xref: /openbmc/linux/net/ipv4/tcp_input.c (revision a36954f5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
98 int sysctl_tcp_early_retrans __read_mostly = 3;
99 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
100 
101 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
108 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 #define REXMIT_NONE	0 /* no loss recovery to do */
125 #define REXMIT_LOST	1 /* retransmit packets marked lost */
126 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
127 
128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
129 			     unsigned int len)
130 {
131 	static bool __once __read_mostly;
132 
133 	if (!__once) {
134 		struct net_device *dev;
135 
136 		__once = true;
137 
138 		rcu_read_lock();
139 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 		if (!dev || len >= dev->mtu)
141 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 				dev ? dev->name : "Unknown driver");
143 		rcu_read_unlock();
144 	}
145 }
146 
147 /* Adapt the MSS value used to make delayed ack decision to the
148  * real world.
149  */
150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
151 {
152 	struct inet_connection_sock *icsk = inet_csk(sk);
153 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
154 	unsigned int len;
155 
156 	icsk->icsk_ack.last_seg_size = 0;
157 
158 	/* skb->len may jitter because of SACKs, even if peer
159 	 * sends good full-sized frames.
160 	 */
161 	len = skb_shinfo(skb)->gso_size ? : skb->len;
162 	if (len >= icsk->icsk_ack.rcv_mss) {
163 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
164 					       tcp_sk(sk)->advmss);
165 		/* Account for possibly-removed options */
166 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
167 				   MAX_TCP_OPTION_SPACE))
168 			tcp_gro_dev_warn(sk, skb, len);
169 	} else {
170 		/* Otherwise, we make more careful check taking into account,
171 		 * that SACKs block is variable.
172 		 *
173 		 * "len" is invariant segment length, including TCP header.
174 		 */
175 		len += skb->data - skb_transport_header(skb);
176 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
177 		    /* If PSH is not set, packet should be
178 		     * full sized, provided peer TCP is not badly broken.
179 		     * This observation (if it is correct 8)) allows
180 		     * to handle super-low mtu links fairly.
181 		     */
182 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
183 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
184 			/* Subtract also invariant (if peer is RFC compliant),
185 			 * tcp header plus fixed timestamp option length.
186 			 * Resulting "len" is MSS free of SACK jitter.
187 			 */
188 			len -= tcp_sk(sk)->tcp_header_len;
189 			icsk->icsk_ack.last_seg_size = len;
190 			if (len == lss) {
191 				icsk->icsk_ack.rcv_mss = len;
192 				return;
193 			}
194 		}
195 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
197 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
198 	}
199 }
200 
201 static void tcp_incr_quickack(struct sock *sk)
202 {
203 	struct inet_connection_sock *icsk = inet_csk(sk);
204 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
205 
206 	if (quickacks == 0)
207 		quickacks = 2;
208 	if (quickacks > icsk->icsk_ack.quick)
209 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
210 }
211 
212 static void tcp_enter_quickack_mode(struct sock *sk)
213 {
214 	struct inet_connection_sock *icsk = inet_csk(sk);
215 	tcp_incr_quickack(sk);
216 	icsk->icsk_ack.pingpong = 0;
217 	icsk->icsk_ack.ato = TCP_ATO_MIN;
218 }
219 
220 /* Send ACKs quickly, if "quick" count is not exhausted
221  * and the session is not interactive.
222  */
223 
224 static bool tcp_in_quickack_mode(struct sock *sk)
225 {
226 	const struct inet_connection_sock *icsk = inet_csk(sk);
227 	const struct dst_entry *dst = __sk_dst_get(sk);
228 
229 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
231 }
232 
233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
234 {
235 	if (tp->ecn_flags & TCP_ECN_OK)
236 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
237 }
238 
239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
240 {
241 	if (tcp_hdr(skb)->cwr)
242 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
243 }
244 
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
246 {
247 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248 }
249 
250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
251 {
252 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
253 	case INET_ECN_NOT_ECT:
254 		/* Funny extension: if ECT is not set on a segment,
255 		 * and we already seen ECT on a previous segment,
256 		 * it is probably a retransmit.
257 		 */
258 		if (tp->ecn_flags & TCP_ECN_SEEN)
259 			tcp_enter_quickack_mode((struct sock *)tp);
260 		break;
261 	case INET_ECN_CE:
262 		if (tcp_ca_needs_ecn((struct sock *)tp))
263 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
264 
265 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 			/* Better not delay acks, sender can have a very low cwnd */
267 			tcp_enter_quickack_mode((struct sock *)tp);
268 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
269 		}
270 		tp->ecn_flags |= TCP_ECN_SEEN;
271 		break;
272 	default:
273 		if (tcp_ca_needs_ecn((struct sock *)tp))
274 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
275 		tp->ecn_flags |= TCP_ECN_SEEN;
276 		break;
277 	}
278 }
279 
280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
281 {
282 	if (tp->ecn_flags & TCP_ECN_OK)
283 		__tcp_ecn_check_ce(tp, skb);
284 }
285 
286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
287 {
288 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
289 		tp->ecn_flags &= ~TCP_ECN_OK;
290 }
291 
292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
293 {
294 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
295 		tp->ecn_flags &= ~TCP_ECN_OK;
296 }
297 
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
299 {
300 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
301 		return true;
302 	return false;
303 }
304 
305 /* Buffer size and advertised window tuning.
306  *
307  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
308  */
309 
310 static void tcp_sndbuf_expand(struct sock *sk)
311 {
312 	const struct tcp_sock *tp = tcp_sk(sk);
313 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
314 	int sndmem, per_mss;
315 	u32 nr_segs;
316 
317 	/* Worst case is non GSO/TSO : each frame consumes one skb
318 	 * and skb->head is kmalloced using power of two area of memory
319 	 */
320 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
321 		  MAX_TCP_HEADER +
322 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
323 
324 	per_mss = roundup_pow_of_two(per_mss) +
325 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
326 
327 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
329 
330 	/* Fast Recovery (RFC 5681 3.2) :
331 	 * Cubic needs 1.7 factor, rounded to 2 to include
332 	 * extra cushion (application might react slowly to POLLOUT)
333 	 */
334 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 	sndmem *= nr_segs * per_mss;
336 
337 	if (sk->sk_sndbuf < sndmem)
338 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
339 }
340 
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342  *
343  * All tcp_full_space() is split to two parts: "network" buffer, allocated
344  * forward and advertised in receiver window (tp->rcv_wnd) and
345  * "application buffer", required to isolate scheduling/application
346  * latencies from network.
347  * window_clamp is maximal advertised window. It can be less than
348  * tcp_full_space(), in this case tcp_full_space() - window_clamp
349  * is reserved for "application" buffer. The less window_clamp is
350  * the smoother our behaviour from viewpoint of network, but the lower
351  * throughput and the higher sensitivity of the connection to losses. 8)
352  *
353  * rcv_ssthresh is more strict window_clamp used at "slow start"
354  * phase to predict further behaviour of this connection.
355  * It is used for two goals:
356  * - to enforce header prediction at sender, even when application
357  *   requires some significant "application buffer". It is check #1.
358  * - to prevent pruning of receive queue because of misprediction
359  *   of receiver window. Check #2.
360  *
361  * The scheme does not work when sender sends good segments opening
362  * window and then starts to feed us spaghetti. But it should work
363  * in common situations. Otherwise, we have to rely on queue collapsing.
364  */
365 
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 	/* Optimize this! */
371 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
373 
374 	while (tp->rcv_ssthresh <= window) {
375 		if (truesize <= skb->len)
376 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
377 
378 		truesize >>= 1;
379 		window >>= 1;
380 	}
381 	return 0;
382 }
383 
384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
385 {
386 	struct tcp_sock *tp = tcp_sk(sk);
387 
388 	/* Check #1 */
389 	if (tp->rcv_ssthresh < tp->window_clamp &&
390 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
391 	    !tcp_under_memory_pressure(sk)) {
392 		int incr;
393 
394 		/* Check #2. Increase window, if skb with such overhead
395 		 * will fit to rcvbuf in future.
396 		 */
397 		if (tcp_win_from_space(skb->truesize) <= skb->len)
398 			incr = 2 * tp->advmss;
399 		else
400 			incr = __tcp_grow_window(sk, skb);
401 
402 		if (incr) {
403 			incr = max_t(int, incr, 2 * skb->len);
404 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
405 					       tp->window_clamp);
406 			inet_csk(sk)->icsk_ack.quick |= 1;
407 		}
408 	}
409 }
410 
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock *sk)
413 {
414 	u32 mss = tcp_sk(sk)->advmss;
415 	int rcvmem;
416 
417 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 		 tcp_default_init_rwnd(mss);
419 
420 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 	 * Allow enough cushion so that sender is not limited by our window
422 	 */
423 	if (sysctl_tcp_moderate_rcvbuf)
424 		rcvmem <<= 2;
425 
426 	if (sk->sk_rcvbuf < rcvmem)
427 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
428 }
429 
430 /* 4. Try to fixup all. It is made immediately after connection enters
431  *    established state.
432  */
433 void tcp_init_buffer_space(struct sock *sk)
434 {
435 	struct tcp_sock *tp = tcp_sk(sk);
436 	int maxwin;
437 
438 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 		tcp_fixup_rcvbuf(sk);
440 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
441 		tcp_sndbuf_expand(sk);
442 
443 	tp->rcvq_space.space = tp->rcv_wnd;
444 	skb_mstamp_get(&tp->tcp_mstamp);
445 	tp->rcvq_space.time = tp->tcp_mstamp;
446 	tp->rcvq_space.seq = tp->copied_seq;
447 
448 	maxwin = tcp_full_space(sk);
449 
450 	if (tp->window_clamp >= maxwin) {
451 		tp->window_clamp = maxwin;
452 
453 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 			tp->window_clamp = max(maxwin -
455 					       (maxwin >> sysctl_tcp_app_win),
456 					       4 * tp->advmss);
457 	}
458 
459 	/* Force reservation of one segment. */
460 	if (sysctl_tcp_app_win &&
461 	    tp->window_clamp > 2 * tp->advmss &&
462 	    tp->window_clamp + tp->advmss > maxwin)
463 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464 
465 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 	tp->snd_cwnd_stamp = tcp_time_stamp;
467 }
468 
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
471 {
472 	struct tcp_sock *tp = tcp_sk(sk);
473 	struct inet_connection_sock *icsk = inet_csk(sk);
474 
475 	icsk->icsk_ack.quick = 0;
476 
477 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 	    !tcp_under_memory_pressure(sk) &&
480 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 				    sysctl_tcp_rmem[2]);
483 	}
484 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487 
488 /* Initialize RCV_MSS value.
489  * RCV_MSS is an our guess about MSS used by the peer.
490  * We haven't any direct information about the MSS.
491  * It's better to underestimate the RCV_MSS rather than overestimate.
492  * Overestimations make us ACKing less frequently than needed.
493  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494  */
495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 	const struct tcp_sock *tp = tcp_sk(sk);
498 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499 
500 	hint = min(hint, tp->rcv_wnd / 2);
501 	hint = min(hint, TCP_MSS_DEFAULT);
502 	hint = max(hint, TCP_MIN_MSS);
503 
504 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507 
508 /* Receiver "autotuning" code.
509  *
510  * The algorithm for RTT estimation w/o timestamps is based on
511  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512  * <http://public.lanl.gov/radiant/pubs.html#DRS>
513  *
514  * More detail on this code can be found at
515  * <http://staff.psc.edu/jheffner/>,
516  * though this reference is out of date.  A new paper
517  * is pending.
518  */
519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
522 	long m = sample;
523 
524 	if (m == 0)
525 		m = 1;
526 
527 	if (new_sample != 0) {
528 		/* If we sample in larger samples in the non-timestamp
529 		 * case, we could grossly overestimate the RTT especially
530 		 * with chatty applications or bulk transfer apps which
531 		 * are stalled on filesystem I/O.
532 		 *
533 		 * Also, since we are only going for a minimum in the
534 		 * non-timestamp case, we do not smooth things out
535 		 * else with timestamps disabled convergence takes too
536 		 * long.
537 		 */
538 		if (!win_dep) {
539 			m -= (new_sample >> 3);
540 			new_sample += m;
541 		} else {
542 			m <<= 3;
543 			if (m < new_sample)
544 				new_sample = m;
545 		}
546 	} else {
547 		/* No previous measure. */
548 		new_sample = m << 3;
549 	}
550 
551 	tp->rcv_rtt_est.rtt_us = new_sample;
552 }
553 
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
555 {
556 	u32 delta_us;
557 
558 	if (tp->rcv_rtt_est.time.v64 == 0)
559 		goto new_measure;
560 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
561 		return;
562 	delta_us = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcv_rtt_est.time);
563 	tcp_rcv_rtt_update(tp, delta_us, 1);
564 
565 new_measure:
566 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
567 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
568 }
569 
570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
571 					  const struct sk_buff *skb)
572 {
573 	struct tcp_sock *tp = tcp_sk(sk);
574 	if (tp->rx_opt.rcv_tsecr &&
575 	    (TCP_SKB_CB(skb)->end_seq -
576 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
577 		tcp_rcv_rtt_update(tp,
578 				   jiffies_to_usecs(tcp_time_stamp -
579 						    tp->rx_opt.rcv_tsecr),
580 				   0);
581 }
582 
583 /*
584  * This function should be called every time data is copied to user space.
585  * It calculates the appropriate TCP receive buffer space.
586  */
587 void tcp_rcv_space_adjust(struct sock *sk)
588 {
589 	struct tcp_sock *tp = tcp_sk(sk);
590 	int time;
591 	int copied;
592 
593 	time = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcvq_space.time);
594 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
595 		return;
596 
597 	/* Number of bytes copied to user in last RTT */
598 	copied = tp->copied_seq - tp->rcvq_space.seq;
599 	if (copied <= tp->rcvq_space.space)
600 		goto new_measure;
601 
602 	/* A bit of theory :
603 	 * copied = bytes received in previous RTT, our base window
604 	 * To cope with packet losses, we need a 2x factor
605 	 * To cope with slow start, and sender growing its cwin by 100 %
606 	 * every RTT, we need a 4x factor, because the ACK we are sending
607 	 * now is for the next RTT, not the current one :
608 	 * <prev RTT . ><current RTT .. ><next RTT .... >
609 	 */
610 
611 	if (sysctl_tcp_moderate_rcvbuf &&
612 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
613 		int rcvwin, rcvmem, rcvbuf;
614 
615 		/* minimal window to cope with packet losses, assuming
616 		 * steady state. Add some cushion because of small variations.
617 		 */
618 		rcvwin = (copied << 1) + 16 * tp->advmss;
619 
620 		/* If rate increased by 25%,
621 		 *	assume slow start, rcvwin = 3 * copied
622 		 * If rate increased by 50%,
623 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
624 		 */
625 		if (copied >=
626 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
627 			if (copied >=
628 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
629 				rcvwin <<= 1;
630 			else
631 				rcvwin += (rcvwin >> 1);
632 		}
633 
634 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
635 		while (tcp_win_from_space(rcvmem) < tp->advmss)
636 			rcvmem += 128;
637 
638 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
639 		if (rcvbuf > sk->sk_rcvbuf) {
640 			sk->sk_rcvbuf = rcvbuf;
641 
642 			/* Make the window clamp follow along.  */
643 			tp->window_clamp = rcvwin;
644 		}
645 	}
646 	tp->rcvq_space.space = copied;
647 
648 new_measure:
649 	tp->rcvq_space.seq = tp->copied_seq;
650 	tp->rcvq_space.time = tp->tcp_mstamp;
651 }
652 
653 /* There is something which you must keep in mind when you analyze the
654  * behavior of the tp->ato delayed ack timeout interval.  When a
655  * connection starts up, we want to ack as quickly as possible.  The
656  * problem is that "good" TCP's do slow start at the beginning of data
657  * transmission.  The means that until we send the first few ACK's the
658  * sender will sit on his end and only queue most of his data, because
659  * he can only send snd_cwnd unacked packets at any given time.  For
660  * each ACK we send, he increments snd_cwnd and transmits more of his
661  * queue.  -DaveM
662  */
663 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
664 {
665 	struct tcp_sock *tp = tcp_sk(sk);
666 	struct inet_connection_sock *icsk = inet_csk(sk);
667 	u32 now;
668 
669 	inet_csk_schedule_ack(sk);
670 
671 	tcp_measure_rcv_mss(sk, skb);
672 
673 	tcp_rcv_rtt_measure(tp);
674 
675 	now = tcp_time_stamp;
676 
677 	if (!icsk->icsk_ack.ato) {
678 		/* The _first_ data packet received, initialize
679 		 * delayed ACK engine.
680 		 */
681 		tcp_incr_quickack(sk);
682 		icsk->icsk_ack.ato = TCP_ATO_MIN;
683 	} else {
684 		int m = now - icsk->icsk_ack.lrcvtime;
685 
686 		if (m <= TCP_ATO_MIN / 2) {
687 			/* The fastest case is the first. */
688 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
689 		} else if (m < icsk->icsk_ack.ato) {
690 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
691 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
692 				icsk->icsk_ack.ato = icsk->icsk_rto;
693 		} else if (m > icsk->icsk_rto) {
694 			/* Too long gap. Apparently sender failed to
695 			 * restart window, so that we send ACKs quickly.
696 			 */
697 			tcp_incr_quickack(sk);
698 			sk_mem_reclaim(sk);
699 		}
700 	}
701 	icsk->icsk_ack.lrcvtime = now;
702 
703 	tcp_ecn_check_ce(tp, skb);
704 
705 	if (skb->len >= 128)
706 		tcp_grow_window(sk, skb);
707 }
708 
709 /* Called to compute a smoothed rtt estimate. The data fed to this
710  * routine either comes from timestamps, or from segments that were
711  * known _not_ to have been retransmitted [see Karn/Partridge
712  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
713  * piece by Van Jacobson.
714  * NOTE: the next three routines used to be one big routine.
715  * To save cycles in the RFC 1323 implementation it was better to break
716  * it up into three procedures. -- erics
717  */
718 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
719 {
720 	struct tcp_sock *tp = tcp_sk(sk);
721 	long m = mrtt_us; /* RTT */
722 	u32 srtt = tp->srtt_us;
723 
724 	/*	The following amusing code comes from Jacobson's
725 	 *	article in SIGCOMM '88.  Note that rtt and mdev
726 	 *	are scaled versions of rtt and mean deviation.
727 	 *	This is designed to be as fast as possible
728 	 *	m stands for "measurement".
729 	 *
730 	 *	On a 1990 paper the rto value is changed to:
731 	 *	RTO = rtt + 4 * mdev
732 	 *
733 	 * Funny. This algorithm seems to be very broken.
734 	 * These formulae increase RTO, when it should be decreased, increase
735 	 * too slowly, when it should be increased quickly, decrease too quickly
736 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
737 	 * does not matter how to _calculate_ it. Seems, it was trap
738 	 * that VJ failed to avoid. 8)
739 	 */
740 	if (srtt != 0) {
741 		m -= (srtt >> 3);	/* m is now error in rtt est */
742 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
743 		if (m < 0) {
744 			m = -m;		/* m is now abs(error) */
745 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
746 			/* This is similar to one of Eifel findings.
747 			 * Eifel blocks mdev updates when rtt decreases.
748 			 * This solution is a bit different: we use finer gain
749 			 * for mdev in this case (alpha*beta).
750 			 * Like Eifel it also prevents growth of rto,
751 			 * but also it limits too fast rto decreases,
752 			 * happening in pure Eifel.
753 			 */
754 			if (m > 0)
755 				m >>= 3;
756 		} else {
757 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
758 		}
759 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
760 		if (tp->mdev_us > tp->mdev_max_us) {
761 			tp->mdev_max_us = tp->mdev_us;
762 			if (tp->mdev_max_us > tp->rttvar_us)
763 				tp->rttvar_us = tp->mdev_max_us;
764 		}
765 		if (after(tp->snd_una, tp->rtt_seq)) {
766 			if (tp->mdev_max_us < tp->rttvar_us)
767 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
768 			tp->rtt_seq = tp->snd_nxt;
769 			tp->mdev_max_us = tcp_rto_min_us(sk);
770 		}
771 	} else {
772 		/* no previous measure. */
773 		srtt = m << 3;		/* take the measured time to be rtt */
774 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
775 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
776 		tp->mdev_max_us = tp->rttvar_us;
777 		tp->rtt_seq = tp->snd_nxt;
778 	}
779 	tp->srtt_us = max(1U, srtt);
780 }
781 
782 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
783  * Note: TCP stack does not yet implement pacing.
784  * FQ packet scheduler can be used to implement cheap but effective
785  * TCP pacing, to smooth the burst on large writes when packets
786  * in flight is significantly lower than cwnd (or rwin)
787  */
788 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
789 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
790 
791 static void tcp_update_pacing_rate(struct sock *sk)
792 {
793 	const struct tcp_sock *tp = tcp_sk(sk);
794 	u64 rate;
795 
796 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
797 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
798 
799 	/* current rate is (cwnd * mss) / srtt
800 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
801 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
802 	 *
803 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
804 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
805 	 *	 end of slow start and should slow down.
806 	 */
807 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
808 		rate *= sysctl_tcp_pacing_ss_ratio;
809 	else
810 		rate *= sysctl_tcp_pacing_ca_ratio;
811 
812 	rate *= max(tp->snd_cwnd, tp->packets_out);
813 
814 	if (likely(tp->srtt_us))
815 		do_div(rate, tp->srtt_us);
816 
817 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
818 	 * without any lock. We want to make sure compiler wont store
819 	 * intermediate values in this location.
820 	 */
821 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
822 						sk->sk_max_pacing_rate);
823 }
824 
825 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
826  * routine referred to above.
827  */
828 static void tcp_set_rto(struct sock *sk)
829 {
830 	const struct tcp_sock *tp = tcp_sk(sk);
831 	/* Old crap is replaced with new one. 8)
832 	 *
833 	 * More seriously:
834 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
835 	 *    It cannot be less due to utterly erratic ACK generation made
836 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
837 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
838 	 *    is invisible. Actually, Linux-2.4 also generates erratic
839 	 *    ACKs in some circumstances.
840 	 */
841 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
842 
843 	/* 2. Fixups made earlier cannot be right.
844 	 *    If we do not estimate RTO correctly without them,
845 	 *    all the algo is pure shit and should be replaced
846 	 *    with correct one. It is exactly, which we pretend to do.
847 	 */
848 
849 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
850 	 * guarantees that rto is higher.
851 	 */
852 	tcp_bound_rto(sk);
853 }
854 
855 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
856 {
857 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
858 
859 	if (!cwnd)
860 		cwnd = TCP_INIT_CWND;
861 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
862 }
863 
864 /*
865  * Packet counting of FACK is based on in-order assumptions, therefore TCP
866  * disables it when reordering is detected
867  */
868 void tcp_disable_fack(struct tcp_sock *tp)
869 {
870 	/* RFC3517 uses different metric in lost marker => reset on change */
871 	if (tcp_is_fack(tp))
872 		tp->lost_skb_hint = NULL;
873 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
874 }
875 
876 /* Take a notice that peer is sending D-SACKs */
877 static void tcp_dsack_seen(struct tcp_sock *tp)
878 {
879 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
880 }
881 
882 static void tcp_update_reordering(struct sock *sk, const int metric,
883 				  const int ts)
884 {
885 	struct tcp_sock *tp = tcp_sk(sk);
886 	int mib_idx;
887 
888 	if (metric > tp->reordering) {
889 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
890 
891 #if FASTRETRANS_DEBUG > 1
892 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
894 			 tp->reordering,
895 			 tp->fackets_out,
896 			 tp->sacked_out,
897 			 tp->undo_marker ? tp->undo_retrans : 0);
898 #endif
899 		tcp_disable_fack(tp);
900 	}
901 
902 	tp->rack.reord = 1;
903 
904 	/* This exciting event is worth to be remembered. 8) */
905 	if (ts)
906 		mib_idx = LINUX_MIB_TCPTSREORDER;
907 	else if (tcp_is_reno(tp))
908 		mib_idx = LINUX_MIB_TCPRENOREORDER;
909 	else if (tcp_is_fack(tp))
910 		mib_idx = LINUX_MIB_TCPFACKREORDER;
911 	else
912 		mib_idx = LINUX_MIB_TCPSACKREORDER;
913 
914 	NET_INC_STATS(sock_net(sk), mib_idx);
915 }
916 
917 /* This must be called before lost_out is incremented */
918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
919 {
920 	if (!tp->retransmit_skb_hint ||
921 	    before(TCP_SKB_CB(skb)->seq,
922 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
923 		tp->retransmit_skb_hint = skb;
924 }
925 
926 /* Sum the number of packets on the wire we have marked as lost.
927  * There are two cases we care about here:
928  * a) Packet hasn't been marked lost (nor retransmitted),
929  *    and this is the first loss.
