xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 9c1f8594)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75 
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95 
96 int sysctl_tcp_thin_dupack __read_mostly;
97 
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100 
101 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
108 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121 
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 	struct inet_connection_sock *icsk = inet_csk(sk);
131 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 	unsigned int len;
133 
134 	icsk->icsk_ack.last_seg_size = 0;
135 
136 	/* skb->len may jitter because of SACKs, even if peer
137 	 * sends good full-sized frames.
138 	 */
139 	len = skb_shinfo(skb)->gso_size ? : skb->len;
140 	if (len >= icsk->icsk_ack.rcv_mss) {
141 		icsk->icsk_ack.rcv_mss = len;
142 	} else {
143 		/* Otherwise, we make more careful check taking into account,
144 		 * that SACKs block is variable.
145 		 *
146 		 * "len" is invariant segment length, including TCP header.
147 		 */
148 		len += skb->data - skb_transport_header(skb);
149 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 		    /* If PSH is not set, packet should be
151 		     * full sized, provided peer TCP is not badly broken.
152 		     * This observation (if it is correct 8)) allows
153 		     * to handle super-low mtu links fairly.
154 		     */
155 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 			/* Subtract also invariant (if peer is RFC compliant),
158 			 * tcp header plus fixed timestamp option length.
159 			 * Resulting "len" is MSS free of SACK jitter.
160 			 */
161 			len -= tcp_sk(sk)->tcp_header_len;
162 			icsk->icsk_ack.last_seg_size = len;
163 			if (len == lss) {
164 				icsk->icsk_ack.rcv_mss = len;
165 				return;
166 			}
167 		}
168 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 	}
172 }
173 
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 
179 	if (quickacks == 0)
180 		quickacks = 2;
181 	if (quickacks > icsk->icsk_ack.quick)
182 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184 
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 	struct inet_connection_sock *icsk = inet_csk(sk);
188 	tcp_incr_quickack(sk);
189 	icsk->icsk_ack.pingpong = 0;
190 	icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192 
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196 
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199 	const struct inet_connection_sock *icsk = inet_csk(sk);
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222 	if (tp->ecn_flags & TCP_ECN_OK) {
223 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 		/* Funny extension: if ECT is not set on a segment,
226 		 * it is surely retransmit. It is not in ECN RFC,
227 		 * but Linux follows this rule. */
228 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 			tcp_enter_quickack_mode((struct sock *)tp);
230 	}
231 }
232 
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 		tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244 
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 		return 1;
249 	return 0;
250 }
251 
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256 
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 		     sizeof(struct sk_buff);
261 
262 	if (sk->sk_sndbuf < 3 * sndmem) {
263 		sk->sk_sndbuf = 3 * sndmem;
264 		if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 			sk->sk_sndbuf = sysctl_tcp_wmem[2];
266 	}
267 }
268 
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270  *
271  * All tcp_full_space() is split to two parts: "network" buffer, allocated
272  * forward and advertised in receiver window (tp->rcv_wnd) and
273  * "application buffer", required to isolate scheduling/application
274  * latencies from network.
275  * window_clamp is maximal advertised window. It can be less than
276  * tcp_full_space(), in this case tcp_full_space() - window_clamp
277  * is reserved for "application" buffer. The less window_clamp is
278  * the smoother our behaviour from viewpoint of network, but the lower
279  * throughput and the higher sensitivity of the connection to losses. 8)
280  *
281  * rcv_ssthresh is more strict window_clamp used at "slow start"
282  * phase to predict further behaviour of this connection.
283  * It is used for two goals:
284  * - to enforce header prediction at sender, even when application
285  *   requires some significant "application buffer". It is check #1.
286  * - to prevent pruning of receive queue because of misprediction
287  *   of receiver window. Check #2.
288  *
289  * The scheme does not work when sender sends good segments opening
290  * window and then starts to feed us spaghetti. But it should work
291  * in common situations. Otherwise, we have to rely on queue collapsing.
292  */
293 
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
296 {
297 	struct tcp_sock *tp = tcp_sk(sk);
298 	/* Optimize this! */
299 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
301 
302 	while (tp->rcv_ssthresh <= window) {
303 		if (truesize <= skb->len)
304 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305 
306 		truesize >>= 1;
307 		window >>= 1;
308 	}
309 	return 0;
310 }
311 
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
313 {
314 	struct tcp_sock *tp = tcp_sk(sk);
315 
316 	/* Check #1 */
317 	if (tp->rcv_ssthresh < tp->window_clamp &&
318 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 	    !tcp_memory_pressure) {
320 		int incr;
321 
322 		/* Check #2. Increase window, if skb with such overhead
323 		 * will fit to rcvbuf in future.
324 		 */
325 		if (tcp_win_from_space(skb->truesize) <= skb->len)
326 			incr = 2 * tp->advmss;
327 		else
328 			incr = __tcp_grow_window(sk, skb);
329 
330 		if (incr) {
331 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332 					       tp->window_clamp);
333 			inet_csk(sk)->icsk_ack.quick |= 1;
334 		}
335 	}
336 }
337 
338 /* 3. Tuning rcvbuf, when connection enters established state. */
339 
340 static void tcp_fixup_rcvbuf(struct sock *sk)
341 {
342 	struct tcp_sock *tp = tcp_sk(sk);
343 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344 
345 	/* Try to select rcvbuf so that 4 mss-sized segments
346 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
347 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
348 	 */
349 	while (tcp_win_from_space(rcvmem) < tp->advmss)
350 		rcvmem += 128;
351 	if (sk->sk_rcvbuf < 4 * rcvmem)
352 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353 }
354 
355 /* 4. Try to fixup all. It is made immediately after connection enters
356  *    established state.
357  */
358 static void tcp_init_buffer_space(struct sock *sk)
359 {
360 	struct tcp_sock *tp = tcp_sk(sk);
361 	int maxwin;
362 
363 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364 		tcp_fixup_rcvbuf(sk);
365 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366 		tcp_fixup_sndbuf(sk);
367 
368 	tp->rcvq_space.space = tp->rcv_wnd;
369 
370 	maxwin = tcp_full_space(sk);
371 
372 	if (tp->window_clamp >= maxwin) {
373 		tp->window_clamp = maxwin;
374 
375 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376 			tp->window_clamp = max(maxwin -
377 					       (maxwin >> sysctl_tcp_app_win),
378 					       4 * tp->advmss);
379 	}
380 
381 	/* Force reservation of one segment. */
382 	if (sysctl_tcp_app_win &&
383 	    tp->window_clamp > 2 * tp->advmss &&
384 	    tp->window_clamp + tp->advmss > maxwin)
385 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386 
387 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388 	tp->snd_cwnd_stamp = tcp_time_stamp;
389 }
390 
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock *sk)
393 {
394 	struct tcp_sock *tp = tcp_sk(sk);
395 	struct inet_connection_sock *icsk = inet_csk(sk);
396 
397 	icsk->icsk_ack.quick = 0;
398 
399 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401 	    !tcp_memory_pressure &&
402 	    atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404 				    sysctl_tcp_rmem[2]);
405 	}
406 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
408 }
409 
410 /* Initialize RCV_MSS value.
411  * RCV_MSS is an our guess about MSS used by the peer.
412  * We haven't any direct information about the MSS.
413  * It's better to underestimate the RCV_MSS rather than overestimate.
414  * Overestimations make us ACKing less frequently than needed.
415  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416  */
417 void tcp_initialize_rcv_mss(struct sock *sk)
418 {
419 	struct tcp_sock *tp = tcp_sk(sk);
420 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421 
422 	hint = min(hint, tp->rcv_wnd / 2);
423 	hint = min(hint, TCP_MSS_DEFAULT);
424 	hint = max(hint, TCP_MIN_MSS);
425 
426 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
427 }
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
429 
430 /* Receiver "autotuning" code.
431  *
432  * The algorithm for RTT estimation w/o timestamps is based on
433  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434  * <http://public.lanl.gov/radiant/pubs.html#DRS>
435  *
436  * More detail on this code can be found at
437  * <http://staff.psc.edu/jheffner/>,
438  * though this reference is out of date.  A new paper
439  * is pending.
440  */
441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442 {
443 	u32 new_sample = tp->rcv_rtt_est.rtt;
444 	long m = sample;
445 
446 	if (m == 0)
447 		m = 1;
448 
449 	if (new_sample != 0) {
450 		/* If we sample in larger samples in the non-timestamp
451 		 * case, we could grossly overestimate the RTT especially
452 		 * with chatty applications or bulk transfer apps which
453 		 * are stalled on filesystem I/O.
454 		 *
455 		 * Also, since we are only going for a minimum in the
456 		 * non-timestamp case, we do not smooth things out
457 		 * else with timestamps disabled convergence takes too
458 		 * long.
459 		 */
460 		if (!win_dep) {
461 			m -= (new_sample >> 3);
462 			new_sample += m;
463 		} else if (m < new_sample)
464 			new_sample = m << 3;
465 	} else {
466 		/* No previous measure. */
467 		new_sample = m << 3;
468 	}
469 
470 	if (tp->rcv_rtt_est.rtt != new_sample)
471 		tp->rcv_rtt_est.rtt = new_sample;
472 }
473 
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475 {
476 	if (tp->rcv_rtt_est.time == 0)
477 		goto new_measure;
478 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479 		return;
480 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
481 
482 new_measure:
483 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484 	tp->rcv_rtt_est.time = tcp_time_stamp;
485 }
486 
487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488 					  const struct sk_buff *skb)
489 {
490 	struct tcp_sock *tp = tcp_sk(sk);
491 	if (tp->rx_opt.rcv_tsecr &&
492 	    (TCP_SKB_CB(skb)->end_seq -
493 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495 }
496 
497 /*
498  * This function should be called every time data is copied to user space.
499  * It calculates the appropriate TCP receive buffer space.
500  */
501 void tcp_rcv_space_adjust(struct sock *sk)
502 {
503 	struct tcp_sock *tp = tcp_sk(sk);
504 	int time;
505 	int space;
506 
507 	if (tp->rcvq_space.time == 0)
508 		goto new_measure;
509 
510 	time = tcp_time_stamp - tp->rcvq_space.time;
511 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512 		return;
513 
514 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515 
516 	space = max(tp->rcvq_space.space, space);
517 
518 	if (tp->rcvq_space.space != space) {
519 		int rcvmem;
520 
521 		tp->rcvq_space.space = space;
522 
523 		if (sysctl_tcp_moderate_rcvbuf &&
524 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525 			int new_clamp = space;
526 
527 			/* Receive space grows, normalize in order to
528 			 * take into account packet headers and sk_buff
529 			 * structure overhead.
