xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 
101 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
103 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
104 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
105 
106 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
107 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
108 
109 #define REXMIT_NONE	0 /* no loss recovery to do */
110 #define REXMIT_LOST	1 /* retransmit packets marked lost */
111 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
112 
113 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 			     unsigned int len)
115 {
116 	static bool __once __read_mostly;
117 
118 	if (!__once) {
119 		struct net_device *dev;
120 
121 		__once = true;
122 
123 		rcu_read_lock();
124 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
125 		if (!dev || len >= dev->mtu)
126 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 				dev ? dev->name : "Unknown driver");
128 		rcu_read_unlock();
129 	}
130 }
131 
132 /* Adapt the MSS value used to make delayed ack decision to the
133  * real world.
134  */
135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
136 {
137 	struct inet_connection_sock *icsk = inet_csk(sk);
138 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
139 	unsigned int len;
140 
141 	icsk->icsk_ack.last_seg_size = 0;
142 
143 	/* skb->len may jitter because of SACKs, even if peer
144 	 * sends good full-sized frames.
145 	 */
146 	len = skb_shinfo(skb)->gso_size ? : skb->len;
147 	if (len >= icsk->icsk_ack.rcv_mss) {
148 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 					       tcp_sk(sk)->advmss);
150 		/* Account for possibly-removed options */
151 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 				   MAX_TCP_OPTION_SPACE))
153 			tcp_gro_dev_warn(sk, skb, len);
154 	} else {
155 		/* Otherwise, we make more careful check taking into account,
156 		 * that SACKs block is variable.
157 		 *
158 		 * "len" is invariant segment length, including TCP header.
159 		 */
160 		len += skb->data - skb_transport_header(skb);
161 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
162 		    /* If PSH is not set, packet should be
163 		     * full sized, provided peer TCP is not badly broken.
164 		     * This observation (if it is correct 8)) allows
165 		     * to handle super-low mtu links fairly.
166 		     */
167 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
168 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
169 			/* Subtract also invariant (if peer is RFC compliant),
170 			 * tcp header plus fixed timestamp option length.
171 			 * Resulting "len" is MSS free of SACK jitter.
172 			 */
173 			len -= tcp_sk(sk)->tcp_header_len;
174 			icsk->icsk_ack.last_seg_size = len;
175 			if (len == lss) {
176 				icsk->icsk_ack.rcv_mss = len;
177 				return;
178 			}
179 		}
180 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
182 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
183 	}
184 }
185 
186 static void tcp_incr_quickack(struct sock *sk)
187 {
188 	struct inet_connection_sock *icsk = inet_csk(sk);
189 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
190 
191 	if (quickacks == 0)
192 		quickacks = 2;
193 	if (quickacks > icsk->icsk_ack.quick)
194 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
195 }
196 
197 static void tcp_enter_quickack_mode(struct sock *sk)
198 {
199 	struct inet_connection_sock *icsk = inet_csk(sk);
200 	tcp_incr_quickack(sk);
201 	icsk->icsk_ack.pingpong = 0;
202 	icsk->icsk_ack.ato = TCP_ATO_MIN;
203 }
204 
205 /* Send ACKs quickly, if "quick" count is not exhausted
206  * and the session is not interactive.
207  */
208 
209 static bool tcp_in_quickack_mode(struct sock *sk)
210 {
211 	const struct inet_connection_sock *icsk = inet_csk(sk);
212 	const struct dst_entry *dst = __sk_dst_get(sk);
213 
214 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
215 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
216 }
217 
218 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
219 {
220 	if (tp->ecn_flags & TCP_ECN_OK)
221 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
222 }
223 
224 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
225 {
226 	if (tcp_hdr(skb)->cwr)
227 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228 }
229 
230 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
231 {
232 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
233 }
234 
235 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
236 {
237 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
238 	case INET_ECN_NOT_ECT:
239 		/* Funny extension: if ECT is not set on a segment,
240 		 * and we already seen ECT on a previous segment,
241 		 * it is probably a retransmit.
242 		 */
243 		if (tp->ecn_flags & TCP_ECN_SEEN)
244 			tcp_enter_quickack_mode((struct sock *)tp);
245 		break;
246 	case INET_ECN_CE:
247 		if (tcp_ca_needs_ecn((struct sock *)tp))
248 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
249 
250 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
251 			/* Better not delay acks, sender can have a very low cwnd */
252 			tcp_enter_quickack_mode((struct sock *)tp);
253 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
254 		}
255 		tp->ecn_flags |= TCP_ECN_SEEN;
256 		break;
257 	default:
258 		if (tcp_ca_needs_ecn((struct sock *)tp))
259 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
260 		tp->ecn_flags |= TCP_ECN_SEEN;
261 		break;
262 	}
263 }
264 
265 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
266 {
267 	if (tp->ecn_flags & TCP_ECN_OK)
268 		__tcp_ecn_check_ce(tp, skb);
269 }
270 
271 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
280 		tp->ecn_flags &= ~TCP_ECN_OK;
281 }
282 
283 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
284 {
285 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
286 		return true;
287 	return false;
288 }
289 
290 /* Buffer size and advertised window tuning.
291  *
292  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293  */
294 
295 static void tcp_sndbuf_expand(struct sock *sk)
296 {
297 	const struct tcp_sock *tp = tcp_sk(sk);
298 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
299 	int sndmem, per_mss;
300 	u32 nr_segs;
301 
302 	/* Worst case is non GSO/TSO : each frame consumes one skb
303 	 * and skb->head is kmalloced using power of two area of memory
304 	 */
305 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
306 		  MAX_TCP_HEADER +
307 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308 
309 	per_mss = roundup_pow_of_two(per_mss) +
310 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
311 
312 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
313 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
314 
315 	/* Fast Recovery (RFC 5681 3.2) :
316 	 * Cubic needs 1.7 factor, rounded to 2 to include
317 	 * extra cushion (application might react slowly to POLLOUT)
318 	 */
319 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
320 	sndmem *= nr_segs * per_mss;
321 
322 	if (sk->sk_sndbuf < sndmem)
323 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
324 }
325 
326 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
327  *
328  * All tcp_full_space() is split to two parts: "network" buffer, allocated
329  * forward and advertised in receiver window (tp->rcv_wnd) and
330  * "application buffer", required to isolate scheduling/application
331  * latencies from network.
332  * window_clamp is maximal advertised window. It can be less than
333  * tcp_full_space(), in this case tcp_full_space() - window_clamp
334  * is reserved for "application" buffer. The less window_clamp is
335  * the smoother our behaviour from viewpoint of network, but the lower
336  * throughput and the higher sensitivity of the connection to losses. 8)
337  *
338  * rcv_ssthresh is more strict window_clamp used at "slow start"
339  * phase to predict further behaviour of this connection.
340  * It is used for two goals:
341  * - to enforce header prediction at sender, even when application
342  *   requires some significant "application buffer". It is check #1.
343  * - to prevent pruning of receive queue because of misprediction
344  *   of receiver window. Check #2.
345  *
346  * The scheme does not work when sender sends good segments opening
347  * window and then starts to feed us spaghetti. But it should work
348  * in common situations. Otherwise, we have to rely on queue collapsing.
349  */
350 
351 /* Slow part of check#2. */
352 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 	/* Optimize this! */
356 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
357 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
358 
359 	while (tp->rcv_ssthresh <= window) {
360 		if (truesize <= skb->len)
361 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
362 
363 		truesize >>= 1;
364 		window >>= 1;
365 	}
366 	return 0;
367 }
368 
369 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
370 {
371 	struct tcp_sock *tp = tcp_sk(sk);
372 
373 	/* Check #1 */
374 	if (tp->rcv_ssthresh < tp->window_clamp &&
375 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
376 	    !tcp_under_memory_pressure(sk)) {
377 		int incr;
378 
379 		/* Check #2. Increase window, if skb with such overhead
380 		 * will fit to rcvbuf in future.
381 		 */
382 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
383 			incr = 2 * tp->advmss;
384 		else
385 			incr = __tcp_grow_window(sk, skb);
386 
387 		if (incr) {
388 			incr = max_t(int, incr, 2 * skb->len);
389 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
390 					       tp->window_clamp);
391 			inet_csk(sk)->icsk_ack.quick |= 1;
392 		}
393 	}
394 }
395 
396 /* 3. Tuning rcvbuf, when connection enters established state. */
397 static void tcp_fixup_rcvbuf(struct sock *sk)
398 {
399 	u32 mss = tcp_sk(sk)->advmss;
400 	int rcvmem;
401 
402 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
403 		 tcp_default_init_rwnd(mss);
404 
405 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
406 	 * Allow enough cushion so that sender is not limited by our window
407 	 */
408 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
409 		rcvmem <<= 2;
410 
411 	if (sk->sk_rcvbuf < rcvmem)
412 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
413 }
414 
415 /* 4. Try to fixup all. It is made immediately after connection enters
416  *    established state.
417  */
418 void tcp_init_buffer_space(struct sock *sk)
419 {
420 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
421 	struct tcp_sock *tp = tcp_sk(sk);
422 	int maxwin;
423 
424 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
425 		tcp_fixup_rcvbuf(sk);
426 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
427 		tcp_sndbuf_expand(sk);
428 
429 	tp->rcvq_space.space = tp->rcv_wnd;
430 	tcp_mstamp_refresh(tp);
431 	tp->rcvq_space.time = tp->tcp_mstamp;
432 	tp->rcvq_space.seq = tp->copied_seq;
433 
434 	maxwin = tcp_full_space(sk);
435 
436 	if (tp->window_clamp >= maxwin) {
437 		tp->window_clamp = maxwin;
438 
439 		if (tcp_app_win && maxwin > 4 * tp->advmss)
440 			tp->window_clamp = max(maxwin -
441 					       (maxwin >> tcp_app_win),
442 					       4 * tp->advmss);
443 	}
444 
445 	/* Force reservation of one segment. */
446 	if (tcp_app_win &&
447 	    tp->window_clamp > 2 * tp->advmss &&
448 	    tp->window_clamp + tp->advmss > maxwin)
449 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
450 
451 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
452 	tp->snd_cwnd_stamp = tcp_jiffies32;
453 }
454 
455 /* 5. Recalculate window clamp after socket hit its memory bounds. */
456 static void tcp_clamp_window(struct sock *sk)
457 {
458 	struct tcp_sock *tp = tcp_sk(sk);
459 	struct inet_connection_sock *icsk = inet_csk(sk);
460 	struct net *net = sock_net(sk);
461 
462 	icsk->icsk_ack.quick = 0;
463 
464 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
465 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
466 	    !tcp_under_memory_pressure(sk) &&
467 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
468 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
469 				    net->ipv4.sysctl_tcp_rmem[2]);
470 	}
471 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
472 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
473 }
474 
475 /* Initialize RCV_MSS value.
476  * RCV_MSS is an our guess about MSS used by the peer.
477  * We haven't any direct information about the MSS.
478  * It's better to underestimate the RCV_MSS rather than overestimate.
479  * Overestimations make us ACKing less frequently than needed.
480  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
481  */
482 void tcp_initialize_rcv_mss(struct sock *sk)
483 {
484 	const struct tcp_sock *tp = tcp_sk(sk);
485 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
486 
487 	hint = min(hint, tp->rcv_wnd / 2);
488 	hint = min(hint, TCP_MSS_DEFAULT);
489 	hint = max(hint, TCP_MIN_MSS);
490 
491 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
492 }
493 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
494 
495 /* Receiver "autotuning" code.
496  *
497  * The algorithm for RTT estimation w/o timestamps is based on
498  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
499  * <http://public.lanl.gov/radiant/pubs.html#DRS>
500  *
501  * More detail on this code can be found at
502  * <http://staff.psc.edu/jheffner/>,
503  * though this reference is out of date.  A new paper
504  * is pending.
505  */
506 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
507 {
508 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
509 	long m = sample;
510 
511 	if (new_sample != 0) {
512 		/* If we sample in larger samples in the non-timestamp
513 		 * case, we could grossly overestimate the RTT especially
514 		 * with chatty applications or bulk transfer apps which
515 		 * are stalled on filesystem I/O.
516 		 *
517 		 * Also, since we are only going for a minimum in the
518 		 * non-timestamp case, we do not smooth things out
519 		 * else with timestamps disabled convergence takes too
520 		 * long.
521 		 */
522 		if (!win_dep) {
523 			m -= (new_sample >> 3);
524 			new_sample += m;
525 		} else {
526 			m <<= 3;
527 			if (m < new_sample)
528 				new_sample = m;
529 		}
530 	} else {
531 		/* No previous measure. */
532 		new_sample = m << 3;
533 	}
534 
535 	tp->rcv_rtt_est.rtt_us = new_sample;
536 }
537 
538 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
539 {
540 	u32 delta_us;
541 
542 	if (tp->rcv_rtt_est.time == 0)
543 		goto new_measure;
544 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
545 		return;
546 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
547 	if (!delta_us)
548 		delta_us = 1;
549 	tcp_rcv_rtt_update(tp, delta_us, 1);
550 
551 new_measure:
552 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
553 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
554 }
555 
556 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
557 					  const struct sk_buff *skb)
558 {
559 	struct tcp_sock *tp = tcp_sk(sk);
560 
561 	if (tp->rx_opt.rcv_tsecr &&
562 	    (TCP_SKB_CB(skb)->end_seq -
563 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
564 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
565 		u32 delta_us;
566 
567 		if (!delta)
568 			delta = 1;
569 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
570 		tcp_rcv_rtt_update(tp, delta_us, 0);
571 	}
572 }
573 
574 /*
575  * This function should be called every time data is copied to user space.
576  * It calculates the appropriate TCP receive buffer space.
577  */
578 void tcp_rcv_space_adjust(struct sock *sk)
579 {
580 	struct tcp_sock *tp = tcp_sk(sk);
581 	u32 copied;
582 	int time;
583 
584 	tcp_mstamp_refresh(tp);
585 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
586 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
587 		return;
588 
589 	/* Number of bytes copied to user in last RTT */
590 	copied = tp->copied_seq - tp->rcvq_space.seq;
591 	if (copied <= tp->rcvq_space.space)
592 		goto new_measure;
593 
594 	/* A bit of theory :
595 	 * copied = bytes received in previous RTT, our base window
596 	 * To cope with packet losses, we need a 2x factor
597 	 * To cope with slow start, and sender growing its cwin by 100 %
598 	 * every RTT, we need a 4x factor, because the ACK we are sending
599 	 * now is for the next RTT, not the current one :
600 	 * <prev RTT . ><current RTT .. ><next RTT .... >
601 	 */
602 
603 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
604 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
605 		int rcvmem, rcvbuf;
606 		u64 rcvwin, grow;
607 
608 		/* minimal window to cope with packet losses, assuming
609 		 * steady state. Add some cushion because of small variations.
610 		 */
611 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
612 
613 		/* Accommodate for sender rate increase (eg. slow start) */
614 		grow = rcvwin * (copied - tp->rcvq_space.space);
615 		do_div(grow, tp->rcvq_space.space);
616 		rcvwin += (grow << 1);
617 
618 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
619 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
620 			rcvmem += 128;
621 
622 		do_div(rcvwin, tp->advmss);
623 		rcvbuf = min_t(u64, rcvwin * rcvmem,
624 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
625 		if (rcvbuf > sk->sk_rcvbuf) {
626 			sk->sk_rcvbuf = rcvbuf;
627 
628 			/* Make the window clamp follow along.  */
629 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
630 		}
631 	}
632 	tp->rcvq_space.space = copied;
633 
634 new_measure:
635 	tp->rcvq_space.seq = tp->copied_seq;
636 	tp->rcvq_space.time = tp->tcp_mstamp;
637 }
638 
639 /* There is something which you must keep in mind when you analyze the
640  * behavior of the tp->ato delayed ack timeout interval.  When a
641  * connection starts up, we want to ack as quickly as possible.  The
642  * problem is that "good" TCP's do slow start at the beginning of data
643  * transmission.  The means that until we send the first few ACK's the
644  * sender will sit on his end and only queue most of his data, because
645  * he can only send snd_cwnd unacked packets at any given time.  For
646  * each ACK we send, he increments snd_cwnd and transmits more of his
647  * queue.  -DaveM
648  */
649 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
650 {
651 	struct tcp_sock *tp = tcp_sk(sk);
652 	struct inet_connection_sock *icsk = inet_csk(sk);
653 	u32 now;
654 
655 	inet_csk_schedule_ack(sk);
656 
657 	tcp_measure_rcv_mss(sk, skb);
658 
659 	tcp_rcv_rtt_measure(tp);
660 
661 	now = tcp_jiffies32;
662 
663 	if (!icsk->icsk_ack.ato) {
664 		/* The _first_ data packet received, initialize
665 		 * delayed ACK engine.
666 		 */
667 		tcp_incr_quickack(sk);
668 		icsk->icsk_ack.ato = TCP_ATO_MIN;
669 	} else {
670 		int m = now - icsk->icsk_ack.lrcvtime;
671 
672 		if (m <= TCP_ATO_MIN / 2) {
673 			/* The fastest case is the first. */
674 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
675 		} else if (m < icsk->icsk_ack.ato) {
676 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
677 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
678 				icsk->icsk_ack.ato = icsk->icsk_rto;
679 		} else if (m > icsk->icsk_rto) {
680 			/* Too long gap. Apparently sender failed to
681 			 * restart window, so that we send ACKs quickly.
682 			 */
683 			tcp_incr_quickack(sk);
684 			sk_mem_reclaim(sk);
685 		}
686 	}
687 	icsk->icsk_ack.lrcvtime = now;
688 
689 	tcp_ecn_check_ce(tp, skb);
690 
691 	if (skb->len >= 128)
692 		tcp_grow_window(sk, skb);
693 }
694 
695 /* Called to compute a smoothed rtt estimate. The data fed to this
696  * routine either comes from timestamps, or from segments that were
697  * known _not_ to have been retransmitted [see Karn/Partridge
698  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
699  * piece by Van Jacobson.
700  * NOTE: the next three routines used to be one big routine.
701  * To save cycles in the RFC 1323 implementation it was better to break
702  * it up into three procedures. -- erics
703  */
704 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
705 {
706 	struct tcp_sock *tp = tcp_sk(sk);
707 	long m = mrtt_us; /* RTT */
708 	u32 srtt = tp->srtt_us;
709 
710 	/*	The following amusing code comes from Jacobson's
711 	 *	article in SIGCOMM '88.  Note that rtt and mdev
712 	 *	are scaled versions of rtt and mean deviation.
713 	 *	This is designed to be as fast as possible
714 	 *	m stands for "measurement".
715 	 *
716 	 *	On a 1990 paper the rto value is changed to:
717 	 *	RTO = rtt + 4 * mdev
718 	 *
719 	 * Funny. This algorithm seems to be very broken.
720 	 * These formulae increase RTO, when it should be decreased, increase
721 	 * too slowly, when it should be increased quickly, decrease too quickly
722 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
723 	 * does not matter how to _calculate_ it. Seems, it was trap
724 	 * that VJ failed to avoid. 8)
725 	 */
726 	if (srtt != 0) {
727 		m -= (srtt >> 3);	/* m is now error in rtt est */
728 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
729 		if (m < 0) {
730 			m = -m;		/* m is now abs(error) */
731 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
732 			/* This is similar to one of Eifel findings.
733 			 * Eifel blocks mdev updates when rtt decreases.
734 			 * This solution is a bit different: we use finer gain
735 			 * for mdev in this case (alpha*beta).
736 			 * Like Eifel it also prevents growth of rto,
737 			 * but also it limits too fast rto decreases,
738 			 * happening in pure Eifel.
739 			 */
740 			if (m > 0)
741 				m >>= 3;
742 		} else {
743 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
744 		}
745 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
746 		if (tp->mdev_us > tp->mdev_max_us) {
747 			tp->mdev_max_us = tp->mdev_us;
748 			if (tp->mdev_max_us > tp->rttvar_us)
749 				tp->rttvar_us = tp->mdev_max_us;
750 		}
751 		if (after(tp->snd_una, tp->rtt_seq)) {
752 			if (tp->mdev_max_us < tp->rttvar_us)
753 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
754 			tp->rtt_seq = tp->snd_nxt;
755 			tp->mdev_max_us = tcp_rto_min_us(sk);
756 		}
757 	} else {
758 		/* no previous measure. */
759 		srtt = m << 3;		/* take the measured time to be rtt */
760 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
761 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
762 		tp->mdev_max_us = tp->rttvar_us;
763 		tp->rtt_seq = tp->snd_nxt;
764 	}
765 	tp->srtt_us = max(1U, srtt);
766 }
767 
768 static void tcp_update_pacing_rate(struct sock *sk)
769 {
770 	const struct tcp_sock *tp = tcp_sk(sk);
771 	u64 rate;
772 
773 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
774 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
775 
776 	/* current rate is (cwnd * mss) / srtt
777 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
778 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
779 	 *
780 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
781 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
782 	 *	 end of slow start and should slow down.
783 	 */
784 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
785 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
786 	else
787 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
788 
789 	rate *= max(tp->snd_cwnd, tp->packets_out);
790 
791 	if (likely(tp->srtt_us))
792 		do_div(rate, tp->srtt_us);
793 
794 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
795 	 * without any lock. We want to make sure compiler wont store
796 	 * intermediate values in this location.
797 	 */
798 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
799 					     sk->sk_max_pacing_rate));
800 }
801 
802 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
803  * routine referred to above.
804  */
805 static void tcp_set_rto(struct sock *sk)
806 {
807 	const struct tcp_sock *tp = tcp_sk(sk);
808 	/* Old crap is replaced with new one. 8)
809 	 *
810 	 * More seriously:
811 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
812 	 *    It cannot be less due to utterly erratic ACK generation made
813 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
814 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
815 	 *    is invisible. Actually, Linux-2.4 also generates erratic
816 	 *    ACKs in some circumstances.
817 	 */
818 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
819 
820 	/* 2. Fixups made earlier cannot be right.
821 	 *    If we do not estimate RTO correctly without them,
822 	 *    all the algo is pure shit and should be replaced
823 	 *    with correct one. It is exactly, which we pretend to do.
824 	 */
825 
826 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
827 	 * guarantees that rto is higher.
828 	 */
829 	tcp_bound_rto(sk);
830 }
831 
832 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
833 {
834 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
835 
836 	if (!cwnd)
837 		cwnd = TCP_INIT_CWND;
838 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
839 }
840 
841 /* Take a notice that peer is sending D-SACKs */
842 static void tcp_dsack_seen(struct tcp_sock *tp)
843 {
844 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
845 	tp->rack.dsack_seen = 1;
846 }
847 
848 /* It's reordering when higher sequence was delivered (i.e. sacked) before
849  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
850  * distance is approximated in full-mss packet distance ("reordering").
851  */
852 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
853 				      const int ts)
854 {
855 	struct tcp_sock *tp = tcp_sk(sk);
856 	const u32 mss = tp->mss_cache;
857 	u32 fack, metric;
858 
859 	fack = tcp_highest_sack_seq(tp);
860 	if (!before(low_seq, fack))
861 		return;
862 
863 	metric = fack - low_seq;
864 	if ((metric > tp->reordering * mss) && mss) {
865 #if FASTRETRANS_DEBUG > 1
866 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
867 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
868 			 tp->reordering,
869 			 0,
870 			 tp->sacked_out,
871 			 tp->undo_marker ? tp->undo_retrans : 0);
872 #endif
873 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
874 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
875 	}
876 
877 	tp->rack.reord = 1;
878 	/* This exciting event is worth to be remembered. 8) */
879 	NET_INC_STATS(sock_net(sk),
880 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
881 }
882 
883 /* This must be called before lost_out is incremented */
884 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
885 {
886 	if (!tp->retransmit_skb_hint ||
887 	    before(TCP_SKB_CB(skb)->seq,
888 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
889 		tp->retransmit_skb_hint = skb;
890 }
891 
892 /* Sum the number of packets on the wire we have marked as lost.
893  * There are two cases we care about here:
894  * a) Packet hasn't been marked lost (nor retransmitted),
895  *    and this is the first loss.
896  * b) Packet has been marked both lost and retransmitted,
897  *    and this means we think it was lost again.
