1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/slab.h> 66 #include <linux/module.h> 67 #include <linux/sysctl.h> 68 #include <linux/kernel.h> 69 #include <net/dst.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 #include <net/netdma.h> 75 76 int sysctl_tcp_timestamps __read_mostly = 1; 77 int sysctl_tcp_window_scaling __read_mostly = 1; 78 int sysctl_tcp_sack __read_mostly = 1; 79 int sysctl_tcp_fack __read_mostly = 1; 80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 81 EXPORT_SYMBOL(sysctl_tcp_reordering); 82 int sysctl_tcp_ecn __read_mostly = 2; 83 EXPORT_SYMBOL(sysctl_tcp_ecn); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 2; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_frto_response __read_mostly; 94 int sysctl_tcp_nometrics_save __read_mostly; 95 96 int sysctl_tcp_thin_dupack __read_mostly; 97 98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 99 int sysctl_tcp_abc __read_mostly; 100 101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 107 #define FLAG_ECE 0x40 /* ECE in this ACK */ 108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 /* Adapt the MSS value used to make delayed ack decision to the 126 * real world. 127 */ 128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const unsigned int lss = icsk->icsk_ack.last_seg_size; 132 unsigned int len; 133 134 icsk->icsk_ack.last_seg_size = 0; 135 136 /* skb->len may jitter because of SACKs, even if peer 137 * sends good full-sized frames. 138 */ 139 len = skb_shinfo(skb)->gso_size ? : skb->len; 140 if (len >= icsk->icsk_ack.rcv_mss) { 141 icsk->icsk_ack.rcv_mss = len; 142 } else { 143 /* Otherwise, we make more careful check taking into account, 144 * that SACKs block is variable. 145 * 146 * "len" is invariant segment length, including TCP header. 147 */ 148 len += skb->data - skb_transport_header(skb); 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 150 /* If PSH is not set, packet should be 151 * full sized, provided peer TCP is not badly broken. 152 * This observation (if it is correct 8)) allows 153 * to handle super-low mtu links fairly. 154 */ 155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 157 /* Subtract also invariant (if peer is RFC compliant), 158 * tcp header plus fixed timestamp option length. 159 * Resulting "len" is MSS free of SACK jitter. 160 */ 161 len -= tcp_sk(sk)->tcp_header_len; 162 icsk->icsk_ack.last_seg_size = len; 163 if (len == lss) { 164 icsk->icsk_ack.rcv_mss = len; 165 return; 166 } 167 } 168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 171 } 172 } 173 174 static void tcp_incr_quickack(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 178 179 if (quickacks == 0) 180 quickacks = 2; 181 if (quickacks > icsk->icsk_ack.quick) 182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 183 } 184 185 static void tcp_enter_quickack_mode(struct sock *sk) 186 { 187 struct inet_connection_sock *icsk = inet_csk(sk); 188 tcp_incr_quickack(sk); 189 icsk->icsk_ack.pingpong = 0; 190 icsk->icsk_ack.ato = TCP_ATO_MIN; 191 } 192 193 /* Send ACKs quickly, if "quick" count is not exhausted 194 * and the session is not interactive. 195 */ 196 197 static inline int tcp_in_quickack_mode(const struct sock *sk) 198 { 199 const struct inet_connection_sock *icsk = inet_csk(sk); 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 221 { 222 if (tp->ecn_flags & TCP_ECN_OK) { 223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 225 /* Funny extension: if ECT is not set on a segment, 226 * it is surely retransmit. It is not in ECN RFC, 227 * but Linux follows this rule. */ 228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 229 tcp_enter_quickack_mode((struct sock *)tp); 230 } 231 } 232 233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 234 { 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 236 tp->ecn_flags &= ~TCP_ECN_OK; 237 } 238 239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 240 { 241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 242 tp->ecn_flags &= ~TCP_ECN_OK; 243 } 244 245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 246 { 247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 248 return 1; 249 return 0; 250 } 251 252 /* Buffer size and advertised window tuning. 253 * 254 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 255 */ 256 257 static void tcp_fixup_sndbuf(struct sock *sk) 258 { 259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 260 sizeof(struct sk_buff); 261 262 if (sk->sk_sndbuf < 3 * sndmem) { 263 sk->sk_sndbuf = 3 * sndmem; 264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2]) 265 sk->sk_sndbuf = sysctl_tcp_wmem[2]; 266 } 267 } 268 269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 270 * 271 * All tcp_full_space() is split to two parts: "network" buffer, allocated 272 * forward and advertised in receiver window (tp->rcv_wnd) and 273 * "application buffer", required to isolate scheduling/application 274 * latencies from network. 275 * window_clamp is maximal advertised window. It can be less than 276 * tcp_full_space(), in this case tcp_full_space() - window_clamp 277 * is reserved for "application" buffer. The less window_clamp is 278 * the smoother our behaviour from viewpoint of network, but the lower 279 * throughput and the higher sensitivity of the connection to losses. 8) 280 * 281 * rcv_ssthresh is more strict window_clamp used at "slow start" 282 * phase to predict further behaviour of this connection. 283 * It is used for two goals: 284 * - to enforce header prediction at sender, even when application 285 * requires some significant "application buffer". It is check #1. 286 * - to prevent pruning of receive queue because of misprediction 287 * of receiver window. Check #2. 288 * 289 * The scheme does not work when sender sends good segments opening 290 * window and then starts to feed us spaghetti. But it should work 291 * in common situations. Otherwise, we have to rely on queue collapsing. 292 */ 293 294 /* Slow part of check#2. */ 295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 296 { 297 struct tcp_sock *tp = tcp_sk(sk); 298 /* Optimize this! */ 299 int truesize = tcp_win_from_space(skb->truesize) >> 1; 300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 301 302 while (tp->rcv_ssthresh <= window) { 303 if (truesize <= skb->len) 304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 305 306 truesize >>= 1; 307 window >>= 1; 308 } 309 return 0; 310 } 311 312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 313 { 314 struct tcp_sock *tp = tcp_sk(sk); 315 316 /* Check #1 */ 317 if (tp->rcv_ssthresh < tp->window_clamp && 318 (int)tp->rcv_ssthresh < tcp_space(sk) && 319 !tcp_memory_pressure) { 320 int incr; 321 322 /* Check #2. Increase window, if skb with such overhead 323 * will fit to rcvbuf in future. 324 */ 325 if (tcp_win_from_space(skb->truesize) <= skb->len) 326 incr = 2 * tp->advmss; 327 else 328 incr = __tcp_grow_window(sk, skb); 329 330 if (incr) { 331 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 332 tp->window_clamp); 333 inet_csk(sk)->icsk_ack.quick |= 1; 334 } 335 } 336 } 337 338 /* 3. Tuning rcvbuf, when connection enters established state. */ 339 340 static void tcp_fixup_rcvbuf(struct sock *sk) 341 { 342 struct tcp_sock *tp = tcp_sk(sk); 343 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 344 345 /* Try to select rcvbuf so that 4 mss-sized segments 346 * will fit to window and corresponding skbs will fit to our rcvbuf. 347 * (was 3; 4 is minimum to allow fast retransmit to work.) 348 */ 349 while (tcp_win_from_space(rcvmem) < tp->advmss) 350 rcvmem += 128; 351 if (sk->sk_rcvbuf < 4 * rcvmem) 352 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 353 } 354 355 /* 4. Try to fixup all. It is made immediately after connection enters 356 * established state. 357 */ 358 static void tcp_init_buffer_space(struct sock *sk) 359 { 360 struct tcp_sock *tp = tcp_sk(sk); 361 int maxwin; 362 363 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 364 tcp_fixup_rcvbuf(sk); 365 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 366 tcp_fixup_sndbuf(sk); 367 368 tp->rcvq_space.space = tp->rcv_wnd; 369 370 maxwin = tcp_full_space(sk); 371 372 if (tp->window_clamp >= maxwin) { 373 tp->window_clamp = maxwin; 374 375 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 376 tp->window_clamp = max(maxwin - 377 (maxwin >> sysctl_tcp_app_win), 378 4 * tp->advmss); 379 } 380 381 /* Force reservation of one segment. */ 382 if (sysctl_tcp_app_win && 383 tp->window_clamp > 2 * tp->advmss && 384 tp->window_clamp + tp->advmss > maxwin) 385 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 386 387 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 388 tp->snd_cwnd_stamp = tcp_time_stamp; 389 } 390 391 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 392 static void tcp_clamp_window(struct sock *sk) 393 { 394 struct tcp_sock *tp = tcp_sk(sk); 395 struct inet_connection_sock *icsk = inet_csk(sk); 396 397 icsk->icsk_ack.quick = 0; 398 399 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 400 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 401 !tcp_memory_pressure && 402 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 403 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 404 sysctl_tcp_rmem[2]); 405 } 406 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 407 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 408 } 409 410 /* Initialize RCV_MSS value. 411 * RCV_MSS is an our guess about MSS used by the peer. 412 * We haven't any direct information about the MSS. 413 * It's better to underestimate the RCV_MSS rather than overestimate. 414 * Overestimations make us ACKing less frequently than needed. 415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 416 */ 417 void tcp_initialize_rcv_mss(struct sock *sk) 418 { 419 struct tcp_sock *tp = tcp_sk(sk); 420 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 421 422 hint = min(hint, tp->rcv_wnd / 2); 423 hint = min(hint, TCP_MSS_DEFAULT); 424 hint = max(hint, TCP_MIN_MSS); 425 426 inet_csk(sk)->icsk_ack.rcv_mss = hint; 427 } 428 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 429 430 /* Receiver "autotuning" code. 431 * 432 * The algorithm for RTT estimation w/o timestamps is based on 433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 434 * <http://public.lanl.gov/radiant/pubs.html#DRS> 435 * 436 * More detail on this code can be found at 437 * <http://staff.psc.edu/jheffner/>, 438 * though this reference is out of date. A new paper 439 * is pending. 440 */ 441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 442 { 443 u32 new_sample = tp->rcv_rtt_est.rtt; 444 long m = sample; 445 446 if (m == 0) 447 m = 1; 448 449 if (new_sample != 0) { 450 /* If we sample in larger samples in the non-timestamp 451 * case, we could grossly overestimate the RTT especially 452 * with chatty applications or bulk transfer apps which 453 * are stalled on filesystem I/O. 454 * 455 * Also, since we are only going for a minimum in the 456 * non-timestamp case, we do not smooth things out 457 * else with timestamps disabled convergence takes too 458 * long. 459 */ 460 if (!win_dep) { 461 m -= (new_sample >> 3); 462 new_sample += m; 463 } else if (m < new_sample) 464 new_sample = m << 3; 465 } else { 466 /* No previous measure. */ 467 new_sample = m << 3; 468 } 469 470 if (tp->rcv_rtt_est.rtt != new_sample) 471 tp->rcv_rtt_est.rtt = new_sample; 472 } 473 474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 475 { 476 if (tp->rcv_rtt_est.time == 0) 477 goto new_measure; 478 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 479 return; 480 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 481 482 new_measure: 483 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 484 tp->rcv_rtt_est.time = tcp_time_stamp; 485 } 486 487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 488 const struct sk_buff *skb) 489 { 490 struct tcp_sock *tp = tcp_sk(sk); 491 if (tp->rx_opt.rcv_tsecr && 492 (TCP_SKB_CB(skb)->end_seq - 493 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 494 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 495 } 496 497 /* 498 * This function should be called every time data is copied to user space. 499 * It calculates the appropriate TCP receive buffer space. 500 */ 501 void tcp_rcv_space_adjust(struct sock *sk) 502 { 503 struct tcp_sock *tp = tcp_sk(sk); 504 int time; 505 int space; 506 507 if (tp->rcvq_space.time == 0) 508 goto new_measure; 509 510 time = tcp_time_stamp - tp->rcvq_space.time; 511 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 512 return; 513 514 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 515 516 space = max(tp->rcvq_space.space, space); 517 518 if (tp->rcvq_space.space != space) { 519 int rcvmem; 520 521 tp->rcvq_space.space = space; 522 523 if (sysctl_tcp_moderate_rcvbuf && 524 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 525 int new_clamp = space; 526 527 /* Receive space grows, normalize in order to 528 * take into account packet headers and sk_buff 529 * structure overhead. 530 */ 531 space /= tp->advmss; 532 if (!space) 533 space = 1; 534 rcvmem = (tp->advmss + MAX_TCP_HEADER + 535 16 + sizeof(struct sk_buff)); 536 while (tcp_win_from_space(rcvmem) < tp->advmss) 537 rcvmem += 128; 538 space *= rcvmem; 539 space = min(space, sysctl_tcp_rmem[2]); 540 if (space > sk->sk_rcvbuf) { 541 sk->sk_rcvbuf = space; 542 543 /* Make the window clamp follow along. */ 544 tp->window_clamp = new_clamp; 545 } 546 } 547 } 548 549 new_measure: 550 tp->rcvq_space.seq = tp->copied_seq; 551 tp->rcvq_space.time = tcp_time_stamp; 552 } 553 554 /* There is something which you must keep in mind when you analyze the 555 * behavior of the tp->ato delayed ack timeout interval. When a 556 * connection starts up, we want to ack as quickly as possible. The 557 * problem is that "good" TCP's do slow start at the beginning of data 558 * transmission. The means that until we send the first few ACK's the 559 * sender will sit on his end and only queue most of his data, because 560 * he can only send snd_cwnd unacked packets at any given time. For 561 * each ACK we send, he increments snd_cwnd and transmits more of his 562 * queue. -DaveM 563 */ 564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 565 { 566 struct tcp_sock *tp = tcp_sk(sk); 567 struct inet_connection_sock *icsk = inet_csk(sk); 568 u32 now; 569 570 inet_csk_schedule_ack(sk); 571 572 tcp_measure_rcv_mss(sk, skb); 573 574 tcp_rcv_rtt_measure(tp); 575 576 now = tcp_time_stamp; 577 578 if (!icsk->icsk_ack.ato) { 579 /* The _first_ data packet received, initialize 580 * delayed ACK engine. 581 */ 582 tcp_incr_quickack(sk); 583 icsk->icsk_ack.ato = TCP_ATO_MIN; 584 } else { 585 int m = now - icsk->icsk_ack.lrcvtime; 586 587 if (m <= TCP_ATO_MIN / 2) { 588 /* The fastest case is the first. */ 589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 590 } else if (m < icsk->icsk_ack.ato) { 591 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 592 if (icsk->icsk_ack.ato > icsk->icsk_rto) 593 icsk->icsk_ack.ato = icsk->icsk_rto; 594 } else if (m > icsk->icsk_rto) { 595 /* Too long gap. Apparently sender failed to 596 * restart window, so that we send ACKs quickly. 597 */ 598 tcp_incr_quickack(sk); 599 sk_mem_reclaim(sk); 600 } 601 } 602 icsk->icsk_ack.lrcvtime = now; 603 604 TCP_ECN_check_ce(tp, skb); 605 606 if (skb->len >= 128) 607 tcp_grow_window(sk, skb); 608 } 609 610 /* Called to compute a smoothed rtt estimate. The data fed to this 611 * routine either comes from timestamps, or from segments that were 612 * known _not_ to have been retransmitted [see Karn/Partridge 613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 614 * piece by Van Jacobson. 615 * NOTE: the next three routines used to be one big routine. 616 * To save cycles in the RFC 1323 implementation it was better to break 617 * it up into three procedures. -- erics 618 */ 619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 620 { 621 struct tcp_sock *tp = tcp_sk(sk); 622 long m = mrtt; /* RTT */ 623 624 /* The following amusing code comes from Jacobson's 625 * article in SIGCOMM '88. Note that rtt and mdev 626 * are scaled versions of rtt and mean deviation. 627 * This is designed to be as fast as possible 628 * m stands for "measurement". 629 * 630 * On a 1990 paper the rto value is changed to: 631 * RTO = rtt + 4 * mdev 632 * 633 * Funny. This algorithm seems to be very broken. 634 * These formulae increase RTO, when it should be decreased, increase 635 * too slowly, when it should be increased quickly, decrease too quickly 636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 637 * does not matter how to _calculate_ it. Seems, it was trap 638 * that VJ failed to avoid. 8) 639 */ 640 if (m == 0) 641 m = 1; 642 if (tp->srtt != 0) { 643 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 645 if (m < 0) { 646 m = -m; /* m is now abs(error) */ 647 m -= (tp->mdev >> 2); /* similar update on mdev */ 648 /* This is similar to one of Eifel findings. 649 * Eifel blocks mdev updates when rtt decreases. 650 * This solution is a bit different: we use finer gain 651 * for mdev in this case (alpha*beta). 652 * Like Eifel it also prevents growth of rto, 653 * but also it limits too fast rto decreases, 654 * happening in pure Eifel. 655 */ 656 if (m > 0) 657 m >>= 3; 658 } else { 659 m -= (tp->mdev >> 2); /* similar update on mdev */ 660 } 661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 662 if (tp->mdev > tp->mdev_max) { 663 tp->mdev_max = tp->mdev; 664 if (tp->mdev_max > tp->rttvar) 665 tp->rttvar = tp->mdev_max; 666 } 667 if (after(tp->snd_una, tp->rtt_seq)) { 668 if (tp->mdev_max < tp->rttvar) 669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 670 tp->rtt_seq = tp->snd_nxt; 671 tp->mdev_max = tcp_rto_min(sk); 672 } 673 } else { 674 /* no previous measure. */ 675 tp->srtt = m << 3; /* take the measured time to be rtt */ 676 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 678 tp->rtt_seq = tp->snd_nxt; 679 } 680 } 681 682 /* Calculate rto without backoff. This is the second half of Van Jacobson's 683 * routine referred to above. 684 */ 685 static inline void tcp_set_rto(struct sock *sk) 686 { 687 const struct tcp_sock *tp = tcp_sk(sk); 688 /* Old crap is replaced with new one. 8) 689 * 690 * More seriously: 691 * 1. If rtt variance happened to be less 50msec, it is hallucination. 692 * It cannot be less due to utterly erratic ACK generation made 693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 694 * to do with delayed acks, because at cwnd>2 true delack timeout 695 * is invisible. Actually, Linux-2.4 also generates erratic 696 * ACKs in some circumstances. 697 */ 698 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 699 700 /* 2. Fixups made earlier cannot be right. 701 * If we do not estimate RTO correctly without them, 702 * all the algo is pure shit and should be replaced 703 * with correct one. It is exactly, which we pretend to do. 704 */ 705 706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 707 * guarantees that rto is higher. 708 */ 709 tcp_bound_rto(sk); 710 } 711 712 /* Save metrics learned by this TCP session. 713 This function is called only, when TCP finishes successfully 714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 715 */ 716 void tcp_update_metrics(struct sock *sk) 717 { 718 struct tcp_sock *tp = tcp_sk(sk); 719 struct dst_entry *dst = __sk_dst_get(sk); 720 721 if (sysctl_tcp_nometrics_save) 722 return; 723 724 dst_confirm(dst); 725 726 if (dst && (dst->flags & DST_HOST)) { 727 const struct inet_connection_sock *icsk = inet_csk(sk); 728 int m; 729 unsigned long rtt; 730 731 if (icsk->icsk_backoff || !tp->srtt) { 732 /* This session failed to estimate rtt. Why? 733 * Probably, no packets returned in time. 734 * Reset our results. 735 */ 736 if (!(dst_metric_locked(dst, RTAX_RTT))) 737 dst_metric_set(dst, RTAX_RTT, 0); 738 return; 739 } 740 741 rtt = dst_metric_rtt(dst, RTAX_RTT); 742 m = rtt - tp->srtt; 743 744 /* If newly calculated rtt larger than stored one, 745 * store new one. Otherwise, use EWMA. Remember, 746 * rtt overestimation is always better than underestimation. 747 */ 748 if (!(dst_metric_locked(dst, RTAX_RTT))) { 749 if (m <= 0) 750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 751 else 752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 753 } 754 755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 756 unsigned long var; 757 if (m < 0) 758 m = -m; 759 760 /* Scale deviation to rttvar fixed point */ 761 m >>= 1; 762 if (m < tp->mdev) 763 m = tp->mdev; 764 765 var = dst_metric_rtt(dst, RTAX_RTTVAR); 766 if (m >= var) 767 var = m; 768 else 769 var -= (var - m) >> 2; 770 771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 772 } 773 774 if (tcp_in_initial_slowstart(tp)) { 775 /* Slow start still did not finish. */ 776 if (dst_metric(dst, RTAX_SSTHRESH) && 777 !dst_metric_locked(dst, RTAX_SSTHRESH) && 778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 779 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1); 780 if (!dst_metric_locked(dst, RTAX_CWND) && 781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 782 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd); 783 } else if (tp->snd_cwnd > tp->snd_ssthresh && 784 icsk->icsk_ca_state == TCP_CA_Open) { 785 /* Cong. avoidance phase, cwnd is reliable. */ 786 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 787 dst_metric_set(dst, RTAX_SSTHRESH, 788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh)); 789 if (!dst_metric_locked(dst, RTAX_CWND)) 790 dst_metric_set(dst, RTAX_CWND, 791 (dst_metric(dst, RTAX_CWND) + 792 tp->snd_cwnd) >> 1); 793 } else { 794 /* Else slow start did not finish, cwnd is non-sense, 795 ssthresh may be also invalid. 