423 		 * will fit to rcvbuf in future.
424 		 */
425 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
426 			incr = 2 * tp->advmss;
427 		else
428 			incr = __tcp_grow_window(sk, skb);
429 
430 		if (incr) {
431 			incr = max_t(int, incr, 2 * skb->len);
432 			tp->rcv_ssthresh += min(room, incr);
433 			inet_csk(sk)->icsk_ack.quick |= 1;
434 		}
435 	}
436 }
437 
438 /* 3. Try to fixup all. It is made immediately after connection enters
439  *    established state.
440  */
441 static void tcp_init_buffer_space(struct sock *sk)
442 {
443 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
444 	struct tcp_sock *tp = tcp_sk(sk);
445 	int maxwin;
446 
447 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
448 		tcp_sndbuf_expand(sk);
449 
450 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
451 	tcp_mstamp_refresh(tp);
452 	tp->rcvq_space.time = tp->tcp_mstamp;
453 	tp->rcvq_space.seq = tp->copied_seq;
454 
455 	maxwin = tcp_full_space(sk);
456 
457 	if (tp->window_clamp >= maxwin) {
458 		tp->window_clamp = maxwin;
459 
460 		if (tcp_app_win && maxwin > 4 * tp->advmss)
461 			tp->window_clamp = max(maxwin -
462 					       (maxwin >> tcp_app_win),
463 					       4 * tp->advmss);
464 	}
465 
466 	/* Force reservation of one segment. */
467 	if (tcp_app_win &&
468 	    tp->window_clamp > 2 * tp->advmss &&
469 	    tp->window_clamp + tp->advmss > maxwin)
470 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
471 
472 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
473 	tp->snd_cwnd_stamp = tcp_jiffies32;
474 }
475 
476 /* 4. Recalculate window clamp after socket hit its memory bounds. */
477 static void tcp_clamp_window(struct sock *sk)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	struct inet_connection_sock *icsk = inet_csk(sk);
481 	struct net *net = sock_net(sk);
482 
483 	icsk->icsk_ack.quick = 0;
484 
485 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
486 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
487 	    !tcp_under_memory_pressure(sk) &&
488 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
489 		WRITE_ONCE(sk->sk_rcvbuf,
490 			   min(atomic_read(&sk->sk_rmem_alloc),
491 			       net->ipv4.sysctl_tcp_rmem[2]));
492 	}
493 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
494 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
495 }
496 
497 /* Initialize RCV_MSS value.
498  * RCV_MSS is an our guess about MSS used by the peer.
499  * We haven't any direct information about the MSS.
500  * It's better to underestimate the RCV_MSS rather than overestimate.
501  * Overestimations make us ACKing less frequently than needed.
502  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
503  */
504 void tcp_initialize_rcv_mss(struct sock *sk)
505 {
506 	const struct tcp_sock *tp = tcp_sk(sk);
507 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
508 
509 	hint = min(hint, tp->rcv_wnd / 2);
510 	hint = min(hint, TCP_MSS_DEFAULT);
511 	hint = max(hint, TCP_MIN_MSS);
512 
513 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
514 }
515 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
516 
517 /* Receiver "autotuning" code.
518  *
519  * The algorithm for RTT estimation w/o timestamps is based on
520  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
521  * <http://public.lanl.gov/radiant/pubs.html#DRS>
522  *
523  * More detail on this code can be found at
524  * <http://staff.psc.edu/jheffner/>,
525  * though this reference is out of date.  A new paper
526  * is pending.
527  */
528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
529 {
530 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
531 	long m = sample;
532 
533 	if (new_sample != 0) {
534 		/* If we sample in larger samples in the non-timestamp
535 		 * case, we could grossly overestimate the RTT especially
536 		 * with chatty applications or bulk transfer apps which
537 		 * are stalled on filesystem I/O.
538 		 *
539 		 * Also, since we are only going for a minimum in the
540 		 * non-timestamp case, we do not smooth things out
541 		 * else with timestamps disabled convergence takes too
542 		 * long.
543 		 */
544 		if (!win_dep) {
545 			m -= (new_sample >> 3);
546 			new_sample += m;
547 		} else {
548 			m <<= 3;
549 			if (m < new_sample)
550 				new_sample = m;
551 		}
552 	} else {
553 		/* No previous measure. */
554 		new_sample = m << 3;
555 	}
556 
557 	tp->rcv_rtt_est.rtt_us = new_sample;
558 }
559 
560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
561 {
562 	u32 delta_us;
563 
564 	if (tp->rcv_rtt_est.time == 0)
565 		goto new_measure;
566 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
567 		return;
568 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
569 	if (!delta_us)
570 		delta_us = 1;
571 	tcp_rcv_rtt_update(tp, delta_us, 1);
572 
573 new_measure:
574 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
575 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
576 }
577 
578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
579 					  const struct sk_buff *skb)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 
583 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
584 		return;
585 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
586 
587 	if (TCP_SKB_CB(skb)->end_seq -
588 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
589 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
590 		u32 delta_us;
591 
592 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
593 			if (!delta)
594 				delta = 1;
595 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
596 			tcp_rcv_rtt_update(tp, delta_us, 0);
597 		}
598 	}
599 }
600 
601 /*
602  * This function should be called every time data is copied to user space.
603  * It calculates the appropriate TCP receive buffer space.
604  */
605 void tcp_rcv_space_adjust(struct sock *sk)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	u32 copied;
609 	int time;
610 
611 	trace_tcp_rcv_space_adjust(sk);
612 
613 	tcp_mstamp_refresh(tp);
614 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
615 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
616 		return;
617 
618 	/* Number of bytes copied to user in last RTT */
619 	copied = tp->copied_seq - tp->rcvq_space.seq;
620 	if (copied <= tp->rcvq_space.space)
621 		goto new_measure;
622 
623 	/* A bit of theory :
624 	 * copied = bytes received in previous RTT, our base window
625 	 * To cope with packet losses, we need a 2x factor
626 	 * To cope with slow start, and sender growing its cwin by 100 %
627 	 * every RTT, we need a 4x factor, because the ACK we are sending
628 	 * now is for the next RTT, not the current one :
629 	 * <prev RTT . ><current RTT .. ><next RTT .... >
630 	 */
631 
632 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
633 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
634 		int rcvmem, rcvbuf;
635 		u64 rcvwin, grow;
636 
637 		/* minimal window to cope with packet losses, assuming
638 		 * steady state. Add some cushion because of small variations.
639 		 */
640 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
641 
642 		/* Accommodate for sender rate increase (eg. slow start) */
643 		grow = rcvwin * (copied - tp->rcvq_space.space);
644 		do_div(grow, tp->rcvq_space.space);
645 		rcvwin += (grow << 1);
646 
647 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
648 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
649 			rcvmem += 128;
650 
651 		do_div(rcvwin, tp->advmss);
652 		rcvbuf = min_t(u64, rcvwin * rcvmem,
653 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
654 		if (rcvbuf > sk->sk_rcvbuf) {
655 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
656 
657 			/* Make the window clamp follow along.  */
658 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
659 		}
660 	}
661 	tp->rcvq_space.space = copied;
662 
663 new_measure:
664 	tp->rcvq_space.seq = tp->copied_seq;
665 	tp->rcvq_space.time = tp->tcp_mstamp;
666 }
667 
668 /* There is something which you must keep in mind when you analyze the
669  * behavior of the tp->ato delayed ack timeout interval.  When a
670  * connection starts up, we want to ack as quickly as possible.  The
671  * problem is that "good" TCP's do slow start at the beginning of data
672  * transmission.  The means that until we send the first few ACK's the
673  * sender will sit on his end and only queue most of his data, because
674  * he can only send snd_cwnd unacked packets at any given time.  For
675  * each ACK we send, he increments snd_cwnd and transmits more of his
676  * queue.  -DaveM
677  */
678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct inet_connection_sock *icsk = inet_csk(sk);
682 	u32 now;
683 
684 	inet_csk_schedule_ack(sk);
685 
686 	tcp_measure_rcv_mss(sk, skb);
687 
688 	tcp_rcv_rtt_measure(tp);
689 
690 	now = tcp_jiffies32;
691 
692 	if (!icsk->icsk_ack.ato) {
693 		/* The _first_ data packet received, initialize
694 		 * delayed ACK engine.
695 		 */
696 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
697 		icsk->icsk_ack.ato = TCP_ATO_MIN;
698 	} else {
699 		int m = now - icsk->icsk_ack.lrcvtime;
700 
701 		if (m <= TCP_ATO_MIN / 2) {
702 			/* The fastest case is the first. */
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
704 		} else if (m < icsk->icsk_ack.ato) {
705 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
706 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
707 				icsk->icsk_ack.ato = icsk->icsk_rto;
708 		} else if (m > icsk->icsk_rto) {
709 			/* Too long gap. Apparently sender failed to
710 			 * restart window, so that we send ACKs quickly.
711 			 */
712 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
713 			sk_mem_reclaim(sk);
714 		}
715 	}
716 	icsk->icsk_ack.lrcvtime = now;
717 
718 	tcp_ecn_check_ce(sk, skb);
719 
720 	if (skb->len >= 128)
721 		tcp_grow_window(sk, skb);
722 }
723 
724 /* Called to compute a smoothed rtt estimate. The data fed to this
725  * routine either comes from timestamps, or from segments that were
726  * known _not_ to have been retransmitted [see Karn/Partridge
727  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
728  * piece by Van Jacobson.
729  * NOTE: the next three routines used to be one big routine.
730  * To save cycles in the RFC 1323 implementation it was better to break
731  * it up into three procedures. -- erics
732  */
733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
734 {
735 	struct tcp_sock *tp = tcp_sk(sk);
736 	long m = mrtt_us; /* RTT */
737 	u32 srtt = tp->srtt_us;
738 
739 	/*	The following amusing code comes from Jacobson's
740 	 *	article in SIGCOMM '88.  Note that rtt and mdev
741 	 *	are scaled versions of rtt and mean deviation.
742 	 *	This is designed to be as fast as possible
743 	 *	m stands for "measurement".
744 	 *
745 	 *	On a 1990 paper the rto value is changed to:
746 	 *	RTO = rtt + 4 * mdev
747 	 *
748 	 * Funny. This algorithm seems to be very broken.
749 	 * These formulae increase RTO, when it should be decreased, increase
750 	 * too slowly, when it should be increased quickly, decrease too quickly
751 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
752 	 * does not matter how to _calculate_ it. Seems, it was trap
753 	 * that VJ failed to avoid. 8)
754 	 */
755 	if (srtt != 0) {
756 		m -= (srtt >> 3);	/* m is now error in rtt est */
757 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
758 		if (m < 0) {
759 			m = -m;		/* m is now abs(error) */
760 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
761 			/* This is similar to one of Eifel findings.
762 			 * Eifel blocks mdev updates when rtt decreases.
763 			 * This solution is a bit different: we use finer gain
764 			 * for mdev in this case (alpha*beta).
765 			 * Like Eifel it also prevents growth of rto,
766 			 * but also it limits too fast rto decreases,
767 			 * happening in pure Eifel.
768 			 */
769 			if (m > 0)
770 				m >>= 3;
771 		} else {
772 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
773 		}
774 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
775 		if (tp->mdev_us > tp->mdev_max_us) {
776 			tp->mdev_max_us = tp->mdev_us;
777 			if (tp->mdev_max_us > tp->rttvar_us)
778 				tp->rttvar_us = tp->mdev_max_us;
779 		}
780 		if (after(tp->snd_una, tp->rtt_seq)) {
781 			if (tp->mdev_max_us < tp->rttvar_us)
782 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
783 			tp->rtt_seq = tp->snd_nxt;
784 			tp->mdev_max_us = tcp_rto_min_us(sk);
785 
786 			tcp_bpf_rtt(sk);
787 		}
788 	} else {
789 		/* no previous measure. */
790 		srtt = m << 3;		/* take the measured time to be rtt */
791 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
792 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
793 		tp->mdev_max_us = tp->rttvar_us;
794 		tp->rtt_seq = tp->snd_nxt;
795 
796 		tcp_bpf_rtt(sk);
797 	}
798 	tp->srtt_us = max(1U, srtt);
799 }
800 
801 static void tcp_update_pacing_rate(struct sock *sk)
802 {
803 	const struct tcp_sock *tp = tcp_sk(sk);
804 	u64 rate;
805 
806 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
807 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
808 
809 	/* current rate is (cwnd * mss) / srtt
810 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
811 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
812 	 *
813 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
814 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
815 	 *	 end of slow start and should slow down.
816 	 */
817 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
818 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
819 	else
820 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
821 
822 	rate *= max(tp->snd_cwnd, tp->packets_out);
823 
824 	if (likely(tp->srtt_us))
825 		do_div(rate, tp->srtt_us);
826 
827 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
828 	 * without any lock. We want to make sure compiler wont store
829 	 * intermediate values in this location.
830 	 */
831 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
832 					     sk->sk_max_pacing_rate));
833 }
834 
835 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
836  * routine referred to above.
837  */
838 static void tcp_set_rto(struct sock *sk)
839 {
840 	const struct tcp_sock *tp = tcp_sk(sk);
841 	/* Old crap is replaced with new one. 8)
842 	 *
843 	 * More seriously:
844 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
845 	 *    It cannot be less due to utterly erratic ACK generation made
846 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
847 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
848 	 *    is invisible. Actually, Linux-2.4 also generates erratic
849 	 *    ACKs in some circumstances.
850 	 */
851 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
852 
853 	/* 2. Fixups made earlier cannot be right.
854 	 *    If we do not estimate RTO correctly without them,
855 	 *    all the algo is pure shit and should be replaced
856 	 *    with correct one. It is exactly, which we pretend to do.
857 	 */
858 
859 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
860 	 * guarantees that rto is higher.
861 	 */
862 	tcp_bound_rto(sk);
863 }
864 
865 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
866 {
867 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
868 
869 	if (!cwnd)
870 		cwnd = TCP_INIT_CWND;
871 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
872 }
873 
874 /* Take a notice that peer is sending D-SACKs */
875 static void tcp_dsack_seen(struct tcp_sock *tp)
876 {
877 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
878 	tp->rack.dsack_seen = 1;
879 	tp->dsack_dups++;
880 }
881 
882 /* It's reordering when higher sequence was delivered (i.e. sacked) before
883  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
884  * distance is approximated in full-mss packet distance ("reordering").
885  */
886 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
887 				      const int ts)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	const u32 mss = tp->mss_cache;
891 	u32 fack, metric;
892 
893 	fack = tcp_highest_sack_seq(tp);
894 	if (!before(low_seq, fack))
895 		return;
896 
897 	metric = fack - low_seq;
898 	if ((metric > tp->reordering * mss) && mss) {
899 #if FASTRETRANS_DEBUG > 1
900 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
901 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
902 			 tp->reordering,
903 			 0,
904 			 tp->sacked_out,
905 			 tp->undo_marker ? tp->undo_retrans : 0);
906 #endif
907 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
908 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
909 	}
910 
911 	/* This exciting event is worth to be remembered. 8) */
912 	tp->reord_seen++;
913 	NET_INC_STATS(sock_net(sk),
914 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
915 }
916 
917 /* This must be called before lost_out is incremented */
918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
919 {
920 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
921 	    (tp->retransmit_skb_hint &&
922 	     before(TCP_SKB_CB(skb)->seq,
923 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
924 		tp->retransmit_skb_hint = skb;
925 }
926 
927 /* Sum the number of packets on the wire we have marked as lost.
928  * There are two cases we care about here:
929  * a) Packet hasn't been marked lost (nor retransmitted),
930  *    and this is the first loss.
931  * b) Packet has been marked both lost and retransmitted,
932  *    and this means we think it was lost again.
933  */
934 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
935 {
936 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
937 
938 	if (!(sacked & TCPCB_LOST) ||
939 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
940 		tp->lost += tcp_skb_pcount(skb);
941 }
942 
943 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
944 {
945 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
946 		tcp_verify_retransmit_hint(tp, skb);
947 
948 		tp->lost_out += tcp_skb_pcount(skb);
949 		tcp_sum_lost(tp, skb);
950 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
951 	}
952 }
953 
954 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
955 {
956 	tcp_verify_retransmit_hint(tp, skb);
957 
958 	tcp_sum_lost(tp, skb);
959 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
960 		tp->lost_out += tcp_skb_pcount(skb);
961 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
962 	}
963 }
964 
965 /* This procedure tags the retransmission queue when SACKs arrive.
966  *
967  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
968  * Packets in queue with these bits set are counted in variables
969  * sacked_out, retrans_out and lost_out, correspondingly.
970  *
971  * Valid combinations are:
972  * Tag  InFlight	Description
973  * 0	1		- orig segment is in flight.
974  * S	0		- nothing flies, orig reached receiver.
975  * L	0		- nothing flies, orig lost by net.
976  * R	2		- both orig and retransmit are in flight.
977  * L|R	1		- orig is lost, retransmit is in flight.
978  * S|R  1		- orig reached receiver, retrans is still in flight.
979  * (L|S|R is logically valid, it could occur when L|R is sacked,
980  *  but it is equivalent to plain S and code short-curcuits it to S.
981  *  L|S is logically invalid, it would mean -1 packet in flight 8))
982  *
983  * These 6 states form finite state machine, controlled by the following events:
984  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
985  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
986  * 3. Loss detection event of two flavors:
987  *	A. Scoreboard estimator decided the packet is lost.
988  *	   A'. Reno "three dupacks" marks head of queue lost.
989  *	B. SACK arrives sacking SND.NXT at the moment, when the
990  *	   segment was retransmitted.
991  * 4. D-SACK added new rule: D-SACK changes any tag to S.
992  *
993  * It is pleasant to note, that state diagram turns out to be commutative,
994  * so that we are allowed not to be bothered by order of our actions,
995  * when multiple events arrive simultaneously. (see the function below).
996  *
997  * Reordering detection.
998  * --------------------
999  * Reordering metric is maximal distance, which a packet can be displaced
1000  * in packet stream. With SACKs we can estimate it:
1001  *
1002  * 1. SACK fills old hole and the corresponding segment was not
1003  *    ever retransmitted -> reordering. Alas, we cannot use it
1004  *    when segment was retransmitted.
1005  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1006  *    for retransmitted and already SACKed segment -> reordering..
1007  * Both of these heuristics are not used in Loss state, when we cannot
1008  * account for retransmits accurately.
1009  *
1010  * SACK block validation.
1011  * ----------------------
1012  *
1013  * SACK block range validation checks that the received SACK block fits to
1014  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1015  * Note that SND.UNA is not included to the range though being valid because
1016  * it means that the receiver is rather inconsistent with itself reporting
1017  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1018  * perfectly valid, however, in light of RFC2018 which explicitly states
1019  * that "SACK block MUST reflect the newest segment.  Even if the newest
1020  * segment is going to be discarded ...", not that it looks very clever
1021  * in case of head skb. Due to potentional receiver driven attacks, we
1022  * choose to avoid immediate execution of a walk in write queue due to
1023  * reneging and defer head skb's loss recovery to standard loss recovery
1024  * procedure that will eventually trigger (nothing forbids us doing this).
1025  *
1026  * Implements also blockage to start_seq wrap-around. Problem lies in the
1027  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1028  * there's no guarantee that it will be before snd_nxt (n). The problem
1029  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1030  * wrap (s_w):
1031  *
1032  *         <- outs wnd ->                          <- wrapzone ->
1033  *         u     e      n                         u_w   e_w  s n_w
1034  *         |     |      |                          |     |   |  |
1035  * |<------------+------+----- TCP seqno space --------------+---------->|
1036  * ...-- <2^31 ->|                                           |<--------...
1037  * ...---- >2^31 ------>|                                    |<--------...
1038  *
1039  * Current code wouldn't be vulnerable but it's better still to discard such
1040  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1041  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1042  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1043  * equal to the ideal case (infinite seqno space without wrap caused issues).
1044  *
1045  * With D-SACK the lower bound is extended to cover sequence space below
1046  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1047  * again, D-SACK block must not to go across snd_una (for the same reason as
1048  * for the normal SACK blocks, explained above). But there all simplicity
1049  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1050  * fully below undo_marker they do not affect behavior in anyway and can
1051  * therefore be safely ignored. In rare cases (which are more or less
1052  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1053  * fragmentation and packet reordering past skb's retransmission. To consider
1054  * them correctly, the acceptable range must be extended even more though
1055  * the exact amount is rather hard to quantify. However, tp->max_window can
1056  * be used as an exaggerated estimate.
1057  */
1058 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1059 				   u32 start_seq, u32 end_seq)
1060 {
1061 	/* Too far in future, or reversed (interpretation is ambiguous) */
1062 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1063 		return false;
1064 
1065 	/* Nasty start_seq wrap-around check (see comments above) */
1066 	if (!before(start_seq, tp->snd_nxt))
1067 		return false;
1068 
1069 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1070 	 * start_seq == snd_una is non-sensical (see comments above)
1071 	 */
1072 	if (after(start_seq, tp->snd_una))
1073 		return true;
1074 
1075 	if (!is_dsack || !tp->undo_marker)
1076 		return false;
1077 
1078 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1079 	if (after(end_seq, tp->snd_una))
1080 		return false;
1081 
1082 	if (!before(start_seq, tp->undo_marker))
1083 		return true;
1084 
1085 	/* Too old */
1086 	if (!after(end_seq, tp->undo_marker))
1087 		return false;
1088 
1089 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1090 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1091 	 */
1092 	return !before(start_seq, end_seq - tp->max_window);
1093 }
1094 
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 			    struct tcp_sack_block_wire *sp, int num_sacks,
1097 			    u32 prior_snd_una)
1098 {
1099 	struct tcp_sock *tp = tcp_sk(sk);
1100 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 	bool dup_sack = false;
1103 
1104 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 		dup_sack = true;
1106 		tcp_dsack_seen(tp);
1107 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 	} else if (num_sacks > 1) {
1109 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111 
1112 		if (!after(end_seq_0, end_seq_1) &&
1113 		    !before(start_seq_0, start_seq_1)) {
1114 			dup_sack = true;
1115 			tcp_dsack_seen(tp);
1116 			NET_INC_STATS(sock_net(sk),
1117 					LINUX_MIB_TCPDSACKOFORECV);
1118 		}
1119 	}
1120 
1121 	/* D-SACK for already forgotten data... Do dumb counting. */
1122 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 	    !after(end_seq_0, prior_snd_una) &&
1124 	    after(end_seq_0, tp->undo_marker))
1125 		tp->undo_retrans--;
1126 
1127 	return dup_sack;
1128 }
1129 
1130 struct tcp_sacktag_state {
1131 	u32	reord;
1132 	/* Timestamps for earliest and latest never-retransmitted segment
1133 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1134 	 * but congestion control should still get an accurate delay signal.
1135 	 */
1136 	u64	first_sackt;
1137 	u64	last_sackt;
1138 	struct rate_sample *rate;
1139 	int	flag;
1140 	unsigned int mss_now;
1141 };
1142 
1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144  * the incoming SACK may not exactly match but we can find smaller MSS
1145  * aligned portion of it that matches. Therefore we might need to fragment
1146  * which may fail and creates some hassle (caller must handle error case
1147  * returns).
1148  *
1149  * FIXME: this could be merged to shift decision code
1150  */
1151 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1152 				  u32 start_seq, u32 end_seq)
1153 {
1154 	int err;
1155 	bool in_sack;
1156 	unsigned int pkt_len;
1157 	unsigned int mss;
1158 
1159 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1160 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1161 
1162 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1163 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1164 		mss = tcp_skb_mss(skb);
1165 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1166 
1167 		if (!in_sack) {
1168 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1169 			if (pkt_len < mss)
1170 				pkt_len = mss;
1171 		} else {
1172 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1173 			if (pkt_len < mss)
1174 				return -EINVAL;
1175 		}
1176 
1177 		/* Round if necessary so that SACKs cover only full MSSes
1178 		 * and/or the remaining small portion (if present)
1179 		 */
1180 		if (pkt_len > mss) {
1181 			unsigned int new_len = (pkt_len / mss) * mss;
1182 			if (!in_sack && new_len < pkt_len)
1183 				new_len += mss;
1184 			pkt_len = new_len;
1185 		}
1186 
1187 		if (pkt_len >= skb->len && !in_sack)
1188 			return 0;
1189 
1190 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1191 				   pkt_len, mss, GFP_ATOMIC);
1192 		if (err < 0)
1193 			return err;
1194 	}
1195 
1196 	return in_sack;
1197 }
1198 
1199 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1200 static u8 tcp_sacktag_one(struct sock *sk,
1201 			  struct tcp_sacktag_state *state, u8 sacked,
1202 			  u32 start_seq, u32 end_seq,
1203 			  int dup_sack, int pcount,
1204 			  u64 xmit_time)
1205 {
1206 	struct tcp_sock *tp = tcp_sk(sk);
1207 
1208 	/* Account D-SACK for retransmitted packet. */
1209 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1210 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1211 		    after(end_seq, tp->undo_marker))
1212 			tp->undo_retrans--;
1213 		if ((sacked & TCPCB_SACKED_ACKED) &&
1214 		    before(start_seq, state->reord))
1215 				state->reord = start_seq;
1216 	}
1217 
1218 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1219 	if (!after(end_seq, tp->snd_una))
1220 		return sacked;
1221 
1222 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1223 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1224 
1225 		if (sacked & TCPCB_SACKED_RETRANS) {
1226 			/* If the segment is not tagged as lost,
1227 			 * we do not clear RETRANS, believing
1228 			 * that retransmission is still in flight.
