xref: /openbmc/linux/net/ipv4/tcp_input.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_dec(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
133 
134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 			     unsigned int len)
136 {
137 	static bool __once __read_mostly;
138 
139 	if (!__once) {
140 		struct net_device *dev;
141 
142 		__once = true;
143 
144 		rcu_read_lock();
145 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 		if (!dev || len >= dev->mtu)
147 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 				dev ? dev->name : "Unknown driver");
149 		rcu_read_unlock();
150 	}
151 }
152 
153 /* Adapt the MSS value used to make delayed ack decision to the
154  * real world.
155  */
156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
157 {
158 	struct inet_connection_sock *icsk = inet_csk(sk);
159 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 	unsigned int len;
161 
162 	icsk->icsk_ack.last_seg_size = 0;
163 
164 	/* skb->len may jitter because of SACKs, even if peer
165 	 * sends good full-sized frames.
166 	 */
167 	len = skb_shinfo(skb)->gso_size ? : skb->len;
168 	if (len >= icsk->icsk_ack.rcv_mss) {
169 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 					       tcp_sk(sk)->advmss);
171 		/* Account for possibly-removed options */
172 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 				   MAX_TCP_OPTION_SPACE))
174 			tcp_gro_dev_warn(sk, skb, len);
175 	} else {
176 		/* Otherwise, we make more careful check taking into account,
177 		 * that SACKs block is variable.
178 		 *
179 		 * "len" is invariant segment length, including TCP header.
180 		 */
181 		len += skb->data - skb_transport_header(skb);
182 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 		    /* If PSH is not set, packet should be
184 		     * full sized, provided peer TCP is not badly broken.
185 		     * This observation (if it is correct 8)) allows
186 		     * to handle super-low mtu links fairly.
187 		     */
188 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 			/* Subtract also invariant (if peer is RFC compliant),
191 			 * tcp header plus fixed timestamp option length.
192 			 * Resulting "len" is MSS free of SACK jitter.
193 			 */
194 			len -= tcp_sk(sk)->tcp_header_len;
195 			icsk->icsk_ack.last_seg_size = len;
196 			if (len == lss) {
197 				icsk->icsk_ack.rcv_mss = len;
198 				return;
199 			}
200 		}
201 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
204 	}
205 }
206 
207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
208 {
209 	struct inet_connection_sock *icsk = inet_csk(sk);
210 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
211 
212 	if (quickacks == 0)
213 		quickacks = 2;
214 	quickacks = min(quickacks, max_quickacks);
215 	if (quickacks > icsk->icsk_ack.quick)
216 		icsk->icsk_ack.quick = quickacks;
217 }
218 
219 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
220 {
221 	struct inet_connection_sock *icsk = inet_csk(sk);
222 
223 	tcp_incr_quickack(sk, max_quickacks);
224 	icsk->icsk_ack.pingpong = 0;
225 	icsk->icsk_ack.ato = TCP_ATO_MIN;
226 }
227 
228 /* Send ACKs quickly, if "quick" count is not exhausted
229  * and the session is not interactive.
230  */
231 
232 static bool tcp_in_quickack_mode(struct sock *sk)
233 {
234 	const struct inet_connection_sock *icsk = inet_csk(sk);
235 	const struct dst_entry *dst = __sk_dst_get(sk);
236 
237 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
238 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
239 }
240 
241 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
242 {
243 	if (tp->ecn_flags & TCP_ECN_OK)
244 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
245 }
246 
247 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
248 {
249 	if (tcp_hdr(skb)->cwr)
250 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
251 }
252 
253 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
254 {
255 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
256 }
257 
258 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 
262 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
263 	case INET_ECN_NOT_ECT:
264 		/* Funny extension: if ECT is not set on a segment,
265 		 * and we already seen ECT on a previous segment,
266 		 * it is probably a retransmit.
267 		 */
268 		if (tp->ecn_flags & TCP_ECN_SEEN)
269 			tcp_enter_quickack_mode(sk, 2);
270 		break;
271 	case INET_ECN_CE:
272 		if (tcp_ca_needs_ecn(sk))
273 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
274 
275 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
276 			/* Better not delay acks, sender can have a very low cwnd */
277 			tcp_enter_quickack_mode(sk, 2);
278 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
279 		}
280 		tp->ecn_flags |= TCP_ECN_SEEN;
281 		break;
282 	default:
283 		if (tcp_ca_needs_ecn(sk))
284 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
285 		tp->ecn_flags |= TCP_ECN_SEEN;
286 		break;
287 	}
288 }
289 
290 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
291 {
292 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
293 		__tcp_ecn_check_ce(sk, skb);
294 }
295 
296 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
297 {
298 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
299 		tp->ecn_flags &= ~TCP_ECN_OK;
300 }
301 
302 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
303 {
304 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
305 		tp->ecn_flags &= ~TCP_ECN_OK;
306 }
307 
308 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
309 {
310 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
311 		return true;
312 	return false;
313 }
314 
315 /* Buffer size and advertised window tuning.
316  *
317  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
318  */
319 
320 static void tcp_sndbuf_expand(struct sock *sk)
321 {
322 	const struct tcp_sock *tp = tcp_sk(sk);
323 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
324 	int sndmem, per_mss;
325 	u32 nr_segs;
326 
327 	/* Worst case is non GSO/TSO : each frame consumes one skb
328 	 * and skb->head is kmalloced using power of two area of memory
329 	 */
330 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
331 		  MAX_TCP_HEADER +
332 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
333 
334 	per_mss = roundup_pow_of_two(per_mss) +
335 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
336 
337 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
338 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
339 
340 	/* Fast Recovery (RFC 5681 3.2) :
341 	 * Cubic needs 1.7 factor, rounded to 2 to include
342 	 * extra cushion (application might react slowly to EPOLLOUT)
343 	 */
344 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
345 	sndmem *= nr_segs * per_mss;
346 
347 	if (sk->sk_sndbuf < sndmem)
348 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
349 }
350 
351 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
352  *
353  * All tcp_full_space() is split to two parts: "network" buffer, allocated
354  * forward and advertised in receiver window (tp->rcv_wnd) and
355  * "application buffer", required to isolate scheduling/application
356  * latencies from network.
357  * window_clamp is maximal advertised window. It can be less than
358  * tcp_full_space(), in this case tcp_full_space() - window_clamp
359  * is reserved for "application" buffer. The less window_clamp is
360  * the smoother our behaviour from viewpoint of network, but the lower
361  * throughput and the higher sensitivity of the connection to losses. 8)
362  *
363  * rcv_ssthresh is more strict window_clamp used at "slow start"
364  * phase to predict further behaviour of this connection.
365  * It is used for two goals:
366  * - to enforce header prediction at sender, even when application
367  *   requires some significant "application buffer". It is check #1.
368  * - to prevent pruning of receive queue because of misprediction
369  *   of receiver window. Check #2.
370  *
371  * The scheme does not work when sender sends good segments opening
372  * window and then starts to feed us spaghetti. But it should work
373  * in common situations. Otherwise, we have to rely on queue collapsing.
374  */
375 
376 /* Slow part of check#2. */
377 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
378 {
379 	struct tcp_sock *tp = tcp_sk(sk);
380 	/* Optimize this! */
381 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
382 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
383 
384 	while (tp->rcv_ssthresh <= window) {
385 		if (truesize <= skb->len)
386 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
387 
388 		truesize >>= 1;
389 		window >>= 1;
390 	}
391 	return 0;
392 }
393 
394 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
395 {
396 	struct tcp_sock *tp = tcp_sk(sk);
397 
398 	/* Check #1 */
399 	if (tp->rcv_ssthresh < tp->window_clamp &&
400 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
401 	    !tcp_under_memory_pressure(sk)) {
402 		int incr;
403 
404 		/* Check #2. Increase window, if skb with such overhead
405 		 * will fit to rcvbuf in future.
406 		 */
407 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
408 			incr = 2 * tp->advmss;
409 		else
410 			incr = __tcp_grow_window(sk, skb);
411 
412 		if (incr) {
413 			incr = max_t(int, incr, 2 * skb->len);
414 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
415 					       tp->window_clamp);
416 			inet_csk(sk)->icsk_ack.quick |= 1;
417 		}
418 	}
419 }
420 
421 /* 3. Tuning rcvbuf, when connection enters established state. */
422 static void tcp_fixup_rcvbuf(struct sock *sk)
423 {
424 	u32 mss = tcp_sk(sk)->advmss;
425 	int rcvmem;
426 
427 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
428 		 tcp_default_init_rwnd(mss);
429 
430 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
431 	 * Allow enough cushion so that sender is not limited by our window
432 	 */
433 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
434 		rcvmem <<= 2;
435 
436 	if (sk->sk_rcvbuf < rcvmem)
437 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
438 }
439 
440 /* 4. Try to fixup all. It is made immediately after connection enters
441  *    established state.
442  */
443 void tcp_init_buffer_space(struct sock *sk)
444 {
445 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
446 	struct tcp_sock *tp = tcp_sk(sk);
447 	int maxwin;
448 
449 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
450 		tcp_fixup_rcvbuf(sk);
451 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
452 		tcp_sndbuf_expand(sk);
453 
454 	tp->rcvq_space.space = tp->rcv_wnd;
455 	tcp_mstamp_refresh(tp);
456 	tp->rcvq_space.time = tp->tcp_mstamp;
457 	tp->rcvq_space.seq = tp->copied_seq;
458 
459 	maxwin = tcp_full_space(sk);
460 
461 	if (tp->window_clamp >= maxwin) {
462 		tp->window_clamp = maxwin;
463 
464 		if (tcp_app_win && maxwin > 4 * tp->advmss)
465 			tp->window_clamp = max(maxwin -
466 					       (maxwin >> tcp_app_win),
467 					       4 * tp->advmss);
468 	}
469 
470 	/* Force reservation of one segment. */
471 	if (tcp_app_win &&
472 	    tp->window_clamp > 2 * tp->advmss &&
473 	    tp->window_clamp + tp->advmss > maxwin)
474 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
475 
476 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
477 	tp->snd_cwnd_stamp = tcp_jiffies32;
478 }
479 
480 /* 5. Recalculate window clamp after socket hit its memory bounds. */
481 static void tcp_clamp_window(struct sock *sk)
482 {
483 	struct tcp_sock *tp = tcp_sk(sk);
484 	struct inet_connection_sock *icsk = inet_csk(sk);
485 	struct net *net = sock_net(sk);
486 
487 	icsk->icsk_ack.quick = 0;
488 
489 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
490 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
491 	    !tcp_under_memory_pressure(sk) &&
492 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
493 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
494 				    net->ipv4.sysctl_tcp_rmem[2]);
495 	}
496 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
497 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
498 }
499 
500 /* Initialize RCV_MSS value.
501  * RCV_MSS is an our guess about MSS used by the peer.
502  * We haven't any direct information about the MSS.
503  * It's better to underestimate the RCV_MSS rather than overestimate.
504  * Overestimations make us ACKing less frequently than needed.
505  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
506  */
507 void tcp_initialize_rcv_mss(struct sock *sk)
508 {
509 	const struct tcp_sock *tp = tcp_sk(sk);
510 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
511 
512 	hint = min(hint, tp->rcv_wnd / 2);
513 	hint = min(hint, TCP_MSS_DEFAULT);
514 	hint = max(hint, TCP_MIN_MSS);
515 
516 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
517 }
518 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
519 
520 /* Receiver "autotuning" code.
521  *
522  * The algorithm for RTT estimation w/o timestamps is based on
523  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
524  * <http://public.lanl.gov/radiant/pubs.html#DRS>
525  *
526  * More detail on this code can be found at
527  * <http://staff.psc.edu/jheffner/>,
528  * though this reference is out of date.  A new paper
529  * is pending.
530  */
531 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
532 {
533 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
534 	long m = sample;
535 
536 	if (new_sample != 0) {
537 		/* If we sample in larger samples in the non-timestamp
538 		 * case, we could grossly overestimate the RTT especially
539 		 * with chatty applications or bulk transfer apps which
540 		 * are stalled on filesystem I/O.
541 		 *
542 		 * Also, since we are only going for a minimum in the
543 		 * non-timestamp case, we do not smooth things out
544 		 * else with timestamps disabled convergence takes too
545 		 * long.
546 		 */
547 		if (!win_dep) {
548 			m -= (new_sample >> 3);
549 			new_sample += m;
550 		} else {
551 			m <<= 3;
552 			if (m < new_sample)
553 				new_sample = m;
554 		}
555 	} else {
556 		/* No previous measure. */
557 		new_sample = m << 3;
558 	}
559 
560 	tp->rcv_rtt_est.rtt_us = new_sample;
561 }
562 
563 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
564 {
565 	u32 delta_us;
566 
567 	if (tp->rcv_rtt_est.time == 0)
568 		goto new_measure;
569 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
570 		return;
571 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
572 	if (!delta_us)
573 		delta_us = 1;
574 	tcp_rcv_rtt_update(tp, delta_us, 1);
575 
576 new_measure:
577 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
578 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
579 }
580 
581 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
582 					  const struct sk_buff *skb)
583 {
584 	struct tcp_sock *tp = tcp_sk(sk);
585 
586 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
587 		return;
588 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
589 
590 	if (TCP_SKB_CB(skb)->end_seq -
591 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
592 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
593 		u32 delta_us;
594 
595 		if (!delta)
596 			delta = 1;
597 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
598 		tcp_rcv_rtt_update(tp, delta_us, 0);
599 	}
600 }
601 
602 /*
603  * This function should be called every time data is copied to user space.
604  * It calculates the appropriate TCP receive buffer space.
605  */
606 void tcp_rcv_space_adjust(struct sock *sk)
607 {
608 	struct tcp_sock *tp = tcp_sk(sk);
609 	u32 copied;
610 	int time;
611 
612 	trace_tcp_rcv_space_adjust(sk);
613 
614 	tcp_mstamp_refresh(tp);
615 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
616 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
617 		return;
618 
619 	/* Number of bytes copied to user in last RTT */
620 	copied = tp->copied_seq - tp->rcvq_space.seq;
621 	if (copied <= tp->rcvq_space.space)
622 		goto new_measure;
623 
624 	/* A bit of theory :
625 	 * copied = bytes received in previous RTT, our base window
626 	 * To cope with packet losses, we need a 2x factor
627 	 * To cope with slow start, and sender growing its cwin by 100 %
628 	 * every RTT, we need a 4x factor, because the ACK we are sending
629 	 * now is for the next RTT, not the current one :
630 	 * <prev RTT . ><current RTT .. ><next RTT .... >
631 	 */
632 
633 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
634 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
635 		int rcvmem, rcvbuf;
636 		u64 rcvwin, grow;
637 
638 		/* minimal window to cope with packet losses, assuming
639 		 * steady state. Add some cushion because of small variations.
640 		 */
641 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
642 
643 		/* Accommodate for sender rate increase (eg. slow start) */
644 		grow = rcvwin * (copied - tp->rcvq_space.space);
645 		do_div(grow, tp->rcvq_space.space);
646 		rcvwin += (grow << 1);
647 
648 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
649 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
650 			rcvmem += 128;
651 
652 		do_div(rcvwin, tp->advmss);
653 		rcvbuf = min_t(u64, rcvwin * rcvmem,
654 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
655 		if (rcvbuf > sk->sk_rcvbuf) {
656 			sk->sk_rcvbuf = rcvbuf;
657 
658 			/* Make the window clamp follow along.  */
659 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
660 		}
661 	}
662 	tp->rcvq_space.space = copied;
663 
664 new_measure:
665 	tp->rcvq_space.seq = tp->copied_seq;
666 	tp->rcvq_space.time = tp->tcp_mstamp;
667 }
668 
669 /* There is something which you must keep in mind when you analyze the
670  * behavior of the tp->ato delayed ack timeout interval.  When a
671  * connection starts up, we want to ack as quickly as possible.  The
672  * problem is that "good" TCP's do slow start at the beginning of data
673  * transmission.  The means that until we send the first few ACK's the
674  * sender will sit on his end and only queue most of his data, because
675  * he can only send snd_cwnd unacked packets at any given time.  For
676  * each ACK we send, he increments snd_cwnd and transmits more of his
677  * queue.  -DaveM
678  */
679 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
680 {
681 	struct tcp_sock *tp = tcp_sk(sk);
682 	struct inet_connection_sock *icsk = inet_csk(sk);
683 	u32 now;
684 
685 	inet_csk_schedule_ack(sk);
686 
687 	tcp_measure_rcv_mss(sk, skb);
688 
689 	tcp_rcv_rtt_measure(tp);
690 
691 	now = tcp_jiffies32;
692 
693 	if (!icsk->icsk_ack.ato) {
694 		/* The _first_ data packet received, initialize
695 		 * delayed ACK engine.
696 		 */
697 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
698 		icsk->icsk_ack.ato = TCP_ATO_MIN;
699 	} else {
700 		int m = now - icsk->icsk_ack.lrcvtime;
701 
702 		if (m <= TCP_ATO_MIN / 2) {
703 			/* The fastest case is the first. */
704 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
705 		} else if (m < icsk->icsk_ack.ato) {
706 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
707 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
708 				icsk->icsk_ack.ato = icsk->icsk_rto;
709 		} else if (m > icsk->icsk_rto) {
710 			/* Too long gap. Apparently sender failed to
711 			 * restart window, so that we send ACKs quickly.
712 			 */
713 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
714 			sk_mem_reclaim(sk);
715 		}
716 	}
717 	icsk->icsk_ack.lrcvtime = now;
718 
719 	tcp_ecn_check_ce(sk, skb);
720 
721 	if (skb->len >= 128)
722 		tcp_grow_window(sk, skb);
723 }
724 
725 /* Called to compute a smoothed rtt estimate. The data fed to this
726  * routine either comes from timestamps, or from segments that were
727  * known _not_ to have been retransmitted [see Karn/Partridge
728  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
729  * piece by Van Jacobson.
730  * NOTE: the next three routines used to be one big routine.
731  * To save cycles in the RFC 1323 implementation it was better to break
732  * it up into three procedures. -- erics
733  */
734 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
735 {
736 	struct tcp_sock *tp = tcp_sk(sk);
737 	long m = mrtt_us; /* RTT */
738 	u32 srtt = tp->srtt_us;
739 
740 	/*	The following amusing code comes from Jacobson's
741 	 *	article in SIGCOMM '88.  Note that rtt and mdev
742 	 *	are scaled versions of rtt and mean deviation.
743 	 *	This is designed to be as fast as possible
744 	 *	m stands for "measurement".
745 	 *
746 	 *	On a 1990 paper the rto value is changed to:
747 	 *	RTO = rtt + 4 * mdev
748 	 *
749 	 * Funny. This algorithm seems to be very broken.
750 	 * These formulae increase RTO, when it should be decreased, increase
751 	 * too slowly, when it should be increased quickly, decrease too quickly
752 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
753 	 * does not matter how to _calculate_ it. Seems, it was trap
754 	 * that VJ failed to avoid. 8)
755 	 */
756 	if (srtt != 0) {
757 		m -= (srtt >> 3);	/* m is now error in rtt est */
758 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
759 		if (m < 0) {
760 			m = -m;		/* m is now abs(error) */
761 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
762 			/* This is similar to one of Eifel findings.
763 			 * Eifel blocks mdev updates when rtt decreases.
764 			 * This solution is a bit different: we use finer gain
765 			 * for mdev in this case (alpha*beta).
766 			 * Like Eifel it also prevents growth of rto,
767 			 * but also it limits too fast rto decreases,
768 			 * happening in pure Eifel.
769 			 */
770 			if (m > 0)
771 				m >>= 3;
772 		} else {
773 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
774 		}
775 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
776 		if (tp->mdev_us > tp->mdev_max_us) {
777 			tp->mdev_max_us = tp->mdev_us;
778 			if (tp->mdev_max_us > tp->rttvar_us)
779 				tp->rttvar_us = tp->mdev_max_us;
780 		}
781 		if (after(tp->snd_una, tp->rtt_seq)) {
782 			if (tp->mdev_max_us < tp->rttvar_us)
783 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
784 			tp->rtt_seq = tp->snd_nxt;
785 			tp->mdev_max_us = tcp_rto_min_us(sk);
786 		}
787 	} else {
788 		/* no previous measure. */
789 		srtt = m << 3;		/* take the measured time to be rtt */
790 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
791 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
792 		tp->mdev_max_us = tp->rttvar_us;
793 		tp->rtt_seq = tp->snd_nxt;
794 	}
795 	tp->srtt_us = max(1U, srtt);
796 }
797 
798 static void tcp_update_pacing_rate(struct sock *sk)
799 {
800 	const struct tcp_sock *tp = tcp_sk(sk);
801 	u64 rate;
802 
803 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
804 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
805 
806 	/* current rate is (cwnd * mss) / srtt
807 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
808 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
809 	 *
810 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
811 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
812 	 *	 end of slow start and should slow down.
813 	 */
814 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
815 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
816 	else
817 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
818 
819 	rate *= max(tp->snd_cwnd, tp->packets_out);
820 
821 	if (likely(tp->srtt_us))
822 		do_div(rate, tp->srtt_us);
823 
824 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
825 	 * without any lock. We want to make sure compiler wont store
826 	 * intermediate values in this location.
827 	 */
828 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
829 					     sk->sk_max_pacing_rate));
830 }
831 
832 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
833  * routine referred to above.
834  */
835 static void tcp_set_rto(struct sock *sk)
836 {
837 	const struct tcp_sock *tp = tcp_sk(sk);
838 	/* Old crap is replaced with new one. 8)
839 	 *
840 	 * More seriously:
841 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
842 	 *    It cannot be less due to utterly erratic ACK generation made
843 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
844 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
845 	 *    is invisible. Actually, Linux-2.4 also generates erratic
846 	 *    ACKs in some circumstances.
847 	 */
848 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
849 
850 	/* 2. Fixups made earlier cannot be right.
851 	 *    If we do not estimate RTO correctly without them,
852 	 *    all the algo is pure shit and should be replaced
853 	 *    with correct one. It is exactly, which we pretend to do.
854 	 */
855 
856 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
857 	 * guarantees that rto is higher.
858 	 */
859 	tcp_bound_rto(sk);
860 }
861 
862 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
863 {
864 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
865 
866 	if (!cwnd)
867 		cwnd = TCP_INIT_CWND;
868 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
869 }
870 
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
875 	tp->rack.dsack_seen = 1;
876 }
877 
878 /* It's reordering when higher sequence was delivered (i.e. sacked) before
879  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
880  * distance is approximated in full-mss packet distance ("reordering").
881  */
882 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
883 				      const int ts)
884 {
885 	struct tcp_sock *tp = tcp_sk(sk);
886 	const u32 mss = tp->mss_cache;
887 	u32 fack, metric;
888 
889 	fack = tcp_highest_sack_seq(tp);
890 	if (!before(low_seq, fack))
891 		return;
892 
893 	metric = fack - low_seq;
894 	if ((metric > tp->reordering * mss) && mss) {
895 #if FASTRETRANS_DEBUG > 1
896 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
897 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
898 			 tp->reordering,
899 			 0,
900 			 tp->sacked_out,
901 			 tp->undo_marker ? tp->undo_retrans : 0);
902 #endif
903 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
904 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
905 	}
906 
907 	tp->rack.reord = 1;
908 	/* This exciting event is worth to be remembered. 8) */
909 	NET_INC_STATS(sock_net(sk),
910 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
911 }
912 
913 /* This must be called before lost_out is incremented */
914 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
915 {
916 	if (!tp->retransmit_skb_hint ||
917 	    before(TCP_SKB_CB(skb)->seq,
918 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
919 		tp->retransmit_skb_hint = skb;
920 }
921 
922 /* Sum the number of packets on the wire we have marked as lost.
923  * There are two cases we care about here:
924  * a) Packet hasn't been marked lost (nor retransmitted),
925  *    and this is the first loss.
926  * b) Packet has been marked both lost and retransmitted,
927  *    and this means we think it was lost again.
928  */
929 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
930 {
931 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
932 
933 	if (!(sacked & TCPCB_LOST) ||
934 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
935 		tp->lost += tcp_skb_pcount(skb);
936 }
937 
938 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
939 {
940 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
941 		tcp_verify_retransmit_hint(tp, skb);
942 
943 		tp->lost_out += tcp_skb_pcount(skb);
944 		tcp_sum_lost(tp, skb);
945 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
946 	}
947 }
948 
949 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
950 {
951 	tcp_verify_retransmit_hint(tp, skb);
952 
953 	tcp_sum_lost(tp, skb);
954 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
955 		tp->lost_out += tcp_skb_pcount(skb);
956 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
957 	}
958 }
959 
960 /* This procedure tags the retransmission queue when SACKs arrive.
961  *
962  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
963  * Packets in queue with these bits set are counted in variables
964  * sacked_out, retrans_out and lost_out, correspondingly.
965  *
966  * Valid combinations are:
967  * Tag  InFlight	Description
968  * 0	1		- orig segment is in flight.