530 			 */
531 			space /= tp->advmss;
532 			if (!space)
533 				space = 1;
534 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
535 				  16 + sizeof(struct sk_buff));
536 			while (tcp_win_from_space(rcvmem) < tp->advmss)
537 				rcvmem += 128;
538 			space *= rcvmem;
539 			space = min(space, sysctl_tcp_rmem[2]);
540 			if (space > sk->sk_rcvbuf) {
541 				sk->sk_rcvbuf = space;
542 
543 				/* Make the window clamp follow along.  */
544 				tp->window_clamp = new_clamp;
545 			}
546 		}
547 	}
548 
549 new_measure:
550 	tp->rcvq_space.seq = tp->copied_seq;
551 	tp->rcvq_space.time = tcp_time_stamp;
552 }
553 
554 /* There is something which you must keep in mind when you analyze the
555  * behavior of the tp->ato delayed ack timeout interval.  When a
556  * connection starts up, we want to ack as quickly as possible.  The
557  * problem is that "good" TCP's do slow start at the beginning of data
558  * transmission.  The means that until we send the first few ACK's the
559  * sender will sit on his end and only queue most of his data, because
560  * he can only send snd_cwnd unacked packets at any given time.  For
561  * each ACK we send, he increments snd_cwnd and transmits more of his
562  * queue.  -DaveM
563  */
564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
565 {
566 	struct tcp_sock *tp = tcp_sk(sk);
567 	struct inet_connection_sock *icsk = inet_csk(sk);
568 	u32 now;
569 
570 	inet_csk_schedule_ack(sk);
571 
572 	tcp_measure_rcv_mss(sk, skb);
573 
574 	tcp_rcv_rtt_measure(tp);
575 
576 	now = tcp_time_stamp;
577 
578 	if (!icsk->icsk_ack.ato) {
579 		/* The _first_ data packet received, initialize
580 		 * delayed ACK engine.
581 		 */
582 		tcp_incr_quickack(sk);
583 		icsk->icsk_ack.ato = TCP_ATO_MIN;
584 	} else {
585 		int m = now - icsk->icsk_ack.lrcvtime;
586 
587 		if (m <= TCP_ATO_MIN / 2) {
588 			/* The fastest case is the first. */
589 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590 		} else if (m < icsk->icsk_ack.ato) {
591 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
593 				icsk->icsk_ack.ato = icsk->icsk_rto;
594 		} else if (m > icsk->icsk_rto) {
595 			/* Too long gap. Apparently sender failed to
596 			 * restart window, so that we send ACKs quickly.
597 			 */
598 			tcp_incr_quickack(sk);
599 			sk_mem_reclaim(sk);
600 		}
601 	}
602 	icsk->icsk_ack.lrcvtime = now;
603 
604 	TCP_ECN_check_ce(tp, skb);
605 
606 	if (skb->len >= 128)
607 		tcp_grow_window(sk, skb);
608 }
609 
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611  * routine either comes from timestamps, or from segments that were
612  * known _not_ to have been retransmitted [see Karn/Partridge
613  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614  * piece by Van Jacobson.
615  * NOTE: the next three routines used to be one big routine.
616  * To save cycles in the RFC 1323 implementation it was better to break
617  * it up into three procedures. -- erics
618  */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621 	struct tcp_sock *tp = tcp_sk(sk);
622 	long m = mrtt; /* RTT */
623 
624 	/*	The following amusing code comes from Jacobson's
625 	 *	article in SIGCOMM '88.  Note that rtt and mdev
626 	 *	are scaled versions of rtt and mean deviation.
627 	 *	This is designed to be as fast as possible
628 	 *	m stands for "measurement".
629 	 *
630 	 *	On a 1990 paper the rto value is changed to:
631 	 *	RTO = rtt + 4 * mdev
632 	 *
633 	 * Funny. This algorithm seems to be very broken.
634 	 * These formulae increase RTO, when it should be decreased, increase
635 	 * too slowly, when it should be increased quickly, decrease too quickly
636 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 	 * does not matter how to _calculate_ it. Seems, it was trap
638 	 * that VJ failed to avoid. 8)
639 	 */
640 	if (m == 0)
641 		m = 1;
642 	if (tp->srtt != 0) {
643 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
644 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
645 		if (m < 0) {
646 			m = -m;		/* m is now abs(error) */
647 			m -= (tp->mdev >> 2);   /* similar update on mdev */
648 			/* This is similar to one of Eifel findings.
649 			 * Eifel blocks mdev updates when rtt decreases.
650 			 * This solution is a bit different: we use finer gain
651 			 * for mdev in this case (alpha*beta).
652 			 * Like Eifel it also prevents growth of rto,
653 			 * but also it limits too fast rto decreases,
654 			 * happening in pure Eifel.
655 			 */
656 			if (m > 0)
657 				m >>= 3;
658 		} else {
659 			m -= (tp->mdev >> 2);   /* similar update on mdev */
660 		}
661 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
662 		if (tp->mdev > tp->mdev_max) {
663 			tp->mdev_max = tp->mdev;
664 			if (tp->mdev_max > tp->rttvar)
665 				tp->rttvar = tp->mdev_max;
666 		}
667 		if (after(tp->snd_una, tp->rtt_seq)) {
668 			if (tp->mdev_max < tp->rttvar)
669 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 			tp->rtt_seq = tp->snd_nxt;
671 			tp->mdev_max = tcp_rto_min(sk);
672 		}
673 	} else {
674 		/* no previous measure. */
675 		tp->srtt = m << 3;	/* take the measured time to be rtt */
676 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
677 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 		tp->rtt_seq = tp->snd_nxt;
679 	}
680 }
681 
682 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
683  * routine referred to above.
684  */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687 	const struct tcp_sock *tp = tcp_sk(sk);
688 	/* Old crap is replaced with new one. 8)
689 	 *
690 	 * More seriously:
691 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 	 *    It cannot be less due to utterly erratic ACK generation made
693 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
695 	 *    is invisible. Actually, Linux-2.4 also generates erratic
696 	 *    ACKs in some circumstances.
697 	 */
698 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
699 
700 	/* 2. Fixups made earlier cannot be right.
701 	 *    If we do not estimate RTO correctly without them,
702 	 *    all the algo is pure shit and should be replaced
703 	 *    with correct one. It is exactly, which we pretend to do.
704 	 */
705 
706 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 	 * guarantees that rto is higher.
708 	 */
709 	tcp_bound_rto(sk);
710 }
711 
712 /* Save metrics learned by this TCP session.
713    This function is called only, when TCP finishes successfully
714    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715  */
716 void tcp_update_metrics(struct sock *sk)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 	struct dst_entry *dst = __sk_dst_get(sk);
720 
721 	if (sysctl_tcp_nometrics_save)
722 		return;
723 
724 	dst_confirm(dst);
725 
726 	if (dst && (dst->flags & DST_HOST)) {
727 		const struct inet_connection_sock *icsk = inet_csk(sk);
728 		int m;
729 		unsigned long rtt;
730 
731 		if (icsk->icsk_backoff || !tp->srtt) {
732 			/* This session failed to estimate rtt. Why?
733 			 * Probably, no packets returned in time.
734 			 * Reset our results.
735 			 */
736 			if (!(dst_metric_locked(dst, RTAX_RTT)))
737 				dst_metric_set(dst, RTAX_RTT, 0);
738 			return;
739 		}
740 
741 		rtt = dst_metric_rtt(dst, RTAX_RTT);
742 		m = rtt - tp->srtt;
743 
744 		/* If newly calculated rtt larger than stored one,
745 		 * store new one. Otherwise, use EWMA. Remember,
746 		 * rtt overestimation is always better than underestimation.
747 		 */
748 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 			if (m <= 0)
750 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 			else
752 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753 		}
754 
755 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 			unsigned long var;
757 			if (m < 0)
758 				m = -m;
759 
760 			/* Scale deviation to rttvar fixed point */
761 			m >>= 1;
762 			if (m < tp->mdev)
763 				m = tp->mdev;
764 
765 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 			if (m >= var)
767 				var = m;
768 			else
769 				var -= (var - m) >> 2;
770 
771 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772 		}
773 
774 		if (tcp_in_initial_slowstart(tp)) {
775 			/* Slow start still did not finish. */
776 			if (dst_metric(dst, RTAX_SSTHRESH) &&
777 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780 			if (!dst_metric_locked(dst, RTAX_CWND) &&
781 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 			   icsk->icsk_ca_state == TCP_CA_Open) {
785 			/* Cong. avoidance phase, cwnd is reliable. */
786 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 				dst_metric_set(dst, RTAX_SSTHRESH,
788 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789 			if (!dst_metric_locked(dst, RTAX_CWND))
790 				dst_metric_set(dst, RTAX_CWND,
791 					       (dst_metric(dst, RTAX_CWND) +
792 						tp->snd_cwnd) >> 1);
793 		} else {
794 			/* Else slow start did not finish, cwnd is non-sense,
795 			   ssthresh may be also invalid.
796 			 */
797 			if (!dst_metric_locked(dst, RTAX_CWND))
798 				dst_metric_set(dst, RTAX_CWND,
799 					       (dst_metric(dst, RTAX_CWND) +
800 						tp->snd_ssthresh) >> 1);
801 			if (dst_metric(dst, RTAX_SSTHRESH) &&
802 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
805 		}
806 
807 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809 			    tp->reordering != sysctl_tcp_reordering)
810 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
811 		}
812 	}
813 }
814 
815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816 {
817 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818 
819 	if (!cwnd)
820 		cwnd = TCP_INIT_CWND;
821 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822 }
823 
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826 {
827 	struct tcp_sock *tp = tcp_sk(sk);
828 	const struct inet_connection_sock *icsk = inet_csk(sk);
829 
830 	tp->prior_ssthresh = 0;
831 	tp->bytes_acked = 0;
832 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
833 		tp->undo_marker = 0;
834 		if (set_ssthresh)
835 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836 		tp->snd_cwnd = min(tp->snd_cwnd,
837 				   tcp_packets_in_flight(tp) + 1U);
838 		tp->snd_cwnd_cnt = 0;
839 		tp->high_seq = tp->snd_nxt;
840 		tp->snd_cwnd_stamp = tcp_time_stamp;
841 		TCP_ECN_queue_cwr(tp);
842 
843 		tcp_set_ca_state(sk, TCP_CA_CWR);
844 	}
845 }
846 
847 /*
848  * Packet counting of FACK is based on in-order assumptions, therefore TCP
849  * disables it when reordering is detected
850  */
851 static void tcp_disable_fack(struct tcp_sock *tp)
852 {
853 	/* RFC3517 uses different metric in lost marker => reset on change */
854 	if (tcp_is_fack(tp))
855 		tp->lost_skb_hint = NULL;
856 	tp->rx_opt.sack_ok &= ~2;
857 }
858 
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862 	tp->rx_opt.sack_ok |= 4;
863 }
864 
865 /* Initialize metrics on socket. */
866 
867 static void tcp_init_metrics(struct sock *sk)
868 {
869 	struct tcp_sock *tp = tcp_sk(sk);
870 	struct dst_entry *dst = __sk_dst_get(sk);
871 
872 	if (dst == NULL)
873 		goto reset;
874 
875 	dst_confirm(dst);
876 
877 	if (dst_metric_locked(dst, RTAX_CWND))
878 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 	if (dst_metric(dst, RTAX_SSTHRESH)) {
880 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
883 	} else {
884 		/* ssthresh may have been reduced unnecessarily during.