1229 			 */
1230 			if (sacked & TCPCB_LOST) {
1231 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1232 				tp->lost_out -= pcount;
1233 				tp->retrans_out -= pcount;
1234 			}
1235 		} else {
1236 			if (!(sacked & TCPCB_RETRANS)) {
1237 				/* New sack for not retransmitted frame,
1238 				 * which was in hole. It is reordering.
1239 				 */
1240 				if (before(start_seq,
1241 					   tcp_highest_sack_seq(tp)) &&
1242 				    before(start_seq, state->reord))
1243 					state->reord = start_seq;
1244 
1245 				if (!after(end_seq, tp->high_seq))
1246 					state->flag |= FLAG_ORIG_SACK_ACKED;
1247 				if (state->first_sackt == 0)
1248 					state->first_sackt = xmit_time;
1249 				state->last_sackt = xmit_time;
1250 			}
1251 
1252 			if (sacked & TCPCB_LOST) {
1253 				sacked &= ~TCPCB_LOST;
1254 				tp->lost_out -= pcount;
1255 			}
1256 		}
1257 
1258 		sacked |= TCPCB_SACKED_ACKED;
1259 		state->flag |= FLAG_DATA_SACKED;
1260 		tp->sacked_out += pcount;
1261 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1262 
1263 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1264 		if (tp->lost_skb_hint &&
1265 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1266 			tp->lost_cnt_hint += pcount;
1267 	}
1268 
1269 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1270 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1271 	 * are accounted above as well.
1272 	 */
1273 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1274 		sacked &= ~TCPCB_SACKED_RETRANS;
1275 		tp->retrans_out -= pcount;
1276 	}
1277 
1278 	return sacked;
1279 }
1280 
1281 /* Shift newly-SACKed bytes from this skb to the immediately previous
1282  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1283  */
1284 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1285 			    struct sk_buff *skb,
1286 			    struct tcp_sacktag_state *state,
1287 			    unsigned int pcount, int shifted, int mss,
1288 			    bool dup_sack)
1289 {
1290 	struct tcp_sock *tp = tcp_sk(sk);
1291 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1292 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1293 
1294 	BUG_ON(!pcount);
1295 
1296 	/* Adjust counters and hints for the newly sacked sequence
1297 	 * range but discard the return value since prev is already
1298 	 * marked. We must tag the range first because the seq
1299 	 * advancement below implicitly advances
1300 	 * tcp_highest_sack_seq() when skb is highest_sack.
1301 	 */
1302 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1303 			start_seq, end_seq, dup_sack, pcount,
1304 			tcp_skb_timestamp_us(skb));
1305 	tcp_rate_skb_delivered(sk, skb, state->rate);
1306 
1307 	if (skb == tp->lost_skb_hint)
1308 		tp->lost_cnt_hint += pcount;
1309 
1310 	TCP_SKB_CB(prev)->end_seq += shifted;
1311 	TCP_SKB_CB(skb)->seq += shifted;
1312 
1313 	tcp_skb_pcount_add(prev, pcount);
1314 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1315 	tcp_skb_pcount_add(skb, -pcount);
1316 
1317 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1318 	 * in theory this shouldn't be necessary but as long as DSACK
1319 	 * code can come after this skb later on it's better to keep
1320 	 * setting gso_size to something.
1321 	 */
1322 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1323 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1324 
1325 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1326 	if (tcp_skb_pcount(skb) <= 1)
1327 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1328 
1329 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1330 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1331 
1332 	if (skb->len > 0) {
1333 		BUG_ON(!tcp_skb_pcount(skb));
1334 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1335 		return false;
1336 	}
1337 
1338 	/* Whole SKB was eaten :-) */
1339 
1340 	if (skb == tp->retransmit_skb_hint)
1341 		tp->retransmit_skb_hint = prev;
1342 	if (skb == tp->lost_skb_hint) {
1343 		tp->lost_skb_hint = prev;
1344 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1345 	}
1346 
1347 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1348 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1349 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350 		TCP_SKB_CB(prev)->end_seq++;
1351 
1352 	if (skb == tcp_highest_sack(sk))
1353 		tcp_advance_highest_sack(sk, skb);
1354 
1355 	tcp_skb_collapse_tstamp(prev, skb);
1356 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1357 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1358 
1359 	tcp_rtx_queue_unlink_and_free(skb, sk);
1360 
1361 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1362 
1363 	return true;
1364 }
1365 
1366 /* I wish gso_size would have a bit more sane initialization than
1367  * something-or-zero which complicates things
1368  */
1369 static int tcp_skb_seglen(const struct sk_buff *skb)
1370 {
1371 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1372 }
1373 
1374 /* Shifting pages past head area doesn't work */
1375 static int skb_can_shift(const struct sk_buff *skb)
1376 {
1377 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1378 }
1379 
1380 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1381 		  int pcount, int shiftlen)
1382 {
1383 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1384 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1385 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1386 	 * even if current MSS is bigger.
1387 	 */
1388 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1389 		return 0;
1390 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1391 		return 0;
1392 	return skb_shift(to, from, shiftlen);
1393 }
1394 
1395 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1396  * skb.
1397  */
1398 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1399 					  struct tcp_sacktag_state *state,
1400 					  u32 start_seq, u32 end_seq,
1401 					  bool dup_sack)
1402 {
1403 	struct tcp_sock *tp = tcp_sk(sk);
1404 	struct sk_buff *prev;
1405 	int mss;
1406 	int pcount = 0;
1407 	int len;
1408 	int in_sack;
1409 
1410 	/* Normally R but no L won't result in plain S */
1411 	if (!dup_sack &&
1412 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1413 		goto fallback;
1414 	if (!skb_can_shift(skb))
1415 		goto fallback;
1416 	/* This frame is about to be dropped (was ACKed). */
1417 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1418 		goto fallback;
1419 
1420 	/* Can only happen with delayed DSACK + discard craziness */
1421 	prev = skb_rb_prev(skb);
1422 	if (!prev)
1423 		goto fallback;
1424 
1425 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1426 		goto fallback;
1427 
1428 	if (!tcp_skb_can_collapse(prev, skb))
1429 		goto fallback;
1430 
1431 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1432 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1433 
1434 	if (in_sack) {
1435 		len = skb->len;
1436 		pcount = tcp_skb_pcount(skb);
1437 		mss = tcp_skb_seglen(skb);
1438 
1439 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1440 		 * drop this restriction as unnecessary
1441 		 */
1442 		if (mss != tcp_skb_seglen(prev))
1443 			goto fallback;
1444 	} else {
1445 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1446 			goto noop;
1447 		/* CHECKME: This is non-MSS split case only?, this will
1448 		 * cause skipped skbs due to advancing loop btw, original
1449 		 * has that feature too
1450 		 */
1451 		if (tcp_skb_pcount(skb) <= 1)
1452 			goto noop;
1453 
1454 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1455 		if (!in_sack) {
1456 			/* TODO: head merge to next could be attempted here
1457 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1458 			 * though it might not be worth of the additional hassle
1459 			 *
1460 			 * ...we can probably just fallback to what was done
1461 			 * previously. We could try merging non-SACKed ones
1462 			 * as well but it probably isn't going to buy off
1463 			 * because later SACKs might again split them, and
1464 			 * it would make skb timestamp tracking considerably
1465 			 * harder problem.
1466 			 */
1467 			goto fallback;
1468 		}
1469 
1470 		len = end_seq - TCP_SKB_CB(skb)->seq;
1471 		BUG_ON(len < 0);
1472 		BUG_ON(len > skb->len);
1473 
1474 		/* MSS boundaries should be honoured or else pcount will
1475 		 * severely break even though it makes things bit trickier.
1476 		 * Optimize common case to avoid most of the divides
1477 		 */
1478 		mss = tcp_skb_mss(skb);
1479 
1480 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1481 		 * drop this restriction as unnecessary
1482 		 */
1483 		if (mss != tcp_skb_seglen(prev))
1484 			goto fallback;
1485 
1486 		if (len == mss) {
1487 			pcount = 1;
1488 		} else if (len < mss) {
1489 			goto noop;
1490 		} else {
1491 			pcount = len / mss;
1492 			len = pcount * mss;
1493 		}
1494 	}
1495 
1496 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1497 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1498 		goto fallback;
1499 
1500 	if (!tcp_skb_shift(prev, skb, pcount, len))
1501 		goto fallback;
1502 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1503 		goto out;
1504 
1505 	/* Hole filled allows collapsing with the next as well, this is very
1506 	 * useful when hole on every nth skb pattern happens
1507 	 */
1508 	skb = skb_rb_next(prev);
1509 	if (!skb)
1510 		goto out;
1511 
1512 	if (!skb_can_shift(skb) ||
1513 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1514 	    (mss != tcp_skb_seglen(skb)))
1515 		goto out;
1516 
1517 	len = skb->len;
1518 	pcount = tcp_skb_pcount(skb);
1519 	if (tcp_skb_shift(prev, skb, pcount, len))
1520 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1521 				len, mss, 0);
1522 
1523 out:
1524 	return prev;
1525 
1526 noop:
1527 	return skb;
1528 
1529 fallback:
1530 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1531 	return NULL;
1532 }
1533 
1534 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1535 					struct tcp_sack_block *next_dup,
1536 					struct tcp_sacktag_state *state,
1537 					u32 start_seq, u32 end_seq,
1538 					bool dup_sack_in)
1539 {
1540 	struct tcp_sock *tp = tcp_sk(sk);
1541 	struct sk_buff *tmp;
1542 
1543 	skb_rbtree_walk_from(skb) {
1544 		int in_sack = 0;
1545 		bool dup_sack = dup_sack_in;
1546 
1547 		/* queue is in-order => we can short-circuit the walk early */
1548 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1549 			break;
1550 
1551 		if (next_dup  &&
1552 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1553 			in_sack = tcp_match_skb_to_sack(sk, skb,
1554 							next_dup->start_seq,
1555 							next_dup->end_seq);
1556 			if (in_sack > 0)
1557 				dup_sack = true;
1558 		}
1559 
1560 		/* skb reference here is a bit tricky to get right, since
1561 		 * shifting can eat and free both this skb and the next,
1562 		 * so not even _safe variant of the loop is enough.
1563 		 */
1564 		if (in_sack <= 0) {
1565 			tmp = tcp_shift_skb_data(sk, skb, state,
1566 						 start_seq, end_seq, dup_sack);
1567 			if (tmp) {
1568 				if (tmp != skb) {
1569 					skb = tmp;
1570 					continue;
1571 				}
1572 
1573 				in_sack = 0;
1574 			} else {
1575 				in_sack = tcp_match_skb_to_sack(sk, skb,
1576 								start_seq,
1577 								end_seq);
1578 			}
1579 		}
1580 
1581 		if (unlikely(in_sack < 0))
1582 			break;
1583 
1584 		if (in_sack) {
1585 			TCP_SKB_CB(skb)->sacked =
1586 				tcp_sacktag_one(sk,
1587 						state,
1588 						TCP_SKB_CB(skb)->sacked,
1589 						TCP_SKB_CB(skb)->seq,
1590 						TCP_SKB_CB(skb)->end_seq,
1591 						dup_sack,
1592 						tcp_skb_pcount(skb),
1593 						tcp_skb_timestamp_us(skb));
1594 			tcp_rate_skb_delivered(sk, skb, state->rate);
1595 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1596 				list_del_init(&skb->tcp_tsorted_anchor);
1597 
1598 			if (!before(TCP_SKB_CB(skb)->seq,
1599 				    tcp_highest_sack_seq(tp)))
1600 				tcp_advance_highest_sack(sk, skb);
1601 		}
1602 	}
1603 	return skb;
1604 }
1605 
1606 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1607 {
1608 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1609 	struct sk_buff *skb;
1610 
1611 	while (*p) {
1612 		parent = *p;
1613 		skb = rb_to_skb(parent);
1614 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1615 			p = &parent->rb_left;
1616 			continue;
1617 		}
1618 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1619 			p = &parent->rb_right;
1620 			continue;
1621 		}
1622 		return skb;
1623 	}
1624 	return NULL;
1625 }
1626 
1627 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1628 					u32 skip_to_seq)
1629 {
1630 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1631 		return skb;
1632 
1633 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1634 }
1635 
1636 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1637 						struct sock *sk,
1638 						struct tcp_sack_block *next_dup,
1639 						struct tcp_sacktag_state *state,
1640 						u32 skip_to_seq)
1641 {
1642 	if (!next_dup)
1643 		return skb;
1644 
1645 	if (before(next_dup->start_seq, skip_to_seq)) {
1646 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1647 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1648 				       next_dup->start_seq, next_dup->end_seq,
1649 				       1);
1650 	}
1651 
1652 	return skb;
1653 }
1654 
1655 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1656 {
1657 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1658 }
1659 
1660 static int
1661 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1662 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1663 {
1664 	struct tcp_sock *tp = tcp_sk(sk);
1665 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1666 				    TCP_SKB_CB(ack_skb)->sacked);
1667 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1668 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1669 	struct tcp_sack_block *cache;
1670 	struct sk_buff *skb;
1671 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1672 	int used_sacks;
1673 	bool found_dup_sack = false;
1674 	int i, j;
1675 	int first_sack_index;
1676 
1677 	state->flag = 0;
1678 	state->reord = tp->snd_nxt;
1679 
1680 	if (!tp->sacked_out)
1681 		tcp_highest_sack_reset(sk);
1682 
1683 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1684 					 num_sacks, prior_snd_una);
1685 	if (found_dup_sack) {
1686 		state->flag |= FLAG_DSACKING_ACK;
1687 		tp->delivered++; /* A spurious retransmission is delivered */
1688 	}
1689 
1690 	/* Eliminate too old ACKs, but take into
1691 	 * account more or less fresh ones, they can
1692 	 * contain valid SACK info.
1693 	 */
1694 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1695 		return 0;
1696 
1697 	if (!tp->packets_out)
1698 		goto out;
1699 
1700 	used_sacks = 0;
1701 	first_sack_index = 0;
1702 	for (i = 0; i < num_sacks; i++) {
1703 		bool dup_sack = !i && found_dup_sack;
1704 
1705 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1706 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1707 
1708 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1709 					    sp[used_sacks].start_seq,
1710 					    sp[used_sacks].end_seq)) {
1711 			int mib_idx;
1712 
1713 			if (dup_sack) {
1714 				if (!tp->undo_marker)
1715 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1716 				else
1717 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1718 			} else {
1719 				/* Don't count olds caused by ACK reordering */
1720 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1721 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1722 					continue;
1723 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1724 			}
1725 
1726 			NET_INC_STATS(sock_net(sk), mib_idx);
1727 			if (i == 0)
1728 				first_sack_index = -1;
1729 			continue;
1730 		}
1731 
1732 		/* Ignore very old stuff early */
1733 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1734 			if (i == 0)
1735 				first_sack_index = -1;
1736 			continue;
1737 		}
1738 
1739 		used_sacks++;
1740 	}
1741 
1742 	/* order SACK blocks to allow in order walk of the retrans queue */
1743 	for (i = used_sacks - 1; i > 0; i--) {
1744 		for (j = 0; j < i; j++) {
1745 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1746 				swap(sp[j], sp[j + 1]);
1747 
1748 				/* Track where the first SACK block goes to */
1749 				if (j == first_sack_index)
1750 					first_sack_index = j + 1;
1751 			}
1752 		}
1753 	}
1754 
1755 	state->mss_now = tcp_current_mss(sk);
1756 	skb = NULL;
1757 	i = 0;
1758 
1759 	if (!tp->sacked_out) {
1760 		/* It's already past, so skip checking against it */
1761 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1762 	} else {
1763 		cache = tp->recv_sack_cache;
1764 		/* Skip empty blocks in at head of the cache */
1765 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1766 		       !cache->end_seq)
1767 			cache++;
1768 	}
1769 
1770 	while (i < used_sacks) {
1771 		u32 start_seq = sp[i].start_seq;
1772 		u32 end_seq = sp[i].end_seq;
1773 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1774 		struct tcp_sack_block *next_dup = NULL;
1775 
1776 		if (found_dup_sack && ((i + 1) == first_sack_index))
1777 			next_dup = &sp[i + 1];
1778 
1779 		/* Skip too early cached blocks */
1780 		while (tcp_sack_cache_ok(tp, cache) &&
1781 		       !before(start_seq, cache->end_seq))
1782 			cache++;
1783 
1784 		/* Can skip some work by looking recv_sack_cache? */
1785 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1786 		    after(end_seq, cache->start_seq)) {
1787 
1788 			/* Head todo? */
1789 			if (before(start_seq, cache->start_seq)) {
1790 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1791 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1792 						       state,
1793 						       start_seq,
1794 						       cache->start_seq,
1795 						       dup_sack);
1796 			}
1797 
1798 			/* Rest of the block already fully processed? */
1799 			if (!after(end_seq, cache->end_seq))
1800 				goto advance_sp;
1801 
1802 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1803 						       state,
1804 						       cache->end_seq);
1805 
1806 			/* ...tail remains todo... */
1807 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1808 				/* ...but better entrypoint exists! */
1809 				skb = tcp_highest_sack(sk);
1810 				if (!skb)
1811 					break;
1812 				cache++;
1813 				goto walk;
1814 			}
1815 
1816 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1817 			/* Check overlap against next cached too (past this one already) */
1818 			cache++;
1819 			continue;
1820 		}
1821 
1822 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1823 			skb = tcp_highest_sack(sk);
1824 			if (!skb)
1825 				break;
1826 		}
1827 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1828 
1829 walk:
1830 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1831 				       start_seq, end_seq, dup_sack);
1832 
1833 advance_sp:
1834 		i++;
1835 	}
1836 
1837 	/* Clear the head of the cache sack blocks so we can skip it next time */
1838 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1839 		tp->recv_sack_cache[i].start_seq = 0;
1840 		tp->recv_sack_cache[i].end_seq = 0;
1841 	}
1842 	for (j = 0; j < used_sacks; j++)
1843 		tp->recv_sack_cache[i++] = sp[j];
1844 
1845 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1846 		tcp_check_sack_reordering(sk, state->reord, 0);
1847 
1848 	tcp_verify_left_out(tp);
1849 out:
1850 
1851 #if FASTRETRANS_DEBUG > 0
1852 	WARN_ON((int)tp->sacked_out < 0);
1853 	WARN_ON((int)tp->lost_out < 0);
1854 	WARN_ON((int)tp->retrans_out < 0);
1855 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1856 #endif
1857 	return state->flag;
1858 }
1859 
1860 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1861  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1862  */
1863 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1864 {
1865 	u32 holes;
1866 
1867 	holes = max(tp->lost_out, 1U);
1868 	holes = min(holes, tp->packets_out);
1869 
1870 	if ((tp->sacked_out + holes) > tp->packets_out) {
1871 		tp->sacked_out = tp->packets_out - holes;
1872 		return true;
1873 	}
1874 	return false;
1875 }
1876 
1877 /* If we receive more dupacks than we expected counting segments
1878  * in assumption of absent reordering, interpret this as reordering.
1879  * The only another reason could be bug in receiver TCP.
1880  */
1881 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1882 {
1883 	struct tcp_sock *tp = tcp_sk(sk);
1884 
1885 	if (!tcp_limit_reno_sacked(tp))
1886 		return;
1887 
1888 	tp->reordering = min_t(u32, tp->packets_out + addend,
1889 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1890 	tp->reord_seen++;
1891 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1892 }
1893 
1894 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1895 
1896 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1897 {
1898 	if (num_dupack) {
1899 		struct tcp_sock *tp = tcp_sk(sk);
1900 		u32 prior_sacked = tp->sacked_out;
1901 		s32 delivered;
1902 
1903 		tp->sacked_out += num_dupack;
1904 		tcp_check_reno_reordering(sk, 0);
1905 		delivered = tp->sacked_out - prior_sacked;
1906 		if (delivered > 0)
1907 			tp->delivered += delivered;
1908 		tcp_verify_left_out(tp);
1909 	}
1910 }
1911 
1912 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1913 
1914 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1915 {
1916 	struct tcp_sock *tp = tcp_sk(sk);
1917 
1918 	if (acked > 0) {
1919 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1920 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1921 		if (acked - 1 >= tp->sacked_out)
1922 			tp->sacked_out = 0;
1923 		else
1924 			tp->sacked_out -= acked - 1;
1925 	}
1926 	tcp_check_reno_reordering(sk, acked);
1927 	tcp_verify_left_out(tp);
1928 }
1929 
1930 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1931 {
1932 	tp->sacked_out = 0;
1933 }
1934 
1935 void tcp_clear_retrans(struct tcp_sock *tp)
1936 {
1937 	tp->retrans_out = 0;
1938 	tp->lost_out = 0;
1939 	tp->undo_marker = 0;
1940 	tp->undo_retrans = -1;
1941 	tp->sacked_out = 0;
1942 }
1943 
1944 static inline void tcp_init_undo(struct tcp_sock *tp)
1945 {
1946 	tp->undo_marker = tp->snd_una;
1947 	/* Retransmission still in flight may cause DSACKs later. */
1948 	tp->undo_retrans = tp->retrans_out ? : -1;
1949 }
1950 
1951 static bool tcp_is_rack(const struct sock *sk)
1952 {
1953 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1954 }
1955 
1956 /* If we detect SACK reneging, forget all SACK information
1957  * and reset tags completely, otherwise preserve SACKs. If receiver
1958  * dropped its ofo queue, we will know this due to reneging detection.
1959  */
1960 static void tcp_timeout_mark_lost(struct sock *sk)
1961 {
1962 	struct tcp_sock *tp = tcp_sk(sk);
1963 	struct sk_buff *skb, *head;
1964 	bool is_reneg;			/* is receiver reneging on SACKs? */
1965 
1966 	head = tcp_rtx_queue_head(sk);
1967 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1968 	if (is_reneg) {
1969 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1970 		tp->sacked_out = 0;
1971 		/* Mark SACK reneging until we recover from this loss event. */
1972 		tp->is_sack_reneg = 1;
1973 	} else if (tcp_is_reno(tp)) {
1974 		tcp_reset_reno_sack(tp);
1975 	}
1976 
1977 	skb = head;
1978 	skb_rbtree_walk_from(skb) {
1979 		if (is_reneg)
1980 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1981 		else if (tcp_is_rack(sk) && skb != head &&
1982 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1983 			continue; /* Don't mark recently sent ones lost yet */
1984 		tcp_mark_skb_lost(sk, skb);
1985 	}
1986 	tcp_verify_left_out(tp);
1987 	tcp_clear_all_retrans_hints(tp);
1988 }
1989 
1990 /* Enter Loss state. */
1991 void tcp_enter_loss(struct sock *sk)
1992 {
1993 	const struct inet_connection_sock *icsk = inet_csk(sk);
1994 	struct tcp_sock *tp = tcp_sk(sk);
1995 	struct net *net = sock_net(sk);
1996 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1997 
1998 	tcp_timeout_mark_lost(sk);
1999 
2000 	/* Reduce ssthresh if it has not yet been made inside this window. */
2001 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2002 	    !after(tp->high_seq, tp->snd_una) ||
2003 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2004 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2005 		tp->prior_cwnd = tp->snd_cwnd;
2006 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2007 		tcp_ca_event(sk, CA_EVENT_LOSS);
2008 		tcp_init_undo(tp);
2009 	}
2010 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2011 	tp->snd_cwnd_cnt   = 0;
2012 	tp->snd_cwnd_stamp = tcp_jiffies32;
2013 
2014 	/* Timeout in disordered state after receiving substantial DUPACKs
2015 	 * suggests that the degree of reordering is over-estimated.
2016 	 */
2017 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2018 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2019 		tp->reordering = min_t(unsigned int, tp->reordering,
2020 				       net->ipv4.sysctl_tcp_reordering);
2021 	tcp_set_ca_state(sk, TCP_CA_Loss);
2022 	tp->high_seq = tp->snd_nxt;
2023 	tcp_ecn_queue_cwr(tp);
2024 
2025 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2026 	 * loss recovery is underway except recurring timeout(s) on
2027 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2028 	 */
2029 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2030 		   (new_recovery || icsk->icsk_retransmits) &&
2031 		   !inet_csk(sk)->icsk_mtup.probe_size;
2032 }
2033 
2034 /* If ACK arrived pointing to a remembered SACK, it means that our
2035  * remembered SACKs do not reflect real state of receiver i.e.
