xref: /openbmc/linux/net/ipv4/tcp_input.c (revision a2cce7a9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93 
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 
99 int sysctl_tcp_thin_dupack __read_mostly;
100 
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104 
105 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
106 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
107 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
108 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
109 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
110 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
111 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
112 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
113 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
115 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
119 
120 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
124 
125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
126 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127 
128 /* Adapt the MSS value used to make delayed ack decision to the
129  * real world.
130  */
131 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
132 {
133 	struct inet_connection_sock *icsk = inet_csk(sk);
134 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
135 	unsigned int len;
136 
137 	icsk->icsk_ack.last_seg_size = 0;
138 
139 	/* skb->len may jitter because of SACKs, even if peer
140 	 * sends good full-sized frames.
141 	 */
142 	len = skb_shinfo(skb)->gso_size ? : skb->len;
143 	if (len >= icsk->icsk_ack.rcv_mss) {
144 		icsk->icsk_ack.rcv_mss = len;
145 	} else {
146 		/* Otherwise, we make more careful check taking into account,
147 		 * that SACKs block is variable.
148 		 *
149 		 * "len" is invariant segment length, including TCP header.
150 		 */
151 		len += skb->data - skb_transport_header(skb);
152 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
153 		    /* If PSH is not set, packet should be
154 		     * full sized, provided peer TCP is not badly broken.
155 		     * This observation (if it is correct 8)) allows
156 		     * to handle super-low mtu links fairly.
157 		     */
158 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
159 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
160 			/* Subtract also invariant (if peer is RFC compliant),
161 			 * tcp header plus fixed timestamp option length.
162 			 * Resulting "len" is MSS free of SACK jitter.
163 			 */
164 			len -= tcp_sk(sk)->tcp_header_len;
165 			icsk->icsk_ack.last_seg_size = len;
166 			if (len == lss) {
167 				icsk->icsk_ack.rcv_mss = len;
168 				return;
169 			}
170 		}
171 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
172 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
173 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174 	}
175 }
176 
177 static void tcp_incr_quickack(struct sock *sk)
178 {
179 	struct inet_connection_sock *icsk = inet_csk(sk);
180 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
181 
182 	if (quickacks == 0)
183 		quickacks = 2;
184 	if (quickacks > icsk->icsk_ack.quick)
185 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
186 }
187 
188 static void tcp_enter_quickack_mode(struct sock *sk)
189 {
190 	struct inet_connection_sock *icsk = inet_csk(sk);
191 	tcp_incr_quickack(sk);
192 	icsk->icsk_ack.pingpong = 0;
193 	icsk->icsk_ack.ato = TCP_ATO_MIN;
194 }
195 
196 /* Send ACKs quickly, if "quick" count is not exhausted
197  * and the session is not interactive.
198  */
199 
200 static bool tcp_in_quickack_mode(struct sock *sk)
201 {
202 	const struct inet_connection_sock *icsk = inet_csk(sk);
203 	const struct dst_entry *dst = __sk_dst_get(sk);
204 
205 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
206 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
207 }
208 
209 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
210 {
211 	if (tp->ecn_flags & TCP_ECN_OK)
212 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
213 }
214 
215 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
216 {
217 	if (tcp_hdr(skb)->cwr)
218 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220 
221 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
222 {
223 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
224 }
225 
226 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
227 {
228 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
229 	case INET_ECN_NOT_ECT:
230 		/* Funny extension: if ECT is not set on a segment,
231 		 * and we already seen ECT on a previous segment,
232 		 * it is probably a retransmit.
233 		 */
234 		if (tp->ecn_flags & TCP_ECN_SEEN)
235 			tcp_enter_quickack_mode((struct sock *)tp);
236 		break;
237 	case INET_ECN_CE:
238 		if (tcp_ca_needs_ecn((struct sock *)tp))
239 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
240 
241 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
242 			/* Better not delay acks, sender can have a very low cwnd */
243 			tcp_enter_quickack_mode((struct sock *)tp);
244 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
245 		}
246 		tp->ecn_flags |= TCP_ECN_SEEN;
247 		break;
248 	default:
249 		if (tcp_ca_needs_ecn((struct sock *)tp))
250 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
251 		tp->ecn_flags |= TCP_ECN_SEEN;
252 		break;
253 	}
254 }
255 
256 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
257 {
258 	if (tp->ecn_flags & TCP_ECN_OK)
259 		__tcp_ecn_check_ce(tp, skb);
260 }
261 
262 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
263 {
264 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
265 		tp->ecn_flags &= ~TCP_ECN_OK;
266 }
267 
268 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
269 {
270 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
271 		tp->ecn_flags &= ~TCP_ECN_OK;
272 }
273 
274 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
275 {
276 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
277 		return true;
278 	return false;
279 }
280 
281 /* Buffer size and advertised window tuning.
282  *
283  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
284  */
285 
286 static void tcp_sndbuf_expand(struct sock *sk)
287 {
288 	const struct tcp_sock *tp = tcp_sk(sk);
289 	int sndmem, per_mss;
290 	u32 nr_segs;
291 
292 	/* Worst case is non GSO/TSO : each frame consumes one skb
293 	 * and skb->head is kmalloced using power of two area of memory
294 	 */
295 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
296 		  MAX_TCP_HEADER +
297 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
298 
299 	per_mss = roundup_pow_of_two(per_mss) +
300 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
301 
302 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
303 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
304 
305 	/* Fast Recovery (RFC 5681 3.2) :
306 	 * Cubic needs 1.7 factor, rounded to 2 to include
307 	 * extra cushion (application might react slowly to POLLOUT)
308 	 */
309 	sndmem = 2 * nr_segs * per_mss;
310 
311 	if (sk->sk_sndbuf < sndmem)
312 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
313 }
314 
315 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
316  *
317  * All tcp_full_space() is split to two parts: "network" buffer, allocated
318  * forward and advertised in receiver window (tp->rcv_wnd) and
319  * "application buffer", required to isolate scheduling/application
320  * latencies from network.
321  * window_clamp is maximal advertised window. It can be less than
322  * tcp_full_space(), in this case tcp_full_space() - window_clamp
323  * is reserved for "application" buffer. The less window_clamp is
324  * the smoother our behaviour from viewpoint of network, but the lower
325  * throughput and the higher sensitivity of the connection to losses. 8)
326  *
327  * rcv_ssthresh is more strict window_clamp used at "slow start"
328  * phase to predict further behaviour of this connection.
329  * It is used for two goals:
330  * - to enforce header prediction at sender, even when application
331  *   requires some significant "application buffer". It is check #1.
332  * - to prevent pruning of receive queue because of misprediction
333  *   of receiver window. Check #2.
334  *
335  * The scheme does not work when sender sends good segments opening
336  * window and then starts to feed us spaghetti. But it should work
337  * in common situations. Otherwise, we have to rely on queue collapsing.
338  */
339 
340 /* Slow part of check#2. */
341 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
342 {
343 	struct tcp_sock *tp = tcp_sk(sk);
344 	/* Optimize this! */
345 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
346 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
347 
348 	while (tp->rcv_ssthresh <= window) {
349 		if (truesize <= skb->len)
350 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
351 
352 		truesize >>= 1;
353 		window >>= 1;
354 	}
355 	return 0;
356 }
357 
358 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
359 {
360 	struct tcp_sock *tp = tcp_sk(sk);
361 
362 	/* Check #1 */
363 	if (tp->rcv_ssthresh < tp->window_clamp &&
364 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
365 	    !tcp_under_memory_pressure(sk)) {
366 		int incr;
367 
368 		/* Check #2. Increase window, if skb with such overhead
369 		 * will fit to rcvbuf in future.
370 		 */
371 		if (tcp_win_from_space(skb->truesize) <= skb->len)
372 			incr = 2 * tp->advmss;
373 		else
374 			incr = __tcp_grow_window(sk, skb);
375 
376 		if (incr) {
377 			incr = max_t(int, incr, 2 * skb->len);
378 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
379 					       tp->window_clamp);
380 			inet_csk(sk)->icsk_ack.quick |= 1;
381 		}
382 	}
383 }
384 
385 /* 3. Tuning rcvbuf, when connection enters established state. */
386 static void tcp_fixup_rcvbuf(struct sock *sk)
387 {
388 	u32 mss = tcp_sk(sk)->advmss;
389 	int rcvmem;
390 
391 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
392 		 tcp_default_init_rwnd(mss);
393 
394 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
395 	 * Allow enough cushion so that sender is not limited by our window
396 	 */
397 	if (sysctl_tcp_moderate_rcvbuf)
398 		rcvmem <<= 2;
399 
400 	if (sk->sk_rcvbuf < rcvmem)
401 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
402 }
403 
404 /* 4. Try to fixup all. It is made immediately after connection enters
405  *    established state.
406  */
407 void tcp_init_buffer_space(struct sock *sk)
408 {
409 	struct tcp_sock *tp = tcp_sk(sk);
410 	int maxwin;
411 
412 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
413 		tcp_fixup_rcvbuf(sk);
414 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
415 		tcp_sndbuf_expand(sk);
416 
417 	tp->rcvq_space.space = tp->rcv_wnd;
418 	tp->rcvq_space.time = tcp_time_stamp;
419 	tp->rcvq_space.seq = tp->copied_seq;
420 
421 	maxwin = tcp_full_space(sk);
422 
423 	if (tp->window_clamp >= maxwin) {
424 		tp->window_clamp = maxwin;
425 
426 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
427 			tp->window_clamp = max(maxwin -
428 					       (maxwin >> sysctl_tcp_app_win),
429 					       4 * tp->advmss);
430 	}
431 
432 	/* Force reservation of one segment. */
433 	if (sysctl_tcp_app_win &&
434 	    tp->window_clamp > 2 * tp->advmss &&
435 	    tp->window_clamp + tp->advmss > maxwin)
436 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
437 
438 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
439 	tp->snd_cwnd_stamp = tcp_time_stamp;
440 }
441 
442 /* 5. Recalculate window clamp after socket hit its memory bounds. */
443 static void tcp_clamp_window(struct sock *sk)
444 {
445 	struct tcp_sock *tp = tcp_sk(sk);
446 	struct inet_connection_sock *icsk = inet_csk(sk);
447 
448 	icsk->icsk_ack.quick = 0;
449 
450 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
451 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
452 	    !tcp_under_memory_pressure(sk) &&
453 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
454 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
455 				    sysctl_tcp_rmem[2]);
456 	}
457 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
458 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
459 }
460 
461 /* Initialize RCV_MSS value.
462  * RCV_MSS is an our guess about MSS used by the peer.
463  * We haven't any direct information about the MSS.
464  * It's better to underestimate the RCV_MSS rather than overestimate.
465  * Overestimations make us ACKing less frequently than needed.
466  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
467  */
468 void tcp_initialize_rcv_mss(struct sock *sk)
469 {
470 	const struct tcp_sock *tp = tcp_sk(sk);
471 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
472 
473 	hint = min(hint, tp->rcv_wnd / 2);
474 	hint = min(hint, TCP_MSS_DEFAULT);
475 	hint = max(hint, TCP_MIN_MSS);
476 
477 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
478 }
479 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
480 
481 /* Receiver "autotuning" code.
482  *
483  * The algorithm for RTT estimation w/o timestamps is based on
484  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
485  * <http://public.lanl.gov/radiant/pubs.html#DRS>
486  *
487  * More detail on this code can be found at
488  * <http://staff.psc.edu/jheffner/>,
489  * though this reference is out of date.  A new paper
490  * is pending.
491  */
492 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
493 {
494 	u32 new_sample = tp->rcv_rtt_est.rtt;
495 	long m = sample;
496 
497 	if (m == 0)
498 		m = 1;
499 
500 	if (new_sample != 0) {
501 		/* If we sample in larger samples in the non-timestamp
502 		 * case, we could grossly overestimate the RTT especially
503 		 * with chatty applications or bulk transfer apps which
504 		 * are stalled on filesystem I/O.
505 		 *
506 		 * Also, since we are only going for a minimum in the
507 		 * non-timestamp case, we do not smooth things out
508 		 * else with timestamps disabled convergence takes too
509 		 * long.
510 		 */
511 		if (!win_dep) {
512 			m -= (new_sample >> 3);
513 			new_sample += m;
514 		} else {
515 			m <<= 3;
516 			if (m < new_sample)
517 				new_sample = m;
518 		}
519 	} else {
520 		/* No previous measure. */
521 		new_sample = m << 3;
522 	}
523 
524 	if (tp->rcv_rtt_est.rtt != new_sample)
525 		tp->rcv_rtt_est.rtt = new_sample;
526 }
527 
528 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
529 {
530 	if (tp->rcv_rtt_est.time == 0)
531 		goto new_measure;
532 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
533 		return;
534 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
535 
536 new_measure:
537 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
538 	tp->rcv_rtt_est.time = tcp_time_stamp;
539 }
540 
541 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
542 					  const struct sk_buff *skb)
543 {
544 	struct tcp_sock *tp = tcp_sk(sk);
545 	if (tp->rx_opt.rcv_tsecr &&
546 	    (TCP_SKB_CB(skb)->end_seq -
547 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
548 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
549 }
550 
551 /*
552  * This function should be called every time data is copied to user space.
553  * It calculates the appropriate TCP receive buffer space.
554  */
555 void tcp_rcv_space_adjust(struct sock *sk)
556 {
557 	struct tcp_sock *tp = tcp_sk(sk);
558 	int time;
559 	int copied;
560 
561 	time = tcp_time_stamp - tp->rcvq_space.time;
562 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
563 		return;
564 
565 	/* Number of bytes copied to user in last RTT */
566 	copied = tp->copied_seq - tp->rcvq_space.seq;
567 	if (copied <= tp->rcvq_space.space)
568 		goto new_measure;
569 
570 	/* A bit of theory :
571 	 * copied = bytes received in previous RTT, our base window
572 	 * To cope with packet losses, we need a 2x factor
573 	 * To cope with slow start, and sender growing its cwin by 100 %
574 	 * every RTT, we need a 4x factor, because the ACK we are sending
575 	 * now is for the next RTT, not the current one :
576 	 * <prev RTT . ><current RTT .. ><next RTT .... >
577 	 */
578 
579 	if (sysctl_tcp_moderate_rcvbuf &&
580 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
581 		int rcvwin, rcvmem, rcvbuf;
582 
583 		/* minimal window to cope with packet losses, assuming
584 		 * steady state. Add some cushion because of small variations.
585 		 */
586 		rcvwin = (copied << 1) + 16 * tp->advmss;
587 
588 		/* If rate increased by 25%,
589 		 *	assume slow start, rcvwin = 3 * copied
590 		 * If rate increased by 50%,
591 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
592 		 */
593 		if (copied >=
594 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
595 			if (copied >=
596 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
597 				rcvwin <<= 1;
598 			else
599 				rcvwin += (rcvwin >> 1);
600 		}
601 
602 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
603 		while (tcp_win_from_space(rcvmem) < tp->advmss)
604 			rcvmem += 128;
605 
606 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
607 		if (rcvbuf > sk->sk_rcvbuf) {
608 			sk->sk_rcvbuf = rcvbuf;
609 
610 			/* Make the window clamp follow along.  */
611 			tp->window_clamp = rcvwin;
612 		}
613 	}
614 	tp->rcvq_space.space = copied;
615 
616 new_measure:
617 	tp->rcvq_space.seq = tp->copied_seq;
618 	tp->rcvq_space.time = tcp_time_stamp;
619 }
620 
621 /* There is something which you must keep in mind when you analyze the
622  * behavior of the tp->ato delayed ack timeout interval.  When a
623  * connection starts up, we want to ack as quickly as possible.  The
624  * problem is that "good" TCP's do slow start at the beginning of data
625  * transmission.  The means that until we send the first few ACK's the
626  * sender will sit on his end and only queue most of his data, because
627  * he can only send snd_cwnd unacked packets at any given time.  For
628  * each ACK we send, he increments snd_cwnd and transmits more of his
629  * queue.  -DaveM
630  */
631 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
632 {
633 	struct tcp_sock *tp = tcp_sk(sk);
634 	struct inet_connection_sock *icsk = inet_csk(sk);
635 	u32 now;
636 
637 	inet_csk_schedule_ack(sk);
638 
639 	tcp_measure_rcv_mss(sk, skb);
640 
641 	tcp_rcv_rtt_measure(tp);
642 
643 	now = tcp_time_stamp;
644 
645 	if (!icsk->icsk_ack.ato) {
646 		/* The _first_ data packet received, initialize
647 		 * delayed ACK engine.
648 		 */
649 		tcp_incr_quickack(sk);
650 		icsk->icsk_ack.ato = TCP_ATO_MIN;
651 	} else {
652 		int m = now - icsk->icsk_ack.lrcvtime;
653 
654 		if (m <= TCP_ATO_MIN / 2) {
655 			/* The fastest case is the first. */
656 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
657 		} else if (m < icsk->icsk_ack.ato) {
658 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
659 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
660 				icsk->icsk_ack.ato = icsk->icsk_rto;
661 		} else if (m > icsk->icsk_rto) {
662 			/* Too long gap. Apparently sender failed to
663 			 * restart window, so that we send ACKs quickly.
664 			 */
665 			tcp_incr_quickack(sk);
666 			sk_mem_reclaim(sk);
667 		}
668 	}
669 	icsk->icsk_ack.lrcvtime = now;
670 
671 	tcp_ecn_check_ce(tp, skb);
672 
673 	if (skb->len >= 128)
674 		tcp_grow_window(sk, skb);
675 }
676 
677 /* Called to compute a smoothed rtt estimate. The data fed to this
678  * routine either comes from timestamps, or from segments that were
679  * known _not_ to have been retransmitted [see Karn/Partridge
680  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
681  * piece by Van Jacobson.
682  * NOTE: the next three routines used to be one big routine.
683  * To save cycles in the RFC 1323 implementation it was better to break
684  * it up into three procedures. -- erics
685  */
686 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
687 {
688 	struct tcp_sock *tp = tcp_sk(sk);
689 	long m = mrtt_us; /* RTT */
690 	u32 srtt = tp->srtt_us;
691 
692 	/*	The following amusing code comes from Jacobson's
693 	 *	article in SIGCOMM '88.  Note that rtt and mdev
694 	 *	are scaled versions of rtt and mean deviation.
695 	 *	This is designed to be as fast as possible
696 	 *	m stands for "measurement".
697 	 *
698 	 *	On a 1990 paper the rto value is changed to:
699 	 *	RTO = rtt + 4 * mdev
700 	 *
701 	 * Funny. This algorithm seems to be very broken.
702 	 * These formulae increase RTO, when it should be decreased, increase
703 	 * too slowly, when it should be increased quickly, decrease too quickly
704 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
705 	 * does not matter how to _calculate_ it. Seems, it was trap
706 	 * that VJ failed to avoid. 8)
707 	 */
708 	if (srtt != 0) {
709 		m -= (srtt >> 3);	/* m is now error in rtt est */
710 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
711 		if (m < 0) {
712 			m = -m;		/* m is now abs(error) */
713 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
714 			/* This is similar to one of Eifel findings.
715 			 * Eifel blocks mdev updates when rtt decreases.
716 			 * This solution is a bit different: we use finer gain
717 			 * for mdev in this case (alpha*beta).
718 			 * Like Eifel it also prevents growth of rto,
719 			 * but also it limits too fast rto decreases,
720 			 * happening in pure Eifel.
721 			 */
722 			if (m > 0)
723 				m >>= 3;
724 		} else {
725 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
726 		}
727 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
728 		if (tp->mdev_us > tp->mdev_max_us) {
729 			tp->mdev_max_us = tp->mdev_us;
730 			if (tp->mdev_max_us > tp->rttvar_us)
731 				tp->rttvar_us = tp->mdev_max_us;
732 		}
733 		if (after(tp->snd_una, tp->rtt_seq)) {
734 			if (tp->mdev_max_us < tp->rttvar_us)
735 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
736 			tp->rtt_seq = tp->snd_nxt;
737 			tp->mdev_max_us = tcp_rto_min_us(sk);
738 		}
739 	} else {
740 		/* no previous measure. */
741 		srtt = m << 3;		/* take the measured time to be rtt */
742 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
743 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
744 		tp->mdev_max_us = tp->rttvar_us;
745 		tp->rtt_seq = tp->snd_nxt;
746 	}
747 	tp->srtt_us = max(1U, srtt);
748 }
749 
750 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
751  * Note: TCP stack does not yet implement pacing.
752  * FQ packet scheduler can be used to implement cheap but effective
753  * TCP pacing, to smooth the burst on large writes when packets
754  * in flight is significantly lower than cwnd (or rwin)
755  */
756 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
757 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
758 
759 static void tcp_update_pacing_rate(struct sock *sk)
760 {
761 	const struct tcp_sock *tp = tcp_sk(sk);
762 	u64 rate;
763 
764 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
765 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
766 
767 	/* current rate is (cwnd * mss) / srtt
768 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
769 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
770 	 *
771 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
772 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
773 	 *	 end of slow start and should slow down.
774 	 */
775 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
776 		rate *= sysctl_tcp_pacing_ss_ratio;
777 	else
778 		rate *= sysctl_tcp_pacing_ca_ratio;
779 
780 	rate *= max(tp->snd_cwnd, tp->packets_out);
781 
782 	if (likely(tp->srtt_us))
783 		do_div(rate, tp->srtt_us);
784 
785 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
786 	 * without any lock. We want to make sure compiler wont store
787 	 * intermediate values in this location.
788 	 */
789 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
790 						sk->sk_max_pacing_rate);
791 }
792 
793 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
794  * routine referred to above.
795  */
796 static void tcp_set_rto(struct sock *sk)
797 {
798 	const struct tcp_sock *tp = tcp_sk(sk);
799 	/* Old crap is replaced with new one. 8)
800 	 *
801 	 * More seriously:
802 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
803 	 *    It cannot be less due to utterly erratic ACK generation made
804 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
805 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
806 	 *    is invisible. Actually, Linux-2.4 also generates erratic
807 	 *    ACKs in some circumstances.
808 	 */
809 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
810 
811 	/* 2. Fixups made earlier cannot be right.
812 	 *    If we do not estimate RTO correctly without them,
813 	 *    all the algo is pure shit and should be replaced
814 	 *    with correct one. It is exactly, which we pretend to do.
815 	 */
816 
817 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
818 	 * guarantees that rto is higher.
819 	 */
820 	tcp_bound_rto(sk);
821 }
822 
823 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
824 {
825 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826 
827 	if (!cwnd)
828 		cwnd = TCP_INIT_CWND;
829 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
830 }
831 
832 /*
833  * Packet counting of FACK is based on in-order assumptions, therefore TCP
834  * disables it when reordering is detected
835  */
836 void tcp_disable_fack(struct tcp_sock *tp)
837 {
838 	/* RFC3517 uses different metric in lost marker => reset on change */
839 	if (tcp_is_fack(tp))
840 		tp->lost_skb_hint = NULL;
841 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
842 }
843 
844 /* Take a notice that peer is sending D-SACKs */
845 static void tcp_dsack_seen(struct tcp_sock *tp)
846 {
847 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
848 }
849 
850 static void tcp_update_reordering(struct sock *sk, const int metric,
851 				  const int ts)
852 {
853 	struct tcp_sock *tp = tcp_sk(sk);
854 	if (metric > tp->reordering) {
855 		int mib_idx;
856 
857 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
858 
859 		/* This exciting event is worth to be remembered. 8) */
860 		if (ts)
861 			mib_idx = LINUX_MIB_TCPTSREORDER;
862 		else if (tcp_is_reno(tp))
863 			mib_idx = LINUX_MIB_TCPRENOREORDER;
864 		else if (tcp_is_fack(tp))
865 			mib_idx = LINUX_MIB_TCPFACKREORDER;
866 		else
867 			mib_idx = LINUX_MIB_TCPSACKREORDER;
868 
869 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
870 #if FASTRETRANS_DEBUG > 1
871 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
872 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
873 			 tp->reordering,
874 			 tp->fackets_out,
875 			 tp->sacked_out,
876 			 tp->undo_marker ? tp->undo_retrans : 0);
877 #endif
878 		tcp_disable_fack(tp);
879 	}
880 
881 	if (metric > 0)
882 		tcp_disable_early_retrans(tp);
883 }
884 
885 /* This must be called before lost_out is incremented */
886 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
887 {
888 	if (!tp->retransmit_skb_hint ||
889 	    before(TCP_SKB_CB(skb)->seq,
890 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
891 		tp->retransmit_skb_hint = skb;
892 
893 	if (!tp->lost_out ||
894 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
895 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
896 }
897 
898 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
899 {
900 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
901 		tcp_verify_retransmit_hint(tp, skb);
902 
903 		tp->lost_out += tcp_skb_pcount(skb);
904 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
905 	}
906 }
907 
908 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
909 					    struct sk_buff *skb)
910 {
911 	tcp_verify_retransmit_hint(tp, skb);
912 
913 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
914 		tp->lost_out += tcp_skb_pcount(skb);
915 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
916 	}
917 }
918 
919 /* This procedure tags the retransmission queue when SACKs arrive.
