xref: /openbmc/linux/net/ipv4/tcp_input.c (revision a531b0c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 	} else {
247 		/* Otherwise, we make more careful check taking into account,
248 		 * that SACKs block is variable.
249 		 *
250 		 * "len" is invariant segment length, including TCP header.
251 		 */
252 		len += skb->data - skb_transport_header(skb);
253 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 		    /* If PSH is not set, packet should be
255 		     * full sized, provided peer TCP is not badly broken.
256 		     * This observation (if it is correct 8)) allows
257 		     * to handle super-low mtu links fairly.
258 		     */
259 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 			/* Subtract also invariant (if peer is RFC compliant),
262 			 * tcp header plus fixed timestamp option length.
263 			 * Resulting "len" is MSS free of SACK jitter.
264 			 */
265 			len -= tcp_sk(sk)->tcp_header_len;
266 			icsk->icsk_ack.last_seg_size = len;
267 			if (len == lss) {
268 				icsk->icsk_ack.rcv_mss = len;
269 				return;
270 			}
271 		}
272 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 	}
276 }
277 
278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 	struct inet_connection_sock *icsk = inet_csk(sk);
281 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282 
283 	if (quickacks == 0)
284 		quickacks = 2;
285 	quickacks = min(quickacks, max_quickacks);
286 	if (quickacks > icsk->icsk_ack.quick)
287 		icsk->icsk_ack.quick = quickacks;
288 }
289 
290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 	struct inet_connection_sock *icsk = inet_csk(sk);
293 
294 	tcp_incr_quickack(sk, max_quickacks);
295 	inet_csk_exit_pingpong_mode(sk);
296 	icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 
300 /* Send ACKs quickly, if "quick" count is not exhausted
301  * and the session is not interactive.
302  */
303 
304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 	const struct inet_connection_sock *icsk = inet_csk(sk);
307 	const struct dst_entry *dst = __sk_dst_get(sk);
308 
309 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312 
313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 	if (tp->ecn_flags & TCP_ECN_OK)
316 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318 
319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 	if (tcp_hdr(skb)->cwr) {
322 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 
324 		/* If the sender is telling us it has entered CWR, then its
325 		 * cwnd may be very low (even just 1 packet), so we should ACK
326 		 * immediately.
327 		 */
328 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 	}
331 }
332 
333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337 
338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 	case INET_ECN_NOT_ECT:
344 		/* Funny extension: if ECT is not set on a segment,
345 		 * and we already seen ECT on a previous segment,
346 		 * it is probably a retransmit.
347 		 */
348 		if (tp->ecn_flags & TCP_ECN_SEEN)
349 			tcp_enter_quickack_mode(sk, 2);
350 		break;
351 	case INET_ECN_CE:
352 		if (tcp_ca_needs_ecn(sk))
353 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 
355 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 			/* Better not delay acks, sender can have a very low cwnd */
357 			tcp_enter_quickack_mode(sk, 2);
358 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 		}
360 		tp->ecn_flags |= TCP_ECN_SEEN;
361 		break;
362 	default:
363 		if (tcp_ca_needs_ecn(sk))
364 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 		tp->ecn_flags |= TCP_ECN_SEEN;
366 		break;
367 	}
368 }
369 
370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 		__tcp_ecn_check_ce(sk, skb);
374 }
375 
376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 		tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381 
382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 		tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387 
388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 		return true;
392 	return false;
393 }
394 
395 /* Buffer size and advertised window tuning.
396  *
397  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398  */
399 
400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 	const struct tcp_sock *tp = tcp_sk(sk);
403 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 	int sndmem, per_mss;
405 	u32 nr_segs;
406 
407 	/* Worst case is non GSO/TSO : each frame consumes one skb
408 	 * and skb->head is kmalloced using power of two area of memory
409 	 */
410 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 		  MAX_TCP_HEADER +
412 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 
414 	per_mss = roundup_pow_of_two(per_mss) +
415 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 
417 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
418 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 
420 	/* Fast Recovery (RFC 5681 3.2) :
421 	 * Cubic needs 1.7 factor, rounded to 2 to include
422 	 * extra cushion (application might react slowly to EPOLLOUT)
423 	 */
424 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 	sndmem *= nr_segs * per_mss;
426 
427 	if (sk->sk_sndbuf < sndmem)
428 		WRITE_ONCE(sk->sk_sndbuf,
429 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430 }
431 
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433  *
434  * All tcp_full_space() is split to two parts: "network" buffer, allocated
435  * forward and advertised in receiver window (tp->rcv_wnd) and
436  * "application buffer", required to isolate scheduling/application
437  * latencies from network.
438  * window_clamp is maximal advertised window. It can be less than
439  * tcp_full_space(), in this case tcp_full_space() - window_clamp
440  * is reserved for "application" buffer. The less window_clamp is
441  * the smoother our behaviour from viewpoint of network, but the lower
442  * throughput and the higher sensitivity of the connection to losses. 8)
443  *
444  * rcv_ssthresh is more strict window_clamp used at "slow start"
445  * phase to predict further behaviour of this connection.
446  * It is used for two goals:
447  * - to enforce header prediction at sender, even when application
448  *   requires some significant "application buffer". It is check #1.
449  * - to prevent pruning of receive queue because of misprediction
450  *   of receiver window. Check #2.
451  *
452  * The scheme does not work when sender sends good segments opening
453  * window and then starts to feed us spaghetti. But it should work
454  * in common situations. Otherwise, we have to rely on queue collapsing.
455  */
456 
457 /* Slow part of check#2. */
458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 			     unsigned int skbtruesize)
460 {
461 	struct tcp_sock *tp = tcp_sk(sk);
462 	/* Optimize this! */
463 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465 
466 	while (tp->rcv_ssthresh <= window) {
467 		if (truesize <= skb->len)
468 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469 
470 		truesize >>= 1;
471 		window >>= 1;
472 	}
473 	return 0;
474 }
475 
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477  * can play nice with us, as sk_buff and skb->head might be either
478  * freed or shared with up to MAX_SKB_FRAGS segments.
479  * Only give a boost to drivers using page frag(s) to hold the frame(s),
480  * and if no payload was pulled in skb->head before reaching us.
481  */
482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 	u32 truesize = skb->truesize;
485 
486 	if (adjust && !skb_headlen(skb)) {
487 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 		/* paranoid check, some drivers might be buggy */
489 		if (unlikely((int)truesize < (int)skb->len))
490 			truesize = skb->truesize;
491 	}
492 	return truesize;
493 }
494 
495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 			    bool adjust)
497 {
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	int room;
500 
501 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502 
503 	if (room <= 0)
504 		return;
505 
506 	/* Check #1 */
507 	if (!tcp_under_memory_pressure(sk)) {
508 		unsigned int truesize = truesize_adjust(adjust, skb);
509 		int incr;
510 
511 		/* Check #2. Increase window, if skb with such overhead
512 		 * will fit to rcvbuf in future.
513 		 */
514 		if (tcp_win_from_space(sk, truesize) <= skb->len)
515 			incr = 2 * tp->advmss;
516 		else
517 			incr = __tcp_grow_window(sk, skb, truesize);
518 
519 		if (incr) {
520 			incr = max_t(int, incr, 2 * skb->len);
521 			tp->rcv_ssthresh += min(room, incr);
522 			inet_csk(sk)->icsk_ack.quick |= 1;
523 		}
524 	} else {
525 		/* Under pressure:
526 		 * Adjust rcv_ssthresh according to reserved mem
527 		 */
528 		tcp_adjust_rcv_ssthresh(sk);
529 	}
530 }
531 
532 /* 3. Try to fixup all. It is made immediately after connection enters
533  *    established state.
534  */
535 static void tcp_init_buffer_space(struct sock *sk)
536 {
537 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	int maxwin;
540 
541 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542 		tcp_sndbuf_expand(sk);
543 
544 	tcp_mstamp_refresh(tp);
545 	tp->rcvq_space.time = tp->tcp_mstamp;
546 	tp->rcvq_space.seq = tp->copied_seq;
547 
548 	maxwin = tcp_full_space(sk);
549 
550 	if (tp->window_clamp >= maxwin) {
551 		tp->window_clamp = maxwin;
552 
553 		if (tcp_app_win && maxwin > 4 * tp->advmss)
554 			tp->window_clamp = max(maxwin -
555 					       (maxwin >> tcp_app_win),
556 					       4 * tp->advmss);
557 	}
558 
559 	/* Force reservation of one segment. */
560 	if (tcp_app_win &&
561 	    tp->window_clamp > 2 * tp->advmss &&
562 	    tp->window_clamp + tp->advmss > maxwin)
563 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564 
565 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566 	tp->snd_cwnd_stamp = tcp_jiffies32;
567 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568 				    (u32)TCP_INIT_CWND * tp->advmss);
569 }
570 
571 /* 4. Recalculate window clamp after socket hit its memory bounds. */
572 static void tcp_clamp_window(struct sock *sk)
573 {
574 	struct tcp_sock *tp = tcp_sk(sk);
575 	struct inet_connection_sock *icsk = inet_csk(sk);
576 	struct net *net = sock_net(sk);
577 
578 	icsk->icsk_ack.quick = 0;
579 
580 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
581 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
582 	    !tcp_under_memory_pressure(sk) &&
583 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
584 		WRITE_ONCE(sk->sk_rcvbuf,
585 			   min(atomic_read(&sk->sk_rmem_alloc),
586 			       net->ipv4.sysctl_tcp_rmem[2]));
587 	}
588 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
589 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
590 }
591 
592 /* Initialize RCV_MSS value.
593  * RCV_MSS is an our guess about MSS used by the peer.
594  * We haven't any direct information about the MSS.
595  * It's better to underestimate the RCV_MSS rather than overestimate.
596  * Overestimations make us ACKing less frequently than needed.
597  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
598  */
599 void tcp_initialize_rcv_mss(struct sock *sk)
600 {
601 	const struct tcp_sock *tp = tcp_sk(sk);
602 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
603 
604 	hint = min(hint, tp->rcv_wnd / 2);
605 	hint = min(hint, TCP_MSS_DEFAULT);
606 	hint = max(hint, TCP_MIN_MSS);
607 
608 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
609 }
610 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
611 
612 /* Receiver "autotuning" code.
613  *
614  * The algorithm for RTT estimation w/o timestamps is based on
615  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
616  * <https://public.lanl.gov/radiant/pubs.html#DRS>
617  *
618  * More detail on this code can be found at
619  * <http://staff.psc.edu/jheffner/>,
620  * though this reference is out of date.  A new paper
621  * is pending.
622  */
623 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
624 {
625 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
626 	long m = sample;
627 
628 	if (new_sample != 0) {
629 		/* If we sample in larger samples in the non-timestamp
630 		 * case, we could grossly overestimate the RTT especially
631 		 * with chatty applications or bulk transfer apps which
632 		 * are stalled on filesystem I/O.
633 		 *
634 		 * Also, since we are only going for a minimum in the
635 		 * non-timestamp case, we do not smooth things out
636 		 * else with timestamps disabled convergence takes too
637 		 * long.
638 		 */
639 		if (!win_dep) {
640 			m -= (new_sample >> 3);
641 			new_sample += m;
642 		} else {
643 			m <<= 3;
644 			if (m < new_sample)
645 				new_sample = m;
646 		}
647 	} else {
648 		/* No previous measure. */
649 		new_sample = m << 3;
650 	}
651 
652 	tp->rcv_rtt_est.rtt_us = new_sample;
653 }
654 
655 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
656 {
657 	u32 delta_us;
658 
659 	if (tp->rcv_rtt_est.time == 0)
660 		goto new_measure;
661 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
662 		return;
663 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
664 	if (!delta_us)
665 		delta_us = 1;
666 	tcp_rcv_rtt_update(tp, delta_us, 1);
667 
668 new_measure:
669 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
670 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
671 }
672 
673 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
674 					  const struct sk_buff *skb)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 
678 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
679 		return;
680 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
681 
682 	if (TCP_SKB_CB(skb)->end_seq -
683 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
684 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
685 		u32 delta_us;
686 
687 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
688 			if (!delta)
689 				delta = 1;
690 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
691 			tcp_rcv_rtt_update(tp, delta_us, 0);
692 		}
693 	}
694 }
695 
696 /*
697  * This function should be called every time data is copied to user space.
698  * It calculates the appropriate TCP receive buffer space.
699  */
700 void tcp_rcv_space_adjust(struct sock *sk)
701 {
702 	struct tcp_sock *tp = tcp_sk(sk);
703 	u32 copied;
704 	int time;
705 
706 	trace_tcp_rcv_space_adjust(sk);
707 
708 	tcp_mstamp_refresh(tp);
709 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
710 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
711 		return;
712 
713 	/* Number of bytes copied to user in last RTT */
714 	copied = tp->copied_seq - tp->rcvq_space.seq;
715 	if (copied <= tp->rcvq_space.space)
716 		goto new_measure;
717 
718 	/* A bit of theory :
719 	 * copied = bytes received in previous RTT, our base window
720 	 * To cope with packet losses, we need a 2x factor
721 	 * To cope with slow start, and sender growing its cwin by 100 %
722 	 * every RTT, we need a 4x factor, because the ACK we are sending
723 	 * now is for the next RTT, not the current one :
724 	 * <prev RTT . ><current RTT .. ><next RTT .... >
725 	 */
726 
727 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
728 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
729 		int rcvmem, rcvbuf;
730 		u64 rcvwin, grow;
731 
732 		/* minimal window to cope with packet losses, assuming
733 		 * steady state. Add some cushion because of small variations.
734 		 */
735 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
736 
737 		/* Accommodate for sender rate increase (eg. slow start) */
738 		grow = rcvwin * (copied - tp->rcvq_space.space);
739 		do_div(grow, tp->rcvq_space.space);
740 		rcvwin += (grow << 1);
741 
742 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
743 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
744 			rcvmem += 128;
745 
746 		do_div(rcvwin, tp->advmss);
747 		rcvbuf = min_t(u64, rcvwin * rcvmem,
748 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
749 		if (rcvbuf > sk->sk_rcvbuf) {
750 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
751 
752 			/* Make the window clamp follow along.  */
753 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
754 		}
755 	}
756 	tp->rcvq_space.space = copied;
757 
758 new_measure:
759 	tp->rcvq_space.seq = tp->copied_seq;
760 	tp->rcvq_space.time = tp->tcp_mstamp;
761 }
762 
763 /* There is something which you must keep in mind when you analyze the
764  * behavior of the tp->ato delayed ack timeout interval.  When a
765  * connection starts up, we want to ack as quickly as possible.  The
766  * problem is that "good" TCP's do slow start at the beginning of data
767  * transmission.  The means that until we send the first few ACK's the
768  * sender will sit on his end and only queue most of his data, because
769  * he can only send snd_cwnd unacked packets at any given time.  For
770  * each ACK we send, he increments snd_cwnd and transmits more of his
771  * queue.  -DaveM
772  */
773 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
774 {
775 	struct tcp_sock *tp = tcp_sk(sk);
776 	struct inet_connection_sock *icsk = inet_csk(sk);
777 	u32 now;
778 
779 	inet_csk_schedule_ack(sk);
780 
781 	tcp_measure_rcv_mss(sk, skb);
782 
783 	tcp_rcv_rtt_measure(tp);
784 
785 	now = tcp_jiffies32;
786 
787 	if (!icsk->icsk_ack.ato) {
788 		/* The _first_ data packet received, initialize
789 		 * delayed ACK engine.
790 		 */
791 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
792 		icsk->icsk_ack.ato = TCP_ATO_MIN;
793 	} else {
794 		int m = now - icsk->icsk_ack.lrcvtime;
795 
796 		if (m <= TCP_ATO_MIN / 2) {
797 			/* The fastest case is the first. */
798 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
799 		} else if (m < icsk->icsk_ack.ato) {
800 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
801 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
802 				icsk->icsk_ack.ato = icsk->icsk_rto;
803 		} else if (m > icsk->icsk_rto) {
804 			/* Too long gap. Apparently sender failed to
805 			 * restart window, so that we send ACKs quickly.
806 			 */
807 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
808 			sk_mem_reclaim(sk);
809 		}
810 	}
811 	icsk->icsk_ack.lrcvtime = now;
812 
813 	tcp_ecn_check_ce(sk, skb);
814 
815 	if (skb->len >= 128)
816 		tcp_grow_window(sk, skb, true);
817 }
818 
819 /* Called to compute a smoothed rtt estimate. The data fed to this
820  * routine either comes from timestamps, or from segments that were
821  * known _not_ to have been retransmitted [see Karn/Partridge
822  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
823  * piece by Van Jacobson.
824  * NOTE: the next three routines used to be one big routine.
825  * To save cycles in the RFC 1323 implementation it was better to break
826  * it up into three procedures. -- erics
827  */
828 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
829 {
830 	struct tcp_sock *tp = tcp_sk(sk);
831 	long m = mrtt_us; /* RTT */
832 	u32 srtt = tp->srtt_us;
833 
834 	/*	The following amusing code comes from Jacobson's
835 	 *	article in SIGCOMM '88.  Note that rtt and mdev
836 	 *	are scaled versions of rtt and mean deviation.
837 	 *	This is designed to be as fast as possible
838 	 *	m stands for "measurement".
839 	 *
840 	 *	On a 1990 paper the rto value is changed to:
841 	 *	RTO = rtt + 4 * mdev
842 	 *
843 	 * Funny. This algorithm seems to be very broken.
844 	 * These formulae increase RTO, when it should be decreased, increase
845 	 * too slowly, when it should be increased quickly, decrease too quickly
846 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
847 	 * does not matter how to _calculate_ it. Seems, it was trap
848 	 * that VJ failed to avoid. 8)
849 	 */
850 	if (srtt != 0) {
851 		m -= (srtt >> 3);	/* m is now error in rtt est */
852 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
853 		if (m < 0) {
854 			m = -m;		/* m is now abs(error) */
855 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
856 			/* This is similar to one of Eifel findings.
857 			 * Eifel blocks mdev updates when rtt decreases.
858 			 * This solution is a bit different: we use finer gain
859 			 * for mdev in this case (alpha*beta).
860 			 * Like Eifel it also prevents growth of rto,
861 			 * but also it limits too fast rto decreases,
862 			 * happening in pure Eifel.
863 			 */
864 			if (m > 0)
865 				m >>= 3;
866 		} else {
867 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
868 		}
869 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
870 		if (tp->mdev_us > tp->mdev_max_us) {
871 			tp->mdev_max_us = tp->mdev_us;
872 			if (tp->mdev_max_us > tp->rttvar_us)
873 				tp->rttvar_us = tp->mdev_max_us;
874 		}
875 		if (after(tp->snd_una, tp->rtt_seq)) {
876 			if (tp->mdev_max_us < tp->rttvar_us)
877 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
878 			tp->rtt_seq = tp->snd_nxt;
879 			tp->mdev_max_us = tcp_rto_min_us(sk);
880 
881 			tcp_bpf_rtt(sk);
882 		}
883 	} else {
884 		/* no previous measure. */
885 		srtt = m << 3;		/* take the measured time to be rtt */
886 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
887 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
888 		tp->mdev_max_us = tp->rttvar_us;
889 		tp->rtt_seq = tp->snd_nxt;
890 
891 		tcp_bpf_rtt(sk);
892 	}
893 	tp->srtt_us = max(1U, srtt);
894 }
895 
896 static void tcp_update_pacing_rate(struct sock *sk)
897 {
898 	const struct tcp_sock *tp = tcp_sk(sk);
899 	u64 rate;
900 
901 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
902 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
903 
904 	/* current rate is (cwnd * mss) / srtt
905 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
906 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
907 	 *
908 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
909 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
910 	 *	 end of slow start and should slow down.
911 	 */
912 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
913 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
914 	else
915 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
916 
917 	rate *= max(tp->snd_cwnd, tp->packets_out);
918 
919 	if (likely(tp->srtt_us))
920 		do_div(rate, tp->srtt_us);
921 
922 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
923 	 * without any lock. We want to make sure compiler wont store
924 	 * intermediate values in this location.
925 	 */
926 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
927 					     sk->sk_max_pacing_rate));
928 }
929 
930 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
931  * routine referred to above.
932  */
933 static void tcp_set_rto(struct sock *sk)
934 {
935 	const struct tcp_sock *tp = tcp_sk(sk);
936 	/* Old crap is replaced with new one. 8)
937 	 *
938 	 * More seriously:
939 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
940 	 *    It cannot be less due to utterly erratic ACK generation made
941 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
942 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
943 	 *    is invisible. Actually, Linux-2.4 also generates erratic
944 	 *    ACKs in some circumstances.
945 	 */
946 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
947 
948 	/* 2. Fixups made earlier cannot be right.
949 	 *    If we do not estimate RTO correctly without them,
950 	 *    all the algo is pure shit and should be replaced
951 	 *    with correct one. It is exactly, which we pretend to do.
952 	 */
953 
954 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
955 	 * guarantees that rto is higher.
956 	 */
957 	tcp_bound_rto(sk);
958 }
959 
960 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
961 {
962 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
963 
964 	if (!cwnd)
965 		cwnd = TCP_INIT_CWND;
966 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
967 }
968 
969 struct tcp_sacktag_state {
970 	/* Timestamps for earliest and latest never-retransmitted segment
971 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
972 	 * but congestion control should still get an accurate delay signal.
973 	 */
974 	u64	first_sackt;
975 	u64	last_sackt;
976 	u32	reord;
977 	u32	sack_delivered;
978 	int	flag;
979 	unsigned int mss_now;
980 	struct rate_sample *rate;
981 };
982 
983 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
984  * and spurious retransmission information if this DSACK is unlikely caused by
985  * sender's action:
986  * - DSACKed sequence range is larger than maximum receiver's window.
987  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
988  */
989 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
990 			  u32 end_seq, struct tcp_sacktag_state *state)
991 {
992 	u32 seq_len, dup_segs = 1;
993 
994 	if (!before(start_seq, end_seq))
995 		return 0;
996 
997 	seq_len = end_seq - start_seq;
998 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
999 	if (seq_len > tp->max_window)
1000 		return 0;
1001 	if (seq_len > tp->mss_cache)
1002 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1003 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1004 		state->flag |= FLAG_DSACK_TLP;
1005 
1006 	tp->dsack_dups += dup_segs;
1007 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1008 	if (tp->dsack_dups > tp->total_retrans)
1009 		return 0;
1010 
1011 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1012 	/* We increase the RACK ordering window in rounds where we receive
1013 	 * DSACKs that may have been due to reordering causing RACK to trigger
1014 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1015 	 * without having seen reordering, or that match TLP probes (TLP
1016 	 * is timer-driven, not triggered by RACK).
1017 	 */
1018 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1019 		tp->rack.dsack_seen = 1;
1020 
1021 	state->flag |= FLAG_DSACKING_ACK;
1022 	/* A spurious retransmission is delivered */
1023 	state->sack_delivered += dup_segs;
1024 
1025 	return dup_segs;
1026 }
1027 
1028 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1029  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1030  * distance is approximated in full-mss packet distance ("reordering").
1031  */
1032 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1033 				      const int ts)
1034 {
1035 	struct tcp_sock *tp = tcp_sk(sk);
1036 	const u32 mss = tp->mss_cache;
1037 	u32 fack, metric;
1038 
1039 	fack = tcp_highest_sack_seq(tp);
1040 	if (!before(low_seq, fack))
1041 		return;
1042 
1043 	metric = fack - low_seq;
1044 	if ((metric > tp->reordering * mss) && mss) {
1045 #if FASTRETRANS_DEBUG > 1
1046 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1047 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1048 			 tp->reordering,
1049 			 0,
1050 			 tp->sacked_out,
1051 			 tp->undo_marker ? tp->undo_retrans : 0);
1052 #endif
1053 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1054 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1055 	}
1056 
1057 	/* This exciting event is worth to be remembered. 8) */
1058 	tp->reord_seen++;
1059 	NET_INC_STATS(sock_net(sk),
1060 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1061 }
1062 
1063  /* This must be called before lost_out or retrans_out are updated
1064   * on a new loss, because we want to know if all skbs previously
1065   * known to be lost have already been retransmitted, indicating
1066   * that this newly lost skb is our next skb to retransmit.
1067   */
1068 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1069 {
1070 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1071 	    (tp->retransmit_skb_hint &&
1072 	     before(TCP_SKB_CB(skb)->seq,
1073 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1074 		tp->retransmit_skb_hint = skb;
1075 }
1076 
1077 /* Sum the number of packets on the wire we have marked as lost, and
1078  * notify the congestion control module that the given skb was marked lost.
1079  */
1080 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1081 {
1082 	tp->lost += tcp_skb_pcount(skb);
1083 }
1084 
1085 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1086 {
1087 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1088 	struct tcp_sock *tp = tcp_sk(sk);
1089 
1090 	if (sacked & TCPCB_SACKED_ACKED)
1091 		return;
1092 
1093 	tcp_verify_retransmit_hint(tp, skb);
1094 	if (sacked & TCPCB_LOST) {
1095 		if (sacked & TCPCB_SACKED_RETRANS) {
1096 			/* Account for retransmits that are lost again */
1097 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1098 			tp->retrans_out -= tcp_skb_pcount(skb);
1099 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1100 				      tcp_skb_pcount(skb));
1101 			tcp_notify_skb_loss_event(tp, skb);
1102 		}
1103 	} else {
1104 		tp->lost_out += tcp_skb_pcount(skb);
1105 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1106 		tcp_notify_skb_loss_event(tp, skb);
1107 	}
1108 }
1109 
1110 /* Updates the delivered and delivered_ce counts */
1111 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1112 				bool ece_ack)
1113 {
1114 	tp->delivered += delivered;
1115 	if (ece_ack)
1116 		tp->delivered_ce += delivered;
1117 }
1118 
1119 /* This procedure tags the retransmission queue when SACKs arrive.
1120  *
1121  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1122  * Packets in queue with these bits set are counted in variables
1123  * sacked_out, retrans_out and lost_out, correspondingly.
1124  *
1125  * Valid combinations are:
1126  * Tag  InFlight	Description
1127  * 0	1		- orig segment is in flight.
1128  * S	0		- nothing flies, orig reached receiver.