2036  * receiver _host_ is heavily congested (or buggy).
2037  *
2038  * To avoid big spurious retransmission bursts due to transient SACK
2039  * scoreboard oddities that look like reneging, we give the receiver a
2040  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2041  * restore sanity to the SACK scoreboard. If the apparent reneging
2042  * persists until this RTO then we'll clear the SACK scoreboard.
2043  */
2044 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2045 {
2046 	if (flag & FLAG_SACK_RENEGING) {
2047 		struct tcp_sock *tp = tcp_sk(sk);
2048 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2049 					  msecs_to_jiffies(10));
2050 
2051 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2052 					  delay, TCP_RTO_MAX);
2053 		return true;
2054 	}
2055 	return false;
2056 }
2057 
2058 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2059  * counter when SACK is enabled (without SACK, sacked_out is used for
2060  * that purpose).
2061  *
2062  * With reordering, holes may still be in flight, so RFC3517 recovery
2063  * uses pure sacked_out (total number of SACKed segments) even though
2064  * it violates the RFC that uses duplicate ACKs, often these are equal
2065  * but when e.g. out-of-window ACKs or packet duplication occurs,
2066  * they differ. Since neither occurs due to loss, TCP should really
2067  * ignore them.
2068  */
2069 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2070 {
2071 	return tp->sacked_out + 1;
2072 }
2073 
2074 /* Linux NewReno/SACK/ECN state machine.
2075  * --------------------------------------
2076  *
2077  * "Open"	Normal state, no dubious events, fast path.
2078  * "Disorder"   In all the respects it is "Open",
2079  *		but requires a bit more attention. It is entered when
2080  *		we see some SACKs or dupacks. It is split of "Open"
2081  *		mainly to move some processing from fast path to slow one.
2082  * "CWR"	CWND was reduced due to some Congestion Notification event.
2083  *		It can be ECN, ICMP source quench, local device congestion.
2084  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2085  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2086  *
2087  * tcp_fastretrans_alert() is entered:
2088  * - each incoming ACK, if state is not "Open"
2089  * - when arrived ACK is unusual, namely:
2090  *	* SACK
2091  *	* Duplicate ACK.
2092  *	* ECN ECE.
2093  *
2094  * Counting packets in flight is pretty simple.
2095  *
2096  *	in_flight = packets_out - left_out + retrans_out
2097  *
2098  *	packets_out is SND.NXT-SND.UNA counted in packets.
2099  *
2100  *	retrans_out is number of retransmitted segments.
2101  *
2102  *	left_out is number of segments left network, but not ACKed yet.
2103  *
2104  *		left_out = sacked_out + lost_out
2105  *
2106  *     sacked_out: Packets, which arrived to receiver out of order
2107  *		   and hence not ACKed. With SACKs this number is simply
2108  *		   amount of SACKed data. Even without SACKs
2109  *		   it is easy to give pretty reliable estimate of this number,
2110  *		   counting duplicate ACKs.
2111  *
2112  *       lost_out: Packets lost by network. TCP has no explicit
2113  *		   "loss notification" feedback from network (for now).
2114  *		   It means that this number can be only _guessed_.
2115  *		   Actually, it is the heuristics to predict lossage that
2116  *		   distinguishes different algorithms.
2117  *
2118  *	F.e. after RTO, when all the queue is considered as lost,
2119  *	lost_out = packets_out and in_flight = retrans_out.
2120  *
2121  *		Essentially, we have now a few algorithms detecting
2122  *		lost packets.
2123  *
2124  *		If the receiver supports SACK:
2125  *
2126  *		RFC6675/3517: It is the conventional algorithm. A packet is
2127  *		considered lost if the number of higher sequence packets
2128  *		SACKed is greater than or equal the DUPACK thoreshold
2129  *		(reordering). This is implemented in tcp_mark_head_lost and
2130  *		tcp_update_scoreboard.
2131  *
2132  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2133  *		(2017-) that checks timing instead of counting DUPACKs.
2134  *		Essentially a packet is considered lost if it's not S/ACKed
2135  *		after RTT + reordering_window, where both metrics are
2136  *		dynamically measured and adjusted. This is implemented in
2137  *		tcp_rack_mark_lost.
2138  *
2139  *		If the receiver does not support SACK:
2140  *
2141  *		NewReno (RFC6582): in Recovery we assume that one segment
2142  *		is lost (classic Reno). While we are in Recovery and
2143  *		a partial ACK arrives, we assume that one more packet
2144  *		is lost (NewReno). This heuristics are the same in NewReno
2145  *		and SACK.
2146  *
2147  * Really tricky (and requiring careful tuning) part of algorithm
2148  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2149  * The first determines the moment _when_ we should reduce CWND and,
2150  * hence, slow down forward transmission. In fact, it determines the moment
2151  * when we decide that hole is caused by loss, rather than by a reorder.
2152  *
2153  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2154  * holes, caused by lost packets.
2155  *
2156  * And the most logically complicated part of algorithm is undo
2157  * heuristics. We detect false retransmits due to both too early
2158  * fast retransmit (reordering) and underestimated RTO, analyzing
2159  * timestamps and D-SACKs. When we detect that some segments were
2160  * retransmitted by mistake and CWND reduction was wrong, we undo
2161  * window reduction and abort recovery phase. This logic is hidden
2162  * inside several functions named tcp_try_undo_<something>.
2163  */
2164 
2165 /* This function decides, when we should leave Disordered state
2166  * and enter Recovery phase, reducing congestion window.
2167  *
2168  * Main question: may we further continue forward transmission
2169  * with the same cwnd?
2170  */
2171 static bool tcp_time_to_recover(struct sock *sk, int flag)
2172 {
2173 	struct tcp_sock *tp = tcp_sk(sk);
2174 
2175 	/* Trick#1: The loss is proven. */
2176 	if (tp->lost_out)
2177 		return true;
2178 
2179 	/* Not-A-Trick#2 : Classic rule... */
2180 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2181 		return true;
2182 
2183 	return false;
2184 }
2185 
2186 /* Detect loss in event "A" above by marking head of queue up as lost.
2187  * For RFC3517 SACK, a segment is considered lost if it
2188  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2189  * the maximum SACKed segments to pass before reaching this limit.
2190  */
2191 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2192 {
2193 	struct tcp_sock *tp = tcp_sk(sk);
2194 	struct sk_buff *skb;
2195 	int cnt;
2196 	/* Use SACK to deduce losses of new sequences sent during recovery */
2197 	const u32 loss_high = tp->snd_nxt;
2198 
2199 	WARN_ON(packets > tp->packets_out);
2200 	skb = tp->lost_skb_hint;
2201 	if (skb) {
2202 		/* Head already handled? */
2203 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2204 			return;
2205 		cnt = tp->lost_cnt_hint;
2206 	} else {
2207 		skb = tcp_rtx_queue_head(sk);
2208 		cnt = 0;
2209 	}
2210 
2211 	skb_rbtree_walk_from(skb) {
2212 		/* TODO: do this better */
2213 		/* this is not the most efficient way to do this... */
2214 		tp->lost_skb_hint = skb;
2215 		tp->lost_cnt_hint = cnt;
2216 
2217 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2218 			break;
2219 
2220 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2221 			cnt += tcp_skb_pcount(skb);
2222 
2223 		if (cnt > packets)
2224 			break;
2225 
2226 		tcp_skb_mark_lost(tp, skb);
2227 
2228 		if (mark_head)
2229 			break;
2230 	}
2231 	tcp_verify_left_out(tp);
2232 }
2233 
2234 /* Account newly detected lost packet(s) */
2235 
2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237 {
2238 	struct tcp_sock *tp = tcp_sk(sk);
2239 
2240 	if (tcp_is_sack(tp)) {
2241 		int sacked_upto = tp->sacked_out - tp->reordering;
2242 		if (sacked_upto >= 0)
2243 			tcp_mark_head_lost(sk, sacked_upto, 0);
2244 		else if (fast_rexmit)
2245 			tcp_mark_head_lost(sk, 1, 1);
2246 	}
2247 }
2248 
2249 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2250 {
2251 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2252 	       before(tp->rx_opt.rcv_tsecr, when);
2253 }
2254 
2255 /* skb is spurious retransmitted if the returned timestamp echo
2256  * reply is prior to the skb transmission time
2257  */
2258 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2259 				     const struct sk_buff *skb)
2260 {
2261 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2262 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2263 }
2264 
2265 /* Nothing was retransmitted or returned timestamp is less
2266  * than timestamp of the first retransmission.
2267  */
2268 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2269 {
2270 	return tp->retrans_stamp &&
2271 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2272 }
2273 
2274 /* Undo procedures. */
2275 
2276 /* We can clear retrans_stamp when there are no retransmissions in the
2277  * window. It would seem that it is trivially available for us in
2278  * tp->retrans_out, however, that kind of assumptions doesn't consider
2279  * what will happen if errors occur when sending retransmission for the
2280  * second time. ...It could the that such segment has only
2281  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2282  * the head skb is enough except for some reneging corner cases that
2283  * are not worth the effort.
2284  *
2285  * Main reason for all this complexity is the fact that connection dying
2286  * time now depends on the validity of the retrans_stamp, in particular,
2287  * that successive retransmissions of a segment must not advance
2288  * retrans_stamp under any conditions.
2289  */
2290 static bool tcp_any_retrans_done(const struct sock *sk)
2291 {
2292 	const struct tcp_sock *tp = tcp_sk(sk);
2293 	struct sk_buff *skb;
2294 
2295 	if (tp->retrans_out)
2296 		return true;
2297 
2298 	skb = tcp_rtx_queue_head(sk);
2299 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2300 		return true;
2301 
2302 	return false;
2303 }
2304 
2305 static void DBGUNDO(struct sock *sk, const char *msg)
2306 {
2307 #if FASTRETRANS_DEBUG > 1
2308 	struct tcp_sock *tp = tcp_sk(sk);
2309 	struct inet_sock *inet = inet_sk(sk);
2310 
2311 	if (sk->sk_family == AF_INET) {
2312 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2313 			 msg,
2314 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2315 			 tp->snd_cwnd, tcp_left_out(tp),
2316 			 tp->snd_ssthresh, tp->prior_ssthresh,
2317 			 tp->packets_out);
2318 	}
2319 #if IS_ENABLED(CONFIG_IPV6)
2320 	else if (sk->sk_family == AF_INET6) {
2321 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2322 			 msg,
2323 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2324 			 tp->snd_cwnd, tcp_left_out(tp),
2325 			 tp->snd_ssthresh, tp->prior_ssthresh,
2326 			 tp->packets_out);
2327 	}
2328 #endif
2329 #endif
2330 }
2331 
2332 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2333 {
2334 	struct tcp_sock *tp = tcp_sk(sk);
2335 
2336 	if (unmark_loss) {
2337 		struct sk_buff *skb;
2338 
2339 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2340 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2341 		}
2342 		tp->lost_out = 0;
2343 		tcp_clear_all_retrans_hints(tp);
2344 	}
2345 
2346 	if (tp->prior_ssthresh) {
2347 		const struct inet_connection_sock *icsk = inet_csk(sk);
2348 
2349 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2350 
2351 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2352 			tp->snd_ssthresh = tp->prior_ssthresh;
2353 			tcp_ecn_withdraw_cwr(tp);
2354 		}
2355 	}
2356 	tp->snd_cwnd_stamp = tcp_jiffies32;
2357 	tp->undo_marker = 0;
2358 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2359 }
2360 
2361 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2362 {
2363 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2364 }
2365 
2366 /* People celebrate: "We love our President!" */
2367 static bool tcp_try_undo_recovery(struct sock *sk)
2368 {
2369 	struct tcp_sock *tp = tcp_sk(sk);
2370 
2371 	if (tcp_may_undo(tp)) {
2372 		int mib_idx;
2373 
2374 		/* Happy end! We did not retransmit anything
2375 		 * or our original transmission succeeded.
2376 		 */
2377 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2378 		tcp_undo_cwnd_reduction(sk, false);
2379 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2380 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2381 		else
2382 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2383 
2384 		NET_INC_STATS(sock_net(sk), mib_idx);
2385 	} else if (tp->rack.reo_wnd_persist) {
2386 		tp->rack.reo_wnd_persist--;
2387 	}
2388 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2389 		/* Hold old state until something *above* high_seq
2390 		 * is ACKed. For Reno it is MUST to prevent false
2391 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2392 		if (!tcp_any_retrans_done(sk))
2393 			tp->retrans_stamp = 0;
2394 		return true;
2395 	}
2396 	tcp_set_ca_state(sk, TCP_CA_Open);
2397 	tp->is_sack_reneg = 0;
2398 	return false;
2399 }
2400 
2401 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2402 static bool tcp_try_undo_dsack(struct sock *sk)
2403 {
2404 	struct tcp_sock *tp = tcp_sk(sk);
2405 
2406 	if (tp->undo_marker && !tp->undo_retrans) {
2407 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2408 					       tp->rack.reo_wnd_persist + 1);
2409 		DBGUNDO(sk, "D-SACK");
2410 		tcp_undo_cwnd_reduction(sk, false);
2411 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2412 		return true;
2413 	}
2414 	return false;
2415 }
2416 
2417 /* Undo during loss recovery after partial ACK or using F-RTO. */
2418 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2419 {
2420 	struct tcp_sock *tp = tcp_sk(sk);
2421 
2422 	if (frto_undo || tcp_may_undo(tp)) {
2423 		tcp_undo_cwnd_reduction(sk, true);
2424 
2425 		DBGUNDO(sk, "partial loss");
2426 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2427 		if (frto_undo)
2428 			NET_INC_STATS(sock_net(sk),
2429 					LINUX_MIB_TCPSPURIOUSRTOS);
2430 		inet_csk(sk)->icsk_retransmits = 0;
2431 		if (frto_undo || tcp_is_sack(tp)) {
2432 			tcp_set_ca_state(sk, TCP_CA_Open);
2433 			tp->is_sack_reneg = 0;
2434 		}
2435 		return true;
2436 	}
2437 	return false;
2438 }
2439 
2440 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2441  * It computes the number of packets to send (sndcnt) based on packets newly
2442  * delivered:
2443  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2444  *	cwnd reductions across a full RTT.
2445  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2446  *      But when the retransmits are acked without further losses, PRR
2447  *      slow starts cwnd up to ssthresh to speed up the recovery.
2448  */
2449 static void tcp_init_cwnd_reduction(struct sock *sk)
2450 {
2451 	struct tcp_sock *tp = tcp_sk(sk);
2452 
2453 	tp->high_seq = tp->snd_nxt;
2454 	tp->tlp_high_seq = 0;
2455 	tp->snd_cwnd_cnt = 0;
2456 	tp->prior_cwnd = tp->snd_cwnd;
2457 	tp->prr_delivered = 0;
2458 	tp->prr_out = 0;
2459 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2460 	tcp_ecn_queue_cwr(tp);
2461 }
2462 
2463 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2464 {
2465 	struct tcp_sock *tp = tcp_sk(sk);
2466 	int sndcnt = 0;
2467 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2468 
2469 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2470 		return;
2471 
2472 	tp->prr_delivered += newly_acked_sacked;
2473 	if (delta < 0) {
2474 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2475 			       tp->prior_cwnd - 1;
2476 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2477 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2478 		   FLAG_RETRANS_DATA_ACKED) {
2479 		sndcnt = min_t(int, delta,
2480 			       max_t(int, tp->prr_delivered - tp->prr_out,
2481 				     newly_acked_sacked) + 1);
2482 	} else {
2483 		sndcnt = min(delta, newly_acked_sacked);
2484 	}
2485 	/* Force a fast retransmit upon entering fast recovery */
2486 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2487 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2488 }
2489 
2490 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 
2494 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2495 		return;
2496 
2497 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2498 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2499 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2500 		tp->snd_cwnd = tp->snd_ssthresh;
2501 		tp->snd_cwnd_stamp = tcp_jiffies32;
2502 	}
2503 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2504 }
2505 
2506 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2507 void tcp_enter_cwr(struct sock *sk)
2508 {
2509 	struct tcp_sock *tp = tcp_sk(sk);
2510 
2511 	tp->prior_ssthresh = 0;
2512 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2513 		tp->undo_marker = 0;
2514 		tcp_init_cwnd_reduction(sk);
2515 		tcp_set_ca_state(sk, TCP_CA_CWR);
2516 	}
2517 }
2518 EXPORT_SYMBOL(tcp_enter_cwr);
2519 
2520 static void tcp_try_keep_open(struct sock *sk)
2521 {
2522 	struct tcp_sock *tp = tcp_sk(sk);
2523 	int state = TCP_CA_Open;
2524 
2525 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2526 		state = TCP_CA_Disorder;
2527 
2528 	if (inet_csk(sk)->icsk_ca_state != state) {
2529 		tcp_set_ca_state(sk, state);
2530 		tp->high_seq = tp->snd_nxt;
2531 	}
2532 }
2533 
2534 static void tcp_try_to_open(struct sock *sk, int flag)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 
2538 	tcp_verify_left_out(tp);
2539 
2540 	if (!tcp_any_retrans_done(sk))
2541 		tp->retrans_stamp = 0;
2542 
2543 	if (flag & FLAG_ECE)
2544 		tcp_enter_cwr(sk);
2545 
2546 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2547 		tcp_try_keep_open(sk);
2548 	}
2549 }
2550 
2551 static void tcp_mtup_probe_failed(struct sock *sk)
2552 {
2553 	struct inet_connection_sock *icsk = inet_csk(sk);
2554 
2555 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2556 	icsk->icsk_mtup.probe_size = 0;
2557 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2558 }
2559 
2560 static void tcp_mtup_probe_success(struct sock *sk)
2561 {
2562 	struct tcp_sock *tp = tcp_sk(sk);
2563 	struct inet_connection_sock *icsk = inet_csk(sk);
2564 
2565 	/* FIXME: breaks with very large cwnd */
2566 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2567 	tp->snd_cwnd = tp->snd_cwnd *
2568 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2569 		       icsk->icsk_mtup.probe_size;
2570 	tp->snd_cwnd_cnt = 0;
2571 	tp->snd_cwnd_stamp = tcp_jiffies32;
2572 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2573 
2574 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2575 	icsk->icsk_mtup.probe_size = 0;
2576 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2577 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2578 }
2579 
2580 /* Do a simple retransmit without using the backoff mechanisms in
2581  * tcp_timer. This is used for path mtu discovery.
2582  * The socket is already locked here.
2583  */
2584 void tcp_simple_retransmit(struct sock *sk)
2585 {
2586 	const struct inet_connection_sock *icsk = inet_csk(sk);
2587 	struct tcp_sock *tp = tcp_sk(sk);
2588 	struct sk_buff *skb;
2589 	unsigned int mss = tcp_current_mss(sk);
2590 
2591 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2592 		if (tcp_skb_seglen(skb) > mss &&
2593 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2594 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2595 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2596 				tp->retrans_out -= tcp_skb_pcount(skb);
2597 			}
2598 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2599 		}
2600 	}
2601 
2602 	tcp_clear_retrans_hints_partial(tp);
2603 
2604 	if (!tp->lost_out)
2605 		return;
2606 
2607 	if (tcp_is_reno(tp))
2608 		tcp_limit_reno_sacked(tp);
2609 
2610 	tcp_verify_left_out(tp);
2611 
2612 	/* Don't muck with the congestion window here.
2613 	 * Reason is that we do not increase amount of _data_
2614 	 * in network, but units changed and effective
2615 	 * cwnd/ssthresh really reduced now.
2616 	 */
2617 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2618 		tp->high_seq = tp->snd_nxt;
2619 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2620 		tp->prior_ssthresh = 0;
2621 		tp->undo_marker = 0;
2622 		tcp_set_ca_state(sk, TCP_CA_Loss);
2623 	}
2624 	tcp_xmit_retransmit_queue(sk);
2625 }
2626 EXPORT_SYMBOL(tcp_simple_retransmit);
2627 
2628 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2629 {
2630 	struct tcp_sock *tp = tcp_sk(sk);
2631 	int mib_idx;
2632 
2633 	if (tcp_is_reno(tp))
2634 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2635 	else
2636 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2637 
2638 	NET_INC_STATS(sock_net(sk), mib_idx);
2639 
2640 	tp->prior_ssthresh = 0;
2641 	tcp_init_undo(tp);
2642 
2643 	if (!tcp_in_cwnd_reduction(sk)) {
2644 		if (!ece_ack)
2645 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2646 		tcp_init_cwnd_reduction(sk);
2647 	}
2648 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2649 }
2650 
2651 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2652  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2653  */
2654 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2655 			     int *rexmit)
2656 {
2657 	struct tcp_sock *tp = tcp_sk(sk);
2658 	bool recovered = !before(tp->snd_una, tp->high_seq);
2659 
2660 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2661 	    tcp_try_undo_loss(sk, false))
2662 		return;
2663 
2664 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2665 		/* Step 3.b. A timeout is spurious if not all data are
2666 		 * lost, i.e., never-retransmitted data are (s)acked.
2667 		 */
2668 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2669 		    tcp_try_undo_loss(sk, true))
2670 			return;
2671 
2672 		if (after(tp->snd_nxt, tp->high_seq)) {
2673 			if (flag & FLAG_DATA_SACKED || num_dupack)
2674 				tp->frto = 0; /* Step 3.a. loss was real */
2675 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2676 			tp->high_seq = tp->snd_nxt;
2677 			/* Step 2.b. Try send new data (but deferred until cwnd
2678 			 * is updated in tcp_ack()). Otherwise fall back to
2679 			 * the conventional recovery.
2680 			 */
2681 			if (!tcp_write_queue_empty(sk) &&
2682 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2683 				*rexmit = REXMIT_NEW;
2684 				return;
2685 			}
2686 			tp->frto = 0;
2687 		}
2688 	}
2689 
2690 	if (recovered) {
2691 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2692 		tcp_try_undo_recovery(sk);
2693 		return;
2694 	}
2695 	if (tcp_is_reno(tp)) {
2696 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2697 		 * delivered. Lower inflight to clock out (re)tranmissions.
2698 		 */
2699 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2700 			tcp_add_reno_sack(sk, num_dupack);
2701 		else if (flag & FLAG_SND_UNA_ADVANCED)
2702 			tcp_reset_reno_sack(tp);
2703 	}
2704 	*rexmit = REXMIT_LOST;
2705 }
2706 
2707 /* Undo during fast recovery after partial ACK. */
2708 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2709 {
2710 	struct tcp_sock *tp = tcp_sk(sk);
2711 
2712 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2713 		/* Plain luck! Hole if filled with delayed
2714 		 * packet, rather than with a retransmit. Check reordering.
2715 		 */
2716 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2717 
2718 		/* We are getting evidence that the reordering degree is higher
2719 		 * than we realized. If there are no retransmits out then we
2720 		 * can undo. Otherwise we clock out new packets but do not
2721 		 * mark more packets lost or retransmit more.
2722 		 */
2723 		if (tp->retrans_out)
2724 			return true;
2725 
2726 		if (!tcp_any_retrans_done(sk))
2727 			tp->retrans_stamp = 0;
2728 
2729 		DBGUNDO(sk, "partial recovery");
2730 		tcp_undo_cwnd_reduction(sk, true);
2731 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2732 		tcp_try_keep_open(sk);
2733 		return true;
2734 	}
2735 	return false;
2736 }
2737 
2738 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2739 {
2740 	struct tcp_sock *tp = tcp_sk(sk);
2741 
2742 	if (tcp_rtx_queue_empty(sk))
2743 		return;
2744 
2745 	if (unlikely(tcp_is_reno(tp))) {
2746 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2747 	} else if (tcp_is_rack(sk)) {
2748 		u32 prior_retrans = tp->retrans_out;
2749 
2750 		tcp_rack_mark_lost(sk);
2751 		if (prior_retrans > tp->retrans_out)
2752 			*ack_flag |= FLAG_LOST_RETRANS;
2753 	}
2754 }
2755 
2756 static bool tcp_force_fast_retransmit(struct sock *sk)
2757 {
2758 	struct tcp_sock *tp = tcp_sk(sk);
2759 
2760 	return after(tcp_highest_sack_seq(tp),
2761 		     tp->snd_una + tp->reordering * tp->mss_cache);
2762 }
2763 
2764 /* Process an event, which can update packets-in-flight not trivially.
2765  * Main goal of this function is to calculate new estimate for left_out,
2766  * taking into account both packets sitting in receiver's buffer and
2767  * packets lost by network.
2768  *
2769  * Besides that it updates the congestion state when packet loss or ECN
2770  * is detected. But it does not reduce the cwnd, it is done by the
2771  * congestion control later.
2772  *
2773  * It does _not_ decide what to send, it is made in function
2774  * tcp_xmit_retransmit_queue().
