1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_inc(&clean_acked_data_enabled); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_dec(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 #endif 133 134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 135 unsigned int len) 136 { 137 static bool __once __read_mostly; 138 139 if (!__once) { 140 struct net_device *dev; 141 142 __once = true; 143 144 rcu_read_lock(); 145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 146 if (!dev || len >= dev->mtu) 147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 148 dev ? dev->name : "Unknown driver"); 149 rcu_read_unlock(); 150 } 151 } 152 153 /* Adapt the MSS value used to make delayed ack decision to the 154 * real world. 155 */ 156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 157 { 158 struct inet_connection_sock *icsk = inet_csk(sk); 159 const unsigned int lss = icsk->icsk_ack.last_seg_size; 160 unsigned int len; 161 162 icsk->icsk_ack.last_seg_size = 0; 163 164 /* skb->len may jitter because of SACKs, even if peer 165 * sends good full-sized frames. 166 */ 167 len = skb_shinfo(skb)->gso_size ? : skb->len; 168 if (len >= icsk->icsk_ack.rcv_mss) { 169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 170 tcp_sk(sk)->advmss); 171 /* Account for possibly-removed options */ 172 if (unlikely(len > icsk->icsk_ack.rcv_mss + 173 MAX_TCP_OPTION_SPACE)) 174 tcp_gro_dev_warn(sk, skb, len); 175 } else { 176 /* Otherwise, we make more careful check taking into account, 177 * that SACKs block is variable. 178 * 179 * "len" is invariant segment length, including TCP header. 180 */ 181 len += skb->data - skb_transport_header(skb); 182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 183 /* If PSH is not set, packet should be 184 * full sized, provided peer TCP is not badly broken. 185 * This observation (if it is correct 8)) allows 186 * to handle super-low mtu links fairly. 187 */ 188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 190 /* Subtract also invariant (if peer is RFC compliant), 191 * tcp header plus fixed timestamp option length. 192 * Resulting "len" is MSS free of SACK jitter. 193 */ 194 len -= tcp_sk(sk)->tcp_header_len; 195 icsk->icsk_ack.last_seg_size = len; 196 if (len == lss) { 197 icsk->icsk_ack.rcv_mss = len; 198 return; 199 } 200 } 201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 204 } 205 } 206 207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 208 { 209 struct inet_connection_sock *icsk = inet_csk(sk); 210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 211 212 if (quickacks == 0) 213 quickacks = 2; 214 quickacks = min(quickacks, max_quickacks); 215 if (quickacks > icsk->icsk_ack.quick) 216 icsk->icsk_ack.quick = quickacks; 217 } 218 219 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 220 { 221 struct inet_connection_sock *icsk = inet_csk(sk); 222 223 tcp_incr_quickack(sk, max_quickacks); 224 icsk->icsk_ack.pingpong = 0; 225 icsk->icsk_ack.ato = TCP_ATO_MIN; 226 } 227 228 /* Send ACKs quickly, if "quick" count is not exhausted 229 * and the session is not interactive. 230 */ 231 232 static bool tcp_in_quickack_mode(struct sock *sk) 233 { 234 const struct inet_connection_sock *icsk = inet_csk(sk); 235 const struct dst_entry *dst = __sk_dst_get(sk); 236 237 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 238 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 239 } 240 241 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 242 { 243 if (tp->ecn_flags & TCP_ECN_OK) 244 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 245 } 246 247 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 248 { 249 if (tcp_hdr(skb)->cwr) 250 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 251 } 252 253 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 254 { 255 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 256 } 257 258 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 259 { 260 struct tcp_sock *tp = tcp_sk(sk); 261 262 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 263 case INET_ECN_NOT_ECT: 264 /* Funny extension: if ECT is not set on a segment, 265 * and we already seen ECT on a previous segment, 266 * it is probably a retransmit. 267 */ 268 if (tp->ecn_flags & TCP_ECN_SEEN) 269 tcp_enter_quickack_mode(sk, 2); 270 break; 271 case INET_ECN_CE: 272 if (tcp_ca_needs_ecn(sk)) 273 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 274 275 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 276 /* Better not delay acks, sender can have a very low cwnd */ 277 tcp_enter_quickack_mode(sk, 2); 278 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 279 } 280 tp->ecn_flags |= TCP_ECN_SEEN; 281 break; 282 default: 283 if (tcp_ca_needs_ecn(sk)) 284 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 285 tp->ecn_flags |= TCP_ECN_SEEN; 286 break; 287 } 288 } 289 290 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 291 { 292 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 293 __tcp_ecn_check_ce(sk, skb); 294 } 295 296 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 297 { 298 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 299 tp->ecn_flags &= ~TCP_ECN_OK; 300 } 301 302 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 303 { 304 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 305 tp->ecn_flags &= ~TCP_ECN_OK; 306 } 307 308 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 309 { 310 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 311 return true; 312 return false; 313 } 314 315 /* Buffer size and advertised window tuning. 316 * 317 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 318 */ 319 320 static void tcp_sndbuf_expand(struct sock *sk) 321 { 322 const struct tcp_sock *tp = tcp_sk(sk); 323 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 324 int sndmem, per_mss; 325 u32 nr_segs; 326 327 /* Worst case is non GSO/TSO : each frame consumes one skb 328 * and skb->head is kmalloced using power of two area of memory 329 */ 330 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 331 MAX_TCP_HEADER + 332 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 333 334 per_mss = roundup_pow_of_two(per_mss) + 335 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 336 337 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 338 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 339 340 /* Fast Recovery (RFC 5681 3.2) : 341 * Cubic needs 1.7 factor, rounded to 2 to include 342 * extra cushion (application might react slowly to EPOLLOUT) 343 */ 344 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 345 sndmem *= nr_segs * per_mss; 346 347 if (sk->sk_sndbuf < sndmem) 348 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 349 } 350 351 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 352 * 353 * All tcp_full_space() is split to two parts: "network" buffer, allocated 354 * forward and advertised in receiver window (tp->rcv_wnd) and 355 * "application buffer", required to isolate scheduling/application 356 * latencies from network. 357 * window_clamp is maximal advertised window. It can be less than 358 * tcp_full_space(), in this case tcp_full_space() - window_clamp 359 * is reserved for "application" buffer. The less window_clamp is 360 * the smoother our behaviour from viewpoint of network, but the lower 361 * throughput and the higher sensitivity of the connection to losses. 8) 362 * 363 * rcv_ssthresh is more strict window_clamp used at "slow start" 364 * phase to predict further behaviour of this connection. 365 * It is used for two goals: 366 * - to enforce header prediction at sender, even when application 367 * requires some significant "application buffer". It is check #1. 368 * - to prevent pruning of receive queue because of misprediction 369 * of receiver window. Check #2. 370 * 371 * The scheme does not work when sender sends good segments opening 372 * window and then starts to feed us spaghetti. But it should work 373 * in common situations. Otherwise, we have to rely on queue collapsing. 374 */ 375 376 /* Slow part of check#2. */ 377 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 378 { 379 struct tcp_sock *tp = tcp_sk(sk); 380 /* Optimize this! */ 381 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 382 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 383 384 while (tp->rcv_ssthresh <= window) { 385 if (truesize <= skb->len) 386 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 387 388 truesize >>= 1; 389 window >>= 1; 390 } 391 return 0; 392 } 393 394 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 395 { 396 struct tcp_sock *tp = tcp_sk(sk); 397 398 /* Check #1 */ 399 if (tp->rcv_ssthresh < tp->window_clamp && 400 (int)tp->rcv_ssthresh < tcp_space(sk) && 401 !tcp_under_memory_pressure(sk)) { 402 int incr; 403 404 /* Check #2. Increase window, if skb with such overhead 405 * will fit to rcvbuf in future. 406 */ 407 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 408 incr = 2 * tp->advmss; 409 else 410 incr = __tcp_grow_window(sk, skb); 411 412 if (incr) { 413 incr = max_t(int, incr, 2 * skb->len); 414 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 415 tp->window_clamp); 416 inet_csk(sk)->icsk_ack.quick |= 1; 417 } 418 } 419 } 420 421 /* 3. Tuning rcvbuf, when connection enters established state. */ 422 static void tcp_fixup_rcvbuf(struct sock *sk) 423 { 424 u32 mss = tcp_sk(sk)->advmss; 425 int rcvmem; 426 427 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 428 tcp_default_init_rwnd(mss); 429 430 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 431 * Allow enough cushion so that sender is not limited by our window 432 */ 433 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 434 rcvmem <<= 2; 435 436 if (sk->sk_rcvbuf < rcvmem) 437 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 438 } 439 440 /* 4. Try to fixup all. It is made immediately after connection enters 441 * established state. 442 */ 443 void tcp_init_buffer_space(struct sock *sk) 444 { 445 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 446 struct tcp_sock *tp = tcp_sk(sk); 447 int maxwin; 448 449 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 450 tcp_fixup_rcvbuf(sk); 451 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 452 tcp_sndbuf_expand(sk); 453 454 tp->rcvq_space.space = tp->rcv_wnd; 455 tcp_mstamp_refresh(tp); 456 tp->rcvq_space.time = tp->tcp_mstamp; 457 tp->rcvq_space.seq = tp->copied_seq; 458 459 maxwin = tcp_full_space(sk); 460 461 if (tp->window_clamp >= maxwin) { 462 tp->window_clamp = maxwin; 463 464 if (tcp_app_win && maxwin > 4 * tp->advmss) 465 tp->window_clamp = max(maxwin - 466 (maxwin >> tcp_app_win), 467 4 * tp->advmss); 468 } 469 470 /* Force reservation of one segment. */ 471 if (tcp_app_win && 472 tp->window_clamp > 2 * tp->advmss && 473 tp->window_clamp + tp->advmss > maxwin) 474 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 475 476 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 477 tp->snd_cwnd_stamp = tcp_jiffies32; 478 } 479 480 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 481 static void tcp_clamp_window(struct sock *sk) 482 { 483 struct tcp_sock *tp = tcp_sk(sk); 484 struct inet_connection_sock *icsk = inet_csk(sk); 485 struct net *net = sock_net(sk); 486 487 icsk->icsk_ack.quick = 0; 488 489 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 490 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 491 !tcp_under_memory_pressure(sk) && 492 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 493 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 494 net->ipv4.sysctl_tcp_rmem[2]); 495 } 496 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 497 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 498 } 499 500 /* Initialize RCV_MSS value. 501 * RCV_MSS is an our guess about MSS used by the peer. 502 * We haven't any direct information about the MSS. 503 * It's better to underestimate the RCV_MSS rather than overestimate. 504 * Overestimations make us ACKing less frequently than needed. 505 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 506 */ 507 void tcp_initialize_rcv_mss(struct sock *sk) 508 { 509 const struct tcp_sock *tp = tcp_sk(sk); 510 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 511 512 hint = min(hint, tp->rcv_wnd / 2); 513 hint = min(hint, TCP_MSS_DEFAULT); 514 hint = max(hint, TCP_MIN_MSS); 515 516 inet_csk(sk)->icsk_ack.rcv_mss = hint; 517 } 518 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 519 520 /* Receiver "autotuning" code. 521 * 522 * The algorithm for RTT estimation w/o timestamps is based on 523 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 524 * <http://public.lanl.gov/radiant/pubs.html#DRS> 525 * 526 * More detail on this code can be found at 527 * <http://staff.psc.edu/jheffner/>, 528 * though this reference is out of date. A new paper 529 * is pending. 530 */ 531 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 532 { 533 u32 new_sample = tp->rcv_rtt_est.rtt_us; 534 long m = sample; 535 536 if (new_sample != 0) { 537 /* If we sample in larger samples in the non-timestamp 538 * case, we could grossly overestimate the RTT especially 539 * with chatty applications or bulk transfer apps which 540 * are stalled on filesystem I/O. 541 * 542 * Also, since we are only going for a minimum in the 543 * non-timestamp case, we do not smooth things out 544 * else with timestamps disabled convergence takes too 545 * long. 546 */ 547 if (!win_dep) { 548 m -= (new_sample >> 3); 549 new_sample += m; 550 } else { 551 m <<= 3; 552 if (m < new_sample) 553 new_sample = m; 554 } 555 } else { 556 /* No previous measure. */ 557 new_sample = m << 3; 558 } 559 560 tp->rcv_rtt_est.rtt_us = new_sample; 561 } 562 563 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 564 { 565 u32 delta_us; 566 567 if (tp->rcv_rtt_est.time == 0) 568 goto new_measure; 569 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 570 return; 571 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 572 if (!delta_us) 573 delta_us = 1; 574 tcp_rcv_rtt_update(tp, delta_us, 1); 575 576 new_measure: 577 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 578 tp->rcv_rtt_est.time = tp->tcp_mstamp; 579 } 580 581 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 582 const struct sk_buff *skb) 583 { 584 struct tcp_sock *tp = tcp_sk(sk); 585 586 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 587 return; 588 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 589 590 if (TCP_SKB_CB(skb)->end_seq - 591 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 592 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 593 u32 delta_us; 594 595 if (!delta) 596 delta = 1; 597 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 598 tcp_rcv_rtt_update(tp, delta_us, 0); 599 } 600 } 601 602 /* 603 * This function should be called every time data is copied to user space. 604 * It calculates the appropriate TCP receive buffer space. 605 */ 606 void tcp_rcv_space_adjust(struct sock *sk) 607 { 608 struct tcp_sock *tp = tcp_sk(sk); 609 u32 copied; 610 int time; 611 612 trace_tcp_rcv_space_adjust(sk); 613 614 tcp_mstamp_refresh(tp); 615 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 616 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 617 return; 618 619 /* Number of bytes copied to user in last RTT */ 620 copied = tp->copied_seq - tp->rcvq_space.seq; 621 if (copied <= tp->rcvq_space.space) 622 goto new_measure; 623 624 /* A bit of theory : 625 * copied = bytes received in previous RTT, our base window 626 * To cope with packet losses, we need a 2x factor 627 * To cope with slow start, and sender growing its cwin by 100 % 628 * every RTT, we need a 4x factor, because the ACK we are sending 629 * now is for the next RTT, not the current one : 630 * <prev RTT . ><current RTT .. ><next RTT .... > 631 */ 632 633 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 634 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 635 int rcvmem, rcvbuf; 636 u64 rcvwin, grow; 637 638 /* minimal window to cope with packet losses, assuming 639 * steady state. Add some cushion because of small variations. 640 */ 641 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 642 643 /* Accommodate for sender rate increase (eg. slow start) */ 644 grow = rcvwin * (copied - tp->rcvq_space.space); 645 do_div(grow, tp->rcvq_space.space); 646 rcvwin += (grow << 1); 647 648 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 649 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 650 rcvmem += 128; 651 652 do_div(rcvwin, tp->advmss); 653 rcvbuf = min_t(u64, rcvwin * rcvmem, 654 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 655 if (rcvbuf > sk->sk_rcvbuf) { 656 sk->sk_rcvbuf = rcvbuf; 657 658 /* Make the window clamp follow along. */ 659 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 660 } 661 } 662 tp->rcvq_space.space = copied; 663 664 new_measure: 665 tp->rcvq_space.seq = tp->copied_seq; 666 tp->rcvq_space.time = tp->tcp_mstamp; 667 } 668 669 /* There is something which you must keep in mind when you analyze the 670 * behavior of the tp->ato delayed ack timeout interval. When a 671 * connection starts up, we want to ack as quickly as possible. The 672 * problem is that "good" TCP's do slow start at the beginning of data 673 * transmission. The means that until we send the first few ACK's the 674 * sender will sit on his end and only queue most of his data, because 675 * he can only send snd_cwnd unacked packets at any given time. For 676 * each ACK we send, he increments snd_cwnd and transmits more of his 677 * queue. -DaveM 678 */ 679 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 680 { 681 struct tcp_sock *tp = tcp_sk(sk); 682 struct inet_connection_sock *icsk = inet_csk(sk); 683 u32 now; 684 685 inet_csk_schedule_ack(sk); 686 687 tcp_measure_rcv_mss(sk, skb); 688 689 tcp_rcv_rtt_measure(tp); 690 691 now = tcp_jiffies32; 692 693 if (!icsk->icsk_ack.ato) { 694 /* The _first_ data packet received, initialize 695 * delayed ACK engine. 696 */ 697 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 698 icsk->icsk_ack.ato = TCP_ATO_MIN; 699 } else { 700 int m = now - icsk->icsk_ack.lrcvtime; 701 702 if (m <= TCP_ATO_MIN / 2) { 703 /* The fastest case is the first. */ 704 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 705 } else if (m < icsk->icsk_ack.ato) { 706 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 707 if (icsk->icsk_ack.ato > icsk->icsk_rto) 708 icsk->icsk_ack.ato = icsk->icsk_rto; 709 } else if (m > icsk->icsk_rto) { 710 /* Too long gap. Apparently sender failed to 711 * restart window, so that we send ACKs quickly. 712 */ 713 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 714 sk_mem_reclaim(sk); 715 } 716 } 717 icsk->icsk_ack.lrcvtime = now; 718 719 tcp_ecn_check_ce(sk, skb); 720 721 if (skb->len >= 128) 722 tcp_grow_window(sk, skb); 723 } 724 725 /* Called to compute a smoothed rtt estimate. The data fed to this 726 * routine either comes from timestamps, or from segments that were 727 * known _not_ to have been retransmitted [see Karn/Partridge 728 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 729 * piece by Van Jacobson. 730 * NOTE: the next three routines used to be one big routine. 731 * To save cycles in the RFC 1323 implementation it was better to break 732 * it up into three procedures. -- erics 733 */ 734 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 735 { 736 struct tcp_sock *tp = tcp_sk(sk); 737 long m = mrtt_us; /* RTT */ 738 u32 srtt = tp->srtt_us; 739 740 /* The following amusing code comes from Jacobson's 741 * article in SIGCOMM '88. Note that rtt and mdev 742 * are scaled versions of rtt and mean deviation. 743 * This is designed to be as fast as possible 744 * m stands for "measurement". 745 * 746 * On a 1990 paper the rto value is changed to: 747 * RTO = rtt + 4 * mdev 748 * 749 * Funny. This algorithm seems to be very broken. 750 * These formulae increase RTO, when it should be decreased, increase 751 * too slowly, when it should be increased quickly, decrease too quickly 752 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 753 * does not matter how to _calculate_ it. Seems, it was trap 754 * that VJ failed to avoid. 8) 755 */ 756 if (srtt != 0) { 757 m -= (srtt >> 3); /* m is now error in rtt est */ 758 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 759 if (m < 0) { 760 m = -m; /* m is now abs(error) */ 761 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 762 /* This is similar to one of Eifel findings. 763 * Eifel blocks mdev updates when rtt decreases. 764 * This solution is a bit different: we use finer gain 765 * for mdev in this case (alpha*beta). 766 * Like Eifel it also prevents growth of rto, 767 * but also it limits too fast rto decreases, 768 * happening in pure Eifel. 769 */ 770 if (m > 0) 771 m >>= 3; 772 } else { 773 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 774 } 775 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 776 if (tp->mdev_us > tp->mdev_max_us) { 777 tp->mdev_max_us = tp->mdev_us; 778 if (tp->mdev_max_us > tp->rttvar_us) 779 tp->rttvar_us = tp->mdev_max_us; 780 } 781 if (after(tp->snd_una, tp->rtt_seq)) { 782 if (tp->mdev_max_us < tp->rttvar_us) 783 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 784 tp->rtt_seq = tp->snd_nxt; 785 tp->mdev_max_us = tcp_rto_min_us(sk); 786 } 787 } else { 788 /* no previous measure. */ 789 srtt = m << 3; /* take the measured time to be rtt */ 790 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 791 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 792 tp->mdev_max_us = tp->rttvar_us; 793 tp->rtt_seq = tp->snd_nxt; 794 } 795 tp->srtt_us = max(1U, srtt); 796 } 797 798 static void tcp_update_pacing_rate(struct sock *sk) 799 { 800 const struct tcp_sock *tp = tcp_sk(sk); 801 u64 rate; 802 803 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 804 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 805 806 /* current rate is (cwnd * mss) / srtt 807 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 808 * In Congestion Avoidance phase, set it to 120 % the current rate. 809 * 810 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 811 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 812 * end of slow start and should slow down. 813 */ 814 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 815 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 816 else 817 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 818 819 rate *= max(tp->snd_cwnd, tp->packets_out); 820 821 if (likely(tp->srtt_us)) 822 do_div(rate, tp->srtt_us); 823 824 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 825 * without any lock. We want to make sure compiler wont store 826 * intermediate values in this location. 827 */ 828 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 829 sk->sk_max_pacing_rate)); 830 } 831 832 /* Calculate rto without backoff. This is the second half of Van Jacobson's 833 * routine referred to above. 834 */ 835 static void tcp_set_rto(struct sock *sk) 836 { 837 const struct tcp_sock *tp = tcp_sk(sk); 838 /* Old crap is replaced with new one. 8) 839 * 840 * More seriously: 841 * 1. If rtt variance happened to be less 50msec, it is hallucination. 842 * It cannot be less due to utterly erratic ACK generation made 843 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 844 * to do with delayed acks, because at cwnd>2 true delack timeout 845 * is invisible. Actually, Linux-2.4 also generates erratic 846 * ACKs in some circumstances. 847 */ 848 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 849 850 /* 2. Fixups made earlier cannot be right. 851 * If we do not estimate RTO correctly without them, 852 * all the algo is pure shit and should be replaced 853 * with correct one. It is exactly, which we pretend to do. 854 */ 855 856 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 857 * guarantees that rto is higher. 858 */ 859 tcp_bound_rto(sk); 860 } 861 862 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 863 { 864 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 865 866 if (!cwnd) 867 cwnd = TCP_INIT_CWND; 868 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 869 } 870 871 /* Take a notice that peer is sending D-SACKs */ 872 static void tcp_dsack_seen(struct tcp_sock *tp) 873 { 874 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 875 tp->rack.dsack_seen = 1; 876 } 877 878 /* It's reordering when higher sequence was delivered (i.e. sacked) before 879 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 880 * distance is approximated in full-mss packet distance ("reordering"). 