898  */
899 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
900 {
901 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
902 
903 	if (!(sacked & TCPCB_LOST) ||
904 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
905 		tp->lost += tcp_skb_pcount(skb);
906 }
907 
908 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
909 {
910 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
911 		tcp_verify_retransmit_hint(tp, skb);
912 
913 		tp->lost_out += tcp_skb_pcount(skb);
914 		tcp_sum_lost(tp, skb);
915 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
916 	}
917 }
918 
919 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
920 {
921 	tcp_verify_retransmit_hint(tp, skb);
922 
923 	tcp_sum_lost(tp, skb);
924 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
925 		tp->lost_out += tcp_skb_pcount(skb);
926 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
927 	}
928 }
929 
930 /* This procedure tags the retransmission queue when SACKs arrive.
931  *
932  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
933  * Packets in queue with these bits set are counted in variables
934  * sacked_out, retrans_out and lost_out, correspondingly.
935  *
936  * Valid combinations are:
937  * Tag  InFlight	Description
938  * 0	1		- orig segment is in flight.
939  * S	0		- nothing flies, orig reached receiver.
940  * L	0		- nothing flies, orig lost by net.
941  * R	2		- both orig and retransmit are in flight.
942  * L|R	1		- orig is lost, retransmit is in flight.
943  * S|R  1		- orig reached receiver, retrans is still in flight.
944  * (L|S|R is logically valid, it could occur when L|R is sacked,
945  *  but it is equivalent to plain S and code short-curcuits it to S.
946  *  L|S is logically invalid, it would mean -1 packet in flight 8))
947  *
948  * These 6 states form finite state machine, controlled by the following events:
949  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
950  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
951  * 3. Loss detection event of two flavors:
952  *	A. Scoreboard estimator decided the packet is lost.
953  *	   A'. Reno "three dupacks" marks head of queue lost.
954  *	B. SACK arrives sacking SND.NXT at the moment, when the
955  *	   segment was retransmitted.
956  * 4. D-SACK added new rule: D-SACK changes any tag to S.
957  *
958  * It is pleasant to note, that state diagram turns out to be commutative,
959  * so that we are allowed not to be bothered by order of our actions,
960  * when multiple events arrive simultaneously. (see the function below).
961  *
962  * Reordering detection.
963  * --------------------
964  * Reordering metric is maximal distance, which a packet can be displaced
965  * in packet stream. With SACKs we can estimate it:
966  *
967  * 1. SACK fills old hole and the corresponding segment was not
968  *    ever retransmitted -> reordering. Alas, we cannot use it
969  *    when segment was retransmitted.
970  * 2. The last flaw is solved with D-SACK. D-SACK arrives
971  *    for retransmitted and already SACKed segment -> reordering..
972  * Both of these heuristics are not used in Loss state, when we cannot
973  * account for retransmits accurately.
974  *
975  * SACK block validation.
976  * ----------------------
977  *
978  * SACK block range validation checks that the received SACK block fits to
979  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
980  * Note that SND.UNA is not included to the range though being valid because
981  * it means that the receiver is rather inconsistent with itself reporting
982  * SACK reneging when it should advance SND.UNA. Such SACK block this is
983  * perfectly valid, however, in light of RFC2018 which explicitly states
984  * that "SACK block MUST reflect the newest segment.  Even if the newest
985  * segment is going to be discarded ...", not that it looks very clever
986  * in case of head skb. Due to potentional receiver driven attacks, we
987  * choose to avoid immediate execution of a walk in write queue due to
988  * reneging and defer head skb's loss recovery to standard loss recovery
989  * procedure that will eventually trigger (nothing forbids us doing this).
990  *
991  * Implements also blockage to start_seq wrap-around. Problem lies in the
992  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
993  * there's no guarantee that it will be before snd_nxt (n). The problem
994  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
995  * wrap (s_w):
996  *
997  *         <- outs wnd ->                          <- wrapzone ->
998  *         u     e      n                         u_w   e_w  s n_w
999  *         |     |      |                          |     |   |  |
1000  * |<------------+------+----- TCP seqno space --------------+---------->|
1001  * ...-- <2^31 ->|                                           |<--------...
1002  * ...---- >2^31 ------>|                                    |<--------...
1003  *
1004  * Current code wouldn't be vulnerable but it's better still to discard such
1005  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1006  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1007  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1008  * equal to the ideal case (infinite seqno space without wrap caused issues).
1009  *
1010  * With D-SACK the lower bound is extended to cover sequence space below
1011  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1012  * again, D-SACK block must not to go across snd_una (for the same reason as
1013  * for the normal SACK blocks, explained above). But there all simplicity
1014  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1015  * fully below undo_marker they do not affect behavior in anyway and can
1016  * therefore be safely ignored. In rare cases (which are more or less
1017  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1018  * fragmentation and packet reordering past skb's retransmission. To consider
1019  * them correctly, the acceptable range must be extended even more though
1020  * the exact amount is rather hard to quantify. However, tp->max_window can
1021  * be used as an exaggerated estimate.
1022  */
1023 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1024 				   u32 start_seq, u32 end_seq)
1025 {
1026 	/* Too far in future, or reversed (interpretation is ambiguous) */
1027 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1028 		return false;
1029 
1030 	/* Nasty start_seq wrap-around check (see comments above) */
1031 	if (!before(start_seq, tp->snd_nxt))
1032 		return false;
1033 
1034 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1035 	 * start_seq == snd_una is non-sensical (see comments above)
1036 	 */
1037 	if (after(start_seq, tp->snd_una))
1038 		return true;
1039 
1040 	if (!is_dsack || !tp->undo_marker)
1041 		return false;
1042 
1043 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1044 	if (after(end_seq, tp->snd_una))
1045 		return false;
1046 
1047 	if (!before(start_seq, tp->undo_marker))
1048 		return true;
1049 
1050 	/* Too old */
1051 	if (!after(end_seq, tp->undo_marker))
1052 		return false;
1053 
1054 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1055 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1056 	 */
1057 	return !before(start_seq, end_seq - tp->max_window);
1058 }
1059 
1060 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1061 			    struct tcp_sack_block_wire *sp, int num_sacks,
1062 			    u32 prior_snd_una)
1063 {
1064 	struct tcp_sock *tp = tcp_sk(sk);
1065 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1066 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1067 	bool dup_sack = false;
1068 
1069 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1070 		dup_sack = true;
1071 		tcp_dsack_seen(tp);
1072 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1073 	} else if (num_sacks > 1) {
1074 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1075 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1076 
1077 		if (!after(end_seq_0, end_seq_1) &&
1078 		    !before(start_seq_0, start_seq_1)) {
1079 			dup_sack = true;
1080 			tcp_dsack_seen(tp);
1081 			NET_INC_STATS(sock_net(sk),
1082 					LINUX_MIB_TCPDSACKOFORECV);
1083 		}
1084 	}
1085 
1086 	/* D-SACK for already forgotten data... Do dumb counting. */
1087 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1088 	    !after(end_seq_0, prior_snd_una) &&
1089 	    after(end_seq_0, tp->undo_marker))
1090 		tp->undo_retrans--;
1091 
1092 	return dup_sack;
1093 }
1094 
1095 struct tcp_sacktag_state {
1096 	u32	reord;
1097 	/* Timestamps for earliest and latest never-retransmitted segment
1098 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1099 	 * but congestion control should still get an accurate delay signal.
1100 	 */
1101 	u64	first_sackt;
1102 	u64	last_sackt;
1103 	struct rate_sample *rate;
1104 	int	flag;
1105 	unsigned int mss_now;
1106 };
1107 
1108 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1109  * the incoming SACK may not exactly match but we can find smaller MSS
1110  * aligned portion of it that matches. Therefore we might need to fragment
1111  * which may fail and creates some hassle (caller must handle error case
1112  * returns).
1113  *
1114  * FIXME: this could be merged to shift decision code
1115  */
1116 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1117 				  u32 start_seq, u32 end_seq)
1118 {
1119 	int err;
1120 	bool in_sack;
1121 	unsigned int pkt_len;
1122 	unsigned int mss;
1123 
1124 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1125 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1126 
1127 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1128 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1129 		mss = tcp_skb_mss(skb);
1130 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1131 
1132 		if (!in_sack) {
1133 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1134 			if (pkt_len < mss)
1135 				pkt_len = mss;
1136 		} else {
1137 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1138 			if (pkt_len < mss)
1139 				return -EINVAL;
1140 		}
1141 
1142 		/* Round if necessary so that SACKs cover only full MSSes
1143 		 * and/or the remaining small portion (if present)
1144 		 */
1145 		if (pkt_len > mss) {
1146 			unsigned int new_len = (pkt_len / mss) * mss;
1147 			if (!in_sack && new_len < pkt_len)
1148 				new_len += mss;
1149 			pkt_len = new_len;
1150 		}
1151 
1152 		if (pkt_len >= skb->len && !in_sack)
1153 			return 0;
1154 
1155 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1156 				   pkt_len, mss, GFP_ATOMIC);
1157 		if (err < 0)
1158 			return err;
1159 	}
1160 
1161 	return in_sack;
1162 }
1163 
1164 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1165 static u8 tcp_sacktag_one(struct sock *sk,
1166 			  struct tcp_sacktag_state *state, u8 sacked,
1167 			  u32 start_seq, u32 end_seq,
1168 			  int dup_sack, int pcount,
1169 			  u64 xmit_time)
1170 {
1171 	struct tcp_sock *tp = tcp_sk(sk);
1172 
1173 	/* Account D-SACK for retransmitted packet. */
1174 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1175 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1176 		    after(end_seq, tp->undo_marker))
1177 			tp->undo_retrans--;
1178 		if ((sacked & TCPCB_SACKED_ACKED) &&
1179 		    before(start_seq, state->reord))
1180 				state->reord = start_seq;
1181 	}
1182 
1183 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1184 	if (!after(end_seq, tp->snd_una))
1185 		return sacked;
1186 
1187 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1188 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1189 
1190 		if (sacked & TCPCB_SACKED_RETRANS) {
1191 			/* If the segment is not tagged as lost,
1192 			 * we do not clear RETRANS, believing
1193 			 * that retransmission is still in flight.
1194 			 */
1195 			if (sacked & TCPCB_LOST) {
1196 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1197 				tp->lost_out -= pcount;
1198 				tp->retrans_out -= pcount;
1199 			}
1200 		} else {
1201 			if (!(sacked & TCPCB_RETRANS)) {
1202 				/* New sack for not retransmitted frame,
1203 				 * which was in hole. It is reordering.
1204 				 */
1205 				if (before(start_seq,
1206 					   tcp_highest_sack_seq(tp)) &&
1207 				    before(start_seq, state->reord))
1208 					state->reord = start_seq;
1209 
1210 				if (!after(end_seq, tp->high_seq))
1211 					state->flag |= FLAG_ORIG_SACK_ACKED;
1212 				if (state->first_sackt == 0)
1213 					state->first_sackt = xmit_time;
1214 				state->last_sackt = xmit_time;
1215 			}
1216 
1217 			if (sacked & TCPCB_LOST) {
1218 				sacked &= ~TCPCB_LOST;
1219 				tp->lost_out -= pcount;
1220 			}
1221 		}
1222 
1223 		sacked |= TCPCB_SACKED_ACKED;
1224 		state->flag |= FLAG_DATA_SACKED;
1225 		tp->sacked_out += pcount;
1226 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1227 
1228 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1229 		if (tp->lost_skb_hint &&
1230 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1231 			tp->lost_cnt_hint += pcount;
1232 	}
1233 
1234 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1235 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1236 	 * are accounted above as well.
1237 	 */
1238 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1239 		sacked &= ~TCPCB_SACKED_RETRANS;
1240 		tp->retrans_out -= pcount;
1241 	}
1242 
1243 	return sacked;
1244 }
1245 
1246 /* Shift newly-SACKed bytes from this skb to the immediately previous
1247  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1248  */
1249 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1250 			    struct sk_buff *skb,
1251 			    struct tcp_sacktag_state *state,
1252 			    unsigned int pcount, int shifted, int mss,
1253 			    bool dup_sack)
1254 {
1255 	struct tcp_sock *tp = tcp_sk(sk);
1256 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1257 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1258 
1259 	BUG_ON(!pcount);
1260 
1261 	/* Adjust counters and hints for the newly sacked sequence
1262 	 * range but discard the return value since prev is already
1263 	 * marked. We must tag the range first because the seq
1264 	 * advancement below implicitly advances
1265 	 * tcp_highest_sack_seq() when skb is highest_sack.
1266 	 */
1267 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1268 			start_seq, end_seq, dup_sack, pcount,
1269 			skb->skb_mstamp);
1270 	tcp_rate_skb_delivered(sk, skb, state->rate);
1271 
1272 	if (skb == tp->lost_skb_hint)
1273 		tp->lost_cnt_hint += pcount;
1274 
1275 	TCP_SKB_CB(prev)->end_seq += shifted;
1276 	TCP_SKB_CB(skb)->seq += shifted;
1277 
1278 	tcp_skb_pcount_add(prev, pcount);
1279 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1280 	tcp_skb_pcount_add(skb, -pcount);
1281 
1282 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1283 	 * in theory this shouldn't be necessary but as long as DSACK
1284 	 * code can come after this skb later on it's better to keep
1285 	 * setting gso_size to something.
1286 	 */
1287 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1288 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1289 
1290 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1291 	if (tcp_skb_pcount(skb) <= 1)
1292 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1293 
1294 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1295 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1296 
1297 	if (skb->len > 0) {
1298 		BUG_ON(!tcp_skb_pcount(skb));
1299 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1300 		return false;
1301 	}
1302 
1303 	/* Whole SKB was eaten :-) */
1304 
1305 	if (skb == tp->retransmit_skb_hint)
1306 		tp->retransmit_skb_hint = prev;
1307 	if (skb == tp->lost_skb_hint) {
1308 		tp->lost_skb_hint = prev;
1309 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1310 	}
1311 
1312 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1313 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1314 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1315 		TCP_SKB_CB(prev)->end_seq++;
1316 
1317 	if (skb == tcp_highest_sack(sk))
1318 		tcp_advance_highest_sack(sk, skb);
1319 
1320 	tcp_skb_collapse_tstamp(prev, skb);
1321 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1322 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1323 
1324 	tcp_rtx_queue_unlink_and_free(skb, sk);
1325 
1326 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1327 
1328 	return true;
1329 }
1330 
1331 /* I wish gso_size would have a bit more sane initialization than
1332  * something-or-zero which complicates things
1333  */
1334 static int tcp_skb_seglen(const struct sk_buff *skb)
1335 {
1336 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1337 }
1338 
1339 /* Shifting pages past head area doesn't work */
1340 static int skb_can_shift(const struct sk_buff *skb)
1341 {
1342 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1343 }
1344 
1345 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1346  * skb.
1347  */
1348 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1349 					  struct tcp_sacktag_state *state,
1350 					  u32 start_seq, u32 end_seq,
1351 					  bool dup_sack)
1352 {
1353 	struct tcp_sock *tp = tcp_sk(sk);
1354 	struct sk_buff *prev;
1355 	int mss;
1356 	int pcount = 0;
1357 	int len;
1358 	int in_sack;
1359 
1360 	if (!sk_can_gso(sk))
1361 		goto fallback;
1362 
1363 	/* Normally R but no L won't result in plain S */
1364 	if (!dup_sack &&
1365 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1366 		goto fallback;
1367 	if (!skb_can_shift(skb))
1368 		goto fallback;
1369 	/* This frame is about to be dropped (was ACKed). */
1370 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1371 		goto fallback;
1372 
1373 	/* Can only happen with delayed DSACK + discard craziness */
1374 	prev = skb_rb_prev(skb);
1375 	if (!prev)
1376 		goto fallback;
1377 
1378 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1379 		goto fallback;
1380 
1381 	if (!tcp_skb_can_collapse_to(prev))
1382 		goto fallback;
1383 
1384 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1385 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1386 
1387 	if (in_sack) {
1388 		len = skb->len;
1389 		pcount = tcp_skb_pcount(skb);
1390 		mss = tcp_skb_seglen(skb);
1391 
1392 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1393 		 * drop this restriction as unnecessary
1394 		 */
1395 		if (mss != tcp_skb_seglen(prev))
1396 			goto fallback;
1397 	} else {
1398 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1399 			goto noop;
1400 		/* CHECKME: This is non-MSS split case only?, this will
1401 		 * cause skipped skbs due to advancing loop btw, original
1402 		 * has that feature too
1403 		 */
1404 		if (tcp_skb_pcount(skb) <= 1)
1405 			goto noop;
1406 
1407 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1408 		if (!in_sack) {
1409 			/* TODO: head merge to next could be attempted here
1410 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1411 			 * though it might not be worth of the additional hassle
1412 			 *
1413 			 * ...we can probably just fallback to what was done
1414 			 * previously. We could try merging non-SACKed ones
1415 			 * as well but it probably isn't going to buy off
1416 			 * because later SACKs might again split them, and
1417 			 * it would make skb timestamp tracking considerably
1418 			 * harder problem.
1419 			 */
1420 			goto fallback;
1421 		}
1422 
1423 		len = end_seq - TCP_SKB_CB(skb)->seq;
1424 		BUG_ON(len < 0);
1425 		BUG_ON(len > skb->len);
1426 
1427 		/* MSS boundaries should be honoured or else pcount will
1428 		 * severely break even though it makes things bit trickier.
1429 		 * Optimize common case to avoid most of the divides
1430 		 */
1431 		mss = tcp_skb_mss(skb);
1432 
1433 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1434 		 * drop this restriction as unnecessary
1435 		 */
1436 		if (mss != tcp_skb_seglen(prev))
1437 			goto fallback;
1438 
1439 		if (len == mss) {
1440 			pcount = 1;
1441 		} else if (len < mss) {
1442 			goto noop;
1443 		} else {
1444 			pcount = len / mss;
1445 			len = pcount * mss;
1446 		}
1447 	}
1448 
1449 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1450 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1451 		goto fallback;
1452 
1453 	if (!skb_shift(prev, skb, len))
1454 		goto fallback;
1455 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1456 		goto out;
1457 
1458 	/* Hole filled allows collapsing with the next as well, this is very
1459 	 * useful when hole on every nth skb pattern happens
1460 	 */
1461 	skb = skb_rb_next(prev);
1462 	if (!skb)
1463 		goto out;
1464 
1465 	if (!skb_can_shift(skb) ||
1466 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1467 	    (mss != tcp_skb_seglen(skb)))
1468 		goto out;
1469 
1470 	len = skb->len;
1471 	if (skb_shift(prev, skb, len)) {
1472 		pcount += tcp_skb_pcount(skb);
1473 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1474 				len, mss, 0);
1475 	}
1476 
1477 out:
1478 	return prev;
1479 
1480 noop:
1481 	return skb;
1482 
1483 fallback:
1484 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1485 	return NULL;
1486 }
1487 
1488 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1489 					struct tcp_sack_block *next_dup,
1490 					struct tcp_sacktag_state *state,
1491 					u32 start_seq, u32 end_seq,
1492 					bool dup_sack_in)
1493 {
1494 	struct tcp_sock *tp = tcp_sk(sk);
1495 	struct sk_buff *tmp;
1496 
1497 	skb_rbtree_walk_from(skb) {
1498 		int in_sack = 0;
1499 		bool dup_sack = dup_sack_in;
1500 
1501 		/* queue is in-order => we can short-circuit the walk early */
1502 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1503 			break;
1504 
1505 		if (next_dup  &&
1506 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1507 			in_sack = tcp_match_skb_to_sack(sk, skb,
1508 							next_dup->start_seq,
1509 							next_dup->end_seq);
1510 			if (in_sack > 0)
1511 				dup_sack = true;
1512 		}
1513 
1514 		/* skb reference here is a bit tricky to get right, since
1515 		 * shifting can eat and free both this skb and the next,
1516 		 * so not even _safe variant of the loop is enough.
1517 		 */
1518 		if (in_sack <= 0) {
1519 			tmp = tcp_shift_skb_data(sk, skb, state,
1520 						 start_seq, end_seq, dup_sack);
1521 			if (tmp) {
1522 				if (tmp != skb) {
1523 					skb = tmp;
1524 					continue;
1525 				}
1526 
1527 				in_sack = 0;
1528 			} else {
1529 				in_sack = tcp_match_skb_to_sack(sk, skb,
1530 								start_seq,
1531 								end_seq);
1532 			}
1533 		}
1534 
1535 		if (unlikely(in_sack < 0))
1536 			break;
1537 
1538 		if (in_sack) {
1539 			TCP_SKB_CB(skb)->sacked =
1540 				tcp_sacktag_one(sk,
1541 						state,
1542 						TCP_SKB_CB(skb)->sacked,
1543 						TCP_SKB_CB(skb)->seq,
1544 						TCP_SKB_CB(skb)->end_seq,
1545 						dup_sack,
1546 						tcp_skb_pcount(skb),
1547 						skb->skb_mstamp);
1548 			tcp_rate_skb_delivered(sk, skb, state->rate);
1549 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1550 				list_del_init(&skb->tcp_tsorted_anchor);
1551 
1552 			if (!before(TCP_SKB_CB(skb)->seq,
1553 				    tcp_highest_sack_seq(tp)))
1554 				tcp_advance_highest_sack(sk, skb);
1555 		}
1556 	}
1557 	return skb;
1558 }
1559 
1560 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1561 					   struct tcp_sacktag_state *state,
1562 					   u32 seq)
1563 {
1564 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1565 	struct sk_buff *skb;
1566 
1567 	while (*p) {
1568 		parent = *p;
1569 		skb = rb_to_skb(parent);
1570 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1571 			p = &parent->rb_left;
1572 			continue;
1573 		}
1574 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1575 			p = &parent->rb_right;
1576 			continue;
1577 		}
1578 		return skb;
1579 	}
1580 	return NULL;
1581 }
1582 
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 					struct tcp_sacktag_state *state,
1585 					u32 skip_to_seq)
1586 {
1587 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1588 		return skb;
1589 
1590 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1591 }
1592 
1593 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1594 						struct sock *sk,
1595 						struct tcp_sack_block *next_dup,
1596 						struct tcp_sacktag_state *state,
1597 						u32 skip_to_seq)
1598 {
1599 	if (!next_dup)
1600 		return skb;
1601 
1602 	if (before(next_dup->start_seq, skip_to_seq)) {
1603 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1604 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1605 				       next_dup->start_seq, next_dup->end_seq,
1606 				       1);
1607 	}
1608 
1609 	return skb;
1610 }
1611 
1612 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1613 {
1614 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1615 }
1616 
1617 static int
1618 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1619 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1620 {
1621 	struct tcp_sock *tp = tcp_sk(sk);
1622 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1623 				    TCP_SKB_CB(ack_skb)->sacked);
1624 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1625 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1626 	struct tcp_sack_block *cache;
1627 	struct sk_buff *skb;
1628 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1629 	int used_sacks;
1630 	bool found_dup_sack = false;
1631 	int i, j;
1632 	int first_sack_index;
1633 
1634 	state->flag = 0;
1635 	state->reord = tp->snd_nxt;
1636 
1637 	if (!tp->sacked_out)
1638 		tcp_highest_sack_reset(sk);
1639 
1640 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1641 					 num_sacks, prior_snd_una);
1642 	if (found_dup_sack) {
1643 		state->flag |= FLAG_DSACKING_ACK;
1644 		tp->delivered++; /* A spurious retransmission is delivered */
1645 	}
1646 
1647 	/* Eliminate too old ACKs, but take into
1648 	 * account more or less fresh ones, they can
1649 	 * contain valid SACK info.