2775  */
2776 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2777 				  int num_dupack, int *ack_flag, int *rexmit)
2778 {
2779 	struct inet_connection_sock *icsk = inet_csk(sk);
2780 	struct tcp_sock *tp = tcp_sk(sk);
2781 	int fast_rexmit = 0, flag = *ack_flag;
2782 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2783 				      tcp_force_fast_retransmit(sk));
2784 
2785 	if (!tp->packets_out && tp->sacked_out)
2786 		tp->sacked_out = 0;
2787 
2788 	/* Now state machine starts.
2789 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2790 	if (flag & FLAG_ECE)
2791 		tp->prior_ssthresh = 0;
2792 
2793 	/* B. In all the states check for reneging SACKs. */
2794 	if (tcp_check_sack_reneging(sk, flag))
2795 		return;
2796 
2797 	/* C. Check consistency of the current state. */
2798 	tcp_verify_left_out(tp);
2799 
2800 	/* D. Check state exit conditions. State can be terminated
2801 	 *    when high_seq is ACKed. */
2802 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2803 		WARN_ON(tp->retrans_out != 0);
2804 		tp->retrans_stamp = 0;
2805 	} else if (!before(tp->snd_una, tp->high_seq)) {
2806 		switch (icsk->icsk_ca_state) {
2807 		case TCP_CA_CWR:
2808 			/* CWR is to be held something *above* high_seq
2809 			 * is ACKed for CWR bit to reach receiver. */
2810 			if (tp->snd_una != tp->high_seq) {
2811 				tcp_end_cwnd_reduction(sk);
2812 				tcp_set_ca_state(sk, TCP_CA_Open);
2813 			}
2814 			break;
2815 
2816 		case TCP_CA_Recovery:
2817 			if (tcp_is_reno(tp))
2818 				tcp_reset_reno_sack(tp);
2819 			if (tcp_try_undo_recovery(sk))
2820 				return;
2821 			tcp_end_cwnd_reduction(sk);
2822 			break;
2823 		}
2824 	}
2825 
2826 	/* E. Process state. */
2827 	switch (icsk->icsk_ca_state) {
2828 	case TCP_CA_Recovery:
2829 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2830 			if (tcp_is_reno(tp))
2831 				tcp_add_reno_sack(sk, num_dupack);
2832 		} else {
2833 			if (tcp_try_undo_partial(sk, prior_snd_una))
2834 				return;
2835 			/* Partial ACK arrived. Force fast retransmit. */
2836 			do_lost = tcp_force_fast_retransmit(sk);
2837 		}
2838 		if (tcp_try_undo_dsack(sk)) {
2839 			tcp_try_keep_open(sk);
2840 			return;
2841 		}
2842 		tcp_identify_packet_loss(sk, ack_flag);
2843 		break;
2844 	case TCP_CA_Loss:
2845 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2846 		tcp_identify_packet_loss(sk, ack_flag);
2847 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2848 		      (*ack_flag & FLAG_LOST_RETRANS)))
2849 			return;
2850 		/* Change state if cwnd is undone or retransmits are lost */
2851 		fallthrough;
2852 	default:
2853 		if (tcp_is_reno(tp)) {
2854 			if (flag & FLAG_SND_UNA_ADVANCED)
2855 				tcp_reset_reno_sack(tp);
2856 			tcp_add_reno_sack(sk, num_dupack);
2857 		}
2858 
2859 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2860 			tcp_try_undo_dsack(sk);
2861 
2862 		tcp_identify_packet_loss(sk, ack_flag);
2863 		if (!tcp_time_to_recover(sk, flag)) {
2864 			tcp_try_to_open(sk, flag);
2865 			return;
2866 		}
2867 
2868 		/* MTU probe failure: don't reduce cwnd */
2869 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2870 		    icsk->icsk_mtup.probe_size &&
2871 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2872 			tcp_mtup_probe_failed(sk);
2873 			/* Restores the reduction we did in tcp_mtup_probe() */
2874 			tp->snd_cwnd++;
2875 			tcp_simple_retransmit(sk);
2876 			return;
2877 		}
2878 
2879 		/* Otherwise enter Recovery state */
2880 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2881 		fast_rexmit = 1;
2882 	}
2883 
2884 	if (!tcp_is_rack(sk) && do_lost)
2885 		tcp_update_scoreboard(sk, fast_rexmit);
2886 	*rexmit = REXMIT_LOST;
2887 }
2888 
2889 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2890 {
2891 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2892 	struct tcp_sock *tp = tcp_sk(sk);
2893 
2894 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2895 		/* If the remote keeps returning delayed ACKs, eventually
2896 		 * the min filter would pick it up and overestimate the
2897 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2898 		 */
2899 		return;
2900 	}
2901 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2902 			   rtt_us ? : jiffies_to_usecs(1));
2903 }
2904 
2905 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2906 			       long seq_rtt_us, long sack_rtt_us,
2907 			       long ca_rtt_us, struct rate_sample *rs)
2908 {
2909 	const struct tcp_sock *tp = tcp_sk(sk);
2910 
2911 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2912 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2913 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2914 	 * is acked (RFC6298).
2915 	 */
2916 	if (seq_rtt_us < 0)
2917 		seq_rtt_us = sack_rtt_us;
2918 
2919 	/* RTTM Rule: A TSecr value received in a segment is used to
2920 	 * update the averaged RTT measurement only if the segment
2921 	 * acknowledges some new data, i.e., only if it advances the
2922 	 * left edge of the send window.
2923 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2924 	 */
2925 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2926 	    flag & FLAG_ACKED) {
2927 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2928 
2929 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2930 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2931 			ca_rtt_us = seq_rtt_us;
2932 		}
2933 	}
2934 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2935 	if (seq_rtt_us < 0)
2936 		return false;
2937 
2938 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2939 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2940 	 * values will be skipped with the seq_rtt_us < 0 check above.
2941 	 */
2942 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2943 	tcp_rtt_estimator(sk, seq_rtt_us);
2944 	tcp_set_rto(sk);
2945 
2946 	/* RFC6298: only reset backoff on valid RTT measurement. */
2947 	inet_csk(sk)->icsk_backoff = 0;
2948 	return true;
2949 }
2950 
2951 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2952 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2953 {
2954 	struct rate_sample rs;
2955 	long rtt_us = -1L;
2956 
2957 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2958 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2959 
2960 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2961 }
2962 
2963 
2964 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2965 {
2966 	const struct inet_connection_sock *icsk = inet_csk(sk);
2967 
2968 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2969 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2970 }
2971 
2972 /* Restart timer after forward progress on connection.
2973  * RFC2988 recommends to restart timer to now+rto.
2974  */
2975 void tcp_rearm_rto(struct sock *sk)
2976 {
2977 	const struct inet_connection_sock *icsk = inet_csk(sk);
2978 	struct tcp_sock *tp = tcp_sk(sk);
2979 
2980 	/* If the retrans timer is currently being used by Fast Open
2981 	 * for SYN-ACK retrans purpose, stay put.
2982 	 */
2983 	if (rcu_access_pointer(tp->fastopen_rsk))
2984 		return;
2985 
2986 	if (!tp->packets_out) {
2987 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2988 	} else {
2989 		u32 rto = inet_csk(sk)->icsk_rto;
2990 		/* Offset the time elapsed after installing regular RTO */
2991 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2992 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2993 			s64 delta_us = tcp_rto_delta_us(sk);
2994 			/* delta_us may not be positive if the socket is locked
2995 			 * when the retrans timer fires and is rescheduled.
2996 			 */
2997 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2998 		}
2999 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3000 				     TCP_RTO_MAX);
3001 	}
3002 }
3003 
3004 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3005 static void tcp_set_xmit_timer(struct sock *sk)
3006 {
3007 	if (!tcp_schedule_loss_probe(sk, true))
3008 		tcp_rearm_rto(sk);
3009 }
3010 
3011 /* If we get here, the whole TSO packet has not been acked. */
3012 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3013 {
3014 	struct tcp_sock *tp = tcp_sk(sk);
3015 	u32 packets_acked;
3016 
3017 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3018 
3019 	packets_acked = tcp_skb_pcount(skb);
3020 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3021 		return 0;
3022 	packets_acked -= tcp_skb_pcount(skb);
3023 
3024 	if (packets_acked) {
3025 		BUG_ON(tcp_skb_pcount(skb) == 0);
3026 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3027 	}
3028 
3029 	return packets_acked;
3030 }
3031 
3032 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3033 			   u32 prior_snd_una)
3034 {
3035 	const struct skb_shared_info *shinfo;
3036 
3037 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3038 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3039 		return;
3040 
3041 	shinfo = skb_shinfo(skb);
3042 	if (!before(shinfo->tskey, prior_snd_una) &&
3043 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3044 		tcp_skb_tsorted_save(skb) {
3045 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3046 		} tcp_skb_tsorted_restore(skb);
3047 	}
3048 }
3049 
3050 /* Remove acknowledged frames from the retransmission queue. If our packet
3051  * is before the ack sequence we can discard it as it's confirmed to have
3052  * arrived at the other end.
3053  */
3054 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3055 			       u32 prior_snd_una,
3056 			       struct tcp_sacktag_state *sack)
3057 {
3058 	const struct inet_connection_sock *icsk = inet_csk(sk);
3059 	u64 first_ackt, last_ackt;
3060 	struct tcp_sock *tp = tcp_sk(sk);
3061 	u32 prior_sacked = tp->sacked_out;
3062 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3063 	struct sk_buff *skb, *next;
3064 	bool fully_acked = true;
3065 	long sack_rtt_us = -1L;
3066 	long seq_rtt_us = -1L;
3067 	long ca_rtt_us = -1L;
3068 	u32 pkts_acked = 0;
3069 	u32 last_in_flight = 0;
3070 	bool rtt_update;
3071 	int flag = 0;
3072 
3073 	first_ackt = 0;
3074 
3075 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3076 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3077 		const u32 start_seq = scb->seq;
3078 		u8 sacked = scb->sacked;
3079 		u32 acked_pcount;
3080 
3081 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3082 
3083 		/* Determine how many packets and what bytes were acked, tso and else */
3084 		if (after(scb->end_seq, tp->snd_una)) {
3085 			if (tcp_skb_pcount(skb) == 1 ||
3086 			    !after(tp->snd_una, scb->seq))
3087 				break;
3088 
3089 			acked_pcount = tcp_tso_acked(sk, skb);
3090 			if (!acked_pcount)
3091 				break;
3092 			fully_acked = false;
3093 		} else {
3094 			acked_pcount = tcp_skb_pcount(skb);
3095 		}
3096 
3097 		if (unlikely(sacked & TCPCB_RETRANS)) {
3098 			if (sacked & TCPCB_SACKED_RETRANS)
3099 				tp->retrans_out -= acked_pcount;
3100 			flag |= FLAG_RETRANS_DATA_ACKED;
3101 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3102 			last_ackt = tcp_skb_timestamp_us(skb);
3103 			WARN_ON_ONCE(last_ackt == 0);
3104 			if (!first_ackt)
3105 				first_ackt = last_ackt;
3106 
3107 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3108 			if (before(start_seq, reord))
3109 				reord = start_seq;
3110 			if (!after(scb->end_seq, tp->high_seq))
3111 				flag |= FLAG_ORIG_SACK_ACKED;
3112 		}
3113 
3114 		if (sacked & TCPCB_SACKED_ACKED) {
3115 			tp->sacked_out -= acked_pcount;
3116 		} else if (tcp_is_sack(tp)) {
3117 			tp->delivered += acked_pcount;
3118 			if (!tcp_skb_spurious_retrans(tp, skb))
3119 				tcp_rack_advance(tp, sacked, scb->end_seq,
3120 						 tcp_skb_timestamp_us(skb));
3121 		}
3122 		if (sacked & TCPCB_LOST)
3123 			tp->lost_out -= acked_pcount;
3124 
3125 		tp->packets_out -= acked_pcount;
3126 		pkts_acked += acked_pcount;
3127 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3128 
3129 		/* Initial outgoing SYN's get put onto the write_queue
3130 		 * just like anything else we transmit.  It is not
3131 		 * true data, and if we misinform our callers that
3132 		 * this ACK acks real data, we will erroneously exit
3133 		 * connection startup slow start one packet too
3134 		 * quickly.  This is severely frowned upon behavior.
3135 		 */
3136 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3137 			flag |= FLAG_DATA_ACKED;
3138 		} else {
3139 			flag |= FLAG_SYN_ACKED;
3140 			tp->retrans_stamp = 0;
3141 		}
3142 
3143 		if (!fully_acked)
3144 			break;
3145 
3146 		next = skb_rb_next(skb);
3147 		if (unlikely(skb == tp->retransmit_skb_hint))
3148 			tp->retransmit_skb_hint = NULL;
3149 		if (unlikely(skb == tp->lost_skb_hint))
3150 			tp->lost_skb_hint = NULL;
3151 		tcp_highest_sack_replace(sk, skb, next);
3152 		tcp_rtx_queue_unlink_and_free(skb, sk);
3153 	}
3154 
3155 	if (!skb)
3156 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3157 
3158 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3159 		tp->snd_up = tp->snd_una;
3160 
3161 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3162 		flag |= FLAG_SACK_RENEGING;
3163 
3164 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3165 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3166 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3167 
3168 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3169 		    last_in_flight && !prior_sacked && fully_acked &&
3170 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3171 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3172 			/* Conservatively mark a delayed ACK. It's typically
3173 			 * from a lone runt packet over the round trip to
3174 			 * a receiver w/o out-of-order or CE events.
3175 			 */
3176 			flag |= FLAG_ACK_MAYBE_DELAYED;
3177 		}
3178 	}
3179 	if (sack->first_sackt) {
3180 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3181 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3182 	}
3183 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3184 					ca_rtt_us, sack->rate);
3185 
3186 	if (flag & FLAG_ACKED) {
3187 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3188 		if (unlikely(icsk->icsk_mtup.probe_size &&
3189 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3190 			tcp_mtup_probe_success(sk);
3191 		}
3192 
3193 		if (tcp_is_reno(tp)) {
3194 			tcp_remove_reno_sacks(sk, pkts_acked);
3195 
3196 			/* If any of the cumulatively ACKed segments was
3197 			 * retransmitted, non-SACK case cannot confirm that
3198 			 * progress was due to original transmission due to
3199 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3200 			 * the packets may have been never retransmitted.
3201 			 */
3202 			if (flag & FLAG_RETRANS_DATA_ACKED)
3203 				flag &= ~FLAG_ORIG_SACK_ACKED;
3204 		} else {
3205 			int delta;
3206 
3207 			/* Non-retransmitted hole got filled? That's reordering */
3208 			if (before(reord, prior_fack))
3209 				tcp_check_sack_reordering(sk, reord, 0);
3210 
3211 			delta = prior_sacked - tp->sacked_out;
3212 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3213 		}
3214 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3215 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3216 						    tcp_skb_timestamp_us(skb))) {
3217 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3218 		 * after when the head was last (re)transmitted. Otherwise the
3219 		 * timeout may continue to extend in loss recovery.
3220 		 */
3221 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3222 	}
3223 
3224 	if (icsk->icsk_ca_ops->pkts_acked) {
3225 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3226 					     .rtt_us = sack->rate->rtt_us,
3227 					     .in_flight = last_in_flight };
3228 
3229 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3230 	}
3231 
3232 #if FASTRETRANS_DEBUG > 0
3233 	WARN_ON((int)tp->sacked_out < 0);
3234 	WARN_ON((int)tp->lost_out < 0);
3235 	WARN_ON((int)tp->retrans_out < 0);
3236 	if (!tp->packets_out && tcp_is_sack(tp)) {
3237 		icsk = inet_csk(sk);
3238 		if (tp->lost_out) {
3239 			pr_debug("Leak l=%u %d\n",
3240 				 tp->lost_out, icsk->icsk_ca_state);
3241 			tp->lost_out = 0;
3242 		}
3243 		if (tp->sacked_out) {
3244 			pr_debug("Leak s=%u %d\n",
3245 				 tp->sacked_out, icsk->icsk_ca_state);
3246 			tp->sacked_out = 0;
3247 		}
3248 		if (tp->retrans_out) {
3249 			pr_debug("Leak r=%u %d\n",
3250 				 tp->retrans_out, icsk->icsk_ca_state);
3251 			tp->retrans_out = 0;
3252 		}
3253 	}
3254 #endif
3255 	return flag;
3256 }
3257 
3258 static void tcp_ack_probe(struct sock *sk)
3259 {
3260 	struct inet_connection_sock *icsk = inet_csk(sk);
3261 	struct sk_buff *head = tcp_send_head(sk);
3262 	const struct tcp_sock *tp = tcp_sk(sk);
3263 
3264 	/* Was it a usable window open? */
3265 	if (!head)
3266 		return;
3267 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3268 		icsk->icsk_backoff = 0;
3269 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3270 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3271 		 * This function is not for random using!
3272 		 */
3273 	} else {
3274 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3275 
3276 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3277 				     when, TCP_RTO_MAX);
3278 	}
3279 }
3280 
3281 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3282 {
3283 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3284 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3285 }
3286 
3287 /* Decide wheather to run the increase function of congestion control. */
3288 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3289 {
3290 	/* If reordering is high then always grow cwnd whenever data is
3291 	 * delivered regardless of its ordering. Otherwise stay conservative
3292 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3293 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3294 	 * cwnd in tcp_fastretrans_alert() based on more states.
3295 	 */
3296 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3297 		return flag & FLAG_FORWARD_PROGRESS;
3298 
3299 	return flag & FLAG_DATA_ACKED;
3300 }
3301 
3302 /* The "ultimate" congestion control function that aims to replace the rigid
3303  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3304  * It's called toward the end of processing an ACK with precise rate
3305  * information. All transmission or retransmission are delayed afterwards.
3306  */
3307 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3308 			     int flag, const struct rate_sample *rs)
3309 {
3310 	const struct inet_connection_sock *icsk = inet_csk(sk);
3311 
3312 	if (icsk->icsk_ca_ops->cong_control) {
3313 		icsk->icsk_ca_ops->cong_control(sk, rs);
3314 		return;
3315 	}
3316 
3317 	if (tcp_in_cwnd_reduction(sk)) {
3318 		/* Reduce cwnd if state mandates */
3319 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3320 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3321 		/* Advance cwnd if state allows */
3322 		tcp_cong_avoid(sk, ack, acked_sacked);
3323 	}
3324 	tcp_update_pacing_rate(sk);
3325 }
3326 
3327 /* Check that window update is acceptable.
3328  * The function assumes that snd_una<=ack<=snd_next.
3329  */
3330 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3331 					const u32 ack, const u32 ack_seq,
3332 					const u32 nwin)
3333 {
3334 	return	after(ack, tp->snd_una) ||
3335 		after(ack_seq, tp->snd_wl1) ||
3336 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3337 }
3338 
3339 /* If we update tp->snd_una, also update tp->bytes_acked */
3340 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3341 {
3342 	u32 delta = ack - tp->snd_una;
3343 
3344 	sock_owned_by_me((struct sock *)tp);
3345 	tp->bytes_acked += delta;
3346 	tp->snd_una = ack;
3347 }
3348 
3349 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3350 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3351 {
3352 	u32 delta = seq - tp->rcv_nxt;
3353 
3354 	sock_owned_by_me((struct sock *)tp);
3355 	tp->bytes_received += delta;
3356 	WRITE_ONCE(tp->rcv_nxt, seq);
3357 }
3358 
3359 /* Update our send window.
3360  *
3361  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3362  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3363  */
3364 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3365 				 u32 ack_seq)
3366 {
3367 	struct tcp_sock *tp = tcp_sk(sk);
3368 	int flag = 0;
3369 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3370 
3371 	if (likely(!tcp_hdr(skb)->syn))
3372 		nwin <<= tp->rx_opt.snd_wscale;
3373 
3374 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3375 		flag |= FLAG_WIN_UPDATE;
3376 		tcp_update_wl(tp, ack_seq);
3377 
3378 		if (tp->snd_wnd != nwin) {
3379 			tp->snd_wnd = nwin;
3380 
3381 			/* Note, it is the only place, where
3382 			 * fast path is recovered for sending TCP.
3383 			 */
3384 			tp->pred_flags = 0;
3385 			tcp_fast_path_check(sk);
3386 
3387 			if (!tcp_write_queue_empty(sk))
3388 				tcp_slow_start_after_idle_check(sk);
3389 
3390 			if (nwin > tp->max_window) {
3391 				tp->max_window = nwin;
3392 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3393 			}
3394 		}
3395 	}
3396 
3397 	tcp_snd_una_update(tp, ack);
3398 
3399 	return flag;
3400 }
3401 
3402 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3403 				   u32 *last_oow_ack_time)
3404 {
3405 	if (*last_oow_ack_time) {
3406 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3407 
3408 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3409 			NET_INC_STATS(net, mib_idx);
3410 			return true;	/* rate-limited: don't send yet! */
3411 		}
3412 	}
3413 
3414 	*last_oow_ack_time = tcp_jiffies32;
3415 
3416 	return false;	/* not rate-limited: go ahead, send dupack now! */
3417 }
3418 
3419 /* Return true if we're currently rate-limiting out-of-window ACKs and
3420  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3421  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3422  * attacks that send repeated SYNs or ACKs for the same connection. To
3423  * do this, we do not send a duplicate SYNACK or ACK if the remote
3424  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3425  */
3426 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3427 			  int mib_idx, u32 *last_oow_ack_time)
3428 {
3429 	/* Data packets without SYNs are not likely part of an ACK loop. */
3430 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3431 	    !tcp_hdr(skb)->syn)
3432 		return false;
3433 
3434 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3435 }
3436 
3437 /* RFC 5961 7 [ACK Throttling] */
3438 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3439 {
3440 	/* unprotected vars, we dont care of overwrites */
3441 	static u32 challenge_timestamp;
3442 	static unsigned int challenge_count;
3443 	struct tcp_sock *tp = tcp_sk(sk);
3444 	struct net *net = sock_net(sk);
3445 	u32 count, now;
3446 
3447 	/* First check our per-socket dupack rate limit. */
3448 	if (__tcp_oow_rate_limited(net,
3449 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3450 				   &tp->last_oow_ack_time))
3451 		return;
3452 
3453 	/* Then check host-wide RFC 5961 rate limit. */
3454 	now = jiffies / HZ;
3455 	if (now != challenge_timestamp) {
3456 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3457 		u32 half = (ack_limit + 1) >> 1;
3458 
3459 		challenge_timestamp = now;
3460 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3461 	}
3462 	count = READ_ONCE(challenge_count);
3463 	if (count > 0) {
3464 		WRITE_ONCE(challenge_count, count - 1);
3465 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3466 		tcp_send_ack(sk);
3467 	}
3468 }
3469 
3470 static void tcp_store_ts_recent(struct tcp_sock *tp)
3471 {
3472 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3473 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3474 }
3475 
3476 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3477 {
3478 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3479 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3480 		 * extra check below makes sure this can only happen
3481 		 * for pure ACK frames.  -DaveM
3482 		 *
3483 		 * Not only, also it occurs for expired timestamps.
3484 		 */
3485 
3486 		if (tcp_paws_check(&tp->rx_opt, 0))
3487 			tcp_store_ts_recent(tp);
3488 	}
3489 }
3490 
3491 /* This routine deals with acks during a TLP episode and ends an episode by
3492  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3493  */
3494 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3495 {
3496 	struct tcp_sock *tp = tcp_sk(sk);
3497 
3498 	if (before(ack, tp->tlp_high_seq))
3499 		return;
3500 
3501 	if (!tp->tlp_retrans) {
3502 		/* TLP of new data has been acknowledged */
3503 		tp->tlp_high_seq = 0;
3504 	} else if (flag & FLAG_DSACKING_ACK) {
3505 		/* This DSACK means original and TLP probe arrived; no loss */
3506 		tp->tlp_high_seq = 0;
3507 	} else if (after(ack, tp->tlp_high_seq)) {
3508 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3509 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3510 		 */
3511 		tcp_init_cwnd_reduction(sk);
3512 		tcp_set_ca_state(sk, TCP_CA_CWR);
3513 		tcp_end_cwnd_reduction(sk);
3514 		tcp_try_keep_open(sk);
3515 		NET_INC_STATS(sock_net(sk),
3516 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3517 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3518 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3519 		/* Pure dupack: original and TLP probe arrived; no loss */
3520 		tp->tlp_high_seq = 0;
3521 	}
3522 }
3523 
3524 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3525 {
3526 	const struct inet_connection_sock *icsk = inet_csk(sk);
3527 
3528 	if (icsk->icsk_ca_ops->in_ack_event)
3529 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3530 }
3531 
3532 /* Congestion control has updated the cwnd already. So if we're in
3533  * loss recovery then now we do any new sends (for FRTO) or
3534  * retransmits (for CA_Loss or CA_recovery) that make sense.