930  * b) Packet has been marked both lost and retransmitted,
931  *    and this means we think it was lost again.
932  */
933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
934 {
935 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
936 
937 	if (!(sacked & TCPCB_LOST) ||
938 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
939 		tp->lost += tcp_skb_pcount(skb);
940 }
941 
942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
943 {
944 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 		tcp_verify_retransmit_hint(tp, skb);
946 
947 		tp->lost_out += tcp_skb_pcount(skb);
948 		tcp_sum_lost(tp, skb);
949 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 	}
951 }
952 
953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
954 {
955 	tcp_verify_retransmit_hint(tp, skb);
956 
957 	tcp_sum_lost(tp, skb);
958 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 		tp->lost_out += tcp_skb_pcount(skb);
960 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
961 	}
962 }
963 
964 /* This procedure tags the retransmission queue when SACKs arrive.
965  *
966  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967  * Packets in queue with these bits set are counted in variables
968  * sacked_out, retrans_out and lost_out, correspondingly.
969  *
970  * Valid combinations are:
971  * Tag  InFlight	Description
972  * 0	1		- orig segment is in flight.
973  * S	0		- nothing flies, orig reached receiver.
974  * L	0		- nothing flies, orig lost by net.
975  * R	2		- both orig and retransmit are in flight.
976  * L|R	1		- orig is lost, retransmit is in flight.
977  * S|R  1		- orig reached receiver, retrans is still in flight.
978  * (L|S|R is logically valid, it could occur when L|R is sacked,
979  *  but it is equivalent to plain S and code short-curcuits it to S.
980  *  L|S is logically invalid, it would mean -1 packet in flight 8))
981  *
982  * These 6 states form finite state machine, controlled by the following events:
983  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985  * 3. Loss detection event of two flavors:
986  *	A. Scoreboard estimator decided the packet is lost.
987  *	   A'. Reno "three dupacks" marks head of queue lost.
988  *	   A''. Its FACK modification, head until snd.fack is lost.
989  *	B. SACK arrives sacking SND.NXT at the moment, when the
990  *	   segment was retransmitted.
991  * 4. D-SACK added new rule: D-SACK changes any tag to S.
992  *
993  * It is pleasant to note, that state diagram turns out to be commutative,
994  * so that we are allowed not to be bothered by order of our actions,
995  * when multiple events arrive simultaneously. (see the function below).
996  *
997  * Reordering detection.
998  * --------------------
999  * Reordering metric is maximal distance, which a packet can be displaced
1000  * in packet stream. With SACKs we can estimate it:
1001  *
1002  * 1. SACK fills old hole and the corresponding segment was not
1003  *    ever retransmitted -> reordering. Alas, we cannot use it
1004  *    when segment was retransmitted.
1005  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1006  *    for retransmitted and already SACKed segment -> reordering..
1007  * Both of these heuristics are not used in Loss state, when we cannot
1008  * account for retransmits accurately.
1009  *
1010  * SACK block validation.
1011  * ----------------------
1012  *
1013  * SACK block range validation checks that the received SACK block fits to
1014  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1015  * Note that SND.UNA is not included to the range though being valid because
1016  * it means that the receiver is rather inconsistent with itself reporting
1017  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1018  * perfectly valid, however, in light of RFC2018 which explicitly states
1019  * that "SACK block MUST reflect the newest segment.  Even if the newest
1020  * segment is going to be discarded ...", not that it looks very clever
1021  * in case of head skb. Due to potentional receiver driven attacks, we
1022  * choose to avoid immediate execution of a walk in write queue due to
1023  * reneging and defer head skb's loss recovery to standard loss recovery
1024  * procedure that will eventually trigger (nothing forbids us doing this).
1025  *
1026  * Implements also blockage to start_seq wrap-around. Problem lies in the
1027  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1028  * there's no guarantee that it will be before snd_nxt (n). The problem
1029  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1030  * wrap (s_w):
1031  *
1032  *         <- outs wnd ->                          <- wrapzone ->
1033  *         u     e      n                         u_w   e_w  s n_w
1034  *         |     |      |                          |     |   |  |
1035  * |<------------+------+----- TCP seqno space --------------+---------->|
1036  * ...-- <2^31 ->|                                           |<--------...
1037  * ...---- >2^31 ------>|                                    |<--------...
1038  *
1039  * Current code wouldn't be vulnerable but it's better still to discard such
1040  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1041  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1042  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1043  * equal to the ideal case (infinite seqno space without wrap caused issues).
1044  *
1045  * With D-SACK the lower bound is extended to cover sequence space below
1046  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1047  * again, D-SACK block must not to go across snd_una (for the same reason as
1048  * for the normal SACK blocks, explained above). But there all simplicity
1049  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1050  * fully below undo_marker they do not affect behavior in anyway and can
1051  * therefore be safely ignored. In rare cases (which are more or less
1052  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1053  * fragmentation and packet reordering past skb's retransmission. To consider
1054  * them correctly, the acceptable range must be extended even more though
1055  * the exact amount is rather hard to quantify. However, tp->max_window can
1056  * be used as an exaggerated estimate.
1057  */
1058 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1059 				   u32 start_seq, u32 end_seq)
1060 {
1061 	/* Too far in future, or reversed (interpretation is ambiguous) */
1062 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1063 		return false;
1064 
1065 	/* Nasty start_seq wrap-around check (see comments above) */
1066 	if (!before(start_seq, tp->snd_nxt))
1067 		return false;
1068 
1069 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1070 	 * start_seq == snd_una is non-sensical (see comments above)
1071 	 */
1072 	if (after(start_seq, tp->snd_una))
1073 		return true;
1074 
1075 	if (!is_dsack || !tp->undo_marker)
1076 		return false;
1077 
1078 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1079 	if (after(end_seq, tp->snd_una))
1080 		return false;
1081 
1082 	if (!before(start_seq, tp->undo_marker))
1083 		return true;
1084 
1085 	/* Too old */
1086 	if (!after(end_seq, tp->undo_marker))
1087 		return false;
1088 
1089 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1090 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1091 	 */
1092 	return !before(start_seq, end_seq - tp->max_window);
1093 }
1094 
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 			    struct tcp_sack_block_wire *sp, int num_sacks,
1097 			    u32 prior_snd_una)
1098 {
1099 	struct tcp_sock *tp = tcp_sk(sk);
1100 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 	bool dup_sack = false;
1103 
1104 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 		dup_sack = true;
1106 		tcp_dsack_seen(tp);
1107 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 	} else if (num_sacks > 1) {
1109 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111 
1112 		if (!after(end_seq_0, end_seq_1) &&
1113 		    !before(start_seq_0, start_seq_1)) {
1114 			dup_sack = true;
1115 			tcp_dsack_seen(tp);
1116 			NET_INC_STATS(sock_net(sk),
1117 					LINUX_MIB_TCPDSACKOFORECV);
1118 		}
1119 	}
1120 
1121 	/* D-SACK for already forgotten data... Do dumb counting. */
1122 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 	    !after(end_seq_0, prior_snd_una) &&
1124 	    after(end_seq_0, tp->undo_marker))
1125 		tp->undo_retrans--;
1126 
1127 	return dup_sack;
1128 }
1129 
1130 struct tcp_sacktag_state {
1131 	int	reord;
1132 	int	fack_count;
1133 	/* Timestamps for earliest and latest never-retransmitted segment
1134 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 	 * but congestion control should still get an accurate delay signal.
1136 	 */
1137 	struct skb_mstamp first_sackt;
1138 	struct skb_mstamp last_sackt;
1139 	struct rate_sample *rate;
1140 	int	flag;
1141 };
1142 
1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144  * the incoming SACK may not exactly match but we can find smaller MSS
1145  * aligned portion of it that matches. Therefore we might need to fragment
1146  * which may fail and creates some hassle (caller must handle error case
1147  * returns).
1148  *
1149  * FIXME: this could be merged to shift decision code
1150  */
1151 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1152 				  u32 start_seq, u32 end_seq)
1153 {
1154 	int err;
1155 	bool in_sack;
1156 	unsigned int pkt_len;
1157 	unsigned int mss;
1158 
1159 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1160 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1161 
1162 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1163 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1164 		mss = tcp_skb_mss(skb);
1165 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1166 
1167 		if (!in_sack) {
1168 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1169 			if (pkt_len < mss)
1170 				pkt_len = mss;
1171 		} else {
1172 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1173 			if (pkt_len < mss)
1174 				return -EINVAL;
1175 		}
1176 
1177 		/* Round if necessary so that SACKs cover only full MSSes
1178 		 * and/or the remaining small portion (if present)
1179 		 */
1180 		if (pkt_len > mss) {
1181 			unsigned int new_len = (pkt_len / mss) * mss;
1182 			if (!in_sack && new_len < pkt_len)
1183 				new_len += mss;
1184 			pkt_len = new_len;
1185 		}
1186 
1187 		if (pkt_len >= skb->len && !in_sack)
1188 			return 0;
1189 
1190 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1191 		if (err < 0)
1192 			return err;
1193 	}
1194 
1195 	return in_sack;
1196 }
1197 
1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1199 static u8 tcp_sacktag_one(struct sock *sk,
1200 			  struct tcp_sacktag_state *state, u8 sacked,
1201 			  u32 start_seq, u32 end_seq,
1202 			  int dup_sack, int pcount,
1203 			  const struct skb_mstamp *xmit_time)
1204 {
1205 	struct tcp_sock *tp = tcp_sk(sk);
1206 	int fack_count = state->fack_count;
1207 
1208 	/* Account D-SACK for retransmitted packet. */
1209 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1210 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1211 		    after(end_seq, tp->undo_marker))
1212 			tp->undo_retrans--;
1213 		if (sacked & TCPCB_SACKED_ACKED)
1214 			state->reord = min(fack_count, state->reord);
1215 	}
1216 
1217 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1218 	if (!after(end_seq, tp->snd_una))
1219 		return sacked;
1220 
1221 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1222 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1223 
1224 		if (sacked & TCPCB_SACKED_RETRANS) {
1225 			/* If the segment is not tagged as lost,
1226 			 * we do not clear RETRANS, believing
1227 			 * that retransmission is still in flight.
1228 			 */
1229 			if (sacked & TCPCB_LOST) {
1230 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1231 				tp->lost_out -= pcount;
1232 				tp->retrans_out -= pcount;
1233 			}
1234 		} else {
1235 			if (!(sacked & TCPCB_RETRANS)) {
1236 				/* New sack for not retransmitted frame,
1237 				 * which was in hole. It is reordering.
1238 				 */
1239 				if (before(start_seq,
1240 					   tcp_highest_sack_seq(tp)))
1241 					state->reord = min(fack_count,
1242 							   state->reord);
1243 				if (!after(end_seq, tp->high_seq))
1244 					state->flag |= FLAG_ORIG_SACK_ACKED;
1245 				if (state->first_sackt.v64 == 0)
1246 					state->first_sackt = *xmit_time;
1247 				state->last_sackt = *xmit_time;
1248 			}
1249 
1250 			if (sacked & TCPCB_LOST) {
1251 				sacked &= ~TCPCB_LOST;
1252 				tp->lost_out -= pcount;
1253 			}
1254 		}
1255 
1256 		sacked |= TCPCB_SACKED_ACKED;
1257 		state->flag |= FLAG_DATA_SACKED;
1258 		tp->sacked_out += pcount;
1259 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1260 
1261 		fack_count += pcount;
1262 
1263 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1264 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1265 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1266 			tp->lost_cnt_hint += pcount;
1267 
1268 		if (fack_count > tp->fackets_out)
1269 			tp->fackets_out = fack_count;
1270 	}
1271 
1272 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1273 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1274 	 * are accounted above as well.
1275 	 */
1276 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1277 		sacked &= ~TCPCB_SACKED_RETRANS;
1278 		tp->retrans_out -= pcount;
1279 	}
1280 
1281 	return sacked;
1282 }
1283 
1284 /* Shift newly-SACKed bytes from this skb to the immediately previous
1285  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1286  */
1287 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1288 			    struct tcp_sacktag_state *state,
1289 			    unsigned int pcount, int shifted, int mss,
1290 			    bool dup_sack)
1291 {
1292 	struct tcp_sock *tp = tcp_sk(sk);
1293 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1294 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1295 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1296 
1297 	BUG_ON(!pcount);
1298 
1299 	/* Adjust counters and hints for the newly sacked sequence
1300 	 * range but discard the return value since prev is already
1301 	 * marked. We must tag the range first because the seq
1302 	 * advancement below implicitly advances
1303 	 * tcp_highest_sack_seq() when skb is highest_sack.
1304 	 */
1305 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1306 			start_seq, end_seq, dup_sack, pcount,
1307 			&skb->skb_mstamp);
1308 	tcp_rate_skb_delivered(sk, skb, state->rate);
1309 
1310 	if (skb == tp->lost_skb_hint)
1311 		tp->lost_cnt_hint += pcount;
1312 
1313 	TCP_SKB_CB(prev)->end_seq += shifted;
1314 	TCP_SKB_CB(skb)->seq += shifted;
1315 
1316 	tcp_skb_pcount_add(prev, pcount);
1317 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1318 	tcp_skb_pcount_add(skb, -pcount);
1319 
1320 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1321 	 * in theory this shouldn't be necessary but as long as DSACK
1322 	 * code can come after this skb later on it's better to keep
1323 	 * setting gso_size to something.
1324 	 */
1325 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1326 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1327 
1328 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1329 	if (tcp_skb_pcount(skb) <= 1)
1330 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1331 
1332 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1333 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1334 
1335 	if (skb->len > 0) {
1336 		BUG_ON(!tcp_skb_pcount(skb));
1337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1338 		return false;
1339 	}
1340 
1341 	/* Whole SKB was eaten :-) */
1342 
1343 	if (skb == tp->retransmit_skb_hint)
1344 		tp->retransmit_skb_hint = prev;
1345 	if (skb == tp->lost_skb_hint) {
1346 		tp->lost_skb_hint = prev;
1347 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1348 	}
1349 
1350 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1351 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1352 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1353 		TCP_SKB_CB(prev)->end_seq++;
1354 
1355 	if (skb == tcp_highest_sack(sk))
1356 		tcp_advance_highest_sack(sk, skb);
1357 
1358 	tcp_skb_collapse_tstamp(prev, skb);
1359 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1360 		TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1361 
1362 	tcp_unlink_write_queue(skb, sk);
1363 	sk_wmem_free_skb(sk, skb);
1364 
1365 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1366 
1367 	return true;
1368 }
1369 
1370 /* I wish gso_size would have a bit more sane initialization than
1371  * something-or-zero which complicates things
1372  */
1373 static int tcp_skb_seglen(const struct sk_buff *skb)
1374 {
1375 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1376 }
1377 
1378 /* Shifting pages past head area doesn't work */
1379 static int skb_can_shift(const struct sk_buff *skb)
1380 {
1381 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1382 }
1383 
1384 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1385  * skb.
1386  */
1387 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1388 					  struct tcp_sacktag_state *state,
1389 					  u32 start_seq, u32 end_seq,
1390 					  bool dup_sack)
1391 {
1392 	struct tcp_sock *tp = tcp_sk(sk);
1393 	struct sk_buff *prev;
1394 	int mss;
1395 	int pcount = 0;
1396 	int len;
1397 	int in_sack;
1398 
1399 	if (!sk_can_gso(sk))
1400 		goto fallback;
1401 
1402 	/* Normally R but no L won't result in plain S */
1403 	if (!dup_sack &&
1404 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1405 		goto fallback;
1406 	if (!skb_can_shift(skb))
1407 		goto fallback;
1408 	/* This frame is about to be dropped (was ACKed). */
1409 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1410 		goto fallback;
1411 
1412 	/* Can only happen with delayed DSACK + discard craziness */
1413 	if (unlikely(skb == tcp_write_queue_head(sk)))
1414 		goto fallback;
1415 	prev = tcp_write_queue_prev(sk, skb);
1416 
1417 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1418 		goto fallback;
1419 
1420 	if (!tcp_skb_can_collapse_to(prev))
1421 		goto fallback;
1422 
1423 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1424 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1425 
1426 	if (in_sack) {
1427 		len = skb->len;
1428 		pcount = tcp_skb_pcount(skb);
1429 		mss = tcp_skb_seglen(skb);
1430 
1431 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1432 		 * drop this restriction as unnecessary
1433 		 */
1434 		if (mss != tcp_skb_seglen(prev))
1435 			goto fallback;
1436 	} else {
1437 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1438 			goto noop;
1439 		/* CHECKME: This is non-MSS split case only?, this will
1440 		 * cause skipped skbs due to advancing loop btw, original
1441 		 * has that feature too
1442 		 */
1443 		if (tcp_skb_pcount(skb) <= 1)
1444 			goto noop;
1445 
1446 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1447 		if (!in_sack) {
1448 			/* TODO: head merge to next could be attempted here
1449 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1450 			 * though it might not be worth of the additional hassle
1451 			 *
1452 			 * ...we can probably just fallback to what was done
1453 			 * previously. We could try merging non-SACKed ones
1454 			 * as well but it probably isn't going to buy off
1455 			 * because later SACKs might again split them, and
1456 			 * it would make skb timestamp tracking considerably
1457 			 * harder problem.
1458 			 */
1459 			goto fallback;
1460 		}
1461 
1462 		len = end_seq - TCP_SKB_CB(skb)->seq;
1463 		BUG_ON(len < 0);
1464 		BUG_ON(len > skb->len);
1465 
1466 		/* MSS boundaries should be honoured or else pcount will
1467 		 * severely break even though it makes things bit trickier.
1468 		 * Optimize common case to avoid most of the divides
1469 		 */
1470 		mss = tcp_skb_mss(skb);
1471 
1472 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1473 		 * drop this restriction as unnecessary
1474 		 */
1475 		if (mss != tcp_skb_seglen(prev))
1476 			goto fallback;
1477 
1478 		if (len == mss) {
1479 			pcount = 1;
1480 		} else if (len < mss) {
1481 			goto noop;
1482 		} else {
1483 			pcount = len / mss;
1484 			len = pcount * mss;
1485 		}
1486 	}
1487 
1488 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1489 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1490 		goto fallback;
1491 
1492 	if (!skb_shift(prev, skb, len))
1493 		goto fallback;
1494 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1495 		goto out;
1496 
1497 	/* Hole filled allows collapsing with the next as well, this is very
1498 	 * useful when hole on every nth skb pattern happens
1499 	 */
1500 	if (prev == tcp_write_queue_tail(sk))
1501 		goto out;
1502 	skb = tcp_write_queue_next(sk, prev);
1503 
1504 	if (!skb_can_shift(skb) ||
1505 	    (skb == tcp_send_head(sk)) ||
1506 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1507 	    (mss != tcp_skb_seglen(skb)))
1508 		goto out;
1509 
1510 	len = skb->len;
1511 	if (skb_shift(prev, skb, len)) {
1512 		pcount += tcp_skb_pcount(skb);
1513 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1514 	}
1515 
1516 out:
1517 	state->fack_count += pcount;
1518 	return prev;
1519 
1520 noop:
1521 	return skb;
1522 
1523 fallback:
1524 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1525 	return NULL;
1526 }
1527 
1528 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1529 					struct tcp_sack_block *next_dup,
1530 					struct tcp_sacktag_state *state,
1531 					u32 start_seq, u32 end_seq,
1532 					bool dup_sack_in)
1533 {
1534 	struct tcp_sock *tp = tcp_sk(sk);
1535 	struct sk_buff *tmp;
1536 
1537 	tcp_for_write_queue_from(skb, sk) {
1538 		int in_sack = 0;
1539 		bool dup_sack = dup_sack_in;
1540 
1541 		if (skb == tcp_send_head(sk))
1542 			break;
1543 
1544 		/* queue is in-order => we can short-circuit the walk early */
1545 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546 			break;
1547 
1548 		if (next_dup  &&
1549 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550 			in_sack = tcp_match_skb_to_sack(sk, skb,
1551 							next_dup->start_seq,
1552 							next_dup->end_seq);
1553 			if (in_sack > 0)
1554 				dup_sack = true;
1555 		}
1556 
1557 		/* skb reference here is a bit tricky to get right, since
1558 		 * shifting can eat and free both this skb and the next,
1559 		 * so not even _safe variant of the loop is enough.
1560 		 */
1561 		if (in_sack <= 0) {
1562 			tmp = tcp_shift_skb_data(sk, skb, state,
1563 						 start_seq, end_seq, dup_sack);
1564 			if (tmp) {
1565 				if (tmp != skb) {
1566 					skb = tmp;
1567 					continue;
1568 				}
1569 
1570 				in_sack = 0;
1571 			} else {
1572 				in_sack = tcp_match_skb_to_sack(sk, skb,
1573 								start_seq,
1574 								end_seq);
1575 			}
1576 		}
1577 
1578 		if (unlikely(in_sack < 0))
1579 			break;
1580 
1581 		if (in_sack) {
1582 			TCP_SKB_CB(skb)->sacked =
1583 				tcp_sacktag_one(sk,
1584 						state,
1585 						TCP_SKB_CB(skb)->sacked,
1586 						TCP_SKB_CB(skb)->seq,
1587 						TCP_SKB_CB(skb)->end_seq,
1588 						dup_sack,
1589 						tcp_skb_pcount(skb),
1590 						&skb->skb_mstamp);
1591 			tcp_rate_skb_delivered(sk, skb, state->rate);
1592 
1593 			if (!before(TCP_SKB_CB(skb)->seq,
1594 				    tcp_highest_sack_seq(tp)))
1595 				tcp_advance_highest_sack(sk, skb);
1596 		}
1597 
1598 		state->fack_count += tcp_skb_pcount(skb);
1599 	}
1600 	return skb;
1601 }
1602 
1603 /* Avoid all extra work that is being done by sacktag while walking in
1604  * a normal way
1605  */
1606 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1607 					struct tcp_sacktag_state *state,
1608 					u32 skip_to_seq)
1609 {
1610 	tcp_for_write_queue_from(skb, sk) {
1611 		if (skb == tcp_send_head(sk))
1612 			break;
1613 
1614 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1615 			break;
1616 
1617 		state->fack_count += tcp_skb_pcount(skb);
1618 	}
1619 	return skb;
1620 }
1621 
1622 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1623 						struct sock *sk,
1624 						struct tcp_sack_block *next_dup,
1625 						struct tcp_sacktag_state *state,
1626 						u32 skip_to_seq)
1627 {
1628 	if (!next_dup)
1629 		return skb;
1630 
1631 	if (before(next_dup->start_seq, skip_to_seq)) {
1632 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1633 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1634 				       next_dup->start_seq, next_dup->end_seq,
1635 				       1);
1636 	}
1637 
1638 	return skb;
1639 }
1640 
1641 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1642 {
1643 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1644 }
1645 
1646 static int
1647 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1648 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1649 {
1650 	struct tcp_sock *tp = tcp_sk(sk);
1651 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1652 				    TCP_SKB_CB(ack_skb)->sacked);
1653 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1654 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1655 	struct tcp_sack_block *cache;
1656 	struct sk_buff *skb;
1657 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1658 	int used_sacks;
1659 	bool found_dup_sack = false;
1660 	int i, j;
1661 	int first_sack_index;
1662 
1663 	state->flag = 0;
1664 	state->reord = tp->packets_out;
1665 
1666 	if (!tp->sacked_out) {
1667 		if (WARN_ON(tp->fackets_out))
1668 			tp->fackets_out = 0;
1669 		tcp_highest_sack_reset(sk);
1670 	}
1671 
1672 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1673 					 num_sacks, prior_snd_una);
1674 	if (found_dup_sack) {
1675 		state->flag |= FLAG_DSACKING_ACK;
1676 		tp->delivered++; /* A spurious retransmission is delivered */
1677 	}
1678 
1679 	/* Eliminate too old ACKs, but take into
1680 	 * account more or less fresh ones, they can
1681 	 * contain valid SACK info.