1650 	 */
1651 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1652 		return 0;
1653 
1654 	if (!tp->packets_out)
1655 		goto out;
1656 
1657 	used_sacks = 0;
1658 	first_sack_index = 0;
1659 	for (i = 0; i < num_sacks; i++) {
1660 		bool dup_sack = !i && found_dup_sack;
1661 
1662 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1663 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1664 
1665 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1666 					    sp[used_sacks].start_seq,
1667 					    sp[used_sacks].end_seq)) {
1668 			int mib_idx;
1669 
1670 			if (dup_sack) {
1671 				if (!tp->undo_marker)
1672 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1673 				else
1674 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1675 			} else {
1676 				/* Don't count olds caused by ACK reordering */
1677 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1678 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1679 					continue;
1680 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1681 			}
1682 
1683 			NET_INC_STATS(sock_net(sk), mib_idx);
1684 			if (i == 0)
1685 				first_sack_index = -1;
1686 			continue;
1687 		}
1688 
1689 		/* Ignore very old stuff early */
1690 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1691 			continue;
1692 
1693 		used_sacks++;
1694 	}
1695 
1696 	/* order SACK blocks to allow in order walk of the retrans queue */
1697 	for (i = used_sacks - 1; i > 0; i--) {
1698 		for (j = 0; j < i; j++) {
1699 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1700 				swap(sp[j], sp[j + 1]);
1701 
1702 				/* Track where the first SACK block goes to */
1703 				if (j == first_sack_index)
1704 					first_sack_index = j + 1;
1705 			}
1706 		}
1707 	}
1708 
1709 	state->mss_now = tcp_current_mss(sk);
1710 	skb = NULL;
1711 	i = 0;
1712 
1713 	if (!tp->sacked_out) {
1714 		/* It's already past, so skip checking against it */
1715 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1716 	} else {
1717 		cache = tp->recv_sack_cache;
1718 		/* Skip empty blocks in at head of the cache */
1719 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1720 		       !cache->end_seq)
1721 			cache++;
1722 	}
1723 
1724 	while (i < used_sacks) {
1725 		u32 start_seq = sp[i].start_seq;
1726 		u32 end_seq = sp[i].end_seq;
1727 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1728 		struct tcp_sack_block *next_dup = NULL;
1729 
1730 		if (found_dup_sack && ((i + 1) == first_sack_index))
1731 			next_dup = &sp[i + 1];
1732 
1733 		/* Skip too early cached blocks */
1734 		while (tcp_sack_cache_ok(tp, cache) &&
1735 		       !before(start_seq, cache->end_seq))
1736 			cache++;
1737 
1738 		/* Can skip some work by looking recv_sack_cache? */
1739 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1740 		    after(end_seq, cache->start_seq)) {
1741 
1742 			/* Head todo? */
1743 			if (before(start_seq, cache->start_seq)) {
1744 				skb = tcp_sacktag_skip(skb, sk, state,
1745 						       start_seq);
1746 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1747 						       state,
1748 						       start_seq,
1749 						       cache->start_seq,
1750 						       dup_sack);
1751 			}
1752 
1753 			/* Rest of the block already fully processed? */
1754 			if (!after(end_seq, cache->end_seq))
1755 				goto advance_sp;
1756 
1757 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1758 						       state,
1759 						       cache->end_seq);
1760 
1761 			/* ...tail remains todo... */
1762 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1763 				/* ...but better entrypoint exists! */
1764 				skb = tcp_highest_sack(sk);
1765 				if (!skb)
1766 					break;
1767 				cache++;
1768 				goto walk;
1769 			}
1770 
1771 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1772 			/* Check overlap against next cached too (past this one already) */
1773 			cache++;
1774 			continue;
1775 		}
1776 
1777 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1778 			skb = tcp_highest_sack(sk);
1779 			if (!skb)
1780 				break;
1781 		}
1782 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1783 
1784 walk:
1785 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1786 				       start_seq, end_seq, dup_sack);
1787 
1788 advance_sp:
1789 		i++;
1790 	}
1791 
1792 	/* Clear the head of the cache sack blocks so we can skip it next time */
1793 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1794 		tp->recv_sack_cache[i].start_seq = 0;
1795 		tp->recv_sack_cache[i].end_seq = 0;
1796 	}
1797 	for (j = 0; j < used_sacks; j++)
1798 		tp->recv_sack_cache[i++] = sp[j];
1799 
1800 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1801 		tcp_check_sack_reordering(sk, state->reord, 0);
1802 
1803 	tcp_verify_left_out(tp);
1804 out:
1805 
1806 #if FASTRETRANS_DEBUG > 0
1807 	WARN_ON((int)tp->sacked_out < 0);
1808 	WARN_ON((int)tp->lost_out < 0);
1809 	WARN_ON((int)tp->retrans_out < 0);
1810 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1811 #endif
1812 	return state->flag;
1813 }
1814 
1815 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1816  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1817  */
1818 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1819 {
1820 	u32 holes;
1821 
1822 	holes = max(tp->lost_out, 1U);
1823 	holes = min(holes, tp->packets_out);
1824 
1825 	if ((tp->sacked_out + holes) > tp->packets_out) {
1826 		tp->sacked_out = tp->packets_out - holes;
1827 		return true;
1828 	}
1829 	return false;
1830 }
1831 
1832 /* If we receive more dupacks than we expected counting segments
1833  * in assumption of absent reordering, interpret this as reordering.
1834  * The only another reason could be bug in receiver TCP.
1835  */
1836 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1837 {
1838 	struct tcp_sock *tp = tcp_sk(sk);
1839 
1840 	if (!tcp_limit_reno_sacked(tp))
1841 		return;
1842 
1843 	tp->reordering = min_t(u32, tp->packets_out + addend,
1844 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1845 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1846 }
1847 
1848 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1849 
1850 static void tcp_add_reno_sack(struct sock *sk)
1851 {
1852 	struct tcp_sock *tp = tcp_sk(sk);
1853 	u32 prior_sacked = tp->sacked_out;
1854 
1855 	tp->sacked_out++;
1856 	tcp_check_reno_reordering(sk, 0);
1857 	if (tp->sacked_out > prior_sacked)
1858 		tp->delivered++; /* Some out-of-order packet is delivered */
1859 	tcp_verify_left_out(tp);
1860 }
1861 
1862 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1863 
1864 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1865 {
1866 	struct tcp_sock *tp = tcp_sk(sk);
1867 
1868 	if (acked > 0) {
1869 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1870 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1871 		if (acked - 1 >= tp->sacked_out)
1872 			tp->sacked_out = 0;
1873 		else
1874 			tp->sacked_out -= acked - 1;
1875 	}
1876 	tcp_check_reno_reordering(sk, acked);
1877 	tcp_verify_left_out(tp);
1878 }
1879 
1880 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1881 {
1882 	tp->sacked_out = 0;
1883 }
1884 
1885 void tcp_clear_retrans(struct tcp_sock *tp)
1886 {
1887 	tp->retrans_out = 0;
1888 	tp->lost_out = 0;
1889 	tp->undo_marker = 0;
1890 	tp->undo_retrans = -1;
1891 	tp->sacked_out = 0;
1892 }
1893 
1894 static inline void tcp_init_undo(struct tcp_sock *tp)
1895 {
1896 	tp->undo_marker = tp->snd_una;
1897 	/* Retransmission still in flight may cause DSACKs later. */
1898 	tp->undo_retrans = tp->retrans_out ? : -1;
1899 }
1900 
1901 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1902  * and reset tags completely, otherwise preserve SACKs. If receiver
1903  * dropped its ofo queue, we will know this due to reneging detection.
1904  */
1905 void tcp_enter_loss(struct sock *sk)
1906 {
1907 	const struct inet_connection_sock *icsk = inet_csk(sk);
1908 	struct tcp_sock *tp = tcp_sk(sk);
1909 	struct net *net = sock_net(sk);
1910 	struct sk_buff *skb;
1911 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1912 	bool is_reneg;			/* is receiver reneging on SACKs? */
1913 	bool mark_lost;
1914 
1915 	/* Reduce ssthresh if it has not yet been made inside this window. */
1916 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1917 	    !after(tp->high_seq, tp->snd_una) ||
1918 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1919 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1920 		tp->prior_cwnd = tp->snd_cwnd;
1921 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1922 		tcp_ca_event(sk, CA_EVENT_LOSS);
1923 		tcp_init_undo(tp);
1924 	}
1925 	tp->snd_cwnd	   = 1;
1926 	tp->snd_cwnd_cnt   = 0;
1927 	tp->snd_cwnd_stamp = tcp_jiffies32;
1928 
1929 	tp->retrans_out = 0;
1930 	tp->lost_out = 0;
1931 
1932 	if (tcp_is_reno(tp))
1933 		tcp_reset_reno_sack(tp);
1934 
1935 	skb = tcp_rtx_queue_head(sk);
1936 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1937 	if (is_reneg) {
1938 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1939 		tp->sacked_out = 0;
1940 		/* Mark SACK reneging until we recover from this loss event. */
1941 		tp->is_sack_reneg = 1;
1942 	}
1943 	tcp_clear_all_retrans_hints(tp);
1944 
1945 	skb_rbtree_walk_from(skb) {
1946 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1947 			     is_reneg);
1948 		if (mark_lost)
1949 			tcp_sum_lost(tp, skb);
1950 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 		if (mark_lost) {
1952 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 			tp->lost_out += tcp_skb_pcount(skb);
1955 		}
1956 	}
1957 	tcp_verify_left_out(tp);
1958 
1959 	/* Timeout in disordered state after receiving substantial DUPACKs
1960 	 * suggests that the degree of reordering is over-estimated.
1961 	 */
1962 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1963 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1964 		tp->reordering = min_t(unsigned int, tp->reordering,
1965 				       net->ipv4.sysctl_tcp_reordering);
1966 	tcp_set_ca_state(sk, TCP_CA_Loss);
1967 	tp->high_seq = tp->snd_nxt;
1968 	tcp_ecn_queue_cwr(tp);
1969 
1970 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1971 	 * loss recovery is underway except recurring timeout(s) on
1972 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1973 	 *
1974 	 * In theory F-RTO can be used repeatedly during loss recovery.
1975 	 * In practice this interacts badly with broken middle-boxes that
1976 	 * falsely raise the receive window, which results in repeated
1977 	 * timeouts and stop-and-go behavior.
1978 	 */
1979 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1980 		   (new_recovery || icsk->icsk_retransmits) &&
1981 		   !inet_csk(sk)->icsk_mtup.probe_size;
1982 }
1983 
1984 /* If ACK arrived pointing to a remembered SACK, it means that our
1985  * remembered SACKs do not reflect real state of receiver i.e.
1986  * receiver _host_ is heavily congested (or buggy).
1987  *
1988  * To avoid big spurious retransmission bursts due to transient SACK
1989  * scoreboard oddities that look like reneging, we give the receiver a
1990  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1991  * restore sanity to the SACK scoreboard. If the apparent reneging
1992  * persists until this RTO then we'll clear the SACK scoreboard.
1993  */
1994 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1995 {
1996 	if (flag & FLAG_SACK_RENEGING) {
1997 		struct tcp_sock *tp = tcp_sk(sk);
1998 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1999 					  msecs_to_jiffies(10));
2000 
2001 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2002 					  delay, TCP_RTO_MAX);
2003 		return true;
2004 	}
2005 	return false;
2006 }
2007 
2008 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2009  * counter when SACK is enabled (without SACK, sacked_out is used for
2010  * that purpose).
2011  *
2012  * With reordering, holes may still be in flight, so RFC3517 recovery
2013  * uses pure sacked_out (total number of SACKed segments) even though
2014  * it violates the RFC that uses duplicate ACKs, often these are equal
2015  * but when e.g. out-of-window ACKs or packet duplication occurs,
2016  * they differ. Since neither occurs due to loss, TCP should really
2017  * ignore them.
2018  */
2019 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2020 {
2021 	return tp->sacked_out + 1;
2022 }
2023 
2024 /* Linux NewReno/SACK/ECN state machine.
2025  * --------------------------------------
2026  *
2027  * "Open"	Normal state, no dubious events, fast path.
2028  * "Disorder"   In all the respects it is "Open",
2029  *		but requires a bit more attention. It is entered when
2030  *		we see some SACKs or dupacks. It is split of "Open"
2031  *		mainly to move some processing from fast path to slow one.
2032  * "CWR"	CWND was reduced due to some Congestion Notification event.
2033  *		It can be ECN, ICMP source quench, local device congestion.
2034  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2035  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2036  *
2037  * tcp_fastretrans_alert() is entered:
2038  * - each incoming ACK, if state is not "Open"
2039  * - when arrived ACK is unusual, namely:
2040  *	* SACK
2041  *	* Duplicate ACK.
2042  *	* ECN ECE.
2043  *
2044  * Counting packets in flight is pretty simple.
2045  *
2046  *	in_flight = packets_out - left_out + retrans_out
2047  *
2048  *	packets_out is SND.NXT-SND.UNA counted in packets.
2049  *
2050  *	retrans_out is number of retransmitted segments.
2051  *
2052  *	left_out is number of segments left network, but not ACKed yet.
2053  *
2054  *		left_out = sacked_out + lost_out
2055  *
2056  *     sacked_out: Packets, which arrived to receiver out of order
2057  *		   and hence not ACKed. With SACKs this number is simply
2058  *		   amount of SACKed data. Even without SACKs
2059  *		   it is easy to give pretty reliable estimate of this number,
2060  *		   counting duplicate ACKs.
2061  *
2062  *       lost_out: Packets lost by network. TCP has no explicit
2063  *		   "loss notification" feedback from network (for now).
2064  *		   It means that this number can be only _guessed_.
2065  *		   Actually, it is the heuristics to predict lossage that
2066  *		   distinguishes different algorithms.
2067  *
2068  *	F.e. after RTO, when all the queue is considered as lost,
2069  *	lost_out = packets_out and in_flight = retrans_out.
2070  *
2071  *		Essentially, we have now a few algorithms detecting
2072  *		lost packets.
2073  *
2074  *		If the receiver supports SACK:
2075  *
2076  *		RFC6675/3517: It is the conventional algorithm. A packet is
2077  *		considered lost if the number of higher sequence packets
2078  *		SACKed is greater than or equal the DUPACK thoreshold
2079  *		(reordering). This is implemented in tcp_mark_head_lost and
2080  *		tcp_update_scoreboard.
2081  *
2082  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2083  *		(2017-) that checks timing instead of counting DUPACKs.
2084  *		Essentially a packet is considered lost if it's not S/ACKed
2085  *		after RTT + reordering_window, where both metrics are
2086  *		dynamically measured and adjusted. This is implemented in
2087  *		tcp_rack_mark_lost.
2088  *
2089  *		If the receiver does not support SACK:
2090  *
2091  *		NewReno (RFC6582): in Recovery we assume that one segment
2092  *		is lost (classic Reno). While we are in Recovery and
2093  *		a partial ACK arrives, we assume that one more packet
2094  *		is lost (NewReno). This heuristics are the same in NewReno
2095  *		and SACK.
2096  *
2097  * Really tricky (and requiring careful tuning) part of algorithm
2098  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2099  * The first determines the moment _when_ we should reduce CWND and,
2100  * hence, slow down forward transmission. In fact, it determines the moment
2101  * when we decide that hole is caused by loss, rather than by a reorder.
2102  *
2103  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2104  * holes, caused by lost packets.
2105  *
2106  * And the most logically complicated part of algorithm is undo
2107  * heuristics. We detect false retransmits due to both too early
2108  * fast retransmit (reordering) and underestimated RTO, analyzing
2109  * timestamps and D-SACKs. When we detect that some segments were
2110  * retransmitted by mistake and CWND reduction was wrong, we undo
2111  * window reduction and abort recovery phase. This logic is hidden
2112  * inside several functions named tcp_try_undo_<something>.
2113  */
2114 
2115 /* This function decides, when we should leave Disordered state
2116  * and enter Recovery phase, reducing congestion window.
2117  *
2118  * Main question: may we further continue forward transmission
2119  * with the same cwnd?
2120  */
2121 static bool tcp_time_to_recover(struct sock *sk, int flag)
2122 {
2123 	struct tcp_sock *tp = tcp_sk(sk);
2124 
2125 	/* Trick#1: The loss is proven. */
2126 	if (tp->lost_out)
2127 		return true;
2128 
2129 	/* Not-A-Trick#2 : Classic rule... */
2130 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2131 		return true;
2132 
2133 	return false;
2134 }
2135 
2136 /* Detect loss in event "A" above by marking head of queue up as lost.
2137  * For non-SACK(Reno) senders, the first "packets" number of segments
2138  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2139  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2140  * the maximum SACKed segments to pass before reaching this limit.
2141  */
2142 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2143 {
2144 	struct tcp_sock *tp = tcp_sk(sk);
2145 	struct sk_buff *skb;
2146 	int cnt, oldcnt, lost;
2147 	unsigned int mss;
2148 	/* Use SACK to deduce losses of new sequences sent during recovery */
2149 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2150 
2151 	WARN_ON(packets > tp->packets_out);
2152 	skb = tp->lost_skb_hint;
2153 	if (skb) {
2154 		/* Head already handled? */
2155 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2156 			return;
2157 		cnt = tp->lost_cnt_hint;
2158 	} else {
2159 		skb = tcp_rtx_queue_head(sk);
2160 		cnt = 0;
2161 	}
2162 
2163 	skb_rbtree_walk_from(skb) {
2164 		/* TODO: do this better */
2165 		/* this is not the most efficient way to do this... */
2166 		tp->lost_skb_hint = skb;
2167 		tp->lost_cnt_hint = cnt;
2168 
2169 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2170 			break;
2171 
2172 		oldcnt = cnt;
2173 		if (tcp_is_reno(tp) ||
2174 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2175 			cnt += tcp_skb_pcount(skb);
2176 
2177 		if (cnt > packets) {
2178 			if (tcp_is_sack(tp) ||
2179 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2180 			    (oldcnt >= packets))
2181 				break;
2182 
2183 			mss = tcp_skb_mss(skb);
2184 			/* If needed, chop off the prefix to mark as lost. */
2185 			lost = (packets - oldcnt) * mss;
2186 			if (lost < skb->len &&
2187 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2188 					 lost, mss, GFP_ATOMIC) < 0)
2189 				break;
2190 			cnt = packets;
2191 		}
2192 
2193 		tcp_skb_mark_lost(tp, skb);
2194 
2195 		if (mark_head)
2196 			break;
2197 	}
2198 	tcp_verify_left_out(tp);
2199 }
2200 
2201 /* Account newly detected lost packet(s) */
2202 
2203 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2204 {
2205 	struct tcp_sock *tp = tcp_sk(sk);
2206 
2207 	if (tcp_is_reno(tp)) {
2208 		tcp_mark_head_lost(sk, 1, 1);
2209 	} else {
2210 		int sacked_upto = tp->sacked_out - tp->reordering;
2211 		if (sacked_upto >= 0)
2212 			tcp_mark_head_lost(sk, sacked_upto, 0);
2213 		else if (fast_rexmit)
2214 			tcp_mark_head_lost(sk, 1, 1);
2215 	}
2216 }
2217 
2218 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2219 {
2220 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2221 	       before(tp->rx_opt.rcv_tsecr, when);
2222 }
2223 
2224 /* skb is spurious retransmitted if the returned timestamp echo
2225  * reply is prior to the skb transmission time
2226  */
2227 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2228 				     const struct sk_buff *skb)
2229 {
2230 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2231 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2232 }
2233 
2234 /* Nothing was retransmitted or returned timestamp is less
2235  * than timestamp of the first retransmission.
2236  */
2237 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2238 {
2239 	return !tp->retrans_stamp ||
2240 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2241 }
2242 
2243 /* Undo procedures. */
2244 
2245 /* We can clear retrans_stamp when there are no retransmissions in the
2246  * window. It would seem that it is trivially available for us in
2247  * tp->retrans_out, however, that kind of assumptions doesn't consider
2248  * what will happen if errors occur when sending retransmission for the
2249  * second time. ...It could the that such segment has only
2250  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2251  * the head skb is enough except for some reneging corner cases that
2252  * are not worth the effort.
2253  *
2254  * Main reason for all this complexity is the fact that connection dying
2255  * time now depends on the validity of the retrans_stamp, in particular,
2256  * that successive retransmissions of a segment must not advance
2257  * retrans_stamp under any conditions.
2258  */
2259 static bool tcp_any_retrans_done(const struct sock *sk)
2260 {
2261 	const struct tcp_sock *tp = tcp_sk(sk);
2262 	struct sk_buff *skb;
2263 
2264 	if (tp->retrans_out)
2265 		return true;
2266 
2267 	skb = tcp_rtx_queue_head(sk);
2268 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2269 		return true;
2270 
2271 	return false;
2272 }
2273 
2274 static void DBGUNDO(struct sock *sk, const char *msg)
2275 {
2276 #if FASTRETRANS_DEBUG > 1
2277 	struct tcp_sock *tp = tcp_sk(sk);
2278 	struct inet_sock *inet = inet_sk(sk);
2279 
2280 	if (sk->sk_family == AF_INET) {
2281 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2282 			 msg,
2283 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2284 			 tp->snd_cwnd, tcp_left_out(tp),
2285 			 tp->snd_ssthresh, tp->prior_ssthresh,
2286 			 tp->packets_out);
2287 	}
2288 #if IS_ENABLED(CONFIG_IPV6)
2289 	else if (sk->sk_family == AF_INET6) {
2290 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2291 			 msg,
2292 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2293 			 tp->snd_cwnd, tcp_left_out(tp),
2294 			 tp->snd_ssthresh, tp->prior_ssthresh,
2295 			 tp->packets_out);
2296 	}
2297 #endif
2298 #endif
2299 }
2300 
2301 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2302 {
2303 	struct tcp_sock *tp = tcp_sk(sk);
2304 
2305 	if (unmark_loss) {
2306 		struct sk_buff *skb;
2307 
2308 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2309 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2310 		}
2311 		tp->lost_out = 0;
2312 		tcp_clear_all_retrans_hints(tp);
2313 	}
2314 
2315 	if (tp->prior_ssthresh) {
2316 		const struct inet_connection_sock *icsk = inet_csk(sk);
2317 
2318 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2319 
2320 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2321 			tp->snd_ssthresh = tp->prior_ssthresh;
2322 			tcp_ecn_withdraw_cwr(tp);
2323 		}
2324 	}
2325 	tp->snd_cwnd_stamp = tcp_jiffies32;
2326 	tp->undo_marker = 0;
2327 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2328 }
2329 
2330 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2331 {
2332 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2333 }
2334 
2335 /* People celebrate: "We love our President!" */
2336 static bool tcp_try_undo_recovery(struct sock *sk)
2337 {
2338 	struct tcp_sock *tp = tcp_sk(sk);
2339 
2340 	if (tcp_may_undo(tp)) {
2341 		int mib_idx;
2342 
2343 		/* Happy end! We did not retransmit anything
2344 		 * or our original transmission succeeded.
2345 		 */
2346 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2347 		tcp_undo_cwnd_reduction(sk, false);
2348 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2349 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2350 		else
2351 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2352 
2353 		NET_INC_STATS(sock_net(sk), mib_idx);
2354 	} else if (tp->rack.reo_wnd_persist) {
2355 		tp->rack.reo_wnd_persist--;
2356 	}
2357 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2358 		/* Hold old state until something *above* high_seq
2359 		 * is ACKed. For Reno it is MUST to prevent false
2360 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2361 		if (!tcp_any_retrans_done(sk))
2362 			tp->retrans_stamp = 0;
2363 		return true;
2364 	}
2365 	tcp_set_ca_state(sk, TCP_CA_Open);
2366 	tp->is_sack_reneg = 0;
2367 	return false;
2368 }
2369 
2370 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2371 static bool tcp_try_undo_dsack(struct sock *sk)
2372 {
2373 	struct tcp_sock *tp = tcp_sk(sk);
2374 
2375 	if (tp->undo_marker && !tp->undo_retrans) {
2376 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2377 					       tp->rack.reo_wnd_persist + 1);
2378 		DBGUNDO(sk, "D-SACK");
2379 		tcp_undo_cwnd_reduction(sk, false);
2380 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2381 		return true;
2382 	}
2383 	return false;
2384 }
2385 
2386 /* Undo during loss recovery after partial ACK or using F-RTO. */
2387 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2388 {
2389 	struct tcp_sock *tp = tcp_sk(sk);
2390 
2391 	if (frto_undo || tcp_may_undo(tp)) {
2392 		tcp_undo_cwnd_reduction(sk, true);
2393 
2394 		DBGUNDO(sk, "partial loss");
2395 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2396 		if (frto_undo)
2397 			NET_INC_STATS(sock_net(sk),
2398 					LINUX_MIB_TCPSPURIOUSRTOS);
2399 		inet_csk(sk)->icsk_retransmits = 0;
2400 		if (frto_undo || tcp_is_sack(tp)) {
2401 			tcp_set_ca_state(sk, TCP_CA_Open);
2402 			tp->is_sack_reneg = 0;
2403 		}
2404 		return true;
2405 	}
2406 	return false;
2407 }
2408 
2409 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2410  * It computes the number of packets to send (sndcnt) based on packets newly
2411  * delivered:
2412  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2413  *	cwnd reductions across a full RTT.
2414  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2415  *      But when the retransmits are acked without further losses, PRR
2416  *      slow starts cwnd up to ssthresh to speed up the recovery.