881 */ 882 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 883 const int ts) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 const u32 mss = tp->mss_cache; 887 u32 fack, metric; 888 889 fack = tcp_highest_sack_seq(tp); 890 if (!before(low_seq, fack)) 891 return; 892 893 metric = fack - low_seq; 894 if ((metric > tp->reordering * mss) && mss) { 895 #if FASTRETRANS_DEBUG > 1 896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 898 tp->reordering, 899 0, 900 tp->sacked_out, 901 tp->undo_marker ? tp->undo_retrans : 0); 902 #endif 903 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 904 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 905 } 906 907 tp->rack.reord = 1; 908 /* This exciting event is worth to be remembered. 8) */ 909 NET_INC_STATS(sock_net(sk), 910 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 911 } 912 913 /* This must be called before lost_out is incremented */ 914 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 915 { 916 if (!tp->retransmit_skb_hint || 917 before(TCP_SKB_CB(skb)->seq, 918 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 919 tp->retransmit_skb_hint = skb; 920 } 921 922 /* Sum the number of packets on the wire we have marked as lost. 923 * There are two cases we care about here: 924 * a) Packet hasn't been marked lost (nor retransmitted), 925 * and this is the first loss. 926 * b) Packet has been marked both lost and retransmitted, 927 * and this means we think it was lost again. 928 */ 929 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 930 { 931 __u8 sacked = TCP_SKB_CB(skb)->sacked; 932 933 if (!(sacked & TCPCB_LOST) || 934 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 935 tp->lost += tcp_skb_pcount(skb); 936 } 937 938 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 939 { 940 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 941 tcp_verify_retransmit_hint(tp, skb); 942 943 tp->lost_out += tcp_skb_pcount(skb); 944 tcp_sum_lost(tp, skb); 945 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 946 } 947 } 948 949 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 950 { 951 tcp_verify_retransmit_hint(tp, skb); 952 953 tcp_sum_lost(tp, skb); 954 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 955 tp->lost_out += tcp_skb_pcount(skb); 956 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 957 } 958 } 959 960 /* This procedure tags the retransmission queue when SACKs arrive. 961 * 962 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 963 * Packets in queue with these bits set are counted in variables 964 * sacked_out, retrans_out and lost_out, correspondingly. 965 * 966 * Valid combinations are: 967 * Tag InFlight Description 968 * 0 1 - orig segment is in flight. 969 * S 0 - nothing flies, orig reached receiver. 970 * L 0 - nothing flies, orig lost by net. 971 * R 2 - both orig and retransmit are in flight. 972 * L|R 1 - orig is lost, retransmit is in flight. 973 * S|R 1 - orig reached receiver, retrans is still in flight. 974 * (L|S|R is logically valid, it could occur when L|R is sacked, 975 * but it is equivalent to plain S and code short-curcuits it to S. 976 * L|S is logically invalid, it would mean -1 packet in flight 8)) 977 * 978 * These 6 states form finite state machine, controlled by the following events: 979 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 980 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 981 * 3. Loss detection event of two flavors: 982 * A. Scoreboard estimator decided the packet is lost. 983 * A'. Reno "three dupacks" marks head of queue lost. 984 * B. SACK arrives sacking SND.NXT at the moment, when the 985 * segment was retransmitted. 986 * 4. D-SACK added new rule: D-SACK changes any tag to S. 987 * 988 * It is pleasant to note, that state diagram turns out to be commutative, 989 * so that we are allowed not to be bothered by order of our actions, 990 * when multiple events arrive simultaneously. (see the function below). 991 * 992 * Reordering detection. 993 * -------------------- 994 * Reordering metric is maximal distance, which a packet can be displaced 995 * in packet stream. With SACKs we can estimate it: 996 * 997 * 1. SACK fills old hole and the corresponding segment was not 998 * ever retransmitted -> reordering. Alas, we cannot use it 999 * when segment was retransmitted. 1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1001 * for retransmitted and already SACKed segment -> reordering.. 1002 * Both of these heuristics are not used in Loss state, when we cannot 1003 * account for retransmits accurately. 1004 * 1005 * SACK block validation. 1006 * ---------------------- 1007 * 1008 * SACK block range validation checks that the received SACK block fits to 1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1010 * Note that SND.UNA is not included to the range though being valid because 1011 * it means that the receiver is rather inconsistent with itself reporting 1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1013 * perfectly valid, however, in light of RFC2018 which explicitly states 1014 * that "SACK block MUST reflect the newest segment. Even if the newest 1015 * segment is going to be discarded ...", not that it looks very clever 1016 * in case of head skb. Due to potentional receiver driven attacks, we 1017 * choose to avoid immediate execution of a walk in write queue due to 1018 * reneging and defer head skb's loss recovery to standard loss recovery 1019 * procedure that will eventually trigger (nothing forbids us doing this). 1020 * 1021 * Implements also blockage to start_seq wrap-around. Problem lies in the 1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1023 * there's no guarantee that it will be before snd_nxt (n). The problem 1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1025 * wrap (s_w): 1026 * 1027 * <- outs wnd -> <- wrapzone -> 1028 * u e n u_w e_w s n_w 1029 * | | | | | | | 1030 * |<------------+------+----- TCP seqno space --------------+---------->| 1031 * ...-- <2^31 ->| |<--------... 1032 * ...---- >2^31 ------>| |<--------... 1033 * 1034 * Current code wouldn't be vulnerable but it's better still to discard such 1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1038 * equal to the ideal case (infinite seqno space without wrap caused issues). 1039 * 1040 * With D-SACK the lower bound is extended to cover sequence space below 1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1042 * again, D-SACK block must not to go across snd_una (for the same reason as 1043 * for the normal SACK blocks, explained above). But there all simplicity 1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1045 * fully below undo_marker they do not affect behavior in anyway and can 1046 * therefore be safely ignored. In rare cases (which are more or less 1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1048 * fragmentation and packet reordering past skb's retransmission. To consider 1049 * them correctly, the acceptable range must be extended even more though 1050 * the exact amount is rather hard to quantify. However, tp->max_window can 1051 * be used as an exaggerated estimate. 1052 */ 1053 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1054 u32 start_seq, u32 end_seq) 1055 { 1056 /* Too far in future, or reversed (interpretation is ambiguous) */ 1057 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1058 return false; 1059 1060 /* Nasty start_seq wrap-around check (see comments above) */ 1061 if (!before(start_seq, tp->snd_nxt)) 1062 return false; 1063 1064 /* In outstanding window? ...This is valid exit for D-SACKs too. 1065 * start_seq == snd_una is non-sensical (see comments above) 1066 */ 1067 if (after(start_seq, tp->snd_una)) 1068 return true; 1069 1070 if (!is_dsack || !tp->undo_marker) 1071 return false; 1072 1073 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1074 if (after(end_seq, tp->snd_una)) 1075 return false; 1076 1077 if (!before(start_seq, tp->undo_marker)) 1078 return true; 1079 1080 /* Too old */ 1081 if (!after(end_seq, tp->undo_marker)) 1082 return false; 1083 1084 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1085 * start_seq < undo_marker and end_seq >= undo_marker. 1086 */ 1087 return !before(start_seq, end_seq - tp->max_window); 1088 } 1089 1090 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1091 struct tcp_sack_block_wire *sp, int num_sacks, 1092 u32 prior_snd_una) 1093 { 1094 struct tcp_sock *tp = tcp_sk(sk); 1095 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1096 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1097 bool dup_sack = false; 1098 1099 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1100 dup_sack = true; 1101 tcp_dsack_seen(tp); 1102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1103 } else if (num_sacks > 1) { 1104 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1105 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1106 1107 if (!after(end_seq_0, end_seq_1) && 1108 !before(start_seq_0, start_seq_1)) { 1109 dup_sack = true; 1110 tcp_dsack_seen(tp); 1111 NET_INC_STATS(sock_net(sk), 1112 LINUX_MIB_TCPDSACKOFORECV); 1113 } 1114 } 1115 1116 /* D-SACK for already forgotten data... Do dumb counting. */ 1117 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1118 !after(end_seq_0, prior_snd_una) && 1119 after(end_seq_0, tp->undo_marker)) 1120 tp->undo_retrans--; 1121 1122 return dup_sack; 1123 } 1124 1125 struct tcp_sacktag_state { 1126 u32 reord; 1127 /* Timestamps for earliest and latest never-retransmitted segment 1128 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1129 * but congestion control should still get an accurate delay signal. 1130 */ 1131 u64 first_sackt; 1132 u64 last_sackt; 1133 struct rate_sample *rate; 1134 int flag; 1135 unsigned int mss_now; 1136 }; 1137 1138 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1139 * the incoming SACK may not exactly match but we can find smaller MSS 1140 * aligned portion of it that matches. Therefore we might need to fragment 1141 * which may fail and creates some hassle (caller must handle error case 1142 * returns). 1143 * 1144 * FIXME: this could be merged to shift decision code 1145 */ 1146 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1147 u32 start_seq, u32 end_seq) 1148 { 1149 int err; 1150 bool in_sack; 1151 unsigned int pkt_len; 1152 unsigned int mss; 1153 1154 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1155 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1156 1157 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1158 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1159 mss = tcp_skb_mss(skb); 1160 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1161 1162 if (!in_sack) { 1163 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1164 if (pkt_len < mss) 1165 pkt_len = mss; 1166 } else { 1167 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1168 if (pkt_len < mss) 1169 return -EINVAL; 1170 } 1171 1172 /* Round if necessary so that SACKs cover only full MSSes 1173 * and/or the remaining small portion (if present) 1174 */ 1175 if (pkt_len > mss) { 1176 unsigned int new_len = (pkt_len / mss) * mss; 1177 if (!in_sack && new_len < pkt_len) 1178 new_len += mss; 1179 pkt_len = new_len; 1180 } 1181 1182 if (pkt_len >= skb->len && !in_sack) 1183 return 0; 1184 1185 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1186 pkt_len, mss, GFP_ATOMIC); 1187 if (err < 0) 1188 return err; 1189 } 1190 1191 return in_sack; 1192 } 1193 1194 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1195 static u8 tcp_sacktag_one(struct sock *sk, 1196 struct tcp_sacktag_state *state, u8 sacked, 1197 u32 start_seq, u32 end_seq, 1198 int dup_sack, int pcount, 1199 u64 xmit_time) 1200 { 1201 struct tcp_sock *tp = tcp_sk(sk); 1202 1203 /* Account D-SACK for retransmitted packet. */ 1204 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1205 if (tp->undo_marker && tp->undo_retrans > 0 && 1206 after(end_seq, tp->undo_marker)) 1207 tp->undo_retrans--; 1208 if ((sacked & TCPCB_SACKED_ACKED) && 1209 before(start_seq, state->reord)) 1210 state->reord = start_seq; 1211 } 1212 1213 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1214 if (!after(end_seq, tp->snd_una)) 1215 return sacked; 1216 1217 if (!(sacked & TCPCB_SACKED_ACKED)) { 1218 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1219 1220 if (sacked & TCPCB_SACKED_RETRANS) { 1221 /* If the segment is not tagged as lost, 1222 * we do not clear RETRANS, believing 1223 * that retransmission is still in flight. 1224 */ 1225 if (sacked & TCPCB_LOST) { 1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1227 tp->lost_out -= pcount; 1228 tp->retrans_out -= pcount; 1229 } 1230 } else { 1231 if (!(sacked & TCPCB_RETRANS)) { 1232 /* New sack for not retransmitted frame, 1233 * which was in hole. It is reordering. 1234 */ 1235 if (before(start_seq, 1236 tcp_highest_sack_seq(tp)) && 1237 before(start_seq, state->reord)) 1238 state->reord = start_seq; 1239 1240 if (!after(end_seq, tp->high_seq)) 1241 state->flag |= FLAG_ORIG_SACK_ACKED; 1242 if (state->first_sackt == 0) 1243 state->first_sackt = xmit_time; 1244 state->last_sackt = xmit_time; 1245 } 1246 1247 if (sacked & TCPCB_LOST) { 1248 sacked &= ~TCPCB_LOST; 1249 tp->lost_out -= pcount; 1250 } 1251 } 1252 1253 sacked |= TCPCB_SACKED_ACKED; 1254 state->flag |= FLAG_DATA_SACKED; 1255 tp->sacked_out += pcount; 1256 tp->delivered += pcount; /* Out-of-order packets delivered */ 1257 1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1259 if (tp->lost_skb_hint && 1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1261 tp->lost_cnt_hint += pcount; 1262 } 1263 1264 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1265 * frames and clear it. undo_retrans is decreased above, L|R frames 1266 * are accounted above as well. 1267 */ 1268 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1269 sacked &= ~TCPCB_SACKED_RETRANS; 1270 tp->retrans_out -= pcount; 1271 } 1272 1273 return sacked; 1274 } 1275 1276 /* Shift newly-SACKed bytes from this skb to the immediately previous 1277 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1278 */ 1279 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1280 struct sk_buff *skb, 1281 struct tcp_sacktag_state *state, 1282 unsigned int pcount, int shifted, int mss, 1283 bool dup_sack) 1284 { 1285 struct tcp_sock *tp = tcp_sk(sk); 1286 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1287 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1288 1289 BUG_ON(!pcount); 1290 1291 /* Adjust counters and hints for the newly sacked sequence 1292 * range but discard the return value since prev is already 1293 * marked. We must tag the range first because the seq 1294 * advancement below implicitly advances 1295 * tcp_highest_sack_seq() when skb is highest_sack. 1296 */ 1297 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1298 start_seq, end_seq, dup_sack, pcount, 1299 skb->skb_mstamp); 1300 tcp_rate_skb_delivered(sk, skb, state->rate); 1301 1302 if (skb == tp->lost_skb_hint) 1303 tp->lost_cnt_hint += pcount; 1304 1305 TCP_SKB_CB(prev)->end_seq += shifted; 1306 TCP_SKB_CB(skb)->seq += shifted; 1307 1308 tcp_skb_pcount_add(prev, pcount); 1309 BUG_ON(tcp_skb_pcount(skb) < pcount); 1310 tcp_skb_pcount_add(skb, -pcount); 1311 1312 /* When we're adding to gso_segs == 1, gso_size will be zero, 1313 * in theory this shouldn't be necessary but as long as DSACK 1314 * code can come after this skb later on it's better to keep 1315 * setting gso_size to something. 1316 */ 1317 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1318 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1319 1320 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1321 if (tcp_skb_pcount(skb) <= 1) 1322 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1323 1324 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1325 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1326 1327 if (skb->len > 0) { 1328 BUG_ON(!tcp_skb_pcount(skb)); 1329 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1330 return false; 1331 } 1332 1333 /* Whole SKB was eaten :-) */ 1334 1335 if (skb == tp->retransmit_skb_hint) 1336 tp->retransmit_skb_hint = prev; 1337 if (skb == tp->lost_skb_hint) { 1338 tp->lost_skb_hint = prev; 1339 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1340 } 1341 1342 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1343 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1344 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1345 TCP_SKB_CB(prev)->end_seq++; 1346 1347 if (skb == tcp_highest_sack(sk)) 1348 tcp_advance_highest_sack(sk, skb); 1349 1350 tcp_skb_collapse_tstamp(prev, skb); 1351 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1352 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1353 1354 tcp_rtx_queue_unlink_and_free(skb, sk); 1355 1356 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1357 1358 return true; 1359 } 1360 1361 /* I wish gso_size would have a bit more sane initialization than 1362 * something-or-zero which complicates things 1363 */ 1364 static int tcp_skb_seglen(const struct sk_buff *skb) 1365 { 1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1367 } 1368 1369 /* Shifting pages past head area doesn't work */ 1370 static int skb_can_shift(const struct sk_buff *skb) 1371 { 1372 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1373 } 1374 1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1376 * skb. 1377 */ 1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1379 struct tcp_sacktag_state *state, 1380 u32 start_seq, u32 end_seq, 1381 bool dup_sack) 1382 { 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 struct sk_buff *prev; 1385 int mss; 1386 int pcount = 0; 1387 int len; 1388 int in_sack; 1389 1390 /* Normally R but no L won't result in plain S */ 1391 if (!dup_sack && 1392 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1393 goto fallback; 1394 if (!skb_can_shift(skb)) 1395 goto fallback; 1396 /* This frame is about to be dropped (was ACKed). */ 1397 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1398 goto fallback; 1399 1400 /* Can only happen with delayed DSACK + discard craziness */ 1401 prev = skb_rb_prev(skb); 1402 if (!prev) 1403 goto fallback; 1404 1405 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1406 goto fallback; 1407 1408 if (!tcp_skb_can_collapse_to(prev)) 1409 goto fallback; 1410 1411 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1412 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1413 1414 if (in_sack) { 1415 len = skb->len; 1416 pcount = tcp_skb_pcount(skb); 1417 mss = tcp_skb_seglen(skb); 1418 1419 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1420 * drop this restriction as unnecessary 1421 */ 1422 if (mss != tcp_skb_seglen(prev)) 1423 goto fallback; 1424 } else { 1425 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1426 goto noop; 1427 /* CHECKME: This is non-MSS split case only?, this will 1428 * cause skipped skbs due to advancing loop btw, original 1429 * has that feature too 1430 */ 1431 if (tcp_skb_pcount(skb) <= 1) 1432 goto noop; 1433 1434 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1435 if (!in_sack) { 1436 /* TODO: head merge to next could be attempted here 1437 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1438 * though it might not be worth of the additional hassle 1439 * 1440 * ...we can probably just fallback to what was done 1441 * previously. We could try merging non-SACKed ones 1442 * as well but it probably isn't going to buy off 1443 * because later SACKs might again split them, and 1444 * it would make skb timestamp tracking considerably 1445 * harder problem. 1446 */ 1447 goto fallback; 1448 } 1449 1450 len = end_seq - TCP_SKB_CB(skb)->seq; 1451 BUG_ON(len < 0); 1452 BUG_ON(len > skb->len); 1453 1454 /* MSS boundaries should be honoured or else pcount will 1455 * severely break even though it makes things bit trickier. 1456 * Optimize common case to avoid most of the divides 1457 */ 1458 mss = tcp_skb_mss(skb); 1459 1460 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1461 * drop this restriction as unnecessary 1462 */ 1463 if (mss != tcp_skb_seglen(prev)) 1464 goto fallback; 1465 1466 if (len == mss) { 1467 pcount = 1; 1468 } else if (len < mss) { 1469 goto noop; 1470 } else { 1471 pcount = len / mss; 1472 len = pcount * mss; 1473 } 1474 } 1475 1476 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1477 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1478 goto fallback; 1479 1480 if (!skb_shift(prev, skb, len)) 1481 goto fallback; 1482 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1483 goto out; 1484 1485 /* Hole filled allows collapsing with the next as well, this is very 1486 * useful when hole on every nth skb pattern happens 1487 */ 1488 skb = skb_rb_next(prev); 1489 if (!skb) 1490 goto out; 1491 1492 if (!skb_can_shift(skb) || 1493 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1494 (mss != tcp_skb_seglen(skb))) 1495 goto out; 1496 1497 len = skb->len; 1498 if (skb_shift(prev, skb, len)) { 1499 pcount += tcp_skb_pcount(skb); 1500 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1501 len, mss, 0); 1502 } 1503 1504 out: 1505 return prev; 1506 1507 noop: 1508 return skb; 1509 1510 fallback: 1511 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1512 return NULL; 1513 } 1514 1515 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1516 struct tcp_sack_block *next_dup, 1517 struct tcp_sacktag_state *state, 1518 u32 start_seq, u32 end_seq, 1519 bool dup_sack_in) 1520 { 1521 struct tcp_sock *tp = tcp_sk(sk); 1522 struct sk_buff *tmp; 1523 1524 skb_rbtree_walk_from(skb) { 1525 int in_sack = 0; 1526 bool dup_sack = dup_sack_in; 1527 1528 /* queue is in-order => we can short-circuit the walk early */ 1529 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1530 break; 1531 1532 if (next_dup && 1533 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1534 in_sack = tcp_match_skb_to_sack(sk, skb, 1535 next_dup->start_seq, 1536 next_dup->end_seq); 1537 if (in_sack > 0) 1538 dup_sack = true; 1539 } 1540 1541 /* skb reference here is a bit tricky to get right, since 1542 * shifting can eat and free both this skb and the next, 1543 * so not even _safe variant of the loop is enough. 