1682 	 */
1683 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1684 		return 0;
1685 
1686 	if (!tp->packets_out)
1687 		goto out;
1688 
1689 	used_sacks = 0;
1690 	first_sack_index = 0;
1691 	for (i = 0; i < num_sacks; i++) {
1692 		bool dup_sack = !i && found_dup_sack;
1693 
1694 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1695 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1696 
1697 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1698 					    sp[used_sacks].start_seq,
1699 					    sp[used_sacks].end_seq)) {
1700 			int mib_idx;
1701 
1702 			if (dup_sack) {
1703 				if (!tp->undo_marker)
1704 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1705 				else
1706 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1707 			} else {
1708 				/* Don't count olds caused by ACK reordering */
1709 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1710 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1711 					continue;
1712 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1713 			}
1714 
1715 			NET_INC_STATS(sock_net(sk), mib_idx);
1716 			if (i == 0)
1717 				first_sack_index = -1;
1718 			continue;
1719 		}
1720 
1721 		/* Ignore very old stuff early */
1722 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1723 			continue;
1724 
1725 		used_sacks++;
1726 	}
1727 
1728 	/* order SACK blocks to allow in order walk of the retrans queue */
1729 	for (i = used_sacks - 1; i > 0; i--) {
1730 		for (j = 0; j < i; j++) {
1731 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1732 				swap(sp[j], sp[j + 1]);
1733 
1734 				/* Track where the first SACK block goes to */
1735 				if (j == first_sack_index)
1736 					first_sack_index = j + 1;
1737 			}
1738 		}
1739 	}
1740 
1741 	skb = tcp_write_queue_head(sk);
1742 	state->fack_count = 0;
1743 	i = 0;
1744 
1745 	if (!tp->sacked_out) {
1746 		/* It's already past, so skip checking against it */
1747 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748 	} else {
1749 		cache = tp->recv_sack_cache;
1750 		/* Skip empty blocks in at head of the cache */
1751 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1752 		       !cache->end_seq)
1753 			cache++;
1754 	}
1755 
1756 	while (i < used_sacks) {
1757 		u32 start_seq = sp[i].start_seq;
1758 		u32 end_seq = sp[i].end_seq;
1759 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1760 		struct tcp_sack_block *next_dup = NULL;
1761 
1762 		if (found_dup_sack && ((i + 1) == first_sack_index))
1763 			next_dup = &sp[i + 1];
1764 
1765 		/* Skip too early cached blocks */
1766 		while (tcp_sack_cache_ok(tp, cache) &&
1767 		       !before(start_seq, cache->end_seq))
1768 			cache++;
1769 
1770 		/* Can skip some work by looking recv_sack_cache? */
1771 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1772 		    after(end_seq, cache->start_seq)) {
1773 
1774 			/* Head todo? */
1775 			if (before(start_seq, cache->start_seq)) {
1776 				skb = tcp_sacktag_skip(skb, sk, state,
1777 						       start_seq);
1778 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1779 						       state,
1780 						       start_seq,
1781 						       cache->start_seq,
1782 						       dup_sack);
1783 			}
1784 
1785 			/* Rest of the block already fully processed? */
1786 			if (!after(end_seq, cache->end_seq))
1787 				goto advance_sp;
1788 
1789 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1790 						       state,
1791 						       cache->end_seq);
1792 
1793 			/* ...tail remains todo... */
1794 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1795 				/* ...but better entrypoint exists! */
1796 				skb = tcp_highest_sack(sk);
1797 				if (!skb)
1798 					break;
1799 				state->fack_count = tp->fackets_out;
1800 				cache++;
1801 				goto walk;
1802 			}
1803 
1804 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1805 			/* Check overlap against next cached too (past this one already) */
1806 			cache++;
1807 			continue;
1808 		}
1809 
1810 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1811 			skb = tcp_highest_sack(sk);
1812 			if (!skb)
1813 				break;
1814 			state->fack_count = tp->fackets_out;
1815 		}
1816 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1817 
1818 walk:
1819 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1820 				       start_seq, end_seq, dup_sack);
1821 
1822 advance_sp:
1823 		i++;
1824 	}
1825 
1826 	/* Clear the head of the cache sack blocks so we can skip it next time */
1827 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1828 		tp->recv_sack_cache[i].start_seq = 0;
1829 		tp->recv_sack_cache[i].end_seq = 0;
1830 	}
1831 	for (j = 0; j < used_sacks; j++)
1832 		tp->recv_sack_cache[i++] = sp[j];
1833 
1834 	if ((state->reord < tp->fackets_out) &&
1835 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1836 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1837 
1838 	tcp_verify_left_out(tp);
1839 out:
1840 
1841 #if FASTRETRANS_DEBUG > 0
1842 	WARN_ON((int)tp->sacked_out < 0);
1843 	WARN_ON((int)tp->lost_out < 0);
1844 	WARN_ON((int)tp->retrans_out < 0);
1845 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1846 #endif
1847 	return state->flag;
1848 }
1849 
1850 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1851  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1852  */
1853 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1854 {
1855 	u32 holes;
1856 
1857 	holes = max(tp->lost_out, 1U);
1858 	holes = min(holes, tp->packets_out);
1859 
1860 	if ((tp->sacked_out + holes) > tp->packets_out) {
1861 		tp->sacked_out = tp->packets_out - holes;
1862 		return true;
1863 	}
1864 	return false;
1865 }
1866 
1867 /* If we receive more dupacks than we expected counting segments
1868  * in assumption of absent reordering, interpret this as reordering.
1869  * The only another reason could be bug in receiver TCP.
1870  */
1871 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 	if (tcp_limit_reno_sacked(tp))
1875 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1876 }
1877 
1878 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1879 
1880 static void tcp_add_reno_sack(struct sock *sk)
1881 {
1882 	struct tcp_sock *tp = tcp_sk(sk);
1883 	u32 prior_sacked = tp->sacked_out;
1884 
1885 	tp->sacked_out++;
1886 	tcp_check_reno_reordering(sk, 0);
1887 	if (tp->sacked_out > prior_sacked)
1888 		tp->delivered++; /* Some out-of-order packet is delivered */
1889 	tcp_verify_left_out(tp);
1890 }
1891 
1892 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1893 
1894 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1895 {
1896 	struct tcp_sock *tp = tcp_sk(sk);
1897 
1898 	if (acked > 0) {
1899 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1900 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1901 		if (acked - 1 >= tp->sacked_out)
1902 			tp->sacked_out = 0;
1903 		else
1904 			tp->sacked_out -= acked - 1;
1905 	}
1906 	tcp_check_reno_reordering(sk, acked);
1907 	tcp_verify_left_out(tp);
1908 }
1909 
1910 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1911 {
1912 	tp->sacked_out = 0;
1913 }
1914 
1915 void tcp_clear_retrans(struct tcp_sock *tp)
1916 {
1917 	tp->retrans_out = 0;
1918 	tp->lost_out = 0;
1919 	tp->undo_marker = 0;
1920 	tp->undo_retrans = -1;
1921 	tp->fackets_out = 0;
1922 	tp->sacked_out = 0;
1923 }
1924 
1925 static inline void tcp_init_undo(struct tcp_sock *tp)
1926 {
1927 	tp->undo_marker = tp->snd_una;
1928 	/* Retransmission still in flight may cause DSACKs later. */
1929 	tp->undo_retrans = tp->retrans_out ? : -1;
1930 }
1931 
1932 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1933  * and reset tags completely, otherwise preserve SACKs. If receiver
1934  * dropped its ofo queue, we will know this due to reneging detection.
1935  */
1936 void tcp_enter_loss(struct sock *sk)
1937 {
1938 	const struct inet_connection_sock *icsk = inet_csk(sk);
1939 	struct tcp_sock *tp = tcp_sk(sk);
1940 	struct net *net = sock_net(sk);
1941 	struct sk_buff *skb;
1942 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1943 	bool is_reneg;			/* is receiver reneging on SACKs? */
1944 	bool mark_lost;
1945 
1946 	/* Reduce ssthresh if it has not yet been made inside this window. */
1947 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1948 	    !after(tp->high_seq, tp->snd_una) ||
1949 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1950 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1951 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1952 		tcp_ca_event(sk, CA_EVENT_LOSS);
1953 		tcp_init_undo(tp);
1954 	}
1955 	tp->snd_cwnd	   = 1;
1956 	tp->snd_cwnd_cnt   = 0;
1957 	tp->snd_cwnd_stamp = tcp_time_stamp;
1958 
1959 	tp->retrans_out = 0;
1960 	tp->lost_out = 0;
1961 
1962 	if (tcp_is_reno(tp))
1963 		tcp_reset_reno_sack(tp);
1964 
1965 	skb = tcp_write_queue_head(sk);
1966 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1967 	if (is_reneg) {
1968 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1969 		tp->sacked_out = 0;
1970 		tp->fackets_out = 0;
1971 	}
1972 	tcp_clear_all_retrans_hints(tp);
1973 
1974 	tcp_for_write_queue(skb, sk) {
1975 		if (skb == tcp_send_head(sk))
1976 			break;
1977 
1978 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1979 			     is_reneg);
1980 		if (mark_lost)
1981 			tcp_sum_lost(tp, skb);
1982 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1983 		if (mark_lost) {
1984 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1985 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1986 			tp->lost_out += tcp_skb_pcount(skb);
1987 		}
1988 	}
1989 	tcp_verify_left_out(tp);
1990 
1991 	/* Timeout in disordered state after receiving substantial DUPACKs
1992 	 * suggests that the degree of reordering is over-estimated.
1993 	 */
1994 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1995 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1996 		tp->reordering = min_t(unsigned int, tp->reordering,
1997 				       net->ipv4.sysctl_tcp_reordering);
1998 	tcp_set_ca_state(sk, TCP_CA_Loss);
1999 	tp->high_seq = tp->snd_nxt;
2000 	tcp_ecn_queue_cwr(tp);
2001 
2002 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2003 	 * loss recovery is underway except recurring timeout(s) on
2004 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2005 	 *
2006 	 * In theory F-RTO can be used repeatedly during loss recovery.
2007 	 * In practice this interacts badly with broken middle-boxes that
2008 	 * falsely raise the receive window, which results in repeated
2009 	 * timeouts and stop-and-go behavior.
2010 	 */
2011 	tp->frto = sysctl_tcp_frto &&
2012 		   (new_recovery || icsk->icsk_retransmits) &&
2013 		   !inet_csk(sk)->icsk_mtup.probe_size;
2014 }
2015 
2016 /* If ACK arrived pointing to a remembered SACK, it means that our
2017  * remembered SACKs do not reflect real state of receiver i.e.
2018  * receiver _host_ is heavily congested (or buggy).
2019  *
2020  * To avoid big spurious retransmission bursts due to transient SACK
2021  * scoreboard oddities that look like reneging, we give the receiver a
2022  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2023  * restore sanity to the SACK scoreboard. If the apparent reneging
2024  * persists until this RTO then we'll clear the SACK scoreboard.
2025  */
2026 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2027 {
2028 	if (flag & FLAG_SACK_RENEGING) {
2029 		struct tcp_sock *tp = tcp_sk(sk);
2030 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2031 					  msecs_to_jiffies(10));
2032 
2033 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2034 					  delay, TCP_RTO_MAX);
2035 		return true;
2036 	}
2037 	return false;
2038 }
2039 
2040 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2041 {
2042 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2043 }
2044 
2045 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2046  * counter when SACK is enabled (without SACK, sacked_out is used for
2047  * that purpose).
2048  *
2049  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2050  * segments up to the highest received SACK block so far and holes in
2051  * between them.
2052  *
2053  * With reordering, holes may still be in flight, so RFC3517 recovery
2054  * uses pure sacked_out (total number of SACKed segments) even though
2055  * it violates the RFC that uses duplicate ACKs, often these are equal
2056  * but when e.g. out-of-window ACKs or packet duplication occurs,
2057  * they differ. Since neither occurs due to loss, TCP should really
2058  * ignore them.
2059  */
2060 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2061 {
2062 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2063 }
2064 
2065 /* Linux NewReno/SACK/FACK/ECN state machine.
2066  * --------------------------------------
2067  *
2068  * "Open"	Normal state, no dubious events, fast path.
2069  * "Disorder"   In all the respects it is "Open",
2070  *		but requires a bit more attention. It is entered when
2071  *		we see some SACKs or dupacks. It is split of "Open"
2072  *		mainly to move some processing from fast path to slow one.
2073  * "CWR"	CWND was reduced due to some Congestion Notification event.
2074  *		It can be ECN, ICMP source quench, local device congestion.
2075  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2076  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2077  *
2078  * tcp_fastretrans_alert() is entered:
2079  * - each incoming ACK, if state is not "Open"
2080  * - when arrived ACK is unusual, namely:
2081  *	* SACK
2082  *	* Duplicate ACK.
2083  *	* ECN ECE.
2084  *
2085  * Counting packets in flight is pretty simple.
2086  *
2087  *	in_flight = packets_out - left_out + retrans_out
2088  *
2089  *	packets_out is SND.NXT-SND.UNA counted in packets.
2090  *
2091  *	retrans_out is number of retransmitted segments.
2092  *
2093  *	left_out is number of segments left network, but not ACKed yet.
2094  *
2095  *		left_out = sacked_out + lost_out
2096  *
2097  *     sacked_out: Packets, which arrived to receiver out of order
2098  *		   and hence not ACKed. With SACKs this number is simply
2099  *		   amount of SACKed data. Even without SACKs
2100  *		   it is easy to give pretty reliable estimate of this number,
2101  *		   counting duplicate ACKs.
2102  *
2103  *       lost_out: Packets lost by network. TCP has no explicit
2104  *		   "loss notification" feedback from network (for now).
2105  *		   It means that this number can be only _guessed_.
2106  *		   Actually, it is the heuristics to predict lossage that
2107  *		   distinguishes different algorithms.
2108  *
2109  *	F.e. after RTO, when all the queue is considered as lost,
2110  *	lost_out = packets_out and in_flight = retrans_out.
2111  *
2112  *		Essentially, we have now a few algorithms detecting
2113  *		lost packets.
2114  *
2115  *		If the receiver supports SACK:
2116  *
2117  *		RFC6675/3517: It is the conventional algorithm. A packet is
2118  *		considered lost if the number of higher sequence packets
2119  *		SACKed is greater than or equal the DUPACK thoreshold
2120  *		(reordering). This is implemented in tcp_mark_head_lost and
2121  *		tcp_update_scoreboard.
2122  *
2123  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2124  *		(2017-) that checks timing instead of counting DUPACKs.
2125  *		Essentially a packet is considered lost if it's not S/ACKed
2126  *		after RTT + reordering_window, where both metrics are
2127  *		dynamically measured and adjusted. This is implemented in
2128  *		tcp_rack_mark_lost.
2129  *
2130  *		FACK (Disabled by default. Subsumbed by RACK):
2131  *		It is the simplest heuristics. As soon as we decided
2132  *		that something is lost, we decide that _all_ not SACKed
2133  *		packets until the most forward SACK are lost. I.e.
2134  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2135  *		It is absolutely correct estimate, if network does not reorder
2136  *		packets. And it loses any connection to reality when reordering
2137  *		takes place. We use FACK by default until reordering
2138  *		is suspected on the path to this destination.
2139  *
2140  *		If the receiver does not support SACK:
2141  *
2142  *		NewReno (RFC6582): in Recovery we assume that one segment
2143  *		is lost (classic Reno). While we are in Recovery and
2144  *		a partial ACK arrives, we assume that one more packet
2145  *		is lost (NewReno). This heuristics are the same in NewReno
2146  *		and SACK.
2147  *
2148  * Really tricky (and requiring careful tuning) part of algorithm
2149  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2150  * The first determines the moment _when_ we should reduce CWND and,
2151  * hence, slow down forward transmission. In fact, it determines the moment
2152  * when we decide that hole is caused by loss, rather than by a reorder.
2153  *
2154  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2155  * holes, caused by lost packets.
2156  *
2157  * And the most logically complicated part of algorithm is undo
2158  * heuristics. We detect false retransmits due to both too early
2159  * fast retransmit (reordering) and underestimated RTO, analyzing
2160  * timestamps and D-SACKs. When we detect that some segments were
2161  * retransmitted by mistake and CWND reduction was wrong, we undo
2162  * window reduction and abort recovery phase. This logic is hidden
2163  * inside several functions named tcp_try_undo_<something>.
2164  */
2165 
2166 /* This function decides, when we should leave Disordered state
2167  * and enter Recovery phase, reducing congestion window.
2168  *
2169  * Main question: may we further continue forward transmission
2170  * with the same cwnd?
2171  */
2172 static bool tcp_time_to_recover(struct sock *sk, int flag)
2173 {
2174 	struct tcp_sock *tp = tcp_sk(sk);
2175 
2176 	/* Trick#1: The loss is proven. */
2177 	if (tp->lost_out)
2178 		return true;
2179 
2180 	/* Not-A-Trick#2 : Classic rule... */
2181 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2182 		return true;
2183 
2184 	return false;
2185 }
2186 
2187 /* Detect loss in event "A" above by marking head of queue up as lost.
2188  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2189  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2190  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2191  * the maximum SACKed segments to pass before reaching this limit.
2192  */
2193 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2194 {
2195 	struct tcp_sock *tp = tcp_sk(sk);
2196 	struct sk_buff *skb;
2197 	int cnt, oldcnt, lost;
2198 	unsigned int mss;
2199 	/* Use SACK to deduce losses of new sequences sent during recovery */
2200 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2201 
2202 	WARN_ON(packets > tp->packets_out);
2203 	if (tp->lost_skb_hint) {
2204 		skb = tp->lost_skb_hint;
2205 		cnt = tp->lost_cnt_hint;
2206 		/* Head already handled? */
2207 		if (mark_head && skb != tcp_write_queue_head(sk))
2208 			return;
2209 	} else {
2210 		skb = tcp_write_queue_head(sk);
2211 		cnt = 0;
2212 	}
2213 
2214 	tcp_for_write_queue_from(skb, sk) {
2215 		if (skb == tcp_send_head(sk))
2216 			break;
2217 		/* TODO: do this better */
2218 		/* this is not the most efficient way to do this... */
2219 		tp->lost_skb_hint = skb;
2220 		tp->lost_cnt_hint = cnt;
2221 
2222 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2223 			break;
2224 
2225 		oldcnt = cnt;
2226 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2227 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2228 			cnt += tcp_skb_pcount(skb);
2229 
2230 		if (cnt > packets) {
2231 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2232 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2233 			    (oldcnt >= packets))
2234 				break;
2235 
2236 			mss = tcp_skb_mss(skb);
2237 			/* If needed, chop off the prefix to mark as lost. */
2238 			lost = (packets - oldcnt) * mss;
2239 			if (lost < skb->len &&
2240 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2241 				break;
2242 			cnt = packets;
2243 		}
2244 
2245 		tcp_skb_mark_lost(tp, skb);
2246 
2247 		if (mark_head)
2248 			break;
2249 	}
2250 	tcp_verify_left_out(tp);
2251 }
2252 
2253 /* Account newly detected lost packet(s) */
2254 
2255 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2256 {
2257 	struct tcp_sock *tp = tcp_sk(sk);
2258 
2259 	if (tcp_is_reno(tp)) {
2260 		tcp_mark_head_lost(sk, 1, 1);
2261 	} else if (tcp_is_fack(tp)) {
2262 		int lost = tp->fackets_out - tp->reordering;
2263 		if (lost <= 0)
2264 			lost = 1;
2265 		tcp_mark_head_lost(sk, lost, 0);
2266 	} else {
2267 		int sacked_upto = tp->sacked_out - tp->reordering;
2268 		if (sacked_upto >= 0)
2269 			tcp_mark_head_lost(sk, sacked_upto, 0);
2270 		else if (fast_rexmit)
2271 			tcp_mark_head_lost(sk, 1, 1);
2272 	}
2273 }
2274 
2275 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2276 {
2277 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2278 	       before(tp->rx_opt.rcv_tsecr, when);
2279 }
2280 
2281 /* skb is spurious retransmitted if the returned timestamp echo
2282  * reply is prior to the skb transmission time
2283  */
2284 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2285 				     const struct sk_buff *skb)
2286 {
2287 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2288 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2289 }
2290 
2291 /* Nothing was retransmitted or returned timestamp is less
2292  * than timestamp of the first retransmission.
2293  */
2294 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2295 {
2296 	return !tp->retrans_stamp ||
2297 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2298 }
2299 
2300 /* Undo procedures. */
2301 
2302 /* We can clear retrans_stamp when there are no retransmissions in the
2303  * window. It would seem that it is trivially available for us in
2304  * tp->retrans_out, however, that kind of assumptions doesn't consider
2305  * what will happen if errors occur when sending retransmission for the
2306  * second time. ...It could the that such segment has only
2307  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2308  * the head skb is enough except for some reneging corner cases that
2309  * are not worth the effort.
2310  *
2311  * Main reason for all this complexity is the fact that connection dying
2312  * time now depends on the validity of the retrans_stamp, in particular,
2313  * that successive retransmissions of a segment must not advance
2314  * retrans_stamp under any conditions.
2315  */
2316 static bool tcp_any_retrans_done(const struct sock *sk)
2317 {
2318 	const struct tcp_sock *tp = tcp_sk(sk);
2319 	struct sk_buff *skb;
2320 
2321 	if (tp->retrans_out)
2322 		return true;
2323 
2324 	skb = tcp_write_queue_head(sk);
2325 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2326 		return true;
2327 
2328 	return false;
2329 }
2330 
2331 #if FASTRETRANS_DEBUG > 1
2332 static void DBGUNDO(struct sock *sk, const char *msg)
2333 {
2334 	struct tcp_sock *tp = tcp_sk(sk);
2335 	struct inet_sock *inet = inet_sk(sk);
2336 
2337 	if (sk->sk_family == AF_INET) {
2338 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2339 			 msg,
2340 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2341 			 tp->snd_cwnd, tcp_left_out(tp),
2342 			 tp->snd_ssthresh, tp->prior_ssthresh,
2343 			 tp->packets_out);
2344 	}
2345 #if IS_ENABLED(CONFIG_IPV6)
2346 	else if (sk->sk_family == AF_INET6) {
2347 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2348 			 msg,
2349 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2350 			 tp->snd_cwnd, tcp_left_out(tp),
2351 			 tp->snd_ssthresh, tp->prior_ssthresh,
2352 			 tp->packets_out);
2353 	}
2354 #endif
2355 }
2356 #else
2357 #define DBGUNDO(x...) do { } while (0)
2358 #endif
2359 
2360 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2361 {
2362 	struct tcp_sock *tp = tcp_sk(sk);
2363 
2364 	if (unmark_loss) {
2365 		struct sk_buff *skb;
2366 
2367 		tcp_for_write_queue(skb, sk) {
2368 			if (skb == tcp_send_head(sk))
2369 				break;
2370 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2371 		}
2372 		tp->lost_out = 0;
2373 		tcp_clear_all_retrans_hints(tp);
2374 	}
2375 
2376 	if (tp->prior_ssthresh) {
2377 		const struct inet_connection_sock *icsk = inet_csk(sk);
2378 
2379 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2380 
2381 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2382 			tp->snd_ssthresh = tp->prior_ssthresh;
2383 			tcp_ecn_withdraw_cwr(tp);
2384 		}
2385 	}
2386 	tp->snd_cwnd_stamp = tcp_time_stamp;
2387 	tp->undo_marker = 0;
2388 }
2389 
2390 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2391 {
2392 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2393 }
2394 
2395 /* People celebrate: "We love our President!" */
2396 static bool tcp_try_undo_recovery(struct sock *sk)
2397 {
2398 	struct tcp_sock *tp = tcp_sk(sk);
2399 
2400 	if (tcp_may_undo(tp)) {
2401 		int mib_idx;
2402 
2403 		/* Happy end! We did not retransmit anything
2404 		 * or our original transmission succeeded.
2405 		 */
2406 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2407 		tcp_undo_cwnd_reduction(sk, false);
2408 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2409 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2410 		else
2411 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2412 
2413 		NET_INC_STATS(sock_net(sk), mib_idx);
2414 	}
2415 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2416 		/* Hold old state until something *above* high_seq
2417 		 * is ACKed. For Reno it is MUST to prevent false
2418 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2419 		if (!tcp_any_retrans_done(sk))
2420 			tp->retrans_stamp = 0;
2421 		return true;
2422 	}
2423 	tcp_set_ca_state(sk, TCP_CA_Open);
2424 	return false;
2425 }
2426 
2427 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2428 static bool tcp_try_undo_dsack(struct sock *sk)
2429 {
2430 	struct tcp_sock *tp = tcp_sk(sk);
2431 
2432 	if (tp->undo_marker && !tp->undo_retrans) {
2433 		DBGUNDO(sk, "D-SACK");
2434 		tcp_undo_cwnd_reduction(sk, false);
2435 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2436 		return true;
2437 	}
2438 	return false;
2439 }
2440 
2441 /* Undo during loss recovery after partial ACK or using F-RTO. */
2442 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2443 {
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 
2446 	if (frto_undo || tcp_may_undo(tp)) {
2447 		tcp_undo_cwnd_reduction(sk, true);
2448 
2449 		DBGUNDO(sk, "partial loss");
2450 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2451 		if (frto_undo)
2452 			NET_INC_STATS(sock_net(sk),
2453 					LINUX_MIB_TCPSPURIOUSRTOS);
2454 		inet_csk(sk)->icsk_retransmits = 0;
2455 		if (frto_undo || tcp_is_sack(tp))
2456 			tcp_set_ca_state(sk, TCP_CA_Open);
2457 		return true;
2458 	}
2459 	return false;
2460 }
2461 
2462 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2463  * It computes the number of packets to send (sndcnt) based on packets newly
2464  * delivered:
2465  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2466  *	cwnd reductions across a full RTT.