969  * S	0		- nothing flies, orig reached receiver.
970  * L	0		- nothing flies, orig lost by net.
971  * R	2		- both orig and retransmit are in flight.
972  * L|R	1		- orig is lost, retransmit is in flight.
973  * S|R  1		- orig reached receiver, retrans is still in flight.
974  * (L|S|R is logically valid, it could occur when L|R is sacked,
975  *  but it is equivalent to plain S and code short-curcuits it to S.
976  *  L|S is logically invalid, it would mean -1 packet in flight 8))
977  *
978  * These 6 states form finite state machine, controlled by the following events:
979  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
980  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
981  * 3. Loss detection event of two flavors:
982  *	A. Scoreboard estimator decided the packet is lost.
983  *	   A'. Reno "three dupacks" marks head of queue lost.
984  *	B. SACK arrives sacking SND.NXT at the moment, when the
985  *	   segment was retransmitted.
986  * 4. D-SACK added new rule: D-SACK changes any tag to S.
987  *
988  * It is pleasant to note, that state diagram turns out to be commutative,
989  * so that we are allowed not to be bothered by order of our actions,
990  * when multiple events arrive simultaneously. (see the function below).
991  *
992  * Reordering detection.
993  * --------------------
994  * Reordering metric is maximal distance, which a packet can be displaced
995  * in packet stream. With SACKs we can estimate it:
996  *
997  * 1. SACK fills old hole and the corresponding segment was not
998  *    ever retransmitted -> reordering. Alas, we cannot use it
999  *    when segment was retransmitted.
1000  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1001  *    for retransmitted and already SACKed segment -> reordering..
1002  * Both of these heuristics are not used in Loss state, when we cannot
1003  * account for retransmits accurately.
1004  *
1005  * SACK block validation.
1006  * ----------------------
1007  *
1008  * SACK block range validation checks that the received SACK block fits to
1009  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1010  * Note that SND.UNA is not included to the range though being valid because
1011  * it means that the receiver is rather inconsistent with itself reporting
1012  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1013  * perfectly valid, however, in light of RFC2018 which explicitly states
1014  * that "SACK block MUST reflect the newest segment.  Even if the newest
1015  * segment is going to be discarded ...", not that it looks very clever
1016  * in case of head skb. Due to potentional receiver driven attacks, we
1017  * choose to avoid immediate execution of a walk in write queue due to
1018  * reneging and defer head skb's loss recovery to standard loss recovery
1019  * procedure that will eventually trigger (nothing forbids us doing this).
1020  *
1021  * Implements also blockage to start_seq wrap-around. Problem lies in the
1022  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1023  * there's no guarantee that it will be before snd_nxt (n). The problem
1024  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1025  * wrap (s_w):
1026  *
1027  *         <- outs wnd ->                          <- wrapzone ->
1028  *         u     e      n                         u_w   e_w  s n_w
1029  *         |     |      |                          |     |   |  |
1030  * |<------------+------+----- TCP seqno space --------------+---------->|
1031  * ...-- <2^31 ->|                                           |<--------...
1032  * ...---- >2^31 ------>|                                    |<--------...
1033  *
1034  * Current code wouldn't be vulnerable but it's better still to discard such
1035  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1036  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1037  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1038  * equal to the ideal case (infinite seqno space without wrap caused issues).
1039  *
1040  * With D-SACK the lower bound is extended to cover sequence space below
1041  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1042  * again, D-SACK block must not to go across snd_una (for the same reason as
1043  * for the normal SACK blocks, explained above). But there all simplicity
1044  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1045  * fully below undo_marker they do not affect behavior in anyway and can
1046  * therefore be safely ignored. In rare cases (which are more or less
1047  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1048  * fragmentation and packet reordering past skb's retransmission. To consider
1049  * them correctly, the acceptable range must be extended even more though
1050  * the exact amount is rather hard to quantify. However, tp->max_window can
1051  * be used as an exaggerated estimate.
1052  */
1053 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1054 				   u32 start_seq, u32 end_seq)
1055 {
1056 	/* Too far in future, or reversed (interpretation is ambiguous) */
1057 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1058 		return false;
1059 
1060 	/* Nasty start_seq wrap-around check (see comments above) */
1061 	if (!before(start_seq, tp->snd_nxt))
1062 		return false;
1063 
1064 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1065 	 * start_seq == snd_una is non-sensical (see comments above)
1066 	 */
1067 	if (after(start_seq, tp->snd_una))
1068 		return true;
1069 
1070 	if (!is_dsack || !tp->undo_marker)
1071 		return false;
1072 
1073 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1074 	if (after(end_seq, tp->snd_una))
1075 		return false;
1076 
1077 	if (!before(start_seq, tp->undo_marker))
1078 		return true;
1079 
1080 	/* Too old */
1081 	if (!after(end_seq, tp->undo_marker))
1082 		return false;
1083 
1084 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1085 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1086 	 */
1087 	return !before(start_seq, end_seq - tp->max_window);
1088 }
1089 
1090 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1091 			    struct tcp_sack_block_wire *sp, int num_sacks,
1092 			    u32 prior_snd_una)
1093 {
1094 	struct tcp_sock *tp = tcp_sk(sk);
1095 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1096 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1097 	bool dup_sack = false;
1098 
1099 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1100 		dup_sack = true;
1101 		tcp_dsack_seen(tp);
1102 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1103 	} else if (num_sacks > 1) {
1104 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1105 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1106 
1107 		if (!after(end_seq_0, end_seq_1) &&
1108 		    !before(start_seq_0, start_seq_1)) {
1109 			dup_sack = true;
1110 			tcp_dsack_seen(tp);
1111 			NET_INC_STATS(sock_net(sk),
1112 					LINUX_MIB_TCPDSACKOFORECV);
1113 		}
1114 	}
1115 
1116 	/* D-SACK for already forgotten data... Do dumb counting. */
1117 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1118 	    !after(end_seq_0, prior_snd_una) &&
1119 	    after(end_seq_0, tp->undo_marker))
1120 		tp->undo_retrans--;
1121 
1122 	return dup_sack;
1123 }
1124 
1125 struct tcp_sacktag_state {
1126 	u32	reord;
1127 	/* Timestamps for earliest and latest never-retransmitted segment
1128 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1129 	 * but congestion control should still get an accurate delay signal.
1130 	 */
1131 	u64	first_sackt;
1132 	u64	last_sackt;
1133 	struct rate_sample *rate;
1134 	int	flag;
1135 	unsigned int mss_now;
1136 };
1137 
1138 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1139  * the incoming SACK may not exactly match but we can find smaller MSS
1140  * aligned portion of it that matches. Therefore we might need to fragment
1141  * which may fail and creates some hassle (caller must handle error case
1142  * returns).
1143  *
1144  * FIXME: this could be merged to shift decision code
1145  */
1146 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1147 				  u32 start_seq, u32 end_seq)
1148 {
1149 	int err;
1150 	bool in_sack;
1151 	unsigned int pkt_len;
1152 	unsigned int mss;
1153 
1154 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1155 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1156 
1157 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1158 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1159 		mss = tcp_skb_mss(skb);
1160 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1161 
1162 		if (!in_sack) {
1163 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1164 			if (pkt_len < mss)
1165 				pkt_len = mss;
1166 		} else {
1167 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1168 			if (pkt_len < mss)
1169 				return -EINVAL;
1170 		}
1171 
1172 		/* Round if necessary so that SACKs cover only full MSSes
1173 		 * and/or the remaining small portion (if present)
1174 		 */
1175 		if (pkt_len > mss) {
1176 			unsigned int new_len = (pkt_len / mss) * mss;
1177 			if (!in_sack && new_len < pkt_len)
1178 				new_len += mss;
1179 			pkt_len = new_len;
1180 		}
1181 
1182 		if (pkt_len >= skb->len && !in_sack)
1183 			return 0;
1184 
1185 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1186 				   pkt_len, mss, GFP_ATOMIC);
1187 		if (err < 0)
1188 			return err;
1189 	}
1190 
1191 	return in_sack;
1192 }
1193 
1194 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1195 static u8 tcp_sacktag_one(struct sock *sk,
1196 			  struct tcp_sacktag_state *state, u8 sacked,
1197 			  u32 start_seq, u32 end_seq,
1198 			  int dup_sack, int pcount,
1199 			  u64 xmit_time)
1200 {
1201 	struct tcp_sock *tp = tcp_sk(sk);
1202 
1203 	/* Account D-SACK for retransmitted packet. */
1204 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1205 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1206 		    after(end_seq, tp->undo_marker))
1207 			tp->undo_retrans--;
1208 		if ((sacked & TCPCB_SACKED_ACKED) &&
1209 		    before(start_seq, state->reord))
1210 				state->reord = start_seq;
1211 	}
1212 
1213 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1214 	if (!after(end_seq, tp->snd_una))
1215 		return sacked;
1216 
1217 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1218 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1219 
1220 		if (sacked & TCPCB_SACKED_RETRANS) {
1221 			/* If the segment is not tagged as lost,
1222 			 * we do not clear RETRANS, believing
1223 			 * that retransmission is still in flight.
1224 			 */
1225 			if (sacked & TCPCB_LOST) {
1226 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1227 				tp->lost_out -= pcount;
1228 				tp->retrans_out -= pcount;
1229 			}
1230 		} else {
1231 			if (!(sacked & TCPCB_RETRANS)) {
1232 				/* New sack for not retransmitted frame,
1233 				 * which was in hole. It is reordering.
1234 				 */
1235 				if (before(start_seq,
1236 					   tcp_highest_sack_seq(tp)) &&
1237 				    before(start_seq, state->reord))
1238 					state->reord = start_seq;
1239 
1240 				if (!after(end_seq, tp->high_seq))
1241 					state->flag |= FLAG_ORIG_SACK_ACKED;
1242 				if (state->first_sackt == 0)
1243 					state->first_sackt = xmit_time;
1244 				state->last_sackt = xmit_time;
1245 			}
1246 
1247 			if (sacked & TCPCB_LOST) {
1248 				sacked &= ~TCPCB_LOST;
1249 				tp->lost_out -= pcount;
1250 			}
1251 		}
1252 
1253 		sacked |= TCPCB_SACKED_ACKED;
1254 		state->flag |= FLAG_DATA_SACKED;
1255 		tp->sacked_out += pcount;
1256 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1257 
1258 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 		if (tp->lost_skb_hint &&
1260 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 			tp->lost_cnt_hint += pcount;
1262 	}
1263 
1264 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1265 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1266 	 * are accounted above as well.
1267 	 */
1268 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1269 		sacked &= ~TCPCB_SACKED_RETRANS;
1270 		tp->retrans_out -= pcount;
1271 	}
1272 
1273 	return sacked;
1274 }
1275 
1276 /* Shift newly-SACKed bytes from this skb to the immediately previous
1277  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1278  */
1279 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1280 			    struct sk_buff *skb,
1281 			    struct tcp_sacktag_state *state,
1282 			    unsigned int pcount, int shifted, int mss,
1283 			    bool dup_sack)
1284 {
1285 	struct tcp_sock *tp = tcp_sk(sk);
1286 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1287 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1288 
1289 	BUG_ON(!pcount);
1290 
1291 	/* Adjust counters and hints for the newly sacked sequence
1292 	 * range but discard the return value since prev is already
1293 	 * marked. We must tag the range first because the seq
1294 	 * advancement below implicitly advances
1295 	 * tcp_highest_sack_seq() when skb is highest_sack.
1296 	 */
1297 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1298 			start_seq, end_seq, dup_sack, pcount,
1299 			skb->skb_mstamp);
1300 	tcp_rate_skb_delivered(sk, skb, state->rate);
1301 
1302 	if (skb == tp->lost_skb_hint)
1303 		tp->lost_cnt_hint += pcount;
1304 
1305 	TCP_SKB_CB(prev)->end_seq += shifted;
1306 	TCP_SKB_CB(skb)->seq += shifted;
1307 
1308 	tcp_skb_pcount_add(prev, pcount);
1309 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1310 	tcp_skb_pcount_add(skb, -pcount);
1311 
1312 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1313 	 * in theory this shouldn't be necessary but as long as DSACK
1314 	 * code can come after this skb later on it's better to keep
1315 	 * setting gso_size to something.
1316 	 */
1317 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1318 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1319 
1320 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1321 	if (tcp_skb_pcount(skb) <= 1)
1322 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1323 
1324 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1325 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1326 
1327 	if (skb->len > 0) {
1328 		BUG_ON(!tcp_skb_pcount(skb));
1329 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1330 		return false;
1331 	}
1332 
1333 	/* Whole SKB was eaten :-) */
1334 
1335 	if (skb == tp->retransmit_skb_hint)
1336 		tp->retransmit_skb_hint = prev;
1337 	if (skb == tp->lost_skb_hint) {
1338 		tp->lost_skb_hint = prev;
1339 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1340 	}
1341 
1342 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1343 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1344 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1345 		TCP_SKB_CB(prev)->end_seq++;
1346 
1347 	if (skb == tcp_highest_sack(sk))
1348 		tcp_advance_highest_sack(sk, skb);
1349 
1350 	tcp_skb_collapse_tstamp(prev, skb);
1351 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1352 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1353 
1354 	tcp_rtx_queue_unlink_and_free(skb, sk);
1355 
1356 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1357 
1358 	return true;
1359 }
1360 
1361 /* I wish gso_size would have a bit more sane initialization than
1362  * something-or-zero which complicates things
1363  */
1364 static int tcp_skb_seglen(const struct sk_buff *skb)
1365 {
1366 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1367 }
1368 
1369 /* Shifting pages past head area doesn't work */
1370 static int skb_can_shift(const struct sk_buff *skb)
1371 {
1372 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373 }
1374 
1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1376  * skb.
1377  */
1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1379 					  struct tcp_sacktag_state *state,
1380 					  u32 start_seq, u32 end_seq,
1381 					  bool dup_sack)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 	struct sk_buff *prev;
1385 	int mss;
1386 	int pcount = 0;
1387 	int len;
1388 	int in_sack;
1389 
1390 	/* Normally R but no L won't result in plain S */
1391 	if (!dup_sack &&
1392 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1393 		goto fallback;
1394 	if (!skb_can_shift(skb))
1395 		goto fallback;
1396 	/* This frame is about to be dropped (was ACKed). */
1397 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1398 		goto fallback;
1399 
1400 	/* Can only happen with delayed DSACK + discard craziness */
1401 	prev = skb_rb_prev(skb);
1402 	if (!prev)
1403 		goto fallback;
1404 
1405 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1406 		goto fallback;
1407 
1408 	if (!tcp_skb_can_collapse_to(prev))
1409 		goto fallback;
1410 
1411 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1412 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1413 
1414 	if (in_sack) {
1415 		len = skb->len;
1416 		pcount = tcp_skb_pcount(skb);
1417 		mss = tcp_skb_seglen(skb);
1418 
1419 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1420 		 * drop this restriction as unnecessary
1421 		 */
1422 		if (mss != tcp_skb_seglen(prev))
1423 			goto fallback;
1424 	} else {
1425 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1426 			goto noop;
1427 		/* CHECKME: This is non-MSS split case only?, this will
1428 		 * cause skipped skbs due to advancing loop btw, original
1429 		 * has that feature too
1430 		 */
1431 		if (tcp_skb_pcount(skb) <= 1)
1432 			goto noop;
1433 
1434 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1435 		if (!in_sack) {
1436 			/* TODO: head merge to next could be attempted here
1437 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1438 			 * though it might not be worth of the additional hassle
1439 			 *
1440 			 * ...we can probably just fallback to what was done
1441 			 * previously. We could try merging non-SACKed ones
1442 			 * as well but it probably isn't going to buy off
1443 			 * because later SACKs might again split them, and
1444 			 * it would make skb timestamp tracking considerably
1445 			 * harder problem.
1446 			 */
1447 			goto fallback;
1448 		}
1449 
1450 		len = end_seq - TCP_SKB_CB(skb)->seq;
1451 		BUG_ON(len < 0);
1452 		BUG_ON(len > skb->len);
1453 
1454 		/* MSS boundaries should be honoured or else pcount will
1455 		 * severely break even though it makes things bit trickier.
1456 		 * Optimize common case to avoid most of the divides
1457 		 */
1458 		mss = tcp_skb_mss(skb);
1459 
1460 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1461 		 * drop this restriction as unnecessary
1462 		 */
1463 		if (mss != tcp_skb_seglen(prev))
1464 			goto fallback;
1465 
1466 		if (len == mss) {
1467 			pcount = 1;
1468 		} else if (len < mss) {
1469 			goto noop;
1470 		} else {
1471 			pcount = len / mss;
1472 			len = pcount * mss;
1473 		}
1474 	}
1475 
1476 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1477 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1478 		goto fallback;
1479 
1480 	if (!skb_shift(prev, skb, len))
1481 		goto fallback;
1482 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1483 		goto out;
1484 
1485 	/* Hole filled allows collapsing with the next as well, this is very
1486 	 * useful when hole on every nth skb pattern happens
1487 	 */
1488 	skb = skb_rb_next(prev);
1489 	if (!skb)
1490 		goto out;
1491 
1492 	if (!skb_can_shift(skb) ||
1493 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1494 	    (mss != tcp_skb_seglen(skb)))
1495 		goto out;
1496 
1497 	len = skb->len;
1498 	if (skb_shift(prev, skb, len)) {
1499 		pcount += tcp_skb_pcount(skb);
1500 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1501 				len, mss, 0);
1502 	}
1503 
1504 out:
1505 	return prev;
1506 
1507 noop:
1508 	return skb;
1509 
1510 fallback:
1511 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1512 	return NULL;
1513 }
1514 
1515 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1516 					struct tcp_sack_block *next_dup,
1517 					struct tcp_sacktag_state *state,
1518 					u32 start_seq, u32 end_seq,
1519 					bool dup_sack_in)
1520 {
1521 	struct tcp_sock *tp = tcp_sk(sk);
1522 	struct sk_buff *tmp;
1523 
1524 	skb_rbtree_walk_from(skb) {
1525 		int in_sack = 0;
1526 		bool dup_sack = dup_sack_in;
1527 
1528 		/* queue is in-order => we can short-circuit the walk early */
1529 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1530 			break;
1531 
1532 		if (next_dup  &&
1533 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1534 			in_sack = tcp_match_skb_to_sack(sk, skb,
1535 							next_dup->start_seq,
1536 							next_dup->end_seq);
1537 			if (in_sack > 0)
1538 				dup_sack = true;
1539 		}
1540 
1541 		/* skb reference here is a bit tricky to get right, since
1542 		 * shifting can eat and free both this skb and the next,
1543 		 * so not even _safe variant of the loop is enough.
1544 		 */
1545 		if (in_sack <= 0) {
1546 			tmp = tcp_shift_skb_data(sk, skb, state,
1547 						 start_seq, end_seq, dup_sack);
1548 			if (tmp) {
1549 				if (tmp != skb) {
1550 					skb = tmp;
1551 					continue;
1552 				}
1553 
1554 				in_sack = 0;
1555 			} else {
1556 				in_sack = tcp_match_skb_to_sack(sk, skb,
1557 								start_seq,
1558 								end_seq);
1559 			}
1560 		}
1561 
1562 		if (unlikely(in_sack < 0))
1563 			break;
1564 
1565 		if (in_sack) {
1566 			TCP_SKB_CB(skb)->sacked =
1567 				tcp_sacktag_one(sk,
1568 						state,
1569 						TCP_SKB_CB(skb)->sacked,
1570 						TCP_SKB_CB(skb)->seq,
1571 						TCP_SKB_CB(skb)->end_seq,
1572 						dup_sack,
1573 						tcp_skb_pcount(skb),
1574 						skb->skb_mstamp);
1575 			tcp_rate_skb_delivered(sk, skb, state->rate);
1576 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1577 				list_del_init(&skb->tcp_tsorted_anchor);
1578 
1579 			if (!before(TCP_SKB_CB(skb)->seq,
1580 				    tcp_highest_sack_seq(tp)))
1581 				tcp_advance_highest_sack(sk, skb);
1582 		}
1583 	}
1584 	return skb;
1585 }
1586 
1587 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1588 					   struct tcp_sacktag_state *state,
1589 					   u32 seq)
1590 {
1591 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1592 	struct sk_buff *skb;
1593 
1594 	while (*p) {
1595 		parent = *p;
1596 		skb = rb_to_skb(parent);
1597 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1598 			p = &parent->rb_left;
1599 			continue;
1600 		}
1601 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1602 			p = &parent->rb_right;
1603 			continue;
1604 		}
1605 		return skb;
1606 	}
1607 	return NULL;
1608 }
1609 
1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1611 					struct tcp_sacktag_state *state,
1612 					u32 skip_to_seq)
1613 {
1614 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1615 		return skb;
1616 
1617 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1618 }
1619 
1620 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1621 						struct sock *sk,
1622 						struct tcp_sack_block *next_dup,
1623 						struct tcp_sacktag_state *state,
1624 						u32 skip_to_seq)
1625 {
1626 	if (!next_dup)
1627 		return skb;
1628 
1629 	if (before(next_dup->start_seq, skip_to_seq)) {
1630 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1631 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1632 				       next_dup->start_seq, next_dup->end_seq,
1633 				       1);
1634 	}
1635 
1636 	return skb;
1637 }
1638 
1639 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1640 {
1641 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1642 }
1643 
1644 static int
1645 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1646 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1647 {
1648 	struct tcp_sock *tp = tcp_sk(sk);
1649 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1650 				    TCP_SKB_CB(ack_skb)->sacked);
1651 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1652 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1653 	struct tcp_sack_block *cache;
1654 	struct sk_buff *skb;
1655 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1656 	int used_sacks;
1657 	bool found_dup_sack = false;
1658 	int i, j;
1659 	int first_sack_index;
1660 
1661 	state->flag = 0;
1662 	state->reord = tp->snd_nxt;
1663 
1664 	if (!tp->sacked_out)
1665 		tcp_highest_sack_reset(sk);
1666 
1667 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1668 					 num_sacks, prior_snd_una);
1669 	if (found_dup_sack) {
1670 		state->flag |= FLAG_DSACKING_ACK;
1671 		tp->delivered++; /* A spurious retransmission is delivered */
1672 	}
1673 
1674 	/* Eliminate too old ACKs, but take into
1675 	 * account more or less fresh ones, they can
1676 	 * contain valid SACK info.