1129  * L	0		- nothing flies, orig lost by net.
1130  * R	2		- both orig and retransmit are in flight.
1131  * L|R	1		- orig is lost, retransmit is in flight.
1132  * S|R  1		- orig reached receiver, retrans is still in flight.
1133  * (L|S|R is logically valid, it could occur when L|R is sacked,
1134  *  but it is equivalent to plain S and code short-curcuits it to S.
1135  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1136  *
1137  * These 6 states form finite state machine, controlled by the following events:
1138  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1139  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1140  * 3. Loss detection event of two flavors:
1141  *	A. Scoreboard estimator decided the packet is lost.
1142  *	   A'. Reno "three dupacks" marks head of queue lost.
1143  *	B. SACK arrives sacking SND.NXT at the moment, when the
1144  *	   segment was retransmitted.
1145  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1146  *
1147  * It is pleasant to note, that state diagram turns out to be commutative,
1148  * so that we are allowed not to be bothered by order of our actions,
1149  * when multiple events arrive simultaneously. (see the function below).
1150  *
1151  * Reordering detection.
1152  * --------------------
1153  * Reordering metric is maximal distance, which a packet can be displaced
1154  * in packet stream. With SACKs we can estimate it:
1155  *
1156  * 1. SACK fills old hole and the corresponding segment was not
1157  *    ever retransmitted -> reordering. Alas, we cannot use it
1158  *    when segment was retransmitted.
1159  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1160  *    for retransmitted and already SACKed segment -> reordering..
1161  * Both of these heuristics are not used in Loss state, when we cannot
1162  * account for retransmits accurately.
1163  *
1164  * SACK block validation.
1165  * ----------------------
1166  *
1167  * SACK block range validation checks that the received SACK block fits to
1168  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1169  * Note that SND.UNA is not included to the range though being valid because
1170  * it means that the receiver is rather inconsistent with itself reporting
1171  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1172  * perfectly valid, however, in light of RFC2018 which explicitly states
1173  * that "SACK block MUST reflect the newest segment.  Even if the newest
1174  * segment is going to be discarded ...", not that it looks very clever
1175  * in case of head skb. Due to potentional receiver driven attacks, we
1176  * choose to avoid immediate execution of a walk in write queue due to
1177  * reneging and defer head skb's loss recovery to standard loss recovery
1178  * procedure that will eventually trigger (nothing forbids us doing this).
1179  *
1180  * Implements also blockage to start_seq wrap-around. Problem lies in the
1181  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1182  * there's no guarantee that it will be before snd_nxt (n). The problem
1183  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1184  * wrap (s_w):
1185  *
1186  *         <- outs wnd ->                          <- wrapzone ->
1187  *         u     e      n                         u_w   e_w  s n_w
1188  *         |     |      |                          |     |   |  |
1189  * |<------------+------+----- TCP seqno space --------------+---------->|
1190  * ...-- <2^31 ->|                                           |<--------...
1191  * ...---- >2^31 ------>|                                    |<--------...
1192  *
1193  * Current code wouldn't be vulnerable but it's better still to discard such
1194  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1195  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1196  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1197  * equal to the ideal case (infinite seqno space without wrap caused issues).
1198  *
1199  * With D-SACK the lower bound is extended to cover sequence space below
1200  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1201  * again, D-SACK block must not to go across snd_una (for the same reason as
1202  * for the normal SACK blocks, explained above). But there all simplicity
1203  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1204  * fully below undo_marker they do not affect behavior in anyway and can
1205  * therefore be safely ignored. In rare cases (which are more or less
1206  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1207  * fragmentation and packet reordering past skb's retransmission. To consider
1208  * them correctly, the acceptable range must be extended even more though
1209  * the exact amount is rather hard to quantify. However, tp->max_window can
1210  * be used as an exaggerated estimate.
1211  */
1212 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1213 				   u32 start_seq, u32 end_seq)
1214 {
1215 	/* Too far in future, or reversed (interpretation is ambiguous) */
1216 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1217 		return false;
1218 
1219 	/* Nasty start_seq wrap-around check (see comments above) */
1220 	if (!before(start_seq, tp->snd_nxt))
1221 		return false;
1222 
1223 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1224 	 * start_seq == snd_una is non-sensical (see comments above)
1225 	 */
1226 	if (after(start_seq, tp->snd_una))
1227 		return true;
1228 
1229 	if (!is_dsack || !tp->undo_marker)
1230 		return false;
1231 
1232 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1233 	if (after(end_seq, tp->snd_una))
1234 		return false;
1235 
1236 	if (!before(start_seq, tp->undo_marker))
1237 		return true;
1238 
1239 	/* Too old */
1240 	if (!after(end_seq, tp->undo_marker))
1241 		return false;
1242 
1243 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1244 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1245 	 */
1246 	return !before(start_seq, end_seq - tp->max_window);
1247 }
1248 
1249 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1250 			    struct tcp_sack_block_wire *sp, int num_sacks,
1251 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1252 {
1253 	struct tcp_sock *tp = tcp_sk(sk);
1254 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1255 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1256 	u32 dup_segs;
1257 
1258 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1259 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1260 	} else if (num_sacks > 1) {
1261 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1262 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1263 
1264 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1265 			return false;
1266 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1267 	} else {
1268 		return false;
1269 	}
1270 
1271 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1272 	if (!dup_segs) {	/* Skip dubious DSACK */
1273 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1274 		return false;
1275 	}
1276 
1277 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1278 
1279 	/* D-SACK for already forgotten data... Do dumb counting. */
1280 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1281 	    !after(end_seq_0, prior_snd_una) &&
1282 	    after(end_seq_0, tp->undo_marker))
1283 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1284 
1285 	return true;
1286 }
1287 
1288 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1289  * the incoming SACK may not exactly match but we can find smaller MSS
1290  * aligned portion of it that matches. Therefore we might need to fragment
1291  * which may fail and creates some hassle (caller must handle error case
1292  * returns).
1293  *
1294  * FIXME: this could be merged to shift decision code
1295  */
1296 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1297 				  u32 start_seq, u32 end_seq)
1298 {
1299 	int err;
1300 	bool in_sack;
1301 	unsigned int pkt_len;
1302 	unsigned int mss;
1303 
1304 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1305 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1306 
1307 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1308 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1309 		mss = tcp_skb_mss(skb);
1310 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1311 
1312 		if (!in_sack) {
1313 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1314 			if (pkt_len < mss)
1315 				pkt_len = mss;
1316 		} else {
1317 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1318 			if (pkt_len < mss)
1319 				return -EINVAL;
1320 		}
1321 
1322 		/* Round if necessary so that SACKs cover only full MSSes
1323 		 * and/or the remaining small portion (if present)
1324 		 */
1325 		if (pkt_len > mss) {
1326 			unsigned int new_len = (pkt_len / mss) * mss;
1327 			if (!in_sack && new_len < pkt_len)
1328 				new_len += mss;
1329 			pkt_len = new_len;
1330 		}
1331 
1332 		if (pkt_len >= skb->len && !in_sack)
1333 			return 0;
1334 
1335 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1336 				   pkt_len, mss, GFP_ATOMIC);
1337 		if (err < 0)
1338 			return err;
1339 	}
1340 
1341 	return in_sack;
1342 }
1343 
1344 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1345 static u8 tcp_sacktag_one(struct sock *sk,
1346 			  struct tcp_sacktag_state *state, u8 sacked,
1347 			  u32 start_seq, u32 end_seq,
1348 			  int dup_sack, int pcount,
1349 			  u64 xmit_time)
1350 {
1351 	struct tcp_sock *tp = tcp_sk(sk);
1352 
1353 	/* Account D-SACK for retransmitted packet. */
1354 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1355 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1356 		    after(end_seq, tp->undo_marker))
1357 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1358 		if ((sacked & TCPCB_SACKED_ACKED) &&
1359 		    before(start_seq, state->reord))
1360 				state->reord = start_seq;
1361 	}
1362 
1363 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1364 	if (!after(end_seq, tp->snd_una))
1365 		return sacked;
1366 
1367 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1368 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1369 
1370 		if (sacked & TCPCB_SACKED_RETRANS) {
1371 			/* If the segment is not tagged as lost,
1372 			 * we do not clear RETRANS, believing
1373 			 * that retransmission is still in flight.
1374 			 */
1375 			if (sacked & TCPCB_LOST) {
1376 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1377 				tp->lost_out -= pcount;
1378 				tp->retrans_out -= pcount;
1379 			}
1380 		} else {
1381 			if (!(sacked & TCPCB_RETRANS)) {
1382 				/* New sack for not retransmitted frame,
1383 				 * which was in hole. It is reordering.
1384 				 */
1385 				if (before(start_seq,
1386 					   tcp_highest_sack_seq(tp)) &&
1387 				    before(start_seq, state->reord))
1388 					state->reord = start_seq;
1389 
1390 				if (!after(end_seq, tp->high_seq))
1391 					state->flag |= FLAG_ORIG_SACK_ACKED;
1392 				if (state->first_sackt == 0)
1393 					state->first_sackt = xmit_time;
1394 				state->last_sackt = xmit_time;
1395 			}
1396 
1397 			if (sacked & TCPCB_LOST) {
1398 				sacked &= ~TCPCB_LOST;
1399 				tp->lost_out -= pcount;
1400 			}
1401 		}
1402 
1403 		sacked |= TCPCB_SACKED_ACKED;
1404 		state->flag |= FLAG_DATA_SACKED;
1405 		tp->sacked_out += pcount;
1406 		/* Out-of-order packets delivered */
1407 		state->sack_delivered += pcount;
1408 
1409 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1410 		if (tp->lost_skb_hint &&
1411 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1412 			tp->lost_cnt_hint += pcount;
1413 	}
1414 
1415 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1416 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1417 	 * are accounted above as well.
1418 	 */
1419 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1420 		sacked &= ~TCPCB_SACKED_RETRANS;
1421 		tp->retrans_out -= pcount;
1422 	}
1423 
1424 	return sacked;
1425 }
1426 
1427 /* Shift newly-SACKed bytes from this skb to the immediately previous
1428  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1429  */
1430 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1431 			    struct sk_buff *skb,
1432 			    struct tcp_sacktag_state *state,
1433 			    unsigned int pcount, int shifted, int mss,
1434 			    bool dup_sack)
1435 {
1436 	struct tcp_sock *tp = tcp_sk(sk);
1437 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1438 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1439 
1440 	BUG_ON(!pcount);
1441 
1442 	/* Adjust counters and hints for the newly sacked sequence
1443 	 * range but discard the return value since prev is already
1444 	 * marked. We must tag the range first because the seq
1445 	 * advancement below implicitly advances
1446 	 * tcp_highest_sack_seq() when skb is highest_sack.
1447 	 */
1448 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1449 			start_seq, end_seq, dup_sack, pcount,
1450 			tcp_skb_timestamp_us(skb));
1451 	tcp_rate_skb_delivered(sk, skb, state->rate);
1452 
1453 	if (skb == tp->lost_skb_hint)
1454 		tp->lost_cnt_hint += pcount;
1455 
1456 	TCP_SKB_CB(prev)->end_seq += shifted;
1457 	TCP_SKB_CB(skb)->seq += shifted;
1458 
1459 	tcp_skb_pcount_add(prev, pcount);
1460 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1461 	tcp_skb_pcount_add(skb, -pcount);
1462 
1463 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1464 	 * in theory this shouldn't be necessary but as long as DSACK
1465 	 * code can come after this skb later on it's better to keep
1466 	 * setting gso_size to something.
1467 	 */
1468 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1469 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1470 
1471 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1472 	if (tcp_skb_pcount(skb) <= 1)
1473 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1474 
1475 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1476 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1477 
1478 	if (skb->len > 0) {
1479 		BUG_ON(!tcp_skb_pcount(skb));
1480 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1481 		return false;
1482 	}
1483 
1484 	/* Whole SKB was eaten :-) */
1485 
1486 	if (skb == tp->retransmit_skb_hint)
1487 		tp->retransmit_skb_hint = prev;
1488 	if (skb == tp->lost_skb_hint) {
1489 		tp->lost_skb_hint = prev;
1490 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1491 	}
1492 
1493 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1494 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1495 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1496 		TCP_SKB_CB(prev)->end_seq++;
1497 
1498 	if (skb == tcp_highest_sack(sk))
1499 		tcp_advance_highest_sack(sk, skb);
1500 
1501 	tcp_skb_collapse_tstamp(prev, skb);
1502 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1503 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1504 
1505 	tcp_rtx_queue_unlink_and_free(skb, sk);
1506 
1507 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1508 
1509 	return true;
1510 }
1511 
1512 /* I wish gso_size would have a bit more sane initialization than
1513  * something-or-zero which complicates things
1514  */
1515 static int tcp_skb_seglen(const struct sk_buff *skb)
1516 {
1517 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1518 }
1519 
1520 /* Shifting pages past head area doesn't work */
1521 static int skb_can_shift(const struct sk_buff *skb)
1522 {
1523 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1524 }
1525 
1526 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1527 		  int pcount, int shiftlen)
1528 {
1529 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1530 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1531 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1532 	 * even if current MSS is bigger.
1533 	 */
1534 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1535 		return 0;
1536 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1537 		return 0;
1538 	return skb_shift(to, from, shiftlen);
1539 }
1540 
1541 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1542  * skb.
1543  */
1544 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1545 					  struct tcp_sacktag_state *state,
1546 					  u32 start_seq, u32 end_seq,
1547 					  bool dup_sack)
1548 {
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	struct sk_buff *prev;
1551 	int mss;
1552 	int pcount = 0;
1553 	int len;
1554 	int in_sack;
1555 
1556 	/* Normally R but no L won't result in plain S */
1557 	if (!dup_sack &&
1558 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1559 		goto fallback;
1560 	if (!skb_can_shift(skb))
1561 		goto fallback;
1562 	/* This frame is about to be dropped (was ACKed). */
1563 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1564 		goto fallback;
1565 
1566 	/* Can only happen with delayed DSACK + discard craziness */
1567 	prev = skb_rb_prev(skb);
1568 	if (!prev)
1569 		goto fallback;
1570 
1571 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1572 		goto fallback;
1573 
1574 	if (!tcp_skb_can_collapse(prev, skb))
1575 		goto fallback;
1576 
1577 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1578 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1579 
1580 	if (in_sack) {
1581 		len = skb->len;
1582 		pcount = tcp_skb_pcount(skb);
1583 		mss = tcp_skb_seglen(skb);
1584 
1585 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 		 * drop this restriction as unnecessary
1587 		 */
1588 		if (mss != tcp_skb_seglen(prev))
1589 			goto fallback;
1590 	} else {
1591 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1592 			goto noop;
1593 		/* CHECKME: This is non-MSS split case only?, this will
1594 		 * cause skipped skbs due to advancing loop btw, original
1595 		 * has that feature too
1596 		 */
1597 		if (tcp_skb_pcount(skb) <= 1)
1598 			goto noop;
1599 
1600 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1601 		if (!in_sack) {
1602 			/* TODO: head merge to next could be attempted here
1603 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1604 			 * though it might not be worth of the additional hassle
1605 			 *
1606 			 * ...we can probably just fallback to what was done
1607 			 * previously. We could try merging non-SACKed ones
1608 			 * as well but it probably isn't going to buy off
1609 			 * because later SACKs might again split them, and
1610 			 * it would make skb timestamp tracking considerably
1611 			 * harder problem.
1612 			 */
1613 			goto fallback;
1614 		}
1615 
1616 		len = end_seq - TCP_SKB_CB(skb)->seq;
1617 		BUG_ON(len < 0);
1618 		BUG_ON(len > skb->len);
1619 
1620 		/* MSS boundaries should be honoured or else pcount will
1621 		 * severely break even though it makes things bit trickier.
1622 		 * Optimize common case to avoid most of the divides
1623 		 */
1624 		mss = tcp_skb_mss(skb);
1625 
1626 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1627 		 * drop this restriction as unnecessary
1628 		 */
1629 		if (mss != tcp_skb_seglen(prev))
1630 			goto fallback;
1631 
1632 		if (len == mss) {
1633 			pcount = 1;
1634 		} else if (len < mss) {
1635 			goto noop;
1636 		} else {
1637 			pcount = len / mss;
1638 			len = pcount * mss;
1639 		}
1640 	}
1641 
1642 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1643 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1644 		goto fallback;
1645 
1646 	if (!tcp_skb_shift(prev, skb, pcount, len))
1647 		goto fallback;
1648 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1649 		goto out;
1650 
1651 	/* Hole filled allows collapsing with the next as well, this is very
1652 	 * useful when hole on every nth skb pattern happens
1653 	 */
1654 	skb = skb_rb_next(prev);
1655 	if (!skb)
1656 		goto out;
1657 
1658 	if (!skb_can_shift(skb) ||
1659 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1660 	    (mss != tcp_skb_seglen(skb)))
1661 		goto out;
1662 
1663 	len = skb->len;
1664 	pcount = tcp_skb_pcount(skb);
1665 	if (tcp_skb_shift(prev, skb, pcount, len))
1666 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1667 				len, mss, 0);
1668 
1669 out:
1670 	return prev;
1671 
1672 noop:
1673 	return skb;
1674 
1675 fallback:
1676 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1677 	return NULL;
1678 }
1679 
1680 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1681 					struct tcp_sack_block *next_dup,
1682 					struct tcp_sacktag_state *state,
1683 					u32 start_seq, u32 end_seq,
1684 					bool dup_sack_in)
1685 {
1686 	struct tcp_sock *tp = tcp_sk(sk);
1687 	struct sk_buff *tmp;
1688 
1689 	skb_rbtree_walk_from(skb) {
1690 		int in_sack = 0;
1691 		bool dup_sack = dup_sack_in;
1692 
1693 		/* queue is in-order => we can short-circuit the walk early */
1694 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1695 			break;
1696 
1697 		if (next_dup  &&
1698 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1699 			in_sack = tcp_match_skb_to_sack(sk, skb,
1700 							next_dup->start_seq,
1701 							next_dup->end_seq);
1702 			if (in_sack > 0)
1703 				dup_sack = true;
1704 		}
1705 
1706 		/* skb reference here is a bit tricky to get right, since
1707 		 * shifting can eat and free both this skb and the next,
1708 		 * so not even _safe variant of the loop is enough.
1709 		 */
1710 		if (in_sack <= 0) {
1711 			tmp = tcp_shift_skb_data(sk, skb, state,
1712 						 start_seq, end_seq, dup_sack);
1713 			if (tmp) {
1714 				if (tmp != skb) {
1715 					skb = tmp;
1716 					continue;
1717 				}
1718 
1719 				in_sack = 0;
1720 			} else {
1721 				in_sack = tcp_match_skb_to_sack(sk, skb,
1722 								start_seq,
1723 								end_seq);
1724 			}
1725 		}
1726 
1727 		if (unlikely(in_sack < 0))
1728 			break;
1729 
1730 		if (in_sack) {
1731 			TCP_SKB_CB(skb)->sacked =
1732 				tcp_sacktag_one(sk,
1733 						state,
1734 						TCP_SKB_CB(skb)->sacked,
1735 						TCP_SKB_CB(skb)->seq,
1736 						TCP_SKB_CB(skb)->end_seq,
1737 						dup_sack,
1738 						tcp_skb_pcount(skb),
1739 						tcp_skb_timestamp_us(skb));
1740 			tcp_rate_skb_delivered(sk, skb, state->rate);
1741 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1742 				list_del_init(&skb->tcp_tsorted_anchor);
1743 
1744 			if (!before(TCP_SKB_CB(skb)->seq,
1745 				    tcp_highest_sack_seq(tp)))
1746 				tcp_advance_highest_sack(sk, skb);
1747 		}
1748 	}
1749 	return skb;
1750 }
1751 
1752 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1753 {
1754 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1755 	struct sk_buff *skb;
1756 
1757 	while (*p) {
1758 		parent = *p;
1759 		skb = rb_to_skb(parent);
1760 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1761 			p = &parent->rb_left;
1762 			continue;
1763 		}
1764 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1765 			p = &parent->rb_right;
1766 			continue;
1767 		}
1768 		return skb;
1769 	}
1770 	return NULL;
1771 }
1772 
1773 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1774 					u32 skip_to_seq)
1775 {
1776 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1777 		return skb;
1778 
1779 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1780 }
1781 
1782 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1783 						struct sock *sk,
1784 						struct tcp_sack_block *next_dup,
1785 						struct tcp_sacktag_state *state,
1786 						u32 skip_to_seq)
1787 {
1788 	if (!next_dup)
1789 		return skb;
1790 
1791 	if (before(next_dup->start_seq, skip_to_seq)) {
1792 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1793 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1794 				       next_dup->start_seq, next_dup->end_seq,
1795 				       1);
1796 	}
1797 
1798 	return skb;
1799 }
1800 
1801 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1802 {
1803 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1804 }
1805 
1806 static int
1807 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1808 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1809 {
1810 	struct tcp_sock *tp = tcp_sk(sk);
1811 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1812 				    TCP_SKB_CB(ack_skb)->sacked);
1813 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1814 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1815 	struct tcp_sack_block *cache;
1816 	struct sk_buff *skb;
1817 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1818 	int used_sacks;
1819 	bool found_dup_sack = false;
1820 	int i, j;
1821 	int first_sack_index;
1822 
1823 	state->flag = 0;
1824 	state->reord = tp->snd_nxt;
1825 
1826 	if (!tp->sacked_out)
1827 		tcp_highest_sack_reset(sk);
1828 
1829 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1830 					 num_sacks, prior_snd_una, state);
1831 
1832 	/* Eliminate too old ACKs, but take into
1833 	 * account more or less fresh ones, they can
1834 	 * contain valid SACK info.
1835 	 */
1836 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1837 		return 0;
1838 
1839 	if (!tp->packets_out)
1840 		goto out;
1841 
1842 	used_sacks = 0;
1843 	first_sack_index = 0;
1844 	for (i = 0; i < num_sacks; i++) {
1845 		bool dup_sack = !i && found_dup_sack;
1846 
1847 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1848 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1849 
1850 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1851 					    sp[used_sacks].start_seq,
1852 					    sp[used_sacks].end_seq)) {
1853 			int mib_idx;
1854 
1855 			if (dup_sack) {
1856 				if (!tp->undo_marker)
1857 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1858 				else
1859 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1860 			} else {
1861 				/* Don't count olds caused by ACK reordering */
1862 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1863 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1864 					continue;
1865 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1866 			}
1867 
1868 			NET_INC_STATS(sock_net(sk), mib_idx);
1869 			if (i == 0)
1870 				first_sack_index = -1;
1871 			continue;
1872 		}
1873 
1874 		/* Ignore very old stuff early */
1875 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1876 			if (i == 0)
1877 				first_sack_index = -1;
1878 			continue;
1879 		}
1880 
1881 		used_sacks++;
1882 	}
1883 
1884 	/* order SACK blocks to allow in order walk of the retrans queue */
1885 	for (i = used_sacks - 1; i > 0; i--) {
1886 		for (j = 0; j < i; j++) {
1887 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1888 				swap(sp[j], sp[j + 1]);
1889 
1890 				/* Track where the first SACK block goes to */
1891 				if (j == first_sack_index)
1892 					first_sack_index = j + 1;
1893 			}
1894 		}
1895 	}
1896 
1897 	state->mss_now = tcp_current_mss(sk);
1898 	skb = NULL;
1899 	i = 0;
1900 
1901 	if (!tp->sacked_out) {
1902 		/* It's already past, so skip checking against it */
1903 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1904 	} else {
1905 		cache = tp->recv_sack_cache;
1906 		/* Skip empty blocks in at head of the cache */
1907 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1908 		       !cache->end_seq)
1909 			cache++;
1910 	}
1911 
1912 	while (i < used_sacks) {
1913 		u32 start_seq = sp[i].start_seq;
1914 		u32 end_seq = sp[i].end_seq;
1915 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1916 		struct tcp_sack_block *next_dup = NULL;
1917 
1918 		if (found_dup_sack && ((i + 1) == first_sack_index))
1919 			next_dup = &sp[i + 1];
1920 
1921 		/* Skip too early cached blocks */
1922 		while (tcp_sack_cache_ok(tp, cache) &&
1923 		       !before(start_seq, cache->end_seq))
1924 			cache++;
1925 
1926 		/* Can skip some work by looking recv_sack_cache? */
1927 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1928 		    after(end_seq, cache->start_seq)) {
1929 
1930 			/* Head todo? */
1931 			if (before(start_seq, cache->start_seq)) {
1932 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1933 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1934 						       state,
1935 						       start_seq,
1936 						       cache->start_seq,
1937 						       dup_sack);
1938 			}
1939 
1940 			/* Rest of the block already fully processed? */
1941 			if (!after(end_seq, cache->end_seq))
1942 				goto advance_sp;
1943 
1944 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1945 						       state,
1946 						       cache->end_seq);
1947 
1948 			/* ...tail remains todo... */
1949 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1950 				/* ...but better entrypoint exists! */
1951 				skb = tcp_highest_sack(sk);
1952 				if (!skb)
1953 					break;
1954 				cache++;
1955 				goto walk;
1956 			}
1957 
1958 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1959 			/* Check overlap against next cached too (past this one already) */
1960 			cache++;
1961 			continue;
1962 		}
1963 
1964 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1965 			skb = tcp_highest_sack(sk);
1966 			if (!skb)
1967 				break;
1968 		}
1969 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1970 
1971 walk:
1972 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1973 				       start_seq, end_seq, dup_sack);
1974 
1975 advance_sp:
1976 		i++;
1977 	}
1978 
1979 	/* Clear the head of the cache sack blocks so we can skip it next time */
1980 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1981 		tp->recv_sack_cache[i].start_seq = 0;
1982 		tp->recv_sack_cache[i].end_seq = 0;
1983 	}
1984 	for (j = 0; j < used_sacks; j++)
1985 		tp->recv_sack_cache[i++] = sp[j];
1986 
1987 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1988 		tcp_check_sack_reordering(sk, state->reord, 0);
1989 
1990 	tcp_verify_left_out(tp);
1991 out:
1992 
1993 #if FASTRETRANS_DEBUG > 0
1994 	WARN_ON((int)tp->sacked_out < 0);
1995 	WARN_ON((int)tp->lost_out < 0);
1996 	WARN_ON((int)tp->retrans_out < 0);
1997 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1998 #endif
1999 	return state->flag;
2000 }
2001 
2002 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2003  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2004  */
2005 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2006 {
2007 	u32 holes;
2008 
2009 	holes = max(tp->lost_out, 1U);
2010 	holes = min(holes, tp->packets_out);
2011 
2012 	if ((tp->sacked_out + holes) > tp->packets_out) {
2013 		tp->sacked_out = tp->packets_out - holes;
2014 		return true;
2015 	}
2016 	return false;
2017 }
2018 
2019 /* If we receive more dupacks than we expected counting segments
2020  * in assumption of absent reordering, interpret this as reordering.