796 */ 797 if (!dst_metric_locked(dst, RTAX_CWND)) 798 dst_metric_set(dst, RTAX_CWND, 799 (dst_metric(dst, RTAX_CWND) + 800 tp->snd_ssthresh) >> 1); 801 if (dst_metric(dst, RTAX_SSTHRESH) && 802 !dst_metric_locked(dst, RTAX_SSTHRESH) && 803 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 804 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh); 805 } 806 807 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 808 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 809 tp->reordering != sysctl_tcp_reordering) 810 dst_metric_set(dst, RTAX_REORDERING, tp->reordering); 811 } 812 } 813 } 814 815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 816 { 817 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 818 819 if (!cwnd) 820 cwnd = TCP_INIT_CWND; 821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 822 } 823 824 /* Set slow start threshold and cwnd not falling to slow start */ 825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 826 { 827 struct tcp_sock *tp = tcp_sk(sk); 828 const struct inet_connection_sock *icsk = inet_csk(sk); 829 830 tp->prior_ssthresh = 0; 831 tp->bytes_acked = 0; 832 if (icsk->icsk_ca_state < TCP_CA_CWR) { 833 tp->undo_marker = 0; 834 if (set_ssthresh) 835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 836 tp->snd_cwnd = min(tp->snd_cwnd, 837 tcp_packets_in_flight(tp) + 1U); 838 tp->snd_cwnd_cnt = 0; 839 tp->high_seq = tp->snd_nxt; 840 tp->snd_cwnd_stamp = tcp_time_stamp; 841 TCP_ECN_queue_cwr(tp); 842 843 tcp_set_ca_state(sk, TCP_CA_CWR); 844 } 845 } 846 847 /* 848 * Packet counting of FACK is based on in-order assumptions, therefore TCP 849 * disables it when reordering is detected 850 */ 851 static void tcp_disable_fack(struct tcp_sock *tp) 852 { 853 /* RFC3517 uses different metric in lost marker => reset on change */ 854 if (tcp_is_fack(tp)) 855 tp->lost_skb_hint = NULL; 856 tp->rx_opt.sack_ok &= ~2; 857 } 858 859 /* Take a notice that peer is sending D-SACKs */ 860 static void tcp_dsack_seen(struct tcp_sock *tp) 861 { 862 tp->rx_opt.sack_ok |= 4; 863 } 864 865 /* Initialize metrics on socket. */ 866 867 static void tcp_init_metrics(struct sock *sk) 868 { 869 struct tcp_sock *tp = tcp_sk(sk); 870 struct dst_entry *dst = __sk_dst_get(sk); 871 872 if (dst == NULL) 873 goto reset; 874 875 dst_confirm(dst); 876 877 if (dst_metric_locked(dst, RTAX_CWND)) 878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 879 if (dst_metric(dst, RTAX_SSTHRESH)) { 880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 882 tp->snd_ssthresh = tp->snd_cwnd_clamp; 883 } else { 884 /* ssthresh may have been reduced unnecessarily during. 885 * 3WHS. Restore it back to its initial default. 886 */ 887 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 888 } 889 if (dst_metric(dst, RTAX_REORDERING) && 890 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 891 tcp_disable_fack(tp); 892 tp->reordering = dst_metric(dst, RTAX_REORDERING); 893 } 894 895 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0) 896 goto reset; 897 898 /* Initial rtt is determined from SYN,SYN-ACK. 899 * The segment is small and rtt may appear much 900 * less than real one. Use per-dst memory 901 * to make it more realistic. 902 * 903 * A bit of theory. RTT is time passed after "normal" sized packet 904 * is sent until it is ACKed. In normal circumstances sending small 905 * packets force peer to delay ACKs and calculation is correct too. 906 * The algorithm is adaptive and, provided we follow specs, it 907 * NEVER underestimate RTT. BUT! If peer tries to make some clever 908 * tricks sort of "quick acks" for time long enough to decrease RTT 909 * to low value, and then abruptly stops to do it and starts to delay 910 * ACKs, wait for troubles. 911 */ 912 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 913 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 914 tp->rtt_seq = tp->snd_nxt; 915 } 916 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 917 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 918 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 919 } 920 tcp_set_rto(sk); 921 reset: 922 if (tp->srtt == 0) { 923 /* RFC2988bis: We've failed to get a valid RTT sample from 924 * 3WHS. This is most likely due to retransmission, 925 * including spurious one. Reset the RTO back to 3secs 926 * from the more aggressive 1sec to avoid more spurious 927 * retransmission. 928 */ 929 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK; 930 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK; 931 } 932 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 933 * retransmitted. In light of RFC2988bis' more aggressive 1sec 934 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 935 * retransmission has occurred. 936 */ 937 if (tp->total_retrans > 1) 938 tp->snd_cwnd = 1; 939 else 940 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 941 tp->snd_cwnd_stamp = tcp_time_stamp; 942 } 943 944 static void tcp_update_reordering(struct sock *sk, const int metric, 945 const int ts) 946 { 947 struct tcp_sock *tp = tcp_sk(sk); 948 if (metric > tp->reordering) { 949 int mib_idx; 950 951 tp->reordering = min(TCP_MAX_REORDERING, metric); 952 953 /* This exciting event is worth to be remembered. 8) */ 954 if (ts) 955 mib_idx = LINUX_MIB_TCPTSREORDER; 956 else if (tcp_is_reno(tp)) 957 mib_idx = LINUX_MIB_TCPRENOREORDER; 958 else if (tcp_is_fack(tp)) 959 mib_idx = LINUX_MIB_TCPFACKREORDER; 960 else 961 mib_idx = LINUX_MIB_TCPSACKREORDER; 962 963 NET_INC_STATS_BH(sock_net(sk), mib_idx); 964 #if FASTRETRANS_DEBUG > 1 965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 967 tp->reordering, 968 tp->fackets_out, 969 tp->sacked_out, 970 tp->undo_marker ? tp->undo_retrans : 0); 971 #endif 972 tcp_disable_fack(tp); 973 } 974 } 975 976 /* This must be called before lost_out is incremented */ 977 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 978 { 979 if ((tp->retransmit_skb_hint == NULL) || 980 before(TCP_SKB_CB(skb)->seq, 981 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 982 tp->retransmit_skb_hint = skb; 983 984 if (!tp->lost_out || 985 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 986 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 987 } 988 989 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 990 { 991 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 992 tcp_verify_retransmit_hint(tp, skb); 993 994 tp->lost_out += tcp_skb_pcount(skb); 995 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 996 } 997 } 998 999 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 1000 struct sk_buff *skb) 1001 { 1002 tcp_verify_retransmit_hint(tp, skb); 1003 1004 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1005 tp->lost_out += tcp_skb_pcount(skb); 1006 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1007 } 1008 } 1009 1010 /* This procedure tags the retransmission queue when SACKs arrive. 1011 * 1012 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1013 * Packets in queue with these bits set are counted in variables 1014 * sacked_out, retrans_out and lost_out, correspondingly. 1015 * 1016 * Valid combinations are: 1017 * Tag InFlight Description 1018 * 0 1 - orig segment is in flight. 1019 * S 0 - nothing flies, orig reached receiver. 1020 * L 0 - nothing flies, orig lost by net. 1021 * R 2 - both orig and retransmit are in flight. 1022 * L|R 1 - orig is lost, retransmit is in flight. 1023 * S|R 1 - orig reached receiver, retrans is still in flight. 1024 * (L|S|R is logically valid, it could occur when L|R is sacked, 1025 * but it is equivalent to plain S and code short-curcuits it to S. 1026 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1027 * 1028 * These 6 states form finite state machine, controlled by the following events: 1029 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1030 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1031 * 3. Loss detection event of one of three flavors: 1032 * A. Scoreboard estimator decided the packet is lost. 1033 * A'. Reno "three dupacks" marks head of queue lost. 1034 * A''. Its FACK modfication, head until snd.fack is lost. 1035 * B. SACK arrives sacking data transmitted after never retransmitted 1036 * hole was sent out. 1037 * C. SACK arrives sacking SND.NXT at the moment, when the 1038 * segment was retransmitted. 1039 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1040 * 1041 * It is pleasant to note, that state diagram turns out to be commutative, 1042 * so that we are allowed not to be bothered by order of our actions, 1043 * when multiple events arrive simultaneously. (see the function below). 1044 * 1045 * Reordering detection. 1046 * -------------------- 1047 * Reordering metric is maximal distance, which a packet can be displaced 1048 * in packet stream. With SACKs we can estimate it: 1049 * 1050 * 1. SACK fills old hole and the corresponding segment was not 1051 * ever retransmitted -> reordering. Alas, we cannot use it 1052 * when segment was retransmitted. 1053 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1054 * for retransmitted and already SACKed segment -> reordering.. 1055 * Both of these heuristics are not used in Loss state, when we cannot 1056 * account for retransmits accurately. 1057 * 1058 * SACK block validation. 1059 * ---------------------- 1060 * 1061 * SACK block range validation checks that the received SACK block fits to 1062 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1063 * Note that SND.UNA is not included to the range though being valid because 1064 * it means that the receiver is rather inconsistent with itself reporting 1065 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1066 * perfectly valid, however, in light of RFC2018 which explicitly states 1067 * that "SACK block MUST reflect the newest segment. Even if the newest 1068 * segment is going to be discarded ...", not that it looks very clever 1069 * in case of head skb. Due to potentional receiver driven attacks, we 1070 * choose to avoid immediate execution of a walk in write queue due to 1071 * reneging and defer head skb's loss recovery to standard loss recovery 1072 * procedure that will eventually trigger (nothing forbids us doing this). 1073 * 1074 * Implements also blockage to start_seq wrap-around. Problem lies in the 1075 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1076 * there's no guarantee that it will be before snd_nxt (n). The problem 1077 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1078 * wrap (s_w): 1079 * 1080 * <- outs wnd -> <- wrapzone -> 1081 * u e n u_w e_w s n_w 1082 * | | | | | | | 1083 * |<------------+------+----- TCP seqno space --------------+---------->| 1084 * ...-- <2^31 ->| |<--------... 1085 * ...---- >2^31 ------>| |<--------... 1086 * 1087 * Current code wouldn't be vulnerable but it's better still to discard such 1088 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1089 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1090 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1091 * equal to the ideal case (infinite seqno space without wrap caused issues). 1092 * 1093 * With D-SACK the lower bound is extended to cover sequence space below 1094 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1095 * again, D-SACK block must not to go across snd_una (for the same reason as 1096 * for the normal SACK blocks, explained above). But there all simplicity 1097 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1098 * fully below undo_marker they do not affect behavior in anyway and can 1099 * therefore be safely ignored. In rare cases (which are more or less 1100 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1101 * fragmentation and packet reordering past skb's retransmission. To consider 1102 * them correctly, the acceptable range must be extended even more though 1103 * the exact amount is rather hard to quantify. However, tp->max_window can 1104 * be used as an exaggerated estimate. 1105 */ 1106 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1107 u32 start_seq, u32 end_seq) 1108 { 1109 /* Too far in future, or reversed (interpretation is ambiguous) */ 1110 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1111 return 0; 1112 1113 /* Nasty start_seq wrap-around check (see comments above) */ 1114 if (!before(start_seq, tp->snd_nxt)) 1115 return 0; 1116 1117 /* In outstanding window? ...This is valid exit for D-SACKs too. 1118 * start_seq == snd_una is non-sensical (see comments above) 1119 */ 1120 if (after(start_seq, tp->snd_una)) 1121 return 1; 1122 1123 if (!is_dsack || !tp->undo_marker) 1124 return 0; 1125 1126 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1127 if (after(end_seq, tp->snd_una)) 1128 return 0; 1129 1130 if (!before(start_seq, tp->undo_marker)) 1131 return 1; 1132 1133 /* Too old */ 1134 if (!after(end_seq, tp->undo_marker)) 1135 return 0; 1136 1137 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1138 * start_seq < undo_marker and end_seq >= undo_marker. 1139 */ 1140 return !before(start_seq, end_seq - tp->max_window); 1141 } 1142 1143 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1144 * Event "C". Later note: FACK people cheated me again 8), we have to account 1145 * for reordering! Ugly, but should help. 1146 * 1147 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1148 * less than what is now known to be received by the other end (derived from 1149 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1150 * retransmitted skbs to avoid some costly processing per ACKs. 1151 */ 1152 static void tcp_mark_lost_retrans(struct sock *sk) 1153 { 1154 const struct inet_connection_sock *icsk = inet_csk(sk); 1155 struct tcp_sock *tp = tcp_sk(sk); 1156 struct sk_buff *skb; 1157 int cnt = 0; 1158 u32 new_low_seq = tp->snd_nxt; 1159 u32 received_upto = tcp_highest_sack_seq(tp); 1160 1161 if (!tcp_is_fack(tp) || !tp->retrans_out || 1162 !after(received_upto, tp->lost_retrans_low) || 1163 icsk->icsk_ca_state != TCP_CA_Recovery) 1164 return; 1165 1166 tcp_for_write_queue(skb, sk) { 1167 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1168 1169 if (skb == tcp_send_head(sk)) 1170 break; 1171 if (cnt == tp->retrans_out) 1172 break; 1173 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1174 continue; 1175 1176 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1177 continue; 1178 1179 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1180 * constraint here (see above) but figuring out that at 1181 * least tp->reordering SACK blocks reside between ack_seq 1182 * and received_upto is not easy task to do cheaply with 1183 * the available datastructures. 1184 * 1185 * Whether FACK should check here for tp->reordering segs 1186 * in-between one could argue for either way (it would be 1187 * rather simple to implement as we could count fack_count 1188 * during the walk and do tp->fackets_out - fack_count). 1189 */ 1190 if (after(received_upto, ack_seq)) { 1191 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1192 tp->retrans_out -= tcp_skb_pcount(skb); 1193 1194 tcp_skb_mark_lost_uncond_verify(tp, skb); 1195 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1196 } else { 1197 if (before(ack_seq, new_low_seq)) 1198 new_low_seq = ack_seq; 1199 cnt += tcp_skb_pcount(skb); 1200 } 1201 } 1202 1203 if (tp->retrans_out) 1204 tp->lost_retrans_low = new_low_seq; 1205 } 1206 1207 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1208 struct tcp_sack_block_wire *sp, int num_sacks, 1209 u32 prior_snd_una) 1210 { 1211 struct tcp_sock *tp = tcp_sk(sk); 1212 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1213 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1214 int dup_sack = 0; 1215 1216 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1217 dup_sack = 1; 1218 tcp_dsack_seen(tp); 1219 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1220 } else if (num_sacks > 1) { 1221 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1222 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1223 1224 if (!after(end_seq_0, end_seq_1) && 1225 !before(start_seq_0, start_seq_1)) { 1226 dup_sack = 1; 1227 tcp_dsack_seen(tp); 1228 NET_INC_STATS_BH(sock_net(sk), 1229 LINUX_MIB_TCPDSACKOFORECV); 1230 } 1231 } 1232 1233 /* D-SACK for already forgotten data... Do dumb counting. */ 1234 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1235 !after(end_seq_0, prior_snd_una) && 1236 after(end_seq_0, tp->undo_marker)) 1237 tp->undo_retrans--; 1238 1239 return dup_sack; 1240 } 1241 1242 struct tcp_sacktag_state { 1243 int reord; 1244 int fack_count; 1245 int flag; 1246 }; 1247 1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1249 * the incoming SACK may not exactly match but we can find smaller MSS 1250 * aligned portion of it that matches. Therefore we might need to fragment 1251 * which may fail and creates some hassle (caller must handle error case 1252 * returns). 1253 * 1254 * FIXME: this could be merged to shift decision code 1255 */ 1256 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1257 u32 start_seq, u32 end_seq) 1258 { 1259 int in_sack, err; 1260 unsigned int pkt_len; 1261 unsigned int mss; 1262 1263 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1264 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1265 1266 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1267 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1268 mss = tcp_skb_mss(skb); 1269 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1270 1271 if (!in_sack) { 1272 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1273 if (pkt_len < mss) 1274 pkt_len = mss; 1275 } else { 1276 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1277 if (pkt_len < mss) 1278 return -EINVAL; 1279 } 1280 1281 /* Round if necessary so that SACKs cover only full MSSes 1282 * and/or the remaining small portion (if present) 1283 */ 1284 if (pkt_len > mss) { 1285 unsigned int new_len = (pkt_len / mss) * mss; 1286 if (!in_sack && new_len < pkt_len) { 1287 new_len += mss; 1288 if (new_len > skb->len) 1289 return 0; 1290 } 1291 pkt_len = new_len; 1292 } 1293 err = tcp_fragment(sk, skb, pkt_len, mss); 1294 if (err < 0) 1295 return err; 1296 } 1297 1298 return in_sack; 1299 } 1300 1301 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1302 struct tcp_sacktag_state *state, 1303 int dup_sack, int pcount) 1304 { 1305 struct tcp_sock *tp = tcp_sk(sk); 1306 u8 sacked = TCP_SKB_CB(skb)->sacked; 1307 int fack_count = state->fack_count; 1308 1309 /* Account D-SACK for retransmitted packet. */ 1310 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1311 if (tp->undo_marker && tp->undo_retrans && 1312 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1313 tp->undo_retrans--; 1314 if (sacked & TCPCB_SACKED_ACKED) 1315 state->reord = min(fack_count, state->reord); 1316 } 1317 1318 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1319 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1320 return sacked; 1321 1322 if (!(sacked & TCPCB_SACKED_ACKED)) { 1323 if (sacked & TCPCB_SACKED_RETRANS) { 1324 /* If the segment is not tagged as lost, 1325 * we do not clear RETRANS, believing 1326 * that retransmission is still in flight. 1327 */ 1328 if (sacked & TCPCB_LOST) { 1329 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1330 tp->lost_out -= pcount; 1331 tp->retrans_out -= pcount; 1332 } 1333 } else { 1334 if (!(sacked & TCPCB_RETRANS)) { 1335 /* New sack for not retransmitted frame, 1336 * which was in hole. It is reordering. 1337 */ 1338 if (before(TCP_SKB_CB(skb)->seq, 1339 tcp_highest_sack_seq(tp))) 1340 state->reord = min(fack_count, 1341 state->reord); 1342 1343 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1344 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1345 state->flag |= FLAG_ONLY_ORIG_SACKED; 1346 } 1347 1348 if (sacked & TCPCB_LOST) { 1349 sacked &= ~TCPCB_LOST; 1350 tp->lost_out -= pcount; 1351 } 1352 } 1353 1354 sacked |= TCPCB_SACKED_ACKED; 1355 state->flag |= FLAG_DATA_SACKED; 1356 tp->sacked_out += pcount; 1357 1358 fack_count += pcount; 1359 1360 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1361 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1362 before(TCP_SKB_CB(skb)->seq, 1363 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1364 tp->lost_cnt_hint += pcount; 1365 1366 if (fack_count > tp->fackets_out) 1367 tp->fackets_out = fack_count; 1368 } 1369 1370 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1371 * frames and clear it. undo_retrans is decreased above, L|R frames 1372 * are accounted above as well. 1373 */ 1374 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1375 sacked &= ~TCPCB_SACKED_RETRANS; 1376 tp->retrans_out -= pcount; 1377 } 1378 1379 return sacked; 1380 } 1381 1382 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1383 struct tcp_sacktag_state *state, 1384 unsigned int pcount, int shifted, int mss, 1385 int dup_sack) 1386 { 1387 struct tcp_sock *tp = tcp_sk(sk); 1388 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1389 1390 BUG_ON(!pcount); 1391 1392 /* Tweak before seqno plays */ 1393 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1394 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1395 tp->lost_cnt_hint += pcount; 1396 1397 TCP_SKB_CB(prev)->end_seq += shifted; 1398 TCP_SKB_CB(skb)->seq += shifted; 1399 1400 skb_shinfo(prev)->gso_segs += pcount; 1401 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1402 skb_shinfo(skb)->gso_segs -= pcount; 1403 1404 /* When we're adding to gso_segs == 1, gso_size will be zero, 1405 * in theory this shouldn't be necessary but as long as DSACK 1406 * code can come after this skb later on it's better to keep 1407 * setting gso_size to something. 