885 		 * 3WHS. Restore it back to its initial default.
886 		 */
887 		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
888 	}
889 	if (dst_metric(dst, RTAX_REORDERING) &&
890 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
891 		tcp_disable_fack(tp);
892 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
893 	}
894 
895 	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
896 		goto reset;
897 
898 	/* Initial rtt is determined from SYN,SYN-ACK.
899 	 * The segment is small and rtt may appear much
900 	 * less than real one. Use per-dst memory
901 	 * to make it more realistic.
902 	 *
903 	 * A bit of theory. RTT is time passed after "normal" sized packet
904 	 * is sent until it is ACKed. In normal circumstances sending small
905 	 * packets force peer to delay ACKs and calculation is correct too.
906 	 * The algorithm is adaptive and, provided we follow specs, it
907 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
908 	 * tricks sort of "quick acks" for time long enough to decrease RTT
909 	 * to low value, and then abruptly stops to do it and starts to delay
910 	 * ACKs, wait for troubles.
911 	 */
912 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
913 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
914 		tp->rtt_seq = tp->snd_nxt;
915 	}
916 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
917 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
918 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
919 	}
920 	tcp_set_rto(sk);
921 reset:
922 	if (tp->srtt == 0) {
923 		/* RFC2988bis: We've failed to get a valid RTT sample from
924 		 * 3WHS. This is most likely due to retransmission,
925 		 * including spurious one. Reset the RTO back to 3secs
926 		 * from the more aggressive 1sec to avoid more spurious
927 		 * retransmission.
928 		 */
929 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
930 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
931 	}
932 	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
933 	 * retransmitted. In light of RFC2988bis' more aggressive 1sec
934 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
935 	 * retransmission has occurred.
936 	 */
937 	if (tp->total_retrans > 1)
938 		tp->snd_cwnd = 1;
939 	else
940 		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
941 	tp->snd_cwnd_stamp = tcp_time_stamp;
942 }
943 
944 static void tcp_update_reordering(struct sock *sk, const int metric,
945 				  const int ts)
946 {
947 	struct tcp_sock *tp = tcp_sk(sk);
948 	if (metric > tp->reordering) {
949 		int mib_idx;
950 
951 		tp->reordering = min(TCP_MAX_REORDERING, metric);
952 
953 		/* This exciting event is worth to be remembered. 8) */
954 		if (ts)
955 			mib_idx = LINUX_MIB_TCPTSREORDER;
956 		else if (tcp_is_reno(tp))
957 			mib_idx = LINUX_MIB_TCPRENOREORDER;
958 		else if (tcp_is_fack(tp))
959 			mib_idx = LINUX_MIB_TCPFACKREORDER;
960 		else
961 			mib_idx = LINUX_MIB_TCPSACKREORDER;
962 
963 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
964 #if FASTRETRANS_DEBUG > 1
965 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 		       tp->reordering,
968 		       tp->fackets_out,
969 		       tp->sacked_out,
970 		       tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 		tcp_disable_fack(tp);
973 	}
974 }
975 
976 /* This must be called before lost_out is incremented */
977 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
978 {
979 	if ((tp->retransmit_skb_hint == NULL) ||
980 	    before(TCP_SKB_CB(skb)->seq,
981 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
982 		tp->retransmit_skb_hint = skb;
983 
984 	if (!tp->lost_out ||
985 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
986 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
987 }
988 
989 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
990 {
991 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
992 		tcp_verify_retransmit_hint(tp, skb);
993 
994 		tp->lost_out += tcp_skb_pcount(skb);
995 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
996 	}
997 }
998 
999 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1000 					    struct sk_buff *skb)
1001 {
1002 	tcp_verify_retransmit_hint(tp, skb);
1003 
1004 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1005 		tp->lost_out += tcp_skb_pcount(skb);
1006 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007 	}
1008 }
1009 
1010 /* This procedure tags the retransmission queue when SACKs arrive.
1011  *
1012  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1013  * Packets in queue with these bits set are counted in variables
1014  * sacked_out, retrans_out and lost_out, correspondingly.
1015  *
1016  * Valid combinations are:
1017  * Tag  InFlight	Description
1018  * 0	1		- orig segment is in flight.
1019  * S	0		- nothing flies, orig reached receiver.
1020  * L	0		- nothing flies, orig lost by net.
1021  * R	2		- both orig and retransmit are in flight.
1022  * L|R	1		- orig is lost, retransmit is in flight.
1023  * S|R  1		- orig reached receiver, retrans is still in flight.
1024  * (L|S|R is logically valid, it could occur when L|R is sacked,
1025  *  but it is equivalent to plain S and code short-curcuits it to S.
1026  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1027  *
1028  * These 6 states form finite state machine, controlled by the following events:
1029  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1030  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1031  * 3. Loss detection event of one of three flavors:
1032  *	A. Scoreboard estimator decided the packet is lost.
1033  *	   A'. Reno "three dupacks" marks head of queue lost.
1034  *	   A''. Its FACK modfication, head until snd.fack is lost.
1035  *	B. SACK arrives sacking data transmitted after never retransmitted
1036  *	   hole was sent out.
1037  *	C. SACK arrives sacking SND.NXT at the moment, when the
1038  *	   segment was retransmitted.
1039  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1040  *
1041  * It is pleasant to note, that state diagram turns out to be commutative,
1042  * so that we are allowed not to be bothered by order of our actions,
1043  * when multiple events arrive simultaneously. (see the function below).
1044  *
1045  * Reordering detection.
1046  * --------------------
1047  * Reordering metric is maximal distance, which a packet can be displaced
1048  * in packet stream. With SACKs we can estimate it:
1049  *
1050  * 1. SACK fills old hole and the corresponding segment was not
1051  *    ever retransmitted -> reordering. Alas, we cannot use it
1052  *    when segment was retransmitted.
1053  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1054  *    for retransmitted and already SACKed segment -> reordering..
1055  * Both of these heuristics are not used in Loss state, when we cannot
1056  * account for retransmits accurately.
1057  *
1058  * SACK block validation.
1059  * ----------------------
1060  *
1061  * SACK block range validation checks that the received SACK block fits to
1062  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1063  * Note that SND.UNA is not included to the range though being valid because
1064  * it means that the receiver is rather inconsistent with itself reporting
1065  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1066  * perfectly valid, however, in light of RFC2018 which explicitly states
1067  * that "SACK block MUST reflect the newest segment.  Even if the newest
1068  * segment is going to be discarded ...", not that it looks very clever
1069  * in case of head skb. Due to potentional receiver driven attacks, we
1070  * choose to avoid immediate execution of a walk in write queue due to
1071  * reneging and defer head skb's loss recovery to standard loss recovery
1072  * procedure that will eventually trigger (nothing forbids us doing this).
1073  *
1074  * Implements also blockage to start_seq wrap-around. Problem lies in the
1075  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1076  * there's no guarantee that it will be before snd_nxt (n). The problem
1077  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1078  * wrap (s_w):
1079  *
1080  *         <- outs wnd ->                          <- wrapzone ->
1081  *         u     e      n                         u_w   e_w  s n_w
1082  *         |     |      |                          |     |   |  |
1083  * |<------------+------+----- TCP seqno space --------------+---------->|
1084  * ...-- <2^31 ->|                                           |<--------...
1085  * ...---- >2^31 ------>|                                    |<--------...
1086  *
1087  * Current code wouldn't be vulnerable but it's better still to discard such
1088  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1089  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1090  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1091  * equal to the ideal case (infinite seqno space without wrap caused issues).
1092  *
1093  * With D-SACK the lower bound is extended to cover sequence space below
1094  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1095  * again, D-SACK block must not to go across snd_una (for the same reason as
1096  * for the normal SACK blocks, explained above). But there all simplicity
1097  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1098  * fully below undo_marker they do not affect behavior in anyway and can
1099  * therefore be safely ignored. In rare cases (which are more or less
1100  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1101  * fragmentation and packet reordering past skb's retransmission. To consider
1102  * them correctly, the acceptable range must be extended even more though
1103  * the exact amount is rather hard to quantify. However, tp->max_window can
1104  * be used as an exaggerated estimate.
1105  */
1106 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1107 				  u32 start_seq, u32 end_seq)
1108 {
1109 	/* Too far in future, or reversed (interpretation is ambiguous) */
1110 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1111 		return 0;
1112 
1113 	/* Nasty start_seq wrap-around check (see comments above) */
1114 	if (!before(start_seq, tp->snd_nxt))
1115 		return 0;
1116 
1117 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1118 	 * start_seq == snd_una is non-sensical (see comments above)
1119 	 */
1120 	if (after(start_seq, tp->snd_una))
1121 		return 1;
1122 
1123 	if (!is_dsack || !tp->undo_marker)
1124 		return 0;
1125 
1126 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1127 	if (after(end_seq, tp->snd_una))
1128 		return 0;
1129 
1130 	if (!before(start_seq, tp->undo_marker))
1131 		return 1;
1132 
1133 	/* Too old */
1134 	if (!after(end_seq, tp->undo_marker))
1135 		return 0;
1136 
1137 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1138 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1139 	 */
1140 	return !before(start_seq, end_seq - tp->max_window);
1141 }
1142 
1143 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1144  * Event "C". Later note: FACK people cheated me again 8), we have to account
1145  * for reordering! Ugly, but should help.
1146  *
1147  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1148  * less than what is now known to be received by the other end (derived from
1149  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1150  * retransmitted skbs to avoid some costly processing per ACKs.
1151  */
1152 static void tcp_mark_lost_retrans(struct sock *sk)
1153 {
1154 	const struct inet_connection_sock *icsk = inet_csk(sk);
1155 	struct tcp_sock *tp = tcp_sk(sk);
1156 	struct sk_buff *skb;
1157 	int cnt = 0;
1158 	u32 new_low_seq = tp->snd_nxt;
1159 	u32 received_upto = tcp_highest_sack_seq(tp);
1160 
1161 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1162 	    !after(received_upto, tp->lost_retrans_low) ||
1163 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1164 		return;
1165 
1166 	tcp_for_write_queue(skb, sk) {
1167 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1168 
1169 		if (skb == tcp_send_head(sk))
1170 			break;
1171 		if (cnt == tp->retrans_out)
1172 			break;
1173 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1174 			continue;
1175 
1176 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1177 			continue;
1178 
1179 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1180 		 * constraint here (see above) but figuring out that at
1181 		 * least tp->reordering SACK blocks reside between ack_seq
1182 		 * and received_upto is not easy task to do cheaply with
1183 		 * the available datastructures.