920  *
921  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
922  * Packets in queue with these bits set are counted in variables
923  * sacked_out, retrans_out and lost_out, correspondingly.
924  *
925  * Valid combinations are:
926  * Tag  InFlight	Description
927  * 0	1		- orig segment is in flight.
928  * S	0		- nothing flies, orig reached receiver.
929  * L	0		- nothing flies, orig lost by net.
930  * R	2		- both orig and retransmit are in flight.
931  * L|R	1		- orig is lost, retransmit is in flight.
932  * S|R  1		- orig reached receiver, retrans is still in flight.
933  * (L|S|R is logically valid, it could occur when L|R is sacked,
934  *  but it is equivalent to plain S and code short-curcuits it to S.
935  *  L|S is logically invalid, it would mean -1 packet in flight 8))
936  *
937  * These 6 states form finite state machine, controlled by the following events:
938  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
939  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
940  * 3. Loss detection event of two flavors:
941  *	A. Scoreboard estimator decided the packet is lost.
942  *	   A'. Reno "three dupacks" marks head of queue lost.
943  *	   A''. Its FACK modification, head until snd.fack is lost.
944  *	B. SACK arrives sacking SND.NXT at the moment, when the
945  *	   segment was retransmitted.
946  * 4. D-SACK added new rule: D-SACK changes any tag to S.
947  *
948  * It is pleasant to note, that state diagram turns out to be commutative,
949  * so that we are allowed not to be bothered by order of our actions,
950  * when multiple events arrive simultaneously. (see the function below).
951  *
952  * Reordering detection.
953  * --------------------
954  * Reordering metric is maximal distance, which a packet can be displaced
955  * in packet stream. With SACKs we can estimate it:
956  *
957  * 1. SACK fills old hole and the corresponding segment was not
958  *    ever retransmitted -> reordering. Alas, we cannot use it
959  *    when segment was retransmitted.
960  * 2. The last flaw is solved with D-SACK. D-SACK arrives
961  *    for retransmitted and already SACKed segment -> reordering..
962  * Both of these heuristics are not used in Loss state, when we cannot
963  * account for retransmits accurately.
964  *
965  * SACK block validation.
966  * ----------------------
967  *
968  * SACK block range validation checks that the received SACK block fits to
969  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
970  * Note that SND.UNA is not included to the range though being valid because
971  * it means that the receiver is rather inconsistent with itself reporting
972  * SACK reneging when it should advance SND.UNA. Such SACK block this is
973  * perfectly valid, however, in light of RFC2018 which explicitly states
974  * that "SACK block MUST reflect the newest segment.  Even if the newest
975  * segment is going to be discarded ...", not that it looks very clever
976  * in case of head skb. Due to potentional receiver driven attacks, we
977  * choose to avoid immediate execution of a walk in write queue due to
978  * reneging and defer head skb's loss recovery to standard loss recovery
979  * procedure that will eventually trigger (nothing forbids us doing this).
980  *
981  * Implements also blockage to start_seq wrap-around. Problem lies in the
982  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
983  * there's no guarantee that it will be before snd_nxt (n). The problem
984  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
985  * wrap (s_w):
986  *
987  *         <- outs wnd ->                          <- wrapzone ->
988  *         u     e      n                         u_w   e_w  s n_w
989  *         |     |      |                          |     |   |  |
990  * |<------------+------+----- TCP seqno space --------------+---------->|
991  * ...-- <2^31 ->|                                           |<--------...
992  * ...---- >2^31 ------>|                                    |<--------...
993  *
994  * Current code wouldn't be vulnerable but it's better still to discard such
995  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
996  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
997  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
998  * equal to the ideal case (infinite seqno space without wrap caused issues).
999  *
1000  * With D-SACK the lower bound is extended to cover sequence space below
1001  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1002  * again, D-SACK block must not to go across snd_una (for the same reason as
1003  * for the normal SACK blocks, explained above). But there all simplicity
1004  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1005  * fully below undo_marker they do not affect behavior in anyway and can
1006  * therefore be safely ignored. In rare cases (which are more or less
1007  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1008  * fragmentation and packet reordering past skb's retransmission. To consider
1009  * them correctly, the acceptable range must be extended even more though
1010  * the exact amount is rather hard to quantify. However, tp->max_window can
1011  * be used as an exaggerated estimate.
1012  */
1013 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1014 				   u32 start_seq, u32 end_seq)
1015 {
1016 	/* Too far in future, or reversed (interpretation is ambiguous) */
1017 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1018 		return false;
1019 
1020 	/* Nasty start_seq wrap-around check (see comments above) */
1021 	if (!before(start_seq, tp->snd_nxt))
1022 		return false;
1023 
1024 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1025 	 * start_seq == snd_una is non-sensical (see comments above)
1026 	 */
1027 	if (after(start_seq, tp->snd_una))
1028 		return true;
1029 
1030 	if (!is_dsack || !tp->undo_marker)
1031 		return false;
1032 
1033 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1034 	if (after(end_seq, tp->snd_una))
1035 		return false;
1036 
1037 	if (!before(start_seq, tp->undo_marker))
1038 		return true;
1039 
1040 	/* Too old */
1041 	if (!after(end_seq, tp->undo_marker))
1042 		return false;
1043 
1044 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1045 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1046 	 */
1047 	return !before(start_seq, end_seq - tp->max_window);
1048 }
1049 
1050 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1051  * Event "B". Later note: FACK people cheated me again 8), we have to account
1052  * for reordering! Ugly, but should help.
1053  *
1054  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1055  * less than what is now known to be received by the other end (derived from
1056  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1057  * retransmitted skbs to avoid some costly processing per ACKs.
1058  */
1059 static void tcp_mark_lost_retrans(struct sock *sk, int *flag)
1060 {
1061 	const struct inet_connection_sock *icsk = inet_csk(sk);
1062 	struct tcp_sock *tp = tcp_sk(sk);
1063 	struct sk_buff *skb;
1064 	int cnt = 0;
1065 	u32 new_low_seq = tp->snd_nxt;
1066 	u32 received_upto = tcp_highest_sack_seq(tp);
1067 
1068 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1069 	    !after(received_upto, tp->lost_retrans_low) ||
1070 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1071 		return;
1072 
1073 	tcp_for_write_queue(skb, sk) {
1074 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1075 
1076 		if (skb == tcp_send_head(sk))
1077 			break;
1078 		if (cnt == tp->retrans_out)
1079 			break;
1080 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1081 			continue;
1082 
1083 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1084 			continue;
1085 
1086 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1087 		 * constraint here (see above) but figuring out that at
1088 		 * least tp->reordering SACK blocks reside between ack_seq
1089 		 * and received_upto is not easy task to do cheaply with
1090 		 * the available datastructures.
1091 		 *
1092 		 * Whether FACK should check here for tp->reordering segs
1093 		 * in-between one could argue for either way (it would be
1094 		 * rather simple to implement as we could count fack_count
1095 		 * during the walk and do tp->fackets_out - fack_count).
1096 		 */
1097 		if (after(received_upto, ack_seq)) {
1098 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1099 			tp->retrans_out -= tcp_skb_pcount(skb);
1100 			*flag |= FLAG_LOST_RETRANS;
1101 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1102 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1103 		} else {
1104 			if (before(ack_seq, new_low_seq))
1105 				new_low_seq = ack_seq;
1106 			cnt += tcp_skb_pcount(skb);
1107 		}
1108 	}
1109 
1110 	if (tp->retrans_out)
1111 		tp->lost_retrans_low = new_low_seq;
1112 }
1113 
1114 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1115 			    struct tcp_sack_block_wire *sp, int num_sacks,
1116 			    u32 prior_snd_una)
1117 {
1118 	struct tcp_sock *tp = tcp_sk(sk);
1119 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1120 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1121 	bool dup_sack = false;
1122 
1123 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1124 		dup_sack = true;
1125 		tcp_dsack_seen(tp);
1126 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1127 	} else if (num_sacks > 1) {
1128 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1129 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1130 
1131 		if (!after(end_seq_0, end_seq_1) &&
1132 		    !before(start_seq_0, start_seq_1)) {
1133 			dup_sack = true;
1134 			tcp_dsack_seen(tp);
1135 			NET_INC_STATS_BH(sock_net(sk),
1136 					LINUX_MIB_TCPDSACKOFORECV);
1137 		}
1138 	}
1139 
1140 	/* D-SACK for already forgotten data... Do dumb counting. */
1141 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1142 	    !after(end_seq_0, prior_snd_una) &&
1143 	    after(end_seq_0, tp->undo_marker))
1144 		tp->undo_retrans--;
1145 
1146 	return dup_sack;
1147 }
1148 
1149 struct tcp_sacktag_state {
1150 	int	reord;
1151 	int	fack_count;
1152 	/* Timestamps for earliest and latest never-retransmitted segment
1153 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1154 	 * but congestion control should still get an accurate delay signal.
1155 	 */
1156 	struct skb_mstamp first_sackt;
1157 	struct skb_mstamp last_sackt;
1158 	int	flag;
1159 };
1160 
1161 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1162  * the incoming SACK may not exactly match but we can find smaller MSS
1163  * aligned portion of it that matches. Therefore we might need to fragment
1164  * which may fail and creates some hassle (caller must handle error case
1165  * returns).
1166  *
1167  * FIXME: this could be merged to shift decision code
1168  */
1169 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1170 				  u32 start_seq, u32 end_seq)
1171 {
1172 	int err;
1173 	bool in_sack;
1174 	unsigned int pkt_len;
1175 	unsigned int mss;
1176 
1177 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1178 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1179 
1180 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1181 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1182 		mss = tcp_skb_mss(skb);
1183 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1184 
1185 		if (!in_sack) {
1186 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1187 			if (pkt_len < mss)
1188 				pkt_len = mss;
1189 		} else {
1190 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1191 			if (pkt_len < mss)
1192 				return -EINVAL;
1193 		}
1194 
1195 		/* Round if necessary so that SACKs cover only full MSSes
1196 		 * and/or the remaining small portion (if present)
1197 		 */
1198 		if (pkt_len > mss) {
1199 			unsigned int new_len = (pkt_len / mss) * mss;
1200 			if (!in_sack && new_len < pkt_len) {
1201 				new_len += mss;
1202 				if (new_len >= skb->len)
1203 					return 0;
1204 			}
1205 			pkt_len = new_len;
1206 		}
1207 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1208 		if (err < 0)
1209 			return err;
1210 	}
1211 
1212 	return in_sack;
1213 }
1214 
1215 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1216 static u8 tcp_sacktag_one(struct sock *sk,
1217 			  struct tcp_sacktag_state *state, u8 sacked,
1218 			  u32 start_seq, u32 end_seq,
1219 			  int dup_sack, int pcount,
1220 			  const struct skb_mstamp *xmit_time)
1221 {
1222 	struct tcp_sock *tp = tcp_sk(sk);
1223 	int fack_count = state->fack_count;
1224 
1225 	/* Account D-SACK for retransmitted packet. */
1226 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1227 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1228 		    after(end_seq, tp->undo_marker))
1229 			tp->undo_retrans--;
1230 		if (sacked & TCPCB_SACKED_ACKED)
1231 			state->reord = min(fack_count, state->reord);
1232 	}
1233 
1234 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1235 	if (!after(end_seq, tp->snd_una))
1236 		return sacked;
1237 
1238 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1239 		if (sacked & TCPCB_SACKED_RETRANS) {
1240 			/* If the segment is not tagged as lost,
1241 			 * we do not clear RETRANS, believing
1242 			 * that retransmission is still in flight.
1243 			 */
1244 			if (sacked & TCPCB_LOST) {
1245 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1246 				tp->lost_out -= pcount;
1247 				tp->retrans_out -= pcount;
1248 			}
1249 		} else {
1250 			if (!(sacked & TCPCB_RETRANS)) {
1251 				/* New sack for not retransmitted frame,
1252 				 * which was in hole. It is reordering.
1253 				 */
1254 				if (before(start_seq,
1255 					   tcp_highest_sack_seq(tp)))
1256 					state->reord = min(fack_count,
1257 							   state->reord);
1258 				if (!after(end_seq, tp->high_seq))
1259 					state->flag |= FLAG_ORIG_SACK_ACKED;
1260 				if (state->first_sackt.v64 == 0)
1261 					state->first_sackt = *xmit_time;
1262 				state->last_sackt = *xmit_time;
1263 			}
1264 
1265 			if (sacked & TCPCB_LOST) {
1266 				sacked &= ~TCPCB_LOST;
1267 				tp->lost_out -= pcount;
1268 			}
1269 		}
1270 
1271 		sacked |= TCPCB_SACKED_ACKED;
1272 		state->flag |= FLAG_DATA_SACKED;
1273 		tp->sacked_out += pcount;
1274 
1275 		fack_count += pcount;
1276 
1277 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1278 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1279 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1280 			tp->lost_cnt_hint += pcount;
1281 
1282 		if (fack_count > tp->fackets_out)
1283 			tp->fackets_out = fack_count;
1284 	}
1285 
1286 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1287 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1288 	 * are accounted above as well.
1289 	 */
1290 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1291 		sacked &= ~TCPCB_SACKED_RETRANS;
1292 		tp->retrans_out -= pcount;
1293 	}
1294 
1295 	return sacked;
1296 }
1297 
1298 /* Shift newly-SACKed bytes from this skb to the immediately previous
1299  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1300  */
1301 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1302 			    struct tcp_sacktag_state *state,
1303 			    unsigned int pcount, int shifted, int mss,
1304 			    bool dup_sack)
1305 {
1306 	struct tcp_sock *tp = tcp_sk(sk);
1307 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1308 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1309 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1310 
1311 	BUG_ON(!pcount);
1312 
1313 	/* Adjust counters and hints for the newly sacked sequence
1314 	 * range but discard the return value since prev is already
1315 	 * marked. We must tag the range first because the seq
1316 	 * advancement below implicitly advances
1317 	 * tcp_highest_sack_seq() when skb is highest_sack.
1318 	 */
1319 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1320 			start_seq, end_seq, dup_sack, pcount,
1321 			&skb->skb_mstamp);
1322 
1323 	if (skb == tp->lost_skb_hint)
1324 		tp->lost_cnt_hint += pcount;
1325 
1326 	TCP_SKB_CB(prev)->end_seq += shifted;
1327 	TCP_SKB_CB(skb)->seq += shifted;
1328 
1329 	tcp_skb_pcount_add(prev, pcount);
1330 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1331 	tcp_skb_pcount_add(skb, -pcount);
1332 
1333 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1334 	 * in theory this shouldn't be necessary but as long as DSACK
1335 	 * code can come after this skb later on it's better to keep
1336 	 * setting gso_size to something.
1337 	 */
1338 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1339 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1340 
1341 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1342 	if (tcp_skb_pcount(skb) <= 1)
1343 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1344 
1345 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1346 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1347 
1348 	if (skb->len > 0) {
1349 		BUG_ON(!tcp_skb_pcount(skb));
1350 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1351 		return false;
1352 	}
1353 
1354 	/* Whole SKB was eaten :-) */
1355 
1356 	if (skb == tp->retransmit_skb_hint)
1357 		tp->retransmit_skb_hint = prev;
1358 	if (skb == tp->lost_skb_hint) {
1359 		tp->lost_skb_hint = prev;
1360 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1361 	}
1362 
1363 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1364 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1365 		TCP_SKB_CB(prev)->end_seq++;
1366 
1367 	if (skb == tcp_highest_sack(sk))
1368 		tcp_advance_highest_sack(sk, skb);
1369 
1370 	tcp_unlink_write_queue(skb, sk);
1371 	sk_wmem_free_skb(sk, skb);
1372 
1373 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1374 
1375 	return true;
1376 }
1377 
1378 /* I wish gso_size would have a bit more sane initialization than
1379  * something-or-zero which complicates things
1380  */
1381 static int tcp_skb_seglen(const struct sk_buff *skb)
1382 {
1383 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1384 }
1385 
1386 /* Shifting pages past head area doesn't work */
1387 static int skb_can_shift(const struct sk_buff *skb)
1388 {
1389 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1390 }
1391 
1392 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1393  * skb.
1394  */
1395 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1396 					  struct tcp_sacktag_state *state,
1397 					  u32 start_seq, u32 end_seq,
1398 					  bool dup_sack)
1399 {
1400 	struct tcp_sock *tp = tcp_sk(sk);
1401 	struct sk_buff *prev;
1402 	int mss;
1403 	int pcount = 0;
1404 	int len;
1405 	int in_sack;
1406 
1407 	if (!sk_can_gso(sk))
1408 		goto fallback;
1409 
1410 	/* Normally R but no L won't result in plain S */
1411 	if (!dup_sack &&
1412 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1413 		goto fallback;
1414 	if (!skb_can_shift(skb))
1415 		goto fallback;
1416 	/* This frame is about to be dropped (was ACKed). */
1417 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1418 		goto fallback;
1419 
1420 	/* Can only happen with delayed DSACK + discard craziness */
1421 	if (unlikely(skb == tcp_write_queue_head(sk)))
1422 		goto fallback;
1423 	prev = tcp_write_queue_prev(sk, skb);
1424 
1425 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1426 		goto fallback;
1427 
1428 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430 
1431 	if (in_sack) {
1432 		len = skb->len;
1433 		pcount = tcp_skb_pcount(skb);
1434 		mss = tcp_skb_seglen(skb);
1435 
1436 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1437 		 * drop this restriction as unnecessary
1438 		 */
1439 		if (mss != tcp_skb_seglen(prev))
1440 			goto fallback;
1441 	} else {
1442 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443 			goto noop;
1444 		/* CHECKME: This is non-MSS split case only?, this will
1445 		 * cause skipped skbs due to advancing loop btw, original
1446 		 * has that feature too
1447 		 */
1448 		if (tcp_skb_pcount(skb) <= 1)
1449 			goto noop;
1450 
1451 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452 		if (!in_sack) {
1453 			/* TODO: head merge to next could be attempted here
1454 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455 			 * though it might not be worth of the additional hassle
1456 			 *
1457 			 * ...we can probably just fallback to what was done
1458 			 * previously. We could try merging non-SACKed ones
1459 			 * as well but it probably isn't going to buy off
1460 			 * because later SACKs might again split them, and
1461 			 * it would make skb timestamp tracking considerably
1462 			 * harder problem.
1463 			 */
1464 			goto fallback;
1465 		}
1466 
1467 		len = end_seq - TCP_SKB_CB(skb)->seq;
1468 		BUG_ON(len < 0);
1469 		BUG_ON(len > skb->len);
1470 
1471 		/* MSS boundaries should be honoured or else pcount will
1472 		 * severely break even though it makes things bit trickier.
1473 		 * Optimize common case to avoid most of the divides
1474 		 */
1475 		mss = tcp_skb_mss(skb);
1476 
1477 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1478 		 * drop this restriction as unnecessary
1479 		 */
1480 		if (mss != tcp_skb_seglen(prev))
1481 			goto fallback;
1482 
1483 		if (len == mss) {
1484 			pcount = 1;
1485 		} else if (len < mss) {
1486 			goto noop;
1487 		} else {
1488 			pcount = len / mss;
1489 			len = pcount * mss;
1490 		}
1491 	}
1492 
1493 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495 		goto fallback;
1496 
1497 	if (!skb_shift(prev, skb, len))
1498 		goto fallback;
1499 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1500 		goto out;
1501 
1502 	/* Hole filled allows collapsing with the next as well, this is very
1503 	 * useful when hole on every nth skb pattern happens
1504 	 */
1505 	if (prev == tcp_write_queue_tail(sk))
1506 		goto out;
1507 	skb = tcp_write_queue_next(sk, prev);
1508 
1509 	if (!skb_can_shift(skb) ||
1510 	    (skb == tcp_send_head(sk)) ||
1511 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1512 	    (mss != tcp_skb_seglen(skb)))
1513 		goto out;
1514 
1515 	len = skb->len;
1516 	if (skb_shift(prev, skb, len)) {
1517 		pcount += tcp_skb_pcount(skb);
1518 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1519 	}
1520 
1521 out:
1522 	state->fack_count += pcount;
1523 	return prev;
1524 
1525 noop:
1526 	return skb;
1527 
1528 fallback:
1529 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1530 	return NULL;
1531 }
1532 
1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1534 					struct tcp_sack_block *next_dup,
1535 					struct tcp_sacktag_state *state,
1536 					u32 start_seq, u32 end_seq,
1537 					bool dup_sack_in)
1538 {
1539 	struct tcp_sock *tp = tcp_sk(sk);
1540 	struct sk_buff *tmp;
1541 
1542 	tcp_for_write_queue_from(skb, sk) {
1543 		int in_sack = 0;
1544 		bool dup_sack = dup_sack_in;
1545 
1546 		if (skb == tcp_send_head(sk))
1547 			break;
1548 
1549 		/* queue is in-order => we can short-circuit the walk early */
1550 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1551 			break;
1552 
1553 		if (next_dup  &&
1554 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1555 			in_sack = tcp_match_skb_to_sack(sk, skb,
1556 							next_dup->start_seq,
1557 							next_dup->end_seq);
1558 			if (in_sack > 0)
1559 				dup_sack = true;
1560 		}
1561 
1562 		/* skb reference here is a bit tricky to get right, since
1563 		 * shifting can eat and free both this skb and the next,
1564 		 * so not even _safe variant of the loop is enough.
1565 		 */
1566 		if (in_sack <= 0) {
1567 			tmp = tcp_shift_skb_data(sk, skb, state,
1568 						 start_seq, end_seq, dup_sack);
1569 			if (tmp) {
1570 				if (tmp != skb) {
1571 					skb = tmp;
1572 					continue;
1573 				}
1574 
1575 				in_sack = 0;
1576 			} else {
1577 				in_sack = tcp_match_skb_to_sack(sk, skb,
1578 								start_seq,
1579 								end_seq);
1580 			}
1581 		}
1582 
1583 		if (unlikely(in_sack < 0))
1584 			break;
1585 
1586 		if (in_sack) {
1587 			TCP_SKB_CB(skb)->sacked =
1588 				tcp_sacktag_one(sk,
1589 						state,
1590 						TCP_SKB_CB(skb)->sacked,
1591 						TCP_SKB_CB(skb)->seq,
1592 						TCP_SKB_CB(skb)->end_seq,
1593 						dup_sack,
1594 						tcp_skb_pcount(skb),
1595 						&skb->skb_mstamp);
1596 
1597 			if (!before(TCP_SKB_CB(skb)->seq,
1598 				    tcp_highest_sack_seq(tp)))
1599 				tcp_advance_highest_sack(sk, skb);
1600 		}
1601 
1602 		state->fack_count += tcp_skb_pcount(skb);
1603 	}
1604 	return skb;
1605 }
1606 
1607 /* Avoid all extra work that is being done by sacktag while walking in
1608  * a normal way
1609  */
1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1611 					struct tcp_sacktag_state *state,
1612 					u32 skip_to_seq)
1613 {
1614 	tcp_for_write_queue_from(skb, sk) {
1615 		if (skb == tcp_send_head(sk))
1616 			break;
1617 
1618 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1619 			break;
1620 
1621 		state->fack_count += tcp_skb_pcount(skb);
1622 	}
1623 	return skb;
1624 }
1625 
1626 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1627 						struct sock *sk,
1628 						struct tcp_sack_block *next_dup,
1629 						struct tcp_sacktag_state *state,
1630 						u32 skip_to_seq)
1631 {
1632 	if (!next_dup)
1633 		return skb;
1634 
1635 	if (before(next_dup->start_seq, skip_to_seq)) {
1636 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1637 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1638 				       next_dup->start_seq, next_dup->end_seq,
1639 				       1);
1640 	}
1641 
1642 	return skb;
1643 }
1644 
1645 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1646 {
1647 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1648 }
1649 
1650 static int
1651 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1652 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1653 {
1654 	struct tcp_sock *tp = tcp_sk(sk);
1655 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1656 				    TCP_SKB_CB(ack_skb)->sacked);
1657 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1658 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1659 	struct tcp_sack_block *cache;
1660 	struct sk_buff *skb;
1661 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1662 	int used_sacks;
1663 	bool found_dup_sack = false;
1664 	int i, j;
1665 	int first_sack_index;
1666 
1667 	state->flag = 0;
1668 	state->reord = tp->packets_out;
1669 
1670 	if (!tp->sacked_out) {
1671 		if (WARN_ON(tp->fackets_out))
1672 			tp->fackets_out = 0;
1673 		tcp_highest_sack_reset(sk);
1674 	}
1675 
1676 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1677 					 num_sacks, prior_snd_una);
1678 	if (found_dup_sack)
1679 		state->flag |= FLAG_DSACKING_ACK;
1680 
1681 	/* Eliminate too old ACKs, but take into
1682 	 * account more or less fresh ones, they can
1683 	 * contain valid SACK info.