1544 */ 1545 if (in_sack <= 0) { 1546 tmp = tcp_shift_skb_data(sk, skb, state, 1547 start_seq, end_seq, dup_sack); 1548 if (tmp) { 1549 if (tmp != skb) { 1550 skb = tmp; 1551 continue; 1552 } 1553 1554 in_sack = 0; 1555 } else { 1556 in_sack = tcp_match_skb_to_sack(sk, skb, 1557 start_seq, 1558 end_seq); 1559 } 1560 } 1561 1562 if (unlikely(in_sack < 0)) 1563 break; 1564 1565 if (in_sack) { 1566 TCP_SKB_CB(skb)->sacked = 1567 tcp_sacktag_one(sk, 1568 state, 1569 TCP_SKB_CB(skb)->sacked, 1570 TCP_SKB_CB(skb)->seq, 1571 TCP_SKB_CB(skb)->end_seq, 1572 dup_sack, 1573 tcp_skb_pcount(skb), 1574 skb->skb_mstamp); 1575 tcp_rate_skb_delivered(sk, skb, state->rate); 1576 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1577 list_del_init(&skb->tcp_tsorted_anchor); 1578 1579 if (!before(TCP_SKB_CB(skb)->seq, 1580 tcp_highest_sack_seq(tp))) 1581 tcp_advance_highest_sack(sk, skb); 1582 } 1583 } 1584 return skb; 1585 } 1586 1587 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1588 struct tcp_sacktag_state *state, 1589 u32 seq) 1590 { 1591 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1592 struct sk_buff *skb; 1593 1594 while (*p) { 1595 parent = *p; 1596 skb = rb_to_skb(parent); 1597 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1598 p = &parent->rb_left; 1599 continue; 1600 } 1601 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1602 p = &parent->rb_right; 1603 continue; 1604 } 1605 return skb; 1606 } 1607 return NULL; 1608 } 1609 1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1611 struct tcp_sacktag_state *state, 1612 u32 skip_to_seq) 1613 { 1614 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1615 return skb; 1616 1617 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1618 } 1619 1620 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1621 struct sock *sk, 1622 struct tcp_sack_block *next_dup, 1623 struct tcp_sacktag_state *state, 1624 u32 skip_to_seq) 1625 { 1626 if (!next_dup) 1627 return skb; 1628 1629 if (before(next_dup->start_seq, skip_to_seq)) { 1630 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1631 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1632 next_dup->start_seq, next_dup->end_seq, 1633 1); 1634 } 1635 1636 return skb; 1637 } 1638 1639 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1640 { 1641 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1642 } 1643 1644 static int 1645 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1646 u32 prior_snd_una, struct tcp_sacktag_state *state) 1647 { 1648 struct tcp_sock *tp = tcp_sk(sk); 1649 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1650 TCP_SKB_CB(ack_skb)->sacked); 1651 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1652 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1653 struct tcp_sack_block *cache; 1654 struct sk_buff *skb; 1655 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1656 int used_sacks; 1657 bool found_dup_sack = false; 1658 int i, j; 1659 int first_sack_index; 1660 1661 state->flag = 0; 1662 state->reord = tp->snd_nxt; 1663 1664 if (!tp->sacked_out) 1665 tcp_highest_sack_reset(sk); 1666 1667 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1668 num_sacks, prior_snd_una); 1669 if (found_dup_sack) { 1670 state->flag |= FLAG_DSACKING_ACK; 1671 tp->delivered++; /* A spurious retransmission is delivered */ 1672 } 1673 1674 /* Eliminate too old ACKs, but take into 1675 * account more or less fresh ones, they can 1676 * contain valid SACK info. 1677 */ 1678 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1679 return 0; 1680 1681 if (!tp->packets_out) 1682 goto out; 1683 1684 used_sacks = 0; 1685 first_sack_index = 0; 1686 for (i = 0; i < num_sacks; i++) { 1687 bool dup_sack = !i && found_dup_sack; 1688 1689 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1690 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1691 1692 if (!tcp_is_sackblock_valid(tp, dup_sack, 1693 sp[used_sacks].start_seq, 1694 sp[used_sacks].end_seq)) { 1695 int mib_idx; 1696 1697 if (dup_sack) { 1698 if (!tp->undo_marker) 1699 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1700 else 1701 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1702 } else { 1703 /* Don't count olds caused by ACK reordering */ 1704 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1705 !after(sp[used_sacks].end_seq, tp->snd_una)) 1706 continue; 1707 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1708 } 1709 1710 NET_INC_STATS(sock_net(sk), mib_idx); 1711 if (i == 0) 1712 first_sack_index = -1; 1713 continue; 1714 } 1715 1716 /* Ignore very old stuff early */ 1717 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1718 continue; 1719 1720 used_sacks++; 1721 } 1722 1723 /* order SACK blocks to allow in order walk of the retrans queue */ 1724 for (i = used_sacks - 1; i > 0; i--) { 1725 for (j = 0; j < i; j++) { 1726 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1727 swap(sp[j], sp[j + 1]); 1728 1729 /* Track where the first SACK block goes to */ 1730 if (j == first_sack_index) 1731 first_sack_index = j + 1; 1732 } 1733 } 1734 } 1735 1736 state->mss_now = tcp_current_mss(sk); 1737 skb = NULL; 1738 i = 0; 1739 1740 if (!tp->sacked_out) { 1741 /* It's already past, so skip checking against it */ 1742 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1743 } else { 1744 cache = tp->recv_sack_cache; 1745 /* Skip empty blocks in at head of the cache */ 1746 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1747 !cache->end_seq) 1748 cache++; 1749 } 1750 1751 while (i < used_sacks) { 1752 u32 start_seq = sp[i].start_seq; 1753 u32 end_seq = sp[i].end_seq; 1754 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1755 struct tcp_sack_block *next_dup = NULL; 1756 1757 if (found_dup_sack && ((i + 1) == first_sack_index)) 1758 next_dup = &sp[i + 1]; 1759 1760 /* Skip too early cached blocks */ 1761 while (tcp_sack_cache_ok(tp, cache) && 1762 !before(start_seq, cache->end_seq)) 1763 cache++; 1764 1765 /* Can skip some work by looking recv_sack_cache? */ 1766 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1767 after(end_seq, cache->start_seq)) { 1768 1769 /* Head todo? */ 1770 if (before(start_seq, cache->start_seq)) { 1771 skb = tcp_sacktag_skip(skb, sk, state, 1772 start_seq); 1773 skb = tcp_sacktag_walk(skb, sk, next_dup, 1774 state, 1775 start_seq, 1776 cache->start_seq, 1777 dup_sack); 1778 } 1779 1780 /* Rest of the block already fully processed? */ 1781 if (!after(end_seq, cache->end_seq)) 1782 goto advance_sp; 1783 1784 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1785 state, 1786 cache->end_seq); 1787 1788 /* ...tail remains todo... */ 1789 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1790 /* ...but better entrypoint exists! */ 1791 skb = tcp_highest_sack(sk); 1792 if (!skb) 1793 break; 1794 cache++; 1795 goto walk; 1796 } 1797 1798 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1799 /* Check overlap against next cached too (past this one already) */ 1800 cache++; 1801 continue; 1802 } 1803 1804 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1805 skb = tcp_highest_sack(sk); 1806 if (!skb) 1807 break; 1808 } 1809 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1810 1811 walk: 1812 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1813 start_seq, end_seq, dup_sack); 1814 1815 advance_sp: 1816 i++; 1817 } 1818 1819 /* Clear the head of the cache sack blocks so we can skip it next time */ 1820 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1821 tp->recv_sack_cache[i].start_seq = 0; 1822 tp->recv_sack_cache[i].end_seq = 0; 1823 } 1824 for (j = 0; j < used_sacks; j++) 1825 tp->recv_sack_cache[i++] = sp[j]; 1826 1827 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1828 tcp_check_sack_reordering(sk, state->reord, 0); 1829 1830 tcp_verify_left_out(tp); 1831 out: 1832 1833 #if FASTRETRANS_DEBUG > 0 1834 WARN_ON((int)tp->sacked_out < 0); 1835 WARN_ON((int)tp->lost_out < 0); 1836 WARN_ON((int)tp->retrans_out < 0); 1837 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1838 #endif 1839 return state->flag; 1840 } 1841 1842 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1843 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1844 */ 1845 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1846 { 1847 u32 holes; 1848 1849 holes = max(tp->lost_out, 1U); 1850 holes = min(holes, tp->packets_out); 1851 1852 if ((tp->sacked_out + holes) > tp->packets_out) { 1853 tp->sacked_out = tp->packets_out - holes; 1854 return true; 1855 } 1856 return false; 1857 } 1858 1859 /* If we receive more dupacks than we expected counting segments 1860 * in assumption of absent reordering, interpret this as reordering. 1861 * The only another reason could be bug in receiver TCP. 1862 */ 1863 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1864 { 1865 struct tcp_sock *tp = tcp_sk(sk); 1866 1867 if (!tcp_limit_reno_sacked(tp)) 1868 return; 1869 1870 tp->reordering = min_t(u32, tp->packets_out + addend, 1871 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1872 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1873 } 1874 1875 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1876 1877 static void tcp_add_reno_sack(struct sock *sk) 1878 { 1879 struct tcp_sock *tp = tcp_sk(sk); 1880 u32 prior_sacked = tp->sacked_out; 1881 1882 tp->sacked_out++; 1883 tcp_check_reno_reordering(sk, 0); 1884 if (tp->sacked_out > prior_sacked) 1885 tp->delivered++; /* Some out-of-order packet is delivered */ 1886 tcp_verify_left_out(tp); 1887 } 1888 1889 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1890 1891 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1892 { 1893 struct tcp_sock *tp = tcp_sk(sk); 1894 1895 if (acked > 0) { 1896 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1897 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1898 if (acked - 1 >= tp->sacked_out) 1899 tp->sacked_out = 0; 1900 else 1901 tp->sacked_out -= acked - 1; 1902 } 1903 tcp_check_reno_reordering(sk, acked); 1904 tcp_verify_left_out(tp); 1905 } 1906 1907 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1908 { 1909 tp->sacked_out = 0; 1910 } 1911 1912 void tcp_clear_retrans(struct tcp_sock *tp) 1913 { 1914 tp->retrans_out = 0; 1915 tp->lost_out = 0; 1916 tp->undo_marker = 0; 1917 tp->undo_retrans = -1; 1918 tp->sacked_out = 0; 1919 } 1920 1921 static inline void tcp_init_undo(struct tcp_sock *tp) 1922 { 1923 tp->undo_marker = tp->snd_una; 1924 /* Retransmission still in flight may cause DSACKs later. */ 1925 tp->undo_retrans = tp->retrans_out ? : -1; 1926 } 1927 1928 static bool tcp_is_rack(const struct sock *sk) 1929 { 1930 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1931 } 1932 1933 /* If we detect SACK reneging, forget all SACK information 1934 * and reset tags completely, otherwise preserve SACKs. If receiver 1935 * dropped its ofo queue, we will know this due to reneging detection. 1936 */ 1937 static void tcp_timeout_mark_lost(struct sock *sk) 1938 { 1939 struct tcp_sock *tp = tcp_sk(sk); 1940 struct sk_buff *skb, *head; 1941 bool is_reneg; /* is receiver reneging on SACKs? */ 1942 1943 head = tcp_rtx_queue_head(sk); 1944 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1945 if (is_reneg) { 1946 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1947 tp->sacked_out = 0; 1948 /* Mark SACK reneging until we recover from this loss event. */ 1949 tp->is_sack_reneg = 1; 1950 } else if (tcp_is_reno(tp)) { 1951 tcp_reset_reno_sack(tp); 1952 } 1953 1954 skb = head; 1955 skb_rbtree_walk_from(skb) { 1956 if (is_reneg) 1957 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1958 else if (tcp_is_rack(sk) && skb != head && 1959 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1960 continue; /* Don't mark recently sent ones lost yet */ 1961 tcp_mark_skb_lost(sk, skb); 1962 } 1963 tcp_verify_left_out(tp); 1964 tcp_clear_all_retrans_hints(tp); 1965 } 1966 1967 /* Enter Loss state. */ 1968 void tcp_enter_loss(struct sock *sk) 1969 { 1970 const struct inet_connection_sock *icsk = inet_csk(sk); 1971 struct tcp_sock *tp = tcp_sk(sk); 1972 struct net *net = sock_net(sk); 1973 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1974 1975 tcp_timeout_mark_lost(sk); 1976 1977 /* Reduce ssthresh if it has not yet been made inside this window. */ 1978 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1979 !after(tp->high_seq, tp->snd_una) || 1980 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1981 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1982 tp->prior_cwnd = tp->snd_cwnd; 1983 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1984 tcp_ca_event(sk, CA_EVENT_LOSS); 1985 tcp_init_undo(tp); 1986 } 1987 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1988 tp->snd_cwnd_cnt = 0; 1989 tp->snd_cwnd_stamp = tcp_jiffies32; 1990 1991 /* Timeout in disordered state after receiving substantial DUPACKs 1992 * suggests that the degree of reordering is over-estimated. 1993 */ 1994 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1995 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1996 tp->reordering = min_t(unsigned int, tp->reordering, 1997 net->ipv4.sysctl_tcp_reordering); 1998 tcp_set_ca_state(sk, TCP_CA_Loss); 1999 tp->high_seq = tp->snd_nxt; 2000 tcp_ecn_queue_cwr(tp); 2001 2002 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2003 * loss recovery is underway except recurring timeout(s) on 2004 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2005 */ 2006 tp->frto = net->ipv4.sysctl_tcp_frto && 2007 (new_recovery || icsk->icsk_retransmits) && 2008 !inet_csk(sk)->icsk_mtup.probe_size; 2009 } 2010 2011 /* If ACK arrived pointing to a remembered SACK, it means that our 2012 * remembered SACKs do not reflect real state of receiver i.e. 2013 * receiver _host_ is heavily congested (or buggy). 2014 * 2015 * To avoid big spurious retransmission bursts due to transient SACK 2016 * scoreboard oddities that look like reneging, we give the receiver a 2017 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2018 * restore sanity to the SACK scoreboard. If the apparent reneging 2019 * persists until this RTO then we'll clear the SACK scoreboard. 2020 */ 2021 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2022 { 2023 if (flag & FLAG_SACK_RENEGING) { 2024 struct tcp_sock *tp = tcp_sk(sk); 2025 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2026 msecs_to_jiffies(10)); 2027 2028 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2029 delay, TCP_RTO_MAX); 2030 return true; 2031 } 2032 return false; 2033 } 2034 2035 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2036 * counter when SACK is enabled (without SACK, sacked_out is used for 2037 * that purpose). 2038 * 2039 * With reordering, holes may still be in flight, so RFC3517 recovery 2040 * uses pure sacked_out (total number of SACKed segments) even though 2041 * it violates the RFC that uses duplicate ACKs, often these are equal 2042 * but when e.g. out-of-window ACKs or packet duplication occurs, 2043 * they differ. Since neither occurs due to loss, TCP should really 2044 * ignore them. 2045 */ 2046 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2047 { 2048 return tp->sacked_out + 1; 2049 } 2050 2051 /* Linux NewReno/SACK/ECN state machine. 2052 * -------------------------------------- 2053 * 2054 * "Open" Normal state, no dubious events, fast path. 2055 * "Disorder" In all the respects it is "Open", 2056 * but requires a bit more attention. It is entered when 2057 * we see some SACKs or dupacks. It is split of "Open" 2058 * mainly to move some processing from fast path to slow one. 2059 * "CWR" CWND was reduced due to some Congestion Notification event. 2060 * It can be ECN, ICMP source quench, local device congestion. 2061 * "Recovery" CWND was reduced, we are fast-retransmitting. 2062 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2063 * 2064 * tcp_fastretrans_alert() is entered: 2065 * - each incoming ACK, if state is not "Open" 2066 * - when arrived ACK is unusual, namely: 2067 * * SACK 2068 * * Duplicate ACK. 2069 * * ECN ECE. 2070 * 2071 * Counting packets in flight is pretty simple. 2072 * 2073 * in_flight = packets_out - left_out + retrans_out 2074 * 2075 * packets_out is SND.NXT-SND.UNA counted in packets. 2076 * 2077 * retrans_out is number of retransmitted segments. 2078 * 2079 * left_out is number of segments left network, but not ACKed yet. 2080 * 2081 * left_out = sacked_out + lost_out 2082 * 2083 * sacked_out: Packets, which arrived to receiver out of order 2084 * and hence not ACKed. With SACKs this number is simply 2085 * amount of SACKed data. Even without SACKs 2086 * it is easy to give pretty reliable estimate of this number, 2087 * counting duplicate ACKs. 2088 * 2089 * lost_out: Packets lost by network. TCP has no explicit 2090 * "loss notification" feedback from network (for now). 2091 * It means that this number can be only _guessed_. 2092 * Actually, it is the heuristics to predict lossage that 2093 * distinguishes different algorithms. 2094 * 2095 * F.e. after RTO, when all the queue is considered as lost, 2096 * lost_out = packets_out and in_flight = retrans_out. 2097 * 2098 * Essentially, we have now a few algorithms detecting 2099 * lost packets. 2100 * 2101 * If the receiver supports SACK: 2102 * 2103 * RFC6675/3517: It is the conventional algorithm. A packet is 2104 * considered lost if the number of higher sequence packets 2105 * SACKed is greater than or equal the DUPACK thoreshold 2106 * (reordering). This is implemented in tcp_mark_head_lost and 2107 * tcp_update_scoreboard. 2108 * 2109 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2110 * (2017-) that checks timing instead of counting DUPACKs. 2111 * Essentially a packet is considered lost if it's not S/ACKed 2112 * after RTT + reordering_window, where both metrics are 2113 * dynamically measured and adjusted. This is implemented in 2114 * tcp_rack_mark_lost. 2115 * 2116 * If the receiver does not support SACK: 2117 * 2118 * NewReno (RFC6582): in Recovery we assume that one segment 2119 * is lost (classic Reno). While we are in Recovery and 2120 * a partial ACK arrives, we assume that one more packet 2121 * is lost (NewReno). This heuristics are the same in NewReno 2122 * and SACK. 2123 * 2124 * Really tricky (and requiring careful tuning) part of algorithm 2125 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2126 * The first determines the moment _when_ we should reduce CWND and, 2127 * hence, slow down forward transmission. In fact, it determines the moment 2128 * when we decide that hole is caused by loss, rather than by a reorder. 2129 * 2130 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2131 * holes, caused by lost packets. 2132 * 2133 * And the most logically complicated part of algorithm is undo 2134 * heuristics. We detect false retransmits due to both too early 2135 * fast retransmit (reordering) and underestimated RTO, analyzing 2136 * timestamps and D-SACKs. When we detect that some segments were 2137 * retransmitted by mistake and CWND reduction was wrong, we undo 2138 * window reduction and abort recovery phase. This logic is hidden 2139 * inside several functions named tcp_try_undo_<something>. 2140 */ 2141 2142 /* This function decides, when we should leave Disordered state 2143 * and enter Recovery phase, reducing congestion window. 2144 * 2145 * Main question: may we further continue forward transmission 2146 * with the same cwnd? 2147 */ 2148 static bool tcp_time_to_recover(struct sock *sk, int flag) 2149 { 2150 struct tcp_sock *tp = tcp_sk(sk); 2151 2152 /* Trick#1: The loss is proven. */ 2153 if (tp->lost_out) 2154 return true; 2155 2156 /* Not-A-Trick#2 : Classic rule... */ 2157 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2158 return true; 2159 2160 return false; 2161 } 2162 2163 /* Detect loss in event "A" above by marking head of queue up as lost. 2164 * For non-SACK(Reno) senders, the first "packets" number of segments 2165 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2166 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2167 * the maximum SACKed segments to pass before reaching this limit. 2168 */ 2169 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2170 { 2171 struct tcp_sock *tp = tcp_sk(sk); 2172 struct sk_buff *skb; 2173 int cnt, oldcnt, lost; 2174 unsigned int mss; 2175 /* Use SACK to deduce losses of new sequences sent during recovery */ 2176 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2177 2178 WARN_ON(packets > tp->packets_out); 2179 skb = tp->lost_skb_hint; 2180 if (skb) { 2181 /* Head already handled? */ 2182 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2183 return; 2184 cnt = tp->lost_cnt_hint; 2185 } else { 2186 skb = tcp_rtx_queue_head(sk); 2187 cnt = 0; 2188 } 2189 2190 skb_rbtree_walk_from(skb) { 2191 /* TODO: do this better */ 2192 /* this is not the most efficient way to do this... */ 2193 tp->lost_skb_hint = skb; 2194 tp->lost_cnt_hint = cnt; 2195 2196 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2197 break; 2198 2199 oldcnt = cnt; 2200 if (tcp_is_reno(tp) || 2201 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2202 cnt += tcp_skb_pcount(skb); 2203 2204 if (cnt > packets) { 2205 if (tcp_is_sack(tp) || 2206 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2207 (oldcnt >= packets)) 2208 break; 2209 2210 mss = tcp_skb_mss(skb); 2211 /* If needed, chop off the prefix to mark as lost. */ 2212 lost = (packets - oldcnt) * mss; 2213 if (lost < skb->len && 2214 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2215 lost, mss, GFP_ATOMIC) < 0) 2216 break; 2217 cnt = packets; 2218 } 2219 2220 tcp_skb_mark_lost(tp, skb); 2221 2222 if (mark_head) 2223 break; 2224 } 2225 tcp_verify_left_out(tp); 2226 } 2227 2228 /* Account newly detected lost packet(s) */ 2229 2230 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2231 { 2232 struct tcp_sock *tp = tcp_sk(sk); 2233 2234 if (tcp_is_sack(tp)) { 2235 int sacked_upto = tp->sacked_out - tp->reordering; 2236 if (sacked_upto >= 0) 2237 tcp_mark_head_lost(sk, sacked_upto, 0); 2238 else if (fast_rexmit) 2239 tcp_mark_head_lost(sk, 1, 1); 2240 } 2241 } 2242 2243 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2244 { 2245 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2246 before(tp->rx_opt.rcv_tsecr, when); 2247 } 2248 2249 /* skb is spurious retransmitted if the returned timestamp echo 2250 * reply is prior to the skb transmission time 2251 */ 2252 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2253 const struct sk_buff *skb) 2254 { 2255 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2256 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2257 } 2258 2259 /* Nothing was retransmitted or returned timestamp is less 2260 * than timestamp of the first retransmission. 2261 */ 2262 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2263 { 2264 return !tp->retrans_stamp || 2265 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2266 } 2267 2268 /* Undo procedures. */ 2269 2270 /* We can clear retrans_stamp when there are no retransmissions in the 2271 * window. It would seem that it is trivially available for us in 2272 * tp->retrans_out, however, that kind of assumptions doesn't consider 2273 * what will happen if errors occur when sending retransmission for the 2274 * second time. ...It could the that such segment has only 2275 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2276 * the head skb is enough except for some reneging corner cases that 2277 * are not worth the effort. 2278 * 2279 * Main reason for all this complexity is the fact that connection dying 2280 * time now depends on the validity of the retrans_stamp, in particular, 2281 * that successive retransmissions of a segment must not advance 2282 * retrans_stamp under any conditions. 2283 */ 2284 static bool tcp_any_retrans_done(const struct sock *sk) 2285 { 2286 const struct tcp_sock *tp = tcp_sk(sk); 2287 struct sk_buff *skb; 2288 2289 if (tp->retrans_out) 2290 return true; 2291 2292 skb = tcp_rtx_queue_head(sk); 2293 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2294 return true; 2295 2296 return false; 2297 } 2298 2299 static void DBGUNDO(struct sock *sk, const char *msg) 2300 { 2301 #if FASTRETRANS_DEBUG > 1 2302 struct tcp_sock *tp = tcp_sk(sk); 2303 struct inet_sock *inet = inet_sk(sk); 2304 2305 if (sk->sk_family == AF_INET) { 2306 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2307 msg, 2308 &inet->inet_daddr, ntohs(inet->inet_dport), 2309 tp->snd_cwnd, tcp_left_out(tp), 2310 tp->snd_ssthresh, tp->prior_ssthresh, 2311 tp->packets_out); 2312 } 2313 #if IS_ENABLED(CONFIG_IPV6) 2314 else if (sk->sk_family == AF_INET6) { 2315 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2316 msg, 2317 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2318 tp->snd_cwnd, tcp_left_out(tp), 2319 tp->snd_ssthresh, tp->prior_ssthresh, 2320 tp->packets_out); 2321 } 2322 #endif 2323 #endif 2324 } 2325 2326 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2327 { 2328 struct tcp_sock *tp = tcp_sk(sk); 2329 2330 if (unmark_loss) { 2331 struct sk_buff *skb; 2332 2333 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2334 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2335 } 2336 tp->lost_out = 0; 2337 tcp_clear_all_retrans_hints(tp); 2338 } 2339 2340 if (tp->prior_ssthresh) { 2341 const struct inet_connection_sock *icsk = inet_csk(sk); 2342 2343 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2344 2345 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2346 tp->snd_ssthresh = tp->prior_ssthresh; 2347 tcp_ecn_withdraw_cwr(tp); 2348 } 2349 } 2350 tp->snd_cwnd_stamp = tcp_jiffies32; 2351 tp->undo_marker = 0; 2352 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2353 } 2354 2355 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2356 { 2357 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2358 } 2359 2360 /* People celebrate: "We love our President!" */ 2361 static bool tcp_try_undo_recovery(struct sock *sk) 2362 { 2363 struct tcp_sock *tp = tcp_sk(sk); 2364 2365 if (tcp_may_undo(tp)) { 2366 int mib_idx; 2367 2368 /* Happy end! We did not retransmit anything 2369 * or our original transmission succeeded. 2370 */ 2371 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2372 tcp_undo_cwnd_reduction(sk, false); 2373 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2374 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2375 else 2376 mib_idx = LINUX_MIB_TCPFULLUNDO; 2377 2378 NET_INC_STATS(sock_net(sk), mib_idx); 2379 } else if (tp->rack.reo_wnd_persist) { 2380 tp->rack.reo_wnd_persist--; 2381 } 2382 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2383 /* Hold old state until something *above* high_seq 2384 * is ACKed. For Reno it is MUST to prevent false 2385 * fast retransmits (RFC2582). SACK TCP is safe. */ 2386 if (!tcp_any_retrans_done(sk)) 2387 tp->retrans_stamp = 0; 2388 return true; 2389 } 2390 tcp_set_ca_state(sk, TCP_CA_Open); 2391 tp->is_sack_reneg = 0; 2392 return false; 2393 } 2394 2395 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2396 static bool tcp_try_undo_dsack(struct sock *sk) 2397 { 2398 struct tcp_sock *tp = tcp_sk(sk); 2399 2400 if (tp->undo_marker && !tp->undo_retrans) { 2401 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2402 tp->rack.reo_wnd_persist + 1); 2403 DBGUNDO(sk, "D-SACK"); 2404 tcp_undo_cwnd_reduction(sk, false); 2405 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2406 return true; 2407 } 2408 return false; 2409 } 2410 2411 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2412 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2413 { 2414 struct tcp_sock *tp = tcp_sk(sk); 2415 2416 if (frto_undo || tcp_may_undo(tp)) { 2417 tcp_undo_cwnd_reduction(sk, true); 2418 2419 DBGUNDO(sk, "partial loss"); 2420 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2421 if (frto_undo) 2422 NET_INC_STATS(sock_net(sk), 2423 LINUX_MIB_TCPSPURIOUSRTOS); 2424 inet_csk(sk)->icsk_retransmits = 0; 2425 if (frto_undo || tcp_is_sack(tp)) { 2426 tcp_set_ca_state(sk, TCP_CA_Open); 2427 tp->is_sack_reneg = 0; 2428 } 2429 return true; 2430 } 2431 return false; 2432 } 2433 2434 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2435 * It computes the number of packets to send (sndcnt) based on packets newly 2436 * delivered: 2437 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2438 * cwnd reductions across a full RTT. 2439 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2440 * But when the retransmits are acked without further losses, PRR 2441 * slow starts cwnd up to ssthresh to speed up the recovery. 