2021  * The only another reason could be bug in receiver TCP.
2022  */
2023 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2024 {
2025 	struct tcp_sock *tp = tcp_sk(sk);
2026 
2027 	if (!tcp_limit_reno_sacked(tp))
2028 		return;
2029 
2030 	tp->reordering = min_t(u32, tp->packets_out + addend,
2031 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
2032 	tp->reord_seen++;
2033 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2034 }
2035 
2036 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2037 
2038 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2039 {
2040 	if (num_dupack) {
2041 		struct tcp_sock *tp = tcp_sk(sk);
2042 		u32 prior_sacked = tp->sacked_out;
2043 		s32 delivered;
2044 
2045 		tp->sacked_out += num_dupack;
2046 		tcp_check_reno_reordering(sk, 0);
2047 		delivered = tp->sacked_out - prior_sacked;
2048 		if (delivered > 0)
2049 			tcp_count_delivered(tp, delivered, ece_ack);
2050 		tcp_verify_left_out(tp);
2051 	}
2052 }
2053 
2054 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2055 
2056 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2057 {
2058 	struct tcp_sock *tp = tcp_sk(sk);
2059 
2060 	if (acked > 0) {
2061 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2062 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2063 				    ece_ack);
2064 		if (acked - 1 >= tp->sacked_out)
2065 			tp->sacked_out = 0;
2066 		else
2067 			tp->sacked_out -= acked - 1;
2068 	}
2069 	tcp_check_reno_reordering(sk, acked);
2070 	tcp_verify_left_out(tp);
2071 }
2072 
2073 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2074 {
2075 	tp->sacked_out = 0;
2076 }
2077 
2078 void tcp_clear_retrans(struct tcp_sock *tp)
2079 {
2080 	tp->retrans_out = 0;
2081 	tp->lost_out = 0;
2082 	tp->undo_marker = 0;
2083 	tp->undo_retrans = -1;
2084 	tp->sacked_out = 0;
2085 }
2086 
2087 static inline void tcp_init_undo(struct tcp_sock *tp)
2088 {
2089 	tp->undo_marker = tp->snd_una;
2090 	/* Retransmission still in flight may cause DSACKs later. */
2091 	tp->undo_retrans = tp->retrans_out ? : -1;
2092 }
2093 
2094 static bool tcp_is_rack(const struct sock *sk)
2095 {
2096 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2097 }
2098 
2099 /* If we detect SACK reneging, forget all SACK information
2100  * and reset tags completely, otherwise preserve SACKs. If receiver
2101  * dropped its ofo queue, we will know this due to reneging detection.
2102  */
2103 static void tcp_timeout_mark_lost(struct sock *sk)
2104 {
2105 	struct tcp_sock *tp = tcp_sk(sk);
2106 	struct sk_buff *skb, *head;
2107 	bool is_reneg;			/* is receiver reneging on SACKs? */
2108 
2109 	head = tcp_rtx_queue_head(sk);
2110 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2111 	if (is_reneg) {
2112 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2113 		tp->sacked_out = 0;
2114 		/* Mark SACK reneging until we recover from this loss event. */
2115 		tp->is_sack_reneg = 1;
2116 	} else if (tcp_is_reno(tp)) {
2117 		tcp_reset_reno_sack(tp);
2118 	}
2119 
2120 	skb = head;
2121 	skb_rbtree_walk_from(skb) {
2122 		if (is_reneg)
2123 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2124 		else if (tcp_is_rack(sk) && skb != head &&
2125 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2126 			continue; /* Don't mark recently sent ones lost yet */
2127 		tcp_mark_skb_lost(sk, skb);
2128 	}
2129 	tcp_verify_left_out(tp);
2130 	tcp_clear_all_retrans_hints(tp);
2131 }
2132 
2133 /* Enter Loss state. */
2134 void tcp_enter_loss(struct sock *sk)
2135 {
2136 	const struct inet_connection_sock *icsk = inet_csk(sk);
2137 	struct tcp_sock *tp = tcp_sk(sk);
2138 	struct net *net = sock_net(sk);
2139 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2140 
2141 	tcp_timeout_mark_lost(sk);
2142 
2143 	/* Reduce ssthresh if it has not yet been made inside this window. */
2144 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2145 	    !after(tp->high_seq, tp->snd_una) ||
2146 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2147 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2148 		tp->prior_cwnd = tp->snd_cwnd;
2149 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2150 		tcp_ca_event(sk, CA_EVENT_LOSS);
2151 		tcp_init_undo(tp);
2152 	}
2153 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2154 	tp->snd_cwnd_cnt   = 0;
2155 	tp->snd_cwnd_stamp = tcp_jiffies32;
2156 
2157 	/* Timeout in disordered state after receiving substantial DUPACKs
2158 	 * suggests that the degree of reordering is over-estimated.
2159 	 */
2160 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2161 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2162 		tp->reordering = min_t(unsigned int, tp->reordering,
2163 				       net->ipv4.sysctl_tcp_reordering);
2164 	tcp_set_ca_state(sk, TCP_CA_Loss);
2165 	tp->high_seq = tp->snd_nxt;
2166 	tcp_ecn_queue_cwr(tp);
2167 
2168 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2169 	 * loss recovery is underway except recurring timeout(s) on
2170 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2171 	 */
2172 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2173 		   (new_recovery || icsk->icsk_retransmits) &&
2174 		   !inet_csk(sk)->icsk_mtup.probe_size;
2175 }
2176 
2177 /* If ACK arrived pointing to a remembered SACK, it means that our
2178  * remembered SACKs do not reflect real state of receiver i.e.
2179  * receiver _host_ is heavily congested (or buggy).
2180  *
2181  * To avoid big spurious retransmission bursts due to transient SACK
2182  * scoreboard oddities that look like reneging, we give the receiver a
2183  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2184  * restore sanity to the SACK scoreboard. If the apparent reneging
2185  * persists until this RTO then we'll clear the SACK scoreboard.
2186  */
2187 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2188 {
2189 	if (flag & FLAG_SACK_RENEGING) {
2190 		struct tcp_sock *tp = tcp_sk(sk);
2191 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2192 					  msecs_to_jiffies(10));
2193 
2194 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2195 					  delay, TCP_RTO_MAX);
2196 		return true;
2197 	}
2198 	return false;
2199 }
2200 
2201 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2202  * counter when SACK is enabled (without SACK, sacked_out is used for
2203  * that purpose).
2204  *
2205  * With reordering, holes may still be in flight, so RFC3517 recovery
2206  * uses pure sacked_out (total number of SACKed segments) even though
2207  * it violates the RFC that uses duplicate ACKs, often these are equal
2208  * but when e.g. out-of-window ACKs or packet duplication occurs,
2209  * they differ. Since neither occurs due to loss, TCP should really
2210  * ignore them.
2211  */
2212 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2213 {
2214 	return tp->sacked_out + 1;
2215 }
2216 
2217 /* Linux NewReno/SACK/ECN state machine.
2218  * --------------------------------------
2219  *
2220  * "Open"	Normal state, no dubious events, fast path.
2221  * "Disorder"   In all the respects it is "Open",
2222  *		but requires a bit more attention. It is entered when
2223  *		we see some SACKs or dupacks. It is split of "Open"
2224  *		mainly to move some processing from fast path to slow one.
2225  * "CWR"	CWND was reduced due to some Congestion Notification event.
2226  *		It can be ECN, ICMP source quench, local device congestion.
2227  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2228  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2229  *
2230  * tcp_fastretrans_alert() is entered:
2231  * - each incoming ACK, if state is not "Open"
2232  * - when arrived ACK is unusual, namely:
2233  *	* SACK
2234  *	* Duplicate ACK.
2235  *	* ECN ECE.
2236  *
2237  * Counting packets in flight is pretty simple.
2238  *
2239  *	in_flight = packets_out - left_out + retrans_out
2240  *
2241  *	packets_out is SND.NXT-SND.UNA counted in packets.
2242  *
2243  *	retrans_out is number of retransmitted segments.
2244  *
2245  *	left_out is number of segments left network, but not ACKed yet.
2246  *
2247  *		left_out = sacked_out + lost_out
2248  *
2249  *     sacked_out: Packets, which arrived to receiver out of order
2250  *		   and hence not ACKed. With SACKs this number is simply
2251  *		   amount of SACKed data. Even without SACKs
2252  *		   it is easy to give pretty reliable estimate of this number,
2253  *		   counting duplicate ACKs.
2254  *
2255  *       lost_out: Packets lost by network. TCP has no explicit
2256  *		   "loss notification" feedback from network (for now).
2257  *		   It means that this number can be only _guessed_.
2258  *		   Actually, it is the heuristics to predict lossage that
2259  *		   distinguishes different algorithms.
2260  *
2261  *	F.e. after RTO, when all the queue is considered as lost,
2262  *	lost_out = packets_out and in_flight = retrans_out.
2263  *
2264  *		Essentially, we have now a few algorithms detecting
2265  *		lost packets.
2266  *
2267  *		If the receiver supports SACK:
2268  *
2269  *		RFC6675/3517: It is the conventional algorithm. A packet is
2270  *		considered lost if the number of higher sequence packets
2271  *		SACKed is greater than or equal the DUPACK thoreshold
2272  *		(reordering). This is implemented in tcp_mark_head_lost and
2273  *		tcp_update_scoreboard.
2274  *
2275  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2276  *		(2017-) that checks timing instead of counting DUPACKs.
2277  *		Essentially a packet is considered lost if it's not S/ACKed
2278  *		after RTT + reordering_window, where both metrics are
2279  *		dynamically measured and adjusted. This is implemented in
2280  *		tcp_rack_mark_lost.
2281  *
2282  *		If the receiver does not support SACK:
2283  *
2284  *		NewReno (RFC6582): in Recovery we assume that one segment
2285  *		is lost (classic Reno). While we are in Recovery and
2286  *		a partial ACK arrives, we assume that one more packet
2287  *		is lost (NewReno). This heuristics are the same in NewReno
2288  *		and SACK.
2289  *
2290  * Really tricky (and requiring careful tuning) part of algorithm
2291  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2292  * The first determines the moment _when_ we should reduce CWND and,
2293  * hence, slow down forward transmission. In fact, it determines the moment
2294  * when we decide that hole is caused by loss, rather than by a reorder.
2295  *
2296  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2297  * holes, caused by lost packets.
2298  *
2299  * And the most logically complicated part of algorithm is undo
2300  * heuristics. We detect false retransmits due to both too early
2301  * fast retransmit (reordering) and underestimated RTO, analyzing
2302  * timestamps and D-SACKs. When we detect that some segments were
2303  * retransmitted by mistake and CWND reduction was wrong, we undo
2304  * window reduction and abort recovery phase. This logic is hidden
2305  * inside several functions named tcp_try_undo_<something>.
2306  */
2307 
2308 /* This function decides, when we should leave Disordered state
2309  * and enter Recovery phase, reducing congestion window.
2310  *
2311  * Main question: may we further continue forward transmission
2312  * with the same cwnd?
2313  */
2314 static bool tcp_time_to_recover(struct sock *sk, int flag)
2315 {
2316 	struct tcp_sock *tp = tcp_sk(sk);
2317 
2318 	/* Trick#1: The loss is proven. */
2319 	if (tp->lost_out)
2320 		return true;
2321 
2322 	/* Not-A-Trick#2 : Classic rule... */
2323 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2324 		return true;
2325 
2326 	return false;
2327 }
2328 
2329 /* Detect loss in event "A" above by marking head of queue up as lost.
2330  * For RFC3517 SACK, a segment is considered lost if it
2331  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2332  * the maximum SACKed segments to pass before reaching this limit.
2333  */
2334 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2335 {
2336 	struct tcp_sock *tp = tcp_sk(sk);
2337 	struct sk_buff *skb;
2338 	int cnt;
2339 	/* Use SACK to deduce losses of new sequences sent during recovery */
2340 	const u32 loss_high = tp->snd_nxt;
2341 
2342 	WARN_ON(packets > tp->packets_out);
2343 	skb = tp->lost_skb_hint;
2344 	if (skb) {
2345 		/* Head already handled? */
2346 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2347 			return;
2348 		cnt = tp->lost_cnt_hint;
2349 	} else {
2350 		skb = tcp_rtx_queue_head(sk);
2351 		cnt = 0;
2352 	}
2353 
2354 	skb_rbtree_walk_from(skb) {
2355 		/* TODO: do this better */
2356 		/* this is not the most efficient way to do this... */
2357 		tp->lost_skb_hint = skb;
2358 		tp->lost_cnt_hint = cnt;
2359 
2360 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2361 			break;
2362 
2363 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2364 			cnt += tcp_skb_pcount(skb);
2365 
2366 		if (cnt > packets)
2367 			break;
2368 
2369 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2370 			tcp_mark_skb_lost(sk, skb);
2371 
2372 		if (mark_head)
2373 			break;
2374 	}
2375 	tcp_verify_left_out(tp);
2376 }
2377 
2378 /* Account newly detected lost packet(s) */
2379 
2380 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2381 {
2382 	struct tcp_sock *tp = tcp_sk(sk);
2383 
2384 	if (tcp_is_sack(tp)) {
2385 		int sacked_upto = tp->sacked_out - tp->reordering;
2386 		if (sacked_upto >= 0)
2387 			tcp_mark_head_lost(sk, sacked_upto, 0);
2388 		else if (fast_rexmit)
2389 			tcp_mark_head_lost(sk, 1, 1);
2390 	}
2391 }
2392 
2393 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2394 {
2395 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2396 	       before(tp->rx_opt.rcv_tsecr, when);
2397 }
2398 
2399 /* skb is spurious retransmitted if the returned timestamp echo
2400  * reply is prior to the skb transmission time
2401  */
2402 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2403 				     const struct sk_buff *skb)
2404 {
2405 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2406 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2407 }
2408 
2409 /* Nothing was retransmitted or returned timestamp is less
2410  * than timestamp of the first retransmission.
2411  */
2412 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2413 {
2414 	return tp->retrans_stamp &&
2415 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2416 }
2417 
2418 /* Undo procedures. */
2419 
2420 /* We can clear retrans_stamp when there are no retransmissions in the
2421  * window. It would seem that it is trivially available for us in
2422  * tp->retrans_out, however, that kind of assumptions doesn't consider
2423  * what will happen if errors occur when sending retransmission for the
2424  * second time. ...It could the that such segment has only
2425  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2426  * the head skb is enough except for some reneging corner cases that
2427  * are not worth the effort.
2428  *
2429  * Main reason for all this complexity is the fact that connection dying
2430  * time now depends on the validity of the retrans_stamp, in particular,
2431  * that successive retransmissions of a segment must not advance
2432  * retrans_stamp under any conditions.
2433  */
2434 static bool tcp_any_retrans_done(const struct sock *sk)
2435 {
2436 	const struct tcp_sock *tp = tcp_sk(sk);
2437 	struct sk_buff *skb;
2438 
2439 	if (tp->retrans_out)
2440 		return true;
2441 
2442 	skb = tcp_rtx_queue_head(sk);
2443 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2444 		return true;
2445 
2446 	return false;
2447 }
2448 
2449 static void DBGUNDO(struct sock *sk, const char *msg)
2450 {
2451 #if FASTRETRANS_DEBUG > 1
2452 	struct tcp_sock *tp = tcp_sk(sk);
2453 	struct inet_sock *inet = inet_sk(sk);
2454 
2455 	if (sk->sk_family == AF_INET) {
2456 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2457 			 msg,
2458 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2459 			 tp->snd_cwnd, tcp_left_out(tp),
2460 			 tp->snd_ssthresh, tp->prior_ssthresh,
2461 			 tp->packets_out);
2462 	}
2463 #if IS_ENABLED(CONFIG_IPV6)
2464 	else if (sk->sk_family == AF_INET6) {
2465 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2466 			 msg,
2467 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2468 			 tp->snd_cwnd, tcp_left_out(tp),
2469 			 tp->snd_ssthresh, tp->prior_ssthresh,
2470 			 tp->packets_out);
2471 	}
2472 #endif
2473 #endif
2474 }
2475 
2476 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 
2480 	if (unmark_loss) {
2481 		struct sk_buff *skb;
2482 
2483 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2484 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2485 		}
2486 		tp->lost_out = 0;
2487 		tcp_clear_all_retrans_hints(tp);
2488 	}
2489 
2490 	if (tp->prior_ssthresh) {
2491 		const struct inet_connection_sock *icsk = inet_csk(sk);
2492 
2493 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2494 
2495 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2496 			tp->snd_ssthresh = tp->prior_ssthresh;
2497 			tcp_ecn_withdraw_cwr(tp);
2498 		}
2499 	}
2500 	tp->snd_cwnd_stamp = tcp_jiffies32;
2501 	tp->undo_marker = 0;
2502 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2503 }
2504 
2505 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2506 {
2507 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2508 }
2509 
2510 /* People celebrate: "We love our President!" */
2511 static bool tcp_try_undo_recovery(struct sock *sk)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 
2515 	if (tcp_may_undo(tp)) {
2516 		int mib_idx;
2517 
2518 		/* Happy end! We did not retransmit anything
2519 		 * or our original transmission succeeded.
2520 		 */
2521 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2522 		tcp_undo_cwnd_reduction(sk, false);
2523 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2524 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2525 		else
2526 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2527 
2528 		NET_INC_STATS(sock_net(sk), mib_idx);
2529 	} else if (tp->rack.reo_wnd_persist) {
2530 		tp->rack.reo_wnd_persist--;
2531 	}
2532 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2533 		/* Hold old state until something *above* high_seq
2534 		 * is ACKed. For Reno it is MUST to prevent false
2535 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2536 		if (!tcp_any_retrans_done(sk))
2537 			tp->retrans_stamp = 0;
2538 		return true;
2539 	}
2540 	tcp_set_ca_state(sk, TCP_CA_Open);
2541 	tp->is_sack_reneg = 0;
2542 	return false;
2543 }
2544 
2545 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2546 static bool tcp_try_undo_dsack(struct sock *sk)
2547 {
2548 	struct tcp_sock *tp = tcp_sk(sk);
2549 
2550 	if (tp->undo_marker && !tp->undo_retrans) {
2551 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2552 					       tp->rack.reo_wnd_persist + 1);
2553 		DBGUNDO(sk, "D-SACK");
2554 		tcp_undo_cwnd_reduction(sk, false);
2555 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2556 		return true;
2557 	}
2558 	return false;
2559 }
2560 
2561 /* Undo during loss recovery after partial ACK or using F-RTO. */
2562 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2563 {
2564 	struct tcp_sock *tp = tcp_sk(sk);
2565 
2566 	if (frto_undo || tcp_may_undo(tp)) {
2567 		tcp_undo_cwnd_reduction(sk, true);
2568 
2569 		DBGUNDO(sk, "partial loss");
2570 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2571 		if (frto_undo)
2572 			NET_INC_STATS(sock_net(sk),
2573 					LINUX_MIB_TCPSPURIOUSRTOS);
2574 		inet_csk(sk)->icsk_retransmits = 0;
2575 		if (frto_undo || tcp_is_sack(tp)) {
2576 			tcp_set_ca_state(sk, TCP_CA_Open);
2577 			tp->is_sack_reneg = 0;
2578 		}
2579 		return true;
2580 	}
2581 	return false;
2582 }
2583 
2584 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2585  * It computes the number of packets to send (sndcnt) based on packets newly
2586  * delivered:
2587  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2588  *	cwnd reductions across a full RTT.
2589  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2590  *      But when SND_UNA is acked without further losses,
2591  *      slow starts cwnd up to ssthresh to speed up the recovery.
2592  */
2593 static void tcp_init_cwnd_reduction(struct sock *sk)
2594 {
2595 	struct tcp_sock *tp = tcp_sk(sk);
2596 
2597 	tp->high_seq = tp->snd_nxt;
2598 	tp->tlp_high_seq = 0;
2599 	tp->snd_cwnd_cnt = 0;
2600 	tp->prior_cwnd = tp->snd_cwnd;
2601 	tp->prr_delivered = 0;
2602 	tp->prr_out = 0;
2603 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2604 	tcp_ecn_queue_cwr(tp);
2605 }
2606 
2607 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2608 {
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 	int sndcnt = 0;
2611 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2612 
2613 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2614 		return;
2615 
2616 	tp->prr_delivered += newly_acked_sacked;
2617 	if (delta < 0) {
2618 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2619 			       tp->prior_cwnd - 1;
2620 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2621 	} else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2622 		sndcnt = min_t(int, delta,
2623 			       max_t(int, tp->prr_delivered - tp->prr_out,
2624 				     newly_acked_sacked) + 1);
2625 	} else {
2626 		sndcnt = min(delta, newly_acked_sacked);
2627 	}
2628 	/* Force a fast retransmit upon entering fast recovery */
2629 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2630 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2631 }
2632 
2633 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2634 {
2635 	struct tcp_sock *tp = tcp_sk(sk);
2636 
2637 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2638 		return;
2639 
2640 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2641 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2642 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2643 		tp->snd_cwnd = tp->snd_ssthresh;
2644 		tp->snd_cwnd_stamp = tcp_jiffies32;
2645 	}
2646 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2647 }
2648 
2649 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2650 void tcp_enter_cwr(struct sock *sk)
2651 {
2652 	struct tcp_sock *tp = tcp_sk(sk);
2653 
2654 	tp->prior_ssthresh = 0;
2655 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2656 		tp->undo_marker = 0;
2657 		tcp_init_cwnd_reduction(sk);
2658 		tcp_set_ca_state(sk, TCP_CA_CWR);
2659 	}
2660 }
2661 EXPORT_SYMBOL(tcp_enter_cwr);
2662 
2663 static void tcp_try_keep_open(struct sock *sk)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 	int state = TCP_CA_Open;
2667 
2668 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2669 		state = TCP_CA_Disorder;
2670 
2671 	if (inet_csk(sk)->icsk_ca_state != state) {
2672 		tcp_set_ca_state(sk, state);
2673 		tp->high_seq = tp->snd_nxt;
2674 	}
2675 }
2676 
2677 static void tcp_try_to_open(struct sock *sk, int flag)
2678 {
2679 	struct tcp_sock *tp = tcp_sk(sk);
2680 
2681 	tcp_verify_left_out(tp);
2682 
2683 	if (!tcp_any_retrans_done(sk))
2684 		tp->retrans_stamp = 0;
2685 
2686 	if (flag & FLAG_ECE)
2687 		tcp_enter_cwr(sk);
2688 
2689 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2690 		tcp_try_keep_open(sk);
2691 	}
2692 }
2693 
2694 static void tcp_mtup_probe_failed(struct sock *sk)
2695 {
2696 	struct inet_connection_sock *icsk = inet_csk(sk);
2697 
2698 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2699 	icsk->icsk_mtup.probe_size = 0;
2700 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2701 }
2702 
2703 static void tcp_mtup_probe_success(struct sock *sk)
2704 {
2705 	struct tcp_sock *tp = tcp_sk(sk);
2706 	struct inet_connection_sock *icsk = inet_csk(sk);
2707 
2708 	/* FIXME: breaks with very large cwnd */
2709 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2710 	tp->snd_cwnd = tp->snd_cwnd *
2711 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2712 		       icsk->icsk_mtup.probe_size;
2713 	tp->snd_cwnd_cnt = 0;
2714 	tp->snd_cwnd_stamp = tcp_jiffies32;
2715 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2716 
2717 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2718 	icsk->icsk_mtup.probe_size = 0;
2719 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2720 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2721 }
2722 
2723 /* Do a simple retransmit without using the backoff mechanisms in
2724  * tcp_timer. This is used for path mtu discovery.
2725  * The socket is already locked here.
2726  */
2727 void tcp_simple_retransmit(struct sock *sk)
2728 {
2729 	const struct inet_connection_sock *icsk = inet_csk(sk);
2730 	struct tcp_sock *tp = tcp_sk(sk);
2731 	struct sk_buff *skb;
2732 	int mss;
2733 
2734 	/* A fastopen SYN request is stored as two separate packets within
2735 	 * the retransmit queue, this is done by tcp_send_syn_data().
2736 	 * As a result simply checking the MSS of the frames in the queue
2737 	 * will not work for the SYN packet.
2738 	 *
2739 	 * Us being here is an indication of a path MTU issue so we can
2740 	 * assume that the fastopen SYN was lost and just mark all the
2741 	 * frames in the retransmit queue as lost. We will use an MSS of
2742 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2743 	 */
2744 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2745 		mss = -1;
2746 	else
2747 		mss = tcp_current_mss(sk);
2748 
2749 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2750 		if (tcp_skb_seglen(skb) > mss)
2751 			tcp_mark_skb_lost(sk, skb);
2752 	}
2753 
2754 	tcp_clear_retrans_hints_partial(tp);
2755 
2756 	if (!tp->lost_out)
2757 		return;
2758 
2759 	if (tcp_is_reno(tp))
2760 		tcp_limit_reno_sacked(tp);
2761 
2762 	tcp_verify_left_out(tp);
2763 
2764 	/* Don't muck with the congestion window here.
2765 	 * Reason is that we do not increase amount of _data_
2766 	 * in network, but units changed and effective
2767 	 * cwnd/ssthresh really reduced now.