2467  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2468  *      But when the retransmits are acked without further losses, PRR
2469  *      slow starts cwnd up to ssthresh to speed up the recovery.
2470  */
2471 static void tcp_init_cwnd_reduction(struct sock *sk)
2472 {
2473 	struct tcp_sock *tp = tcp_sk(sk);
2474 
2475 	tp->high_seq = tp->snd_nxt;
2476 	tp->tlp_high_seq = 0;
2477 	tp->snd_cwnd_cnt = 0;
2478 	tp->prior_cwnd = tp->snd_cwnd;
2479 	tp->prr_delivered = 0;
2480 	tp->prr_out = 0;
2481 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2482 	tcp_ecn_queue_cwr(tp);
2483 }
2484 
2485 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2486 {
2487 	struct tcp_sock *tp = tcp_sk(sk);
2488 	int sndcnt = 0;
2489 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2490 
2491 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2492 		return;
2493 
2494 	tp->prr_delivered += newly_acked_sacked;
2495 	if (delta < 0) {
2496 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2497 			       tp->prior_cwnd - 1;
2498 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2499 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2500 		   !(flag & FLAG_LOST_RETRANS)) {
2501 		sndcnt = min_t(int, delta,
2502 			       max_t(int, tp->prr_delivered - tp->prr_out,
2503 				     newly_acked_sacked) + 1);
2504 	} else {
2505 		sndcnt = min(delta, newly_acked_sacked);
2506 	}
2507 	/* Force a fast retransmit upon entering fast recovery */
2508 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2509 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2510 }
2511 
2512 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2513 {
2514 	struct tcp_sock *tp = tcp_sk(sk);
2515 
2516 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2517 		return;
2518 
2519 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2520 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2521 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2522 		tp->snd_cwnd = tp->snd_ssthresh;
2523 		tp->snd_cwnd_stamp = tcp_time_stamp;
2524 	}
2525 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2526 }
2527 
2528 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2529 void tcp_enter_cwr(struct sock *sk)
2530 {
2531 	struct tcp_sock *tp = tcp_sk(sk);
2532 
2533 	tp->prior_ssthresh = 0;
2534 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2535 		tp->undo_marker = 0;
2536 		tcp_init_cwnd_reduction(sk);
2537 		tcp_set_ca_state(sk, TCP_CA_CWR);
2538 	}
2539 }
2540 EXPORT_SYMBOL(tcp_enter_cwr);
2541 
2542 static void tcp_try_keep_open(struct sock *sk)
2543 {
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 	int state = TCP_CA_Open;
2546 
2547 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2548 		state = TCP_CA_Disorder;
2549 
2550 	if (inet_csk(sk)->icsk_ca_state != state) {
2551 		tcp_set_ca_state(sk, state);
2552 		tp->high_seq = tp->snd_nxt;
2553 	}
2554 }
2555 
2556 static void tcp_try_to_open(struct sock *sk, int flag)
2557 {
2558 	struct tcp_sock *tp = tcp_sk(sk);
2559 
2560 	tcp_verify_left_out(tp);
2561 
2562 	if (!tcp_any_retrans_done(sk))
2563 		tp->retrans_stamp = 0;
2564 
2565 	if (flag & FLAG_ECE)
2566 		tcp_enter_cwr(sk);
2567 
2568 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2569 		tcp_try_keep_open(sk);
2570 	}
2571 }
2572 
2573 static void tcp_mtup_probe_failed(struct sock *sk)
2574 {
2575 	struct inet_connection_sock *icsk = inet_csk(sk);
2576 
2577 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2578 	icsk->icsk_mtup.probe_size = 0;
2579 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2580 }
2581 
2582 static void tcp_mtup_probe_success(struct sock *sk)
2583 {
2584 	struct tcp_sock *tp = tcp_sk(sk);
2585 	struct inet_connection_sock *icsk = inet_csk(sk);
2586 
2587 	/* FIXME: breaks with very large cwnd */
2588 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2589 	tp->snd_cwnd = tp->snd_cwnd *
2590 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2591 		       icsk->icsk_mtup.probe_size;
2592 	tp->snd_cwnd_cnt = 0;
2593 	tp->snd_cwnd_stamp = tcp_time_stamp;
2594 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2595 
2596 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2597 	icsk->icsk_mtup.probe_size = 0;
2598 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2599 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2600 }
2601 
2602 /* Do a simple retransmit without using the backoff mechanisms in
2603  * tcp_timer. This is used for path mtu discovery.
2604  * The socket is already locked here.
2605  */
2606 void tcp_simple_retransmit(struct sock *sk)
2607 {
2608 	const struct inet_connection_sock *icsk = inet_csk(sk);
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 	struct sk_buff *skb;
2611 	unsigned int mss = tcp_current_mss(sk);
2612 	u32 prior_lost = tp->lost_out;
2613 
2614 	tcp_for_write_queue(skb, sk) {
2615 		if (skb == tcp_send_head(sk))
2616 			break;
2617 		if (tcp_skb_seglen(skb) > mss &&
2618 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2619 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2620 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2621 				tp->retrans_out -= tcp_skb_pcount(skb);
2622 			}
2623 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2624 		}
2625 	}
2626 
2627 	tcp_clear_retrans_hints_partial(tp);
2628 
2629 	if (prior_lost == tp->lost_out)
2630 		return;
2631 
2632 	if (tcp_is_reno(tp))
2633 		tcp_limit_reno_sacked(tp);
2634 
2635 	tcp_verify_left_out(tp);
2636 
2637 	/* Don't muck with the congestion window here.
2638 	 * Reason is that we do not increase amount of _data_
2639 	 * in network, but units changed and effective
2640 	 * cwnd/ssthresh really reduced now.
2641 	 */
2642 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2643 		tp->high_seq = tp->snd_nxt;
2644 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2645 		tp->prior_ssthresh = 0;
2646 		tp->undo_marker = 0;
2647 		tcp_set_ca_state(sk, TCP_CA_Loss);
2648 	}
2649 	tcp_xmit_retransmit_queue(sk);
2650 }
2651 EXPORT_SYMBOL(tcp_simple_retransmit);
2652 
2653 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2654 {
2655 	struct tcp_sock *tp = tcp_sk(sk);
2656 	int mib_idx;
2657 
2658 	if (tcp_is_reno(tp))
2659 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2660 	else
2661 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2662 
2663 	NET_INC_STATS(sock_net(sk), mib_idx);
2664 
2665 	tp->prior_ssthresh = 0;
2666 	tcp_init_undo(tp);
2667 
2668 	if (!tcp_in_cwnd_reduction(sk)) {
2669 		if (!ece_ack)
2670 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2671 		tcp_init_cwnd_reduction(sk);
2672 	}
2673 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2674 }
2675 
2676 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2677  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2678  */
2679 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2680 			     int *rexmit)
2681 {
2682 	struct tcp_sock *tp = tcp_sk(sk);
2683 	bool recovered = !before(tp->snd_una, tp->high_seq);
2684 
2685 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2686 	    tcp_try_undo_loss(sk, false))
2687 		return;
2688 
2689 	/* The ACK (s)acks some never-retransmitted data meaning not all
2690 	 * the data packets before the timeout were lost. Therefore we
2691 	 * undo the congestion window and state. This is essentially
2692 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2693 	 * a retransmitted skb is permantly marked, we can apply such an
2694 	 * operation even if F-RTO was not used.
2695 	 */
2696 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2697 	    tcp_try_undo_loss(sk, tp->undo_marker))
2698 		return;
2699 
2700 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2701 		if (after(tp->snd_nxt, tp->high_seq)) {
2702 			if (flag & FLAG_DATA_SACKED || is_dupack)
2703 				tp->frto = 0; /* Step 3.a. loss was real */
2704 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2705 			tp->high_seq = tp->snd_nxt;
2706 			/* Step 2.b. Try send new data (but deferred until cwnd
2707 			 * is updated in tcp_ack()). Otherwise fall back to
2708 			 * the conventional recovery.
2709 			 */
2710 			if (tcp_send_head(sk) &&
2711 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2712 				*rexmit = REXMIT_NEW;
2713 				return;
2714 			}
2715 			tp->frto = 0;
2716 		}
2717 	}
2718 
2719 	if (recovered) {
2720 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2721 		tcp_try_undo_recovery(sk);
2722 		return;
2723 	}
2724 	if (tcp_is_reno(tp)) {
2725 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2726 		 * delivered. Lower inflight to clock out (re)tranmissions.
2727 		 */
2728 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2729 			tcp_add_reno_sack(sk);
2730 		else if (flag & FLAG_SND_UNA_ADVANCED)
2731 			tcp_reset_reno_sack(tp);
2732 	}
2733 	*rexmit = REXMIT_LOST;
2734 }
2735 
2736 /* Undo during fast recovery after partial ACK. */
2737 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2738 {
2739 	struct tcp_sock *tp = tcp_sk(sk);
2740 
2741 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2742 		/* Plain luck! Hole if filled with delayed
2743 		 * packet, rather than with a retransmit.
2744 		 */
2745 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2746 
2747 		/* We are getting evidence that the reordering degree is higher
2748 		 * than we realized. If there are no retransmits out then we
2749 		 * can undo. Otherwise we clock out new packets but do not
2750 		 * mark more packets lost or retransmit more.
2751 		 */
2752 		if (tp->retrans_out)
2753 			return true;
2754 
2755 		if (!tcp_any_retrans_done(sk))
2756 			tp->retrans_stamp = 0;
2757 
2758 		DBGUNDO(sk, "partial recovery");
2759 		tcp_undo_cwnd_reduction(sk, true);
2760 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2761 		tcp_try_keep_open(sk);
2762 		return true;
2763 	}
2764 	return false;
2765 }
2766 
2767 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2768 {
2769 	struct tcp_sock *tp = tcp_sk(sk);
2770 
2771 	/* Use RACK to detect loss */
2772 	if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2773 		u32 prior_retrans = tp->retrans_out;
2774 
2775 		tcp_rack_mark_lost(sk);
2776 		if (prior_retrans > tp->retrans_out)
2777 			*ack_flag |= FLAG_LOST_RETRANS;
2778 	}
2779 }
2780 
2781 /* Process an event, which can update packets-in-flight not trivially.
2782  * Main goal of this function is to calculate new estimate for left_out,
2783  * taking into account both packets sitting in receiver's buffer and
2784  * packets lost by network.
2785  *
2786  * Besides that it updates the congestion state when packet loss or ECN
2787  * is detected. But it does not reduce the cwnd, it is done by the
2788  * congestion control later.
2789  *
2790  * It does _not_ decide what to send, it is made in function
2791  * tcp_xmit_retransmit_queue().
2792  */
2793 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2794 				  bool is_dupack, int *ack_flag, int *rexmit)
2795 {
2796 	struct inet_connection_sock *icsk = inet_csk(sk);
2797 	struct tcp_sock *tp = tcp_sk(sk);
2798 	int fast_rexmit = 0, flag = *ack_flag;
2799 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2800 				    (tcp_fackets_out(tp) > tp->reordering));
2801 
2802 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2803 		tp->sacked_out = 0;
2804 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2805 		tp->fackets_out = 0;
2806 
2807 	/* Now state machine starts.
2808 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2809 	if (flag & FLAG_ECE)
2810 		tp->prior_ssthresh = 0;
2811 
2812 	/* B. In all the states check for reneging SACKs. */
2813 	if (tcp_check_sack_reneging(sk, flag))
2814 		return;
2815 
2816 	/* C. Check consistency of the current state. */
2817 	tcp_verify_left_out(tp);
2818 
2819 	/* D. Check state exit conditions. State can be terminated
2820 	 *    when high_seq is ACKed. */
2821 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2822 		WARN_ON(tp->retrans_out != 0);
2823 		tp->retrans_stamp = 0;
2824 	} else if (!before(tp->snd_una, tp->high_seq)) {
2825 		switch (icsk->icsk_ca_state) {
2826 		case TCP_CA_CWR:
2827 			/* CWR is to be held something *above* high_seq
2828 			 * is ACKed for CWR bit to reach receiver. */
2829 			if (tp->snd_una != tp->high_seq) {
2830 				tcp_end_cwnd_reduction(sk);
2831 				tcp_set_ca_state(sk, TCP_CA_Open);
2832 			}
2833 			break;
2834 
2835 		case TCP_CA_Recovery:
2836 			if (tcp_is_reno(tp))
2837 				tcp_reset_reno_sack(tp);
2838 			if (tcp_try_undo_recovery(sk))
2839 				return;
2840 			tcp_end_cwnd_reduction(sk);
2841 			break;
2842 		}
2843 	}
2844 
2845 	/* E. Process state. */
2846 	switch (icsk->icsk_ca_state) {
2847 	case TCP_CA_Recovery:
2848 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2849 			if (tcp_is_reno(tp) && is_dupack)
2850 				tcp_add_reno_sack(sk);
2851 		} else {
2852 			if (tcp_try_undo_partial(sk, acked))
2853 				return;
2854 			/* Partial ACK arrived. Force fast retransmit. */
2855 			do_lost = tcp_is_reno(tp) ||
2856 				  tcp_fackets_out(tp) > tp->reordering;
2857 		}
2858 		if (tcp_try_undo_dsack(sk)) {
2859 			tcp_try_keep_open(sk);
2860 			return;
2861 		}
2862 		tcp_rack_identify_loss(sk, ack_flag);
2863 		break;
2864 	case TCP_CA_Loss:
2865 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2866 		tcp_rack_identify_loss(sk, ack_flag);
2867 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2868 		      (*ack_flag & FLAG_LOST_RETRANS)))
2869 			return;
2870 		/* Change state if cwnd is undone or retransmits are lost */
2871 	default:
2872 		if (tcp_is_reno(tp)) {
2873 			if (flag & FLAG_SND_UNA_ADVANCED)
2874 				tcp_reset_reno_sack(tp);
2875 			if (is_dupack)
2876 				tcp_add_reno_sack(sk);
2877 		}
2878 
2879 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2880 			tcp_try_undo_dsack(sk);
2881 
2882 		tcp_rack_identify_loss(sk, ack_flag);
2883 		if (!tcp_time_to_recover(sk, flag)) {
2884 			tcp_try_to_open(sk, flag);
2885 			return;
2886 		}
2887 
2888 		/* MTU probe failure: don't reduce cwnd */
2889 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2890 		    icsk->icsk_mtup.probe_size &&
2891 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2892 			tcp_mtup_probe_failed(sk);
2893 			/* Restores the reduction we did in tcp_mtup_probe() */
2894 			tp->snd_cwnd++;
2895 			tcp_simple_retransmit(sk);
2896 			return;
2897 		}
2898 
2899 		/* Otherwise enter Recovery state */
2900 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2901 		fast_rexmit = 1;
2902 	}
2903 
2904 	if (do_lost)
2905 		tcp_update_scoreboard(sk, fast_rexmit);
2906 	*rexmit = REXMIT_LOST;
2907 }
2908 
2909 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2910 {
2911 	struct tcp_sock *tp = tcp_sk(sk);
2912 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2913 
2914 	minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2915 			   rtt_us ? : jiffies_to_usecs(1));
2916 }
2917 
2918 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2919 				      long seq_rtt_us, long sack_rtt_us,
2920 				      long ca_rtt_us)
2921 {
2922 	const struct tcp_sock *tp = tcp_sk(sk);
2923 
2924 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2925 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2926 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2927 	 * is acked (RFC6298).
2928 	 */
2929 	if (seq_rtt_us < 0)
2930 		seq_rtt_us = sack_rtt_us;
2931 
2932 	/* RTTM Rule: A TSecr value received in a segment is used to
2933 	 * update the averaged RTT measurement only if the segment
2934 	 * acknowledges some new data, i.e., only if it advances the
2935 	 * left edge of the send window.
2936 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2937 	 */
2938 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2939 	    flag & FLAG_ACKED)
2940 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2941 							  tp->rx_opt.rcv_tsecr);
2942 	if (seq_rtt_us < 0)
2943 		return false;
2944 
2945 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2946 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2947 	 * values will be skipped with the seq_rtt_us < 0 check above.
2948 	 */
2949 	tcp_update_rtt_min(sk, ca_rtt_us);
2950 	tcp_rtt_estimator(sk, seq_rtt_us);
2951 	tcp_set_rto(sk);
2952 
2953 	/* RFC6298: only reset backoff on valid RTT measurement. */
2954 	inet_csk(sk)->icsk_backoff = 0;
2955 	return true;
2956 }
2957 
2958 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2959 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2960 {
2961 	long rtt_us = -1L;
2962 
2963 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2964 		struct skb_mstamp now;
2965 
2966 		skb_mstamp_get(&now);
2967 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2968 	}
2969 
2970 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2971 }
2972 
2973 
2974 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2975 {
2976 	const struct inet_connection_sock *icsk = inet_csk(sk);
2977 
2978 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2979 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2980 }
2981 
2982 /* Restart timer after forward progress on connection.
2983  * RFC2988 recommends to restart timer to now+rto.
2984  */
2985 void tcp_rearm_rto(struct sock *sk)
2986 {
2987 	const struct inet_connection_sock *icsk = inet_csk(sk);
2988 	struct tcp_sock *tp = tcp_sk(sk);
2989 
2990 	/* If the retrans timer is currently being used by Fast Open
2991 	 * for SYN-ACK retrans purpose, stay put.
2992 	 */
2993 	if (tp->fastopen_rsk)
2994 		return;
2995 
2996 	if (!tp->packets_out) {
2997 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2998 	} else {
2999 		u32 rto = inet_csk(sk)->icsk_rto;
3000 		/* Offset the time elapsed after installing regular RTO */
3001 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3002 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3003 			struct sk_buff *skb = tcp_write_queue_head(sk);
3004 			const u32 rto_time_stamp =
3005 				tcp_skb_timestamp(skb) + rto;
3006 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3007 			/* delta may not be positive if the socket is locked
3008 			 * when the retrans timer fires and is rescheduled.
3009 			 */
3010 			if (delta > 0)
3011 				rto = delta;
3012 		}
3013 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3014 					  TCP_RTO_MAX);
3015 	}
3016 }
3017 
3018 /* If we get here, the whole TSO packet has not been acked. */
3019 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3020 {
3021 	struct tcp_sock *tp = tcp_sk(sk);
3022 	u32 packets_acked;
3023 
3024 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3025 
3026 	packets_acked = tcp_skb_pcount(skb);
3027 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3028 		return 0;
3029 	packets_acked -= tcp_skb_pcount(skb);
3030 
3031 	if (packets_acked) {
3032 		BUG_ON(tcp_skb_pcount(skb) == 0);
3033 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3034 	}
3035 
3036 	return packets_acked;
3037 }
3038 
3039 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3040 			   u32 prior_snd_una)
3041 {
3042 	const struct skb_shared_info *shinfo;
3043 
3044 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3045 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3046 		return;
3047 
3048 	shinfo = skb_shinfo(skb);
3049 	if (!before(shinfo->tskey, prior_snd_una) &&
3050 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3051 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3052 }
3053 
3054 /* Remove acknowledged frames from the retransmission queue. If our packet
3055  * is before the ack sequence we can discard it as it's confirmed to have
3056  * arrived at the other end.
3057  */
3058 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3059 			       u32 prior_snd_una, int *acked,
3060 			       struct tcp_sacktag_state *sack)
3061 {
3062 	const struct inet_connection_sock *icsk = inet_csk(sk);
3063 	struct skb_mstamp first_ackt, last_ackt;
3064 	struct tcp_sock *tp = tcp_sk(sk);
3065 	struct skb_mstamp *now = &tp->tcp_mstamp;
3066 	u32 prior_sacked = tp->sacked_out;
3067 	u32 reord = tp->packets_out;
3068 	bool fully_acked = true;
3069 	long sack_rtt_us = -1L;
3070 	long seq_rtt_us = -1L;
3071 	long ca_rtt_us = -1L;
3072 	struct sk_buff *skb;
3073 	u32 pkts_acked = 0;
3074 	u32 last_in_flight = 0;
3075 	bool rtt_update;
3076 	int flag = 0;
3077 
3078 	first_ackt.v64 = 0;
3079 
3080 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3081 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3082 		u8 sacked = scb->sacked;
3083 		u32 acked_pcount;
3084 
3085 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3086 
3087 		/* Determine how many packets and what bytes were acked, tso and else */
3088 		if (after(scb->end_seq, tp->snd_una)) {
3089 			if (tcp_skb_pcount(skb) == 1 ||
3090 			    !after(tp->snd_una, scb->seq))
3091 				break;
3092 
3093 			acked_pcount = tcp_tso_acked(sk, skb);
3094 			if (!acked_pcount)
3095 				break;
3096 			fully_acked = false;
3097 		} else {
3098 			/* Speedup tcp_unlink_write_queue() and next loop */
3099 			prefetchw(skb->next);
3100 			acked_pcount = tcp_skb_pcount(skb);
3101 		}
3102 
3103 		if (unlikely(sacked & TCPCB_RETRANS)) {
3104 			if (sacked & TCPCB_SACKED_RETRANS)
3105 				tp->retrans_out -= acked_pcount;
3106 			flag |= FLAG_RETRANS_DATA_ACKED;
3107 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3108 			last_ackt = skb->skb_mstamp;
3109 			WARN_ON_ONCE(last_ackt.v64 == 0);
3110 			if (!first_ackt.v64)
3111 				first_ackt = last_ackt;
3112 
3113 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3114 			reord = min(pkts_acked, reord);
3115 			if (!after(scb->end_seq, tp->high_seq))
3116 				flag |= FLAG_ORIG_SACK_ACKED;
3117 		}
3118 
3119 		if (sacked & TCPCB_SACKED_ACKED) {
3120 			tp->sacked_out -= acked_pcount;
3121 		} else if (tcp_is_sack(tp)) {
3122 			tp->delivered += acked_pcount;
3123 			if (!tcp_skb_spurious_retrans(tp, skb))
3124 				tcp_rack_advance(tp, sacked, scb->end_seq,
3125 						 &skb->skb_mstamp);
3126 		}
3127 		if (sacked & TCPCB_LOST)
3128 			tp->lost_out -= acked_pcount;
3129 
3130 		tp->packets_out -= acked_pcount;
3131 		pkts_acked += acked_pcount;
3132 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3133 
3134 		/* Initial outgoing SYN's get put onto the write_queue
3135 		 * just like anything else we transmit.  It is not
3136 		 * true data, and if we misinform our callers that
3137 		 * this ACK acks real data, we will erroneously exit
3138 		 * connection startup slow start one packet too
3139 		 * quickly.  This is severely frowned upon behavior.
3140 		 */
3141 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3142 			flag |= FLAG_DATA_ACKED;
3143 		} else {
3144 			flag |= FLAG_SYN_ACKED;
3145 			tp->retrans_stamp = 0;
3146 		}
3147 
3148 		if (!fully_acked)
3149 			break;
3150 
3151 		tcp_unlink_write_queue(skb, sk);
3152 		sk_wmem_free_skb(sk, skb);
3153 		if (unlikely(skb == tp->retransmit_skb_hint))
3154 			tp->retransmit_skb_hint = NULL;
3155 		if (unlikely(skb == tp->lost_skb_hint))
3156 			tp->lost_skb_hint = NULL;
3157 	}
3158 
3159 	if (!skb)
3160 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3161 
3162 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3163 		tp->snd_up = tp->snd_una;
3164 
3165 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3166 		flag |= FLAG_SACK_RENEGING;
3167 
3168 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3169 		seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3170 		ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3171 	}
3172 	if (sack->first_sackt.v64) {
3173 		sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3174 		ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3175 	}
3176 	sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3177 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3178 					ca_rtt_us);
3179 
3180 	if (flag & FLAG_ACKED) {
3181 		tcp_rearm_rto(sk);
3182 		if (unlikely(icsk->icsk_mtup.probe_size &&
3183 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3184 			tcp_mtup_probe_success(sk);
3185 		}
3186 
3187 		if (tcp_is_reno(tp)) {
3188 			tcp_remove_reno_sacks(sk, pkts_acked);
3189 		} else {
3190 			int delta;
3191 
3192 			/* Non-retransmitted hole got filled? That's reordering */
3193 			if (reord < prior_fackets && reord <= tp->fackets_out)
3194 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3195 
3196 			delta = tcp_is_fack(tp) ? pkts_acked :
3197 						  prior_sacked - tp->sacked_out;
3198 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3199 		}
3200 
3201 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3202 
3203 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3204 		   sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3205 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3206 		 * after when the head was last (re)transmitted. Otherwise the
3207 		 * timeout may continue to extend in loss recovery.