2442 */ 2443 static void tcp_init_cwnd_reduction(struct sock *sk) 2444 { 2445 struct tcp_sock *tp = tcp_sk(sk); 2446 2447 tp->high_seq = tp->snd_nxt; 2448 tp->tlp_high_seq = 0; 2449 tp->snd_cwnd_cnt = 0; 2450 tp->prior_cwnd = tp->snd_cwnd; 2451 tp->prr_delivered = 0; 2452 tp->prr_out = 0; 2453 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2454 tcp_ecn_queue_cwr(tp); 2455 } 2456 2457 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2458 { 2459 struct tcp_sock *tp = tcp_sk(sk); 2460 int sndcnt = 0; 2461 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2462 2463 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2464 return; 2465 2466 tp->prr_delivered += newly_acked_sacked; 2467 if (delta < 0) { 2468 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2469 tp->prior_cwnd - 1; 2470 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2471 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2472 !(flag & FLAG_LOST_RETRANS)) { 2473 sndcnt = min_t(int, delta, 2474 max_t(int, tp->prr_delivered - tp->prr_out, 2475 newly_acked_sacked) + 1); 2476 } else { 2477 sndcnt = min(delta, newly_acked_sacked); 2478 } 2479 /* Force a fast retransmit upon entering fast recovery */ 2480 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2481 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2482 } 2483 2484 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2485 { 2486 struct tcp_sock *tp = tcp_sk(sk); 2487 2488 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2489 return; 2490 2491 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2492 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2493 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2494 tp->snd_cwnd = tp->snd_ssthresh; 2495 tp->snd_cwnd_stamp = tcp_jiffies32; 2496 } 2497 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2498 } 2499 2500 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2501 void tcp_enter_cwr(struct sock *sk) 2502 { 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 2505 tp->prior_ssthresh = 0; 2506 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2507 tp->undo_marker = 0; 2508 tcp_init_cwnd_reduction(sk); 2509 tcp_set_ca_state(sk, TCP_CA_CWR); 2510 } 2511 } 2512 EXPORT_SYMBOL(tcp_enter_cwr); 2513 2514 static void tcp_try_keep_open(struct sock *sk) 2515 { 2516 struct tcp_sock *tp = tcp_sk(sk); 2517 int state = TCP_CA_Open; 2518 2519 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2520 state = TCP_CA_Disorder; 2521 2522 if (inet_csk(sk)->icsk_ca_state != state) { 2523 tcp_set_ca_state(sk, state); 2524 tp->high_seq = tp->snd_nxt; 2525 } 2526 } 2527 2528 static void tcp_try_to_open(struct sock *sk, int flag) 2529 { 2530 struct tcp_sock *tp = tcp_sk(sk); 2531 2532 tcp_verify_left_out(tp); 2533 2534 if (!tcp_any_retrans_done(sk)) 2535 tp->retrans_stamp = 0; 2536 2537 if (flag & FLAG_ECE) 2538 tcp_enter_cwr(sk); 2539 2540 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2541 tcp_try_keep_open(sk); 2542 } 2543 } 2544 2545 static void tcp_mtup_probe_failed(struct sock *sk) 2546 { 2547 struct inet_connection_sock *icsk = inet_csk(sk); 2548 2549 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2550 icsk->icsk_mtup.probe_size = 0; 2551 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2552 } 2553 2554 static void tcp_mtup_probe_success(struct sock *sk) 2555 { 2556 struct tcp_sock *tp = tcp_sk(sk); 2557 struct inet_connection_sock *icsk = inet_csk(sk); 2558 2559 /* FIXME: breaks with very large cwnd */ 2560 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2561 tp->snd_cwnd = tp->snd_cwnd * 2562 tcp_mss_to_mtu(sk, tp->mss_cache) / 2563 icsk->icsk_mtup.probe_size; 2564 tp->snd_cwnd_cnt = 0; 2565 tp->snd_cwnd_stamp = tcp_jiffies32; 2566 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2567 2568 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2569 icsk->icsk_mtup.probe_size = 0; 2570 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2572 } 2573 2574 /* Do a simple retransmit without using the backoff mechanisms in 2575 * tcp_timer. This is used for path mtu discovery. 2576 * The socket is already locked here. 2577 */ 2578 void tcp_simple_retransmit(struct sock *sk) 2579 { 2580 const struct inet_connection_sock *icsk = inet_csk(sk); 2581 struct tcp_sock *tp = tcp_sk(sk); 2582 struct sk_buff *skb; 2583 unsigned int mss = tcp_current_mss(sk); 2584 2585 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2586 if (tcp_skb_seglen(skb) > mss && 2587 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2588 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2589 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2590 tp->retrans_out -= tcp_skb_pcount(skb); 2591 } 2592 tcp_skb_mark_lost_uncond_verify(tp, skb); 2593 } 2594 } 2595 2596 tcp_clear_retrans_hints_partial(tp); 2597 2598 if (!tp->lost_out) 2599 return; 2600 2601 if (tcp_is_reno(tp)) 2602 tcp_limit_reno_sacked(tp); 2603 2604 tcp_verify_left_out(tp); 2605 2606 /* Don't muck with the congestion window here. 2607 * Reason is that we do not increase amount of _data_ 2608 * in network, but units changed and effective 2609 * cwnd/ssthresh really reduced now. 2610 */ 2611 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2612 tp->high_seq = tp->snd_nxt; 2613 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2614 tp->prior_ssthresh = 0; 2615 tp->undo_marker = 0; 2616 tcp_set_ca_state(sk, TCP_CA_Loss); 2617 } 2618 tcp_xmit_retransmit_queue(sk); 2619 } 2620 EXPORT_SYMBOL(tcp_simple_retransmit); 2621 2622 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2623 { 2624 struct tcp_sock *tp = tcp_sk(sk); 2625 int mib_idx; 2626 2627 if (tcp_is_reno(tp)) 2628 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2629 else 2630 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2631 2632 NET_INC_STATS(sock_net(sk), mib_idx); 2633 2634 tp->prior_ssthresh = 0; 2635 tcp_init_undo(tp); 2636 2637 if (!tcp_in_cwnd_reduction(sk)) { 2638 if (!ece_ack) 2639 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2640 tcp_init_cwnd_reduction(sk); 2641 } 2642 tcp_set_ca_state(sk, TCP_CA_Recovery); 2643 } 2644 2645 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2646 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2647 */ 2648 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2649 int *rexmit) 2650 { 2651 struct tcp_sock *tp = tcp_sk(sk); 2652 bool recovered = !before(tp->snd_una, tp->high_seq); 2653 2654 if ((flag & FLAG_SND_UNA_ADVANCED) && 2655 tcp_try_undo_loss(sk, false)) 2656 return; 2657 2658 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2659 /* Step 3.b. A timeout is spurious if not all data are 2660 * lost, i.e., never-retransmitted data are (s)acked. 2661 */ 2662 if ((flag & FLAG_ORIG_SACK_ACKED) && 2663 tcp_try_undo_loss(sk, true)) 2664 return; 2665 2666 if (after(tp->snd_nxt, tp->high_seq)) { 2667 if (flag & FLAG_DATA_SACKED || is_dupack) 2668 tp->frto = 0; /* Step 3.a. loss was real */ 2669 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2670 tp->high_seq = tp->snd_nxt; 2671 /* Step 2.b. Try send new data (but deferred until cwnd 2672 * is updated in tcp_ack()). Otherwise fall back to 2673 * the conventional recovery. 2674 */ 2675 if (!tcp_write_queue_empty(sk) && 2676 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2677 *rexmit = REXMIT_NEW; 2678 return; 2679 } 2680 tp->frto = 0; 2681 } 2682 } 2683 2684 if (recovered) { 2685 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2686 tcp_try_undo_recovery(sk); 2687 return; 2688 } 2689 if (tcp_is_reno(tp)) { 2690 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2691 * delivered. Lower inflight to clock out (re)tranmissions. 2692 */ 2693 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2694 tcp_add_reno_sack(sk); 2695 else if (flag & FLAG_SND_UNA_ADVANCED) 2696 tcp_reset_reno_sack(tp); 2697 } 2698 *rexmit = REXMIT_LOST; 2699 } 2700 2701 /* Undo during fast recovery after partial ACK. */ 2702 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2703 { 2704 struct tcp_sock *tp = tcp_sk(sk); 2705 2706 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2707 /* Plain luck! Hole if filled with delayed 2708 * packet, rather than with a retransmit. Check reordering. 2709 */ 2710 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2711 2712 /* We are getting evidence that the reordering degree is higher 2713 * than we realized. If there are no retransmits out then we 2714 * can undo. Otherwise we clock out new packets but do not 2715 * mark more packets lost or retransmit more. 2716 */ 2717 if (tp->retrans_out) 2718 return true; 2719 2720 if (!tcp_any_retrans_done(sk)) 2721 tp->retrans_stamp = 0; 2722 2723 DBGUNDO(sk, "partial recovery"); 2724 tcp_undo_cwnd_reduction(sk, true); 2725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2726 tcp_try_keep_open(sk); 2727 return true; 2728 } 2729 return false; 2730 } 2731 2732 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2733 { 2734 struct tcp_sock *tp = tcp_sk(sk); 2735 2736 if (tcp_rtx_queue_empty(sk)) 2737 return; 2738 2739 if (unlikely(tcp_is_reno(tp))) { 2740 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2741 } else if (tcp_is_rack(sk)) { 2742 u32 prior_retrans = tp->retrans_out; 2743 2744 tcp_rack_mark_lost(sk); 2745 if (prior_retrans > tp->retrans_out) 2746 *ack_flag |= FLAG_LOST_RETRANS; 2747 } 2748 } 2749 2750 static bool tcp_force_fast_retransmit(struct sock *sk) 2751 { 2752 struct tcp_sock *tp = tcp_sk(sk); 2753 2754 return after(tcp_highest_sack_seq(tp), 2755 tp->snd_una + tp->reordering * tp->mss_cache); 2756 } 2757 2758 /* Process an event, which can update packets-in-flight not trivially. 2759 * Main goal of this function is to calculate new estimate for left_out, 2760 * taking into account both packets sitting in receiver's buffer and 2761 * packets lost by network. 2762 * 2763 * Besides that it updates the congestion state when packet loss or ECN 2764 * is detected. But it does not reduce the cwnd, it is done by the 2765 * congestion control later. 2766 * 2767 * It does _not_ decide what to send, it is made in function 2768 * tcp_xmit_retransmit_queue(). 2769 */ 2770 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2771 bool is_dupack, int *ack_flag, int *rexmit) 2772 { 2773 struct inet_connection_sock *icsk = inet_csk(sk); 2774 struct tcp_sock *tp = tcp_sk(sk); 2775 int fast_rexmit = 0, flag = *ack_flag; 2776 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2777 tcp_force_fast_retransmit(sk)); 2778 2779 if (!tp->packets_out && tp->sacked_out) 2780 tp->sacked_out = 0; 2781 2782 /* Now state machine starts. 2783 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2784 if (flag & FLAG_ECE) 2785 tp->prior_ssthresh = 0; 2786 2787 /* B. In all the states check for reneging SACKs. */ 2788 if (tcp_check_sack_reneging(sk, flag)) 2789 return; 2790 2791 /* C. Check consistency of the current state. */ 2792 tcp_verify_left_out(tp); 2793 2794 /* D. Check state exit conditions. State can be terminated 2795 * when high_seq is ACKed. */ 2796 if (icsk->icsk_ca_state == TCP_CA_Open) { 2797 WARN_ON(tp->retrans_out != 0); 2798 tp->retrans_stamp = 0; 2799 } else if (!before(tp->snd_una, tp->high_seq)) { 2800 switch (icsk->icsk_ca_state) { 2801 case TCP_CA_CWR: 2802 /* CWR is to be held something *above* high_seq 2803 * is ACKed for CWR bit to reach receiver. */ 2804 if (tp->snd_una != tp->high_seq) { 2805 tcp_end_cwnd_reduction(sk); 2806 tcp_set_ca_state(sk, TCP_CA_Open); 2807 } 2808 break; 2809 2810 case TCP_CA_Recovery: 2811 if (tcp_is_reno(tp)) 2812 tcp_reset_reno_sack(tp); 2813 if (tcp_try_undo_recovery(sk)) 2814 return; 2815 tcp_end_cwnd_reduction(sk); 2816 break; 2817 } 2818 } 2819 2820 /* E. Process state. */ 2821 switch (icsk->icsk_ca_state) { 2822 case TCP_CA_Recovery: 2823 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2824 if (tcp_is_reno(tp) && is_dupack) 2825 tcp_add_reno_sack(sk); 2826 } else { 2827 if (tcp_try_undo_partial(sk, prior_snd_una)) 2828 return; 2829 /* Partial ACK arrived. Force fast retransmit. */ 2830 do_lost = tcp_is_reno(tp) || 2831 tcp_force_fast_retransmit(sk); 2832 } 2833 if (tcp_try_undo_dsack(sk)) { 2834 tcp_try_keep_open(sk); 2835 return; 2836 } 2837 tcp_identify_packet_loss(sk, ack_flag); 2838 break; 2839 case TCP_CA_Loss: 2840 tcp_process_loss(sk, flag, is_dupack, rexmit); 2841 tcp_identify_packet_loss(sk, ack_flag); 2842 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2843 (*ack_flag & FLAG_LOST_RETRANS))) 2844 return; 2845 /* Change state if cwnd is undone or retransmits are lost */ 2846 /* fall through */ 2847 default: 2848 if (tcp_is_reno(tp)) { 2849 if (flag & FLAG_SND_UNA_ADVANCED) 2850 tcp_reset_reno_sack(tp); 2851 if (is_dupack) 2852 tcp_add_reno_sack(sk); 2853 } 2854 2855 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2856 tcp_try_undo_dsack(sk); 2857 2858 tcp_identify_packet_loss(sk, ack_flag); 2859 if (!tcp_time_to_recover(sk, flag)) { 2860 tcp_try_to_open(sk, flag); 2861 return; 2862 } 2863 2864 /* MTU probe failure: don't reduce cwnd */ 2865 if (icsk->icsk_ca_state < TCP_CA_CWR && 2866 icsk->icsk_mtup.probe_size && 2867 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2868 tcp_mtup_probe_failed(sk); 2869 /* Restores the reduction we did in tcp_mtup_probe() */ 2870 tp->snd_cwnd++; 2871 tcp_simple_retransmit(sk); 2872 return; 2873 } 2874 2875 /* Otherwise enter Recovery state */ 2876 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2877 fast_rexmit = 1; 2878 } 2879 2880 if (!tcp_is_rack(sk) && do_lost) 2881 tcp_update_scoreboard(sk, fast_rexmit); 2882 *rexmit = REXMIT_LOST; 2883 } 2884 2885 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2886 { 2887 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2888 struct tcp_sock *tp = tcp_sk(sk); 2889 2890 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2891 /* If the remote keeps returning delayed ACKs, eventually 2892 * the min filter would pick it up and overestimate the 2893 * prop. delay when it expires. Skip suspected delayed ACKs. 2894 */ 2895 return; 2896 } 2897 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2898 rtt_us ? : jiffies_to_usecs(1)); 2899 } 2900 2901 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2902 long seq_rtt_us, long sack_rtt_us, 2903 long ca_rtt_us, struct rate_sample *rs) 2904 { 2905 const struct tcp_sock *tp = tcp_sk(sk); 2906 2907 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2908 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2909 * Karn's algorithm forbids taking RTT if some retransmitted data 2910 * is acked (RFC6298). 2911 */ 2912 if (seq_rtt_us < 0) 2913 seq_rtt_us = sack_rtt_us; 2914 2915 /* RTTM Rule: A TSecr value received in a segment is used to 2916 * update the averaged RTT measurement only if the segment 2917 * acknowledges some new data, i.e., only if it advances the 2918 * left edge of the send window. 2919 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2920 */ 2921 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2922 flag & FLAG_ACKED) { 2923 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2924 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2925 2926 seq_rtt_us = ca_rtt_us = delta_us; 2927 } 2928 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2929 if (seq_rtt_us < 0) 2930 return false; 2931 2932 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2933 * always taken together with ACK, SACK, or TS-opts. Any negative 2934 * values will be skipped with the seq_rtt_us < 0 check above. 2935 */ 2936 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2937 tcp_rtt_estimator(sk, seq_rtt_us); 2938 tcp_set_rto(sk); 2939 2940 /* RFC6298: only reset backoff on valid RTT measurement. */ 2941 inet_csk(sk)->icsk_backoff = 0; 2942 return true; 2943 } 2944 2945 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2946 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2947 { 2948 struct rate_sample rs; 2949 long rtt_us = -1L; 2950 2951 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2952 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2953 2954 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2955 } 2956 2957 2958 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2959 { 2960 const struct inet_connection_sock *icsk = inet_csk(sk); 2961 2962 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2963 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2964 } 2965 2966 /* Restart timer after forward progress on connection. 2967 * RFC2988 recommends to restart timer to now+rto. 2968 */ 2969 void tcp_rearm_rto(struct sock *sk) 2970 { 2971 const struct inet_connection_sock *icsk = inet_csk(sk); 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 2974 /* If the retrans timer is currently being used by Fast Open 2975 * for SYN-ACK retrans purpose, stay put. 2976 */ 2977 if (tp->fastopen_rsk) 2978 return; 2979 2980 if (!tp->packets_out) { 2981 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2982 } else { 2983 u32 rto = inet_csk(sk)->icsk_rto; 2984 /* Offset the time elapsed after installing regular RTO */ 2985 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2986 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2987 s64 delta_us = tcp_rto_delta_us(sk); 2988 /* delta_us may not be positive if the socket is locked 2989 * when the retrans timer fires and is rescheduled. 2990 */ 2991 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2992 } 2993 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2994 TCP_RTO_MAX); 2995 } 2996 } 2997 2998 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2999 static void tcp_set_xmit_timer(struct sock *sk) 3000 { 3001 if (!tcp_schedule_loss_probe(sk, true)) 3002 tcp_rearm_rto(sk); 3003 } 3004 3005 /* If we get here, the whole TSO packet has not been acked. */ 3006 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3007 { 3008 struct tcp_sock *tp = tcp_sk(sk); 3009 u32 packets_acked; 3010 3011 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3012 3013 packets_acked = tcp_skb_pcount(skb); 3014 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3015 return 0; 3016 packets_acked -= tcp_skb_pcount(skb); 3017 3018 if (packets_acked) { 3019 BUG_ON(tcp_skb_pcount(skb) == 0); 3020 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3021 } 3022 3023 return packets_acked; 3024 } 3025 3026 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3027 u32 prior_snd_una) 3028 { 3029 const struct skb_shared_info *shinfo; 3030 3031 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3032 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3033 return; 3034 3035 shinfo = skb_shinfo(skb); 3036 if (!before(shinfo->tskey, prior_snd_una) && 3037 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3038 tcp_skb_tsorted_save(skb) { 3039 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3040 } tcp_skb_tsorted_restore(skb); 3041 } 3042 } 3043 3044 /* Remove acknowledged frames from the retransmission queue. If our packet 3045 * is before the ack sequence we can discard it as it's confirmed to have 3046 * arrived at the other end. 3047 */ 3048 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3049 u32 prior_snd_una, 3050 struct tcp_sacktag_state *sack) 3051 { 3052 const struct inet_connection_sock *icsk = inet_csk(sk); 3053 u64 first_ackt, last_ackt; 3054 struct tcp_sock *tp = tcp_sk(sk); 3055 u32 prior_sacked = tp->sacked_out; 3056 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3057 struct sk_buff *skb, *next; 3058 bool fully_acked = true; 3059 long sack_rtt_us = -1L; 3060 long seq_rtt_us = -1L; 3061 long ca_rtt_us = -1L; 3062 u32 pkts_acked = 0; 3063 u32 last_in_flight = 0; 3064 bool rtt_update; 3065 int flag = 0; 3066 3067 first_ackt = 0; 3068 3069 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3070 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3071 const u32 start_seq = scb->seq; 3072 u8 sacked = scb->sacked; 3073 u32 acked_pcount; 3074 3075 tcp_ack_tstamp(sk, skb, prior_snd_una); 3076 3077 /* Determine how many packets and what bytes were acked, tso and else */ 3078 if (after(scb->end_seq, tp->snd_una)) { 3079 if (tcp_skb_pcount(skb) == 1 || 3080 !after(tp->snd_una, scb->seq)) 3081 break; 3082 3083 acked_pcount = tcp_tso_acked(sk, skb); 3084 if (!acked_pcount) 3085 break; 3086 fully_acked = false; 3087 } else { 3088 acked_pcount = tcp_skb_pcount(skb); 3089 } 3090 3091 if (unlikely(sacked & TCPCB_RETRANS)) { 3092 if (sacked & TCPCB_SACKED_RETRANS) 3093 tp->retrans_out -= acked_pcount; 3094 flag |= FLAG_RETRANS_DATA_ACKED; 3095 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3096 last_ackt = skb->skb_mstamp; 3097 WARN_ON_ONCE(last_ackt == 0); 3098 if (!first_ackt) 3099 first_ackt = last_ackt; 3100 3101 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3102 if (before(start_seq, reord)) 3103 reord = start_seq; 3104 if (!after(scb->end_seq, tp->high_seq)) 3105 flag |= FLAG_ORIG_SACK_ACKED; 3106 } 3107 3108 if (sacked & TCPCB_SACKED_ACKED) { 3109 tp->sacked_out -= acked_pcount; 3110 } else if (tcp_is_sack(tp)) { 3111 tp->delivered += acked_pcount; 3112 if (!tcp_skb_spurious_retrans(tp, skb)) 3113 tcp_rack_advance(tp, sacked, scb->end_seq, 3114 skb->skb_mstamp); 3115 } 3116 if (sacked & TCPCB_LOST) 3117 tp->lost_out -= acked_pcount; 3118 3119 tp->packets_out -= acked_pcount; 3120 pkts_acked += acked_pcount; 3121 tcp_rate_skb_delivered(sk, skb, sack->rate); 3122 3123 /* Initial outgoing SYN's get put onto the write_queue 3124 * just like anything else we transmit. It is not 3125 * true data, and if we misinform our callers that 3126 * this ACK acks real data, we will erroneously exit 3127 * connection startup slow start one packet too 3128 * quickly. This is severely frowned upon behavior. 3129 */ 3130 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3131 flag |= FLAG_DATA_ACKED; 3132 } else { 3133 flag |= FLAG_SYN_ACKED; 3134 tp->retrans_stamp = 0; 3135 } 3136 3137 if (!fully_acked) 3138 break; 3139 3140 next = skb_rb_next(skb); 3141 if (unlikely(skb == tp->retransmit_skb_hint)) 3142 tp->retransmit_skb_hint = NULL; 3143 if (unlikely(skb == tp->lost_skb_hint)) 3144 tp->lost_skb_hint = NULL; 3145 tcp_rtx_queue_unlink_and_free(skb, sk); 3146 } 3147 3148 if (!skb) 3149 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3150 3151 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3152 tp->snd_up = tp->snd_una; 3153 3154 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3155 flag |= FLAG_SACK_RENEGING; 3156 3157 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3158 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3159 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3160 3161 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3162 last_in_flight && !prior_sacked && fully_acked && 3163 sack->rate->prior_delivered + 1 == tp->delivered && 3164 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3165 /* Conservatively mark a delayed ACK. It's typically 3166 * from a lone runt packet over the round trip to 3167 * a receiver w/o out-of-order or CE events. 3168 */ 3169 flag |= FLAG_ACK_MAYBE_DELAYED; 3170 } 3171 } 3172 if (sack->first_sackt) { 3173 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3174 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3175 } 3176 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3177 ca_rtt_us, sack->rate); 3178 3179 if (flag & FLAG_ACKED) { 3180 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3181 if (unlikely(icsk->icsk_mtup.probe_size && 3182 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3183 tcp_mtup_probe_success(sk); 3184 } 3185 3186 if (tcp_is_reno(tp)) { 3187 tcp_remove_reno_sacks(sk, pkts_acked); 3188 3189 /* If any of the cumulatively ACKed segments was 3190 * retransmitted, non-SACK case cannot confirm that 3191 * progress was due to original transmission due to 3192 * lack of TCPCB_SACKED_ACKED bits even if some of 3193 * the packets may have been never retransmitted. 3194 */ 3195 if (flag & FLAG_RETRANS_DATA_ACKED) 3196 flag &= ~FLAG_ORIG_SACK_ACKED; 3197 } else { 3198 int delta; 3199 3200 /* Non-retransmitted hole got filled? That's reordering */ 3201 if (before(reord, prior_fack)) 3202 tcp_check_sack_reordering(sk, reord, 0); 3203 3204 delta = prior_sacked - tp->sacked_out; 3205 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3206 } 3207 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3208 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3209 /* Do not re-arm RTO if the sack RTT is measured from data sent 3210 * after when the head was last (re)transmitted. Otherwise the 3211 * timeout may continue to extend in loss recovery. 