1408 */ 1409 if (!skb_shinfo(prev)->gso_size) { 1410 skb_shinfo(prev)->gso_size = mss; 1411 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1412 } 1413 1414 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1415 if (skb_shinfo(skb)->gso_segs <= 1) { 1416 skb_shinfo(skb)->gso_size = 0; 1417 skb_shinfo(skb)->gso_type = 0; 1418 } 1419 1420 /* We discard results */ 1421 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1422 1423 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1424 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1425 1426 if (skb->len > 0) { 1427 BUG_ON(!tcp_skb_pcount(skb)); 1428 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1429 return 0; 1430 } 1431 1432 /* Whole SKB was eaten :-) */ 1433 1434 if (skb == tp->retransmit_skb_hint) 1435 tp->retransmit_skb_hint = prev; 1436 if (skb == tp->scoreboard_skb_hint) 1437 tp->scoreboard_skb_hint = prev; 1438 if (skb == tp->lost_skb_hint) { 1439 tp->lost_skb_hint = prev; 1440 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1441 } 1442 1443 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1444 if (skb == tcp_highest_sack(sk)) 1445 tcp_advance_highest_sack(sk, skb); 1446 1447 tcp_unlink_write_queue(skb, sk); 1448 sk_wmem_free_skb(sk, skb); 1449 1450 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1451 1452 return 1; 1453 } 1454 1455 /* I wish gso_size would have a bit more sane initialization than 1456 * something-or-zero which complicates things 1457 */ 1458 static int tcp_skb_seglen(struct sk_buff *skb) 1459 { 1460 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1461 } 1462 1463 /* Shifting pages past head area doesn't work */ 1464 static int skb_can_shift(struct sk_buff *skb) 1465 { 1466 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1467 } 1468 1469 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1470 * skb. 1471 */ 1472 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1473 struct tcp_sacktag_state *state, 1474 u32 start_seq, u32 end_seq, 1475 int dup_sack) 1476 { 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 struct sk_buff *prev; 1479 int mss; 1480 int pcount = 0; 1481 int len; 1482 int in_sack; 1483 1484 if (!sk_can_gso(sk)) 1485 goto fallback; 1486 1487 /* Normally R but no L won't result in plain S */ 1488 if (!dup_sack && 1489 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1490 goto fallback; 1491 if (!skb_can_shift(skb)) 1492 goto fallback; 1493 /* This frame is about to be dropped (was ACKed). */ 1494 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1495 goto fallback; 1496 1497 /* Can only happen with delayed DSACK + discard craziness */ 1498 if (unlikely(skb == tcp_write_queue_head(sk))) 1499 goto fallback; 1500 prev = tcp_write_queue_prev(sk, skb); 1501 1502 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1503 goto fallback; 1504 1505 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1506 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1507 1508 if (in_sack) { 1509 len = skb->len; 1510 pcount = tcp_skb_pcount(skb); 1511 mss = tcp_skb_seglen(skb); 1512 1513 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1514 * drop this restriction as unnecessary 1515 */ 1516 if (mss != tcp_skb_seglen(prev)) 1517 goto fallback; 1518 } else { 1519 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1520 goto noop; 1521 /* CHECKME: This is non-MSS split case only?, this will 1522 * cause skipped skbs due to advancing loop btw, original 1523 * has that feature too 1524 */ 1525 if (tcp_skb_pcount(skb) <= 1) 1526 goto noop; 1527 1528 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1529 if (!in_sack) { 1530 /* TODO: head merge to next could be attempted here 1531 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1532 * though it might not be worth of the additional hassle 1533 * 1534 * ...we can probably just fallback to what was done 1535 * previously. We could try merging non-SACKed ones 1536 * as well but it probably isn't going to buy off 1537 * because later SACKs might again split them, and 1538 * it would make skb timestamp tracking considerably 1539 * harder problem. 1540 */ 1541 goto fallback; 1542 } 1543 1544 len = end_seq - TCP_SKB_CB(skb)->seq; 1545 BUG_ON(len < 0); 1546 BUG_ON(len > skb->len); 1547 1548 /* MSS boundaries should be honoured or else pcount will 1549 * severely break even though it makes things bit trickier. 1550 * Optimize common case to avoid most of the divides 1551 */ 1552 mss = tcp_skb_mss(skb); 1553 1554 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1555 * drop this restriction as unnecessary 1556 */ 1557 if (mss != tcp_skb_seglen(prev)) 1558 goto fallback; 1559 1560 if (len == mss) { 1561 pcount = 1; 1562 } else if (len < mss) { 1563 goto noop; 1564 } else { 1565 pcount = len / mss; 1566 len = pcount * mss; 1567 } 1568 } 1569 1570 if (!skb_shift(prev, skb, len)) 1571 goto fallback; 1572 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1573 goto out; 1574 1575 /* Hole filled allows collapsing with the next as well, this is very 1576 * useful when hole on every nth skb pattern happens 1577 */ 1578 if (prev == tcp_write_queue_tail(sk)) 1579 goto out; 1580 skb = tcp_write_queue_next(sk, prev); 1581 1582 if (!skb_can_shift(skb) || 1583 (skb == tcp_send_head(sk)) || 1584 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1585 (mss != tcp_skb_seglen(skb))) 1586 goto out; 1587 1588 len = skb->len; 1589 if (skb_shift(prev, skb, len)) { 1590 pcount += tcp_skb_pcount(skb); 1591 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1592 } 1593 1594 out: 1595 state->fack_count += pcount; 1596 return prev; 1597 1598 noop: 1599 return skb; 1600 1601 fallback: 1602 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1603 return NULL; 1604 } 1605 1606 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1607 struct tcp_sack_block *next_dup, 1608 struct tcp_sacktag_state *state, 1609 u32 start_seq, u32 end_seq, 1610 int dup_sack_in) 1611 { 1612 struct tcp_sock *tp = tcp_sk(sk); 1613 struct sk_buff *tmp; 1614 1615 tcp_for_write_queue_from(skb, sk) { 1616 int in_sack = 0; 1617 int dup_sack = dup_sack_in; 1618 1619 if (skb == tcp_send_head(sk)) 1620 break; 1621 1622 /* queue is in-order => we can short-circuit the walk early */ 1623 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1624 break; 1625 1626 if ((next_dup != NULL) && 1627 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1628 in_sack = tcp_match_skb_to_sack(sk, skb, 1629 next_dup->start_seq, 1630 next_dup->end_seq); 1631 if (in_sack > 0) 1632 dup_sack = 1; 1633 } 1634 1635 /* skb reference here is a bit tricky to get right, since 1636 * shifting can eat and free both this skb and the next, 1637 * so not even _safe variant of the loop is enough. 1638 */ 1639 if (in_sack <= 0) { 1640 tmp = tcp_shift_skb_data(sk, skb, state, 1641 start_seq, end_seq, dup_sack); 1642 if (tmp != NULL) { 1643 if (tmp != skb) { 1644 skb = tmp; 1645 continue; 1646 } 1647 1648 in_sack = 0; 1649 } else { 1650 in_sack = tcp_match_skb_to_sack(sk, skb, 1651 start_seq, 1652 end_seq); 1653 } 1654 } 1655 1656 if (unlikely(in_sack < 0)) 1657 break; 1658 1659 if (in_sack) { 1660 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1661 state, 1662 dup_sack, 1663 tcp_skb_pcount(skb)); 1664 1665 if (!before(TCP_SKB_CB(skb)->seq, 1666 tcp_highest_sack_seq(tp))) 1667 tcp_advance_highest_sack(sk, skb); 1668 } 1669 1670 state->fack_count += tcp_skb_pcount(skb); 1671 } 1672 return skb; 1673 } 1674 1675 /* Avoid all extra work that is being done by sacktag while walking in 1676 * a normal way 1677 */ 1678 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1679 struct tcp_sacktag_state *state, 1680 u32 skip_to_seq) 1681 { 1682 tcp_for_write_queue_from(skb, sk) { 1683 if (skb == tcp_send_head(sk)) 1684 break; 1685 1686 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1687 break; 1688 1689 state->fack_count += tcp_skb_pcount(skb); 1690 } 1691 return skb; 1692 } 1693 1694 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1695 struct sock *sk, 1696 struct tcp_sack_block *next_dup, 1697 struct tcp_sacktag_state *state, 1698 u32 skip_to_seq) 1699 { 1700 if (next_dup == NULL) 1701 return skb; 1702 1703 if (before(next_dup->start_seq, skip_to_seq)) { 1704 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1705 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1706 next_dup->start_seq, next_dup->end_seq, 1707 1); 1708 } 1709 1710 return skb; 1711 } 1712 1713 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1714 { 1715 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1716 } 1717 1718 static int 1719 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1720 u32 prior_snd_una) 1721 { 1722 const struct inet_connection_sock *icsk = inet_csk(sk); 1723 struct tcp_sock *tp = tcp_sk(sk); 1724 unsigned char *ptr = (skb_transport_header(ack_skb) + 1725 TCP_SKB_CB(ack_skb)->sacked); 1726 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1727 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1728 struct tcp_sack_block *cache; 1729 struct tcp_sacktag_state state; 1730 struct sk_buff *skb; 1731 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1732 int used_sacks; 1733 int found_dup_sack = 0; 1734 int i, j; 1735 int first_sack_index; 1736 1737 state.flag = 0; 1738 state.reord = tp->packets_out; 1739 1740 if (!tp->sacked_out) { 1741 if (WARN_ON(tp->fackets_out)) 1742 tp->fackets_out = 0; 1743 tcp_highest_sack_reset(sk); 1744 } 1745 1746 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1747 num_sacks, prior_snd_una); 1748 if (found_dup_sack) 1749 state.flag |= FLAG_DSACKING_ACK; 1750 1751 /* Eliminate too old ACKs, but take into 1752 * account more or less fresh ones, they can 1753 * contain valid SACK info. 1754 */ 1755 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1756 return 0; 1757 1758 if (!tp->packets_out) 1759 goto out; 1760 1761 used_sacks = 0; 1762 first_sack_index = 0; 1763 for (i = 0; i < num_sacks; i++) { 1764 int dup_sack = !i && found_dup_sack; 1765 1766 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1767 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1768 1769 if (!tcp_is_sackblock_valid(tp, dup_sack, 1770 sp[used_sacks].start_seq, 1771 sp[used_sacks].end_seq)) { 1772 int mib_idx; 1773 1774 if (dup_sack) { 1775 if (!tp->undo_marker) 1776 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1777 else 1778 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1779 } else { 1780 /* Don't count olds caused by ACK reordering */ 1781 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1782 !after(sp[used_sacks].end_seq, tp->snd_una)) 1783 continue; 1784 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1785 } 1786 1787 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1788 if (i == 0) 1789 first_sack_index = -1; 1790 continue; 1791 } 1792 1793 /* Ignore very old stuff early */ 1794 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1795 continue; 1796 1797 used_sacks++; 1798 } 1799 1800 /* order SACK blocks to allow in order walk of the retrans queue */ 1801 for (i = used_sacks - 1; i > 0; i--) { 1802 for (j = 0; j < i; j++) { 1803 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1804 swap(sp[j], sp[j + 1]); 1805 1806 /* Track where the first SACK block goes to */ 1807 if (j == first_sack_index) 1808 first_sack_index = j + 1; 1809 } 1810 } 1811 } 1812 1813 skb = tcp_write_queue_head(sk); 1814 state.fack_count = 0; 1815 i = 0; 1816 1817 if (!tp->sacked_out) { 1818 /* It's already past, so skip checking against it */ 1819 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1820 } else { 1821 cache = tp->recv_sack_cache; 1822 /* Skip empty blocks in at head of the cache */ 1823 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1824 !cache->end_seq) 1825 cache++; 1826 } 1827 1828 while (i < used_sacks) { 1829 u32 start_seq = sp[i].start_seq; 1830 u32 end_seq = sp[i].end_seq; 1831 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1832 struct tcp_sack_block *next_dup = NULL; 1833 1834 if (found_dup_sack && ((i + 1) == first_sack_index)) 1835 next_dup = &sp[i + 1]; 1836 1837 /* Event "B" in the comment above. */ 1838 if (after(end_seq, tp->high_seq)) 1839 state.flag |= FLAG_DATA_LOST; 1840 1841 /* Skip too early cached blocks */ 1842 while (tcp_sack_cache_ok(tp, cache) && 1843 !before(start_seq, cache->end_seq)) 1844 cache++; 1845 1846 /* Can skip some work by looking recv_sack_cache? */ 1847 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1848 after(end_seq, cache->start_seq)) { 1849 1850 /* Head todo? */ 1851 if (before(start_seq, cache->start_seq)) { 1852 skb = tcp_sacktag_skip(skb, sk, &state, 1853 start_seq); 1854 skb = tcp_sacktag_walk(skb, sk, next_dup, 1855 &state, 1856 start_seq, 1857 cache->start_seq, 1858 dup_sack); 1859 } 1860 1861 /* Rest of the block already fully processed? */ 1862 if (!after(end_seq, cache->end_seq)) 1863 goto advance_sp; 1864 1865 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1866 &state, 1867 cache->end_seq); 1868 1869 /* ...tail remains todo... */ 1870 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1871 /* ...but better entrypoint exists! */ 1872 skb = tcp_highest_sack(sk); 1873 if (skb == NULL) 1874 break; 1875 state.fack_count = tp->fackets_out; 1876 cache++; 1877 goto walk; 1878 } 1879 1880 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1881 /* Check overlap against next cached too (past this one already) */ 1882 cache++; 1883 continue; 1884 } 1885 1886 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1887 skb = tcp_highest_sack(sk); 1888 if (skb == NULL) 1889 break; 1890 state.fack_count = tp->fackets_out; 1891 } 1892 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1893 1894 walk: 1895 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1896 start_seq, end_seq, dup_sack); 1897 1898 advance_sp: 1899 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1900 * due to in-order walk 1901 */ 1902 if (after(end_seq, tp->frto_highmark)) 1903 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1904 1905 i++; 1906 } 1907 1908 /* Clear the head of the cache sack blocks so we can skip it next time */ 1909 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1910 tp->recv_sack_cache[i].start_seq = 0; 1911 tp->recv_sack_cache[i].end_seq = 0; 1912 } 1913 for (j = 0; j < used_sacks; j++) 1914 tp->recv_sack_cache[i++] = sp[j]; 1915 1916 tcp_mark_lost_retrans(sk); 1917 1918 tcp_verify_left_out(tp); 1919 1920 if ((state.reord < tp->fackets_out) && 1921 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1922 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1923 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1924 1925 out: 1926 1927 #if FASTRETRANS_DEBUG > 0 1928 WARN_ON((int)tp->sacked_out < 0); 1929 WARN_ON((int)tp->lost_out < 0); 1930 WARN_ON((int)tp->retrans_out < 0); 1931 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1932 #endif 1933 return state.flag; 1934 } 1935 1936 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1937 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1938 */ 1939 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1940 { 1941 u32 holes; 1942 1943 holes = max(tp->lost_out, 1U); 1944 holes = min(holes, tp->packets_out); 1945 1946 if ((tp->sacked_out + holes) > tp->packets_out) { 1947 tp->sacked_out = tp->packets_out - holes; 1948 return 1; 1949 } 1950 return 0; 1951 } 1952 1953 /* If we receive more dupacks than we expected counting segments 1954 * in assumption of absent reordering, interpret this as reordering. 1955 * The only another reason could be bug in receiver TCP. 1956 */ 1957 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1958 { 1959 struct tcp_sock *tp = tcp_sk(sk); 1960 if (tcp_limit_reno_sacked(tp)) 1961 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1962 } 1963 1964 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1965 1966 static void tcp_add_reno_sack(struct sock *sk) 1967 { 1968 struct tcp_sock *tp = tcp_sk(sk); 1969 tp->sacked_out++; 1970 tcp_check_reno_reordering(sk, 0); 1971 tcp_verify_left_out(tp); 1972 } 1973 1974 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1975 1976 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1977 { 1978 struct tcp_sock *tp = tcp_sk(sk); 1979 1980 if (acked > 0) { 1981 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1982 if (acked - 1 >= tp->sacked_out) 1983 tp->sacked_out = 0; 1984 else 1985 tp->sacked_out -= acked - 1; 1986 } 1987 tcp_check_reno_reordering(sk, acked); 1988 tcp_verify_left_out(tp); 1989 } 1990 1991 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1992 { 1993 tp->sacked_out = 0; 1994 } 1995 1996 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1997 { 1998 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1999 } 2000 2001 /* F-RTO can only be used if TCP has never retransmitted anything other than 2002 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 2003 */ 2004 int tcp_use_frto(struct sock *sk) 2005 { 2006 const struct tcp_sock *tp = tcp_sk(sk); 2007 const struct inet_connection_sock *icsk = inet_csk(sk); 2008 struct sk_buff *skb; 2009 2010 if (!sysctl_tcp_frto) 2011 return 0; 2012 2013 /* MTU probe and F-RTO won't really play nicely along currently */ 2014 if (icsk->icsk_mtup.probe_size) 2015 return 0; 2016 2017 if (tcp_is_sackfrto(tp)) 2018 return 1; 2019 2020 /* Avoid expensive walking of rexmit queue if possible */ 2021 if (tp->retrans_out > 1) 2022 return 0; 2023 2024 skb = tcp_write_queue_head(sk); 2025 if (tcp_skb_is_last(sk, skb)) 2026 return 1; 2027 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2028 tcp_for_write_queue_from(skb, sk) { 2029 if (skb == tcp_send_head(sk)) 2030 break; 2031 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2032 return 0; 2033 /* Short-circuit when first non-SACKed skb has been checked */ 2034 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2035 break; 2036 } 2037 return 1; 2038 } 2039 2040 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2041 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2042 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2043 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2044 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2045 * bits are handled if the Loss state is really to be entered (in 2046 * tcp_enter_frto_loss). 2047 * 2048 * Do like tcp_enter_loss() would; when RTO expires the second time it 2049 * does: 2050 * "Reduce ssthresh if it has not yet been made inside this window." 2051 */ 2052 void tcp_enter_frto(struct sock *sk) 2053 { 2054 const struct inet_connection_sock *icsk = inet_csk(sk); 2055 struct tcp_sock *tp = tcp_sk(sk); 2056 struct sk_buff *skb; 2057 2058 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2059 tp->snd_una == tp->high_seq || 2060 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2061 !icsk->icsk_retransmits)) { 2062 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2063 /* Our state is too optimistic in ssthresh() call because cwnd 2064 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2065 * recovery has not yet completed. Pattern would be this: RTO, 2066 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2067 * up here twice). 2068 * RFC4138 should be more specific on what to do, even though 2069 * RTO is quite unlikely to occur after the first Cumulative ACK 2070 * due to back-off and complexity of triggering events ... 2071 */ 2072 if (tp->frto_counter) { 2073 u32 stored_cwnd; 2074 stored_cwnd = tp->snd_cwnd; 2075 tp->snd_cwnd = 2; 2076 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2077 tp->snd_cwnd = stored_cwnd; 2078 } else { 2079 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2080 } 2081 /* ... in theory, cong.control module could do "any tricks" in 2082 * ssthresh(), which means that ca_state, lost bits and lost_out 2083 * counter would have to be faked before the call occurs. We 2084 * consider that too expensive, unlikely and hacky, so modules 2085 * using these in ssthresh() must deal these incompatibility 2086 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2087 */ 2088 tcp_ca_event(sk, CA_EVENT_FRTO); 2089 } 2090 2091 tp->undo_marker = tp->snd_una; 2092 tp->undo_retrans = 0; 2093 2094 skb = tcp_write_queue_head(sk); 2095 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2096 tp->undo_marker = 0; 2097 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2098 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2099 tp->retrans_out -= tcp_skb_pcount(skb); 2100 } 2101 tcp_verify_left_out(tp); 2102 2103 /* Too bad if TCP was application limited */ 2104 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2105 2106 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2107 * The last condition is necessary at least in tp->frto_counter case. 2108 */ 2109 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2110 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2111 after(tp->high_seq, tp->snd_una)) { 2112 tp->frto_highmark = tp->high_seq; 2113 } else { 2114 tp->frto_highmark = tp->snd_nxt; 2115 } 2116 tcp_set_ca_state(sk, TCP_CA_Disorder); 2117 tp->high_seq = tp->snd_nxt; 2118 tp->frto_counter = 1; 2119 } 2120 2121 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2122 * which indicates that we should follow the traditional RTO recovery, 2123 * i.e. mark everything lost and do go-back-N retransmission. 2124 */ 2125 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2126 { 2127 struct tcp_sock *tp = tcp_sk(sk); 2128 struct sk_buff *skb; 2129 2130 tp->lost_out = 0; 2131 tp->retrans_out = 0; 2132 if (tcp_is_reno(tp)) 2133 tcp_reset_reno_sack(tp); 2134 2135 tcp_for_write_queue(skb, sk) { 2136 if (skb == tcp_send_head(sk)) 2137 break; 2138 2139 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2140 /* 2141 * Count the retransmission made on RTO correctly (only when 2142 * waiting for the first ACK and did not get it)... 2143 */ 2144 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2145 /* For some reason this R-bit might get cleared? */ 2146 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2147 tp->retrans_out += tcp_skb_pcount(skb); 2148 /* ...enter this if branch just for the first segment */ 2149 flag |= FLAG_DATA_ACKED; 2150 } else { 2151 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2152 tp->undo_marker = 0; 2153 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2154 } 2155 2156 /* Marking forward transmissions that were made after RTO lost 2157 * can cause unnecessary retransmissions in some scenarios, 2158 * SACK blocks will mitigate that in some but not in all cases. 2159 * We used to not mark them but it was causing break-ups with 2160 * receivers that do only in-order receival. 2161 * 2162 * TODO: we could detect presence of such receiver and select 2163 * different behavior per flow. 2164 */ 2165 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2166 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2167 tp->lost_out += tcp_skb_pcount(skb); 2168 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2169 } 2170 } 2171 tcp_verify_left_out(tp); 2172 2173 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2174 tp->snd_cwnd_cnt = 0; 2175 tp->snd_cwnd_stamp = tcp_time_stamp; 2176 tp->frto_counter = 0; 2177 tp->bytes_acked = 0; 2178 2179 tp->reordering = min_t(unsigned int, tp->reordering, 2180 sysctl_tcp_reordering); 2181 tcp_set_ca_state(sk, TCP_CA_Loss); 2182 tp->high_seq = tp->snd_nxt; 2183 TCP_ECN_queue_cwr(tp); 2184 2185 tcp_clear_all_retrans_hints(tp); 2186 } 2187 2188 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2189 { 2190 tp->retrans_out = 0; 2191 tp->lost_out = 0; 2192 2193 tp->undo_marker = 0; 2194 tp->undo_retrans = 0; 2195 } 2196 2197 void tcp_clear_retrans(struct tcp_sock *tp) 2198 { 2199 tcp_clear_retrans_partial(tp); 2200 2201 tp->fackets_out = 0; 2202 tp->sacked_out = 0; 2203 } 2204 2205 /* Enter Loss state. If "how" is not zero, forget all SACK information 2206 * and reset tags completely, otherwise preserve SACKs. If receiver 2207 * dropped its ofo queue, we will know this due to reneging detection. 