2768 	 */
2769 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2770 		tp->high_seq = tp->snd_nxt;
2771 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2772 		tp->prior_ssthresh = 0;
2773 		tp->undo_marker = 0;
2774 		tcp_set_ca_state(sk, TCP_CA_Loss);
2775 	}
2776 	tcp_xmit_retransmit_queue(sk);
2777 }
2778 EXPORT_SYMBOL(tcp_simple_retransmit);
2779 
2780 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2781 {
2782 	struct tcp_sock *tp = tcp_sk(sk);
2783 	int mib_idx;
2784 
2785 	if (tcp_is_reno(tp))
2786 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2787 	else
2788 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2789 
2790 	NET_INC_STATS(sock_net(sk), mib_idx);
2791 
2792 	tp->prior_ssthresh = 0;
2793 	tcp_init_undo(tp);
2794 
2795 	if (!tcp_in_cwnd_reduction(sk)) {
2796 		if (!ece_ack)
2797 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2798 		tcp_init_cwnd_reduction(sk);
2799 	}
2800 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2801 }
2802 
2803 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2804  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2805  */
2806 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2807 			     int *rexmit)
2808 {
2809 	struct tcp_sock *tp = tcp_sk(sk);
2810 	bool recovered = !before(tp->snd_una, tp->high_seq);
2811 
2812 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2813 	    tcp_try_undo_loss(sk, false))
2814 		return;
2815 
2816 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2817 		/* Step 3.b. A timeout is spurious if not all data are
2818 		 * lost, i.e., never-retransmitted data are (s)acked.
2819 		 */
2820 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2821 		    tcp_try_undo_loss(sk, true))
2822 			return;
2823 
2824 		if (after(tp->snd_nxt, tp->high_seq)) {
2825 			if (flag & FLAG_DATA_SACKED || num_dupack)
2826 				tp->frto = 0; /* Step 3.a. loss was real */
2827 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2828 			tp->high_seq = tp->snd_nxt;
2829 			/* Step 2.b. Try send new data (but deferred until cwnd
2830 			 * is updated in tcp_ack()). Otherwise fall back to
2831 			 * the conventional recovery.
2832 			 */
2833 			if (!tcp_write_queue_empty(sk) &&
2834 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2835 				*rexmit = REXMIT_NEW;
2836 				return;
2837 			}
2838 			tp->frto = 0;
2839 		}
2840 	}
2841 
2842 	if (recovered) {
2843 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2844 		tcp_try_undo_recovery(sk);
2845 		return;
2846 	}
2847 	if (tcp_is_reno(tp)) {
2848 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2849 		 * delivered. Lower inflight to clock out (re)tranmissions.
2850 		 */
2851 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2852 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2853 		else if (flag & FLAG_SND_UNA_ADVANCED)
2854 			tcp_reset_reno_sack(tp);
2855 	}
2856 	*rexmit = REXMIT_LOST;
2857 }
2858 
2859 static bool tcp_force_fast_retransmit(struct sock *sk)
2860 {
2861 	struct tcp_sock *tp = tcp_sk(sk);
2862 
2863 	return after(tcp_highest_sack_seq(tp),
2864 		     tp->snd_una + tp->reordering * tp->mss_cache);
2865 }
2866 
2867 /* Undo during fast recovery after partial ACK. */
2868 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2869 				 bool *do_lost)
2870 {
2871 	struct tcp_sock *tp = tcp_sk(sk);
2872 
2873 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2874 		/* Plain luck! Hole if filled with delayed
2875 		 * packet, rather than with a retransmit. Check reordering.
2876 		 */
2877 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2878 
2879 		/* We are getting evidence that the reordering degree is higher
2880 		 * than we realized. If there are no retransmits out then we
2881 		 * can undo. Otherwise we clock out new packets but do not
2882 		 * mark more packets lost or retransmit more.
2883 		 */
2884 		if (tp->retrans_out)
2885 			return true;
2886 
2887 		if (!tcp_any_retrans_done(sk))
2888 			tp->retrans_stamp = 0;
2889 
2890 		DBGUNDO(sk, "partial recovery");
2891 		tcp_undo_cwnd_reduction(sk, true);
2892 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2893 		tcp_try_keep_open(sk);
2894 	} else {
2895 		/* Partial ACK arrived. Force fast retransmit. */
2896 		*do_lost = tcp_force_fast_retransmit(sk);
2897 	}
2898 	return false;
2899 }
2900 
2901 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2902 {
2903 	struct tcp_sock *tp = tcp_sk(sk);
2904 
2905 	if (tcp_rtx_queue_empty(sk))
2906 		return;
2907 
2908 	if (unlikely(tcp_is_reno(tp))) {
2909 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2910 	} else if (tcp_is_rack(sk)) {
2911 		u32 prior_retrans = tp->retrans_out;
2912 
2913 		if (tcp_rack_mark_lost(sk))
2914 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2915 		if (prior_retrans > tp->retrans_out)
2916 			*ack_flag |= FLAG_LOST_RETRANS;
2917 	}
2918 }
2919 
2920 /* Process an event, which can update packets-in-flight not trivially.
2921  * Main goal of this function is to calculate new estimate for left_out,
2922  * taking into account both packets sitting in receiver's buffer and
2923  * packets lost by network.
2924  *
2925  * Besides that it updates the congestion state when packet loss or ECN
2926  * is detected. But it does not reduce the cwnd, it is done by the
2927  * congestion control later.
2928  *
2929  * It does _not_ decide what to send, it is made in function
2930  * tcp_xmit_retransmit_queue().
2931  */
2932 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2933 				  int num_dupack, int *ack_flag, int *rexmit)
2934 {
2935 	struct inet_connection_sock *icsk = inet_csk(sk);
2936 	struct tcp_sock *tp = tcp_sk(sk);
2937 	int fast_rexmit = 0, flag = *ack_flag;
2938 	bool ece_ack = flag & FLAG_ECE;
2939 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2940 				      tcp_force_fast_retransmit(sk));
2941 
2942 	if (!tp->packets_out && tp->sacked_out)
2943 		tp->sacked_out = 0;
2944 
2945 	/* Now state machine starts.
2946 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2947 	if (ece_ack)
2948 		tp->prior_ssthresh = 0;
2949 
2950 	/* B. In all the states check for reneging SACKs. */
2951 	if (tcp_check_sack_reneging(sk, flag))
2952 		return;
2953 
2954 	/* C. Check consistency of the current state. */
2955 	tcp_verify_left_out(tp);
2956 
2957 	/* D. Check state exit conditions. State can be terminated
2958 	 *    when high_seq is ACKed. */
2959 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2960 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2961 		tp->retrans_stamp = 0;
2962 	} else if (!before(tp->snd_una, tp->high_seq)) {
2963 		switch (icsk->icsk_ca_state) {
2964 		case TCP_CA_CWR:
2965 			/* CWR is to be held something *above* high_seq
2966 			 * is ACKed for CWR bit to reach receiver. */
2967 			if (tp->snd_una != tp->high_seq) {
2968 				tcp_end_cwnd_reduction(sk);
2969 				tcp_set_ca_state(sk, TCP_CA_Open);
2970 			}
2971 			break;
2972 
2973 		case TCP_CA_Recovery:
2974 			if (tcp_is_reno(tp))
2975 				tcp_reset_reno_sack(tp);
2976 			if (tcp_try_undo_recovery(sk))
2977 				return;
2978 			tcp_end_cwnd_reduction(sk);
2979 			break;
2980 		}
2981 	}
2982 
2983 	/* E. Process state. */
2984 	switch (icsk->icsk_ca_state) {
2985 	case TCP_CA_Recovery:
2986 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2987 			if (tcp_is_reno(tp))
2988 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2989 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2990 			return;
2991 
2992 		if (tcp_try_undo_dsack(sk))
2993 			tcp_try_keep_open(sk);
2994 
2995 		tcp_identify_packet_loss(sk, ack_flag);
2996 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2997 			if (!tcp_time_to_recover(sk, flag))
2998 				return;
2999 			/* Undo reverts the recovery state. If loss is evident,
3000 			 * starts a new recovery (e.g. reordering then loss);
3001 			 */
3002 			tcp_enter_recovery(sk, ece_ack);
3003 		}
3004 		break;
3005 	case TCP_CA_Loss:
3006 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3007 		tcp_identify_packet_loss(sk, ack_flag);
3008 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3009 		      (*ack_flag & FLAG_LOST_RETRANS)))
3010 			return;
3011 		/* Change state if cwnd is undone or retransmits are lost */
3012 		fallthrough;
3013 	default:
3014 		if (tcp_is_reno(tp)) {
3015 			if (flag & FLAG_SND_UNA_ADVANCED)
3016 				tcp_reset_reno_sack(tp);
3017 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3018 		}
3019 
3020 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3021 			tcp_try_undo_dsack(sk);
3022 
3023 		tcp_identify_packet_loss(sk, ack_flag);
3024 		if (!tcp_time_to_recover(sk, flag)) {
3025 			tcp_try_to_open(sk, flag);
3026 			return;
3027 		}
3028 
3029 		/* MTU probe failure: don't reduce cwnd */
3030 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3031 		    icsk->icsk_mtup.probe_size &&
3032 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3033 			tcp_mtup_probe_failed(sk);
3034 			/* Restores the reduction we did in tcp_mtup_probe() */
3035 			tp->snd_cwnd++;
3036 			tcp_simple_retransmit(sk);
3037 			return;
3038 		}
3039 
3040 		/* Otherwise enter Recovery state */
3041 		tcp_enter_recovery(sk, ece_ack);
3042 		fast_rexmit = 1;
3043 	}
3044 
3045 	if (!tcp_is_rack(sk) && do_lost)
3046 		tcp_update_scoreboard(sk, fast_rexmit);
3047 	*rexmit = REXMIT_LOST;
3048 }
3049 
3050 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3051 {
3052 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3053 	struct tcp_sock *tp = tcp_sk(sk);
3054 
3055 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3056 		/* If the remote keeps returning delayed ACKs, eventually
3057 		 * the min filter would pick it up and overestimate the
3058 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3059 		 */
3060 		return;
3061 	}
3062 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3063 			   rtt_us ? : jiffies_to_usecs(1));
3064 }
3065 
3066 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3067 			       long seq_rtt_us, long sack_rtt_us,
3068 			       long ca_rtt_us, struct rate_sample *rs)
3069 {
3070 	const struct tcp_sock *tp = tcp_sk(sk);
3071 
3072 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3073 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3074 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3075 	 * is acked (RFC6298).
3076 	 */
3077 	if (seq_rtt_us < 0)
3078 		seq_rtt_us = sack_rtt_us;
3079 
3080 	/* RTTM Rule: A TSecr value received in a segment is used to
3081 	 * update the averaged RTT measurement only if the segment
3082 	 * acknowledges some new data, i.e., only if it advances the
3083 	 * left edge of the send window.
3084 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3085 	 */
3086 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3087 	    flag & FLAG_ACKED) {
3088 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3089 
3090 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3091 			if (!delta)
3092 				delta = 1;
3093 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3094 			ca_rtt_us = seq_rtt_us;
3095 		}
3096 	}
3097 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3098 	if (seq_rtt_us < 0)
3099 		return false;
3100 
3101 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3102 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3103 	 * values will be skipped with the seq_rtt_us < 0 check above.
3104 	 */
3105 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3106 	tcp_rtt_estimator(sk, seq_rtt_us);
3107 	tcp_set_rto(sk);
3108 
3109 	/* RFC6298: only reset backoff on valid RTT measurement. */
3110 	inet_csk(sk)->icsk_backoff = 0;
3111 	return true;
3112 }
3113 
3114 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3115 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3116 {
3117 	struct rate_sample rs;
3118 	long rtt_us = -1L;
3119 
3120 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3121 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3122 
3123 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3124 }
3125 
3126 
3127 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3128 {
3129 	const struct inet_connection_sock *icsk = inet_csk(sk);
3130 
3131 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3132 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3133 }
3134 
3135 /* Restart timer after forward progress on connection.
3136  * RFC2988 recommends to restart timer to now+rto.
3137  */
3138 void tcp_rearm_rto(struct sock *sk)
3139 {
3140 	const struct inet_connection_sock *icsk = inet_csk(sk);
3141 	struct tcp_sock *tp = tcp_sk(sk);
3142 
3143 	/* If the retrans timer is currently being used by Fast Open
3144 	 * for SYN-ACK retrans purpose, stay put.
3145 	 */
3146 	if (rcu_access_pointer(tp->fastopen_rsk))
3147 		return;
3148 
3149 	if (!tp->packets_out) {
3150 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3151 	} else {
3152 		u32 rto = inet_csk(sk)->icsk_rto;
3153 		/* Offset the time elapsed after installing regular RTO */
3154 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3155 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3156 			s64 delta_us = tcp_rto_delta_us(sk);
3157 			/* delta_us may not be positive if the socket is locked
3158 			 * when the retrans timer fires and is rescheduled.
3159 			 */
3160 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3161 		}
3162 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3163 				     TCP_RTO_MAX);
3164 	}
3165 }
3166 
3167 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3168 static void tcp_set_xmit_timer(struct sock *sk)
3169 {
3170 	if (!tcp_schedule_loss_probe(sk, true))
3171 		tcp_rearm_rto(sk);
3172 }
3173 
3174 /* If we get here, the whole TSO packet has not been acked. */
3175 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3176 {
3177 	struct tcp_sock *tp = tcp_sk(sk);
3178 	u32 packets_acked;
3179 
3180 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3181 
3182 	packets_acked = tcp_skb_pcount(skb);
3183 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3184 		return 0;
3185 	packets_acked -= tcp_skb_pcount(skb);
3186 
3187 	if (packets_acked) {
3188 		BUG_ON(tcp_skb_pcount(skb) == 0);
3189 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3190 	}
3191 
3192 	return packets_acked;
3193 }
3194 
3195 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3196 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3197 {
3198 	const struct skb_shared_info *shinfo;
3199 
3200 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3201 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3202 		return;
3203 
3204 	shinfo = skb_shinfo(skb);
3205 	if (!before(shinfo->tskey, prior_snd_una) &&
3206 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3207 		tcp_skb_tsorted_save(skb) {
3208 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3209 		} tcp_skb_tsorted_restore(skb);
3210 	}
3211 }
3212 
3213 /* Remove acknowledged frames from the retransmission queue. If our packet
3214  * is before the ack sequence we can discard it as it's confirmed to have
3215  * arrived at the other end.
3216  */
3217 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3218 			       u32 prior_fack, u32 prior_snd_una,
3219 			       struct tcp_sacktag_state *sack, bool ece_ack)
3220 {
3221 	const struct inet_connection_sock *icsk = inet_csk(sk);
3222 	u64 first_ackt, last_ackt;
3223 	struct tcp_sock *tp = tcp_sk(sk);
3224 	u32 prior_sacked = tp->sacked_out;
3225 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3226 	struct sk_buff *skb, *next;
3227 	bool fully_acked = true;
3228 	long sack_rtt_us = -1L;
3229 	long seq_rtt_us = -1L;
3230 	long ca_rtt_us = -1L;
3231 	u32 pkts_acked = 0;
3232 	bool rtt_update;
3233 	int flag = 0;
3234 
3235 	first_ackt = 0;
3236 
3237 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3238 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3239 		const u32 start_seq = scb->seq;
3240 		u8 sacked = scb->sacked;
3241 		u32 acked_pcount;
3242 
3243 		/* Determine how many packets and what bytes were acked, tso and else */
3244 		if (after(scb->end_seq, tp->snd_una)) {
3245 			if (tcp_skb_pcount(skb) == 1 ||
3246 			    !after(tp->snd_una, scb->seq))
3247 				break;
3248 
3249 			acked_pcount = tcp_tso_acked(sk, skb);
3250 			if (!acked_pcount)
3251 				break;
3252 			fully_acked = false;
3253 		} else {
3254 			acked_pcount = tcp_skb_pcount(skb);
3255 		}
3256 
3257 		if (unlikely(sacked & TCPCB_RETRANS)) {
3258 			if (sacked & TCPCB_SACKED_RETRANS)
3259 				tp->retrans_out -= acked_pcount;
3260 			flag |= FLAG_RETRANS_DATA_ACKED;
3261 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3262 			last_ackt = tcp_skb_timestamp_us(skb);
3263 			WARN_ON_ONCE(last_ackt == 0);
3264 			if (!first_ackt)
3265 				first_ackt = last_ackt;
3266 
3267 			if (before(start_seq, reord))
3268 				reord = start_seq;
3269 			if (!after(scb->end_seq, tp->high_seq))
3270 				flag |= FLAG_ORIG_SACK_ACKED;
3271 		}
3272 
3273 		if (sacked & TCPCB_SACKED_ACKED) {
3274 			tp->sacked_out -= acked_pcount;
3275 		} else if (tcp_is_sack(tp)) {
3276 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3277 			if (!tcp_skb_spurious_retrans(tp, skb))
3278 				tcp_rack_advance(tp, sacked, scb->end_seq,
3279 						 tcp_skb_timestamp_us(skb));
3280 		}
3281 		if (sacked & TCPCB_LOST)
3282 			tp->lost_out -= acked_pcount;
3283 
3284 		tp->packets_out -= acked_pcount;
3285 		pkts_acked += acked_pcount;
3286 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3287 
3288 		/* Initial outgoing SYN's get put onto the write_queue
3289 		 * just like anything else we transmit.  It is not
3290 		 * true data, and if we misinform our callers that
3291 		 * this ACK acks real data, we will erroneously exit
3292 		 * connection startup slow start one packet too
3293 		 * quickly.  This is severely frowned upon behavior.
3294 		 */
3295 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3296 			flag |= FLAG_DATA_ACKED;
3297 		} else {
3298 			flag |= FLAG_SYN_ACKED;
3299 			tp->retrans_stamp = 0;
3300 		}
3301 
3302 		if (!fully_acked)
3303 			break;
3304 
3305 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3306 
3307 		next = skb_rb_next(skb);
3308 		if (unlikely(skb == tp->retransmit_skb_hint))
3309 			tp->retransmit_skb_hint = NULL;
3310 		if (unlikely(skb == tp->lost_skb_hint))
3311 			tp->lost_skb_hint = NULL;
3312 		tcp_highest_sack_replace(sk, skb, next);
3313 		tcp_rtx_queue_unlink_and_free(skb, sk);
3314 	}
3315 
3316 	if (!skb)
3317 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3318 
3319 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3320 		tp->snd_up = tp->snd_una;
3321 
3322 	if (skb) {
3323 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3324 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3325 			flag |= FLAG_SACK_RENEGING;
3326 	}
3327 
3328 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3329 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3330 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3331 
3332 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3333 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3334 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3335 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3336 			/* Conservatively mark a delayed ACK. It's typically
3337 			 * from a lone runt packet over the round trip to
3338 			 * a receiver w/o out-of-order or CE events.
3339 			 */
3340 			flag |= FLAG_ACK_MAYBE_DELAYED;
3341 		}
3342 	}
3343 	if (sack->first_sackt) {
3344 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3345 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3346 	}
3347 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3348 					ca_rtt_us, sack->rate);
3349 
3350 	if (flag & FLAG_ACKED) {
3351 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3352 		if (unlikely(icsk->icsk_mtup.probe_size &&
3353 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3354 			tcp_mtup_probe_success(sk);
3355 		}
3356 
3357 		if (tcp_is_reno(tp)) {
3358 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3359 
3360 			/* If any of the cumulatively ACKed segments was
3361 			 * retransmitted, non-SACK case cannot confirm that
3362 			 * progress was due to original transmission due to
3363 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3364 			 * the packets may have been never retransmitted.
3365 			 */
3366 			if (flag & FLAG_RETRANS_DATA_ACKED)
3367 				flag &= ~FLAG_ORIG_SACK_ACKED;
3368 		} else {
3369 			int delta;
3370 
3371 			/* Non-retransmitted hole got filled? That's reordering */
3372 			if (before(reord, prior_fack))
3373 				tcp_check_sack_reordering(sk, reord, 0);
3374 
3375 			delta = prior_sacked - tp->sacked_out;
3376 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3377 		}
3378 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3379 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3380 						    tcp_skb_timestamp_us(skb))) {
3381 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3382 		 * after when the head was last (re)transmitted. Otherwise the
3383 		 * timeout may continue to extend in loss recovery.
3384 		 */
3385 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3386 	}
3387 
3388 	if (icsk->icsk_ca_ops->pkts_acked) {
3389 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3390 					     .rtt_us = sack->rate->rtt_us };
3391 
3392 		sample.in_flight = tp->mss_cache *
3393 			(tp->delivered - sack->rate->prior_delivered);
3394 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3395 	}
3396 
3397 #if FASTRETRANS_DEBUG > 0
3398 	WARN_ON((int)tp->sacked_out < 0);
3399 	WARN_ON((int)tp->lost_out < 0);
3400 	WARN_ON((int)tp->retrans_out < 0);
3401 	if (!tp->packets_out && tcp_is_sack(tp)) {
3402 		icsk = inet_csk(sk);
3403 		if (tp->lost_out) {
3404 			pr_debug("Leak l=%u %d\n",
3405 				 tp->lost_out, icsk->icsk_ca_state);
3406 			tp->lost_out = 0;
3407 		}
3408 		if (tp->sacked_out) {
3409 			pr_debug("Leak s=%u %d\n",
3410 				 tp->sacked_out, icsk->icsk_ca_state);
3411 			tp->sacked_out = 0;
3412 		}
3413 		if (tp->retrans_out) {
3414 			pr_debug("Leak r=%u %d\n",
3415 				 tp->retrans_out, icsk->icsk_ca_state);
3416 			tp->retrans_out = 0;
3417 		}
3418 	}
3419 #endif
3420 	return flag;
3421 }
3422 
3423 static void tcp_ack_probe(struct sock *sk)
3424 {
3425 	struct inet_connection_sock *icsk = inet_csk(sk);
3426 	struct sk_buff *head = tcp_send_head(sk);
3427 	const struct tcp_sock *tp = tcp_sk(sk);
3428 
3429 	/* Was it a usable window open? */
3430 	if (!head)
3431 		return;
3432 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3433 		icsk->icsk_backoff = 0;
3434 		icsk->icsk_probes_tstamp = 0;
3435 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3436 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3437 		 * This function is not for random using!
3438 		 */
3439 	} else {
3440 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3441 
3442 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3443 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3444 	}
3445 }
3446 
3447 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3448 {
3449 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3450 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3451 }
3452 
3453 /* Decide wheather to run the increase function of congestion control. */
3454 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3455 {
3456 	/* If reordering is high then always grow cwnd whenever data is
3457 	 * delivered regardless of its ordering. Otherwise stay conservative
3458 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3459 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3460 	 * cwnd in tcp_fastretrans_alert() based on more states.
3461 	 */
3462 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3463 		return flag & FLAG_FORWARD_PROGRESS;
3464 
3465 	return flag & FLAG_DATA_ACKED;
3466 }
3467 
3468 /* The "ultimate" congestion control function that aims to replace the rigid
3469  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3470  * It's called toward the end of processing an ACK with precise rate
3471  * information. All transmission or retransmission are delayed afterwards.
3472  */
3473 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3474 			     int flag, const struct rate_sample *rs)
3475 {
3476 	const struct inet_connection_sock *icsk = inet_csk(sk);
3477 
3478 	if (icsk->icsk_ca_ops->cong_control) {
3479 		icsk->icsk_ca_ops->cong_control(sk, rs);
3480 		return;
3481 	}
3482 
3483 	if (tcp_in_cwnd_reduction(sk)) {
3484 		/* Reduce cwnd if state mandates */
3485 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3486 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3487 		/* Advance cwnd if state allows */
3488 		tcp_cong_avoid(sk, ack, acked_sacked);
3489 	}
3490 	tcp_update_pacing_rate(sk);
3491 }
3492 
3493 /* Check that window update is acceptable.
3494  * The function assumes that snd_una<=ack<=snd_next.
3495  */
3496 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3497 					const u32 ack, const u32 ack_seq,
3498 					const u32 nwin)
3499 {
3500 	return	after(ack, tp->snd_una) ||
3501 		after(ack_seq, tp->snd_wl1) ||
3502 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3503 }
3504 
3505 /* If we update tp->snd_una, also update tp->bytes_acked */
3506 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3507 {
3508 	u32 delta = ack - tp->snd_una;
3509 
3510 	sock_owned_by_me((struct sock *)tp);
3511 	tp->bytes_acked += delta;
3512 	tp->snd_una = ack;
3513 }
3514 
3515 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3516 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3517 {
3518 	u32 delta = seq - tp->rcv_nxt;
3519 
3520 	sock_owned_by_me((struct sock *)tp);
3521 	tp->bytes_received += delta;
3522 	WRITE_ONCE(tp->rcv_nxt, seq);
3523 }
3524 
3525 /* Update our send window.
3526  *
3527  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3528  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3529  */
3530 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3531 				 u32 ack_seq)
3532 {
3533 	struct tcp_sock *tp = tcp_sk(sk);
3534 	int flag = 0;
3535 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3536 
3537 	if (likely(!tcp_hdr(skb)->syn))
3538 		nwin <<= tp->rx_opt.snd_wscale;
3539 
3540 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3541 		flag |= FLAG_WIN_UPDATE;
3542 		tcp_update_wl(tp, ack_seq);
3543 
3544 		if (tp->snd_wnd != nwin) {
3545 			tp->snd_wnd = nwin;
3546 
3547 			/* Note, it is the only place, where
3548 			 * fast path is recovered for sending TCP.