1184 		 *
1185 		 * Whether FACK should check here for tp->reordering segs
1186 		 * in-between one could argue for either way (it would be
1187 		 * rather simple to implement as we could count fack_count
1188 		 * during the walk and do tp->fackets_out - fack_count).
1189 		 */
1190 		if (after(received_upto, ack_seq)) {
1191 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1192 			tp->retrans_out -= tcp_skb_pcount(skb);
1193 
1194 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1195 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1196 		} else {
1197 			if (before(ack_seq, new_low_seq))
1198 				new_low_seq = ack_seq;
1199 			cnt += tcp_skb_pcount(skb);
1200 		}
1201 	}
1202 
1203 	if (tp->retrans_out)
1204 		tp->lost_retrans_low = new_low_seq;
1205 }
1206 
1207 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1208 			   struct tcp_sack_block_wire *sp, int num_sacks,
1209 			   u32 prior_snd_una)
1210 {
1211 	struct tcp_sock *tp = tcp_sk(sk);
1212 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1213 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1214 	int dup_sack = 0;
1215 
1216 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1217 		dup_sack = 1;
1218 		tcp_dsack_seen(tp);
1219 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220 	} else if (num_sacks > 1) {
1221 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223 
1224 		if (!after(end_seq_0, end_seq_1) &&
1225 		    !before(start_seq_0, start_seq_1)) {
1226 			dup_sack = 1;
1227 			tcp_dsack_seen(tp);
1228 			NET_INC_STATS_BH(sock_net(sk),
1229 					LINUX_MIB_TCPDSACKOFORECV);
1230 		}
1231 	}
1232 
1233 	/* D-SACK for already forgotten data... Do dumb counting. */
1234 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1235 	    !after(end_seq_0, prior_snd_una) &&
1236 	    after(end_seq_0, tp->undo_marker))
1237 		tp->undo_retrans--;
1238 
1239 	return dup_sack;
1240 }
1241 
1242 struct tcp_sacktag_state {
1243 	int reord;
1244 	int fack_count;
1245 	int flag;
1246 };
1247 
1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249  * the incoming SACK may not exactly match but we can find smaller MSS
1250  * aligned portion of it that matches. Therefore we might need to fragment
1251  * which may fail and creates some hassle (caller must handle error case
1252  * returns).
1253  *
1254  * FIXME: this could be merged to shift decision code
1255  */
1256 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257 				 u32 start_seq, u32 end_seq)
1258 {
1259 	int in_sack, err;
1260 	unsigned int pkt_len;
1261 	unsigned int mss;
1262 
1263 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1264 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1265 
1266 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1267 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1268 		mss = tcp_skb_mss(skb);
1269 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1270 
1271 		if (!in_sack) {
1272 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1273 			if (pkt_len < mss)
1274 				pkt_len = mss;
1275 		} else {
1276 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1277 			if (pkt_len < mss)
1278 				return -EINVAL;
1279 		}
1280 
1281 		/* Round if necessary so that SACKs cover only full MSSes
1282 		 * and/or the remaining small portion (if present)
1283 		 */
1284 		if (pkt_len > mss) {
1285 			unsigned int new_len = (pkt_len / mss) * mss;
1286 			if (!in_sack && new_len < pkt_len) {
1287 				new_len += mss;
1288 				if (new_len > skb->len)
1289 					return 0;
1290 			}
1291 			pkt_len = new_len;
1292 		}
1293 		err = tcp_fragment(sk, skb, pkt_len, mss);
1294 		if (err < 0)
1295 			return err;
1296 	}
1297 
1298 	return in_sack;
1299 }
1300 
1301 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1302 			  struct tcp_sacktag_state *state,
1303 			  int dup_sack, int pcount)
1304 {
1305 	struct tcp_sock *tp = tcp_sk(sk);
1306 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1307 	int fack_count = state->fack_count;
1308 
1309 	/* Account D-SACK for retransmitted packet. */
1310 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1311 		if (tp->undo_marker && tp->undo_retrans &&
1312 		    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1313 			tp->undo_retrans--;
1314 		if (sacked & TCPCB_SACKED_ACKED)
1315 			state->reord = min(fack_count, state->reord);
1316 	}
1317 
1318 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1319 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1320 		return sacked;
1321 
1322 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1323 		if (sacked & TCPCB_SACKED_RETRANS) {
1324 			/* If the segment is not tagged as lost,
1325 			 * we do not clear RETRANS, believing
1326 			 * that retransmission is still in flight.
1327 			 */
1328 			if (sacked & TCPCB_LOST) {
1329 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1330 				tp->lost_out -= pcount;
1331 				tp->retrans_out -= pcount;
1332 			}
1333 		} else {
1334 			if (!(sacked & TCPCB_RETRANS)) {
1335 				/* New sack for not retransmitted frame,
1336 				 * which was in hole. It is reordering.
1337 				 */
1338 				if (before(TCP_SKB_CB(skb)->seq,
1339 					   tcp_highest_sack_seq(tp)))
1340 					state->reord = min(fack_count,
1341 							   state->reord);
1342 
1343 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1344 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1345 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1346 			}
1347 
1348 			if (sacked & TCPCB_LOST) {
1349 				sacked &= ~TCPCB_LOST;
1350 				tp->lost_out -= pcount;
1351 			}
1352 		}
1353 
1354 		sacked |= TCPCB_SACKED_ACKED;
1355 		state->flag |= FLAG_DATA_SACKED;
1356 		tp->sacked_out += pcount;
1357 
1358 		fack_count += pcount;
1359 
1360 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1361 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1362 		    before(TCP_SKB_CB(skb)->seq,
1363 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1364 			tp->lost_cnt_hint += pcount;
1365 
1366 		if (fack_count > tp->fackets_out)
1367 			tp->fackets_out = fack_count;
1368 	}
1369 
1370 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1371 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1372 	 * are accounted above as well.
1373 	 */
1374 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1375 		sacked &= ~TCPCB_SACKED_RETRANS;
1376 		tp->retrans_out -= pcount;
1377 	}
1378 
1379 	return sacked;
1380 }
1381 
1382 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1383 			   struct tcp_sacktag_state *state,
1384 			   unsigned int pcount, int shifted, int mss,
1385 			   int dup_sack)
1386 {
1387 	struct tcp_sock *tp = tcp_sk(sk);
1388 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1389 
1390 	BUG_ON(!pcount);
1391 
1392 	/* Tweak before seqno plays */
1393 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1394 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1395 		tp->lost_cnt_hint += pcount;
1396 
1397 	TCP_SKB_CB(prev)->end_seq += shifted;
1398 	TCP_SKB_CB(skb)->seq += shifted;
1399 
1400 	skb_shinfo(prev)->gso_segs += pcount;
1401 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1402 	skb_shinfo(skb)->gso_segs -= pcount;
1403 
1404 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1405 	 * in theory this shouldn't be necessary but as long as DSACK
1406 	 * code can come after this skb later on it's better to keep
1407 	 * setting gso_size to something.
1408 	 */
1409 	if (!skb_shinfo(prev)->gso_size) {
1410 		skb_shinfo(prev)->gso_size = mss;
1411 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1412 	}
1413 
1414 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1415 	if (skb_shinfo(skb)->gso_segs <= 1) {
1416 		skb_shinfo(skb)->gso_size = 0;
1417 		skb_shinfo(skb)->gso_type = 0;
1418 	}
1419 
1420 	/* We discard results */
1421 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1422 
1423 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1424 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1425 
1426 	if (skb->len > 0) {
1427 		BUG_ON(!tcp_skb_pcount(skb));
1428 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1429 		return 0;
1430 	}
1431 
1432 	/* Whole SKB was eaten :-) */
1433 
1434 	if (skb == tp->retransmit_skb_hint)
1435 		tp->retransmit_skb_hint = prev;
1436 	if (skb == tp->scoreboard_skb_hint)
1437 		tp->scoreboard_skb_hint = prev;
1438 	if (skb == tp->lost_skb_hint) {
1439 		tp->lost_skb_hint = prev;
1440 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1441 	}
1442 
1443 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1444 	if (skb == tcp_highest_sack(sk))
1445 		tcp_advance_highest_sack(sk, skb);
1446 
1447 	tcp_unlink_write_queue(skb, sk);
1448 	sk_wmem_free_skb(sk, skb);
1449 
1450 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1451 
1452 	return 1;
1453 }
1454 
1455 /* I wish gso_size would have a bit more sane initialization than
1456  * something-or-zero which complicates things
1457  */
1458 static int tcp_skb_seglen(struct sk_buff *skb)
1459 {
1460 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1461 }
1462 
1463 /* Shifting pages past head area doesn't work */
1464 static int skb_can_shift(struct sk_buff *skb)
1465 {
1466 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1467 }
1468 
1469 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1470  * skb.
1471  */
1472 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1473 					  struct tcp_sacktag_state *state,
1474 					  u32 start_seq, u32 end_seq,
1475 					  int dup_sack)
1476 {
1477 	struct tcp_sock *tp = tcp_sk(sk);
1478 	struct sk_buff *prev;
1479 	int mss;
1480 	int pcount = 0;
1481 	int len;
1482 	int in_sack;
1483 
1484 	if (!sk_can_gso(sk))
1485 		goto fallback;
1486 
1487 	/* Normally R but no L won't result in plain S */
1488 	if (!dup_sack &&
1489 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1490 		goto fallback;
1491 	if (!skb_can_shift(skb))
1492 		goto fallback;
1493 	/* This frame is about to be dropped (was ACKed). */
1494 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1495 		goto fallback;
1496 
1497 	/* Can only happen with delayed DSACK + discard craziness */
1498 	if (unlikely(skb == tcp_write_queue_head(sk)))
1499 		goto fallback;
1500 	prev = tcp_write_queue_prev(sk, skb);
1501 
1502 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1503 		goto fallback;
1504 
1505 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1506 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1507 
1508 	if (in_sack) {
1509 		len = skb->len;
1510 		pcount = tcp_skb_pcount(skb);
1511 		mss = tcp_skb_seglen(skb);
1512 
1513 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1514 		 * drop this restriction as unnecessary
1515 		 */
1516 		if (mss != tcp_skb_seglen(prev))
1517 			goto fallback;
1518 	} else {
1519 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1520 			goto noop;
1521 		/* CHECKME: This is non-MSS split case only?, this will
1522 		 * cause skipped skbs due to advancing loop btw, original
1523 		 * has that feature too
1524 		 */
1525 		if (tcp_skb_pcount(skb) <= 1)
1526 			goto noop;
1527 
1528 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1529 		if (!in_sack) {
1530 			/* TODO: head merge to next could be attempted here
1531 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1532 			 * though it might not be worth of the additional hassle
1533 			 *
1534 			 * ...we can probably just fallback to what was done
1535 			 * previously. We could try merging non-SACKed ones
1536 			 * as well but it probably isn't going to buy off
1537 			 * because later SACKs might again split them, and
1538 			 * it would make skb timestamp tracking considerably
1539 			 * harder problem.