3535  */
3536 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3537 {
3538 	struct tcp_sock *tp = tcp_sk(sk);
3539 
3540 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3541 		return;
3542 
3543 	if (unlikely(rexmit == REXMIT_NEW)) {
3544 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3545 					  TCP_NAGLE_OFF);
3546 		if (after(tp->snd_nxt, tp->high_seq))
3547 			return;
3548 		tp->frto = 0;
3549 	}
3550 	tcp_xmit_retransmit_queue(sk);
3551 }
3552 
3553 /* Returns the number of packets newly acked or sacked by the current ACK */
3554 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3555 {
3556 	const struct net *net = sock_net(sk);
3557 	struct tcp_sock *tp = tcp_sk(sk);
3558 	u32 delivered;
3559 
3560 	delivered = tp->delivered - prior_delivered;
3561 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3562 	if (flag & FLAG_ECE) {
3563 		tp->delivered_ce += delivered;
3564 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3565 	}
3566 	return delivered;
3567 }
3568 
3569 /* This routine deals with incoming acks, but not outgoing ones. */
3570 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3571 {
3572 	struct inet_connection_sock *icsk = inet_csk(sk);
3573 	struct tcp_sock *tp = tcp_sk(sk);
3574 	struct tcp_sacktag_state sack_state;
3575 	struct rate_sample rs = { .prior_delivered = 0 };
3576 	u32 prior_snd_una = tp->snd_una;
3577 	bool is_sack_reneg = tp->is_sack_reneg;
3578 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3579 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3580 	int num_dupack = 0;
3581 	int prior_packets = tp->packets_out;
3582 	u32 delivered = tp->delivered;
3583 	u32 lost = tp->lost;
3584 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3585 	u32 prior_fack;
3586 
3587 	sack_state.first_sackt = 0;
3588 	sack_state.rate = &rs;
3589 
3590 	/* We very likely will need to access rtx queue. */
3591 	prefetch(sk->tcp_rtx_queue.rb_node);
3592 
3593 	/* If the ack is older than previous acks
3594 	 * then we can probably ignore it.
3595 	 */
3596 	if (before(ack, prior_snd_una)) {
3597 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3598 		if (before(ack, prior_snd_una - tp->max_window)) {
3599 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3600 				tcp_send_challenge_ack(sk, skb);
3601 			return -1;
3602 		}
3603 		goto old_ack;
3604 	}
3605 
3606 	/* If the ack includes data we haven't sent yet, discard
3607 	 * this segment (RFC793 Section 3.9).
3608 	 */
3609 	if (after(ack, tp->snd_nxt))
3610 		return -1;
3611 
3612 	if (after(ack, prior_snd_una)) {
3613 		flag |= FLAG_SND_UNA_ADVANCED;
3614 		icsk->icsk_retransmits = 0;
3615 
3616 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3617 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3618 			if (icsk->icsk_clean_acked)
3619 				icsk->icsk_clean_acked(sk, ack);
3620 #endif
3621 	}
3622 
3623 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3624 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3625 
3626 	/* ts_recent update must be made after we are sure that the packet
3627 	 * is in window.
3628 	 */
3629 	if (flag & FLAG_UPDATE_TS_RECENT)
3630 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3631 
3632 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3633 	    FLAG_SND_UNA_ADVANCED) {
3634 		/* Window is constant, pure forward advance.
3635 		 * No more checks are required.
3636 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3637 		 */
3638 		tcp_update_wl(tp, ack_seq);
3639 		tcp_snd_una_update(tp, ack);
3640 		flag |= FLAG_WIN_UPDATE;
3641 
3642 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3643 
3644 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3645 	} else {
3646 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3647 
3648 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3649 			flag |= FLAG_DATA;
3650 		else
3651 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3652 
3653 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3654 
3655 		if (TCP_SKB_CB(skb)->sacked)
3656 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3657 							&sack_state);
3658 
3659 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3660 			flag |= FLAG_ECE;
3661 			ack_ev_flags |= CA_ACK_ECE;
3662 		}
3663 
3664 		if (flag & FLAG_WIN_UPDATE)
3665 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3666 
3667 		tcp_in_ack_event(sk, ack_ev_flags);
3668 	}
3669 
3670 	/* This is a deviation from RFC3168 since it states that:
3671 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3672 	 * the congestion window, it SHOULD set the CWR bit only on the first
3673 	 * new data packet that it transmits."
3674 	 * We accept CWR on pure ACKs to be more robust
3675 	 * with widely-deployed TCP implementations that do this.
3676 	 */
3677 	tcp_ecn_accept_cwr(sk, skb);
3678 
3679 	/* We passed data and got it acked, remove any soft error
3680 	 * log. Something worked...
3681 	 */
3682 	sk->sk_err_soft = 0;
3683 	icsk->icsk_probes_out = 0;
3684 	tp->rcv_tstamp = tcp_jiffies32;
3685 	if (!prior_packets)
3686 		goto no_queue;
3687 
3688 	/* See if we can take anything off of the retransmit queue. */
3689 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3690 
3691 	tcp_rack_update_reo_wnd(sk, &rs);
3692 
3693 	if (tp->tlp_high_seq)
3694 		tcp_process_tlp_ack(sk, ack, flag);
3695 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3696 	if (flag & FLAG_SET_XMIT_TIMER)
3697 		tcp_set_xmit_timer(sk);
3698 
3699 	if (tcp_ack_is_dubious(sk, flag)) {
3700 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3701 			num_dupack = 1;
3702 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3703 			if (!(flag & FLAG_DATA))
3704 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3705 		}
3706 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3707 				      &rexmit);
3708 	}
3709 
3710 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3711 		sk_dst_confirm(sk);
3712 
3713 	delivered = tcp_newly_delivered(sk, delivered, flag);
3714 	lost = tp->lost - lost;			/* freshly marked lost */
3715 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3716 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3717 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3718 	tcp_xmit_recovery(sk, rexmit);
3719 	return 1;
3720 
3721 no_queue:
3722 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3723 	if (flag & FLAG_DSACKING_ACK) {
3724 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3725 				      &rexmit);
3726 		tcp_newly_delivered(sk, delivered, flag);
3727 	}
3728 	/* If this ack opens up a zero window, clear backoff.  It was
3729 	 * being used to time the probes, and is probably far higher than
3730 	 * it needs to be for normal retransmission.
3731 	 */
3732 	tcp_ack_probe(sk);
3733 
3734 	if (tp->tlp_high_seq)
3735 		tcp_process_tlp_ack(sk, ack, flag);
3736 	return 1;
3737 
3738 old_ack:
3739 	/* If data was SACKed, tag it and see if we should send more data.
3740 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3741 	 */
3742 	if (TCP_SKB_CB(skb)->sacked) {
3743 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3744 						&sack_state);
3745 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3746 				      &rexmit);
3747 		tcp_newly_delivered(sk, delivered, flag);
3748 		tcp_xmit_recovery(sk, rexmit);
3749 	}
3750 
3751 	return 0;
3752 }
3753 
3754 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3755 				      bool syn, struct tcp_fastopen_cookie *foc,
3756 				      bool exp_opt)
3757 {
3758 	/* Valid only in SYN or SYN-ACK with an even length.  */
3759 	if (!foc || !syn || len < 0 || (len & 1))
3760 		return;
3761 
3762 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3763 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3764 		memcpy(foc->val, cookie, len);
3765 	else if (len != 0)
3766 		len = -1;
3767 	foc->len = len;
3768 	foc->exp = exp_opt;
3769 }
3770 
3771 static void smc_parse_options(const struct tcphdr *th,
3772 			      struct tcp_options_received *opt_rx,
3773 			      const unsigned char *ptr,
3774 			      int opsize)
3775 {
3776 #if IS_ENABLED(CONFIG_SMC)
3777 	if (static_branch_unlikely(&tcp_have_smc)) {
3778 		if (th->syn && !(opsize & 1) &&
3779 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3780 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3781 			opt_rx->smc_ok = 1;
3782 	}
3783 #endif
3784 }
3785 
3786 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3787  * value on success.
3788  */
3789 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3790 {
3791 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3792 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3793 	u16 mss = 0;
3794 
3795 	while (length > 0) {
3796 		int opcode = *ptr++;
3797 		int opsize;
3798 
3799 		switch (opcode) {
3800 		case TCPOPT_EOL:
3801 			return mss;
3802 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3803 			length--;
3804 			continue;
3805 		default:
3806 			if (length < 2)
3807 				return mss;
3808 			opsize = *ptr++;
3809 			if (opsize < 2) /* "silly options" */
3810 				return mss;
3811 			if (opsize > length)
3812 				return mss;	/* fail on partial options */
3813 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3814 				u16 in_mss = get_unaligned_be16(ptr);
3815 
3816 				if (in_mss) {
3817 					if (user_mss && user_mss < in_mss)
3818 						in_mss = user_mss;
3819 					mss = in_mss;
3820 				}
3821 			}
3822 			ptr += opsize - 2;
3823 			length -= opsize;
3824 		}
3825 	}
3826 	return mss;
3827 }
3828 
3829 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3830  * But, this can also be called on packets in the established flow when
3831  * the fast version below fails.
3832  */
3833 void tcp_parse_options(const struct net *net,
3834 		       const struct sk_buff *skb,
3835 		       struct tcp_options_received *opt_rx, int estab,
3836 		       struct tcp_fastopen_cookie *foc)
3837 {
3838 	const unsigned char *ptr;
3839 	const struct tcphdr *th = tcp_hdr(skb);
3840 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3841 
3842 	ptr = (const unsigned char *)(th + 1);
3843 	opt_rx->saw_tstamp = 0;
3844 
3845 	while (length > 0) {
3846 		int opcode = *ptr++;
3847 		int opsize;
3848 
3849 		switch (opcode) {
3850 		case TCPOPT_EOL:
3851 			return;
3852 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3853 			length--;
3854 			continue;
3855 		default:
3856 			if (length < 2)
3857 				return;
3858 			opsize = *ptr++;
3859 			if (opsize < 2) /* "silly options" */
3860 				return;
3861 			if (opsize > length)
3862 				return;	/* don't parse partial options */
3863 			switch (opcode) {
3864 			case TCPOPT_MSS:
3865 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3866 					u16 in_mss = get_unaligned_be16(ptr);
3867 					if (in_mss) {
3868 						if (opt_rx->user_mss &&
3869 						    opt_rx->user_mss < in_mss)
3870 							in_mss = opt_rx->user_mss;
3871 						opt_rx->mss_clamp = in_mss;
3872 					}
3873 				}
3874 				break;
3875 			case TCPOPT_WINDOW:
3876 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3877 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3878 					__u8 snd_wscale = *(__u8 *)ptr;
3879 					opt_rx->wscale_ok = 1;
3880 					if (snd_wscale > TCP_MAX_WSCALE) {
3881 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3882 								     __func__,
3883 								     snd_wscale,
3884 								     TCP_MAX_WSCALE);
3885 						snd_wscale = TCP_MAX_WSCALE;
3886 					}
3887 					opt_rx->snd_wscale = snd_wscale;
3888 				}
3889 				break;
3890 			case TCPOPT_TIMESTAMP:
3891 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3892 				    ((estab && opt_rx->tstamp_ok) ||
3893 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3894 					opt_rx->saw_tstamp = 1;
3895 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3896 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3897 				}
3898 				break;
3899 			case TCPOPT_SACK_PERM:
3900 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3901 				    !estab && net->ipv4.sysctl_tcp_sack) {
3902 					opt_rx->sack_ok = TCP_SACK_SEEN;
3903 					tcp_sack_reset(opt_rx);
3904 				}
3905 				break;
3906 
3907 			case TCPOPT_SACK:
3908 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3909 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3910 				   opt_rx->sack_ok) {
3911 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3912 				}
3913 				break;
3914 #ifdef CONFIG_TCP_MD5SIG
3915 			case TCPOPT_MD5SIG:
3916 				/*
3917 				 * The MD5 Hash has already been
3918 				 * checked (see tcp_v{4,6}_do_rcv()).
3919 				 */
3920 				break;
3921 #endif
3922 			case TCPOPT_FASTOPEN:
3923 				tcp_parse_fastopen_option(
3924 					opsize - TCPOLEN_FASTOPEN_BASE,
3925 					ptr, th->syn, foc, false);
3926 				break;
3927 
3928 			case TCPOPT_EXP:
3929 				/* Fast Open option shares code 254 using a
3930 				 * 16 bits magic number.
3931 				 */
3932 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3933 				    get_unaligned_be16(ptr) ==
3934 				    TCPOPT_FASTOPEN_MAGIC)
3935 					tcp_parse_fastopen_option(opsize -
3936 						TCPOLEN_EXP_FASTOPEN_BASE,
3937 						ptr + 2, th->syn, foc, true);
3938 				else
3939 					smc_parse_options(th, opt_rx, ptr,
3940 							  opsize);
3941 				break;
3942 
3943 			}
3944 			ptr += opsize-2;
3945 			length -= opsize;
3946 		}
3947 	}
3948 }
3949 EXPORT_SYMBOL(tcp_parse_options);
3950 
3951 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3952 {
3953 	const __be32 *ptr = (const __be32 *)(th + 1);
3954 
3955 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3956 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3957 		tp->rx_opt.saw_tstamp = 1;
3958 		++ptr;
3959 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3960 		++ptr;
3961 		if (*ptr)
3962 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3963 		else
3964 			tp->rx_opt.rcv_tsecr = 0;
3965 		return true;
3966 	}
3967 	return false;
3968 }
3969 
3970 /* Fast parse options. This hopes to only see timestamps.
3971  * If it is wrong it falls back on tcp_parse_options().
3972  */
3973 static bool tcp_fast_parse_options(const struct net *net,
3974 				   const struct sk_buff *skb,
3975 				   const struct tcphdr *th, struct tcp_sock *tp)
3976 {
3977 	/* In the spirit of fast parsing, compare doff directly to constant
3978 	 * values.  Because equality is used, short doff can be ignored here.
3979 	 */
3980 	if (th->doff == (sizeof(*th) / 4)) {
3981 		tp->rx_opt.saw_tstamp = 0;
3982 		return false;
3983 	} else if (tp->rx_opt.tstamp_ok &&
3984 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3985 		if (tcp_parse_aligned_timestamp(tp, th))
3986 			return true;
3987 	}
3988 
3989 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3990 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3991 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3992 
3993 	return true;
3994 }
3995 
3996 #ifdef CONFIG_TCP_MD5SIG
3997 /*
3998  * Parse MD5 Signature option
3999  */
4000 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4001 {
4002 	int length = (th->doff << 2) - sizeof(*th);
4003 	const u8 *ptr = (const u8 *)(th + 1);
4004 
4005 	/* If not enough data remaining, we can short cut */
4006 	while (length >= TCPOLEN_MD5SIG) {
4007 		int opcode = *ptr++;
4008 		int opsize;
4009 
4010 		switch (opcode) {
4011 		case TCPOPT_EOL:
4012 			return NULL;
4013 		case TCPOPT_NOP:
4014 			length--;
4015 			continue;
4016 		default:
4017 			opsize = *ptr++;
4018 			if (opsize < 2 || opsize > length)
4019 				return NULL;
4020 			if (opcode == TCPOPT_MD5SIG)
4021 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4022 		}
4023 		ptr += opsize - 2;
4024 		length -= opsize;
4025 	}
4026 	return NULL;
4027 }
4028 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4029 #endif
4030 
4031 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4032  *
4033  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4034  * it can pass through stack. So, the following predicate verifies that
4035  * this segment is not used for anything but congestion avoidance or
4036  * fast retransmit. Moreover, we even are able to eliminate most of such
4037  * second order effects, if we apply some small "replay" window (~RTO)
4038  * to timestamp space.
4039  *
4040  * All these measures still do not guarantee that we reject wrapped ACKs
4041  * on networks with high bandwidth, when sequence space is recycled fastly,
4042  * but it guarantees that such events will be very rare and do not affect
4043  * connection seriously. This doesn't look nice, but alas, PAWS is really
4044  * buggy extension.
4045  *
4046  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4047  * states that events when retransmit arrives after original data are rare.
4048  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4049  * the biggest problem on large power networks even with minor reordering.
4050  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4051  * up to bandwidth of 18Gigabit/sec. 8) ]
4052  */
4053 
4054 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4055 {
4056 	const struct tcp_sock *tp = tcp_sk(sk);
4057 	const struct tcphdr *th = tcp_hdr(skb);
4058 	u32 seq = TCP_SKB_CB(skb)->seq;
4059 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4060 
4061 	return (/* 1. Pure ACK with correct sequence number. */
4062 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4063 
4064 		/* 2. ... and duplicate ACK. */
4065 		ack == tp->snd_una &&
4066 
4067 		/* 3. ... and does not update window. */
4068 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4069 
4070 		/* 4. ... and sits in replay window. */
4071 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4072 }
4073 
4074 static inline bool tcp_paws_discard(const struct sock *sk,
4075 				   const struct sk_buff *skb)
4076 {
4077 	const struct tcp_sock *tp = tcp_sk(sk);
4078 
4079 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4080 	       !tcp_disordered_ack(sk, skb);
4081 }
4082 
4083 /* Check segment sequence number for validity.
4084  *
4085  * Segment controls are considered valid, if the segment
4086  * fits to the window after truncation to the window. Acceptability
4087  * of data (and SYN, FIN, of course) is checked separately.
4088  * See tcp_data_queue(), for example.
4089  *
4090  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4091  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4092  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4093  * (borrowed from freebsd)
4094  */
4095 
4096 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4097 {
4098 	return	!before(end_seq, tp->rcv_wup) &&
4099 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4100 }
4101 
4102 /* When we get a reset we do this. */
4103 void tcp_reset(struct sock *sk)
4104 {
4105 	trace_tcp_receive_reset(sk);
4106 
4107 	/* We want the right error as BSD sees it (and indeed as we do). */
4108 	switch (sk->sk_state) {
4109 	case TCP_SYN_SENT:
4110 		sk->sk_err = ECONNREFUSED;
4111 		break;
4112 	case TCP_CLOSE_WAIT:
4113 		sk->sk_err = EPIPE;
4114 		break;
4115 	case TCP_CLOSE:
4116 		return;
4117 	default:
4118 		sk->sk_err = ECONNRESET;
4119 	}
4120 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4121 	smp_wmb();
4122 
4123 	tcp_write_queue_purge(sk);
4124 	tcp_done(sk);
4125 
4126 	if (!sock_flag(sk, SOCK_DEAD))
4127 		sk->sk_error_report(sk);
4128 }
4129 
4130 /*
4131  * 	Process the FIN bit. This now behaves as it is supposed to work
4132  *	and the FIN takes effect when it is validly part of sequence
4133  *	space. Not before when we get holes.
4134  *
4135  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4136  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4137  *	TIME-WAIT)
4138  *
4139  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4140  *	close and we go into CLOSING (and later onto TIME-WAIT)
4141  *
4142  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4143  */
4144 void tcp_fin(struct sock *sk)
4145 {
4146 	struct tcp_sock *tp = tcp_sk(sk);
4147 
4148 	inet_csk_schedule_ack(sk);
4149 
4150 	sk->sk_shutdown |= RCV_SHUTDOWN;
4151 	sock_set_flag(sk, SOCK_DONE);
4152 
4153 	switch (sk->sk_state) {
4154 	case TCP_SYN_RECV:
4155 	case TCP_ESTABLISHED:
4156 		/* Move to CLOSE_WAIT */
4157 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4158 		inet_csk_enter_pingpong_mode(sk);
4159 		break;
4160 
4161 	case TCP_CLOSE_WAIT:
4162 	case TCP_CLOSING:
4163 		/* Received a retransmission of the FIN, do
4164 		 * nothing.
4165 		 */
4166 		break;
4167 	case TCP_LAST_ACK:
4168 		/* RFC793: Remain in the LAST-ACK state. */
4169 		break;
4170 
4171 	case TCP_FIN_WAIT1:
4172 		/* This case occurs when a simultaneous close
4173 		 * happens, we must ack the received FIN and
4174 		 * enter the CLOSING state.
4175 		 */
4176 		tcp_send_ack(sk);
4177 		tcp_set_state(sk, TCP_CLOSING);
4178 		break;
4179 	case TCP_FIN_WAIT2:
4180 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4181 		tcp_send_ack(sk);
4182 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4183 		break;
4184 	default:
4185 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4186 		 * cases we should never reach this piece of code.
4187 		 */
4188 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4189 		       __func__, sk->sk_state);
4190 		break;
4191 	}
4192 
4193 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4194 	 * Probably, we should reset in this case. For now drop them.
4195 	 */
4196 	skb_rbtree_purge(&tp->out_of_order_queue);
4197 	if (tcp_is_sack(tp))
4198 		tcp_sack_reset(&tp->rx_opt);
4199 	sk_mem_reclaim(sk);
4200 
4201 	if (!sock_flag(sk, SOCK_DEAD)) {
4202 		sk->sk_state_change(sk);
4203 
4204 		/* Do not send POLL_HUP for half duplex close. */
4205 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4206 		    sk->sk_state == TCP_CLOSE)
4207 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4208 		else
4209 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4210 	}
4211 }
4212 
4213 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4214 				  u32 end_seq)
4215 {
4216 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4217 		if (before(seq, sp->start_seq))
4218 			sp->start_seq = seq;
4219 		if (after(end_seq, sp->end_seq))
4220 			sp->end_seq = end_seq;
4221 		return true;
4222 	}
4223 	return false;
4224 }
4225 
4226 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4227 {
4228 	struct tcp_sock *tp = tcp_sk(sk);
4229 
4230 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4231 		int mib_idx;
4232 
4233 		if (before(seq, tp->rcv_nxt))
4234 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4235 		else
4236 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4237 
4238 		NET_INC_STATS(sock_net(sk), mib_idx);
4239 
4240 		tp->rx_opt.dsack = 1;
4241 		tp->duplicate_sack[0].start_seq = seq;
4242 		tp->duplicate_sack[0].end_seq = end_seq;
4243 	}
4244 }
4245 
4246 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4247 {
4248 	struct tcp_sock *tp = tcp_sk(sk);
4249 
4250 	if (!tp->rx_opt.dsack)
4251 		tcp_dsack_set(sk, seq, end_seq);
4252 	else
4253 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4254 }
4255 
4256 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4257 {
4258 	/* When the ACK path fails or drops most ACKs, the sender would
4259 	 * timeout and spuriously retransmit the same segment repeatedly.
4260 	 * The receiver remembers and reflects via DSACKs. Leverage the
4261 	 * DSACK state and change the txhash to re-route speculatively.
4262 	 */
4263 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4264 		sk_rethink_txhash(sk);
4265 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4266 	}
4267 }
4268 
4269 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4270 {
4271 	struct tcp_sock *tp = tcp_sk(sk);
4272 
4273 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4274 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4275 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4276 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4277 
4278 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4279 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4280 
4281 			tcp_rcv_spurious_retrans(sk, skb);
4282 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4283 				end_seq = tp->rcv_nxt;
4284 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4285 		}
4286 	}
4287 
4288 	tcp_send_ack(sk);
4289 }
4290 
4291 /* These routines update the SACK block as out-of-order packets arrive or
4292  * in-order packets close up the sequence space.
4293  */
4294 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4295 {
4296 	int this_sack;
4297 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4298 	struct tcp_sack_block *swalk = sp + 1;
4299 
4300 	/* See if the recent change to the first SACK eats into
4301 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4302 	 */
4303 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4304 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4305 			int i;
4306 
4307 			/* Zap SWALK, by moving every further SACK up by one slot.
4308 			 * Decrease num_sacks.
4309 			 */
4310 			tp->rx_opt.num_sacks--;
4311 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4312 				sp[i] = sp[i + 1];
4313 			continue;
4314 		}
4315 		this_sack++, swalk++;
4316 	}
4317 }
4318 
4319 static void tcp_sack_compress_send_ack(struct sock *sk)
4320 {
4321 	struct tcp_sock *tp = tcp_sk(sk);
4322 
4323 	if (!tp->compressed_ack)
4324 		return;
4325 
4326 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4327 		__sock_put(sk);
4328 
4329 	/* Since we have to send one ack finally,
4330 	 * substract one from tp->compressed_ack to keep
4331 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4332 	 */
4333 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4334 		      tp->compressed_ack - 1);
4335 
4336 	tp->compressed_ack = 0;
4337 	tcp_send_ack(sk);
4338 }
4339 
4340 /* Reasonable amount of sack blocks included in TCP SACK option
4341  * The max is 4, but this becomes 3 if TCP timestamps are there.
4342  * Given that SACK packets might be lost, be conservative and use 2.