3549 			 */
3550 			tp->pred_flags = 0;
3551 			tcp_fast_path_check(sk);
3552 
3553 			if (!tcp_write_queue_empty(sk))
3554 				tcp_slow_start_after_idle_check(sk);
3555 
3556 			if (nwin > tp->max_window) {
3557 				tp->max_window = nwin;
3558 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3559 			}
3560 		}
3561 	}
3562 
3563 	tcp_snd_una_update(tp, ack);
3564 
3565 	return flag;
3566 }
3567 
3568 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3569 				   u32 *last_oow_ack_time)
3570 {
3571 	if (*last_oow_ack_time) {
3572 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3573 
3574 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3575 			NET_INC_STATS(net, mib_idx);
3576 			return true;	/* rate-limited: don't send yet! */
3577 		}
3578 	}
3579 
3580 	*last_oow_ack_time = tcp_jiffies32;
3581 
3582 	return false;	/* not rate-limited: go ahead, send dupack now! */
3583 }
3584 
3585 /* Return true if we're currently rate-limiting out-of-window ACKs and
3586  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3587  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3588  * attacks that send repeated SYNs or ACKs for the same connection. To
3589  * do this, we do not send a duplicate SYNACK or ACK if the remote
3590  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3591  */
3592 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3593 			  int mib_idx, u32 *last_oow_ack_time)
3594 {
3595 	/* Data packets without SYNs are not likely part of an ACK loop. */
3596 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3597 	    !tcp_hdr(skb)->syn)
3598 		return false;
3599 
3600 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3601 }
3602 
3603 /* RFC 5961 7 [ACK Throttling] */
3604 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3605 {
3606 	/* unprotected vars, we dont care of overwrites */
3607 	static u32 challenge_timestamp;
3608 	static unsigned int challenge_count;
3609 	struct tcp_sock *tp = tcp_sk(sk);
3610 	struct net *net = sock_net(sk);
3611 	u32 count, now;
3612 
3613 	/* First check our per-socket dupack rate limit. */
3614 	if (__tcp_oow_rate_limited(net,
3615 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3616 				   &tp->last_oow_ack_time))
3617 		return;
3618 
3619 	/* Then check host-wide RFC 5961 rate limit. */
3620 	now = jiffies / HZ;
3621 	if (now != challenge_timestamp) {
3622 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3623 		u32 half = (ack_limit + 1) >> 1;
3624 
3625 		challenge_timestamp = now;
3626 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3627 	}
3628 	count = READ_ONCE(challenge_count);
3629 	if (count > 0) {
3630 		WRITE_ONCE(challenge_count, count - 1);
3631 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3632 		tcp_send_ack(sk);
3633 	}
3634 }
3635 
3636 static void tcp_store_ts_recent(struct tcp_sock *tp)
3637 {
3638 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3639 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3640 }
3641 
3642 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3643 {
3644 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3645 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3646 		 * extra check below makes sure this can only happen
3647 		 * for pure ACK frames.  -DaveM
3648 		 *
3649 		 * Not only, also it occurs for expired timestamps.
3650 		 */
3651 
3652 		if (tcp_paws_check(&tp->rx_opt, 0))
3653 			tcp_store_ts_recent(tp);
3654 	}
3655 }
3656 
3657 /* This routine deals with acks during a TLP episode and ends an episode by
3658  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3659  */
3660 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3661 {
3662 	struct tcp_sock *tp = tcp_sk(sk);
3663 
3664 	if (before(ack, tp->tlp_high_seq))
3665 		return;
3666 
3667 	if (!tp->tlp_retrans) {
3668 		/* TLP of new data has been acknowledged */
3669 		tp->tlp_high_seq = 0;
3670 	} else if (flag & FLAG_DSACK_TLP) {
3671 		/* This DSACK means original and TLP probe arrived; no loss */
3672 		tp->tlp_high_seq = 0;
3673 	} else if (after(ack, tp->tlp_high_seq)) {
3674 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3675 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3676 		 */
3677 		tcp_init_cwnd_reduction(sk);
3678 		tcp_set_ca_state(sk, TCP_CA_CWR);
3679 		tcp_end_cwnd_reduction(sk);
3680 		tcp_try_keep_open(sk);
3681 		NET_INC_STATS(sock_net(sk),
3682 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3683 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3684 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3685 		/* Pure dupack: original and TLP probe arrived; no loss */
3686 		tp->tlp_high_seq = 0;
3687 	}
3688 }
3689 
3690 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3691 {
3692 	const struct inet_connection_sock *icsk = inet_csk(sk);
3693 
3694 	if (icsk->icsk_ca_ops->in_ack_event)
3695 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3696 }
3697 
3698 /* Congestion control has updated the cwnd already. So if we're in
3699  * loss recovery then now we do any new sends (for FRTO) or
3700  * retransmits (for CA_Loss or CA_recovery) that make sense.
3701  */
3702 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3703 {
3704 	struct tcp_sock *tp = tcp_sk(sk);
3705 
3706 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3707 		return;
3708 
3709 	if (unlikely(rexmit == REXMIT_NEW)) {
3710 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3711 					  TCP_NAGLE_OFF);
3712 		if (after(tp->snd_nxt, tp->high_seq))
3713 			return;
3714 		tp->frto = 0;
3715 	}
3716 	tcp_xmit_retransmit_queue(sk);
3717 }
3718 
3719 /* Returns the number of packets newly acked or sacked by the current ACK */
3720 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3721 {
3722 	const struct net *net = sock_net(sk);
3723 	struct tcp_sock *tp = tcp_sk(sk);
3724 	u32 delivered;
3725 
3726 	delivered = tp->delivered - prior_delivered;
3727 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3728 	if (flag & FLAG_ECE)
3729 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3730 
3731 	return delivered;
3732 }
3733 
3734 /* This routine deals with incoming acks, but not outgoing ones. */
3735 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3736 {
3737 	struct inet_connection_sock *icsk = inet_csk(sk);
3738 	struct tcp_sock *tp = tcp_sk(sk);
3739 	struct tcp_sacktag_state sack_state;
3740 	struct rate_sample rs = { .prior_delivered = 0 };
3741 	u32 prior_snd_una = tp->snd_una;
3742 	bool is_sack_reneg = tp->is_sack_reneg;
3743 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3744 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3745 	int num_dupack = 0;
3746 	int prior_packets = tp->packets_out;
3747 	u32 delivered = tp->delivered;
3748 	u32 lost = tp->lost;
3749 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3750 	u32 prior_fack;
3751 
3752 	sack_state.first_sackt = 0;
3753 	sack_state.rate = &rs;
3754 	sack_state.sack_delivered = 0;
3755 
3756 	/* We very likely will need to access rtx queue. */
3757 	prefetch(sk->tcp_rtx_queue.rb_node);
3758 
3759 	/* If the ack is older than previous acks
3760 	 * then we can probably ignore it.
3761 	 */
3762 	if (before(ack, prior_snd_una)) {
3763 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3764 		if (before(ack, prior_snd_una - tp->max_window)) {
3765 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3766 				tcp_send_challenge_ack(sk, skb);
3767 			return -1;
3768 		}
3769 		goto old_ack;
3770 	}
3771 
3772 	/* If the ack includes data we haven't sent yet, discard
3773 	 * this segment (RFC793 Section 3.9).
3774 	 */
3775 	if (after(ack, tp->snd_nxt))
3776 		return -1;
3777 
3778 	if (after(ack, prior_snd_una)) {
3779 		flag |= FLAG_SND_UNA_ADVANCED;
3780 		icsk->icsk_retransmits = 0;
3781 
3782 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3783 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3784 			if (icsk->icsk_clean_acked)
3785 				icsk->icsk_clean_acked(sk, ack);
3786 #endif
3787 	}
3788 
3789 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3790 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3791 
3792 	/* ts_recent update must be made after we are sure that the packet
3793 	 * is in window.
3794 	 */
3795 	if (flag & FLAG_UPDATE_TS_RECENT)
3796 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3797 
3798 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3799 	    FLAG_SND_UNA_ADVANCED) {
3800 		/* Window is constant, pure forward advance.
3801 		 * No more checks are required.
3802 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3803 		 */
3804 		tcp_update_wl(tp, ack_seq);
3805 		tcp_snd_una_update(tp, ack);
3806 		flag |= FLAG_WIN_UPDATE;
3807 
3808 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3809 
3810 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3811 	} else {
3812 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3813 
3814 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3815 			flag |= FLAG_DATA;
3816 		else
3817 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3818 
3819 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3820 
3821 		if (TCP_SKB_CB(skb)->sacked)
3822 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3823 							&sack_state);
3824 
3825 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3826 			flag |= FLAG_ECE;
3827 			ack_ev_flags |= CA_ACK_ECE;
3828 		}
3829 
3830 		if (sack_state.sack_delivered)
3831 			tcp_count_delivered(tp, sack_state.sack_delivered,
3832 					    flag & FLAG_ECE);
3833 
3834 		if (flag & FLAG_WIN_UPDATE)
3835 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3836 
3837 		tcp_in_ack_event(sk, ack_ev_flags);
3838 	}
3839 
3840 	/* This is a deviation from RFC3168 since it states that:
3841 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3842 	 * the congestion window, it SHOULD set the CWR bit only on the first
3843 	 * new data packet that it transmits."
3844 	 * We accept CWR on pure ACKs to be more robust
3845 	 * with widely-deployed TCP implementations that do this.
3846 	 */
3847 	tcp_ecn_accept_cwr(sk, skb);
3848 
3849 	/* We passed data and got it acked, remove any soft error
3850 	 * log. Something worked...
3851 	 */
3852 	sk->sk_err_soft = 0;
3853 	icsk->icsk_probes_out = 0;
3854 	tp->rcv_tstamp = tcp_jiffies32;
3855 	if (!prior_packets)
3856 		goto no_queue;
3857 
3858 	/* See if we can take anything off of the retransmit queue. */
3859 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3860 				    &sack_state, flag & FLAG_ECE);
3861 
3862 	tcp_rack_update_reo_wnd(sk, &rs);
3863 
3864 	if (tp->tlp_high_seq)
3865 		tcp_process_tlp_ack(sk, ack, flag);
3866 
3867 	if (tcp_ack_is_dubious(sk, flag)) {
3868 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3869 			num_dupack = 1;
3870 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3871 			if (!(flag & FLAG_DATA))
3872 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3873 		}
3874 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3875 				      &rexmit);
3876 	}
3877 
3878 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3879 	if (flag & FLAG_SET_XMIT_TIMER)
3880 		tcp_set_xmit_timer(sk);
3881 
3882 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3883 		sk_dst_confirm(sk);
3884 
3885 	delivered = tcp_newly_delivered(sk, delivered, flag);
3886 	lost = tp->lost - lost;			/* freshly marked lost */
3887 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3888 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3889 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3890 	tcp_xmit_recovery(sk, rexmit);
3891 	return 1;
3892 
3893 no_queue:
3894 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3895 	if (flag & FLAG_DSACKING_ACK) {
3896 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3897 				      &rexmit);
3898 		tcp_newly_delivered(sk, delivered, flag);
3899 	}
3900 	/* If this ack opens up a zero window, clear backoff.  It was
3901 	 * being used to time the probes, and is probably far higher than
3902 	 * it needs to be for normal retransmission.
3903 	 */
3904 	tcp_ack_probe(sk);
3905 
3906 	if (tp->tlp_high_seq)
3907 		tcp_process_tlp_ack(sk, ack, flag);
3908 	return 1;
3909 
3910 old_ack:
3911 	/* If data was SACKed, tag it and see if we should send more data.
3912 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3913 	 */
3914 	if (TCP_SKB_CB(skb)->sacked) {
3915 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3916 						&sack_state);
3917 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3918 				      &rexmit);
3919 		tcp_newly_delivered(sk, delivered, flag);
3920 		tcp_xmit_recovery(sk, rexmit);
3921 	}
3922 
3923 	return 0;
3924 }
3925 
3926 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3927 				      bool syn, struct tcp_fastopen_cookie *foc,
3928 				      bool exp_opt)
3929 {
3930 	/* Valid only in SYN or SYN-ACK with an even length.  */
3931 	if (!foc || !syn || len < 0 || (len & 1))
3932 		return;
3933 
3934 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3935 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3936 		memcpy(foc->val, cookie, len);
3937 	else if (len != 0)
3938 		len = -1;
3939 	foc->len = len;
3940 	foc->exp = exp_opt;
3941 }
3942 
3943 static bool smc_parse_options(const struct tcphdr *th,
3944 			      struct tcp_options_received *opt_rx,
3945 			      const unsigned char *ptr,
3946 			      int opsize)
3947 {
3948 #if IS_ENABLED(CONFIG_SMC)
3949 	if (static_branch_unlikely(&tcp_have_smc)) {
3950 		if (th->syn && !(opsize & 1) &&
3951 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3952 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3953 			opt_rx->smc_ok = 1;
3954 			return true;
3955 		}
3956 	}
3957 #endif
3958 	return false;
3959 }
3960 
3961 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3962  * value on success.
3963  */
3964 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3965 {
3966 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3967 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3968 	u16 mss = 0;
3969 
3970 	while (length > 0) {
3971 		int opcode = *ptr++;
3972 		int opsize;
3973 
3974 		switch (opcode) {
3975 		case TCPOPT_EOL:
3976 			return mss;
3977 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3978 			length--;
3979 			continue;
3980 		default:
3981 			if (length < 2)
3982 				return mss;
3983 			opsize = *ptr++;
3984 			if (opsize < 2) /* "silly options" */
3985 				return mss;
3986 			if (opsize > length)
3987 				return mss;	/* fail on partial options */
3988 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3989 				u16 in_mss = get_unaligned_be16(ptr);
3990 
3991 				if (in_mss) {
3992 					if (user_mss && user_mss < in_mss)
3993 						in_mss = user_mss;
3994 					mss = in_mss;
3995 				}
3996 			}
3997 			ptr += opsize - 2;
3998 			length -= opsize;
3999 		}
4000 	}
4001 	return mss;
4002 }
4003 
4004 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4005  * But, this can also be called on packets in the established flow when
4006  * the fast version below fails.
4007  */
4008 void tcp_parse_options(const struct net *net,
4009 		       const struct sk_buff *skb,
4010 		       struct tcp_options_received *opt_rx, int estab,
4011 		       struct tcp_fastopen_cookie *foc)
4012 {
4013 	const unsigned char *ptr;
4014 	const struct tcphdr *th = tcp_hdr(skb);
4015 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4016 
4017 	ptr = (const unsigned char *)(th + 1);
4018 	opt_rx->saw_tstamp = 0;
4019 	opt_rx->saw_unknown = 0;
4020 
4021 	while (length > 0) {
4022 		int opcode = *ptr++;
4023 		int opsize;
4024 
4025 		switch (opcode) {
4026 		case TCPOPT_EOL:
4027 			return;
4028 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4029 			length--;
4030 			continue;
4031 		default:
4032 			if (length < 2)
4033 				return;
4034 			opsize = *ptr++;
4035 			if (opsize < 2) /* "silly options" */
4036 				return;
4037 			if (opsize > length)
4038 				return;	/* don't parse partial options */
4039 			switch (opcode) {
4040 			case TCPOPT_MSS:
4041 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4042 					u16 in_mss = get_unaligned_be16(ptr);
4043 					if (in_mss) {
4044 						if (opt_rx->user_mss &&
4045 						    opt_rx->user_mss < in_mss)
4046 							in_mss = opt_rx->user_mss;
4047 						opt_rx->mss_clamp = in_mss;
4048 					}
4049 				}
4050 				break;
4051 			case TCPOPT_WINDOW:
4052 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4053 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4054 					__u8 snd_wscale = *(__u8 *)ptr;
4055 					opt_rx->wscale_ok = 1;
4056 					if (snd_wscale > TCP_MAX_WSCALE) {
4057 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4058 								     __func__,
4059 								     snd_wscale,
4060 								     TCP_MAX_WSCALE);
4061 						snd_wscale = TCP_MAX_WSCALE;
4062 					}
4063 					opt_rx->snd_wscale = snd_wscale;
4064 				}
4065 				break;
4066 			case TCPOPT_TIMESTAMP:
4067 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4068 				    ((estab && opt_rx->tstamp_ok) ||
4069 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4070 					opt_rx->saw_tstamp = 1;
4071 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4072 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4073 				}
4074 				break;
4075 			case TCPOPT_SACK_PERM:
4076 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4077 				    !estab && net->ipv4.sysctl_tcp_sack) {
4078 					opt_rx->sack_ok = TCP_SACK_SEEN;
4079 					tcp_sack_reset(opt_rx);
4080 				}
4081 				break;
4082 
4083 			case TCPOPT_SACK:
4084 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4085 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4086 				   opt_rx->sack_ok) {
4087 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4088 				}
4089 				break;
4090 #ifdef CONFIG_TCP_MD5SIG
4091 			case TCPOPT_MD5SIG:
4092 				/*
4093 				 * The MD5 Hash has already been
4094 				 * checked (see tcp_v{4,6}_do_rcv()).
4095 				 */
4096 				break;
4097 #endif
4098 			case TCPOPT_FASTOPEN:
4099 				tcp_parse_fastopen_option(
4100 					opsize - TCPOLEN_FASTOPEN_BASE,
4101 					ptr, th->syn, foc, false);
4102 				break;
4103 
4104 			case TCPOPT_EXP:
4105 				/* Fast Open option shares code 254 using a
4106 				 * 16 bits magic number.
4107 				 */
4108 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4109 				    get_unaligned_be16(ptr) ==
4110 				    TCPOPT_FASTOPEN_MAGIC) {
4111 					tcp_parse_fastopen_option(opsize -
4112 						TCPOLEN_EXP_FASTOPEN_BASE,
4113 						ptr + 2, th->syn, foc, true);
4114 					break;
4115 				}
4116 
4117 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4118 					break;
4119 
4120 				opt_rx->saw_unknown = 1;
4121 				break;
4122 
4123 			default:
4124 				opt_rx->saw_unknown = 1;
4125 			}
4126 			ptr += opsize-2;
4127 			length -= opsize;
4128 		}
4129 	}
4130 }
4131 EXPORT_SYMBOL(tcp_parse_options);
4132 
4133 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4134 {
4135 	const __be32 *ptr = (const __be32 *)(th + 1);
4136 
4137 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4138 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4139 		tp->rx_opt.saw_tstamp = 1;
4140 		++ptr;
4141 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4142 		++ptr;
4143 		if (*ptr)
4144 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4145 		else
4146 			tp->rx_opt.rcv_tsecr = 0;
4147 		return true;
4148 	}
4149 	return false;
4150 }
4151 
4152 /* Fast parse options. This hopes to only see timestamps.
4153  * If it is wrong it falls back on tcp_parse_options().
4154  */
4155 static bool tcp_fast_parse_options(const struct net *net,
4156 				   const struct sk_buff *skb,
4157 				   const struct tcphdr *th, struct tcp_sock *tp)
4158 {
4159 	/* In the spirit of fast parsing, compare doff directly to constant
4160 	 * values.  Because equality is used, short doff can be ignored here.
4161 	 */
4162 	if (th->doff == (sizeof(*th) / 4)) {
4163 		tp->rx_opt.saw_tstamp = 0;
4164 		return false;
4165 	} else if (tp->rx_opt.tstamp_ok &&
4166 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4167 		if (tcp_parse_aligned_timestamp(tp, th))
4168 			return true;
4169 	}
4170 
4171 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4172 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4173 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4174 
4175 	return true;
4176 }
4177 
4178 #ifdef CONFIG_TCP_MD5SIG
4179 /*
4180  * Parse MD5 Signature option
4181  */
4182 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4183 {
4184 	int length = (th->doff << 2) - sizeof(*th);
4185 	const u8 *ptr = (const u8 *)(th + 1);
4186 
4187 	/* If not enough data remaining, we can short cut */
4188 	while (length >= TCPOLEN_MD5SIG) {
4189 		int opcode = *ptr++;
4190 		int opsize;
4191 
4192 		switch (opcode) {
4193 		case TCPOPT_EOL:
4194 			return NULL;
4195 		case TCPOPT_NOP:
4196 			length--;
4197 			continue;
4198 		default:
4199 			opsize = *ptr++;
4200 			if (opsize < 2 || opsize > length)
4201 				return NULL;
4202 			if (opcode == TCPOPT_MD5SIG)
4203 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4204 		}
4205 		ptr += opsize - 2;
4206 		length -= opsize;
4207 	}
4208 	return NULL;
4209 }
4210 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4211 #endif
4212 
4213 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4214  *
4215  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4216  * it can pass through stack. So, the following predicate verifies that
4217  * this segment is not used for anything but congestion avoidance or
4218  * fast retransmit. Moreover, we even are able to eliminate most of such
4219  * second order effects, if we apply some small "replay" window (~RTO)
4220  * to timestamp space.
4221  *
4222  * All these measures still do not guarantee that we reject wrapped ACKs
4223  * on networks with high bandwidth, when sequence space is recycled fastly,
4224  * but it guarantees that such events will be very rare and do not affect
4225  * connection seriously. This doesn't look nice, but alas, PAWS is really
4226  * buggy extension.
4227  *
4228  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4229  * states that events when retransmit arrives after original data are rare.
4230  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4231  * the biggest problem on large power networks even with minor reordering.
4232  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4233  * up to bandwidth of 18Gigabit/sec. 8) ]
4234  */
4235 
4236 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4237 {
4238 	const struct tcp_sock *tp = tcp_sk(sk);
4239 	const struct tcphdr *th = tcp_hdr(skb);
4240 	u32 seq = TCP_SKB_CB(skb)->seq;
4241 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4242 
4243 	return (/* 1. Pure ACK with correct sequence number. */
4244 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4245 
4246 		/* 2. ... and duplicate ACK. */
4247 		ack == tp->snd_una &&
4248 
4249 		/* 3. ... and does not update window. */
4250 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4251 
4252 		/* 4. ... and sits in replay window. */
4253 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4254 }
4255 
4256 static inline bool tcp_paws_discard(const struct sock *sk,
4257 				   const struct sk_buff *skb)
4258 {
4259 	const struct tcp_sock *tp = tcp_sk(sk);
4260 
4261 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4262 	       !tcp_disordered_ack(sk, skb);
4263 }
4264 
4265 /* Check segment sequence number for validity.
4266  *
4267  * Segment controls are considered valid, if the segment
4268  * fits to the window after truncation to the window. Acceptability
4269  * of data (and SYN, FIN, of course) is checked separately.
4270  * See tcp_data_queue(), for example.
4271  *
4272  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4273  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4274  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4275  * (borrowed from freebsd)
4276  */
4277 
4278 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4279 {
4280 	return	!before(end_seq, tp->rcv_wup) &&
4281 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4282 }
4283 
4284 /* When we get a reset we do this. */
4285 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4286 {
4287 	trace_tcp_receive_reset(sk);
4288 
4289 	/* mptcp can't tell us to ignore reset pkts,
4290 	 * so just ignore the return value of mptcp_incoming_options().
4291 	 */
4292 	if (sk_is_mptcp(sk))
4293 		mptcp_incoming_options(sk, skb);
4294 
4295 	/* We want the right error as BSD sees it (and indeed as we do). */
4296 	switch (sk->sk_state) {
4297 	case TCP_SYN_SENT:
4298 		sk->sk_err = ECONNREFUSED;
4299 		break;
4300 	case TCP_CLOSE_WAIT:
4301 		sk->sk_err = EPIPE;
4302 		break;
4303 	case TCP_CLOSE:
4304 		return;
4305 	default:
4306 		sk->sk_err = ECONNRESET;
4307 	}
4308 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4309 	smp_wmb();
4310 
4311 	tcp_write_queue_purge(sk);
4312 	tcp_done(sk);
4313 
4314 	if (!sock_flag(sk, SOCK_DEAD))
4315 		sk_error_report(sk);
4316 }
4317 
4318 /*
4319  * 	Process the FIN bit. This now behaves as it is supposed to work
4320  *	and the FIN takes effect when it is validly part of sequence
4321  *	space. Not before when we get holes.
4322  *
4323  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4324  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4325  *	TIME-WAIT)
4326  *
4327  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4328  *	close and we go into CLOSING (and later onto TIME-WAIT)
4329  *
4330  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4331  */
4332 void tcp_fin(struct sock *sk)
4333 {
4334 	struct tcp_sock *tp = tcp_sk(sk);
4335 
4336 	inet_csk_schedule_ack(sk);
4337 
4338 	sk->sk_shutdown |= RCV_SHUTDOWN;
4339 	sock_set_flag(sk, SOCK_DONE);
4340 
4341 	switch (sk->sk_state) {
4342 	case TCP_SYN_RECV:
4343 	case TCP_ESTABLISHED:
4344 		/* Move to CLOSE_WAIT */
4345 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4346 		inet_csk_enter_pingpong_mode(sk);
4347 		break;
4348 
4349 	case TCP_CLOSE_WAIT:
4350 	case TCP_CLOSING:
4351 		/* Received a retransmission of the FIN, do
4352 		 * nothing.
4353 		 */
4354 		break;
4355 	case TCP_LAST_ACK:
4356 		/* RFC793: Remain in the LAST-ACK state. */
4357 		break;
4358 
4359 	case TCP_FIN_WAIT1:
4360 		/* This case occurs when a simultaneous close
4361 		 * happens, we must ack the received FIN and
4362 		 * enter the CLOSING state.
4363 		 */
4364 		tcp_send_ack(sk);
4365 		tcp_set_state(sk, TCP_CLOSING);
4366 		break;
4367 	case TCP_FIN_WAIT2:
4368 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4369 		tcp_send_ack(sk);
4370 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4371 		break;
4372 	default:
4373 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4374 		 * cases we should never reach this piece of code.
4375 		 */
4376 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4377 		       __func__, sk->sk_state);
4378 		break;
4379 	}
4380 
4381 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4382 	 * Probably, we should reset in this case. For now drop them.
4383 	 */
4384 	skb_rbtree_purge(&tp->out_of_order_queue);
4385 	if (tcp_is_sack(tp))
4386 		tcp_sack_reset(&tp->rx_opt);
4387 	sk_mem_reclaim(sk);
4388 
4389 	if (!sock_flag(sk, SOCK_DEAD)) {
4390 		sk->sk_state_change(sk);
4391 
4392 		/* Do not send POLL_HUP for half duplex close. */
4393 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4394 		    sk->sk_state == TCP_CLOSE)
4395 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4396 		else
4397 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4398 	}
4399 }
4400 
4401 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4402 				  u32 end_seq)
4403 {
4404 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4405 		if (before(seq, sp->start_seq))
4406 			sp->start_seq = seq;
4407 		if (after(end_seq, sp->end_seq))
4408 			sp->end_seq = end_seq;
4409 		return true;
4410 	}
4411 	return false;
4412 }
4413 
4414 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4415 {
4416 	struct tcp_sock *tp = tcp_sk(sk);
4417 
4418 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4419 		int mib_idx;
4420 
4421 		if (before(seq, tp->rcv_nxt))
4422 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4423 		else
4424 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4425 
4426 		NET_INC_STATS(sock_net(sk), mib_idx);
4427 
4428 		tp->rx_opt.dsack = 1;
4429 		tp->duplicate_sack[0].start_seq = seq;
4430 		tp->duplicate_sack[0].end_seq = end_seq;
4431 	}
4432 }
4433 
4434 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4435 {
4436 	struct tcp_sock *tp = tcp_sk(sk);
4437 
4438 	if (!tp->rx_opt.dsack)
4439 		tcp_dsack_set(sk, seq, end_seq);
4440 	else
4441 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4442 }
4443 
4444 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4445 {
4446 	/* When the ACK path fails or drops most ACKs, the sender would
4447 	 * timeout and spuriously retransmit the same segment repeatedly.