3212 */ 3213 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3214 } 3215 3216 if (icsk->icsk_ca_ops->pkts_acked) { 3217 struct ack_sample sample = { .pkts_acked = pkts_acked, 3218 .rtt_us = sack->rate->rtt_us, 3219 .in_flight = last_in_flight }; 3220 3221 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3222 } 3223 3224 #if FASTRETRANS_DEBUG > 0 3225 WARN_ON((int)tp->sacked_out < 0); 3226 WARN_ON((int)tp->lost_out < 0); 3227 WARN_ON((int)tp->retrans_out < 0); 3228 if (!tp->packets_out && tcp_is_sack(tp)) { 3229 icsk = inet_csk(sk); 3230 if (tp->lost_out) { 3231 pr_debug("Leak l=%u %d\n", 3232 tp->lost_out, icsk->icsk_ca_state); 3233 tp->lost_out = 0; 3234 } 3235 if (tp->sacked_out) { 3236 pr_debug("Leak s=%u %d\n", 3237 tp->sacked_out, icsk->icsk_ca_state); 3238 tp->sacked_out = 0; 3239 } 3240 if (tp->retrans_out) { 3241 pr_debug("Leak r=%u %d\n", 3242 tp->retrans_out, icsk->icsk_ca_state); 3243 tp->retrans_out = 0; 3244 } 3245 } 3246 #endif 3247 return flag; 3248 } 3249 3250 static void tcp_ack_probe(struct sock *sk) 3251 { 3252 struct inet_connection_sock *icsk = inet_csk(sk); 3253 struct sk_buff *head = tcp_send_head(sk); 3254 const struct tcp_sock *tp = tcp_sk(sk); 3255 3256 /* Was it a usable window open? */ 3257 if (!head) 3258 return; 3259 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3260 icsk->icsk_backoff = 0; 3261 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3262 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3263 * This function is not for random using! 3264 */ 3265 } else { 3266 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3267 3268 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3269 when, TCP_RTO_MAX); 3270 } 3271 } 3272 3273 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3274 { 3275 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3276 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3277 } 3278 3279 /* Decide wheather to run the increase function of congestion control. */ 3280 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3281 { 3282 /* If reordering is high then always grow cwnd whenever data is 3283 * delivered regardless of its ordering. Otherwise stay conservative 3284 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3285 * new SACK or ECE mark may first advance cwnd here and later reduce 3286 * cwnd in tcp_fastretrans_alert() based on more states. 3287 */ 3288 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3289 return flag & FLAG_FORWARD_PROGRESS; 3290 3291 return flag & FLAG_DATA_ACKED; 3292 } 3293 3294 /* The "ultimate" congestion control function that aims to replace the rigid 3295 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3296 * It's called toward the end of processing an ACK with precise rate 3297 * information. All transmission or retransmission are delayed afterwards. 3298 */ 3299 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3300 int flag, const struct rate_sample *rs) 3301 { 3302 const struct inet_connection_sock *icsk = inet_csk(sk); 3303 3304 if (icsk->icsk_ca_ops->cong_control) { 3305 icsk->icsk_ca_ops->cong_control(sk, rs); 3306 return; 3307 } 3308 3309 if (tcp_in_cwnd_reduction(sk)) { 3310 /* Reduce cwnd if state mandates */ 3311 tcp_cwnd_reduction(sk, acked_sacked, flag); 3312 } else if (tcp_may_raise_cwnd(sk, flag)) { 3313 /* Advance cwnd if state allows */ 3314 tcp_cong_avoid(sk, ack, acked_sacked); 3315 } 3316 tcp_update_pacing_rate(sk); 3317 } 3318 3319 /* Check that window update is acceptable. 3320 * The function assumes that snd_una<=ack<=snd_next. 3321 */ 3322 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3323 const u32 ack, const u32 ack_seq, 3324 const u32 nwin) 3325 { 3326 return after(ack, tp->snd_una) || 3327 after(ack_seq, tp->snd_wl1) || 3328 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3329 } 3330 3331 /* If we update tp->snd_una, also update tp->bytes_acked */ 3332 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3333 { 3334 u32 delta = ack - tp->snd_una; 3335 3336 sock_owned_by_me((struct sock *)tp); 3337 tp->bytes_acked += delta; 3338 tp->snd_una = ack; 3339 } 3340 3341 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3342 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3343 { 3344 u32 delta = seq - tp->rcv_nxt; 3345 3346 sock_owned_by_me((struct sock *)tp); 3347 tp->bytes_received += delta; 3348 tp->rcv_nxt = seq; 3349 } 3350 3351 /* Update our send window. 3352 * 3353 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3354 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3355 */ 3356 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3357 u32 ack_seq) 3358 { 3359 struct tcp_sock *tp = tcp_sk(sk); 3360 int flag = 0; 3361 u32 nwin = ntohs(tcp_hdr(skb)->window); 3362 3363 if (likely(!tcp_hdr(skb)->syn)) 3364 nwin <<= tp->rx_opt.snd_wscale; 3365 3366 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3367 flag |= FLAG_WIN_UPDATE; 3368 tcp_update_wl(tp, ack_seq); 3369 3370 if (tp->snd_wnd != nwin) { 3371 tp->snd_wnd = nwin; 3372 3373 /* Note, it is the only place, where 3374 * fast path is recovered for sending TCP. 3375 */ 3376 tp->pred_flags = 0; 3377 tcp_fast_path_check(sk); 3378 3379 if (!tcp_write_queue_empty(sk)) 3380 tcp_slow_start_after_idle_check(sk); 3381 3382 if (nwin > tp->max_window) { 3383 tp->max_window = nwin; 3384 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3385 } 3386 } 3387 } 3388 3389 tcp_snd_una_update(tp, ack); 3390 3391 return flag; 3392 } 3393 3394 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3395 u32 *last_oow_ack_time) 3396 { 3397 if (*last_oow_ack_time) { 3398 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3399 3400 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3401 NET_INC_STATS(net, mib_idx); 3402 return true; /* rate-limited: don't send yet! */ 3403 } 3404 } 3405 3406 *last_oow_ack_time = tcp_jiffies32; 3407 3408 return false; /* not rate-limited: go ahead, send dupack now! */ 3409 } 3410 3411 /* Return true if we're currently rate-limiting out-of-window ACKs and 3412 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3413 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3414 * attacks that send repeated SYNs or ACKs for the same connection. To 3415 * do this, we do not send a duplicate SYNACK or ACK if the remote 3416 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3417 */ 3418 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3419 int mib_idx, u32 *last_oow_ack_time) 3420 { 3421 /* Data packets without SYNs are not likely part of an ACK loop. */ 3422 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3423 !tcp_hdr(skb)->syn) 3424 return false; 3425 3426 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3427 } 3428 3429 /* RFC 5961 7 [ACK Throttling] */ 3430 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3431 { 3432 /* unprotected vars, we dont care of overwrites */ 3433 static u32 challenge_timestamp; 3434 static unsigned int challenge_count; 3435 struct tcp_sock *tp = tcp_sk(sk); 3436 struct net *net = sock_net(sk); 3437 u32 count, now; 3438 3439 /* First check our per-socket dupack rate limit. */ 3440 if (__tcp_oow_rate_limited(net, 3441 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3442 &tp->last_oow_ack_time)) 3443 return; 3444 3445 /* Then check host-wide RFC 5961 rate limit. */ 3446 now = jiffies / HZ; 3447 if (now != challenge_timestamp) { 3448 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3449 u32 half = (ack_limit + 1) >> 1; 3450 3451 challenge_timestamp = now; 3452 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3453 } 3454 count = READ_ONCE(challenge_count); 3455 if (count > 0) { 3456 WRITE_ONCE(challenge_count, count - 1); 3457 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3458 tcp_send_ack(sk); 3459 } 3460 } 3461 3462 static void tcp_store_ts_recent(struct tcp_sock *tp) 3463 { 3464 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3465 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3466 } 3467 3468 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3469 { 3470 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3471 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3472 * extra check below makes sure this can only happen 3473 * for pure ACK frames. -DaveM 3474 * 3475 * Not only, also it occurs for expired timestamps. 3476 */ 3477 3478 if (tcp_paws_check(&tp->rx_opt, 0)) 3479 tcp_store_ts_recent(tp); 3480 } 3481 } 3482 3483 /* This routine deals with acks during a TLP episode. 3484 * We mark the end of a TLP episode on receiving TLP dupack or when 3485 * ack is after tlp_high_seq. 3486 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3487 */ 3488 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3489 { 3490 struct tcp_sock *tp = tcp_sk(sk); 3491 3492 if (before(ack, tp->tlp_high_seq)) 3493 return; 3494 3495 if (flag & FLAG_DSACKING_ACK) { 3496 /* This DSACK means original and TLP probe arrived; no loss */ 3497 tp->tlp_high_seq = 0; 3498 } else if (after(ack, tp->tlp_high_seq)) { 3499 /* ACK advances: there was a loss, so reduce cwnd. Reset 3500 * tlp_high_seq in tcp_init_cwnd_reduction() 3501 */ 3502 tcp_init_cwnd_reduction(sk); 3503 tcp_set_ca_state(sk, TCP_CA_CWR); 3504 tcp_end_cwnd_reduction(sk); 3505 tcp_try_keep_open(sk); 3506 NET_INC_STATS(sock_net(sk), 3507 LINUX_MIB_TCPLOSSPROBERECOVERY); 3508 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3509 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3510 /* Pure dupack: original and TLP probe arrived; no loss */ 3511 tp->tlp_high_seq = 0; 3512 } 3513 } 3514 3515 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3516 { 3517 const struct inet_connection_sock *icsk = inet_csk(sk); 3518 3519 if (icsk->icsk_ca_ops->in_ack_event) 3520 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3521 } 3522 3523 /* Congestion control has updated the cwnd already. So if we're in 3524 * loss recovery then now we do any new sends (for FRTO) or 3525 * retransmits (for CA_Loss or CA_recovery) that make sense. 3526 */ 3527 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3528 { 3529 struct tcp_sock *tp = tcp_sk(sk); 3530 3531 if (rexmit == REXMIT_NONE) 3532 return; 3533 3534 if (unlikely(rexmit == 2)) { 3535 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3536 TCP_NAGLE_OFF); 3537 if (after(tp->snd_nxt, tp->high_seq)) 3538 return; 3539 tp->frto = 0; 3540 } 3541 tcp_xmit_retransmit_queue(sk); 3542 } 3543 3544 /* Returns the number of packets newly acked or sacked by the current ACK */ 3545 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3546 { 3547 const struct net *net = sock_net(sk); 3548 struct tcp_sock *tp = tcp_sk(sk); 3549 u32 delivered; 3550 3551 delivered = tp->delivered - prior_delivered; 3552 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3553 if (flag & FLAG_ECE) { 3554 tp->delivered_ce += delivered; 3555 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3556 } 3557 return delivered; 3558 } 3559 3560 /* This routine deals with incoming acks, but not outgoing ones. */ 3561 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3562 { 3563 struct inet_connection_sock *icsk = inet_csk(sk); 3564 struct tcp_sock *tp = tcp_sk(sk); 3565 struct tcp_sacktag_state sack_state; 3566 struct rate_sample rs = { .prior_delivered = 0 }; 3567 u32 prior_snd_una = tp->snd_una; 3568 bool is_sack_reneg = tp->is_sack_reneg; 3569 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3570 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3571 bool is_dupack = false; 3572 int prior_packets = tp->packets_out; 3573 u32 delivered = tp->delivered; 3574 u32 lost = tp->lost; 3575 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3576 u32 prior_fack; 3577 3578 sack_state.first_sackt = 0; 3579 sack_state.rate = &rs; 3580 3581 /* We very likely will need to access rtx queue. */ 3582 prefetch(sk->tcp_rtx_queue.rb_node); 3583 3584 /* If the ack is older than previous acks 3585 * then we can probably ignore it. 3586 */ 3587 if (before(ack, prior_snd_una)) { 3588 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3589 if (before(ack, prior_snd_una - tp->max_window)) { 3590 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3591 tcp_send_challenge_ack(sk, skb); 3592 return -1; 3593 } 3594 goto old_ack; 3595 } 3596 3597 /* If the ack includes data we haven't sent yet, discard 3598 * this segment (RFC793 Section 3.9). 3599 */ 3600 if (after(ack, tp->snd_nxt)) 3601 goto invalid_ack; 3602 3603 if (after(ack, prior_snd_una)) { 3604 flag |= FLAG_SND_UNA_ADVANCED; 3605 icsk->icsk_retransmits = 0; 3606 3607 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3608 if (static_branch_unlikely(&clean_acked_data_enabled)) 3609 if (icsk->icsk_clean_acked) 3610 icsk->icsk_clean_acked(sk, ack); 3611 #endif 3612 } 3613 3614 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3615 rs.prior_in_flight = tcp_packets_in_flight(tp); 3616 3617 /* ts_recent update must be made after we are sure that the packet 3618 * is in window. 3619 */ 3620 if (flag & FLAG_UPDATE_TS_RECENT) 3621 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3622 3623 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3624 /* Window is constant, pure forward advance. 3625 * No more checks are required. 3626 * Note, we use the fact that SND.UNA>=SND.WL2. 3627 */ 3628 tcp_update_wl(tp, ack_seq); 3629 tcp_snd_una_update(tp, ack); 3630 flag |= FLAG_WIN_UPDATE; 3631 3632 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3633 3634 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3635 } else { 3636 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3637 3638 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3639 flag |= FLAG_DATA; 3640 else 3641 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3642 3643 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3644 3645 if (TCP_SKB_CB(skb)->sacked) 3646 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3647 &sack_state); 3648 3649 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3650 flag |= FLAG_ECE; 3651 ack_ev_flags |= CA_ACK_ECE; 3652 } 3653 3654 if (flag & FLAG_WIN_UPDATE) 3655 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3656 3657 tcp_in_ack_event(sk, ack_ev_flags); 3658 } 3659 3660 /* We passed data and got it acked, remove any soft error 3661 * log. Something worked... 3662 */ 3663 sk->sk_err_soft = 0; 3664 icsk->icsk_probes_out = 0; 3665 tp->rcv_tstamp = tcp_jiffies32; 3666 if (!prior_packets) 3667 goto no_queue; 3668 3669 /* See if we can take anything off of the retransmit queue. */ 3670 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3671 3672 tcp_rack_update_reo_wnd(sk, &rs); 3673 3674 if (tp->tlp_high_seq) 3675 tcp_process_tlp_ack(sk, ack, flag); 3676 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3677 if (flag & FLAG_SET_XMIT_TIMER) 3678 tcp_set_xmit_timer(sk); 3679 3680 if (tcp_ack_is_dubious(sk, flag)) { 3681 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3682 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3683 &rexmit); 3684 } 3685 3686 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3687 sk_dst_confirm(sk); 3688 3689 delivered = tcp_newly_delivered(sk, delivered, flag); 3690 lost = tp->lost - lost; /* freshly marked lost */ 3691 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3692 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3693 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3694 tcp_xmit_recovery(sk, rexmit); 3695 return 1; 3696 3697 no_queue: 3698 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3699 if (flag & FLAG_DSACKING_ACK) { 3700 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3701 &rexmit); 3702 tcp_newly_delivered(sk, delivered, flag); 3703 } 3704 /* If this ack opens up a zero window, clear backoff. It was 3705 * being used to time the probes, and is probably far higher than 3706 * it needs to be for normal retransmission. 3707 */ 3708 tcp_ack_probe(sk); 3709 3710 if (tp->tlp_high_seq) 3711 tcp_process_tlp_ack(sk, ack, flag); 3712 return 1; 3713 3714 invalid_ack: 3715 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3716 return -1; 3717 3718 old_ack: 3719 /* If data was SACKed, tag it and see if we should send more data. 3720 * If data was DSACKed, see if we can undo a cwnd reduction. 3721 */ 3722 if (TCP_SKB_CB(skb)->sacked) { 3723 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3724 &sack_state); 3725 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3726 &rexmit); 3727 tcp_newly_delivered(sk, delivered, flag); 3728 tcp_xmit_recovery(sk, rexmit); 3729 } 3730 3731 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3732 return 0; 3733 } 3734 3735 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3736 bool syn, struct tcp_fastopen_cookie *foc, 3737 bool exp_opt) 3738 { 3739 /* Valid only in SYN or SYN-ACK with an even length. */ 3740 if (!foc || !syn || len < 0 || (len & 1)) 3741 return; 3742 3743 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3744 len <= TCP_FASTOPEN_COOKIE_MAX) 3745 memcpy(foc->val, cookie, len); 3746 else if (len != 0) 3747 len = -1; 3748 foc->len = len; 3749 foc->exp = exp_opt; 3750 } 3751 3752 static void smc_parse_options(const struct tcphdr *th, 3753 struct tcp_options_received *opt_rx, 3754 const unsigned char *ptr, 3755 int opsize) 3756 { 3757 #if IS_ENABLED(CONFIG_SMC) 3758 if (static_branch_unlikely(&tcp_have_smc)) { 3759 if (th->syn && !(opsize & 1) && 3760 opsize >= TCPOLEN_EXP_SMC_BASE && 3761 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3762 opt_rx->smc_ok = 1; 3763 } 3764 #endif 3765 } 3766 3767 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3768 * But, this can also be called on packets in the established flow when 3769 * the fast version below fails. 3770 */ 3771 void tcp_parse_options(const struct net *net, 3772 const struct sk_buff *skb, 3773 struct tcp_options_received *opt_rx, int estab, 3774 struct tcp_fastopen_cookie *foc) 3775 { 3776 const unsigned char *ptr; 3777 const struct tcphdr *th = tcp_hdr(skb); 3778 int length = (th->doff * 4) - sizeof(struct tcphdr); 3779 3780 ptr = (const unsigned char *)(th + 1); 3781 opt_rx->saw_tstamp = 0; 3782 3783 while (length > 0) { 3784 int opcode = *ptr++; 3785 int opsize; 3786 3787 switch (opcode) { 3788 case TCPOPT_EOL: 3789 return; 3790 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3791 length--; 3792 continue; 3793 default: 3794 opsize = *ptr++; 3795 if (opsize < 2) /* "silly options" */ 3796 return; 3797 if (opsize > length) 3798 return; /* don't parse partial options */ 3799 switch (opcode) { 3800 case TCPOPT_MSS: 3801 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3802 u16 in_mss = get_unaligned_be16(ptr); 3803 if (in_mss) { 3804 if (opt_rx->user_mss && 3805 opt_rx->user_mss < in_mss) 3806 in_mss = opt_rx->user_mss; 3807 opt_rx->mss_clamp = in_mss; 3808 } 3809 } 3810 break; 3811 case TCPOPT_WINDOW: 3812 if (opsize == TCPOLEN_WINDOW && th->syn && 3813 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3814 __u8 snd_wscale = *(__u8 *)ptr; 3815 opt_rx->wscale_ok = 1; 3816 if (snd_wscale > TCP_MAX_WSCALE) { 3817 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3818 __func__, 3819 snd_wscale, 3820 TCP_MAX_WSCALE); 3821 snd_wscale = TCP_MAX_WSCALE; 3822 } 3823 opt_rx->snd_wscale = snd_wscale; 3824 } 3825 break; 3826 case TCPOPT_TIMESTAMP: 3827 if ((opsize == TCPOLEN_TIMESTAMP) && 3828 ((estab && opt_rx->tstamp_ok) || 3829 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3830 opt_rx->saw_tstamp = 1; 3831 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3832 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3833 } 3834 break; 3835 case TCPOPT_SACK_PERM: 3836 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3837 !estab && net->ipv4.sysctl_tcp_sack) { 3838 opt_rx->sack_ok = TCP_SACK_SEEN; 3839 tcp_sack_reset(opt_rx); 3840 } 3841 break; 3842 3843 case TCPOPT_SACK: 3844 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3845 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3846 opt_rx->sack_ok) { 3847 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3848 } 3849 break; 3850 #ifdef CONFIG_TCP_MD5SIG 3851 case TCPOPT_MD5SIG: 3852 /* 3853 * The MD5 Hash has already been 3854 * checked (see tcp_v{4,6}_do_rcv()). 3855 */ 3856 break; 3857 #endif 3858 case TCPOPT_FASTOPEN: 3859 tcp_parse_fastopen_option( 3860 opsize - TCPOLEN_FASTOPEN_BASE, 3861 ptr, th->syn, foc, false); 3862 break; 3863 3864 case TCPOPT_EXP: 3865 /* Fast Open option shares code 254 using a 3866 * 16 bits magic number. 3867 */ 3868 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3869 get_unaligned_be16(ptr) == 3870 TCPOPT_FASTOPEN_MAGIC) 3871 tcp_parse_fastopen_option(opsize - 3872 TCPOLEN_EXP_FASTOPEN_BASE, 3873 ptr + 2, th->syn, foc, true); 3874 else 3875 smc_parse_options(th, opt_rx, ptr, 3876 opsize); 3877 break; 3878 3879 } 3880 ptr += opsize-2; 3881 length -= opsize; 3882 } 3883 } 3884 } 3885 EXPORT_SYMBOL(tcp_parse_options); 3886 3887 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3888 { 3889 const __be32 *ptr = (const __be32 *)(th + 1); 3890 3891 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3892 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3893 tp->rx_opt.saw_tstamp = 1; 3894 ++ptr; 3895 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3896 ++ptr; 3897 if (*ptr) 3898 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3899 else 3900 tp->rx_opt.rcv_tsecr = 0; 3901 return true; 3902 } 3903 return false; 3904 } 3905 3906 /* Fast parse options. This hopes to only see timestamps. 3907 * If it is wrong it falls back on tcp_parse_options(). 3908 */ 3909 static bool tcp_fast_parse_options(const struct net *net, 3910 const struct sk_buff *skb, 3911 const struct tcphdr *th, struct tcp_sock *tp) 3912 { 3913 /* In the spirit of fast parsing, compare doff directly to constant 3914 * values. Because equality is used, short doff can be ignored here. 3915 */ 3916 if (th->doff == (sizeof(*th) / 4)) { 3917 tp->rx_opt.saw_tstamp = 0; 3918 return false; 3919 } else if (tp->rx_opt.tstamp_ok && 3920 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3921 if (tcp_parse_aligned_timestamp(tp, th)) 3922 return true; 3923 } 3924 3925 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3926 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3927 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3928 3929 return true; 3930 } 3931 3932 #ifdef CONFIG_TCP_MD5SIG 3933 /* 3934 * Parse MD5 Signature option 3935 */ 3936 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3937 { 3938 int length = (th->doff << 2) - sizeof(*th); 3939 const u8 *ptr = (const u8 *)(th + 1); 3940 3941 /* If not enough data remaining, we can short cut */ 3942 while (length >= TCPOLEN_MD5SIG) { 3943 int opcode = *ptr++; 3944 int opsize; 3945 3946 switch (opcode) { 3947 case TCPOPT_EOL: 3948 return NULL; 3949 case TCPOPT_NOP: 3950 length--; 3951 continue; 3952 default: 3953 opsize = *ptr++; 3954 if (opsize < 2 || opsize > length) 3955 return NULL; 3956 if (opcode == TCPOPT_MD5SIG) 3957 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3958 } 3959 ptr += opsize - 2; 3960 length -= opsize; 3961 } 3962 return NULL; 3963 } 3964 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3965 #endif 3966 3967 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3968 * 3969 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3970 * it can pass through stack. So, the following predicate verifies that 3971 * this segment is not used for anything but congestion avoidance or 3972 * fast retransmit. Moreover, we even are able to eliminate most of such 3973 * second order effects, if we apply some small "replay" window (~RTO) 3974 * to timestamp space. 3975 * 3976 * All these measures still do not guarantee that we reject wrapped ACKs 3977 * on networks with high bandwidth, when sequence space is recycled fastly, 3978 * but it guarantees that such events will be very rare and do not affect 3979 * connection seriously. This doesn't look nice, but alas, PAWS is really 3980 * buggy extension. 3981 * 3982 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3983 * states that events when retransmit arrives after original data are rare. 3984 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3985 * the biggest problem on large power networks even with minor reordering. 