1684 	 */
1685 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1686 		return 0;
1687 
1688 	if (!tp->packets_out)
1689 		goto out;
1690 
1691 	used_sacks = 0;
1692 	first_sack_index = 0;
1693 	for (i = 0; i < num_sacks; i++) {
1694 		bool dup_sack = !i && found_dup_sack;
1695 
1696 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1697 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1698 
1699 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1700 					    sp[used_sacks].start_seq,
1701 					    sp[used_sacks].end_seq)) {
1702 			int mib_idx;
1703 
1704 			if (dup_sack) {
1705 				if (!tp->undo_marker)
1706 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1707 				else
1708 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1709 			} else {
1710 				/* Don't count olds caused by ACK reordering */
1711 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1712 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1713 					continue;
1714 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1715 			}
1716 
1717 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1718 			if (i == 0)
1719 				first_sack_index = -1;
1720 			continue;
1721 		}
1722 
1723 		/* Ignore very old stuff early */
1724 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1725 			continue;
1726 
1727 		used_sacks++;
1728 	}
1729 
1730 	/* order SACK blocks to allow in order walk of the retrans queue */
1731 	for (i = used_sacks - 1; i > 0; i--) {
1732 		for (j = 0; j < i; j++) {
1733 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1734 				swap(sp[j], sp[j + 1]);
1735 
1736 				/* Track where the first SACK block goes to */
1737 				if (j == first_sack_index)
1738 					first_sack_index = j + 1;
1739 			}
1740 		}
1741 	}
1742 
1743 	skb = tcp_write_queue_head(sk);
1744 	state->fack_count = 0;
1745 	i = 0;
1746 
1747 	if (!tp->sacked_out) {
1748 		/* It's already past, so skip checking against it */
1749 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1750 	} else {
1751 		cache = tp->recv_sack_cache;
1752 		/* Skip empty blocks in at head of the cache */
1753 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1754 		       !cache->end_seq)
1755 			cache++;
1756 	}
1757 
1758 	while (i < used_sacks) {
1759 		u32 start_seq = sp[i].start_seq;
1760 		u32 end_seq = sp[i].end_seq;
1761 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1762 		struct tcp_sack_block *next_dup = NULL;
1763 
1764 		if (found_dup_sack && ((i + 1) == first_sack_index))
1765 			next_dup = &sp[i + 1];
1766 
1767 		/* Skip too early cached blocks */
1768 		while (tcp_sack_cache_ok(tp, cache) &&
1769 		       !before(start_seq, cache->end_seq))
1770 			cache++;
1771 
1772 		/* Can skip some work by looking recv_sack_cache? */
1773 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1774 		    after(end_seq, cache->start_seq)) {
1775 
1776 			/* Head todo? */
1777 			if (before(start_seq, cache->start_seq)) {
1778 				skb = tcp_sacktag_skip(skb, sk, state,
1779 						       start_seq);
1780 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1781 						       state,
1782 						       start_seq,
1783 						       cache->start_seq,
1784 						       dup_sack);
1785 			}
1786 
1787 			/* Rest of the block already fully processed? */
1788 			if (!after(end_seq, cache->end_seq))
1789 				goto advance_sp;
1790 
1791 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1792 						       state,
1793 						       cache->end_seq);
1794 
1795 			/* ...tail remains todo... */
1796 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1797 				/* ...but better entrypoint exists! */
1798 				skb = tcp_highest_sack(sk);
1799 				if (!skb)
1800 					break;
1801 				state->fack_count = tp->fackets_out;
1802 				cache++;
1803 				goto walk;
1804 			}
1805 
1806 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1807 			/* Check overlap against next cached too (past this one already) */
1808 			cache++;
1809 			continue;
1810 		}
1811 
1812 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1813 			skb = tcp_highest_sack(sk);
1814 			if (!skb)
1815 				break;
1816 			state->fack_count = tp->fackets_out;
1817 		}
1818 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1819 
1820 walk:
1821 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1822 				       start_seq, end_seq, dup_sack);
1823 
1824 advance_sp:
1825 		i++;
1826 	}
1827 
1828 	/* Clear the head of the cache sack blocks so we can skip it next time */
1829 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1830 		tp->recv_sack_cache[i].start_seq = 0;
1831 		tp->recv_sack_cache[i].end_seq = 0;
1832 	}
1833 	for (j = 0; j < used_sacks; j++)
1834 		tp->recv_sack_cache[i++] = sp[j];
1835 
1836 	if ((state->reord < tp->fackets_out) &&
1837 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1838 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1839 
1840 	tcp_mark_lost_retrans(sk, &state->flag);
1841 	tcp_verify_left_out(tp);
1842 out:
1843 
1844 #if FASTRETRANS_DEBUG > 0
1845 	WARN_ON((int)tp->sacked_out < 0);
1846 	WARN_ON((int)tp->lost_out < 0);
1847 	WARN_ON((int)tp->retrans_out < 0);
1848 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1849 #endif
1850 	return state->flag;
1851 }
1852 
1853 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1854  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1855  */
1856 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1857 {
1858 	u32 holes;
1859 
1860 	holes = max(tp->lost_out, 1U);
1861 	holes = min(holes, tp->packets_out);
1862 
1863 	if ((tp->sacked_out + holes) > tp->packets_out) {
1864 		tp->sacked_out = tp->packets_out - holes;
1865 		return true;
1866 	}
1867 	return false;
1868 }
1869 
1870 /* If we receive more dupacks than we expected counting segments
1871  * in assumption of absent reordering, interpret this as reordering.
1872  * The only another reason could be bug in receiver TCP.
1873  */
1874 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1875 {
1876 	struct tcp_sock *tp = tcp_sk(sk);
1877 	if (tcp_limit_reno_sacked(tp))
1878 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1879 }
1880 
1881 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1882 
1883 static void tcp_add_reno_sack(struct sock *sk)
1884 {
1885 	struct tcp_sock *tp = tcp_sk(sk);
1886 	tp->sacked_out++;
1887 	tcp_check_reno_reordering(sk, 0);
1888 	tcp_verify_left_out(tp);
1889 }
1890 
1891 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1892 
1893 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1894 {
1895 	struct tcp_sock *tp = tcp_sk(sk);
1896 
1897 	if (acked > 0) {
1898 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1899 		if (acked - 1 >= tp->sacked_out)
1900 			tp->sacked_out = 0;
1901 		else
1902 			tp->sacked_out -= acked - 1;
1903 	}
1904 	tcp_check_reno_reordering(sk, acked);
1905 	tcp_verify_left_out(tp);
1906 }
1907 
1908 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1909 {
1910 	tp->sacked_out = 0;
1911 }
1912 
1913 void tcp_clear_retrans(struct tcp_sock *tp)
1914 {
1915 	tp->retrans_out = 0;
1916 	tp->lost_out = 0;
1917 	tp->undo_marker = 0;
1918 	tp->undo_retrans = -1;
1919 	tp->fackets_out = 0;
1920 	tp->sacked_out = 0;
1921 }
1922 
1923 static inline void tcp_init_undo(struct tcp_sock *tp)
1924 {
1925 	tp->undo_marker = tp->snd_una;
1926 	/* Retransmission still in flight may cause DSACKs later. */
1927 	tp->undo_retrans = tp->retrans_out ? : -1;
1928 }
1929 
1930 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1931  * and reset tags completely, otherwise preserve SACKs. If receiver
1932  * dropped its ofo queue, we will know this due to reneging detection.
1933  */
1934 void tcp_enter_loss(struct sock *sk)
1935 {
1936 	const struct inet_connection_sock *icsk = inet_csk(sk);
1937 	struct tcp_sock *tp = tcp_sk(sk);
1938 	struct sk_buff *skb;
1939 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1940 	bool is_reneg;			/* is receiver reneging on SACKs? */
1941 
1942 	/* Reduce ssthresh if it has not yet been made inside this window. */
1943 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1944 	    !after(tp->high_seq, tp->snd_una) ||
1945 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1946 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1947 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1948 		tcp_ca_event(sk, CA_EVENT_LOSS);
1949 		tcp_init_undo(tp);
1950 	}
1951 	tp->snd_cwnd	   = 1;
1952 	tp->snd_cwnd_cnt   = 0;
1953 	tp->snd_cwnd_stamp = tcp_time_stamp;
1954 
1955 	tp->retrans_out = 0;
1956 	tp->lost_out = 0;
1957 
1958 	if (tcp_is_reno(tp))
1959 		tcp_reset_reno_sack(tp);
1960 
1961 	skb = tcp_write_queue_head(sk);
1962 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1963 	if (is_reneg) {
1964 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1965 		tp->sacked_out = 0;
1966 		tp->fackets_out = 0;
1967 	}
1968 	tcp_clear_all_retrans_hints(tp);
1969 
1970 	tcp_for_write_queue(skb, sk) {
1971 		if (skb == tcp_send_head(sk))
1972 			break;
1973 
1974 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1975 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1976 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1977 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1978 			tp->lost_out += tcp_skb_pcount(skb);
1979 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1980 		}
1981 	}
1982 	tcp_verify_left_out(tp);
1983 
1984 	/* Timeout in disordered state after receiving substantial DUPACKs
1985 	 * suggests that the degree of reordering is over-estimated.
1986 	 */
1987 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1988 	    tp->sacked_out >= sysctl_tcp_reordering)
1989 		tp->reordering = min_t(unsigned int, tp->reordering,
1990 				       sysctl_tcp_reordering);
1991 	tcp_set_ca_state(sk, TCP_CA_Loss);
1992 	tp->high_seq = tp->snd_nxt;
1993 	tcp_ecn_queue_cwr(tp);
1994 
1995 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1996 	 * loss recovery is underway except recurring timeout(s) on
1997 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1998 	 */
1999 	tp->frto = sysctl_tcp_frto &&
2000 		   (new_recovery || icsk->icsk_retransmits) &&
2001 		   !inet_csk(sk)->icsk_mtup.probe_size;
2002 }
2003 
2004 /* If ACK arrived pointing to a remembered SACK, it means that our
2005  * remembered SACKs do not reflect real state of receiver i.e.
2006  * receiver _host_ is heavily congested (or buggy).
2007  *
2008  * To avoid big spurious retransmission bursts due to transient SACK
2009  * scoreboard oddities that look like reneging, we give the receiver a
2010  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2011  * restore sanity to the SACK scoreboard. If the apparent reneging
2012  * persists until this RTO then we'll clear the SACK scoreboard.
2013  */
2014 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2015 {
2016 	if (flag & FLAG_SACK_RENEGING) {
2017 		struct tcp_sock *tp = tcp_sk(sk);
2018 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2019 					  msecs_to_jiffies(10));
2020 
2021 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2022 					  delay, TCP_RTO_MAX);
2023 		return true;
2024 	}
2025 	return false;
2026 }
2027 
2028 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2029 {
2030 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2031 }
2032 
2033 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2034  * counter when SACK is enabled (without SACK, sacked_out is used for
2035  * that purpose).
2036  *
2037  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2038  * segments up to the highest received SACK block so far and holes in
2039  * between them.
2040  *
2041  * With reordering, holes may still be in flight, so RFC3517 recovery
2042  * uses pure sacked_out (total number of SACKed segments) even though
2043  * it violates the RFC that uses duplicate ACKs, often these are equal
2044  * but when e.g. out-of-window ACKs or packet duplication occurs,
2045  * they differ. Since neither occurs due to loss, TCP should really
2046  * ignore them.
2047  */
2048 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2049 {
2050 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2051 }
2052 
2053 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2054 {
2055 	struct tcp_sock *tp = tcp_sk(sk);
2056 	unsigned long delay;
2057 
2058 	/* Delay early retransmit and entering fast recovery for
2059 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2060 	 * available, or RTO is scheduled to fire first.
2061 	 */
2062 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2063 	    (flag & FLAG_ECE) || !tp->srtt_us)
2064 		return false;
2065 
2066 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2067 		    msecs_to_jiffies(2));
2068 
2069 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2070 		return false;
2071 
2072 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2073 				  TCP_RTO_MAX);
2074 	return true;
2075 }
2076 
2077 /* Linux NewReno/SACK/FACK/ECN state machine.
2078  * --------------------------------------
2079  *
2080  * "Open"	Normal state, no dubious events, fast path.
2081  * "Disorder"   In all the respects it is "Open",
2082  *		but requires a bit more attention. It is entered when
2083  *		we see some SACKs or dupacks. It is split of "Open"
2084  *		mainly to move some processing from fast path to slow one.
2085  * "CWR"	CWND was reduced due to some Congestion Notification event.
2086  *		It can be ECN, ICMP source quench, local device congestion.
2087  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2088  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2089  *
2090  * tcp_fastretrans_alert() is entered:
2091  * - each incoming ACK, if state is not "Open"
2092  * - when arrived ACK is unusual, namely:
2093  *	* SACK
2094  *	* Duplicate ACK.
2095  *	* ECN ECE.
2096  *
2097  * Counting packets in flight is pretty simple.
2098  *
2099  *	in_flight = packets_out - left_out + retrans_out
2100  *
2101  *	packets_out is SND.NXT-SND.UNA counted in packets.
2102  *
2103  *	retrans_out is number of retransmitted segments.
2104  *
2105  *	left_out is number of segments left network, but not ACKed yet.
2106  *
2107  *		left_out = sacked_out + lost_out
2108  *
2109  *     sacked_out: Packets, which arrived to receiver out of order
2110  *		   and hence not ACKed. With SACKs this number is simply
2111  *		   amount of SACKed data. Even without SACKs
2112  *		   it is easy to give pretty reliable estimate of this number,
2113  *		   counting duplicate ACKs.
2114  *
2115  *       lost_out: Packets lost by network. TCP has no explicit
2116  *		   "loss notification" feedback from network (for now).
2117  *		   It means that this number can be only _guessed_.
2118  *		   Actually, it is the heuristics to predict lossage that
2119  *		   distinguishes different algorithms.
2120  *
2121  *	F.e. after RTO, when all the queue is considered as lost,
2122  *	lost_out = packets_out and in_flight = retrans_out.
2123  *
2124  *		Essentially, we have now two algorithms counting
2125  *		lost packets.
2126  *
2127  *		FACK: It is the simplest heuristics. As soon as we decided
2128  *		that something is lost, we decide that _all_ not SACKed
2129  *		packets until the most forward SACK are lost. I.e.
2130  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2131  *		It is absolutely correct estimate, if network does not reorder
2132  *		packets. And it loses any connection to reality when reordering
2133  *		takes place. We use FACK by default until reordering
2134  *		is suspected on the path to this destination.
2135  *
2136  *		NewReno: when Recovery is entered, we assume that one segment
2137  *		is lost (classic Reno). While we are in Recovery and
2138  *		a partial ACK arrives, we assume that one more packet
2139  *		is lost (NewReno). This heuristics are the same in NewReno
2140  *		and SACK.
2141  *
2142  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2143  *  deflation etc. CWND is real congestion window, never inflated, changes
2144  *  only according to classic VJ rules.
2145  *
2146  * Really tricky (and requiring careful tuning) part of algorithm
2147  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2148  * The first determines the moment _when_ we should reduce CWND and,
2149  * hence, slow down forward transmission. In fact, it determines the moment
2150  * when we decide that hole is caused by loss, rather than by a reorder.
2151  *
2152  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2153  * holes, caused by lost packets.
2154  *
2155  * And the most logically complicated part of algorithm is undo
2156  * heuristics. We detect false retransmits due to both too early
2157  * fast retransmit (reordering) and underestimated RTO, analyzing
2158  * timestamps and D-SACKs. When we detect that some segments were
2159  * retransmitted by mistake and CWND reduction was wrong, we undo
2160  * window reduction and abort recovery phase. This logic is hidden
2161  * inside several functions named tcp_try_undo_<something>.
2162  */
2163 
2164 /* This function decides, when we should leave Disordered state
2165  * and enter Recovery phase, reducing congestion window.
2166  *
2167  * Main question: may we further continue forward transmission
2168  * with the same cwnd?
2169  */
2170 static bool tcp_time_to_recover(struct sock *sk, int flag)
2171 {
2172 	struct tcp_sock *tp = tcp_sk(sk);
2173 	__u32 packets_out;
2174 
2175 	/* Trick#1: The loss is proven. */
2176 	if (tp->lost_out)
2177 		return true;
2178 
2179 	/* Not-A-Trick#2 : Classic rule... */
2180 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2181 		return true;
2182 
2183 	/* Trick#4: It is still not OK... But will it be useful to delay
2184 	 * recovery more?
2185 	 */
2186 	packets_out = tp->packets_out;
2187 	if (packets_out <= tp->reordering &&
2188 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2189 	    !tcp_may_send_now(sk)) {
2190 		/* We have nothing to send. This connection is limited
2191 		 * either by receiver window or by application.
2192 		 */
2193 		return true;
2194 	}
2195 
2196 	/* If a thin stream is detected, retransmit after first
2197 	 * received dupack. Employ only if SACK is supported in order
2198 	 * to avoid possible corner-case series of spurious retransmissions
2199 	 * Use only if there are no unsent data.
2200 	 */
2201 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2202 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2203 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2204 		return true;
2205 
2206 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2207 	 * retransmissions due to small network reorderings, we implement
2208 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2209 	 * interval if appropriate.
2210 	 */
2211 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2212 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2213 	    !tcp_may_send_now(sk))
2214 		return !tcp_pause_early_retransmit(sk, flag);
2215 
2216 	return false;
2217 }
2218 
2219 /* Detect loss in event "A" above by marking head of queue up as lost.
2220  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2221  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2222  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2223  * the maximum SACKed segments to pass before reaching this limit.
2224  */
2225 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2226 {
2227 	struct tcp_sock *tp = tcp_sk(sk);
2228 	struct sk_buff *skb;
2229 	int cnt, oldcnt;
2230 	int err;
2231 	unsigned int mss;
2232 	/* Use SACK to deduce losses of new sequences sent during recovery */
2233 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2234 
2235 	WARN_ON(packets > tp->packets_out);
2236 	if (tp->lost_skb_hint) {
2237 		skb = tp->lost_skb_hint;
2238 		cnt = tp->lost_cnt_hint;
2239 		/* Head already handled? */
2240 		if (mark_head && skb != tcp_write_queue_head(sk))
2241 			return;
2242 	} else {
2243 		skb = tcp_write_queue_head(sk);
2244 		cnt = 0;
2245 	}
2246 
2247 	tcp_for_write_queue_from(skb, sk) {
2248 		if (skb == tcp_send_head(sk))
2249 			break;
2250 		/* TODO: do this better */
2251 		/* this is not the most efficient way to do this... */
2252 		tp->lost_skb_hint = skb;
2253 		tp->lost_cnt_hint = cnt;
2254 
2255 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2256 			break;
2257 
2258 		oldcnt = cnt;
2259 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2260 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2261 			cnt += tcp_skb_pcount(skb);
2262 
2263 		if (cnt > packets) {
2264 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2265 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2266 			    (oldcnt >= packets))
2267 				break;
2268 
2269 			mss = tcp_skb_mss(skb);
2270 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2271 					   mss, GFP_ATOMIC);
2272 			if (err < 0)
2273 				break;
2274 			cnt = packets;
2275 		}
2276 
2277 		tcp_skb_mark_lost(tp, skb);
2278 
2279 		if (mark_head)
2280 			break;
2281 	}
2282 	tcp_verify_left_out(tp);
2283 }
2284 
2285 /* Account newly detected lost packet(s) */
2286 
2287 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2288 {
2289 	struct tcp_sock *tp = tcp_sk(sk);
2290 
2291 	if (tcp_is_reno(tp)) {
2292 		tcp_mark_head_lost(sk, 1, 1);
2293 	} else if (tcp_is_fack(tp)) {
2294 		int lost = tp->fackets_out - tp->reordering;
2295 		if (lost <= 0)
2296 			lost = 1;
2297 		tcp_mark_head_lost(sk, lost, 0);
2298 	} else {
2299 		int sacked_upto = tp->sacked_out - tp->reordering;
2300 		if (sacked_upto >= 0)
2301 			tcp_mark_head_lost(sk, sacked_upto, 0);
2302 		else if (fast_rexmit)
2303 			tcp_mark_head_lost(sk, 1, 1);
2304 	}
2305 }
2306 
2307 /* CWND moderation, preventing bursts due to too big ACKs
2308  * in dubious situations.
2309  */
2310 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2311 {
2312 	tp->snd_cwnd = min(tp->snd_cwnd,
2313 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2314 	tp->snd_cwnd_stamp = tcp_time_stamp;
2315 }
2316 
2317 /* Nothing was retransmitted or returned timestamp is less
2318  * than timestamp of the first retransmission.
2319  */
2320 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2321 {
2322 	return !tp->retrans_stamp ||
2323 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2324 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2325 }
2326 
2327 /* Undo procedures. */
2328 
2329 /* We can clear retrans_stamp when there are no retransmissions in the
2330  * window. It would seem that it is trivially available for us in
2331  * tp->retrans_out, however, that kind of assumptions doesn't consider
2332  * what will happen if errors occur when sending retransmission for the
2333  * second time. ...It could the that such segment has only
2334  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2335  * the head skb is enough except for some reneging corner cases that
2336  * are not worth the effort.
2337  *
2338  * Main reason for all this complexity is the fact that connection dying
2339  * time now depends on the validity of the retrans_stamp, in particular,
2340  * that successive retransmissions of a segment must not advance
2341  * retrans_stamp under any conditions.
2342  */
2343 static bool tcp_any_retrans_done(const struct sock *sk)
2344 {
2345 	const struct tcp_sock *tp = tcp_sk(sk);
2346 	struct sk_buff *skb;
2347 
2348 	if (tp->retrans_out)
2349 		return true;
2350 
2351 	skb = tcp_write_queue_head(sk);
2352 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2353 		return true;
2354 
2355 	return false;
2356 }
2357 
2358 #if FASTRETRANS_DEBUG > 1
2359 static void DBGUNDO(struct sock *sk, const char *msg)
2360 {
2361 	struct tcp_sock *tp = tcp_sk(sk);
2362 	struct inet_sock *inet = inet_sk(sk);
2363 
2364 	if (sk->sk_family == AF_INET) {
2365 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2366 			 msg,
2367 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2368 			 tp->snd_cwnd, tcp_left_out(tp),
2369 			 tp->snd_ssthresh, tp->prior_ssthresh,
2370 			 tp->packets_out);
2371 	}
2372 #if IS_ENABLED(CONFIG_IPV6)
2373 	else if (sk->sk_family == AF_INET6) {
2374 		struct ipv6_pinfo *np = inet6_sk(sk);
2375 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2376 			 msg,
2377 			 &np->daddr, ntohs(inet->inet_dport),
2378 			 tp->snd_cwnd, tcp_left_out(tp),
2379 			 tp->snd_ssthresh, tp->prior_ssthresh,
2380 			 tp->packets_out);
2381 	}
2382 #endif
2383 }
2384 #else
2385 #define DBGUNDO(x...) do { } while (0)
2386 #endif
2387 
2388 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2389 {
2390 	struct tcp_sock *tp = tcp_sk(sk);
2391 
2392 	if (unmark_loss) {
2393 		struct sk_buff *skb;
2394 
2395 		tcp_for_write_queue(skb, sk) {
2396 			if (skb == tcp_send_head(sk))
2397 				break;
2398 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2399 		}
2400 		tp->lost_out = 0;
2401 		tcp_clear_all_retrans_hints(tp);
2402 	}
2403 
2404 	if (tp->prior_ssthresh) {
2405 		const struct inet_connection_sock *icsk = inet_csk(sk);
2406 
2407 		if (icsk->icsk_ca_ops->undo_cwnd)
2408 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2409 		else
2410 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2411 
2412 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2413 			tp->snd_ssthresh = tp->prior_ssthresh;
2414 			tcp_ecn_withdraw_cwr(tp);
2415 		}
2416 	} else {
2417 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2418 	}
2419 	tp->snd_cwnd_stamp = tcp_time_stamp;
2420 	tp->undo_marker = 0;
2421 }
2422 
2423 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2424 {
2425 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2426 }
2427 
2428 /* People celebrate: "We love our President!" */
2429 static bool tcp_try_undo_recovery(struct sock *sk)
2430 {
2431 	struct tcp_sock *tp = tcp_sk(sk);
2432 
2433 	if (tcp_may_undo(tp)) {
2434 		int mib_idx;
2435 
2436 		/* Happy end! We did not retransmit anything
2437 		 * or our original transmission succeeded.