2417  */
2418 static void tcp_init_cwnd_reduction(struct sock *sk)
2419 {
2420 	struct tcp_sock *tp = tcp_sk(sk);
2421 
2422 	tp->high_seq = tp->snd_nxt;
2423 	tp->tlp_high_seq = 0;
2424 	tp->snd_cwnd_cnt = 0;
2425 	tp->prior_cwnd = tp->snd_cwnd;
2426 	tp->prr_delivered = 0;
2427 	tp->prr_out = 0;
2428 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2429 	tcp_ecn_queue_cwr(tp);
2430 }
2431 
2432 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2433 {
2434 	struct tcp_sock *tp = tcp_sk(sk);
2435 	int sndcnt = 0;
2436 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2437 
2438 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2439 		return;
2440 
2441 	tp->prr_delivered += newly_acked_sacked;
2442 	if (delta < 0) {
2443 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2444 			       tp->prior_cwnd - 1;
2445 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2446 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2447 		   !(flag & FLAG_LOST_RETRANS)) {
2448 		sndcnt = min_t(int, delta,
2449 			       max_t(int, tp->prr_delivered - tp->prr_out,
2450 				     newly_acked_sacked) + 1);
2451 	} else {
2452 		sndcnt = min(delta, newly_acked_sacked);
2453 	}
2454 	/* Force a fast retransmit upon entering fast recovery */
2455 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2456 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2457 }
2458 
2459 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2460 {
2461 	struct tcp_sock *tp = tcp_sk(sk);
2462 
2463 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2464 		return;
2465 
2466 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2467 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2468 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2469 		tp->snd_cwnd = tp->snd_ssthresh;
2470 		tp->snd_cwnd_stamp = tcp_jiffies32;
2471 	}
2472 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2473 }
2474 
2475 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2476 void tcp_enter_cwr(struct sock *sk)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 
2480 	tp->prior_ssthresh = 0;
2481 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2482 		tp->undo_marker = 0;
2483 		tcp_init_cwnd_reduction(sk);
2484 		tcp_set_ca_state(sk, TCP_CA_CWR);
2485 	}
2486 }
2487 EXPORT_SYMBOL(tcp_enter_cwr);
2488 
2489 static void tcp_try_keep_open(struct sock *sk)
2490 {
2491 	struct tcp_sock *tp = tcp_sk(sk);
2492 	int state = TCP_CA_Open;
2493 
2494 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2495 		state = TCP_CA_Disorder;
2496 
2497 	if (inet_csk(sk)->icsk_ca_state != state) {
2498 		tcp_set_ca_state(sk, state);
2499 		tp->high_seq = tp->snd_nxt;
2500 	}
2501 }
2502 
2503 static void tcp_try_to_open(struct sock *sk, int flag)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 
2507 	tcp_verify_left_out(tp);
2508 
2509 	if (!tcp_any_retrans_done(sk))
2510 		tp->retrans_stamp = 0;
2511 
2512 	if (flag & FLAG_ECE)
2513 		tcp_enter_cwr(sk);
2514 
2515 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2516 		tcp_try_keep_open(sk);
2517 	}
2518 }
2519 
2520 static void tcp_mtup_probe_failed(struct sock *sk)
2521 {
2522 	struct inet_connection_sock *icsk = inet_csk(sk);
2523 
2524 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2525 	icsk->icsk_mtup.probe_size = 0;
2526 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2527 }
2528 
2529 static void tcp_mtup_probe_success(struct sock *sk)
2530 {
2531 	struct tcp_sock *tp = tcp_sk(sk);
2532 	struct inet_connection_sock *icsk = inet_csk(sk);
2533 
2534 	/* FIXME: breaks with very large cwnd */
2535 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2536 	tp->snd_cwnd = tp->snd_cwnd *
2537 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2538 		       icsk->icsk_mtup.probe_size;
2539 	tp->snd_cwnd_cnt = 0;
2540 	tp->snd_cwnd_stamp = tcp_jiffies32;
2541 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2542 
2543 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2544 	icsk->icsk_mtup.probe_size = 0;
2545 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2546 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2547 }
2548 
2549 /* Do a simple retransmit without using the backoff mechanisms in
2550  * tcp_timer. This is used for path mtu discovery.
2551  * The socket is already locked here.
2552  */
2553 void tcp_simple_retransmit(struct sock *sk)
2554 {
2555 	const struct inet_connection_sock *icsk = inet_csk(sk);
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 	struct sk_buff *skb;
2558 	unsigned int mss = tcp_current_mss(sk);
2559 
2560 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2561 		if (tcp_skb_seglen(skb) > mss &&
2562 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2563 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2564 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2565 				tp->retrans_out -= tcp_skb_pcount(skb);
2566 			}
2567 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2568 		}
2569 	}
2570 
2571 	tcp_clear_retrans_hints_partial(tp);
2572 
2573 	if (!tp->lost_out)
2574 		return;
2575 
2576 	if (tcp_is_reno(tp))
2577 		tcp_limit_reno_sacked(tp);
2578 
2579 	tcp_verify_left_out(tp);
2580 
2581 	/* Don't muck with the congestion window here.
2582 	 * Reason is that we do not increase amount of _data_
2583 	 * in network, but units changed and effective
2584 	 * cwnd/ssthresh really reduced now.
2585 	 */
2586 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2587 		tp->high_seq = tp->snd_nxt;
2588 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2589 		tp->prior_ssthresh = 0;
2590 		tp->undo_marker = 0;
2591 		tcp_set_ca_state(sk, TCP_CA_Loss);
2592 	}
2593 	tcp_xmit_retransmit_queue(sk);
2594 }
2595 EXPORT_SYMBOL(tcp_simple_retransmit);
2596 
2597 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2598 {
2599 	struct tcp_sock *tp = tcp_sk(sk);
2600 	int mib_idx;
2601 
2602 	if (tcp_is_reno(tp))
2603 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2604 	else
2605 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2606 
2607 	NET_INC_STATS(sock_net(sk), mib_idx);
2608 
2609 	tp->prior_ssthresh = 0;
2610 	tcp_init_undo(tp);
2611 
2612 	if (!tcp_in_cwnd_reduction(sk)) {
2613 		if (!ece_ack)
2614 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2615 		tcp_init_cwnd_reduction(sk);
2616 	}
2617 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2618 }
2619 
2620 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2621  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2622  */
2623 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2624 			     int *rexmit)
2625 {
2626 	struct tcp_sock *tp = tcp_sk(sk);
2627 	bool recovered = !before(tp->snd_una, tp->high_seq);
2628 
2629 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2630 	    tcp_try_undo_loss(sk, false))
2631 		return;
2632 
2633 	/* The ACK (s)acks some never-retransmitted data meaning not all
2634 	 * the data packets before the timeout were lost. Therefore we
2635 	 * undo the congestion window and state. This is essentially
2636 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2637 	 * a retransmitted skb is permantly marked, we can apply such an
2638 	 * operation even if F-RTO was not used.
2639 	 */
2640 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2641 	    tcp_try_undo_loss(sk, tp->undo_marker))
2642 		return;
2643 
2644 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2645 		if (after(tp->snd_nxt, tp->high_seq)) {
2646 			if (flag & FLAG_DATA_SACKED || is_dupack)
2647 				tp->frto = 0; /* Step 3.a. loss was real */
2648 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2649 			tp->high_seq = tp->snd_nxt;
2650 			/* Step 2.b. Try send new data (but deferred until cwnd
2651 			 * is updated in tcp_ack()). Otherwise fall back to
2652 			 * the conventional recovery.
2653 			 */
2654 			if (!tcp_write_queue_empty(sk) &&
2655 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2656 				*rexmit = REXMIT_NEW;
2657 				return;
2658 			}
2659 			tp->frto = 0;
2660 		}
2661 	}
2662 
2663 	if (recovered) {
2664 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2665 		tcp_try_undo_recovery(sk);
2666 		return;
2667 	}
2668 	if (tcp_is_reno(tp)) {
2669 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2670 		 * delivered. Lower inflight to clock out (re)tranmissions.
2671 		 */
2672 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2673 			tcp_add_reno_sack(sk);
2674 		else if (flag & FLAG_SND_UNA_ADVANCED)
2675 			tcp_reset_reno_sack(tp);
2676 	}
2677 	*rexmit = REXMIT_LOST;
2678 }
2679 
2680 /* Undo during fast recovery after partial ACK. */
2681 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2682 {
2683 	struct tcp_sock *tp = tcp_sk(sk);
2684 
2685 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2686 		/* Plain luck! Hole if filled with delayed
2687 		 * packet, rather than with a retransmit. Check reordering.
2688 		 */
2689 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2690 
2691 		/* We are getting evidence that the reordering degree is higher
2692 		 * than we realized. If there are no retransmits out then we
2693 		 * can undo. Otherwise we clock out new packets but do not
2694 		 * mark more packets lost or retransmit more.
2695 		 */
2696 		if (tp->retrans_out)
2697 			return true;
2698 
2699 		if (!tcp_any_retrans_done(sk))
2700 			tp->retrans_stamp = 0;
2701 
2702 		DBGUNDO(sk, "partial recovery");
2703 		tcp_undo_cwnd_reduction(sk, true);
2704 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2705 		tcp_try_keep_open(sk);
2706 		return true;
2707 	}
2708 	return false;
2709 }
2710 
2711 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2712 {
2713 	struct tcp_sock *tp = tcp_sk(sk);
2714 
2715 	/* Use RACK to detect loss */
2716 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2717 		u32 prior_retrans = tp->retrans_out;
2718 
2719 		tcp_rack_mark_lost(sk);
2720 		if (prior_retrans > tp->retrans_out)
2721 			*ack_flag |= FLAG_LOST_RETRANS;
2722 	}
2723 }
2724 
2725 static bool tcp_force_fast_retransmit(struct sock *sk)
2726 {
2727 	struct tcp_sock *tp = tcp_sk(sk);
2728 
2729 	return after(tcp_highest_sack_seq(tp),
2730 		     tp->snd_una + tp->reordering * tp->mss_cache);
2731 }
2732 
2733 /* Process an event, which can update packets-in-flight not trivially.
2734  * Main goal of this function is to calculate new estimate for left_out,
2735  * taking into account both packets sitting in receiver's buffer and
2736  * packets lost by network.
2737  *
2738  * Besides that it updates the congestion state when packet loss or ECN
2739  * is detected. But it does not reduce the cwnd, it is done by the
2740  * congestion control later.
2741  *
2742  * It does _not_ decide what to send, it is made in function
2743  * tcp_xmit_retransmit_queue().
2744  */
2745 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2746 				  bool is_dupack, int *ack_flag, int *rexmit)
2747 {
2748 	struct inet_connection_sock *icsk = inet_csk(sk);
2749 	struct tcp_sock *tp = tcp_sk(sk);
2750 	int fast_rexmit = 0, flag = *ack_flag;
2751 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2752 				     tcp_force_fast_retransmit(sk));
2753 
2754 	if (!tp->packets_out && tp->sacked_out)
2755 		tp->sacked_out = 0;
2756 
2757 	/* Now state machine starts.
2758 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2759 	if (flag & FLAG_ECE)
2760 		tp->prior_ssthresh = 0;
2761 
2762 	/* B. In all the states check for reneging SACKs. */
2763 	if (tcp_check_sack_reneging(sk, flag))
2764 		return;
2765 
2766 	/* C. Check consistency of the current state. */
2767 	tcp_verify_left_out(tp);
2768 
2769 	/* D. Check state exit conditions. State can be terminated
2770 	 *    when high_seq is ACKed. */
2771 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2772 		WARN_ON(tp->retrans_out != 0);
2773 		tp->retrans_stamp = 0;
2774 	} else if (!before(tp->snd_una, tp->high_seq)) {
2775 		switch (icsk->icsk_ca_state) {
2776 		case TCP_CA_CWR:
2777 			/* CWR is to be held something *above* high_seq
2778 			 * is ACKed for CWR bit to reach receiver. */
2779 			if (tp->snd_una != tp->high_seq) {
2780 				tcp_end_cwnd_reduction(sk);
2781 				tcp_set_ca_state(sk, TCP_CA_Open);
2782 			}
2783 			break;
2784 
2785 		case TCP_CA_Recovery:
2786 			if (tcp_is_reno(tp))
2787 				tcp_reset_reno_sack(tp);
2788 			if (tcp_try_undo_recovery(sk))
2789 				return;
2790 			tcp_end_cwnd_reduction(sk);
2791 			break;
2792 		}
2793 	}
2794 
2795 	/* E. Process state. */
2796 	switch (icsk->icsk_ca_state) {
2797 	case TCP_CA_Recovery:
2798 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2799 			if (tcp_is_reno(tp) && is_dupack)
2800 				tcp_add_reno_sack(sk);
2801 		} else {
2802 			if (tcp_try_undo_partial(sk, prior_snd_una))
2803 				return;
2804 			/* Partial ACK arrived. Force fast retransmit. */
2805 			do_lost = tcp_is_reno(tp) ||
2806 				  tcp_force_fast_retransmit(sk);
2807 		}
2808 		if (tcp_try_undo_dsack(sk)) {
2809 			tcp_try_keep_open(sk);
2810 			return;
2811 		}
2812 		tcp_rack_identify_loss(sk, ack_flag);
2813 		break;
2814 	case TCP_CA_Loss:
2815 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2816 		tcp_rack_identify_loss(sk, ack_flag);
2817 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2818 		      (*ack_flag & FLAG_LOST_RETRANS)))
2819 			return;
2820 		/* Change state if cwnd is undone or retransmits are lost */
2821 		/* fall through */
2822 	default:
2823 		if (tcp_is_reno(tp)) {
2824 			if (flag & FLAG_SND_UNA_ADVANCED)
2825 				tcp_reset_reno_sack(tp);
2826 			if (is_dupack)
2827 				tcp_add_reno_sack(sk);
2828 		}
2829 
2830 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2831 			tcp_try_undo_dsack(sk);
2832 
2833 		tcp_rack_identify_loss(sk, ack_flag);
2834 		if (!tcp_time_to_recover(sk, flag)) {
2835 			tcp_try_to_open(sk, flag);
2836 			return;
2837 		}
2838 
2839 		/* MTU probe failure: don't reduce cwnd */
2840 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2841 		    icsk->icsk_mtup.probe_size &&
2842 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2843 			tcp_mtup_probe_failed(sk);
2844 			/* Restores the reduction we did in tcp_mtup_probe() */
2845 			tp->snd_cwnd++;
2846 			tcp_simple_retransmit(sk);
2847 			return;
2848 		}
2849 
2850 		/* Otherwise enter Recovery state */
2851 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2852 		fast_rexmit = 1;
2853 	}
2854 
2855 	if (do_lost)
2856 		tcp_update_scoreboard(sk, fast_rexmit);
2857 	*rexmit = REXMIT_LOST;
2858 }
2859 
2860 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2861 {
2862 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 
2865 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2866 			   rtt_us ? : jiffies_to_usecs(1));
2867 }
2868 
2869 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2870 			       long seq_rtt_us, long sack_rtt_us,
2871 			       long ca_rtt_us, struct rate_sample *rs)
2872 {
2873 	const struct tcp_sock *tp = tcp_sk(sk);
2874 
2875 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2876 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2877 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2878 	 * is acked (RFC6298).
2879 	 */
2880 	if (seq_rtt_us < 0)
2881 		seq_rtt_us = sack_rtt_us;
2882 
2883 	/* RTTM Rule: A TSecr value received in a segment is used to
2884 	 * update the averaged RTT measurement only if the segment
2885 	 * acknowledges some new data, i.e., only if it advances the
2886 	 * left edge of the send window.
2887 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2888 	 */
2889 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2890 	    flag & FLAG_ACKED) {
2891 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2892 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2893 
2894 		seq_rtt_us = ca_rtt_us = delta_us;
2895 	}
2896 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2897 	if (seq_rtt_us < 0)
2898 		return false;
2899 
2900 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2901 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2902 	 * values will be skipped with the seq_rtt_us < 0 check above.
2903 	 */
2904 	tcp_update_rtt_min(sk, ca_rtt_us);
2905 	tcp_rtt_estimator(sk, seq_rtt_us);
2906 	tcp_set_rto(sk);
2907 
2908 	/* RFC6298: only reset backoff on valid RTT measurement. */
2909 	inet_csk(sk)->icsk_backoff = 0;
2910 	return true;
2911 }
2912 
2913 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2914 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2915 {
2916 	struct rate_sample rs;
2917 	long rtt_us = -1L;
2918 
2919 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2920 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2921 
2922 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2923 }
2924 
2925 
2926 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2927 {
2928 	const struct inet_connection_sock *icsk = inet_csk(sk);
2929 
2930 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2931 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2932 }
2933 
2934 /* Restart timer after forward progress on connection.
2935  * RFC2988 recommends to restart timer to now+rto.
2936  */
2937 void tcp_rearm_rto(struct sock *sk)
2938 {
2939 	const struct inet_connection_sock *icsk = inet_csk(sk);
2940 	struct tcp_sock *tp = tcp_sk(sk);
2941 
2942 	/* If the retrans timer is currently being used by Fast Open
2943 	 * for SYN-ACK retrans purpose, stay put.
2944 	 */
2945 	if (tp->fastopen_rsk)
2946 		return;
2947 
2948 	if (!tp->packets_out) {
2949 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2950 	} else {
2951 		u32 rto = inet_csk(sk)->icsk_rto;
2952 		/* Offset the time elapsed after installing regular RTO */
2953 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2954 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2955 			s64 delta_us = tcp_rto_delta_us(sk);
2956 			/* delta_us may not be positive if the socket is locked
2957 			 * when the retrans timer fires and is rescheduled.
2958 			 */
2959 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2960 		}
2961 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2962 					  TCP_RTO_MAX);
2963 	}
2964 }
2965 
2966 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2967 static void tcp_set_xmit_timer(struct sock *sk)
2968 {
2969 	if (!tcp_schedule_loss_probe(sk, true))
2970 		tcp_rearm_rto(sk);
2971 }
2972 
2973 /* If we get here, the whole TSO packet has not been acked. */
2974 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2975 {
2976 	struct tcp_sock *tp = tcp_sk(sk);
2977 	u32 packets_acked;
2978 
2979 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2980 
2981 	packets_acked = tcp_skb_pcount(skb);
2982 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2983 		return 0;
2984 	packets_acked -= tcp_skb_pcount(skb);
2985 
2986 	if (packets_acked) {
2987 		BUG_ON(tcp_skb_pcount(skb) == 0);
2988 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2989 	}
2990 
2991 	return packets_acked;
2992 }
2993 
2994 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
2995 			   u32 prior_snd_una)
2996 {
2997 	const struct skb_shared_info *shinfo;
2998 
2999 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3000 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3001 		return;
3002 
3003 	shinfo = skb_shinfo(skb);
3004 	if (!before(shinfo->tskey, prior_snd_una) &&
3005 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3006 		tcp_skb_tsorted_save(skb) {
3007 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3008 		} tcp_skb_tsorted_restore(skb);
3009 	}
3010 }
3011 
3012 /* Remove acknowledged frames from the retransmission queue. If our packet
3013  * is before the ack sequence we can discard it as it's confirmed to have
3014  * arrived at the other end.
3015  */
3016 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3017 			       u32 prior_snd_una,
3018 			       struct tcp_sacktag_state *sack)
3019 {
3020 	const struct inet_connection_sock *icsk = inet_csk(sk);
3021 	u64 first_ackt, last_ackt;
3022 	struct tcp_sock *tp = tcp_sk(sk);
3023 	u32 prior_sacked = tp->sacked_out;
3024 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3025 	struct sk_buff *skb, *next;
3026 	bool fully_acked = true;
3027 	long sack_rtt_us = -1L;
3028 	long seq_rtt_us = -1L;
3029 	long ca_rtt_us = -1L;
3030 	u32 pkts_acked = 0;
3031 	u32 last_in_flight = 0;
3032 	bool rtt_update;
3033 	int flag = 0;
3034 
3035 	first_ackt = 0;
3036 
3037 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3038 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3039 		const u32 start_seq = scb->seq;
3040 		u8 sacked = scb->sacked;
3041 		u32 acked_pcount;
3042 
3043 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3044 
3045 		/* Determine how many packets and what bytes were acked, tso and else */
3046 		if (after(scb->end_seq, tp->snd_una)) {
3047 			if (tcp_skb_pcount(skb) == 1 ||
3048 			    !after(tp->snd_una, scb->seq))
3049 				break;
3050 
3051 			acked_pcount = tcp_tso_acked(sk, skb);
3052 			if (!acked_pcount)
3053 				break;
3054 			fully_acked = false;
3055 		} else {
3056 			acked_pcount = tcp_skb_pcount(skb);
3057 		}
3058 
3059 		if (unlikely(sacked & TCPCB_RETRANS)) {
3060 			if (sacked & TCPCB_SACKED_RETRANS)
3061 				tp->retrans_out -= acked_pcount;
3062 			flag |= FLAG_RETRANS_DATA_ACKED;
3063 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3064 			last_ackt = skb->skb_mstamp;
3065 			WARN_ON_ONCE(last_ackt == 0);
3066 			if (!first_ackt)
3067 				first_ackt = last_ackt;
3068 
3069 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3070 			if (before(start_seq, reord))
3071 				reord = start_seq;
3072 			if (!after(scb->end_seq, tp->high_seq))
3073 				flag |= FLAG_ORIG_SACK_ACKED;
3074 		}
3075 
3076 		if (sacked & TCPCB_SACKED_ACKED) {
3077 			tp->sacked_out -= acked_pcount;
3078 		} else if (tcp_is_sack(tp)) {
3079 			tp->delivered += acked_pcount;
3080 			if (!tcp_skb_spurious_retrans(tp, skb))
3081 				tcp_rack_advance(tp, sacked, scb->end_seq,
3082 						 skb->skb_mstamp);
3083 		}
3084 		if (sacked & TCPCB_LOST)
3085 			tp->lost_out -= acked_pcount;
3086 
3087 		tp->packets_out -= acked_pcount;
3088 		pkts_acked += acked_pcount;
3089 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3090 
3091 		/* Initial outgoing SYN's get put onto the write_queue
3092 		 * just like anything else we transmit.  It is not
3093 		 * true data, and if we misinform our callers that
3094 		 * this ACK acks real data, we will erroneously exit
3095 		 * connection startup slow start one packet too
3096 		 * quickly.  This is severely frowned upon behavior.
3097 		 */
3098 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3099 			flag |= FLAG_DATA_ACKED;
3100 		} else {
3101 			flag |= FLAG_SYN_ACKED;
3102 			tp->retrans_stamp = 0;
3103 		}
3104 
3105 		if (!fully_acked)
3106 			break;
3107 
3108 		next = skb_rb_next(skb);
3109 		if (unlikely(skb == tp->retransmit_skb_hint))
3110 			tp->retransmit_skb_hint = NULL;
3111 		if (unlikely(skb == tp->lost_skb_hint))
3112 			tp->lost_skb_hint = NULL;
3113 		tcp_rtx_queue_unlink_and_free(skb, sk);
3114 	}
3115 
3116 	if (!skb)
3117 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3118 
3119 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3120 		tp->snd_up = tp->snd_una;
3121 
3122 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3123 		flag |= FLAG_SACK_RENEGING;
3124 
3125 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3126 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3127 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3128 	}
3129 	if (sack->first_sackt) {
3130 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3131 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3132 	}
3133 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3134 					ca_rtt_us, sack->rate);
3135 
3136 	if (flag & FLAG_ACKED) {
3137 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3138 		if (unlikely(icsk->icsk_mtup.probe_size &&
3139 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3140 			tcp_mtup_probe_success(sk);
3141 		}
3142 
3143 		if (tcp_is_reno(tp)) {
3144 			tcp_remove_reno_sacks(sk, pkts_acked);
3145 		} else {
3146 			int delta;
3147 
3148 			/* Non-retransmitted hole got filled? That's reordering */
3149 			if (before(reord, prior_fack))
3150 				tcp_check_sack_reordering(sk, reord, 0);
3151 
3152 			delta = prior_sacked - tp->sacked_out;
3153 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3154 		}
3155 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3156 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3157 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3158 		 * after when the head was last (re)transmitted. Otherwise the
3159 		 * timeout may continue to extend in loss recovery.