3986 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3987 * up to bandwidth of 18Gigabit/sec. 8) ] 3988 */ 3989 3990 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3991 { 3992 const struct tcp_sock *tp = tcp_sk(sk); 3993 const struct tcphdr *th = tcp_hdr(skb); 3994 u32 seq = TCP_SKB_CB(skb)->seq; 3995 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3996 3997 return (/* 1. Pure ACK with correct sequence number. */ 3998 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3999 4000 /* 2. ... and duplicate ACK. */ 4001 ack == tp->snd_una && 4002 4003 /* 3. ... and does not update window. */ 4004 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4005 4006 /* 4. ... and sits in replay window. */ 4007 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4008 } 4009 4010 static inline bool tcp_paws_discard(const struct sock *sk, 4011 const struct sk_buff *skb) 4012 { 4013 const struct tcp_sock *tp = tcp_sk(sk); 4014 4015 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4016 !tcp_disordered_ack(sk, skb); 4017 } 4018 4019 /* Check segment sequence number for validity. 4020 * 4021 * Segment controls are considered valid, if the segment 4022 * fits to the window after truncation to the window. Acceptability 4023 * of data (and SYN, FIN, of course) is checked separately. 4024 * See tcp_data_queue(), for example. 4025 * 4026 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4027 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4028 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4029 * (borrowed from freebsd) 4030 */ 4031 4032 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4033 { 4034 return !before(end_seq, tp->rcv_wup) && 4035 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4036 } 4037 4038 /* When we get a reset we do this. */ 4039 void tcp_reset(struct sock *sk) 4040 { 4041 trace_tcp_receive_reset(sk); 4042 4043 /* We want the right error as BSD sees it (and indeed as we do). */ 4044 switch (sk->sk_state) { 4045 case TCP_SYN_SENT: 4046 sk->sk_err = ECONNREFUSED; 4047 break; 4048 case TCP_CLOSE_WAIT: 4049 sk->sk_err = EPIPE; 4050 break; 4051 case TCP_CLOSE: 4052 return; 4053 default: 4054 sk->sk_err = ECONNRESET; 4055 } 4056 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4057 smp_wmb(); 4058 4059 tcp_write_queue_purge(sk); 4060 tcp_done(sk); 4061 4062 if (!sock_flag(sk, SOCK_DEAD)) 4063 sk->sk_error_report(sk); 4064 } 4065 4066 /* 4067 * Process the FIN bit. This now behaves as it is supposed to work 4068 * and the FIN takes effect when it is validly part of sequence 4069 * space. Not before when we get holes. 4070 * 4071 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4072 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4073 * TIME-WAIT) 4074 * 4075 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4076 * close and we go into CLOSING (and later onto TIME-WAIT) 4077 * 4078 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4079 */ 4080 void tcp_fin(struct sock *sk) 4081 { 4082 struct tcp_sock *tp = tcp_sk(sk); 4083 4084 inet_csk_schedule_ack(sk); 4085 4086 sk->sk_shutdown |= RCV_SHUTDOWN; 4087 sock_set_flag(sk, SOCK_DONE); 4088 4089 switch (sk->sk_state) { 4090 case TCP_SYN_RECV: 4091 case TCP_ESTABLISHED: 4092 /* Move to CLOSE_WAIT */ 4093 tcp_set_state(sk, TCP_CLOSE_WAIT); 4094 inet_csk(sk)->icsk_ack.pingpong = 1; 4095 break; 4096 4097 case TCP_CLOSE_WAIT: 4098 case TCP_CLOSING: 4099 /* Received a retransmission of the FIN, do 4100 * nothing. 4101 */ 4102 break; 4103 case TCP_LAST_ACK: 4104 /* RFC793: Remain in the LAST-ACK state. */ 4105 break; 4106 4107 case TCP_FIN_WAIT1: 4108 /* This case occurs when a simultaneous close 4109 * happens, we must ack the received FIN and 4110 * enter the CLOSING state. 4111 */ 4112 tcp_send_ack(sk); 4113 tcp_set_state(sk, TCP_CLOSING); 4114 break; 4115 case TCP_FIN_WAIT2: 4116 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4117 tcp_send_ack(sk); 4118 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4119 break; 4120 default: 4121 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4122 * cases we should never reach this piece of code. 4123 */ 4124 pr_err("%s: Impossible, sk->sk_state=%d\n", 4125 __func__, sk->sk_state); 4126 break; 4127 } 4128 4129 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4130 * Probably, we should reset in this case. For now drop them. 4131 */ 4132 skb_rbtree_purge(&tp->out_of_order_queue); 4133 if (tcp_is_sack(tp)) 4134 tcp_sack_reset(&tp->rx_opt); 4135 sk_mem_reclaim(sk); 4136 4137 if (!sock_flag(sk, SOCK_DEAD)) { 4138 sk->sk_state_change(sk); 4139 4140 /* Do not send POLL_HUP for half duplex close. */ 4141 if (sk->sk_shutdown == SHUTDOWN_MASK || 4142 sk->sk_state == TCP_CLOSE) 4143 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4144 else 4145 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4146 } 4147 } 4148 4149 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4150 u32 end_seq) 4151 { 4152 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4153 if (before(seq, sp->start_seq)) 4154 sp->start_seq = seq; 4155 if (after(end_seq, sp->end_seq)) 4156 sp->end_seq = end_seq; 4157 return true; 4158 } 4159 return false; 4160 } 4161 4162 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4163 { 4164 struct tcp_sock *tp = tcp_sk(sk); 4165 4166 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4167 int mib_idx; 4168 4169 if (before(seq, tp->rcv_nxt)) 4170 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4171 else 4172 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4173 4174 NET_INC_STATS(sock_net(sk), mib_idx); 4175 4176 tp->rx_opt.dsack = 1; 4177 tp->duplicate_sack[0].start_seq = seq; 4178 tp->duplicate_sack[0].end_seq = end_seq; 4179 } 4180 } 4181 4182 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4183 { 4184 struct tcp_sock *tp = tcp_sk(sk); 4185 4186 if (!tp->rx_opt.dsack) 4187 tcp_dsack_set(sk, seq, end_seq); 4188 else 4189 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4190 } 4191 4192 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4193 { 4194 struct tcp_sock *tp = tcp_sk(sk); 4195 4196 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4197 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4198 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4199 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4200 4201 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4202 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4203 4204 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4205 end_seq = tp->rcv_nxt; 4206 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4207 } 4208 } 4209 4210 tcp_send_ack(sk); 4211 } 4212 4213 /* These routines update the SACK block as out-of-order packets arrive or 4214 * in-order packets close up the sequence space. 4215 */ 4216 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4217 { 4218 int this_sack; 4219 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4220 struct tcp_sack_block *swalk = sp + 1; 4221 4222 /* See if the recent change to the first SACK eats into 4223 * or hits the sequence space of other SACK blocks, if so coalesce. 4224 */ 4225 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4226 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4227 int i; 4228 4229 /* Zap SWALK, by moving every further SACK up by one slot. 4230 * Decrease num_sacks. 4231 */ 4232 tp->rx_opt.num_sacks--; 4233 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4234 sp[i] = sp[i + 1]; 4235 continue; 4236 } 4237 this_sack++, swalk++; 4238 } 4239 } 4240 4241 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4242 { 4243 struct tcp_sock *tp = tcp_sk(sk); 4244 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4245 int cur_sacks = tp->rx_opt.num_sacks; 4246 int this_sack; 4247 4248 if (!cur_sacks) 4249 goto new_sack; 4250 4251 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4252 if (tcp_sack_extend(sp, seq, end_seq)) { 4253 /* Rotate this_sack to the first one. */ 4254 for (; this_sack > 0; this_sack--, sp--) 4255 swap(*sp, *(sp - 1)); 4256 if (cur_sacks > 1) 4257 tcp_sack_maybe_coalesce(tp); 4258 return; 4259 } 4260 } 4261 4262 /* Could not find an adjacent existing SACK, build a new one, 4263 * put it at the front, and shift everyone else down. We 4264 * always know there is at least one SACK present already here. 4265 * 4266 * If the sack array is full, forget about the last one. 4267 */ 4268 if (this_sack >= TCP_NUM_SACKS) { 4269 if (tp->compressed_ack) 4270 tcp_send_ack(sk); 4271 this_sack--; 4272 tp->rx_opt.num_sacks--; 4273 sp--; 4274 } 4275 for (; this_sack > 0; this_sack--, sp--) 4276 *sp = *(sp - 1); 4277 4278 new_sack: 4279 /* Build the new head SACK, and we're done. */ 4280 sp->start_seq = seq; 4281 sp->end_seq = end_seq; 4282 tp->rx_opt.num_sacks++; 4283 } 4284 4285 /* RCV.NXT advances, some SACKs should be eaten. */ 4286 4287 static void tcp_sack_remove(struct tcp_sock *tp) 4288 { 4289 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4290 int num_sacks = tp->rx_opt.num_sacks; 4291 int this_sack; 4292 4293 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4294 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4295 tp->rx_opt.num_sacks = 0; 4296 return; 4297 } 4298 4299 for (this_sack = 0; this_sack < num_sacks;) { 4300 /* Check if the start of the sack is covered by RCV.NXT. */ 4301 if (!before(tp->rcv_nxt, sp->start_seq)) { 4302 int i; 4303 4304 /* RCV.NXT must cover all the block! */ 4305 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4306 4307 /* Zap this SACK, by moving forward any other SACKS. */ 4308 for (i = this_sack+1; i < num_sacks; i++) 4309 tp->selective_acks[i-1] = tp->selective_acks[i]; 4310 num_sacks--; 4311 continue; 4312 } 4313 this_sack++; 4314 sp++; 4315 } 4316 tp->rx_opt.num_sacks = num_sacks; 4317 } 4318 4319 /** 4320 * tcp_try_coalesce - try to merge skb to prior one 4321 * @sk: socket 4322 * @dest: destination queue 4323 * @to: prior buffer 4324 * @from: buffer to add in queue 4325 * @fragstolen: pointer to boolean 4326 * 4327 * Before queueing skb @from after @to, try to merge them 4328 * to reduce overall memory use and queue lengths, if cost is small. 4329 * Packets in ofo or receive queues can stay a long time. 4330 * Better try to coalesce them right now to avoid future collapses. 4331 * Returns true if caller should free @from instead of queueing it 4332 */ 4333 static bool tcp_try_coalesce(struct sock *sk, 4334 struct sk_buff *to, 4335 struct sk_buff *from, 4336 bool *fragstolen) 4337 { 4338 int delta; 4339 4340 *fragstolen = false; 4341 4342 /* Its possible this segment overlaps with prior segment in queue */ 4343 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4344 return false; 4345 4346 #ifdef CONFIG_TLS_DEVICE 4347 if (from->decrypted != to->decrypted) 4348 return false; 4349 #endif 4350 4351 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4352 return false; 4353 4354 atomic_add(delta, &sk->sk_rmem_alloc); 4355 sk_mem_charge(sk, delta); 4356 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4357 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4358 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4359 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4360 4361 if (TCP_SKB_CB(from)->has_rxtstamp) { 4362 TCP_SKB_CB(to)->has_rxtstamp = true; 4363 to->tstamp = from->tstamp; 4364 } 4365 4366 return true; 4367 } 4368 4369 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4370 { 4371 sk_drops_add(sk, skb); 4372 __kfree_skb(skb); 4373 } 4374 4375 /* This one checks to see if we can put data from the 4376 * out_of_order queue into the receive_queue. 4377 */ 4378 static void tcp_ofo_queue(struct sock *sk) 4379 { 4380 struct tcp_sock *tp = tcp_sk(sk); 4381 __u32 dsack_high = tp->rcv_nxt; 4382 bool fin, fragstolen, eaten; 4383 struct sk_buff *skb, *tail; 4384 struct rb_node *p; 4385 4386 p = rb_first(&tp->out_of_order_queue); 4387 while (p) { 4388 skb = rb_to_skb(p); 4389 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4390 break; 4391 4392 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4393 __u32 dsack = dsack_high; 4394 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4395 dsack_high = TCP_SKB_CB(skb)->end_seq; 4396 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4397 } 4398 p = rb_next(p); 4399 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4400 4401 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4402 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4403 tcp_drop(sk, skb); 4404 continue; 4405 } 4406 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4407 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4408 TCP_SKB_CB(skb)->end_seq); 4409 4410 tail = skb_peek_tail(&sk->sk_receive_queue); 4411 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4412 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4413 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4414 if (!eaten) 4415 __skb_queue_tail(&sk->sk_receive_queue, skb); 4416 else 4417 kfree_skb_partial(skb, fragstolen); 4418 4419 if (unlikely(fin)) { 4420 tcp_fin(sk); 4421 /* tcp_fin() purges tp->out_of_order_queue, 4422 * so we must end this loop right now. 4423 */ 4424 break; 4425 } 4426 } 4427 } 4428 4429 static bool tcp_prune_ofo_queue(struct sock *sk); 4430 static int tcp_prune_queue(struct sock *sk); 4431 4432 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4433 unsigned int size) 4434 { 4435 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4436 !sk_rmem_schedule(sk, skb, size)) { 4437 4438 if (tcp_prune_queue(sk) < 0) 4439 return -1; 4440 4441 while (!sk_rmem_schedule(sk, skb, size)) { 4442 if (!tcp_prune_ofo_queue(sk)) 4443 return -1; 4444 } 4445 } 4446 return 0; 4447 } 4448 4449 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4450 { 4451 struct tcp_sock *tp = tcp_sk(sk); 4452 struct rb_node **p, *parent; 4453 struct sk_buff *skb1; 4454 u32 seq, end_seq; 4455 bool fragstolen; 4456 4457 tcp_ecn_check_ce(sk, skb); 4458 4459 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4460 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4461 tcp_drop(sk, skb); 4462 return; 4463 } 4464 4465 /* Disable header prediction. */ 4466 tp->pred_flags = 0; 4467 inet_csk_schedule_ack(sk); 4468 4469 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4470 seq = TCP_SKB_CB(skb)->seq; 4471 end_seq = TCP_SKB_CB(skb)->end_seq; 4472 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4473 tp->rcv_nxt, seq, end_seq); 4474 4475 p = &tp->out_of_order_queue.rb_node; 4476 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4477 /* Initial out of order segment, build 1 SACK. */ 4478 if (tcp_is_sack(tp)) { 4479 tp->rx_opt.num_sacks = 1; 4480 tp->selective_acks[0].start_seq = seq; 4481 tp->selective_acks[0].end_seq = end_seq; 4482 } 4483 rb_link_node(&skb->rbnode, NULL, p); 4484 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4485 tp->ooo_last_skb = skb; 4486 goto end; 4487 } 4488 4489 /* In the typical case, we are adding an skb to the end of the list. 4490 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4491 */ 4492 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4493 skb, &fragstolen)) { 4494 coalesce_done: 4495 tcp_grow_window(sk, skb); 4496 kfree_skb_partial(skb, fragstolen); 4497 skb = NULL; 4498 goto add_sack; 4499 } 4500 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4501 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4502 parent = &tp->ooo_last_skb->rbnode; 4503 p = &parent->rb_right; 4504 goto insert; 4505 } 4506 4507 /* Find place to insert this segment. Handle overlaps on the way. */ 4508 parent = NULL; 4509 while (*p) { 4510 parent = *p; 4511 skb1 = rb_to_skb(parent); 4512 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4513 p = &parent->rb_left; 4514 continue; 4515 } 4516 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4517 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4518 /* All the bits are present. Drop. */ 4519 NET_INC_STATS(sock_net(sk), 4520 LINUX_MIB_TCPOFOMERGE); 4521 __kfree_skb(skb); 4522 skb = NULL; 4523 tcp_dsack_set(sk, seq, end_seq); 4524 goto add_sack; 4525 } 4526 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4527 /* Partial overlap. */ 4528 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4529 } else { 4530 /* skb's seq == skb1's seq and skb covers skb1. 4531 * Replace skb1 with skb. 4532 */ 4533 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4534 &tp->out_of_order_queue); 4535 tcp_dsack_extend(sk, 4536 TCP_SKB_CB(skb1)->seq, 4537 TCP_SKB_CB(skb1)->end_seq); 4538 NET_INC_STATS(sock_net(sk), 4539 LINUX_MIB_TCPOFOMERGE); 4540 __kfree_skb(skb1); 4541 goto merge_right; 4542 } 4543 } else if (tcp_try_coalesce(sk, skb1, 4544 skb, &fragstolen)) { 4545 goto coalesce_done; 4546 } 4547 p = &parent->rb_right; 4548 } 4549 insert: 4550 /* Insert segment into RB tree. */ 4551 rb_link_node(&skb->rbnode, parent, p); 4552 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4553 4554 merge_right: 4555 /* Remove other segments covered by skb. */ 4556 while ((skb1 = skb_rb_next(skb)) != NULL) { 4557 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4558 break; 4559 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4560 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4561 end_seq); 4562 break; 4563 } 4564 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4565 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4566 TCP_SKB_CB(skb1)->end_seq); 4567 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4568 tcp_drop(sk, skb1); 4569 } 4570 /* If there is no skb after us, we are the last_skb ! */ 4571 if (!skb1) 4572 tp->ooo_last_skb = skb; 4573 4574 add_sack: 4575 if (tcp_is_sack(tp)) 4576 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4577 end: 4578 if (skb) { 4579 tcp_grow_window(sk, skb); 4580 skb_condense(skb); 4581 skb_set_owner_r(skb, sk); 4582 } 4583 } 4584 4585 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4586 bool *fragstolen) 4587 { 4588 int eaten; 4589 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4590 4591 __skb_pull(skb, hdrlen); 4592 eaten = (tail && 4593 tcp_try_coalesce(sk, tail, 4594 skb, fragstolen)) ? 1 : 0; 4595 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4596 if (!eaten) { 4597 __skb_queue_tail(&sk->sk_receive_queue, skb); 4598 skb_set_owner_r(skb, sk); 4599 } 4600 return eaten; 4601 } 4602 4603 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4604 { 4605 struct sk_buff *skb; 4606 int err = -ENOMEM; 4607 int data_len = 0; 4608 bool fragstolen; 4609 4610 if (size == 0) 4611 return 0; 4612 4613 if (size > PAGE_SIZE) { 4614 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4615 4616 data_len = npages << PAGE_SHIFT; 4617 size = data_len + (size & ~PAGE_MASK); 4618 } 4619 skb = alloc_skb_with_frags(size - data_len, data_len, 4620 PAGE_ALLOC_COSTLY_ORDER, 4621 &err, sk->sk_allocation); 4622 if (!skb) 4623 goto err; 4624 4625 skb_put(skb, size - data_len); 4626 skb->data_len = data_len; 4627 skb->len = size; 4628 4629 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4630 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4631 goto err_free; 4632 } 4633 4634 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4635 if (err) 4636 goto err_free; 4637 4638 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4639 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4640 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4641 4642 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4643 WARN_ON_ONCE(fragstolen); /* should not happen */ 4644 __kfree_skb(skb); 4645 } 4646 return size; 4647 4648 err_free: 4649 kfree_skb(skb); 4650 err: 4651 return err; 4652 4653 } 4654 4655 void tcp_data_ready(struct sock *sk) 4656 { 4657 const struct tcp_sock *tp = tcp_sk(sk); 4658 int avail = tp->rcv_nxt - tp->copied_seq; 4659 4660 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4661 return; 4662 4663 sk->sk_data_ready(sk); 4664 } 4665 4666 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4667 { 4668 struct tcp_sock *tp = tcp_sk(sk); 4669 bool fragstolen; 4670 int eaten; 4671 4672 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4673 __kfree_skb(skb); 4674 return; 4675 } 4676 skb_dst_drop(skb); 4677 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4678 4679 tcp_ecn_accept_cwr(tp, skb); 4680 4681 tp->rx_opt.dsack = 0; 4682 4683 /* Queue data for delivery to the user. 4684 * Packets in sequence go to the receive queue. 4685 * Out of sequence packets to the out_of_order_queue. 4686 */ 4687 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4688 if (tcp_receive_window(tp) == 0) { 4689 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4690 goto out_of_window; 4691 } 4692 4693 /* Ok. In sequence. In window. */ 4694 queue_and_out: 4695 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4696 sk_forced_mem_schedule(sk, skb->truesize); 4697 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4698 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4699 goto drop; 4700 } 4701 4702 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4703 if (skb->len) 4704 tcp_event_data_recv(sk, skb); 4705 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4706 tcp_fin(sk); 4707 4708 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4709 tcp_ofo_queue(sk); 4710 4711 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4712 * gap in queue is filled. 4713 */ 4714 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4715 inet_csk(sk)->icsk_ack.pingpong = 0; 4716 } 4717 4718 if (tp->rx_opt.num_sacks) 4719 tcp_sack_remove(tp); 4720 4721 tcp_fast_path_check(sk); 4722 4723 if (eaten > 0) 4724 kfree_skb_partial(skb, fragstolen); 4725 if (!sock_flag(sk, SOCK_DEAD)) 4726 tcp_data_ready(sk); 4727 return; 4728 } 4729 4730 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4731 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4732 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4733 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4734 4735 out_of_window: 4736 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4737 inet_csk_schedule_ack(sk); 4738 drop: 4739 tcp_drop(sk, skb); 4740 return; 4741 } 4742 4743 /* Out of window. F.e. zero window probe. */ 4744 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4745 goto out_of_window; 4746 4747 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4748 /* Partial packet, seq < rcv_next < end_seq */ 4749 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4750 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4751 TCP_SKB_CB(skb)->end_seq); 4752 4753 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4754 4755 /* If window is closed, drop tail of packet. But after 4756 * remembering D-SACK for its head made in previous line. 4757 */ 4758 if (!tcp_receive_window(tp)) { 4759 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4760 goto out_of_window; 4761 } 4762 goto queue_and_out; 4763 } 4764 4765 tcp_data_queue_ofo(sk, skb); 4766 } 4767 4768 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4769 { 4770 if (list) 4771 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4772 4773 return skb_rb_next(skb); 4774 } 4775 4776 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4777 struct sk_buff_head *list, 4778 struct rb_root *root) 4779 { 4780 struct sk_buff *next = tcp_skb_next(skb, list); 4781 4782 if (list) 4783 __skb_unlink(skb, list); 4784 else 4785 rb_erase(&skb->rbnode, root); 4786 4787 __kfree_skb(skb); 4788 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4789 4790 return next; 4791 } 4792 4793 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4794 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4795 { 4796 struct rb_node **p = &root->rb_node; 4797 struct rb_node *parent = NULL; 4798 struct sk_buff *skb1; 4799 4800 while (*p) { 4801 parent = *p; 4802 skb1 = rb_to_skb(parent); 4803 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4804 p = &parent->rb_left; 4805 else 4806 p = &parent->rb_right; 4807 } 4808 rb_link_node(&skb->rbnode, parent, p); 4809 rb_insert_color(&skb->rbnode, root); 4810 } 4811 4812 /* Collapse contiguous sequence of skbs head..tail with 4813 * sequence numbers start..end. 4814 * 4815 * If tail is NULL, this means until the end of the queue. 4816 * 4817 * Segments with FIN/SYN are not collapsed (only because this 4818 * simplifies code) 4819 */ 4820 static void 4821 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4822 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4823 { 4824 struct sk_buff *skb = head, *n; 4825 struct sk_buff_head tmp; 4826 bool end_of_skbs; 4827 4828 /* First, check that queue is collapsible and find 4829 * the point where collapsing can be useful. 