2208 */ 2209 void tcp_enter_loss(struct sock *sk, int how) 2210 { 2211 const struct inet_connection_sock *icsk = inet_csk(sk); 2212 struct tcp_sock *tp = tcp_sk(sk); 2213 struct sk_buff *skb; 2214 2215 /* Reduce ssthresh if it has not yet been made inside this window. */ 2216 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2217 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2218 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2219 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2220 tcp_ca_event(sk, CA_EVENT_LOSS); 2221 } 2222 tp->snd_cwnd = 1; 2223 tp->snd_cwnd_cnt = 0; 2224 tp->snd_cwnd_stamp = tcp_time_stamp; 2225 2226 tp->bytes_acked = 0; 2227 tcp_clear_retrans_partial(tp); 2228 2229 if (tcp_is_reno(tp)) 2230 tcp_reset_reno_sack(tp); 2231 2232 if (!how) { 2233 /* Push undo marker, if it was plain RTO and nothing 2234 * was retransmitted. */ 2235 tp->undo_marker = tp->snd_una; 2236 } else { 2237 tp->sacked_out = 0; 2238 tp->fackets_out = 0; 2239 } 2240 tcp_clear_all_retrans_hints(tp); 2241 2242 tcp_for_write_queue(skb, sk) { 2243 if (skb == tcp_send_head(sk)) 2244 break; 2245 2246 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2247 tp->undo_marker = 0; 2248 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2249 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2250 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2251 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2252 tp->lost_out += tcp_skb_pcount(skb); 2253 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2254 } 2255 } 2256 tcp_verify_left_out(tp); 2257 2258 tp->reordering = min_t(unsigned int, tp->reordering, 2259 sysctl_tcp_reordering); 2260 tcp_set_ca_state(sk, TCP_CA_Loss); 2261 tp->high_seq = tp->snd_nxt; 2262 TCP_ECN_queue_cwr(tp); 2263 /* Abort F-RTO algorithm if one is in progress */ 2264 tp->frto_counter = 0; 2265 } 2266 2267 /* If ACK arrived pointing to a remembered SACK, it means that our 2268 * remembered SACKs do not reflect real state of receiver i.e. 2269 * receiver _host_ is heavily congested (or buggy). 2270 * 2271 * Do processing similar to RTO timeout. 2272 */ 2273 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2274 { 2275 if (flag & FLAG_SACK_RENEGING) { 2276 struct inet_connection_sock *icsk = inet_csk(sk); 2277 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2278 2279 tcp_enter_loss(sk, 1); 2280 icsk->icsk_retransmits++; 2281 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2282 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2283 icsk->icsk_rto, TCP_RTO_MAX); 2284 return 1; 2285 } 2286 return 0; 2287 } 2288 2289 static inline int tcp_fackets_out(struct tcp_sock *tp) 2290 { 2291 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2292 } 2293 2294 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2295 * counter when SACK is enabled (without SACK, sacked_out is used for 2296 * that purpose). 2297 * 2298 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2299 * segments up to the highest received SACK block so far and holes in 2300 * between them. 2301 * 2302 * With reordering, holes may still be in flight, so RFC3517 recovery 2303 * uses pure sacked_out (total number of SACKed segments) even though 2304 * it violates the RFC that uses duplicate ACKs, often these are equal 2305 * but when e.g. out-of-window ACKs or packet duplication occurs, 2306 * they differ. Since neither occurs due to loss, TCP should really 2307 * ignore them. 2308 */ 2309 static inline int tcp_dupack_heuristics(struct tcp_sock *tp) 2310 { 2311 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2312 } 2313 2314 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2315 { 2316 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2317 } 2318 2319 static inline int tcp_head_timedout(struct sock *sk) 2320 { 2321 struct tcp_sock *tp = tcp_sk(sk); 2322 2323 return tp->packets_out && 2324 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2325 } 2326 2327 /* Linux NewReno/SACK/FACK/ECN state machine. 2328 * -------------------------------------- 2329 * 2330 * "Open" Normal state, no dubious events, fast path. 2331 * "Disorder" In all the respects it is "Open", 2332 * but requires a bit more attention. It is entered when 2333 * we see some SACKs or dupacks. It is split of "Open" 2334 * mainly to move some processing from fast path to slow one. 2335 * "CWR" CWND was reduced due to some Congestion Notification event. 2336 * It can be ECN, ICMP source quench, local device congestion. 2337 * "Recovery" CWND was reduced, we are fast-retransmitting. 2338 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2339 * 2340 * tcp_fastretrans_alert() is entered: 2341 * - each incoming ACK, if state is not "Open" 2342 * - when arrived ACK is unusual, namely: 2343 * * SACK 2344 * * Duplicate ACK. 2345 * * ECN ECE. 2346 * 2347 * Counting packets in flight is pretty simple. 2348 * 2349 * in_flight = packets_out - left_out + retrans_out 2350 * 2351 * packets_out is SND.NXT-SND.UNA counted in packets. 2352 * 2353 * retrans_out is number of retransmitted segments. 2354 * 2355 * left_out is number of segments left network, but not ACKed yet. 2356 * 2357 * left_out = sacked_out + lost_out 2358 * 2359 * sacked_out: Packets, which arrived to receiver out of order 2360 * and hence not ACKed. With SACKs this number is simply 2361 * amount of SACKed data. Even without SACKs 2362 * it is easy to give pretty reliable estimate of this number, 2363 * counting duplicate ACKs. 2364 * 2365 * lost_out: Packets lost by network. TCP has no explicit 2366 * "loss notification" feedback from network (for now). 2367 * It means that this number can be only _guessed_. 2368 * Actually, it is the heuristics to predict lossage that 2369 * distinguishes different algorithms. 2370 * 2371 * F.e. after RTO, when all the queue is considered as lost, 2372 * lost_out = packets_out and in_flight = retrans_out. 2373 * 2374 * Essentially, we have now two algorithms counting 2375 * lost packets. 2376 * 2377 * FACK: It is the simplest heuristics. As soon as we decided 2378 * that something is lost, we decide that _all_ not SACKed 2379 * packets until the most forward SACK are lost. I.e. 2380 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2381 * It is absolutely correct estimate, if network does not reorder 2382 * packets. And it loses any connection to reality when reordering 2383 * takes place. We use FACK by default until reordering 2384 * is suspected on the path to this destination. 2385 * 2386 * NewReno: when Recovery is entered, we assume that one segment 2387 * is lost (classic Reno). While we are in Recovery and 2388 * a partial ACK arrives, we assume that one more packet 2389 * is lost (NewReno). This heuristics are the same in NewReno 2390 * and SACK. 2391 * 2392 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2393 * deflation etc. CWND is real congestion window, never inflated, changes 2394 * only according to classic VJ rules. 2395 * 2396 * Really tricky (and requiring careful tuning) part of algorithm 2397 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2398 * The first determines the moment _when_ we should reduce CWND and, 2399 * hence, slow down forward transmission. In fact, it determines the moment 2400 * when we decide that hole is caused by loss, rather than by a reorder. 2401 * 2402 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2403 * holes, caused by lost packets. 2404 * 2405 * And the most logically complicated part of algorithm is undo 2406 * heuristics. We detect false retransmits due to both too early 2407 * fast retransmit (reordering) and underestimated RTO, analyzing 2408 * timestamps and D-SACKs. When we detect that some segments were 2409 * retransmitted by mistake and CWND reduction was wrong, we undo 2410 * window reduction and abort recovery phase. This logic is hidden 2411 * inside several functions named tcp_try_undo_<something>. 2412 */ 2413 2414 /* This function decides, when we should leave Disordered state 2415 * and enter Recovery phase, reducing congestion window. 2416 * 2417 * Main question: may we further continue forward transmission 2418 * with the same cwnd? 2419 */ 2420 static int tcp_time_to_recover(struct sock *sk) 2421 { 2422 struct tcp_sock *tp = tcp_sk(sk); 2423 __u32 packets_out; 2424 2425 /* Do not perform any recovery during F-RTO algorithm */ 2426 if (tp->frto_counter) 2427 return 0; 2428 2429 /* Trick#1: The loss is proven. */ 2430 if (tp->lost_out) 2431 return 1; 2432 2433 /* Not-A-Trick#2 : Classic rule... */ 2434 if (tcp_dupack_heuristics(tp) > tp->reordering) 2435 return 1; 2436 2437 /* Trick#3 : when we use RFC2988 timer restart, fast 2438 * retransmit can be triggered by timeout of queue head. 2439 */ 2440 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2441 return 1; 2442 2443 /* Trick#4: It is still not OK... But will it be useful to delay 2444 * recovery more? 2445 */ 2446 packets_out = tp->packets_out; 2447 if (packets_out <= tp->reordering && 2448 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2449 !tcp_may_send_now(sk)) { 2450 /* We have nothing to send. This connection is limited 2451 * either by receiver window or by application. 2452 */ 2453 return 1; 2454 } 2455 2456 /* If a thin stream is detected, retransmit after first 2457 * received dupack. Employ only if SACK is supported in order 2458 * to avoid possible corner-case series of spurious retransmissions 2459 * Use only if there are no unsent data. 2460 */ 2461 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2462 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2463 tcp_is_sack(tp) && !tcp_send_head(sk)) 2464 return 1; 2465 2466 return 0; 2467 } 2468 2469 /* New heuristics: it is possible only after we switched to restart timer 2470 * each time when something is ACKed. Hence, we can detect timed out packets 2471 * during fast retransmit without falling to slow start. 2472 * 2473 * Usefulness of this as is very questionable, since we should know which of 2474 * the segments is the next to timeout which is relatively expensive to find 2475 * in general case unless we add some data structure just for that. The 2476 * current approach certainly won't find the right one too often and when it 2477 * finally does find _something_ it usually marks large part of the window 2478 * right away (because a retransmission with a larger timestamp blocks the 2479 * loop from advancing). -ij 2480 */ 2481 static void tcp_timeout_skbs(struct sock *sk) 2482 { 2483 struct tcp_sock *tp = tcp_sk(sk); 2484 struct sk_buff *skb; 2485 2486 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2487 return; 2488 2489 skb = tp->scoreboard_skb_hint; 2490 if (tp->scoreboard_skb_hint == NULL) 2491 skb = tcp_write_queue_head(sk); 2492 2493 tcp_for_write_queue_from(skb, sk) { 2494 if (skb == tcp_send_head(sk)) 2495 break; 2496 if (!tcp_skb_timedout(sk, skb)) 2497 break; 2498 2499 tcp_skb_mark_lost(tp, skb); 2500 } 2501 2502 tp->scoreboard_skb_hint = skb; 2503 2504 tcp_verify_left_out(tp); 2505 } 2506 2507 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2508 * is against sacked "cnt", otherwise it's against facked "cnt" 2509 */ 2510 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2511 { 2512 struct tcp_sock *tp = tcp_sk(sk); 2513 struct sk_buff *skb; 2514 int cnt, oldcnt; 2515 int err; 2516 unsigned int mss; 2517 2518 WARN_ON(packets > tp->packets_out); 2519 if (tp->lost_skb_hint) { 2520 skb = tp->lost_skb_hint; 2521 cnt = tp->lost_cnt_hint; 2522 /* Head already handled? */ 2523 if (mark_head && skb != tcp_write_queue_head(sk)) 2524 return; 2525 } else { 2526 skb = tcp_write_queue_head(sk); 2527 cnt = 0; 2528 } 2529 2530 tcp_for_write_queue_from(skb, sk) { 2531 if (skb == tcp_send_head(sk)) 2532 break; 2533 /* TODO: do this better */ 2534 /* this is not the most efficient way to do this... */ 2535 tp->lost_skb_hint = skb; 2536 tp->lost_cnt_hint = cnt; 2537 2538 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2539 break; 2540 2541 oldcnt = cnt; 2542 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2543 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2544 cnt += tcp_skb_pcount(skb); 2545 2546 if (cnt > packets) { 2547 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2548 (oldcnt >= packets)) 2549 break; 2550 2551 mss = skb_shinfo(skb)->gso_size; 2552 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2553 if (err < 0) 2554 break; 2555 cnt = packets; 2556 } 2557 2558 tcp_skb_mark_lost(tp, skb); 2559 2560 if (mark_head) 2561 break; 2562 } 2563 tcp_verify_left_out(tp); 2564 } 2565 2566 /* Account newly detected lost packet(s) */ 2567 2568 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2569 { 2570 struct tcp_sock *tp = tcp_sk(sk); 2571 2572 if (tcp_is_reno(tp)) { 2573 tcp_mark_head_lost(sk, 1, 1); 2574 } else if (tcp_is_fack(tp)) { 2575 int lost = tp->fackets_out - tp->reordering; 2576 if (lost <= 0) 2577 lost = 1; 2578 tcp_mark_head_lost(sk, lost, 0); 2579 } else { 2580 int sacked_upto = tp->sacked_out - tp->reordering; 2581 if (sacked_upto >= 0) 2582 tcp_mark_head_lost(sk, sacked_upto, 0); 2583 else if (fast_rexmit) 2584 tcp_mark_head_lost(sk, 1, 1); 2585 } 2586 2587 tcp_timeout_skbs(sk); 2588 } 2589 2590 /* CWND moderation, preventing bursts due to too big ACKs 2591 * in dubious situations. 2592 */ 2593 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2594 { 2595 tp->snd_cwnd = min(tp->snd_cwnd, 2596 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2597 tp->snd_cwnd_stamp = tcp_time_stamp; 2598 } 2599 2600 /* Lower bound on congestion window is slow start threshold 2601 * unless congestion avoidance choice decides to overide it. 2602 */ 2603 static inline u32 tcp_cwnd_min(const struct sock *sk) 2604 { 2605 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2606 2607 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2608 } 2609 2610 /* Decrease cwnd each second ack. */ 2611 static void tcp_cwnd_down(struct sock *sk, int flag) 2612 { 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 int decr = tp->snd_cwnd_cnt + 1; 2615 2616 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2617 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2618 tp->snd_cwnd_cnt = decr & 1; 2619 decr >>= 1; 2620 2621 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2622 tp->snd_cwnd -= decr; 2623 2624 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2625 tp->snd_cwnd_stamp = tcp_time_stamp; 2626 } 2627 } 2628 2629 /* Nothing was retransmitted or returned timestamp is less 2630 * than timestamp of the first retransmission. 2631 */ 2632 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2633 { 2634 return !tp->retrans_stamp || 2635 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2636 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2637 } 2638 2639 /* Undo procedures. */ 2640 2641 #if FASTRETRANS_DEBUG > 1 2642 static void DBGUNDO(struct sock *sk, const char *msg) 2643 { 2644 struct tcp_sock *tp = tcp_sk(sk); 2645 struct inet_sock *inet = inet_sk(sk); 2646 2647 if (sk->sk_family == AF_INET) { 2648 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2649 msg, 2650 &inet->inet_daddr, ntohs(inet->inet_dport), 2651 tp->snd_cwnd, tcp_left_out(tp), 2652 tp->snd_ssthresh, tp->prior_ssthresh, 2653 tp->packets_out); 2654 } 2655 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2656 else if (sk->sk_family == AF_INET6) { 2657 struct ipv6_pinfo *np = inet6_sk(sk); 2658 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2659 msg, 2660 &np->daddr, ntohs(inet->inet_dport), 2661 tp->snd_cwnd, tcp_left_out(tp), 2662 tp->snd_ssthresh, tp->prior_ssthresh, 2663 tp->packets_out); 2664 } 2665 #endif 2666 } 2667 #else 2668 #define DBGUNDO(x...) do { } while (0) 2669 #endif 2670 2671 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh) 2672 { 2673 struct tcp_sock *tp = tcp_sk(sk); 2674 2675 if (tp->prior_ssthresh) { 2676 const struct inet_connection_sock *icsk = inet_csk(sk); 2677 2678 if (icsk->icsk_ca_ops->undo_cwnd) 2679 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2680 else 2681 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2682 2683 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) { 2684 tp->snd_ssthresh = tp->prior_ssthresh; 2685 TCP_ECN_withdraw_cwr(tp); 2686 } 2687 } else { 2688 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2689 } 2690 tp->snd_cwnd_stamp = tcp_time_stamp; 2691 } 2692 2693 static inline int tcp_may_undo(struct tcp_sock *tp) 2694 { 2695 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2696 } 2697 2698 /* People celebrate: "We love our President!" */ 2699 static int tcp_try_undo_recovery(struct sock *sk) 2700 { 2701 struct tcp_sock *tp = tcp_sk(sk); 2702 2703 if (tcp_may_undo(tp)) { 2704 int mib_idx; 2705 2706 /* Happy end! We did not retransmit anything 2707 * or our original transmission succeeded. 2708 */ 2709 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2710 tcp_undo_cwr(sk, true); 2711 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2712 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2713 else 2714 mib_idx = LINUX_MIB_TCPFULLUNDO; 2715 2716 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2717 tp->undo_marker = 0; 2718 } 2719 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2720 /* Hold old state until something *above* high_seq 2721 * is ACKed. For Reno it is MUST to prevent false 2722 * fast retransmits (RFC2582). SACK TCP is safe. */ 2723 tcp_moderate_cwnd(tp); 2724 return 1; 2725 } 2726 tcp_set_ca_state(sk, TCP_CA_Open); 2727 return 0; 2728 } 2729 2730 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2731 static void tcp_try_undo_dsack(struct sock *sk) 2732 { 2733 struct tcp_sock *tp = tcp_sk(sk); 2734 2735 if (tp->undo_marker && !tp->undo_retrans) { 2736 DBGUNDO(sk, "D-SACK"); 2737 tcp_undo_cwr(sk, true); 2738 tp->undo_marker = 0; 2739 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2740 } 2741 } 2742 2743 /* We can clear retrans_stamp when there are no retransmissions in the 2744 * window. It would seem that it is trivially available for us in 2745 * tp->retrans_out, however, that kind of assumptions doesn't consider 2746 * what will happen if errors occur when sending retransmission for the 2747 * second time. ...It could the that such segment has only 2748 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2749 * the head skb is enough except for some reneging corner cases that 2750 * are not worth the effort. 2751 * 2752 * Main reason for all this complexity is the fact that connection dying 2753 * time now depends on the validity of the retrans_stamp, in particular, 2754 * that successive retransmissions of a segment must not advance 2755 * retrans_stamp under any conditions. 2756 */ 2757 static int tcp_any_retrans_done(struct sock *sk) 2758 { 2759 struct tcp_sock *tp = tcp_sk(sk); 2760 struct sk_buff *skb; 2761 2762 if (tp->retrans_out) 2763 return 1; 2764 2765 skb = tcp_write_queue_head(sk); 2766 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2767 return 1; 2768 2769 return 0; 2770 } 2771 2772 /* Undo during fast recovery after partial ACK. */ 2773 2774 static int tcp_try_undo_partial(struct sock *sk, int acked) 2775 { 2776 struct tcp_sock *tp = tcp_sk(sk); 2777 /* Partial ACK arrived. Force Hoe's retransmit. */ 2778 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2779 2780 if (tcp_may_undo(tp)) { 2781 /* Plain luck! Hole if filled with delayed 2782 * packet, rather than with a retransmit. 2783 */ 2784 if (!tcp_any_retrans_done(sk)) 2785 tp->retrans_stamp = 0; 2786 2787 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2788 2789 DBGUNDO(sk, "Hoe"); 2790 tcp_undo_cwr(sk, false); 2791 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2792 2793 /* So... Do not make Hoe's retransmit yet. 2794 * If the first packet was delayed, the rest 2795 * ones are most probably delayed as well. 2796 */ 2797 failed = 0; 2798 } 2799 return failed; 2800 } 2801 2802 /* Undo during loss recovery after partial ACK. */ 2803 static int tcp_try_undo_loss(struct sock *sk) 2804 { 2805 struct tcp_sock *tp = tcp_sk(sk); 2806 2807 if (tcp_may_undo(tp)) { 2808 struct sk_buff *skb; 2809 tcp_for_write_queue(skb, sk) { 2810 if (skb == tcp_send_head(sk)) 2811 break; 2812 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2813 } 2814 2815 tcp_clear_all_retrans_hints(tp); 2816 2817 DBGUNDO(sk, "partial loss"); 2818 tp->lost_out = 0; 2819 tcp_undo_cwr(sk, true); 2820 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2821 inet_csk(sk)->icsk_retransmits = 0; 2822 tp->undo_marker = 0; 2823 if (tcp_is_sack(tp)) 2824 tcp_set_ca_state(sk, TCP_CA_Open); 2825 return 1; 2826 } 2827 return 0; 2828 } 2829 2830 static inline void tcp_complete_cwr(struct sock *sk) 2831 { 2832 struct tcp_sock *tp = tcp_sk(sk); 2833 /* Do not moderate cwnd if it's already undone in cwr or recovery */ 2834 if (tp->undo_marker && tp->snd_cwnd > tp->snd_ssthresh) { 2835 tp->snd_cwnd = tp->snd_ssthresh; 2836 tp->snd_cwnd_stamp = tcp_time_stamp; 2837 } 2838 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2839 } 2840 2841 static void tcp_try_keep_open(struct sock *sk) 2842 { 2843 struct tcp_sock *tp = tcp_sk(sk); 2844 int state = TCP_CA_Open; 2845 2846 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker) 2847 state = TCP_CA_Disorder; 2848 2849 if (inet_csk(sk)->icsk_ca_state != state) { 2850 tcp_set_ca_state(sk, state); 2851 tp->high_seq = tp->snd_nxt; 2852 } 2853 } 2854 2855 static void tcp_try_to_open(struct sock *sk, int flag) 2856 { 2857 struct tcp_sock *tp = tcp_sk(sk); 2858 2859 tcp_verify_left_out(tp); 2860 2861 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2862 tp->retrans_stamp = 0; 2863 2864 if (flag & FLAG_ECE) 2865 tcp_enter_cwr(sk, 1); 2866 2867 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2868 tcp_try_keep_open(sk); 2869 tcp_moderate_cwnd(tp); 2870 } else { 2871 tcp_cwnd_down(sk, flag); 2872 } 2873 } 2874 2875 static void tcp_mtup_probe_failed(struct sock *sk) 2876 { 2877 struct inet_connection_sock *icsk = inet_csk(sk); 2878 2879 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2880 icsk->icsk_mtup.probe_size = 0; 2881 } 2882 2883 static void tcp_mtup_probe_success(struct sock *sk) 2884 { 2885 struct tcp_sock *tp = tcp_sk(sk); 2886 struct inet_connection_sock *icsk = inet_csk(sk); 2887 2888 /* FIXME: breaks with very large cwnd */ 2889 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2890 tp->snd_cwnd = tp->snd_cwnd * 2891 tcp_mss_to_mtu(sk, tp->mss_cache) / 2892 icsk->icsk_mtup.probe_size; 2893 tp->snd_cwnd_cnt = 0; 2894 tp->snd_cwnd_stamp = tcp_time_stamp; 2895 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2896 2897 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2898 icsk->icsk_mtup.probe_size = 0; 2899 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2900 } 2901 2902 /* Do a simple retransmit without using the backoff mechanisms in 2903 * tcp_timer. This is used for path mtu discovery. 