2438 		 */
2439 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2440 		tcp_undo_cwnd_reduction(sk, false);
2441 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2442 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2443 		else
2444 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2445 
2446 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2447 	}
2448 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2449 		/* Hold old state until something *above* high_seq
2450 		 * is ACKed. For Reno it is MUST to prevent false
2451 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2452 		tcp_moderate_cwnd(tp);
2453 		if (!tcp_any_retrans_done(sk))
2454 			tp->retrans_stamp = 0;
2455 		return true;
2456 	}
2457 	tcp_set_ca_state(sk, TCP_CA_Open);
2458 	return false;
2459 }
2460 
2461 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2462 static bool tcp_try_undo_dsack(struct sock *sk)
2463 {
2464 	struct tcp_sock *tp = tcp_sk(sk);
2465 
2466 	if (tp->undo_marker && !tp->undo_retrans) {
2467 		DBGUNDO(sk, "D-SACK");
2468 		tcp_undo_cwnd_reduction(sk, false);
2469 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2470 		return true;
2471 	}
2472 	return false;
2473 }
2474 
2475 /* Undo during loss recovery after partial ACK or using F-RTO. */
2476 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 
2480 	if (frto_undo || tcp_may_undo(tp)) {
2481 		tcp_undo_cwnd_reduction(sk, true);
2482 
2483 		DBGUNDO(sk, "partial loss");
2484 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2485 		if (frto_undo)
2486 			NET_INC_STATS_BH(sock_net(sk),
2487 					 LINUX_MIB_TCPSPURIOUSRTOS);
2488 		inet_csk(sk)->icsk_retransmits = 0;
2489 		if (frto_undo || tcp_is_sack(tp))
2490 			tcp_set_ca_state(sk, TCP_CA_Open);
2491 		return true;
2492 	}
2493 	return false;
2494 }
2495 
2496 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2497  * It computes the number of packets to send (sndcnt) based on packets newly
2498  * delivered:
2499  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2500  *	cwnd reductions across a full RTT.
2501  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2502  *      But when the retransmits are acked without further losses, PRR
2503  *      slow starts cwnd up to ssthresh to speed up the recovery.
2504  */
2505 static void tcp_init_cwnd_reduction(struct sock *sk)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 
2509 	tp->high_seq = tp->snd_nxt;
2510 	tp->tlp_high_seq = 0;
2511 	tp->snd_cwnd_cnt = 0;
2512 	tp->prior_cwnd = tp->snd_cwnd;
2513 	tp->prr_delivered = 0;
2514 	tp->prr_out = 0;
2515 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2516 	tcp_ecn_queue_cwr(tp);
2517 }
2518 
2519 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2520 			       int fast_rexmit, int flag)
2521 {
2522 	struct tcp_sock *tp = tcp_sk(sk);
2523 	int sndcnt = 0;
2524 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2525 	int newly_acked_sacked = prior_unsacked -
2526 				 (tp->packets_out - tp->sacked_out);
2527 
2528 	tp->prr_delivered += newly_acked_sacked;
2529 	if (delta < 0) {
2530 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2531 			       tp->prior_cwnd - 1;
2532 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2533 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2534 		   !(flag & FLAG_LOST_RETRANS)) {
2535 		sndcnt = min_t(int, delta,
2536 			       max_t(int, tp->prr_delivered - tp->prr_out,
2537 				     newly_acked_sacked) + 1);
2538 	} else {
2539 		sndcnt = min(delta, newly_acked_sacked);
2540 	}
2541 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2542 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2543 }
2544 
2545 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2546 {
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 
2549 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2550 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2551 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2552 		tp->snd_cwnd = tp->snd_ssthresh;
2553 		tp->snd_cwnd_stamp = tcp_time_stamp;
2554 	}
2555 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2556 }
2557 
2558 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2559 void tcp_enter_cwr(struct sock *sk)
2560 {
2561 	struct tcp_sock *tp = tcp_sk(sk);
2562 
2563 	tp->prior_ssthresh = 0;
2564 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2565 		tp->undo_marker = 0;
2566 		tcp_init_cwnd_reduction(sk);
2567 		tcp_set_ca_state(sk, TCP_CA_CWR);
2568 	}
2569 }
2570 EXPORT_SYMBOL(tcp_enter_cwr);
2571 
2572 static void tcp_try_keep_open(struct sock *sk)
2573 {
2574 	struct tcp_sock *tp = tcp_sk(sk);
2575 	int state = TCP_CA_Open;
2576 
2577 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2578 		state = TCP_CA_Disorder;
2579 
2580 	if (inet_csk(sk)->icsk_ca_state != state) {
2581 		tcp_set_ca_state(sk, state);
2582 		tp->high_seq = tp->snd_nxt;
2583 	}
2584 }
2585 
2586 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2587 {
2588 	struct tcp_sock *tp = tcp_sk(sk);
2589 
2590 	tcp_verify_left_out(tp);
2591 
2592 	if (!tcp_any_retrans_done(sk))
2593 		tp->retrans_stamp = 0;
2594 
2595 	if (flag & FLAG_ECE)
2596 		tcp_enter_cwr(sk);
2597 
2598 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2599 		tcp_try_keep_open(sk);
2600 	} else {
2601 		tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2602 	}
2603 }
2604 
2605 static void tcp_mtup_probe_failed(struct sock *sk)
2606 {
2607 	struct inet_connection_sock *icsk = inet_csk(sk);
2608 
2609 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2610 	icsk->icsk_mtup.probe_size = 0;
2611 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2612 }
2613 
2614 static void tcp_mtup_probe_success(struct sock *sk)
2615 {
2616 	struct tcp_sock *tp = tcp_sk(sk);
2617 	struct inet_connection_sock *icsk = inet_csk(sk);
2618 
2619 	/* FIXME: breaks with very large cwnd */
2620 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2621 	tp->snd_cwnd = tp->snd_cwnd *
2622 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2623 		       icsk->icsk_mtup.probe_size;
2624 	tp->snd_cwnd_cnt = 0;
2625 	tp->snd_cwnd_stamp = tcp_time_stamp;
2626 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2627 
2628 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2629 	icsk->icsk_mtup.probe_size = 0;
2630 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2631 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2632 }
2633 
2634 /* Do a simple retransmit without using the backoff mechanisms in
2635  * tcp_timer. This is used for path mtu discovery.
2636  * The socket is already locked here.
2637  */
2638 void tcp_simple_retransmit(struct sock *sk)
2639 {
2640 	const struct inet_connection_sock *icsk = inet_csk(sk);
2641 	struct tcp_sock *tp = tcp_sk(sk);
2642 	struct sk_buff *skb;
2643 	unsigned int mss = tcp_current_mss(sk);
2644 	u32 prior_lost = tp->lost_out;
2645 
2646 	tcp_for_write_queue(skb, sk) {
2647 		if (skb == tcp_send_head(sk))
2648 			break;
2649 		if (tcp_skb_seglen(skb) > mss &&
2650 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2651 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2652 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2653 				tp->retrans_out -= tcp_skb_pcount(skb);
2654 			}
2655 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2656 		}
2657 	}
2658 
2659 	tcp_clear_retrans_hints_partial(tp);
2660 
2661 	if (prior_lost == tp->lost_out)
2662 		return;
2663 
2664 	if (tcp_is_reno(tp))
2665 		tcp_limit_reno_sacked(tp);
2666 
2667 	tcp_verify_left_out(tp);
2668 
2669 	/* Don't muck with the congestion window here.
2670 	 * Reason is that we do not increase amount of _data_
2671 	 * in network, but units changed and effective
2672 	 * cwnd/ssthresh really reduced now.
2673 	 */
2674 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2675 		tp->high_seq = tp->snd_nxt;
2676 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2677 		tp->prior_ssthresh = 0;
2678 		tp->undo_marker = 0;
2679 		tcp_set_ca_state(sk, TCP_CA_Loss);
2680 	}
2681 	tcp_xmit_retransmit_queue(sk);
2682 }
2683 EXPORT_SYMBOL(tcp_simple_retransmit);
2684 
2685 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2686 {
2687 	struct tcp_sock *tp = tcp_sk(sk);
2688 	int mib_idx;
2689 
2690 	if (tcp_is_reno(tp))
2691 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2692 	else
2693 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2694 
2695 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2696 
2697 	tp->prior_ssthresh = 0;
2698 	tcp_init_undo(tp);
2699 
2700 	if (!tcp_in_cwnd_reduction(sk)) {
2701 		if (!ece_ack)
2702 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2703 		tcp_init_cwnd_reduction(sk);
2704 	}
2705 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2706 }
2707 
2708 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2709  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2710  */
2711 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2712 {
2713 	struct tcp_sock *tp = tcp_sk(sk);
2714 	bool recovered = !before(tp->snd_una, tp->high_seq);
2715 
2716 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2717 	    tcp_try_undo_loss(sk, false))
2718 		return;
2719 
2720 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2721 		/* Step 3.b. A timeout is spurious if not all data are
2722 		 * lost, i.e., never-retransmitted data are (s)acked.
2723 		 */
2724 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2725 		    tcp_try_undo_loss(sk, true))
2726 			return;
2727 
2728 		if (after(tp->snd_nxt, tp->high_seq)) {
2729 			if (flag & FLAG_DATA_SACKED || is_dupack)
2730 				tp->frto = 0; /* Step 3.a. loss was real */
2731 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2732 			tp->high_seq = tp->snd_nxt;
2733 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2734 						  TCP_NAGLE_OFF);
2735 			if (after(tp->snd_nxt, tp->high_seq))
2736 				return; /* Step 2.b */
2737 			tp->frto = 0;
2738 		}
2739 	}
2740 
2741 	if (recovered) {
2742 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2743 		tcp_try_undo_recovery(sk);
2744 		return;
2745 	}
2746 	if (tcp_is_reno(tp)) {
2747 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2748 		 * delivered. Lower inflight to clock out (re)tranmissions.
2749 		 */
2750 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2751 			tcp_add_reno_sack(sk);
2752 		else if (flag & FLAG_SND_UNA_ADVANCED)
2753 			tcp_reset_reno_sack(tp);
2754 	}
2755 	tcp_xmit_retransmit_queue(sk);
2756 }
2757 
2758 /* Undo during fast recovery after partial ACK. */
2759 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2760 				 const int prior_unsacked, int flag)
2761 {
2762 	struct tcp_sock *tp = tcp_sk(sk);
2763 
2764 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2765 		/* Plain luck! Hole if filled with delayed
2766 		 * packet, rather than with a retransmit.
2767 		 */
2768 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2769 
2770 		/* We are getting evidence that the reordering degree is higher
2771 		 * than we realized. If there are no retransmits out then we
2772 		 * can undo. Otherwise we clock out new packets but do not
2773 		 * mark more packets lost or retransmit more.
2774 		 */
2775 		if (tp->retrans_out) {
2776 			tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2777 			return true;
2778 		}
2779 
2780 		if (!tcp_any_retrans_done(sk))
2781 			tp->retrans_stamp = 0;
2782 
2783 		DBGUNDO(sk, "partial recovery");
2784 		tcp_undo_cwnd_reduction(sk, true);
2785 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2786 		tcp_try_keep_open(sk);
2787 		return true;
2788 	}
2789 	return false;
2790 }
2791 
2792 /* Process an event, which can update packets-in-flight not trivially.
2793  * Main goal of this function is to calculate new estimate for left_out,
2794  * taking into account both packets sitting in receiver's buffer and
2795  * packets lost by network.
2796  *
2797  * Besides that it does CWND reduction, when packet loss is detected
2798  * and changes state of machine.
2799  *
2800  * It does _not_ decide what to send, it is made in function
2801  * tcp_xmit_retransmit_queue().
2802  */
2803 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2804 				  const int prior_unsacked,
2805 				  bool is_dupack, int flag)
2806 {
2807 	struct inet_connection_sock *icsk = inet_csk(sk);
2808 	struct tcp_sock *tp = tcp_sk(sk);
2809 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2810 				    (tcp_fackets_out(tp) > tp->reordering));
2811 	int fast_rexmit = 0;
2812 
2813 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2814 		tp->sacked_out = 0;
2815 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2816 		tp->fackets_out = 0;
2817 
2818 	/* Now state machine starts.
2819 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2820 	if (flag & FLAG_ECE)
2821 		tp->prior_ssthresh = 0;
2822 
2823 	/* B. In all the states check for reneging SACKs. */
2824 	if (tcp_check_sack_reneging(sk, flag))
2825 		return;
2826 
2827 	/* C. Check consistency of the current state. */
2828 	tcp_verify_left_out(tp);
2829 
2830 	/* D. Check state exit conditions. State can be terminated
2831 	 *    when high_seq is ACKed. */
2832 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2833 		WARN_ON(tp->retrans_out != 0);
2834 		tp->retrans_stamp = 0;
2835 	} else if (!before(tp->snd_una, tp->high_seq)) {
2836 		switch (icsk->icsk_ca_state) {
2837 		case TCP_CA_CWR:
2838 			/* CWR is to be held something *above* high_seq
2839 			 * is ACKed for CWR bit to reach receiver. */
2840 			if (tp->snd_una != tp->high_seq) {
2841 				tcp_end_cwnd_reduction(sk);
2842 				tcp_set_ca_state(sk, TCP_CA_Open);
2843 			}
2844 			break;
2845 
2846 		case TCP_CA_Recovery:
2847 			if (tcp_is_reno(tp))
2848 				tcp_reset_reno_sack(tp);
2849 			if (tcp_try_undo_recovery(sk))
2850 				return;
2851 			tcp_end_cwnd_reduction(sk);
2852 			break;
2853 		}
2854 	}
2855 
2856 	/* E. Process state. */
2857 	switch (icsk->icsk_ca_state) {
2858 	case TCP_CA_Recovery:
2859 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2860 			if (tcp_is_reno(tp) && is_dupack)
2861 				tcp_add_reno_sack(sk);
2862 		} else {
2863 			if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
2864 				return;
2865 			/* Partial ACK arrived. Force fast retransmit. */
2866 			do_lost = tcp_is_reno(tp) ||
2867 				  tcp_fackets_out(tp) > tp->reordering;
2868 		}
2869 		if (tcp_try_undo_dsack(sk)) {
2870 			tcp_try_keep_open(sk);
2871 			return;
2872 		}
2873 		break;
2874 	case TCP_CA_Loss:
2875 		tcp_process_loss(sk, flag, is_dupack);
2876 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2877 		    !(flag & FLAG_LOST_RETRANS))
2878 			return;
2879 		/* Change state if cwnd is undone or retransmits are lost */
2880 	default:
2881 		if (tcp_is_reno(tp)) {
2882 			if (flag & FLAG_SND_UNA_ADVANCED)
2883 				tcp_reset_reno_sack(tp);
2884 			if (is_dupack)
2885 				tcp_add_reno_sack(sk);
2886 		}
2887 
2888 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2889 			tcp_try_undo_dsack(sk);
2890 
2891 		if (!tcp_time_to_recover(sk, flag)) {
2892 			tcp_try_to_open(sk, flag, prior_unsacked);
2893 			return;
2894 		}
2895 
2896 		/* MTU probe failure: don't reduce cwnd */
2897 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2898 		    icsk->icsk_mtup.probe_size &&
2899 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2900 			tcp_mtup_probe_failed(sk);
2901 			/* Restores the reduction we did in tcp_mtup_probe() */
2902 			tp->snd_cwnd++;
2903 			tcp_simple_retransmit(sk);
2904 			return;
2905 		}
2906 
2907 		/* Otherwise enter Recovery state */
2908 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2909 		fast_rexmit = 1;
2910 	}
2911 
2912 	if (do_lost)
2913 		tcp_update_scoreboard(sk, fast_rexmit);
2914 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
2915 	tcp_xmit_retransmit_queue(sk);
2916 }
2917 
2918 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2919 				      long seq_rtt_us, long sack_rtt_us)
2920 {
2921 	const struct tcp_sock *tp = tcp_sk(sk);
2922 
2923 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2924 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2925 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2926 	 * is acked (RFC6298).
2927 	 */
2928 	if (flag & FLAG_RETRANS_DATA_ACKED)
2929 		seq_rtt_us = -1L;
2930 
2931 	if (seq_rtt_us < 0)
2932 		seq_rtt_us = sack_rtt_us;
2933 
2934 	/* RTTM Rule: A TSecr value received in a segment is used to
2935 	 * update the averaged RTT measurement only if the segment
2936 	 * acknowledges some new data, i.e., only if it advances the
2937 	 * left edge of the send window.
2938 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2939 	 */
2940 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2941 	    flag & FLAG_ACKED)
2942 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2943 
2944 	if (seq_rtt_us < 0)
2945 		return false;
2946 
2947 	tcp_rtt_estimator(sk, seq_rtt_us);
2948 	tcp_set_rto(sk);
2949 
2950 	/* RFC6298: only reset backoff on valid RTT measurement. */
2951 	inet_csk(sk)->icsk_backoff = 0;
2952 	return true;
2953 }
2954 
2955 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2956 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2957 {
2958 	struct tcp_sock *tp = tcp_sk(sk);
2959 	long seq_rtt_us = -1L;
2960 
2961 	if (synack_stamp && !tp->total_retrans)
2962 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2963 
2964 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2965 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2966 	 */
2967 	if (!tp->srtt_us)
2968 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2969 }
2970 
2971 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2972 {
2973 	const struct inet_connection_sock *icsk = inet_csk(sk);
2974 
2975 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2976 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2977 }
2978 
2979 /* Restart timer after forward progress on connection.
2980  * RFC2988 recommends to restart timer to now+rto.
2981  */
2982 void tcp_rearm_rto(struct sock *sk)
2983 {
2984 	const struct inet_connection_sock *icsk = inet_csk(sk);
2985 	struct tcp_sock *tp = tcp_sk(sk);
2986 
2987 	/* If the retrans timer is currently being used by Fast Open
2988 	 * for SYN-ACK retrans purpose, stay put.
2989 	 */
2990 	if (tp->fastopen_rsk)
2991 		return;
2992 
2993 	if (!tp->packets_out) {
2994 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2995 	} else {
2996 		u32 rto = inet_csk(sk)->icsk_rto;
2997 		/* Offset the time elapsed after installing regular RTO */
2998 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2999 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3000 			struct sk_buff *skb = tcp_write_queue_head(sk);
3001 			const u32 rto_time_stamp =
3002 				tcp_skb_timestamp(skb) + rto;
3003 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3004 			/* delta may not be positive if the socket is locked
3005 			 * when the retrans timer fires and is rescheduled.
3006 			 */
3007 			if (delta > 0)
3008 				rto = delta;
3009 		}
3010 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3011 					  TCP_RTO_MAX);
3012 	}
3013 }
3014 
3015 /* This function is called when the delayed ER timer fires. TCP enters
3016  * fast recovery and performs fast-retransmit.
3017  */
3018 void tcp_resume_early_retransmit(struct sock *sk)
3019 {
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 
3022 	tcp_rearm_rto(sk);
3023 
3024 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3025 	if (!tp->do_early_retrans)
3026 		return;
3027 
3028 	tcp_enter_recovery(sk, false);
3029 	tcp_update_scoreboard(sk, 1);
3030 	tcp_xmit_retransmit_queue(sk);
3031 }
3032 
3033 /* If we get here, the whole TSO packet has not been acked. */
3034 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3035 {
3036 	struct tcp_sock *tp = tcp_sk(sk);
3037 	u32 packets_acked;
3038 
3039 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3040 
3041 	packets_acked = tcp_skb_pcount(skb);
3042 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3043 		return 0;
3044 	packets_acked -= tcp_skb_pcount(skb);
3045 
3046 	if (packets_acked) {
3047 		BUG_ON(tcp_skb_pcount(skb) == 0);
3048 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3049 	}
3050 
3051 	return packets_acked;
3052 }
3053 
3054 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3055 			   u32 prior_snd_una)
3056 {
3057 	const struct skb_shared_info *shinfo;
3058 
3059 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3060 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3061 		return;
3062 
3063 	shinfo = skb_shinfo(skb);
3064 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3065 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3066 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3067 }
3068 
3069 /* Remove acknowledged frames from the retransmission queue. If our packet
3070  * is before the ack sequence we can discard it as it's confirmed to have
3071  * arrived at the other end.
3072  */
3073 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3074 			       u32 prior_snd_una,
3075 			       struct tcp_sacktag_state *sack)
3076 {
3077 	const struct inet_connection_sock *icsk = inet_csk(sk);
3078 	struct skb_mstamp first_ackt, last_ackt, now;
3079 	struct tcp_sock *tp = tcp_sk(sk);
3080 	u32 prior_sacked = tp->sacked_out;
3081 	u32 reord = tp->packets_out;
3082 	bool fully_acked = true;
3083 	long sack_rtt_us = -1L;
3084 	long seq_rtt_us = -1L;
3085 	long ca_rtt_us = -1L;
3086 	struct sk_buff *skb;
3087 	u32 pkts_acked = 0;
3088 	bool rtt_update;
3089 	int flag = 0;
3090 
3091 	first_ackt.v64 = 0;
3092 
3093 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3094 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3095 		u8 sacked = scb->sacked;
3096 		u32 acked_pcount;
3097 
3098 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3099 
3100 		/* Determine how many packets and what bytes were acked, tso and else */
3101 		if (after(scb->end_seq, tp->snd_una)) {
3102 			if (tcp_skb_pcount(skb) == 1 ||
3103 			    !after(tp->snd_una, scb->seq))
3104 				break;
3105 
3106 			acked_pcount = tcp_tso_acked(sk, skb);
3107 			if (!acked_pcount)
3108 				break;
3109 
3110 			fully_acked = false;
3111 		} else {
3112 			/* Speedup tcp_unlink_write_queue() and next loop */
3113 			prefetchw(skb->next);
3114 			acked_pcount = tcp_skb_pcount(skb);
3115 		}
3116 
3117 		if (unlikely(sacked & TCPCB_RETRANS)) {
3118 			if (sacked & TCPCB_SACKED_RETRANS)
3119 				tp->retrans_out -= acked_pcount;
3120 			flag |= FLAG_RETRANS_DATA_ACKED;
3121 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3122 			last_ackt = skb->skb_mstamp;
3123 			WARN_ON_ONCE(last_ackt.v64 == 0);
3124 			if (!first_ackt.v64)
3125 				first_ackt = last_ackt;
3126 
3127 			reord = min(pkts_acked, reord);
3128 			if (!after(scb->end_seq, tp->high_seq))
3129 				flag |= FLAG_ORIG_SACK_ACKED;
3130 		}
3131 
3132 		if (sacked & TCPCB_SACKED_ACKED)
3133 			tp->sacked_out -= acked_pcount;
3134 		if (sacked & TCPCB_LOST)
3135 			tp->lost_out -= acked_pcount;
3136 
3137 		tp->packets_out -= acked_pcount;
3138 		pkts_acked += acked_pcount;
3139 
3140 		/* Initial outgoing SYN's get put onto the write_queue
3141 		 * just like anything else we transmit.  It is not
3142 		 * true data, and if we misinform our callers that
3143 		 * this ACK acks real data, we will erroneously exit
3144 		 * connection startup slow start one packet too
3145 		 * quickly.  This is severely frowned upon behavior.