3208 		 */
3209 		tcp_rearm_rto(sk);
3210 	}
3211 
3212 	if (icsk->icsk_ca_ops->pkts_acked) {
3213 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3214 					     .rtt_us = ca_rtt_us,
3215 					     .in_flight = last_in_flight };
3216 
3217 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3218 	}
3219 
3220 #if FASTRETRANS_DEBUG > 0
3221 	WARN_ON((int)tp->sacked_out < 0);
3222 	WARN_ON((int)tp->lost_out < 0);
3223 	WARN_ON((int)tp->retrans_out < 0);
3224 	if (!tp->packets_out && tcp_is_sack(tp)) {
3225 		icsk = inet_csk(sk);
3226 		if (tp->lost_out) {
3227 			pr_debug("Leak l=%u %d\n",
3228 				 tp->lost_out, icsk->icsk_ca_state);
3229 			tp->lost_out = 0;
3230 		}
3231 		if (tp->sacked_out) {
3232 			pr_debug("Leak s=%u %d\n",
3233 				 tp->sacked_out, icsk->icsk_ca_state);
3234 			tp->sacked_out = 0;
3235 		}
3236 		if (tp->retrans_out) {
3237 			pr_debug("Leak r=%u %d\n",
3238 				 tp->retrans_out, icsk->icsk_ca_state);
3239 			tp->retrans_out = 0;
3240 		}
3241 	}
3242 #endif
3243 	*acked = pkts_acked;
3244 	return flag;
3245 }
3246 
3247 static void tcp_ack_probe(struct sock *sk)
3248 {
3249 	const struct tcp_sock *tp = tcp_sk(sk);
3250 	struct inet_connection_sock *icsk = inet_csk(sk);
3251 
3252 	/* Was it a usable window open? */
3253 
3254 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3255 		icsk->icsk_backoff = 0;
3256 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3257 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3258 		 * This function is not for random using!
3259 		 */
3260 	} else {
3261 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3262 
3263 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3264 					  when, TCP_RTO_MAX);
3265 	}
3266 }
3267 
3268 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3269 {
3270 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3271 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3272 }
3273 
3274 /* Decide wheather to run the increase function of congestion control. */
3275 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3276 {
3277 	/* If reordering is high then always grow cwnd whenever data is
3278 	 * delivered regardless of its ordering. Otherwise stay conservative
3279 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3280 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3281 	 * cwnd in tcp_fastretrans_alert() based on more states.
3282 	 */
3283 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3284 		return flag & FLAG_FORWARD_PROGRESS;
3285 
3286 	return flag & FLAG_DATA_ACKED;
3287 }
3288 
3289 /* The "ultimate" congestion control function that aims to replace the rigid
3290  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3291  * It's called toward the end of processing an ACK with precise rate
3292  * information. All transmission or retransmission are delayed afterwards.
3293  */
3294 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3295 			     int flag, const struct rate_sample *rs)
3296 {
3297 	const struct inet_connection_sock *icsk = inet_csk(sk);
3298 
3299 	if (icsk->icsk_ca_ops->cong_control) {
3300 		icsk->icsk_ca_ops->cong_control(sk, rs);
3301 		return;
3302 	}
3303 
3304 	if (tcp_in_cwnd_reduction(sk)) {
3305 		/* Reduce cwnd if state mandates */
3306 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3307 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3308 		/* Advance cwnd if state allows */
3309 		tcp_cong_avoid(sk, ack, acked_sacked);
3310 	}
3311 	tcp_update_pacing_rate(sk);
3312 }
3313 
3314 /* Check that window update is acceptable.
3315  * The function assumes that snd_una<=ack<=snd_next.
3316  */
3317 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3318 					const u32 ack, const u32 ack_seq,
3319 					const u32 nwin)
3320 {
3321 	return	after(ack, tp->snd_una) ||
3322 		after(ack_seq, tp->snd_wl1) ||
3323 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3324 }
3325 
3326 /* If we update tp->snd_una, also update tp->bytes_acked */
3327 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3328 {
3329 	u32 delta = ack - tp->snd_una;
3330 
3331 	sock_owned_by_me((struct sock *)tp);
3332 	tp->bytes_acked += delta;
3333 	tp->snd_una = ack;
3334 }
3335 
3336 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3337 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3338 {
3339 	u32 delta = seq - tp->rcv_nxt;
3340 
3341 	sock_owned_by_me((struct sock *)tp);
3342 	tp->bytes_received += delta;
3343 	tp->rcv_nxt = seq;
3344 }
3345 
3346 /* Update our send window.
3347  *
3348  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3349  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3350  */
3351 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3352 				 u32 ack_seq)
3353 {
3354 	struct tcp_sock *tp = tcp_sk(sk);
3355 	int flag = 0;
3356 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3357 
3358 	if (likely(!tcp_hdr(skb)->syn))
3359 		nwin <<= tp->rx_opt.snd_wscale;
3360 
3361 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3362 		flag |= FLAG_WIN_UPDATE;
3363 		tcp_update_wl(tp, ack_seq);
3364 
3365 		if (tp->snd_wnd != nwin) {
3366 			tp->snd_wnd = nwin;
3367 
3368 			/* Note, it is the only place, where
3369 			 * fast path is recovered for sending TCP.
3370 			 */
3371 			tp->pred_flags = 0;
3372 			tcp_fast_path_check(sk);
3373 
3374 			if (tcp_send_head(sk))
3375 				tcp_slow_start_after_idle_check(sk);
3376 
3377 			if (nwin > tp->max_window) {
3378 				tp->max_window = nwin;
3379 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3380 			}
3381 		}
3382 	}
3383 
3384 	tcp_snd_una_update(tp, ack);
3385 
3386 	return flag;
3387 }
3388 
3389 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3390 				   u32 *last_oow_ack_time)
3391 {
3392 	if (*last_oow_ack_time) {
3393 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3394 
3395 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3396 			NET_INC_STATS(net, mib_idx);
3397 			return true;	/* rate-limited: don't send yet! */
3398 		}
3399 	}
3400 
3401 	*last_oow_ack_time = tcp_time_stamp;
3402 
3403 	return false;	/* not rate-limited: go ahead, send dupack now! */
3404 }
3405 
3406 /* Return true if we're currently rate-limiting out-of-window ACKs and
3407  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3408  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3409  * attacks that send repeated SYNs or ACKs for the same connection. To
3410  * do this, we do not send a duplicate SYNACK or ACK if the remote
3411  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3412  */
3413 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3414 			  int mib_idx, u32 *last_oow_ack_time)
3415 {
3416 	/* Data packets without SYNs are not likely part of an ACK loop. */
3417 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3418 	    !tcp_hdr(skb)->syn)
3419 		return false;
3420 
3421 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3422 }
3423 
3424 /* RFC 5961 7 [ACK Throttling] */
3425 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3426 {
3427 	/* unprotected vars, we dont care of overwrites */
3428 	static u32 challenge_timestamp;
3429 	static unsigned int challenge_count;
3430 	struct tcp_sock *tp = tcp_sk(sk);
3431 	u32 count, now;
3432 
3433 	/* First check our per-socket dupack rate limit. */
3434 	if (__tcp_oow_rate_limited(sock_net(sk),
3435 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3436 				   &tp->last_oow_ack_time))
3437 		return;
3438 
3439 	/* Then check host-wide RFC 5961 rate limit. */
3440 	now = jiffies / HZ;
3441 	if (now != challenge_timestamp) {
3442 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3443 
3444 		challenge_timestamp = now;
3445 		WRITE_ONCE(challenge_count, half +
3446 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3447 	}
3448 	count = READ_ONCE(challenge_count);
3449 	if (count > 0) {
3450 		WRITE_ONCE(challenge_count, count - 1);
3451 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3452 		tcp_send_ack(sk);
3453 	}
3454 }
3455 
3456 static void tcp_store_ts_recent(struct tcp_sock *tp)
3457 {
3458 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3459 	tp->rx_opt.ts_recent_stamp = get_seconds();
3460 }
3461 
3462 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3463 {
3464 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3465 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3466 		 * extra check below makes sure this can only happen
3467 		 * for pure ACK frames.  -DaveM
3468 		 *
3469 		 * Not only, also it occurs for expired timestamps.
3470 		 */
3471 
3472 		if (tcp_paws_check(&tp->rx_opt, 0))
3473 			tcp_store_ts_recent(tp);
3474 	}
3475 }
3476 
3477 /* This routine deals with acks during a TLP episode.
3478  * We mark the end of a TLP episode on receiving TLP dupack or when
3479  * ack is after tlp_high_seq.
3480  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3481  */
3482 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3483 {
3484 	struct tcp_sock *tp = tcp_sk(sk);
3485 
3486 	if (before(ack, tp->tlp_high_seq))
3487 		return;
3488 
3489 	if (flag & FLAG_DSACKING_ACK) {
3490 		/* This DSACK means original and TLP probe arrived; no loss */
3491 		tp->tlp_high_seq = 0;
3492 	} else if (after(ack, tp->tlp_high_seq)) {
3493 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3494 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3495 		 */
3496 		tcp_init_cwnd_reduction(sk);
3497 		tcp_set_ca_state(sk, TCP_CA_CWR);
3498 		tcp_end_cwnd_reduction(sk);
3499 		tcp_try_keep_open(sk);
3500 		NET_INC_STATS(sock_net(sk),
3501 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3502 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3503 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3504 		/* Pure dupack: original and TLP probe arrived; no loss */
3505 		tp->tlp_high_seq = 0;
3506 	}
3507 }
3508 
3509 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3510 {
3511 	const struct inet_connection_sock *icsk = inet_csk(sk);
3512 
3513 	if (icsk->icsk_ca_ops->in_ack_event)
3514 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3515 }
3516 
3517 /* Congestion control has updated the cwnd already. So if we're in
3518  * loss recovery then now we do any new sends (for FRTO) or
3519  * retransmits (for CA_Loss or CA_recovery) that make sense.
3520  */
3521 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3522 {
3523 	struct tcp_sock *tp = tcp_sk(sk);
3524 
3525 	if (rexmit == REXMIT_NONE)
3526 		return;
3527 
3528 	if (unlikely(rexmit == 2)) {
3529 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3530 					  TCP_NAGLE_OFF);
3531 		if (after(tp->snd_nxt, tp->high_seq))
3532 			return;
3533 		tp->frto = 0;
3534 	}
3535 	tcp_xmit_retransmit_queue(sk);
3536 }
3537 
3538 /* This routine deals with incoming acks, but not outgoing ones. */
3539 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3540 {
3541 	struct inet_connection_sock *icsk = inet_csk(sk);
3542 	struct tcp_sock *tp = tcp_sk(sk);
3543 	struct tcp_sacktag_state sack_state;
3544 	struct rate_sample rs = { .prior_delivered = 0 };
3545 	u32 prior_snd_una = tp->snd_una;
3546 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3547 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3548 	bool is_dupack = false;
3549 	u32 prior_fackets;
3550 	int prior_packets = tp->packets_out;
3551 	u32 delivered = tp->delivered;
3552 	u32 lost = tp->lost;
3553 	int acked = 0; /* Number of packets newly acked */
3554 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3555 
3556 	sack_state.first_sackt.v64 = 0;
3557 	sack_state.rate = &rs;
3558 
3559 	/* We very likely will need to access write queue head. */
3560 	prefetchw(sk->sk_write_queue.next);
3561 
3562 	/* If the ack is older than previous acks
3563 	 * then we can probably ignore it.
3564 	 */
3565 	if (before(ack, prior_snd_una)) {
3566 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3567 		if (before(ack, prior_snd_una - tp->max_window)) {
3568 			tcp_send_challenge_ack(sk, skb);
3569 			return -1;
3570 		}
3571 		goto old_ack;
3572 	}
3573 
3574 	/* If the ack includes data we haven't sent yet, discard
3575 	 * this segment (RFC793 Section 3.9).
3576 	 */
3577 	if (after(ack, tp->snd_nxt))
3578 		goto invalid_ack;
3579 
3580 	if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3581 		tcp_rearm_rto(sk);
3582 
3583 	if (after(ack, prior_snd_una)) {
3584 		flag |= FLAG_SND_UNA_ADVANCED;
3585 		icsk->icsk_retransmits = 0;
3586 	}
3587 
3588 	prior_fackets = tp->fackets_out;
3589 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3590 
3591 	/* ts_recent update must be made after we are sure that the packet
3592 	 * is in window.
3593 	 */
3594 	if (flag & FLAG_UPDATE_TS_RECENT)
3595 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3596 
3597 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3598 		/* Window is constant, pure forward advance.
3599 		 * No more checks are required.
3600 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3601 		 */
3602 		tcp_update_wl(tp, ack_seq);
3603 		tcp_snd_una_update(tp, ack);
3604 		flag |= FLAG_WIN_UPDATE;
3605 
3606 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3607 
3608 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3609 	} else {
3610 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3611 
3612 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3613 			flag |= FLAG_DATA;
3614 		else
3615 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3616 
3617 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3618 
3619 		if (TCP_SKB_CB(skb)->sacked)
3620 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3621 							&sack_state);
3622 
3623 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3624 			flag |= FLAG_ECE;
3625 			ack_ev_flags |= CA_ACK_ECE;
3626 		}
3627 
3628 		if (flag & FLAG_WIN_UPDATE)
3629 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3630 
3631 		tcp_in_ack_event(sk, ack_ev_flags);
3632 	}
3633 
3634 	/* We passed data and got it acked, remove any soft error
3635 	 * log. Something worked...
3636 	 */
3637 	sk->sk_err_soft = 0;
3638 	icsk->icsk_probes_out = 0;
3639 	tp->rcv_tstamp = tcp_time_stamp;
3640 	if (!prior_packets)
3641 		goto no_queue;
3642 
3643 	/* See if we can take anything off of the retransmit queue. */
3644 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3645 				    &sack_state);
3646 
3647 	if (tcp_ack_is_dubious(sk, flag)) {
3648 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3649 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3650 	}
3651 	if (tp->tlp_high_seq)
3652 		tcp_process_tlp_ack(sk, ack, flag);
3653 
3654 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3655 		sk_dst_confirm(sk);
3656 
3657 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3658 		tcp_schedule_loss_probe(sk);
3659 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3660 	lost = tp->lost - lost;			/* freshly marked lost */
3661 	tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3662 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3663 	tcp_xmit_recovery(sk, rexmit);
3664 	return 1;
3665 
3666 no_queue:
3667 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3668 	if (flag & FLAG_DSACKING_ACK)
3669 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3670 	/* If this ack opens up a zero window, clear backoff.  It was
3671 	 * being used to time the probes, and is probably far higher than
3672 	 * it needs to be for normal retransmission.
3673 	 */
3674 	if (tcp_send_head(sk))
3675 		tcp_ack_probe(sk);
3676 
3677 	if (tp->tlp_high_seq)
3678 		tcp_process_tlp_ack(sk, ack, flag);
3679 	return 1;
3680 
3681 invalid_ack:
3682 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3683 	return -1;
3684 
3685 old_ack:
3686 	/* If data was SACKed, tag it and see if we should send more data.
3687 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3688 	 */
3689 	if (TCP_SKB_CB(skb)->sacked) {
3690 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3691 						&sack_state);
3692 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3693 		tcp_xmit_recovery(sk, rexmit);
3694 	}
3695 
3696 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3697 	return 0;
3698 }
3699 
3700 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3701 				      bool syn, struct tcp_fastopen_cookie *foc,
3702 				      bool exp_opt)
3703 {
3704 	/* Valid only in SYN or SYN-ACK with an even length.  */
3705 	if (!foc || !syn || len < 0 || (len & 1))
3706 		return;
3707 
3708 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3709 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3710 		memcpy(foc->val, cookie, len);
3711 	else if (len != 0)
3712 		len = -1;
3713 	foc->len = len;
3714 	foc->exp = exp_opt;
3715 }
3716 
3717 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3718  * But, this can also be called on packets in the established flow when
3719  * the fast version below fails.
3720  */
3721 void tcp_parse_options(const struct sk_buff *skb,
3722 		       struct tcp_options_received *opt_rx, int estab,
3723 		       struct tcp_fastopen_cookie *foc)
3724 {
3725 	const unsigned char *ptr;
3726 	const struct tcphdr *th = tcp_hdr(skb);
3727 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3728 
3729 	ptr = (const unsigned char *)(th + 1);
3730 	opt_rx->saw_tstamp = 0;
3731 
3732 	while (length > 0) {
3733 		int opcode = *ptr++;
3734 		int opsize;
3735 
3736 		switch (opcode) {
3737 		case TCPOPT_EOL:
3738 			return;
3739 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3740 			length--;
3741 			continue;
3742 		default:
3743 			opsize = *ptr++;
3744 			if (opsize < 2) /* "silly options" */
3745 				return;
3746 			if (opsize > length)
3747 				return;	/* don't parse partial options */
3748 			switch (opcode) {
3749 			case TCPOPT_MSS:
3750 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3751 					u16 in_mss = get_unaligned_be16(ptr);
3752 					if (in_mss) {
3753 						if (opt_rx->user_mss &&
3754 						    opt_rx->user_mss < in_mss)
3755 							in_mss = opt_rx->user_mss;
3756 						opt_rx->mss_clamp = in_mss;
3757 					}
3758 				}
3759 				break;
3760 			case TCPOPT_WINDOW:
3761 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3762 				    !estab && sysctl_tcp_window_scaling) {
3763 					__u8 snd_wscale = *(__u8 *)ptr;
3764 					opt_rx->wscale_ok = 1;
3765 					if (snd_wscale > TCP_MAX_WSCALE) {
3766 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3767 								     __func__,
3768 								     snd_wscale,
3769 								     TCP_MAX_WSCALE);
3770 						snd_wscale = TCP_MAX_WSCALE;
3771 					}
3772 					opt_rx->snd_wscale = snd_wscale;
3773 				}
3774 				break;
3775 			case TCPOPT_TIMESTAMP:
3776 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3777 				    ((estab && opt_rx->tstamp_ok) ||
3778 				     (!estab && sysctl_tcp_timestamps))) {
3779 					opt_rx->saw_tstamp = 1;
3780 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3781 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3782 				}
3783 				break;
3784 			case TCPOPT_SACK_PERM:
3785 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3786 				    !estab && sysctl_tcp_sack) {
3787 					opt_rx->sack_ok = TCP_SACK_SEEN;
3788 					tcp_sack_reset(opt_rx);
3789 				}
3790 				break;
3791 
3792 			case TCPOPT_SACK:
3793 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3794 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3795 				   opt_rx->sack_ok) {
3796 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3797 				}
3798 				break;
3799 #ifdef CONFIG_TCP_MD5SIG
3800 			case TCPOPT_MD5SIG:
3801 				/*
3802 				 * The MD5 Hash has already been
3803 				 * checked (see tcp_v{4,6}_do_rcv()).
3804 				 */
3805 				break;
3806 #endif
3807 			case TCPOPT_FASTOPEN:
3808 				tcp_parse_fastopen_option(
3809 					opsize - TCPOLEN_FASTOPEN_BASE,
3810 					ptr, th->syn, foc, false);
3811 				break;
3812 
3813 			case TCPOPT_EXP:
3814 				/* Fast Open option shares code 254 using a
3815 				 * 16 bits magic number.
3816 				 */
3817 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3818 				    get_unaligned_be16(ptr) ==
3819 				    TCPOPT_FASTOPEN_MAGIC)
3820 					tcp_parse_fastopen_option(opsize -
3821 						TCPOLEN_EXP_FASTOPEN_BASE,
3822 						ptr + 2, th->syn, foc, true);
3823 				break;
3824 
3825 			}
3826 			ptr += opsize-2;
3827 			length -= opsize;
3828 		}
3829 	}
3830 }
3831 EXPORT_SYMBOL(tcp_parse_options);
3832 
3833 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3834 {
3835 	const __be32 *ptr = (const __be32 *)(th + 1);
3836 
3837 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3838 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3839 		tp->rx_opt.saw_tstamp = 1;
3840 		++ptr;
3841 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3842 		++ptr;
3843 		if (*ptr)
3844 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3845 		else
3846 			tp->rx_opt.rcv_tsecr = 0;
3847 		return true;
3848 	}
3849 	return false;
3850 }
3851 
3852 /* Fast parse options. This hopes to only see timestamps.
3853  * If it is wrong it falls back on tcp_parse_options().
3854  */
3855 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3856 				   const struct tcphdr *th, struct tcp_sock *tp)
3857 {
3858 	/* In the spirit of fast parsing, compare doff directly to constant
3859 	 * values.  Because equality is used, short doff can be ignored here.
3860 	 */
3861 	if (th->doff == (sizeof(*th) / 4)) {
3862 		tp->rx_opt.saw_tstamp = 0;
3863 		return false;
3864 	} else if (tp->rx_opt.tstamp_ok &&
3865 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3866 		if (tcp_parse_aligned_timestamp(tp, th))
3867 			return true;
3868 	}
3869 
3870 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3871 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3872 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3873 
3874 	return true;
3875 }
3876 
3877 #ifdef CONFIG_TCP_MD5SIG
3878 /*
3879  * Parse MD5 Signature option
3880  */
3881 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3882 {
3883 	int length = (th->doff << 2) - sizeof(*th);
3884 	const u8 *ptr = (const u8 *)(th + 1);
3885 
3886 	/* If the TCP option is too short, we can short cut */
3887 	if (length < TCPOLEN_MD5SIG)
3888 		return NULL;
3889 
3890 	while (length > 0) {
3891 		int opcode = *ptr++;
3892 		int opsize;
3893 
3894 		switch (opcode) {
3895 		case TCPOPT_EOL:
3896 			return NULL;
3897 		case TCPOPT_NOP:
3898 			length--;
3899 			continue;
3900 		default:
3901 			opsize = *ptr++;
3902 			if (opsize < 2 || opsize > length)
3903 				return NULL;
3904 			if (opcode == TCPOPT_MD5SIG)
3905 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3906 		}
3907 		ptr += opsize - 2;
3908 		length -= opsize;
3909 	}
3910 	return NULL;
3911 }
3912 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3913 #endif
3914 
3915 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3916  *
3917  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3918  * it can pass through stack. So, the following predicate verifies that
3919  * this segment is not used for anything but congestion avoidance or
3920  * fast retransmit. Moreover, we even are able to eliminate most of such
3921  * second order effects, if we apply some small "replay" window (~RTO)
3922  * to timestamp space.
3923  *
3924  * All these measures still do not guarantee that we reject wrapped ACKs
3925  * on networks with high bandwidth, when sequence space is recycled fastly,
3926  * but it guarantees that such events will be very rare and do not affect
3927  * connection seriously. This doesn't look nice, but alas, PAWS is really
3928  * buggy extension.
3929  *
3930  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3931  * states that events when retransmit arrives after original data are rare.
3932  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3933  * the biggest problem on large power networks even with minor reordering.
3934  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3935  * up to bandwidth of 18Gigabit/sec. 8) ]
3936  */
3937 
3938 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3939 {
3940 	const struct tcp_sock *tp = tcp_sk(sk);
3941 	const struct tcphdr *th = tcp_hdr(skb);
3942 	u32 seq = TCP_SKB_CB(skb)->seq;
3943 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3944 
3945 	return (/* 1. Pure ACK with correct sequence number. */
3946 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3947 
3948 		/* 2. ... and duplicate ACK. */
3949 		ack == tp->snd_una &&
3950 
3951 		/* 3. ... and does not update window. */
3952 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3953 
3954 		/* 4. ... and sits in replay window. */
3955 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3956 }
3957 
3958 static inline bool tcp_paws_discard(const struct sock *sk,
3959 				   const struct sk_buff *skb)
3960 {
3961 	const struct tcp_sock *tp = tcp_sk(sk);
3962 
3963 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3964 	       !tcp_disordered_ack(sk, skb);
3965 }
3966 
3967 /* Check segment sequence number for validity.
3968  *
3969  * Segment controls are considered valid, if the segment
3970  * fits to the window after truncation to the window. Acceptability
3971  * of data (and SYN, FIN, of course) is checked separately.
3972  * See tcp_data_queue(), for example.
3973  *
3974  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3975  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3976  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3977  * (borrowed from freebsd)
3978  */
3979 
3980 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3981 {
3982 	return	!before(end_seq, tp->rcv_wup) &&
3983 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3984 }
3985 
3986 /* When we get a reset we do this. */
3987 void tcp_reset(struct sock *sk)
3988 {
3989 	/* We want the right error as BSD sees it (and indeed as we do). */
3990 	switch (sk->sk_state) {
3991 	case TCP_SYN_SENT:
3992 		sk->sk_err = ECONNREFUSED;
3993 		break;
3994 	case TCP_CLOSE_WAIT:
3995 		sk->sk_err = EPIPE;
3996 		break;
3997 	case TCP_CLOSE:
3998 		return;
3999 	default:
4000 		sk->sk_err = ECONNRESET;
4001 	}
4002 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4003 	smp_wmb();
4004 
4005 	tcp_done(sk);
4006 
4007 	if (!sock_flag(sk, SOCK_DEAD))
4008 		sk->sk_error_report(sk);
4009 }
4010 
4011 /*
4012  * 	Process the FIN bit. This now behaves as it is supposed to work
4013  *	and the FIN takes effect when it is validly part of sequence
4014  *	space. Not before when we get holes.