2904 * The socket is already locked here. 2905 */ 2906 void tcp_simple_retransmit(struct sock *sk) 2907 { 2908 const struct inet_connection_sock *icsk = inet_csk(sk); 2909 struct tcp_sock *tp = tcp_sk(sk); 2910 struct sk_buff *skb; 2911 unsigned int mss = tcp_current_mss(sk); 2912 u32 prior_lost = tp->lost_out; 2913 2914 tcp_for_write_queue(skb, sk) { 2915 if (skb == tcp_send_head(sk)) 2916 break; 2917 if (tcp_skb_seglen(skb) > mss && 2918 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2919 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2920 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2921 tp->retrans_out -= tcp_skb_pcount(skb); 2922 } 2923 tcp_skb_mark_lost_uncond_verify(tp, skb); 2924 } 2925 } 2926 2927 tcp_clear_retrans_hints_partial(tp); 2928 2929 if (prior_lost == tp->lost_out) 2930 return; 2931 2932 if (tcp_is_reno(tp)) 2933 tcp_limit_reno_sacked(tp); 2934 2935 tcp_verify_left_out(tp); 2936 2937 /* Don't muck with the congestion window here. 2938 * Reason is that we do not increase amount of _data_ 2939 * in network, but units changed and effective 2940 * cwnd/ssthresh really reduced now. 2941 */ 2942 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2943 tp->high_seq = tp->snd_nxt; 2944 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2945 tp->prior_ssthresh = 0; 2946 tp->undo_marker = 0; 2947 tcp_set_ca_state(sk, TCP_CA_Loss); 2948 } 2949 tcp_xmit_retransmit_queue(sk); 2950 } 2951 EXPORT_SYMBOL(tcp_simple_retransmit); 2952 2953 /* Process an event, which can update packets-in-flight not trivially. 2954 * Main goal of this function is to calculate new estimate for left_out, 2955 * taking into account both packets sitting in receiver's buffer and 2956 * packets lost by network. 2957 * 2958 * Besides that it does CWND reduction, when packet loss is detected 2959 * and changes state of machine. 2960 * 2961 * It does _not_ decide what to send, it is made in function 2962 * tcp_xmit_retransmit_queue(). 2963 */ 2964 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2965 { 2966 struct inet_connection_sock *icsk = inet_csk(sk); 2967 struct tcp_sock *tp = tcp_sk(sk); 2968 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2969 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2970 (tcp_fackets_out(tp) > tp->reordering)); 2971 int fast_rexmit = 0, mib_idx; 2972 2973 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2974 tp->sacked_out = 0; 2975 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2976 tp->fackets_out = 0; 2977 2978 /* Now state machine starts. 2979 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2980 if (flag & FLAG_ECE) 2981 tp->prior_ssthresh = 0; 2982 2983 /* B. In all the states check for reneging SACKs. */ 2984 if (tcp_check_sack_reneging(sk, flag)) 2985 return; 2986 2987 /* C. Process data loss notification, provided it is valid. */ 2988 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2989 before(tp->snd_una, tp->high_seq) && 2990 icsk->icsk_ca_state != TCP_CA_Open && 2991 tp->fackets_out > tp->reordering) { 2992 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0); 2993 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2994 } 2995 2996 /* D. Check consistency of the current state. */ 2997 tcp_verify_left_out(tp); 2998 2999 /* E. Check state exit conditions. State can be terminated 3000 * when high_seq is ACKed. */ 3001 if (icsk->icsk_ca_state == TCP_CA_Open) { 3002 WARN_ON(tp->retrans_out != 0); 3003 tp->retrans_stamp = 0; 3004 } else if (!before(tp->snd_una, tp->high_seq)) { 3005 switch (icsk->icsk_ca_state) { 3006 case TCP_CA_Loss: 3007 icsk->icsk_retransmits = 0; 3008 if (tcp_try_undo_recovery(sk)) 3009 return; 3010 break; 3011 3012 case TCP_CA_CWR: 3013 /* CWR is to be held something *above* high_seq 3014 * is ACKed for CWR bit to reach receiver. */ 3015 if (tp->snd_una != tp->high_seq) { 3016 tcp_complete_cwr(sk); 3017 tcp_set_ca_state(sk, TCP_CA_Open); 3018 } 3019 break; 3020 3021 case TCP_CA_Disorder: 3022 tcp_try_undo_dsack(sk); 3023 if (!tp->undo_marker || 3024 /* For SACK case do not Open to allow to undo 3025 * catching for all duplicate ACKs. */ 3026 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 3027 tp->undo_marker = 0; 3028 tcp_set_ca_state(sk, TCP_CA_Open); 3029 } 3030 break; 3031 3032 case TCP_CA_Recovery: 3033 if (tcp_is_reno(tp)) 3034 tcp_reset_reno_sack(tp); 3035 if (tcp_try_undo_recovery(sk)) 3036 return; 3037 tcp_complete_cwr(sk); 3038 break; 3039 } 3040 } 3041 3042 /* F. Process state. */ 3043 switch (icsk->icsk_ca_state) { 3044 case TCP_CA_Recovery: 3045 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3046 if (tcp_is_reno(tp) && is_dupack) 3047 tcp_add_reno_sack(sk); 3048 } else 3049 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3050 break; 3051 case TCP_CA_Loss: 3052 if (flag & FLAG_DATA_ACKED) 3053 icsk->icsk_retransmits = 0; 3054 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3055 tcp_reset_reno_sack(tp); 3056 if (!tcp_try_undo_loss(sk)) { 3057 tcp_moderate_cwnd(tp); 3058 tcp_xmit_retransmit_queue(sk); 3059 return; 3060 } 3061 if (icsk->icsk_ca_state != TCP_CA_Open) 3062 return; 3063 /* Loss is undone; fall through to processing in Open state. */ 3064 default: 3065 if (tcp_is_reno(tp)) { 3066 if (flag & FLAG_SND_UNA_ADVANCED) 3067 tcp_reset_reno_sack(tp); 3068 if (is_dupack) 3069 tcp_add_reno_sack(sk); 3070 } 3071 3072 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3073 tcp_try_undo_dsack(sk); 3074 3075 if (!tcp_time_to_recover(sk)) { 3076 tcp_try_to_open(sk, flag); 3077 return; 3078 } 3079 3080 /* MTU probe failure: don't reduce cwnd */ 3081 if (icsk->icsk_ca_state < TCP_CA_CWR && 3082 icsk->icsk_mtup.probe_size && 3083 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3084 tcp_mtup_probe_failed(sk); 3085 /* Restores the reduction we did in tcp_mtup_probe() */ 3086 tp->snd_cwnd++; 3087 tcp_simple_retransmit(sk); 3088 return; 3089 } 3090 3091 /* Otherwise enter Recovery state */ 3092 3093 if (tcp_is_reno(tp)) 3094 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3095 else 3096 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3097 3098 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3099 3100 tp->high_seq = tp->snd_nxt; 3101 tp->prior_ssthresh = 0; 3102 tp->undo_marker = tp->snd_una; 3103 tp->undo_retrans = tp->retrans_out; 3104 3105 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3106 if (!(flag & FLAG_ECE)) 3107 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3108 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3109 TCP_ECN_queue_cwr(tp); 3110 } 3111 3112 tp->bytes_acked = 0; 3113 tp->snd_cwnd_cnt = 0; 3114 tcp_set_ca_state(sk, TCP_CA_Recovery); 3115 fast_rexmit = 1; 3116 } 3117 3118 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3119 tcp_update_scoreboard(sk, fast_rexmit); 3120 tcp_cwnd_down(sk, flag); 3121 tcp_xmit_retransmit_queue(sk); 3122 } 3123 3124 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3125 { 3126 tcp_rtt_estimator(sk, seq_rtt); 3127 tcp_set_rto(sk); 3128 inet_csk(sk)->icsk_backoff = 0; 3129 } 3130 EXPORT_SYMBOL(tcp_valid_rtt_meas); 3131 3132 /* Read draft-ietf-tcplw-high-performance before mucking 3133 * with this code. (Supersedes RFC1323) 3134 */ 3135 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3136 { 3137 /* RTTM Rule: A TSecr value received in a segment is used to 3138 * update the averaged RTT measurement only if the segment 3139 * acknowledges some new data, i.e., only if it advances the 3140 * left edge of the send window. 3141 * 3142 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3143 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3144 * 3145 * Changed: reset backoff as soon as we see the first valid sample. 3146 * If we do not, we get strongly overestimated rto. With timestamps 3147 * samples are accepted even from very old segments: f.e., when rtt=1 3148 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3149 * answer arrives rto becomes 120 seconds! If at least one of segments 3150 * in window is lost... Voila. --ANK (010210) 3151 */ 3152 struct tcp_sock *tp = tcp_sk(sk); 3153 3154 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3155 } 3156 3157 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3158 { 3159 /* We don't have a timestamp. Can only use 3160 * packets that are not retransmitted to determine 3161 * rtt estimates. Also, we must not reset the 3162 * backoff for rto until we get a non-retransmitted 3163 * packet. This allows us to deal with a situation 3164 * where the network delay has increased suddenly. 3165 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3166 */ 3167 3168 if (flag & FLAG_RETRANS_DATA_ACKED) 3169 return; 3170 3171 tcp_valid_rtt_meas(sk, seq_rtt); 3172 } 3173 3174 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3175 const s32 seq_rtt) 3176 { 3177 const struct tcp_sock *tp = tcp_sk(sk); 3178 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3179 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3180 tcp_ack_saw_tstamp(sk, flag); 3181 else if (seq_rtt >= 0) 3182 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3183 } 3184 3185 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3186 { 3187 const struct inet_connection_sock *icsk = inet_csk(sk); 3188 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3189 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3190 } 3191 3192 /* Restart timer after forward progress on connection. 3193 * RFC2988 recommends to restart timer to now+rto. 3194 */ 3195 static void tcp_rearm_rto(struct sock *sk) 3196 { 3197 struct tcp_sock *tp = tcp_sk(sk); 3198 3199 if (!tp->packets_out) { 3200 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3201 } else { 3202 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3203 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3204 } 3205 } 3206 3207 /* If we get here, the whole TSO packet has not been acked. */ 3208 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3209 { 3210 struct tcp_sock *tp = tcp_sk(sk); 3211 u32 packets_acked; 3212 3213 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3214 3215 packets_acked = tcp_skb_pcount(skb); 3216 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3217 return 0; 3218 packets_acked -= tcp_skb_pcount(skb); 3219 3220 if (packets_acked) { 3221 BUG_ON(tcp_skb_pcount(skb) == 0); 3222 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3223 } 3224 3225 return packets_acked; 3226 } 3227 3228 /* Remove acknowledged frames from the retransmission queue. If our packet 3229 * is before the ack sequence we can discard it as it's confirmed to have 3230 * arrived at the other end. 3231 */ 3232 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3233 u32 prior_snd_una) 3234 { 3235 struct tcp_sock *tp = tcp_sk(sk); 3236 const struct inet_connection_sock *icsk = inet_csk(sk); 3237 struct sk_buff *skb; 3238 u32 now = tcp_time_stamp; 3239 int fully_acked = 1; 3240 int flag = 0; 3241 u32 pkts_acked = 0; 3242 u32 reord = tp->packets_out; 3243 u32 prior_sacked = tp->sacked_out; 3244 s32 seq_rtt = -1; 3245 s32 ca_seq_rtt = -1; 3246 ktime_t last_ackt = net_invalid_timestamp(); 3247 3248 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3249 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3250 u32 acked_pcount; 3251 u8 sacked = scb->sacked; 3252 3253 /* Determine how many packets and what bytes were acked, tso and else */ 3254 if (after(scb->end_seq, tp->snd_una)) { 3255 if (tcp_skb_pcount(skb) == 1 || 3256 !after(tp->snd_una, scb->seq)) 3257 break; 3258 3259 acked_pcount = tcp_tso_acked(sk, skb); 3260 if (!acked_pcount) 3261 break; 3262 3263 fully_acked = 0; 3264 } else { 3265 acked_pcount = tcp_skb_pcount(skb); 3266 } 3267 3268 if (sacked & TCPCB_RETRANS) { 3269 if (sacked & TCPCB_SACKED_RETRANS) 3270 tp->retrans_out -= acked_pcount; 3271 flag |= FLAG_RETRANS_DATA_ACKED; 3272 ca_seq_rtt = -1; 3273 seq_rtt = -1; 3274 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3275 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3276 } else { 3277 ca_seq_rtt = now - scb->when; 3278 last_ackt = skb->tstamp; 3279 if (seq_rtt < 0) { 3280 seq_rtt = ca_seq_rtt; 3281 } 3282 if (!(sacked & TCPCB_SACKED_ACKED)) 3283 reord = min(pkts_acked, reord); 3284 } 3285 3286 if (sacked & TCPCB_SACKED_ACKED) 3287 tp->sacked_out -= acked_pcount; 3288 if (sacked & TCPCB_LOST) 3289 tp->lost_out -= acked_pcount; 3290 3291 tp->packets_out -= acked_pcount; 3292 pkts_acked += acked_pcount; 3293 3294 /* Initial outgoing SYN's get put onto the write_queue 3295 * just like anything else we transmit. It is not 3296 * true data, and if we misinform our callers that 3297 * this ACK acks real data, we will erroneously exit 3298 * connection startup slow start one packet too 3299 * quickly. This is severely frowned upon behavior. 3300 */ 3301 if (!(scb->flags & TCPHDR_SYN)) { 3302 flag |= FLAG_DATA_ACKED; 3303 } else { 3304 flag |= FLAG_SYN_ACKED; 3305 tp->retrans_stamp = 0; 3306 } 3307 3308 if (!fully_acked) 3309 break; 3310 3311 tcp_unlink_write_queue(skb, sk); 3312 sk_wmem_free_skb(sk, skb); 3313 tp->scoreboard_skb_hint = NULL; 3314 if (skb == tp->retransmit_skb_hint) 3315 tp->retransmit_skb_hint = NULL; 3316 if (skb == tp->lost_skb_hint) 3317 tp->lost_skb_hint = NULL; 3318 } 3319 3320 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3321 tp->snd_up = tp->snd_una; 3322 3323 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3324 flag |= FLAG_SACK_RENEGING; 3325 3326 if (flag & FLAG_ACKED) { 3327 const struct tcp_congestion_ops *ca_ops 3328 = inet_csk(sk)->icsk_ca_ops; 3329 3330 if (unlikely(icsk->icsk_mtup.probe_size && 3331 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3332 tcp_mtup_probe_success(sk); 3333 } 3334 3335 tcp_ack_update_rtt(sk, flag, seq_rtt); 3336 tcp_rearm_rto(sk); 3337 3338 if (tcp_is_reno(tp)) { 3339 tcp_remove_reno_sacks(sk, pkts_acked); 3340 } else { 3341 int delta; 3342 3343 /* Non-retransmitted hole got filled? That's reordering */ 3344 if (reord < prior_fackets) 3345 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3346 3347 delta = tcp_is_fack(tp) ? pkts_acked : 3348 prior_sacked - tp->sacked_out; 3349 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3350 } 3351 3352 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3353 3354 if (ca_ops->pkts_acked) { 3355 s32 rtt_us = -1; 3356 3357 /* Is the ACK triggering packet unambiguous? */ 3358 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3359 /* High resolution needed and available? */ 3360 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3361 !ktime_equal(last_ackt, 3362 net_invalid_timestamp())) 3363 rtt_us = ktime_us_delta(ktime_get_real(), 3364 last_ackt); 3365 else if (ca_seq_rtt >= 0) 3366 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3367 } 3368 3369 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3370 } 3371 } 3372 3373 #if FASTRETRANS_DEBUG > 0 3374 WARN_ON((int)tp->sacked_out < 0); 3375 WARN_ON((int)tp->lost_out < 0); 3376 WARN_ON((int)tp->retrans_out < 0); 3377 if (!tp->packets_out && tcp_is_sack(tp)) { 3378 icsk = inet_csk(sk); 3379 if (tp->lost_out) { 3380 printk(KERN_DEBUG "Leak l=%u %d\n", 3381 tp->lost_out, icsk->icsk_ca_state); 3382 tp->lost_out = 0; 3383 } 3384 if (tp->sacked_out) { 3385 printk(KERN_DEBUG "Leak s=%u %d\n", 3386 tp->sacked_out, icsk->icsk_ca_state); 3387 tp->sacked_out = 0; 3388 } 3389 if (tp->retrans_out) { 3390 printk(KERN_DEBUG "Leak r=%u %d\n", 3391 tp->retrans_out, icsk->icsk_ca_state); 3392 tp->retrans_out = 0; 3393 } 3394 } 3395 #endif 3396 return flag; 3397 } 3398 3399 static void tcp_ack_probe(struct sock *sk) 3400 { 3401 const struct tcp_sock *tp = tcp_sk(sk); 3402 struct inet_connection_sock *icsk = inet_csk(sk); 3403 3404 /* Was it a usable window open? */ 3405 3406 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3407 icsk->icsk_backoff = 0; 3408 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3409 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3410 * This function is not for random using! 3411 */ 3412 } else { 3413 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3414 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3415 TCP_RTO_MAX); 3416 } 3417 } 3418 3419 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3420 { 3421 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3422 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3423 } 3424 3425 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3426 { 3427 const struct tcp_sock *tp = tcp_sk(sk); 3428 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3429 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3430 } 3431 3432 /* Check that window update is acceptable. 3433 * The function assumes that snd_una<=ack<=snd_next. 3434 */ 3435 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3436 const u32 ack, const u32 ack_seq, 3437 const u32 nwin) 3438 { 3439 return after(ack, tp->snd_una) || 3440 after(ack_seq, tp->snd_wl1) || 3441 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3442 } 3443 3444 /* Update our send window. 3445 * 3446 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3447 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3448 */ 3449 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3450 u32 ack_seq) 3451 { 3452 struct tcp_sock *tp = tcp_sk(sk); 3453 int flag = 0; 3454 u32 nwin = ntohs(tcp_hdr(skb)->window); 3455 3456 if (likely(!tcp_hdr(skb)->syn)) 3457 nwin <<= tp->rx_opt.snd_wscale; 3458 3459 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3460 flag |= FLAG_WIN_UPDATE; 3461 tcp_update_wl(tp, ack_seq); 3462 3463 if (tp->snd_wnd != nwin) { 3464 tp->snd_wnd = nwin; 3465 3466 /* Note, it is the only place, where 3467 * fast path is recovered for sending TCP. 3468 */ 3469 tp->pred_flags = 0; 3470 tcp_fast_path_check(sk); 3471 3472 if (nwin > tp->max_window) { 3473 tp->max_window = nwin; 3474 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3475 } 3476 } 3477 } 3478 3479 tp->snd_una = ack; 3480 3481 return flag; 3482 } 3483 3484 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3485 * continue in congestion avoidance. 3486 */ 3487 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3488 { 3489 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3490 tp->snd_cwnd_cnt = 0; 3491 tp->bytes_acked = 0; 3492 TCP_ECN_queue_cwr(tp); 3493 tcp_moderate_cwnd(tp); 3494 } 3495 3496 /* A conservative spurious RTO response algorithm: reduce cwnd using 3497 * rate halving and continue in congestion avoidance. 3498 */ 3499 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3500 { 3501 tcp_enter_cwr(sk, 0); 3502 } 3503 3504 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3505 { 3506 if (flag & FLAG_ECE) 3507 tcp_ratehalving_spur_to_response(sk); 3508 else 3509 tcp_undo_cwr(sk, true); 3510 } 3511 3512 /* F-RTO spurious RTO detection algorithm (RFC4138) 3513 * 3514 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3515 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3516 * window (but not to or beyond highest sequence sent before RTO): 3517 * On First ACK, send two new segments out. 3518 * On Second ACK, RTO was likely spurious. Do spurious response (response 3519 * algorithm is not part of the F-RTO detection algorithm 3520 * given in RFC4138 but can be selected separately). 3521 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3522 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3523 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3524 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3525 * 3526 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3527 * original window even after we transmit two new data segments. 3528 * 3529 * SACK version: 3530 * on first step, wait until first cumulative ACK arrives, then move to 3531 * the second step. In second step, the next ACK decides. 3532 * 3533 * F-RTO is implemented (mainly) in four functions: 3534 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3535 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3536 * called when tcp_use_frto() showed green light 3537 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3538 * - tcp_enter_frto_loss() is called if there is not enough evidence 3539 * to prove that the RTO is indeed spurious. It transfers the control 3540 * from F-RTO to the conventional RTO recovery 3541 */ 3542 static int tcp_process_frto(struct sock *sk, int flag) 3543 { 3544 struct tcp_sock *tp = tcp_sk(sk); 3545 3546 tcp_verify_left_out(tp); 3547 3548 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3549 if (flag & FLAG_DATA_ACKED) 3550 inet_csk(sk)->icsk_retransmits = 0; 3551 3552 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3553 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3554 tp->undo_marker = 0; 3555 3556 if (!before(tp->snd_una, tp->frto_highmark)) { 3557 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3558 return 1; 3559 } 3560 3561 if (!tcp_is_sackfrto(tp)) { 3562 /* RFC4138 shortcoming in step 2; should also have case c): 3563 * ACK isn't duplicate nor advances window, e.g., opposite dir 3564 * data, winupdate 3565 */ 3566 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3567 return 1; 3568 3569 if (!(flag & FLAG_DATA_ACKED)) { 3570 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3571 flag); 3572 return 1; 3573 } 3574 } else { 3575 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3576 /* Prevent sending of new data. */ 3577 tp->snd_cwnd = min(tp->snd_cwnd, 3578 tcp_packets_in_flight(tp)); 3579 return 1; 3580 } 3581 3582 if ((tp->frto_counter >= 2) && 3583 (!(flag & FLAG_FORWARD_PROGRESS) || 3584 ((flag & FLAG_DATA_SACKED) && 3585 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3586 /* RFC4138 shortcoming (see comment above) */ 3587 if (!(flag & FLAG_FORWARD_PROGRESS) && 3588 (flag & FLAG_NOT_DUP)) 3589 return 1; 3590 3591 tcp_enter_frto_loss(sk, 3, flag); 3592 return 1; 3593 } 3594 } 3595 3596 if (tp->frto_counter == 1) { 3597 /* tcp_may_send_now needs to see updated state */ 3598 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3599 tp->frto_counter = 2; 3600 3601 if (!tcp_may_send_now(sk)) 3602 tcp_enter_frto_loss(sk, 2, flag); 3603 3604 return 1; 3605 } else { 3606 switch (sysctl_tcp_frto_response) { 3607 case 2: 3608 tcp_undo_spur_to_response(sk, flag); 3609 break; 3610 case 1: 3611 tcp_conservative_spur_to_response(tp); 3612 break; 3613 default: 3614 tcp_ratehalving_spur_to_response(sk); 3615 break; 3616 } 3617 tp->frto_counter = 0; 3618 tp->undo_marker = 0; 3619 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3620 } 3621 return 0; 3622 } 3623 3624 /* This routine deals with incoming acks, but not outgoing ones. */ 3625 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3626 { 3627 struct inet_connection_sock *icsk = inet_csk(sk); 3628 struct tcp_sock *tp = tcp_sk(sk); 3629 u32 prior_snd_una = tp->snd_una; 3630 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3631 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3632 u32 prior_in_flight; 3633 u32 prior_fackets; 3634 int prior_packets; 3635 int frto_cwnd = 0; 3636 3637 /* If the ack is older than previous acks 3638 * then we can probably ignore it. 3639 */ 3640 if (before(ack, prior_snd_una)) 3641 goto old_ack; 3642 3643 /* If the ack includes data we haven't sent yet, discard 3644 * this segment (RFC793 Section 3.9). 