3146 		 */
3147 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3148 			flag |= FLAG_DATA_ACKED;
3149 		} else {
3150 			flag |= FLAG_SYN_ACKED;
3151 			tp->retrans_stamp = 0;
3152 		}
3153 
3154 		if (!fully_acked)
3155 			break;
3156 
3157 		tcp_unlink_write_queue(skb, sk);
3158 		sk_wmem_free_skb(sk, skb);
3159 		if (unlikely(skb == tp->retransmit_skb_hint))
3160 			tp->retransmit_skb_hint = NULL;
3161 		if (unlikely(skb == tp->lost_skb_hint))
3162 			tp->lost_skb_hint = NULL;
3163 	}
3164 
3165 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3166 		tp->snd_up = tp->snd_una;
3167 
3168 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3169 		flag |= FLAG_SACK_RENEGING;
3170 
3171 	skb_mstamp_get(&now);
3172 	if (likely(first_ackt.v64)) {
3173 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3174 		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3175 	}
3176 	if (sack->first_sackt.v64) {
3177 		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3178 		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3179 	}
3180 
3181 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3182 
3183 	if (flag & FLAG_ACKED) {
3184 		tcp_rearm_rto(sk);
3185 		if (unlikely(icsk->icsk_mtup.probe_size &&
3186 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3187 			tcp_mtup_probe_success(sk);
3188 		}
3189 
3190 		if (tcp_is_reno(tp)) {
3191 			tcp_remove_reno_sacks(sk, pkts_acked);
3192 		} else {
3193 			int delta;
3194 
3195 			/* Non-retransmitted hole got filled? That's reordering */
3196 			if (reord < prior_fackets)
3197 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3198 
3199 			delta = tcp_is_fack(tp) ? pkts_acked :
3200 						  prior_sacked - tp->sacked_out;
3201 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3202 		}
3203 
3204 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3205 
3206 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3207 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3208 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3209 		 * after when the head was last (re)transmitted. Otherwise the
3210 		 * timeout may continue to extend in loss recovery.
3211 		 */
3212 		tcp_rearm_rto(sk);
3213 	}
3214 
3215 	if (icsk->icsk_ca_ops->pkts_acked)
3216 		icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3217 
3218 #if FASTRETRANS_DEBUG > 0
3219 	WARN_ON((int)tp->sacked_out < 0);
3220 	WARN_ON((int)tp->lost_out < 0);
3221 	WARN_ON((int)tp->retrans_out < 0);
3222 	if (!tp->packets_out && tcp_is_sack(tp)) {
3223 		icsk = inet_csk(sk);
3224 		if (tp->lost_out) {
3225 			pr_debug("Leak l=%u %d\n",
3226 				 tp->lost_out, icsk->icsk_ca_state);
3227 			tp->lost_out = 0;
3228 		}
3229 		if (tp->sacked_out) {
3230 			pr_debug("Leak s=%u %d\n",
3231 				 tp->sacked_out, icsk->icsk_ca_state);
3232 			tp->sacked_out = 0;
3233 		}
3234 		if (tp->retrans_out) {
3235 			pr_debug("Leak r=%u %d\n",
3236 				 tp->retrans_out, icsk->icsk_ca_state);
3237 			tp->retrans_out = 0;
3238 		}
3239 	}
3240 #endif
3241 	return flag;
3242 }
3243 
3244 static void tcp_ack_probe(struct sock *sk)
3245 {
3246 	const struct tcp_sock *tp = tcp_sk(sk);
3247 	struct inet_connection_sock *icsk = inet_csk(sk);
3248 
3249 	/* Was it a usable window open? */
3250 
3251 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3252 		icsk->icsk_backoff = 0;
3253 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3254 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3255 		 * This function is not for random using!
3256 		 */
3257 	} else {
3258 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3259 
3260 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3261 					  when, TCP_RTO_MAX);
3262 	}
3263 }
3264 
3265 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3266 {
3267 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3268 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3269 }
3270 
3271 /* Decide wheather to run the increase function of congestion control. */
3272 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3273 {
3274 	if (tcp_in_cwnd_reduction(sk))
3275 		return false;
3276 
3277 	/* If reordering is high then always grow cwnd whenever data is
3278 	 * delivered regardless of its ordering. Otherwise stay conservative
3279 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3280 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3281 	 * cwnd in tcp_fastretrans_alert() based on more states.
3282 	 */
3283 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3284 		return flag & FLAG_FORWARD_PROGRESS;
3285 
3286 	return flag & FLAG_DATA_ACKED;
3287 }
3288 
3289 /* Check that window update is acceptable.
3290  * The function assumes that snd_una<=ack<=snd_next.
3291  */
3292 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3293 					const u32 ack, const u32 ack_seq,
3294 					const u32 nwin)
3295 {
3296 	return	after(ack, tp->snd_una) ||
3297 		after(ack_seq, tp->snd_wl1) ||
3298 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3299 }
3300 
3301 /* If we update tp->snd_una, also update tp->bytes_acked */
3302 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3303 {
3304 	u32 delta = ack - tp->snd_una;
3305 
3306 	u64_stats_update_begin(&tp->syncp);
3307 	tp->bytes_acked += delta;
3308 	u64_stats_update_end(&tp->syncp);
3309 	tp->snd_una = ack;
3310 }
3311 
3312 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3313 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3314 {
3315 	u32 delta = seq - tp->rcv_nxt;
3316 
3317 	u64_stats_update_begin(&tp->syncp);
3318 	tp->bytes_received += delta;
3319 	u64_stats_update_end(&tp->syncp);
3320 	tp->rcv_nxt = seq;
3321 }
3322 
3323 /* Update our send window.
3324  *
3325  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3326  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3327  */
3328 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3329 				 u32 ack_seq)
3330 {
3331 	struct tcp_sock *tp = tcp_sk(sk);
3332 	int flag = 0;
3333 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3334 
3335 	if (likely(!tcp_hdr(skb)->syn))
3336 		nwin <<= tp->rx_opt.snd_wscale;
3337 
3338 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3339 		flag |= FLAG_WIN_UPDATE;
3340 		tcp_update_wl(tp, ack_seq);
3341 
3342 		if (tp->snd_wnd != nwin) {
3343 			tp->snd_wnd = nwin;
3344 
3345 			/* Note, it is the only place, where
3346 			 * fast path is recovered for sending TCP.
3347 			 */
3348 			tp->pred_flags = 0;
3349 			tcp_fast_path_check(sk);
3350 
3351 			if (tcp_send_head(sk))
3352 				tcp_slow_start_after_idle_check(sk);
3353 
3354 			if (nwin > tp->max_window) {
3355 				tp->max_window = nwin;
3356 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3357 			}
3358 		}
3359 	}
3360 
3361 	tcp_snd_una_update(tp, ack);
3362 
3363 	return flag;
3364 }
3365 
3366 /* Return true if we're currently rate-limiting out-of-window ACKs and
3367  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3368  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3369  * attacks that send repeated SYNs or ACKs for the same connection. To
3370  * do this, we do not send a duplicate SYNACK or ACK if the remote
3371  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3372  */
3373 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3374 			  int mib_idx, u32 *last_oow_ack_time)
3375 {
3376 	/* Data packets without SYNs are not likely part of an ACK loop. */
3377 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3378 	    !tcp_hdr(skb)->syn)
3379 		goto not_rate_limited;
3380 
3381 	if (*last_oow_ack_time) {
3382 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3383 
3384 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3385 			NET_INC_STATS_BH(net, mib_idx);
3386 			return true;	/* rate-limited: don't send yet! */
3387 		}
3388 	}
3389 
3390 	*last_oow_ack_time = tcp_time_stamp;
3391 
3392 not_rate_limited:
3393 	return false;	/* not rate-limited: go ahead, send dupack now! */
3394 }
3395 
3396 /* RFC 5961 7 [ACK Throttling] */
3397 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3398 {
3399 	/* unprotected vars, we dont care of overwrites */
3400 	static u32 challenge_timestamp;
3401 	static unsigned int challenge_count;
3402 	struct tcp_sock *tp = tcp_sk(sk);
3403 	u32 now;
3404 
3405 	/* First check our per-socket dupack rate limit. */
3406 	if (tcp_oow_rate_limited(sock_net(sk), skb,
3407 				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3408 				 &tp->last_oow_ack_time))
3409 		return;
3410 
3411 	/* Then check the check host-wide RFC 5961 rate limit. */
3412 	now = jiffies / HZ;
3413 	if (now != challenge_timestamp) {
3414 		challenge_timestamp = now;
3415 		challenge_count = 0;
3416 	}
3417 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3418 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3419 		tcp_send_ack(sk);
3420 	}
3421 }
3422 
3423 static void tcp_store_ts_recent(struct tcp_sock *tp)
3424 {
3425 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3426 	tp->rx_opt.ts_recent_stamp = get_seconds();
3427 }
3428 
3429 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3430 {
3431 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3432 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3433 		 * extra check below makes sure this can only happen
3434 		 * for pure ACK frames.  -DaveM
3435 		 *
3436 		 * Not only, also it occurs for expired timestamps.
3437 		 */
3438 
3439 		if (tcp_paws_check(&tp->rx_opt, 0))
3440 			tcp_store_ts_recent(tp);
3441 	}
3442 }
3443 
3444 /* This routine deals with acks during a TLP episode.
3445  * We mark the end of a TLP episode on receiving TLP dupack or when
3446  * ack is after tlp_high_seq.
3447  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3448  */
3449 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3450 {
3451 	struct tcp_sock *tp = tcp_sk(sk);
3452 
3453 	if (before(ack, tp->tlp_high_seq))
3454 		return;
3455 
3456 	if (flag & FLAG_DSACKING_ACK) {
3457 		/* This DSACK means original and TLP probe arrived; no loss */
3458 		tp->tlp_high_seq = 0;
3459 	} else if (after(ack, tp->tlp_high_seq)) {
3460 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3461 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3462 		 */
3463 		tcp_init_cwnd_reduction(sk);
3464 		tcp_set_ca_state(sk, TCP_CA_CWR);
3465 		tcp_end_cwnd_reduction(sk);
3466 		tcp_try_keep_open(sk);
3467 		NET_INC_STATS_BH(sock_net(sk),
3468 				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3469 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3470 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3471 		/* Pure dupack: original and TLP probe arrived; no loss */
3472 		tp->tlp_high_seq = 0;
3473 	}
3474 }
3475 
3476 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3477 {
3478 	const struct inet_connection_sock *icsk = inet_csk(sk);
3479 
3480 	if (icsk->icsk_ca_ops->in_ack_event)
3481 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3482 }
3483 
3484 /* This routine deals with incoming acks, but not outgoing ones. */
3485 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3486 {
3487 	struct inet_connection_sock *icsk = inet_csk(sk);
3488 	struct tcp_sock *tp = tcp_sk(sk);
3489 	struct tcp_sacktag_state sack_state;
3490 	u32 prior_snd_una = tp->snd_una;
3491 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3492 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3493 	bool is_dupack = false;
3494 	u32 prior_fackets;
3495 	int prior_packets = tp->packets_out;
3496 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3497 	int acked = 0; /* Number of packets newly acked */
3498 
3499 	sack_state.first_sackt.v64 = 0;
3500 
3501 	/* We very likely will need to access write queue head. */
3502 	prefetchw(sk->sk_write_queue.next);
3503 
3504 	/* If the ack is older than previous acks
3505 	 * then we can probably ignore it.
3506 	 */
3507 	if (before(ack, prior_snd_una)) {
3508 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3509 		if (before(ack, prior_snd_una - tp->max_window)) {
3510 			tcp_send_challenge_ack(sk, skb);
3511 			return -1;
3512 		}
3513 		goto old_ack;
3514 	}
3515 
3516 	/* If the ack includes data we haven't sent yet, discard
3517 	 * this segment (RFC793 Section 3.9).
3518 	 */
3519 	if (after(ack, tp->snd_nxt))
3520 		goto invalid_ack;
3521 
3522 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3523 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3524 		tcp_rearm_rto(sk);
3525 
3526 	if (after(ack, prior_snd_una)) {
3527 		flag |= FLAG_SND_UNA_ADVANCED;
3528 		icsk->icsk_retransmits = 0;
3529 	}
3530 
3531 	prior_fackets = tp->fackets_out;
3532 
3533 	/* ts_recent update must be made after we are sure that the packet
3534 	 * is in window.
3535 	 */
3536 	if (flag & FLAG_UPDATE_TS_RECENT)
3537 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3538 
3539 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3540 		/* Window is constant, pure forward advance.
3541 		 * No more checks are required.
3542 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3543 		 */
3544 		tcp_update_wl(tp, ack_seq);
3545 		tcp_snd_una_update(tp, ack);
3546 		flag |= FLAG_WIN_UPDATE;
3547 
3548 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3549 
3550 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3551 	} else {
3552 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3553 
3554 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3555 			flag |= FLAG_DATA;
3556 		else
3557 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3558 
3559 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3560 
3561 		if (TCP_SKB_CB(skb)->sacked)
3562 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3563 							&sack_state);
3564 
3565 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3566 			flag |= FLAG_ECE;
3567 			ack_ev_flags |= CA_ACK_ECE;
3568 		}
3569 
3570 		if (flag & FLAG_WIN_UPDATE)
3571 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3572 
3573 		tcp_in_ack_event(sk, ack_ev_flags);
3574 	}
3575 
3576 	/* We passed data and got it acked, remove any soft error
3577 	 * log. Something worked...
3578 	 */
3579 	sk->sk_err_soft = 0;
3580 	icsk->icsk_probes_out = 0;
3581 	tp->rcv_tstamp = tcp_time_stamp;
3582 	if (!prior_packets)
3583 		goto no_queue;
3584 
3585 	/* See if we can take anything off of the retransmit queue. */
3586 	acked = tp->packets_out;
3587 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3588 				    &sack_state);
3589 	acked -= tp->packets_out;
3590 
3591 	if (tcp_ack_is_dubious(sk, flag)) {
3592 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3593 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3594 				      is_dupack, flag);
3595 	}
3596 	if (tp->tlp_high_seq)
3597 		tcp_process_tlp_ack(sk, ack, flag);
3598 
3599 	/* Advance cwnd if state allows */
3600 	if (tcp_may_raise_cwnd(sk, flag))
3601 		tcp_cong_avoid(sk, ack, acked);
3602 
3603 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3604 		struct dst_entry *dst = __sk_dst_get(sk);
3605 		if (dst)
3606 			dst_confirm(dst);
3607 	}
3608 
3609 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3610 		tcp_schedule_loss_probe(sk);
3611 	tcp_update_pacing_rate(sk);
3612 	return 1;
3613 
3614 no_queue:
3615 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3616 	if (flag & FLAG_DSACKING_ACK)
3617 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3618 				      is_dupack, flag);
3619 	/* If this ack opens up a zero window, clear backoff.  It was
3620 	 * being used to time the probes, and is probably far higher than
3621 	 * it needs to be for normal retransmission.
3622 	 */
3623 	if (tcp_send_head(sk))
3624 		tcp_ack_probe(sk);
3625 
3626 	if (tp->tlp_high_seq)
3627 		tcp_process_tlp_ack(sk, ack, flag);
3628 	return 1;
3629 
3630 invalid_ack:
3631 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3632 	return -1;
3633 
3634 old_ack:
3635 	/* If data was SACKed, tag it and see if we should send more data.
3636 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3637 	 */
3638 	if (TCP_SKB_CB(skb)->sacked) {
3639 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3640 						&sack_state);
3641 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3642 				      is_dupack, flag);
3643 	}
3644 
3645 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3646 	return 0;
3647 }
3648 
3649 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3650 				      bool syn, struct tcp_fastopen_cookie *foc,
3651 				      bool exp_opt)
3652 {
3653 	/* Valid only in SYN or SYN-ACK with an even length.  */
3654 	if (!foc || !syn || len < 0 || (len & 1))
3655 		return;
3656 
3657 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3658 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3659 		memcpy(foc->val, cookie, len);
3660 	else if (len != 0)
3661 		len = -1;
3662 	foc->len = len;
3663 	foc->exp = exp_opt;
3664 }
3665 
3666 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3667  * But, this can also be called on packets in the established flow when
3668  * the fast version below fails.
3669  */
3670 void tcp_parse_options(const struct sk_buff *skb,
3671 		       struct tcp_options_received *opt_rx, int estab,
3672 		       struct tcp_fastopen_cookie *foc)
3673 {
3674 	const unsigned char *ptr;
3675 	const struct tcphdr *th = tcp_hdr(skb);
3676 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3677 
3678 	ptr = (const unsigned char *)(th + 1);
3679 	opt_rx->saw_tstamp = 0;
3680 
3681 	while (length > 0) {
3682 		int opcode = *ptr++;
3683 		int opsize;
3684 
3685 		switch (opcode) {
3686 		case TCPOPT_EOL:
3687 			return;
3688 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3689 			length--;
3690 			continue;
3691 		default:
3692 			opsize = *ptr++;
3693 			if (opsize < 2) /* "silly options" */
3694 				return;
3695 			if (opsize > length)
3696 				return;	/* don't parse partial options */
3697 			switch (opcode) {
3698 			case TCPOPT_MSS:
3699 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3700 					u16 in_mss = get_unaligned_be16(ptr);
3701 					if (in_mss) {
3702 						if (opt_rx->user_mss &&
3703 						    opt_rx->user_mss < in_mss)
3704 							in_mss = opt_rx->user_mss;
3705 						opt_rx->mss_clamp = in_mss;
3706 					}
3707 				}
3708 				break;
3709 			case TCPOPT_WINDOW:
3710 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3711 				    !estab && sysctl_tcp_window_scaling) {
3712 					__u8 snd_wscale = *(__u8 *)ptr;
3713 					opt_rx->wscale_ok = 1;
3714 					if (snd_wscale > 14) {
3715 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3716 								     __func__,
3717 								     snd_wscale);
3718 						snd_wscale = 14;
3719 					}
3720 					opt_rx->snd_wscale = snd_wscale;
3721 				}
3722 				break;
3723 			case TCPOPT_TIMESTAMP:
3724 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3725 				    ((estab && opt_rx->tstamp_ok) ||
3726 				     (!estab && sysctl_tcp_timestamps))) {
3727 					opt_rx->saw_tstamp = 1;
3728 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3729 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3730 				}
3731 				break;
3732 			case TCPOPT_SACK_PERM:
3733 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3734 				    !estab && sysctl_tcp_sack) {
3735 					opt_rx->sack_ok = TCP_SACK_SEEN;
3736 					tcp_sack_reset(opt_rx);
3737 				}
3738 				break;
3739 
3740 			case TCPOPT_SACK:
3741 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3742 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3743 				   opt_rx->sack_ok) {
3744 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3745 				}
3746 				break;
3747 #ifdef CONFIG_TCP_MD5SIG
3748 			case TCPOPT_MD5SIG:
3749 				/*
3750 				 * The MD5 Hash has already been
3751 				 * checked (see tcp_v{4,6}_do_rcv()).
3752 				 */
3753 				break;
3754 #endif
3755 			case TCPOPT_FASTOPEN:
3756 				tcp_parse_fastopen_option(
3757 					opsize - TCPOLEN_FASTOPEN_BASE,
3758 					ptr, th->syn, foc, false);
3759 				break;
3760 
3761 			case TCPOPT_EXP:
3762 				/* Fast Open option shares code 254 using a
3763 				 * 16 bits magic number.
3764 				 */
3765 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3766 				    get_unaligned_be16(ptr) ==
3767 				    TCPOPT_FASTOPEN_MAGIC)
3768 					tcp_parse_fastopen_option(opsize -
3769 						TCPOLEN_EXP_FASTOPEN_BASE,
3770 						ptr + 2, th->syn, foc, true);
3771 				break;
3772 
3773 			}
3774 			ptr += opsize-2;
3775 			length -= opsize;
3776 		}
3777 	}
3778 }
3779 EXPORT_SYMBOL(tcp_parse_options);
3780 
3781 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3782 {
3783 	const __be32 *ptr = (const __be32 *)(th + 1);
3784 
3785 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3786 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3787 		tp->rx_opt.saw_tstamp = 1;
3788 		++ptr;
3789 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3790 		++ptr;
3791 		if (*ptr)
3792 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3793 		else
3794 			tp->rx_opt.rcv_tsecr = 0;
3795 		return true;
3796 	}
3797 	return false;
3798 }
3799 
3800 /* Fast parse options. This hopes to only see timestamps.
3801  * If it is wrong it falls back on tcp_parse_options().
3802  */
3803 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3804 				   const struct tcphdr *th, struct tcp_sock *tp)
3805 {
3806 	/* In the spirit of fast parsing, compare doff directly to constant
3807 	 * values.  Because equality is used, short doff can be ignored here.
3808 	 */
3809 	if (th->doff == (sizeof(*th) / 4)) {
3810 		tp->rx_opt.saw_tstamp = 0;
3811 		return false;
3812 	} else if (tp->rx_opt.tstamp_ok &&
3813 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3814 		if (tcp_parse_aligned_timestamp(tp, th))
3815 			return true;
3816 	}
3817 
3818 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3819 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3820 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3821 
3822 	return true;
3823 }
3824 
3825 #ifdef CONFIG_TCP_MD5SIG
3826 /*
3827  * Parse MD5 Signature option
3828  */
3829 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3830 {
3831 	int length = (th->doff << 2) - sizeof(*th);
3832 	const u8 *ptr = (const u8 *)(th + 1);
3833 
3834 	/* If the TCP option is too short, we can short cut */
3835 	if (length < TCPOLEN_MD5SIG)
3836 		return NULL;
3837 
3838 	while (length > 0) {
3839 		int opcode = *ptr++;
3840 		int opsize;
3841 
3842 		switch (opcode) {
3843 		case TCPOPT_EOL:
3844 			return NULL;
3845 		case TCPOPT_NOP:
3846 			length--;
3847 			continue;
3848 		default:
3849 			opsize = *ptr++;
3850 			if (opsize < 2 || opsize > length)
3851 				return NULL;
3852 			if (opcode == TCPOPT_MD5SIG)
3853 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3854 		}
3855 		ptr += opsize - 2;
3856 		length -= opsize;
3857 	}
3858 	return NULL;
3859 }
3860 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3861 #endif
3862 
3863 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3864  *
3865  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3866  * it can pass through stack. So, the following predicate verifies that
3867  * this segment is not used for anything but congestion avoidance or
3868  * fast retransmit. Moreover, we even are able to eliminate most of such
3869  * second order effects, if we apply some small "replay" window (~RTO)
3870  * to timestamp space.
3871  *
3872  * All these measures still do not guarantee that we reject wrapped ACKs
3873  * on networks with high bandwidth, when sequence space is recycled fastly,
3874  * but it guarantees that such events will be very rare and do not affect
3875  * connection seriously. This doesn't look nice, but alas, PAWS is really
3876  * buggy extension.
3877  *
3878  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3879  * states that events when retransmit arrives after original data are rare.
3880  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3881  * the biggest problem on large power networks even with minor reordering.
3882  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3883  * up to bandwidth of 18Gigabit/sec. 8) ]
3884  */
3885 
3886 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3887 {
3888 	const struct tcp_sock *tp = tcp_sk(sk);
3889 	const struct tcphdr *th = tcp_hdr(skb);
3890 	u32 seq = TCP_SKB_CB(skb)->seq;
3891 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3892 
3893 	return (/* 1. Pure ACK with correct sequence number. */
3894 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3895 
3896 		/* 2. ... and duplicate ACK. */
3897 		ack == tp->snd_una &&
3898 
3899 		/* 3. ... and does not update window. */
3900 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3901 
3902 		/* 4. ... and sits in replay window. */
3903 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3904 }
3905 
3906 static inline bool tcp_paws_discard(const struct sock *sk,
3907 				   const struct sk_buff *skb)
3908 {
3909 	const struct tcp_sock *tp = tcp_sk(sk);
3910 
3911 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3912 	       !tcp_disordered_ack(sk, skb);
3913 }
3914 
3915 /* Check segment sequence number for validity.