1540 			 */
1541 			goto fallback;
1542 		}
1543 
1544 		len = end_seq - TCP_SKB_CB(skb)->seq;
1545 		BUG_ON(len < 0);
1546 		BUG_ON(len > skb->len);
1547 
1548 		/* MSS boundaries should be honoured or else pcount will
1549 		 * severely break even though it makes things bit trickier.
1550 		 * Optimize common case to avoid most of the divides
1551 		 */
1552 		mss = tcp_skb_mss(skb);
1553 
1554 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1555 		 * drop this restriction as unnecessary
1556 		 */
1557 		if (mss != tcp_skb_seglen(prev))
1558 			goto fallback;
1559 
1560 		if (len == mss) {
1561 			pcount = 1;
1562 		} else if (len < mss) {
1563 			goto noop;
1564 		} else {
1565 			pcount = len / mss;
1566 			len = pcount * mss;
1567 		}
1568 	}
1569 
1570 	if (!skb_shift(prev, skb, len))
1571 		goto fallback;
1572 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1573 		goto out;
1574 
1575 	/* Hole filled allows collapsing with the next as well, this is very
1576 	 * useful when hole on every nth skb pattern happens
1577 	 */
1578 	if (prev == tcp_write_queue_tail(sk))
1579 		goto out;
1580 	skb = tcp_write_queue_next(sk, prev);
1581 
1582 	if (!skb_can_shift(skb) ||
1583 	    (skb == tcp_send_head(sk)) ||
1584 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1585 	    (mss != tcp_skb_seglen(skb)))
1586 		goto out;
1587 
1588 	len = skb->len;
1589 	if (skb_shift(prev, skb, len)) {
1590 		pcount += tcp_skb_pcount(skb);
1591 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1592 	}
1593 
1594 out:
1595 	state->fack_count += pcount;
1596 	return prev;
1597 
1598 noop:
1599 	return skb;
1600 
1601 fallback:
1602 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1603 	return NULL;
1604 }
1605 
1606 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1607 					struct tcp_sack_block *next_dup,
1608 					struct tcp_sacktag_state *state,
1609 					u32 start_seq, u32 end_seq,
1610 					int dup_sack_in)
1611 {
1612 	struct tcp_sock *tp = tcp_sk(sk);
1613 	struct sk_buff *tmp;
1614 
1615 	tcp_for_write_queue_from(skb, sk) {
1616 		int in_sack = 0;
1617 		int dup_sack = dup_sack_in;
1618 
1619 		if (skb == tcp_send_head(sk))
1620 			break;
1621 
1622 		/* queue is in-order => we can short-circuit the walk early */
1623 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1624 			break;
1625 
1626 		if ((next_dup != NULL) &&
1627 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1628 			in_sack = tcp_match_skb_to_sack(sk, skb,
1629 							next_dup->start_seq,
1630 							next_dup->end_seq);
1631 			if (in_sack > 0)
1632 				dup_sack = 1;
1633 		}
1634 
1635 		/* skb reference here is a bit tricky to get right, since
1636 		 * shifting can eat and free both this skb and the next,
1637 		 * so not even _safe variant of the loop is enough.
1638 		 */
1639 		if (in_sack <= 0) {
1640 			tmp = tcp_shift_skb_data(sk, skb, state,
1641 						 start_seq, end_seq, dup_sack);
1642 			if (tmp != NULL) {
1643 				if (tmp != skb) {
1644 					skb = tmp;
1645 					continue;
1646 				}
1647 
1648 				in_sack = 0;
1649 			} else {
1650 				in_sack = tcp_match_skb_to_sack(sk, skb,
1651 								start_seq,
1652 								end_seq);
1653 			}
1654 		}
1655 
1656 		if (unlikely(in_sack < 0))
1657 			break;
1658 
1659 		if (in_sack) {
1660 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1661 								  state,
1662 								  dup_sack,
1663 								  tcp_skb_pcount(skb));
1664 
1665 			if (!before(TCP_SKB_CB(skb)->seq,
1666 				    tcp_highest_sack_seq(tp)))
1667 				tcp_advance_highest_sack(sk, skb);
1668 		}
1669 
1670 		state->fack_count += tcp_skb_pcount(skb);
1671 	}
1672 	return skb;
1673 }
1674 
1675 /* Avoid all extra work that is being done by sacktag while walking in
1676  * a normal way
1677  */
1678 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1679 					struct tcp_sacktag_state *state,
1680 					u32 skip_to_seq)
1681 {
1682 	tcp_for_write_queue_from(skb, sk) {
1683 		if (skb == tcp_send_head(sk))
1684 			break;
1685 
1686 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1687 			break;
1688 
1689 		state->fack_count += tcp_skb_pcount(skb);
1690 	}
1691 	return skb;
1692 }
1693 
1694 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1695 						struct sock *sk,
1696 						struct tcp_sack_block *next_dup,
1697 						struct tcp_sacktag_state *state,
1698 						u32 skip_to_seq)
1699 {
1700 	if (next_dup == NULL)
1701 		return skb;
1702 
1703 	if (before(next_dup->start_seq, skip_to_seq)) {
1704 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1705 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1706 				       next_dup->start_seq, next_dup->end_seq,
1707 				       1);
1708 	}
1709 
1710 	return skb;
1711 }
1712 
1713 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1714 {
1715 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1716 }
1717 
1718 static int
1719 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1720 			u32 prior_snd_una)
1721 {
1722 	const struct inet_connection_sock *icsk = inet_csk(sk);
1723 	struct tcp_sock *tp = tcp_sk(sk);
1724 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1725 			      TCP_SKB_CB(ack_skb)->sacked);
1726 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1727 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1728 	struct tcp_sack_block *cache;
1729 	struct tcp_sacktag_state state;
1730 	struct sk_buff *skb;
1731 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1732 	int used_sacks;
1733 	int found_dup_sack = 0;
1734 	int i, j;
1735 	int first_sack_index;
1736 
1737 	state.flag = 0;
1738 	state.reord = tp->packets_out;
1739 
1740 	if (!tp->sacked_out) {
1741 		if (WARN_ON(tp->fackets_out))
1742 			tp->fackets_out = 0;
1743 		tcp_highest_sack_reset(sk);
1744 	}
1745 
1746 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1747 					 num_sacks, prior_snd_una);
1748 	if (found_dup_sack)
1749 		state.flag |= FLAG_DSACKING_ACK;
1750 
1751 	/* Eliminate too old ACKs, but take into
1752 	 * account more or less fresh ones, they can
1753 	 * contain valid SACK info.
1754 	 */
1755 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1756 		return 0;
1757 
1758 	if (!tp->packets_out)
1759 		goto out;
1760 
1761 	used_sacks = 0;
1762 	first_sack_index = 0;
1763 	for (i = 0; i < num_sacks; i++) {
1764 		int dup_sack = !i && found_dup_sack;
1765 
1766 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1767 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1768 
1769 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1770 					    sp[used_sacks].start_seq,
1771 					    sp[used_sacks].end_seq)) {
1772 			int mib_idx;
1773 
1774 			if (dup_sack) {
1775 				if (!tp->undo_marker)
1776 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1777 				else
1778 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1779 			} else {
1780 				/* Don't count olds caused by ACK reordering */
1781 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1782 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1783 					continue;
1784 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1785 			}
1786 
1787 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1788 			if (i == 0)
1789 				first_sack_index = -1;
1790 			continue;
1791 		}
1792 
1793 		/* Ignore very old stuff early */
1794 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1795 			continue;
1796 
1797 		used_sacks++;
1798 	}
1799 
1800 	/* order SACK blocks to allow in order walk of the retrans queue */
1801 	for (i = used_sacks - 1; i > 0; i--) {
1802 		for (j = 0; j < i; j++) {
1803 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1804 				swap(sp[j], sp[j + 1]);
1805 
1806 				/* Track where the first SACK block goes to */
1807 				if (j == first_sack_index)
1808 					first_sack_index = j + 1;
1809 			}
1810 		}
1811 	}
1812 
1813 	skb = tcp_write_queue_head(sk);
1814 	state.fack_count = 0;
1815 	i = 0;
1816 
1817 	if (!tp->sacked_out) {
1818 		/* It's already past, so skip checking against it */
1819 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1820 	} else {
1821 		cache = tp->recv_sack_cache;
1822 		/* Skip empty blocks in at head of the cache */
1823 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1824 		       !cache->end_seq)
1825 			cache++;
1826 	}
1827 
1828 	while (i < used_sacks) {
1829 		u32 start_seq = sp[i].start_seq;
1830 		u32 end_seq = sp[i].end_seq;
1831 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1832 		struct tcp_sack_block *next_dup = NULL;
1833 
1834 		if (found_dup_sack && ((i + 1) == first_sack_index))
1835 			next_dup = &sp[i + 1];
1836 
1837 		/* Event "B" in the comment above. */
1838 		if (after(end_seq, tp->high_seq))
1839 			state.flag |= FLAG_DATA_LOST;
1840 
1841 		/* Skip too early cached blocks */
1842 		while (tcp_sack_cache_ok(tp, cache) &&
1843 		       !before(start_seq, cache->end_seq))
1844 			cache++;
1845 
1846 		/* Can skip some work by looking recv_sack_cache? */
1847 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1848 		    after(end_seq, cache->start_seq)) {
1849 
1850 			/* Head todo? */
1851 			if (before(start_seq, cache->start_seq)) {
1852 				skb = tcp_sacktag_skip(skb, sk, &state,
1853 						       start_seq);
1854 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1855 						       &state,
1856 						       start_seq,
1857 						       cache->start_seq,
1858 						       dup_sack);
1859 			}
1860 
1861 			/* Rest of the block already fully processed? */
1862 			if (!after(end_seq, cache->end_seq))
1863 				goto advance_sp;
1864 
1865 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1866 						       &state,
1867 						       cache->end_seq);
1868 
1869 			/* ...tail remains todo... */
1870 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1871 				/* ...but better entrypoint exists! */
1872 				skb = tcp_highest_sack(sk);
1873 				if (skb == NULL)
1874 					break;
1875 				state.fack_count = tp->fackets_out;
1876 				cache++;
1877 				goto walk;
1878 			}
1879 
1880 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1881 			/* Check overlap against next cached too (past this one already) */
1882 			cache++;
1883 			continue;
1884 		}
1885 
1886 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1887 			skb = tcp_highest_sack(sk);
1888 			if (skb == NULL)
1889 				break;
1890 			state.fack_count = tp->fackets_out;
1891 		}
1892 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1893 
1894 walk:
1895 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1896 				       start_seq, end_seq, dup_sack);
1897 
1898 advance_sp:
1899 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1900 		 * due to in-order walk
1901 		 */
1902 		if (after(end_seq, tp->frto_highmark))
1903 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1904 
1905 		i++;
1906 	}
1907 
1908 	/* Clear the head of the cache sack blocks so we can skip it next time */
1909 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1910 		tp->recv_sack_cache[i].start_seq = 0;
1911 		tp->recv_sack_cache[i].end_seq = 0;
1912 	}
1913 	for (j = 0; j < used_sacks; j++)
1914 		tp->recv_sack_cache[i++] = sp[j];
1915 
1916 	tcp_mark_lost_retrans(sk);
1917 
1918 	tcp_verify_left_out(tp);
1919 
1920 	if ((state.reord < tp->fackets_out) &&
1921 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1922 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1923 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1924 
1925 out:
1926 
1927 #if FASTRETRANS_DEBUG > 0
1928 	WARN_ON((int)tp->sacked_out < 0);
1929 	WARN_ON((int)tp->lost_out < 0);
1930 	WARN_ON((int)tp->retrans_out < 0);
1931 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1932 #endif
1933 	return state.flag;
1934 }
1935 
1936 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1937  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1938  */
1939 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1940 {
1941 	u32 holes;
1942 
1943 	holes = max(tp->lost_out, 1U);
1944 	holes = min(holes, tp->packets_out);
1945 
1946 	if ((tp->sacked_out + holes) > tp->packets_out) {
1947 		tp->sacked_out = tp->packets_out - holes;
1948 		return 1;
1949 	}
1950 	return 0;
1951 }
1952 
1953 /* If we receive more dupacks than we expected counting segments
1954  * in assumption of absent reordering, interpret this as reordering.