3645 */ 3646 if (after(ack, tp->snd_nxt)) 3647 goto invalid_ack; 3648 3649 if (after(ack, prior_snd_una)) 3650 flag |= FLAG_SND_UNA_ADVANCED; 3651 3652 if (sysctl_tcp_abc) { 3653 if (icsk->icsk_ca_state < TCP_CA_CWR) 3654 tp->bytes_acked += ack - prior_snd_una; 3655 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3656 /* we assume just one segment left network */ 3657 tp->bytes_acked += min(ack - prior_snd_una, 3658 tp->mss_cache); 3659 } 3660 3661 prior_fackets = tp->fackets_out; 3662 prior_in_flight = tcp_packets_in_flight(tp); 3663 3664 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3665 /* Window is constant, pure forward advance. 3666 * No more checks are required. 3667 * Note, we use the fact that SND.UNA>=SND.WL2. 3668 */ 3669 tcp_update_wl(tp, ack_seq); 3670 tp->snd_una = ack; 3671 flag |= FLAG_WIN_UPDATE; 3672 3673 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3674 3675 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3676 } else { 3677 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3678 flag |= FLAG_DATA; 3679 else 3680 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3681 3682 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3683 3684 if (TCP_SKB_CB(skb)->sacked) 3685 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3686 3687 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3688 flag |= FLAG_ECE; 3689 3690 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3691 } 3692 3693 /* We passed data and got it acked, remove any soft error 3694 * log. Something worked... 3695 */ 3696 sk->sk_err_soft = 0; 3697 icsk->icsk_probes_out = 0; 3698 tp->rcv_tstamp = tcp_time_stamp; 3699 prior_packets = tp->packets_out; 3700 if (!prior_packets) 3701 goto no_queue; 3702 3703 /* See if we can take anything off of the retransmit queue. */ 3704 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3705 3706 if (tp->frto_counter) 3707 frto_cwnd = tcp_process_frto(sk, flag); 3708 /* Guarantee sacktag reordering detection against wrap-arounds */ 3709 if (before(tp->frto_highmark, tp->snd_una)) 3710 tp->frto_highmark = 0; 3711 3712 if (tcp_ack_is_dubious(sk, flag)) { 3713 /* Advance CWND, if state allows this. */ 3714 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3715 tcp_may_raise_cwnd(sk, flag)) 3716 tcp_cong_avoid(sk, ack, prior_in_flight); 3717 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3718 flag); 3719 } else { 3720 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3721 tcp_cong_avoid(sk, ack, prior_in_flight); 3722 } 3723 3724 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3725 dst_confirm(__sk_dst_get(sk)); 3726 3727 return 1; 3728 3729 no_queue: 3730 /* If this ack opens up a zero window, clear backoff. It was 3731 * being used to time the probes, and is probably far higher than 3732 * it needs to be for normal retransmission. 3733 */ 3734 if (tcp_send_head(sk)) 3735 tcp_ack_probe(sk); 3736 return 1; 3737 3738 invalid_ack: 3739 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3740 return -1; 3741 3742 old_ack: 3743 if (TCP_SKB_CB(skb)->sacked) { 3744 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3745 if (icsk->icsk_ca_state == TCP_CA_Open) 3746 tcp_try_keep_open(sk); 3747 } 3748 3749 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3750 return 0; 3751 } 3752 3753 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3754 * But, this can also be called on packets in the established flow when 3755 * the fast version below fails. 3756 */ 3757 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3758 u8 **hvpp, int estab) 3759 { 3760 unsigned char *ptr; 3761 struct tcphdr *th = tcp_hdr(skb); 3762 int length = (th->doff * 4) - sizeof(struct tcphdr); 3763 3764 ptr = (unsigned char *)(th + 1); 3765 opt_rx->saw_tstamp = 0; 3766 3767 while (length > 0) { 3768 int opcode = *ptr++; 3769 int opsize; 3770 3771 switch (opcode) { 3772 case TCPOPT_EOL: 3773 return; 3774 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3775 length--; 3776 continue; 3777 default: 3778 opsize = *ptr++; 3779 if (opsize < 2) /* "silly options" */ 3780 return; 3781 if (opsize > length) 3782 return; /* don't parse partial options */ 3783 switch (opcode) { 3784 case TCPOPT_MSS: 3785 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3786 u16 in_mss = get_unaligned_be16(ptr); 3787 if (in_mss) { 3788 if (opt_rx->user_mss && 3789 opt_rx->user_mss < in_mss) 3790 in_mss = opt_rx->user_mss; 3791 opt_rx->mss_clamp = in_mss; 3792 } 3793 } 3794 break; 3795 case TCPOPT_WINDOW: 3796 if (opsize == TCPOLEN_WINDOW && th->syn && 3797 !estab && sysctl_tcp_window_scaling) { 3798 __u8 snd_wscale = *(__u8 *)ptr; 3799 opt_rx->wscale_ok = 1; 3800 if (snd_wscale > 14) { 3801 if (net_ratelimit()) 3802 printk(KERN_INFO "tcp_parse_options: Illegal window " 3803 "scaling value %d >14 received.\n", 3804 snd_wscale); 3805 snd_wscale = 14; 3806 } 3807 opt_rx->snd_wscale = snd_wscale; 3808 } 3809 break; 3810 case TCPOPT_TIMESTAMP: 3811 if ((opsize == TCPOLEN_TIMESTAMP) && 3812 ((estab && opt_rx->tstamp_ok) || 3813 (!estab && sysctl_tcp_timestamps))) { 3814 opt_rx->saw_tstamp = 1; 3815 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3816 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3817 } 3818 break; 3819 case TCPOPT_SACK_PERM: 3820 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3821 !estab && sysctl_tcp_sack) { 3822 opt_rx->sack_ok = 1; 3823 tcp_sack_reset(opt_rx); 3824 } 3825 break; 3826 3827 case TCPOPT_SACK: 3828 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3829 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3830 opt_rx->sack_ok) { 3831 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3832 } 3833 break; 3834 #ifdef CONFIG_TCP_MD5SIG 3835 case TCPOPT_MD5SIG: 3836 /* 3837 * The MD5 Hash has already been 3838 * checked (see tcp_v{4,6}_do_rcv()). 3839 */ 3840 break; 3841 #endif 3842 case TCPOPT_COOKIE: 3843 /* This option is variable length. 3844 */ 3845 switch (opsize) { 3846 case TCPOLEN_COOKIE_BASE: 3847 /* not yet implemented */ 3848 break; 3849 case TCPOLEN_COOKIE_PAIR: 3850 /* not yet implemented */ 3851 break; 3852 case TCPOLEN_COOKIE_MIN+0: 3853 case TCPOLEN_COOKIE_MIN+2: 3854 case TCPOLEN_COOKIE_MIN+4: 3855 case TCPOLEN_COOKIE_MIN+6: 3856 case TCPOLEN_COOKIE_MAX: 3857 /* 16-bit multiple */ 3858 opt_rx->cookie_plus = opsize; 3859 *hvpp = ptr; 3860 break; 3861 default: 3862 /* ignore option */ 3863 break; 3864 } 3865 break; 3866 } 3867 3868 ptr += opsize-2; 3869 length -= opsize; 3870 } 3871 } 3872 } 3873 EXPORT_SYMBOL(tcp_parse_options); 3874 3875 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3876 { 3877 __be32 *ptr = (__be32 *)(th + 1); 3878 3879 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3880 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3881 tp->rx_opt.saw_tstamp = 1; 3882 ++ptr; 3883 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3884 ++ptr; 3885 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3886 return 1; 3887 } 3888 return 0; 3889 } 3890 3891 /* Fast parse options. This hopes to only see timestamps. 3892 * If it is wrong it falls back on tcp_parse_options(). 3893 */ 3894 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3895 struct tcp_sock *tp, u8 **hvpp) 3896 { 3897 /* In the spirit of fast parsing, compare doff directly to constant 3898 * values. Because equality is used, short doff can be ignored here. 3899 */ 3900 if (th->doff == (sizeof(*th) / 4)) { 3901 tp->rx_opt.saw_tstamp = 0; 3902 return 0; 3903 } else if (tp->rx_opt.tstamp_ok && 3904 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3905 if (tcp_parse_aligned_timestamp(tp, th)) 3906 return 1; 3907 } 3908 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); 3909 return 1; 3910 } 3911 3912 #ifdef CONFIG_TCP_MD5SIG 3913 /* 3914 * Parse MD5 Signature option 3915 */ 3916 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3917 { 3918 int length = (th->doff << 2) - sizeof (*th); 3919 u8 *ptr = (u8*)(th + 1); 3920 3921 /* If the TCP option is too short, we can short cut */ 3922 if (length < TCPOLEN_MD5SIG) 3923 return NULL; 3924 3925 while (length > 0) { 3926 int opcode = *ptr++; 3927 int opsize; 3928 3929 switch(opcode) { 3930 case TCPOPT_EOL: 3931 return NULL; 3932 case TCPOPT_NOP: 3933 length--; 3934 continue; 3935 default: 3936 opsize = *ptr++; 3937 if (opsize < 2 || opsize > length) 3938 return NULL; 3939 if (opcode == TCPOPT_MD5SIG) 3940 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3941 } 3942 ptr += opsize - 2; 3943 length -= opsize; 3944 } 3945 return NULL; 3946 } 3947 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3948 #endif 3949 3950 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3951 { 3952 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3953 tp->rx_opt.ts_recent_stamp = get_seconds(); 3954 } 3955 3956 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3957 { 3958 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3959 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3960 * extra check below makes sure this can only happen 3961 * for pure ACK frames. -DaveM 3962 * 3963 * Not only, also it occurs for expired timestamps. 3964 */ 3965 3966 if (tcp_paws_check(&tp->rx_opt, 0)) 3967 tcp_store_ts_recent(tp); 3968 } 3969 } 3970 3971 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3972 * 3973 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3974 * it can pass through stack. So, the following predicate verifies that 3975 * this segment is not used for anything but congestion avoidance or 3976 * fast retransmit. Moreover, we even are able to eliminate most of such 3977 * second order effects, if we apply some small "replay" window (~RTO) 3978 * to timestamp space. 3979 * 3980 * All these measures still do not guarantee that we reject wrapped ACKs 3981 * on networks with high bandwidth, when sequence space is recycled fastly, 3982 * but it guarantees that such events will be very rare and do not affect 3983 * connection seriously. This doesn't look nice, but alas, PAWS is really 3984 * buggy extension. 3985 * 3986 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3987 * states that events when retransmit arrives after original data are rare. 3988 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3989 * the biggest problem on large power networks even with minor reordering. 3990 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3991 * up to bandwidth of 18Gigabit/sec. 8) ] 3992 */ 3993 3994 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3995 { 3996 struct tcp_sock *tp = tcp_sk(sk); 3997 struct tcphdr *th = tcp_hdr(skb); 3998 u32 seq = TCP_SKB_CB(skb)->seq; 3999 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4000 4001 return (/* 1. Pure ACK with correct sequence number. */ 4002 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4003 4004 /* 2. ... and duplicate ACK. */ 4005 ack == tp->snd_una && 4006 4007 /* 3. ... and does not update window. */ 4008 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4009 4010 /* 4. ... and sits in replay window. */ 4011 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4012 } 4013 4014 static inline int tcp_paws_discard(const struct sock *sk, 4015 const struct sk_buff *skb) 4016 { 4017 const struct tcp_sock *tp = tcp_sk(sk); 4018 4019 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4020 !tcp_disordered_ack(sk, skb); 4021 } 4022 4023 /* Check segment sequence number for validity. 4024 * 4025 * Segment controls are considered valid, if the segment 4026 * fits to the window after truncation to the window. Acceptability 4027 * of data (and SYN, FIN, of course) is checked separately. 4028 * See tcp_data_queue(), for example. 4029 * 4030 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4031 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4032 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4033 * (borrowed from freebsd) 4034 */ 4035 4036 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 4037 { 4038 return !before(end_seq, tp->rcv_wup) && 4039 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4040 } 4041 4042 /* When we get a reset we do this. */ 4043 static void tcp_reset(struct sock *sk) 4044 { 4045 /* We want the right error as BSD sees it (and indeed as we do). */ 4046 switch (sk->sk_state) { 4047 case TCP_SYN_SENT: 4048 sk->sk_err = ECONNREFUSED; 4049 break; 4050 case TCP_CLOSE_WAIT: 4051 sk->sk_err = EPIPE; 4052 break; 4053 case TCP_CLOSE: 4054 return; 4055 default: 4056 sk->sk_err = ECONNRESET; 4057 } 4058 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4059 smp_wmb(); 4060 4061 if (!sock_flag(sk, SOCK_DEAD)) 4062 sk->sk_error_report(sk); 4063 4064 tcp_done(sk); 4065 } 4066 4067 /* 4068 * Process the FIN bit. This now behaves as it is supposed to work 4069 * and the FIN takes effect when it is validly part of sequence 4070 * space. Not before when we get holes. 4071 * 4072 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4073 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4074 * TIME-WAIT) 4075 * 4076 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4077 * close and we go into CLOSING (and later onto TIME-WAIT) 4078 * 4079 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4080 */ 4081 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 4082 { 4083 struct tcp_sock *tp = tcp_sk(sk); 4084 4085 inet_csk_schedule_ack(sk); 4086 4087 sk->sk_shutdown |= RCV_SHUTDOWN; 4088 sock_set_flag(sk, SOCK_DONE); 4089 4090 switch (sk->sk_state) { 4091 case TCP_SYN_RECV: 4092 case TCP_ESTABLISHED: 4093 /* Move to CLOSE_WAIT */ 4094 tcp_set_state(sk, TCP_CLOSE_WAIT); 4095 inet_csk(sk)->icsk_ack.pingpong = 1; 4096 break; 4097 4098 case TCP_CLOSE_WAIT: 4099 case TCP_CLOSING: 4100 /* Received a retransmission of the FIN, do 4101 * nothing. 4102 */ 4103 break; 4104 case TCP_LAST_ACK: 4105 /* RFC793: Remain in the LAST-ACK state. */ 4106 break; 4107 4108 case TCP_FIN_WAIT1: 4109 /* This case occurs when a simultaneous close 4110 * happens, we must ack the received FIN and 4111 * enter the CLOSING state. 4112 */ 4113 tcp_send_ack(sk); 4114 tcp_set_state(sk, TCP_CLOSING); 4115 break; 4116 case TCP_FIN_WAIT2: 4117 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4118 tcp_send_ack(sk); 4119 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4120 break; 4121 default: 4122 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4123 * cases we should never reach this piece of code. 4124 */ 4125 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4126 __func__, sk->sk_state); 4127 break; 4128 } 4129 4130 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4131 * Probably, we should reset in this case. For now drop them. 4132 */ 4133 __skb_queue_purge(&tp->out_of_order_queue); 4134 if (tcp_is_sack(tp)) 4135 tcp_sack_reset(&tp->rx_opt); 4136 sk_mem_reclaim(sk); 4137 4138 if (!sock_flag(sk, SOCK_DEAD)) { 4139 sk->sk_state_change(sk); 4140 4141 /* Do not send POLL_HUP for half duplex close. */ 4142 if (sk->sk_shutdown == SHUTDOWN_MASK || 4143 sk->sk_state == TCP_CLOSE) 4144 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4145 else 4146 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4147 } 4148 } 4149 4150 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4151 u32 end_seq) 4152 { 4153 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4154 if (before(seq, sp->start_seq)) 4155 sp->start_seq = seq; 4156 if (after(end_seq, sp->end_seq)) 4157 sp->end_seq = end_seq; 4158 return 1; 4159 } 4160 return 0; 4161 } 4162 4163 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4164 { 4165 struct tcp_sock *tp = tcp_sk(sk); 4166 4167 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4168 int mib_idx; 4169 4170 if (before(seq, tp->rcv_nxt)) 4171 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4172 else 4173 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4174 4175 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4176 4177 tp->rx_opt.dsack = 1; 4178 tp->duplicate_sack[0].start_seq = seq; 4179 tp->duplicate_sack[0].end_seq = end_seq; 4180 } 4181 } 4182 4183 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4184 { 4185 struct tcp_sock *tp = tcp_sk(sk); 4186 4187 if (!tp->rx_opt.dsack) 4188 tcp_dsack_set(sk, seq, end_seq); 4189 else 4190 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4191 } 4192 4193 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4194 { 4195 struct tcp_sock *tp = tcp_sk(sk); 4196 4197 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4198 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4199 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4200 tcp_enter_quickack_mode(sk); 4201 4202 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4203 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4204 4205 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4206 end_seq = tp->rcv_nxt; 4207 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4208 } 4209 } 4210 4211 tcp_send_ack(sk); 4212 } 4213 4214 /* These routines update the SACK block as out-of-order packets arrive or 4215 * in-order packets close up the sequence space. 4216 */ 4217 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4218 { 4219 int this_sack; 4220 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4221 struct tcp_sack_block *swalk = sp + 1; 4222 4223 /* See if the recent change to the first SACK eats into 4224 * or hits the sequence space of other SACK blocks, if so coalesce. 4225 */ 4226 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4227 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4228 int i; 4229 4230 /* Zap SWALK, by moving every further SACK up by one slot. 4231 * Decrease num_sacks. 4232 */ 4233 tp->rx_opt.num_sacks--; 4234 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4235 sp[i] = sp[i + 1]; 4236 continue; 4237 } 4238 this_sack++, swalk++; 4239 } 4240 } 4241 4242 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4243 { 4244 struct tcp_sock *tp = tcp_sk(sk); 4245 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4246 int cur_sacks = tp->rx_opt.num_sacks; 4247 int this_sack; 4248 4249 if (!cur_sacks) 4250 goto new_sack; 4251 4252 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4253 if (tcp_sack_extend(sp, seq, end_seq)) { 4254 /* Rotate this_sack to the first one. */ 4255 for (; this_sack > 0; this_sack--, sp--) 4256 swap(*sp, *(sp - 1)); 4257 if (cur_sacks > 1) 4258 tcp_sack_maybe_coalesce(tp); 4259 return; 4260 } 4261 } 4262 4263 /* Could not find an adjacent existing SACK, build a new one, 4264 * put it at the front, and shift everyone else down. We 4265 * always know there is at least one SACK present already here. 4266 * 4267 * If the sack array is full, forget about the last one. 4268 */ 4269 if (this_sack >= TCP_NUM_SACKS) { 4270 this_sack--; 4271 tp->rx_opt.num_sacks--; 4272 sp--; 4273 } 4274 for (; this_sack > 0; this_sack--, sp--) 4275 *sp = *(sp - 1); 4276 4277 new_sack: 4278 /* Build the new head SACK, and we're done. */ 4279 sp->start_seq = seq; 4280 sp->end_seq = end_seq; 4281 tp->rx_opt.num_sacks++; 4282 } 4283 4284 /* RCV.NXT advances, some SACKs should be eaten. */ 4285 4286 static void tcp_sack_remove(struct tcp_sock *tp) 4287 { 4288 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4289 int num_sacks = tp->rx_opt.num_sacks; 4290 int this_sack; 4291 4292 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4293 if (skb_queue_empty(&tp->out_of_order_queue)) { 4294 tp->rx_opt.num_sacks = 0; 4295 return; 4296 } 4297 4298 for (this_sack = 0; this_sack < num_sacks;) { 4299 /* Check if the start of the sack is covered by RCV.NXT. */ 4300 if (!before(tp->rcv_nxt, sp->start_seq)) { 4301 int i; 4302 4303 /* RCV.NXT must cover all the block! */ 4304 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4305 4306 /* Zap this SACK, by moving forward any other SACKS. */ 4307 for (i=this_sack+1; i < num_sacks; i++) 4308 tp->selective_acks[i-1] = tp->selective_acks[i]; 4309 num_sacks--; 4310 continue; 4311 } 4312 this_sack++; 4313 sp++; 4314 } 4315 tp->rx_opt.num_sacks = num_sacks; 4316 } 4317 4318 /* This one checks to see if we can put data from the 4319 * out_of_order queue into the receive_queue. 4320 */ 4321 static void tcp_ofo_queue(struct sock *sk) 4322 { 4323 struct tcp_sock *tp = tcp_sk(sk); 4324 __u32 dsack_high = tp->rcv_nxt; 4325 struct sk_buff *skb; 4326 4327 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4328 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4329 break; 4330 4331 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4332 __u32 dsack = dsack_high; 4333 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4334 dsack_high = TCP_SKB_CB(skb)->end_seq; 4335 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4336 } 4337 4338 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4339 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4340 __skb_unlink(skb, &tp->out_of_order_queue); 4341 __kfree_skb(skb); 4342 continue; 4343 } 4344 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4345 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4346 TCP_SKB_CB(skb)->end_seq); 4347 4348 __skb_unlink(skb, &tp->out_of_order_queue); 4349 __skb_queue_tail(&sk->sk_receive_queue, skb); 4350 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4351 if (tcp_hdr(skb)->fin) 4352 tcp_fin(skb, sk, tcp_hdr(skb)); 4353 } 4354 } 4355 4356 static int tcp_prune_ofo_queue(struct sock *sk); 4357 static int tcp_prune_queue(struct sock *sk); 4358 4359 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4360 { 4361 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4362 !sk_rmem_schedule(sk, size)) { 4363 4364 if (tcp_prune_queue(sk) < 0) 4365 return -1; 4366 4367 if (!sk_rmem_schedule(sk, size)) { 4368 if (!tcp_prune_ofo_queue(sk)) 4369 return -1; 4370 4371 if (!sk_rmem_schedule(sk, size)) 4372 return -1; 4373 } 4374 } 4375 return 0; 4376 } 4377 4378 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4379 { 4380 struct tcphdr *th = tcp_hdr(skb); 4381 struct tcp_sock *tp = tcp_sk(sk); 4382 int eaten = -1; 4383 4384 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4385 goto drop; 4386 4387 skb_dst_drop(skb); 4388 __skb_pull(skb, th->doff * 4); 4389 4390 TCP_ECN_accept_cwr(tp, skb); 4391 4392 tp->rx_opt.dsack = 0; 4393 4394 /* Queue data for delivery to the user. 4395 * Packets in sequence go to the receive queue. 4396 * Out of sequence packets to the out_of_order_queue. 