4015  *
4016  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4017  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4018  *	TIME-WAIT)
4019  *
4020  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4021  *	close and we go into CLOSING (and later onto TIME-WAIT)
4022  *
4023  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4024  */
4025 void tcp_fin(struct sock *sk)
4026 {
4027 	struct tcp_sock *tp = tcp_sk(sk);
4028 
4029 	inet_csk_schedule_ack(sk);
4030 
4031 	sk->sk_shutdown |= RCV_SHUTDOWN;
4032 	sock_set_flag(sk, SOCK_DONE);
4033 
4034 	switch (sk->sk_state) {
4035 	case TCP_SYN_RECV:
4036 	case TCP_ESTABLISHED:
4037 		/* Move to CLOSE_WAIT */
4038 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4039 		inet_csk(sk)->icsk_ack.pingpong = 1;
4040 		break;
4041 
4042 	case TCP_CLOSE_WAIT:
4043 	case TCP_CLOSING:
4044 		/* Received a retransmission of the FIN, do
4045 		 * nothing.
4046 		 */
4047 		break;
4048 	case TCP_LAST_ACK:
4049 		/* RFC793: Remain in the LAST-ACK state. */
4050 		break;
4051 
4052 	case TCP_FIN_WAIT1:
4053 		/* This case occurs when a simultaneous close
4054 		 * happens, we must ack the received FIN and
4055 		 * enter the CLOSING state.
4056 		 */
4057 		tcp_send_ack(sk);
4058 		tcp_set_state(sk, TCP_CLOSING);
4059 		break;
4060 	case TCP_FIN_WAIT2:
4061 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4062 		tcp_send_ack(sk);
4063 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4064 		break;
4065 	default:
4066 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4067 		 * cases we should never reach this piece of code.
4068 		 */
4069 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4070 		       __func__, sk->sk_state);
4071 		break;
4072 	}
4073 
4074 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4075 	 * Probably, we should reset in this case. For now drop them.
4076 	 */
4077 	skb_rbtree_purge(&tp->out_of_order_queue);
4078 	if (tcp_is_sack(tp))
4079 		tcp_sack_reset(&tp->rx_opt);
4080 	sk_mem_reclaim(sk);
4081 
4082 	if (!sock_flag(sk, SOCK_DEAD)) {
4083 		sk->sk_state_change(sk);
4084 
4085 		/* Do not send POLL_HUP for half duplex close. */
4086 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4087 		    sk->sk_state == TCP_CLOSE)
4088 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4089 		else
4090 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4091 	}
4092 }
4093 
4094 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4095 				  u32 end_seq)
4096 {
4097 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4098 		if (before(seq, sp->start_seq))
4099 			sp->start_seq = seq;
4100 		if (after(end_seq, sp->end_seq))
4101 			sp->end_seq = end_seq;
4102 		return true;
4103 	}
4104 	return false;
4105 }
4106 
4107 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4108 {
4109 	struct tcp_sock *tp = tcp_sk(sk);
4110 
4111 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4112 		int mib_idx;
4113 
4114 		if (before(seq, tp->rcv_nxt))
4115 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4116 		else
4117 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4118 
4119 		NET_INC_STATS(sock_net(sk), mib_idx);
4120 
4121 		tp->rx_opt.dsack = 1;
4122 		tp->duplicate_sack[0].start_seq = seq;
4123 		tp->duplicate_sack[0].end_seq = end_seq;
4124 	}
4125 }
4126 
4127 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4128 {
4129 	struct tcp_sock *tp = tcp_sk(sk);
4130 
4131 	if (!tp->rx_opt.dsack)
4132 		tcp_dsack_set(sk, seq, end_seq);
4133 	else
4134 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4135 }
4136 
4137 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4138 {
4139 	struct tcp_sock *tp = tcp_sk(sk);
4140 
4141 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4142 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4143 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4144 		tcp_enter_quickack_mode(sk);
4145 
4146 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4147 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4148 
4149 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4150 				end_seq = tp->rcv_nxt;
4151 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4152 		}
4153 	}
4154 
4155 	tcp_send_ack(sk);
4156 }
4157 
4158 /* These routines update the SACK block as out-of-order packets arrive or
4159  * in-order packets close up the sequence space.
4160  */
4161 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4162 {
4163 	int this_sack;
4164 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4165 	struct tcp_sack_block *swalk = sp + 1;
4166 
4167 	/* See if the recent change to the first SACK eats into
4168 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4169 	 */
4170 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4171 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4172 			int i;
4173 
4174 			/* Zap SWALK, by moving every further SACK up by one slot.
4175 			 * Decrease num_sacks.
4176 			 */
4177 			tp->rx_opt.num_sacks--;
4178 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4179 				sp[i] = sp[i + 1];
4180 			continue;
4181 		}
4182 		this_sack++, swalk++;
4183 	}
4184 }
4185 
4186 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4187 {
4188 	struct tcp_sock *tp = tcp_sk(sk);
4189 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4190 	int cur_sacks = tp->rx_opt.num_sacks;
4191 	int this_sack;
4192 
4193 	if (!cur_sacks)
4194 		goto new_sack;
4195 
4196 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4197 		if (tcp_sack_extend(sp, seq, end_seq)) {
4198 			/* Rotate this_sack to the first one. */
4199 			for (; this_sack > 0; this_sack--, sp--)
4200 				swap(*sp, *(sp - 1));
4201 			if (cur_sacks > 1)
4202 				tcp_sack_maybe_coalesce(tp);
4203 			return;
4204 		}
4205 	}
4206 
4207 	/* Could not find an adjacent existing SACK, build a new one,
4208 	 * put it at the front, and shift everyone else down.  We
4209 	 * always know there is at least one SACK present already here.
4210 	 *
4211 	 * If the sack array is full, forget about the last one.
4212 	 */
4213 	if (this_sack >= TCP_NUM_SACKS) {
4214 		this_sack--;
4215 		tp->rx_opt.num_sacks--;
4216 		sp--;
4217 	}
4218 	for (; this_sack > 0; this_sack--, sp--)
4219 		*sp = *(sp - 1);
4220 
4221 new_sack:
4222 	/* Build the new head SACK, and we're done. */
4223 	sp->start_seq = seq;
4224 	sp->end_seq = end_seq;
4225 	tp->rx_opt.num_sacks++;
4226 }
4227 
4228 /* RCV.NXT advances, some SACKs should be eaten. */
4229 
4230 static void tcp_sack_remove(struct tcp_sock *tp)
4231 {
4232 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4233 	int num_sacks = tp->rx_opt.num_sacks;
4234 	int this_sack;
4235 
4236 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4237 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4238 		tp->rx_opt.num_sacks = 0;
4239 		return;
4240 	}
4241 
4242 	for (this_sack = 0; this_sack < num_sacks;) {
4243 		/* Check if the start of the sack is covered by RCV.NXT. */
4244 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4245 			int i;
4246 
4247 			/* RCV.NXT must cover all the block! */
4248 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4249 
4250 			/* Zap this SACK, by moving forward any other SACKS. */
4251 			for (i = this_sack+1; i < num_sacks; i++)
4252 				tp->selective_acks[i-1] = tp->selective_acks[i];
4253 			num_sacks--;
4254 			continue;
4255 		}
4256 		this_sack++;
4257 		sp++;
4258 	}
4259 	tp->rx_opt.num_sacks = num_sacks;
4260 }
4261 
4262 /**
4263  * tcp_try_coalesce - try to merge skb to prior one
4264  * @sk: socket
4265  * @to: prior buffer
4266  * @from: buffer to add in queue
4267  * @fragstolen: pointer to boolean
4268  *
4269  * Before queueing skb @from after @to, try to merge them
4270  * to reduce overall memory use and queue lengths, if cost is small.
4271  * Packets in ofo or receive queues can stay a long time.
4272  * Better try to coalesce them right now to avoid future collapses.
4273  * Returns true if caller should free @from instead of queueing it
4274  */
4275 static bool tcp_try_coalesce(struct sock *sk,
4276 			     struct sk_buff *to,
4277 			     struct sk_buff *from,
4278 			     bool *fragstolen)
4279 {
4280 	int delta;
4281 
4282 	*fragstolen = false;
4283 
4284 	/* Its possible this segment overlaps with prior segment in queue */
4285 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4286 		return false;
4287 
4288 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4289 		return false;
4290 
4291 	atomic_add(delta, &sk->sk_rmem_alloc);
4292 	sk_mem_charge(sk, delta);
4293 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4294 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4295 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4296 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4297 	return true;
4298 }
4299 
4300 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4301 {
4302 	sk_drops_add(sk, skb);
4303 	__kfree_skb(skb);
4304 }
4305 
4306 /* This one checks to see if we can put data from the
4307  * out_of_order queue into the receive_queue.
4308  */
4309 static void tcp_ofo_queue(struct sock *sk)
4310 {
4311 	struct tcp_sock *tp = tcp_sk(sk);
4312 	__u32 dsack_high = tp->rcv_nxt;
4313 	bool fin, fragstolen, eaten;
4314 	struct sk_buff *skb, *tail;
4315 	struct rb_node *p;
4316 
4317 	p = rb_first(&tp->out_of_order_queue);
4318 	while (p) {
4319 		skb = rb_entry(p, struct sk_buff, rbnode);
4320 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4321 			break;
4322 
4323 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4324 			__u32 dsack = dsack_high;
4325 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4326 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4327 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4328 		}
4329 		p = rb_next(p);
4330 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4331 
4332 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4333 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4334 			tcp_drop(sk, skb);
4335 			continue;
4336 		}
4337 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4338 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4339 			   TCP_SKB_CB(skb)->end_seq);
4340 
4341 		tail = skb_peek_tail(&sk->sk_receive_queue);
4342 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4343 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4344 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4345 		if (!eaten)
4346 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4347 		else
4348 			kfree_skb_partial(skb, fragstolen);
4349 
4350 		if (unlikely(fin)) {
4351 			tcp_fin(sk);
4352 			/* tcp_fin() purges tp->out_of_order_queue,
4353 			 * so we must end this loop right now.
4354 			 */
4355 			break;
4356 		}
4357 	}
4358 }
4359 
4360 static bool tcp_prune_ofo_queue(struct sock *sk);
4361 static int tcp_prune_queue(struct sock *sk);
4362 
4363 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4364 				 unsigned int size)
4365 {
4366 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4367 	    !sk_rmem_schedule(sk, skb, size)) {
4368 
4369 		if (tcp_prune_queue(sk) < 0)
4370 			return -1;
4371 
4372 		while (!sk_rmem_schedule(sk, skb, size)) {
4373 			if (!tcp_prune_ofo_queue(sk))
4374 				return -1;
4375 		}
4376 	}
4377 	return 0;
4378 }
4379 
4380 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4381 {
4382 	struct tcp_sock *tp = tcp_sk(sk);
4383 	struct rb_node **p, *q, *parent;
4384 	struct sk_buff *skb1;
4385 	u32 seq, end_seq;
4386 	bool fragstolen;
4387 
4388 	tcp_ecn_check_ce(tp, skb);
4389 
4390 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4391 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4392 		tcp_drop(sk, skb);
4393 		return;
4394 	}
4395 
4396 	/* Disable header prediction. */
4397 	tp->pred_flags = 0;
4398 	inet_csk_schedule_ack(sk);
4399 
4400 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4401 	seq = TCP_SKB_CB(skb)->seq;
4402 	end_seq = TCP_SKB_CB(skb)->end_seq;
4403 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4404 		   tp->rcv_nxt, seq, end_seq);
4405 
4406 	p = &tp->out_of_order_queue.rb_node;
4407 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4408 		/* Initial out of order segment, build 1 SACK. */
4409 		if (tcp_is_sack(tp)) {
4410 			tp->rx_opt.num_sacks = 1;
4411 			tp->selective_acks[0].start_seq = seq;
4412 			tp->selective_acks[0].end_seq = end_seq;
4413 		}
4414 		rb_link_node(&skb->rbnode, NULL, p);
4415 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4416 		tp->ooo_last_skb = skb;
4417 		goto end;
4418 	}
4419 
4420 	/* In the typical case, we are adding an skb to the end of the list.
4421 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4422 	 */
4423 	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4424 coalesce_done:
4425 		tcp_grow_window(sk, skb);
4426 		kfree_skb_partial(skb, fragstolen);
4427 		skb = NULL;
4428 		goto add_sack;
4429 	}
4430 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4431 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4432 		parent = &tp->ooo_last_skb->rbnode;
4433 		p = &parent->rb_right;
4434 		goto insert;
4435 	}
4436 
4437 	/* Find place to insert this segment. Handle overlaps on the way. */
4438 	parent = NULL;
4439 	while (*p) {
4440 		parent = *p;
4441 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4442 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4443 			p = &parent->rb_left;
4444 			continue;
4445 		}
4446 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4447 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4448 				/* All the bits are present. Drop. */
4449 				NET_INC_STATS(sock_net(sk),
4450 					      LINUX_MIB_TCPOFOMERGE);
4451 				__kfree_skb(skb);
4452 				skb = NULL;
4453 				tcp_dsack_set(sk, seq, end_seq);
4454 				goto add_sack;
4455 			}
4456 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4457 				/* Partial overlap. */
4458 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4459 			} else {
4460 				/* skb's seq == skb1's seq and skb covers skb1.
4461 				 * Replace skb1 with skb.
4462 				 */
4463 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4464 						&tp->out_of_order_queue);
4465 				tcp_dsack_extend(sk,
4466 						 TCP_SKB_CB(skb1)->seq,
4467 						 TCP_SKB_CB(skb1)->end_seq);
4468 				NET_INC_STATS(sock_net(sk),
4469 					      LINUX_MIB_TCPOFOMERGE);
4470 				__kfree_skb(skb1);
4471 				goto merge_right;
4472 			}
4473 		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4474 			goto coalesce_done;
4475 		}
4476 		p = &parent->rb_right;
4477 	}
4478 insert:
4479 	/* Insert segment into RB tree. */
4480 	rb_link_node(&skb->rbnode, parent, p);
4481 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4482 
4483 merge_right:
4484 	/* Remove other segments covered by skb. */
4485 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4486 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4487 
4488 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4489 			break;
4490 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4491 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4492 					 end_seq);
4493 			break;
4494 		}
4495 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4496 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4497 				 TCP_SKB_CB(skb1)->end_seq);
4498 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4499 		tcp_drop(sk, skb1);
4500 	}
4501 	/* If there is no skb after us, we are the last_skb ! */
4502 	if (!q)
4503 		tp->ooo_last_skb = skb;
4504 
4505 add_sack:
4506 	if (tcp_is_sack(tp))
4507 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4508 end:
4509 	if (skb) {
4510 		tcp_grow_window(sk, skb);
4511 		skb_condense(skb);
4512 		skb_set_owner_r(skb, sk);
4513 	}
4514 }
4515 
4516 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4517 		  bool *fragstolen)
4518 {
4519 	int eaten;
4520 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4521 
4522 	__skb_pull(skb, hdrlen);
4523 	eaten = (tail &&
4524 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4525 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4526 	if (!eaten) {
4527 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4528 		skb_set_owner_r(skb, sk);
4529 	}
4530 	return eaten;
4531 }
4532 
4533 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4534 {
4535 	struct sk_buff *skb;
4536 	int err = -ENOMEM;
4537 	int data_len = 0;
4538 	bool fragstolen;
4539 
4540 	if (size == 0)
4541 		return 0;
4542 
4543 	if (size > PAGE_SIZE) {
4544 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4545 
4546 		data_len = npages << PAGE_SHIFT;
4547 		size = data_len + (size & ~PAGE_MASK);
4548 	}
4549 	skb = alloc_skb_with_frags(size - data_len, data_len,
4550 				   PAGE_ALLOC_COSTLY_ORDER,
4551 				   &err, sk->sk_allocation);
4552 	if (!skb)
4553 		goto err;
4554 
4555 	skb_put(skb, size - data_len);
4556 	skb->data_len = data_len;
4557 	skb->len = size;
4558 
4559 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4560 		goto err_free;
4561 
4562 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4563 	if (err)
4564 		goto err_free;
4565 
4566 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4567 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4568 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4569 
4570 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4571 		WARN_ON_ONCE(fragstolen); /* should not happen */
4572 		__kfree_skb(skb);
4573 	}
4574 	return size;
4575 
4576 err_free:
4577 	kfree_skb(skb);
4578 err:
4579 	return err;
4580 
4581 }
4582 
4583 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4584 {
4585 	struct tcp_sock *tp = tcp_sk(sk);
4586 	bool fragstolen = false;
4587 	int eaten = -1;
4588 
4589 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4590 		__kfree_skb(skb);
4591 		return;
4592 	}
4593 	skb_dst_drop(skb);
4594 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4595 
4596 	tcp_ecn_accept_cwr(tp, skb);
4597 
4598 	tp->rx_opt.dsack = 0;
4599 
4600 	/*  Queue data for delivery to the user.
4601 	 *  Packets in sequence go to the receive queue.
4602 	 *  Out of sequence packets to the out_of_order_queue.
4603 	 */
4604 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4605 		if (tcp_receive_window(tp) == 0)
4606 			goto out_of_window;
4607 
4608 		/* Ok. In sequence. In window. */
4609 		if (tp->ucopy.task == current &&
4610 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4611 		    sock_owned_by_user(sk) && !tp->urg_data) {
4612 			int chunk = min_t(unsigned int, skb->len,
4613 					  tp->ucopy.len);
4614 
4615 			__set_current_state(TASK_RUNNING);
4616 
4617 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4618 				tp->ucopy.len -= chunk;
4619 				tp->copied_seq += chunk;
4620 				eaten = (chunk == skb->len);
4621 				tcp_rcv_space_adjust(sk);
4622 			}
4623 		}
4624 
4625 		if (eaten <= 0) {
4626 queue_and_out:
4627 			if (eaten < 0) {
4628 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4629 					sk_forced_mem_schedule(sk, skb->truesize);
4630 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4631 					goto drop;
4632 			}
4633 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4634 		}
4635 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4636 		if (skb->len)
4637 			tcp_event_data_recv(sk, skb);
4638 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4639 			tcp_fin(sk);
4640 
4641 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4642 			tcp_ofo_queue(sk);
4643 
4644 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4645 			 * gap in queue is filled.
4646 			 */
4647 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4648 				inet_csk(sk)->icsk_ack.pingpong = 0;
4649 		}
4650 
4651 		if (tp->rx_opt.num_sacks)
4652 			tcp_sack_remove(tp);
4653 
4654 		tcp_fast_path_check(sk);
4655 
4656 		if (eaten > 0)
4657 			kfree_skb_partial(skb, fragstolen);
4658 		if (!sock_flag(sk, SOCK_DEAD))
4659 			sk->sk_data_ready(sk);
4660 		return;
4661 	}
4662 
4663 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4664 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4665 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4666 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4667 
4668 out_of_window:
4669 		tcp_enter_quickack_mode(sk);
4670 		inet_csk_schedule_ack(sk);
4671 drop:
4672 		tcp_drop(sk, skb);
4673 		return;
4674 	}
4675 
4676 	/* Out of window. F.e. zero window probe. */
4677 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4678 		goto out_of_window;
4679 
4680 	tcp_enter_quickack_mode(sk);
4681 
4682 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683 		/* Partial packet, seq < rcv_next < end_seq */
4684 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4685 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4686 			   TCP_SKB_CB(skb)->end_seq);
4687 
4688 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689 
4690 		/* If window is closed, drop tail of packet. But after
4691 		 * remembering D-SACK for its head made in previous line.
4692 		 */
4693 		if (!tcp_receive_window(tp))
4694 			goto out_of_window;
4695 		goto queue_and_out;
4696 	}
4697 
4698 	tcp_data_queue_ofo(sk, skb);
4699 }
4700 
4701 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4702 {
4703 	if (list)
4704 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4705 
4706 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4707 }
4708 
4709 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4710 					struct sk_buff_head *list,
4711 					struct rb_root *root)
4712 {
4713 	struct sk_buff *next = tcp_skb_next(skb, list);
4714 
4715 	if (list)
4716 		__skb_unlink(skb, list);
4717 	else
4718 		rb_erase(&skb->rbnode, root);
4719 
4720 	__kfree_skb(skb);
4721 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4722 
4723 	return next;
4724 }
4725 
4726 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4727 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4728 {
4729 	struct rb_node **p = &root->rb_node;
4730 	struct rb_node *parent = NULL;
4731 	struct sk_buff *skb1;
4732 
4733 	while (*p) {
4734 		parent = *p;
4735 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4736 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4737 			p = &parent->rb_left;
4738 		else
4739 			p = &parent->rb_right;
4740 	}
4741 	rb_link_node(&skb->rbnode, parent, p);
4742 	rb_insert_color(&skb->rbnode, root);
4743 }
4744 
4745 /* Collapse contiguous sequence of skbs head..tail with
4746  * sequence numbers start..end.
4747  *
4748  * If tail is NULL, this means until the end of the queue.
4749  *
4750  * Segments with FIN/SYN are not collapsed (only because this
4751  * simplifies code)
4752  */
4753 static void
4754 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4755 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4756 {
4757 	struct sk_buff *skb = head, *n;
4758 	struct sk_buff_head tmp;
4759 	bool end_of_skbs;
4760 
4761 	/* First, check that queue is collapsible and find
4762 	 * the point where collapsing can be useful.
4763 	 */
4764 restart:
4765 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4766 		n = tcp_skb_next(skb, list);
4767 
4768 		/* No new bits? It is possible on ofo queue. */
4769 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4770 			skb = tcp_collapse_one(sk, skb, list, root);
4771 			if (!skb)
4772 				break;
4773 			goto restart;
4774 		}
4775 
4776 		/* The first skb to collapse is:
4777 		 * - not SYN/FIN and
4778 		 * - bloated or contains data before "start" or
4779 		 *   overlaps to the next one.
4780 		 */
4781 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4782 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4783 		     before(TCP_SKB_CB(skb)->seq, start))) {
4784 			end_of_skbs = false;
4785 			break;
4786 		}
4787 
4788 		if (n && n != tail &&
4789 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4790 			end_of_skbs = false;
4791 			break;
4792 		}
4793 
4794 		/* Decided to skip this, advance start seq. */
4795 		start = TCP_SKB_CB(skb)->end_seq;
4796 	}
4797 	if (end_of_skbs ||
4798 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4799 		return;
4800 
4801 	__skb_queue_head_init(&tmp);
4802 
4803 	while (before(start, end)) {
4804 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4805 		struct sk_buff *nskb;
4806 
4807 		nskb = alloc_skb(copy, GFP_ATOMIC);
4808 		if (!nskb)
4809 			break;
4810 
4811 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4812 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4813 		if (list)
4814 			__skb_queue_before(list, skb, nskb);
4815 		else
4816 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4817 		skb_set_owner_r(nskb, sk);
4818 
4819 		/* Copy data, releasing collapsed skbs. */
4820 		while (copy > 0) {
4821 			int offset = start - TCP_SKB_CB(skb)->seq;
4822 			int size = TCP_SKB_CB(skb)->end_seq - start;
4823 
4824 			BUG_ON(offset < 0);
4825 			if (size > 0) {
4826 				size = min(copy, size);
4827 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4828 					BUG();
4829 				TCP_SKB_CB(nskb)->end_seq += size;
4830 				copy -= size;
4831 				start += size;
4832 			}
4833 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4834 				skb = tcp_collapse_one(sk, skb, list, root);
4835 				if (!skb ||
4836 				    skb == tail ||
4837 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4838 					goto end;
4839 			}
4840 		}
4841 	}
4842 end:
4843 	skb_queue_walk_safe(&tmp, skb, n)
4844 		tcp_rbtree_insert(root, skb);
4845 }
4846 
4847 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4848  * and tcp_collapse() them until all the queue is collapsed.
4849  */
4850 static void tcp_collapse_ofo_queue(struct sock *sk)
4851 {
4852 	struct tcp_sock *tp = tcp_sk(sk);
4853 	struct sk_buff *skb, *head;
4854 	struct rb_node *p;
4855 	u32 start, end;
4856 
4857 	p = rb_first(&tp->out_of_order_queue);
4858 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4859 new_range:
4860 	if (!skb) {
4861 		p = rb_last(&tp->out_of_order_queue);
4862 		/* Note: This is possible p is NULL here. We do not
4863 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4864 		 * if rbtree is not empty.
4865 		 */
4866 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4867 		return;
4868 	}
4869 	start = TCP_SKB_CB(skb)->seq;
4870 	end = TCP_SKB_CB(skb)->end_seq;
4871 
4872 	for (head = skb;;) {
4873 		skb = tcp_skb_next(skb, NULL);
4874 
4875 		/* Range is terminated when we see a gap or when
4876 		 * we are at the queue end.