1677 	 */
1678 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1679 		return 0;
1680 
1681 	if (!tp->packets_out)
1682 		goto out;
1683 
1684 	used_sacks = 0;
1685 	first_sack_index = 0;
1686 	for (i = 0; i < num_sacks; i++) {
1687 		bool dup_sack = !i && found_dup_sack;
1688 
1689 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1690 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1691 
1692 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1693 					    sp[used_sacks].start_seq,
1694 					    sp[used_sacks].end_seq)) {
1695 			int mib_idx;
1696 
1697 			if (dup_sack) {
1698 				if (!tp->undo_marker)
1699 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1700 				else
1701 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1702 			} else {
1703 				/* Don't count olds caused by ACK reordering */
1704 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1705 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1706 					continue;
1707 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1708 			}
1709 
1710 			NET_INC_STATS(sock_net(sk), mib_idx);
1711 			if (i == 0)
1712 				first_sack_index = -1;
1713 			continue;
1714 		}
1715 
1716 		/* Ignore very old stuff early */
1717 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1718 			continue;
1719 
1720 		used_sacks++;
1721 	}
1722 
1723 	/* order SACK blocks to allow in order walk of the retrans queue */
1724 	for (i = used_sacks - 1; i > 0; i--) {
1725 		for (j = 0; j < i; j++) {
1726 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1727 				swap(sp[j], sp[j + 1]);
1728 
1729 				/* Track where the first SACK block goes to */
1730 				if (j == first_sack_index)
1731 					first_sack_index = j + 1;
1732 			}
1733 		}
1734 	}
1735 
1736 	state->mss_now = tcp_current_mss(sk);
1737 	skb = NULL;
1738 	i = 0;
1739 
1740 	if (!tp->sacked_out) {
1741 		/* It's already past, so skip checking against it */
1742 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1743 	} else {
1744 		cache = tp->recv_sack_cache;
1745 		/* Skip empty blocks in at head of the cache */
1746 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1747 		       !cache->end_seq)
1748 			cache++;
1749 	}
1750 
1751 	while (i < used_sacks) {
1752 		u32 start_seq = sp[i].start_seq;
1753 		u32 end_seq = sp[i].end_seq;
1754 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1755 		struct tcp_sack_block *next_dup = NULL;
1756 
1757 		if (found_dup_sack && ((i + 1) == first_sack_index))
1758 			next_dup = &sp[i + 1];
1759 
1760 		/* Skip too early cached blocks */
1761 		while (tcp_sack_cache_ok(tp, cache) &&
1762 		       !before(start_seq, cache->end_seq))
1763 			cache++;
1764 
1765 		/* Can skip some work by looking recv_sack_cache? */
1766 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1767 		    after(end_seq, cache->start_seq)) {
1768 
1769 			/* Head todo? */
1770 			if (before(start_seq, cache->start_seq)) {
1771 				skb = tcp_sacktag_skip(skb, sk, state,
1772 						       start_seq);
1773 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1774 						       state,
1775 						       start_seq,
1776 						       cache->start_seq,
1777 						       dup_sack);
1778 			}
1779 
1780 			/* Rest of the block already fully processed? */
1781 			if (!after(end_seq, cache->end_seq))
1782 				goto advance_sp;
1783 
1784 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1785 						       state,
1786 						       cache->end_seq);
1787 
1788 			/* ...tail remains todo... */
1789 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1790 				/* ...but better entrypoint exists! */
1791 				skb = tcp_highest_sack(sk);
1792 				if (!skb)
1793 					break;
1794 				cache++;
1795 				goto walk;
1796 			}
1797 
1798 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1799 			/* Check overlap against next cached too (past this one already) */
1800 			cache++;
1801 			continue;
1802 		}
1803 
1804 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1805 			skb = tcp_highest_sack(sk);
1806 			if (!skb)
1807 				break;
1808 		}
1809 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1810 
1811 walk:
1812 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1813 				       start_seq, end_seq, dup_sack);
1814 
1815 advance_sp:
1816 		i++;
1817 	}
1818 
1819 	/* Clear the head of the cache sack blocks so we can skip it next time */
1820 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1821 		tp->recv_sack_cache[i].start_seq = 0;
1822 		tp->recv_sack_cache[i].end_seq = 0;
1823 	}
1824 	for (j = 0; j < used_sacks; j++)
1825 		tp->recv_sack_cache[i++] = sp[j];
1826 
1827 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1828 		tcp_check_sack_reordering(sk, state->reord, 0);
1829 
1830 	tcp_verify_left_out(tp);
1831 out:
1832 
1833 #if FASTRETRANS_DEBUG > 0
1834 	WARN_ON((int)tp->sacked_out < 0);
1835 	WARN_ON((int)tp->lost_out < 0);
1836 	WARN_ON((int)tp->retrans_out < 0);
1837 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1838 #endif
1839 	return state->flag;
1840 }
1841 
1842 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1843  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1844  */
1845 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1846 {
1847 	u32 holes;
1848 
1849 	holes = max(tp->lost_out, 1U);
1850 	holes = min(holes, tp->packets_out);
1851 
1852 	if ((tp->sacked_out + holes) > tp->packets_out) {
1853 		tp->sacked_out = tp->packets_out - holes;
1854 		return true;
1855 	}
1856 	return false;
1857 }
1858 
1859 /* If we receive more dupacks than we expected counting segments
1860  * in assumption of absent reordering, interpret this as reordering.
1861  * The only another reason could be bug in receiver TCP.
1862  */
1863 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1864 {
1865 	struct tcp_sock *tp = tcp_sk(sk);
1866 
1867 	if (!tcp_limit_reno_sacked(tp))
1868 		return;
1869 
1870 	tp->reordering = min_t(u32, tp->packets_out + addend,
1871 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1872 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1873 }
1874 
1875 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1876 
1877 static void tcp_add_reno_sack(struct sock *sk)
1878 {
1879 	struct tcp_sock *tp = tcp_sk(sk);
1880 	u32 prior_sacked = tp->sacked_out;
1881 
1882 	tp->sacked_out++;
1883 	tcp_check_reno_reordering(sk, 0);
1884 	if (tp->sacked_out > prior_sacked)
1885 		tp->delivered++; /* Some out-of-order packet is delivered */
1886 	tcp_verify_left_out(tp);
1887 }
1888 
1889 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1890 
1891 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1892 {
1893 	struct tcp_sock *tp = tcp_sk(sk);
1894 
1895 	if (acked > 0) {
1896 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1897 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1898 		if (acked - 1 >= tp->sacked_out)
1899 			tp->sacked_out = 0;
1900 		else
1901 			tp->sacked_out -= acked - 1;
1902 	}
1903 	tcp_check_reno_reordering(sk, acked);
1904 	tcp_verify_left_out(tp);
1905 }
1906 
1907 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1908 {
1909 	tp->sacked_out = 0;
1910 }
1911 
1912 void tcp_clear_retrans(struct tcp_sock *tp)
1913 {
1914 	tp->retrans_out = 0;
1915 	tp->lost_out = 0;
1916 	tp->undo_marker = 0;
1917 	tp->undo_retrans = -1;
1918 	tp->sacked_out = 0;
1919 }
1920 
1921 static inline void tcp_init_undo(struct tcp_sock *tp)
1922 {
1923 	tp->undo_marker = tp->snd_una;
1924 	/* Retransmission still in flight may cause DSACKs later. */
1925 	tp->undo_retrans = tp->retrans_out ? : -1;
1926 }
1927 
1928 static bool tcp_is_rack(const struct sock *sk)
1929 {
1930 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1931 }
1932 
1933 /* If we detect SACK reneging, forget all SACK information
1934  * and reset tags completely, otherwise preserve SACKs. If receiver
1935  * dropped its ofo queue, we will know this due to reneging detection.
1936  */
1937 static void tcp_timeout_mark_lost(struct sock *sk)
1938 {
1939 	struct tcp_sock *tp = tcp_sk(sk);
1940 	struct sk_buff *skb, *head;
1941 	bool is_reneg;			/* is receiver reneging on SACKs? */
1942 
1943 	head = tcp_rtx_queue_head(sk);
1944 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1945 	if (is_reneg) {
1946 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1947 		tp->sacked_out = 0;
1948 		/* Mark SACK reneging until we recover from this loss event. */
1949 		tp->is_sack_reneg = 1;
1950 	} else if (tcp_is_reno(tp)) {
1951 		tcp_reset_reno_sack(tp);
1952 	}
1953 
1954 	skb = head;
1955 	skb_rbtree_walk_from(skb) {
1956 		if (is_reneg)
1957 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1958 		else if (tcp_is_rack(sk) && skb != head &&
1959 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1960 			continue; /* Don't mark recently sent ones lost yet */
1961 		tcp_mark_skb_lost(sk, skb);
1962 	}
1963 	tcp_verify_left_out(tp);
1964 	tcp_clear_all_retrans_hints(tp);
1965 }
1966 
1967 /* Enter Loss state. */
1968 void tcp_enter_loss(struct sock *sk)
1969 {
1970 	const struct inet_connection_sock *icsk = inet_csk(sk);
1971 	struct tcp_sock *tp = tcp_sk(sk);
1972 	struct net *net = sock_net(sk);
1973 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1974 
1975 	tcp_timeout_mark_lost(sk);
1976 
1977 	/* Reduce ssthresh if it has not yet been made inside this window. */
1978 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1979 	    !after(tp->high_seq, tp->snd_una) ||
1980 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1981 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1982 		tp->prior_cwnd = tp->snd_cwnd;
1983 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1984 		tcp_ca_event(sk, CA_EVENT_LOSS);
1985 		tcp_init_undo(tp);
1986 	}
1987 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1988 	tp->snd_cwnd_cnt   = 0;
1989 	tp->snd_cwnd_stamp = tcp_jiffies32;
1990 
1991 	/* Timeout in disordered state after receiving substantial DUPACKs
1992 	 * suggests that the degree of reordering is over-estimated.
1993 	 */
1994 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1995 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1996 		tp->reordering = min_t(unsigned int, tp->reordering,
1997 				       net->ipv4.sysctl_tcp_reordering);
1998 	tcp_set_ca_state(sk, TCP_CA_Loss);
1999 	tp->high_seq = tp->snd_nxt;
2000 	tcp_ecn_queue_cwr(tp);
2001 
2002 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2003 	 * loss recovery is underway except recurring timeout(s) on
2004 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2005 	 */
2006 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2007 		   (new_recovery || icsk->icsk_retransmits) &&
2008 		   !inet_csk(sk)->icsk_mtup.probe_size;
2009 }
2010 
2011 /* If ACK arrived pointing to a remembered SACK, it means that our
2012  * remembered SACKs do not reflect real state of receiver i.e.
2013  * receiver _host_ is heavily congested (or buggy).
2014  *
2015  * To avoid big spurious retransmission bursts due to transient SACK
2016  * scoreboard oddities that look like reneging, we give the receiver a
2017  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2018  * restore sanity to the SACK scoreboard. If the apparent reneging
2019  * persists until this RTO then we'll clear the SACK scoreboard.
2020  */
2021 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2022 {
2023 	if (flag & FLAG_SACK_RENEGING) {
2024 		struct tcp_sock *tp = tcp_sk(sk);
2025 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2026 					  msecs_to_jiffies(10));
2027 
2028 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2029 					  delay, TCP_RTO_MAX);
2030 		return true;
2031 	}
2032 	return false;
2033 }
2034 
2035 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2036  * counter when SACK is enabled (without SACK, sacked_out is used for
2037  * that purpose).
2038  *
2039  * With reordering, holes may still be in flight, so RFC3517 recovery
2040  * uses pure sacked_out (total number of SACKed segments) even though
2041  * it violates the RFC that uses duplicate ACKs, often these are equal
2042  * but when e.g. out-of-window ACKs or packet duplication occurs,
2043  * they differ. Since neither occurs due to loss, TCP should really
2044  * ignore them.
2045  */
2046 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2047 {
2048 	return tp->sacked_out + 1;
2049 }
2050 
2051 /* Linux NewReno/SACK/ECN state machine.
2052  * --------------------------------------
2053  *
2054  * "Open"	Normal state, no dubious events, fast path.
2055  * "Disorder"   In all the respects it is "Open",
2056  *		but requires a bit more attention. It is entered when
2057  *		we see some SACKs or dupacks. It is split of "Open"
2058  *		mainly to move some processing from fast path to slow one.
2059  * "CWR"	CWND was reduced due to some Congestion Notification event.
2060  *		It can be ECN, ICMP source quench, local device congestion.
2061  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2062  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2063  *
2064  * tcp_fastretrans_alert() is entered:
2065  * - each incoming ACK, if state is not "Open"
2066  * - when arrived ACK is unusual, namely:
2067  *	* SACK
2068  *	* Duplicate ACK.
2069  *	* ECN ECE.
2070  *
2071  * Counting packets in flight is pretty simple.
2072  *
2073  *	in_flight = packets_out - left_out + retrans_out
2074  *
2075  *	packets_out is SND.NXT-SND.UNA counted in packets.
2076  *
2077  *	retrans_out is number of retransmitted segments.
2078  *
2079  *	left_out is number of segments left network, but not ACKed yet.
2080  *
2081  *		left_out = sacked_out + lost_out
2082  *
2083  *     sacked_out: Packets, which arrived to receiver out of order
2084  *		   and hence not ACKed. With SACKs this number is simply
2085  *		   amount of SACKed data. Even without SACKs
2086  *		   it is easy to give pretty reliable estimate of this number,
2087  *		   counting duplicate ACKs.
2088  *
2089  *       lost_out: Packets lost by network. TCP has no explicit
2090  *		   "loss notification" feedback from network (for now).
2091  *		   It means that this number can be only _guessed_.
2092  *		   Actually, it is the heuristics to predict lossage that
2093  *		   distinguishes different algorithms.
2094  *
2095  *	F.e. after RTO, when all the queue is considered as lost,
2096  *	lost_out = packets_out and in_flight = retrans_out.
2097  *
2098  *		Essentially, we have now a few algorithms detecting
2099  *		lost packets.
2100  *
2101  *		If the receiver supports SACK:
2102  *
2103  *		RFC6675/3517: It is the conventional algorithm. A packet is
2104  *		considered lost if the number of higher sequence packets
2105  *		SACKed is greater than or equal the DUPACK thoreshold
2106  *		(reordering). This is implemented in tcp_mark_head_lost and
2107  *		tcp_update_scoreboard.
2108  *
2109  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2110  *		(2017-) that checks timing instead of counting DUPACKs.
2111  *		Essentially a packet is considered lost if it's not S/ACKed
2112  *		after RTT + reordering_window, where both metrics are
2113  *		dynamically measured and adjusted. This is implemented in
2114  *		tcp_rack_mark_lost.
2115  *
2116  *		If the receiver does not support SACK:
2117  *
2118  *		NewReno (RFC6582): in Recovery we assume that one segment
2119  *		is lost (classic Reno). While we are in Recovery and
2120  *		a partial ACK arrives, we assume that one more packet
2121  *		is lost (NewReno). This heuristics are the same in NewReno
2122  *		and SACK.
2123  *
2124  * Really tricky (and requiring careful tuning) part of algorithm
2125  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2126  * The first determines the moment _when_ we should reduce CWND and,
2127  * hence, slow down forward transmission. In fact, it determines the moment
2128  * when we decide that hole is caused by loss, rather than by a reorder.
2129  *
2130  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2131  * holes, caused by lost packets.
2132  *
2133  * And the most logically complicated part of algorithm is undo
2134  * heuristics. We detect false retransmits due to both too early
2135  * fast retransmit (reordering) and underestimated RTO, analyzing
2136  * timestamps and D-SACKs. When we detect that some segments were
2137  * retransmitted by mistake and CWND reduction was wrong, we undo
2138  * window reduction and abort recovery phase. This logic is hidden
2139  * inside several functions named tcp_try_undo_<something>.
2140  */
2141 
2142 /* This function decides, when we should leave Disordered state
2143  * and enter Recovery phase, reducing congestion window.
2144  *
2145  * Main question: may we further continue forward transmission
2146  * with the same cwnd?
2147  */
2148 static bool tcp_time_to_recover(struct sock *sk, int flag)
2149 {
2150 	struct tcp_sock *tp = tcp_sk(sk);
2151 
2152 	/* Trick#1: The loss is proven. */
2153 	if (tp->lost_out)
2154 		return true;
2155 
2156 	/* Not-A-Trick#2 : Classic rule... */
2157 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2158 		return true;
2159 
2160 	return false;
2161 }
2162 
2163 /* Detect loss in event "A" above by marking head of queue up as lost.
2164  * For non-SACK(Reno) senders, the first "packets" number of segments
2165  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2166  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2167  * the maximum SACKed segments to pass before reaching this limit.
2168  */
2169 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2170 {
2171 	struct tcp_sock *tp = tcp_sk(sk);
2172 	struct sk_buff *skb;
2173 	int cnt, oldcnt, lost;
2174 	unsigned int mss;
2175 	/* Use SACK to deduce losses of new sequences sent during recovery */
2176 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2177 
2178 	WARN_ON(packets > tp->packets_out);
2179 	skb = tp->lost_skb_hint;
2180 	if (skb) {
2181 		/* Head already handled? */
2182 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2183 			return;
2184 		cnt = tp->lost_cnt_hint;
2185 	} else {
2186 		skb = tcp_rtx_queue_head(sk);
2187 		cnt = 0;
2188 	}
2189 
2190 	skb_rbtree_walk_from(skb) {
2191 		/* TODO: do this better */
2192 		/* this is not the most efficient way to do this... */
2193 		tp->lost_skb_hint = skb;
2194 		tp->lost_cnt_hint = cnt;
2195 
2196 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2197 			break;
2198 
2199 		oldcnt = cnt;
2200 		if (tcp_is_reno(tp) ||
2201 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2202 			cnt += tcp_skb_pcount(skb);
2203 
2204 		if (cnt > packets) {
2205 			if (tcp_is_sack(tp) ||
2206 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2207 			    (oldcnt >= packets))
2208 				break;
2209 
2210 			mss = tcp_skb_mss(skb);
2211 			/* If needed, chop off the prefix to mark as lost. */
2212 			lost = (packets - oldcnt) * mss;
2213 			if (lost < skb->len &&
2214 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2215 					 lost, mss, GFP_ATOMIC) < 0)
2216 				break;
2217 			cnt = packets;
2218 		}
2219 
2220 		tcp_skb_mark_lost(tp, skb);
2221 
2222 		if (mark_head)
2223 			break;
2224 	}
2225 	tcp_verify_left_out(tp);
2226 }
2227 
2228 /* Account newly detected lost packet(s) */
2229 
2230 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2231 {
2232 	struct tcp_sock *tp = tcp_sk(sk);
2233 
2234 	if (tcp_is_sack(tp)) {
2235 		int sacked_upto = tp->sacked_out - tp->reordering;
2236 		if (sacked_upto >= 0)
2237 			tcp_mark_head_lost(sk, sacked_upto, 0);
2238 		else if (fast_rexmit)
2239 			tcp_mark_head_lost(sk, 1, 1);
2240 	}
2241 }
2242 
2243 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2244 {
2245 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2246 	       before(tp->rx_opt.rcv_tsecr, when);
2247 }
2248 
2249 /* skb is spurious retransmitted if the returned timestamp echo
2250  * reply is prior to the skb transmission time
2251  */
2252 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2253 				     const struct sk_buff *skb)
2254 {
2255 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2256 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2257 }
2258 
2259 /* Nothing was retransmitted or returned timestamp is less
2260  * than timestamp of the first retransmission.
2261  */
2262 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2263 {
2264 	return !tp->retrans_stamp ||
2265 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2266 }
2267 
2268 /* Undo procedures. */
2269 
2270 /* We can clear retrans_stamp when there are no retransmissions in the
2271  * window. It would seem that it is trivially available for us in
2272  * tp->retrans_out, however, that kind of assumptions doesn't consider
2273  * what will happen if errors occur when sending retransmission for the
2274  * second time. ...It could the that such segment has only
2275  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2276  * the head skb is enough except for some reneging corner cases that
2277  * are not worth the effort.
2278  *
2279  * Main reason for all this complexity is the fact that connection dying
2280  * time now depends on the validity of the retrans_stamp, in particular,
2281  * that successive retransmissions of a segment must not advance
2282  * retrans_stamp under any conditions.
2283  */
2284 static bool tcp_any_retrans_done(const struct sock *sk)
2285 {
2286 	const struct tcp_sock *tp = tcp_sk(sk);
2287 	struct sk_buff *skb;
2288 
2289 	if (tp->retrans_out)
2290 		return true;
2291 
2292 	skb = tcp_rtx_queue_head(sk);
2293 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2294 		return true;
2295 
2296 	return false;
2297 }
2298 
2299 static void DBGUNDO(struct sock *sk, const char *msg)
2300 {
2301 #if FASTRETRANS_DEBUG > 1
2302 	struct tcp_sock *tp = tcp_sk(sk);
2303 	struct inet_sock *inet = inet_sk(sk);
2304 
2305 	if (sk->sk_family == AF_INET) {
2306 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2307 			 msg,
2308 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2309 			 tp->snd_cwnd, tcp_left_out(tp),
2310 			 tp->snd_ssthresh, tp->prior_ssthresh,
2311 			 tp->packets_out);
2312 	}
2313 #if IS_ENABLED(CONFIG_IPV6)
2314 	else if (sk->sk_family == AF_INET6) {
2315 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2316 			 msg,
2317 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2318 			 tp->snd_cwnd, tcp_left_out(tp),
2319 			 tp->snd_ssthresh, tp->prior_ssthresh,
2320 			 tp->packets_out);
2321 	}
2322 #endif
2323 #endif
2324 }
2325 
2326 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2327 {
2328 	struct tcp_sock *tp = tcp_sk(sk);
2329 
2330 	if (unmark_loss) {
2331 		struct sk_buff *skb;
2332 
2333 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2334 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2335 		}
2336 		tp->lost_out = 0;
2337 		tcp_clear_all_retrans_hints(tp);
2338 	}
2339 
2340 	if (tp->prior_ssthresh) {
2341 		const struct inet_connection_sock *icsk = inet_csk(sk);
2342 
2343 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2344 
2345 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2346 			tp->snd_ssthresh = tp->prior_ssthresh;
2347 			tcp_ecn_withdraw_cwr(tp);
2348 		}
2349 	}
2350 	tp->snd_cwnd_stamp = tcp_jiffies32;
2351 	tp->undo_marker = 0;
2352 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2353 }
2354 
2355 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2356 {
2357 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2358 }
2359 
2360 /* People celebrate: "We love our President!" */
2361 static bool tcp_try_undo_recovery(struct sock *sk)
2362 {
2363 	struct tcp_sock *tp = tcp_sk(sk);
2364 
2365 	if (tcp_may_undo(tp)) {
2366 		int mib_idx;
2367 
2368 		/* Happy end! We did not retransmit anything
2369 		 * or our original transmission succeeded.
2370 		 */
2371 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2372 		tcp_undo_cwnd_reduction(sk, false);
2373 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2374 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2375 		else
2376 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2377 
2378 		NET_INC_STATS(sock_net(sk), mib_idx);
2379 	} else if (tp->rack.reo_wnd_persist) {
2380 		tp->rack.reo_wnd_persist--;
2381 	}
2382 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2383 		/* Hold old state until something *above* high_seq
2384 		 * is ACKed. For Reno it is MUST to prevent false
2385 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2386 		if (!tcp_any_retrans_done(sk))
2387 			tp->retrans_stamp = 0;
2388 		return true;
2389 	}
2390 	tcp_set_ca_state(sk, TCP_CA_Open);
2391 	tp->is_sack_reneg = 0;
2392 	return false;
2393 }
2394 
2395 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2396 static bool tcp_try_undo_dsack(struct sock *sk)
2397 {
2398 	struct tcp_sock *tp = tcp_sk(sk);
2399 
2400 	if (tp->undo_marker && !tp->undo_retrans) {
2401 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2402 					       tp->rack.reo_wnd_persist + 1);
2403 		DBGUNDO(sk, "D-SACK");
2404 		tcp_undo_cwnd_reduction(sk, false);
2405 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2406 		return true;
2407 	}
2408 	return false;
2409 }
2410 
2411 /* Undo during loss recovery after partial ACK or using F-RTO. */
2412 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2413 {
2414 	struct tcp_sock *tp = tcp_sk(sk);
2415 
2416 	if (frto_undo || tcp_may_undo(tp)) {
2417 		tcp_undo_cwnd_reduction(sk, true);
2418 
2419 		DBGUNDO(sk, "partial loss");
2420 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2421 		if (frto_undo)
2422 			NET_INC_STATS(sock_net(sk),
2423 					LINUX_MIB_TCPSPURIOUSRTOS);
2424 		inet_csk(sk)->icsk_retransmits = 0;
2425 		if (frto_undo || tcp_is_sack(tp)) {
2426 			tcp_set_ca_state(sk, TCP_CA_Open);
2427 			tp->is_sack_reneg = 0;
2428 		}
2429 		return true;
2430 	}
2431 	return false;
2432 }
2433 
2434 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2435  * It computes the number of packets to send (sndcnt) based on packets newly
2436  * delivered:
2437  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2438  *	cwnd reductions across a full RTT.
2439  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2440  *      But when the retransmits are acked without further losses, PRR
2441  *      slow starts cwnd up to ssthresh to speed up the recovery.