4343  */
4344 #define TCP_SACK_BLOCKS_EXPECTED 2
4345 
4346 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4347 {
4348 	struct tcp_sock *tp = tcp_sk(sk);
4349 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4350 	int cur_sacks = tp->rx_opt.num_sacks;
4351 	int this_sack;
4352 
4353 	if (!cur_sacks)
4354 		goto new_sack;
4355 
4356 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4357 		if (tcp_sack_extend(sp, seq, end_seq)) {
4358 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4359 				tcp_sack_compress_send_ack(sk);
4360 			/* Rotate this_sack to the first one. */
4361 			for (; this_sack > 0; this_sack--, sp--)
4362 				swap(*sp, *(sp - 1));
4363 			if (cur_sacks > 1)
4364 				tcp_sack_maybe_coalesce(tp);
4365 			return;
4366 		}
4367 	}
4368 
4369 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4370 		tcp_sack_compress_send_ack(sk);
4371 
4372 	/* Could not find an adjacent existing SACK, build a new one,
4373 	 * put it at the front, and shift everyone else down.  We
4374 	 * always know there is at least one SACK present already here.
4375 	 *
4376 	 * If the sack array is full, forget about the last one.
4377 	 */
4378 	if (this_sack >= TCP_NUM_SACKS) {
4379 		this_sack--;
4380 		tp->rx_opt.num_sacks--;
4381 		sp--;
4382 	}
4383 	for (; this_sack > 0; this_sack--, sp--)
4384 		*sp = *(sp - 1);
4385 
4386 new_sack:
4387 	/* Build the new head SACK, and we're done. */
4388 	sp->start_seq = seq;
4389 	sp->end_seq = end_seq;
4390 	tp->rx_opt.num_sacks++;
4391 }
4392 
4393 /* RCV.NXT advances, some SACKs should be eaten. */
4394 
4395 static void tcp_sack_remove(struct tcp_sock *tp)
4396 {
4397 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4398 	int num_sacks = tp->rx_opt.num_sacks;
4399 	int this_sack;
4400 
4401 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4402 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4403 		tp->rx_opt.num_sacks = 0;
4404 		return;
4405 	}
4406 
4407 	for (this_sack = 0; this_sack < num_sacks;) {
4408 		/* Check if the start of the sack is covered by RCV.NXT. */
4409 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4410 			int i;
4411 
4412 			/* RCV.NXT must cover all the block! */
4413 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4414 
4415 			/* Zap this SACK, by moving forward any other SACKS. */
4416 			for (i = this_sack+1; i < num_sacks; i++)
4417 				tp->selective_acks[i-1] = tp->selective_acks[i];
4418 			num_sacks--;
4419 			continue;
4420 		}
4421 		this_sack++;
4422 		sp++;
4423 	}
4424 	tp->rx_opt.num_sacks = num_sacks;
4425 }
4426 
4427 /**
4428  * tcp_try_coalesce - try to merge skb to prior one
4429  * @sk: socket
4430  * @dest: destination queue
4431  * @to: prior buffer
4432  * @from: buffer to add in queue
4433  * @fragstolen: pointer to boolean
4434  *
4435  * Before queueing skb @from after @to, try to merge them
4436  * to reduce overall memory use and queue lengths, if cost is small.
4437  * Packets in ofo or receive queues can stay a long time.
4438  * Better try to coalesce them right now to avoid future collapses.
4439  * Returns true if caller should free @from instead of queueing it
4440  */
4441 static bool tcp_try_coalesce(struct sock *sk,
4442 			     struct sk_buff *to,
4443 			     struct sk_buff *from,
4444 			     bool *fragstolen)
4445 {
4446 	int delta;
4447 
4448 	*fragstolen = false;
4449 
4450 	/* Its possible this segment overlaps with prior segment in queue */
4451 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4452 		return false;
4453 
4454 	if (!mptcp_skb_can_collapse(to, from))
4455 		return false;
4456 
4457 #ifdef CONFIG_TLS_DEVICE
4458 	if (from->decrypted != to->decrypted)
4459 		return false;
4460 #endif
4461 
4462 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4463 		return false;
4464 
4465 	atomic_add(delta, &sk->sk_rmem_alloc);
4466 	sk_mem_charge(sk, delta);
4467 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4468 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4469 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4470 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4471 
4472 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4473 		TCP_SKB_CB(to)->has_rxtstamp = true;
4474 		to->tstamp = from->tstamp;
4475 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4476 	}
4477 
4478 	return true;
4479 }
4480 
4481 static bool tcp_ooo_try_coalesce(struct sock *sk,
4482 			     struct sk_buff *to,
4483 			     struct sk_buff *from,
4484 			     bool *fragstolen)
4485 {
4486 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4487 
4488 	/* In case tcp_drop() is called later, update to->gso_segs */
4489 	if (res) {
4490 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4491 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4492 
4493 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4494 	}
4495 	return res;
4496 }
4497 
4498 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4499 {
4500 	sk_drops_add(sk, skb);
4501 	__kfree_skb(skb);
4502 }
4503 
4504 /* This one checks to see if we can put data from the
4505  * out_of_order queue into the receive_queue.
4506  */
4507 static void tcp_ofo_queue(struct sock *sk)
4508 {
4509 	struct tcp_sock *tp = tcp_sk(sk);
4510 	__u32 dsack_high = tp->rcv_nxt;
4511 	bool fin, fragstolen, eaten;
4512 	struct sk_buff *skb, *tail;
4513 	struct rb_node *p;
4514 
4515 	p = rb_first(&tp->out_of_order_queue);
4516 	while (p) {
4517 		skb = rb_to_skb(p);
4518 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4519 			break;
4520 
4521 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4522 			__u32 dsack = dsack_high;
4523 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4524 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4525 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4526 		}
4527 		p = rb_next(p);
4528 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4529 
4530 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4531 			tcp_drop(sk, skb);
4532 			continue;
4533 		}
4534 
4535 		tail = skb_peek_tail(&sk->sk_receive_queue);
4536 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4537 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4538 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4539 		if (!eaten)
4540 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4541 		else
4542 			kfree_skb_partial(skb, fragstolen);
4543 
4544 		if (unlikely(fin)) {
4545 			tcp_fin(sk);
4546 			/* tcp_fin() purges tp->out_of_order_queue,
4547 			 * so we must end this loop right now.
4548 			 */
4549 			break;
4550 		}
4551 	}
4552 }
4553 
4554 static bool tcp_prune_ofo_queue(struct sock *sk);
4555 static int tcp_prune_queue(struct sock *sk);
4556 
4557 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4558 				 unsigned int size)
4559 {
4560 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4561 	    !sk_rmem_schedule(sk, skb, size)) {
4562 
4563 		if (tcp_prune_queue(sk) < 0)
4564 			return -1;
4565 
4566 		while (!sk_rmem_schedule(sk, skb, size)) {
4567 			if (!tcp_prune_ofo_queue(sk))
4568 				return -1;
4569 		}
4570 	}
4571 	return 0;
4572 }
4573 
4574 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4575 {
4576 	struct tcp_sock *tp = tcp_sk(sk);
4577 	struct rb_node **p, *parent;
4578 	struct sk_buff *skb1;
4579 	u32 seq, end_seq;
4580 	bool fragstolen;
4581 
4582 	tcp_ecn_check_ce(sk, skb);
4583 
4584 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4585 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4586 		sk->sk_data_ready(sk);
4587 		tcp_drop(sk, skb);
4588 		return;
4589 	}
4590 
4591 	/* Disable header prediction. */
4592 	tp->pred_flags = 0;
4593 	inet_csk_schedule_ack(sk);
4594 
4595 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4596 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4597 	seq = TCP_SKB_CB(skb)->seq;
4598 	end_seq = TCP_SKB_CB(skb)->end_seq;
4599 
4600 	p = &tp->out_of_order_queue.rb_node;
4601 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4602 		/* Initial out of order segment, build 1 SACK. */
4603 		if (tcp_is_sack(tp)) {
4604 			tp->rx_opt.num_sacks = 1;
4605 			tp->selective_acks[0].start_seq = seq;
4606 			tp->selective_acks[0].end_seq = end_seq;
4607 		}
4608 		rb_link_node(&skb->rbnode, NULL, p);
4609 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4610 		tp->ooo_last_skb = skb;
4611 		goto end;
4612 	}
4613 
4614 	/* In the typical case, we are adding an skb to the end of the list.
4615 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4616 	 */
4617 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4618 				 skb, &fragstolen)) {
4619 coalesce_done:
4620 		/* For non sack flows, do not grow window to force DUPACK
4621 		 * and trigger fast retransmit.
4622 		 */
4623 		if (tcp_is_sack(tp))
4624 			tcp_grow_window(sk, skb);
4625 		kfree_skb_partial(skb, fragstolen);
4626 		skb = NULL;
4627 		goto add_sack;
4628 	}
4629 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4630 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4631 		parent = &tp->ooo_last_skb->rbnode;
4632 		p = &parent->rb_right;
4633 		goto insert;
4634 	}
4635 
4636 	/* Find place to insert this segment. Handle overlaps on the way. */
4637 	parent = NULL;
4638 	while (*p) {
4639 		parent = *p;
4640 		skb1 = rb_to_skb(parent);
4641 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4642 			p = &parent->rb_left;
4643 			continue;
4644 		}
4645 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4646 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4647 				/* All the bits are present. Drop. */
4648 				NET_INC_STATS(sock_net(sk),
4649 					      LINUX_MIB_TCPOFOMERGE);
4650 				tcp_drop(sk, skb);
4651 				skb = NULL;
4652 				tcp_dsack_set(sk, seq, end_seq);
4653 				goto add_sack;
4654 			}
4655 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4656 				/* Partial overlap. */
4657 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4658 			} else {
4659 				/* skb's seq == skb1's seq and skb covers skb1.
4660 				 * Replace skb1 with skb.
4661 				 */
4662 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4663 						&tp->out_of_order_queue);
4664 				tcp_dsack_extend(sk,
4665 						 TCP_SKB_CB(skb1)->seq,
4666 						 TCP_SKB_CB(skb1)->end_seq);
4667 				NET_INC_STATS(sock_net(sk),
4668 					      LINUX_MIB_TCPOFOMERGE);
4669 				tcp_drop(sk, skb1);
4670 				goto merge_right;
4671 			}
4672 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4673 						skb, &fragstolen)) {
4674 			goto coalesce_done;
4675 		}
4676 		p = &parent->rb_right;
4677 	}
4678 insert:
4679 	/* Insert segment into RB tree. */
4680 	rb_link_node(&skb->rbnode, parent, p);
4681 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4682 
4683 merge_right:
4684 	/* Remove other segments covered by skb. */
4685 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4686 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4687 			break;
4688 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4689 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4690 					 end_seq);
4691 			break;
4692 		}
4693 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4694 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4695 				 TCP_SKB_CB(skb1)->end_seq);
4696 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4697 		tcp_drop(sk, skb1);
4698 	}
4699 	/* If there is no skb after us, we are the last_skb ! */
4700 	if (!skb1)
4701 		tp->ooo_last_skb = skb;
4702 
4703 add_sack:
4704 	if (tcp_is_sack(tp))
4705 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4706 end:
4707 	if (skb) {
4708 		/* For non sack flows, do not grow window to force DUPACK
4709 		 * and trigger fast retransmit.
4710 		 */
4711 		if (tcp_is_sack(tp))
4712 			tcp_grow_window(sk, skb);
4713 		skb_condense(skb);
4714 		skb_set_owner_r(skb, sk);
4715 	}
4716 }
4717 
4718 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4719 				      bool *fragstolen)
4720 {
4721 	int eaten;
4722 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4723 
4724 	eaten = (tail &&
4725 		 tcp_try_coalesce(sk, tail,
4726 				  skb, fragstolen)) ? 1 : 0;
4727 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4728 	if (!eaten) {
4729 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4730 		skb_set_owner_r(skb, sk);
4731 	}
4732 	return eaten;
4733 }
4734 
4735 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4736 {
4737 	struct sk_buff *skb;
4738 	int err = -ENOMEM;
4739 	int data_len = 0;
4740 	bool fragstolen;
4741 
4742 	if (size == 0)
4743 		return 0;
4744 
4745 	if (size > PAGE_SIZE) {
4746 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4747 
4748 		data_len = npages << PAGE_SHIFT;
4749 		size = data_len + (size & ~PAGE_MASK);
4750 	}
4751 	skb = alloc_skb_with_frags(size - data_len, data_len,
4752 				   PAGE_ALLOC_COSTLY_ORDER,
4753 				   &err, sk->sk_allocation);
4754 	if (!skb)
4755 		goto err;
4756 
4757 	skb_put(skb, size - data_len);
4758 	skb->data_len = data_len;
4759 	skb->len = size;
4760 
4761 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4762 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4763 		goto err_free;
4764 	}
4765 
4766 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4767 	if (err)
4768 		goto err_free;
4769 
4770 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4771 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4772 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4773 
4774 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4775 		WARN_ON_ONCE(fragstolen); /* should not happen */
4776 		__kfree_skb(skb);
4777 	}
4778 	return size;
4779 
4780 err_free:
4781 	kfree_skb(skb);
4782 err:
4783 	return err;
4784 
4785 }
4786 
4787 void tcp_data_ready(struct sock *sk)
4788 {
4789 	const struct tcp_sock *tp = tcp_sk(sk);
4790 	int avail = tp->rcv_nxt - tp->copied_seq;
4791 
4792 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4793 	    !sock_flag(sk, SOCK_DONE))
4794 		return;
4795 
4796 	sk->sk_data_ready(sk);
4797 }
4798 
4799 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4800 {
4801 	struct tcp_sock *tp = tcp_sk(sk);
4802 	bool fragstolen;
4803 	int eaten;
4804 
4805 	if (sk_is_mptcp(sk))
4806 		mptcp_incoming_options(sk, skb, &tp->rx_opt);
4807 
4808 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4809 		__kfree_skb(skb);
4810 		return;
4811 	}
4812 	skb_dst_drop(skb);
4813 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4814 
4815 	tp->rx_opt.dsack = 0;
4816 
4817 	/*  Queue data for delivery to the user.
4818 	 *  Packets in sequence go to the receive queue.
4819 	 *  Out of sequence packets to the out_of_order_queue.
4820 	 */
4821 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4822 		if (tcp_receive_window(tp) == 0) {
4823 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4824 			goto out_of_window;
4825 		}
4826 
4827 		/* Ok. In sequence. In window. */
4828 queue_and_out:
4829 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4830 			sk_forced_mem_schedule(sk, skb->truesize);
4831 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4832 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4833 			sk->sk_data_ready(sk);
4834 			goto drop;
4835 		}
4836 
4837 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4838 		if (skb->len)
4839 			tcp_event_data_recv(sk, skb);
4840 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4841 			tcp_fin(sk);
4842 
4843 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4844 			tcp_ofo_queue(sk);
4845 
4846 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4847 			 * gap in queue is filled.
4848 			 */
4849 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4850 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4851 		}
4852 
4853 		if (tp->rx_opt.num_sacks)
4854 			tcp_sack_remove(tp);
4855 
4856 		tcp_fast_path_check(sk);
4857 
4858 		if (eaten > 0)
4859 			kfree_skb_partial(skb, fragstolen);
4860 		if (!sock_flag(sk, SOCK_DEAD))
4861 			tcp_data_ready(sk);
4862 		return;
4863 	}
4864 
4865 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4866 		tcp_rcv_spurious_retrans(sk, skb);
4867 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4868 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4869 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4870 
4871 out_of_window:
4872 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4873 		inet_csk_schedule_ack(sk);
4874 drop:
4875 		tcp_drop(sk, skb);
4876 		return;
4877 	}
4878 
4879 	/* Out of window. F.e. zero window probe. */
4880 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4881 		goto out_of_window;
4882 
4883 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4884 		/* Partial packet, seq < rcv_next < end_seq */
4885 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4886 
4887 		/* If window is closed, drop tail of packet. But after
4888 		 * remembering D-SACK for its head made in previous line.
4889 		 */
4890 		if (!tcp_receive_window(tp)) {
4891 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4892 			goto out_of_window;
4893 		}
4894 		goto queue_and_out;
4895 	}
4896 
4897 	tcp_data_queue_ofo(sk, skb);
4898 }
4899 
4900 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4901 {
4902 	if (list)
4903 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4904 
4905 	return skb_rb_next(skb);
4906 }
4907 
4908 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4909 					struct sk_buff_head *list,
4910 					struct rb_root *root)
4911 {
4912 	struct sk_buff *next = tcp_skb_next(skb, list);
4913 
4914 	if (list)
4915 		__skb_unlink(skb, list);
4916 	else
4917 		rb_erase(&skb->rbnode, root);
4918 
4919 	__kfree_skb(skb);
4920 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4921 
4922 	return next;
4923 }
4924 
4925 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4926 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4927 {
4928 	struct rb_node **p = &root->rb_node;
4929 	struct rb_node *parent = NULL;
4930 	struct sk_buff *skb1;
4931 
4932 	while (*p) {
4933 		parent = *p;
4934 		skb1 = rb_to_skb(parent);
4935 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4936 			p = &parent->rb_left;
4937 		else
4938 			p = &parent->rb_right;
4939 	}
4940 	rb_link_node(&skb->rbnode, parent, p);
4941 	rb_insert_color(&skb->rbnode, root);
4942 }
4943 
4944 /* Collapse contiguous sequence of skbs head..tail with
4945  * sequence numbers start..end.
4946  *
4947  * If tail is NULL, this means until the end of the queue.
4948  *
4949  * Segments with FIN/SYN are not collapsed (only because this
4950  * simplifies code)
4951  */
4952 static void
4953 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4954 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4955 {
4956 	struct sk_buff *skb = head, *n;
4957 	struct sk_buff_head tmp;
4958 	bool end_of_skbs;
4959 
4960 	/* First, check that queue is collapsible and find
4961 	 * the point where collapsing can be useful.
4962 	 */
4963 restart:
4964 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4965 		n = tcp_skb_next(skb, list);
4966 
4967 		/* No new bits? It is possible on ofo queue. */
4968 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4969 			skb = tcp_collapse_one(sk, skb, list, root);
4970 			if (!skb)
4971 				break;
4972 			goto restart;
4973 		}
4974 
4975 		/* The first skb to collapse is:
4976 		 * - not SYN/FIN and
4977 		 * - bloated or contains data before "start" or
4978 		 *   overlaps to the next one and mptcp allow collapsing.
4979 		 */
4980 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4981 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4982 		     before(TCP_SKB_CB(skb)->seq, start))) {
4983 			end_of_skbs = false;
4984 			break;
4985 		}
4986 
4987 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
4988 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4989 			end_of_skbs = false;
4990 			break;
4991 		}
4992 
4993 		/* Decided to skip this, advance start seq. */
4994 		start = TCP_SKB_CB(skb)->end_seq;
4995 	}
4996 	if (end_of_skbs ||
4997 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4998 		return;
4999 
5000 	__skb_queue_head_init(&tmp);
5001 
5002 	while (before(start, end)) {
5003 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5004 		struct sk_buff *nskb;
5005 
5006 		nskb = alloc_skb(copy, GFP_ATOMIC);
5007 		if (!nskb)
5008 			break;
5009 
5010 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5011 #ifdef CONFIG_TLS_DEVICE
5012 		nskb->decrypted = skb->decrypted;
5013 #endif
5014 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5015 		if (list)
5016 			__skb_queue_before(list, skb, nskb);
5017 		else
5018 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5019 		skb_set_owner_r(nskb, sk);
5020 		mptcp_skb_ext_move(nskb, skb);
5021 
5022 		/* Copy data, releasing collapsed skbs. */
5023 		while (copy > 0) {
5024 			int offset = start - TCP_SKB_CB(skb)->seq;
5025 			int size = TCP_SKB_CB(skb)->end_seq - start;
5026 
5027 			BUG_ON(offset < 0);
5028 			if (size > 0) {
5029 				size = min(copy, size);
5030 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5031 					BUG();
5032 				TCP_SKB_CB(nskb)->end_seq += size;
5033 				copy -= size;
5034 				start += size;
5035 			}
5036 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5037 				skb = tcp_collapse_one(sk, skb, list, root);
5038 				if (!skb ||
5039 				    skb == tail ||
5040 				    !mptcp_skb_can_collapse(nskb, skb) ||
5041 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5042 					goto end;
5043 #ifdef CONFIG_TLS_DEVICE
5044 				if (skb->decrypted != nskb->decrypted)
5045 					goto end;
5046 #endif
5047 			}
5048 		}
5049 	}
5050 end:
5051 	skb_queue_walk_safe(&tmp, skb, n)
5052 		tcp_rbtree_insert(root, skb);
5053 }
5054 
5055 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5056  * and tcp_collapse() them until all the queue is collapsed.
5057  */
5058 static void tcp_collapse_ofo_queue(struct sock *sk)
5059 {
5060 	struct tcp_sock *tp = tcp_sk(sk);
5061 	u32 range_truesize, sum_tiny = 0;
5062 	struct sk_buff *skb, *head;
5063 	u32 start, end;
5064 
5065 	skb = skb_rb_first(&tp->out_of_order_queue);
5066 new_range:
5067 	if (!skb) {
5068 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5069 		return;
5070 	}
5071 	start = TCP_SKB_CB(skb)->seq;
5072 	end = TCP_SKB_CB(skb)->end_seq;
5073 	range_truesize = skb->truesize;
5074 
5075 	for (head = skb;;) {
5076 		skb = skb_rb_next(skb);
5077 
5078 		/* Range is terminated when we see a gap or when
5079 		 * we are at the queue end.
5080 		 */
5081 		if (!skb ||
5082 		    after(TCP_SKB_CB(skb)->seq, end) ||
5083 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5084 			/* Do not attempt collapsing tiny skbs */
5085 			if (range_truesize != head->truesize ||
5086 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5087 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5088 					     head, skb, start, end);
5089 			} else {
5090 				sum_tiny += range_truesize;
5091 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5092 					return;
5093 			}
5094 			goto new_range;
5095 		}
5096 
5097 		range_truesize += skb->truesize;
5098 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5099 			start = TCP_SKB_CB(skb)->seq;
5100 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5101 			end = TCP_SKB_CB(skb)->end_seq;
5102 	}
5103 }
5104 
5105 /*
5106  * Clean the out-of-order queue to make room.
5107  * We drop high sequences packets to :
5108  * 1) Let a chance for holes to be filled.
5109  * 2) not add too big latencies if thousands of packets sit there.
5110  *    (But if application shrinks SO_RCVBUF, we could still end up
5111  *     freeing whole queue here)
5112  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5113  *
5114  * Return true if queue has shrunk.
5115  */
5116 static bool tcp_prune_ofo_queue(struct sock *sk)
5117 {
5118 	struct tcp_sock *tp = tcp_sk(sk);
5119 	struct rb_node *node, *prev;
5120 	int goal;
5121 
5122 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5123 		return false;
5124 
5125 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5126 	goal = sk->sk_rcvbuf >> 3;
5127 	node = &tp->ooo_last_skb->rbnode;
5128 	do {
5129 		prev = rb_prev(node);
5130 		rb_erase(node, &tp->out_of_order_queue);
5131 		goal -= rb_to_skb(node)->truesize;
5132 		tcp_drop(sk, rb_to_skb(node));
5133 		if (!prev || goal <= 0) {
5134 			sk_mem_reclaim(sk);
5135 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5136 			    !tcp_under_memory_pressure(sk))
5137 				break;
5138 			goal = sk->sk_rcvbuf >> 3;
5139 		}
5140 		node = prev;
5141 	} while (node);
5142 	tp->ooo_last_skb = rb_to_skb(prev);
5143 
5144 	/* Reset SACK state.  A conforming SACK implementation will
5145 	 * do the same at a timeout based retransmit.  When a connection
5146 	 * is in a sad state like this, we care only about integrity
5147 	 * of the connection not performance.
5148 	 */
5149 	if (tp->rx_opt.sack_ok)
5150 		tcp_sack_reset(&tp->rx_opt);
5151 	return true;
5152 }
5153 
5154 /* Reduce allocated memory if we can, trying to get
5155  * the socket within its memory limits again.
5156  *
5157  * Return less than zero if we should start dropping frames
5158  * until the socket owning process reads some of the data
5159  * to stabilize the situation.
5160  */
5161 static int tcp_prune_queue(struct sock *sk)
5162 {
5163 	struct tcp_sock *tp = tcp_sk(sk);
5164 
5165 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5166 
5167 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5168 		tcp_clamp_window(sk);
5169 	else if (tcp_under_memory_pressure(sk))
5170 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5171 
5172 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5173 		return 0;
5174 
5175 	tcp_collapse_ofo_queue(sk);
5176 	if (!skb_queue_empty(&sk->sk_receive_queue))
5177 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5178 			     skb_peek(&sk->sk_receive_queue),
5179 			     NULL,
5180 			     tp->copied_seq, tp->rcv_nxt);
5181 	sk_mem_reclaim(sk);
5182 
5183 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5184 		return 0;
5185 
5186 	/* Collapsing did not help, destructive actions follow.
5187 	 * This must not ever occur. */
5188 
5189 	tcp_prune_ofo_queue(sk);
5190 
5191 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5192 		return 0;
5193 
5194 	/* If we are really being abused, tell the caller to silently
5195 	 * drop receive data on the floor.  It will get retransmitted
5196 	 * and hopefully then we'll have sufficient space.