4877 		 */
4878 		if (!skb ||
4879 		    after(TCP_SKB_CB(skb)->seq, end) ||
4880 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4881 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4882 				     head, skb, start, end);
4883 			goto new_range;
4884 		}
4885 
4886 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4887 			start = TCP_SKB_CB(skb)->seq;
4888 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4889 			end = TCP_SKB_CB(skb)->end_seq;
4890 	}
4891 }
4892 
4893 /*
4894  * Clean the out-of-order queue to make room.
4895  * We drop high sequences packets to :
4896  * 1) Let a chance for holes to be filled.
4897  * 2) not add too big latencies if thousands of packets sit there.
4898  *    (But if application shrinks SO_RCVBUF, we could still end up
4899  *     freeing whole queue here)
4900  *
4901  * Return true if queue has shrunk.
4902  */
4903 static bool tcp_prune_ofo_queue(struct sock *sk)
4904 {
4905 	struct tcp_sock *tp = tcp_sk(sk);
4906 	struct rb_node *node, *prev;
4907 
4908 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4909 		return false;
4910 
4911 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4912 	node = &tp->ooo_last_skb->rbnode;
4913 	do {
4914 		prev = rb_prev(node);
4915 		rb_erase(node, &tp->out_of_order_queue);
4916 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4917 		sk_mem_reclaim(sk);
4918 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4919 		    !tcp_under_memory_pressure(sk))
4920 			break;
4921 		node = prev;
4922 	} while (node);
4923 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4924 
4925 	/* Reset SACK state.  A conforming SACK implementation will
4926 	 * do the same at a timeout based retransmit.  When a connection
4927 	 * is in a sad state like this, we care only about integrity
4928 	 * of the connection not performance.
4929 	 */
4930 	if (tp->rx_opt.sack_ok)
4931 		tcp_sack_reset(&tp->rx_opt);
4932 	return true;
4933 }
4934 
4935 /* Reduce allocated memory if we can, trying to get
4936  * the socket within its memory limits again.
4937  *
4938  * Return less than zero if we should start dropping frames
4939  * until the socket owning process reads some of the data
4940  * to stabilize the situation.
4941  */
4942 static int tcp_prune_queue(struct sock *sk)
4943 {
4944 	struct tcp_sock *tp = tcp_sk(sk);
4945 
4946 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4947 
4948 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4949 
4950 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4951 		tcp_clamp_window(sk);
4952 	else if (tcp_under_memory_pressure(sk))
4953 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4954 
4955 	tcp_collapse_ofo_queue(sk);
4956 	if (!skb_queue_empty(&sk->sk_receive_queue))
4957 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4958 			     skb_peek(&sk->sk_receive_queue),
4959 			     NULL,
4960 			     tp->copied_seq, tp->rcv_nxt);
4961 	sk_mem_reclaim(sk);
4962 
4963 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4964 		return 0;
4965 
4966 	/* Collapsing did not help, destructive actions follow.
4967 	 * This must not ever occur. */
4968 
4969 	tcp_prune_ofo_queue(sk);
4970 
4971 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4972 		return 0;
4973 
4974 	/* If we are really being abused, tell the caller to silently
4975 	 * drop receive data on the floor.  It will get retransmitted
4976 	 * and hopefully then we'll have sufficient space.
4977 	 */
4978 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4979 
4980 	/* Massive buffer overcommit. */
4981 	tp->pred_flags = 0;
4982 	return -1;
4983 }
4984 
4985 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4986 {
4987 	const struct tcp_sock *tp = tcp_sk(sk);
4988 
4989 	/* If the user specified a specific send buffer setting, do
4990 	 * not modify it.
4991 	 */
4992 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4993 		return false;
4994 
4995 	/* If we are under global TCP memory pressure, do not expand.  */
4996 	if (tcp_under_memory_pressure(sk))
4997 		return false;
4998 
4999 	/* If we are under soft global TCP memory pressure, do not expand.  */
5000 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5001 		return false;
5002 
5003 	/* If we filled the congestion window, do not expand.  */
5004 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5005 		return false;
5006 
5007 	return true;
5008 }
5009 
5010 /* When incoming ACK allowed to free some skb from write_queue,
5011  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5012  * on the exit from tcp input handler.
5013  *
5014  * PROBLEM: sndbuf expansion does not work well with largesend.
5015  */
5016 static void tcp_new_space(struct sock *sk)
5017 {
5018 	struct tcp_sock *tp = tcp_sk(sk);
5019 
5020 	if (tcp_should_expand_sndbuf(sk)) {
5021 		tcp_sndbuf_expand(sk);
5022 		tp->snd_cwnd_stamp = tcp_time_stamp;
5023 	}
5024 
5025 	sk->sk_write_space(sk);
5026 }
5027 
5028 static void tcp_check_space(struct sock *sk)
5029 {
5030 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5031 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5032 		/* pairs with tcp_poll() */
5033 		smp_mb();
5034 		if (sk->sk_socket &&
5035 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5036 			tcp_new_space(sk);
5037 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5038 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5039 		}
5040 	}
5041 }
5042 
5043 static inline void tcp_data_snd_check(struct sock *sk)
5044 {
5045 	tcp_push_pending_frames(sk);
5046 	tcp_check_space(sk);
5047 }
5048 
5049 /*
5050  * Check if sending an ack is needed.
5051  */
5052 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5053 {
5054 	struct tcp_sock *tp = tcp_sk(sk);
5055 
5056 	    /* More than one full frame received... */
5057 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5058 	     /* ... and right edge of window advances far enough.
5059 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5060 	      */
5061 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5062 	    /* We ACK each frame or... */
5063 	    tcp_in_quickack_mode(sk) ||
5064 	    /* We have out of order data. */
5065 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5066 		/* Then ack it now */
5067 		tcp_send_ack(sk);
5068 	} else {
5069 		/* Else, send delayed ack. */
5070 		tcp_send_delayed_ack(sk);
5071 	}
5072 }
5073 
5074 static inline void tcp_ack_snd_check(struct sock *sk)
5075 {
5076 	if (!inet_csk_ack_scheduled(sk)) {
5077 		/* We sent a data segment already. */
5078 		return;
5079 	}
5080 	__tcp_ack_snd_check(sk, 1);
5081 }
5082 
5083 /*
5084  *	This routine is only called when we have urgent data
5085  *	signaled. Its the 'slow' part of tcp_urg. It could be
5086  *	moved inline now as tcp_urg is only called from one
5087  *	place. We handle URGent data wrong. We have to - as
5088  *	BSD still doesn't use the correction from RFC961.
5089  *	For 1003.1g we should support a new option TCP_STDURG to permit
5090  *	either form (or just set the sysctl tcp_stdurg).
5091  */
5092 
5093 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5094 {
5095 	struct tcp_sock *tp = tcp_sk(sk);
5096 	u32 ptr = ntohs(th->urg_ptr);
5097 
5098 	if (ptr && !sysctl_tcp_stdurg)
5099 		ptr--;
5100 	ptr += ntohl(th->seq);
5101 
5102 	/* Ignore urgent data that we've already seen and read. */
5103 	if (after(tp->copied_seq, ptr))
5104 		return;
5105 
5106 	/* Do not replay urg ptr.
5107 	 *
5108 	 * NOTE: interesting situation not covered by specs.
5109 	 * Misbehaving sender may send urg ptr, pointing to segment,
5110 	 * which we already have in ofo queue. We are not able to fetch
5111 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5112 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5113 	 * situations. But it is worth to think about possibility of some
5114 	 * DoSes using some hypothetical application level deadlock.
5115 	 */
5116 	if (before(ptr, tp->rcv_nxt))
5117 		return;
5118 
5119 	/* Do we already have a newer (or duplicate) urgent pointer? */
5120 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5121 		return;
5122 
5123 	/* Tell the world about our new urgent pointer. */
5124 	sk_send_sigurg(sk);
5125 
5126 	/* We may be adding urgent data when the last byte read was
5127 	 * urgent. To do this requires some care. We cannot just ignore
5128 	 * tp->copied_seq since we would read the last urgent byte again
5129 	 * as data, nor can we alter copied_seq until this data arrives
5130 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5131 	 *
5132 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5133 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5134 	 * and expect that both A and B disappear from stream. This is _wrong_.
5135 	 * Though this happens in BSD with high probability, this is occasional.
5136 	 * Any application relying on this is buggy. Note also, that fix "works"
5137 	 * only in this artificial test. Insert some normal data between A and B and we will
5138 	 * decline of BSD again. Verdict: it is better to remove to trap
5139 	 * buggy users.
5140 	 */
5141 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5142 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5143 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5144 		tp->copied_seq++;
5145 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5146 			__skb_unlink(skb, &sk->sk_receive_queue);
5147 			__kfree_skb(skb);
5148 		}
5149 	}
5150 
5151 	tp->urg_data = TCP_URG_NOTYET;
5152 	tp->urg_seq = ptr;
5153 
5154 	/* Disable header prediction. */
5155 	tp->pred_flags = 0;
5156 }
5157 
5158 /* This is the 'fast' part of urgent handling. */
5159 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5160 {
5161 	struct tcp_sock *tp = tcp_sk(sk);
5162 
5163 	/* Check if we get a new urgent pointer - normally not. */
5164 	if (th->urg)
5165 		tcp_check_urg(sk, th);
5166 
5167 	/* Do we wait for any urgent data? - normally not... */
5168 	if (tp->urg_data == TCP_URG_NOTYET) {
5169 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5170 			  th->syn;
5171 
5172 		/* Is the urgent pointer pointing into this packet? */
5173 		if (ptr < skb->len) {
5174 			u8 tmp;
5175 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5176 				BUG();
5177 			tp->urg_data = TCP_URG_VALID | tmp;
5178 			if (!sock_flag(sk, SOCK_DEAD))
5179 				sk->sk_data_ready(sk);
5180 		}
5181 	}
5182 }
5183 
5184 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5185 {
5186 	struct tcp_sock *tp = tcp_sk(sk);
5187 	int chunk = skb->len - hlen;
5188 	int err;
5189 
5190 	if (skb_csum_unnecessary(skb))
5191 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5192 	else
5193 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5194 
5195 	if (!err) {
5196 		tp->ucopy.len -= chunk;
5197 		tp->copied_seq += chunk;
5198 		tcp_rcv_space_adjust(sk);
5199 	}
5200 
5201 	return err;
5202 }
5203 
5204 /* Accept RST for rcv_nxt - 1 after a FIN.
5205  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5206  * FIN is sent followed by a RST packet. The RST is sent with the same
5207  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5208  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5209  * ACKs on the closed socket. In addition middleboxes can drop either the
5210  * challenge ACK or a subsequent RST.
5211  */
5212 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5213 {
5214 	struct tcp_sock *tp = tcp_sk(sk);
5215 
5216 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5217 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5218 					       TCPF_CLOSING));
5219 }
5220 
5221 /* Does PAWS and seqno based validation of an incoming segment, flags will
5222  * play significant role here.
5223  */
5224 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5225 				  const struct tcphdr *th, int syn_inerr)
5226 {
5227 	struct tcp_sock *tp = tcp_sk(sk);
5228 	bool rst_seq_match = false;
5229 
5230 	/* RFC1323: H1. Apply PAWS check first. */
5231 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5232 	    tcp_paws_discard(sk, skb)) {
5233 		if (!th->rst) {
5234 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5235 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5236 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5237 						  &tp->last_oow_ack_time))
5238 				tcp_send_dupack(sk, skb);
5239 			goto discard;
5240 		}
5241 		/* Reset is accepted even if it did not pass PAWS. */
5242 	}
5243 
5244 	/* Step 1: check sequence number */
5245 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5246 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5247 		 * (RST) segments are validated by checking their SEQ-fields."
5248 		 * And page 69: "If an incoming segment is not acceptable,
5249 		 * an acknowledgment should be sent in reply (unless the RST
5250 		 * bit is set, if so drop the segment and return)".
5251 		 */
5252 		if (!th->rst) {
5253 			if (th->syn)
5254 				goto syn_challenge;
5255 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5256 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5257 						  &tp->last_oow_ack_time))
5258 				tcp_send_dupack(sk, skb);
5259 		} else if (tcp_reset_check(sk, skb)) {
5260 			tcp_reset(sk);
5261 		}
5262 		goto discard;
5263 	}
5264 
5265 	/* Step 2: check RST bit */
5266 	if (th->rst) {
5267 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5268 		 * FIN and SACK too if available):
5269 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5270 		 * the right-most SACK block,
5271 		 * then
5272 		 *     RESET the connection
5273 		 * else
5274 		 *     Send a challenge ACK
5275 		 */
5276 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5277 		    tcp_reset_check(sk, skb)) {
5278 			rst_seq_match = true;
5279 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5280 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5281 			int max_sack = sp[0].end_seq;
5282 			int this_sack;
5283 
5284 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5285 			     ++this_sack) {
5286 				max_sack = after(sp[this_sack].end_seq,
5287 						 max_sack) ?
5288 					sp[this_sack].end_seq : max_sack;
5289 			}
5290 
5291 			if (TCP_SKB_CB(skb)->seq == max_sack)
5292 				rst_seq_match = true;
5293 		}
5294 
5295 		if (rst_seq_match)
5296 			tcp_reset(sk);
5297 		else {
5298 			/* Disable TFO if RST is out-of-order
5299 			 * and no data has been received
5300 			 * for current active TFO socket
5301 			 */
5302 			if (tp->syn_fastopen && !tp->data_segs_in &&
5303 			    sk->sk_state == TCP_ESTABLISHED)
5304 				tcp_fastopen_active_disable(sk);
5305 			tcp_send_challenge_ack(sk, skb);
5306 		}
5307 		goto discard;
5308 	}
5309 
5310 	/* step 3: check security and precedence [ignored] */
5311 
5312 	/* step 4: Check for a SYN
5313 	 * RFC 5961 4.2 : Send a challenge ack
5314 	 */
5315 	if (th->syn) {
5316 syn_challenge:
5317 		if (syn_inerr)
5318 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5319 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5320 		tcp_send_challenge_ack(sk, skb);
5321 		goto discard;
5322 	}
5323 
5324 	return true;
5325 
5326 discard:
5327 	tcp_drop(sk, skb);
5328 	return false;
5329 }
5330 
5331 /*
5332  *	TCP receive function for the ESTABLISHED state.
5333  *
5334  *	It is split into a fast path and a slow path. The fast path is
5335  * 	disabled when:
5336  *	- A zero window was announced from us - zero window probing
5337  *        is only handled properly in the slow path.
5338  *	- Out of order segments arrived.
5339  *	- Urgent data is expected.
5340  *	- There is no buffer space left
5341  *	- Unexpected TCP flags/window values/header lengths are received
5342  *	  (detected by checking the TCP header against pred_flags)
5343  *	- Data is sent in both directions. Fast path only supports pure senders
5344  *	  or pure receivers (this means either the sequence number or the ack
5345  *	  value must stay constant)
5346  *	- Unexpected TCP option.
5347  *
5348  *	When these conditions are not satisfied it drops into a standard
5349  *	receive procedure patterned after RFC793 to handle all cases.
5350  *	The first three cases are guaranteed by proper pred_flags setting,
5351  *	the rest is checked inline. Fast processing is turned on in
5352  *	tcp_data_queue when everything is OK.
5353  */
5354 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5355 			 const struct tcphdr *th, unsigned int len)
5356 {
5357 	struct tcp_sock *tp = tcp_sk(sk);
5358 
5359 	skb_mstamp_get(&tp->tcp_mstamp);
5360 	if (unlikely(!sk->sk_rx_dst))
5361 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5362 	/*
5363 	 *	Header prediction.
5364 	 *	The code loosely follows the one in the famous
5365 	 *	"30 instruction TCP receive" Van Jacobson mail.
5366 	 *
5367 	 *	Van's trick is to deposit buffers into socket queue
5368 	 *	on a device interrupt, to call tcp_recv function
5369 	 *	on the receive process context and checksum and copy
5370 	 *	the buffer to user space. smart...
5371 	 *
5372 	 *	Our current scheme is not silly either but we take the
5373 	 *	extra cost of the net_bh soft interrupt processing...
5374 	 *	We do checksum and copy also but from device to kernel.
5375 	 */
5376 
5377 	tp->rx_opt.saw_tstamp = 0;
5378 
5379 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5380 	 *	if header_prediction is to be made
5381 	 *	'S' will always be tp->tcp_header_len >> 2
5382 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5383 	 *  turn it off	(when there are holes in the receive
5384 	 *	 space for instance)
5385 	 *	PSH flag is ignored.
5386 	 */
5387 
5388 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5389 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5390 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5391 		int tcp_header_len = tp->tcp_header_len;
5392 
5393 		/* Timestamp header prediction: tcp_header_len
5394 		 * is automatically equal to th->doff*4 due to pred_flags
5395 		 * match.
5396 		 */
5397 
5398 		/* Check timestamp */
5399 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5400 			/* No? Slow path! */
5401 			if (!tcp_parse_aligned_timestamp(tp, th))
5402 				goto slow_path;
5403 
5404 			/* If PAWS failed, check it more carefully in slow path */
5405 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5406 				goto slow_path;
5407 
5408 			/* DO NOT update ts_recent here, if checksum fails
5409 			 * and timestamp was corrupted part, it will result
5410 			 * in a hung connection since we will drop all
5411 			 * future packets due to the PAWS test.
5412 			 */
5413 		}
5414 
5415 		if (len <= tcp_header_len) {
5416 			/* Bulk data transfer: sender */
5417 			if (len == tcp_header_len) {
5418 				/* Predicted packet is in window by definition.
5419 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5420 				 * Hence, check seq<=rcv_wup reduces to:
5421 				 */
5422 				if (tcp_header_len ==
5423 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5424 				    tp->rcv_nxt == tp->rcv_wup)
5425 					tcp_store_ts_recent(tp);
5426 
5427 				/* We know that such packets are checksummed
5428 				 * on entry.
5429 				 */
5430 				tcp_ack(sk, skb, 0);
5431 				__kfree_skb(skb);
5432 				tcp_data_snd_check(sk);
5433 				return;
5434 			} else { /* Header too small */
5435 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5436 				goto discard;
5437 			}
5438 		} else {
5439 			int eaten = 0;
5440 			bool fragstolen = false;
5441 
5442 			if (tp->ucopy.task == current &&
5443 			    tp->copied_seq == tp->rcv_nxt &&
5444 			    len - tcp_header_len <= tp->ucopy.len &&
5445 			    sock_owned_by_user(sk)) {
5446 				__set_current_state(TASK_RUNNING);
5447 
5448 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5449 					/* Predicted packet is in window by definition.
5450 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5451 					 * Hence, check seq<=rcv_wup reduces to:
5452 					 */
5453 					if (tcp_header_len ==
5454 					    (sizeof(struct tcphdr) +
5455 					     TCPOLEN_TSTAMP_ALIGNED) &&
5456 					    tp->rcv_nxt == tp->rcv_wup)
5457 						tcp_store_ts_recent(tp);
5458 
5459 					tcp_rcv_rtt_measure_ts(sk, skb);
5460 
5461 					__skb_pull(skb, tcp_header_len);
5462 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5463 					NET_INC_STATS(sock_net(sk),
5464 							LINUX_MIB_TCPHPHITSTOUSER);
5465 					eaten = 1;
5466 				}
5467 			}
5468 			if (!eaten) {
5469 				if (tcp_checksum_complete(skb))
5470 					goto csum_error;
5471 
5472 				if ((int)skb->truesize > sk->sk_forward_alloc)
5473 					goto step5;
5474 
5475 				/* Predicted packet is in window by definition.
5476 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5477 				 * Hence, check seq<=rcv_wup reduces to:
5478 				 */
5479 				if (tcp_header_len ==
5480 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5481 				    tp->rcv_nxt == tp->rcv_wup)
5482 					tcp_store_ts_recent(tp);
5483 
5484 				tcp_rcv_rtt_measure_ts(sk, skb);
5485 
5486 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5487 
5488 				/* Bulk data transfer: receiver */
5489 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5490 						      &fragstolen);
5491 			}
5492 
5493 			tcp_event_data_recv(sk, skb);
5494 
5495 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5496 				/* Well, only one small jumplet in fast path... */
5497 				tcp_ack(sk, skb, FLAG_DATA);
5498 				tcp_data_snd_check(sk);
5499 				if (!inet_csk_ack_scheduled(sk))
5500 					goto no_ack;
5501 			}
5502 
5503 			__tcp_ack_snd_check(sk, 0);
5504 no_ack:
5505 			if (eaten)
5506 				kfree_skb_partial(skb, fragstolen);
5507 			sk->sk_data_ready(sk);
5508 			return;
5509 		}
5510 	}
5511 
5512 slow_path:
5513 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5514 		goto csum_error;
5515 
5516 	if (!th->ack && !th->rst && !th->syn)
5517 		goto discard;
5518 
5519 	/*
5520 	 *	Standard slow path.
5521 	 */
5522 
5523 	if (!tcp_validate_incoming(sk, skb, th, 1))
5524 		return;
5525 
5526 step5:
5527 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5528 		goto discard;
5529 
5530 	tcp_rcv_rtt_measure_ts(sk, skb);
5531 
5532 	/* Process urgent data. */
5533 	tcp_urg(sk, skb, th);
5534 
5535 	/* step 7: process the segment text */
5536 	tcp_data_queue(sk, skb);
5537 
5538 	tcp_data_snd_check(sk);
5539 	tcp_ack_snd_check(sk);
5540 	return;
5541 
5542 csum_error:
5543 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5544 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5545 
5546 discard:
5547 	tcp_drop(sk, skb);
5548 }
5549 EXPORT_SYMBOL(tcp_rcv_established);
5550 
5551 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5552 {
5553 	struct tcp_sock *tp = tcp_sk(sk);
5554 	struct inet_connection_sock *icsk = inet_csk(sk);
5555 
5556 	tcp_set_state(sk, TCP_ESTABLISHED);
5557 	icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5558 
5559 	if (skb) {
5560 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5561 		security_inet_conn_established(sk, skb);
5562 	}
5563 
5564 	/* Make sure socket is routed, for correct metrics.  */
5565 	icsk->icsk_af_ops->rebuild_header(sk);
5566 
5567 	tcp_init_metrics(sk);
5568 
5569 	tcp_init_congestion_control(sk);
5570 
5571 	/* Prevent spurious tcp_cwnd_restart() on first data
5572 	 * packet.
5573 	 */
5574 	tp->lsndtime = tcp_time_stamp;
5575 
5576 	tcp_init_buffer_space(sk);
5577 
5578 	if (sock_flag(sk, SOCK_KEEPOPEN))
5579 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5580 
5581 	if (!tp->rx_opt.snd_wscale)
5582 		__tcp_fast_path_on(tp, tp->snd_wnd);
5583 	else
5584 		tp->pred_flags = 0;
5585 
5586 }
5587 
5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5589 				    struct tcp_fastopen_cookie *cookie)
5590 {
5591 	struct tcp_sock *tp = tcp_sk(sk);
5592 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5593 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5594 	bool syn_drop = false;
5595 
5596 	if (mss == tp->rx_opt.user_mss) {
5597 		struct tcp_options_received opt;
5598 
5599 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5600 		tcp_clear_options(&opt);
5601 		opt.user_mss = opt.mss_clamp = 0;
5602 		tcp_parse_options(synack, &opt, 0, NULL);
5603 		mss = opt.mss_clamp;
5604 	}
5605 
5606 	if (!tp->syn_fastopen) {
5607 		/* Ignore an unsolicited cookie */
5608 		cookie->len = -1;
5609 	} else if (tp->total_retrans) {
5610 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5611 		 * acknowledges data. Presumably the remote received only
5612 		 * the retransmitted (regular) SYNs: either the original
5613 		 * SYN-data or the corresponding SYN-ACK was dropped.
5614 		 */
5615 		syn_drop = (cookie->len < 0 && data);
5616 	} else if (cookie->len < 0 && !tp->syn_data) {
5617 		/* We requested a cookie but didn't get it. If we did not use
5618 		 * the (old) exp opt format then try so next time (try_exp=1).