1955  * The only another reason could be bug in receiver TCP.
1956  */
1957 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1958 {
1959 	struct tcp_sock *tp = tcp_sk(sk);
1960 	if (tcp_limit_reno_sacked(tp))
1961 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1962 }
1963 
1964 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1965 
1966 static void tcp_add_reno_sack(struct sock *sk)
1967 {
1968 	struct tcp_sock *tp = tcp_sk(sk);
1969 	tp->sacked_out++;
1970 	tcp_check_reno_reordering(sk, 0);
1971 	tcp_verify_left_out(tp);
1972 }
1973 
1974 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1975 
1976 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1977 {
1978 	struct tcp_sock *tp = tcp_sk(sk);
1979 
1980 	if (acked > 0) {
1981 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1982 		if (acked - 1 >= tp->sacked_out)
1983 			tp->sacked_out = 0;
1984 		else
1985 			tp->sacked_out -= acked - 1;
1986 	}
1987 	tcp_check_reno_reordering(sk, acked);
1988 	tcp_verify_left_out(tp);
1989 }
1990 
1991 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1992 {
1993 	tp->sacked_out = 0;
1994 }
1995 
1996 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1997 {
1998 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1999 }
2000 
2001 /* F-RTO can only be used if TCP has never retransmitted anything other than
2002  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2003  */
2004 int tcp_use_frto(struct sock *sk)
2005 {
2006 	const struct tcp_sock *tp = tcp_sk(sk);
2007 	const struct inet_connection_sock *icsk = inet_csk(sk);
2008 	struct sk_buff *skb;
2009 
2010 	if (!sysctl_tcp_frto)
2011 		return 0;
2012 
2013 	/* MTU probe and F-RTO won't really play nicely along currently */
2014 	if (icsk->icsk_mtup.probe_size)
2015 		return 0;
2016 
2017 	if (tcp_is_sackfrto(tp))
2018 		return 1;
2019 
2020 	/* Avoid expensive walking of rexmit queue if possible */
2021 	if (tp->retrans_out > 1)
2022 		return 0;
2023 
2024 	skb = tcp_write_queue_head(sk);
2025 	if (tcp_skb_is_last(sk, skb))
2026 		return 1;
2027 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2028 	tcp_for_write_queue_from(skb, sk) {
2029 		if (skb == tcp_send_head(sk))
2030 			break;
2031 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2032 			return 0;
2033 		/* Short-circuit when first non-SACKed skb has been checked */
2034 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2035 			break;
2036 	}
2037 	return 1;
2038 }
2039 
2040 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2041  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2042  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2043  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2044  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2045  * bits are handled if the Loss state is really to be entered (in
2046  * tcp_enter_frto_loss).
2047  *
2048  * Do like tcp_enter_loss() would; when RTO expires the second time it
2049  * does:
2050  *  "Reduce ssthresh if it has not yet been made inside this window."
2051  */
2052 void tcp_enter_frto(struct sock *sk)
2053 {
2054 	const struct inet_connection_sock *icsk = inet_csk(sk);
2055 	struct tcp_sock *tp = tcp_sk(sk);
2056 	struct sk_buff *skb;
2057 
2058 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2059 	    tp->snd_una == tp->high_seq ||
2060 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2061 	     !icsk->icsk_retransmits)) {
2062 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2063 		/* Our state is too optimistic in ssthresh() call because cwnd
2064 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2065 		 * recovery has not yet completed. Pattern would be this: RTO,
2066 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2067 		 * up here twice).
2068 		 * RFC4138 should be more specific on what to do, even though
2069 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2070 		 * due to back-off and complexity of triggering events ...
2071 		 */
2072 		if (tp->frto_counter) {
2073 			u32 stored_cwnd;
2074 			stored_cwnd = tp->snd_cwnd;
2075 			tp->snd_cwnd = 2;
2076 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2077 			tp->snd_cwnd = stored_cwnd;
2078 		} else {
2079 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2080 		}
2081 		/* ... in theory, cong.control module could do "any tricks" in
2082 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2083 		 * counter would have to be faked before the call occurs. We
2084 		 * consider that too expensive, unlikely and hacky, so modules
2085 		 * using these in ssthresh() must deal these incompatibility
2086 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2087 		 */
2088 		tcp_ca_event(sk, CA_EVENT_FRTO);
2089 	}
2090 
2091 	tp->undo_marker = tp->snd_una;
2092 	tp->undo_retrans = 0;
2093 
2094 	skb = tcp_write_queue_head(sk);
2095 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2096 		tp->undo_marker = 0;
2097 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2098 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2099 		tp->retrans_out -= tcp_skb_pcount(skb);
2100 	}
2101 	tcp_verify_left_out(tp);
2102 
2103 	/* Too bad if TCP was application limited */
2104 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2105 
2106 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2107 	 * The last condition is necessary at least in tp->frto_counter case.
2108 	 */
2109 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2110 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2111 	    after(tp->high_seq, tp->snd_una)) {
2112 		tp->frto_highmark = tp->high_seq;
2113 	} else {
2114 		tp->frto_highmark = tp->snd_nxt;
2115 	}
2116 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2117 	tp->high_seq = tp->snd_nxt;
2118 	tp->frto_counter = 1;
2119 }
2120 
2121 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2122  * which indicates that we should follow the traditional RTO recovery,
2123  * i.e. mark everything lost and do go-back-N retransmission.
2124  */
2125 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2126 {
2127 	struct tcp_sock *tp = tcp_sk(sk);
2128 	struct sk_buff *skb;
2129 
2130 	tp->lost_out = 0;
2131 	tp->retrans_out = 0;
2132 	if (tcp_is_reno(tp))
2133 		tcp_reset_reno_sack(tp);
2134 
2135 	tcp_for_write_queue(skb, sk) {
2136 		if (skb == tcp_send_head(sk))
2137 			break;
2138 
2139 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2140 		/*
2141 		 * Count the retransmission made on RTO correctly (only when
2142 		 * waiting for the first ACK and did not get it)...
2143 		 */
2144 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2145 			/* For some reason this R-bit might get cleared? */
2146 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2147 				tp->retrans_out += tcp_skb_pcount(skb);
2148 			/* ...enter this if branch just for the first segment */
2149 			flag |= FLAG_DATA_ACKED;
2150 		} else {
2151 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2152 				tp->undo_marker = 0;
2153 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2154 		}
2155 
2156 		/* Marking forward transmissions that were made after RTO lost
2157 		 * can cause unnecessary retransmissions in some scenarios,
2158 		 * SACK blocks will mitigate that in some but not in all cases.
2159 		 * We used to not mark them but it was causing break-ups with
2160 		 * receivers that do only in-order receival.
2161 		 *
2162 		 * TODO: we could detect presence of such receiver and select
2163 		 * different behavior per flow.
2164 		 */
2165 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2166 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2167 			tp->lost_out += tcp_skb_pcount(skb);
2168 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2169 		}
2170 	}
2171 	tcp_verify_left_out(tp);
2172 
2173 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2174 	tp->snd_cwnd_cnt = 0;
2175 	tp->snd_cwnd_stamp = tcp_time_stamp;
2176 	tp->frto_counter = 0;
2177 	tp->bytes_acked = 0;
2178 
2179 	tp->reordering = min_t(unsigned int, tp->reordering,
2180 			       sysctl_tcp_reordering);
2181 	tcp_set_ca_state(sk, TCP_CA_Loss);
2182 	tp->high_seq = tp->snd_nxt;
2183 	TCP_ECN_queue_cwr(tp);
2184 
2185 	tcp_clear_all_retrans_hints(tp);
2186 }
2187 
2188 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2189 {
2190 	tp->retrans_out = 0;
2191 	tp->lost_out = 0;
2192 
2193 	tp->undo_marker = 0;
2194 	tp->undo_retrans = 0;
2195 }
2196 
2197 void tcp_clear_retrans(struct tcp_sock *tp)
2198 {
2199 	tcp_clear_retrans_partial(tp);
2200 
2201 	tp->fackets_out = 0;
2202 	tp->sacked_out = 0;
2203 }
2204 
2205 /* Enter Loss state. If "how" is not zero, forget all SACK information
2206  * and reset tags completely, otherwise preserve SACKs. If receiver
2207  * dropped its ofo queue, we will know this due to reneging detection.