4397 */ 4398 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4399 if (tcp_receive_window(tp) == 0) 4400 goto out_of_window; 4401 4402 /* Ok. In sequence. In window. */ 4403 if (tp->ucopy.task == current && 4404 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4405 sock_owned_by_user(sk) && !tp->urg_data) { 4406 int chunk = min_t(unsigned int, skb->len, 4407 tp->ucopy.len); 4408 4409 __set_current_state(TASK_RUNNING); 4410 4411 local_bh_enable(); 4412 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4413 tp->ucopy.len -= chunk; 4414 tp->copied_seq += chunk; 4415 eaten = (chunk == skb->len); 4416 tcp_rcv_space_adjust(sk); 4417 } 4418 local_bh_disable(); 4419 } 4420 4421 if (eaten <= 0) { 4422 queue_and_out: 4423 if (eaten < 0 && 4424 tcp_try_rmem_schedule(sk, skb->truesize)) 4425 goto drop; 4426 4427 skb_set_owner_r(skb, sk); 4428 __skb_queue_tail(&sk->sk_receive_queue, skb); 4429 } 4430 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4431 if (skb->len) 4432 tcp_event_data_recv(sk, skb); 4433 if (th->fin) 4434 tcp_fin(skb, sk, th); 4435 4436 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4437 tcp_ofo_queue(sk); 4438 4439 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4440 * gap in queue is filled. 4441 */ 4442 if (skb_queue_empty(&tp->out_of_order_queue)) 4443 inet_csk(sk)->icsk_ack.pingpong = 0; 4444 } 4445 4446 if (tp->rx_opt.num_sacks) 4447 tcp_sack_remove(tp); 4448 4449 tcp_fast_path_check(sk); 4450 4451 if (eaten > 0) 4452 __kfree_skb(skb); 4453 else if (!sock_flag(sk, SOCK_DEAD)) 4454 sk->sk_data_ready(sk, 0); 4455 return; 4456 } 4457 4458 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4459 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4460 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4461 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4462 4463 out_of_window: 4464 tcp_enter_quickack_mode(sk); 4465 inet_csk_schedule_ack(sk); 4466 drop: 4467 __kfree_skb(skb); 4468 return; 4469 } 4470 4471 /* Out of window. F.e. zero window probe. */ 4472 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4473 goto out_of_window; 4474 4475 tcp_enter_quickack_mode(sk); 4476 4477 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4478 /* Partial packet, seq < rcv_next < end_seq */ 4479 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4480 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4481 TCP_SKB_CB(skb)->end_seq); 4482 4483 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4484 4485 /* If window is closed, drop tail of packet. But after 4486 * remembering D-SACK for its head made in previous line. 4487 */ 4488 if (!tcp_receive_window(tp)) 4489 goto out_of_window; 4490 goto queue_and_out; 4491 } 4492 4493 TCP_ECN_check_ce(tp, skb); 4494 4495 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4496 goto drop; 4497 4498 /* Disable header prediction. */ 4499 tp->pred_flags = 0; 4500 inet_csk_schedule_ack(sk); 4501 4502 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4503 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4504 4505 skb_set_owner_r(skb, sk); 4506 4507 if (!skb_peek(&tp->out_of_order_queue)) { 4508 /* Initial out of order segment, build 1 SACK. */ 4509 if (tcp_is_sack(tp)) { 4510 tp->rx_opt.num_sacks = 1; 4511 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4512 tp->selective_acks[0].end_seq = 4513 TCP_SKB_CB(skb)->end_seq; 4514 } 4515 __skb_queue_head(&tp->out_of_order_queue, skb); 4516 } else { 4517 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue); 4518 u32 seq = TCP_SKB_CB(skb)->seq; 4519 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4520 4521 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4522 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4523 4524 if (!tp->rx_opt.num_sacks || 4525 tp->selective_acks[0].end_seq != seq) 4526 goto add_sack; 4527 4528 /* Common case: data arrive in order after hole. */ 4529 tp->selective_acks[0].end_seq = end_seq; 4530 return; 4531 } 4532 4533 /* Find place to insert this segment. */ 4534 while (1) { 4535 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4536 break; 4537 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4538 skb1 = NULL; 4539 break; 4540 } 4541 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4542 } 4543 4544 /* Do skb overlap to previous one? */ 4545 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4546 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4547 /* All the bits are present. Drop. */ 4548 __kfree_skb(skb); 4549 tcp_dsack_set(sk, seq, end_seq); 4550 goto add_sack; 4551 } 4552 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4553 /* Partial overlap. */ 4554 tcp_dsack_set(sk, seq, 4555 TCP_SKB_CB(skb1)->end_seq); 4556 } else { 4557 if (skb_queue_is_first(&tp->out_of_order_queue, 4558 skb1)) 4559 skb1 = NULL; 4560 else 4561 skb1 = skb_queue_prev( 4562 &tp->out_of_order_queue, 4563 skb1); 4564 } 4565 } 4566 if (!skb1) 4567 __skb_queue_head(&tp->out_of_order_queue, skb); 4568 else 4569 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4570 4571 /* And clean segments covered by new one as whole. */ 4572 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4573 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4574 4575 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4576 break; 4577 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4578 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4579 end_seq); 4580 break; 4581 } 4582 __skb_unlink(skb1, &tp->out_of_order_queue); 4583 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4584 TCP_SKB_CB(skb1)->end_seq); 4585 __kfree_skb(skb1); 4586 } 4587 4588 add_sack: 4589 if (tcp_is_sack(tp)) 4590 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4591 } 4592 } 4593 4594 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4595 struct sk_buff_head *list) 4596 { 4597 struct sk_buff *next = NULL; 4598 4599 if (!skb_queue_is_last(list, skb)) 4600 next = skb_queue_next(list, skb); 4601 4602 __skb_unlink(skb, list); 4603 __kfree_skb(skb); 4604 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4605 4606 return next; 4607 } 4608 4609 /* Collapse contiguous sequence of skbs head..tail with 4610 * sequence numbers start..end. 4611 * 4612 * If tail is NULL, this means until the end of the list. 4613 * 4614 * Segments with FIN/SYN are not collapsed (only because this 4615 * simplifies code) 4616 */ 4617 static void 4618 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4619 struct sk_buff *head, struct sk_buff *tail, 4620 u32 start, u32 end) 4621 { 4622 struct sk_buff *skb, *n; 4623 bool end_of_skbs; 4624 4625 /* First, check that queue is collapsible and find 4626 * the point where collapsing can be useful. */ 4627 skb = head; 4628 restart: 4629 end_of_skbs = true; 4630 skb_queue_walk_from_safe(list, skb, n) { 4631 if (skb == tail) 4632 break; 4633 /* No new bits? It is possible on ofo queue. */ 4634 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4635 skb = tcp_collapse_one(sk, skb, list); 4636 if (!skb) 4637 break; 4638 goto restart; 4639 } 4640 4641 /* The first skb to collapse is: 4642 * - not SYN/FIN and 4643 * - bloated or contains data before "start" or 4644 * overlaps to the next one. 4645 */ 4646 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4647 (tcp_win_from_space(skb->truesize) > skb->len || 4648 before(TCP_SKB_CB(skb)->seq, start))) { 4649 end_of_skbs = false; 4650 break; 4651 } 4652 4653 if (!skb_queue_is_last(list, skb)) { 4654 struct sk_buff *next = skb_queue_next(list, skb); 4655 if (next != tail && 4656 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4657 end_of_skbs = false; 4658 break; 4659 } 4660 } 4661 4662 /* Decided to skip this, advance start seq. */ 4663 start = TCP_SKB_CB(skb)->end_seq; 4664 } 4665 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4666 return; 4667 4668 while (before(start, end)) { 4669 struct sk_buff *nskb; 4670 unsigned int header = skb_headroom(skb); 4671 int copy = SKB_MAX_ORDER(header, 0); 4672 4673 /* Too big header? This can happen with IPv6. */ 4674 if (copy < 0) 4675 return; 4676 if (end - start < copy) 4677 copy = end - start; 4678 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4679 if (!nskb) 4680 return; 4681 4682 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4683 skb_set_network_header(nskb, (skb_network_header(skb) - 4684 skb->head)); 4685 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4686 skb->head)); 4687 skb_reserve(nskb, header); 4688 memcpy(nskb->head, skb->head, header); 4689 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4690 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4691 __skb_queue_before(list, skb, nskb); 4692 skb_set_owner_r(nskb, sk); 4693 4694 /* Copy data, releasing collapsed skbs. */ 4695 while (copy > 0) { 4696 int offset = start - TCP_SKB_CB(skb)->seq; 4697 int size = TCP_SKB_CB(skb)->end_seq - start; 4698 4699 BUG_ON(offset < 0); 4700 if (size > 0) { 4701 size = min(copy, size); 4702 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4703 BUG(); 4704 TCP_SKB_CB(nskb)->end_seq += size; 4705 copy -= size; 4706 start += size; 4707 } 4708 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4709 skb = tcp_collapse_one(sk, skb, list); 4710 if (!skb || 4711 skb == tail || 4712 tcp_hdr(skb)->syn || 4713 tcp_hdr(skb)->fin) 4714 return; 4715 } 4716 } 4717 } 4718 } 4719 4720 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4721 * and tcp_collapse() them until all the queue is collapsed. 4722 */ 4723 static void tcp_collapse_ofo_queue(struct sock *sk) 4724 { 4725 struct tcp_sock *tp = tcp_sk(sk); 4726 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4727 struct sk_buff *head; 4728 u32 start, end; 4729 4730 if (skb == NULL) 4731 return; 4732 4733 start = TCP_SKB_CB(skb)->seq; 4734 end = TCP_SKB_CB(skb)->end_seq; 4735 head = skb; 4736 4737 for (;;) { 4738 struct sk_buff *next = NULL; 4739 4740 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4741 next = skb_queue_next(&tp->out_of_order_queue, skb); 4742 skb = next; 4743 4744 /* Segment is terminated when we see gap or when 4745 * we are at the end of all the queue. */ 4746 if (!skb || 4747 after(TCP_SKB_CB(skb)->seq, end) || 4748 before(TCP_SKB_CB(skb)->end_seq, start)) { 4749 tcp_collapse(sk, &tp->out_of_order_queue, 4750 head, skb, start, end); 4751 head = skb; 4752 if (!skb) 4753 break; 4754 /* Start new segment */ 4755 start = TCP_SKB_CB(skb)->seq; 4756 end = TCP_SKB_CB(skb)->end_seq; 4757 } else { 4758 if (before(TCP_SKB_CB(skb)->seq, start)) 4759 start = TCP_SKB_CB(skb)->seq; 4760 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4761 end = TCP_SKB_CB(skb)->end_seq; 4762 } 4763 } 4764 } 4765 4766 /* 4767 * Purge the out-of-order queue. 4768 * Return true if queue was pruned. 4769 */ 4770 static int tcp_prune_ofo_queue(struct sock *sk) 4771 { 4772 struct tcp_sock *tp = tcp_sk(sk); 4773 int res = 0; 4774 4775 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4776 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4777 __skb_queue_purge(&tp->out_of_order_queue); 4778 4779 /* Reset SACK state. A conforming SACK implementation will 4780 * do the same at a timeout based retransmit. When a connection 4781 * is in a sad state like this, we care only about integrity 4782 * of the connection not performance. 4783 */ 4784 if (tp->rx_opt.sack_ok) 4785 tcp_sack_reset(&tp->rx_opt); 4786 sk_mem_reclaim(sk); 4787 res = 1; 4788 } 4789 return res; 4790 } 4791 4792 /* Reduce allocated memory if we can, trying to get 4793 * the socket within its memory limits again. 4794 * 4795 * Return less than zero if we should start dropping frames 4796 * until the socket owning process reads some of the data 4797 * to stabilize the situation. 4798 */ 4799 static int tcp_prune_queue(struct sock *sk) 4800 { 4801 struct tcp_sock *tp = tcp_sk(sk); 4802 4803 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4804 4805 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4806 4807 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4808 tcp_clamp_window(sk); 4809 else if (tcp_memory_pressure) 4810 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4811 4812 tcp_collapse_ofo_queue(sk); 4813 if (!skb_queue_empty(&sk->sk_receive_queue)) 4814 tcp_collapse(sk, &sk->sk_receive_queue, 4815 skb_peek(&sk->sk_receive_queue), 4816 NULL, 4817 tp->copied_seq, tp->rcv_nxt); 4818 sk_mem_reclaim(sk); 4819 4820 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4821 return 0; 4822 4823 /* Collapsing did not help, destructive actions follow. 4824 * This must not ever occur. */ 4825 4826 tcp_prune_ofo_queue(sk); 4827 4828 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4829 return 0; 4830 4831 /* If we are really being abused, tell the caller to silently 4832 * drop receive data on the floor. It will get retransmitted 4833 * and hopefully then we'll have sufficient space. 4834 */ 4835 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4836 4837 /* Massive buffer overcommit. */ 4838 tp->pred_flags = 0; 4839 return -1; 4840 } 4841 4842 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4843 * As additional protections, we do not touch cwnd in retransmission phases, 4844 * and if application hit its sndbuf limit recently. 4845 */ 4846 void tcp_cwnd_application_limited(struct sock *sk) 4847 { 4848 struct tcp_sock *tp = tcp_sk(sk); 4849 4850 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4851 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4852 /* Limited by application or receiver window. */ 4853 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4854 u32 win_used = max(tp->snd_cwnd_used, init_win); 4855 if (win_used < tp->snd_cwnd) { 4856 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4857 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4858 } 4859 tp->snd_cwnd_used = 0; 4860 } 4861 tp->snd_cwnd_stamp = tcp_time_stamp; 4862 } 4863 4864 static int tcp_should_expand_sndbuf(struct sock *sk) 4865 { 4866 struct tcp_sock *tp = tcp_sk(sk); 4867 4868 /* If the user specified a specific send buffer setting, do 4869 * not modify it. 4870 */ 4871 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4872 return 0; 4873 4874 /* If we are under global TCP memory pressure, do not expand. */ 4875 if (tcp_memory_pressure) 4876 return 0; 4877 4878 /* If we are under soft global TCP memory pressure, do not expand. */ 4879 if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4880 return 0; 4881 4882 /* If we filled the congestion window, do not expand. */ 4883 if (tp->packets_out >= tp->snd_cwnd) 4884 return 0; 4885 4886 return 1; 4887 } 4888 4889 /* When incoming ACK allowed to free some skb from write_queue, 4890 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4891 * on the exit from tcp input handler. 4892 * 4893 * PROBLEM: sndbuf expansion does not work well with largesend. 4894 */ 4895 static void tcp_new_space(struct sock *sk) 4896 { 4897 struct tcp_sock *tp = tcp_sk(sk); 4898 4899 if (tcp_should_expand_sndbuf(sk)) { 4900 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4901 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4902 int demanded = max_t(unsigned int, tp->snd_cwnd, 4903 tp->reordering + 1); 4904 sndmem *= 2 * demanded; 4905 if (sndmem > sk->sk_sndbuf) 4906 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4907 tp->snd_cwnd_stamp = tcp_time_stamp; 4908 } 4909 4910 sk->sk_write_space(sk); 4911 } 4912 4913 static void tcp_check_space(struct sock *sk) 4914 { 4915 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4916 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4917 if (sk->sk_socket && 4918 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4919 tcp_new_space(sk); 4920 } 4921 } 4922 4923 static inline void tcp_data_snd_check(struct sock *sk) 4924 { 4925 tcp_push_pending_frames(sk); 4926 tcp_check_space(sk); 4927 } 4928 4929 /* 4930 * Check if sending an ack is needed. 4931 */ 4932 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4933 { 4934 struct tcp_sock *tp = tcp_sk(sk); 4935 4936 /* More than one full frame received... */ 4937 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4938 /* ... and right edge of window advances far enough. 4939 * (tcp_recvmsg() will send ACK otherwise). Or... 4940 */ 4941 __tcp_select_window(sk) >= tp->rcv_wnd) || 4942 /* We ACK each frame or... */ 4943 tcp_in_quickack_mode(sk) || 4944 /* We have out of order data. */ 4945 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4946 /* Then ack it now */ 4947 tcp_send_ack(sk); 4948 } else { 4949 /* Else, send delayed ack. */ 4950 tcp_send_delayed_ack(sk); 4951 } 4952 } 4953 4954 static inline void tcp_ack_snd_check(struct sock *sk) 4955 { 4956 if (!inet_csk_ack_scheduled(sk)) { 4957 /* We sent a data segment already. */ 4958 return; 4959 } 4960 __tcp_ack_snd_check(sk, 1); 4961 } 4962 4963 /* 4964 * This routine is only called when we have urgent data 4965 * signaled. Its the 'slow' part of tcp_urg. It could be 4966 * moved inline now as tcp_urg is only called from one 4967 * place. We handle URGent data wrong. We have to - as 4968 * BSD still doesn't use the correction from RFC961. 4969 * For 1003.1g we should support a new option TCP_STDURG to permit 4970 * either form (or just set the sysctl tcp_stdurg). 4971 */ 4972 4973 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4974 { 4975 struct tcp_sock *tp = tcp_sk(sk); 4976 u32 ptr = ntohs(th->urg_ptr); 4977 4978 if (ptr && !sysctl_tcp_stdurg) 4979 ptr--; 4980 ptr += ntohl(th->seq); 4981 4982 /* Ignore urgent data that we've already seen and read. */ 4983 if (after(tp->copied_seq, ptr)) 4984 return; 4985 4986 /* Do not replay urg ptr. 4987 * 4988 * NOTE: interesting situation not covered by specs. 4989 * Misbehaving sender may send urg ptr, pointing to segment, 4990 * which we already have in ofo queue. We are not able to fetch 4991 * such data and will stay in TCP_URG_NOTYET until will be eaten 4992 * by recvmsg(). Seems, we are not obliged to handle such wicked 4993 * situations. But it is worth to think about possibility of some 4994 * DoSes using some hypothetical application level deadlock. 4995 */ 4996 if (before(ptr, tp->rcv_nxt)) 4997 return; 4998 4999 /* Do we already have a newer (or duplicate) urgent pointer? */ 5000 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5001 return; 5002 5003 /* Tell the world about our new urgent pointer. */ 5004 sk_send_sigurg(sk); 5005 5006 /* We may be adding urgent data when the last byte read was 5007 * urgent. To do this requires some care. We cannot just ignore 5008 * tp->copied_seq since we would read the last urgent byte again 5009 * as data, nor can we alter copied_seq until this data arrives 5010 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5011 * 5012 * NOTE. Double Dutch. Rendering to plain English: author of comment 5013 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5014 * and expect that both A and B disappear from stream. This is _wrong_. 5015 * Though this happens in BSD with high probability, this is occasional. 5016 * Any application relying on this is buggy. Note also, that fix "works" 5017 * only in this artificial test. Insert some normal data between A and B and we will 5018 * decline of BSD again. Verdict: it is better to remove to trap 5019 * buggy users. 5020 */ 5021 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5022 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5023 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5024 tp->copied_seq++; 5025 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5026 __skb_unlink(skb, &sk->sk_receive_queue); 5027 __kfree_skb(skb); 5028 } 5029 } 5030 5031 tp->urg_data = TCP_URG_NOTYET; 5032 tp->urg_seq = ptr; 5033 5034 /* Disable header prediction. */ 5035 tp->pred_flags = 0; 5036 } 5037 5038 /* This is the 'fast' part of urgent handling. */ 5039 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 5040 { 5041 struct tcp_sock *tp = tcp_sk(sk); 5042 5043 /* Check if we get a new urgent pointer - normally not. */ 5044 if (th->urg) 5045 tcp_check_urg(sk, th); 5046 5047 /* Do we wait for any urgent data? - normally not... */ 5048 if (tp->urg_data == TCP_URG_NOTYET) { 5049 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5050 th->syn; 5051 5052 /* Is the urgent pointer pointing into this packet? */ 5053 if (ptr < skb->len) { 5054 u8 tmp; 5055 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5056 BUG(); 5057 tp->urg_data = TCP_URG_VALID | tmp; 5058 if (!sock_flag(sk, SOCK_DEAD)) 5059 sk->sk_data_ready(sk, 0); 5060 } 5061 } 5062 } 5063 5064 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5065 { 5066 struct tcp_sock *tp = tcp_sk(sk); 5067 int chunk = skb->len - hlen; 5068 int err; 5069 5070 local_bh_enable(); 5071 if (skb_csum_unnecessary(skb)) 5072 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5073 else 5074 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5075 tp->ucopy.iov); 5076 5077 if (!err) { 5078 tp->ucopy.len -= chunk; 5079 tp->copied_seq += chunk; 5080 tcp_rcv_space_adjust(sk); 5081 } 5082 5083 local_bh_disable(); 5084 return err; 5085 } 5086 5087 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5088 struct sk_buff *skb) 5089 { 5090 __sum16 result; 5091 5092 if (sock_owned_by_user(sk)) { 5093 local_bh_enable(); 5094 result = __tcp_checksum_complete(skb); 5095 local_bh_disable(); 5096 } else { 5097 result = __tcp_checksum_complete(skb); 5098 } 5099 return result; 5100 } 5101 5102 static inline int tcp_checksum_complete_user(struct sock *sk, 5103 struct sk_buff *skb) 5104 { 5105 return !skb_csum_unnecessary(skb) && 5106 __tcp_checksum_complete_user(sk, skb); 5107 } 5108 5109 #ifdef CONFIG_NET_DMA 5110 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5111 int hlen) 5112 { 5113 struct tcp_sock *tp = tcp_sk(sk); 5114 int chunk = skb->len - hlen; 5115 int dma_cookie; 5116 int copied_early = 0; 5117 5118 if (tp->ucopy.wakeup) 5119 return 0; 5120 5121 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5122 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5123 5124 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5125 5126 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5127 skb, hlen, 5128 tp->ucopy.iov, chunk, 5129 tp->ucopy.pinned_list); 5130 5131 if (dma_cookie < 0) 5132 goto out; 5133 5134 tp->ucopy.dma_cookie = dma_cookie; 5135 copied_early = 1; 5136 5137 tp->ucopy.len -= chunk; 5138 tp->copied_seq += chunk; 5139 tcp_rcv_space_adjust(sk); 5140 5141 if ((tp->ucopy.len == 0) || 5142 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5143 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5144 tp->ucopy.wakeup = 1; 5145 sk->sk_data_ready(sk, 0); 5146 } 5147 } else if (chunk > 0) { 5148 tp->ucopy.wakeup = 1; 5149 sk->sk_data_ready(sk, 0); 5150 } 5151 out: 5152 return copied_early; 5153 } 5154 #endif /* CONFIG_NET_DMA */ 5155 5156 /* Does PAWS and seqno based validation of an incoming segment, flags will 5157 * play significant role here. 5158 */ 5159 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5160 struct tcphdr *th, int syn_inerr) 5161 { 5162 u8 *hash_location; 5163 struct tcp_sock *tp = tcp_sk(sk); 5164 5165 /* RFC1323: H1. Apply PAWS check first. */ 5166 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5167 tp->rx_opt.saw_tstamp && 5168 tcp_paws_discard(sk, skb)) { 5169 if (!th->rst) { 5170 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5171 tcp_send_dupack(sk, skb); 5172 goto discard; 5173 } 5174 /* Reset is accepted even if it did not pass PAWS. */ 5175 } 5176 5177 /* Step 1: check sequence number */ 5178 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5179 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5180 * (RST) segments are validated by checking their SEQ-fields." 