4448 	 * The receiver remembers and reflects via DSACKs. Leverage the
4449 	 * DSACK state and change the txhash to re-route speculatively.
4450 	 */
4451 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4452 	    sk_rethink_txhash(sk))
4453 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4454 }
4455 
4456 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4457 {
4458 	struct tcp_sock *tp = tcp_sk(sk);
4459 
4460 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4461 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4462 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4463 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4464 
4465 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4466 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4467 
4468 			tcp_rcv_spurious_retrans(sk, skb);
4469 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4470 				end_seq = tp->rcv_nxt;
4471 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4472 		}
4473 	}
4474 
4475 	tcp_send_ack(sk);
4476 }
4477 
4478 /* These routines update the SACK block as out-of-order packets arrive or
4479  * in-order packets close up the sequence space.
4480  */
4481 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4482 {
4483 	int this_sack;
4484 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4485 	struct tcp_sack_block *swalk = sp + 1;
4486 
4487 	/* See if the recent change to the first SACK eats into
4488 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4489 	 */
4490 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4491 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4492 			int i;
4493 
4494 			/* Zap SWALK, by moving every further SACK up by one slot.
4495 			 * Decrease num_sacks.
4496 			 */
4497 			tp->rx_opt.num_sacks--;
4498 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4499 				sp[i] = sp[i + 1];
4500 			continue;
4501 		}
4502 		this_sack++;
4503 		swalk++;
4504 	}
4505 }
4506 
4507 static void tcp_sack_compress_send_ack(struct sock *sk)
4508 {
4509 	struct tcp_sock *tp = tcp_sk(sk);
4510 
4511 	if (!tp->compressed_ack)
4512 		return;
4513 
4514 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4515 		__sock_put(sk);
4516 
4517 	/* Since we have to send one ack finally,
4518 	 * substract one from tp->compressed_ack to keep
4519 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4520 	 */
4521 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4522 		      tp->compressed_ack - 1);
4523 
4524 	tp->compressed_ack = 0;
4525 	tcp_send_ack(sk);
4526 }
4527 
4528 /* Reasonable amount of sack blocks included in TCP SACK option
4529  * The max is 4, but this becomes 3 if TCP timestamps are there.
4530  * Given that SACK packets might be lost, be conservative and use 2.
4531  */
4532 #define TCP_SACK_BLOCKS_EXPECTED 2
4533 
4534 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4535 {
4536 	struct tcp_sock *tp = tcp_sk(sk);
4537 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4538 	int cur_sacks = tp->rx_opt.num_sacks;
4539 	int this_sack;
4540 
4541 	if (!cur_sacks)
4542 		goto new_sack;
4543 
4544 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4545 		if (tcp_sack_extend(sp, seq, end_seq)) {
4546 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4547 				tcp_sack_compress_send_ack(sk);
4548 			/* Rotate this_sack to the first one. */
4549 			for (; this_sack > 0; this_sack--, sp--)
4550 				swap(*sp, *(sp - 1));
4551 			if (cur_sacks > 1)
4552 				tcp_sack_maybe_coalesce(tp);
4553 			return;
4554 		}
4555 	}
4556 
4557 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4558 		tcp_sack_compress_send_ack(sk);
4559 
4560 	/* Could not find an adjacent existing SACK, build a new one,
4561 	 * put it at the front, and shift everyone else down.  We
4562 	 * always know there is at least one SACK present already here.
4563 	 *
4564 	 * If the sack array is full, forget about the last one.
4565 	 */
4566 	if (this_sack >= TCP_NUM_SACKS) {
4567 		this_sack--;
4568 		tp->rx_opt.num_sacks--;
4569 		sp--;
4570 	}
4571 	for (; this_sack > 0; this_sack--, sp--)
4572 		*sp = *(sp - 1);
4573 
4574 new_sack:
4575 	/* Build the new head SACK, and we're done. */
4576 	sp->start_seq = seq;
4577 	sp->end_seq = end_seq;
4578 	tp->rx_opt.num_sacks++;
4579 }
4580 
4581 /* RCV.NXT advances, some SACKs should be eaten. */
4582 
4583 static void tcp_sack_remove(struct tcp_sock *tp)
4584 {
4585 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4586 	int num_sacks = tp->rx_opt.num_sacks;
4587 	int this_sack;
4588 
4589 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4590 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4591 		tp->rx_opt.num_sacks = 0;
4592 		return;
4593 	}
4594 
4595 	for (this_sack = 0; this_sack < num_sacks;) {
4596 		/* Check if the start of the sack is covered by RCV.NXT. */
4597 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4598 			int i;
4599 
4600 			/* RCV.NXT must cover all the block! */
4601 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4602 
4603 			/* Zap this SACK, by moving forward any other SACKS. */
4604 			for (i = this_sack+1; i < num_sacks; i++)
4605 				tp->selective_acks[i-1] = tp->selective_acks[i];
4606 			num_sacks--;
4607 			continue;
4608 		}
4609 		this_sack++;
4610 		sp++;
4611 	}
4612 	tp->rx_opt.num_sacks = num_sacks;
4613 }
4614 
4615 /**
4616  * tcp_try_coalesce - try to merge skb to prior one
4617  * @sk: socket
4618  * @to: prior buffer
4619  * @from: buffer to add in queue
4620  * @fragstolen: pointer to boolean
4621  *
4622  * Before queueing skb @from after @to, try to merge them
4623  * to reduce overall memory use and queue lengths, if cost is small.
4624  * Packets in ofo or receive queues can stay a long time.
4625  * Better try to coalesce them right now to avoid future collapses.
4626  * Returns true if caller should free @from instead of queueing it
4627  */
4628 static bool tcp_try_coalesce(struct sock *sk,
4629 			     struct sk_buff *to,
4630 			     struct sk_buff *from,
4631 			     bool *fragstolen)
4632 {
4633 	int delta;
4634 
4635 	*fragstolen = false;
4636 
4637 	/* Its possible this segment overlaps with prior segment in queue */
4638 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4639 		return false;
4640 
4641 	if (!mptcp_skb_can_collapse(to, from))
4642 		return false;
4643 
4644 #ifdef CONFIG_TLS_DEVICE
4645 	if (from->decrypted != to->decrypted)
4646 		return false;
4647 #endif
4648 
4649 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4650 		return false;
4651 
4652 	atomic_add(delta, &sk->sk_rmem_alloc);
4653 	sk_mem_charge(sk, delta);
4654 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4655 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4656 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4657 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4658 
4659 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4660 		TCP_SKB_CB(to)->has_rxtstamp = true;
4661 		to->tstamp = from->tstamp;
4662 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4663 	}
4664 
4665 	return true;
4666 }
4667 
4668 static bool tcp_ooo_try_coalesce(struct sock *sk,
4669 			     struct sk_buff *to,
4670 			     struct sk_buff *from,
4671 			     bool *fragstolen)
4672 {
4673 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4674 
4675 	/* In case tcp_drop() is called later, update to->gso_segs */
4676 	if (res) {
4677 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4678 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4679 
4680 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4681 	}
4682 	return res;
4683 }
4684 
4685 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4686 {
4687 	sk_drops_add(sk, skb);
4688 	__kfree_skb(skb);
4689 }
4690 
4691 /* This one checks to see if we can put data from the
4692  * out_of_order queue into the receive_queue.
4693  */
4694 static void tcp_ofo_queue(struct sock *sk)
4695 {
4696 	struct tcp_sock *tp = tcp_sk(sk);
4697 	__u32 dsack_high = tp->rcv_nxt;
4698 	bool fin, fragstolen, eaten;
4699 	struct sk_buff *skb, *tail;
4700 	struct rb_node *p;
4701 
4702 	p = rb_first(&tp->out_of_order_queue);
4703 	while (p) {
4704 		skb = rb_to_skb(p);
4705 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4706 			break;
4707 
4708 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4709 			__u32 dsack = dsack_high;
4710 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4711 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4712 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4713 		}
4714 		p = rb_next(p);
4715 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4716 
4717 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4718 			tcp_drop(sk, skb);
4719 			continue;
4720 		}
4721 
4722 		tail = skb_peek_tail(&sk->sk_receive_queue);
4723 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4724 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4725 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4726 		if (!eaten)
4727 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4728 		else
4729 			kfree_skb_partial(skb, fragstolen);
4730 
4731 		if (unlikely(fin)) {
4732 			tcp_fin(sk);
4733 			/* tcp_fin() purges tp->out_of_order_queue,
4734 			 * so we must end this loop right now.
4735 			 */
4736 			break;
4737 		}
4738 	}
4739 }
4740 
4741 static bool tcp_prune_ofo_queue(struct sock *sk);
4742 static int tcp_prune_queue(struct sock *sk);
4743 
4744 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4745 				 unsigned int size)
4746 {
4747 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4748 	    !sk_rmem_schedule(sk, skb, size)) {
4749 
4750 		if (tcp_prune_queue(sk) < 0)
4751 			return -1;
4752 
4753 		while (!sk_rmem_schedule(sk, skb, size)) {
4754 			if (!tcp_prune_ofo_queue(sk))
4755 				return -1;
4756 		}
4757 	}
4758 	return 0;
4759 }
4760 
4761 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4762 {
4763 	struct tcp_sock *tp = tcp_sk(sk);
4764 	struct rb_node **p, *parent;
4765 	struct sk_buff *skb1;
4766 	u32 seq, end_seq;
4767 	bool fragstolen;
4768 
4769 	tcp_ecn_check_ce(sk, skb);
4770 
4771 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4772 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4773 		sk->sk_data_ready(sk);
4774 		tcp_drop(sk, skb);
4775 		return;
4776 	}
4777 
4778 	/* Disable header prediction. */
4779 	tp->pred_flags = 0;
4780 	inet_csk_schedule_ack(sk);
4781 
4782 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4783 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4784 	seq = TCP_SKB_CB(skb)->seq;
4785 	end_seq = TCP_SKB_CB(skb)->end_seq;
4786 
4787 	p = &tp->out_of_order_queue.rb_node;
4788 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4789 		/* Initial out of order segment, build 1 SACK. */
4790 		if (tcp_is_sack(tp)) {
4791 			tp->rx_opt.num_sacks = 1;
4792 			tp->selective_acks[0].start_seq = seq;
4793 			tp->selective_acks[0].end_seq = end_seq;
4794 		}
4795 		rb_link_node(&skb->rbnode, NULL, p);
4796 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4797 		tp->ooo_last_skb = skb;
4798 		goto end;
4799 	}
4800 
4801 	/* In the typical case, we are adding an skb to the end of the list.
4802 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4803 	 */
4804 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4805 				 skb, &fragstolen)) {
4806 coalesce_done:
4807 		/* For non sack flows, do not grow window to force DUPACK
4808 		 * and trigger fast retransmit.
4809 		 */
4810 		if (tcp_is_sack(tp))
4811 			tcp_grow_window(sk, skb, true);
4812 		kfree_skb_partial(skb, fragstolen);
4813 		skb = NULL;
4814 		goto add_sack;
4815 	}
4816 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4817 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4818 		parent = &tp->ooo_last_skb->rbnode;
4819 		p = &parent->rb_right;
4820 		goto insert;
4821 	}
4822 
4823 	/* Find place to insert this segment. Handle overlaps on the way. */
4824 	parent = NULL;
4825 	while (*p) {
4826 		parent = *p;
4827 		skb1 = rb_to_skb(parent);
4828 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4829 			p = &parent->rb_left;
4830 			continue;
4831 		}
4832 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4833 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4834 				/* All the bits are present. Drop. */
4835 				NET_INC_STATS(sock_net(sk),
4836 					      LINUX_MIB_TCPOFOMERGE);
4837 				tcp_drop(sk, skb);
4838 				skb = NULL;
4839 				tcp_dsack_set(sk, seq, end_seq);
4840 				goto add_sack;
4841 			}
4842 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4843 				/* Partial overlap. */
4844 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4845 			} else {
4846 				/* skb's seq == skb1's seq and skb covers skb1.
4847 				 * Replace skb1 with skb.
4848 				 */
4849 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4850 						&tp->out_of_order_queue);
4851 				tcp_dsack_extend(sk,
4852 						 TCP_SKB_CB(skb1)->seq,
4853 						 TCP_SKB_CB(skb1)->end_seq);
4854 				NET_INC_STATS(sock_net(sk),
4855 					      LINUX_MIB_TCPOFOMERGE);
4856 				tcp_drop(sk, skb1);
4857 				goto merge_right;
4858 			}
4859 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4860 						skb, &fragstolen)) {
4861 			goto coalesce_done;
4862 		}
4863 		p = &parent->rb_right;
4864 	}
4865 insert:
4866 	/* Insert segment into RB tree. */
4867 	rb_link_node(&skb->rbnode, parent, p);
4868 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4869 
4870 merge_right:
4871 	/* Remove other segments covered by skb. */
4872 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4873 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4874 			break;
4875 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4876 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4877 					 end_seq);
4878 			break;
4879 		}
4880 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4881 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4882 				 TCP_SKB_CB(skb1)->end_seq);
4883 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4884 		tcp_drop(sk, skb1);
4885 	}
4886 	/* If there is no skb after us, we are the last_skb ! */
4887 	if (!skb1)
4888 		tp->ooo_last_skb = skb;
4889 
4890 add_sack:
4891 	if (tcp_is_sack(tp))
4892 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4893 end:
4894 	if (skb) {
4895 		/* For non sack flows, do not grow window to force DUPACK
4896 		 * and trigger fast retransmit.
4897 		 */
4898 		if (tcp_is_sack(tp))
4899 			tcp_grow_window(sk, skb, false);
4900 		skb_condense(skb);
4901 		skb_set_owner_r(skb, sk);
4902 	}
4903 }
4904 
4905 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4906 				      bool *fragstolen)
4907 {
4908 	int eaten;
4909 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4910 
4911 	eaten = (tail &&
4912 		 tcp_try_coalesce(sk, tail,
4913 				  skb, fragstolen)) ? 1 : 0;
4914 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4915 	if (!eaten) {
4916 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4917 		skb_set_owner_r(skb, sk);
4918 	}
4919 	return eaten;
4920 }
4921 
4922 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4923 {
4924 	struct sk_buff *skb;
4925 	int err = -ENOMEM;
4926 	int data_len = 0;
4927 	bool fragstolen;
4928 
4929 	if (size == 0)
4930 		return 0;
4931 
4932 	if (size > PAGE_SIZE) {
4933 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4934 
4935 		data_len = npages << PAGE_SHIFT;
4936 		size = data_len + (size & ~PAGE_MASK);
4937 	}
4938 	skb = alloc_skb_with_frags(size - data_len, data_len,
4939 				   PAGE_ALLOC_COSTLY_ORDER,
4940 				   &err, sk->sk_allocation);
4941 	if (!skb)
4942 		goto err;
4943 
4944 	skb_put(skb, size - data_len);
4945 	skb->data_len = data_len;
4946 	skb->len = size;
4947 
4948 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4949 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4950 		goto err_free;
4951 	}
4952 
4953 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4954 	if (err)
4955 		goto err_free;
4956 
4957 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4958 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4959 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4960 
4961 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4962 		WARN_ON_ONCE(fragstolen); /* should not happen */
4963 		__kfree_skb(skb);
4964 	}
4965 	return size;
4966 
4967 err_free:
4968 	kfree_skb(skb);
4969 err:
4970 	return err;
4971 
4972 }
4973 
4974 void tcp_data_ready(struct sock *sk)
4975 {
4976 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4977 		sk->sk_data_ready(sk);
4978 }
4979 
4980 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4981 {
4982 	struct tcp_sock *tp = tcp_sk(sk);
4983 	bool fragstolen;
4984 	int eaten;
4985 
4986 	/* If a subflow has been reset, the packet should not continue
4987 	 * to be processed, drop the packet.
4988 	 */
4989 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
4990 		__kfree_skb(skb);
4991 		return;
4992 	}
4993 
4994 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4995 		__kfree_skb(skb);
4996 		return;
4997 	}
4998 	skb_dst_drop(skb);
4999 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5000 
5001 	tp->rx_opt.dsack = 0;
5002 
5003 	/*  Queue data for delivery to the user.
5004 	 *  Packets in sequence go to the receive queue.
5005 	 *  Out of sequence packets to the out_of_order_queue.
5006 	 */
5007 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5008 		if (tcp_receive_window(tp) == 0) {
5009 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5010 			goto out_of_window;
5011 		}
5012 
5013 		/* Ok. In sequence. In window. */
5014 queue_and_out:
5015 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5016 			sk_forced_mem_schedule(sk, skb->truesize);
5017 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5018 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5019 			sk->sk_data_ready(sk);
5020 			goto drop;
5021 		}
5022 
5023 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5024 		if (skb->len)
5025 			tcp_event_data_recv(sk, skb);
5026 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5027 			tcp_fin(sk);
5028 
5029 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5030 			tcp_ofo_queue(sk);
5031 
5032 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5033 			 * gap in queue is filled.
5034 			 */
5035 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5036 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5037 		}
5038 
5039 		if (tp->rx_opt.num_sacks)
5040 			tcp_sack_remove(tp);
5041 
5042 		tcp_fast_path_check(sk);
5043 
5044 		if (eaten > 0)
5045 			kfree_skb_partial(skb, fragstolen);
5046 		if (!sock_flag(sk, SOCK_DEAD))
5047 			tcp_data_ready(sk);
5048 		return;
5049 	}
5050 
5051 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5052 		tcp_rcv_spurious_retrans(sk, skb);
5053 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5054 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5055 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5056 
5057 out_of_window:
5058 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5059 		inet_csk_schedule_ack(sk);
5060 drop:
5061 		tcp_drop(sk, skb);
5062 		return;
5063 	}
5064 
5065 	/* Out of window. F.e. zero window probe. */
5066 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5067 		goto out_of_window;
5068 
5069 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5070 		/* Partial packet, seq < rcv_next < end_seq */
5071 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5072 
5073 		/* If window is closed, drop tail of packet. But after
5074 		 * remembering D-SACK for its head made in previous line.
5075 		 */
5076 		if (!tcp_receive_window(tp)) {
5077 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5078 			goto out_of_window;
5079 		}
5080 		goto queue_and_out;
5081 	}
5082 
5083 	tcp_data_queue_ofo(sk, skb);
5084 }
5085 
5086 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5087 {
5088 	if (list)
5089 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5090 
5091 	return skb_rb_next(skb);
5092 }
5093 
5094 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5095 					struct sk_buff_head *list,
5096 					struct rb_root *root)
5097 {
5098 	struct sk_buff *next = tcp_skb_next(skb, list);
5099 
5100 	if (list)
5101 		__skb_unlink(skb, list);
5102 	else
5103 		rb_erase(&skb->rbnode, root);
5104 
5105 	__kfree_skb(skb);
5106 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5107 
5108 	return next;
5109 }
5110 
5111 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5112 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5113 {
5114 	struct rb_node **p = &root->rb_node;
5115 	struct rb_node *parent = NULL;
5116 	struct sk_buff *skb1;
5117 
5118 	while (*p) {
5119 		parent = *p;
5120 		skb1 = rb_to_skb(parent);
5121 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5122 			p = &parent->rb_left;
5123 		else
5124 			p = &parent->rb_right;
5125 	}
5126 	rb_link_node(&skb->rbnode, parent, p);
5127 	rb_insert_color(&skb->rbnode, root);
5128 }
5129 
5130 /* Collapse contiguous sequence of skbs head..tail with
5131  * sequence numbers start..end.
5132  *
5133  * If tail is NULL, this means until the end of the queue.
5134  *
5135  * Segments with FIN/SYN are not collapsed (only because this
5136  * simplifies code)
5137  */
5138 static void
5139 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5140 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5141 {
5142 	struct sk_buff *skb = head, *n;
5143 	struct sk_buff_head tmp;
5144 	bool end_of_skbs;
5145 
5146 	/* First, check that queue is collapsible and find
5147 	 * the point where collapsing can be useful.
5148 	 */
5149 restart:
5150 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5151 		n = tcp_skb_next(skb, list);
5152 
5153 		/* No new bits? It is possible on ofo queue. */
5154 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5155 			skb = tcp_collapse_one(sk, skb, list, root);
5156 			if (!skb)
5157 				break;
5158 			goto restart;
5159 		}
5160 
5161 		/* The first skb to collapse is:
5162 		 * - not SYN/FIN and
5163 		 * - bloated or contains data before "start" or
5164 		 *   overlaps to the next one and mptcp allow collapsing.
5165 		 */
5166 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5167 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5168 		     before(TCP_SKB_CB(skb)->seq, start))) {
5169 			end_of_skbs = false;
5170 			break;
5171 		}
5172 
5173 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5174 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5175 			end_of_skbs = false;
5176 			break;
5177 		}
5178 
5179 		/* Decided to skip this, advance start seq. */
5180 		start = TCP_SKB_CB(skb)->end_seq;
5181 	}
5182 	if (end_of_skbs ||
5183 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5184 		return;
5185 
5186 	__skb_queue_head_init(&tmp);
5187 
5188 	while (before(start, end)) {
5189 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5190 		struct sk_buff *nskb;
5191 
5192 		nskb = alloc_skb(copy, GFP_ATOMIC);
5193 		if (!nskb)
5194 			break;
5195 
5196 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5197 #ifdef CONFIG_TLS_DEVICE
5198 		nskb->decrypted = skb->decrypted;
5199 #endif
5200 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5201 		if (list)
5202 			__skb_queue_before(list, skb, nskb);
5203 		else
5204 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5205 		skb_set_owner_r(nskb, sk);
5206 		mptcp_skb_ext_move(nskb, skb);
5207 
5208 		/* Copy data, releasing collapsed skbs. */
5209 		while (copy > 0) {
5210 			int offset = start - TCP_SKB_CB(skb)->seq;
5211 			int size = TCP_SKB_CB(skb)->end_seq - start;
5212 
5213 			BUG_ON(offset < 0);
5214 			if (size > 0) {
5215 				size = min(copy, size);
5216 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5217 					BUG();
5218 				TCP_SKB_CB(nskb)->end_seq += size;
5219 				copy -= size;
5220 				start += size;
5221 			}
5222 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5223 				skb = tcp_collapse_one(sk, skb, list, root);
5224 				if (!skb ||
5225 				    skb == tail ||
5226 				    !mptcp_skb_can_collapse(nskb, skb) ||
5227 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5228 					goto end;
5229 #ifdef CONFIG_TLS_DEVICE
5230 				if (skb->decrypted != nskb->decrypted)
5231 					goto end;
5232 #endif
5233 			}
5234 		}
5235 	}
5236 end:
5237 	skb_queue_walk_safe(&tmp, skb, n)
5238 		tcp_rbtree_insert(root, skb);
5239 }
5240 
5241 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5242  * and tcp_collapse() them until all the queue is collapsed.
5243  */
5244 static void tcp_collapse_ofo_queue(struct sock *sk)
5245 {
5246 	struct tcp_sock *tp = tcp_sk(sk);
5247 	u32 range_truesize, sum_tiny = 0;
5248 	struct sk_buff *skb, *head;
5249 	u32 start, end;
5250 
5251 	skb = skb_rb_first(&tp->out_of_order_queue);
5252 new_range:
5253 	if (!skb) {
5254 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5255 		return;
5256 	}
5257 	start = TCP_SKB_CB(skb)->seq;
5258 	end = TCP_SKB_CB(skb)->end_seq;
5259 	range_truesize = skb->truesize;
5260 
5261 	for (head = skb;;) {
5262 		skb = skb_rb_next(skb);
5263 
5264 		/* Range is terminated when we see a gap or when
5265 		 * we are at the queue end.
5266 		 */
5267 		if (!skb ||
5268 		    after(TCP_SKB_CB(skb)->seq, end) ||
5269 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5270 			/* Do not attempt collapsing tiny skbs */
5271 			if (range_truesize != head->truesize ||
5272 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5273 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5274 					     head, skb, start, end);
5275 			} else {
5276 				sum_tiny += range_truesize;
5277 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5278 					return;
5279 			}
5280 			goto new_range;
5281 		}
5282 
5283 		range_truesize += skb->truesize;
5284 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5285 			start = TCP_SKB_CB(skb)->seq;
5286 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5287 			end = TCP_SKB_CB(skb)->end_seq;
5288 	}
5289 }
5290 
5291 /*
5292  * Clean the out-of-order queue to make room.
5293  * We drop high sequences packets to :
5294  * 1) Let a chance for holes to be filled.
5295  * 2) not add too big latencies if thousands of packets sit there.
5296  *    (But if application shrinks SO_RCVBUF, we could still end up
5297  *     freeing whole queue here)
5298  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5299  *
5300  * Return true if queue has shrunk.
5301  */
5302 static bool tcp_prune_ofo_queue(struct sock *sk)
5303 {
5304 	struct tcp_sock *tp = tcp_sk(sk);
5305 	struct rb_node *node, *prev;
5306 	int goal;
5307 
5308 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5309 		return false;
5310 
5311 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5312 	goal = sk->sk_rcvbuf >> 3;
5313 	node = &tp->ooo_last_skb->rbnode;
5314 	do {
5315 		prev = rb_prev(node);
5316 		rb_erase(node, &tp->out_of_order_queue);
5317 		goal -= rb_to_skb(node)->truesize;
5318 		tcp_drop(sk, rb_to_skb(node));
5319 		if (!prev || goal <= 0) {
5320 			sk_mem_reclaim(sk);
5321 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5322 			    !tcp_under_memory_pressure(sk))
5323 				break;
5324 			goal = sk->sk_rcvbuf >> 3;
5325 		}
5326 		node = prev;
5327 	} while (node);
5328 	tp->ooo_last_skb = rb_to_skb(prev);
5329 
5330 	/* Reset SACK state.  A conforming SACK implementation will
5331 	 * do the same at a timeout based retransmit.  When a connection
5332 	 * is in a sad state like this, we care only about integrity
5333 	 * of the connection not performance.