5197 	 */
5198 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5199 
5200 	/* Massive buffer overcommit. */
5201 	tp->pred_flags = 0;
5202 	return -1;
5203 }
5204 
5205 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5206 {
5207 	const struct tcp_sock *tp = tcp_sk(sk);
5208 
5209 	/* If the user specified a specific send buffer setting, do
5210 	 * not modify it.
5211 	 */
5212 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5213 		return false;
5214 
5215 	/* If we are under global TCP memory pressure, do not expand.  */
5216 	if (tcp_under_memory_pressure(sk))
5217 		return false;
5218 
5219 	/* If we are under soft global TCP memory pressure, do not expand.  */
5220 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5221 		return false;
5222 
5223 	/* If we filled the congestion window, do not expand.  */
5224 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5225 		return false;
5226 
5227 	return true;
5228 }
5229 
5230 /* When incoming ACK allowed to free some skb from write_queue,
5231  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5232  * on the exit from tcp input handler.
5233  *
5234  * PROBLEM: sndbuf expansion does not work well with largesend.
5235  */
5236 static void tcp_new_space(struct sock *sk)
5237 {
5238 	struct tcp_sock *tp = tcp_sk(sk);
5239 
5240 	if (tcp_should_expand_sndbuf(sk)) {
5241 		tcp_sndbuf_expand(sk);
5242 		tp->snd_cwnd_stamp = tcp_jiffies32;
5243 	}
5244 
5245 	sk->sk_write_space(sk);
5246 }
5247 
5248 static void tcp_check_space(struct sock *sk)
5249 {
5250 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5251 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5252 		/* pairs with tcp_poll() */
5253 		smp_mb();
5254 		if (sk->sk_socket &&
5255 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5256 			tcp_new_space(sk);
5257 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5258 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5259 		}
5260 	}
5261 }
5262 
5263 static inline void tcp_data_snd_check(struct sock *sk)
5264 {
5265 	tcp_push_pending_frames(sk);
5266 	tcp_check_space(sk);
5267 }
5268 
5269 /*
5270  * Check if sending an ack is needed.
5271  */
5272 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5273 {
5274 	struct tcp_sock *tp = tcp_sk(sk);
5275 	unsigned long rtt, delay;
5276 
5277 	    /* More than one full frame received... */
5278 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5279 	     /* ... and right edge of window advances far enough.
5280 	      * (tcp_recvmsg() will send ACK otherwise).
5281 	      * If application uses SO_RCVLOWAT, we want send ack now if
5282 	      * we have not received enough bytes to satisfy the condition.
5283 	      */
5284 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5285 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5286 	    /* We ACK each frame or... */
5287 	    tcp_in_quickack_mode(sk) ||
5288 	    /* Protocol state mandates a one-time immediate ACK */
5289 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5290 send_now:
5291 		tcp_send_ack(sk);
5292 		return;
5293 	}
5294 
5295 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5296 		tcp_send_delayed_ack(sk);
5297 		return;
5298 	}
5299 
5300 	if (!tcp_is_sack(tp) ||
5301 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5302 		goto send_now;
5303 
5304 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5305 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5306 		tp->dup_ack_counter = 0;
5307 	}
5308 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5309 		tp->dup_ack_counter++;
5310 		goto send_now;
5311 	}
5312 	tp->compressed_ack++;
5313 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5314 		return;
5315 
5316 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5317 
5318 	rtt = tp->rcv_rtt_est.rtt_us;
5319 	if (tp->srtt_us && tp->srtt_us < rtt)
5320 		rtt = tp->srtt_us;
5321 
5322 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5323 		      rtt * (NSEC_PER_USEC >> 3)/20);
5324 	sock_hold(sk);
5325 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5326 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5327 			       HRTIMER_MODE_REL_PINNED_SOFT);
5328 }
5329 
5330 static inline void tcp_ack_snd_check(struct sock *sk)
5331 {
5332 	if (!inet_csk_ack_scheduled(sk)) {
5333 		/* We sent a data segment already. */
5334 		return;
5335 	}
5336 	__tcp_ack_snd_check(sk, 1);
5337 }
5338 
5339 /*
5340  *	This routine is only called when we have urgent data
5341  *	signaled. Its the 'slow' part of tcp_urg. It could be
5342  *	moved inline now as tcp_urg is only called from one
5343  *	place. We handle URGent data wrong. We have to - as
5344  *	BSD still doesn't use the correction from RFC961.
5345  *	For 1003.1g we should support a new option TCP_STDURG to permit
5346  *	either form (or just set the sysctl tcp_stdurg).
5347  */
5348 
5349 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5350 {
5351 	struct tcp_sock *tp = tcp_sk(sk);
5352 	u32 ptr = ntohs(th->urg_ptr);
5353 
5354 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5355 		ptr--;
5356 	ptr += ntohl(th->seq);
5357 
5358 	/* Ignore urgent data that we've already seen and read. */
5359 	if (after(tp->copied_seq, ptr))
5360 		return;
5361 
5362 	/* Do not replay urg ptr.
5363 	 *
5364 	 * NOTE: interesting situation not covered by specs.
5365 	 * Misbehaving sender may send urg ptr, pointing to segment,
5366 	 * which we already have in ofo queue. We are not able to fetch
5367 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5368 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5369 	 * situations. But it is worth to think about possibility of some
5370 	 * DoSes using some hypothetical application level deadlock.
5371 	 */
5372 	if (before(ptr, tp->rcv_nxt))
5373 		return;
5374 
5375 	/* Do we already have a newer (or duplicate) urgent pointer? */
5376 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5377 		return;
5378 
5379 	/* Tell the world about our new urgent pointer. */
5380 	sk_send_sigurg(sk);
5381 
5382 	/* We may be adding urgent data when the last byte read was
5383 	 * urgent. To do this requires some care. We cannot just ignore
5384 	 * tp->copied_seq since we would read the last urgent byte again
5385 	 * as data, nor can we alter copied_seq until this data arrives
5386 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5387 	 *
5388 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5389 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5390 	 * and expect that both A and B disappear from stream. This is _wrong_.
5391 	 * Though this happens in BSD with high probability, this is occasional.
5392 	 * Any application relying on this is buggy. Note also, that fix "works"
5393 	 * only in this artificial test. Insert some normal data between A and B and we will
5394 	 * decline of BSD again. Verdict: it is better to remove to trap
5395 	 * buggy users.
5396 	 */
5397 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5398 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5399 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5400 		tp->copied_seq++;
5401 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5402 			__skb_unlink(skb, &sk->sk_receive_queue);
5403 			__kfree_skb(skb);
5404 		}
5405 	}
5406 
5407 	tp->urg_data = TCP_URG_NOTYET;
5408 	WRITE_ONCE(tp->urg_seq, ptr);
5409 
5410 	/* Disable header prediction. */
5411 	tp->pred_flags = 0;
5412 }
5413 
5414 /* This is the 'fast' part of urgent handling. */
5415 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5416 {
5417 	struct tcp_sock *tp = tcp_sk(sk);
5418 
5419 	/* Check if we get a new urgent pointer - normally not. */
5420 	if (th->urg)
5421 		tcp_check_urg(sk, th);
5422 
5423 	/* Do we wait for any urgent data? - normally not... */
5424 	if (tp->urg_data == TCP_URG_NOTYET) {
5425 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5426 			  th->syn;
5427 
5428 		/* Is the urgent pointer pointing into this packet? */
5429 		if (ptr < skb->len) {
5430 			u8 tmp;
5431 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5432 				BUG();
5433 			tp->urg_data = TCP_URG_VALID | tmp;
5434 			if (!sock_flag(sk, SOCK_DEAD))
5435 				sk->sk_data_ready(sk);
5436 		}
5437 	}
5438 }
5439 
5440 /* Accept RST for rcv_nxt - 1 after a FIN.
5441  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5442  * FIN is sent followed by a RST packet. The RST is sent with the same
5443  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5444  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5445  * ACKs on the closed socket. In addition middleboxes can drop either the
5446  * challenge ACK or a subsequent RST.
5447  */
5448 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5449 {
5450 	struct tcp_sock *tp = tcp_sk(sk);
5451 
5452 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5453 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5454 					       TCPF_CLOSING));
5455 }
5456 
5457 /* Does PAWS and seqno based validation of an incoming segment, flags will
5458  * play significant role here.
5459  */
5460 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5461 				  const struct tcphdr *th, int syn_inerr)
5462 {
5463 	struct tcp_sock *tp = tcp_sk(sk);
5464 	bool rst_seq_match = false;
5465 
5466 	/* RFC1323: H1. Apply PAWS check first. */
5467 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5468 	    tp->rx_opt.saw_tstamp &&
5469 	    tcp_paws_discard(sk, skb)) {
5470 		if (!th->rst) {
5471 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5472 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5473 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5474 						  &tp->last_oow_ack_time))
5475 				tcp_send_dupack(sk, skb);
5476 			goto discard;
5477 		}
5478 		/* Reset is accepted even if it did not pass PAWS. */
5479 	}
5480 
5481 	/* Step 1: check sequence number */
5482 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5483 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5484 		 * (RST) segments are validated by checking their SEQ-fields."
5485 		 * And page 69: "If an incoming segment is not acceptable,
5486 		 * an acknowledgment should be sent in reply (unless the RST
5487 		 * bit is set, if so drop the segment and return)".
5488 		 */
5489 		if (!th->rst) {
5490 			if (th->syn)
5491 				goto syn_challenge;
5492 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5493 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5494 						  &tp->last_oow_ack_time))
5495 				tcp_send_dupack(sk, skb);
5496 		} else if (tcp_reset_check(sk, skb)) {
5497 			tcp_reset(sk);
5498 		}
5499 		goto discard;
5500 	}
5501 
5502 	/* Step 2: check RST bit */
5503 	if (th->rst) {
5504 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5505 		 * FIN and SACK too if available):
5506 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5507 		 * the right-most SACK block,
5508 		 * then
5509 		 *     RESET the connection
5510 		 * else
5511 		 *     Send a challenge ACK
5512 		 */
5513 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5514 		    tcp_reset_check(sk, skb)) {
5515 			rst_seq_match = true;
5516 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5517 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5518 			int max_sack = sp[0].end_seq;
5519 			int this_sack;
5520 
5521 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5522 			     ++this_sack) {
5523 				max_sack = after(sp[this_sack].end_seq,
5524 						 max_sack) ?
5525 					sp[this_sack].end_seq : max_sack;
5526 			}
5527 
5528 			if (TCP_SKB_CB(skb)->seq == max_sack)
5529 				rst_seq_match = true;
5530 		}
5531 
5532 		if (rst_seq_match)
5533 			tcp_reset(sk);
5534 		else {
5535 			/* Disable TFO if RST is out-of-order
5536 			 * and no data has been received
5537 			 * for current active TFO socket
5538 			 */
5539 			if (tp->syn_fastopen && !tp->data_segs_in &&
5540 			    sk->sk_state == TCP_ESTABLISHED)
5541 				tcp_fastopen_active_disable(sk);
5542 			tcp_send_challenge_ack(sk, skb);
5543 		}
5544 		goto discard;
5545 	}
5546 
5547 	/* step 3: check security and precedence [ignored] */
5548 
5549 	/* step 4: Check for a SYN
5550 	 * RFC 5961 4.2 : Send a challenge ack
5551 	 */
5552 	if (th->syn) {
5553 syn_challenge:
5554 		if (syn_inerr)
5555 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5556 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5557 		tcp_send_challenge_ack(sk, skb);
5558 		goto discard;
5559 	}
5560 
5561 	return true;
5562 
5563 discard:
5564 	tcp_drop(sk, skb);
5565 	return false;
5566 }
5567 
5568 /*
5569  *	TCP receive function for the ESTABLISHED state.
5570  *
5571  *	It is split into a fast path and a slow path. The fast path is
5572  * 	disabled when:
5573  *	- A zero window was announced from us - zero window probing
5574  *        is only handled properly in the slow path.
5575  *	- Out of order segments arrived.
5576  *	- Urgent data is expected.
5577  *	- There is no buffer space left
5578  *	- Unexpected TCP flags/window values/header lengths are received
5579  *	  (detected by checking the TCP header against pred_flags)
5580  *	- Data is sent in both directions. Fast path only supports pure senders
5581  *	  or pure receivers (this means either the sequence number or the ack
5582  *	  value must stay constant)
5583  *	- Unexpected TCP option.
5584  *
5585  *	When these conditions are not satisfied it drops into a standard
5586  *	receive procedure patterned after RFC793 to handle all cases.
5587  *	The first three cases are guaranteed by proper pred_flags setting,
5588  *	the rest is checked inline. Fast processing is turned on in
5589  *	tcp_data_queue when everything is OK.
5590  */
5591 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5592 {
5593 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5594 	struct tcp_sock *tp = tcp_sk(sk);
5595 	unsigned int len = skb->len;
5596 
5597 	/* TCP congestion window tracking */
5598 	trace_tcp_probe(sk, skb);
5599 
5600 	tcp_mstamp_refresh(tp);
5601 	if (unlikely(!sk->sk_rx_dst))
5602 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5603 	/*
5604 	 *	Header prediction.
5605 	 *	The code loosely follows the one in the famous
5606 	 *	"30 instruction TCP receive" Van Jacobson mail.
5607 	 *
5608 	 *	Van's trick is to deposit buffers into socket queue
5609 	 *	on a device interrupt, to call tcp_recv function
5610 	 *	on the receive process context and checksum and copy
5611 	 *	the buffer to user space. smart...
5612 	 *
5613 	 *	Our current scheme is not silly either but we take the
5614 	 *	extra cost of the net_bh soft interrupt processing...
5615 	 *	We do checksum and copy also but from device to kernel.
5616 	 */
5617 
5618 	tp->rx_opt.saw_tstamp = 0;
5619 
5620 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5621 	 *	if header_prediction is to be made
5622 	 *	'S' will always be tp->tcp_header_len >> 2
5623 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5624 	 *  turn it off	(when there are holes in the receive
5625 	 *	 space for instance)
5626 	 *	PSH flag is ignored.
5627 	 */
5628 
5629 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5630 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5631 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5632 		int tcp_header_len = tp->tcp_header_len;
5633 
5634 		/* Timestamp header prediction: tcp_header_len
5635 		 * is automatically equal to th->doff*4 due to pred_flags
5636 		 * match.
5637 		 */
5638 
5639 		/* Check timestamp */
5640 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5641 			/* No? Slow path! */
5642 			if (!tcp_parse_aligned_timestamp(tp, th))
5643 				goto slow_path;
5644 
5645 			/* If PAWS failed, check it more carefully in slow path */
5646 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5647 				goto slow_path;
5648 
5649 			/* DO NOT update ts_recent here, if checksum fails
5650 			 * and timestamp was corrupted part, it will result
5651 			 * in a hung connection since we will drop all
5652 			 * future packets due to the PAWS test.
5653 			 */
5654 		}
5655 
5656 		if (len <= tcp_header_len) {
5657 			/* Bulk data transfer: sender */
5658 			if (len == tcp_header_len) {
5659 				/* Predicted packet is in window by definition.
5660 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5661 				 * Hence, check seq<=rcv_wup reduces to:
5662 				 */
5663 				if (tcp_header_len ==
5664 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5665 				    tp->rcv_nxt == tp->rcv_wup)
5666 					tcp_store_ts_recent(tp);
5667 
5668 				/* We know that such packets are checksummed
5669 				 * on entry.
5670 				 */
5671 				tcp_ack(sk, skb, 0);
5672 				__kfree_skb(skb);
5673 				tcp_data_snd_check(sk);
5674 				/* When receiving pure ack in fast path, update
5675 				 * last ts ecr directly instead of calling
5676 				 * tcp_rcv_rtt_measure_ts()
5677 				 */
5678 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5679 				return;
5680 			} else { /* Header too small */
5681 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5682 				goto discard;
5683 			}
5684 		} else {
5685 			int eaten = 0;
5686 			bool fragstolen = false;
5687 
5688 			if (tcp_checksum_complete(skb))
5689 				goto csum_error;
5690 
5691 			if ((int)skb->truesize > sk->sk_forward_alloc)
5692 				goto step5;
5693 
5694 			/* Predicted packet is in window by definition.
5695 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5696 			 * Hence, check seq<=rcv_wup reduces to:
5697 			 */
5698 			if (tcp_header_len ==
5699 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5700 			    tp->rcv_nxt == tp->rcv_wup)
5701 				tcp_store_ts_recent(tp);
5702 
5703 			tcp_rcv_rtt_measure_ts(sk, skb);
5704 
5705 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5706 
5707 			/* Bulk data transfer: receiver */
5708 			__skb_pull(skb, tcp_header_len);
5709 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5710 
5711 			tcp_event_data_recv(sk, skb);
5712 
5713 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5714 				/* Well, only one small jumplet in fast path... */
5715 				tcp_ack(sk, skb, FLAG_DATA);
5716 				tcp_data_snd_check(sk);
5717 				if (!inet_csk_ack_scheduled(sk))
5718 					goto no_ack;
5719 			}
5720 
5721 			__tcp_ack_snd_check(sk, 0);
5722 no_ack:
5723 			if (eaten)
5724 				kfree_skb_partial(skb, fragstolen);
5725 			tcp_data_ready(sk);
5726 			return;
5727 		}
5728 	}
5729 
5730 slow_path:
5731 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5732 		goto csum_error;
5733 
5734 	if (!th->ack && !th->rst && !th->syn)
5735 		goto discard;
5736 
5737 	/*
5738 	 *	Standard slow path.
5739 	 */
5740 
5741 	if (!tcp_validate_incoming(sk, skb, th, 1))
5742 		return;
5743 
5744 step5:
5745 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5746 		goto discard;
5747 
5748 	tcp_rcv_rtt_measure_ts(sk, skb);
5749 
5750 	/* Process urgent data. */
5751 	tcp_urg(sk, skb, th);
5752 
5753 	/* step 7: process the segment text */
5754 	tcp_data_queue(sk, skb);
5755 
5756 	tcp_data_snd_check(sk);
5757 	tcp_ack_snd_check(sk);
5758 	return;
5759 
5760 csum_error:
5761 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5762 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5763 
5764 discard:
5765 	tcp_drop(sk, skb);
5766 }
5767 EXPORT_SYMBOL(tcp_rcv_established);
5768 
5769 void tcp_init_transfer(struct sock *sk, int bpf_op)
5770 {
5771 	struct inet_connection_sock *icsk = inet_csk(sk);
5772 	struct tcp_sock *tp = tcp_sk(sk);
5773 
5774 	tcp_mtup_init(sk);
5775 	icsk->icsk_af_ops->rebuild_header(sk);
5776 	tcp_init_metrics(sk);
5777 
5778 	/* Initialize the congestion window to start the transfer.
5779 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5780 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5781 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5782 	 * retransmission has occurred.
5783 	 */
5784 	if (tp->total_retrans > 1 && tp->undo_marker)
5785 		tp->snd_cwnd = 1;
5786 	else
5787 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5788 	tp->snd_cwnd_stamp = tcp_jiffies32;
5789 
5790 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5791 	tcp_init_congestion_control(sk);
5792 	tcp_init_buffer_space(sk);
5793 }
5794 
5795 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5796 {
5797 	struct tcp_sock *tp = tcp_sk(sk);
5798 	struct inet_connection_sock *icsk = inet_csk(sk);
5799 
5800 	tcp_set_state(sk, TCP_ESTABLISHED);
5801 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5802 
5803 	if (skb) {
5804 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5805 		security_inet_conn_established(sk, skb);
5806 		sk_mark_napi_id(sk, skb);
5807 	}
5808 
5809 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5810 
5811 	/* Prevent spurious tcp_cwnd_restart() on first data
5812 	 * packet.
5813 	 */
5814 	tp->lsndtime = tcp_jiffies32;
5815 
5816 	if (sock_flag(sk, SOCK_KEEPOPEN))
5817 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5818 
5819 	if (!tp->rx_opt.snd_wscale)
5820 		__tcp_fast_path_on(tp, tp->snd_wnd);
5821 	else
5822 		tp->pred_flags = 0;
5823 }
5824 
5825 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5826 				    struct tcp_fastopen_cookie *cookie)
5827 {
5828 	struct tcp_sock *tp = tcp_sk(sk);
5829 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5830 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5831 	bool syn_drop = false;
5832 
5833 	if (mss == tp->rx_opt.user_mss) {
5834 		struct tcp_options_received opt;
5835 
5836 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5837 		tcp_clear_options(&opt);
5838 		opt.user_mss = opt.mss_clamp = 0;
5839 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5840 		mss = opt.mss_clamp;
5841 	}
5842 
5843 	if (!tp->syn_fastopen) {
5844 		/* Ignore an unsolicited cookie */
5845 		cookie->len = -1;
5846 	} else if (tp->total_retrans) {
5847 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5848 		 * acknowledges data. Presumably the remote received only
5849 		 * the retransmitted (regular) SYNs: either the original
5850 		 * SYN-data or the corresponding SYN-ACK was dropped.
5851 		 */
5852 		syn_drop = (cookie->len < 0 && data);
5853 	} else if (cookie->len < 0 && !tp->syn_data) {
5854 		/* We requested a cookie but didn't get it. If we did not use
5855 		 * the (old) exp opt format then try so next time (try_exp=1).
5856 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5857 		 */
5858 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5859 	}
5860 
5861 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5862 
5863 	if (data) { /* Retransmit unacked data in SYN */
5864 		if (tp->total_retrans)
5865 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5866 		else
5867 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5868 		skb_rbtree_walk_from(data) {
5869 			if (__tcp_retransmit_skb(sk, data, 1))
5870 				break;
5871 		}
5872 		tcp_rearm_rto(sk);
5873 		NET_INC_STATS(sock_net(sk),
5874 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5875 		return true;
5876 	}
5877 	tp->syn_data_acked = tp->syn_data;
5878 	if (tp->syn_data_acked) {
5879 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5880 		/* SYN-data is counted as two separate packets in tcp_ack() */
5881 		if (tp->delivered > 1)
5882 			--tp->delivered;
5883 	}
5884 
5885 	tcp_fastopen_add_skb(sk, synack);
5886 
5887 	return false;
5888 }
5889 
5890 static void smc_check_reset_syn(struct tcp_sock *tp)
5891 {
5892 #if IS_ENABLED(CONFIG_SMC)
5893 	if (static_branch_unlikely(&tcp_have_smc)) {
5894 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5895 			tp->syn_smc = 0;
5896 	}
5897 #endif
5898 }
5899 
5900 static void tcp_try_undo_spurious_syn(struct sock *sk)
5901 {
5902 	struct tcp_sock *tp = tcp_sk(sk);
5903 	u32 syn_stamp;
5904 
5905 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5906 	 * spurious if the ACK's timestamp option echo value matches the
5907 	 * original SYN timestamp.
5908 	 */
5909 	syn_stamp = tp->retrans_stamp;
5910 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5911 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5912 		tp->undo_marker = 0;
5913 }
5914 
5915 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5916 					 const struct tcphdr *th)
5917 {
5918 	struct inet_connection_sock *icsk = inet_csk(sk);
5919 	struct tcp_sock *tp = tcp_sk(sk);
5920 	struct tcp_fastopen_cookie foc = { .len = -1 };
5921 	int saved_clamp = tp->rx_opt.mss_clamp;
5922 	bool fastopen_fail;
5923 
5924 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5925 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5926 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5927 
5928 	if (th->ack) {
5929 		/* rfc793:
5930 		 * "If the state is SYN-SENT then
5931 		 *    first check the ACK bit
5932 		 *      If the ACK bit is set
5933 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5934 		 *        a reset (unless the RST bit is set, if so drop
5935 		 *        the segment and return)"
5936 		 */
5937 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5938 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5939 			/* Previous FIN/ACK or RST/ACK might be ignored. */
5940 			if (icsk->icsk_retransmits == 0)
5941 				inet_csk_reset_xmit_timer(sk,
5942 						ICSK_TIME_RETRANS,
5943 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
5944 			goto reset_and_undo;
5945 		}
5946 
5947 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5948 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5949 			     tcp_time_stamp(tp))) {
5950 			NET_INC_STATS(sock_net(sk),
5951 					LINUX_MIB_PAWSACTIVEREJECTED);
5952 			goto reset_and_undo;
5953 		}
5954 
5955 		/* Now ACK is acceptable.
5956 		 *
5957 		 * "If the RST bit is set
5958 		 *    If the ACK was acceptable then signal the user "error:
5959 		 *    connection reset", drop the segment, enter CLOSED state,
5960 		 *    delete TCB, and return."
5961 		 */
5962 
5963 		if (th->rst) {
5964 			tcp_reset(sk);
5965 			goto discard;
5966 		}
5967 
5968 		/* rfc793:
5969 		 *   "fifth, if neither of the SYN or RST bits is set then
5970 		 *    drop the segment and return."