3160 		 */
3161 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3162 	}
3163 
3164 	if (icsk->icsk_ca_ops->pkts_acked) {
3165 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3166 					     .rtt_us = sack->rate->rtt_us,
3167 					     .in_flight = last_in_flight };
3168 
3169 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3170 	}
3171 
3172 #if FASTRETRANS_DEBUG > 0
3173 	WARN_ON((int)tp->sacked_out < 0);
3174 	WARN_ON((int)tp->lost_out < 0);
3175 	WARN_ON((int)tp->retrans_out < 0);
3176 	if (!tp->packets_out && tcp_is_sack(tp)) {
3177 		icsk = inet_csk(sk);
3178 		if (tp->lost_out) {
3179 			pr_debug("Leak l=%u %d\n",
3180 				 tp->lost_out, icsk->icsk_ca_state);
3181 			tp->lost_out = 0;
3182 		}
3183 		if (tp->sacked_out) {
3184 			pr_debug("Leak s=%u %d\n",
3185 				 tp->sacked_out, icsk->icsk_ca_state);
3186 			tp->sacked_out = 0;
3187 		}
3188 		if (tp->retrans_out) {
3189 			pr_debug("Leak r=%u %d\n",
3190 				 tp->retrans_out, icsk->icsk_ca_state);
3191 			tp->retrans_out = 0;
3192 		}
3193 	}
3194 #endif
3195 	return flag;
3196 }
3197 
3198 static void tcp_ack_probe(struct sock *sk)
3199 {
3200 	struct inet_connection_sock *icsk = inet_csk(sk);
3201 	struct sk_buff *head = tcp_send_head(sk);
3202 	const struct tcp_sock *tp = tcp_sk(sk);
3203 
3204 	/* Was it a usable window open? */
3205 	if (!head)
3206 		return;
3207 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3208 		icsk->icsk_backoff = 0;
3209 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3210 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3211 		 * This function is not for random using!
3212 		 */
3213 	} else {
3214 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3215 
3216 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3217 					  when, TCP_RTO_MAX);
3218 	}
3219 }
3220 
3221 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3222 {
3223 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3224 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3225 }
3226 
3227 /* Decide wheather to run the increase function of congestion control. */
3228 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3229 {
3230 	/* If reordering is high then always grow cwnd whenever data is
3231 	 * delivered regardless of its ordering. Otherwise stay conservative
3232 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3233 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3234 	 * cwnd in tcp_fastretrans_alert() based on more states.
3235 	 */
3236 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3237 		return flag & FLAG_FORWARD_PROGRESS;
3238 
3239 	return flag & FLAG_DATA_ACKED;
3240 }
3241 
3242 /* The "ultimate" congestion control function that aims to replace the rigid
3243  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3244  * It's called toward the end of processing an ACK with precise rate
3245  * information. All transmission or retransmission are delayed afterwards.
3246  */
3247 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3248 			     int flag, const struct rate_sample *rs)
3249 {
3250 	const struct inet_connection_sock *icsk = inet_csk(sk);
3251 
3252 	if (icsk->icsk_ca_ops->cong_control) {
3253 		icsk->icsk_ca_ops->cong_control(sk, rs);
3254 		return;
3255 	}
3256 
3257 	if (tcp_in_cwnd_reduction(sk)) {
3258 		/* Reduce cwnd if state mandates */
3259 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3260 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3261 		/* Advance cwnd if state allows */
3262 		tcp_cong_avoid(sk, ack, acked_sacked);
3263 	}
3264 	tcp_update_pacing_rate(sk);
3265 }
3266 
3267 /* Check that window update is acceptable.
3268  * The function assumes that snd_una<=ack<=snd_next.
3269  */
3270 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3271 					const u32 ack, const u32 ack_seq,
3272 					const u32 nwin)
3273 {
3274 	return	after(ack, tp->snd_una) ||
3275 		after(ack_seq, tp->snd_wl1) ||
3276 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3277 }
3278 
3279 /* If we update tp->snd_una, also update tp->bytes_acked */
3280 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3281 {
3282 	u32 delta = ack - tp->snd_una;
3283 
3284 	sock_owned_by_me((struct sock *)tp);
3285 	tp->bytes_acked += delta;
3286 	tp->snd_una = ack;
3287 }
3288 
3289 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3290 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3291 {
3292 	u32 delta = seq - tp->rcv_nxt;
3293 
3294 	sock_owned_by_me((struct sock *)tp);
3295 	tp->bytes_received += delta;
3296 	tp->rcv_nxt = seq;
3297 }
3298 
3299 /* Update our send window.
3300  *
3301  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3302  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3303  */
3304 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3305 				 u32 ack_seq)
3306 {
3307 	struct tcp_sock *tp = tcp_sk(sk);
3308 	int flag = 0;
3309 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3310 
3311 	if (likely(!tcp_hdr(skb)->syn))
3312 		nwin <<= tp->rx_opt.snd_wscale;
3313 
3314 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3315 		flag |= FLAG_WIN_UPDATE;
3316 		tcp_update_wl(tp, ack_seq);
3317 
3318 		if (tp->snd_wnd != nwin) {
3319 			tp->snd_wnd = nwin;
3320 
3321 			/* Note, it is the only place, where
3322 			 * fast path is recovered for sending TCP.
3323 			 */
3324 			tp->pred_flags = 0;
3325 			tcp_fast_path_check(sk);
3326 
3327 			if (!tcp_write_queue_empty(sk))
3328 				tcp_slow_start_after_idle_check(sk);
3329 
3330 			if (nwin > tp->max_window) {
3331 				tp->max_window = nwin;
3332 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3333 			}
3334 		}
3335 	}
3336 
3337 	tcp_snd_una_update(tp, ack);
3338 
3339 	return flag;
3340 }
3341 
3342 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3343 				   u32 *last_oow_ack_time)
3344 {
3345 	if (*last_oow_ack_time) {
3346 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3347 
3348 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3349 			NET_INC_STATS(net, mib_idx);
3350 			return true;	/* rate-limited: don't send yet! */
3351 		}
3352 	}
3353 
3354 	*last_oow_ack_time = tcp_jiffies32;
3355 
3356 	return false;	/* not rate-limited: go ahead, send dupack now! */
3357 }
3358 
3359 /* Return true if we're currently rate-limiting out-of-window ACKs and
3360  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3361  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3362  * attacks that send repeated SYNs or ACKs for the same connection. To
3363  * do this, we do not send a duplicate SYNACK or ACK if the remote
3364  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3365  */
3366 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3367 			  int mib_idx, u32 *last_oow_ack_time)
3368 {
3369 	/* Data packets without SYNs are not likely part of an ACK loop. */
3370 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3371 	    !tcp_hdr(skb)->syn)
3372 		return false;
3373 
3374 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3375 }
3376 
3377 /* RFC 5961 7 [ACK Throttling] */
3378 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3379 {
3380 	/* unprotected vars, we dont care of overwrites */
3381 	static u32 challenge_timestamp;
3382 	static unsigned int challenge_count;
3383 	struct tcp_sock *tp = tcp_sk(sk);
3384 	struct net *net = sock_net(sk);
3385 	u32 count, now;
3386 
3387 	/* First check our per-socket dupack rate limit. */
3388 	if (__tcp_oow_rate_limited(net,
3389 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3390 				   &tp->last_oow_ack_time))
3391 		return;
3392 
3393 	/* Then check host-wide RFC 5961 rate limit. */
3394 	now = jiffies / HZ;
3395 	if (now != challenge_timestamp) {
3396 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3397 		u32 half = (ack_limit + 1) >> 1;
3398 
3399 		challenge_timestamp = now;
3400 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3401 	}
3402 	count = READ_ONCE(challenge_count);
3403 	if (count > 0) {
3404 		WRITE_ONCE(challenge_count, count - 1);
3405 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3406 		tcp_send_ack(sk);
3407 	}
3408 }
3409 
3410 static void tcp_store_ts_recent(struct tcp_sock *tp)
3411 {
3412 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3413 	tp->rx_opt.ts_recent_stamp = get_seconds();
3414 }
3415 
3416 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3417 {
3418 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3419 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3420 		 * extra check below makes sure this can only happen
3421 		 * for pure ACK frames.  -DaveM
3422 		 *
3423 		 * Not only, also it occurs for expired timestamps.
3424 		 */
3425 
3426 		if (tcp_paws_check(&tp->rx_opt, 0))
3427 			tcp_store_ts_recent(tp);
3428 	}
3429 }
3430 
3431 /* This routine deals with acks during a TLP episode.
3432  * We mark the end of a TLP episode on receiving TLP dupack or when
3433  * ack is after tlp_high_seq.
3434  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3435  */
3436 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3437 {
3438 	struct tcp_sock *tp = tcp_sk(sk);
3439 
3440 	if (before(ack, tp->tlp_high_seq))
3441 		return;
3442 
3443 	if (flag & FLAG_DSACKING_ACK) {
3444 		/* This DSACK means original and TLP probe arrived; no loss */
3445 		tp->tlp_high_seq = 0;
3446 	} else if (after(ack, tp->tlp_high_seq)) {
3447 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3448 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3449 		 */
3450 		tcp_init_cwnd_reduction(sk);
3451 		tcp_set_ca_state(sk, TCP_CA_CWR);
3452 		tcp_end_cwnd_reduction(sk);
3453 		tcp_try_keep_open(sk);
3454 		NET_INC_STATS(sock_net(sk),
3455 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3456 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3457 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3458 		/* Pure dupack: original and TLP probe arrived; no loss */
3459 		tp->tlp_high_seq = 0;
3460 	}
3461 }
3462 
3463 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3464 {
3465 	const struct inet_connection_sock *icsk = inet_csk(sk);
3466 
3467 	if (icsk->icsk_ca_ops->in_ack_event)
3468 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3469 }
3470 
3471 /* Congestion control has updated the cwnd already. So if we're in
3472  * loss recovery then now we do any new sends (for FRTO) or
3473  * retransmits (for CA_Loss or CA_recovery) that make sense.
3474  */
3475 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3476 {
3477 	struct tcp_sock *tp = tcp_sk(sk);
3478 
3479 	if (rexmit == REXMIT_NONE)
3480 		return;
3481 
3482 	if (unlikely(rexmit == 2)) {
3483 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3484 					  TCP_NAGLE_OFF);
3485 		if (after(tp->snd_nxt, tp->high_seq))
3486 			return;
3487 		tp->frto = 0;
3488 	}
3489 	tcp_xmit_retransmit_queue(sk);
3490 }
3491 
3492 /* This routine deals with incoming acks, but not outgoing ones. */
3493 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3494 {
3495 	struct inet_connection_sock *icsk = inet_csk(sk);
3496 	struct tcp_sock *tp = tcp_sk(sk);
3497 	struct tcp_sacktag_state sack_state;
3498 	struct rate_sample rs = { .prior_delivered = 0 };
3499 	u32 prior_snd_una = tp->snd_una;
3500 	bool is_sack_reneg = tp->is_sack_reneg;
3501 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3502 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3503 	bool is_dupack = false;
3504 	int prior_packets = tp->packets_out;
3505 	u32 delivered = tp->delivered;
3506 	u32 lost = tp->lost;
3507 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3508 	u32 prior_fack;
3509 
3510 	sack_state.first_sackt = 0;
3511 	sack_state.rate = &rs;
3512 
3513 	/* We very likely will need to access rtx queue. */
3514 	prefetch(sk->tcp_rtx_queue.rb_node);
3515 
3516 	/* If the ack is older than previous acks
3517 	 * then we can probably ignore it.
3518 	 */
3519 	if (before(ack, prior_snd_una)) {
3520 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3521 		if (before(ack, prior_snd_una - tp->max_window)) {
3522 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3523 				tcp_send_challenge_ack(sk, skb);
3524 			return -1;
3525 		}
3526 		goto old_ack;
3527 	}
3528 
3529 	/* If the ack includes data we haven't sent yet, discard
3530 	 * this segment (RFC793 Section 3.9).
3531 	 */
3532 	if (after(ack, tp->snd_nxt))
3533 		goto invalid_ack;
3534 
3535 	if (after(ack, prior_snd_una)) {
3536 		flag |= FLAG_SND_UNA_ADVANCED;
3537 		icsk->icsk_retransmits = 0;
3538 	}
3539 
3540 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3541 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3542 
3543 	/* ts_recent update must be made after we are sure that the packet
3544 	 * is in window.
3545 	 */
3546 	if (flag & FLAG_UPDATE_TS_RECENT)
3547 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3548 
3549 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3550 		/* Window is constant, pure forward advance.
3551 		 * No more checks are required.
3552 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3553 		 */
3554 		tcp_update_wl(tp, ack_seq);
3555 		tcp_snd_una_update(tp, ack);
3556 		flag |= FLAG_WIN_UPDATE;
3557 
3558 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3559 
3560 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3561 	} else {
3562 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3563 
3564 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3565 			flag |= FLAG_DATA;
3566 		else
3567 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3568 
3569 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3570 
3571 		if (TCP_SKB_CB(skb)->sacked)
3572 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3573 							&sack_state);
3574 
3575 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3576 			flag |= FLAG_ECE;
3577 			ack_ev_flags |= CA_ACK_ECE;
3578 		}
3579 
3580 		if (flag & FLAG_WIN_UPDATE)
3581 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3582 
3583 		tcp_in_ack_event(sk, ack_ev_flags);
3584 	}
3585 
3586 	/* We passed data and got it acked, remove any soft error
3587 	 * log. Something worked...
3588 	 */
3589 	sk->sk_err_soft = 0;
3590 	icsk->icsk_probes_out = 0;
3591 	tp->rcv_tstamp = tcp_jiffies32;
3592 	if (!prior_packets)
3593 		goto no_queue;
3594 
3595 	/* See if we can take anything off of the retransmit queue. */
3596 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3597 
3598 	tcp_rack_update_reo_wnd(sk, &rs);
3599 
3600 	if (tp->tlp_high_seq)
3601 		tcp_process_tlp_ack(sk, ack, flag);
3602 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3603 	if (flag & FLAG_SET_XMIT_TIMER)
3604 		tcp_set_xmit_timer(sk);
3605 
3606 	if (tcp_ack_is_dubious(sk, flag)) {
3607 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3608 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3609 				      &rexmit);
3610 	}
3611 
3612 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3613 		sk_dst_confirm(sk);
3614 
3615 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3616 	lost = tp->lost - lost;			/* freshly marked lost */
3617 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3618 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3619 	tcp_xmit_recovery(sk, rexmit);
3620 	return 1;
3621 
3622 no_queue:
3623 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3624 	if (flag & FLAG_DSACKING_ACK)
3625 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3626 				      &rexmit);
3627 	/* If this ack opens up a zero window, clear backoff.  It was
3628 	 * being used to time the probes, and is probably far higher than
3629 	 * it needs to be for normal retransmission.
3630 	 */
3631 	tcp_ack_probe(sk);
3632 
3633 	if (tp->tlp_high_seq)
3634 		tcp_process_tlp_ack(sk, ack, flag);
3635 	return 1;
3636 
3637 invalid_ack:
3638 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3639 	return -1;
3640 
3641 old_ack:
3642 	/* If data was SACKed, tag it and see if we should send more data.
3643 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3644 	 */
3645 	if (TCP_SKB_CB(skb)->sacked) {
3646 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3647 						&sack_state);
3648 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3649 				      &rexmit);
3650 		tcp_xmit_recovery(sk, rexmit);
3651 	}
3652 
3653 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3654 	return 0;
3655 }
3656 
3657 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3658 				      bool syn, struct tcp_fastopen_cookie *foc,
3659 				      bool exp_opt)
3660 {
3661 	/* Valid only in SYN or SYN-ACK with an even length.  */
3662 	if (!foc || !syn || len < 0 || (len & 1))
3663 		return;
3664 
3665 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3666 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3667 		memcpy(foc->val, cookie, len);
3668 	else if (len != 0)
3669 		len = -1;
3670 	foc->len = len;
3671 	foc->exp = exp_opt;
3672 }
3673 
3674 static void smc_parse_options(const struct tcphdr *th,
3675 			      struct tcp_options_received *opt_rx,
3676 			      const unsigned char *ptr,
3677 			      int opsize)
3678 {
3679 #if IS_ENABLED(CONFIG_SMC)
3680 	if (static_branch_unlikely(&tcp_have_smc)) {
3681 		if (th->syn && !(opsize & 1) &&
3682 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3683 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3684 			opt_rx->smc_ok = 1;
3685 	}
3686 #endif
3687 }
3688 
3689 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3690  * But, this can also be called on packets in the established flow when
3691  * the fast version below fails.
3692  */
3693 void tcp_parse_options(const struct net *net,
3694 		       const struct sk_buff *skb,
3695 		       struct tcp_options_received *opt_rx, int estab,
3696 		       struct tcp_fastopen_cookie *foc)
3697 {
3698 	const unsigned char *ptr;
3699 	const struct tcphdr *th = tcp_hdr(skb);
3700 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3701 
3702 	ptr = (const unsigned char *)(th + 1);
3703 	opt_rx->saw_tstamp = 0;
3704 
3705 	while (length > 0) {
3706 		int opcode = *ptr++;
3707 		int opsize;
3708 
3709 		switch (opcode) {
3710 		case TCPOPT_EOL:
3711 			return;
3712 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3713 			length--;
3714 			continue;
3715 		default:
3716 			opsize = *ptr++;
3717 			if (opsize < 2) /* "silly options" */
3718 				return;
3719 			if (opsize > length)
3720 				return;	/* don't parse partial options */
3721 			switch (opcode) {
3722 			case TCPOPT_MSS:
3723 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3724 					u16 in_mss = get_unaligned_be16(ptr);
3725 					if (in_mss) {
3726 						if (opt_rx->user_mss &&
3727 						    opt_rx->user_mss < in_mss)
3728 							in_mss = opt_rx->user_mss;
3729 						opt_rx->mss_clamp = in_mss;
3730 					}
3731 				}
3732 				break;
3733 			case TCPOPT_WINDOW:
3734 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3735 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3736 					__u8 snd_wscale = *(__u8 *)ptr;
3737 					opt_rx->wscale_ok = 1;
3738 					if (snd_wscale > TCP_MAX_WSCALE) {
3739 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3740 								     __func__,
3741 								     snd_wscale,
3742 								     TCP_MAX_WSCALE);
3743 						snd_wscale = TCP_MAX_WSCALE;
3744 					}
3745 					opt_rx->snd_wscale = snd_wscale;
3746 				}
3747 				break;
3748 			case TCPOPT_TIMESTAMP:
3749 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3750 				    ((estab && opt_rx->tstamp_ok) ||
3751 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3752 					opt_rx->saw_tstamp = 1;
3753 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3754 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3755 				}
3756 				break;
3757 			case TCPOPT_SACK_PERM:
3758 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3759 				    !estab && net->ipv4.sysctl_tcp_sack) {
3760 					opt_rx->sack_ok = TCP_SACK_SEEN;
3761 					tcp_sack_reset(opt_rx);
3762 				}
3763 				break;
3764 
3765 			case TCPOPT_SACK:
3766 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3767 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3768 				   opt_rx->sack_ok) {
3769 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3770 				}
3771 				break;
3772 #ifdef CONFIG_TCP_MD5SIG
3773 			case TCPOPT_MD5SIG:
3774 				/*
3775 				 * The MD5 Hash has already been
3776 				 * checked (see tcp_v{4,6}_do_rcv()).
3777 				 */
3778 				break;
3779 #endif
3780 			case TCPOPT_FASTOPEN:
3781 				tcp_parse_fastopen_option(
3782 					opsize - TCPOLEN_FASTOPEN_BASE,
3783 					ptr, th->syn, foc, false);
3784 				break;
3785 
3786 			case TCPOPT_EXP:
3787 				/* Fast Open option shares code 254 using a
3788 				 * 16 bits magic number.
3789 				 */
3790 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3791 				    get_unaligned_be16(ptr) ==
3792 				    TCPOPT_FASTOPEN_MAGIC)
3793 					tcp_parse_fastopen_option(opsize -
3794 						TCPOLEN_EXP_FASTOPEN_BASE,
3795 						ptr + 2, th->syn, foc, true);
3796 				else
3797 					smc_parse_options(th, opt_rx, ptr,
3798 							  opsize);
3799 				break;
3800 
3801 			}
3802 			ptr += opsize-2;
3803 			length -= opsize;
3804 		}
3805 	}
3806 }
3807 EXPORT_SYMBOL(tcp_parse_options);
3808 
3809 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3810 {
3811 	const __be32 *ptr = (const __be32 *)(th + 1);
3812 
3813 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3814 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3815 		tp->rx_opt.saw_tstamp = 1;
3816 		++ptr;
3817 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3818 		++ptr;
3819 		if (*ptr)
3820 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3821 		else
3822 			tp->rx_opt.rcv_tsecr = 0;
3823 		return true;
3824 	}
3825 	return false;
3826 }
3827 
3828 /* Fast parse options. This hopes to only see timestamps.
3829  * If it is wrong it falls back on tcp_parse_options().
3830  */
3831 static bool tcp_fast_parse_options(const struct net *net,
3832 				   const struct sk_buff *skb,
3833 				   const struct tcphdr *th, struct tcp_sock *tp)
3834 {
3835 	/* In the spirit of fast parsing, compare doff directly to constant
3836 	 * values.  Because equality is used, short doff can be ignored here.
3837 	 */
3838 	if (th->doff == (sizeof(*th) / 4)) {
3839 		tp->rx_opt.saw_tstamp = 0;
3840 		return false;
3841 	} else if (tp->rx_opt.tstamp_ok &&
3842 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3843 		if (tcp_parse_aligned_timestamp(tp, th))
3844 			return true;
3845 	}
3846 
3847 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3848 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3849 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3850 
3851 	return true;
3852 }
3853 
3854 #ifdef CONFIG_TCP_MD5SIG
3855 /*
3856  * Parse MD5 Signature option
3857  */
3858 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3859 {
3860 	int length = (th->doff << 2) - sizeof(*th);
3861 	const u8 *ptr = (const u8 *)(th + 1);
3862 
3863 	/* If the TCP option is too short, we can short cut */
3864 	if (length < TCPOLEN_MD5SIG)
3865 		return NULL;
3866 
3867 	while (length > 0) {
3868 		int opcode = *ptr++;
3869 		int opsize;
3870 
3871 		switch (opcode) {
3872 		case TCPOPT_EOL:
3873 			return NULL;
3874 		case TCPOPT_NOP:
3875 			length--;
3876 			continue;
3877 		default:
3878 			opsize = *ptr++;
3879 			if (opsize < 2 || opsize > length)
3880 				return NULL;
3881 			if (opcode == TCPOPT_MD5SIG)
3882 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3883 		}
3884 		ptr += opsize - 2;
3885 		length -= opsize;
3886 	}
3887 	return NULL;
3888 }
3889 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3890 #endif
3891 
3892 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3893  *
3894  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3895  * it can pass through stack. So, the following predicate verifies that
3896  * this segment is not used for anything but congestion avoidance or
3897  * fast retransmit. Moreover, we even are able to eliminate most of such
3898  * second order effects, if we apply some small "replay" window (~RTO)
3899  * to timestamp space.
3900  *
3901  * All these measures still do not guarantee that we reject wrapped ACKs
3902  * on networks with high bandwidth, when sequence space is recycled fastly,
3903  * but it guarantees that such events will be very rare and do not affect
3904  * connection seriously. This doesn't look nice, but alas, PAWS is really
3905  * buggy extension.
3906  *
3907  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3908  * states that events when retransmit arrives after original data are rare.
3909  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3910  * the biggest problem on large power networks even with minor reordering.
3911  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3912  * up to bandwidth of 18Gigabit/sec. 8) ]
3913  */
3914 
3915 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3916 {
3917 	const struct tcp_sock *tp = tcp_sk(sk);
3918 	const struct tcphdr *th = tcp_hdr(skb);
3919 	u32 seq = TCP_SKB_CB(skb)->seq;
3920 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3921 
3922 	return (/* 1. Pure ACK with correct sequence number. */
3923 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3924 
3925 		/* 2. ... and duplicate ACK. */
3926 		ack == tp->snd_una &&
3927 
3928 		/* 3. ... and does not update window. */
3929 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3930 
3931 		/* 4. ... and sits in replay window. */
3932 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3933 }
3934 
3935 static inline bool tcp_paws_discard(const struct sock *sk,
3936 				   const struct sk_buff *skb)
3937 {
3938 	const struct tcp_sock *tp = tcp_sk(sk);
3939 
3940 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3941 	       !tcp_disordered_ack(sk, skb);
3942 }
3943 
3944 /* Check segment sequence number for validity.
3945  *
3946  * Segment controls are considered valid, if the segment
3947  * fits to the window after truncation to the window. Acceptability
3948  * of data (and SYN, FIN, of course) is checked separately.
3949  * See tcp_data_queue(), for example.