2442  */
2443 static void tcp_init_cwnd_reduction(struct sock *sk)
2444 {
2445 	struct tcp_sock *tp = tcp_sk(sk);
2446 
2447 	tp->high_seq = tp->snd_nxt;
2448 	tp->tlp_high_seq = 0;
2449 	tp->snd_cwnd_cnt = 0;
2450 	tp->prior_cwnd = tp->snd_cwnd;
2451 	tp->prr_delivered = 0;
2452 	tp->prr_out = 0;
2453 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2454 	tcp_ecn_queue_cwr(tp);
2455 }
2456 
2457 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2458 {
2459 	struct tcp_sock *tp = tcp_sk(sk);
2460 	int sndcnt = 0;
2461 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2462 
2463 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2464 		return;
2465 
2466 	tp->prr_delivered += newly_acked_sacked;
2467 	if (delta < 0) {
2468 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2469 			       tp->prior_cwnd - 1;
2470 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2471 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2472 		   !(flag & FLAG_LOST_RETRANS)) {
2473 		sndcnt = min_t(int, delta,
2474 			       max_t(int, tp->prr_delivered - tp->prr_out,
2475 				     newly_acked_sacked) + 1);
2476 	} else {
2477 		sndcnt = min(delta, newly_acked_sacked);
2478 	}
2479 	/* Force a fast retransmit upon entering fast recovery */
2480 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2481 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2482 }
2483 
2484 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2485 {
2486 	struct tcp_sock *tp = tcp_sk(sk);
2487 
2488 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2489 		return;
2490 
2491 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2492 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2493 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2494 		tp->snd_cwnd = tp->snd_ssthresh;
2495 		tp->snd_cwnd_stamp = tcp_jiffies32;
2496 	}
2497 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2498 }
2499 
2500 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2501 void tcp_enter_cwr(struct sock *sk)
2502 {
2503 	struct tcp_sock *tp = tcp_sk(sk);
2504 
2505 	tp->prior_ssthresh = 0;
2506 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2507 		tp->undo_marker = 0;
2508 		tcp_init_cwnd_reduction(sk);
2509 		tcp_set_ca_state(sk, TCP_CA_CWR);
2510 	}
2511 }
2512 EXPORT_SYMBOL(tcp_enter_cwr);
2513 
2514 static void tcp_try_keep_open(struct sock *sk)
2515 {
2516 	struct tcp_sock *tp = tcp_sk(sk);
2517 	int state = TCP_CA_Open;
2518 
2519 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2520 		state = TCP_CA_Disorder;
2521 
2522 	if (inet_csk(sk)->icsk_ca_state != state) {
2523 		tcp_set_ca_state(sk, state);
2524 		tp->high_seq = tp->snd_nxt;
2525 	}
2526 }
2527 
2528 static void tcp_try_to_open(struct sock *sk, int flag)
2529 {
2530 	struct tcp_sock *tp = tcp_sk(sk);
2531 
2532 	tcp_verify_left_out(tp);
2533 
2534 	if (!tcp_any_retrans_done(sk))
2535 		tp->retrans_stamp = 0;
2536 
2537 	if (flag & FLAG_ECE)
2538 		tcp_enter_cwr(sk);
2539 
2540 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2541 		tcp_try_keep_open(sk);
2542 	}
2543 }
2544 
2545 static void tcp_mtup_probe_failed(struct sock *sk)
2546 {
2547 	struct inet_connection_sock *icsk = inet_csk(sk);
2548 
2549 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2550 	icsk->icsk_mtup.probe_size = 0;
2551 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2552 }
2553 
2554 static void tcp_mtup_probe_success(struct sock *sk)
2555 {
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 	struct inet_connection_sock *icsk = inet_csk(sk);
2558 
2559 	/* FIXME: breaks with very large cwnd */
2560 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2561 	tp->snd_cwnd = tp->snd_cwnd *
2562 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2563 		       icsk->icsk_mtup.probe_size;
2564 	tp->snd_cwnd_cnt = 0;
2565 	tp->snd_cwnd_stamp = tcp_jiffies32;
2566 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2567 
2568 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2569 	icsk->icsk_mtup.probe_size = 0;
2570 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2571 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2572 }
2573 
2574 /* Do a simple retransmit without using the backoff mechanisms in
2575  * tcp_timer. This is used for path mtu discovery.
2576  * The socket is already locked here.
2577  */
2578 void tcp_simple_retransmit(struct sock *sk)
2579 {
2580 	const struct inet_connection_sock *icsk = inet_csk(sk);
2581 	struct tcp_sock *tp = tcp_sk(sk);
2582 	struct sk_buff *skb;
2583 	unsigned int mss = tcp_current_mss(sk);
2584 
2585 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2586 		if (tcp_skb_seglen(skb) > mss &&
2587 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2588 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2589 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2590 				tp->retrans_out -= tcp_skb_pcount(skb);
2591 			}
2592 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2593 		}
2594 	}
2595 
2596 	tcp_clear_retrans_hints_partial(tp);
2597 
2598 	if (!tp->lost_out)
2599 		return;
2600 
2601 	if (tcp_is_reno(tp))
2602 		tcp_limit_reno_sacked(tp);
2603 
2604 	tcp_verify_left_out(tp);
2605 
2606 	/* Don't muck with the congestion window here.
2607 	 * Reason is that we do not increase amount of _data_
2608 	 * in network, but units changed and effective
2609 	 * cwnd/ssthresh really reduced now.
2610 	 */
2611 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2612 		tp->high_seq = tp->snd_nxt;
2613 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2614 		tp->prior_ssthresh = 0;
2615 		tp->undo_marker = 0;
2616 		tcp_set_ca_state(sk, TCP_CA_Loss);
2617 	}
2618 	tcp_xmit_retransmit_queue(sk);
2619 }
2620 EXPORT_SYMBOL(tcp_simple_retransmit);
2621 
2622 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2623 {
2624 	struct tcp_sock *tp = tcp_sk(sk);
2625 	int mib_idx;
2626 
2627 	if (tcp_is_reno(tp))
2628 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2629 	else
2630 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2631 
2632 	NET_INC_STATS(sock_net(sk), mib_idx);
2633 
2634 	tp->prior_ssthresh = 0;
2635 	tcp_init_undo(tp);
2636 
2637 	if (!tcp_in_cwnd_reduction(sk)) {
2638 		if (!ece_ack)
2639 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2640 		tcp_init_cwnd_reduction(sk);
2641 	}
2642 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2643 }
2644 
2645 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2646  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2647  */
2648 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2649 			     int *rexmit)
2650 {
2651 	struct tcp_sock *tp = tcp_sk(sk);
2652 	bool recovered = !before(tp->snd_una, tp->high_seq);
2653 
2654 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2655 	    tcp_try_undo_loss(sk, false))
2656 		return;
2657 
2658 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2659 		/* Step 3.b. A timeout is spurious if not all data are
2660 		 * lost, i.e., never-retransmitted data are (s)acked.
2661 		 */
2662 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2663 		    tcp_try_undo_loss(sk, true))
2664 			return;
2665 
2666 		if (after(tp->snd_nxt, tp->high_seq)) {
2667 			if (flag & FLAG_DATA_SACKED || is_dupack)
2668 				tp->frto = 0; /* Step 3.a. loss was real */
2669 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2670 			tp->high_seq = tp->snd_nxt;
2671 			/* Step 2.b. Try send new data (but deferred until cwnd
2672 			 * is updated in tcp_ack()). Otherwise fall back to
2673 			 * the conventional recovery.
2674 			 */
2675 			if (!tcp_write_queue_empty(sk) &&
2676 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2677 				*rexmit = REXMIT_NEW;
2678 				return;
2679 			}
2680 			tp->frto = 0;
2681 		}
2682 	}
2683 
2684 	if (recovered) {
2685 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2686 		tcp_try_undo_recovery(sk);
2687 		return;
2688 	}
2689 	if (tcp_is_reno(tp)) {
2690 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2691 		 * delivered. Lower inflight to clock out (re)tranmissions.
2692 		 */
2693 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2694 			tcp_add_reno_sack(sk);
2695 		else if (flag & FLAG_SND_UNA_ADVANCED)
2696 			tcp_reset_reno_sack(tp);
2697 	}
2698 	*rexmit = REXMIT_LOST;
2699 }
2700 
2701 /* Undo during fast recovery after partial ACK. */
2702 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2703 {
2704 	struct tcp_sock *tp = tcp_sk(sk);
2705 
2706 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2707 		/* Plain luck! Hole if filled with delayed
2708 		 * packet, rather than with a retransmit. Check reordering.
2709 		 */
2710 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2711 
2712 		/* We are getting evidence that the reordering degree is higher
2713 		 * than we realized. If there are no retransmits out then we
2714 		 * can undo. Otherwise we clock out new packets but do not
2715 		 * mark more packets lost or retransmit more.
2716 		 */
2717 		if (tp->retrans_out)
2718 			return true;
2719 
2720 		if (!tcp_any_retrans_done(sk))
2721 			tp->retrans_stamp = 0;
2722 
2723 		DBGUNDO(sk, "partial recovery");
2724 		tcp_undo_cwnd_reduction(sk, true);
2725 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2726 		tcp_try_keep_open(sk);
2727 		return true;
2728 	}
2729 	return false;
2730 }
2731 
2732 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2733 {
2734 	struct tcp_sock *tp = tcp_sk(sk);
2735 
2736 	if (tcp_rtx_queue_empty(sk))
2737 		return;
2738 
2739 	if (unlikely(tcp_is_reno(tp))) {
2740 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2741 	} else if (tcp_is_rack(sk)) {
2742 		u32 prior_retrans = tp->retrans_out;
2743 
2744 		tcp_rack_mark_lost(sk);
2745 		if (prior_retrans > tp->retrans_out)
2746 			*ack_flag |= FLAG_LOST_RETRANS;
2747 	}
2748 }
2749 
2750 static bool tcp_force_fast_retransmit(struct sock *sk)
2751 {
2752 	struct tcp_sock *tp = tcp_sk(sk);
2753 
2754 	return after(tcp_highest_sack_seq(tp),
2755 		     tp->snd_una + tp->reordering * tp->mss_cache);
2756 }
2757 
2758 /* Process an event, which can update packets-in-flight not trivially.
2759  * Main goal of this function is to calculate new estimate for left_out,
2760  * taking into account both packets sitting in receiver's buffer and
2761  * packets lost by network.
2762  *
2763  * Besides that it updates the congestion state when packet loss or ECN
2764  * is detected. But it does not reduce the cwnd, it is done by the
2765  * congestion control later.
2766  *
2767  * It does _not_ decide what to send, it is made in function
2768  * tcp_xmit_retransmit_queue().
2769  */
2770 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2771 				  bool is_dupack, int *ack_flag, int *rexmit)
2772 {
2773 	struct inet_connection_sock *icsk = inet_csk(sk);
2774 	struct tcp_sock *tp = tcp_sk(sk);
2775 	int fast_rexmit = 0, flag = *ack_flag;
2776 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2777 				     tcp_force_fast_retransmit(sk));
2778 
2779 	if (!tp->packets_out && tp->sacked_out)
2780 		tp->sacked_out = 0;
2781 
2782 	/* Now state machine starts.
2783 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2784 	if (flag & FLAG_ECE)
2785 		tp->prior_ssthresh = 0;
2786 
2787 	/* B. In all the states check for reneging SACKs. */
2788 	if (tcp_check_sack_reneging(sk, flag))
2789 		return;
2790 
2791 	/* C. Check consistency of the current state. */
2792 	tcp_verify_left_out(tp);
2793 
2794 	/* D. Check state exit conditions. State can be terminated
2795 	 *    when high_seq is ACKed. */
2796 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2797 		WARN_ON(tp->retrans_out != 0);
2798 		tp->retrans_stamp = 0;
2799 	} else if (!before(tp->snd_una, tp->high_seq)) {
2800 		switch (icsk->icsk_ca_state) {
2801 		case TCP_CA_CWR:
2802 			/* CWR is to be held something *above* high_seq
2803 			 * is ACKed for CWR bit to reach receiver. */
2804 			if (tp->snd_una != tp->high_seq) {
2805 				tcp_end_cwnd_reduction(sk);
2806 				tcp_set_ca_state(sk, TCP_CA_Open);
2807 			}
2808 			break;
2809 
2810 		case TCP_CA_Recovery:
2811 			if (tcp_is_reno(tp))
2812 				tcp_reset_reno_sack(tp);
2813 			if (tcp_try_undo_recovery(sk))
2814 				return;
2815 			tcp_end_cwnd_reduction(sk);
2816 			break;
2817 		}
2818 	}
2819 
2820 	/* E. Process state. */
2821 	switch (icsk->icsk_ca_state) {
2822 	case TCP_CA_Recovery:
2823 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2824 			if (tcp_is_reno(tp) && is_dupack)
2825 				tcp_add_reno_sack(sk);
2826 		} else {
2827 			if (tcp_try_undo_partial(sk, prior_snd_una))
2828 				return;
2829 			/* Partial ACK arrived. Force fast retransmit. */
2830 			do_lost = tcp_is_reno(tp) ||
2831 				  tcp_force_fast_retransmit(sk);
2832 		}
2833 		if (tcp_try_undo_dsack(sk)) {
2834 			tcp_try_keep_open(sk);
2835 			return;
2836 		}
2837 		tcp_identify_packet_loss(sk, ack_flag);
2838 		break;
2839 	case TCP_CA_Loss:
2840 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2841 		tcp_identify_packet_loss(sk, ack_flag);
2842 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2843 		      (*ack_flag & FLAG_LOST_RETRANS)))
2844 			return;
2845 		/* Change state if cwnd is undone or retransmits are lost */
2846 		/* fall through */
2847 	default:
2848 		if (tcp_is_reno(tp)) {
2849 			if (flag & FLAG_SND_UNA_ADVANCED)
2850 				tcp_reset_reno_sack(tp);
2851 			if (is_dupack)
2852 				tcp_add_reno_sack(sk);
2853 		}
2854 
2855 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2856 			tcp_try_undo_dsack(sk);
2857 
2858 		tcp_identify_packet_loss(sk, ack_flag);
2859 		if (!tcp_time_to_recover(sk, flag)) {
2860 			tcp_try_to_open(sk, flag);
2861 			return;
2862 		}
2863 
2864 		/* MTU probe failure: don't reduce cwnd */
2865 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2866 		    icsk->icsk_mtup.probe_size &&
2867 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2868 			tcp_mtup_probe_failed(sk);
2869 			/* Restores the reduction we did in tcp_mtup_probe() */
2870 			tp->snd_cwnd++;
2871 			tcp_simple_retransmit(sk);
2872 			return;
2873 		}
2874 
2875 		/* Otherwise enter Recovery state */
2876 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2877 		fast_rexmit = 1;
2878 	}
2879 
2880 	if (!tcp_is_rack(sk) && do_lost)
2881 		tcp_update_scoreboard(sk, fast_rexmit);
2882 	*rexmit = REXMIT_LOST;
2883 }
2884 
2885 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2886 {
2887 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2888 	struct tcp_sock *tp = tcp_sk(sk);
2889 
2890 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2891 		/* If the remote keeps returning delayed ACKs, eventually
2892 		 * the min filter would pick it up and overestimate the
2893 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2894 		 */
2895 		return;
2896 	}
2897 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2898 			   rtt_us ? : jiffies_to_usecs(1));
2899 }
2900 
2901 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2902 			       long seq_rtt_us, long sack_rtt_us,
2903 			       long ca_rtt_us, struct rate_sample *rs)
2904 {
2905 	const struct tcp_sock *tp = tcp_sk(sk);
2906 
2907 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2908 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2909 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2910 	 * is acked (RFC6298).
2911 	 */
2912 	if (seq_rtt_us < 0)
2913 		seq_rtt_us = sack_rtt_us;
2914 
2915 	/* RTTM Rule: A TSecr value received in a segment is used to
2916 	 * update the averaged RTT measurement only if the segment
2917 	 * acknowledges some new data, i.e., only if it advances the
2918 	 * left edge of the send window.
2919 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2920 	 */
2921 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2922 	    flag & FLAG_ACKED) {
2923 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2924 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2925 
2926 		seq_rtt_us = ca_rtt_us = delta_us;
2927 	}
2928 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2929 	if (seq_rtt_us < 0)
2930 		return false;
2931 
2932 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2933 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2934 	 * values will be skipped with the seq_rtt_us < 0 check above.
2935 	 */
2936 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2937 	tcp_rtt_estimator(sk, seq_rtt_us);
2938 	tcp_set_rto(sk);
2939 
2940 	/* RFC6298: only reset backoff on valid RTT measurement. */
2941 	inet_csk(sk)->icsk_backoff = 0;
2942 	return true;
2943 }
2944 
2945 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2946 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2947 {
2948 	struct rate_sample rs;
2949 	long rtt_us = -1L;
2950 
2951 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2952 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2953 
2954 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2955 }
2956 
2957 
2958 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2959 {
2960 	const struct inet_connection_sock *icsk = inet_csk(sk);
2961 
2962 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2963 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2964 }
2965 
2966 /* Restart timer after forward progress on connection.
2967  * RFC2988 recommends to restart timer to now+rto.
2968  */
2969 void tcp_rearm_rto(struct sock *sk)
2970 {
2971 	const struct inet_connection_sock *icsk = inet_csk(sk);
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 
2974 	/* If the retrans timer is currently being used by Fast Open
2975 	 * for SYN-ACK retrans purpose, stay put.
2976 	 */
2977 	if (tp->fastopen_rsk)
2978 		return;
2979 
2980 	if (!tp->packets_out) {
2981 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2982 	} else {
2983 		u32 rto = inet_csk(sk)->icsk_rto;
2984 		/* Offset the time elapsed after installing regular RTO */
2985 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2986 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2987 			s64 delta_us = tcp_rto_delta_us(sk);
2988 			/* delta_us may not be positive if the socket is locked
2989 			 * when the retrans timer fires and is rescheduled.
2990 			 */
2991 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2992 		}
2993 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2994 					  TCP_RTO_MAX);
2995 	}
2996 }
2997 
2998 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2999 static void tcp_set_xmit_timer(struct sock *sk)
3000 {
3001 	if (!tcp_schedule_loss_probe(sk, true))
3002 		tcp_rearm_rto(sk);
3003 }
3004 
3005 /* If we get here, the whole TSO packet has not been acked. */
3006 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3007 {
3008 	struct tcp_sock *tp = tcp_sk(sk);
3009 	u32 packets_acked;
3010 
3011 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3012 
3013 	packets_acked = tcp_skb_pcount(skb);
3014 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3015 		return 0;
3016 	packets_acked -= tcp_skb_pcount(skb);
3017 
3018 	if (packets_acked) {
3019 		BUG_ON(tcp_skb_pcount(skb) == 0);
3020 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3021 	}
3022 
3023 	return packets_acked;
3024 }
3025 
3026 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3027 			   u32 prior_snd_una)
3028 {
3029 	const struct skb_shared_info *shinfo;
3030 
3031 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3032 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3033 		return;
3034 
3035 	shinfo = skb_shinfo(skb);
3036 	if (!before(shinfo->tskey, prior_snd_una) &&
3037 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3038 		tcp_skb_tsorted_save(skb) {
3039 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3040 		} tcp_skb_tsorted_restore(skb);
3041 	}
3042 }
3043 
3044 /* Remove acknowledged frames from the retransmission queue. If our packet
3045  * is before the ack sequence we can discard it as it's confirmed to have
3046  * arrived at the other end.
3047  */
3048 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3049 			       u32 prior_snd_una,
3050 			       struct tcp_sacktag_state *sack)
3051 {
3052 	const struct inet_connection_sock *icsk = inet_csk(sk);
3053 	u64 first_ackt, last_ackt;
3054 	struct tcp_sock *tp = tcp_sk(sk);
3055 	u32 prior_sacked = tp->sacked_out;
3056 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3057 	struct sk_buff *skb, *next;
3058 	bool fully_acked = true;
3059 	long sack_rtt_us = -1L;
3060 	long seq_rtt_us = -1L;
3061 	long ca_rtt_us = -1L;
3062 	u32 pkts_acked = 0;
3063 	u32 last_in_flight = 0;
3064 	bool rtt_update;
3065 	int flag = 0;
3066 
3067 	first_ackt = 0;
3068 
3069 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3070 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3071 		const u32 start_seq = scb->seq;
3072 		u8 sacked = scb->sacked;
3073 		u32 acked_pcount;
3074 
3075 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3076 
3077 		/* Determine how many packets and what bytes were acked, tso and else */
3078 		if (after(scb->end_seq, tp->snd_una)) {
3079 			if (tcp_skb_pcount(skb) == 1 ||
3080 			    !after(tp->snd_una, scb->seq))
3081 				break;
3082 
3083 			acked_pcount = tcp_tso_acked(sk, skb);
3084 			if (!acked_pcount)
3085 				break;
3086 			fully_acked = false;
3087 		} else {
3088 			acked_pcount = tcp_skb_pcount(skb);
3089 		}
3090 
3091 		if (unlikely(sacked & TCPCB_RETRANS)) {
3092 			if (sacked & TCPCB_SACKED_RETRANS)
3093 				tp->retrans_out -= acked_pcount;
3094 			flag |= FLAG_RETRANS_DATA_ACKED;
3095 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3096 			last_ackt = skb->skb_mstamp;
3097 			WARN_ON_ONCE(last_ackt == 0);
3098 			if (!first_ackt)
3099 				first_ackt = last_ackt;
3100 
3101 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3102 			if (before(start_seq, reord))
3103 				reord = start_seq;
3104 			if (!after(scb->end_seq, tp->high_seq))
3105 				flag |= FLAG_ORIG_SACK_ACKED;
3106 		}
3107 
3108 		if (sacked & TCPCB_SACKED_ACKED) {
3109 			tp->sacked_out -= acked_pcount;
3110 		} else if (tcp_is_sack(tp)) {
3111 			tp->delivered += acked_pcount;
3112 			if (!tcp_skb_spurious_retrans(tp, skb))
3113 				tcp_rack_advance(tp, sacked, scb->end_seq,
3114 						 skb->skb_mstamp);
3115 		}
3116 		if (sacked & TCPCB_LOST)
3117 			tp->lost_out -= acked_pcount;
3118 
3119 		tp->packets_out -= acked_pcount;
3120 		pkts_acked += acked_pcount;
3121 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3122 
3123 		/* Initial outgoing SYN's get put onto the write_queue
3124 		 * just like anything else we transmit.  It is not
3125 		 * true data, and if we misinform our callers that
3126 		 * this ACK acks real data, we will erroneously exit
3127 		 * connection startup slow start one packet too
3128 		 * quickly.  This is severely frowned upon behavior.
3129 		 */
3130 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3131 			flag |= FLAG_DATA_ACKED;
3132 		} else {
3133 			flag |= FLAG_SYN_ACKED;
3134 			tp->retrans_stamp = 0;
3135 		}
3136 
3137 		if (!fully_acked)
3138 			break;
3139 
3140 		next = skb_rb_next(skb);
3141 		if (unlikely(skb == tp->retransmit_skb_hint))
3142 			tp->retransmit_skb_hint = NULL;
3143 		if (unlikely(skb == tp->lost_skb_hint))
3144 			tp->lost_skb_hint = NULL;
3145 		tcp_rtx_queue_unlink_and_free(skb, sk);
3146 	}
3147 
3148 	if (!skb)
3149 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3150 
3151 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3152 		tp->snd_up = tp->snd_una;
3153 
3154 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3155 		flag |= FLAG_SACK_RENEGING;
3156 
3157 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3158 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3159 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3160 
3161 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3162 		    last_in_flight && !prior_sacked && fully_acked &&
3163 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3164 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3165 			/* Conservatively mark a delayed ACK. It's typically
3166 			 * from a lone runt packet over the round trip to
3167 			 * a receiver w/o out-of-order or CE events.
3168 			 */
3169 			flag |= FLAG_ACK_MAYBE_DELAYED;
3170 		}
3171 	}
3172 	if (sack->first_sackt) {
3173 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3174 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3175 	}
3176 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3177 					ca_rtt_us, sack->rate);
3178 
3179 	if (flag & FLAG_ACKED) {
3180 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3181 		if (unlikely(icsk->icsk_mtup.probe_size &&
3182 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3183 			tcp_mtup_probe_success(sk);
3184 		}
3185 
3186 		if (tcp_is_reno(tp)) {
3187 			tcp_remove_reno_sacks(sk, pkts_acked);
3188 
3189 			/* If any of the cumulatively ACKed segments was
3190 			 * retransmitted, non-SACK case cannot confirm that
3191 			 * progress was due to original transmission due to
3192 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3193 			 * the packets may have been never retransmitted.
3194 			 */
3195 			if (flag & FLAG_RETRANS_DATA_ACKED)
3196 				flag &= ~FLAG_ORIG_SACK_ACKED;
3197 		} else {
3198 			int delta;
3199 
3200 			/* Non-retransmitted hole got filled? That's reordering */
3201 			if (before(reord, prior_fack))
3202 				tcp_check_sack_reordering(sk, reord, 0);
3203 
3204 			delta = prior_sacked - tp->sacked_out;
3205 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3206 		}
3207 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3208 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3209 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3210 		 * after when the head was last (re)transmitted. Otherwise the
3211 		 * timeout may continue to extend in loss recovery.
3212 		 */
3213 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3214 	}
3215 
3216 	if (icsk->icsk_ca_ops->pkts_acked) {
3217 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3218 					     .rtt_us = sack->rate->rtt_us,
3219 					     .in_flight = last_in_flight };
3220 
3221 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3222 	}
3223 
3224 #if FASTRETRANS_DEBUG > 0
3225 	WARN_ON((int)tp->sacked_out < 0);
3226 	WARN_ON((int)tp->lost_out < 0);
3227 	WARN_ON((int)tp->retrans_out < 0);
3228 	if (!tp->packets_out && tcp_is_sack(tp)) {
3229 		icsk = inet_csk(sk);
3230 		if (tp->lost_out) {
3231 			pr_debug("Leak l=%u %d\n",
3232 				 tp->lost_out, icsk->icsk_ca_state);
3233 			tp->lost_out = 0;
3234 		}
3235 		if (tp->sacked_out) {
3236 			pr_debug("Leak s=%u %d\n",
3237 				 tp->sacked_out, icsk->icsk_ca_state);
3238 			tp->sacked_out = 0;
3239 		}
3240 		if (tp->retrans_out) {
3241 			pr_debug("Leak r=%u %d\n",
3242 				 tp->retrans_out, icsk->icsk_ca_state);
3243 			tp->retrans_out = 0;
3244 		}
3245 	}
3246 #endif
3247 	return flag;
3248 }
3249 
3250 static void tcp_ack_probe(struct sock *sk)
3251 {
3252 	struct inet_connection_sock *icsk = inet_csk(sk);
3253 	struct sk_buff *head = tcp_send_head(sk);
3254 	const struct tcp_sock *tp = tcp_sk(sk);
3255 
3256 	/* Was it a usable window open? */
3257 	if (!head)
3258 		return;
3259 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3260 		icsk->icsk_backoff = 0;
3261 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3262 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3263 		 * This function is not for random using!