4830 */ 4831 restart: 4832 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4833 n = tcp_skb_next(skb, list); 4834 4835 /* No new bits? It is possible on ofo queue. */ 4836 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4837 skb = tcp_collapse_one(sk, skb, list, root); 4838 if (!skb) 4839 break; 4840 goto restart; 4841 } 4842 4843 /* The first skb to collapse is: 4844 * - not SYN/FIN and 4845 * - bloated or contains data before "start" or 4846 * overlaps to the next one. 4847 */ 4848 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4849 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4850 before(TCP_SKB_CB(skb)->seq, start))) { 4851 end_of_skbs = false; 4852 break; 4853 } 4854 4855 if (n && n != tail && 4856 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4857 end_of_skbs = false; 4858 break; 4859 } 4860 4861 /* Decided to skip this, advance start seq. */ 4862 start = TCP_SKB_CB(skb)->end_seq; 4863 } 4864 if (end_of_skbs || 4865 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4866 return; 4867 4868 __skb_queue_head_init(&tmp); 4869 4870 while (before(start, end)) { 4871 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4872 struct sk_buff *nskb; 4873 4874 nskb = alloc_skb(copy, GFP_ATOMIC); 4875 if (!nskb) 4876 break; 4877 4878 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4879 #ifdef CONFIG_TLS_DEVICE 4880 nskb->decrypted = skb->decrypted; 4881 #endif 4882 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4883 if (list) 4884 __skb_queue_before(list, skb, nskb); 4885 else 4886 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4887 skb_set_owner_r(nskb, sk); 4888 4889 /* Copy data, releasing collapsed skbs. */ 4890 while (copy > 0) { 4891 int offset = start - TCP_SKB_CB(skb)->seq; 4892 int size = TCP_SKB_CB(skb)->end_seq - start; 4893 4894 BUG_ON(offset < 0); 4895 if (size > 0) { 4896 size = min(copy, size); 4897 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4898 BUG(); 4899 TCP_SKB_CB(nskb)->end_seq += size; 4900 copy -= size; 4901 start += size; 4902 } 4903 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4904 skb = tcp_collapse_one(sk, skb, list, root); 4905 if (!skb || 4906 skb == tail || 4907 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4908 goto end; 4909 #ifdef CONFIG_TLS_DEVICE 4910 if (skb->decrypted != nskb->decrypted) 4911 goto end; 4912 #endif 4913 } 4914 } 4915 } 4916 end: 4917 skb_queue_walk_safe(&tmp, skb, n) 4918 tcp_rbtree_insert(root, skb); 4919 } 4920 4921 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4922 * and tcp_collapse() them until all the queue is collapsed. 4923 */ 4924 static void tcp_collapse_ofo_queue(struct sock *sk) 4925 { 4926 struct tcp_sock *tp = tcp_sk(sk); 4927 struct sk_buff *skb, *head; 4928 u32 start, end; 4929 4930 skb = skb_rb_first(&tp->out_of_order_queue); 4931 new_range: 4932 if (!skb) { 4933 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4934 return; 4935 } 4936 start = TCP_SKB_CB(skb)->seq; 4937 end = TCP_SKB_CB(skb)->end_seq; 4938 4939 for (head = skb;;) { 4940 skb = skb_rb_next(skb); 4941 4942 /* Range is terminated when we see a gap or when 4943 * we are at the queue end. 4944 */ 4945 if (!skb || 4946 after(TCP_SKB_CB(skb)->seq, end) || 4947 before(TCP_SKB_CB(skb)->end_seq, start)) { 4948 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4949 head, skb, start, end); 4950 goto new_range; 4951 } 4952 4953 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4954 start = TCP_SKB_CB(skb)->seq; 4955 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4956 end = TCP_SKB_CB(skb)->end_seq; 4957 } 4958 } 4959 4960 /* 4961 * Clean the out-of-order queue to make room. 4962 * We drop high sequences packets to : 4963 * 1) Let a chance for holes to be filled. 4964 * 2) not add too big latencies if thousands of packets sit there. 4965 * (But if application shrinks SO_RCVBUF, we could still end up 4966 * freeing whole queue here) 4967 * 4968 * Return true if queue has shrunk. 4969 */ 4970 static bool tcp_prune_ofo_queue(struct sock *sk) 4971 { 4972 struct tcp_sock *tp = tcp_sk(sk); 4973 struct rb_node *node, *prev; 4974 4975 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4976 return false; 4977 4978 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4979 node = &tp->ooo_last_skb->rbnode; 4980 do { 4981 prev = rb_prev(node); 4982 rb_erase(node, &tp->out_of_order_queue); 4983 tcp_drop(sk, rb_to_skb(node)); 4984 sk_mem_reclaim(sk); 4985 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4986 !tcp_under_memory_pressure(sk)) 4987 break; 4988 node = prev; 4989 } while (node); 4990 tp->ooo_last_skb = rb_to_skb(prev); 4991 4992 /* Reset SACK state. A conforming SACK implementation will 4993 * do the same at a timeout based retransmit. When a connection 4994 * is in a sad state like this, we care only about integrity 4995 * of the connection not performance. 4996 */ 4997 if (tp->rx_opt.sack_ok) 4998 tcp_sack_reset(&tp->rx_opt); 4999 return true; 5000 } 5001 5002 /* Reduce allocated memory if we can, trying to get 5003 * the socket within its memory limits again. 5004 * 5005 * Return less than zero if we should start dropping frames 5006 * until the socket owning process reads some of the data 5007 * to stabilize the situation. 5008 */ 5009 static int tcp_prune_queue(struct sock *sk) 5010 { 5011 struct tcp_sock *tp = tcp_sk(sk); 5012 5013 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 5014 5015 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5016 5017 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5018 tcp_clamp_window(sk); 5019 else if (tcp_under_memory_pressure(sk)) 5020 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5021 5022 tcp_collapse_ofo_queue(sk); 5023 if (!skb_queue_empty(&sk->sk_receive_queue)) 5024 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5025 skb_peek(&sk->sk_receive_queue), 5026 NULL, 5027 tp->copied_seq, tp->rcv_nxt); 5028 sk_mem_reclaim(sk); 5029 5030 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5031 return 0; 5032 5033 /* Collapsing did not help, destructive actions follow. 5034 * This must not ever occur. */ 5035 5036 tcp_prune_ofo_queue(sk); 5037 5038 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5039 return 0; 5040 5041 /* If we are really being abused, tell the caller to silently 5042 * drop receive data on the floor. It will get retransmitted 5043 * and hopefully then we'll have sufficient space. 5044 */ 5045 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5046 5047 /* Massive buffer overcommit. */ 5048 tp->pred_flags = 0; 5049 return -1; 5050 } 5051 5052 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5053 { 5054 const struct tcp_sock *tp = tcp_sk(sk); 5055 5056 /* If the user specified a specific send buffer setting, do 5057 * not modify it. 5058 */ 5059 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5060 return false; 5061 5062 /* If we are under global TCP memory pressure, do not expand. */ 5063 if (tcp_under_memory_pressure(sk)) 5064 return false; 5065 5066 /* If we are under soft global TCP memory pressure, do not expand. */ 5067 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5068 return false; 5069 5070 /* If we filled the congestion window, do not expand. */ 5071 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5072 return false; 5073 5074 return true; 5075 } 5076 5077 /* When incoming ACK allowed to free some skb from write_queue, 5078 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5079 * on the exit from tcp input handler. 5080 * 5081 * PROBLEM: sndbuf expansion does not work well with largesend. 5082 */ 5083 static void tcp_new_space(struct sock *sk) 5084 { 5085 struct tcp_sock *tp = tcp_sk(sk); 5086 5087 if (tcp_should_expand_sndbuf(sk)) { 5088 tcp_sndbuf_expand(sk); 5089 tp->snd_cwnd_stamp = tcp_jiffies32; 5090 } 5091 5092 sk->sk_write_space(sk); 5093 } 5094 5095 static void tcp_check_space(struct sock *sk) 5096 { 5097 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5098 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5099 /* pairs with tcp_poll() */ 5100 smp_mb(); 5101 if (sk->sk_socket && 5102 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5103 tcp_new_space(sk); 5104 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5105 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5106 } 5107 } 5108 } 5109 5110 static inline void tcp_data_snd_check(struct sock *sk) 5111 { 5112 tcp_push_pending_frames(sk); 5113 tcp_check_space(sk); 5114 } 5115 5116 /* 5117 * Check if sending an ack is needed. 5118 */ 5119 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5120 { 5121 struct tcp_sock *tp = tcp_sk(sk); 5122 unsigned long rtt, delay; 5123 5124 /* More than one full frame received... */ 5125 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5126 /* ... and right edge of window advances far enough. 5127 * (tcp_recvmsg() will send ACK otherwise). 5128 * If application uses SO_RCVLOWAT, we want send ack now if 5129 * we have not received enough bytes to satisfy the condition. 5130 */ 5131 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5132 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5133 /* We ACK each frame or... */ 5134 tcp_in_quickack_mode(sk)) { 5135 send_now: 5136 tcp_send_ack(sk); 5137 return; 5138 } 5139 5140 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5141 tcp_send_delayed_ack(sk); 5142 return; 5143 } 5144 5145 if (!tcp_is_sack(tp) || 5146 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5147 goto send_now; 5148 tp->compressed_ack++; 5149 5150 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5151 return; 5152 5153 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5154 5155 rtt = tp->rcv_rtt_est.rtt_us; 5156 if (tp->srtt_us && tp->srtt_us < rtt) 5157 rtt = tp->srtt_us; 5158 5159 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5160 rtt * (NSEC_PER_USEC >> 3)/20); 5161 sock_hold(sk); 5162 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5163 HRTIMER_MODE_REL_PINNED_SOFT); 5164 } 5165 5166 static inline void tcp_ack_snd_check(struct sock *sk) 5167 { 5168 if (!inet_csk_ack_scheduled(sk)) { 5169 /* We sent a data segment already. */ 5170 return; 5171 } 5172 __tcp_ack_snd_check(sk, 1); 5173 } 5174 5175 /* 5176 * This routine is only called when we have urgent data 5177 * signaled. Its the 'slow' part of tcp_urg. It could be 5178 * moved inline now as tcp_urg is only called from one 5179 * place. We handle URGent data wrong. We have to - as 5180 * BSD still doesn't use the correction from RFC961. 5181 * For 1003.1g we should support a new option TCP_STDURG to permit 5182 * either form (or just set the sysctl tcp_stdurg). 5183 */ 5184 5185 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5186 { 5187 struct tcp_sock *tp = tcp_sk(sk); 5188 u32 ptr = ntohs(th->urg_ptr); 5189 5190 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5191 ptr--; 5192 ptr += ntohl(th->seq); 5193 5194 /* Ignore urgent data that we've already seen and read. */ 5195 if (after(tp->copied_seq, ptr)) 5196 return; 5197 5198 /* Do not replay urg ptr. 5199 * 5200 * NOTE: interesting situation not covered by specs. 5201 * Misbehaving sender may send urg ptr, pointing to segment, 5202 * which we already have in ofo queue. We are not able to fetch 5203 * such data and will stay in TCP_URG_NOTYET until will be eaten 5204 * by recvmsg(). Seems, we are not obliged to handle such wicked 5205 * situations. But it is worth to think about possibility of some 5206 * DoSes using some hypothetical application level deadlock. 5207 */ 5208 if (before(ptr, tp->rcv_nxt)) 5209 return; 5210 5211 /* Do we already have a newer (or duplicate) urgent pointer? */ 5212 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5213 return; 5214 5215 /* Tell the world about our new urgent pointer. */ 5216 sk_send_sigurg(sk); 5217 5218 /* We may be adding urgent data when the last byte read was 5219 * urgent. To do this requires some care. We cannot just ignore 5220 * tp->copied_seq since we would read the last urgent byte again 5221 * as data, nor can we alter copied_seq until this data arrives 5222 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5223 * 5224 * NOTE. Double Dutch. Rendering to plain English: author of comment 5225 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5226 * and expect that both A and B disappear from stream. This is _wrong_. 5227 * Though this happens in BSD with high probability, this is occasional. 5228 * Any application relying on this is buggy. Note also, that fix "works" 5229 * only in this artificial test. Insert some normal data between A and B and we will 5230 * decline of BSD again. Verdict: it is better to remove to trap 5231 * buggy users. 5232 */ 5233 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5234 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5235 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5236 tp->copied_seq++; 5237 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5238 __skb_unlink(skb, &sk->sk_receive_queue); 5239 __kfree_skb(skb); 5240 } 5241 } 5242 5243 tp->urg_data = TCP_URG_NOTYET; 5244 tp->urg_seq = ptr; 5245 5246 /* Disable header prediction. */ 5247 tp->pred_flags = 0; 5248 } 5249 5250 /* This is the 'fast' part of urgent handling. */ 5251 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5252 { 5253 struct tcp_sock *tp = tcp_sk(sk); 5254 5255 /* Check if we get a new urgent pointer - normally not. */ 5256 if (th->urg) 5257 tcp_check_urg(sk, th); 5258 5259 /* Do we wait for any urgent data? - normally not... */ 5260 if (tp->urg_data == TCP_URG_NOTYET) { 5261 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5262 th->syn; 5263 5264 /* Is the urgent pointer pointing into this packet? */ 5265 if (ptr < skb->len) { 5266 u8 tmp; 5267 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5268 BUG(); 5269 tp->urg_data = TCP_URG_VALID | tmp; 5270 if (!sock_flag(sk, SOCK_DEAD)) 5271 sk->sk_data_ready(sk); 5272 } 5273 } 5274 } 5275 5276 /* Accept RST for rcv_nxt - 1 after a FIN. 5277 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5278 * FIN is sent followed by a RST packet. The RST is sent with the same 5279 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5280 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5281 * ACKs on the closed socket. In addition middleboxes can drop either the 5282 * challenge ACK or a subsequent RST. 5283 */ 5284 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5285 { 5286 struct tcp_sock *tp = tcp_sk(sk); 5287 5288 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5289 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5290 TCPF_CLOSING)); 5291 } 5292 5293 /* Does PAWS and seqno based validation of an incoming segment, flags will 5294 * play significant role here. 5295 */ 5296 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5297 const struct tcphdr *th, int syn_inerr) 5298 { 5299 struct tcp_sock *tp = tcp_sk(sk); 5300 bool rst_seq_match = false; 5301 5302 /* RFC1323: H1. Apply PAWS check first. */ 5303 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5304 tp->rx_opt.saw_tstamp && 5305 tcp_paws_discard(sk, skb)) { 5306 if (!th->rst) { 5307 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5308 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5309 LINUX_MIB_TCPACKSKIPPEDPAWS, 5310 &tp->last_oow_ack_time)) 5311 tcp_send_dupack(sk, skb); 5312 goto discard; 5313 } 5314 /* Reset is accepted even if it did not pass PAWS. */ 5315 } 5316 5317 /* Step 1: check sequence number */ 5318 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5319 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5320 * (RST) segments are validated by checking their SEQ-fields." 5321 * And page 69: "If an incoming segment is not acceptable, 5322 * an acknowledgment should be sent in reply (unless the RST 5323 * bit is set, if so drop the segment and return)". 5324 */ 5325 if (!th->rst) { 5326 if (th->syn) 5327 goto syn_challenge; 5328 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5329 LINUX_MIB_TCPACKSKIPPEDSEQ, 5330 &tp->last_oow_ack_time)) 5331 tcp_send_dupack(sk, skb); 5332 } else if (tcp_reset_check(sk, skb)) { 5333 tcp_reset(sk); 5334 } 5335 goto discard; 5336 } 5337 5338 /* Step 2: check RST bit */ 5339 if (th->rst) { 5340 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5341 * FIN and SACK too if available): 5342 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5343 * the right-most SACK block, 5344 * then 5345 * RESET the connection 5346 * else 5347 * Send a challenge ACK 5348 */ 5349 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5350 tcp_reset_check(sk, skb)) { 5351 rst_seq_match = true; 5352 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5353 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5354 int max_sack = sp[0].end_seq; 5355 int this_sack; 5356 5357 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5358 ++this_sack) { 5359 max_sack = after(sp[this_sack].end_seq, 5360 max_sack) ? 5361 sp[this_sack].end_seq : max_sack; 5362 } 5363 5364 if (TCP_SKB_CB(skb)->seq == max_sack) 5365 rst_seq_match = true; 5366 } 5367 5368 if (rst_seq_match) 5369 tcp_reset(sk); 5370 else { 5371 /* Disable TFO if RST is out-of-order 5372 * and no data has been received 5373 * for current active TFO socket 5374 */ 5375 if (tp->syn_fastopen && !tp->data_segs_in && 5376 sk->sk_state == TCP_ESTABLISHED) 5377 tcp_fastopen_active_disable(sk); 5378 tcp_send_challenge_ack(sk, skb); 5379 } 5380 goto discard; 5381 } 5382 5383 /* step 3: check security and precedence [ignored] */ 5384 5385 /* step 4: Check for a SYN 5386 * RFC 5961 4.2 : Send a challenge ack 5387 */ 5388 if (th->syn) { 5389 syn_challenge: 5390 if (syn_inerr) 5391 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5392 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5393 tcp_send_challenge_ack(sk, skb); 5394 goto discard; 5395 } 5396 5397 return true; 5398 5399 discard: 5400 tcp_drop(sk, skb); 5401 return false; 5402 } 5403 5404 /* 5405 * TCP receive function for the ESTABLISHED state. 5406 * 5407 * It is split into a fast path and a slow path. The fast path is 5408 * disabled when: 5409 * - A zero window was announced from us - zero window probing 5410 * is only handled properly in the slow path. 5411 * - Out of order segments arrived. 5412 * - Urgent data is expected. 5413 * - There is no buffer space left 5414 * - Unexpected TCP flags/window values/header lengths are received 5415 * (detected by checking the TCP header against pred_flags) 5416 * - Data is sent in both directions. Fast path only supports pure senders 5417 * or pure receivers (this means either the sequence number or the ack 5418 * value must stay constant) 5419 * - Unexpected TCP option. 5420 * 5421 * When these conditions are not satisfied it drops into a standard 5422 * receive procedure patterned after RFC793 to handle all cases. 5423 * The first three cases are guaranteed by proper pred_flags setting, 5424 * the rest is checked inline. Fast processing is turned on in 5425 * tcp_data_queue when everything is OK. 5426 */ 5427 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5428 { 5429 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5430 struct tcp_sock *tp = tcp_sk(sk); 5431 unsigned int len = skb->len; 5432 5433 /* TCP congestion window tracking */ 5434 trace_tcp_probe(sk, skb); 5435 5436 tcp_mstamp_refresh(tp); 5437 if (unlikely(!sk->sk_rx_dst)) 5438 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5439 /* 5440 * Header prediction. 5441 * The code loosely follows the one in the famous 5442 * "30 instruction TCP receive" Van Jacobson mail. 5443 * 5444 * Van's trick is to deposit buffers into socket queue 5445 * on a device interrupt, to call tcp_recv function 5446 * on the receive process context and checksum and copy 5447 * the buffer to user space. smart... 5448 * 5449 * Our current scheme is not silly either but we take the 5450 * extra cost of the net_bh soft interrupt processing... 5451 * We do checksum and copy also but from device to kernel. 5452 */ 5453 5454 tp->rx_opt.saw_tstamp = 0; 5455 5456 /* pred_flags is 0xS?10 << 16 + snd_wnd 5457 * if header_prediction is to be made 5458 * 'S' will always be tp->tcp_header_len >> 2 5459 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5460 * turn it off (when there are holes in the receive 5461 * space for instance) 5462 * PSH flag is ignored. 5463 */ 5464 5465 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5466 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5467 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5468 int tcp_header_len = tp->tcp_header_len; 5469 5470 /* Timestamp header prediction: tcp_header_len 5471 * is automatically equal to th->doff*4 due to pred_flags 5472 * match. 5473 */ 5474 5475 /* Check timestamp */ 5476 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5477 /* No? Slow path! */ 5478 if (!tcp_parse_aligned_timestamp(tp, th)) 5479 goto slow_path; 5480 5481 /* If PAWS failed, check it more carefully in slow path */ 5482 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5483 goto slow_path; 5484 5485 /* DO NOT update ts_recent here, if checksum fails 5486 * and timestamp was corrupted part, it will result 5487 * in a hung connection since we will drop all 5488 * future packets due to the PAWS test. 5489 */ 5490 } 5491 5492 if (len <= tcp_header_len) { 5493 /* Bulk data transfer: sender */ 5494 if (len == tcp_header_len) { 5495 /* Predicted packet is in window by definition. 5496 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5497 * Hence, check seq<=rcv_wup reduces to: 5498 */ 5499 if (tcp_header_len == 5500 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5501 tp->rcv_nxt == tp->rcv_wup) 5502 tcp_store_ts_recent(tp); 5503 5504 /* We know that such packets are checksummed 5505 * on entry. 5506 */ 5507 tcp_ack(sk, skb, 0); 5508 __kfree_skb(skb); 5509 tcp_data_snd_check(sk); 5510 /* When receiving pure ack in fast path, update 5511 * last ts ecr directly instead of calling 5512 * tcp_rcv_rtt_measure_ts() 5513 */ 5514 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5515 return; 5516 } else { /* Header too small */ 5517 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5518 goto discard; 5519 } 5520 } else { 5521 int eaten = 0; 5522 bool fragstolen = false; 5523 5524 if (tcp_checksum_complete(skb)) 5525 goto csum_error; 5526 5527 if ((int)skb->truesize > sk->sk_forward_alloc) 5528 goto step5; 5529 5530 /* Predicted packet is in window by definition. 5531 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5532 * Hence, check seq<=rcv_wup reduces to: 5533 */ 5534 if (tcp_header_len == 5535 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5536 tp->rcv_nxt == tp->rcv_wup) 5537 tcp_store_ts_recent(tp); 5538 5539 tcp_rcv_rtt_measure_ts(sk, skb); 5540 5541 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5542 5543 /* Bulk data transfer: receiver */ 5544 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5545 &fragstolen); 5546 5547 tcp_event_data_recv(sk, skb); 5548 5549 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5550 /* Well, only one small jumplet in fast path... */ 5551 tcp_ack(sk, skb, FLAG_DATA); 5552 tcp_data_snd_check(sk); 5553 if (!inet_csk_ack_scheduled(sk)) 5554 goto no_ack; 5555 } 5556 5557 __tcp_ack_snd_check(sk, 0); 5558 no_ack: 5559 if (eaten) 5560 kfree_skb_partial(skb, fragstolen); 5561 tcp_data_ready(sk); 5562 return; 5563 } 5564 } 5565 5566 slow_path: 5567 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5568 goto csum_error; 5569 5570 if (!th->ack && !th->rst && !th->syn) 5571 goto discard; 5572 5573 /* 5574 * Standard slow path. 5575 */ 5576 5577 if (!tcp_validate_incoming(sk, skb, th, 1)) 5578 return; 5579 5580 step5: 5581 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5582 goto discard; 5583 5584 tcp_rcv_rtt_measure_ts(sk, skb); 5585 5586 /* Process urgent data. */ 5587 tcp_urg(sk, skb, th); 5588 5589 /* step 7: process the segment text */ 5590 tcp_data_queue(sk, skb); 5591 5592 tcp_data_snd_check(sk); 5593 tcp_ack_snd_check(sk); 5594 return; 5595 5596 csum_error: 5597 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5598 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5599 5600 discard: 5601 tcp_drop(sk, skb); 5602 } 5603 EXPORT_SYMBOL(tcp_rcv_established); 5604 5605 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5606 { 5607 struct tcp_sock *tp = tcp_sk(sk); 5608 struct inet_connection_sock *icsk = inet_csk(sk); 5609 5610 tcp_set_state(sk, TCP_ESTABLISHED); 5611 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5612 5613 if (skb) { 5614 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5615 security_inet_conn_established(sk, skb); 5616 sk_mark_napi_id(sk, skb); 5617 } 5618 5619 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5620 5621 /* Prevent spurious tcp_cwnd_restart() on first data 5622 * packet. 5623 */ 5624 tp->lsndtime = tcp_jiffies32; 5625 5626 if (sock_flag(sk, SOCK_KEEPOPEN)) 5627 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5628 5629 if (!tp->rx_opt.snd_wscale) 5630 __tcp_fast_path_on(tp, tp->snd_wnd); 5631 else 5632 tp->pred_flags = 0; 5633 } 5634 5635 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5636 struct tcp_fastopen_cookie *cookie) 5637 { 5638 struct tcp_sock *tp = tcp_sk(sk); 5639 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5640 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5641 bool syn_drop = false; 5642 5643 if (mss == tp->rx_opt.user_mss) { 5644 struct tcp_options_received opt; 5645 5646 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5647 tcp_clear_options(&opt); 5648 opt.user_mss = opt.mss_clamp = 0; 5649 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5650 mss = opt.mss_clamp; 5651 } 5652 5653 if (!tp->syn_fastopen) { 5654 /* Ignore an unsolicited cookie */ 5655 cookie->len = -1; 5656 } else if (tp->total_retrans) { 5657 /* SYN timed out and the SYN-ACK neither has a cookie nor 5658 * acknowledges data. Presumably the remote received only 5659 * the retransmitted (regular) SYNs: either the original 5660 * SYN-data or the corresponding SYN-ACK was dropped. 