5619 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5620 		 */
5621 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5622 	}
5623 
5624 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5625 
5626 	if (data) { /* Retransmit unacked data in SYN */
5627 		tcp_for_write_queue_from(data, sk) {
5628 			if (data == tcp_send_head(sk) ||
5629 			    __tcp_retransmit_skb(sk, data, 1))
5630 				break;
5631 		}
5632 		tcp_rearm_rto(sk);
5633 		NET_INC_STATS(sock_net(sk),
5634 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5635 		return true;
5636 	}
5637 	tp->syn_data_acked = tp->syn_data;
5638 	if (tp->syn_data_acked)
5639 		NET_INC_STATS(sock_net(sk),
5640 				LINUX_MIB_TCPFASTOPENACTIVE);
5641 
5642 	tcp_fastopen_add_skb(sk, synack);
5643 
5644 	return false;
5645 }
5646 
5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5648 					 const struct tcphdr *th)
5649 {
5650 	struct inet_connection_sock *icsk = inet_csk(sk);
5651 	struct tcp_sock *tp = tcp_sk(sk);
5652 	struct tcp_fastopen_cookie foc = { .len = -1 };
5653 	int saved_clamp = tp->rx_opt.mss_clamp;
5654 	bool fastopen_fail;
5655 
5656 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5657 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5658 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5659 
5660 	if (th->ack) {
5661 		/* rfc793:
5662 		 * "If the state is SYN-SENT then
5663 		 *    first check the ACK bit
5664 		 *      If the ACK bit is set
5665 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5666 		 *        a reset (unless the RST bit is set, if so drop
5667 		 *        the segment and return)"
5668 		 */
5669 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5670 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5671 			goto reset_and_undo;
5672 
5673 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5674 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5675 			     tcp_time_stamp)) {
5676 			NET_INC_STATS(sock_net(sk),
5677 					LINUX_MIB_PAWSACTIVEREJECTED);
5678 			goto reset_and_undo;
5679 		}
5680 
5681 		/* Now ACK is acceptable.
5682 		 *
5683 		 * "If the RST bit is set
5684 		 *    If the ACK was acceptable then signal the user "error:
5685 		 *    connection reset", drop the segment, enter CLOSED state,
5686 		 *    delete TCB, and return."
5687 		 */
5688 
5689 		if (th->rst) {
5690 			tcp_reset(sk);
5691 			goto discard;
5692 		}
5693 
5694 		/* rfc793:
5695 		 *   "fifth, if neither of the SYN or RST bits is set then
5696 		 *    drop the segment and return."
5697 		 *
5698 		 *    See note below!
5699 		 *                                        --ANK(990513)
5700 		 */
5701 		if (!th->syn)
5702 			goto discard_and_undo;
5703 
5704 		/* rfc793:
5705 		 *   "If the SYN bit is on ...
5706 		 *    are acceptable then ...
5707 		 *    (our SYN has been ACKed), change the connection
5708 		 *    state to ESTABLISHED..."
5709 		 */
5710 
5711 		tcp_ecn_rcv_synack(tp, th);
5712 
5713 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5714 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5715 
5716 		/* Ok.. it's good. Set up sequence numbers and
5717 		 * move to established.
5718 		 */
5719 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5720 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5721 
5722 		/* RFC1323: The window in SYN & SYN/ACK segments is
5723 		 * never scaled.
5724 		 */
5725 		tp->snd_wnd = ntohs(th->window);
5726 
5727 		if (!tp->rx_opt.wscale_ok) {
5728 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5729 			tp->window_clamp = min(tp->window_clamp, 65535U);
5730 		}
5731 
5732 		if (tp->rx_opt.saw_tstamp) {
5733 			tp->rx_opt.tstamp_ok	   = 1;
5734 			tp->tcp_header_len =
5735 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5736 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5737 			tcp_store_ts_recent(tp);
5738 		} else {
5739 			tp->tcp_header_len = sizeof(struct tcphdr);
5740 		}
5741 
5742 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5743 			tcp_enable_fack(tp);
5744 
5745 		tcp_mtup_init(sk);
5746 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5747 		tcp_initialize_rcv_mss(sk);
5748 
5749 		/* Remember, tcp_poll() does not lock socket!
5750 		 * Change state from SYN-SENT only after copied_seq
5751 		 * is initialized. */
5752 		tp->copied_seq = tp->rcv_nxt;
5753 
5754 		smp_mb();
5755 
5756 		tcp_finish_connect(sk, skb);
5757 
5758 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5759 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5760 
5761 		if (!sock_flag(sk, SOCK_DEAD)) {
5762 			sk->sk_state_change(sk);
5763 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5764 		}
5765 		if (fastopen_fail)
5766 			return -1;
5767 		if (sk->sk_write_pending ||
5768 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5769 		    icsk->icsk_ack.pingpong) {
5770 			/* Save one ACK. Data will be ready after
5771 			 * several ticks, if write_pending is set.
5772 			 *
5773 			 * It may be deleted, but with this feature tcpdumps
5774 			 * look so _wonderfully_ clever, that I was not able
5775 			 * to stand against the temptation 8)     --ANK
5776 			 */
5777 			inet_csk_schedule_ack(sk);
5778 			tcp_enter_quickack_mode(sk);
5779 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5780 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5781 
5782 discard:
5783 			tcp_drop(sk, skb);
5784 			return 0;
5785 		} else {
5786 			tcp_send_ack(sk);
5787 		}
5788 		return -1;
5789 	}
5790 
5791 	/* No ACK in the segment */
5792 
5793 	if (th->rst) {
5794 		/* rfc793:
5795 		 * "If the RST bit is set
5796 		 *
5797 		 *      Otherwise (no ACK) drop the segment and return."
5798 		 */
5799 
5800 		goto discard_and_undo;
5801 	}
5802 
5803 	/* PAWS check. */
5804 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5805 	    tcp_paws_reject(&tp->rx_opt, 0))
5806 		goto discard_and_undo;
5807 
5808 	if (th->syn) {
5809 		/* We see SYN without ACK. It is attempt of
5810 		 * simultaneous connect with crossed SYNs.
5811 		 * Particularly, it can be connect to self.
5812 		 */
5813 		tcp_set_state(sk, TCP_SYN_RECV);
5814 
5815 		if (tp->rx_opt.saw_tstamp) {
5816 			tp->rx_opt.tstamp_ok = 1;
5817 			tcp_store_ts_recent(tp);
5818 			tp->tcp_header_len =
5819 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5820 		} else {
5821 			tp->tcp_header_len = sizeof(struct tcphdr);
5822 		}
5823 
5824 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5825 		tp->copied_seq = tp->rcv_nxt;
5826 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5827 
5828 		/* RFC1323: The window in SYN & SYN/ACK segments is
5829 		 * never scaled.
5830 		 */
5831 		tp->snd_wnd    = ntohs(th->window);
5832 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5833 		tp->max_window = tp->snd_wnd;
5834 
5835 		tcp_ecn_rcv_syn(tp, th);
5836 
5837 		tcp_mtup_init(sk);
5838 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5839 		tcp_initialize_rcv_mss(sk);
5840 
5841 		tcp_send_synack(sk);
5842 #if 0
5843 		/* Note, we could accept data and URG from this segment.
5844 		 * There are no obstacles to make this (except that we must
5845 		 * either change tcp_recvmsg() to prevent it from returning data
5846 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5847 		 *
5848 		 * However, if we ignore data in ACKless segments sometimes,
5849 		 * we have no reasons to accept it sometimes.
5850 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5851 		 * is not flawless. So, discard packet for sanity.
5852 		 * Uncomment this return to process the data.
5853 		 */
5854 		return -1;
5855 #else
5856 		goto discard;
5857 #endif
5858 	}
5859 	/* "fifth, if neither of the SYN or RST bits is set then
5860 	 * drop the segment and return."
5861 	 */
5862 
5863 discard_and_undo:
5864 	tcp_clear_options(&tp->rx_opt);
5865 	tp->rx_opt.mss_clamp = saved_clamp;
5866 	goto discard;
5867 
5868 reset_and_undo:
5869 	tcp_clear_options(&tp->rx_opt);
5870 	tp->rx_opt.mss_clamp = saved_clamp;
5871 	return 1;
5872 }
5873 
5874 /*
5875  *	This function implements the receiving procedure of RFC 793 for
5876  *	all states except ESTABLISHED and TIME_WAIT.
5877  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5878  *	address independent.
5879  */
5880 
5881 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5882 {
5883 	struct tcp_sock *tp = tcp_sk(sk);
5884 	struct inet_connection_sock *icsk = inet_csk(sk);
5885 	const struct tcphdr *th = tcp_hdr(skb);
5886 	struct request_sock *req;
5887 	int queued = 0;
5888 	bool acceptable;
5889 
5890 	switch (sk->sk_state) {
5891 	case TCP_CLOSE:
5892 		goto discard;
5893 
5894 	case TCP_LISTEN:
5895 		if (th->ack)
5896 			return 1;
5897 
5898 		if (th->rst)
5899 			goto discard;
5900 
5901 		if (th->syn) {
5902 			if (th->fin)
5903 				goto discard;
5904 			/* It is possible that we process SYN packets from backlog,
5905 			 * so we need to make sure to disable BH right there.
5906 			 */
5907 			local_bh_disable();
5908 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5909 			local_bh_enable();
5910 
5911 			if (!acceptable)
5912 				return 1;
5913 			consume_skb(skb);
5914 			return 0;
5915 		}
5916 		goto discard;
5917 
5918 	case TCP_SYN_SENT:
5919 		tp->rx_opt.saw_tstamp = 0;
5920 		skb_mstamp_get(&tp->tcp_mstamp);
5921 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5922 		if (queued >= 0)
5923 			return queued;
5924 
5925 		/* Do step6 onward by hand. */
5926 		tcp_urg(sk, skb, th);
5927 		__kfree_skb(skb);
5928 		tcp_data_snd_check(sk);
5929 		return 0;
5930 	}
5931 
5932 	skb_mstamp_get(&tp->tcp_mstamp);
5933 	tp->rx_opt.saw_tstamp = 0;
5934 	req = tp->fastopen_rsk;
5935 	if (req) {
5936 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5937 		    sk->sk_state != TCP_FIN_WAIT1);
5938 
5939 		if (!tcp_check_req(sk, skb, req, true))
5940 			goto discard;
5941 	}
5942 
5943 	if (!th->ack && !th->rst && !th->syn)
5944 		goto discard;
5945 
5946 	if (!tcp_validate_incoming(sk, skb, th, 0))
5947 		return 0;
5948 
5949 	/* step 5: check the ACK field */
5950 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5951 				      FLAG_UPDATE_TS_RECENT) > 0;
5952 
5953 	switch (sk->sk_state) {
5954 	case TCP_SYN_RECV:
5955 		if (!acceptable)
5956 			return 1;
5957 
5958 		if (!tp->srtt_us)
5959 			tcp_synack_rtt_meas(sk, req);
5960 
5961 		/* Once we leave TCP_SYN_RECV, we no longer need req
5962 		 * so release it.
5963 		 */
5964 		if (req) {
5965 			inet_csk(sk)->icsk_retransmits = 0;
5966 			reqsk_fastopen_remove(sk, req, false);
5967 		} else {
5968 			/* Make sure socket is routed, for correct metrics. */
5969 			icsk->icsk_af_ops->rebuild_header(sk);
5970 			tcp_init_congestion_control(sk);
5971 
5972 			tcp_mtup_init(sk);
5973 			tp->copied_seq = tp->rcv_nxt;
5974 			tcp_init_buffer_space(sk);
5975 		}
5976 		smp_mb();
5977 		tcp_set_state(sk, TCP_ESTABLISHED);
5978 		sk->sk_state_change(sk);
5979 
5980 		/* Note, that this wakeup is only for marginal crossed SYN case.
5981 		 * Passively open sockets are not waked up, because
5982 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5983 		 */
5984 		if (sk->sk_socket)
5985 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5986 
5987 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5988 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5989 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5990 
5991 		if (tp->rx_opt.tstamp_ok)
5992 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5993 
5994 		if (req) {
5995 			/* Re-arm the timer because data may have been sent out.
5996 			 * This is similar to the regular data transmission case
5997 			 * when new data has just been ack'ed.
5998 			 *
5999 			 * (TFO) - we could try to be more aggressive and
6000 			 * retransmitting any data sooner based on when they
6001 			 * are sent out.
6002 			 */
6003 			tcp_rearm_rto(sk);
6004 		} else
6005 			tcp_init_metrics(sk);
6006 
6007 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6008 			tcp_update_pacing_rate(sk);
6009 
6010 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6011 		tp->lsndtime = tcp_time_stamp;
6012 
6013 		tcp_initialize_rcv_mss(sk);
6014 		tcp_fast_path_on(tp);
6015 		break;
6016 
6017 	case TCP_FIN_WAIT1: {
6018 		int tmo;
6019 
6020 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6021 		 * Fast Open socket and this is the first acceptable
6022 		 * ACK we have received, this would have acknowledged
6023 		 * our SYNACK so stop the SYNACK timer.
6024 		 */
6025 		if (req) {
6026 			/* Return RST if ack_seq is invalid.
6027 			 * Note that RFC793 only says to generate a
6028 			 * DUPACK for it but for TCP Fast Open it seems
6029 			 * better to treat this case like TCP_SYN_RECV
6030 			 * above.
6031 			 */
6032 			if (!acceptable)
6033 				return 1;
6034 			/* We no longer need the request sock. */
6035 			reqsk_fastopen_remove(sk, req, false);
6036 			tcp_rearm_rto(sk);
6037 		}
6038 		if (tp->snd_una != tp->write_seq)
6039 			break;
6040 
6041 		tcp_set_state(sk, TCP_FIN_WAIT2);
6042 		sk->sk_shutdown |= SEND_SHUTDOWN;
6043 
6044 		sk_dst_confirm(sk);
6045 
6046 		if (!sock_flag(sk, SOCK_DEAD)) {
6047 			/* Wake up lingering close() */
6048 			sk->sk_state_change(sk);
6049 			break;
6050 		}
6051 
6052 		if (tp->linger2 < 0) {
6053 			tcp_done(sk);
6054 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6055 			return 1;
6056 		}
6057 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6058 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6059 			/* Receive out of order FIN after close() */
6060 			if (tp->syn_fastopen && th->fin)
6061 				tcp_fastopen_active_disable(sk);
6062 			tcp_done(sk);
6063 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6064 			return 1;
6065 		}
6066 
6067 		tmo = tcp_fin_time(sk);
6068 		if (tmo > TCP_TIMEWAIT_LEN) {
6069 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6070 		} else if (th->fin || sock_owned_by_user(sk)) {
6071 			/* Bad case. We could lose such FIN otherwise.
6072 			 * It is not a big problem, but it looks confusing
6073 			 * and not so rare event. We still can lose it now,
6074 			 * if it spins in bh_lock_sock(), but it is really
6075 			 * marginal case.
6076 			 */
6077 			inet_csk_reset_keepalive_timer(sk, tmo);
6078 		} else {
6079 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6080 			goto discard;
6081 		}
6082 		break;
6083 	}
6084 
6085 	case TCP_CLOSING:
6086 		if (tp->snd_una == tp->write_seq) {
6087 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6088 			goto discard;
6089 		}
6090 		break;
6091 
6092 	case TCP_LAST_ACK:
6093 		if (tp->snd_una == tp->write_seq) {
6094 			tcp_update_metrics(sk);
6095 			tcp_done(sk);
6096 			goto discard;
6097 		}
6098 		break;
6099 	}
6100 
6101 	/* step 6: check the URG bit */
6102 	tcp_urg(sk, skb, th);
6103 
6104 	/* step 7: process the segment text */
6105 	switch (sk->sk_state) {
6106 	case TCP_CLOSE_WAIT:
6107 	case TCP_CLOSING:
6108 	case TCP_LAST_ACK:
6109 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6110 			break;
6111 	case TCP_FIN_WAIT1:
6112 	case TCP_FIN_WAIT2:
6113 		/* RFC 793 says to queue data in these states,
6114 		 * RFC 1122 says we MUST send a reset.
6115 		 * BSD 4.4 also does reset.
6116 		 */
6117 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6118 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6119 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6120 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6121 				tcp_reset(sk);
6122 				return 1;
6123 			}
6124 		}
6125 		/* Fall through */
6126 	case TCP_ESTABLISHED:
6127 		tcp_data_queue(sk, skb);
6128 		queued = 1;
6129 		break;
6130 	}
6131 
6132 	/* tcp_data could move socket to TIME-WAIT */
6133 	if (sk->sk_state != TCP_CLOSE) {
6134 		tcp_data_snd_check(sk);
6135 		tcp_ack_snd_check(sk);
6136 	}
6137 
6138 	if (!queued) {
6139 discard:
6140 		tcp_drop(sk, skb);
6141 	}
6142 	return 0;
6143 }
6144 EXPORT_SYMBOL(tcp_rcv_state_process);
6145 
6146 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6147 {
6148 	struct inet_request_sock *ireq = inet_rsk(req);
6149 
6150 	if (family == AF_INET)
6151 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6152 				    &ireq->ir_rmt_addr, port);
6153 #if IS_ENABLED(CONFIG_IPV6)
6154 	else if (family == AF_INET6)
6155 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6156 				    &ireq->ir_v6_rmt_addr, port);
6157 #endif
6158 }
6159 
6160 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6161  *
6162  * If we receive a SYN packet with these bits set, it means a
6163  * network is playing bad games with TOS bits. In order to
6164  * avoid possible false congestion notifications, we disable
6165  * TCP ECN negotiation.
6166  *
6167  * Exception: tcp_ca wants ECN. This is required for DCTCP
6168  * congestion control: Linux DCTCP asserts ECT on all packets,
6169  * including SYN, which is most optimal solution; however,
6170  * others, such as FreeBSD do not.
6171  */
6172 static void tcp_ecn_create_request(struct request_sock *req,
6173 				   const struct sk_buff *skb,
6174 				   const struct sock *listen_sk,
6175 				   const struct dst_entry *dst)
6176 {
6177 	const struct tcphdr *th = tcp_hdr(skb);
6178 	const struct net *net = sock_net(listen_sk);
6179 	bool th_ecn = th->ece && th->cwr;
6180 	bool ect, ecn_ok;
6181 	u32 ecn_ok_dst;
6182 
6183 	if (!th_ecn)
6184 		return;
6185 
6186 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6187 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6188 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6189 
6190 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6191 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6192 		inet_rsk(req)->ecn_ok = 1;
6193 }
6194 
6195 static void tcp_openreq_init(struct request_sock *req,
6196 			     const struct tcp_options_received *rx_opt,
6197 			     struct sk_buff *skb, const struct sock *sk)
6198 {
6199 	struct inet_request_sock *ireq = inet_rsk(req);
6200 
6201 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6202 	req->cookie_ts = 0;
6203 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6204 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6205 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6206 	tcp_rsk(req)->last_oow_ack_time = 0;
6207 	req->mss = rx_opt->mss_clamp;
6208 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6209 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6210 	ireq->sack_ok = rx_opt->sack_ok;
6211 	ireq->snd_wscale = rx_opt->snd_wscale;
6212 	ireq->wscale_ok = rx_opt->wscale_ok;
6213 	ireq->acked = 0;
6214 	ireq->ecn_ok = 0;
6215 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6216 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6217 	ireq->ir_mark = inet_request_mark(sk, skb);
6218 }
6219 
6220 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6221 				      struct sock *sk_listener,
6222 				      bool attach_listener)
6223 {
6224 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6225 					       attach_listener);
6226 
6227 	if (req) {
6228 		struct inet_request_sock *ireq = inet_rsk(req);
6229 
6230 		kmemcheck_annotate_bitfield(ireq, flags);
6231 		ireq->opt = NULL;
6232 #if IS_ENABLED(CONFIG_IPV6)
6233 		ireq->pktopts = NULL;
6234 #endif
6235 		atomic64_set(&ireq->ir_cookie, 0);
6236 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6237 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6238 		ireq->ireq_family = sk_listener->sk_family;
6239 	}
6240 
6241 	return req;
6242 }
6243 EXPORT_SYMBOL(inet_reqsk_alloc);
6244 
6245 /*
6246  * Return true if a syncookie should be sent
6247  */
6248 static bool tcp_syn_flood_action(const struct sock *sk,
6249 				 const struct sk_buff *skb,
6250 				 const char *proto)
6251 {
6252 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6253 	const char *msg = "Dropping request";
6254 	bool want_cookie = false;
6255 	struct net *net = sock_net(sk);
6256 
6257 #ifdef CONFIG_SYN_COOKIES
6258 	if (net->ipv4.sysctl_tcp_syncookies) {
6259 		msg = "Sending cookies";
6260 		want_cookie = true;
6261 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6262 	} else
6263 #endif
6264 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6265 
6266 	if (!queue->synflood_warned &&
6267 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6268 	    xchg(&queue->synflood_warned, 1) == 0)
6269 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6270 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6271 
6272 	return want_cookie;
6273 }
6274 
6275 static void tcp_reqsk_record_syn(const struct sock *sk,
6276 				 struct request_sock *req,
6277 				 const struct sk_buff *skb)
6278 {
6279 	if (tcp_sk(sk)->save_syn) {
6280 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6281 		u32 *copy;
6282 
6283 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6284 		if (copy) {
6285 			copy[0] = len;
6286 			memcpy(&copy[1], skb_network_header(skb), len);
6287 			req->saved_syn = copy;
6288 		}
6289 	}
6290 }
6291 
6292 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6293 		     const struct tcp_request_sock_ops *af_ops,
6294 		     struct sock *sk, struct sk_buff *skb)
6295 {
6296 	struct tcp_fastopen_cookie foc = { .len = -1 };
6297 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6298 	struct tcp_options_received tmp_opt;
6299 	struct tcp_sock *tp = tcp_sk(sk);
6300 	struct net *net = sock_net(sk);
6301 	struct sock *fastopen_sk = NULL;
6302 	struct dst_entry *dst = NULL;
6303 	struct request_sock *req;
6304 	bool want_cookie = false;
6305 	struct flowi fl;
6306 
6307 	/* TW buckets are converted to open requests without
6308 	 * limitations, they conserve resources and peer is
6309 	 * evidently real one.
6310 	 */
6311 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6312 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6313 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6314 		if (!want_cookie)
6315 			goto drop;
6316 	}
6317 
6318 	if (sk_acceptq_is_full(sk)) {
6319 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6320 		goto drop;
6321 	}
6322 
6323 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6324 	if (!req)
6325 		goto drop;
6326 
6327 	tcp_rsk(req)->af_specific = af_ops;
6328 	tcp_rsk(req)->ts_off = 0;
6329 
6330 	tcp_clear_options(&tmp_opt);
6331 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6332 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6333 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6334 
6335 	if (want_cookie && !tmp_opt.saw_tstamp)
6336 		tcp_clear_options(&tmp_opt);
6337 
6338 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6339 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6340 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6341 
6342 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6343 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6344 
6345 	af_ops->init_req(req, sk, skb);
6346 
6347 	if (security_inet_conn_request(sk, skb, req))
6348 		goto drop_and_free;
6349 
6350 	if (tmp_opt.tstamp_ok)
6351 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb);
6352 
6353 	if (!want_cookie && !isn) {
6354 		/* Kill the following clause, if you dislike this way. */
6355 		if (!net->ipv4.sysctl_tcp_syncookies &&
6356 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6357 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6358 		    !tcp_peer_is_proven(req, dst)) {
6359 			/* Without syncookies last quarter of
6360 			 * backlog is filled with destinations,
6361 			 * proven to be alive.
6362 			 * It means that we continue to communicate
6363 			 * to destinations, already remembered
6364 			 * to the moment of synflood.
6365 			 */
6366 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6367 				    rsk_ops->family);
6368 			goto drop_and_release;
6369 		}
6370 
6371 		isn = af_ops->init_seq(skb);
6372 	}
6373 	if (!dst) {
6374 		dst = af_ops->route_req(sk, &fl, req);
6375 		if (!dst)
6376 			goto drop_and_free;
6377 	}
6378 
6379 	tcp_ecn_create_request(req, skb, sk, dst);
6380 
6381 	if (want_cookie) {
6382 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6383 		req->cookie_ts = tmp_opt.tstamp_ok;
6384 		if (!tmp_opt.tstamp_ok)
6385 			inet_rsk(req)->ecn_ok = 0;
6386 	}
6387 
6388 	tcp_rsk(req)->snt_isn = isn;
6389 	tcp_rsk(req)->txhash = net_tx_rndhash();
6390 	tcp_openreq_init_rwin(req, sk, dst);
6391 	if (!want_cookie) {
6392 		tcp_reqsk_record_syn(sk, req, skb);
6393 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6394 	}
6395 	if (fastopen_sk) {
6396 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6397 				    &foc, TCP_SYNACK_FASTOPEN);
6398 		/* Add the child socket directly into the accept queue */
6399 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6400 		sk->sk_data_ready(sk);
6401 		bh_unlock_sock(fastopen_sk);
6402 		sock_put(fastopen_sk);
6403 	} else {
6404 		tcp_rsk(req)->tfo_listener = false;
6405 		if (!want_cookie)
6406 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6407 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6408 				    !want_cookie ? TCP_SYNACK_NORMAL :
6409 						   TCP_SYNACK_COOKIE);
6410 		if (want_cookie) {
6411 			reqsk_free(req);
6412 			return 0;
6413 		}
6414 	}
6415 	reqsk_put(req);
6416 	return 0;
6417 
6418 drop_and_release:
6419 	dst_release(dst);
6420 drop_and_free:
6421 	reqsk_free(req);
6422 drop:
6423 	tcp_listendrop(sk);
6424 	return 0;
6425 }
6426 EXPORT_SYMBOL(tcp_conn_request);
6427