3264 		 */
3265 	} else {
3266 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3267 
3268 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3269 					  when, TCP_RTO_MAX);
3270 	}
3271 }
3272 
3273 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3274 {
3275 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3276 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3277 }
3278 
3279 /* Decide wheather to run the increase function of congestion control. */
3280 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3281 {
3282 	/* If reordering is high then always grow cwnd whenever data is
3283 	 * delivered regardless of its ordering. Otherwise stay conservative
3284 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3285 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3286 	 * cwnd in tcp_fastretrans_alert() based on more states.
3287 	 */
3288 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3289 		return flag & FLAG_FORWARD_PROGRESS;
3290 
3291 	return flag & FLAG_DATA_ACKED;
3292 }
3293 
3294 /* The "ultimate" congestion control function that aims to replace the rigid
3295  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3296  * It's called toward the end of processing an ACK with precise rate
3297  * information. All transmission or retransmission are delayed afterwards.
3298  */
3299 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3300 			     int flag, const struct rate_sample *rs)
3301 {
3302 	const struct inet_connection_sock *icsk = inet_csk(sk);
3303 
3304 	if (icsk->icsk_ca_ops->cong_control) {
3305 		icsk->icsk_ca_ops->cong_control(sk, rs);
3306 		return;
3307 	}
3308 
3309 	if (tcp_in_cwnd_reduction(sk)) {
3310 		/* Reduce cwnd if state mandates */
3311 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3312 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3313 		/* Advance cwnd if state allows */
3314 		tcp_cong_avoid(sk, ack, acked_sacked);
3315 	}
3316 	tcp_update_pacing_rate(sk);
3317 }
3318 
3319 /* Check that window update is acceptable.
3320  * The function assumes that snd_una<=ack<=snd_next.
3321  */
3322 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3323 					const u32 ack, const u32 ack_seq,
3324 					const u32 nwin)
3325 {
3326 	return	after(ack, tp->snd_una) ||
3327 		after(ack_seq, tp->snd_wl1) ||
3328 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3329 }
3330 
3331 /* If we update tp->snd_una, also update tp->bytes_acked */
3332 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3333 {
3334 	u32 delta = ack - tp->snd_una;
3335 
3336 	sock_owned_by_me((struct sock *)tp);
3337 	tp->bytes_acked += delta;
3338 	tp->snd_una = ack;
3339 }
3340 
3341 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3342 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3343 {
3344 	u32 delta = seq - tp->rcv_nxt;
3345 
3346 	sock_owned_by_me((struct sock *)tp);
3347 	tp->bytes_received += delta;
3348 	tp->rcv_nxt = seq;
3349 }
3350 
3351 /* Update our send window.
3352  *
3353  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3354  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3355  */
3356 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3357 				 u32 ack_seq)
3358 {
3359 	struct tcp_sock *tp = tcp_sk(sk);
3360 	int flag = 0;
3361 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3362 
3363 	if (likely(!tcp_hdr(skb)->syn))
3364 		nwin <<= tp->rx_opt.snd_wscale;
3365 
3366 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3367 		flag |= FLAG_WIN_UPDATE;
3368 		tcp_update_wl(tp, ack_seq);
3369 
3370 		if (tp->snd_wnd != nwin) {
3371 			tp->snd_wnd = nwin;
3372 
3373 			/* Note, it is the only place, where
3374 			 * fast path is recovered for sending TCP.
3375 			 */
3376 			tp->pred_flags = 0;
3377 			tcp_fast_path_check(sk);
3378 
3379 			if (!tcp_write_queue_empty(sk))
3380 				tcp_slow_start_after_idle_check(sk);
3381 
3382 			if (nwin > tp->max_window) {
3383 				tp->max_window = nwin;
3384 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3385 			}
3386 		}
3387 	}
3388 
3389 	tcp_snd_una_update(tp, ack);
3390 
3391 	return flag;
3392 }
3393 
3394 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3395 				   u32 *last_oow_ack_time)
3396 {
3397 	if (*last_oow_ack_time) {
3398 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3399 
3400 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3401 			NET_INC_STATS(net, mib_idx);
3402 			return true;	/* rate-limited: don't send yet! */
3403 		}
3404 	}
3405 
3406 	*last_oow_ack_time = tcp_jiffies32;
3407 
3408 	return false;	/* not rate-limited: go ahead, send dupack now! */
3409 }
3410 
3411 /* Return true if we're currently rate-limiting out-of-window ACKs and
3412  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3413  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3414  * attacks that send repeated SYNs or ACKs for the same connection. To
3415  * do this, we do not send a duplicate SYNACK or ACK if the remote
3416  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3417  */
3418 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3419 			  int mib_idx, u32 *last_oow_ack_time)
3420 {
3421 	/* Data packets without SYNs are not likely part of an ACK loop. */
3422 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3423 	    !tcp_hdr(skb)->syn)
3424 		return false;
3425 
3426 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3427 }
3428 
3429 /* RFC 5961 7 [ACK Throttling] */
3430 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3431 {
3432 	/* unprotected vars, we dont care of overwrites */
3433 	static u32 challenge_timestamp;
3434 	static unsigned int challenge_count;
3435 	struct tcp_sock *tp = tcp_sk(sk);
3436 	struct net *net = sock_net(sk);
3437 	u32 count, now;
3438 
3439 	/* First check our per-socket dupack rate limit. */
3440 	if (__tcp_oow_rate_limited(net,
3441 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3442 				   &tp->last_oow_ack_time))
3443 		return;
3444 
3445 	/* Then check host-wide RFC 5961 rate limit. */
3446 	now = jiffies / HZ;
3447 	if (now != challenge_timestamp) {
3448 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3449 		u32 half = (ack_limit + 1) >> 1;
3450 
3451 		challenge_timestamp = now;
3452 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3453 	}
3454 	count = READ_ONCE(challenge_count);
3455 	if (count > 0) {
3456 		WRITE_ONCE(challenge_count, count - 1);
3457 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3458 		tcp_send_ack(sk);
3459 	}
3460 }
3461 
3462 static void tcp_store_ts_recent(struct tcp_sock *tp)
3463 {
3464 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3465 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3466 }
3467 
3468 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3469 {
3470 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3471 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3472 		 * extra check below makes sure this can only happen
3473 		 * for pure ACK frames.  -DaveM
3474 		 *
3475 		 * Not only, also it occurs for expired timestamps.
3476 		 */
3477 
3478 		if (tcp_paws_check(&tp->rx_opt, 0))
3479 			tcp_store_ts_recent(tp);
3480 	}
3481 }
3482 
3483 /* This routine deals with acks during a TLP episode.
3484  * We mark the end of a TLP episode on receiving TLP dupack or when
3485  * ack is after tlp_high_seq.
3486  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3487  */
3488 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3489 {
3490 	struct tcp_sock *tp = tcp_sk(sk);
3491 
3492 	if (before(ack, tp->tlp_high_seq))
3493 		return;
3494 
3495 	if (flag & FLAG_DSACKING_ACK) {
3496 		/* This DSACK means original and TLP probe arrived; no loss */
3497 		tp->tlp_high_seq = 0;
3498 	} else if (after(ack, tp->tlp_high_seq)) {
3499 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3500 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3501 		 */
3502 		tcp_init_cwnd_reduction(sk);
3503 		tcp_set_ca_state(sk, TCP_CA_CWR);
3504 		tcp_end_cwnd_reduction(sk);
3505 		tcp_try_keep_open(sk);
3506 		NET_INC_STATS(sock_net(sk),
3507 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3508 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3509 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3510 		/* Pure dupack: original and TLP probe arrived; no loss */
3511 		tp->tlp_high_seq = 0;
3512 	}
3513 }
3514 
3515 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3516 {
3517 	const struct inet_connection_sock *icsk = inet_csk(sk);
3518 
3519 	if (icsk->icsk_ca_ops->in_ack_event)
3520 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3521 }
3522 
3523 /* Congestion control has updated the cwnd already. So if we're in
3524  * loss recovery then now we do any new sends (for FRTO) or
3525  * retransmits (for CA_Loss or CA_recovery) that make sense.
3526  */
3527 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3528 {
3529 	struct tcp_sock *tp = tcp_sk(sk);
3530 
3531 	if (rexmit == REXMIT_NONE)
3532 		return;
3533 
3534 	if (unlikely(rexmit == 2)) {
3535 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3536 					  TCP_NAGLE_OFF);
3537 		if (after(tp->snd_nxt, tp->high_seq))
3538 			return;
3539 		tp->frto = 0;
3540 	}
3541 	tcp_xmit_retransmit_queue(sk);
3542 }
3543 
3544 /* Returns the number of packets newly acked or sacked by the current ACK */
3545 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3546 {
3547 	const struct net *net = sock_net(sk);
3548 	struct tcp_sock *tp = tcp_sk(sk);
3549 	u32 delivered;
3550 
3551 	delivered = tp->delivered - prior_delivered;
3552 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3553 	if (flag & FLAG_ECE) {
3554 		tp->delivered_ce += delivered;
3555 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3556 	}
3557 	return delivered;
3558 }
3559 
3560 /* This routine deals with incoming acks, but not outgoing ones. */
3561 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3562 {
3563 	struct inet_connection_sock *icsk = inet_csk(sk);
3564 	struct tcp_sock *tp = tcp_sk(sk);
3565 	struct tcp_sacktag_state sack_state;
3566 	struct rate_sample rs = { .prior_delivered = 0 };
3567 	u32 prior_snd_una = tp->snd_una;
3568 	bool is_sack_reneg = tp->is_sack_reneg;
3569 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3570 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3571 	bool is_dupack = false;
3572 	int prior_packets = tp->packets_out;
3573 	u32 delivered = tp->delivered;
3574 	u32 lost = tp->lost;
3575 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3576 	u32 prior_fack;
3577 
3578 	sack_state.first_sackt = 0;
3579 	sack_state.rate = &rs;
3580 
3581 	/* We very likely will need to access rtx queue. */
3582 	prefetch(sk->tcp_rtx_queue.rb_node);
3583 
3584 	/* If the ack is older than previous acks
3585 	 * then we can probably ignore it.
3586 	 */
3587 	if (before(ack, prior_snd_una)) {
3588 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3589 		if (before(ack, prior_snd_una - tp->max_window)) {
3590 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3591 				tcp_send_challenge_ack(sk, skb);
3592 			return -1;
3593 		}
3594 		goto old_ack;
3595 	}
3596 
3597 	/* If the ack includes data we haven't sent yet, discard
3598 	 * this segment (RFC793 Section 3.9).
3599 	 */
3600 	if (after(ack, tp->snd_nxt))
3601 		goto invalid_ack;
3602 
3603 	if (after(ack, prior_snd_una)) {
3604 		flag |= FLAG_SND_UNA_ADVANCED;
3605 		icsk->icsk_retransmits = 0;
3606 
3607 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3608 		if (static_branch_unlikely(&clean_acked_data_enabled))
3609 			if (icsk->icsk_clean_acked)
3610 				icsk->icsk_clean_acked(sk, ack);
3611 #endif
3612 	}
3613 
3614 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3615 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3616 
3617 	/* ts_recent update must be made after we are sure that the packet
3618 	 * is in window.
3619 	 */
3620 	if (flag & FLAG_UPDATE_TS_RECENT)
3621 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3622 
3623 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3624 		/* Window is constant, pure forward advance.
3625 		 * No more checks are required.
3626 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3627 		 */
3628 		tcp_update_wl(tp, ack_seq);
3629 		tcp_snd_una_update(tp, ack);
3630 		flag |= FLAG_WIN_UPDATE;
3631 
3632 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3633 
3634 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3635 	} else {
3636 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3637 
3638 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3639 			flag |= FLAG_DATA;
3640 		else
3641 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3642 
3643 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3644 
3645 		if (TCP_SKB_CB(skb)->sacked)
3646 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3647 							&sack_state);
3648 
3649 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3650 			flag |= FLAG_ECE;
3651 			ack_ev_flags |= CA_ACK_ECE;
3652 		}
3653 
3654 		if (flag & FLAG_WIN_UPDATE)
3655 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3656 
3657 		tcp_in_ack_event(sk, ack_ev_flags);
3658 	}
3659 
3660 	/* We passed data and got it acked, remove any soft error
3661 	 * log. Something worked...
3662 	 */
3663 	sk->sk_err_soft = 0;
3664 	icsk->icsk_probes_out = 0;
3665 	tp->rcv_tstamp = tcp_jiffies32;
3666 	if (!prior_packets)
3667 		goto no_queue;
3668 
3669 	/* See if we can take anything off of the retransmit queue. */
3670 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3671 
3672 	tcp_rack_update_reo_wnd(sk, &rs);
3673 
3674 	if (tp->tlp_high_seq)
3675 		tcp_process_tlp_ack(sk, ack, flag);
3676 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3677 	if (flag & FLAG_SET_XMIT_TIMER)
3678 		tcp_set_xmit_timer(sk);
3679 
3680 	if (tcp_ack_is_dubious(sk, flag)) {
3681 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3682 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3683 				      &rexmit);
3684 	}
3685 
3686 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3687 		sk_dst_confirm(sk);
3688 
3689 	delivered = tcp_newly_delivered(sk, delivered, flag);
3690 	lost = tp->lost - lost;			/* freshly marked lost */
3691 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3692 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3693 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3694 	tcp_xmit_recovery(sk, rexmit);
3695 	return 1;
3696 
3697 no_queue:
3698 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3699 	if (flag & FLAG_DSACKING_ACK) {
3700 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3701 				      &rexmit);
3702 		tcp_newly_delivered(sk, delivered, flag);
3703 	}
3704 	/* If this ack opens up a zero window, clear backoff.  It was
3705 	 * being used to time the probes, and is probably far higher than
3706 	 * it needs to be for normal retransmission.
3707 	 */
3708 	tcp_ack_probe(sk);
3709 
3710 	if (tp->tlp_high_seq)
3711 		tcp_process_tlp_ack(sk, ack, flag);
3712 	return 1;
3713 
3714 invalid_ack:
3715 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3716 	return -1;
3717 
3718 old_ack:
3719 	/* If data was SACKed, tag it and see if we should send more data.
3720 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3721 	 */
3722 	if (TCP_SKB_CB(skb)->sacked) {
3723 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3724 						&sack_state);
3725 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3726 				      &rexmit);
3727 		tcp_newly_delivered(sk, delivered, flag);
3728 		tcp_xmit_recovery(sk, rexmit);
3729 	}
3730 
3731 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3732 	return 0;
3733 }
3734 
3735 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3736 				      bool syn, struct tcp_fastopen_cookie *foc,
3737 				      bool exp_opt)
3738 {
3739 	/* Valid only in SYN or SYN-ACK with an even length.  */
3740 	if (!foc || !syn || len < 0 || (len & 1))
3741 		return;
3742 
3743 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3744 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3745 		memcpy(foc->val, cookie, len);
3746 	else if (len != 0)
3747 		len = -1;
3748 	foc->len = len;
3749 	foc->exp = exp_opt;
3750 }
3751 
3752 static void smc_parse_options(const struct tcphdr *th,
3753 			      struct tcp_options_received *opt_rx,
3754 			      const unsigned char *ptr,
3755 			      int opsize)
3756 {
3757 #if IS_ENABLED(CONFIG_SMC)
3758 	if (static_branch_unlikely(&tcp_have_smc)) {
3759 		if (th->syn && !(opsize & 1) &&
3760 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3761 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3762 			opt_rx->smc_ok = 1;
3763 	}
3764 #endif
3765 }
3766 
3767 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3768  * But, this can also be called on packets in the established flow when
3769  * the fast version below fails.
3770  */
3771 void tcp_parse_options(const struct net *net,
3772 		       const struct sk_buff *skb,
3773 		       struct tcp_options_received *opt_rx, int estab,
3774 		       struct tcp_fastopen_cookie *foc)
3775 {
3776 	const unsigned char *ptr;
3777 	const struct tcphdr *th = tcp_hdr(skb);
3778 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3779 
3780 	ptr = (const unsigned char *)(th + 1);
3781 	opt_rx->saw_tstamp = 0;
3782 
3783 	while (length > 0) {
3784 		int opcode = *ptr++;
3785 		int opsize;
3786 
3787 		switch (opcode) {
3788 		case TCPOPT_EOL:
3789 			return;
3790 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3791 			length--;
3792 			continue;
3793 		default:
3794 			opsize = *ptr++;
3795 			if (opsize < 2) /* "silly options" */
3796 				return;
3797 			if (opsize > length)
3798 				return;	/* don't parse partial options */
3799 			switch (opcode) {
3800 			case TCPOPT_MSS:
3801 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3802 					u16 in_mss = get_unaligned_be16(ptr);
3803 					if (in_mss) {
3804 						if (opt_rx->user_mss &&
3805 						    opt_rx->user_mss < in_mss)
3806 							in_mss = opt_rx->user_mss;
3807 						opt_rx->mss_clamp = in_mss;
3808 					}
3809 				}
3810 				break;
3811 			case TCPOPT_WINDOW:
3812 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3813 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3814 					__u8 snd_wscale = *(__u8 *)ptr;
3815 					opt_rx->wscale_ok = 1;
3816 					if (snd_wscale > TCP_MAX_WSCALE) {
3817 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3818 								     __func__,
3819 								     snd_wscale,
3820 								     TCP_MAX_WSCALE);
3821 						snd_wscale = TCP_MAX_WSCALE;
3822 					}
3823 					opt_rx->snd_wscale = snd_wscale;
3824 				}
3825 				break;
3826 			case TCPOPT_TIMESTAMP:
3827 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3828 				    ((estab && opt_rx->tstamp_ok) ||
3829 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3830 					opt_rx->saw_tstamp = 1;
3831 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3832 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3833 				}
3834 				break;
3835 			case TCPOPT_SACK_PERM:
3836 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3837 				    !estab && net->ipv4.sysctl_tcp_sack) {
3838 					opt_rx->sack_ok = TCP_SACK_SEEN;
3839 					tcp_sack_reset(opt_rx);
3840 				}
3841 				break;
3842 
3843 			case TCPOPT_SACK:
3844 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3845 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3846 				   opt_rx->sack_ok) {
3847 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3848 				}
3849 				break;
3850 #ifdef CONFIG_TCP_MD5SIG
3851 			case TCPOPT_MD5SIG:
3852 				/*
3853 				 * The MD5 Hash has already been
3854 				 * checked (see tcp_v{4,6}_do_rcv()).
3855 				 */
3856 				break;
3857 #endif
3858 			case TCPOPT_FASTOPEN:
3859 				tcp_parse_fastopen_option(
3860 					opsize - TCPOLEN_FASTOPEN_BASE,
3861 					ptr, th->syn, foc, false);
3862 				break;
3863 
3864 			case TCPOPT_EXP:
3865 				/* Fast Open option shares code 254 using a
3866 				 * 16 bits magic number.
3867 				 */
3868 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3869 				    get_unaligned_be16(ptr) ==
3870 				    TCPOPT_FASTOPEN_MAGIC)
3871 					tcp_parse_fastopen_option(opsize -
3872 						TCPOLEN_EXP_FASTOPEN_BASE,
3873 						ptr + 2, th->syn, foc, true);
3874 				else
3875 					smc_parse_options(th, opt_rx, ptr,
3876 							  opsize);
3877 				break;
3878 
3879 			}
3880 			ptr += opsize-2;
3881 			length -= opsize;
3882 		}
3883 	}
3884 }
3885 EXPORT_SYMBOL(tcp_parse_options);
3886 
3887 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3888 {
3889 	const __be32 *ptr = (const __be32 *)(th + 1);
3890 
3891 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3892 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3893 		tp->rx_opt.saw_tstamp = 1;
3894 		++ptr;
3895 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3896 		++ptr;
3897 		if (*ptr)
3898 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3899 		else
3900 			tp->rx_opt.rcv_tsecr = 0;
3901 		return true;
3902 	}
3903 	return false;
3904 }
3905 
3906 /* Fast parse options. This hopes to only see timestamps.
3907  * If it is wrong it falls back on tcp_parse_options().
3908  */
3909 static bool tcp_fast_parse_options(const struct net *net,
3910 				   const struct sk_buff *skb,
3911 				   const struct tcphdr *th, struct tcp_sock *tp)
3912 {
3913 	/* In the spirit of fast parsing, compare doff directly to constant
3914 	 * values.  Because equality is used, short doff can be ignored here.
3915 	 */
3916 	if (th->doff == (sizeof(*th) / 4)) {
3917 		tp->rx_opt.saw_tstamp = 0;
3918 		return false;
3919 	} else if (tp->rx_opt.tstamp_ok &&
3920 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3921 		if (tcp_parse_aligned_timestamp(tp, th))
3922 			return true;
3923 	}
3924 
3925 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3926 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3927 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3928 
3929 	return true;
3930 }
3931 
3932 #ifdef CONFIG_TCP_MD5SIG
3933 /*
3934  * Parse MD5 Signature option
3935  */
3936 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3937 {
3938 	int length = (th->doff << 2) - sizeof(*th);
3939 	const u8 *ptr = (const u8 *)(th + 1);
3940 
3941 	/* If not enough data remaining, we can short cut */
3942 	while (length >= TCPOLEN_MD5SIG) {
3943 		int opcode = *ptr++;
3944 		int opsize;
3945 
3946 		switch (opcode) {
3947 		case TCPOPT_EOL:
3948 			return NULL;
3949 		case TCPOPT_NOP:
3950 			length--;
3951 			continue;
3952 		default:
3953 			opsize = *ptr++;
3954 			if (opsize < 2 || opsize > length)
3955 				return NULL;
3956 			if (opcode == TCPOPT_MD5SIG)
3957 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3958 		}
3959 		ptr += opsize - 2;
3960 		length -= opsize;
3961 	}
3962 	return NULL;
3963 }
3964 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3965 #endif
3966 
3967 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3968  *
3969  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3970  * it can pass through stack. So, the following predicate verifies that
3971  * this segment is not used for anything but congestion avoidance or
3972  * fast retransmit. Moreover, we even are able to eliminate most of such
3973  * second order effects, if we apply some small "replay" window (~RTO)
3974  * to timestamp space.
3975  *
3976  * All these measures still do not guarantee that we reject wrapped ACKs
3977  * on networks with high bandwidth, when sequence space is recycled fastly,
3978  * but it guarantees that such events will be very rare and do not affect
3979  * connection seriously. This doesn't look nice, but alas, PAWS is really
3980  * buggy extension.
3981  *
3982  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3983  * states that events when retransmit arrives after original data are rare.
3984  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3985  * the biggest problem on large power networks even with minor reordering.
3986  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3987  * up to bandwidth of 18Gigabit/sec. 8) ]
3988  */
3989 
3990 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3991 {
3992 	const struct tcp_sock *tp = tcp_sk(sk);
3993 	const struct tcphdr *th = tcp_hdr(skb);
3994 	u32 seq = TCP_SKB_CB(skb)->seq;
3995 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3996 
3997 	return (/* 1. Pure ACK with correct sequence number. */
3998 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3999 
4000 		/* 2. ... and duplicate ACK. */
4001 		ack == tp->snd_una &&
4002 
4003 		/* 3. ... and does not update window. */
4004 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4005 
4006 		/* 4. ... and sits in replay window. */
4007 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4008 }
4009 
4010 static inline bool tcp_paws_discard(const struct sock *sk,
4011 				   const struct sk_buff *skb)
4012 {
4013 	const struct tcp_sock *tp = tcp_sk(sk);
4014 
4015 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4016 	       !tcp_disordered_ack(sk, skb);
4017 }
4018 
4019 /* Check segment sequence number for validity.
4020  *
4021  * Segment controls are considered valid, if the segment
4022  * fits to the window after truncation to the window. Acceptability
4023  * of data (and SYN, FIN, of course) is checked separately.
4024  * See tcp_data_queue(), for example.
4025  *
4026  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4027  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4028  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4029  * (borrowed from freebsd)
4030  */
4031 
4032 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4033 {
4034 	return	!before(end_seq, tp->rcv_wup) &&
4035 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4036 }
4037 
4038 /* When we get a reset we do this. */
4039 void tcp_reset(struct sock *sk)
4040 {
4041 	trace_tcp_receive_reset(sk);
4042 
4043 	/* We want the right error as BSD sees it (and indeed as we do). */
4044 	switch (sk->sk_state) {
4045 	case TCP_SYN_SENT:
4046 		sk->sk_err = ECONNREFUSED;
4047 		break;
4048 	case TCP_CLOSE_WAIT:
4049 		sk->sk_err = EPIPE;
4050 		break;
4051 	case TCP_CLOSE:
4052 		return;
4053 	default:
4054 		sk->sk_err = ECONNRESET;
4055 	}
4056 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4057 	smp_wmb();
4058 
4059 	tcp_write_queue_purge(sk);
4060 	tcp_done(sk);
4061 
4062 	if (!sock_flag(sk, SOCK_DEAD))
4063 		sk->sk_error_report(sk);
4064 }
4065 
4066 /*
4067  * 	Process the FIN bit. This now behaves as it is supposed to work
4068  *	and the FIN takes effect when it is validly part of sequence
4069  *	space. Not before when we get holes.