5661 */ 5662 syn_drop = (cookie->len < 0 && data); 5663 } else if (cookie->len < 0 && !tp->syn_data) { 5664 /* We requested a cookie but didn't get it. If we did not use 5665 * the (old) exp opt format then try so next time (try_exp=1). 5666 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5667 */ 5668 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5669 } 5670 5671 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5672 5673 if (data) { /* Retransmit unacked data in SYN */ 5674 skb_rbtree_walk_from(data) { 5675 if (__tcp_retransmit_skb(sk, data, 1)) 5676 break; 5677 } 5678 tcp_rearm_rto(sk); 5679 NET_INC_STATS(sock_net(sk), 5680 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5681 return true; 5682 } 5683 tp->syn_data_acked = tp->syn_data; 5684 if (tp->syn_data_acked) { 5685 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5686 /* SYN-data is counted as two separate packets in tcp_ack() */ 5687 if (tp->delivered > 1) 5688 --tp->delivered; 5689 } 5690 5691 tcp_fastopen_add_skb(sk, synack); 5692 5693 return false; 5694 } 5695 5696 static void smc_check_reset_syn(struct tcp_sock *tp) 5697 { 5698 #if IS_ENABLED(CONFIG_SMC) 5699 if (static_branch_unlikely(&tcp_have_smc)) { 5700 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5701 tp->syn_smc = 0; 5702 } 5703 #endif 5704 } 5705 5706 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5707 const struct tcphdr *th) 5708 { 5709 struct inet_connection_sock *icsk = inet_csk(sk); 5710 struct tcp_sock *tp = tcp_sk(sk); 5711 struct tcp_fastopen_cookie foc = { .len = -1 }; 5712 int saved_clamp = tp->rx_opt.mss_clamp; 5713 bool fastopen_fail; 5714 5715 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5716 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5717 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5718 5719 if (th->ack) { 5720 /* rfc793: 5721 * "If the state is SYN-SENT then 5722 * first check the ACK bit 5723 * If the ACK bit is set 5724 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5725 * a reset (unless the RST bit is set, if so drop 5726 * the segment and return)" 5727 */ 5728 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5729 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5730 goto reset_and_undo; 5731 5732 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5733 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5734 tcp_time_stamp(tp))) { 5735 NET_INC_STATS(sock_net(sk), 5736 LINUX_MIB_PAWSACTIVEREJECTED); 5737 goto reset_and_undo; 5738 } 5739 5740 /* Now ACK is acceptable. 5741 * 5742 * "If the RST bit is set 5743 * If the ACK was acceptable then signal the user "error: 5744 * connection reset", drop the segment, enter CLOSED state, 5745 * delete TCB, and return." 5746 */ 5747 5748 if (th->rst) { 5749 tcp_reset(sk); 5750 goto discard; 5751 } 5752 5753 /* rfc793: 5754 * "fifth, if neither of the SYN or RST bits is set then 5755 * drop the segment and return." 5756 * 5757 * See note below! 5758 * --ANK(990513) 5759 */ 5760 if (!th->syn) 5761 goto discard_and_undo; 5762 5763 /* rfc793: 5764 * "If the SYN bit is on ... 5765 * are acceptable then ... 5766 * (our SYN has been ACKed), change the connection 5767 * state to ESTABLISHED..." 5768 */ 5769 5770 tcp_ecn_rcv_synack(tp, th); 5771 5772 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5773 tcp_ack(sk, skb, FLAG_SLOWPATH); 5774 5775 /* Ok.. it's good. Set up sequence numbers and 5776 * move to established. 5777 */ 5778 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5779 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5780 5781 /* RFC1323: The window in SYN & SYN/ACK segments is 5782 * never scaled. 5783 */ 5784 tp->snd_wnd = ntohs(th->window); 5785 5786 if (!tp->rx_opt.wscale_ok) { 5787 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5788 tp->window_clamp = min(tp->window_clamp, 65535U); 5789 } 5790 5791 if (tp->rx_opt.saw_tstamp) { 5792 tp->rx_opt.tstamp_ok = 1; 5793 tp->tcp_header_len = 5794 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5795 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5796 tcp_store_ts_recent(tp); 5797 } else { 5798 tp->tcp_header_len = sizeof(struct tcphdr); 5799 } 5800 5801 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5802 tcp_initialize_rcv_mss(sk); 5803 5804 /* Remember, tcp_poll() does not lock socket! 5805 * Change state from SYN-SENT only after copied_seq 5806 * is initialized. */ 5807 tp->copied_seq = tp->rcv_nxt; 5808 5809 smc_check_reset_syn(tp); 5810 5811 smp_mb(); 5812 5813 tcp_finish_connect(sk, skb); 5814 5815 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5816 tcp_rcv_fastopen_synack(sk, skb, &foc); 5817 5818 if (!sock_flag(sk, SOCK_DEAD)) { 5819 sk->sk_state_change(sk); 5820 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5821 } 5822 if (fastopen_fail) 5823 return -1; 5824 if (sk->sk_write_pending || 5825 icsk->icsk_accept_queue.rskq_defer_accept || 5826 icsk->icsk_ack.pingpong) { 5827 /* Save one ACK. Data will be ready after 5828 * several ticks, if write_pending is set. 5829 * 5830 * It may be deleted, but with this feature tcpdumps 5831 * look so _wonderfully_ clever, that I was not able 5832 * to stand against the temptation 8) --ANK 5833 */ 5834 inet_csk_schedule_ack(sk); 5835 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5836 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5837 TCP_DELACK_MAX, TCP_RTO_MAX); 5838 5839 discard: 5840 tcp_drop(sk, skb); 5841 return 0; 5842 } else { 5843 tcp_send_ack(sk); 5844 } 5845 return -1; 5846 } 5847 5848 /* No ACK in the segment */ 5849 5850 if (th->rst) { 5851 /* rfc793: 5852 * "If the RST bit is set 5853 * 5854 * Otherwise (no ACK) drop the segment and return." 5855 */ 5856 5857 goto discard_and_undo; 5858 } 5859 5860 /* PAWS check. */ 5861 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5862 tcp_paws_reject(&tp->rx_opt, 0)) 5863 goto discard_and_undo; 5864 5865 if (th->syn) { 5866 /* We see SYN without ACK. It is attempt of 5867 * simultaneous connect with crossed SYNs. 5868 * Particularly, it can be connect to self. 5869 */ 5870 tcp_set_state(sk, TCP_SYN_RECV); 5871 5872 if (tp->rx_opt.saw_tstamp) { 5873 tp->rx_opt.tstamp_ok = 1; 5874 tcp_store_ts_recent(tp); 5875 tp->tcp_header_len = 5876 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5877 } else { 5878 tp->tcp_header_len = sizeof(struct tcphdr); 5879 } 5880 5881 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5882 tp->copied_seq = tp->rcv_nxt; 5883 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5884 5885 /* RFC1323: The window in SYN & SYN/ACK segments is 5886 * never scaled. 5887 */ 5888 tp->snd_wnd = ntohs(th->window); 5889 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5890 tp->max_window = tp->snd_wnd; 5891 5892 tcp_ecn_rcv_syn(tp, th); 5893 5894 tcp_mtup_init(sk); 5895 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5896 tcp_initialize_rcv_mss(sk); 5897 5898 tcp_send_synack(sk); 5899 #if 0 5900 /* Note, we could accept data and URG from this segment. 5901 * There are no obstacles to make this (except that we must 5902 * either change tcp_recvmsg() to prevent it from returning data 5903 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5904 * 5905 * However, if we ignore data in ACKless segments sometimes, 5906 * we have no reasons to accept it sometimes. 5907 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5908 * is not flawless. So, discard packet for sanity. 5909 * Uncomment this return to process the data. 5910 */ 5911 return -1; 5912 #else 5913 goto discard; 5914 #endif 5915 } 5916 /* "fifth, if neither of the SYN or RST bits is set then 5917 * drop the segment and return." 5918 */ 5919 5920 discard_and_undo: 5921 tcp_clear_options(&tp->rx_opt); 5922 tp->rx_opt.mss_clamp = saved_clamp; 5923 goto discard; 5924 5925 reset_and_undo: 5926 tcp_clear_options(&tp->rx_opt); 5927 tp->rx_opt.mss_clamp = saved_clamp; 5928 return 1; 5929 } 5930 5931 /* 5932 * This function implements the receiving procedure of RFC 793 for 5933 * all states except ESTABLISHED and TIME_WAIT. 5934 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5935 * address independent. 5936 */ 5937 5938 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5939 { 5940 struct tcp_sock *tp = tcp_sk(sk); 5941 struct inet_connection_sock *icsk = inet_csk(sk); 5942 const struct tcphdr *th = tcp_hdr(skb); 5943 struct request_sock *req; 5944 int queued = 0; 5945 bool acceptable; 5946 5947 switch (sk->sk_state) { 5948 case TCP_CLOSE: 5949 goto discard; 5950 5951 case TCP_LISTEN: 5952 if (th->ack) 5953 return 1; 5954 5955 if (th->rst) 5956 goto discard; 5957 5958 if (th->syn) { 5959 if (th->fin) 5960 goto discard; 5961 /* It is possible that we process SYN packets from backlog, 5962 * so we need to make sure to disable BH right there. 5963 */ 5964 local_bh_disable(); 5965 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5966 local_bh_enable(); 5967 5968 if (!acceptable) 5969 return 1; 5970 consume_skb(skb); 5971 return 0; 5972 } 5973 goto discard; 5974 5975 case TCP_SYN_SENT: 5976 tp->rx_opt.saw_tstamp = 0; 5977 tcp_mstamp_refresh(tp); 5978 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5979 if (queued >= 0) 5980 return queued; 5981 5982 /* Do step6 onward by hand. */ 5983 tcp_urg(sk, skb, th); 5984 __kfree_skb(skb); 5985 tcp_data_snd_check(sk); 5986 return 0; 5987 } 5988 5989 tcp_mstamp_refresh(tp); 5990 tp->rx_opt.saw_tstamp = 0; 5991 req = tp->fastopen_rsk; 5992 if (req) { 5993 bool req_stolen; 5994 5995 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5996 sk->sk_state != TCP_FIN_WAIT1); 5997 5998 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 5999 goto discard; 6000 } 6001 6002 if (!th->ack && !th->rst && !th->syn) 6003 goto discard; 6004 6005 if (!tcp_validate_incoming(sk, skb, th, 0)) 6006 return 0; 6007 6008 /* step 5: check the ACK field */ 6009 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6010 FLAG_UPDATE_TS_RECENT | 6011 FLAG_NO_CHALLENGE_ACK) > 0; 6012 6013 if (!acceptable) { 6014 if (sk->sk_state == TCP_SYN_RECV) 6015 return 1; /* send one RST */ 6016 tcp_send_challenge_ack(sk, skb); 6017 goto discard; 6018 } 6019 switch (sk->sk_state) { 6020 case TCP_SYN_RECV: 6021 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6022 if (!tp->srtt_us) 6023 tcp_synack_rtt_meas(sk, req); 6024 6025 /* Once we leave TCP_SYN_RECV, we no longer need req 6026 * so release it. 6027 */ 6028 if (req) { 6029 inet_csk(sk)->icsk_retransmits = 0; 6030 reqsk_fastopen_remove(sk, req, false); 6031 /* Re-arm the timer because data may have been sent out. 6032 * This is similar to the regular data transmission case 6033 * when new data has just been ack'ed. 6034 * 6035 * (TFO) - we could try to be more aggressive and 6036 * retransmitting any data sooner based on when they 6037 * are sent out. 6038 */ 6039 tcp_rearm_rto(sk); 6040 } else { 6041 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6042 tp->copied_seq = tp->rcv_nxt; 6043 } 6044 smp_mb(); 6045 tcp_set_state(sk, TCP_ESTABLISHED); 6046 sk->sk_state_change(sk); 6047 6048 /* Note, that this wakeup is only for marginal crossed SYN case. 6049 * Passively open sockets are not waked up, because 6050 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6051 */ 6052 if (sk->sk_socket) 6053 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6054 6055 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6056 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6057 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6058 6059 if (tp->rx_opt.tstamp_ok) 6060 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6061 6062 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6063 tcp_update_pacing_rate(sk); 6064 6065 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6066 tp->lsndtime = tcp_jiffies32; 6067 6068 tcp_initialize_rcv_mss(sk); 6069 tcp_fast_path_on(tp); 6070 break; 6071 6072 case TCP_FIN_WAIT1: { 6073 int tmo; 6074 6075 /* If we enter the TCP_FIN_WAIT1 state and we are a 6076 * Fast Open socket and this is the first acceptable 6077 * ACK we have received, this would have acknowledged 6078 * our SYNACK so stop the SYNACK timer. 6079 */ 6080 if (req) { 6081 /* We no longer need the request sock. */ 6082 reqsk_fastopen_remove(sk, req, false); 6083 tcp_rearm_rto(sk); 6084 } 6085 if (tp->snd_una != tp->write_seq) 6086 break; 6087 6088 tcp_set_state(sk, TCP_FIN_WAIT2); 6089 sk->sk_shutdown |= SEND_SHUTDOWN; 6090 6091 sk_dst_confirm(sk); 6092 6093 if (!sock_flag(sk, SOCK_DEAD)) { 6094 /* Wake up lingering close() */ 6095 sk->sk_state_change(sk); 6096 break; 6097 } 6098 6099 if (tp->linger2 < 0) { 6100 tcp_done(sk); 6101 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6102 return 1; 6103 } 6104 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6105 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6106 /* Receive out of order FIN after close() */ 6107 if (tp->syn_fastopen && th->fin) 6108 tcp_fastopen_active_disable(sk); 6109 tcp_done(sk); 6110 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6111 return 1; 6112 } 6113 6114 tmo = tcp_fin_time(sk); 6115 if (tmo > TCP_TIMEWAIT_LEN) { 6116 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6117 } else if (th->fin || sock_owned_by_user(sk)) { 6118 /* Bad case. We could lose such FIN otherwise. 6119 * It is not a big problem, but it looks confusing 6120 * and not so rare event. We still can lose it now, 6121 * if it spins in bh_lock_sock(), but it is really 6122 * marginal case. 6123 */ 6124 inet_csk_reset_keepalive_timer(sk, tmo); 6125 } else { 6126 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6127 goto discard; 6128 } 6129 break; 6130 } 6131 6132 case TCP_CLOSING: 6133 if (tp->snd_una == tp->write_seq) { 6134 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6135 goto discard; 6136 } 6137 break; 6138 6139 case TCP_LAST_ACK: 6140 if (tp->snd_una == tp->write_seq) { 6141 tcp_update_metrics(sk); 6142 tcp_done(sk); 6143 goto discard; 6144 } 6145 break; 6146 } 6147 6148 /* step 6: check the URG bit */ 6149 tcp_urg(sk, skb, th); 6150 6151 /* step 7: process the segment text */ 6152 switch (sk->sk_state) { 6153 case TCP_CLOSE_WAIT: 6154 case TCP_CLOSING: 6155 case TCP_LAST_ACK: 6156 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6157 break; 6158 /* fall through */ 6159 case TCP_FIN_WAIT1: 6160 case TCP_FIN_WAIT2: 6161 /* RFC 793 says to queue data in these states, 6162 * RFC 1122 says we MUST send a reset. 6163 * BSD 4.4 also does reset. 6164 */ 6165 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6166 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6167 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6168 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6169 tcp_reset(sk); 6170 return 1; 6171 } 6172 } 6173 /* Fall through */ 6174 case TCP_ESTABLISHED: 6175 tcp_data_queue(sk, skb); 6176 queued = 1; 6177 break; 6178 } 6179 6180 /* tcp_data could move socket to TIME-WAIT */ 6181 if (sk->sk_state != TCP_CLOSE) { 6182 tcp_data_snd_check(sk); 6183 tcp_ack_snd_check(sk); 6184 } 6185 6186 if (!queued) { 6187 discard: 6188 tcp_drop(sk, skb); 6189 } 6190 return 0; 6191 } 6192 EXPORT_SYMBOL(tcp_rcv_state_process); 6193 6194 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6195 { 6196 struct inet_request_sock *ireq = inet_rsk(req); 6197 6198 if (family == AF_INET) 6199 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6200 &ireq->ir_rmt_addr, port); 6201 #if IS_ENABLED(CONFIG_IPV6) 6202 else if (family == AF_INET6) 6203 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6204 &ireq->ir_v6_rmt_addr, port); 6205 #endif 6206 } 6207 6208 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6209 * 6210 * If we receive a SYN packet with these bits set, it means a 6211 * network is playing bad games with TOS bits. In order to 6212 * avoid possible false congestion notifications, we disable 6213 * TCP ECN negotiation. 6214 * 6215 * Exception: tcp_ca wants ECN. This is required for DCTCP 6216 * congestion control: Linux DCTCP asserts ECT on all packets, 6217 * including SYN, which is most optimal solution; however, 6218 * others, such as FreeBSD do not. 6219 */ 6220 static void tcp_ecn_create_request(struct request_sock *req, 6221 const struct sk_buff *skb, 6222 const struct sock *listen_sk, 6223 const struct dst_entry *dst) 6224 { 6225 const struct tcphdr *th = tcp_hdr(skb); 6226 const struct net *net = sock_net(listen_sk); 6227 bool th_ecn = th->ece && th->cwr; 6228 bool ect, ecn_ok; 6229 u32 ecn_ok_dst; 6230 6231 if (!th_ecn) 6232 return; 6233 6234 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6235 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6236 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6237 6238 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6239 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6240 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6241 inet_rsk(req)->ecn_ok = 1; 6242 } 6243 6244 static void tcp_openreq_init(struct request_sock *req, 6245 const struct tcp_options_received *rx_opt, 6246 struct sk_buff *skb, const struct sock *sk) 6247 { 6248 struct inet_request_sock *ireq = inet_rsk(req); 6249 6250 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6251 req->cookie_ts = 0; 6252 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6253 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6254 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6255 tcp_rsk(req)->last_oow_ack_time = 0; 6256 req->mss = rx_opt->mss_clamp; 6257 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6258 ireq->tstamp_ok = rx_opt->tstamp_ok; 6259 ireq->sack_ok = rx_opt->sack_ok; 6260 ireq->snd_wscale = rx_opt->snd_wscale; 6261 ireq->wscale_ok = rx_opt->wscale_ok; 6262 ireq->acked = 0; 6263 ireq->ecn_ok = 0; 6264 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6265 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6266 ireq->ir_mark = inet_request_mark(sk, skb); 6267 #if IS_ENABLED(CONFIG_SMC) 6268 ireq->smc_ok = rx_opt->smc_ok; 6269 #endif 6270 } 6271 6272 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6273 struct sock *sk_listener, 6274 bool attach_listener) 6275 { 6276 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6277 attach_listener); 6278 6279 if (req) { 6280 struct inet_request_sock *ireq = inet_rsk(req); 6281 6282 ireq->ireq_opt = NULL; 6283 #if IS_ENABLED(CONFIG_IPV6) 6284 ireq->pktopts = NULL; 6285 #endif 6286 atomic64_set(&ireq->ir_cookie, 0); 6287 ireq->ireq_state = TCP_NEW_SYN_RECV; 6288 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6289 ireq->ireq_family = sk_listener->sk_family; 6290 } 6291 6292 return req; 6293 } 6294 EXPORT_SYMBOL(inet_reqsk_alloc); 6295 6296 /* 6297 * Return true if a syncookie should be sent 6298 */ 6299 static bool tcp_syn_flood_action(const struct sock *sk, 6300 const struct sk_buff *skb, 6301 const char *proto) 6302 { 6303 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6304 const char *msg = "Dropping request"; 6305 bool want_cookie = false; 6306 struct net *net = sock_net(sk); 6307 6308 #ifdef CONFIG_SYN_COOKIES 6309 if (net->ipv4.sysctl_tcp_syncookies) { 6310 msg = "Sending cookies"; 6311 want_cookie = true; 6312 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6313 } else 6314 #endif 6315 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6316 6317 if (!queue->synflood_warned && 6318 net->ipv4.sysctl_tcp_syncookies != 2 && 6319 xchg(&queue->synflood_warned, 1) == 0) 6320 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6321 proto, ntohs(tcp_hdr(skb)->dest), msg); 6322 6323 return want_cookie; 6324 } 6325 6326 static void tcp_reqsk_record_syn(const struct sock *sk, 6327 struct request_sock *req, 6328 const struct sk_buff *skb) 6329 { 6330 if (tcp_sk(sk)->save_syn) { 6331 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6332 u32 *copy; 6333 6334 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6335 if (copy) { 6336 copy[0] = len; 6337 memcpy(©[1], skb_network_header(skb), len); 6338 req->saved_syn = copy; 6339 } 6340 } 6341 } 6342 6343 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6344 const struct tcp_request_sock_ops *af_ops, 6345 struct sock *sk, struct sk_buff *skb) 6346 { 6347 struct tcp_fastopen_cookie foc = { .len = -1 }; 6348 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6349 struct tcp_options_received tmp_opt; 6350 struct tcp_sock *tp = tcp_sk(sk); 6351 struct net *net = sock_net(sk); 6352 struct sock *fastopen_sk = NULL; 6353 struct request_sock *req; 6354 bool want_cookie = false; 6355 struct dst_entry *dst; 6356 struct flowi fl; 6357 6358 /* TW buckets are converted to open requests without 6359 * limitations, they conserve resources and peer is 6360 * evidently real one. 6361 */ 6362 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6363 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6364 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6365 if (!want_cookie) 6366 goto drop; 6367 } 6368 6369 if (sk_acceptq_is_full(sk)) { 6370 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6371 goto drop; 6372 } 6373 6374 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6375 if (!req) 6376 goto drop; 6377 6378 tcp_rsk(req)->af_specific = af_ops; 6379 tcp_rsk(req)->ts_off = 0; 6380 6381 tcp_clear_options(&tmp_opt); 6382 tmp_opt.mss_clamp = af_ops->mss_clamp; 6383 tmp_opt.user_mss = tp->rx_opt.user_mss; 6384 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6385 want_cookie ? NULL : &foc); 6386 6387 if (want_cookie && !tmp_opt.saw_tstamp) 6388 tcp_clear_options(&tmp_opt); 6389 6390 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6391 tmp_opt.smc_ok = 0; 6392 6393 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6394 tcp_openreq_init(req, &tmp_opt, skb, sk); 6395 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6396 6397 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6398 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6399 6400 af_ops->init_req(req, sk, skb); 6401 6402 if (security_inet_conn_request(sk, skb, req)) 6403 goto drop_and_free; 6404 6405 if (tmp_opt.tstamp_ok) 6406 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6407 6408 dst = af_ops->route_req(sk, &fl, req); 6409 if (!dst) 6410 goto drop_and_free; 6411 6412 if (!want_cookie && !isn) { 6413 /* Kill the following clause, if you dislike this way. */ 6414 if (!net->ipv4.sysctl_tcp_syncookies && 6415 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6416 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6417 !tcp_peer_is_proven(req, dst)) { 6418 /* Without syncookies last quarter of 6419 * backlog is filled with destinations, 6420 * proven to be alive. 6421 * It means that we continue to communicate 6422 * to destinations, already remembered 6423 * to the moment of synflood. 6424 */ 6425 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6426 rsk_ops->family); 6427 goto drop_and_release; 6428 } 6429 6430 isn = af_ops->init_seq(skb); 6431 } 6432 6433 tcp_ecn_create_request(req, skb, sk, dst); 6434 6435 if (want_cookie) { 6436 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6437 req->cookie_ts = tmp_opt.tstamp_ok; 6438 if (!tmp_opt.tstamp_ok) 6439 inet_rsk(req)->ecn_ok = 0; 6440 } 6441 6442 tcp_rsk(req)->snt_isn = isn; 6443 tcp_rsk(req)->txhash = net_tx_rndhash(); 6444 tcp_openreq_init_rwin(req, sk, dst); 6445 sk_rx_queue_set(req_to_sk(req), skb); 6446 if (!want_cookie) { 6447 tcp_reqsk_record_syn(sk, req, skb); 6448 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6449 } 6450 if (fastopen_sk) { 6451 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6452 &foc, TCP_SYNACK_FASTOPEN); 6453 /* Add the child socket directly into the accept queue */ 6454 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6455 sk->sk_data_ready(sk); 6456 bh_unlock_sock(fastopen_sk); 6457 sock_put(fastopen_sk); 6458 } else { 6459 tcp_rsk(req)->tfo_listener = false; 6460 if (!want_cookie) 6461 inet_csk_reqsk_queue_hash_add(sk, req, 6462 tcp_timeout_init((struct sock *)req)); 6463 af_ops->send_synack(sk, dst, &fl, req, &foc, 6464 !want_cookie ? TCP_SYNACK_NORMAL : 6465 TCP_SYNACK_COOKIE); 6466 if (want_cookie) { 6467 reqsk_free(req); 6468 return 0; 6469 } 6470 } 6471 reqsk_put(req); 6472 return 0; 6473 6474 drop_and_release: 6475 dst_release(dst); 6476 drop_and_free: 6477 reqsk_free(req); 6478 drop: 6479 tcp_listendrop(sk); 6480 return 0; 6481 } 6482 EXPORT_SYMBOL(tcp_conn_request); 6483