2208  */
2209 void tcp_enter_loss(struct sock *sk, int how)
2210 {
2211 	const struct inet_connection_sock *icsk = inet_csk(sk);
2212 	struct tcp_sock *tp = tcp_sk(sk);
2213 	struct sk_buff *skb;
2214 
2215 	/* Reduce ssthresh if it has not yet been made inside this window. */
2216 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2217 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2218 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2219 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2220 		tcp_ca_event(sk, CA_EVENT_LOSS);
2221 	}
2222 	tp->snd_cwnd	   = 1;
2223 	tp->snd_cwnd_cnt   = 0;
2224 	tp->snd_cwnd_stamp = tcp_time_stamp;
2225 
2226 	tp->bytes_acked = 0;
2227 	tcp_clear_retrans_partial(tp);
2228 
2229 	if (tcp_is_reno(tp))
2230 		tcp_reset_reno_sack(tp);
2231 
2232 	if (!how) {
2233 		/* Push undo marker, if it was plain RTO and nothing
2234 		 * was retransmitted. */
2235 		tp->undo_marker = tp->snd_una;
2236 	} else {
2237 		tp->sacked_out = 0;
2238 		tp->fackets_out = 0;
2239 	}
2240 	tcp_clear_all_retrans_hints(tp);
2241 
2242 	tcp_for_write_queue(skb, sk) {
2243 		if (skb == tcp_send_head(sk))
2244 			break;
2245 
2246 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2247 			tp->undo_marker = 0;
2248 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2249 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2250 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2251 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2252 			tp->lost_out += tcp_skb_pcount(skb);
2253 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2254 		}
2255 	}
2256 	tcp_verify_left_out(tp);
2257 
2258 	tp->reordering = min_t(unsigned int, tp->reordering,
2259 			       sysctl_tcp_reordering);
2260 	tcp_set_ca_state(sk, TCP_CA_Loss);
2261 	tp->high_seq = tp->snd_nxt;
2262 	TCP_ECN_queue_cwr(tp);
2263 	/* Abort F-RTO algorithm if one is in progress */
2264 	tp->frto_counter = 0;
2265 }
2266 
2267 /* If ACK arrived pointing to a remembered SACK, it means that our
2268  * remembered SACKs do not reflect real state of receiver i.e.
2269  * receiver _host_ is heavily congested (or buggy).
2270  *
2271  * Do processing similar to RTO timeout.
2272  */
2273 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2274 {
2275 	if (flag & FLAG_SACK_RENEGING) {
2276 		struct inet_connection_sock *icsk = inet_csk(sk);
2277 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2278 
2279 		tcp_enter_loss(sk, 1);
2280 		icsk->icsk_retransmits++;
2281 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2282 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2283 					  icsk->icsk_rto, TCP_RTO_MAX);
2284 		return 1;
2285 	}
2286 	return 0;
2287 }
2288 
2289 static inline int tcp_fackets_out(struct tcp_sock *tp)
2290 {
2291 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2292 }
2293 
2294 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2295  * counter when SACK is enabled (without SACK, sacked_out is used for
2296  * that purpose).
2297  *
2298  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2299  * segments up to the highest received SACK block so far and holes in
2300  * between them.
2301  *
2302  * With reordering, holes may still be in flight, so RFC3517 recovery
2303  * uses pure sacked_out (total number of SACKed segments) even though
2304  * it violates the RFC that uses duplicate ACKs, often these are equal
2305  * but when e.g. out-of-window ACKs or packet duplication occurs,
2306  * they differ. Since neither occurs due to loss, TCP should really
2307  * ignore them.
2308  */
2309 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2310 {
2311 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2312 }
2313 
2314 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2315 {
2316 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2317 }
2318 
2319 static inline int tcp_head_timedout(struct sock *sk)
2320 {
2321 	struct tcp_sock *tp = tcp_sk(sk);
2322 
2323 	return tp->packets_out &&
2324 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2325 }
2326 
2327 /* Linux NewReno/SACK/FACK/ECN state machine.
2328  * --------------------------------------
2329  *
2330  * "Open"	Normal state, no dubious events, fast path.
2331  * "Disorder"   In all the respects it is "Open",
2332  *		but requires a bit more attention. It is entered when
2333  *		we see some SACKs or dupacks. It is split of "Open"
2334  *		mainly to move some processing from fast path to slow one.
2335  * "CWR"	CWND was reduced due to some Congestion Notification event.
2336  *		It can be ECN, ICMP source quench, local device congestion.
2337  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2338  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2339  *
2340  * tcp_fastretrans_alert() is entered:
2341  * - each incoming ACK, if state is not "Open"
2342  * - when arrived ACK is unusual, namely:
2343  *	* SACK
2344  *	* Duplicate ACK.
2345  *	* ECN ECE.
2346  *
2347  * Counting packets in flight is pretty simple.
2348  *
2349  *	in_flight = packets_out - left_out + retrans_out
2350  *
2351  *	packets_out is SND.NXT-SND.UNA counted in packets.
2352  *
2353  *	retrans_out is number of retransmitted segments.
2354  *
2355  *	left_out is number of segments left network, but not ACKed yet.
2356  *
2357  *		left_out = sacked_out + lost_out
2358  *
2359  *     sacked_out: Packets, which arrived to receiver out of order
2360  *		   and hence not ACKed. With SACKs this number is simply
2361  *		   amount of SACKed data. Even without SACKs
2362  *		   it is easy to give pretty reliable estimate of this number,
2363  *		   counting duplicate ACKs.
2364  *
2365  *       lost_out: Packets lost by network. TCP has no explicit
2366  *		   "loss notification" feedback from network (for now).
2367  *		   It means that this number can be only _guessed_.
2368  *		   Actually, it is the heuristics to predict lossage that
2369  *		   distinguishes different algorithms.
2370  *
2371  *	F.e. after RTO, when all the queue is considered as lost,
2372  *	lost_out = packets_out and in_flight = retrans_out.
2373  *
2374  *		Essentially, we have now two algorithms counting
2375  *		lost packets.
2376  *
2377  *		FACK: It is the simplest heuristics. As soon as we decided
2378  *		that something is lost, we decide that _all_ not SACKed
2379  *		packets until the most forward SACK are lost. I.e.
2380  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2381  *		It is absolutely correct estimate, if network does not reorder
2382  *		packets. And it loses any connection to reality when reordering
2383  *		takes place. We use FACK by default until reordering
2384  *		is suspected on the path to this destination.
2385  *
2386  *		NewReno: when Recovery is entered, we assume that one segment
2387  *		is lost (classic Reno). While we are in Recovery and
2388  *		a partial ACK arrives, we assume that one more packet
2389  *		is lost (NewReno). This heuristics are the same in NewReno
2390  *		and SACK.
2391  *
2392  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2393  *  deflation etc. CWND is real congestion window, never inflated, changes
2394  *  only according to classic VJ rules.
2395  *
2396  * Really tricky (and requiring careful tuning) part of algorithm
2397  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2398  * The first determines the moment _when_ we should reduce CWND and,
2399  * hence, slow down forward transmission. In fact, it determines the moment
2400  * when we decide that hole is caused by loss, rather than by a reorder.
2401  *
2402  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2403  * holes, caused by lost packets.
2404  *
2405  * And the most logically complicated part of algorithm is undo
2406  * heuristics. We detect false retransmits due to both too early
2407  * fast retransmit (reordering) and underestimated RTO, analyzing
2408  * timestamps and D-SACKs. When we detect that some segments were
2409  * retransmitted by mistake and CWND reduction was wrong, we undo
2410  * window reduction and abort recovery phase. This logic is hidden
2411  * inside several functions named tcp_try_undo_<something>.
2412  */
2413 
2414 /* This function decides, when we should leave Disordered state
2415  * and enter Recovery phase, reducing congestion window.
2416  *
2417  * Main question: may we further continue forward transmission
2418  * with the same cwnd?
2419  */
2420 static int tcp_time_to_recover(struct sock *sk)
2421 {
2422 	struct tcp_sock *tp = tcp_sk(sk);
2423 	__u32 packets_out;
2424 
2425 	/* Do not perform any recovery during F-RTO algorithm */
2426 	if (tp->frto_counter)
2427 		return 0;
2428 
2429 	/* Trick#1: The loss is proven. */
2430 	if (tp->lost_out)
2431 		return 1;
2432 
2433 	/* Not-A-Trick#2 : Classic rule... */
2434 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2435 		return 1;
2436 
2437 	/* Trick#3 : when we use RFC2988 timer restart, fast
2438 	 * retransmit can be triggered by timeout of queue head.
2439 	 */
2440 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2441 		return 1;
2442 
2443 	/* Trick#4: It is still not OK... But will it be useful to delay
2444 	 * recovery more?
2445 	 */
2446 	packets_out = tp->packets_out;
2447 	if (packets_out <= tp->reordering &&
2448 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2449 	    !tcp_may_send_now(sk)) {
2450 		/* We have nothing to send. This connection is limited
2451 		 * either by receiver window or by application.
2452 		 */
2453 		return 1;
2454 	}
2455 
2456 	/* If a thin stream is detected, retransmit after first
2457 	 * received dupack. Employ only if SACK is supported in order
2458 	 * to avoid possible corner-case series of spurious retransmissions
2459 	 * Use only if there are no unsent data.
2460 	 */
2461 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2462 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2463 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2464 		return 1;
2465 
2466 	return 0;
2467 }
2468 
2469 /* New heuristics: it is possible only after we switched to restart timer
2470  * each time when something is ACKed. Hence, we can detect timed out packets
2471  * during fast retransmit without falling to slow start.