4070  *
4071  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4072  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4073  *	TIME-WAIT)
4074  *
4075  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4076  *	close and we go into CLOSING (and later onto TIME-WAIT)
4077  *
4078  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4079  */
4080 void tcp_fin(struct sock *sk)
4081 {
4082 	struct tcp_sock *tp = tcp_sk(sk);
4083 
4084 	inet_csk_schedule_ack(sk);
4085 
4086 	sk->sk_shutdown |= RCV_SHUTDOWN;
4087 	sock_set_flag(sk, SOCK_DONE);
4088 
4089 	switch (sk->sk_state) {
4090 	case TCP_SYN_RECV:
4091 	case TCP_ESTABLISHED:
4092 		/* Move to CLOSE_WAIT */
4093 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4094 		inet_csk(sk)->icsk_ack.pingpong = 1;
4095 		break;
4096 
4097 	case TCP_CLOSE_WAIT:
4098 	case TCP_CLOSING:
4099 		/* Received a retransmission of the FIN, do
4100 		 * nothing.
4101 		 */
4102 		break;
4103 	case TCP_LAST_ACK:
4104 		/* RFC793: Remain in the LAST-ACK state. */
4105 		break;
4106 
4107 	case TCP_FIN_WAIT1:
4108 		/* This case occurs when a simultaneous close
4109 		 * happens, we must ack the received FIN and
4110 		 * enter the CLOSING state.
4111 		 */
4112 		tcp_send_ack(sk);
4113 		tcp_set_state(sk, TCP_CLOSING);
4114 		break;
4115 	case TCP_FIN_WAIT2:
4116 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4117 		tcp_send_ack(sk);
4118 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4119 		break;
4120 	default:
4121 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4122 		 * cases we should never reach this piece of code.
4123 		 */
4124 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4125 		       __func__, sk->sk_state);
4126 		break;
4127 	}
4128 
4129 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4130 	 * Probably, we should reset in this case. For now drop them.
4131 	 */
4132 	skb_rbtree_purge(&tp->out_of_order_queue);
4133 	if (tcp_is_sack(tp))
4134 		tcp_sack_reset(&tp->rx_opt);
4135 	sk_mem_reclaim(sk);
4136 
4137 	if (!sock_flag(sk, SOCK_DEAD)) {
4138 		sk->sk_state_change(sk);
4139 
4140 		/* Do not send POLL_HUP for half duplex close. */
4141 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4142 		    sk->sk_state == TCP_CLOSE)
4143 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4144 		else
4145 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4146 	}
4147 }
4148 
4149 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4150 				  u32 end_seq)
4151 {
4152 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4153 		if (before(seq, sp->start_seq))
4154 			sp->start_seq = seq;
4155 		if (after(end_seq, sp->end_seq))
4156 			sp->end_seq = end_seq;
4157 		return true;
4158 	}
4159 	return false;
4160 }
4161 
4162 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4163 {
4164 	struct tcp_sock *tp = tcp_sk(sk);
4165 
4166 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4167 		int mib_idx;
4168 
4169 		if (before(seq, tp->rcv_nxt))
4170 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4171 		else
4172 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4173 
4174 		NET_INC_STATS(sock_net(sk), mib_idx);
4175 
4176 		tp->rx_opt.dsack = 1;
4177 		tp->duplicate_sack[0].start_seq = seq;
4178 		tp->duplicate_sack[0].end_seq = end_seq;
4179 	}
4180 }
4181 
4182 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4183 {
4184 	struct tcp_sock *tp = tcp_sk(sk);
4185 
4186 	if (!tp->rx_opt.dsack)
4187 		tcp_dsack_set(sk, seq, end_seq);
4188 	else
4189 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4190 }
4191 
4192 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4193 {
4194 	struct tcp_sock *tp = tcp_sk(sk);
4195 
4196 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4197 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4198 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4199 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4200 
4201 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4202 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4203 
4204 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4205 				end_seq = tp->rcv_nxt;
4206 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4207 		}
4208 	}
4209 
4210 	tcp_send_ack(sk);
4211 }
4212 
4213 /* These routines update the SACK block as out-of-order packets arrive or
4214  * in-order packets close up the sequence space.
4215  */
4216 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4217 {
4218 	int this_sack;
4219 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4220 	struct tcp_sack_block *swalk = sp + 1;
4221 
4222 	/* See if the recent change to the first SACK eats into
4223 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4224 	 */
4225 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4226 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4227 			int i;
4228 
4229 			/* Zap SWALK, by moving every further SACK up by one slot.
4230 			 * Decrease num_sacks.
4231 			 */
4232 			tp->rx_opt.num_sacks--;
4233 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4234 				sp[i] = sp[i + 1];
4235 			continue;
4236 		}
4237 		this_sack++, swalk++;
4238 	}
4239 }
4240 
4241 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4242 {
4243 	struct tcp_sock *tp = tcp_sk(sk);
4244 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4245 	int cur_sacks = tp->rx_opt.num_sacks;
4246 	int this_sack;
4247 
4248 	if (!cur_sacks)
4249 		goto new_sack;
4250 
4251 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4252 		if (tcp_sack_extend(sp, seq, end_seq)) {
4253 			/* Rotate this_sack to the first one. */
4254 			for (; this_sack > 0; this_sack--, sp--)
4255 				swap(*sp, *(sp - 1));
4256 			if (cur_sacks > 1)
4257 				tcp_sack_maybe_coalesce(tp);
4258 			return;
4259 		}
4260 	}
4261 
4262 	/* Could not find an adjacent existing SACK, build a new one,
4263 	 * put it at the front, and shift everyone else down.  We
4264 	 * always know there is at least one SACK present already here.
4265 	 *
4266 	 * If the sack array is full, forget about the last one.
4267 	 */
4268 	if (this_sack >= TCP_NUM_SACKS) {
4269 		if (tp->compressed_ack)
4270 			tcp_send_ack(sk);
4271 		this_sack--;
4272 		tp->rx_opt.num_sacks--;
4273 		sp--;
4274 	}
4275 	for (; this_sack > 0; this_sack--, sp--)
4276 		*sp = *(sp - 1);
4277 
4278 new_sack:
4279 	/* Build the new head SACK, and we're done. */
4280 	sp->start_seq = seq;
4281 	sp->end_seq = end_seq;
4282 	tp->rx_opt.num_sacks++;
4283 }
4284 
4285 /* RCV.NXT advances, some SACKs should be eaten. */
4286 
4287 static void tcp_sack_remove(struct tcp_sock *tp)
4288 {
4289 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4290 	int num_sacks = tp->rx_opt.num_sacks;
4291 	int this_sack;
4292 
4293 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4294 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4295 		tp->rx_opt.num_sacks = 0;
4296 		return;
4297 	}
4298 
4299 	for (this_sack = 0; this_sack < num_sacks;) {
4300 		/* Check if the start of the sack is covered by RCV.NXT. */
4301 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4302 			int i;
4303 
4304 			/* RCV.NXT must cover all the block! */
4305 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4306 
4307 			/* Zap this SACK, by moving forward any other SACKS. */
4308 			for (i = this_sack+1; i < num_sacks; i++)
4309 				tp->selective_acks[i-1] = tp->selective_acks[i];
4310 			num_sacks--;
4311 			continue;
4312 		}
4313 		this_sack++;
4314 		sp++;
4315 	}
4316 	tp->rx_opt.num_sacks = num_sacks;
4317 }
4318 
4319 /**
4320  * tcp_try_coalesce - try to merge skb to prior one
4321  * @sk: socket
4322  * @dest: destination queue
4323  * @to: prior buffer
4324  * @from: buffer to add in queue
4325  * @fragstolen: pointer to boolean
4326  *
4327  * Before queueing skb @from after @to, try to merge them
4328  * to reduce overall memory use and queue lengths, if cost is small.
4329  * Packets in ofo or receive queues can stay a long time.
4330  * Better try to coalesce them right now to avoid future collapses.
4331  * Returns true if caller should free @from instead of queueing it
4332  */
4333 static bool tcp_try_coalesce(struct sock *sk,
4334 			     struct sk_buff *to,
4335 			     struct sk_buff *from,
4336 			     bool *fragstolen)
4337 {
4338 	int delta;
4339 
4340 	*fragstolen = false;
4341 
4342 	/* Its possible this segment overlaps with prior segment in queue */
4343 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4344 		return false;
4345 
4346 #ifdef CONFIG_TLS_DEVICE
4347 	if (from->decrypted != to->decrypted)
4348 		return false;
4349 #endif
4350 
4351 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4352 		return false;
4353 
4354 	atomic_add(delta, &sk->sk_rmem_alloc);
4355 	sk_mem_charge(sk, delta);
4356 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4357 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4358 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4359 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4360 
4361 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4362 		TCP_SKB_CB(to)->has_rxtstamp = true;
4363 		to->tstamp = from->tstamp;
4364 	}
4365 
4366 	return true;
4367 }
4368 
4369 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4370 {
4371 	sk_drops_add(sk, skb);
4372 	__kfree_skb(skb);
4373 }
4374 
4375 /* This one checks to see if we can put data from the
4376  * out_of_order queue into the receive_queue.
4377  */
4378 static void tcp_ofo_queue(struct sock *sk)
4379 {
4380 	struct tcp_sock *tp = tcp_sk(sk);
4381 	__u32 dsack_high = tp->rcv_nxt;
4382 	bool fin, fragstolen, eaten;
4383 	struct sk_buff *skb, *tail;
4384 	struct rb_node *p;
4385 
4386 	p = rb_first(&tp->out_of_order_queue);
4387 	while (p) {
4388 		skb = rb_to_skb(p);
4389 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4390 			break;
4391 
4392 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4393 			__u32 dsack = dsack_high;
4394 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4395 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4396 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4397 		}
4398 		p = rb_next(p);
4399 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4400 
4401 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4402 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4403 			tcp_drop(sk, skb);
4404 			continue;
4405 		}
4406 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4407 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4408 			   TCP_SKB_CB(skb)->end_seq);
4409 
4410 		tail = skb_peek_tail(&sk->sk_receive_queue);
4411 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4412 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4413 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4414 		if (!eaten)
4415 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4416 		else
4417 			kfree_skb_partial(skb, fragstolen);
4418 
4419 		if (unlikely(fin)) {
4420 			tcp_fin(sk);
4421 			/* tcp_fin() purges tp->out_of_order_queue,
4422 			 * so we must end this loop right now.
4423 			 */
4424 			break;
4425 		}
4426 	}
4427 }
4428 
4429 static bool tcp_prune_ofo_queue(struct sock *sk);
4430 static int tcp_prune_queue(struct sock *sk);
4431 
4432 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4433 				 unsigned int size)
4434 {
4435 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4436 	    !sk_rmem_schedule(sk, skb, size)) {
4437 
4438 		if (tcp_prune_queue(sk) < 0)
4439 			return -1;
4440 
4441 		while (!sk_rmem_schedule(sk, skb, size)) {
4442 			if (!tcp_prune_ofo_queue(sk))
4443 				return -1;
4444 		}
4445 	}
4446 	return 0;
4447 }
4448 
4449 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4450 {
4451 	struct tcp_sock *tp = tcp_sk(sk);
4452 	struct rb_node **p, *parent;
4453 	struct sk_buff *skb1;
4454 	u32 seq, end_seq;
4455 	bool fragstolen;
4456 
4457 	tcp_ecn_check_ce(sk, skb);
4458 
4459 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4460 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4461 		tcp_drop(sk, skb);
4462 		return;
4463 	}
4464 
4465 	/* Disable header prediction. */
4466 	tp->pred_flags = 0;
4467 	inet_csk_schedule_ack(sk);
4468 
4469 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4470 	seq = TCP_SKB_CB(skb)->seq;
4471 	end_seq = TCP_SKB_CB(skb)->end_seq;
4472 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4473 		   tp->rcv_nxt, seq, end_seq);
4474 
4475 	p = &tp->out_of_order_queue.rb_node;
4476 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4477 		/* Initial out of order segment, build 1 SACK. */
4478 		if (tcp_is_sack(tp)) {
4479 			tp->rx_opt.num_sacks = 1;
4480 			tp->selective_acks[0].start_seq = seq;
4481 			tp->selective_acks[0].end_seq = end_seq;
4482 		}
4483 		rb_link_node(&skb->rbnode, NULL, p);
4484 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4485 		tp->ooo_last_skb = skb;
4486 		goto end;
4487 	}
4488 
4489 	/* In the typical case, we are adding an skb to the end of the list.
4490 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4491 	 */
4492 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4493 			     skb, &fragstolen)) {
4494 coalesce_done:
4495 		tcp_grow_window(sk, skb);
4496 		kfree_skb_partial(skb, fragstolen);
4497 		skb = NULL;
4498 		goto add_sack;
4499 	}
4500 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4501 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4502 		parent = &tp->ooo_last_skb->rbnode;
4503 		p = &parent->rb_right;
4504 		goto insert;
4505 	}
4506 
4507 	/* Find place to insert this segment. Handle overlaps on the way. */
4508 	parent = NULL;
4509 	while (*p) {
4510 		parent = *p;
4511 		skb1 = rb_to_skb(parent);
4512 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4513 			p = &parent->rb_left;
4514 			continue;
4515 		}
4516 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4517 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4518 				/* All the bits are present. Drop. */
4519 				NET_INC_STATS(sock_net(sk),
4520 					      LINUX_MIB_TCPOFOMERGE);
4521 				__kfree_skb(skb);
4522 				skb = NULL;
4523 				tcp_dsack_set(sk, seq, end_seq);
4524 				goto add_sack;
4525 			}
4526 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4527 				/* Partial overlap. */
4528 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4529 			} else {
4530 				/* skb's seq == skb1's seq and skb covers skb1.
4531 				 * Replace skb1 with skb.
4532 				 */
4533 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4534 						&tp->out_of_order_queue);
4535 				tcp_dsack_extend(sk,
4536 						 TCP_SKB_CB(skb1)->seq,
4537 						 TCP_SKB_CB(skb1)->end_seq);
4538 				NET_INC_STATS(sock_net(sk),
4539 					      LINUX_MIB_TCPOFOMERGE);
4540 				__kfree_skb(skb1);
4541 				goto merge_right;
4542 			}
4543 		} else if (tcp_try_coalesce(sk, skb1,
4544 					    skb, &fragstolen)) {
4545 			goto coalesce_done;
4546 		}
4547 		p = &parent->rb_right;
4548 	}
4549 insert:
4550 	/* Insert segment into RB tree. */
4551 	rb_link_node(&skb->rbnode, parent, p);
4552 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4553 
4554 merge_right:
4555 	/* Remove other segments covered by skb. */
4556 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4557 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4558 			break;
4559 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4560 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4561 					 end_seq);
4562 			break;
4563 		}
4564 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4565 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566 				 TCP_SKB_CB(skb1)->end_seq);
4567 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4568 		tcp_drop(sk, skb1);
4569 	}
4570 	/* If there is no skb after us, we are the last_skb ! */
4571 	if (!skb1)
4572 		tp->ooo_last_skb = skb;
4573 
4574 add_sack:
4575 	if (tcp_is_sack(tp))
4576 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4577 end:
4578 	if (skb) {
4579 		tcp_grow_window(sk, skb);
4580 		skb_condense(skb);
4581 		skb_set_owner_r(skb, sk);
4582 	}
4583 }
4584 
4585 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4586 		  bool *fragstolen)
4587 {
4588 	int eaten;
4589 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4590 
4591 	__skb_pull(skb, hdrlen);
4592 	eaten = (tail &&
4593 		 tcp_try_coalesce(sk, tail,
4594 				  skb, fragstolen)) ? 1 : 0;
4595 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4596 	if (!eaten) {
4597 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4598 		skb_set_owner_r(skb, sk);
4599 	}
4600 	return eaten;
4601 }
4602 
4603 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4604 {
4605 	struct sk_buff *skb;
4606 	int err = -ENOMEM;
4607 	int data_len = 0;
4608 	bool fragstolen;
4609 
4610 	if (size == 0)
4611 		return 0;
4612 
4613 	if (size > PAGE_SIZE) {
4614 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4615 
4616 		data_len = npages << PAGE_SHIFT;
4617 		size = data_len + (size & ~PAGE_MASK);
4618 	}
4619 	skb = alloc_skb_with_frags(size - data_len, data_len,
4620 				   PAGE_ALLOC_COSTLY_ORDER,
4621 				   &err, sk->sk_allocation);
4622 	if (!skb)
4623 		goto err;
4624 
4625 	skb_put(skb, size - data_len);
4626 	skb->data_len = data_len;
4627 	skb->len = size;
4628 
4629 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4630 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4631 		goto err_free;
4632 	}
4633 
4634 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4635 	if (err)
4636 		goto err_free;
4637 
4638 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4639 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4640 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4641 
4642 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4643 		WARN_ON_ONCE(fragstolen); /* should not happen */
4644 		__kfree_skb(skb);
4645 	}
4646 	return size;
4647 
4648 err_free:
4649 	kfree_skb(skb);
4650 err:
4651 	return err;
4652 
4653 }
4654 
4655 void tcp_data_ready(struct sock *sk)
4656 {
4657 	const struct tcp_sock *tp = tcp_sk(sk);
4658 	int avail = tp->rcv_nxt - tp->copied_seq;
4659 
4660 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4661 		return;
4662 
4663 	sk->sk_data_ready(sk);
4664 }
4665 
4666 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4667 {
4668 	struct tcp_sock *tp = tcp_sk(sk);
4669 	bool fragstolen;
4670 	int eaten;
4671 
4672 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4673 		__kfree_skb(skb);
4674 		return;
4675 	}
4676 	skb_dst_drop(skb);
4677 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4678 
4679 	tcp_ecn_accept_cwr(tp, skb);
4680 
4681 	tp->rx_opt.dsack = 0;
4682 
4683 	/*  Queue data for delivery to the user.
4684 	 *  Packets in sequence go to the receive queue.
4685 	 *  Out of sequence packets to the out_of_order_queue.
4686 	 */
4687 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4688 		if (tcp_receive_window(tp) == 0) {
4689 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4690 			goto out_of_window;
4691 		}
4692 
4693 		/* Ok. In sequence. In window. */
4694 queue_and_out:
4695 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4696 			sk_forced_mem_schedule(sk, skb->truesize);
4697 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4698 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4699 			goto drop;
4700 		}
4701 
4702 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4703 		if (skb->len)
4704 			tcp_event_data_recv(sk, skb);
4705 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4706 			tcp_fin(sk);
4707 
4708 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4709 			tcp_ofo_queue(sk);
4710 
4711 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4712 			 * gap in queue is filled.
4713 			 */
4714 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4715 				inet_csk(sk)->icsk_ack.pingpong = 0;
4716 		}
4717 
4718 		if (tp->rx_opt.num_sacks)
4719 			tcp_sack_remove(tp);
4720 
4721 		tcp_fast_path_check(sk);
4722 
4723 		if (eaten > 0)
4724 			kfree_skb_partial(skb, fragstolen);
4725 		if (!sock_flag(sk, SOCK_DEAD))
4726 			tcp_data_ready(sk);
4727 		return;
4728 	}
4729 
4730 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4731 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4732 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4733 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4734 
4735 out_of_window:
4736 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4737 		inet_csk_schedule_ack(sk);
4738 drop:
4739 		tcp_drop(sk, skb);
4740 		return;
4741 	}
4742 
4743 	/* Out of window. F.e. zero window probe. */
4744 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4745 		goto out_of_window;
4746 
4747 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4748 		/* Partial packet, seq < rcv_next < end_seq */
4749 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4750 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4751 			   TCP_SKB_CB(skb)->end_seq);
4752 
4753 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4754 
4755 		/* If window is closed, drop tail of packet. But after
4756 		 * remembering D-SACK for its head made in previous line.
4757 		 */
4758 		if (!tcp_receive_window(tp)) {
4759 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4760 			goto out_of_window;
4761 		}
4762 		goto queue_and_out;
4763 	}
4764 
4765 	tcp_data_queue_ofo(sk, skb);
4766 }
4767 
4768 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4769 {
4770 	if (list)
4771 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4772 
4773 	return skb_rb_next(skb);
4774 }
4775 
4776 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4777 					struct sk_buff_head *list,
4778 					struct rb_root *root)
4779 {
4780 	struct sk_buff *next = tcp_skb_next(skb, list);
4781 
4782 	if (list)
4783 		__skb_unlink(skb, list);
4784 	else
4785 		rb_erase(&skb->rbnode, root);
4786 
4787 	__kfree_skb(skb);
4788 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4789 
4790 	return next;
4791 }
4792 
4793 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4794 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4795 {
4796 	struct rb_node **p = &root->rb_node;
4797 	struct rb_node *parent = NULL;
4798 	struct sk_buff *skb1;
4799 
4800 	while (*p) {
4801 		parent = *p;
4802 		skb1 = rb_to_skb(parent);
4803 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4804 			p = &parent->rb_left;
4805 		else
4806 			p = &parent->rb_right;
4807 	}
4808 	rb_link_node(&skb->rbnode, parent, p);
4809 	rb_insert_color(&skb->rbnode, root);
4810 }
4811 
4812 /* Collapse contiguous sequence of skbs head..tail with
4813  * sequence numbers start..end.
4814  *
4815  * If tail is NULL, this means until the end of the queue.
4816  *
4817  * Segments with FIN/SYN are not collapsed (only because this
4818  * simplifies code)
4819  */
4820 static void
4821 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4822 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4823 {
4824 	struct sk_buff *skb = head, *n;
4825 	struct sk_buff_head tmp;
4826 	bool end_of_skbs;
4827 
4828 	/* First, check that queue is collapsible and find
4829 	 * the point where collapsing can be useful.
4830 	 */
4831 restart:
4832 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4833 		n = tcp_skb_next(skb, list);
4834 
4835 		/* No new bits? It is possible on ofo queue. */
4836 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4837 			skb = tcp_collapse_one(sk, skb, list, root);
4838 			if (!skb)
4839 				break;
4840 			goto restart;
4841 		}
4842 
4843 		/* The first skb to collapse is:
4844 		 * - not SYN/FIN and
4845 		 * - bloated or contains data before "start" or
4846 		 *   overlaps to the next one.
4847 		 */
4848 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4849 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4850 		     before(TCP_SKB_CB(skb)->seq, start))) {
4851 			end_of_skbs = false;
4852 			break;
4853 		}
4854 
4855 		if (n && n != tail &&
4856 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4857 			end_of_skbs = false;
4858 			break;
4859 		}
4860 
4861 		/* Decided to skip this, advance start seq. */
4862 		start = TCP_SKB_CB(skb)->end_seq;
4863 	}
4864 	if (end_of_skbs ||
4865 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4866 		return;
4867 
4868 	__skb_queue_head_init(&tmp);
4869 
4870 	while (before(start, end)) {
4871 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4872 		struct sk_buff *nskb;
4873 
4874 		nskb = alloc_skb(copy, GFP_ATOMIC);
4875 		if (!nskb)
4876 			break;
4877 
4878 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4879 #ifdef CONFIG_TLS_DEVICE
4880 		nskb->decrypted = skb->decrypted;
4881 #endif
4882 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4883 		if (list)
4884 			__skb_queue_before(list, skb, nskb);
4885 		else
4886 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4887 		skb_set_owner_r(nskb, sk);
4888 
4889 		/* Copy data, releasing collapsed skbs. */
4890 		while (copy > 0) {
4891 			int offset = start - TCP_SKB_CB(skb)->seq;
4892 			int size = TCP_SKB_CB(skb)->end_seq - start;
4893 
4894 			BUG_ON(offset < 0);
4895 			if (size > 0) {
4896 				size = min(copy, size);
4897 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4898 					BUG();
4899 				TCP_SKB_CB(nskb)->end_seq += size;
4900 				copy -= size;
4901 				start += size;
4902 			}
4903 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4904 				skb = tcp_collapse_one(sk, skb, list, root);
4905 				if (!skb ||
4906 				    skb == tail ||
4907 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4908 					goto end;
4909 #ifdef CONFIG_TLS_DEVICE
4910 				if (skb->decrypted != nskb->decrypted)
4911 					goto end;
4912 #endif
4913 			}
4914 		}
4915 	}
4916 end:
4917 	skb_queue_walk_safe(&tmp, skb, n)
4918 		tcp_rbtree_insert(root, skb);
4919 }
4920 
4921 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4922  * and tcp_collapse() them until all the queue is collapsed.