3950  *
3951  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3952  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3953  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3954  * (borrowed from freebsd)
3955  */
3956 
3957 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3958 {
3959 	return	!before(end_seq, tp->rcv_wup) &&
3960 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3961 }
3962 
3963 /* When we get a reset we do this. */
3964 void tcp_reset(struct sock *sk)
3965 {
3966 	trace_tcp_receive_reset(sk);
3967 
3968 	/* We want the right error as BSD sees it (and indeed as we do). */
3969 	switch (sk->sk_state) {
3970 	case TCP_SYN_SENT:
3971 		sk->sk_err = ECONNREFUSED;
3972 		break;
3973 	case TCP_CLOSE_WAIT:
3974 		sk->sk_err = EPIPE;
3975 		break;
3976 	case TCP_CLOSE:
3977 		return;
3978 	default:
3979 		sk->sk_err = ECONNRESET;
3980 	}
3981 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3982 	smp_wmb();
3983 
3984 	tcp_done(sk);
3985 
3986 	if (!sock_flag(sk, SOCK_DEAD))
3987 		sk->sk_error_report(sk);
3988 }
3989 
3990 /*
3991  * 	Process the FIN bit. This now behaves as it is supposed to work
3992  *	and the FIN takes effect when it is validly part of sequence
3993  *	space. Not before when we get holes.
3994  *
3995  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3996  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3997  *	TIME-WAIT)
3998  *
3999  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4000  *	close and we go into CLOSING (and later onto TIME-WAIT)
4001  *
4002  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4003  */
4004 void tcp_fin(struct sock *sk)
4005 {
4006 	struct tcp_sock *tp = tcp_sk(sk);
4007 
4008 	inet_csk_schedule_ack(sk);
4009 
4010 	sk->sk_shutdown |= RCV_SHUTDOWN;
4011 	sock_set_flag(sk, SOCK_DONE);
4012 
4013 	switch (sk->sk_state) {
4014 	case TCP_SYN_RECV:
4015 	case TCP_ESTABLISHED:
4016 		/* Move to CLOSE_WAIT */
4017 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4018 		inet_csk(sk)->icsk_ack.pingpong = 1;
4019 		break;
4020 
4021 	case TCP_CLOSE_WAIT:
4022 	case TCP_CLOSING:
4023 		/* Received a retransmission of the FIN, do
4024 		 * nothing.
4025 		 */
4026 		break;
4027 	case TCP_LAST_ACK:
4028 		/* RFC793: Remain in the LAST-ACK state. */
4029 		break;
4030 
4031 	case TCP_FIN_WAIT1:
4032 		/* This case occurs when a simultaneous close
4033 		 * happens, we must ack the received FIN and
4034 		 * enter the CLOSING state.
4035 		 */
4036 		tcp_send_ack(sk);
4037 		tcp_set_state(sk, TCP_CLOSING);
4038 		break;
4039 	case TCP_FIN_WAIT2:
4040 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4041 		tcp_send_ack(sk);
4042 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4043 		break;
4044 	default:
4045 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4046 		 * cases we should never reach this piece of code.
4047 		 */
4048 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4049 		       __func__, sk->sk_state);
4050 		break;
4051 	}
4052 
4053 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4054 	 * Probably, we should reset in this case. For now drop them.
4055 	 */
4056 	skb_rbtree_purge(&tp->out_of_order_queue);
4057 	if (tcp_is_sack(tp))
4058 		tcp_sack_reset(&tp->rx_opt);
4059 	sk_mem_reclaim(sk);
4060 
4061 	if (!sock_flag(sk, SOCK_DEAD)) {
4062 		sk->sk_state_change(sk);
4063 
4064 		/* Do not send POLL_HUP for half duplex close. */
4065 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4066 		    sk->sk_state == TCP_CLOSE)
4067 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4068 		else
4069 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4070 	}
4071 }
4072 
4073 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4074 				  u32 end_seq)
4075 {
4076 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4077 		if (before(seq, sp->start_seq))
4078 			sp->start_seq = seq;
4079 		if (after(end_seq, sp->end_seq))
4080 			sp->end_seq = end_seq;
4081 		return true;
4082 	}
4083 	return false;
4084 }
4085 
4086 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4087 {
4088 	struct tcp_sock *tp = tcp_sk(sk);
4089 
4090 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4091 		int mib_idx;
4092 
4093 		if (before(seq, tp->rcv_nxt))
4094 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4095 		else
4096 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4097 
4098 		NET_INC_STATS(sock_net(sk), mib_idx);
4099 
4100 		tp->rx_opt.dsack = 1;
4101 		tp->duplicate_sack[0].start_seq = seq;
4102 		tp->duplicate_sack[0].end_seq = end_seq;
4103 	}
4104 }
4105 
4106 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4107 {
4108 	struct tcp_sock *tp = tcp_sk(sk);
4109 
4110 	if (!tp->rx_opt.dsack)
4111 		tcp_dsack_set(sk, seq, end_seq);
4112 	else
4113 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4114 }
4115 
4116 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4117 {
4118 	struct tcp_sock *tp = tcp_sk(sk);
4119 
4120 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4121 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4122 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4123 		tcp_enter_quickack_mode(sk);
4124 
4125 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4126 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4127 
4128 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4129 				end_seq = tp->rcv_nxt;
4130 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4131 		}
4132 	}
4133 
4134 	tcp_send_ack(sk);
4135 }
4136 
4137 /* These routines update the SACK block as out-of-order packets arrive or
4138  * in-order packets close up the sequence space.
4139  */
4140 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4141 {
4142 	int this_sack;
4143 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4144 	struct tcp_sack_block *swalk = sp + 1;
4145 
4146 	/* See if the recent change to the first SACK eats into
4147 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4148 	 */
4149 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4150 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4151 			int i;
4152 
4153 			/* Zap SWALK, by moving every further SACK up by one slot.
4154 			 * Decrease num_sacks.
4155 			 */
4156 			tp->rx_opt.num_sacks--;
4157 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4158 				sp[i] = sp[i + 1];
4159 			continue;
4160 		}
4161 		this_sack++, swalk++;
4162 	}
4163 }
4164 
4165 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4166 {
4167 	struct tcp_sock *tp = tcp_sk(sk);
4168 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4169 	int cur_sacks = tp->rx_opt.num_sacks;
4170 	int this_sack;
4171 
4172 	if (!cur_sacks)
4173 		goto new_sack;
4174 
4175 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4176 		if (tcp_sack_extend(sp, seq, end_seq)) {
4177 			/* Rotate this_sack to the first one. */
4178 			for (; this_sack > 0; this_sack--, sp--)
4179 				swap(*sp, *(sp - 1));
4180 			if (cur_sacks > 1)
4181 				tcp_sack_maybe_coalesce(tp);
4182 			return;
4183 		}
4184 	}
4185 
4186 	/* Could not find an adjacent existing SACK, build a new one,
4187 	 * put it at the front, and shift everyone else down.  We
4188 	 * always know there is at least one SACK present already here.
4189 	 *
4190 	 * If the sack array is full, forget about the last one.
4191 	 */
4192 	if (this_sack >= TCP_NUM_SACKS) {
4193 		this_sack--;
4194 		tp->rx_opt.num_sacks--;
4195 		sp--;
4196 	}
4197 	for (; this_sack > 0; this_sack--, sp--)
4198 		*sp = *(sp - 1);
4199 
4200 new_sack:
4201 	/* Build the new head SACK, and we're done. */
4202 	sp->start_seq = seq;
4203 	sp->end_seq = end_seq;
4204 	tp->rx_opt.num_sacks++;
4205 }
4206 
4207 /* RCV.NXT advances, some SACKs should be eaten. */
4208 
4209 static void tcp_sack_remove(struct tcp_sock *tp)
4210 {
4211 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4212 	int num_sacks = tp->rx_opt.num_sacks;
4213 	int this_sack;
4214 
4215 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4216 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4217 		tp->rx_opt.num_sacks = 0;
4218 		return;
4219 	}
4220 
4221 	for (this_sack = 0; this_sack < num_sacks;) {
4222 		/* Check if the start of the sack is covered by RCV.NXT. */
4223 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4224 			int i;
4225 
4226 			/* RCV.NXT must cover all the block! */
4227 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4228 
4229 			/* Zap this SACK, by moving forward any other SACKS. */
4230 			for (i = this_sack+1; i < num_sacks; i++)
4231 				tp->selective_acks[i-1] = tp->selective_acks[i];
4232 			num_sacks--;
4233 			continue;
4234 		}
4235 		this_sack++;
4236 		sp++;
4237 	}
4238 	tp->rx_opt.num_sacks = num_sacks;
4239 }
4240 
4241 /**
4242  * tcp_try_coalesce - try to merge skb to prior one
4243  * @sk: socket
4244  * @dest: destination queue
4245  * @to: prior buffer
4246  * @from: buffer to add in queue
4247  * @fragstolen: pointer to boolean
4248  *
4249  * Before queueing skb @from after @to, try to merge them
4250  * to reduce overall memory use and queue lengths, if cost is small.
4251  * Packets in ofo or receive queues can stay a long time.
4252  * Better try to coalesce them right now to avoid future collapses.
4253  * Returns true if caller should free @from instead of queueing it
4254  */
4255 static bool tcp_try_coalesce(struct sock *sk,
4256 			     struct sk_buff *to,
4257 			     struct sk_buff *from,
4258 			     bool *fragstolen)
4259 {
4260 	int delta;
4261 
4262 	*fragstolen = false;
4263 
4264 	/* Its possible this segment overlaps with prior segment in queue */
4265 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4266 		return false;
4267 
4268 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4269 		return false;
4270 
4271 	atomic_add(delta, &sk->sk_rmem_alloc);
4272 	sk_mem_charge(sk, delta);
4273 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4274 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4275 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4276 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4277 
4278 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4279 		TCP_SKB_CB(to)->has_rxtstamp = true;
4280 		to->tstamp = from->tstamp;
4281 	}
4282 
4283 	return true;
4284 }
4285 
4286 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4287 {
4288 	sk_drops_add(sk, skb);
4289 	__kfree_skb(skb);
4290 }
4291 
4292 /* This one checks to see if we can put data from the
4293  * out_of_order queue into the receive_queue.
4294  */
4295 static void tcp_ofo_queue(struct sock *sk)
4296 {
4297 	struct tcp_sock *tp = tcp_sk(sk);
4298 	__u32 dsack_high = tp->rcv_nxt;
4299 	bool fin, fragstolen, eaten;
4300 	struct sk_buff *skb, *tail;
4301 	struct rb_node *p;
4302 
4303 	p = rb_first(&tp->out_of_order_queue);
4304 	while (p) {
4305 		skb = rb_to_skb(p);
4306 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4307 			break;
4308 
4309 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4310 			__u32 dsack = dsack_high;
4311 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4312 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4313 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4314 		}
4315 		p = rb_next(p);
4316 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4317 
4318 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4319 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4320 			tcp_drop(sk, skb);
4321 			continue;
4322 		}
4323 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4324 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4325 			   TCP_SKB_CB(skb)->end_seq);
4326 
4327 		tail = skb_peek_tail(&sk->sk_receive_queue);
4328 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4329 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4330 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4331 		if (!eaten)
4332 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4333 		else
4334 			kfree_skb_partial(skb, fragstolen);
4335 
4336 		if (unlikely(fin)) {
4337 			tcp_fin(sk);
4338 			/* tcp_fin() purges tp->out_of_order_queue,
4339 			 * so we must end this loop right now.
4340 			 */
4341 			break;
4342 		}
4343 	}
4344 }
4345 
4346 static bool tcp_prune_ofo_queue(struct sock *sk);
4347 static int tcp_prune_queue(struct sock *sk);
4348 
4349 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4350 				 unsigned int size)
4351 {
4352 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4353 	    !sk_rmem_schedule(sk, skb, size)) {
4354 
4355 		if (tcp_prune_queue(sk) < 0)
4356 			return -1;
4357 
4358 		while (!sk_rmem_schedule(sk, skb, size)) {
4359 			if (!tcp_prune_ofo_queue(sk))
4360 				return -1;
4361 		}
4362 	}
4363 	return 0;
4364 }
4365 
4366 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4367 {
4368 	struct tcp_sock *tp = tcp_sk(sk);
4369 	struct rb_node **p, *parent;
4370 	struct sk_buff *skb1;
4371 	u32 seq, end_seq;
4372 	bool fragstolen;
4373 
4374 	tcp_ecn_check_ce(tp, skb);
4375 
4376 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4377 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4378 		tcp_drop(sk, skb);
4379 		return;
4380 	}
4381 
4382 	/* Disable header prediction. */
4383 	tp->pred_flags = 0;
4384 	inet_csk_schedule_ack(sk);
4385 
4386 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4387 	seq = TCP_SKB_CB(skb)->seq;
4388 	end_seq = TCP_SKB_CB(skb)->end_seq;
4389 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4390 		   tp->rcv_nxt, seq, end_seq);
4391 
4392 	p = &tp->out_of_order_queue.rb_node;
4393 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4394 		/* Initial out of order segment, build 1 SACK. */
4395 		if (tcp_is_sack(tp)) {
4396 			tp->rx_opt.num_sacks = 1;
4397 			tp->selective_acks[0].start_seq = seq;
4398 			tp->selective_acks[0].end_seq = end_seq;
4399 		}
4400 		rb_link_node(&skb->rbnode, NULL, p);
4401 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4402 		tp->ooo_last_skb = skb;
4403 		goto end;
4404 	}
4405 
4406 	/* In the typical case, we are adding an skb to the end of the list.
4407 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4408 	 */
4409 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4410 			     skb, &fragstolen)) {
4411 coalesce_done:
4412 		tcp_grow_window(sk, skb);
4413 		kfree_skb_partial(skb, fragstolen);
4414 		skb = NULL;
4415 		goto add_sack;
4416 	}
4417 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4418 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4419 		parent = &tp->ooo_last_skb->rbnode;
4420 		p = &parent->rb_right;
4421 		goto insert;
4422 	}
4423 
4424 	/* Find place to insert this segment. Handle overlaps on the way. */
4425 	parent = NULL;
4426 	while (*p) {
4427 		parent = *p;
4428 		skb1 = rb_to_skb(parent);
4429 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4430 			p = &parent->rb_left;
4431 			continue;
4432 		}
4433 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4434 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4435 				/* All the bits are present. Drop. */
4436 				NET_INC_STATS(sock_net(sk),
4437 					      LINUX_MIB_TCPOFOMERGE);
4438 				__kfree_skb(skb);
4439 				skb = NULL;
4440 				tcp_dsack_set(sk, seq, end_seq);
4441 				goto add_sack;
4442 			}
4443 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4444 				/* Partial overlap. */
4445 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4446 			} else {
4447 				/* skb's seq == skb1's seq and skb covers skb1.
4448 				 * Replace skb1 with skb.
4449 				 */
4450 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4451 						&tp->out_of_order_queue);
4452 				tcp_dsack_extend(sk,
4453 						 TCP_SKB_CB(skb1)->seq,
4454 						 TCP_SKB_CB(skb1)->end_seq);
4455 				NET_INC_STATS(sock_net(sk),
4456 					      LINUX_MIB_TCPOFOMERGE);
4457 				__kfree_skb(skb1);
4458 				goto merge_right;
4459 			}
4460 		} else if (tcp_try_coalesce(sk, skb1,
4461 					    skb, &fragstolen)) {
4462 			goto coalesce_done;
4463 		}
4464 		p = &parent->rb_right;
4465 	}
4466 insert:
4467 	/* Insert segment into RB tree. */
4468 	rb_link_node(&skb->rbnode, parent, p);
4469 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4470 
4471 merge_right:
4472 	/* Remove other segments covered by skb. */
4473 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4474 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4475 			break;
4476 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4477 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4478 					 end_seq);
4479 			break;
4480 		}
4481 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4482 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4483 				 TCP_SKB_CB(skb1)->end_seq);
4484 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4485 		tcp_drop(sk, skb1);
4486 	}
4487 	/* If there is no skb after us, we are the last_skb ! */
4488 	if (!skb1)
4489 		tp->ooo_last_skb = skb;
4490 
4491 add_sack:
4492 	if (tcp_is_sack(tp))
4493 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4494 end:
4495 	if (skb) {
4496 		tcp_grow_window(sk, skb);
4497 		skb_condense(skb);
4498 		skb_set_owner_r(skb, sk);
4499 	}
4500 }
4501 
4502 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4503 		  bool *fragstolen)
4504 {
4505 	int eaten;
4506 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4507 
4508 	__skb_pull(skb, hdrlen);
4509 	eaten = (tail &&
4510 		 tcp_try_coalesce(sk, tail,
4511 				  skb, fragstolen)) ? 1 : 0;
4512 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4513 	if (!eaten) {
4514 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4515 		skb_set_owner_r(skb, sk);
4516 	}
4517 	return eaten;
4518 }
4519 
4520 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4521 {
4522 	struct sk_buff *skb;
4523 	int err = -ENOMEM;
4524 	int data_len = 0;
4525 	bool fragstolen;
4526 
4527 	if (size == 0)
4528 		return 0;
4529 
4530 	if (size > PAGE_SIZE) {
4531 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4532 
4533 		data_len = npages << PAGE_SHIFT;
4534 		size = data_len + (size & ~PAGE_MASK);
4535 	}
4536 	skb = alloc_skb_with_frags(size - data_len, data_len,
4537 				   PAGE_ALLOC_COSTLY_ORDER,
4538 				   &err, sk->sk_allocation);
4539 	if (!skb)
4540 		goto err;
4541 
4542 	skb_put(skb, size - data_len);
4543 	skb->data_len = data_len;
4544 	skb->len = size;
4545 
4546 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4547 		goto err_free;
4548 
4549 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4550 	if (err)
4551 		goto err_free;
4552 
4553 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4554 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4555 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4556 
4557 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4558 		WARN_ON_ONCE(fragstolen); /* should not happen */
4559 		__kfree_skb(skb);
4560 	}
4561 	return size;
4562 
4563 err_free:
4564 	kfree_skb(skb);
4565 err:
4566 	return err;
4567 
4568 }
4569 
4570 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4571 {
4572 	struct tcp_sock *tp = tcp_sk(sk);
4573 	bool fragstolen;
4574 	int eaten;
4575 
4576 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4577 		__kfree_skb(skb);
4578 		return;
4579 	}
4580 	skb_dst_drop(skb);
4581 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4582 
4583 	tcp_ecn_accept_cwr(tp, skb);
4584 
4585 	tp->rx_opt.dsack = 0;
4586 
4587 	/*  Queue data for delivery to the user.
4588 	 *  Packets in sequence go to the receive queue.
4589 	 *  Out of sequence packets to the out_of_order_queue.
4590 	 */
4591 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4592 		if (tcp_receive_window(tp) == 0)
4593 			goto out_of_window;
4594 
4595 		/* Ok. In sequence. In window. */
4596 queue_and_out:
4597 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4598 			sk_forced_mem_schedule(sk, skb->truesize);
4599 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4600 			goto drop;
4601 
4602 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4603 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4604 		if (skb->len)
4605 			tcp_event_data_recv(sk, skb);
4606 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4607 			tcp_fin(sk);
4608 
4609 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4610 			tcp_ofo_queue(sk);
4611 
4612 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4613 			 * gap in queue is filled.
4614 			 */
4615 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4616 				inet_csk(sk)->icsk_ack.pingpong = 0;
4617 		}
4618 
4619 		if (tp->rx_opt.num_sacks)
4620 			tcp_sack_remove(tp);
4621 
4622 		tcp_fast_path_check(sk);
4623 
4624 		if (eaten > 0)
4625 			kfree_skb_partial(skb, fragstolen);
4626 		if (!sock_flag(sk, SOCK_DEAD))
4627 			sk->sk_data_ready(sk);
4628 		return;
4629 	}
4630 
4631 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4632 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4633 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4634 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4635 
4636 out_of_window:
4637 		tcp_enter_quickack_mode(sk);
4638 		inet_csk_schedule_ack(sk);
4639 drop:
4640 		tcp_drop(sk, skb);
4641 		return;
4642 	}
4643 
4644 	/* Out of window. F.e. zero window probe. */
4645 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4646 		goto out_of_window;
4647 
4648 	tcp_enter_quickack_mode(sk);
4649 
4650 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4651 		/* Partial packet, seq < rcv_next < end_seq */
4652 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4653 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4654 			   TCP_SKB_CB(skb)->end_seq);
4655 
4656 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4657 
4658 		/* If window is closed, drop tail of packet. But after
4659 		 * remembering D-SACK for its head made in previous line.
4660 		 */
4661 		if (!tcp_receive_window(tp))
4662 			goto out_of_window;
4663 		goto queue_and_out;
4664 	}
4665 
4666 	tcp_data_queue_ofo(sk, skb);
4667 }
4668 
4669 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4670 {
4671 	if (list)
4672 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4673 
4674 	return skb_rb_next(skb);
4675 }
4676 
4677 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4678 					struct sk_buff_head *list,
4679 					struct rb_root *root)
4680 {
4681 	struct sk_buff *next = tcp_skb_next(skb, list);
4682 
4683 	if (list)
4684 		__skb_unlink(skb, list);
4685 	else
4686 		rb_erase(&skb->rbnode, root);
4687 
4688 	__kfree_skb(skb);
4689 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4690 
4691 	return next;
4692 }
4693 
4694 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4695 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4696 {
4697 	struct rb_node **p = &root->rb_node;
4698 	struct rb_node *parent = NULL;
4699 	struct sk_buff *skb1;
4700 
4701 	while (*p) {
4702 		parent = *p;
4703 		skb1 = rb_to_skb(parent);
4704 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4705 			p = &parent->rb_left;
4706 		else
4707 			p = &parent->rb_right;
4708 	}
4709 	rb_link_node(&skb->rbnode, parent, p);
4710 	rb_insert_color(&skb->rbnode, root);
4711 }
4712 
4713 /* Collapse contiguous sequence of skbs head..tail with
4714  * sequence numbers start..end.
4715  *
4716  * If tail is NULL, this means until the end of the queue.
4717  *
4718  * Segments with FIN/SYN are not collapsed (only because this
4719  * simplifies code)
4720  */
4721 static void
4722 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4723 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4724 {
4725 	struct sk_buff *skb = head, *n;
4726 	struct sk_buff_head tmp;
4727 	bool end_of_skbs;
4728 
4729 	/* First, check that queue is collapsible and find
4730 	 * the point where collapsing can be useful.
4731 	 */
4732 restart:
4733 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4734 		n = tcp_skb_next(skb, list);
4735 
4736 		/* No new bits? It is possible on ofo queue. */
4737 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4738 			skb = tcp_collapse_one(sk, skb, list, root);
4739 			if (!skb)
4740 				break;
4741 			goto restart;
4742 		}
4743 
4744 		/* The first skb to collapse is:
4745 		 * - not SYN/FIN and
4746 		 * - bloated or contains data before "start" or
4747 		 *   overlaps to the next one.
4748 		 */
4749 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4750 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4751 		     before(TCP_SKB_CB(skb)->seq, start))) {
4752 			end_of_skbs = false;
4753 			break;
4754 		}
4755 
4756 		if (n && n != tail &&
4757 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4758 			end_of_skbs = false;
4759 			break;
4760 		}
4761 
4762 		/* Decided to skip this, advance start seq. */
4763 		start = TCP_SKB_CB(skb)->end_seq;
4764 	}
4765 	if (end_of_skbs ||
4766 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4767 		return;
4768 
4769 	__skb_queue_head_init(&tmp);
4770 
4771 	while (before(start, end)) {
4772 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4773 		struct sk_buff *nskb;
4774 
4775 		nskb = alloc_skb(copy, GFP_ATOMIC);
4776 		if (!nskb)
4777 			break;
4778 
4779 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4780 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4781 		if (list)
4782 			__skb_queue_before(list, skb, nskb);
4783 		else
4784 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4785 		skb_set_owner_r(nskb, sk);
4786 
4787 		/* Copy data, releasing collapsed skbs. */
4788 		while (copy > 0) {
4789 			int offset = start - TCP_SKB_CB(skb)->seq;
4790 			int size = TCP_SKB_CB(skb)->end_seq - start;
4791 
4792 			BUG_ON(offset < 0);
4793 			if (size > 0) {
4794 				size = min(copy, size);
4795 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4796 					BUG();
4797 				TCP_SKB_CB(nskb)->end_seq += size;
4798 				copy -= size;
4799 				start += size;
4800 			}
4801 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4802 				skb = tcp_collapse_one(sk, skb, list, root);
4803 				if (!skb ||
4804 				    skb == tail ||
4805 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4806 					goto end;
4807 			}
4808 		}
4809 	}
4810 end:
4811 	skb_queue_walk_safe(&tmp, skb, n)
4812 		tcp_rbtree_insert(root, skb);
4813 }
4814 
4815 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4816  * and tcp_collapse() them until all the queue is collapsed.