3916  *
3917  * Segment controls are considered valid, if the segment
3918  * fits to the window after truncation to the window. Acceptability
3919  * of data (and SYN, FIN, of course) is checked separately.
3920  * See tcp_data_queue(), for example.
3921  *
3922  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3923  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3924  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3925  * (borrowed from freebsd)
3926  */
3927 
3928 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3929 {
3930 	return	!before(end_seq, tp->rcv_wup) &&
3931 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3932 }
3933 
3934 /* When we get a reset we do this. */
3935 void tcp_reset(struct sock *sk)
3936 {
3937 	/* We want the right error as BSD sees it (and indeed as we do). */
3938 	switch (sk->sk_state) {
3939 	case TCP_SYN_SENT:
3940 		sk->sk_err = ECONNREFUSED;
3941 		break;
3942 	case TCP_CLOSE_WAIT:
3943 		sk->sk_err = EPIPE;
3944 		break;
3945 	case TCP_CLOSE:
3946 		return;
3947 	default:
3948 		sk->sk_err = ECONNRESET;
3949 	}
3950 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3951 	smp_wmb();
3952 
3953 	if (!sock_flag(sk, SOCK_DEAD))
3954 		sk->sk_error_report(sk);
3955 
3956 	tcp_done(sk);
3957 }
3958 
3959 /*
3960  * 	Process the FIN bit. This now behaves as it is supposed to work
3961  *	and the FIN takes effect when it is validly part of sequence
3962  *	space. Not before when we get holes.
3963  *
3964  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3965  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3966  *	TIME-WAIT)
3967  *
3968  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3969  *	close and we go into CLOSING (and later onto TIME-WAIT)
3970  *
3971  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3972  */
3973 static void tcp_fin(struct sock *sk)
3974 {
3975 	struct tcp_sock *tp = tcp_sk(sk);
3976 
3977 	inet_csk_schedule_ack(sk);
3978 
3979 	sk->sk_shutdown |= RCV_SHUTDOWN;
3980 	sock_set_flag(sk, SOCK_DONE);
3981 
3982 	switch (sk->sk_state) {
3983 	case TCP_SYN_RECV:
3984 	case TCP_ESTABLISHED:
3985 		/* Move to CLOSE_WAIT */
3986 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3987 		inet_csk(sk)->icsk_ack.pingpong = 1;
3988 		break;
3989 
3990 	case TCP_CLOSE_WAIT:
3991 	case TCP_CLOSING:
3992 		/* Received a retransmission of the FIN, do
3993 		 * nothing.
3994 		 */
3995 		break;
3996 	case TCP_LAST_ACK:
3997 		/* RFC793: Remain in the LAST-ACK state. */
3998 		break;
3999 
4000 	case TCP_FIN_WAIT1:
4001 		/* This case occurs when a simultaneous close
4002 		 * happens, we must ack the received FIN and
4003 		 * enter the CLOSING state.
4004 		 */
4005 		tcp_send_ack(sk);
4006 		tcp_set_state(sk, TCP_CLOSING);
4007 		break;
4008 	case TCP_FIN_WAIT2:
4009 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4010 		tcp_send_ack(sk);
4011 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4012 		break;
4013 	default:
4014 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4015 		 * cases we should never reach this piece of code.
4016 		 */
4017 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4018 		       __func__, sk->sk_state);
4019 		break;
4020 	}
4021 
4022 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4023 	 * Probably, we should reset in this case. For now drop them.
4024 	 */
4025 	__skb_queue_purge(&tp->out_of_order_queue);
4026 	if (tcp_is_sack(tp))
4027 		tcp_sack_reset(&tp->rx_opt);
4028 	sk_mem_reclaim(sk);
4029 
4030 	if (!sock_flag(sk, SOCK_DEAD)) {
4031 		sk->sk_state_change(sk);
4032 
4033 		/* Do not send POLL_HUP for half duplex close. */
4034 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4035 		    sk->sk_state == TCP_CLOSE)
4036 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4037 		else
4038 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4039 	}
4040 }
4041 
4042 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4043 				  u32 end_seq)
4044 {
4045 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4046 		if (before(seq, sp->start_seq))
4047 			sp->start_seq = seq;
4048 		if (after(end_seq, sp->end_seq))
4049 			sp->end_seq = end_seq;
4050 		return true;
4051 	}
4052 	return false;
4053 }
4054 
4055 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4056 {
4057 	struct tcp_sock *tp = tcp_sk(sk);
4058 
4059 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4060 		int mib_idx;
4061 
4062 		if (before(seq, tp->rcv_nxt))
4063 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4064 		else
4065 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4066 
4067 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4068 
4069 		tp->rx_opt.dsack = 1;
4070 		tp->duplicate_sack[0].start_seq = seq;
4071 		tp->duplicate_sack[0].end_seq = end_seq;
4072 	}
4073 }
4074 
4075 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4076 {
4077 	struct tcp_sock *tp = tcp_sk(sk);
4078 
4079 	if (!tp->rx_opt.dsack)
4080 		tcp_dsack_set(sk, seq, end_seq);
4081 	else
4082 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4083 }
4084 
4085 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4086 {
4087 	struct tcp_sock *tp = tcp_sk(sk);
4088 
4089 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4090 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4091 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4092 		tcp_enter_quickack_mode(sk);
4093 
4094 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4095 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4096 
4097 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4098 				end_seq = tp->rcv_nxt;
4099 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4100 		}
4101 	}
4102 
4103 	tcp_send_ack(sk);
4104 }
4105 
4106 /* These routines update the SACK block as out-of-order packets arrive or
4107  * in-order packets close up the sequence space.
4108  */
4109 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4110 {
4111 	int this_sack;
4112 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4113 	struct tcp_sack_block *swalk = sp + 1;
4114 
4115 	/* See if the recent change to the first SACK eats into
4116 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4117 	 */
4118 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4119 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4120 			int i;
4121 
4122 			/* Zap SWALK, by moving every further SACK up by one slot.
4123 			 * Decrease num_sacks.
4124 			 */
4125 			tp->rx_opt.num_sacks--;
4126 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4127 				sp[i] = sp[i + 1];
4128 			continue;
4129 		}
4130 		this_sack++, swalk++;
4131 	}
4132 }
4133 
4134 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4135 {
4136 	struct tcp_sock *tp = tcp_sk(sk);
4137 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4138 	int cur_sacks = tp->rx_opt.num_sacks;
4139 	int this_sack;
4140 
4141 	if (!cur_sacks)
4142 		goto new_sack;
4143 
4144 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4145 		if (tcp_sack_extend(sp, seq, end_seq)) {
4146 			/* Rotate this_sack to the first one. */
4147 			for (; this_sack > 0; this_sack--, sp--)
4148 				swap(*sp, *(sp - 1));
4149 			if (cur_sacks > 1)
4150 				tcp_sack_maybe_coalesce(tp);
4151 			return;
4152 		}
4153 	}
4154 
4155 	/* Could not find an adjacent existing SACK, build a new one,
4156 	 * put it at the front, and shift everyone else down.  We
4157 	 * always know there is at least one SACK present already here.
4158 	 *
4159 	 * If the sack array is full, forget about the last one.
4160 	 */
4161 	if (this_sack >= TCP_NUM_SACKS) {
4162 		this_sack--;
4163 		tp->rx_opt.num_sacks--;
4164 		sp--;
4165 	}
4166 	for (; this_sack > 0; this_sack--, sp--)
4167 		*sp = *(sp - 1);
4168 
4169 new_sack:
4170 	/* Build the new head SACK, and we're done. */
4171 	sp->start_seq = seq;
4172 	sp->end_seq = end_seq;
4173 	tp->rx_opt.num_sacks++;
4174 }
4175 
4176 /* RCV.NXT advances, some SACKs should be eaten. */
4177 
4178 static void tcp_sack_remove(struct tcp_sock *tp)
4179 {
4180 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4181 	int num_sacks = tp->rx_opt.num_sacks;
4182 	int this_sack;
4183 
4184 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4185 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4186 		tp->rx_opt.num_sacks = 0;
4187 		return;
4188 	}
4189 
4190 	for (this_sack = 0; this_sack < num_sacks;) {
4191 		/* Check if the start of the sack is covered by RCV.NXT. */
4192 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4193 			int i;
4194 
4195 			/* RCV.NXT must cover all the block! */
4196 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4197 
4198 			/* Zap this SACK, by moving forward any other SACKS. */
4199 			for (i = this_sack+1; i < num_sacks; i++)
4200 				tp->selective_acks[i-1] = tp->selective_acks[i];
4201 			num_sacks--;
4202 			continue;
4203 		}
4204 		this_sack++;
4205 		sp++;
4206 	}
4207 	tp->rx_opt.num_sacks = num_sacks;
4208 }
4209 
4210 /**
4211  * tcp_try_coalesce - try to merge skb to prior one
4212  * @sk: socket
4213  * @to: prior buffer
4214  * @from: buffer to add in queue
4215  * @fragstolen: pointer to boolean
4216  *
4217  * Before queueing skb @from after @to, try to merge them
4218  * to reduce overall memory use and queue lengths, if cost is small.
4219  * Packets in ofo or receive queues can stay a long time.
4220  * Better try to coalesce them right now to avoid future collapses.
4221  * Returns true if caller should free @from instead of queueing it
4222  */
4223 static bool tcp_try_coalesce(struct sock *sk,
4224 			     struct sk_buff *to,
4225 			     struct sk_buff *from,
4226 			     bool *fragstolen)
4227 {
4228 	int delta;
4229 
4230 	*fragstolen = false;
4231 
4232 	/* Its possible this segment overlaps with prior segment in queue */
4233 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4234 		return false;
4235 
4236 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4237 		return false;
4238 
4239 	atomic_add(delta, &sk->sk_rmem_alloc);
4240 	sk_mem_charge(sk, delta);
4241 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4242 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4243 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4244 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4245 	return true;
4246 }
4247 
4248 /* This one checks to see if we can put data from the
4249  * out_of_order queue into the receive_queue.
4250  */
4251 static void tcp_ofo_queue(struct sock *sk)
4252 {
4253 	struct tcp_sock *tp = tcp_sk(sk);
4254 	__u32 dsack_high = tp->rcv_nxt;
4255 	struct sk_buff *skb, *tail;
4256 	bool fragstolen, eaten;
4257 
4258 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4259 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4260 			break;
4261 
4262 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4263 			__u32 dsack = dsack_high;
4264 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4265 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4266 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4267 		}
4268 
4269 		__skb_unlink(skb, &tp->out_of_order_queue);
4270 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4271 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4272 			__kfree_skb(skb);
4273 			continue;
4274 		}
4275 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4276 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4277 			   TCP_SKB_CB(skb)->end_seq);
4278 
4279 		tail = skb_peek_tail(&sk->sk_receive_queue);
4280 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4281 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4282 		if (!eaten)
4283 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4284 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4285 			tcp_fin(sk);
4286 		if (eaten)
4287 			kfree_skb_partial(skb, fragstolen);
4288 	}
4289 }
4290 
4291 static bool tcp_prune_ofo_queue(struct sock *sk);
4292 static int tcp_prune_queue(struct sock *sk);
4293 
4294 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4295 				 unsigned int size)
4296 {
4297 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4298 	    !sk_rmem_schedule(sk, skb, size)) {
4299 
4300 		if (tcp_prune_queue(sk) < 0)
4301 			return -1;
4302 
4303 		if (!sk_rmem_schedule(sk, skb, size)) {
4304 			if (!tcp_prune_ofo_queue(sk))
4305 				return -1;
4306 
4307 			if (!sk_rmem_schedule(sk, skb, size))
4308 				return -1;
4309 		}
4310 	}
4311 	return 0;
4312 }
4313 
4314 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4315 {
4316 	struct tcp_sock *tp = tcp_sk(sk);
4317 	struct sk_buff *skb1;
4318 	u32 seq, end_seq;
4319 
4320 	tcp_ecn_check_ce(tp, skb);
4321 
4322 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4323 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4324 		__kfree_skb(skb);
4325 		return;
4326 	}
4327 
4328 	/* Disable header prediction. */
4329 	tp->pred_flags = 0;
4330 	inet_csk_schedule_ack(sk);
4331 
4332 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4333 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4334 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4335 
4336 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4337 	if (!skb1) {
4338 		/* Initial out of order segment, build 1 SACK. */
4339 		if (tcp_is_sack(tp)) {
4340 			tp->rx_opt.num_sacks = 1;
4341 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4342 			tp->selective_acks[0].end_seq =
4343 						TCP_SKB_CB(skb)->end_seq;
4344 		}
4345 		__skb_queue_head(&tp->out_of_order_queue, skb);
4346 		goto end;
4347 	}
4348 
4349 	seq = TCP_SKB_CB(skb)->seq;
4350 	end_seq = TCP_SKB_CB(skb)->end_seq;
4351 
4352 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4353 		bool fragstolen;
4354 
4355 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4356 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4357 		} else {
4358 			tcp_grow_window(sk, skb);
4359 			kfree_skb_partial(skb, fragstolen);
4360 			skb = NULL;
4361 		}
4362 
4363 		if (!tp->rx_opt.num_sacks ||
4364 		    tp->selective_acks[0].end_seq != seq)
4365 			goto add_sack;
4366 
4367 		/* Common case: data arrive in order after hole. */
4368 		tp->selective_acks[0].end_seq = end_seq;
4369 		goto end;
4370 	}
4371 
4372 	/* Find place to insert this segment. */
4373 	while (1) {
4374 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4375 			break;
4376 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4377 			skb1 = NULL;
4378 			break;
4379 		}
4380 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4381 	}
4382 
4383 	/* Do skb overlap to previous one? */
4384 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4385 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4386 			/* All the bits are present. Drop. */
4387 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4388 			__kfree_skb(skb);
4389 			skb = NULL;
4390 			tcp_dsack_set(sk, seq, end_seq);
4391 			goto add_sack;
4392 		}
4393 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4394 			/* Partial overlap. */
4395 			tcp_dsack_set(sk, seq,
4396 				      TCP_SKB_CB(skb1)->end_seq);
4397 		} else {
4398 			if (skb_queue_is_first(&tp->out_of_order_queue,
4399 					       skb1))
4400 				skb1 = NULL;
4401 			else
4402 				skb1 = skb_queue_prev(
4403 					&tp->out_of_order_queue,
4404 					skb1);
4405 		}
4406 	}
4407 	if (!skb1)
4408 		__skb_queue_head(&tp->out_of_order_queue, skb);
4409 	else
4410 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4411 
4412 	/* And clean segments covered by new one as whole. */
4413 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4414 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4415 
4416 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4417 			break;
4418 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4419 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4420 					 end_seq);
4421 			break;
4422 		}
4423 		__skb_unlink(skb1, &tp->out_of_order_queue);
4424 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4425 				 TCP_SKB_CB(skb1)->end_seq);
4426 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4427 		__kfree_skb(skb1);
4428 	}
4429 
4430 add_sack:
4431 	if (tcp_is_sack(tp))
4432 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4433 end:
4434 	if (skb) {
4435 		tcp_grow_window(sk, skb);
4436 		skb_set_owner_r(skb, sk);
4437 	}
4438 }
4439 
4440 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4441 		  bool *fragstolen)
4442 {
4443 	int eaten;
4444 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4445 
4446 	__skb_pull(skb, hdrlen);
4447 	eaten = (tail &&
4448 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4449 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4450 	if (!eaten) {
4451 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4452 		skb_set_owner_r(skb, sk);
4453 	}
4454 	return eaten;
4455 }
4456 
4457 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4458 {
4459 	struct sk_buff *skb;
4460 	bool fragstolen;
4461 
4462 	if (size == 0)
4463 		return 0;
4464 
4465 	skb = alloc_skb(size, sk->sk_allocation);
4466 	if (!skb)
4467 		goto err;
4468 
4469 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4470 		goto err_free;
4471 
4472 	if (memcpy_from_msg(skb_put(skb, size), msg, size))
4473 		goto err_free;
4474 
4475 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4476 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4477 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4478 
4479 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4480 		WARN_ON_ONCE(fragstolen); /* should not happen */
4481 		__kfree_skb(skb);
4482 	}
4483 	return size;
4484 
4485 err_free:
4486 	kfree_skb(skb);
4487 err:
4488 	return -ENOMEM;
4489 }
4490 
4491 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4492 {
4493 	struct tcp_sock *tp = tcp_sk(sk);
4494 	int eaten = -1;
4495 	bool fragstolen = false;
4496 
4497 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4498 		goto drop;
4499 
4500 	skb_dst_drop(skb);
4501 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4502 
4503 	tcp_ecn_accept_cwr(tp, skb);
4504 
4505 	tp->rx_opt.dsack = 0;
4506 
4507 	/*  Queue data for delivery to the user.
4508 	 *  Packets in sequence go to the receive queue.
4509 	 *  Out of sequence packets to the out_of_order_queue.
4510 	 */
4511 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4512 		if (tcp_receive_window(tp) == 0)
4513 			goto out_of_window;
4514 
4515 		/* Ok. In sequence. In window. */
4516 		if (tp->ucopy.task == current &&
4517 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4518 		    sock_owned_by_user(sk) && !tp->urg_data) {
4519 			int chunk = min_t(unsigned int, skb->len,
4520 					  tp->ucopy.len);
4521 
4522 			__set_current_state(TASK_RUNNING);
4523 
4524 			local_bh_enable();
4525 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4526 				tp->ucopy.len -= chunk;
4527 				tp->copied_seq += chunk;
4528 				eaten = (chunk == skb->len);
4529 				tcp_rcv_space_adjust(sk);
4530 			}
4531 			local_bh_disable();
4532 		}
4533 
4534 		if (eaten <= 0) {
4535 queue_and_out:
4536 			if (eaten < 0) {
4537 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4538 					sk_forced_mem_schedule(sk, skb->truesize);
4539 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4540 					goto drop;
4541 			}
4542 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4543 		}
4544 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4545 		if (skb->len)
4546 			tcp_event_data_recv(sk, skb);
4547 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4548 			tcp_fin(sk);
4549 
4550 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4551 			tcp_ofo_queue(sk);
4552 
4553 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4554 			 * gap in queue is filled.
4555 			 */
4556 			if (skb_queue_empty(&tp->out_of_order_queue))
4557 				inet_csk(sk)->icsk_ack.pingpong = 0;
4558 		}
4559 
4560 		if (tp->rx_opt.num_sacks)
4561 			tcp_sack_remove(tp);
4562 
4563 		tcp_fast_path_check(sk);
4564 
4565 		if (eaten > 0)
4566 			kfree_skb_partial(skb, fragstolen);
4567 		if (!sock_flag(sk, SOCK_DEAD))
4568 			sk->sk_data_ready(sk);
4569 		return;
4570 	}
4571 
4572 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4573 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4574 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4575 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4576 
4577 out_of_window:
4578 		tcp_enter_quickack_mode(sk);
4579 		inet_csk_schedule_ack(sk);
4580 drop:
4581 		__kfree_skb(skb);
4582 		return;
4583 	}
4584 
4585 	/* Out of window. F.e. zero window probe. */
4586 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4587 		goto out_of_window;
4588 
4589 	tcp_enter_quickack_mode(sk);
4590 
4591 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4592 		/* Partial packet, seq < rcv_next < end_seq */
4593 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4594 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4595 			   TCP_SKB_CB(skb)->end_seq);
4596 
4597 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4598 
4599 		/* If window is closed, drop tail of packet. But after
4600 		 * remembering D-SACK for its head made in previous line.
4601 		 */
4602 		if (!tcp_receive_window(tp))
4603 			goto out_of_window;
4604 		goto queue_and_out;
4605 	}
4606 
4607 	tcp_data_queue_ofo(sk, skb);
4608 }
4609 
4610 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4611 					struct sk_buff_head *list)
4612 {
4613 	struct sk_buff *next = NULL;
4614 
4615 	if (!skb_queue_is_last(list, skb))
4616 		next = skb_queue_next(list, skb);
4617 
4618 	__skb_unlink(skb, list);
4619 	__kfree_skb(skb);
4620 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4621 
4622 	return next;
4623 }
4624 
4625 /* Collapse contiguous sequence of skbs head..tail with
4626  * sequence numbers start..end.
4627  *
4628  * If tail is NULL, this means until the end of the list.
4629  *
4630  * Segments with FIN/SYN are not collapsed (only because this
4631  * simplifies code)
4632  */
4633 static void
4634 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4635 	     struct sk_buff *head, struct sk_buff *tail,
4636 	     u32 start, u32 end)
4637 {
4638 	struct sk_buff *skb, *n;
4639 	bool end_of_skbs;
4640 
4641 	/* First, check that queue is collapsible and find
4642 	 * the point where collapsing can be useful. */
4643 	skb = head;
4644 restart:
4645 	end_of_skbs = true;
4646 	skb_queue_walk_from_safe(list, skb, n) {
4647 		if (skb == tail)
4648 			break;
4649 		/* No new bits? It is possible on ofo queue. */
4650 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4651 			skb = tcp_collapse_one(sk, skb, list);
4652 			if (!skb)
4653 				break;
4654 			goto restart;
4655 		}
4656 
4657 		/* The first skb to collapse is:
4658 		 * - not SYN/FIN and
4659 		 * - bloated or contains data before "start" or
4660 		 *   overlaps to the next one.
4661 		 */
4662 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4663 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4664 		     before(TCP_SKB_CB(skb)->seq, start))) {
4665 			end_of_skbs = false;
4666 			break;
4667 		}
4668 
4669 		if (!skb_queue_is_last(list, skb)) {
4670 			struct sk_buff *next = skb_queue_next(list, skb);
4671 			if (next != tail &&
4672 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4673 				end_of_skbs = false;
4674 				break;
4675 			}
4676 		}
4677 
4678 		/* Decided to skip this, advance start seq. */
4679 		start = TCP_SKB_CB(skb)->end_seq;
4680 	}
4681 	if (end_of_skbs ||
4682 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4683 		return;
4684 
4685 	while (before(start, end)) {
4686 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4687 		struct sk_buff *nskb;
4688 
4689 		nskb = alloc_skb(copy, GFP_ATOMIC);
4690 		if (!nskb)
4691 			return;
4692 
4693 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4694 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4695 		__skb_queue_before(list, skb, nskb);
4696 		skb_set_owner_r(nskb, sk);
4697 
4698 		/* Copy data, releasing collapsed skbs. */
4699 		while (copy > 0) {
4700 			int offset = start - TCP_SKB_CB(skb)->seq;
4701 			int size = TCP_SKB_CB(skb)->end_seq - start;
4702 
4703 			BUG_ON(offset < 0);
4704 			if (size > 0) {
4705 				size = min(copy, size);
4706 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4707 					BUG();
4708 				TCP_SKB_CB(nskb)->end_seq += size;
4709 				copy -= size;
4710 				start += size;
4711 			}
4712 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4713 				skb = tcp_collapse_one(sk, skb, list);
4714 				if (!skb ||
4715 				    skb == tail ||
4716 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4717 					return;
4718 			}
4719 		}
4720 	}
4721 }
4722 
4723 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4724  * and tcp_collapse() them until all the queue is collapsed.
4725  */
4726 static void tcp_collapse_ofo_queue(struct sock *sk)
4727 {
4728 	struct tcp_sock *tp = tcp_sk(sk);
4729 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4730 	struct sk_buff *head;
4731 	u32 start, end;
4732 
4733 	if (!skb)
4734 		return;
4735 
4736 	start = TCP_SKB_CB(skb)->seq;
4737 	end = TCP_SKB_CB(skb)->end_seq;
4738 	head = skb;
4739 
4740 	for (;;) {
4741 		struct sk_buff *next = NULL;
4742 
4743 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4744 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4745 		skb = next;
4746 
4747 		/* Segment is terminated when we see gap or when
4748 		 * we are at the end of all the queue. */
4749 		if (!skb ||
4750 		    after(TCP_SKB_CB(skb)->seq, end) ||
4751 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4752 			tcp_collapse(sk, &tp->out_of_order_queue,
4753 				     head, skb, start, end);
4754 			head = skb;
4755 			if (!skb)
4756 				break;
4757 			/* Start new segment */
4758 			start = TCP_SKB_CB(skb)->seq;
4759 			end = TCP_SKB_CB(skb)->end_seq;
4760 		} else {
4761 			if (before(TCP_SKB_CB(skb)->seq, start))
4762 				start = TCP_SKB_CB(skb)->seq;
4763 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4764 				end = TCP_SKB_CB(skb)->end_seq;
4765 		}
4766 	}
4767 }
4768 
4769 /*
4770  * Purge the out-of-order queue.