4923  */
4924 static void tcp_collapse_ofo_queue(struct sock *sk)
4925 {
4926 	struct tcp_sock *tp = tcp_sk(sk);
4927 	struct sk_buff *skb, *head;
4928 	u32 start, end;
4929 
4930 	skb = skb_rb_first(&tp->out_of_order_queue);
4931 new_range:
4932 	if (!skb) {
4933 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4934 		return;
4935 	}
4936 	start = TCP_SKB_CB(skb)->seq;
4937 	end = TCP_SKB_CB(skb)->end_seq;
4938 
4939 	for (head = skb;;) {
4940 		skb = skb_rb_next(skb);
4941 
4942 		/* Range is terminated when we see a gap or when
4943 		 * we are at the queue end.
4944 		 */
4945 		if (!skb ||
4946 		    after(TCP_SKB_CB(skb)->seq, end) ||
4947 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4948 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4949 				     head, skb, start, end);
4950 			goto new_range;
4951 		}
4952 
4953 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4954 			start = TCP_SKB_CB(skb)->seq;
4955 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4956 			end = TCP_SKB_CB(skb)->end_seq;
4957 	}
4958 }
4959 
4960 /*
4961  * Clean the out-of-order queue to make room.
4962  * We drop high sequences packets to :
4963  * 1) Let a chance for holes to be filled.
4964  * 2) not add too big latencies if thousands of packets sit there.
4965  *    (But if application shrinks SO_RCVBUF, we could still end up
4966  *     freeing whole queue here)
4967  *
4968  * Return true if queue has shrunk.
4969  */
4970 static bool tcp_prune_ofo_queue(struct sock *sk)
4971 {
4972 	struct tcp_sock *tp = tcp_sk(sk);
4973 	struct rb_node *node, *prev;
4974 
4975 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4976 		return false;
4977 
4978 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4979 	node = &tp->ooo_last_skb->rbnode;
4980 	do {
4981 		prev = rb_prev(node);
4982 		rb_erase(node, &tp->out_of_order_queue);
4983 		tcp_drop(sk, rb_to_skb(node));
4984 		sk_mem_reclaim(sk);
4985 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4986 		    !tcp_under_memory_pressure(sk))
4987 			break;
4988 		node = prev;
4989 	} while (node);
4990 	tp->ooo_last_skb = rb_to_skb(prev);
4991 
4992 	/* Reset SACK state.  A conforming SACK implementation will
4993 	 * do the same at a timeout based retransmit.  When a connection
4994 	 * is in a sad state like this, we care only about integrity
4995 	 * of the connection not performance.
4996 	 */
4997 	if (tp->rx_opt.sack_ok)
4998 		tcp_sack_reset(&tp->rx_opt);
4999 	return true;
5000 }
5001 
5002 /* Reduce allocated memory if we can, trying to get
5003  * the socket within its memory limits again.
5004  *
5005  * Return less than zero if we should start dropping frames
5006  * until the socket owning process reads some of the data
5007  * to stabilize the situation.
5008  */
5009 static int tcp_prune_queue(struct sock *sk)
5010 {
5011 	struct tcp_sock *tp = tcp_sk(sk);
5012 
5013 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5014 
5015 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5016 
5017 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5018 		tcp_clamp_window(sk);
5019 	else if (tcp_under_memory_pressure(sk))
5020 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5021 
5022 	tcp_collapse_ofo_queue(sk);
5023 	if (!skb_queue_empty(&sk->sk_receive_queue))
5024 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5025 			     skb_peek(&sk->sk_receive_queue),
5026 			     NULL,
5027 			     tp->copied_seq, tp->rcv_nxt);
5028 	sk_mem_reclaim(sk);
5029 
5030 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5031 		return 0;
5032 
5033 	/* Collapsing did not help, destructive actions follow.
5034 	 * This must not ever occur. */
5035 
5036 	tcp_prune_ofo_queue(sk);
5037 
5038 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5039 		return 0;
5040 
5041 	/* If we are really being abused, tell the caller to silently
5042 	 * drop receive data on the floor.  It will get retransmitted
5043 	 * and hopefully then we'll have sufficient space.
5044 	 */
5045 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5046 
5047 	/* Massive buffer overcommit. */
5048 	tp->pred_flags = 0;
5049 	return -1;
5050 }
5051 
5052 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5053 {
5054 	const struct tcp_sock *tp = tcp_sk(sk);
5055 
5056 	/* If the user specified a specific send buffer setting, do
5057 	 * not modify it.
5058 	 */
5059 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5060 		return false;
5061 
5062 	/* If we are under global TCP memory pressure, do not expand.  */
5063 	if (tcp_under_memory_pressure(sk))
5064 		return false;
5065 
5066 	/* If we are under soft global TCP memory pressure, do not expand.  */
5067 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5068 		return false;
5069 
5070 	/* If we filled the congestion window, do not expand.  */
5071 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5072 		return false;
5073 
5074 	return true;
5075 }
5076 
5077 /* When incoming ACK allowed to free some skb from write_queue,
5078  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5079  * on the exit from tcp input handler.
5080  *
5081  * PROBLEM: sndbuf expansion does not work well with largesend.
5082  */
5083 static void tcp_new_space(struct sock *sk)
5084 {
5085 	struct tcp_sock *tp = tcp_sk(sk);
5086 
5087 	if (tcp_should_expand_sndbuf(sk)) {
5088 		tcp_sndbuf_expand(sk);
5089 		tp->snd_cwnd_stamp = tcp_jiffies32;
5090 	}
5091 
5092 	sk->sk_write_space(sk);
5093 }
5094 
5095 static void tcp_check_space(struct sock *sk)
5096 {
5097 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5098 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5099 		/* pairs with tcp_poll() */
5100 		smp_mb();
5101 		if (sk->sk_socket &&
5102 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5103 			tcp_new_space(sk);
5104 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5105 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5106 		}
5107 	}
5108 }
5109 
5110 static inline void tcp_data_snd_check(struct sock *sk)
5111 {
5112 	tcp_push_pending_frames(sk);
5113 	tcp_check_space(sk);
5114 }
5115 
5116 /*
5117  * Check if sending an ack is needed.
5118  */
5119 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5120 {
5121 	struct tcp_sock *tp = tcp_sk(sk);
5122 	unsigned long rtt, delay;
5123 
5124 	    /* More than one full frame received... */
5125 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5126 	     /* ... and right edge of window advances far enough.
5127 	      * (tcp_recvmsg() will send ACK otherwise).
5128 	      * If application uses SO_RCVLOWAT, we want send ack now if
5129 	      * we have not received enough bytes to satisfy the condition.
5130 	      */
5131 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5132 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5133 	    /* We ACK each frame or... */
5134 	    tcp_in_quickack_mode(sk)) {
5135 send_now:
5136 		tcp_send_ack(sk);
5137 		return;
5138 	}
5139 
5140 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5141 		tcp_send_delayed_ack(sk);
5142 		return;
5143 	}
5144 
5145 	if (!tcp_is_sack(tp) ||
5146 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5147 		goto send_now;
5148 	tp->compressed_ack++;
5149 
5150 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5151 		return;
5152 
5153 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5154 
5155 	rtt = tp->rcv_rtt_est.rtt_us;
5156 	if (tp->srtt_us && tp->srtt_us < rtt)
5157 		rtt = tp->srtt_us;
5158 
5159 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5160 		      rtt * (NSEC_PER_USEC >> 3)/20);
5161 	sock_hold(sk);
5162 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5163 		      HRTIMER_MODE_REL_PINNED_SOFT);
5164 }
5165 
5166 static inline void tcp_ack_snd_check(struct sock *sk)
5167 {
5168 	if (!inet_csk_ack_scheduled(sk)) {
5169 		/* We sent a data segment already. */
5170 		return;
5171 	}
5172 	__tcp_ack_snd_check(sk, 1);
5173 }
5174 
5175 /*
5176  *	This routine is only called when we have urgent data
5177  *	signaled. Its the 'slow' part of tcp_urg. It could be
5178  *	moved inline now as tcp_urg is only called from one
5179  *	place. We handle URGent data wrong. We have to - as
5180  *	BSD still doesn't use the correction from RFC961.
5181  *	For 1003.1g we should support a new option TCP_STDURG to permit
5182  *	either form (or just set the sysctl tcp_stdurg).
5183  */
5184 
5185 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5186 {
5187 	struct tcp_sock *tp = tcp_sk(sk);
5188 	u32 ptr = ntohs(th->urg_ptr);
5189 
5190 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5191 		ptr--;
5192 	ptr += ntohl(th->seq);
5193 
5194 	/* Ignore urgent data that we've already seen and read. */
5195 	if (after(tp->copied_seq, ptr))
5196 		return;
5197 
5198 	/* Do not replay urg ptr.
5199 	 *
5200 	 * NOTE: interesting situation not covered by specs.
5201 	 * Misbehaving sender may send urg ptr, pointing to segment,
5202 	 * which we already have in ofo queue. We are not able to fetch
5203 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5204 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5205 	 * situations. But it is worth to think about possibility of some
5206 	 * DoSes using some hypothetical application level deadlock.
5207 	 */
5208 	if (before(ptr, tp->rcv_nxt))
5209 		return;
5210 
5211 	/* Do we already have a newer (or duplicate) urgent pointer? */
5212 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5213 		return;
5214 
5215 	/* Tell the world about our new urgent pointer. */
5216 	sk_send_sigurg(sk);
5217 
5218 	/* We may be adding urgent data when the last byte read was
5219 	 * urgent. To do this requires some care. We cannot just ignore
5220 	 * tp->copied_seq since we would read the last urgent byte again
5221 	 * as data, nor can we alter copied_seq until this data arrives
5222 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5223 	 *
5224 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5225 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5226 	 * and expect that both A and B disappear from stream. This is _wrong_.
5227 	 * Though this happens in BSD with high probability, this is occasional.
5228 	 * Any application relying on this is buggy. Note also, that fix "works"
5229 	 * only in this artificial test. Insert some normal data between A and B and we will
5230 	 * decline of BSD again. Verdict: it is better to remove to trap
5231 	 * buggy users.
5232 	 */
5233 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5234 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5235 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5236 		tp->copied_seq++;
5237 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5238 			__skb_unlink(skb, &sk->sk_receive_queue);
5239 			__kfree_skb(skb);
5240 		}
5241 	}
5242 
5243 	tp->urg_data = TCP_URG_NOTYET;
5244 	tp->urg_seq = ptr;
5245 
5246 	/* Disable header prediction. */
5247 	tp->pred_flags = 0;
5248 }
5249 
5250 /* This is the 'fast' part of urgent handling. */
5251 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5252 {
5253 	struct tcp_sock *tp = tcp_sk(sk);
5254 
5255 	/* Check if we get a new urgent pointer - normally not. */
5256 	if (th->urg)
5257 		tcp_check_urg(sk, th);
5258 
5259 	/* Do we wait for any urgent data? - normally not... */
5260 	if (tp->urg_data == TCP_URG_NOTYET) {
5261 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5262 			  th->syn;
5263 
5264 		/* Is the urgent pointer pointing into this packet? */
5265 		if (ptr < skb->len) {
5266 			u8 tmp;
5267 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5268 				BUG();
5269 			tp->urg_data = TCP_URG_VALID | tmp;
5270 			if (!sock_flag(sk, SOCK_DEAD))
5271 				sk->sk_data_ready(sk);
5272 		}
5273 	}
5274 }
5275 
5276 /* Accept RST for rcv_nxt - 1 after a FIN.
5277  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5278  * FIN is sent followed by a RST packet. The RST is sent with the same
5279  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5280  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5281  * ACKs on the closed socket. In addition middleboxes can drop either the
5282  * challenge ACK or a subsequent RST.
5283  */
5284 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5285 {
5286 	struct tcp_sock *tp = tcp_sk(sk);
5287 
5288 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5289 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5290 					       TCPF_CLOSING));
5291 }
5292 
5293 /* Does PAWS and seqno based validation of an incoming segment, flags will
5294  * play significant role here.
5295  */
5296 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5297 				  const struct tcphdr *th, int syn_inerr)
5298 {
5299 	struct tcp_sock *tp = tcp_sk(sk);
5300 	bool rst_seq_match = false;
5301 
5302 	/* RFC1323: H1. Apply PAWS check first. */
5303 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5304 	    tp->rx_opt.saw_tstamp &&
5305 	    tcp_paws_discard(sk, skb)) {
5306 		if (!th->rst) {
5307 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5308 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5309 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5310 						  &tp->last_oow_ack_time))
5311 				tcp_send_dupack(sk, skb);
5312 			goto discard;
5313 		}
5314 		/* Reset is accepted even if it did not pass PAWS. */
5315 	}
5316 
5317 	/* Step 1: check sequence number */
5318 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5319 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5320 		 * (RST) segments are validated by checking their SEQ-fields."
5321 		 * And page 69: "If an incoming segment is not acceptable,
5322 		 * an acknowledgment should be sent in reply (unless the RST
5323 		 * bit is set, if so drop the segment and return)".
5324 		 */
5325 		if (!th->rst) {
5326 			if (th->syn)
5327 				goto syn_challenge;
5328 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5329 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5330 						  &tp->last_oow_ack_time))
5331 				tcp_send_dupack(sk, skb);
5332 		} else if (tcp_reset_check(sk, skb)) {
5333 			tcp_reset(sk);
5334 		}
5335 		goto discard;
5336 	}
5337 
5338 	/* Step 2: check RST bit */
5339 	if (th->rst) {
5340 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5341 		 * FIN and SACK too if available):
5342 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5343 		 * the right-most SACK block,
5344 		 * then
5345 		 *     RESET the connection
5346 		 * else
5347 		 *     Send a challenge ACK
5348 		 */
5349 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5350 		    tcp_reset_check(sk, skb)) {
5351 			rst_seq_match = true;
5352 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5353 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5354 			int max_sack = sp[0].end_seq;
5355 			int this_sack;
5356 
5357 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5358 			     ++this_sack) {
5359 				max_sack = after(sp[this_sack].end_seq,
5360 						 max_sack) ?
5361 					sp[this_sack].end_seq : max_sack;
5362 			}
5363 
5364 			if (TCP_SKB_CB(skb)->seq == max_sack)
5365 				rst_seq_match = true;
5366 		}
5367 
5368 		if (rst_seq_match)
5369 			tcp_reset(sk);
5370 		else {
5371 			/* Disable TFO if RST is out-of-order
5372 			 * and no data has been received
5373 			 * for current active TFO socket
5374 			 */
5375 			if (tp->syn_fastopen && !tp->data_segs_in &&
5376 			    sk->sk_state == TCP_ESTABLISHED)
5377 				tcp_fastopen_active_disable(sk);
5378 			tcp_send_challenge_ack(sk, skb);
5379 		}
5380 		goto discard;
5381 	}
5382 
5383 	/* step 3: check security and precedence [ignored] */
5384 
5385 	/* step 4: Check for a SYN
5386 	 * RFC 5961 4.2 : Send a challenge ack
5387 	 */
5388 	if (th->syn) {
5389 syn_challenge:
5390 		if (syn_inerr)
5391 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5392 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5393 		tcp_send_challenge_ack(sk, skb);
5394 		goto discard;
5395 	}
5396 
5397 	return true;
5398 
5399 discard:
5400 	tcp_drop(sk, skb);
5401 	return false;
5402 }
5403 
5404 /*
5405  *	TCP receive function for the ESTABLISHED state.
5406  *
5407  *	It is split into a fast path and a slow path. The fast path is
5408  * 	disabled when:
5409  *	- A zero window was announced from us - zero window probing
5410  *        is only handled properly in the slow path.
5411  *	- Out of order segments arrived.
5412  *	- Urgent data is expected.
5413  *	- There is no buffer space left
5414  *	- Unexpected TCP flags/window values/header lengths are received
5415  *	  (detected by checking the TCP header against pred_flags)
5416  *	- Data is sent in both directions. Fast path only supports pure senders
5417  *	  or pure receivers (this means either the sequence number or the ack
5418  *	  value must stay constant)
5419  *	- Unexpected TCP option.
5420  *
5421  *	When these conditions are not satisfied it drops into a standard
5422  *	receive procedure patterned after RFC793 to handle all cases.
5423  *	The first three cases are guaranteed by proper pred_flags setting,
5424  *	the rest is checked inline. Fast processing is turned on in
5425  *	tcp_data_queue when everything is OK.
5426  */
5427 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5428 {
5429 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5430 	struct tcp_sock *tp = tcp_sk(sk);
5431 	unsigned int len = skb->len;
5432 
5433 	/* TCP congestion window tracking */
5434 	trace_tcp_probe(sk, skb);
5435 
5436 	tcp_mstamp_refresh(tp);
5437 	if (unlikely(!sk->sk_rx_dst))
5438 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5439 	/*
5440 	 *	Header prediction.
5441 	 *	The code loosely follows the one in the famous
5442 	 *	"30 instruction TCP receive" Van Jacobson mail.
5443 	 *
5444 	 *	Van's trick is to deposit buffers into socket queue
5445 	 *	on a device interrupt, to call tcp_recv function
5446 	 *	on the receive process context and checksum and copy
5447 	 *	the buffer to user space. smart...
5448 	 *
5449 	 *	Our current scheme is not silly either but we take the
5450 	 *	extra cost of the net_bh soft interrupt processing...
5451 	 *	We do checksum and copy also but from device to kernel.
5452 	 */
5453 
5454 	tp->rx_opt.saw_tstamp = 0;
5455 
5456 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5457 	 *	if header_prediction is to be made
5458 	 *	'S' will always be tp->tcp_header_len >> 2
5459 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5460 	 *  turn it off	(when there are holes in the receive
5461 	 *	 space for instance)
5462 	 *	PSH flag is ignored.
5463 	 */
5464 
5465 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5466 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5467 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5468 		int tcp_header_len = tp->tcp_header_len;
5469 
5470 		/* Timestamp header prediction: tcp_header_len
5471 		 * is automatically equal to th->doff*4 due to pred_flags
5472 		 * match.
5473 		 */
5474 
5475 		/* Check timestamp */
5476 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5477 			/* No? Slow path! */
5478 			if (!tcp_parse_aligned_timestamp(tp, th))
5479 				goto slow_path;
5480 
5481 			/* If PAWS failed, check it more carefully in slow path */
5482 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5483 				goto slow_path;
5484 
5485 			/* DO NOT update ts_recent here, if checksum fails
5486 			 * and timestamp was corrupted part, it will result
5487 			 * in a hung connection since we will drop all
5488 			 * future packets due to the PAWS test.
5489 			 */
5490 		}
5491 
5492 		if (len <= tcp_header_len) {
5493 			/* Bulk data transfer: sender */
5494 			if (len == tcp_header_len) {
5495 				/* Predicted packet is in window by definition.
5496 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5497 				 * Hence, check seq<=rcv_wup reduces to:
5498 				 */
5499 				if (tcp_header_len ==
5500 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5501 				    tp->rcv_nxt == tp->rcv_wup)
5502 					tcp_store_ts_recent(tp);
5503 
5504 				/* We know that such packets are checksummed
5505 				 * on entry.
5506 				 */
5507 				tcp_ack(sk, skb, 0);
5508 				__kfree_skb(skb);
5509 				tcp_data_snd_check(sk);
5510 				/* When receiving pure ack in fast path, update
5511 				 * last ts ecr directly instead of calling
5512 				 * tcp_rcv_rtt_measure_ts()
5513 				 */
5514 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5515 				return;
5516 			} else { /* Header too small */
5517 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5518 				goto discard;
5519 			}
5520 		} else {
5521 			int eaten = 0;
5522 			bool fragstolen = false;
5523 
5524 			if (tcp_checksum_complete(skb))
5525 				goto csum_error;
5526 
5527 			if ((int)skb->truesize > sk->sk_forward_alloc)
5528 				goto step5;
5529 
5530 			/* Predicted packet is in window by definition.
5531 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5532 			 * Hence, check seq<=rcv_wup reduces to:
5533 			 */
5534 			if (tcp_header_len ==
5535 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5536 			    tp->rcv_nxt == tp->rcv_wup)
5537 				tcp_store_ts_recent(tp);
5538 
5539 			tcp_rcv_rtt_measure_ts(sk, skb);
5540 
5541 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5542 
5543 			/* Bulk data transfer: receiver */
5544 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5545 					      &fragstolen);
5546 
5547 			tcp_event_data_recv(sk, skb);
5548 
5549 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5550 				/* Well, only one small jumplet in fast path... */
5551 				tcp_ack(sk, skb, FLAG_DATA);
5552 				tcp_data_snd_check(sk);
5553 				if (!inet_csk_ack_scheduled(sk))
5554 					goto no_ack;
5555 			}
5556 
5557 			__tcp_ack_snd_check(sk, 0);
5558 no_ack:
5559 			if (eaten)
5560 				kfree_skb_partial(skb, fragstolen);
5561 			tcp_data_ready(sk);
5562 			return;
5563 		}
5564 	}
5565 
5566 slow_path:
5567 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5568 		goto csum_error;
5569 
5570 	if (!th->ack && !th->rst && !th->syn)
5571 		goto discard;
5572 
5573 	/*
5574 	 *	Standard slow path.
5575 	 */
5576 
5577 	if (!tcp_validate_incoming(sk, skb, th, 1))
5578 		return;
5579 
5580 step5:
5581 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5582 		goto discard;
5583 
5584 	tcp_rcv_rtt_measure_ts(sk, skb);
5585 
5586 	/* Process urgent data. */
5587 	tcp_urg(sk, skb, th);
5588 
5589 	/* step 7: process the segment text */
5590 	tcp_data_queue(sk, skb);
5591 
5592 	tcp_data_snd_check(sk);
5593 	tcp_ack_snd_check(sk);
5594 	return;
5595 
5596 csum_error:
5597 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5598 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5599 
5600 discard:
5601 	tcp_drop(sk, skb);
5602 }
5603 EXPORT_SYMBOL(tcp_rcv_established);
5604 
5605 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5606 {
5607 	struct tcp_sock *tp = tcp_sk(sk);
5608 	struct inet_connection_sock *icsk = inet_csk(sk);
5609 
5610 	tcp_set_state(sk, TCP_ESTABLISHED);
5611 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5612 
5613 	if (skb) {
5614 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5615 		security_inet_conn_established(sk, skb);
5616 		sk_mark_napi_id(sk, skb);
5617 	}
5618 
5619 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5620 
5621 	/* Prevent spurious tcp_cwnd_restart() on first data
5622 	 * packet.
5623 	 */
5624 	tp->lsndtime = tcp_jiffies32;
5625 
5626 	if (sock_flag(sk, SOCK_KEEPOPEN))
5627 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5628 
5629 	if (!tp->rx_opt.snd_wscale)
5630 		__tcp_fast_path_on(tp, tp->snd_wnd);
5631 	else
5632 		tp->pred_flags = 0;
5633 }
5634 
5635 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5636 				    struct tcp_fastopen_cookie *cookie)
5637 {
5638 	struct tcp_sock *tp = tcp_sk(sk);
5639 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5640 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5641 	bool syn_drop = false;
5642 
5643 	if (mss == tp->rx_opt.user_mss) {
5644 		struct tcp_options_received opt;
5645 
5646 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5647 		tcp_clear_options(&opt);
5648 		opt.user_mss = opt.mss_clamp = 0;
5649 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5650 		mss = opt.mss_clamp;
5651 	}
5652 
5653 	if (!tp->syn_fastopen) {
5654 		/* Ignore an unsolicited cookie */
5655 		cookie->len = -1;
5656 	} else if (tp->total_retrans) {
5657 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5658 		 * acknowledges data. Presumably the remote received only
5659 		 * the retransmitted (regular) SYNs: either the original
5660 		 * SYN-data or the corresponding SYN-ACK was dropped.
5661 		 */
5662 		syn_drop = (cookie->len < 0 && data);
5663 	} else if (cookie->len < 0 && !tp->syn_data) {
5664 		/* We requested a cookie but didn't get it. If we did not use
5665 		 * the (old) exp opt format then try so next time (try_exp=1).