5971 		 *
5972 		 *    See note below!
5973 		 *                                        --ANK(990513)
5974 		 */
5975 		if (!th->syn)
5976 			goto discard_and_undo;
5977 
5978 		/* rfc793:
5979 		 *   "If the SYN bit is on ...
5980 		 *    are acceptable then ...
5981 		 *    (our SYN has been ACKed), change the connection
5982 		 *    state to ESTABLISHED..."
5983 		 */
5984 
5985 		tcp_ecn_rcv_synack(tp, th);
5986 
5987 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5988 		tcp_try_undo_spurious_syn(sk);
5989 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5990 
5991 		/* Ok.. it's good. Set up sequence numbers and
5992 		 * move to established.
5993 		 */
5994 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5995 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5996 
5997 		/* RFC1323: The window in SYN & SYN/ACK segments is
5998 		 * never scaled.
5999 		 */
6000 		tp->snd_wnd = ntohs(th->window);
6001 
6002 		if (!tp->rx_opt.wscale_ok) {
6003 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6004 			tp->window_clamp = min(tp->window_clamp, 65535U);
6005 		}
6006 
6007 		if (tp->rx_opt.saw_tstamp) {
6008 			tp->rx_opt.tstamp_ok	   = 1;
6009 			tp->tcp_header_len =
6010 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6011 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6012 			tcp_store_ts_recent(tp);
6013 		} else {
6014 			tp->tcp_header_len = sizeof(struct tcphdr);
6015 		}
6016 
6017 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6018 		tcp_initialize_rcv_mss(sk);
6019 
6020 		/* Remember, tcp_poll() does not lock socket!
6021 		 * Change state from SYN-SENT only after copied_seq
6022 		 * is initialized. */
6023 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6024 
6025 		smc_check_reset_syn(tp);
6026 
6027 		smp_mb();
6028 
6029 		tcp_finish_connect(sk, skb);
6030 
6031 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6032 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6033 
6034 		if (!sock_flag(sk, SOCK_DEAD)) {
6035 			sk->sk_state_change(sk);
6036 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6037 		}
6038 		if (fastopen_fail)
6039 			return -1;
6040 		if (sk->sk_write_pending ||
6041 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6042 		    inet_csk_in_pingpong_mode(sk)) {
6043 			/* Save one ACK. Data will be ready after
6044 			 * several ticks, if write_pending is set.
6045 			 *
6046 			 * It may be deleted, but with this feature tcpdumps
6047 			 * look so _wonderfully_ clever, that I was not able
6048 			 * to stand against the temptation 8)     --ANK
6049 			 */
6050 			inet_csk_schedule_ack(sk);
6051 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6052 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6053 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6054 
6055 discard:
6056 			tcp_drop(sk, skb);
6057 			return 0;
6058 		} else {
6059 			tcp_send_ack(sk);
6060 		}
6061 		return -1;
6062 	}
6063 
6064 	/* No ACK in the segment */
6065 
6066 	if (th->rst) {
6067 		/* rfc793:
6068 		 * "If the RST bit is set
6069 		 *
6070 		 *      Otherwise (no ACK) drop the segment and return."
6071 		 */
6072 
6073 		goto discard_and_undo;
6074 	}
6075 
6076 	/* PAWS check. */
6077 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6078 	    tcp_paws_reject(&tp->rx_opt, 0))
6079 		goto discard_and_undo;
6080 
6081 	if (th->syn) {
6082 		/* We see SYN without ACK. It is attempt of
6083 		 * simultaneous connect with crossed SYNs.
6084 		 * Particularly, it can be connect to self.
6085 		 */
6086 		tcp_set_state(sk, TCP_SYN_RECV);
6087 
6088 		if (tp->rx_opt.saw_tstamp) {
6089 			tp->rx_opt.tstamp_ok = 1;
6090 			tcp_store_ts_recent(tp);
6091 			tp->tcp_header_len =
6092 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6093 		} else {
6094 			tp->tcp_header_len = sizeof(struct tcphdr);
6095 		}
6096 
6097 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6098 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6099 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6100 
6101 		/* RFC1323: The window in SYN & SYN/ACK segments is
6102 		 * never scaled.
6103 		 */
6104 		tp->snd_wnd    = ntohs(th->window);
6105 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6106 		tp->max_window = tp->snd_wnd;
6107 
6108 		tcp_ecn_rcv_syn(tp, th);
6109 
6110 		tcp_mtup_init(sk);
6111 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6112 		tcp_initialize_rcv_mss(sk);
6113 
6114 		tcp_send_synack(sk);
6115 #if 0
6116 		/* Note, we could accept data and URG from this segment.
6117 		 * There are no obstacles to make this (except that we must
6118 		 * either change tcp_recvmsg() to prevent it from returning data
6119 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6120 		 *
6121 		 * However, if we ignore data in ACKless segments sometimes,
6122 		 * we have no reasons to accept it sometimes.
6123 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6124 		 * is not flawless. So, discard packet for sanity.
6125 		 * Uncomment this return to process the data.
6126 		 */
6127 		return -1;
6128 #else
6129 		goto discard;
6130 #endif
6131 	}
6132 	/* "fifth, if neither of the SYN or RST bits is set then
6133 	 * drop the segment and return."
6134 	 */
6135 
6136 discard_and_undo:
6137 	tcp_clear_options(&tp->rx_opt);
6138 	tp->rx_opt.mss_clamp = saved_clamp;
6139 	goto discard;
6140 
6141 reset_and_undo:
6142 	tcp_clear_options(&tp->rx_opt);
6143 	tp->rx_opt.mss_clamp = saved_clamp;
6144 	return 1;
6145 }
6146 
6147 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6148 {
6149 	struct request_sock *req;
6150 
6151 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6152 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6153 	 */
6154 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6155 		tcp_try_undo_loss(sk, false);
6156 
6157 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6158 	tcp_sk(sk)->retrans_stamp = 0;
6159 	inet_csk(sk)->icsk_retransmits = 0;
6160 
6161 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6162 	 * we no longer need req so release it.
6163 	 */
6164 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6165 					lockdep_sock_is_held(sk));
6166 	reqsk_fastopen_remove(sk, req, false);
6167 
6168 	/* Re-arm the timer because data may have been sent out.
6169 	 * This is similar to the regular data transmission case
6170 	 * when new data has just been ack'ed.
6171 	 *
6172 	 * (TFO) - we could try to be more aggressive and
6173 	 * retransmitting any data sooner based on when they
6174 	 * are sent out.
6175 	 */
6176 	tcp_rearm_rto(sk);
6177 }
6178 
6179 /*
6180  *	This function implements the receiving procedure of RFC 793 for
6181  *	all states except ESTABLISHED and TIME_WAIT.
6182  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6183  *	address independent.
6184  */
6185 
6186 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6187 {
6188 	struct tcp_sock *tp = tcp_sk(sk);
6189 	struct inet_connection_sock *icsk = inet_csk(sk);
6190 	const struct tcphdr *th = tcp_hdr(skb);
6191 	struct request_sock *req;
6192 	int queued = 0;
6193 	bool acceptable;
6194 
6195 	switch (sk->sk_state) {
6196 	case TCP_CLOSE:
6197 		goto discard;
6198 
6199 	case TCP_LISTEN:
6200 		if (th->ack)
6201 			return 1;
6202 
6203 		if (th->rst)
6204 			goto discard;
6205 
6206 		if (th->syn) {
6207 			if (th->fin)
6208 				goto discard;
6209 			/* It is possible that we process SYN packets from backlog,
6210 			 * so we need to make sure to disable BH and RCU right there.
6211 			 */
6212 			rcu_read_lock();
6213 			local_bh_disable();
6214 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6215 			local_bh_enable();
6216 			rcu_read_unlock();
6217 
6218 			if (!acceptable)
6219 				return 1;
6220 			consume_skb(skb);
6221 			return 0;
6222 		}
6223 		goto discard;
6224 
6225 	case TCP_SYN_SENT:
6226 		tp->rx_opt.saw_tstamp = 0;
6227 		tcp_mstamp_refresh(tp);
6228 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6229 		if (queued >= 0)
6230 			return queued;
6231 
6232 		/* Do step6 onward by hand. */
6233 		tcp_urg(sk, skb, th);
6234 		__kfree_skb(skb);
6235 		tcp_data_snd_check(sk);
6236 		return 0;
6237 	}
6238 
6239 	tcp_mstamp_refresh(tp);
6240 	tp->rx_opt.saw_tstamp = 0;
6241 	req = rcu_dereference_protected(tp->fastopen_rsk,
6242 					lockdep_sock_is_held(sk));
6243 	if (req) {
6244 		bool req_stolen;
6245 
6246 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6247 		    sk->sk_state != TCP_FIN_WAIT1);
6248 
6249 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6250 			goto discard;
6251 	}
6252 
6253 	if (!th->ack && !th->rst && !th->syn)
6254 		goto discard;
6255 
6256 	if (!tcp_validate_incoming(sk, skb, th, 0))
6257 		return 0;
6258 
6259 	/* step 5: check the ACK field */
6260 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6261 				      FLAG_UPDATE_TS_RECENT |
6262 				      FLAG_NO_CHALLENGE_ACK) > 0;
6263 
6264 	if (!acceptable) {
6265 		if (sk->sk_state == TCP_SYN_RECV)
6266 			return 1;	/* send one RST */
6267 		tcp_send_challenge_ack(sk, skb);
6268 		goto discard;
6269 	}
6270 	switch (sk->sk_state) {
6271 	case TCP_SYN_RECV:
6272 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6273 		if (!tp->srtt_us)
6274 			tcp_synack_rtt_meas(sk, req);
6275 
6276 		if (req) {
6277 			tcp_rcv_synrecv_state_fastopen(sk);
6278 		} else {
6279 			tcp_try_undo_spurious_syn(sk);
6280 			tp->retrans_stamp = 0;
6281 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6282 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6283 		}
6284 		smp_mb();
6285 		tcp_set_state(sk, TCP_ESTABLISHED);
6286 		sk->sk_state_change(sk);
6287 
6288 		/* Note, that this wakeup is only for marginal crossed SYN case.
6289 		 * Passively open sockets are not waked up, because
6290 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6291 		 */
6292 		if (sk->sk_socket)
6293 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6294 
6295 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6296 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6297 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6298 
6299 		if (tp->rx_opt.tstamp_ok)
6300 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6301 
6302 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6303 			tcp_update_pacing_rate(sk);
6304 
6305 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6306 		tp->lsndtime = tcp_jiffies32;
6307 
6308 		tcp_initialize_rcv_mss(sk);
6309 		tcp_fast_path_on(tp);
6310 		break;
6311 
6312 	case TCP_FIN_WAIT1: {
6313 		int tmo;
6314 
6315 		if (req)
6316 			tcp_rcv_synrecv_state_fastopen(sk);
6317 
6318 		if (tp->snd_una != tp->write_seq)
6319 			break;
6320 
6321 		tcp_set_state(sk, TCP_FIN_WAIT2);
6322 		sk->sk_shutdown |= SEND_SHUTDOWN;
6323 
6324 		sk_dst_confirm(sk);
6325 
6326 		if (!sock_flag(sk, SOCK_DEAD)) {
6327 			/* Wake up lingering close() */
6328 			sk->sk_state_change(sk);
6329 			break;
6330 		}
6331 
6332 		if (tp->linger2 < 0) {
6333 			tcp_done(sk);
6334 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6335 			return 1;
6336 		}
6337 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6338 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6339 			/* Receive out of order FIN after close() */
6340 			if (tp->syn_fastopen && th->fin)
6341 				tcp_fastopen_active_disable(sk);
6342 			tcp_done(sk);
6343 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6344 			return 1;
6345 		}
6346 
6347 		tmo = tcp_fin_time(sk);
6348 		if (tmo > TCP_TIMEWAIT_LEN) {
6349 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6350 		} else if (th->fin || sock_owned_by_user(sk)) {
6351 			/* Bad case. We could lose such FIN otherwise.
6352 			 * It is not a big problem, but it looks confusing
6353 			 * and not so rare event. We still can lose it now,
6354 			 * if it spins in bh_lock_sock(), but it is really
6355 			 * marginal case.
6356 			 */
6357 			inet_csk_reset_keepalive_timer(sk, tmo);
6358 		} else {
6359 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6360 			goto discard;
6361 		}
6362 		break;
6363 	}
6364 
6365 	case TCP_CLOSING:
6366 		if (tp->snd_una == tp->write_seq) {
6367 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6368 			goto discard;
6369 		}
6370 		break;
6371 
6372 	case TCP_LAST_ACK:
6373 		if (tp->snd_una == tp->write_seq) {
6374 			tcp_update_metrics(sk);
6375 			tcp_done(sk);
6376 			goto discard;
6377 		}
6378 		break;
6379 	}
6380 
6381 	/* step 6: check the URG bit */
6382 	tcp_urg(sk, skb, th);
6383 
6384 	/* step 7: process the segment text */
6385 	switch (sk->sk_state) {
6386 	case TCP_CLOSE_WAIT:
6387 	case TCP_CLOSING:
6388 	case TCP_LAST_ACK:
6389 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6390 			if (sk_is_mptcp(sk))
6391 				mptcp_incoming_options(sk, skb, &tp->rx_opt);
6392 			break;
6393 		}
6394 		fallthrough;
6395 	case TCP_FIN_WAIT1:
6396 	case TCP_FIN_WAIT2:
6397 		/* RFC 793 says to queue data in these states,
6398 		 * RFC 1122 says we MUST send a reset.
6399 		 * BSD 4.4 also does reset.
6400 		 */
6401 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6402 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6403 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6404 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6405 				tcp_reset(sk);
6406 				return 1;
6407 			}
6408 		}
6409 		fallthrough;
6410 	case TCP_ESTABLISHED:
6411 		tcp_data_queue(sk, skb);
6412 		queued = 1;
6413 		break;
6414 	}
6415 
6416 	/* tcp_data could move socket to TIME-WAIT */
6417 	if (sk->sk_state != TCP_CLOSE) {
6418 		tcp_data_snd_check(sk);
6419 		tcp_ack_snd_check(sk);
6420 	}
6421 
6422 	if (!queued) {
6423 discard:
6424 		tcp_drop(sk, skb);
6425 	}
6426 	return 0;
6427 }
6428 EXPORT_SYMBOL(tcp_rcv_state_process);
6429 
6430 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6431 {
6432 	struct inet_request_sock *ireq = inet_rsk(req);
6433 
6434 	if (family == AF_INET)
6435 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6436 				    &ireq->ir_rmt_addr, port);
6437 #if IS_ENABLED(CONFIG_IPV6)
6438 	else if (family == AF_INET6)
6439 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6440 				    &ireq->ir_v6_rmt_addr, port);
6441 #endif
6442 }
6443 
6444 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6445  *
6446  * If we receive a SYN packet with these bits set, it means a
6447  * network is playing bad games with TOS bits. In order to
6448  * avoid possible false congestion notifications, we disable
6449  * TCP ECN negotiation.
6450  *
6451  * Exception: tcp_ca wants ECN. This is required for DCTCP
6452  * congestion control: Linux DCTCP asserts ECT on all packets,
6453  * including SYN, which is most optimal solution; however,
6454  * others, such as FreeBSD do not.
6455  *
6456  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6457  * set, indicating the use of a future TCP extension (such as AccECN). See
6458  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6459  * extensions.
6460  */
6461 static void tcp_ecn_create_request(struct request_sock *req,
6462 				   const struct sk_buff *skb,
6463 				   const struct sock *listen_sk,
6464 				   const struct dst_entry *dst)
6465 {
6466 	const struct tcphdr *th = tcp_hdr(skb);
6467 	const struct net *net = sock_net(listen_sk);
6468 	bool th_ecn = th->ece && th->cwr;
6469 	bool ect, ecn_ok;
6470 	u32 ecn_ok_dst;
6471 
6472 	if (!th_ecn)
6473 		return;
6474 
6475 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6476 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6477 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6478 
6479 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6480 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6481 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6482 		inet_rsk(req)->ecn_ok = 1;
6483 }
6484 
6485 static void tcp_openreq_init(struct request_sock *req,
6486 			     const struct tcp_options_received *rx_opt,
6487 			     struct sk_buff *skb, const struct sock *sk)
6488 {
6489 	struct inet_request_sock *ireq = inet_rsk(req);
6490 
6491 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6492 	req->cookie_ts = 0;
6493 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6494 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6495 	tcp_rsk(req)->snt_synack = 0;
6496 	tcp_rsk(req)->last_oow_ack_time = 0;
6497 	req->mss = rx_opt->mss_clamp;
6498 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6499 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6500 	ireq->sack_ok = rx_opt->sack_ok;
6501 	ireq->snd_wscale = rx_opt->snd_wscale;
6502 	ireq->wscale_ok = rx_opt->wscale_ok;
6503 	ireq->acked = 0;
6504 	ireq->ecn_ok = 0;
6505 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6506 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6507 	ireq->ir_mark = inet_request_mark(sk, skb);
6508 #if IS_ENABLED(CONFIG_SMC)
6509 	ireq->smc_ok = rx_opt->smc_ok;
6510 #endif
6511 }
6512 
6513 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6514 				      struct sock *sk_listener,
6515 				      bool attach_listener)
6516 {
6517 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6518 					       attach_listener);
6519 
6520 	if (req) {
6521 		struct inet_request_sock *ireq = inet_rsk(req);
6522 
6523 		ireq->ireq_opt = NULL;
6524 #if IS_ENABLED(CONFIG_IPV6)
6525 		ireq->pktopts = NULL;
6526 #endif
6527 		atomic64_set(&ireq->ir_cookie, 0);
6528 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6529 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6530 		ireq->ireq_family = sk_listener->sk_family;
6531 	}
6532 
6533 	return req;
6534 }
6535 EXPORT_SYMBOL(inet_reqsk_alloc);
6536 
6537 /*
6538  * Return true if a syncookie should be sent
6539  */
6540 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6541 {
6542 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6543 	const char *msg = "Dropping request";
6544 	bool want_cookie = false;
6545 	struct net *net = sock_net(sk);
6546 
6547 #ifdef CONFIG_SYN_COOKIES
6548 	if (net->ipv4.sysctl_tcp_syncookies) {
6549 		msg = "Sending cookies";
6550 		want_cookie = true;
6551 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6552 	} else
6553 #endif
6554 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6555 
6556 	if (!queue->synflood_warned &&
6557 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6558 	    xchg(&queue->synflood_warned, 1) == 0)
6559 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6560 				     proto, sk->sk_num, msg);
6561 
6562 	return want_cookie;
6563 }
6564 
6565 static void tcp_reqsk_record_syn(const struct sock *sk,
6566 				 struct request_sock *req,
6567 				 const struct sk_buff *skb)
6568 {
6569 	if (tcp_sk(sk)->save_syn) {
6570 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6571 		u32 *copy;
6572 
6573 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6574 		if (copy) {
6575 			copy[0] = len;
6576 			memcpy(&copy[1], skb_network_header(skb), len);
6577 			req->saved_syn = copy;
6578 		}
6579 	}
6580 }
6581 
6582 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6583  * used for SYN cookie generation.
6584  */
6585 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6586 			  const struct tcp_request_sock_ops *af_ops,
6587 			  struct sock *sk, struct tcphdr *th)
6588 {
6589 	struct tcp_sock *tp = tcp_sk(sk);
6590 	u16 mss;
6591 
6592 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6593 	    !inet_csk_reqsk_queue_is_full(sk))
6594 		return 0;
6595 
6596 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6597 		return 0;
6598 
6599 	if (sk_acceptq_is_full(sk)) {
6600 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6601 		return 0;
6602 	}
6603 
6604 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6605 	if (!mss)
6606 		mss = af_ops->mss_clamp;
6607 
6608 	return mss;
6609 }
6610 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6611 
6612 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6613 		     const struct tcp_request_sock_ops *af_ops,
6614 		     struct sock *sk, struct sk_buff *skb)
6615 {
6616 	struct tcp_fastopen_cookie foc = { .len = -1 };
6617 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6618 	struct tcp_options_received tmp_opt;
6619 	struct tcp_sock *tp = tcp_sk(sk);
6620 	struct net *net = sock_net(sk);
6621 	struct sock *fastopen_sk = NULL;
6622 	struct request_sock *req;
6623 	bool want_cookie = false;
6624 	struct dst_entry *dst;
6625 	struct flowi fl;
6626 
6627 	/* TW buckets are converted to open requests without
6628 	 * limitations, they conserve resources and peer is
6629 	 * evidently real one.
6630 	 */
6631 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6632 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6633 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6634 		if (!want_cookie)
6635 			goto drop;
6636 	}
6637 
6638 	if (sk_acceptq_is_full(sk)) {
6639 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6640 		goto drop;
6641 	}
6642 
6643 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6644 	if (!req)
6645 		goto drop;
6646 
6647 	tcp_rsk(req)->af_specific = af_ops;
6648 	tcp_rsk(req)->ts_off = 0;
6649 #if IS_ENABLED(CONFIG_MPTCP)
6650 	tcp_rsk(req)->is_mptcp = 0;
6651 #endif
6652 
6653 	tcp_clear_options(&tmp_opt);
6654 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6655 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6656 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6657 			  want_cookie ? NULL : &foc);
6658 
6659 	if (want_cookie && !tmp_opt.saw_tstamp)
6660 		tcp_clear_options(&tmp_opt);
6661 
6662 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6663 		tmp_opt.smc_ok = 0;
6664 
6665 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6666 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6667 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6668 
6669 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6670 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6671 
6672 	af_ops->init_req(req, sk, skb);
6673 
6674 	if (IS_ENABLED(CONFIG_MPTCP) && want_cookie)
6675 		tcp_rsk(req)->is_mptcp = 0;
6676 
6677 	if (security_inet_conn_request(sk, skb, req))
6678 		goto drop_and_free;
6679 
6680 	if (tmp_opt.tstamp_ok)
6681 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6682 
6683 	dst = af_ops->route_req(sk, &fl, req);
6684 	if (!dst)
6685 		goto drop_and_free;
6686 
6687 	if (!want_cookie && !isn) {
6688 		/* Kill the following clause, if you dislike this way. */
6689 		if (!net->ipv4.sysctl_tcp_syncookies &&
6690 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6691 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6692 		    !tcp_peer_is_proven(req, dst)) {
6693 			/* Without syncookies last quarter of
6694 			 * backlog is filled with destinations,
6695 			 * proven to be alive.
6696 			 * It means that we continue to communicate
6697 			 * to destinations, already remembered
6698 			 * to the moment of synflood.
6699 			 */
6700 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6701 				    rsk_ops->family);
6702 			goto drop_and_release;
6703 		}
6704 
6705 		isn = af_ops->init_seq(skb);
6706 	}
6707 
6708 	tcp_ecn_create_request(req, skb, sk, dst);
6709 
6710 	if (want_cookie) {
6711 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6712 		req->cookie_ts = tmp_opt.tstamp_ok;
6713 		if (!tmp_opt.tstamp_ok)
6714 			inet_rsk(req)->ecn_ok = 0;
6715 	}
6716 
6717 	tcp_rsk(req)->snt_isn = isn;
6718 	tcp_rsk(req)->txhash = net_tx_rndhash();
6719 	tcp_openreq_init_rwin(req, sk, dst);
6720 	sk_rx_queue_set(req_to_sk(req), skb);
6721 	if (!want_cookie) {
6722 		tcp_reqsk_record_syn(sk, req, skb);
6723 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6724 	}
6725 	if (fastopen_sk) {
6726 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6727 				    &foc, TCP_SYNACK_FASTOPEN);
6728 		/* Add the child socket directly into the accept queue */
6729 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6730 			reqsk_fastopen_remove(fastopen_sk, req, false);
6731 			bh_unlock_sock(fastopen_sk);
6732 			sock_put(fastopen_sk);
6733 			goto drop_and_free;
6734 		}
6735 		sk->sk_data_ready(sk);
6736 		bh_unlock_sock(fastopen_sk);
6737 		sock_put(fastopen_sk);
6738 	} else {
6739 		tcp_rsk(req)->tfo_listener = false;
6740 		if (!want_cookie)
6741 			inet_csk_reqsk_queue_hash_add(sk, req,
6742 				tcp_timeout_init((struct sock *)req));
6743 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6744 				    !want_cookie ? TCP_SYNACK_NORMAL :
6745 						   TCP_SYNACK_COOKIE);
6746 		if (want_cookie) {
6747 			reqsk_free(req);
6748 			return 0;
6749 		}
6750 	}
6751 	reqsk_put(req);
6752 	return 0;
6753 
6754 drop_and_release:
6755 	dst_release(dst);
6756 drop_and_free:
6757 	__reqsk_free(req);
6758 drop:
6759 	tcp_listendrop(sk);
6760 	return 0;
6761 }
6762 EXPORT_SYMBOL(tcp_conn_request);
6763