4771  * Return true if queue was pruned.
4772  */
4773 static bool tcp_prune_ofo_queue(struct sock *sk)
4774 {
4775 	struct tcp_sock *tp = tcp_sk(sk);
4776 	bool res = false;
4777 
4778 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4779 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4780 		__skb_queue_purge(&tp->out_of_order_queue);
4781 
4782 		/* Reset SACK state.  A conforming SACK implementation will
4783 		 * do the same at a timeout based retransmit.  When a connection
4784 		 * is in a sad state like this, we care only about integrity
4785 		 * of the connection not performance.
4786 		 */
4787 		if (tp->rx_opt.sack_ok)
4788 			tcp_sack_reset(&tp->rx_opt);
4789 		sk_mem_reclaim(sk);
4790 		res = true;
4791 	}
4792 	return res;
4793 }
4794 
4795 /* Reduce allocated memory if we can, trying to get
4796  * the socket within its memory limits again.
4797  *
4798  * Return less than zero if we should start dropping frames
4799  * until the socket owning process reads some of the data
4800  * to stabilize the situation.
4801  */
4802 static int tcp_prune_queue(struct sock *sk)
4803 {
4804 	struct tcp_sock *tp = tcp_sk(sk);
4805 
4806 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4807 
4808 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4809 
4810 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4811 		tcp_clamp_window(sk);
4812 	else if (tcp_under_memory_pressure(sk))
4813 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4814 
4815 	tcp_collapse_ofo_queue(sk);
4816 	if (!skb_queue_empty(&sk->sk_receive_queue))
4817 		tcp_collapse(sk, &sk->sk_receive_queue,
4818 			     skb_peek(&sk->sk_receive_queue),
4819 			     NULL,
4820 			     tp->copied_seq, tp->rcv_nxt);
4821 	sk_mem_reclaim(sk);
4822 
4823 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4824 		return 0;
4825 
4826 	/* Collapsing did not help, destructive actions follow.
4827 	 * This must not ever occur. */
4828 
4829 	tcp_prune_ofo_queue(sk);
4830 
4831 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4832 		return 0;
4833 
4834 	/* If we are really being abused, tell the caller to silently
4835 	 * drop receive data on the floor.  It will get retransmitted
4836 	 * and hopefully then we'll have sufficient space.
4837 	 */
4838 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4839 
4840 	/* Massive buffer overcommit. */
4841 	tp->pred_flags = 0;
4842 	return -1;
4843 }
4844 
4845 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4846 {
4847 	const struct tcp_sock *tp = tcp_sk(sk);
4848 
4849 	/* If the user specified a specific send buffer setting, do
4850 	 * not modify it.
4851 	 */
4852 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4853 		return false;
4854 
4855 	/* If we are under global TCP memory pressure, do not expand.  */
4856 	if (tcp_under_memory_pressure(sk))
4857 		return false;
4858 
4859 	/* If we are under soft global TCP memory pressure, do not expand.  */
4860 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4861 		return false;
4862 
4863 	/* If we filled the congestion window, do not expand.  */
4864 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4865 		return false;
4866 
4867 	return true;
4868 }
4869 
4870 /* When incoming ACK allowed to free some skb from write_queue,
4871  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4872  * on the exit from tcp input handler.
4873  *
4874  * PROBLEM: sndbuf expansion does not work well with largesend.
4875  */
4876 static void tcp_new_space(struct sock *sk)
4877 {
4878 	struct tcp_sock *tp = tcp_sk(sk);
4879 
4880 	if (tcp_should_expand_sndbuf(sk)) {
4881 		tcp_sndbuf_expand(sk);
4882 		tp->snd_cwnd_stamp = tcp_time_stamp;
4883 	}
4884 
4885 	sk->sk_write_space(sk);
4886 }
4887 
4888 static void tcp_check_space(struct sock *sk)
4889 {
4890 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4891 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4892 		/* pairs with tcp_poll() */
4893 		smp_mb__after_atomic();
4894 		if (sk->sk_socket &&
4895 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4896 			tcp_new_space(sk);
4897 	}
4898 }
4899 
4900 static inline void tcp_data_snd_check(struct sock *sk)
4901 {
4902 	tcp_push_pending_frames(sk);
4903 	tcp_check_space(sk);
4904 }
4905 
4906 /*
4907  * Check if sending an ack is needed.
4908  */
4909 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4910 {
4911 	struct tcp_sock *tp = tcp_sk(sk);
4912 
4913 	    /* More than one full frame received... */
4914 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4915 	     /* ... and right edge of window advances far enough.
4916 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4917 	      */
4918 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4919 	    /* We ACK each frame or... */
4920 	    tcp_in_quickack_mode(sk) ||
4921 	    /* We have out of order data. */
4922 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4923 		/* Then ack it now */
4924 		tcp_send_ack(sk);
4925 	} else {
4926 		/* Else, send delayed ack. */
4927 		tcp_send_delayed_ack(sk);
4928 	}
4929 }
4930 
4931 static inline void tcp_ack_snd_check(struct sock *sk)
4932 {
4933 	if (!inet_csk_ack_scheduled(sk)) {
4934 		/* We sent a data segment already. */
4935 		return;
4936 	}
4937 	__tcp_ack_snd_check(sk, 1);
4938 }
4939 
4940 /*
4941  *	This routine is only called when we have urgent data
4942  *	signaled. Its the 'slow' part of tcp_urg. It could be
4943  *	moved inline now as tcp_urg is only called from one
4944  *	place. We handle URGent data wrong. We have to - as
4945  *	BSD still doesn't use the correction from RFC961.
4946  *	For 1003.1g we should support a new option TCP_STDURG to permit
4947  *	either form (or just set the sysctl tcp_stdurg).
4948  */
4949 
4950 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4951 {
4952 	struct tcp_sock *tp = tcp_sk(sk);
4953 	u32 ptr = ntohs(th->urg_ptr);
4954 
4955 	if (ptr && !sysctl_tcp_stdurg)
4956 		ptr--;
4957 	ptr += ntohl(th->seq);
4958 
4959 	/* Ignore urgent data that we've already seen and read. */
4960 	if (after(tp->copied_seq, ptr))
4961 		return;
4962 
4963 	/* Do not replay urg ptr.
4964 	 *
4965 	 * NOTE: interesting situation not covered by specs.
4966 	 * Misbehaving sender may send urg ptr, pointing to segment,
4967 	 * which we already have in ofo queue. We are not able to fetch
4968 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4969 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4970 	 * situations. But it is worth to think about possibility of some
4971 	 * DoSes using some hypothetical application level deadlock.
4972 	 */
4973 	if (before(ptr, tp->rcv_nxt))
4974 		return;
4975 
4976 	/* Do we already have a newer (or duplicate) urgent pointer? */
4977 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4978 		return;
4979 
4980 	/* Tell the world about our new urgent pointer. */
4981 	sk_send_sigurg(sk);
4982 
4983 	/* We may be adding urgent data when the last byte read was
4984 	 * urgent. To do this requires some care. We cannot just ignore
4985 	 * tp->copied_seq since we would read the last urgent byte again
4986 	 * as data, nor can we alter copied_seq until this data arrives
4987 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4988 	 *
4989 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4990 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4991 	 * and expect that both A and B disappear from stream. This is _wrong_.
4992 	 * Though this happens in BSD with high probability, this is occasional.
4993 	 * Any application relying on this is buggy. Note also, that fix "works"
4994 	 * only in this artificial test. Insert some normal data between A and B and we will
4995 	 * decline of BSD again. Verdict: it is better to remove to trap
4996 	 * buggy users.
4997 	 */
4998 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4999 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5000 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5001 		tp->copied_seq++;
5002 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5003 			__skb_unlink(skb, &sk->sk_receive_queue);
5004 			__kfree_skb(skb);
5005 		}
5006 	}
5007 
5008 	tp->urg_data = TCP_URG_NOTYET;
5009 	tp->urg_seq = ptr;
5010 
5011 	/* Disable header prediction. */
5012 	tp->pred_flags = 0;
5013 }
5014 
5015 /* This is the 'fast' part of urgent handling. */
5016 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5017 {
5018 	struct tcp_sock *tp = tcp_sk(sk);
5019 
5020 	/* Check if we get a new urgent pointer - normally not. */
5021 	if (th->urg)
5022 		tcp_check_urg(sk, th);
5023 
5024 	/* Do we wait for any urgent data? - normally not... */
5025 	if (tp->urg_data == TCP_URG_NOTYET) {
5026 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5027 			  th->syn;
5028 
5029 		/* Is the urgent pointer pointing into this packet? */
5030 		if (ptr < skb->len) {
5031 			u8 tmp;
5032 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5033 				BUG();
5034 			tp->urg_data = TCP_URG_VALID | tmp;
5035 			if (!sock_flag(sk, SOCK_DEAD))
5036 				sk->sk_data_ready(sk);
5037 		}
5038 	}
5039 }
5040 
5041 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5042 {
5043 	struct tcp_sock *tp = tcp_sk(sk);
5044 	int chunk = skb->len - hlen;
5045 	int err;
5046 
5047 	local_bh_enable();
5048 	if (skb_csum_unnecessary(skb))
5049 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5050 	else
5051 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5052 
5053 	if (!err) {
5054 		tp->ucopy.len -= chunk;
5055 		tp->copied_seq += chunk;
5056 		tcp_rcv_space_adjust(sk);
5057 	}
5058 
5059 	local_bh_disable();
5060 	return err;
5061 }
5062 
5063 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5064 					    struct sk_buff *skb)
5065 {
5066 	__sum16 result;
5067 
5068 	if (sock_owned_by_user(sk)) {
5069 		local_bh_enable();
5070 		result = __tcp_checksum_complete(skb);
5071 		local_bh_disable();
5072 	} else {
5073 		result = __tcp_checksum_complete(skb);
5074 	}
5075 	return result;
5076 }
5077 
5078 static inline bool tcp_checksum_complete_user(struct sock *sk,
5079 					     struct sk_buff *skb)
5080 {
5081 	return !skb_csum_unnecessary(skb) &&
5082 	       __tcp_checksum_complete_user(sk, skb);
5083 }
5084 
5085 /* Does PAWS and seqno based validation of an incoming segment, flags will
5086  * play significant role here.
5087  */
5088 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5089 				  const struct tcphdr *th, int syn_inerr)
5090 {
5091 	struct tcp_sock *tp = tcp_sk(sk);
5092 
5093 	/* RFC1323: H1. Apply PAWS check first. */
5094 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5095 	    tcp_paws_discard(sk, skb)) {
5096 		if (!th->rst) {
5097 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5098 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5099 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5100 						  &tp->last_oow_ack_time))
5101 				tcp_send_dupack(sk, skb);
5102 			goto discard;
5103 		}
5104 		/* Reset is accepted even if it did not pass PAWS. */
5105 	}
5106 
5107 	/* Step 1: check sequence number */
5108 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5109 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5110 		 * (RST) segments are validated by checking their SEQ-fields."
5111 		 * And page 69: "If an incoming segment is not acceptable,
5112 		 * an acknowledgment should be sent in reply (unless the RST
5113 		 * bit is set, if so drop the segment and return)".
5114 		 */
5115 		if (!th->rst) {
5116 			if (th->syn)
5117 				goto syn_challenge;
5118 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5119 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5120 						  &tp->last_oow_ack_time))
5121 				tcp_send_dupack(sk, skb);
5122 		}
5123 		goto discard;
5124 	}
5125 
5126 	/* Step 2: check RST bit */
5127 	if (th->rst) {
5128 		/* RFC 5961 3.2 :
5129 		 * If sequence number exactly matches RCV.NXT, then
5130 		 *     RESET the connection
5131 		 * else
5132 		 *     Send a challenge ACK
5133 		 */
5134 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5135 			tcp_reset(sk);
5136 		else
5137 			tcp_send_challenge_ack(sk, skb);
5138 		goto discard;
5139 	}
5140 
5141 	/* step 3: check security and precedence [ignored] */
5142 
5143 	/* step 4: Check for a SYN
5144 	 * RFC 5961 4.2 : Send a challenge ack
5145 	 */
5146 	if (th->syn) {
5147 syn_challenge:
5148 		if (syn_inerr)
5149 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5150 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5151 		tcp_send_challenge_ack(sk, skb);
5152 		goto discard;
5153 	}
5154 
5155 	return true;
5156 
5157 discard:
5158 	__kfree_skb(skb);
5159 	return false;
5160 }
5161 
5162 /*
5163  *	TCP receive function for the ESTABLISHED state.
5164  *
5165  *	It is split into a fast path and a slow path. The fast path is
5166  * 	disabled when:
5167  *	- A zero window was announced from us - zero window probing
5168  *        is only handled properly in the slow path.
5169  *	- Out of order segments arrived.
5170  *	- Urgent data is expected.
5171  *	- There is no buffer space left
5172  *	- Unexpected TCP flags/window values/header lengths are received
5173  *	  (detected by checking the TCP header against pred_flags)
5174  *	- Data is sent in both directions. Fast path only supports pure senders
5175  *	  or pure receivers (this means either the sequence number or the ack
5176  *	  value must stay constant)
5177  *	- Unexpected TCP option.
5178  *
5179  *	When these conditions are not satisfied it drops into a standard
5180  *	receive procedure patterned after RFC793 to handle all cases.
5181  *	The first three cases are guaranteed by proper pred_flags setting,
5182  *	the rest is checked inline. Fast processing is turned on in
5183  *	tcp_data_queue when everything is OK.
5184  */
5185 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5186 			 const struct tcphdr *th, unsigned int len)
5187 {
5188 	struct tcp_sock *tp = tcp_sk(sk);
5189 
5190 	if (unlikely(!sk->sk_rx_dst))
5191 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5192 	/*
5193 	 *	Header prediction.
5194 	 *	The code loosely follows the one in the famous
5195 	 *	"30 instruction TCP receive" Van Jacobson mail.
5196 	 *
5197 	 *	Van's trick is to deposit buffers into socket queue
5198 	 *	on a device interrupt, to call tcp_recv function
5199 	 *	on the receive process context and checksum and copy
5200 	 *	the buffer to user space. smart...
5201 	 *
5202 	 *	Our current scheme is not silly either but we take the
5203 	 *	extra cost of the net_bh soft interrupt processing...
5204 	 *	We do checksum and copy also but from device to kernel.
5205 	 */
5206 
5207 	tp->rx_opt.saw_tstamp = 0;
5208 
5209 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5210 	 *	if header_prediction is to be made
5211 	 *	'S' will always be tp->tcp_header_len >> 2
5212 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5213 	 *  turn it off	(when there are holes in the receive
5214 	 *	 space for instance)
5215 	 *	PSH flag is ignored.
5216 	 */
5217 
5218 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5219 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5220 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5221 		int tcp_header_len = tp->tcp_header_len;
5222 
5223 		/* Timestamp header prediction: tcp_header_len
5224 		 * is automatically equal to th->doff*4 due to pred_flags
5225 		 * match.
5226 		 */
5227 
5228 		/* Check timestamp */
5229 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5230 			/* No? Slow path! */
5231 			if (!tcp_parse_aligned_timestamp(tp, th))
5232 				goto slow_path;
5233 
5234 			/* If PAWS failed, check it more carefully in slow path */
5235 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5236 				goto slow_path;
5237 
5238 			/* DO NOT update ts_recent here, if checksum fails
5239 			 * and timestamp was corrupted part, it will result
5240 			 * in a hung connection since we will drop all
5241 			 * future packets due to the PAWS test.
5242 			 */
5243 		}
5244 
5245 		if (len <= tcp_header_len) {
5246 			/* Bulk data transfer: sender */
5247 			if (len == tcp_header_len) {
5248 				/* Predicted packet is in window by definition.
5249 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5250 				 * Hence, check seq<=rcv_wup reduces to:
5251 				 */
5252 				if (tcp_header_len ==
5253 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5254 				    tp->rcv_nxt == tp->rcv_wup)
5255 					tcp_store_ts_recent(tp);
5256 
5257 				/* We know that such packets are checksummed
5258 				 * on entry.
5259 				 */
5260 				tcp_ack(sk, skb, 0);
5261 				__kfree_skb(skb);
5262 				tcp_data_snd_check(sk);
5263 				return;
5264 			} else { /* Header too small */
5265 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5266 				goto discard;
5267 			}
5268 		} else {
5269 			int eaten = 0;
5270 			bool fragstolen = false;
5271 
5272 			if (tp->ucopy.task == current &&
5273 			    tp->copied_seq == tp->rcv_nxt &&
5274 			    len - tcp_header_len <= tp->ucopy.len &&
5275 			    sock_owned_by_user(sk)) {
5276 				__set_current_state(TASK_RUNNING);
5277 
5278 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5279 					/* Predicted packet is in window by definition.
5280 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5281 					 * Hence, check seq<=rcv_wup reduces to:
5282 					 */
5283 					if (tcp_header_len ==
5284 					    (sizeof(struct tcphdr) +
5285 					     TCPOLEN_TSTAMP_ALIGNED) &&
5286 					    tp->rcv_nxt == tp->rcv_wup)
5287 						tcp_store_ts_recent(tp);
5288 
5289 					tcp_rcv_rtt_measure_ts(sk, skb);
5290 
5291 					__skb_pull(skb, tcp_header_len);
5292 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5293 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5294 					eaten = 1;
5295 				}
5296 			}
5297 			if (!eaten) {
5298 				if (tcp_checksum_complete_user(sk, skb))
5299 					goto csum_error;
5300 
5301 				if ((int)skb->truesize > sk->sk_forward_alloc)
5302 					goto step5;
5303 
5304 				/* Predicted packet is in window by definition.
5305 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5306 				 * Hence, check seq<=rcv_wup reduces to:
5307 				 */
5308 				if (tcp_header_len ==
5309 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5310 				    tp->rcv_nxt == tp->rcv_wup)
5311 					tcp_store_ts_recent(tp);
5312 
5313 				tcp_rcv_rtt_measure_ts(sk, skb);
5314 
5315 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5316 
5317 				/* Bulk data transfer: receiver */
5318 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5319 						      &fragstolen);
5320 			}
5321 
5322 			tcp_event_data_recv(sk, skb);
5323 
5324 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5325 				/* Well, only one small jumplet in fast path... */
5326 				tcp_ack(sk, skb, FLAG_DATA);
5327 				tcp_data_snd_check(sk);
5328 				if (!inet_csk_ack_scheduled(sk))
5329 					goto no_ack;
5330 			}
5331 
5332 			__tcp_ack_snd_check(sk, 0);
5333 no_ack:
5334 			if (eaten)
5335 				kfree_skb_partial(skb, fragstolen);
5336 			sk->sk_data_ready(sk);
5337 			return;
5338 		}
5339 	}
5340 
5341 slow_path:
5342 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5343 		goto csum_error;
5344 
5345 	if (!th->ack && !th->rst && !th->syn)
5346 		goto discard;
5347 
5348 	/*
5349 	 *	Standard slow path.
5350 	 */
5351 
5352 	if (!tcp_validate_incoming(sk, skb, th, 1))
5353 		return;
5354 
5355 step5:
5356 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5357 		goto discard;
5358 
5359 	tcp_rcv_rtt_measure_ts(sk, skb);
5360 
5361 	/* Process urgent data. */
5362 	tcp_urg(sk, skb, th);
5363 
5364 	/* step 7: process the segment text */
5365 	tcp_data_queue(sk, skb);
5366 
5367 	tcp_data_snd_check(sk);
5368 	tcp_ack_snd_check(sk);
5369 	return;
5370 
5371 csum_error:
5372 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5373 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5374 
5375 discard:
5376 	__kfree_skb(skb);
5377 }
5378 EXPORT_SYMBOL(tcp_rcv_established);
5379 
5380 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5381 {
5382 	struct tcp_sock *tp = tcp_sk(sk);
5383 	struct inet_connection_sock *icsk = inet_csk(sk);
5384 
5385 	tcp_set_state(sk, TCP_ESTABLISHED);
5386 
5387 	if (skb) {
5388 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5389 		security_inet_conn_established(sk, skb);
5390 	}
5391 
5392 	/* Make sure socket is routed, for correct metrics.  */
5393 	icsk->icsk_af_ops->rebuild_header(sk);
5394 
5395 	tcp_init_metrics(sk);
5396 
5397 	tcp_init_congestion_control(sk);
5398 
5399 	/* Prevent spurious tcp_cwnd_restart() on first data
5400 	 * packet.
5401 	 */
5402 	tp->lsndtime = tcp_time_stamp;
5403 
5404 	tcp_init_buffer_space(sk);
5405 
5406 	if (sock_flag(sk, SOCK_KEEPOPEN))
5407 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5408 
5409 	if (!tp->rx_opt.snd_wscale)
5410 		__tcp_fast_path_on(tp, tp->snd_wnd);
5411 	else
5412 		tp->pred_flags = 0;
5413 
5414 	if (!sock_flag(sk, SOCK_DEAD)) {
5415 		sk->sk_state_change(sk);
5416 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5417 	}
5418 }
5419 
5420 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5421 				    struct tcp_fastopen_cookie *cookie)
5422 {
5423 	struct tcp_sock *tp = tcp_sk(sk);
5424 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5425 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5426 	bool syn_drop = false;
5427 
5428 	if (mss == tp->rx_opt.user_mss) {
5429 		struct tcp_options_received opt;
5430 
5431 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5432 		tcp_clear_options(&opt);
5433 		opt.user_mss = opt.mss_clamp = 0;
5434 		tcp_parse_options(synack, &opt, 0, NULL);
5435 		mss = opt.mss_clamp;
5436 	}
5437 
5438 	if (!tp->syn_fastopen) {
5439 		/* Ignore an unsolicited cookie */
5440 		cookie->len = -1;
5441 	} else if (tp->total_retrans) {
5442 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5443 		 * acknowledges data. Presumably the remote received only
5444 		 * the retransmitted (regular) SYNs: either the original
5445 		 * SYN-data or the corresponding SYN-ACK was dropped.
5446 		 */
5447 		syn_drop = (cookie->len < 0 && data);
5448 	} else if (cookie->len < 0 && !tp->syn_data) {
5449 		/* We requested a cookie but didn't get it. If we did not use
5450 		 * the (old) exp opt format then try so next time (try_exp=1).
5451 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5452 		 */
5453 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5454 	}
5455 
5456 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5457 
5458 	if (data) { /* Retransmit unacked data in SYN */
5459 		tcp_for_write_queue_from(data, sk) {
5460 			if (data == tcp_send_head(sk) ||
5461 			    __tcp_retransmit_skb(sk, data))
5462 				break;
5463 		}
5464 		tcp_rearm_rto(sk);
5465 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5466 		return true;
5467 	}
5468 	tp->syn_data_acked = tp->syn_data;
5469 	if (tp->syn_data_acked)
5470 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5471 	return false;
5472 }
5473 
5474 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5475 					 const struct tcphdr *th, unsigned int len)
5476 {
5477 	struct inet_connection_sock *icsk = inet_csk(sk);
5478 	struct tcp_sock *tp = tcp_sk(sk);
5479 	struct tcp_fastopen_cookie foc = { .len = -1 };
5480 	int saved_clamp = tp->rx_opt.mss_clamp;
5481 
5482 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5483 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5484 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5485 
5486 	if (th->ack) {
5487 		/* rfc793:
5488 		 * "If the state is SYN-SENT then
5489 		 *    first check the ACK bit
5490 		 *      If the ACK bit is set
5491 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5492 		 *        a reset (unless the RST bit is set, if so drop
5493 		 *        the segment and return)"
5494 		 */
5495 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5496 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5497 			goto reset_and_undo;
5498 
5499 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5500 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5501 			     tcp_time_stamp)) {
5502 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5503 			goto reset_and_undo;
5504 		}
5505 
5506 		/* Now ACK is acceptable.