4817  */
4818 static void tcp_collapse_ofo_queue(struct sock *sk)
4819 {
4820 	struct tcp_sock *tp = tcp_sk(sk);
4821 	struct sk_buff *skb, *head;
4822 	u32 start, end;
4823 
4824 	skb = skb_rb_first(&tp->out_of_order_queue);
4825 new_range:
4826 	if (!skb) {
4827 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4828 		return;
4829 	}
4830 	start = TCP_SKB_CB(skb)->seq;
4831 	end = TCP_SKB_CB(skb)->end_seq;
4832 
4833 	for (head = skb;;) {
4834 		skb = skb_rb_next(skb);
4835 
4836 		/* Range is terminated when we see a gap or when
4837 		 * we are at the queue end.
4838 		 */
4839 		if (!skb ||
4840 		    after(TCP_SKB_CB(skb)->seq, end) ||
4841 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4842 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4843 				     head, skb, start, end);
4844 			goto new_range;
4845 		}
4846 
4847 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4848 			start = TCP_SKB_CB(skb)->seq;
4849 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4850 			end = TCP_SKB_CB(skb)->end_seq;
4851 	}
4852 }
4853 
4854 /*
4855  * Clean the out-of-order queue to make room.
4856  * We drop high sequences packets to :
4857  * 1) Let a chance for holes to be filled.
4858  * 2) not add too big latencies if thousands of packets sit there.
4859  *    (But if application shrinks SO_RCVBUF, we could still end up
4860  *     freeing whole queue here)
4861  *
4862  * Return true if queue has shrunk.
4863  */
4864 static bool tcp_prune_ofo_queue(struct sock *sk)
4865 {
4866 	struct tcp_sock *tp = tcp_sk(sk);
4867 	struct rb_node *node, *prev;
4868 
4869 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4870 		return false;
4871 
4872 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4873 	node = &tp->ooo_last_skb->rbnode;
4874 	do {
4875 		prev = rb_prev(node);
4876 		rb_erase(node, &tp->out_of_order_queue);
4877 		tcp_drop(sk, rb_to_skb(node));
4878 		sk_mem_reclaim(sk);
4879 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4880 		    !tcp_under_memory_pressure(sk))
4881 			break;
4882 		node = prev;
4883 	} while (node);
4884 	tp->ooo_last_skb = rb_to_skb(prev);
4885 
4886 	/* Reset SACK state.  A conforming SACK implementation will
4887 	 * do the same at a timeout based retransmit.  When a connection
4888 	 * is in a sad state like this, we care only about integrity
4889 	 * of the connection not performance.
4890 	 */
4891 	if (tp->rx_opt.sack_ok)
4892 		tcp_sack_reset(&tp->rx_opt);
4893 	return true;
4894 }
4895 
4896 /* Reduce allocated memory if we can, trying to get
4897  * the socket within its memory limits again.
4898  *
4899  * Return less than zero if we should start dropping frames
4900  * until the socket owning process reads some of the data
4901  * to stabilize the situation.
4902  */
4903 static int tcp_prune_queue(struct sock *sk)
4904 {
4905 	struct tcp_sock *tp = tcp_sk(sk);
4906 
4907 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4908 
4909 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4910 
4911 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4912 		tcp_clamp_window(sk);
4913 	else if (tcp_under_memory_pressure(sk))
4914 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4915 
4916 	tcp_collapse_ofo_queue(sk);
4917 	if (!skb_queue_empty(&sk->sk_receive_queue))
4918 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4919 			     skb_peek(&sk->sk_receive_queue),
4920 			     NULL,
4921 			     tp->copied_seq, tp->rcv_nxt);
4922 	sk_mem_reclaim(sk);
4923 
4924 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4925 		return 0;
4926 
4927 	/* Collapsing did not help, destructive actions follow.
4928 	 * This must not ever occur. */
4929 
4930 	tcp_prune_ofo_queue(sk);
4931 
4932 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4933 		return 0;
4934 
4935 	/* If we are really being abused, tell the caller to silently
4936 	 * drop receive data on the floor.  It will get retransmitted
4937 	 * and hopefully then we'll have sufficient space.
4938 	 */
4939 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4940 
4941 	/* Massive buffer overcommit. */
4942 	tp->pred_flags = 0;
4943 	return -1;
4944 }
4945 
4946 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4947 {
4948 	const struct tcp_sock *tp = tcp_sk(sk);
4949 
4950 	/* If the user specified a specific send buffer setting, do
4951 	 * not modify it.
4952 	 */
4953 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4954 		return false;
4955 
4956 	/* If we are under global TCP memory pressure, do not expand.  */
4957 	if (tcp_under_memory_pressure(sk))
4958 		return false;
4959 
4960 	/* If we are under soft global TCP memory pressure, do not expand.  */
4961 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4962 		return false;
4963 
4964 	/* If we filled the congestion window, do not expand.  */
4965 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4966 		return false;
4967 
4968 	return true;
4969 }
4970 
4971 /* When incoming ACK allowed to free some skb from write_queue,
4972  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4973  * on the exit from tcp input handler.
4974  *
4975  * PROBLEM: sndbuf expansion does not work well with largesend.
4976  */
4977 static void tcp_new_space(struct sock *sk)
4978 {
4979 	struct tcp_sock *tp = tcp_sk(sk);
4980 
4981 	if (tcp_should_expand_sndbuf(sk)) {
4982 		tcp_sndbuf_expand(sk);
4983 		tp->snd_cwnd_stamp = tcp_jiffies32;
4984 	}
4985 
4986 	sk->sk_write_space(sk);
4987 }
4988 
4989 static void tcp_check_space(struct sock *sk)
4990 {
4991 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4992 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4993 		/* pairs with tcp_poll() */
4994 		smp_mb();
4995 		if (sk->sk_socket &&
4996 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4997 			tcp_new_space(sk);
4998 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4999 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5000 		}
5001 	}
5002 }
5003 
5004 static inline void tcp_data_snd_check(struct sock *sk)
5005 {
5006 	tcp_push_pending_frames(sk);
5007 	tcp_check_space(sk);
5008 }
5009 
5010 /*
5011  * Check if sending an ack is needed.
5012  */
5013 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5014 {
5015 	struct tcp_sock *tp = tcp_sk(sk);
5016 
5017 	    /* More than one full frame received... */
5018 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5019 	     /* ... and right edge of window advances far enough.
5020 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5021 	      */
5022 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5023 	    /* We ACK each frame or... */
5024 	    tcp_in_quickack_mode(sk) ||
5025 	    /* We have out of order data. */
5026 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5027 		/* Then ack it now */
5028 		tcp_send_ack(sk);
5029 	} else {
5030 		/* Else, send delayed ack. */
5031 		tcp_send_delayed_ack(sk);
5032 	}
5033 }
5034 
5035 static inline void tcp_ack_snd_check(struct sock *sk)
5036 {
5037 	if (!inet_csk_ack_scheduled(sk)) {
5038 		/* We sent a data segment already. */
5039 		return;
5040 	}
5041 	__tcp_ack_snd_check(sk, 1);
5042 }
5043 
5044 /*
5045  *	This routine is only called when we have urgent data
5046  *	signaled. Its the 'slow' part of tcp_urg. It could be
5047  *	moved inline now as tcp_urg is only called from one
5048  *	place. We handle URGent data wrong. We have to - as
5049  *	BSD still doesn't use the correction from RFC961.
5050  *	For 1003.1g we should support a new option TCP_STDURG to permit
5051  *	either form (or just set the sysctl tcp_stdurg).
5052  */
5053 
5054 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5055 {
5056 	struct tcp_sock *tp = tcp_sk(sk);
5057 	u32 ptr = ntohs(th->urg_ptr);
5058 
5059 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5060 		ptr--;
5061 	ptr += ntohl(th->seq);
5062 
5063 	/* Ignore urgent data that we've already seen and read. */
5064 	if (after(tp->copied_seq, ptr))
5065 		return;
5066 
5067 	/* Do not replay urg ptr.
5068 	 *
5069 	 * NOTE: interesting situation not covered by specs.
5070 	 * Misbehaving sender may send urg ptr, pointing to segment,
5071 	 * which we already have in ofo queue. We are not able to fetch
5072 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5073 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5074 	 * situations. But it is worth to think about possibility of some
5075 	 * DoSes using some hypothetical application level deadlock.
5076 	 */
5077 	if (before(ptr, tp->rcv_nxt))
5078 		return;
5079 
5080 	/* Do we already have a newer (or duplicate) urgent pointer? */
5081 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5082 		return;
5083 
5084 	/* Tell the world about our new urgent pointer. */
5085 	sk_send_sigurg(sk);
5086 
5087 	/* We may be adding urgent data when the last byte read was
5088 	 * urgent. To do this requires some care. We cannot just ignore
5089 	 * tp->copied_seq since we would read the last urgent byte again
5090 	 * as data, nor can we alter copied_seq until this data arrives
5091 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5092 	 *
5093 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5094 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5095 	 * and expect that both A and B disappear from stream. This is _wrong_.
5096 	 * Though this happens in BSD with high probability, this is occasional.
5097 	 * Any application relying on this is buggy. Note also, that fix "works"
5098 	 * only in this artificial test. Insert some normal data between A and B and we will
5099 	 * decline of BSD again. Verdict: it is better to remove to trap
5100 	 * buggy users.
5101 	 */
5102 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5103 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5104 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5105 		tp->copied_seq++;
5106 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5107 			__skb_unlink(skb, &sk->sk_receive_queue);
5108 			__kfree_skb(skb);
5109 		}
5110 	}
5111 
5112 	tp->urg_data = TCP_URG_NOTYET;
5113 	tp->urg_seq = ptr;
5114 
5115 	/* Disable header prediction. */
5116 	tp->pred_flags = 0;
5117 }
5118 
5119 /* This is the 'fast' part of urgent handling. */
5120 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5121 {
5122 	struct tcp_sock *tp = tcp_sk(sk);
5123 
5124 	/* Check if we get a new urgent pointer - normally not. */
5125 	if (th->urg)
5126 		tcp_check_urg(sk, th);
5127 
5128 	/* Do we wait for any urgent data? - normally not... */
5129 	if (tp->urg_data == TCP_URG_NOTYET) {
5130 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5131 			  th->syn;
5132 
5133 		/* Is the urgent pointer pointing into this packet? */
5134 		if (ptr < skb->len) {
5135 			u8 tmp;
5136 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5137 				BUG();
5138 			tp->urg_data = TCP_URG_VALID | tmp;
5139 			if (!sock_flag(sk, SOCK_DEAD))
5140 				sk->sk_data_ready(sk);
5141 		}
5142 	}
5143 }
5144 
5145 /* Accept RST for rcv_nxt - 1 after a FIN.
5146  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5147  * FIN is sent followed by a RST packet. The RST is sent with the same
5148  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5149  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5150  * ACKs on the closed socket. In addition middleboxes can drop either the
5151  * challenge ACK or a subsequent RST.
5152  */
5153 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5154 {
5155 	struct tcp_sock *tp = tcp_sk(sk);
5156 
5157 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5158 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5159 					       TCPF_CLOSING));
5160 }
5161 
5162 /* Does PAWS and seqno based validation of an incoming segment, flags will
5163  * play significant role here.
5164  */
5165 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5166 				  const struct tcphdr *th, int syn_inerr)
5167 {
5168 	struct tcp_sock *tp = tcp_sk(sk);
5169 	bool rst_seq_match = false;
5170 
5171 	/* RFC1323: H1. Apply PAWS check first. */
5172 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5173 	    tp->rx_opt.saw_tstamp &&
5174 	    tcp_paws_discard(sk, skb)) {
5175 		if (!th->rst) {
5176 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5177 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5178 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5179 						  &tp->last_oow_ack_time))
5180 				tcp_send_dupack(sk, skb);
5181 			goto discard;
5182 		}
5183 		/* Reset is accepted even if it did not pass PAWS. */
5184 	}
5185 
5186 	/* Step 1: check sequence number */
5187 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5188 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5189 		 * (RST) segments are validated by checking their SEQ-fields."
5190 		 * And page 69: "If an incoming segment is not acceptable,
5191 		 * an acknowledgment should be sent in reply (unless the RST
5192 		 * bit is set, if so drop the segment and return)".
5193 		 */
5194 		if (!th->rst) {
5195 			if (th->syn)
5196 				goto syn_challenge;
5197 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5198 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5199 						  &tp->last_oow_ack_time))
5200 				tcp_send_dupack(sk, skb);
5201 		} else if (tcp_reset_check(sk, skb)) {
5202 			tcp_reset(sk);
5203 		}
5204 		goto discard;
5205 	}
5206 
5207 	/* Step 2: check RST bit */
5208 	if (th->rst) {
5209 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5210 		 * FIN and SACK too if available):
5211 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5212 		 * the right-most SACK block,
5213 		 * then
5214 		 *     RESET the connection
5215 		 * else
5216 		 *     Send a challenge ACK
5217 		 */
5218 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5219 		    tcp_reset_check(sk, skb)) {
5220 			rst_seq_match = true;
5221 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5222 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5223 			int max_sack = sp[0].end_seq;
5224 			int this_sack;
5225 
5226 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5227 			     ++this_sack) {
5228 				max_sack = after(sp[this_sack].end_seq,
5229 						 max_sack) ?
5230 					sp[this_sack].end_seq : max_sack;
5231 			}
5232 
5233 			if (TCP_SKB_CB(skb)->seq == max_sack)
5234 				rst_seq_match = true;
5235 		}
5236 
5237 		if (rst_seq_match)
5238 			tcp_reset(sk);
5239 		else {
5240 			/* Disable TFO if RST is out-of-order
5241 			 * and no data has been received
5242 			 * for current active TFO socket
5243 			 */
5244 			if (tp->syn_fastopen && !tp->data_segs_in &&
5245 			    sk->sk_state == TCP_ESTABLISHED)
5246 				tcp_fastopen_active_disable(sk);
5247 			tcp_send_challenge_ack(sk, skb);
5248 		}
5249 		goto discard;
5250 	}
5251 
5252 	/* step 3: check security and precedence [ignored] */
5253 
5254 	/* step 4: Check for a SYN
5255 	 * RFC 5961 4.2 : Send a challenge ack
5256 	 */
5257 	if (th->syn) {
5258 syn_challenge:
5259 		if (syn_inerr)
5260 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5261 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5262 		tcp_send_challenge_ack(sk, skb);
5263 		goto discard;
5264 	}
5265 
5266 	return true;
5267 
5268 discard:
5269 	tcp_drop(sk, skb);
5270 	return false;
5271 }
5272 
5273 /*
5274  *	TCP receive function for the ESTABLISHED state.
5275  *
5276  *	It is split into a fast path and a slow path. The fast path is
5277  * 	disabled when:
5278  *	- A zero window was announced from us - zero window probing
5279  *        is only handled properly in the slow path.
5280  *	- Out of order segments arrived.
5281  *	- Urgent data is expected.
5282  *	- There is no buffer space left
5283  *	- Unexpected TCP flags/window values/header lengths are received
5284  *	  (detected by checking the TCP header against pred_flags)
5285  *	- Data is sent in both directions. Fast path only supports pure senders
5286  *	  or pure receivers (this means either the sequence number or the ack
5287  *	  value must stay constant)
5288  *	- Unexpected TCP option.
5289  *
5290  *	When these conditions are not satisfied it drops into a standard
5291  *	receive procedure patterned after RFC793 to handle all cases.
5292  *	The first three cases are guaranteed by proper pred_flags setting,
5293  *	the rest is checked inline. Fast processing is turned on in
5294  *	tcp_data_queue when everything is OK.
5295  */
5296 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5297 			 const struct tcphdr *th)
5298 {
5299 	unsigned int len = skb->len;
5300 	struct tcp_sock *tp = tcp_sk(sk);
5301 
5302 	/* TCP congestion window tracking */
5303 	trace_tcp_probe(sk, skb);
5304 
5305 	tcp_mstamp_refresh(tp);
5306 	if (unlikely(!sk->sk_rx_dst))
5307 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5308 	/*
5309 	 *	Header prediction.
5310 	 *	The code loosely follows the one in the famous
5311 	 *	"30 instruction TCP receive" Van Jacobson mail.
5312 	 *
5313 	 *	Van's trick is to deposit buffers into socket queue
5314 	 *	on a device interrupt, to call tcp_recv function
5315 	 *	on the receive process context and checksum and copy
5316 	 *	the buffer to user space. smart...
5317 	 *
5318 	 *	Our current scheme is not silly either but we take the
5319 	 *	extra cost of the net_bh soft interrupt processing...
5320 	 *	We do checksum and copy also but from device to kernel.
5321 	 */
5322 
5323 	tp->rx_opt.saw_tstamp = 0;
5324 
5325 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5326 	 *	if header_prediction is to be made
5327 	 *	'S' will always be tp->tcp_header_len >> 2
5328 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5329 	 *  turn it off	(when there are holes in the receive
5330 	 *	 space for instance)
5331 	 *	PSH flag is ignored.
5332 	 */
5333 
5334 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5335 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5336 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5337 		int tcp_header_len = tp->tcp_header_len;
5338 
5339 		/* Timestamp header prediction: tcp_header_len
5340 		 * is automatically equal to th->doff*4 due to pred_flags
5341 		 * match.
5342 		 */
5343 
5344 		/* Check timestamp */
5345 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5346 			/* No? Slow path! */
5347 			if (!tcp_parse_aligned_timestamp(tp, th))
5348 				goto slow_path;
5349 
5350 			/* If PAWS failed, check it more carefully in slow path */
5351 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5352 				goto slow_path;
5353 
5354 			/* DO NOT update ts_recent here, if checksum fails
5355 			 * and timestamp was corrupted part, it will result
5356 			 * in a hung connection since we will drop all
5357 			 * future packets due to the PAWS test.
5358 			 */
5359 		}
5360 
5361 		if (len <= tcp_header_len) {
5362 			/* Bulk data transfer: sender */
5363 			if (len == tcp_header_len) {
5364 				/* Predicted packet is in window by definition.
5365 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5366 				 * Hence, check seq<=rcv_wup reduces to:
5367 				 */
5368 				if (tcp_header_len ==
5369 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5370 				    tp->rcv_nxt == tp->rcv_wup)
5371 					tcp_store_ts_recent(tp);
5372 
5373 				/* We know that such packets are checksummed
5374 				 * on entry.
5375 				 */
5376 				tcp_ack(sk, skb, 0);
5377 				__kfree_skb(skb);
5378 				tcp_data_snd_check(sk);
5379 				return;
5380 			} else { /* Header too small */
5381 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5382 				goto discard;
5383 			}
5384 		} else {
5385 			int eaten = 0;
5386 			bool fragstolen = false;
5387 
5388 			if (tcp_checksum_complete(skb))
5389 				goto csum_error;
5390 
5391 			if ((int)skb->truesize > sk->sk_forward_alloc)
5392 				goto step5;
5393 
5394 			/* Predicted packet is in window by definition.
5395 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5396 			 * Hence, check seq<=rcv_wup reduces to:
5397 			 */
5398 			if (tcp_header_len ==
5399 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5400 			    tp->rcv_nxt == tp->rcv_wup)
5401 				tcp_store_ts_recent(tp);
5402 
5403 			tcp_rcv_rtt_measure_ts(sk, skb);
5404 
5405 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5406 
5407 			/* Bulk data transfer: receiver */
5408 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5409 					      &fragstolen);
5410 
5411 			tcp_event_data_recv(sk, skb);
5412 
5413 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5414 				/* Well, only one small jumplet in fast path... */
5415 				tcp_ack(sk, skb, FLAG_DATA);
5416 				tcp_data_snd_check(sk);
5417 				if (!inet_csk_ack_scheduled(sk))
5418 					goto no_ack;
5419 			}
5420 
5421 			__tcp_ack_snd_check(sk, 0);
5422 no_ack:
5423 			if (eaten)
5424 				kfree_skb_partial(skb, fragstolen);
5425 			sk->sk_data_ready(sk);
5426 			return;
5427 		}
5428 	}
5429 
5430 slow_path:
5431 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5432 		goto csum_error;
5433 
5434 	if (!th->ack && !th->rst && !th->syn)
5435 		goto discard;
5436 
5437 	/*
5438 	 *	Standard slow path.
5439 	 */
5440 
5441 	if (!tcp_validate_incoming(sk, skb, th, 1))
5442 		return;
5443 
5444 step5:
5445 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5446 		goto discard;
5447 
5448 	tcp_rcv_rtt_measure_ts(sk, skb);
5449 
5450 	/* Process urgent data. */
5451 	tcp_urg(sk, skb, th);
5452 
5453 	/* step 7: process the segment text */
5454 	tcp_data_queue(sk, skb);
5455 
5456 	tcp_data_snd_check(sk);
5457 	tcp_ack_snd_check(sk);
5458 	return;
5459 
5460 csum_error:
5461 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5462 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5463 
5464 discard:
5465 	tcp_drop(sk, skb);
5466 }
5467 EXPORT_SYMBOL(tcp_rcv_established);
5468 
5469 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5470 {
5471 	struct tcp_sock *tp = tcp_sk(sk);
5472 	struct inet_connection_sock *icsk = inet_csk(sk);
5473 
5474 	tcp_set_state(sk, TCP_ESTABLISHED);
5475 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5476 
5477 	if (skb) {
5478 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5479 		security_inet_conn_established(sk, skb);
5480 	}
5481 
5482 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5483 
5484 	/* Prevent spurious tcp_cwnd_restart() on first data
5485 	 * packet.
5486 	 */
5487 	tp->lsndtime = tcp_jiffies32;
5488 
5489 	if (sock_flag(sk, SOCK_KEEPOPEN))
5490 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5491 
5492 	if (!tp->rx_opt.snd_wscale)
5493 		__tcp_fast_path_on(tp, tp->snd_wnd);
5494 	else
5495 		tp->pred_flags = 0;
5496 }
5497 
5498 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5499 				    struct tcp_fastopen_cookie *cookie)
5500 {
5501 	struct tcp_sock *tp = tcp_sk(sk);
5502 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5503 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5504 	bool syn_drop = false;
5505 
5506 	if (mss == tp->rx_opt.user_mss) {
5507 		struct tcp_options_received opt;
5508 
5509 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5510 		tcp_clear_options(&opt);
5511 		opt.user_mss = opt.mss_clamp = 0;
5512 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5513 		mss = opt.mss_clamp;
5514 	}
5515 
5516 	if (!tp->syn_fastopen) {
5517 		/* Ignore an unsolicited cookie */
5518 		cookie->len = -1;
5519 	} else if (tp->total_retrans) {
5520 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5521 		 * acknowledges data. Presumably the remote received only
5522 		 * the retransmitted (regular) SYNs: either the original
5523 		 * SYN-data or the corresponding SYN-ACK was dropped.
5524 		 */
5525 		syn_drop = (cookie->len < 0 && data);
5526 	} else if (cookie->len < 0 && !tp->syn_data) {
5527 		/* We requested a cookie but didn't get it. If we did not use
5528 		 * the (old) exp opt format then try so next time (try_exp=1).
5529 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5530 		 */
5531 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5532 	}
5533 
5534 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5535 
5536 	if (data) { /* Retransmit unacked data in SYN */
5537 		skb_rbtree_walk_from(data) {
5538 			if (__tcp_retransmit_skb(sk, data, 1))
5539 				break;
5540 		}
5541 		tcp_rearm_rto(sk);
5542 		NET_INC_STATS(sock_net(sk),
5543 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5544 		return true;
5545 	}
5546 	tp->syn_data_acked = tp->syn_data;
5547 	if (tp->syn_data_acked)
5548 		NET_INC_STATS(sock_net(sk),
5549 				LINUX_MIB_TCPFASTOPENACTIVE);
5550 
5551 	tcp_fastopen_add_skb(sk, synack);
5552 
5553 	return false;
5554 }
5555 
5556 static void smc_check_reset_syn(struct tcp_sock *tp)
5557 {
5558 #if IS_ENABLED(CONFIG_SMC)
5559 	if (static_branch_unlikely(&tcp_have_smc)) {
5560 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5561 			tp->syn_smc = 0;
5562 	}
5563 #endif
5564 }
5565 
5566 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5567 					 const struct tcphdr *th)
5568 {
5569 	struct inet_connection_sock *icsk = inet_csk(sk);
5570 	struct tcp_sock *tp = tcp_sk(sk);
5571 	struct tcp_fastopen_cookie foc = { .len = -1 };
5572 	int saved_clamp = tp->rx_opt.mss_clamp;
5573 	bool fastopen_fail;
5574 
5575 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5576 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5577 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5578 
5579 	if (th->ack) {
5580 		/* rfc793:
5581 		 * "If the state is SYN-SENT then
5582 		 *    first check the ACK bit
5583 		 *      If the ACK bit is set
5584 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5585 		 *        a reset (unless the RST bit is set, if so drop
5586 		 *        the segment and return)"
5587 		 */
5588 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5589 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5590 			goto reset_and_undo;
5591 
5592 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5593 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5594 			     tcp_time_stamp(tp))) {
5595 			NET_INC_STATS(sock_net(sk),
5596 					LINUX_MIB_PAWSACTIVEREJECTED);
5597 			goto reset_and_undo;
5598 		}
5599 
5600 		/* Now ACK is acceptable.