5181 * And page 69: "If an incoming segment is not acceptable, 5182 * an acknowledgment should be sent in reply (unless the RST 5183 * bit is set, if so drop the segment and return)". 5184 */ 5185 if (!th->rst) 5186 tcp_send_dupack(sk, skb); 5187 goto discard; 5188 } 5189 5190 /* Step 2: check RST bit */ 5191 if (th->rst) { 5192 tcp_reset(sk); 5193 goto discard; 5194 } 5195 5196 /* ts_recent update must be made after we are sure that the packet 5197 * is in window. 5198 */ 5199 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5200 5201 /* step 3: check security and precedence [ignored] */ 5202 5203 /* step 4: Check for a SYN in window. */ 5204 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5205 if (syn_inerr) 5206 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5207 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5208 tcp_reset(sk); 5209 return -1; 5210 } 5211 5212 return 1; 5213 5214 discard: 5215 __kfree_skb(skb); 5216 return 0; 5217 } 5218 5219 /* 5220 * TCP receive function for the ESTABLISHED state. 5221 * 5222 * It is split into a fast path and a slow path. The fast path is 5223 * disabled when: 5224 * - A zero window was announced from us - zero window probing 5225 * is only handled properly in the slow path. 5226 * - Out of order segments arrived. 5227 * - Urgent data is expected. 5228 * - There is no buffer space left 5229 * - Unexpected TCP flags/window values/header lengths are received 5230 * (detected by checking the TCP header against pred_flags) 5231 * - Data is sent in both directions. Fast path only supports pure senders 5232 * or pure receivers (this means either the sequence number or the ack 5233 * value must stay constant) 5234 * - Unexpected TCP option. 5235 * 5236 * When these conditions are not satisfied it drops into a standard 5237 * receive procedure patterned after RFC793 to handle all cases. 5238 * The first three cases are guaranteed by proper pred_flags setting, 5239 * the rest is checked inline. Fast processing is turned on in 5240 * tcp_data_queue when everything is OK. 5241 */ 5242 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5243 struct tcphdr *th, unsigned len) 5244 { 5245 struct tcp_sock *tp = tcp_sk(sk); 5246 int res; 5247 5248 /* 5249 * Header prediction. 5250 * The code loosely follows the one in the famous 5251 * "30 instruction TCP receive" Van Jacobson mail. 5252 * 5253 * Van's trick is to deposit buffers into socket queue 5254 * on a device interrupt, to call tcp_recv function 5255 * on the receive process context and checksum and copy 5256 * the buffer to user space. smart... 5257 * 5258 * Our current scheme is not silly either but we take the 5259 * extra cost of the net_bh soft interrupt processing... 5260 * We do checksum and copy also but from device to kernel. 5261 */ 5262 5263 tp->rx_opt.saw_tstamp = 0; 5264 5265 /* pred_flags is 0xS?10 << 16 + snd_wnd 5266 * if header_prediction is to be made 5267 * 'S' will always be tp->tcp_header_len >> 2 5268 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5269 * turn it off (when there are holes in the receive 5270 * space for instance) 5271 * PSH flag is ignored. 5272 */ 5273 5274 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5275 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5276 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5277 int tcp_header_len = tp->tcp_header_len; 5278 5279 /* Timestamp header prediction: tcp_header_len 5280 * is automatically equal to th->doff*4 due to pred_flags 5281 * match. 5282 */ 5283 5284 /* Check timestamp */ 5285 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5286 /* No? Slow path! */ 5287 if (!tcp_parse_aligned_timestamp(tp, th)) 5288 goto slow_path; 5289 5290 /* If PAWS failed, check it more carefully in slow path */ 5291 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5292 goto slow_path; 5293 5294 /* DO NOT update ts_recent here, if checksum fails 5295 * and timestamp was corrupted part, it will result 5296 * in a hung connection since we will drop all 5297 * future packets due to the PAWS test. 5298 */ 5299 } 5300 5301 if (len <= tcp_header_len) { 5302 /* Bulk data transfer: sender */ 5303 if (len == tcp_header_len) { 5304 /* Predicted packet is in window by definition. 5305 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5306 * Hence, check seq<=rcv_wup reduces to: 5307 */ 5308 if (tcp_header_len == 5309 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5310 tp->rcv_nxt == tp->rcv_wup) 5311 tcp_store_ts_recent(tp); 5312 5313 /* We know that such packets are checksummed 5314 * on entry. 5315 */ 5316 tcp_ack(sk, skb, 0); 5317 __kfree_skb(skb); 5318 tcp_data_snd_check(sk); 5319 return 0; 5320 } else { /* Header too small */ 5321 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5322 goto discard; 5323 } 5324 } else { 5325 int eaten = 0; 5326 int copied_early = 0; 5327 5328 if (tp->copied_seq == tp->rcv_nxt && 5329 len - tcp_header_len <= tp->ucopy.len) { 5330 #ifdef CONFIG_NET_DMA 5331 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5332 copied_early = 1; 5333 eaten = 1; 5334 } 5335 #endif 5336 if (tp->ucopy.task == current && 5337 sock_owned_by_user(sk) && !copied_early) { 5338 __set_current_state(TASK_RUNNING); 5339 5340 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5341 eaten = 1; 5342 } 5343 if (eaten) { 5344 /* Predicted packet is in window by definition. 5345 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5346 * Hence, check seq<=rcv_wup reduces to: 5347 */ 5348 if (tcp_header_len == 5349 (sizeof(struct tcphdr) + 5350 TCPOLEN_TSTAMP_ALIGNED) && 5351 tp->rcv_nxt == tp->rcv_wup) 5352 tcp_store_ts_recent(tp); 5353 5354 tcp_rcv_rtt_measure_ts(sk, skb); 5355 5356 __skb_pull(skb, tcp_header_len); 5357 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5359 } 5360 if (copied_early) 5361 tcp_cleanup_rbuf(sk, skb->len); 5362 } 5363 if (!eaten) { 5364 if (tcp_checksum_complete_user(sk, skb)) 5365 goto csum_error; 5366 5367 /* Predicted packet is in window by definition. 5368 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5369 * Hence, check seq<=rcv_wup reduces to: 5370 */ 5371 if (tcp_header_len == 5372 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5373 tp->rcv_nxt == tp->rcv_wup) 5374 tcp_store_ts_recent(tp); 5375 5376 tcp_rcv_rtt_measure_ts(sk, skb); 5377 5378 if ((int)skb->truesize > sk->sk_forward_alloc) 5379 goto step5; 5380 5381 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5382 5383 /* Bulk data transfer: receiver */ 5384 __skb_pull(skb, tcp_header_len); 5385 __skb_queue_tail(&sk->sk_receive_queue, skb); 5386 skb_set_owner_r(skb, sk); 5387 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5388 } 5389 5390 tcp_event_data_recv(sk, skb); 5391 5392 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5393 /* Well, only one small jumplet in fast path... */ 5394 tcp_ack(sk, skb, FLAG_DATA); 5395 tcp_data_snd_check(sk); 5396 if (!inet_csk_ack_scheduled(sk)) 5397 goto no_ack; 5398 } 5399 5400 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5401 __tcp_ack_snd_check(sk, 0); 5402 no_ack: 5403 #ifdef CONFIG_NET_DMA 5404 if (copied_early) 5405 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5406 else 5407 #endif 5408 if (eaten) 5409 __kfree_skb(skb); 5410 else 5411 sk->sk_data_ready(sk, 0); 5412 return 0; 5413 } 5414 } 5415 5416 slow_path: 5417 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5418 goto csum_error; 5419 5420 /* 5421 * Standard slow path. 5422 */ 5423 5424 res = tcp_validate_incoming(sk, skb, th, 1); 5425 if (res <= 0) 5426 return -res; 5427 5428 step5: 5429 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5430 goto discard; 5431 5432 tcp_rcv_rtt_measure_ts(sk, skb); 5433 5434 /* Process urgent data. */ 5435 tcp_urg(sk, skb, th); 5436 5437 /* step 7: process the segment text */ 5438 tcp_data_queue(sk, skb); 5439 5440 tcp_data_snd_check(sk); 5441 tcp_ack_snd_check(sk); 5442 return 0; 5443 5444 csum_error: 5445 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5446 5447 discard: 5448 __kfree_skb(skb); 5449 return 0; 5450 } 5451 EXPORT_SYMBOL(tcp_rcv_established); 5452 5453 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5454 struct tcphdr *th, unsigned len) 5455 { 5456 u8 *hash_location; 5457 struct inet_connection_sock *icsk = inet_csk(sk); 5458 struct tcp_sock *tp = tcp_sk(sk); 5459 struct tcp_cookie_values *cvp = tp->cookie_values; 5460 int saved_clamp = tp->rx_opt.mss_clamp; 5461 5462 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0); 5463 5464 if (th->ack) { 5465 /* rfc793: 5466 * "If the state is SYN-SENT then 5467 * first check the ACK bit 5468 * If the ACK bit is set 5469 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5470 * a reset (unless the RST bit is set, if so drop 5471 * the segment and return)" 5472 * 5473 * We do not send data with SYN, so that RFC-correct 5474 * test reduces to: 5475 */ 5476 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5477 goto reset_and_undo; 5478 5479 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5480 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5481 tcp_time_stamp)) { 5482 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5483 goto reset_and_undo; 5484 } 5485 5486 /* Now ACK is acceptable. 5487 * 5488 * "If the RST bit is set 5489 * If the ACK was acceptable then signal the user "error: 5490 * connection reset", drop the segment, enter CLOSED state, 5491 * delete TCB, and return." 5492 */ 5493 5494 if (th->rst) { 5495 tcp_reset(sk); 5496 goto discard; 5497 } 5498 5499 /* rfc793: 5500 * "fifth, if neither of the SYN or RST bits is set then 5501 * drop the segment and return." 5502 * 5503 * See note below! 5504 * --ANK(990513) 5505 */ 5506 if (!th->syn) 5507 goto discard_and_undo; 5508 5509 /* rfc793: 5510 * "If the SYN bit is on ... 5511 * are acceptable then ... 5512 * (our SYN has been ACKed), change the connection 5513 * state to ESTABLISHED..." 5514 */ 5515 5516 TCP_ECN_rcv_synack(tp, th); 5517 5518 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5519 tcp_ack(sk, skb, FLAG_SLOWPATH); 5520 5521 /* Ok.. it's good. Set up sequence numbers and 5522 * move to established. 5523 */ 5524 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5525 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5526 5527 /* RFC1323: The window in SYN & SYN/ACK segments is 5528 * never scaled. 5529 */ 5530 tp->snd_wnd = ntohs(th->window); 5531 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5532 5533 if (!tp->rx_opt.wscale_ok) { 5534 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5535 tp->window_clamp = min(tp->window_clamp, 65535U); 5536 } 5537 5538 if (tp->rx_opt.saw_tstamp) { 5539 tp->rx_opt.tstamp_ok = 1; 5540 tp->tcp_header_len = 5541 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5542 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5543 tcp_store_ts_recent(tp); 5544 } else { 5545 tp->tcp_header_len = sizeof(struct tcphdr); 5546 } 5547 5548 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5549 tcp_enable_fack(tp); 5550 5551 tcp_mtup_init(sk); 5552 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5553 tcp_initialize_rcv_mss(sk); 5554 5555 /* Remember, tcp_poll() does not lock socket! 5556 * Change state from SYN-SENT only after copied_seq 5557 * is initialized. */ 5558 tp->copied_seq = tp->rcv_nxt; 5559 5560 if (cvp != NULL && 5561 cvp->cookie_pair_size > 0 && 5562 tp->rx_opt.cookie_plus > 0) { 5563 int cookie_size = tp->rx_opt.cookie_plus 5564 - TCPOLEN_COOKIE_BASE; 5565 int cookie_pair_size = cookie_size 5566 + cvp->cookie_desired; 5567 5568 /* A cookie extension option was sent and returned. 5569 * Note that each incoming SYNACK replaces the 5570 * Responder cookie. The initial exchange is most 5571 * fragile, as protection against spoofing relies 5572 * entirely upon the sequence and timestamp (above). 5573 * This replacement strategy allows the correct pair to 5574 * pass through, while any others will be filtered via 5575 * Responder verification later. 5576 */ 5577 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5578 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5579 hash_location, cookie_size); 5580 cvp->cookie_pair_size = cookie_pair_size; 5581 } 5582 } 5583 5584 smp_mb(); 5585 tcp_set_state(sk, TCP_ESTABLISHED); 5586 5587 security_inet_conn_established(sk, skb); 5588 5589 /* Make sure socket is routed, for correct metrics. */ 5590 icsk->icsk_af_ops->rebuild_header(sk); 5591 5592 tcp_init_metrics(sk); 5593 5594 tcp_init_congestion_control(sk); 5595 5596 /* Prevent spurious tcp_cwnd_restart() on first data 5597 * packet. 5598 */ 5599 tp->lsndtime = tcp_time_stamp; 5600 5601 tcp_init_buffer_space(sk); 5602 5603 if (sock_flag(sk, SOCK_KEEPOPEN)) 5604 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5605 5606 if (!tp->rx_opt.snd_wscale) 5607 __tcp_fast_path_on(tp, tp->snd_wnd); 5608 else 5609 tp->pred_flags = 0; 5610 5611 if (!sock_flag(sk, SOCK_DEAD)) { 5612 sk->sk_state_change(sk); 5613 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5614 } 5615 5616 if (sk->sk_write_pending || 5617 icsk->icsk_accept_queue.rskq_defer_accept || 5618 icsk->icsk_ack.pingpong) { 5619 /* Save one ACK. Data will be ready after 5620 * several ticks, if write_pending is set. 5621 * 5622 * It may be deleted, but with this feature tcpdumps 5623 * look so _wonderfully_ clever, that I was not able 5624 * to stand against the temptation 8) --ANK 5625 */ 5626 inet_csk_schedule_ack(sk); 5627 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5628 icsk->icsk_ack.ato = TCP_ATO_MIN; 5629 tcp_incr_quickack(sk); 5630 tcp_enter_quickack_mode(sk); 5631 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5632 TCP_DELACK_MAX, TCP_RTO_MAX); 5633 5634 discard: 5635 __kfree_skb(skb); 5636 return 0; 5637 } else { 5638 tcp_send_ack(sk); 5639 } 5640 return -1; 5641 } 5642 5643 /* No ACK in the segment */ 5644 5645 if (th->rst) { 5646 /* rfc793: 5647 * "If the RST bit is set 5648 * 5649 * Otherwise (no ACK) drop the segment and return." 5650 */ 5651 5652 goto discard_and_undo; 5653 } 5654 5655 /* PAWS check. */ 5656 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5657 tcp_paws_reject(&tp->rx_opt, 0)) 5658 goto discard_and_undo; 5659 5660 if (th->syn) { 5661 /* We see SYN without ACK. It is attempt of 5662 * simultaneous connect with crossed SYNs. 5663 * Particularly, it can be connect to self. 5664 */ 5665 tcp_set_state(sk, TCP_SYN_RECV); 5666 5667 if (tp->rx_opt.saw_tstamp) { 5668 tp->rx_opt.tstamp_ok = 1; 5669 tcp_store_ts_recent(tp); 5670 tp->tcp_header_len = 5671 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5672 } else { 5673 tp->tcp_header_len = sizeof(struct tcphdr); 5674 } 5675 5676 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5677 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5678 5679 /* RFC1323: The window in SYN & SYN/ACK segments is 5680 * never scaled. 5681 */ 5682 tp->snd_wnd = ntohs(th->window); 5683 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5684 tp->max_window = tp->snd_wnd; 5685 5686 TCP_ECN_rcv_syn(tp, th); 5687 5688 tcp_mtup_init(sk); 5689 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5690 tcp_initialize_rcv_mss(sk); 5691 5692 tcp_send_synack(sk); 5693 #if 0 5694 /* Note, we could accept data and URG from this segment. 5695 * There are no obstacles to make this. 5696 * 5697 * However, if we ignore data in ACKless segments sometimes, 5698 * we have no reasons to accept it sometimes. 5699 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5700 * is not flawless. So, discard packet for sanity. 5701 * Uncomment this return to process the data. 5702 */ 5703 return -1; 5704 #else 5705 goto discard; 5706 #endif 5707 } 5708 /* "fifth, if neither of the SYN or RST bits is set then 5709 * drop the segment and return." 5710 */ 5711 5712 discard_and_undo: 5713 tcp_clear_options(&tp->rx_opt); 5714 tp->rx_opt.mss_clamp = saved_clamp; 5715 goto discard; 5716 5717 reset_and_undo: 5718 tcp_clear_options(&tp->rx_opt); 5719 tp->rx_opt.mss_clamp = saved_clamp; 5720 return 1; 5721 } 5722 5723 /* 5724 * This function implements the receiving procedure of RFC 793 for 5725 * all states except ESTABLISHED and TIME_WAIT. 5726 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5727 * address independent. 5728 */ 5729 5730 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5731 struct tcphdr *th, unsigned len) 5732 { 5733 struct tcp_sock *tp = tcp_sk(sk); 5734 struct inet_connection_sock *icsk = inet_csk(sk); 5735 int queued = 0; 5736 int res; 5737 5738 tp->rx_opt.saw_tstamp = 0; 5739 5740 switch (sk->sk_state) { 5741 case TCP_CLOSE: 5742 goto discard; 5743 5744 case TCP_LISTEN: 5745 if (th->ack) 5746 return 1; 5747 5748 if (th->rst) 5749 goto discard; 5750 5751 if (th->syn) { 5752 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5753 return 1; 5754 5755 /* Now we have several options: In theory there is 5756 * nothing else in the frame. KA9Q has an option to 5757 * send data with the syn, BSD accepts data with the 5758 * syn up to the [to be] advertised window and 5759 * Solaris 2.1 gives you a protocol error. For now 5760 * we just ignore it, that fits the spec precisely 5761 * and avoids incompatibilities. It would be nice in 5762 * future to drop through and process the data. 5763 * 5764 * Now that TTCP is starting to be used we ought to 5765 * queue this data. 5766 * But, this leaves one open to an easy denial of 5767 * service attack, and SYN cookies can't defend 5768 * against this problem. So, we drop the data 5769 * in the interest of security over speed unless 5770 * it's still in use. 5771 */ 5772 kfree_skb(skb); 5773 return 0; 5774 } 5775 goto discard; 5776 5777 case TCP_SYN_SENT: 5778 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5779 if (queued >= 0) 5780 return queued; 5781 5782 /* Do step6 onward by hand. */ 5783 tcp_urg(sk, skb, th); 5784 __kfree_skb(skb); 5785 tcp_data_snd_check(sk); 5786 return 0; 5787 } 5788 5789 res = tcp_validate_incoming(sk, skb, th, 0); 5790 if (res <= 0) 5791 return -res; 5792 5793 /* step 5: check the ACK field */ 5794 if (th->ack) { 5795 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5796 5797 switch (sk->sk_state) { 5798 case TCP_SYN_RECV: 5799 if (acceptable) { 5800 tp->copied_seq = tp->rcv_nxt; 5801 smp_mb(); 5802 tcp_set_state(sk, TCP_ESTABLISHED); 5803 sk->sk_state_change(sk); 5804 5805 /* Note, that this wakeup is only for marginal 5806 * crossed SYN case. Passively open sockets 5807 * are not waked up, because sk->sk_sleep == 5808 * NULL and sk->sk_socket == NULL. 5809 */ 5810 if (sk->sk_socket) 5811 sk_wake_async(sk, 5812 SOCK_WAKE_IO, POLL_OUT); 5813 5814 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5815 tp->snd_wnd = ntohs(th->window) << 5816 tp->rx_opt.snd_wscale; 5817 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5818 5819 if (tp->rx_opt.tstamp_ok) 5820 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5821 5822 /* Make sure socket is routed, for 5823 * correct metrics. 5824 */ 5825 icsk->icsk_af_ops->rebuild_header(sk); 5826 5827 tcp_init_metrics(sk); 5828 5829 tcp_init_congestion_control(sk); 5830 5831 /* Prevent spurious tcp_cwnd_restart() on 5832 * first data packet. 5833 */ 5834 tp->lsndtime = tcp_time_stamp; 5835 5836 tcp_mtup_init(sk); 5837 tcp_initialize_rcv_mss(sk); 5838 tcp_init_buffer_space(sk); 5839 tcp_fast_path_on(tp); 5840 } else { 5841 return 1; 5842 } 5843 break; 5844 5845 case TCP_FIN_WAIT1: 5846 if (tp->snd_una == tp->write_seq) { 5847 tcp_set_state(sk, TCP_FIN_WAIT2); 5848 sk->sk_shutdown |= SEND_SHUTDOWN; 5849 dst_confirm(__sk_dst_get(sk)); 5850 5851 if (!sock_flag(sk, SOCK_DEAD)) 5852 /* Wake up lingering close() */ 5853 sk->sk_state_change(sk); 5854 else { 5855 int tmo; 5856 5857 if (tp->linger2 < 0 || 5858 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5859 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5860 tcp_done(sk); 5861 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5862 return 1; 5863 } 5864 5865 tmo = tcp_fin_time(sk); 5866 if (tmo > TCP_TIMEWAIT_LEN) { 5867 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5868 } else if (th->fin || sock_owned_by_user(sk)) { 5869 /* Bad case. We could lose such FIN otherwise. 5870 * It is not a big problem, but it looks confusing 5871 * and not so rare event. We still can lose it now, 5872 * if it spins in bh_lock_sock(), but it is really 5873 * marginal case. 5874 */ 5875 inet_csk_reset_keepalive_timer(sk, tmo); 5876 } else { 5877 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5878 goto discard; 5879 } 5880 } 5881 } 5882 break; 5883 5884 case TCP_CLOSING: 5885 if (tp->snd_una == tp->write_seq) { 5886 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5887 goto discard; 5888 } 5889 break; 5890 5891 case TCP_LAST_ACK: 5892 if (tp->snd_una == tp->write_seq) { 5893 tcp_update_metrics(sk); 5894 tcp_done(sk); 5895 goto discard; 5896 } 5897 break; 5898 } 5899 } else 5900 goto discard; 5901 5902 /* step 6: check the URG bit */ 5903 tcp_urg(sk, skb, th); 5904 5905 /* step 7: process the segment text */ 5906 switch (sk->sk_state) { 5907 case TCP_CLOSE_WAIT: 5908 case TCP_CLOSING: 5909 case TCP_LAST_ACK: 5910 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5911 break; 5912 case TCP_FIN_WAIT1: 5913 case TCP_FIN_WAIT2: 5914 /* RFC 793 says to queue data in these states, 5915 * RFC 1122 says we MUST send a reset. 5916 * BSD 4.4 also does reset. 5917 */ 5918 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5919 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5920 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5921 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5922 tcp_reset(sk); 5923 return 1; 5924 } 5925 } 5926 /* Fall through */ 5927 case TCP_ESTABLISHED: 5928 tcp_data_queue(sk, skb); 5929 queued = 1; 5930 break; 5931 } 5932 5933 /* tcp_data could move socket to TIME-WAIT */ 5934 if (sk->sk_state != TCP_CLOSE) { 5935 tcp_data_snd_check(sk); 5936 tcp_ack_snd_check(sk); 5937 } 5938 5939 if (!queued) { 5940 discard: 5941 __kfree_skb(skb); 5942 } 5943 return 0; 5944 } 5945 EXPORT_SYMBOL(tcp_rcv_state_process); 5946