5507 		 *
5508 		 * "If the RST bit is set
5509 		 *    If the ACK was acceptable then signal the user "error:
5510 		 *    connection reset", drop the segment, enter CLOSED state,
5511 		 *    delete TCB, and return."
5512 		 */
5513 
5514 		if (th->rst) {
5515 			tcp_reset(sk);
5516 			goto discard;
5517 		}
5518 
5519 		/* rfc793:
5520 		 *   "fifth, if neither of the SYN or RST bits is set then
5521 		 *    drop the segment and return."
5522 		 *
5523 		 *    See note below!
5524 		 *                                        --ANK(990513)
5525 		 */
5526 		if (!th->syn)
5527 			goto discard_and_undo;
5528 
5529 		/* rfc793:
5530 		 *   "If the SYN bit is on ...
5531 		 *    are acceptable then ...
5532 		 *    (our SYN has been ACKed), change the connection
5533 		 *    state to ESTABLISHED..."
5534 		 */
5535 
5536 		tcp_ecn_rcv_synack(tp, th);
5537 
5538 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5539 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5540 
5541 		/* Ok.. it's good. Set up sequence numbers and
5542 		 * move to established.
5543 		 */
5544 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5545 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5546 
5547 		/* RFC1323: The window in SYN & SYN/ACK segments is
5548 		 * never scaled.
5549 		 */
5550 		tp->snd_wnd = ntohs(th->window);
5551 
5552 		if (!tp->rx_opt.wscale_ok) {
5553 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5554 			tp->window_clamp = min(tp->window_clamp, 65535U);
5555 		}
5556 
5557 		if (tp->rx_opt.saw_tstamp) {
5558 			tp->rx_opt.tstamp_ok	   = 1;
5559 			tp->tcp_header_len =
5560 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5561 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5562 			tcp_store_ts_recent(tp);
5563 		} else {
5564 			tp->tcp_header_len = sizeof(struct tcphdr);
5565 		}
5566 
5567 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5568 			tcp_enable_fack(tp);
5569 
5570 		tcp_mtup_init(sk);
5571 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5572 		tcp_initialize_rcv_mss(sk);
5573 
5574 		/* Remember, tcp_poll() does not lock socket!
5575 		 * Change state from SYN-SENT only after copied_seq
5576 		 * is initialized. */
5577 		tp->copied_seq = tp->rcv_nxt;
5578 
5579 		smp_mb();
5580 
5581 		tcp_finish_connect(sk, skb);
5582 
5583 		if ((tp->syn_fastopen || tp->syn_data) &&
5584 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5585 			return -1;
5586 
5587 		if (sk->sk_write_pending ||
5588 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5589 		    icsk->icsk_ack.pingpong) {
5590 			/* Save one ACK. Data will be ready after
5591 			 * several ticks, if write_pending is set.
5592 			 *
5593 			 * It may be deleted, but with this feature tcpdumps
5594 			 * look so _wonderfully_ clever, that I was not able
5595 			 * to stand against the temptation 8)     --ANK
5596 			 */
5597 			inet_csk_schedule_ack(sk);
5598 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5599 			tcp_enter_quickack_mode(sk);
5600 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5601 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5602 
5603 discard:
5604 			__kfree_skb(skb);
5605 			return 0;
5606 		} else {
5607 			tcp_send_ack(sk);
5608 		}
5609 		return -1;
5610 	}
5611 
5612 	/* No ACK in the segment */
5613 
5614 	if (th->rst) {
5615 		/* rfc793:
5616 		 * "If the RST bit is set
5617 		 *
5618 		 *      Otherwise (no ACK) drop the segment and return."
5619 		 */
5620 
5621 		goto discard_and_undo;
5622 	}
5623 
5624 	/* PAWS check. */
5625 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5626 	    tcp_paws_reject(&tp->rx_opt, 0))
5627 		goto discard_and_undo;
5628 
5629 	if (th->syn) {
5630 		/* We see SYN without ACK. It is attempt of
5631 		 * simultaneous connect with crossed SYNs.
5632 		 * Particularly, it can be connect to self.
5633 		 */
5634 		tcp_set_state(sk, TCP_SYN_RECV);
5635 
5636 		if (tp->rx_opt.saw_tstamp) {
5637 			tp->rx_opt.tstamp_ok = 1;
5638 			tcp_store_ts_recent(tp);
5639 			tp->tcp_header_len =
5640 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5641 		} else {
5642 			tp->tcp_header_len = sizeof(struct tcphdr);
5643 		}
5644 
5645 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5646 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5647 
5648 		/* RFC1323: The window in SYN & SYN/ACK segments is
5649 		 * never scaled.
5650 		 */
5651 		tp->snd_wnd    = ntohs(th->window);
5652 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5653 		tp->max_window = tp->snd_wnd;
5654 
5655 		tcp_ecn_rcv_syn(tp, th);
5656 
5657 		tcp_mtup_init(sk);
5658 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5659 		tcp_initialize_rcv_mss(sk);
5660 
5661 		tcp_send_synack(sk);
5662 #if 0
5663 		/* Note, we could accept data and URG from this segment.
5664 		 * There are no obstacles to make this (except that we must
5665 		 * either change tcp_recvmsg() to prevent it from returning data
5666 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5667 		 *
5668 		 * However, if we ignore data in ACKless segments sometimes,
5669 		 * we have no reasons to accept it sometimes.
5670 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5671 		 * is not flawless. So, discard packet for sanity.
5672 		 * Uncomment this return to process the data.
5673 		 */
5674 		return -1;
5675 #else
5676 		goto discard;
5677 #endif
5678 	}
5679 	/* "fifth, if neither of the SYN or RST bits is set then
5680 	 * drop the segment and return."
5681 	 */
5682 
5683 discard_and_undo:
5684 	tcp_clear_options(&tp->rx_opt);
5685 	tp->rx_opt.mss_clamp = saved_clamp;
5686 	goto discard;
5687 
5688 reset_and_undo:
5689 	tcp_clear_options(&tp->rx_opt);
5690 	tp->rx_opt.mss_clamp = saved_clamp;
5691 	return 1;
5692 }
5693 
5694 /*
5695  *	This function implements the receiving procedure of RFC 793 for
5696  *	all states except ESTABLISHED and TIME_WAIT.
5697  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5698  *	address independent.
5699  */
5700 
5701 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5702 			  const struct tcphdr *th, unsigned int len)
5703 {
5704 	struct tcp_sock *tp = tcp_sk(sk);
5705 	struct inet_connection_sock *icsk = inet_csk(sk);
5706 	struct request_sock *req;
5707 	int queued = 0;
5708 	bool acceptable;
5709 	u32 synack_stamp;
5710 
5711 	tp->rx_opt.saw_tstamp = 0;
5712 
5713 	switch (sk->sk_state) {
5714 	case TCP_CLOSE:
5715 		goto discard;
5716 
5717 	case TCP_LISTEN:
5718 		if (th->ack)
5719 			return 1;
5720 
5721 		if (th->rst)
5722 			goto discard;
5723 
5724 		if (th->syn) {
5725 			if (th->fin)
5726 				goto discard;
5727 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5728 				return 1;
5729 
5730 			/* Now we have several options: In theory there is
5731 			 * nothing else in the frame. KA9Q has an option to
5732 			 * send data with the syn, BSD accepts data with the
5733 			 * syn up to the [to be] advertised window and
5734 			 * Solaris 2.1 gives you a protocol error. For now
5735 			 * we just ignore it, that fits the spec precisely
5736 			 * and avoids incompatibilities. It would be nice in
5737 			 * future to drop through and process the data.
5738 			 *
5739 			 * Now that TTCP is starting to be used we ought to
5740 			 * queue this data.
5741 			 * But, this leaves one open to an easy denial of
5742 			 * service attack, and SYN cookies can't defend
5743 			 * against this problem. So, we drop the data
5744 			 * in the interest of security over speed unless
5745 			 * it's still in use.
5746 			 */
5747 			kfree_skb(skb);
5748 			return 0;
5749 		}
5750 		goto discard;
5751 
5752 	case TCP_SYN_SENT:
5753 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5754 		if (queued >= 0)
5755 			return queued;
5756 
5757 		/* Do step6 onward by hand. */
5758 		tcp_urg(sk, skb, th);
5759 		__kfree_skb(skb);
5760 		tcp_data_snd_check(sk);
5761 		return 0;
5762 	}
5763 
5764 	req = tp->fastopen_rsk;
5765 	if (req) {
5766 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5767 		    sk->sk_state != TCP_FIN_WAIT1);
5768 
5769 		if (!tcp_check_req(sk, skb, req, true))
5770 			goto discard;
5771 	}
5772 
5773 	if (!th->ack && !th->rst && !th->syn)
5774 		goto discard;
5775 
5776 	if (!tcp_validate_incoming(sk, skb, th, 0))
5777 		return 0;
5778 
5779 	/* step 5: check the ACK field */
5780 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5781 				      FLAG_UPDATE_TS_RECENT) > 0;
5782 
5783 	switch (sk->sk_state) {
5784 	case TCP_SYN_RECV:
5785 		if (!acceptable)
5786 			return 1;
5787 
5788 		/* Once we leave TCP_SYN_RECV, we no longer need req
5789 		 * so release it.
5790 		 */
5791 		if (req) {
5792 			synack_stamp = tcp_rsk(req)->snt_synack;
5793 			tp->total_retrans = req->num_retrans;
5794 			reqsk_fastopen_remove(sk, req, false);
5795 		} else {
5796 			synack_stamp = tp->lsndtime;
5797 			/* Make sure socket is routed, for correct metrics. */
5798 			icsk->icsk_af_ops->rebuild_header(sk);
5799 			tcp_init_congestion_control(sk);
5800 
5801 			tcp_mtup_init(sk);
5802 			tp->copied_seq = tp->rcv_nxt;
5803 			tcp_init_buffer_space(sk);
5804 		}
5805 		smp_mb();
5806 		tcp_set_state(sk, TCP_ESTABLISHED);
5807 		sk->sk_state_change(sk);
5808 
5809 		/* Note, that this wakeup is only for marginal crossed SYN case.
5810 		 * Passively open sockets are not waked up, because
5811 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5812 		 */
5813 		if (sk->sk_socket)
5814 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5815 
5816 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5817 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5818 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5819 		tcp_synack_rtt_meas(sk, synack_stamp);
5820 
5821 		if (tp->rx_opt.tstamp_ok)
5822 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5823 
5824 		if (req) {
5825 			/* Re-arm the timer because data may have been sent out.
5826 			 * This is similar to the regular data transmission case
5827 			 * when new data has just been ack'ed.
5828 			 *
5829 			 * (TFO) - we could try to be more aggressive and
5830 			 * retransmitting any data sooner based on when they
5831 			 * are sent out.
5832 			 */
5833 			tcp_rearm_rto(sk);
5834 		} else
5835 			tcp_init_metrics(sk);
5836 
5837 		tcp_update_pacing_rate(sk);
5838 
5839 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5840 		tp->lsndtime = tcp_time_stamp;
5841 
5842 		tcp_initialize_rcv_mss(sk);
5843 		tcp_fast_path_on(tp);
5844 		break;
5845 
5846 	case TCP_FIN_WAIT1: {
5847 		struct dst_entry *dst;
5848 		int tmo;
5849 
5850 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5851 		 * Fast Open socket and this is the first acceptable
5852 		 * ACK we have received, this would have acknowledged
5853 		 * our SYNACK so stop the SYNACK timer.
5854 		 */
5855 		if (req) {
5856 			/* Return RST if ack_seq is invalid.
5857 			 * Note that RFC793 only says to generate a
5858 			 * DUPACK for it but for TCP Fast Open it seems
5859 			 * better to treat this case like TCP_SYN_RECV
5860 			 * above.
5861 			 */
5862 			if (!acceptable)
5863 				return 1;
5864 			/* We no longer need the request sock. */
5865 			reqsk_fastopen_remove(sk, req, false);
5866 			tcp_rearm_rto(sk);
5867 		}
5868 		if (tp->snd_una != tp->write_seq)
5869 			break;
5870 
5871 		tcp_set_state(sk, TCP_FIN_WAIT2);
5872 		sk->sk_shutdown |= SEND_SHUTDOWN;
5873 
5874 		dst = __sk_dst_get(sk);
5875 		if (dst)
5876 			dst_confirm(dst);
5877 
5878 		if (!sock_flag(sk, SOCK_DEAD)) {
5879 			/* Wake up lingering close() */
5880 			sk->sk_state_change(sk);
5881 			break;
5882 		}
5883 
5884 		if (tp->linger2 < 0 ||
5885 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5886 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5887 			tcp_done(sk);
5888 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5889 			return 1;
5890 		}
5891 
5892 		tmo = tcp_fin_time(sk);
5893 		if (tmo > TCP_TIMEWAIT_LEN) {
5894 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5895 		} else if (th->fin || sock_owned_by_user(sk)) {
5896 			/* Bad case. We could lose such FIN otherwise.
5897 			 * It is not a big problem, but it looks confusing
5898 			 * and not so rare event. We still can lose it now,
5899 			 * if it spins in bh_lock_sock(), but it is really
5900 			 * marginal case.
5901 			 */
5902 			inet_csk_reset_keepalive_timer(sk, tmo);
5903 		} else {
5904 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5905 			goto discard;
5906 		}
5907 		break;
5908 	}
5909 
5910 	case TCP_CLOSING:
5911 		if (tp->snd_una == tp->write_seq) {
5912 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5913 			goto discard;
5914 		}
5915 		break;
5916 
5917 	case TCP_LAST_ACK:
5918 		if (tp->snd_una == tp->write_seq) {
5919 			tcp_update_metrics(sk);
5920 			tcp_done(sk);
5921 			goto discard;
5922 		}
5923 		break;
5924 	}
5925 
5926 	/* step 6: check the URG bit */
5927 	tcp_urg(sk, skb, th);
5928 
5929 	/* step 7: process the segment text */
5930 	switch (sk->sk_state) {
5931 	case TCP_CLOSE_WAIT:
5932 	case TCP_CLOSING:
5933 	case TCP_LAST_ACK:
5934 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5935 			break;
5936 	case TCP_FIN_WAIT1:
5937 	case TCP_FIN_WAIT2:
5938 		/* RFC 793 says to queue data in these states,
5939 		 * RFC 1122 says we MUST send a reset.
5940 		 * BSD 4.4 also does reset.
5941 		 */
5942 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5943 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5944 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5945 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5946 				tcp_reset(sk);
5947 				return 1;
5948 			}
5949 		}
5950 		/* Fall through */
5951 	case TCP_ESTABLISHED:
5952 		tcp_data_queue(sk, skb);
5953 		queued = 1;
5954 		break;
5955 	}
5956 
5957 	/* tcp_data could move socket to TIME-WAIT */
5958 	if (sk->sk_state != TCP_CLOSE) {
5959 		tcp_data_snd_check(sk);
5960 		tcp_ack_snd_check(sk);
5961 	}
5962 
5963 	if (!queued) {
5964 discard:
5965 		__kfree_skb(skb);
5966 	}
5967 	return 0;
5968 }
5969 EXPORT_SYMBOL(tcp_rcv_state_process);
5970 
5971 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5972 {
5973 	struct inet_request_sock *ireq = inet_rsk(req);
5974 
5975 	if (family == AF_INET)
5976 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
5977 				    &ireq->ir_rmt_addr, port);
5978 #if IS_ENABLED(CONFIG_IPV6)
5979 	else if (family == AF_INET6)
5980 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
5981 				    &ireq->ir_v6_rmt_addr, port);
5982 #endif
5983 }
5984 
5985 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5986  *
5987  * If we receive a SYN packet with these bits set, it means a
5988  * network is playing bad games with TOS bits. In order to
5989  * avoid possible false congestion notifications, we disable
5990  * TCP ECN negotiation.
5991  *
5992  * Exception: tcp_ca wants ECN. This is required for DCTCP
5993  * congestion control: Linux DCTCP asserts ECT on all packets,
5994  * including SYN, which is most optimal solution; however,
5995  * others, such as FreeBSD do not.
5996  */
5997 static void tcp_ecn_create_request(struct request_sock *req,
5998 				   const struct sk_buff *skb,
5999 				   const struct sock *listen_sk,
6000 				   const struct dst_entry *dst)
6001 {
6002 	const struct tcphdr *th = tcp_hdr(skb);
6003 	const struct net *net = sock_net(listen_sk);
6004 	bool th_ecn = th->ece && th->cwr;
6005 	bool ect, ecn_ok;
6006 	u32 ecn_ok_dst;
6007 
6008 	if (!th_ecn)
6009 		return;
6010 
6011 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6012 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6013 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6014 
6015 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6016 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6017 		inet_rsk(req)->ecn_ok = 1;
6018 }
6019 
6020 static void tcp_openreq_init(struct request_sock *req,
6021 			     const struct tcp_options_received *rx_opt,
6022 			     struct sk_buff *skb, const struct sock *sk)
6023 {
6024 	struct inet_request_sock *ireq = inet_rsk(req);
6025 
6026 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6027 	req->cookie_ts = 0;
6028 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6029 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6030 	tcp_rsk(req)->snt_synack = tcp_time_stamp;
6031 	tcp_rsk(req)->last_oow_ack_time = 0;
6032 	req->mss = rx_opt->mss_clamp;
6033 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6034 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6035 	ireq->sack_ok = rx_opt->sack_ok;
6036 	ireq->snd_wscale = rx_opt->snd_wscale;
6037 	ireq->wscale_ok = rx_opt->wscale_ok;
6038 	ireq->acked = 0;
6039 	ireq->ecn_ok = 0;
6040 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6041 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6042 	ireq->ir_mark = inet_request_mark(sk, skb);
6043 }
6044 
6045 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6046 				      struct sock *sk_listener)
6047 {
6048 	struct request_sock *req = reqsk_alloc(ops, sk_listener);
6049 
6050 	if (req) {
6051 		struct inet_request_sock *ireq = inet_rsk(req);
6052 
6053 		kmemcheck_annotate_bitfield(ireq, flags);
6054 		ireq->opt = NULL;
6055 		atomic64_set(&ireq->ir_cookie, 0);
6056 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6057 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6058 		ireq->ireq_family = sk_listener->sk_family;
6059 	}
6060 
6061 	return req;
6062 }
6063 EXPORT_SYMBOL(inet_reqsk_alloc);
6064 
6065 /*
6066  * Return true if a syncookie should be sent
6067  */
6068 static bool tcp_syn_flood_action(struct sock *sk,
6069 				 const struct sk_buff *skb,
6070 				 const char *proto)
6071 {
6072 	const char *msg = "Dropping request";
6073 	bool want_cookie = false;
6074 	struct listen_sock *lopt;
6075 
6076 #ifdef CONFIG_SYN_COOKIES
6077 	if (sysctl_tcp_syncookies) {
6078 		msg = "Sending cookies";
6079 		want_cookie = true;
6080 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6081 	} else
6082 #endif
6083 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6084 
6085 	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6086 	if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6087 		lopt->synflood_warned = 1;
6088 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6089 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6090 	}
6091 	return want_cookie;
6092 }
6093 
6094 static void tcp_reqsk_record_syn(const struct sock *sk,
6095 				 struct request_sock *req,
6096 				 const struct sk_buff *skb)
6097 {
6098 	if (tcp_sk(sk)->save_syn) {
6099 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6100 		u32 *copy;
6101 
6102 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6103 		if (copy) {
6104 			copy[0] = len;
6105 			memcpy(&copy[1], skb_network_header(skb), len);
6106 			req->saved_syn = copy;
6107 		}
6108 	}
6109 }
6110 
6111 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6112 		     const struct tcp_request_sock_ops *af_ops,
6113 		     struct sock *sk, struct sk_buff *skb)
6114 {
6115 	struct tcp_options_received tmp_opt;
6116 	struct request_sock *req;
6117 	struct tcp_sock *tp = tcp_sk(sk);
6118 	struct dst_entry *dst = NULL;
6119 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6120 	bool want_cookie = false, fastopen;
6121 	struct flowi fl;
6122 	struct tcp_fastopen_cookie foc = { .len = -1 };
6123 	int err;
6124 
6125 
6126 	/* TW buckets are converted to open requests without
6127 	 * limitations, they conserve resources and peer is
6128 	 * evidently real one.
6129 	 */
6130 	if ((sysctl_tcp_syncookies == 2 ||
6131 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6132 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6133 		if (!want_cookie)
6134 			goto drop;
6135 	}
6136 
6137 
6138 	/* Accept backlog is full. If we have already queued enough
6139 	 * of warm entries in syn queue, drop request. It is better than
6140 	 * clogging syn queue with openreqs with exponentially increasing
6141 	 * timeout.
6142 	 */
6143 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6144 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6145 		goto drop;
6146 	}
6147 
6148 	req = inet_reqsk_alloc(rsk_ops, sk);
6149 	if (!req)
6150 		goto drop;
6151 
6152 	tcp_rsk(req)->af_specific = af_ops;
6153 
6154 	tcp_clear_options(&tmp_opt);
6155 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6156 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6157 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6158 
6159 	if (want_cookie && !tmp_opt.saw_tstamp)
6160 		tcp_clear_options(&tmp_opt);
6161 
6162 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6163 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6164 
6165 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6166 	inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6167 
6168 	af_ops->init_req(req, sk, skb);
6169 
6170 	if (security_inet_conn_request(sk, skb, req))
6171 		goto drop_and_free;
6172 
6173 	if (!want_cookie && !isn) {
6174 		/* VJ's idea. We save last timestamp seen
6175 		 * from the destination in peer table, when entering
6176 		 * state TIME-WAIT, and check against it before
6177 		 * accepting new connection request.
6178 		 *
6179 		 * If "isn" is not zero, this request hit alive
6180 		 * timewait bucket, so that all the necessary checks
6181 		 * are made in the function processing timewait state.
6182 		 */
6183 		if (tcp_death_row.sysctl_tw_recycle) {
6184 			bool strict;
6185 
6186 			dst = af_ops->route_req(sk, &fl, req, &strict);
6187 
6188 			if (dst && strict &&
6189 			    !tcp_peer_is_proven(req, dst, true,
6190 						tmp_opt.saw_tstamp)) {
6191 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6192 				goto drop_and_release;
6193 			}
6194 		}
6195 		/* Kill the following clause, if you dislike this way. */
6196 		else if (!sysctl_tcp_syncookies &&
6197 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6198 			  (sysctl_max_syn_backlog >> 2)) &&
6199 			 !tcp_peer_is_proven(req, dst, false,
6200 					     tmp_opt.saw_tstamp)) {
6201 			/* Without syncookies last quarter of
6202 			 * backlog is filled with destinations,
6203 			 * proven to be alive.
6204 			 * It means that we continue to communicate
6205 			 * to destinations, already remembered
6206 			 * to the moment of synflood.
6207 			 */
6208 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6209 				    rsk_ops->family);
6210 			goto drop_and_release;
6211 		}
6212 
6213 		isn = af_ops->init_seq(skb);
6214 	}
6215 	if (!dst) {
6216 		dst = af_ops->route_req(sk, &fl, req, NULL);
6217 		if (!dst)
6218 			goto drop_and_free;
6219 	}
6220 
6221 	tcp_ecn_create_request(req, skb, sk, dst);
6222 
6223 	if (want_cookie) {
6224 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6225 		req->cookie_ts = tmp_opt.tstamp_ok;
6226 		if (!tmp_opt.tstamp_ok)
6227 			inet_rsk(req)->ecn_ok = 0;
6228 	}
6229 
6230 	tcp_rsk(req)->snt_isn = isn;
6231 	tcp_openreq_init_rwin(req, sk, dst);
6232 	fastopen = !want_cookie &&
6233 		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6234 	err = af_ops->send_synack(sk, dst, &fl, req,
6235 				  skb_get_queue_mapping(skb), &foc);
6236 	if (!fastopen) {
6237 		if (err || want_cookie)
6238 			goto drop_and_free;
6239 
6240 		tcp_rsk(req)->tfo_listener = false;
6241 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6242 	}
6243 	tcp_reqsk_record_syn(sk, req, skb);
6244 
6245 	return 0;
6246 
6247 drop_and_release:
6248 	dst_release(dst);
6249 drop_and_free:
6250 	reqsk_free(req);
6251 drop:
6252 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6253 	return 0;
6254 }
6255 EXPORT_SYMBOL(tcp_conn_request);
6256