5601 		 *
5602 		 * "If the RST bit is set
5603 		 *    If the ACK was acceptable then signal the user "error:
5604 		 *    connection reset", drop the segment, enter CLOSED state,
5605 		 *    delete TCB, and return."
5606 		 */
5607 
5608 		if (th->rst) {
5609 			tcp_reset(sk);
5610 			goto discard;
5611 		}
5612 
5613 		/* rfc793:
5614 		 *   "fifth, if neither of the SYN or RST bits is set then
5615 		 *    drop the segment and return."
5616 		 *
5617 		 *    See note below!
5618 		 *                                        --ANK(990513)
5619 		 */
5620 		if (!th->syn)
5621 			goto discard_and_undo;
5622 
5623 		/* rfc793:
5624 		 *   "If the SYN bit is on ...
5625 		 *    are acceptable then ...
5626 		 *    (our SYN has been ACKed), change the connection
5627 		 *    state to ESTABLISHED..."
5628 		 */
5629 
5630 		tcp_ecn_rcv_synack(tp, th);
5631 
5632 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5633 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5634 
5635 		/* Ok.. it's good. Set up sequence numbers and
5636 		 * move to established.
5637 		 */
5638 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5639 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5640 
5641 		/* RFC1323: The window in SYN & SYN/ACK segments is
5642 		 * never scaled.
5643 		 */
5644 		tp->snd_wnd = ntohs(th->window);
5645 
5646 		if (!tp->rx_opt.wscale_ok) {
5647 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5648 			tp->window_clamp = min(tp->window_clamp, 65535U);
5649 		}
5650 
5651 		if (tp->rx_opt.saw_tstamp) {
5652 			tp->rx_opt.tstamp_ok	   = 1;
5653 			tp->tcp_header_len =
5654 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5656 			tcp_store_ts_recent(tp);
5657 		} else {
5658 			tp->tcp_header_len = sizeof(struct tcphdr);
5659 		}
5660 
5661 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5662 		tcp_initialize_rcv_mss(sk);
5663 
5664 		/* Remember, tcp_poll() does not lock socket!
5665 		 * Change state from SYN-SENT only after copied_seq
5666 		 * is initialized. */
5667 		tp->copied_seq = tp->rcv_nxt;
5668 
5669 		smc_check_reset_syn(tp);
5670 
5671 		smp_mb();
5672 
5673 		tcp_finish_connect(sk, skb);
5674 
5675 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5676 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5677 
5678 		if (!sock_flag(sk, SOCK_DEAD)) {
5679 			sk->sk_state_change(sk);
5680 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5681 		}
5682 		if (fastopen_fail)
5683 			return -1;
5684 		if (sk->sk_write_pending ||
5685 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5686 		    icsk->icsk_ack.pingpong) {
5687 			/* Save one ACK. Data will be ready after
5688 			 * several ticks, if write_pending is set.
5689 			 *
5690 			 * It may be deleted, but with this feature tcpdumps
5691 			 * look so _wonderfully_ clever, that I was not able
5692 			 * to stand against the temptation 8)     --ANK
5693 			 */
5694 			inet_csk_schedule_ack(sk);
5695 			tcp_enter_quickack_mode(sk);
5696 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5697 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5698 
5699 discard:
5700 			tcp_drop(sk, skb);
5701 			return 0;
5702 		} else {
5703 			tcp_send_ack(sk);
5704 		}
5705 		return -1;
5706 	}
5707 
5708 	/* No ACK in the segment */
5709 
5710 	if (th->rst) {
5711 		/* rfc793:
5712 		 * "If the RST bit is set
5713 		 *
5714 		 *      Otherwise (no ACK) drop the segment and return."
5715 		 */
5716 
5717 		goto discard_and_undo;
5718 	}
5719 
5720 	/* PAWS check. */
5721 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5722 	    tcp_paws_reject(&tp->rx_opt, 0))
5723 		goto discard_and_undo;
5724 
5725 	if (th->syn) {
5726 		/* We see SYN without ACK. It is attempt of
5727 		 * simultaneous connect with crossed SYNs.
5728 		 * Particularly, it can be connect to self.
5729 		 */
5730 		tcp_set_state(sk, TCP_SYN_RECV);
5731 
5732 		if (tp->rx_opt.saw_tstamp) {
5733 			tp->rx_opt.tstamp_ok = 1;
5734 			tcp_store_ts_recent(tp);
5735 			tp->tcp_header_len =
5736 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5737 		} else {
5738 			tp->tcp_header_len = sizeof(struct tcphdr);
5739 		}
5740 
5741 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5742 		tp->copied_seq = tp->rcv_nxt;
5743 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5744 
5745 		/* RFC1323: The window in SYN & SYN/ACK segments is
5746 		 * never scaled.
5747 		 */
5748 		tp->snd_wnd    = ntohs(th->window);
5749 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5750 		tp->max_window = tp->snd_wnd;
5751 
5752 		tcp_ecn_rcv_syn(tp, th);
5753 
5754 		tcp_mtup_init(sk);
5755 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5756 		tcp_initialize_rcv_mss(sk);
5757 
5758 		tcp_send_synack(sk);
5759 #if 0
5760 		/* Note, we could accept data and URG from this segment.
5761 		 * There are no obstacles to make this (except that we must
5762 		 * either change tcp_recvmsg() to prevent it from returning data
5763 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5764 		 *
5765 		 * However, if we ignore data in ACKless segments sometimes,
5766 		 * we have no reasons to accept it sometimes.
5767 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5768 		 * is not flawless. So, discard packet for sanity.
5769 		 * Uncomment this return to process the data.
5770 		 */
5771 		return -1;
5772 #else
5773 		goto discard;
5774 #endif
5775 	}
5776 	/* "fifth, if neither of the SYN or RST bits is set then
5777 	 * drop the segment and return."
5778 	 */
5779 
5780 discard_and_undo:
5781 	tcp_clear_options(&tp->rx_opt);
5782 	tp->rx_opt.mss_clamp = saved_clamp;
5783 	goto discard;
5784 
5785 reset_and_undo:
5786 	tcp_clear_options(&tp->rx_opt);
5787 	tp->rx_opt.mss_clamp = saved_clamp;
5788 	return 1;
5789 }
5790 
5791 /*
5792  *	This function implements the receiving procedure of RFC 793 for
5793  *	all states except ESTABLISHED and TIME_WAIT.
5794  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5795  *	address independent.
5796  */
5797 
5798 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5799 {
5800 	struct tcp_sock *tp = tcp_sk(sk);
5801 	struct inet_connection_sock *icsk = inet_csk(sk);
5802 	const struct tcphdr *th = tcp_hdr(skb);
5803 	struct request_sock *req;
5804 	int queued = 0;
5805 	bool acceptable;
5806 
5807 	switch (sk->sk_state) {
5808 	case TCP_CLOSE:
5809 		goto discard;
5810 
5811 	case TCP_LISTEN:
5812 		if (th->ack)
5813 			return 1;
5814 
5815 		if (th->rst)
5816 			goto discard;
5817 
5818 		if (th->syn) {
5819 			if (th->fin)
5820 				goto discard;
5821 			/* It is possible that we process SYN packets from backlog,
5822 			 * so we need to make sure to disable BH right there.
5823 			 */
5824 			local_bh_disable();
5825 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5826 			local_bh_enable();
5827 
5828 			if (!acceptable)
5829 				return 1;
5830 			consume_skb(skb);
5831 			return 0;
5832 		}
5833 		goto discard;
5834 
5835 	case TCP_SYN_SENT:
5836 		tp->rx_opt.saw_tstamp = 0;
5837 		tcp_mstamp_refresh(tp);
5838 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5839 		if (queued >= 0)
5840 			return queued;
5841 
5842 		/* Do step6 onward by hand. */
5843 		tcp_urg(sk, skb, th);
5844 		__kfree_skb(skb);
5845 		tcp_data_snd_check(sk);
5846 		return 0;
5847 	}
5848 
5849 	tcp_mstamp_refresh(tp);
5850 	tp->rx_opt.saw_tstamp = 0;
5851 	req = tp->fastopen_rsk;
5852 	if (req) {
5853 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5854 		    sk->sk_state != TCP_FIN_WAIT1);
5855 
5856 		if (!tcp_check_req(sk, skb, req, true))
5857 			goto discard;
5858 	}
5859 
5860 	if (!th->ack && !th->rst && !th->syn)
5861 		goto discard;
5862 
5863 	if (!tcp_validate_incoming(sk, skb, th, 0))
5864 		return 0;
5865 
5866 	/* step 5: check the ACK field */
5867 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5868 				      FLAG_UPDATE_TS_RECENT |
5869 				      FLAG_NO_CHALLENGE_ACK) > 0;
5870 
5871 	if (!acceptable) {
5872 		if (sk->sk_state == TCP_SYN_RECV)
5873 			return 1;	/* send one RST */
5874 		tcp_send_challenge_ack(sk, skb);
5875 		goto discard;
5876 	}
5877 	switch (sk->sk_state) {
5878 	case TCP_SYN_RECV:
5879 		if (!tp->srtt_us)
5880 			tcp_synack_rtt_meas(sk, req);
5881 
5882 		/* Once we leave TCP_SYN_RECV, we no longer need req
5883 		 * so release it.
5884 		 */
5885 		if (req) {
5886 			inet_csk(sk)->icsk_retransmits = 0;
5887 			reqsk_fastopen_remove(sk, req, false);
5888 			/* Re-arm the timer because data may have been sent out.
5889 			 * This is similar to the regular data transmission case
5890 			 * when new data has just been ack'ed.
5891 			 *
5892 			 * (TFO) - we could try to be more aggressive and
5893 			 * retransmitting any data sooner based on when they
5894 			 * are sent out.
5895 			 */
5896 			tcp_rearm_rto(sk);
5897 		} else {
5898 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5899 			tp->copied_seq = tp->rcv_nxt;
5900 		}
5901 		smp_mb();
5902 		tcp_set_state(sk, TCP_ESTABLISHED);
5903 		sk->sk_state_change(sk);
5904 
5905 		/* Note, that this wakeup is only for marginal crossed SYN case.
5906 		 * Passively open sockets are not waked up, because
5907 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5908 		 */
5909 		if (sk->sk_socket)
5910 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5911 
5912 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5913 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5914 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5915 
5916 		if (tp->rx_opt.tstamp_ok)
5917 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5918 
5919 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5920 			tcp_update_pacing_rate(sk);
5921 
5922 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5923 		tp->lsndtime = tcp_jiffies32;
5924 
5925 		tcp_initialize_rcv_mss(sk);
5926 		tcp_fast_path_on(tp);
5927 		break;
5928 
5929 	case TCP_FIN_WAIT1: {
5930 		int tmo;
5931 
5932 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5933 		 * Fast Open socket and this is the first acceptable
5934 		 * ACK we have received, this would have acknowledged
5935 		 * our SYNACK so stop the SYNACK timer.
5936 		 */
5937 		if (req) {
5938 			/* We no longer need the request sock. */
5939 			reqsk_fastopen_remove(sk, req, false);
5940 			tcp_rearm_rto(sk);
5941 		}
5942 		if (tp->snd_una != tp->write_seq)
5943 			break;
5944 
5945 		tcp_set_state(sk, TCP_FIN_WAIT2);
5946 		sk->sk_shutdown |= SEND_SHUTDOWN;
5947 
5948 		sk_dst_confirm(sk);
5949 
5950 		if (!sock_flag(sk, SOCK_DEAD)) {
5951 			/* Wake up lingering close() */
5952 			sk->sk_state_change(sk);
5953 			break;
5954 		}
5955 
5956 		if (tp->linger2 < 0) {
5957 			tcp_done(sk);
5958 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5959 			return 1;
5960 		}
5961 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5962 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5963 			/* Receive out of order FIN after close() */
5964 			if (tp->syn_fastopen && th->fin)
5965 				tcp_fastopen_active_disable(sk);
5966 			tcp_done(sk);
5967 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5968 			return 1;
5969 		}
5970 
5971 		tmo = tcp_fin_time(sk);
5972 		if (tmo > TCP_TIMEWAIT_LEN) {
5973 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5974 		} else if (th->fin || sock_owned_by_user(sk)) {
5975 			/* Bad case. We could lose such FIN otherwise.
5976 			 * It is not a big problem, but it looks confusing
5977 			 * and not so rare event. We still can lose it now,
5978 			 * if it spins in bh_lock_sock(), but it is really
5979 			 * marginal case.
5980 			 */
5981 			inet_csk_reset_keepalive_timer(sk, tmo);
5982 		} else {
5983 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5984 			goto discard;
5985 		}
5986 		break;
5987 	}
5988 
5989 	case TCP_CLOSING:
5990 		if (tp->snd_una == tp->write_seq) {
5991 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5992 			goto discard;
5993 		}
5994 		break;
5995 
5996 	case TCP_LAST_ACK:
5997 		if (tp->snd_una == tp->write_seq) {
5998 			tcp_update_metrics(sk);
5999 			tcp_done(sk);
6000 			goto discard;
6001 		}
6002 		break;
6003 	}
6004 
6005 	/* step 6: check the URG bit */
6006 	tcp_urg(sk, skb, th);
6007 
6008 	/* step 7: process the segment text */
6009 	switch (sk->sk_state) {
6010 	case TCP_CLOSE_WAIT:
6011 	case TCP_CLOSING:
6012 	case TCP_LAST_ACK:
6013 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6014 			break;
6015 		/* fall through */
6016 	case TCP_FIN_WAIT1:
6017 	case TCP_FIN_WAIT2:
6018 		/* RFC 793 says to queue data in these states,
6019 		 * RFC 1122 says we MUST send a reset.
6020 		 * BSD 4.4 also does reset.
6021 		 */
6022 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6023 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6024 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6025 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6026 				tcp_reset(sk);
6027 				return 1;
6028 			}
6029 		}
6030 		/* Fall through */
6031 	case TCP_ESTABLISHED:
6032 		tcp_data_queue(sk, skb);
6033 		queued = 1;
6034 		break;
6035 	}
6036 
6037 	/* tcp_data could move socket to TIME-WAIT */
6038 	if (sk->sk_state != TCP_CLOSE) {
6039 		tcp_data_snd_check(sk);
6040 		tcp_ack_snd_check(sk);
6041 	}
6042 
6043 	if (!queued) {
6044 discard:
6045 		tcp_drop(sk, skb);
6046 	}
6047 	return 0;
6048 }
6049 EXPORT_SYMBOL(tcp_rcv_state_process);
6050 
6051 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6052 {
6053 	struct inet_request_sock *ireq = inet_rsk(req);
6054 
6055 	if (family == AF_INET)
6056 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6057 				    &ireq->ir_rmt_addr, port);
6058 #if IS_ENABLED(CONFIG_IPV6)
6059 	else if (family == AF_INET6)
6060 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6061 				    &ireq->ir_v6_rmt_addr, port);
6062 #endif
6063 }
6064 
6065 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6066  *
6067  * If we receive a SYN packet with these bits set, it means a
6068  * network is playing bad games with TOS bits. In order to
6069  * avoid possible false congestion notifications, we disable
6070  * TCP ECN negotiation.
6071  *
6072  * Exception: tcp_ca wants ECN. This is required for DCTCP
6073  * congestion control: Linux DCTCP asserts ECT on all packets,
6074  * including SYN, which is most optimal solution; however,
6075  * others, such as FreeBSD do not.
6076  */
6077 static void tcp_ecn_create_request(struct request_sock *req,
6078 				   const struct sk_buff *skb,
6079 				   const struct sock *listen_sk,
6080 				   const struct dst_entry *dst)
6081 {
6082 	const struct tcphdr *th = tcp_hdr(skb);
6083 	const struct net *net = sock_net(listen_sk);
6084 	bool th_ecn = th->ece && th->cwr;
6085 	bool ect, ecn_ok;
6086 	u32 ecn_ok_dst;
6087 
6088 	if (!th_ecn)
6089 		return;
6090 
6091 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6092 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6093 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6094 
6095 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6096 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6097 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6098 		inet_rsk(req)->ecn_ok = 1;
6099 }
6100 
6101 static void tcp_openreq_init(struct request_sock *req,
6102 			     const struct tcp_options_received *rx_opt,
6103 			     struct sk_buff *skb, const struct sock *sk)
6104 {
6105 	struct inet_request_sock *ireq = inet_rsk(req);
6106 
6107 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6108 	req->cookie_ts = 0;
6109 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6110 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6111 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6112 	tcp_rsk(req)->last_oow_ack_time = 0;
6113 	req->mss = rx_opt->mss_clamp;
6114 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6115 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6116 	ireq->sack_ok = rx_opt->sack_ok;
6117 	ireq->snd_wscale = rx_opt->snd_wscale;
6118 	ireq->wscale_ok = rx_opt->wscale_ok;
6119 	ireq->acked = 0;
6120 	ireq->ecn_ok = 0;
6121 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6122 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6123 	ireq->ir_mark = inet_request_mark(sk, skb);
6124 #if IS_ENABLED(CONFIG_SMC)
6125 	ireq->smc_ok = rx_opt->smc_ok;
6126 #endif
6127 }
6128 
6129 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6130 				      struct sock *sk_listener,
6131 				      bool attach_listener)
6132 {
6133 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6134 					       attach_listener);
6135 
6136 	if (req) {
6137 		struct inet_request_sock *ireq = inet_rsk(req);
6138 
6139 		ireq->ireq_opt = NULL;
6140 #if IS_ENABLED(CONFIG_IPV6)
6141 		ireq->pktopts = NULL;
6142 #endif
6143 		atomic64_set(&ireq->ir_cookie, 0);
6144 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6145 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6146 		ireq->ireq_family = sk_listener->sk_family;
6147 	}
6148 
6149 	return req;
6150 }
6151 EXPORT_SYMBOL(inet_reqsk_alloc);
6152 
6153 /*
6154  * Return true if a syncookie should be sent
6155  */
6156 static bool tcp_syn_flood_action(const struct sock *sk,
6157 				 const struct sk_buff *skb,
6158 				 const char *proto)
6159 {
6160 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6161 	const char *msg = "Dropping request";
6162 	bool want_cookie = false;
6163 	struct net *net = sock_net(sk);
6164 
6165 #ifdef CONFIG_SYN_COOKIES
6166 	if (net->ipv4.sysctl_tcp_syncookies) {
6167 		msg = "Sending cookies";
6168 		want_cookie = true;
6169 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6170 	} else
6171 #endif
6172 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6173 
6174 	if (!queue->synflood_warned &&
6175 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6176 	    xchg(&queue->synflood_warned, 1) == 0)
6177 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6178 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6179 
6180 	return want_cookie;
6181 }
6182 
6183 static void tcp_reqsk_record_syn(const struct sock *sk,
6184 				 struct request_sock *req,
6185 				 const struct sk_buff *skb)
6186 {
6187 	if (tcp_sk(sk)->save_syn) {
6188 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6189 		u32 *copy;
6190 
6191 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6192 		if (copy) {
6193 			copy[0] = len;
6194 			memcpy(&copy[1], skb_network_header(skb), len);
6195 			req->saved_syn = copy;
6196 		}
6197 	}
6198 }
6199 
6200 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6201 		     const struct tcp_request_sock_ops *af_ops,
6202 		     struct sock *sk, struct sk_buff *skb)
6203 {
6204 	struct tcp_fastopen_cookie foc = { .len = -1 };
6205 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6206 	struct tcp_options_received tmp_opt;
6207 	struct tcp_sock *tp = tcp_sk(sk);
6208 	struct net *net = sock_net(sk);
6209 	struct sock *fastopen_sk = NULL;
6210 	struct request_sock *req;
6211 	bool want_cookie = false;
6212 	struct dst_entry *dst;
6213 	struct flowi fl;
6214 
6215 	/* TW buckets are converted to open requests without
6216 	 * limitations, they conserve resources and peer is
6217 	 * evidently real one.
6218 	 */
6219 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6220 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6221 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6222 		if (!want_cookie)
6223 			goto drop;
6224 	}
6225 
6226 	if (sk_acceptq_is_full(sk)) {
6227 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6228 		goto drop;
6229 	}
6230 
6231 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6232 	if (!req)
6233 		goto drop;
6234 
6235 	tcp_rsk(req)->af_specific = af_ops;
6236 	tcp_rsk(req)->ts_off = 0;
6237 
6238 	tcp_clear_options(&tmp_opt);
6239 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6240 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6241 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6242 			  want_cookie ? NULL : &foc);
6243 
6244 	if (want_cookie && !tmp_opt.saw_tstamp)
6245 		tcp_clear_options(&tmp_opt);
6246 
6247 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6248 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6249 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6250 
6251 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6252 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6253 
6254 	af_ops->init_req(req, sk, skb);
6255 
6256 	if (security_inet_conn_request(sk, skb, req))
6257 		goto drop_and_free;
6258 
6259 	if (tmp_opt.tstamp_ok)
6260 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6261 
6262 	dst = af_ops->route_req(sk, &fl, req);
6263 	if (!dst)
6264 		goto drop_and_free;
6265 
6266 	if (!want_cookie && !isn) {
6267 		/* Kill the following clause, if you dislike this way. */
6268 		if (!net->ipv4.sysctl_tcp_syncookies &&
6269 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6270 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6271 		    !tcp_peer_is_proven(req, dst)) {
6272 			/* Without syncookies last quarter of
6273 			 * backlog is filled with destinations,
6274 			 * proven to be alive.
6275 			 * It means that we continue to communicate
6276 			 * to destinations, already remembered
6277 			 * to the moment of synflood.
6278 			 */
6279 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6280 				    rsk_ops->family);
6281 			goto drop_and_release;
6282 		}
6283 
6284 		isn = af_ops->init_seq(skb);
6285 	}
6286 
6287 	tcp_ecn_create_request(req, skb, sk, dst);
6288 
6289 	if (want_cookie) {
6290 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6291 		req->cookie_ts = tmp_opt.tstamp_ok;
6292 		if (!tmp_opt.tstamp_ok)
6293 			inet_rsk(req)->ecn_ok = 0;
6294 	}
6295 
6296 	tcp_rsk(req)->snt_isn = isn;
6297 	tcp_rsk(req)->txhash = net_tx_rndhash();
6298 	tcp_openreq_init_rwin(req, sk, dst);
6299 	if (!want_cookie) {
6300 		tcp_reqsk_record_syn(sk, req, skb);
6301 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6302 	}
6303 	if (fastopen_sk) {
6304 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6305 				    &foc, TCP_SYNACK_FASTOPEN);
6306 		/* Add the child socket directly into the accept queue */
6307 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6308 		sk->sk_data_ready(sk);
6309 		bh_unlock_sock(fastopen_sk);
6310 		sock_put(fastopen_sk);
6311 	} else {
6312 		tcp_rsk(req)->tfo_listener = false;
6313 		if (!want_cookie)
6314 			inet_csk_reqsk_queue_hash_add(sk, req,
6315 				tcp_timeout_init((struct sock *)req));
6316 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6317 				    !want_cookie ? TCP_SYNACK_NORMAL :
6318 						   TCP_SYNACK_COOKIE);
6319 		if (want_cookie) {
6320 			reqsk_free(req);
6321 			return 0;
6322 		}
6323 	}
6324 	reqsk_put(req);
6325 	return 0;
6326 
6327 drop_and_release:
6328 	dst_release(dst);
6329 drop_and_free:
6330 	reqsk_free(req);
6331 drop:
6332 	tcp_listendrop(sk);
6333 	return 0;
6334 }
6335 EXPORT_SYMBOL(tcp_conn_request);
6336