5666 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5667 		 */
5668 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5669 	}
5670 
5671 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5672 
5673 	if (data) { /* Retransmit unacked data in SYN */
5674 		skb_rbtree_walk_from(data) {
5675 			if (__tcp_retransmit_skb(sk, data, 1))
5676 				break;
5677 		}
5678 		tcp_rearm_rto(sk);
5679 		NET_INC_STATS(sock_net(sk),
5680 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5681 		return true;
5682 	}
5683 	tp->syn_data_acked = tp->syn_data;
5684 	if (tp->syn_data_acked) {
5685 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5686 		/* SYN-data is counted as two separate packets in tcp_ack() */
5687 		if (tp->delivered > 1)
5688 			--tp->delivered;
5689 	}
5690 
5691 	tcp_fastopen_add_skb(sk, synack);
5692 
5693 	return false;
5694 }
5695 
5696 static void smc_check_reset_syn(struct tcp_sock *tp)
5697 {
5698 #if IS_ENABLED(CONFIG_SMC)
5699 	if (static_branch_unlikely(&tcp_have_smc)) {
5700 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5701 			tp->syn_smc = 0;
5702 	}
5703 #endif
5704 }
5705 
5706 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5707 					 const struct tcphdr *th)
5708 {
5709 	struct inet_connection_sock *icsk = inet_csk(sk);
5710 	struct tcp_sock *tp = tcp_sk(sk);
5711 	struct tcp_fastopen_cookie foc = { .len = -1 };
5712 	int saved_clamp = tp->rx_opt.mss_clamp;
5713 	bool fastopen_fail;
5714 
5715 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5716 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5717 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5718 
5719 	if (th->ack) {
5720 		/* rfc793:
5721 		 * "If the state is SYN-SENT then
5722 		 *    first check the ACK bit
5723 		 *      If the ACK bit is set
5724 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5725 		 *        a reset (unless the RST bit is set, if so drop
5726 		 *        the segment and return)"
5727 		 */
5728 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5729 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5730 			goto reset_and_undo;
5731 
5732 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5733 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5734 			     tcp_time_stamp(tp))) {
5735 			NET_INC_STATS(sock_net(sk),
5736 					LINUX_MIB_PAWSACTIVEREJECTED);
5737 			goto reset_and_undo;
5738 		}
5739 
5740 		/* Now ACK is acceptable.
5741 		 *
5742 		 * "If the RST bit is set
5743 		 *    If the ACK was acceptable then signal the user "error:
5744 		 *    connection reset", drop the segment, enter CLOSED state,
5745 		 *    delete TCB, and return."
5746 		 */
5747 
5748 		if (th->rst) {
5749 			tcp_reset(sk);
5750 			goto discard;
5751 		}
5752 
5753 		/* rfc793:
5754 		 *   "fifth, if neither of the SYN or RST bits is set then
5755 		 *    drop the segment and return."
5756 		 *
5757 		 *    See note below!
5758 		 *                                        --ANK(990513)
5759 		 */
5760 		if (!th->syn)
5761 			goto discard_and_undo;
5762 
5763 		/* rfc793:
5764 		 *   "If the SYN bit is on ...
5765 		 *    are acceptable then ...
5766 		 *    (our SYN has been ACKed), change the connection
5767 		 *    state to ESTABLISHED..."
5768 		 */
5769 
5770 		tcp_ecn_rcv_synack(tp, th);
5771 
5772 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5773 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5774 
5775 		/* Ok.. it's good. Set up sequence numbers and
5776 		 * move to established.
5777 		 */
5778 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5779 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5780 
5781 		/* RFC1323: The window in SYN & SYN/ACK segments is
5782 		 * never scaled.
5783 		 */
5784 		tp->snd_wnd = ntohs(th->window);
5785 
5786 		if (!tp->rx_opt.wscale_ok) {
5787 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5788 			tp->window_clamp = min(tp->window_clamp, 65535U);
5789 		}
5790 
5791 		if (tp->rx_opt.saw_tstamp) {
5792 			tp->rx_opt.tstamp_ok	   = 1;
5793 			tp->tcp_header_len =
5794 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5795 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5796 			tcp_store_ts_recent(tp);
5797 		} else {
5798 			tp->tcp_header_len = sizeof(struct tcphdr);
5799 		}
5800 
5801 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5802 		tcp_initialize_rcv_mss(sk);
5803 
5804 		/* Remember, tcp_poll() does not lock socket!
5805 		 * Change state from SYN-SENT only after copied_seq
5806 		 * is initialized. */
5807 		tp->copied_seq = tp->rcv_nxt;
5808 
5809 		smc_check_reset_syn(tp);
5810 
5811 		smp_mb();
5812 
5813 		tcp_finish_connect(sk, skb);
5814 
5815 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5816 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5817 
5818 		if (!sock_flag(sk, SOCK_DEAD)) {
5819 			sk->sk_state_change(sk);
5820 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5821 		}
5822 		if (fastopen_fail)
5823 			return -1;
5824 		if (sk->sk_write_pending ||
5825 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5826 		    icsk->icsk_ack.pingpong) {
5827 			/* Save one ACK. Data will be ready after
5828 			 * several ticks, if write_pending is set.
5829 			 *
5830 			 * It may be deleted, but with this feature tcpdumps
5831 			 * look so _wonderfully_ clever, that I was not able
5832 			 * to stand against the temptation 8)     --ANK
5833 			 */
5834 			inet_csk_schedule_ack(sk);
5835 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5836 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5837 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5838 
5839 discard:
5840 			tcp_drop(sk, skb);
5841 			return 0;
5842 		} else {
5843 			tcp_send_ack(sk);
5844 		}
5845 		return -1;
5846 	}
5847 
5848 	/* No ACK in the segment */
5849 
5850 	if (th->rst) {
5851 		/* rfc793:
5852 		 * "If the RST bit is set
5853 		 *
5854 		 *      Otherwise (no ACK) drop the segment and return."
5855 		 */
5856 
5857 		goto discard_and_undo;
5858 	}
5859 
5860 	/* PAWS check. */
5861 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5862 	    tcp_paws_reject(&tp->rx_opt, 0))
5863 		goto discard_and_undo;
5864 
5865 	if (th->syn) {
5866 		/* We see SYN without ACK. It is attempt of
5867 		 * simultaneous connect with crossed SYNs.
5868 		 * Particularly, it can be connect to self.
5869 		 */
5870 		tcp_set_state(sk, TCP_SYN_RECV);
5871 
5872 		if (tp->rx_opt.saw_tstamp) {
5873 			tp->rx_opt.tstamp_ok = 1;
5874 			tcp_store_ts_recent(tp);
5875 			tp->tcp_header_len =
5876 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5877 		} else {
5878 			tp->tcp_header_len = sizeof(struct tcphdr);
5879 		}
5880 
5881 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5882 		tp->copied_seq = tp->rcv_nxt;
5883 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5884 
5885 		/* RFC1323: The window in SYN & SYN/ACK segments is
5886 		 * never scaled.
5887 		 */
5888 		tp->snd_wnd    = ntohs(th->window);
5889 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5890 		tp->max_window = tp->snd_wnd;
5891 
5892 		tcp_ecn_rcv_syn(tp, th);
5893 
5894 		tcp_mtup_init(sk);
5895 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5896 		tcp_initialize_rcv_mss(sk);
5897 
5898 		tcp_send_synack(sk);
5899 #if 0
5900 		/* Note, we could accept data and URG from this segment.
5901 		 * There are no obstacles to make this (except that we must
5902 		 * either change tcp_recvmsg() to prevent it from returning data
5903 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5904 		 *
5905 		 * However, if we ignore data in ACKless segments sometimes,
5906 		 * we have no reasons to accept it sometimes.
5907 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5908 		 * is not flawless. So, discard packet for sanity.
5909 		 * Uncomment this return to process the data.
5910 		 */
5911 		return -1;
5912 #else
5913 		goto discard;
5914 #endif
5915 	}
5916 	/* "fifth, if neither of the SYN or RST bits is set then
5917 	 * drop the segment and return."
5918 	 */
5919 
5920 discard_and_undo:
5921 	tcp_clear_options(&tp->rx_opt);
5922 	tp->rx_opt.mss_clamp = saved_clamp;
5923 	goto discard;
5924 
5925 reset_and_undo:
5926 	tcp_clear_options(&tp->rx_opt);
5927 	tp->rx_opt.mss_clamp = saved_clamp;
5928 	return 1;
5929 }
5930 
5931 /*
5932  *	This function implements the receiving procedure of RFC 793 for
5933  *	all states except ESTABLISHED and TIME_WAIT.
5934  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5935  *	address independent.
5936  */
5937 
5938 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5939 {
5940 	struct tcp_sock *tp = tcp_sk(sk);
5941 	struct inet_connection_sock *icsk = inet_csk(sk);
5942 	const struct tcphdr *th = tcp_hdr(skb);
5943 	struct request_sock *req;
5944 	int queued = 0;
5945 	bool acceptable;
5946 
5947 	switch (sk->sk_state) {
5948 	case TCP_CLOSE:
5949 		goto discard;
5950 
5951 	case TCP_LISTEN:
5952 		if (th->ack)
5953 			return 1;
5954 
5955 		if (th->rst)
5956 			goto discard;
5957 
5958 		if (th->syn) {
5959 			if (th->fin)
5960 				goto discard;
5961 			/* It is possible that we process SYN packets from backlog,
5962 			 * so we need to make sure to disable BH right there.
5963 			 */
5964 			local_bh_disable();
5965 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5966 			local_bh_enable();
5967 
5968 			if (!acceptable)
5969 				return 1;
5970 			consume_skb(skb);
5971 			return 0;
5972 		}
5973 		goto discard;
5974 
5975 	case TCP_SYN_SENT:
5976 		tp->rx_opt.saw_tstamp = 0;
5977 		tcp_mstamp_refresh(tp);
5978 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5979 		if (queued >= 0)
5980 			return queued;
5981 
5982 		/* Do step6 onward by hand. */
5983 		tcp_urg(sk, skb, th);
5984 		__kfree_skb(skb);
5985 		tcp_data_snd_check(sk);
5986 		return 0;
5987 	}
5988 
5989 	tcp_mstamp_refresh(tp);
5990 	tp->rx_opt.saw_tstamp = 0;
5991 	req = tp->fastopen_rsk;
5992 	if (req) {
5993 		bool req_stolen;
5994 
5995 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5996 		    sk->sk_state != TCP_FIN_WAIT1);
5997 
5998 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
5999 			goto discard;
6000 	}
6001 
6002 	if (!th->ack && !th->rst && !th->syn)
6003 		goto discard;
6004 
6005 	if (!tcp_validate_incoming(sk, skb, th, 0))
6006 		return 0;
6007 
6008 	/* step 5: check the ACK field */
6009 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6010 				      FLAG_UPDATE_TS_RECENT |
6011 				      FLAG_NO_CHALLENGE_ACK) > 0;
6012 
6013 	if (!acceptable) {
6014 		if (sk->sk_state == TCP_SYN_RECV)
6015 			return 1;	/* send one RST */
6016 		tcp_send_challenge_ack(sk, skb);
6017 		goto discard;
6018 	}
6019 	switch (sk->sk_state) {
6020 	case TCP_SYN_RECV:
6021 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6022 		if (!tp->srtt_us)
6023 			tcp_synack_rtt_meas(sk, req);
6024 
6025 		/* Once we leave TCP_SYN_RECV, we no longer need req
6026 		 * so release it.
6027 		 */
6028 		if (req) {
6029 			inet_csk(sk)->icsk_retransmits = 0;
6030 			reqsk_fastopen_remove(sk, req, false);
6031 			/* Re-arm the timer because data may have been sent out.
6032 			 * This is similar to the regular data transmission case
6033 			 * when new data has just been ack'ed.
6034 			 *
6035 			 * (TFO) - we could try to be more aggressive and
6036 			 * retransmitting any data sooner based on when they
6037 			 * are sent out.
6038 			 */
6039 			tcp_rearm_rto(sk);
6040 		} else {
6041 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6042 			tp->copied_seq = tp->rcv_nxt;
6043 		}
6044 		smp_mb();
6045 		tcp_set_state(sk, TCP_ESTABLISHED);
6046 		sk->sk_state_change(sk);
6047 
6048 		/* Note, that this wakeup is only for marginal crossed SYN case.
6049 		 * Passively open sockets are not waked up, because
6050 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6051 		 */
6052 		if (sk->sk_socket)
6053 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6054 
6055 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6056 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6057 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6058 
6059 		if (tp->rx_opt.tstamp_ok)
6060 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6061 
6062 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6063 			tcp_update_pacing_rate(sk);
6064 
6065 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6066 		tp->lsndtime = tcp_jiffies32;
6067 
6068 		tcp_initialize_rcv_mss(sk);
6069 		tcp_fast_path_on(tp);
6070 		break;
6071 
6072 	case TCP_FIN_WAIT1: {
6073 		int tmo;
6074 
6075 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6076 		 * Fast Open socket and this is the first acceptable
6077 		 * ACK we have received, this would have acknowledged
6078 		 * our SYNACK so stop the SYNACK timer.
6079 		 */
6080 		if (req) {
6081 			/* We no longer need the request sock. */
6082 			reqsk_fastopen_remove(sk, req, false);
6083 			tcp_rearm_rto(sk);
6084 		}
6085 		if (tp->snd_una != tp->write_seq)
6086 			break;
6087 
6088 		tcp_set_state(sk, TCP_FIN_WAIT2);
6089 		sk->sk_shutdown |= SEND_SHUTDOWN;
6090 
6091 		sk_dst_confirm(sk);
6092 
6093 		if (!sock_flag(sk, SOCK_DEAD)) {
6094 			/* Wake up lingering close() */
6095 			sk->sk_state_change(sk);
6096 			break;
6097 		}
6098 
6099 		if (tp->linger2 < 0) {
6100 			tcp_done(sk);
6101 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6102 			return 1;
6103 		}
6104 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6105 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6106 			/* Receive out of order FIN after close() */
6107 			if (tp->syn_fastopen && th->fin)
6108 				tcp_fastopen_active_disable(sk);
6109 			tcp_done(sk);
6110 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6111 			return 1;
6112 		}
6113 
6114 		tmo = tcp_fin_time(sk);
6115 		if (tmo > TCP_TIMEWAIT_LEN) {
6116 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6117 		} else if (th->fin || sock_owned_by_user(sk)) {
6118 			/* Bad case. We could lose such FIN otherwise.
6119 			 * It is not a big problem, but it looks confusing
6120 			 * and not so rare event. We still can lose it now,
6121 			 * if it spins in bh_lock_sock(), but it is really
6122 			 * marginal case.
6123 			 */
6124 			inet_csk_reset_keepalive_timer(sk, tmo);
6125 		} else {
6126 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6127 			goto discard;
6128 		}
6129 		break;
6130 	}
6131 
6132 	case TCP_CLOSING:
6133 		if (tp->snd_una == tp->write_seq) {
6134 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6135 			goto discard;
6136 		}
6137 		break;
6138 
6139 	case TCP_LAST_ACK:
6140 		if (tp->snd_una == tp->write_seq) {
6141 			tcp_update_metrics(sk);
6142 			tcp_done(sk);
6143 			goto discard;
6144 		}
6145 		break;
6146 	}
6147 
6148 	/* step 6: check the URG bit */
6149 	tcp_urg(sk, skb, th);
6150 
6151 	/* step 7: process the segment text */
6152 	switch (sk->sk_state) {
6153 	case TCP_CLOSE_WAIT:
6154 	case TCP_CLOSING:
6155 	case TCP_LAST_ACK:
6156 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6157 			break;
6158 		/* fall through */
6159 	case TCP_FIN_WAIT1:
6160 	case TCP_FIN_WAIT2:
6161 		/* RFC 793 says to queue data in these states,
6162 		 * RFC 1122 says we MUST send a reset.
6163 		 * BSD 4.4 also does reset.
6164 		 */
6165 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6166 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6167 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6168 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6169 				tcp_reset(sk);
6170 				return 1;
6171 			}
6172 		}
6173 		/* Fall through */
6174 	case TCP_ESTABLISHED:
6175 		tcp_data_queue(sk, skb);
6176 		queued = 1;
6177 		break;
6178 	}
6179 
6180 	/* tcp_data could move socket to TIME-WAIT */
6181 	if (sk->sk_state != TCP_CLOSE) {
6182 		tcp_data_snd_check(sk);
6183 		tcp_ack_snd_check(sk);
6184 	}
6185 
6186 	if (!queued) {
6187 discard:
6188 		tcp_drop(sk, skb);
6189 	}
6190 	return 0;
6191 }
6192 EXPORT_SYMBOL(tcp_rcv_state_process);
6193 
6194 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6195 {
6196 	struct inet_request_sock *ireq = inet_rsk(req);
6197 
6198 	if (family == AF_INET)
6199 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6200 				    &ireq->ir_rmt_addr, port);
6201 #if IS_ENABLED(CONFIG_IPV6)
6202 	else if (family == AF_INET6)
6203 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6204 				    &ireq->ir_v6_rmt_addr, port);
6205 #endif
6206 }
6207 
6208 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6209  *
6210  * If we receive a SYN packet with these bits set, it means a
6211  * network is playing bad games with TOS bits. In order to
6212  * avoid possible false congestion notifications, we disable
6213  * TCP ECN negotiation.
6214  *
6215  * Exception: tcp_ca wants ECN. This is required for DCTCP
6216  * congestion control: Linux DCTCP asserts ECT on all packets,
6217  * including SYN, which is most optimal solution; however,
6218  * others, such as FreeBSD do not.
6219  */
6220 static void tcp_ecn_create_request(struct request_sock *req,
6221 				   const struct sk_buff *skb,
6222 				   const struct sock *listen_sk,
6223 				   const struct dst_entry *dst)
6224 {
6225 	const struct tcphdr *th = tcp_hdr(skb);
6226 	const struct net *net = sock_net(listen_sk);
6227 	bool th_ecn = th->ece && th->cwr;
6228 	bool ect, ecn_ok;
6229 	u32 ecn_ok_dst;
6230 
6231 	if (!th_ecn)
6232 		return;
6233 
6234 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6235 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6236 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6237 
6238 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6239 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6240 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6241 		inet_rsk(req)->ecn_ok = 1;
6242 }
6243 
6244 static void tcp_openreq_init(struct request_sock *req,
6245 			     const struct tcp_options_received *rx_opt,
6246 			     struct sk_buff *skb, const struct sock *sk)
6247 {
6248 	struct inet_request_sock *ireq = inet_rsk(req);
6249 
6250 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6251 	req->cookie_ts = 0;
6252 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6253 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6254 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6255 	tcp_rsk(req)->last_oow_ack_time = 0;
6256 	req->mss = rx_opt->mss_clamp;
6257 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6258 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6259 	ireq->sack_ok = rx_opt->sack_ok;
6260 	ireq->snd_wscale = rx_opt->snd_wscale;
6261 	ireq->wscale_ok = rx_opt->wscale_ok;
6262 	ireq->acked = 0;
6263 	ireq->ecn_ok = 0;
6264 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6265 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6266 	ireq->ir_mark = inet_request_mark(sk, skb);
6267 #if IS_ENABLED(CONFIG_SMC)
6268 	ireq->smc_ok = rx_opt->smc_ok;
6269 #endif
6270 }
6271 
6272 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6273 				      struct sock *sk_listener,
6274 				      bool attach_listener)
6275 {
6276 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6277 					       attach_listener);
6278 
6279 	if (req) {
6280 		struct inet_request_sock *ireq = inet_rsk(req);
6281 
6282 		ireq->ireq_opt = NULL;
6283 #if IS_ENABLED(CONFIG_IPV6)
6284 		ireq->pktopts = NULL;
6285 #endif
6286 		atomic64_set(&ireq->ir_cookie, 0);
6287 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6288 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6289 		ireq->ireq_family = sk_listener->sk_family;
6290 	}
6291 
6292 	return req;
6293 }
6294 EXPORT_SYMBOL(inet_reqsk_alloc);
6295 
6296 /*
6297  * Return true if a syncookie should be sent
6298  */
6299 static bool tcp_syn_flood_action(const struct sock *sk,
6300 				 const struct sk_buff *skb,
6301 				 const char *proto)
6302 {
6303 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6304 	const char *msg = "Dropping request";
6305 	bool want_cookie = false;
6306 	struct net *net = sock_net(sk);
6307 
6308 #ifdef CONFIG_SYN_COOKIES
6309 	if (net->ipv4.sysctl_tcp_syncookies) {
6310 		msg = "Sending cookies";
6311 		want_cookie = true;
6312 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6313 	} else
6314 #endif
6315 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6316 
6317 	if (!queue->synflood_warned &&
6318 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6319 	    xchg(&queue->synflood_warned, 1) == 0)
6320 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6321 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6322 
6323 	return want_cookie;
6324 }
6325 
6326 static void tcp_reqsk_record_syn(const struct sock *sk,
6327 				 struct request_sock *req,
6328 				 const struct sk_buff *skb)
6329 {
6330 	if (tcp_sk(sk)->save_syn) {
6331 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6332 		u32 *copy;
6333 
6334 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6335 		if (copy) {
6336 			copy[0] = len;
6337 			memcpy(&copy[1], skb_network_header(skb), len);
6338 			req->saved_syn = copy;
6339 		}
6340 	}
6341 }
6342 
6343 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6344 		     const struct tcp_request_sock_ops *af_ops,
6345 		     struct sock *sk, struct sk_buff *skb)
6346 {
6347 	struct tcp_fastopen_cookie foc = { .len = -1 };
6348 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6349 	struct tcp_options_received tmp_opt;
6350 	struct tcp_sock *tp = tcp_sk(sk);
6351 	struct net *net = sock_net(sk);
6352 	struct sock *fastopen_sk = NULL;
6353 	struct request_sock *req;
6354 	bool want_cookie = false;
6355 	struct dst_entry *dst;
6356 	struct flowi fl;
6357 
6358 	/* TW buckets are converted to open requests without
6359 	 * limitations, they conserve resources and peer is
6360 	 * evidently real one.
6361 	 */
6362 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6363 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6364 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6365 		if (!want_cookie)
6366 			goto drop;
6367 	}
6368 
6369 	if (sk_acceptq_is_full(sk)) {
6370 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6371 		goto drop;
6372 	}
6373 
6374 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6375 	if (!req)
6376 		goto drop;
6377 
6378 	tcp_rsk(req)->af_specific = af_ops;
6379 	tcp_rsk(req)->ts_off = 0;
6380 
6381 	tcp_clear_options(&tmp_opt);
6382 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6383 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6384 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6385 			  want_cookie ? NULL : &foc);
6386 
6387 	if (want_cookie && !tmp_opt.saw_tstamp)
6388 		tcp_clear_options(&tmp_opt);
6389 
6390 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6391 		tmp_opt.smc_ok = 0;
6392 
6393 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6394 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6395 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6396 
6397 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6398 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6399 
6400 	af_ops->init_req(req, sk, skb);
6401 
6402 	if (security_inet_conn_request(sk, skb, req))
6403 		goto drop_and_free;
6404 
6405 	if (tmp_opt.tstamp_ok)
6406 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6407 
6408 	dst = af_ops->route_req(sk, &fl, req);
6409 	if (!dst)
6410 		goto drop_and_free;
6411 
6412 	if (!want_cookie && !isn) {
6413 		/* Kill the following clause, if you dislike this way. */
6414 		if (!net->ipv4.sysctl_tcp_syncookies &&
6415 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6416 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6417 		    !tcp_peer_is_proven(req, dst)) {
6418 			/* Without syncookies last quarter of
6419 			 * backlog is filled with destinations,
6420 			 * proven to be alive.
6421 			 * It means that we continue to communicate
6422 			 * to destinations, already remembered
6423 			 * to the moment of synflood.
6424 			 */
6425 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6426 				    rsk_ops->family);
6427 			goto drop_and_release;
6428 		}
6429 
6430 		isn = af_ops->init_seq(skb);
6431 	}
6432 
6433 	tcp_ecn_create_request(req, skb, sk, dst);
6434 
6435 	if (want_cookie) {
6436 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6437 		req->cookie_ts = tmp_opt.tstamp_ok;
6438 		if (!tmp_opt.tstamp_ok)
6439 			inet_rsk(req)->ecn_ok = 0;
6440 	}
6441 
6442 	tcp_rsk(req)->snt_isn = isn;
6443 	tcp_rsk(req)->txhash = net_tx_rndhash();
6444 	tcp_openreq_init_rwin(req, sk, dst);
6445 	sk_rx_queue_set(req_to_sk(req), skb);
6446 	if (!want_cookie) {
6447 		tcp_reqsk_record_syn(sk, req, skb);
6448 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6449 	}
6450 	if (fastopen_sk) {
6451 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6452 				    &foc, TCP_SYNACK_FASTOPEN);
6453 		/* Add the child socket directly into the accept queue */
6454 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6455 		sk->sk_data_ready(sk);
6456 		bh_unlock_sock(fastopen_sk);
6457 		sock_put(fastopen_sk);
6458 	} else {
6459 		tcp_rsk(req)->tfo_listener = false;
6460 		if (!want_cookie)
6461 			inet_csk_reqsk_queue_hash_add(sk, req,
6462 				tcp_timeout_init((struct sock *)req));
6463 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6464 				    !want_cookie ? TCP_SYNACK_NORMAL :
6465 						   TCP_SYNACK_COOKIE);
6466 		if (want_cookie) {
6467 			reqsk_free(req);
6468 			return 0;
6469 		}
6470 	}
6471 	reqsk_put(req);
6472 	return 0;
6473 
6474 drop_and_release:
6475 	dst_release(dst);
6476 drop_and_free:
6477 	reqsk_free(req);
6478 drop:
6479 	tcp_listendrop(sk);
6480 	return 0;
6481 }
6482 EXPORT_SYMBOL(tcp_conn_request);
6483