5334 	 */
5335 	if (tp->rx_opt.sack_ok)
5336 		tcp_sack_reset(&tp->rx_opt);
5337 	return true;
5338 }
5339 
5340 /* Reduce allocated memory if we can, trying to get
5341  * the socket within its memory limits again.
5342  *
5343  * Return less than zero if we should start dropping frames
5344  * until the socket owning process reads some of the data
5345  * to stabilize the situation.
5346  */
5347 static int tcp_prune_queue(struct sock *sk)
5348 {
5349 	struct tcp_sock *tp = tcp_sk(sk);
5350 
5351 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5352 
5353 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5354 		tcp_clamp_window(sk);
5355 	else if (tcp_under_memory_pressure(sk))
5356 		tcp_adjust_rcv_ssthresh(sk);
5357 
5358 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5359 		return 0;
5360 
5361 	tcp_collapse_ofo_queue(sk);
5362 	if (!skb_queue_empty(&sk->sk_receive_queue))
5363 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5364 			     skb_peek(&sk->sk_receive_queue),
5365 			     NULL,
5366 			     tp->copied_seq, tp->rcv_nxt);
5367 	sk_mem_reclaim(sk);
5368 
5369 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5370 		return 0;
5371 
5372 	/* Collapsing did not help, destructive actions follow.
5373 	 * This must not ever occur. */
5374 
5375 	tcp_prune_ofo_queue(sk);
5376 
5377 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5378 		return 0;
5379 
5380 	/* If we are really being abused, tell the caller to silently
5381 	 * drop receive data on the floor.  It will get retransmitted
5382 	 * and hopefully then we'll have sufficient space.
5383 	 */
5384 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5385 
5386 	/* Massive buffer overcommit. */
5387 	tp->pred_flags = 0;
5388 	return -1;
5389 }
5390 
5391 static bool tcp_should_expand_sndbuf(struct sock *sk)
5392 {
5393 	const struct tcp_sock *tp = tcp_sk(sk);
5394 
5395 	/* If the user specified a specific send buffer setting, do
5396 	 * not modify it.
5397 	 */
5398 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5399 		return false;
5400 
5401 	/* If we are under global TCP memory pressure, do not expand.  */
5402 	if (tcp_under_memory_pressure(sk)) {
5403 		int unused_mem = sk_unused_reserved_mem(sk);
5404 
5405 		/* Adjust sndbuf according to reserved mem. But make sure
5406 		 * it never goes below SOCK_MIN_SNDBUF.
5407 		 * See sk_stream_moderate_sndbuf() for more details.
5408 		 */
5409 		if (unused_mem > SOCK_MIN_SNDBUF)
5410 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5411 
5412 		return false;
5413 	}
5414 
5415 	/* If we are under soft global TCP memory pressure, do not expand.  */
5416 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5417 		return false;
5418 
5419 	/* If we filled the congestion window, do not expand.  */
5420 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5421 		return false;
5422 
5423 	return true;
5424 }
5425 
5426 static void tcp_new_space(struct sock *sk)
5427 {
5428 	struct tcp_sock *tp = tcp_sk(sk);
5429 
5430 	if (tcp_should_expand_sndbuf(sk)) {
5431 		tcp_sndbuf_expand(sk);
5432 		tp->snd_cwnd_stamp = tcp_jiffies32;
5433 	}
5434 
5435 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5436 }
5437 
5438 static void tcp_check_space(struct sock *sk)
5439 {
5440 	/* pairs with tcp_poll() */
5441 	smp_mb();
5442 	if (sk->sk_socket &&
5443 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5444 		tcp_new_space(sk);
5445 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5446 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5447 	}
5448 }
5449 
5450 static inline void tcp_data_snd_check(struct sock *sk)
5451 {
5452 	tcp_push_pending_frames(sk);
5453 	tcp_check_space(sk);
5454 }
5455 
5456 /*
5457  * Check if sending an ack is needed.
5458  */
5459 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5460 {
5461 	struct tcp_sock *tp = tcp_sk(sk);
5462 	unsigned long rtt, delay;
5463 
5464 	    /* More than one full frame received... */
5465 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5466 	     /* ... and right edge of window advances far enough.
5467 	      * (tcp_recvmsg() will send ACK otherwise).
5468 	      * If application uses SO_RCVLOWAT, we want send ack now if
5469 	      * we have not received enough bytes to satisfy the condition.
5470 	      */
5471 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5472 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5473 	    /* We ACK each frame or... */
5474 	    tcp_in_quickack_mode(sk) ||
5475 	    /* Protocol state mandates a one-time immediate ACK */
5476 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5477 send_now:
5478 		tcp_send_ack(sk);
5479 		return;
5480 	}
5481 
5482 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5483 		tcp_send_delayed_ack(sk);
5484 		return;
5485 	}
5486 
5487 	if (!tcp_is_sack(tp) ||
5488 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5489 		goto send_now;
5490 
5491 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5492 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5493 		tp->dup_ack_counter = 0;
5494 	}
5495 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5496 		tp->dup_ack_counter++;
5497 		goto send_now;
5498 	}
5499 	tp->compressed_ack++;
5500 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5501 		return;
5502 
5503 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5504 
5505 	rtt = tp->rcv_rtt_est.rtt_us;
5506 	if (tp->srtt_us && tp->srtt_us < rtt)
5507 		rtt = tp->srtt_us;
5508 
5509 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5510 		      rtt * (NSEC_PER_USEC >> 3)/20);
5511 	sock_hold(sk);
5512 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5513 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5514 			       HRTIMER_MODE_REL_PINNED_SOFT);
5515 }
5516 
5517 static inline void tcp_ack_snd_check(struct sock *sk)
5518 {
5519 	if (!inet_csk_ack_scheduled(sk)) {
5520 		/* We sent a data segment already. */
5521 		return;
5522 	}
5523 	__tcp_ack_snd_check(sk, 1);
5524 }
5525 
5526 /*
5527  *	This routine is only called when we have urgent data
5528  *	signaled. Its the 'slow' part of tcp_urg. It could be
5529  *	moved inline now as tcp_urg is only called from one
5530  *	place. We handle URGent data wrong. We have to - as
5531  *	BSD still doesn't use the correction from RFC961.
5532  *	For 1003.1g we should support a new option TCP_STDURG to permit
5533  *	either form (or just set the sysctl tcp_stdurg).
5534  */
5535 
5536 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5537 {
5538 	struct tcp_sock *tp = tcp_sk(sk);
5539 	u32 ptr = ntohs(th->urg_ptr);
5540 
5541 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5542 		ptr--;
5543 	ptr += ntohl(th->seq);
5544 
5545 	/* Ignore urgent data that we've already seen and read. */
5546 	if (after(tp->copied_seq, ptr))
5547 		return;
5548 
5549 	/* Do not replay urg ptr.
5550 	 *
5551 	 * NOTE: interesting situation not covered by specs.
5552 	 * Misbehaving sender may send urg ptr, pointing to segment,
5553 	 * which we already have in ofo queue. We are not able to fetch
5554 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5555 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5556 	 * situations. But it is worth to think about possibility of some
5557 	 * DoSes using some hypothetical application level deadlock.
5558 	 */
5559 	if (before(ptr, tp->rcv_nxt))
5560 		return;
5561 
5562 	/* Do we already have a newer (or duplicate) urgent pointer? */
5563 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5564 		return;
5565 
5566 	/* Tell the world about our new urgent pointer. */
5567 	sk_send_sigurg(sk);
5568 
5569 	/* We may be adding urgent data when the last byte read was
5570 	 * urgent. To do this requires some care. We cannot just ignore
5571 	 * tp->copied_seq since we would read the last urgent byte again
5572 	 * as data, nor can we alter copied_seq until this data arrives
5573 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5574 	 *
5575 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5576 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5577 	 * and expect that both A and B disappear from stream. This is _wrong_.
5578 	 * Though this happens in BSD with high probability, this is occasional.
5579 	 * Any application relying on this is buggy. Note also, that fix "works"
5580 	 * only in this artificial test. Insert some normal data between A and B and we will
5581 	 * decline of BSD again. Verdict: it is better to remove to trap
5582 	 * buggy users.
5583 	 */
5584 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5585 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5586 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5587 		tp->copied_seq++;
5588 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5589 			__skb_unlink(skb, &sk->sk_receive_queue);
5590 			__kfree_skb(skb);
5591 		}
5592 	}
5593 
5594 	tp->urg_data = TCP_URG_NOTYET;
5595 	WRITE_ONCE(tp->urg_seq, ptr);
5596 
5597 	/* Disable header prediction. */
5598 	tp->pred_flags = 0;
5599 }
5600 
5601 /* This is the 'fast' part of urgent handling. */
5602 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5603 {
5604 	struct tcp_sock *tp = tcp_sk(sk);
5605 
5606 	/* Check if we get a new urgent pointer - normally not. */
5607 	if (th->urg)
5608 		tcp_check_urg(sk, th);
5609 
5610 	/* Do we wait for any urgent data? - normally not... */
5611 	if (tp->urg_data == TCP_URG_NOTYET) {
5612 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5613 			  th->syn;
5614 
5615 		/* Is the urgent pointer pointing into this packet? */
5616 		if (ptr < skb->len) {
5617 			u8 tmp;
5618 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5619 				BUG();
5620 			tp->urg_data = TCP_URG_VALID | tmp;
5621 			if (!sock_flag(sk, SOCK_DEAD))
5622 				sk->sk_data_ready(sk);
5623 		}
5624 	}
5625 }
5626 
5627 /* Accept RST for rcv_nxt - 1 after a FIN.
5628  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5629  * FIN is sent followed by a RST packet. The RST is sent with the same
5630  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5631  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5632  * ACKs on the closed socket. In addition middleboxes can drop either the
5633  * challenge ACK or a subsequent RST.
5634  */
5635 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5636 {
5637 	struct tcp_sock *tp = tcp_sk(sk);
5638 
5639 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5640 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5641 					       TCPF_CLOSING));
5642 }
5643 
5644 /* Does PAWS and seqno based validation of an incoming segment, flags will
5645  * play significant role here.
5646  */
5647 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5648 				  const struct tcphdr *th, int syn_inerr)
5649 {
5650 	struct tcp_sock *tp = tcp_sk(sk);
5651 	bool rst_seq_match = false;
5652 
5653 	/* RFC1323: H1. Apply PAWS check first. */
5654 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5655 	    tp->rx_opt.saw_tstamp &&
5656 	    tcp_paws_discard(sk, skb)) {
5657 		if (!th->rst) {
5658 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5659 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5660 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5661 						  &tp->last_oow_ack_time))
5662 				tcp_send_dupack(sk, skb);
5663 			goto discard;
5664 		}
5665 		/* Reset is accepted even if it did not pass PAWS. */
5666 	}
5667 
5668 	/* Step 1: check sequence number */
5669 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5670 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5671 		 * (RST) segments are validated by checking their SEQ-fields."
5672 		 * And page 69: "If an incoming segment is not acceptable,
5673 		 * an acknowledgment should be sent in reply (unless the RST
5674 		 * bit is set, if so drop the segment and return)".
5675 		 */
5676 		if (!th->rst) {
5677 			if (th->syn)
5678 				goto syn_challenge;
5679 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5680 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5681 						  &tp->last_oow_ack_time))
5682 				tcp_send_dupack(sk, skb);
5683 		} else if (tcp_reset_check(sk, skb)) {
5684 			tcp_reset(sk, skb);
5685 		}
5686 		goto discard;
5687 	}
5688 
5689 	/* Step 2: check RST bit */
5690 	if (th->rst) {
5691 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5692 		 * FIN and SACK too if available):
5693 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5694 		 * the right-most SACK block,
5695 		 * then
5696 		 *     RESET the connection
5697 		 * else
5698 		 *     Send a challenge ACK
5699 		 */
5700 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5701 		    tcp_reset_check(sk, skb)) {
5702 			rst_seq_match = true;
5703 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5704 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5705 			int max_sack = sp[0].end_seq;
5706 			int this_sack;
5707 
5708 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5709 			     ++this_sack) {
5710 				max_sack = after(sp[this_sack].end_seq,
5711 						 max_sack) ?
5712 					sp[this_sack].end_seq : max_sack;
5713 			}
5714 
5715 			if (TCP_SKB_CB(skb)->seq == max_sack)
5716 				rst_seq_match = true;
5717 		}
5718 
5719 		if (rst_seq_match)
5720 			tcp_reset(sk, skb);
5721 		else {
5722 			/* Disable TFO if RST is out-of-order
5723 			 * and no data has been received
5724 			 * for current active TFO socket
5725 			 */
5726 			if (tp->syn_fastopen && !tp->data_segs_in &&
5727 			    sk->sk_state == TCP_ESTABLISHED)
5728 				tcp_fastopen_active_disable(sk);
5729 			tcp_send_challenge_ack(sk, skb);
5730 		}
5731 		goto discard;
5732 	}
5733 
5734 	/* step 3: check security and precedence [ignored] */
5735 
5736 	/* step 4: Check for a SYN
5737 	 * RFC 5961 4.2 : Send a challenge ack
5738 	 */
5739 	if (th->syn) {
5740 syn_challenge:
5741 		if (syn_inerr)
5742 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5743 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5744 		tcp_send_challenge_ack(sk, skb);
5745 		goto discard;
5746 	}
5747 
5748 	bpf_skops_parse_hdr(sk, skb);
5749 
5750 	return true;
5751 
5752 discard:
5753 	tcp_drop(sk, skb);
5754 	return false;
5755 }
5756 
5757 /*
5758  *	TCP receive function for the ESTABLISHED state.
5759  *
5760  *	It is split into a fast path and a slow path. The fast path is
5761  * 	disabled when:
5762  *	- A zero window was announced from us - zero window probing
5763  *        is only handled properly in the slow path.
5764  *	- Out of order segments arrived.
5765  *	- Urgent data is expected.
5766  *	- There is no buffer space left
5767  *	- Unexpected TCP flags/window values/header lengths are received
5768  *	  (detected by checking the TCP header against pred_flags)
5769  *	- Data is sent in both directions. Fast path only supports pure senders
5770  *	  or pure receivers (this means either the sequence number or the ack
5771  *	  value must stay constant)
5772  *	- Unexpected TCP option.
5773  *
5774  *	When these conditions are not satisfied it drops into a standard
5775  *	receive procedure patterned after RFC793 to handle all cases.
5776  *	The first three cases are guaranteed by proper pred_flags setting,
5777  *	the rest is checked inline. Fast processing is turned on in
5778  *	tcp_data_queue when everything is OK.
5779  */
5780 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5781 {
5782 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5783 	struct tcp_sock *tp = tcp_sk(sk);
5784 	unsigned int len = skb->len;
5785 
5786 	/* TCP congestion window tracking */
5787 	trace_tcp_probe(sk, skb);
5788 
5789 	tcp_mstamp_refresh(tp);
5790 	if (unlikely(!sk->sk_rx_dst))
5791 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5792 	/*
5793 	 *	Header prediction.
5794 	 *	The code loosely follows the one in the famous
5795 	 *	"30 instruction TCP receive" Van Jacobson mail.
5796 	 *
5797 	 *	Van's trick is to deposit buffers into socket queue
5798 	 *	on a device interrupt, to call tcp_recv function
5799 	 *	on the receive process context and checksum and copy
5800 	 *	the buffer to user space. smart...
5801 	 *
5802 	 *	Our current scheme is not silly either but we take the
5803 	 *	extra cost of the net_bh soft interrupt processing...
5804 	 *	We do checksum and copy also but from device to kernel.
5805 	 */
5806 
5807 	tp->rx_opt.saw_tstamp = 0;
5808 
5809 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5810 	 *	if header_prediction is to be made
5811 	 *	'S' will always be tp->tcp_header_len >> 2
5812 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5813 	 *  turn it off	(when there are holes in the receive
5814 	 *	 space for instance)
5815 	 *	PSH flag is ignored.
5816 	 */
5817 
5818 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5819 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5820 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5821 		int tcp_header_len = tp->tcp_header_len;
5822 
5823 		/* Timestamp header prediction: tcp_header_len
5824 		 * is automatically equal to th->doff*4 due to pred_flags
5825 		 * match.
5826 		 */
5827 
5828 		/* Check timestamp */
5829 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5830 			/* No? Slow path! */
5831 			if (!tcp_parse_aligned_timestamp(tp, th))
5832 				goto slow_path;
5833 
5834 			/* If PAWS failed, check it more carefully in slow path */
5835 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5836 				goto slow_path;
5837 
5838 			/* DO NOT update ts_recent here, if checksum fails
5839 			 * and timestamp was corrupted part, it will result
5840 			 * in a hung connection since we will drop all
5841 			 * future packets due to the PAWS test.
5842 			 */
5843 		}
5844 
5845 		if (len <= tcp_header_len) {
5846 			/* Bulk data transfer: sender */
5847 			if (len == tcp_header_len) {
5848 				/* Predicted packet is in window by definition.
5849 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5850 				 * Hence, check seq<=rcv_wup reduces to:
5851 				 */
5852 				if (tcp_header_len ==
5853 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5854 				    tp->rcv_nxt == tp->rcv_wup)
5855 					tcp_store_ts_recent(tp);
5856 
5857 				/* We know that such packets are checksummed
5858 				 * on entry.
5859 				 */
5860 				tcp_ack(sk, skb, 0);
5861 				__kfree_skb(skb);
5862 				tcp_data_snd_check(sk);
5863 				/* When receiving pure ack in fast path, update
5864 				 * last ts ecr directly instead of calling
5865 				 * tcp_rcv_rtt_measure_ts()
5866 				 */
5867 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5868 				return;
5869 			} else { /* Header too small */
5870 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5871 				goto discard;
5872 			}
5873 		} else {
5874 			int eaten = 0;
5875 			bool fragstolen = false;
5876 
5877 			if (tcp_checksum_complete(skb))
5878 				goto csum_error;
5879 
5880 			if ((int)skb->truesize > sk->sk_forward_alloc)
5881 				goto step5;
5882 
5883 			/* Predicted packet is in window by definition.
5884 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5885 			 * Hence, check seq<=rcv_wup reduces to:
5886 			 */
5887 			if (tcp_header_len ==
5888 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5889 			    tp->rcv_nxt == tp->rcv_wup)
5890 				tcp_store_ts_recent(tp);
5891 
5892 			tcp_rcv_rtt_measure_ts(sk, skb);
5893 
5894 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5895 
5896 			/* Bulk data transfer: receiver */
5897 			__skb_pull(skb, tcp_header_len);
5898 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5899 
5900 			tcp_event_data_recv(sk, skb);
5901 
5902 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5903 				/* Well, only one small jumplet in fast path... */
5904 				tcp_ack(sk, skb, FLAG_DATA);
5905 				tcp_data_snd_check(sk);
5906 				if (!inet_csk_ack_scheduled(sk))
5907 					goto no_ack;
5908 			} else {
5909 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5910 			}
5911 
5912 			__tcp_ack_snd_check(sk, 0);
5913 no_ack:
5914 			if (eaten)
5915 				kfree_skb_partial(skb, fragstolen);
5916 			tcp_data_ready(sk);
5917 			return;
5918 		}
5919 	}
5920 
5921 slow_path:
5922 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5923 		goto csum_error;
5924 
5925 	if (!th->ack && !th->rst && !th->syn)
5926 		goto discard;
5927 
5928 	/*
5929 	 *	Standard slow path.
5930 	 */
5931 
5932 	if (!tcp_validate_incoming(sk, skb, th, 1))
5933 		return;
5934 
5935 step5:
5936 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5937 		goto discard;
5938 
5939 	tcp_rcv_rtt_measure_ts(sk, skb);
5940 
5941 	/* Process urgent data. */
5942 	tcp_urg(sk, skb, th);
5943 
5944 	/* step 7: process the segment text */
5945 	tcp_data_queue(sk, skb);
5946 
5947 	tcp_data_snd_check(sk);
5948 	tcp_ack_snd_check(sk);
5949 	return;
5950 
5951 csum_error:
5952 	trace_tcp_bad_csum(skb);
5953 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5954 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5955 
5956 discard:
5957 	tcp_drop(sk, skb);
5958 }
5959 EXPORT_SYMBOL(tcp_rcv_established);
5960 
5961 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5962 {
5963 	struct inet_connection_sock *icsk = inet_csk(sk);
5964 	struct tcp_sock *tp = tcp_sk(sk);
5965 
5966 	tcp_mtup_init(sk);
5967 	icsk->icsk_af_ops->rebuild_header(sk);
5968 	tcp_init_metrics(sk);
5969 
5970 	/* Initialize the congestion window to start the transfer.
5971 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5972 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5973 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5974 	 * retransmission has occurred.
5975 	 */
5976 	if (tp->total_retrans > 1 && tp->undo_marker)
5977 		tp->snd_cwnd = 1;
5978 	else
5979 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5980 	tp->snd_cwnd_stamp = tcp_jiffies32;
5981 
5982 	bpf_skops_established(sk, bpf_op, skb);
5983 	/* Initialize congestion control unless BPF initialized it already: */
5984 	if (!icsk->icsk_ca_initialized)
5985 		tcp_init_congestion_control(sk);
5986 	tcp_init_buffer_space(sk);
5987 }
5988 
5989 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5990 {
5991 	struct tcp_sock *tp = tcp_sk(sk);
5992 	struct inet_connection_sock *icsk = inet_csk(sk);
5993 
5994 	tcp_set_state(sk, TCP_ESTABLISHED);
5995 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5996 
5997 	if (skb) {
5998 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5999 		security_inet_conn_established(sk, skb);
6000 		sk_mark_napi_id(sk, skb);
6001 	}
6002 
6003 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6004 
6005 	/* Prevent spurious tcp_cwnd_restart() on first data
6006 	 * packet.
6007 	 */
6008 	tp->lsndtime = tcp_jiffies32;
6009 
6010 	if (sock_flag(sk, SOCK_KEEPOPEN))
6011 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6012 
6013 	if (!tp->rx_opt.snd_wscale)
6014 		__tcp_fast_path_on(tp, tp->snd_wnd);
6015 	else
6016 		tp->pred_flags = 0;
6017 }
6018 
6019 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6020 				    struct tcp_fastopen_cookie *cookie)
6021 {
6022 	struct tcp_sock *tp = tcp_sk(sk);
6023 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6024 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6025 	bool syn_drop = false;
6026 
6027 	if (mss == tp->rx_opt.user_mss) {
6028 		struct tcp_options_received opt;
6029 
6030 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6031 		tcp_clear_options(&opt);
6032 		opt.user_mss = opt.mss_clamp = 0;
6033 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6034 		mss = opt.mss_clamp;
6035 	}
6036 
6037 	if (!tp->syn_fastopen) {
6038 		/* Ignore an unsolicited cookie */
6039 		cookie->len = -1;
6040 	} else if (tp->total_retrans) {
6041 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6042 		 * acknowledges data. Presumably the remote received only
6043 		 * the retransmitted (regular) SYNs: either the original
6044 		 * SYN-data or the corresponding SYN-ACK was dropped.
6045 		 */
6046 		syn_drop = (cookie->len < 0 && data);
6047 	} else if (cookie->len < 0 && !tp->syn_data) {
6048 		/* We requested a cookie but didn't get it. If we did not use
6049 		 * the (old) exp opt format then try so next time (try_exp=1).
6050 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6051 		 */
6052 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6053 	}
6054 
6055 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6056 
6057 	if (data) { /* Retransmit unacked data in SYN */
6058 		if (tp->total_retrans)
6059 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6060 		else
6061 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6062 		skb_rbtree_walk_from(data)
6063 			 tcp_mark_skb_lost(sk, data);
6064 		tcp_xmit_retransmit_queue(sk);
6065 		NET_INC_STATS(sock_net(sk),
6066 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6067 		return true;
6068 	}
6069 	tp->syn_data_acked = tp->syn_data;
6070 	if (tp->syn_data_acked) {
6071 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6072 		/* SYN-data is counted as two separate packets in tcp_ack() */
6073 		if (tp->delivered > 1)
6074 			--tp->delivered;
6075 	}
6076 
6077 	tcp_fastopen_add_skb(sk, synack);
6078 
6079 	return false;
6080 }
6081 
6082 static void smc_check_reset_syn(struct tcp_sock *tp)
6083 {
6084 #if IS_ENABLED(CONFIG_SMC)
6085 	if (static_branch_unlikely(&tcp_have_smc)) {
6086 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6087 			tp->syn_smc = 0;
6088 	}
6089 #endif
6090 }
6091 
6092 static void tcp_try_undo_spurious_syn(struct sock *sk)
6093 {
6094 	struct tcp_sock *tp = tcp_sk(sk);
6095 	u32 syn_stamp;
6096 
6097 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6098 	 * spurious if the ACK's timestamp option echo value matches the
6099 	 * original SYN timestamp.
6100 	 */
6101 	syn_stamp = tp->retrans_stamp;
6102 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6103 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6104 		tp->undo_marker = 0;
6105 }
6106 
6107 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6108 					 const struct tcphdr *th)
6109 {
6110 	struct inet_connection_sock *icsk = inet_csk(sk);
6111 	struct tcp_sock *tp = tcp_sk(sk);
6112 	struct tcp_fastopen_cookie foc = { .len = -1 };
6113 	int saved_clamp = tp->rx_opt.mss_clamp;
6114 	bool fastopen_fail;
6115 
6116 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6117 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6118 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6119 
6120 	if (th->ack) {
6121 		/* rfc793:
6122 		 * "If the state is SYN-SENT then
6123 		 *    first check the ACK bit
6124 		 *      If the ACK bit is set
6125 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6126 		 *        a reset (unless the RST bit is set, if so drop
6127 		 *        the segment and return)"
6128 		 */
6129 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6130 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6131 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6132 			if (icsk->icsk_retransmits == 0)
6133 				inet_csk_reset_xmit_timer(sk,
6134 						ICSK_TIME_RETRANS,
6135 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6136 			goto reset_and_undo;
6137 		}
6138 
6139 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6140 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6141 			     tcp_time_stamp(tp))) {
6142 			NET_INC_STATS(sock_net(sk),
6143 					LINUX_MIB_PAWSACTIVEREJECTED);
6144 			goto reset_and_undo;
6145 		}
6146 
6147 		/* Now ACK is acceptable.
6148 		 *
6149 		 * "If the RST bit is set
6150 		 *    If the ACK was acceptable then signal the user "error:
6151 		 *    connection reset", drop the segment, enter CLOSED state,
6152 		 *    delete TCB, and return."
6153 		 */
6154 
6155 		if (th->rst) {
6156 			tcp_reset(sk, skb);
6157 			goto discard;
6158 		}
6159 
6160 		/* rfc793:
6161 		 *   "fifth, if neither of the SYN or RST bits is set then
6162 		 *    drop the segment and return."
6163 		 *
6164 		 *    See note below!
6165 		 *                                        --ANK(990513)
6166 		 */
6167 		if (!th->syn)
6168 			goto discard_and_undo;
6169 
6170 		/* rfc793:
6171 		 *   "If the SYN bit is on ...
6172 		 *    are acceptable then ...
6173 		 *    (our SYN has been ACKed), change the connection
6174 		 *    state to ESTABLISHED..."
6175 		 */
6176 
6177 		tcp_ecn_rcv_synack(tp, th);
6178 
6179 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6180 		tcp_try_undo_spurious_syn(sk);
6181 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6182 
6183 		/* Ok.. it's good. Set up sequence numbers and
6184 		 * move to established.
6185 		 */
6186 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6187 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6188 
6189 		/* RFC1323: The window in SYN & SYN/ACK segments is
6190 		 * never scaled.
6191 		 */
6192 		tp->snd_wnd = ntohs(th->window);
6193 
6194 		if (!tp->rx_opt.wscale_ok) {
6195 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6196 			tp->window_clamp = min(tp->window_clamp, 65535U);
6197 		}
6198 
6199 		if (tp->rx_opt.saw_tstamp) {
6200 			tp->rx_opt.tstamp_ok	   = 1;
6201 			tp->tcp_header_len =
6202 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6203 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6204 			tcp_store_ts_recent(tp);
6205 		} else {
6206 			tp->tcp_header_len = sizeof(struct tcphdr);
6207 		}
6208 
6209 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6210 		tcp_initialize_rcv_mss(sk);
6211 
6212 		/* Remember, tcp_poll() does not lock socket!
6213 		 * Change state from SYN-SENT only after copied_seq
6214 		 * is initialized. */
6215 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6216 
6217 		smc_check_reset_syn(tp);
6218 
6219 		smp_mb();
6220 
6221 		tcp_finish_connect(sk, skb);
6222 
6223 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6224 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6225 
6226 		if (!sock_flag(sk, SOCK_DEAD)) {
6227 			sk->sk_state_change(sk);
6228 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6229 		}
6230 		if (fastopen_fail)
6231 			return -1;
6232 		if (sk->sk_write_pending ||
6233 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6234 		    inet_csk_in_pingpong_mode(sk)) {
6235 			/* Save one ACK. Data will be ready after
6236 			 * several ticks, if write_pending is set.
6237 			 *
6238 			 * It may be deleted, but with this feature tcpdumps
6239 			 * look so _wonderfully_ clever, that I was not able
6240 			 * to stand against the temptation 8)     --ANK
6241 			 */
6242 			inet_csk_schedule_ack(sk);
6243 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6244 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6245 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6246 
6247 discard:
6248 			tcp_drop(sk, skb);
6249 			return 0;
6250 		} else {
6251 			tcp_send_ack(sk);
6252 		}
6253 		return -1;
6254 	}
6255 
6256 	/* No ACK in the segment */
6257 
6258 	if (th->rst) {
6259 		/* rfc793:
6260 		 * "If the RST bit is set
6261 		 *
6262 		 *      Otherwise (no ACK) drop the segment and return."
6263 		 */
6264 
6265 		goto discard_and_undo;
6266 	}
6267 
6268 	/* PAWS check. */
6269 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6270 	    tcp_paws_reject(&tp->rx_opt, 0))
6271 		goto discard_and_undo;
6272 
6273 	if (th->syn) {
6274 		/* We see SYN without ACK. It is attempt of
6275 		 * simultaneous connect with crossed SYNs.
6276 		 * Particularly, it can be connect to self.
6277 		 */
6278 		tcp_set_state(sk, TCP_SYN_RECV);
6279 
6280 		if (tp->rx_opt.saw_tstamp) {
6281 			tp->rx_opt.tstamp_ok = 1;
6282 			tcp_store_ts_recent(tp);
6283 			tp->tcp_header_len =
6284 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6285 		} else {
6286 			tp->tcp_header_len = sizeof(struct tcphdr);
6287 		}
6288 
6289 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6290 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6291 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6292 
6293 		/* RFC1323: The window in SYN & SYN/ACK segments is
6294 		 * never scaled.
6295 		 */
6296 		tp->snd_wnd    = ntohs(th->window);
6297 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6298 		tp->max_window = tp->snd_wnd;
6299 
6300 		tcp_ecn_rcv_syn(tp, th);
6301 
6302 		tcp_mtup_init(sk);
6303 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6304 		tcp_initialize_rcv_mss(sk);
6305 
6306 		tcp_send_synack(sk);
6307 #if 0
6308 		/* Note, we could accept data and URG from this segment.
6309 		 * There are no obstacles to make this (except that we must
6310 		 * either change tcp_recvmsg() to prevent it from returning data
6311 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6312 		 *
6313 		 * However, if we ignore data in ACKless segments sometimes,
6314 		 * we have no reasons to accept it sometimes.
6315 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6316 		 * is not flawless. So, discard packet for sanity.
6317 		 * Uncomment this return to process the data.
6318 		 */
6319 		return -1;
6320 #else
6321 		goto discard;
6322 #endif
6323 	}
6324 	/* "fifth, if neither of the SYN or RST bits is set then
6325 	 * drop the segment and return."
6326 	 */
6327 
6328 discard_and_undo:
6329 	tcp_clear_options(&tp->rx_opt);
6330 	tp->rx_opt.mss_clamp = saved_clamp;
6331 	goto discard;
6332 
6333 reset_and_undo:
6334 	tcp_clear_options(&tp->rx_opt);
6335 	tp->rx_opt.mss_clamp = saved_clamp;
6336 	return 1;
6337 }
6338 
6339 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6340 {
6341 	struct request_sock *req;
6342 
6343 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6344 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6345 	 */
6346 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6347 		tcp_try_undo_loss(sk, false);
6348 
6349 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6350 	tcp_sk(sk)->retrans_stamp = 0;
6351 	inet_csk(sk)->icsk_retransmits = 0;
6352 
6353 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6354 	 * we no longer need req so release it.
6355 	 */
6356 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6357 					lockdep_sock_is_held(sk));
6358 	reqsk_fastopen_remove(sk, req, false);
6359 
6360 	/* Re-arm the timer because data may have been sent out.
6361 	 * This is similar to the regular data transmission case
6362 	 * when new data has just been ack'ed.
6363 	 *
6364 	 * (TFO) - we could try to be more aggressive and
6365 	 * retransmitting any data sooner based on when they
6366 	 * are sent out.
6367 	 */
6368 	tcp_rearm_rto(sk);
6369 }
6370 
6371 /*
6372  *	This function implements the receiving procedure of RFC 793 for
6373  *	all states except ESTABLISHED and TIME_WAIT.
6374  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6375  *	address independent.
6376  */
6377 
6378 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6379 {
6380 	struct tcp_sock *tp = tcp_sk(sk);
6381 	struct inet_connection_sock *icsk = inet_csk(sk);
6382 	const struct tcphdr *th = tcp_hdr(skb);
6383 	struct request_sock *req;
6384 	int queued = 0;
6385 	bool acceptable;
6386 
6387 	switch (sk->sk_state) {
6388 	case TCP_CLOSE:
6389 		goto discard;
6390 
6391 	case TCP_LISTEN:
6392 		if (th->ack)
6393 			return 1;
6394 
6395 		if (th->rst)
6396 			goto discard;
6397 
6398 		if (th->syn) {
6399 			if (th->fin)
6400 				goto discard;
6401 			/* It is possible that we process SYN packets from backlog,
6402 			 * so we need to make sure to disable BH and RCU right there.
6403 			 */
6404 			rcu_read_lock();
6405 			local_bh_disable();
6406 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6407 			local_bh_enable();
6408 			rcu_read_unlock();
6409 
6410 			if (!acceptable)
6411 				return 1;
6412 			consume_skb(skb);
6413 			return 0;
6414 		}
6415 		goto discard;
6416 
6417 	case TCP_SYN_SENT:
6418 		tp->rx_opt.saw_tstamp = 0;
6419 		tcp_mstamp_refresh(tp);
6420 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6421 		if (queued >= 0)
6422 			return queued;
6423 
6424 		/* Do step6 onward by hand. */
6425 		tcp_urg(sk, skb, th);
6426 		__kfree_skb(skb);
6427 		tcp_data_snd_check(sk);
6428 		return 0;
6429 	}
6430 
6431 	tcp_mstamp_refresh(tp);
6432 	tp->rx_opt.saw_tstamp = 0;
6433 	req = rcu_dereference_protected(tp->fastopen_rsk,
6434 					lockdep_sock_is_held(sk));
6435 	if (req) {
6436 		bool req_stolen;
6437 
6438 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6439 		    sk->sk_state != TCP_FIN_WAIT1);
6440 
6441 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6442 			goto discard;
6443 	}
6444 
6445 	if (!th->ack && !th->rst && !th->syn)
6446 		goto discard;
6447 
6448 	if (!tcp_validate_incoming(sk, skb, th, 0))
6449 		return 0;
6450 
6451 	/* step 5: check the ACK field */
6452 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6453 				      FLAG_UPDATE_TS_RECENT |
6454 				      FLAG_NO_CHALLENGE_ACK) > 0;
6455 
6456 	if (!acceptable) {
6457 		if (sk->sk_state == TCP_SYN_RECV)
6458 			return 1;	/* send one RST */
6459 		tcp_send_challenge_ack(sk, skb);
6460 		goto discard;
6461 	}
6462 	switch (sk->sk_state) {
6463 	case TCP_SYN_RECV:
6464 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6465 		if (!tp->srtt_us)
6466 			tcp_synack_rtt_meas(sk, req);
6467 
6468 		if (req) {
6469 			tcp_rcv_synrecv_state_fastopen(sk);
6470 		} else {
6471 			tcp_try_undo_spurious_syn(sk);
6472 			tp->retrans_stamp = 0;
6473 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6474 					  skb);
6475 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6476 		}
6477 		smp_mb();
6478 		tcp_set_state(sk, TCP_ESTABLISHED);
6479 		sk->sk_state_change(sk);
6480 
6481 		/* Note, that this wakeup is only for marginal crossed SYN case.
6482 		 * Passively open sockets are not waked up, because
6483 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6484 		 */
6485 		if (sk->sk_socket)
6486 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6487 
6488 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6489 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6490 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6491 
6492 		if (tp->rx_opt.tstamp_ok)
6493 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6494 
6495 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6496 			tcp_update_pacing_rate(sk);
6497 
6498 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6499 		tp->lsndtime = tcp_jiffies32;
6500 
6501 		tcp_initialize_rcv_mss(sk);
6502 		tcp_fast_path_on(tp);
6503 		break;
6504 
6505 	case TCP_FIN_WAIT1: {
6506 		int tmo;
6507 
6508 		if (req)
6509 			tcp_rcv_synrecv_state_fastopen(sk);
6510 
6511 		if (tp->snd_una != tp->write_seq)
6512 			break;
6513 
6514 		tcp_set_state(sk, TCP_FIN_WAIT2);
6515 		sk->sk_shutdown |= SEND_SHUTDOWN;
6516 
6517 		sk_dst_confirm(sk);
6518 
6519 		if (!sock_flag(sk, SOCK_DEAD)) {
6520 			/* Wake up lingering close() */
6521 			sk->sk_state_change(sk);
6522 			break;
6523 		}
6524 
6525 		if (tp->linger2 < 0) {
6526 			tcp_done(sk);
6527 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6528 			return 1;
6529 		}
6530 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6531 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6532 			/* Receive out of order FIN after close() */
6533 			if (tp->syn_fastopen && th->fin)
6534 				tcp_fastopen_active_disable(sk);
6535 			tcp_done(sk);
6536 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6537 			return 1;
6538 		}
6539 
6540 		tmo = tcp_fin_time(sk);
6541 		if (tmo > TCP_TIMEWAIT_LEN) {
6542 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6543 		} else if (th->fin || sock_owned_by_user(sk)) {
6544 			/* Bad case. We could lose such FIN otherwise.
6545 			 * It is not a big problem, but it looks confusing
6546 			 * and not so rare event. We still can lose it now,
6547 			 * if it spins in bh_lock_sock(), but it is really
6548 			 * marginal case.
6549 			 */
6550 			inet_csk_reset_keepalive_timer(sk, tmo);
6551 		} else {
6552 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6553 			goto discard;
6554 		}
6555 		break;
6556 	}
6557 
6558 	case TCP_CLOSING:
6559 		if (tp->snd_una == tp->write_seq) {
6560 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6561 			goto discard;
6562 		}
6563 		break;
6564 
6565 	case TCP_LAST_ACK:
6566 		if (tp->snd_una == tp->write_seq) {
6567 			tcp_update_metrics(sk);
6568 			tcp_done(sk);
6569 			goto discard;
6570 		}
6571 		break;
6572 	}
6573 
6574 	/* step 6: check the URG bit */
6575 	tcp_urg(sk, skb, th);
6576 
6577 	/* step 7: process the segment text */
6578 	switch (sk->sk_state) {
6579 	case TCP_CLOSE_WAIT:
6580 	case TCP_CLOSING:
6581 	case TCP_LAST_ACK:
6582 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6583 			/* If a subflow has been reset, the packet should not
6584 			 * continue to be processed, drop the packet.
6585 			 */
6586 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6587 				goto discard;
6588 			break;
6589 		}
6590 		fallthrough;
6591 	case TCP_FIN_WAIT1:
6592 	case TCP_FIN_WAIT2:
6593 		/* RFC 793 says to queue data in these states,
6594 		 * RFC 1122 says we MUST send a reset.
6595 		 * BSD 4.4 also does reset.
6596 		 */
6597 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6598 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6599 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6600 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6601 				tcp_reset(sk, skb);
6602 				return 1;
6603 			}
6604 		}
6605 		fallthrough;
6606 	case TCP_ESTABLISHED:
6607 		tcp_data_queue(sk, skb);
6608 		queued = 1;
6609 		break;
6610 	}
6611 
6612 	/* tcp_data could move socket to TIME-WAIT */
6613 	if (sk->sk_state != TCP_CLOSE) {
6614 		tcp_data_snd_check(sk);
6615 		tcp_ack_snd_check(sk);
6616 	}
6617 
6618 	if (!queued) {
6619 discard:
6620 		tcp_drop(sk, skb);
6621 	}
6622 	return 0;
6623 }
6624 EXPORT_SYMBOL(tcp_rcv_state_process);
6625 
6626 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6627 {
6628 	struct inet_request_sock *ireq = inet_rsk(req);
6629 
6630 	if (family == AF_INET)
6631 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6632 				    &ireq->ir_rmt_addr, port);
6633 #if IS_ENABLED(CONFIG_IPV6)
6634 	else if (family == AF_INET6)
6635 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6636 				    &ireq->ir_v6_rmt_addr, port);
6637 #endif
6638 }
6639 
6640 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6641  *
6642  * If we receive a SYN packet with these bits set, it means a
6643  * network is playing bad games with TOS bits. In order to
6644  * avoid possible false congestion notifications, we disable
6645  * TCP ECN negotiation.
6646  *
6647  * Exception: tcp_ca wants ECN. This is required for DCTCP
6648  * congestion control: Linux DCTCP asserts ECT on all packets,
6649  * including SYN, which is most optimal solution; however,
6650  * others, such as FreeBSD do not.
6651  *
6652  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6653  * set, indicating the use of a future TCP extension (such as AccECN). See
6654  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6655  * extensions.
6656  */
6657 static void tcp_ecn_create_request(struct request_sock *req,
6658 				   const struct sk_buff *skb,
6659 				   const struct sock *listen_sk,
6660 				   const struct dst_entry *dst)
6661 {
6662 	const struct tcphdr *th = tcp_hdr(skb);
6663 	const struct net *net = sock_net(listen_sk);
6664 	bool th_ecn = th->ece && th->cwr;
6665 	bool ect, ecn_ok;
6666 	u32 ecn_ok_dst;
6667 
6668 	if (!th_ecn)
6669 		return;
6670 
6671 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6672 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6673 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6674 
6675 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6676 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6677 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6678 		inet_rsk(req)->ecn_ok = 1;
6679 }
6680 
6681 static void tcp_openreq_init(struct request_sock *req,
6682 			     const struct tcp_options_received *rx_opt,
6683 			     struct sk_buff *skb, const struct sock *sk)
6684 {
6685 	struct inet_request_sock *ireq = inet_rsk(req);
6686 
6687 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6688 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6689 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6690 	tcp_rsk(req)->snt_synack = 0;
6691 	tcp_rsk(req)->last_oow_ack_time = 0;
6692 	req->mss = rx_opt->mss_clamp;
6693 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6694 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6695 	ireq->sack_ok = rx_opt->sack_ok;
6696 	ireq->snd_wscale = rx_opt->snd_wscale;
6697 	ireq->wscale_ok = rx_opt->wscale_ok;
6698 	ireq->acked = 0;
6699 	ireq->ecn_ok = 0;
6700 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6701 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6702 	ireq->ir_mark = inet_request_mark(sk, skb);
6703 #if IS_ENABLED(CONFIG_SMC)
6704 	ireq->smc_ok = rx_opt->smc_ok;
6705 #endif
6706 }
6707 
6708 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6709 				      struct sock *sk_listener,
6710 				      bool attach_listener)
6711 {
6712 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6713 					       attach_listener);
6714 
6715 	if (req) {
6716 		struct inet_request_sock *ireq = inet_rsk(req);
6717 
6718 		ireq->ireq_opt = NULL;
6719 #if IS_ENABLED(CONFIG_IPV6)
6720 		ireq->pktopts = NULL;
6721 #endif
6722 		atomic64_set(&ireq->ir_cookie, 0);
6723 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6724 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6725 		ireq->ireq_family = sk_listener->sk_family;
6726 	}
6727 
6728 	return req;
6729 }
6730 EXPORT_SYMBOL(inet_reqsk_alloc);
6731 
6732 /*
6733  * Return true if a syncookie should be sent
6734  */
6735 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6736 {
6737 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6738 	const char *msg = "Dropping request";
6739 	bool want_cookie = false;
6740 	struct net *net = sock_net(sk);
6741 
6742 #ifdef CONFIG_SYN_COOKIES
6743 	if (net->ipv4.sysctl_tcp_syncookies) {
6744 		msg = "Sending cookies";
6745 		want_cookie = true;
6746 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6747 	} else
6748 #endif
6749 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6750 
6751 	if (!queue->synflood_warned &&
6752 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6753 	    xchg(&queue->synflood_warned, 1) == 0)
6754 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6755 				     proto, sk->sk_num, msg);
6756 
6757 	return want_cookie;
6758 }
6759 
6760 static void tcp_reqsk_record_syn(const struct sock *sk,
6761 				 struct request_sock *req,
6762 				 const struct sk_buff *skb)
6763 {
6764 	if (tcp_sk(sk)->save_syn) {
6765 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6766 		struct saved_syn *saved_syn;
6767 		u32 mac_hdrlen;
6768 		void *base;
6769 
6770 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6771 			base = skb_mac_header(skb);
6772 			mac_hdrlen = skb_mac_header_len(skb);
6773 			len += mac_hdrlen;
6774 		} else {
6775 			base = skb_network_header(skb);
6776 			mac_hdrlen = 0;
6777 		}
6778 
6779 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6780 				    GFP_ATOMIC);
6781 		if (saved_syn) {
6782 			saved_syn->mac_hdrlen = mac_hdrlen;
6783 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6784 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6785 			memcpy(saved_syn->data, base, len);
6786 			req->saved_syn = saved_syn;
6787 		}
6788 	}
6789 }
6790 
6791 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6792  * used for SYN cookie generation.
6793  */
6794 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6795 			  const struct tcp_request_sock_ops *af_ops,
6796 			  struct sock *sk, struct tcphdr *th)
6797 {
6798 	struct tcp_sock *tp = tcp_sk(sk);
6799 	u16 mss;
6800 
6801 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6802 	    !inet_csk_reqsk_queue_is_full(sk))
6803 		return 0;
6804 
6805 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6806 		return 0;
6807 
6808 	if (sk_acceptq_is_full(sk)) {
6809 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6810 		return 0;
6811 	}
6812 
6813 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6814 	if (!mss)
6815 		mss = af_ops->mss_clamp;
6816 
6817 	return mss;
6818 }
6819 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6820 
6821 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6822 		     const struct tcp_request_sock_ops *af_ops,
6823 		     struct sock *sk, struct sk_buff *skb)
6824 {
6825 	struct tcp_fastopen_cookie foc = { .len = -1 };
6826 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6827 	struct tcp_options_received tmp_opt;
6828 	struct tcp_sock *tp = tcp_sk(sk);
6829 	struct net *net = sock_net(sk);
6830 	struct sock *fastopen_sk = NULL;
6831 	struct request_sock *req;
6832 	bool want_cookie = false;
6833 	struct dst_entry *dst;
6834 	struct flowi fl;
6835 
6836 	/* TW buckets are converted to open requests without
6837 	 * limitations, they conserve resources and peer is
6838 	 * evidently real one.
6839 	 */
6840 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6841 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6842 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6843 		if (!want_cookie)
6844 			goto drop;
6845 	}
6846 
6847 	if (sk_acceptq_is_full(sk)) {
6848 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6849 		goto drop;
6850 	}
6851 
6852 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6853 	if (!req)
6854 		goto drop;
6855 
6856 	req->syncookie = want_cookie;
6857 	tcp_rsk(req)->af_specific = af_ops;
6858 	tcp_rsk(req)->ts_off = 0;
6859 #if IS_ENABLED(CONFIG_MPTCP)
6860 	tcp_rsk(req)->is_mptcp = 0;
6861 #endif
6862 
6863 	tcp_clear_options(&tmp_opt);
6864 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6865 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6866 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6867 			  want_cookie ? NULL : &foc);
6868 
6869 	if (want_cookie && !tmp_opt.saw_tstamp)
6870 		tcp_clear_options(&tmp_opt);
6871 
6872 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6873 		tmp_opt.smc_ok = 0;
6874 
6875 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6876 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6877 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6878 
6879 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6880 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6881 
6882 	dst = af_ops->route_req(sk, skb, &fl, req);
6883 	if (!dst)
6884 		goto drop_and_free;
6885 
6886 	if (tmp_opt.tstamp_ok)
6887 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6888 
6889 	if (!want_cookie && !isn) {
6890 		/* Kill the following clause, if you dislike this way. */
6891 		if (!net->ipv4.sysctl_tcp_syncookies &&
6892 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6893 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6894 		    !tcp_peer_is_proven(req, dst)) {
6895 			/* Without syncookies last quarter of
6896 			 * backlog is filled with destinations,
6897 			 * proven to be alive.
6898 			 * It means that we continue to communicate
6899 			 * to destinations, already remembered
6900 			 * to the moment of synflood.
6901 			 */
6902 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6903 				    rsk_ops->family);
6904 			goto drop_and_release;
6905 		}
6906 
6907 		isn = af_ops->init_seq(skb);
6908 	}
6909 
6910 	tcp_ecn_create_request(req, skb, sk, dst);
6911 
6912 	if (want_cookie) {
6913 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6914 		if (!tmp_opt.tstamp_ok)
6915 			inet_rsk(req)->ecn_ok = 0;
6916 	}
6917 
6918 	tcp_rsk(req)->snt_isn = isn;
6919 	tcp_rsk(req)->txhash = net_tx_rndhash();
6920 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6921 	tcp_openreq_init_rwin(req, sk, dst);
6922 	sk_rx_queue_set(req_to_sk(req), skb);
6923 	if (!want_cookie) {
6924 		tcp_reqsk_record_syn(sk, req, skb);
6925 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6926 	}
6927 	if (fastopen_sk) {
6928 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6929 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6930 		/* Add the child socket directly into the accept queue */
6931 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6932 			reqsk_fastopen_remove(fastopen_sk, req, false);
6933 			bh_unlock_sock(fastopen_sk);
6934 			sock_put(fastopen_sk);
6935 			goto drop_and_free;
6936 		}
6937 		sk->sk_data_ready(sk);
6938 		bh_unlock_sock(fastopen_sk);
6939 		sock_put(fastopen_sk);
6940 	} else {
6941 		tcp_rsk(req)->tfo_listener = false;
6942 		if (!want_cookie)
6943 			inet_csk_reqsk_queue_hash_add(sk, req,
6944 				tcp_timeout_init((struct sock *)req));
6945 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6946 				    !want_cookie ? TCP_SYNACK_NORMAL :
6947 						   TCP_SYNACK_COOKIE,
6948 				    skb);
6949 		if (want_cookie) {
6950 			reqsk_free(req);
6951 			return 0;
6952 		}
6953 	}
6954 	reqsk_put(req);
6955 	return 0;
6956 
6957 drop_and_release:
6958 	dst_release(dst);
6959 drop_and_free:
6960 	__reqsk_free(req);
6961 drop:
6962 	tcp_listendrop(sk);
6963 	return 0;
6964 }
6965 EXPORT_SYMBOL(tcp_conn_request);
6966