2472  *
2473  * Usefulness of this as is very questionable, since we should know which of
2474  * the segments is the next to timeout which is relatively expensive to find
2475  * in general case unless we add some data structure just for that. The
2476  * current approach certainly won't find the right one too often and when it
2477  * finally does find _something_ it usually marks large part of the window
2478  * right away (because a retransmission with a larger timestamp blocks the
2479  * loop from advancing). -ij
2480  */
2481 static void tcp_timeout_skbs(struct sock *sk)
2482 {
2483 	struct tcp_sock *tp = tcp_sk(sk);
2484 	struct sk_buff *skb;
2485 
2486 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2487 		return;
2488 
2489 	skb = tp->scoreboard_skb_hint;
2490 	if (tp->scoreboard_skb_hint == NULL)
2491 		skb = tcp_write_queue_head(sk);
2492 
2493 	tcp_for_write_queue_from(skb, sk) {
2494 		if (skb == tcp_send_head(sk))
2495 			break;
2496 		if (!tcp_skb_timedout(sk, skb))
2497 			break;
2498 
2499 		tcp_skb_mark_lost(tp, skb);
2500 	}
2501 
2502 	tp->scoreboard_skb_hint = skb;
2503 
2504 	tcp_verify_left_out(tp);
2505 }
2506 
2507 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2508  * is against sacked "cnt", otherwise it's against facked "cnt"
2509  */
2510 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2511 {
2512 	struct tcp_sock *tp = tcp_sk(sk);
2513 	struct sk_buff *skb;
2514 	int cnt, oldcnt;
2515 	int err;
2516 	unsigned int mss;
2517 
2518 	WARN_ON(packets > tp->packets_out);
2519 	if (tp->lost_skb_hint) {
2520 		skb = tp->lost_skb_hint;
2521 		cnt = tp->lost_cnt_hint;
2522 		/* Head already handled? */
2523 		if (mark_head && skb != tcp_write_queue_head(sk))
2524 			return;
2525 	} else {
2526 		skb = tcp_write_queue_head(sk);
2527 		cnt = 0;
2528 	}
2529 
2530 	tcp_for_write_queue_from(skb, sk) {
2531 		if (skb == tcp_send_head(sk))
2532 			break;
2533 		/* TODO: do this better */
2534 		/* this is not the most efficient way to do this... */
2535 		tp->lost_skb_hint = skb;
2536 		tp->lost_cnt_hint = cnt;
2537 
2538 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2539 			break;
2540 
2541 		oldcnt = cnt;
2542 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2543 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2544 			cnt += tcp_skb_pcount(skb);
2545 
2546 		if (cnt > packets) {
2547 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2548 			    (oldcnt >= packets))
2549 				break;
2550 
2551 			mss = skb_shinfo(skb)->gso_size;
2552 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2553 			if (err < 0)
2554 				break;
2555 			cnt = packets;
2556 		}
2557 
2558 		tcp_skb_mark_lost(tp, skb);
2559 
2560 		if (mark_head)
2561 			break;
2562 	}
2563 	tcp_verify_left_out(tp);
2564 }
2565 
2566 /* Account newly detected lost packet(s) */
2567 
2568 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2569 {
2570 	struct tcp_sock *tp = tcp_sk(sk);
2571 
2572 	if (tcp_is_reno(tp)) {
2573 		tcp_mark_head_lost(sk, 1, 1);
2574 	} else if (tcp_is_fack(tp)) {
2575 		int lost = tp->fackets_out - tp->reordering;
2576 		if (lost <= 0)
2577 			lost = 1;
2578 		tcp_mark_head_lost(sk, lost, 0);
2579 	} else {
2580 		int sacked_upto = tp->sacked_out - tp->reordering;
2581 		if (sacked_upto >= 0)
2582 			tcp_mark_head_lost(sk, sacked_upto, 0);
2583 		else if (fast_rexmit)
2584 			tcp_mark_head_lost(sk, 1, 1);
2585 	}
2586 
2587 	tcp_timeout_skbs(sk);
2588 }
2589 
2590 /* CWND moderation, preventing bursts due to too big ACKs
2591  * in dubious situations.
2592  */
2593 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2594 {
2595 	tp->snd_cwnd = min(tp->snd_cwnd,
2596 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2597 	tp->snd_cwnd_stamp = tcp_time_stamp;
2598 }
2599 
2600 /* Lower bound on congestion window is slow start threshold
2601  * unless congestion avoidance choice decides to overide it.
2602  */
2603 static inline u32 tcp_cwnd_min(const struct sock *sk)
2604 {
2605 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2606 
2607 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2608 }
2609 
2610 /* Decrease cwnd each second ack. */
2611 static void tcp_cwnd_down(struct sock *sk, int flag)
2612 {
2613 	struct tcp_sock *tp = tcp_sk(sk);
2614 	int decr = tp->snd_cwnd_cnt + 1;
2615 
2616 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2617 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2618 		tp->snd_cwnd_cnt = decr & 1;
2619 		decr >>= 1;
2620 
2621 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2622 			tp->snd_cwnd -= decr;
2623 
2624 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2625 		tp->snd_cwnd_stamp = tcp_time_stamp;
2626 	}
2627 }
2628 
2629 /* Nothing was retransmitted or returned timestamp is less
2630  * than timestamp of the first retransmission.
2631  */
2632 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2633 {
2634 	return !tp->retrans_stamp ||
2635 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2636 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2637 }
2638 
2639 /* Undo procedures. */
2640 
2641 #if FASTRETRANS_DEBUG > 1
2642 static void DBGUNDO(struct sock *sk, const char *msg)
2643 {
2644 	struct tcp_sock *tp = tcp_sk(sk);
2645 	struct inet_sock *inet = inet_sk(sk);
2646 
2647 	if (sk->sk_family == AF_INET) {
2648 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2649 		       msg,
2650 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2651 		       tp->snd_cwnd, tcp_left_out(tp),
2652 		       tp->snd_ssthresh, tp->prior_ssthresh,
2653 		       tp->packets_out);
2654 	}
2655 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2656 	else if (sk->sk_family == AF_INET6) {
2657 		struct ipv6_pinfo *np = inet6_sk(sk);
2658 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2659 		       msg,
2660 		       &np->daddr, ntohs(inet->inet_dport),
2661 		       tp->snd_cwnd, tcp_left_out(tp),
2662 		       tp->snd_ssthresh, tp->prior_ssthresh,
2663 		       tp->packets_out);
2664 	}
2665 #endif
2666 }
2667 #else
2668 #define DBGUNDO(x...) do { } while (0)
2669 #endif
2670 
2671 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 
2675 	if (tp->prior_ssthresh) {
2676 		const struct inet_connection_sock *icsk = inet_csk(sk);
2677 
2678 		if (icsk->icsk_ca_ops->undo_cwnd)
2679 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2680 		else
2681 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2682 
2683 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2684 			tp->snd_ssthresh = tp->prior_ssthresh;
2685 			TCP_ECN_withdraw_cwr(tp);
2686 		}
2687 	} else {
2688 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2689 	}
2690 	tp->snd_cwnd_stamp = tcp_time_stamp;
2691 }
2692 
2693 static inline int tcp_may_undo(struct tcp_sock *tp)
2694 {
2695 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2696 }
2697 
2698 /* People celebrate: "We love our President!" */
2699 static int tcp_try_undo_recovery(struct sock *sk)
2700 {
2701 	struct tcp_sock *tp = tcp_sk(sk);
2702 
2703 	if (tcp_may_undo(tp)) {
2704 		int mib_idx;
2705 
2706 		/* Happy end! We did not retransmit anything
2707 		 * or our original transmission succeeded.
2708 		 */
2709 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2710 		tcp_undo_cwr(sk, true);
2711 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2712 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2713 		else
2714 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2715 
2716 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2717 		tp->undo_marker = 0;
2718 	}
2719 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2720 		/* Hold old state until something *above* high_seq
2721 		 * is ACKed. For Reno it is MUST to prevent false
2722 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2723 		tcp_moderate_cwnd(tp);
2724 		return 1;
2725 	}
2726 	tcp_set_ca_state(sk, TCP_CA_Open);
2727 	return 0;
2728 }
2729 
2730 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2731 static void tcp_try_undo_dsack(struct sock *sk)
2732 {
2733 	struct tcp_sock *tp = tcp_sk(sk);
2734 
2735 	if (tp->undo_marker && !tp->undo_retrans) {
2736 		DBGUNDO(sk, "D-SACK");
2737 		tcp_undo_cwr(sk, true);
2738 		tp->undo_marker = 0;
2739 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2740 	}
2741 }
2742 
2743 /* We can clear retrans_stamp when there are no retransmissions in the
2744  * window. It would seem that it is trivially available for us in
2745  * tp->retrans_out, however, that kind of assumptions doesn't consider
2746  * what will happen if errors occur when sending retransmission for the
2747  * second time. ...It could the that such segment has only
2748  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2749  * the head skb is enough except for some reneging corner cases that
2750  * are not worth the effort.
2751  *
2752  * Main reason for all this complexity is the fact that connection dying
2753  * time now depends on the validity of the retrans_stamp, in particular,
2754  * that successive retransmissions of a segment must not advance
2755  * retrans_stamp under any conditions.
2756  */
2757 static int tcp_any_retrans_done(struct sock *sk)
2758 {
2759 	struct tcp_sock *tp = tcp_sk(sk);
2760 	struct sk_buff *skb;
2761 
2762 	if (tp->retrans_out)
2763 		return 1;
2764 
2765 	skb = tcp_write_queue_head(sk);
2766 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2767 		return 1;
2768 
2769 	return 0;
2770 }
2771 
2772 /* Undo during fast recovery after partial ACK. */
2773 
2774 static int tcp_try_undo_partial(struct sock *sk, int acked)
2775 {
2776 	struct tcp_sock *tp = tcp_sk(sk);
2777 	/* Partial ACK arrived. Force Hoe's retransmit. */
2778 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2779 
2780 	if (tcp_may_undo(tp)) {
2781 		/* Plain luck! Hole if filled with delayed
2782 		 * packet, rather than with a retransmit.
2783 		 */
2784 		if (!tcp_any_retrans_done(sk))
2785 			tp->retrans_stamp = 0;
2786 
2787 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2788 
2789 		DBGUNDO(sk, "Hoe");
2790 		tcp_undo_cwr(sk, false);
2791 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2792 
2793 		/* So... Do not make Hoe's retransmit yet.
2794 		 * If the first packet was delayed, the rest
2795 		 * ones are most probably delayed as well.
2796 		 */
2797 		failed = 0;
2798 	}
2799 	return failed;
2800 }
2801 
2802 /* Undo during loss recovery after partial ACK. */
2803 static int tcp_try_undo_loss(struct sock *sk)
2804 {
2805 	struct tcp_sock *tp = tcp_sk(sk);
2806 
2807 	if (tcp_may_undo(tp)) {
2808 		struct sk_buff *skb;
2809 		tcp_for_write_queue(skb, sk) {
2810 			if (skb == tcp_send_head(sk))
2811 				break;
2812 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2813 		}
2814 
2815 		tcp_clear_all_retrans_hints(tp);
2816 
2817 		DBGUNDO(sk, "partial loss");
2818 		tp->lost_out = 0;
2819 		tcp_undo_cwr(sk, true);
2820 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2821 		inet_csk(sk)->icsk_retransmits = 0;
2822 		tp->undo_marker = 0;
2823 		if (tcp_is_sack(tp))
2824 			tcp_set_ca_state(sk, TCP_CA_Open);
2825 		return 1;
2826 	}
2827 	return 0;
2828 }
2829 
2830 static inline void tcp_complete_cwr(struct sock *sk)
2831 {
2832 	struct tcp_sock *tp = tcp_sk(sk);
2833 	/* Do not moderate cwnd if it's already undone in cwr or recovery */
2834 	if (tp->undo_marker && tp->snd_cwnd > tp->snd_ssthresh) {
2835 		tp->snd_cwnd = tp->snd_ssthresh;
2836 		tp->snd_cwnd_stamp = tcp_time_stamp;
2837 	}
2838 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2839 }
2840 
2841 static void tcp_try_keep_open(struct sock *sk)
2842 {
2843 	struct tcp_sock *tp = tcp_sk(sk);
2844 	int state = TCP_CA_Open;
2845 
2846 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2847 		state = TCP_CA_Disorder;
2848 
2849 	if (inet_csk(sk)->icsk_ca_state != state) {
2850 		tcp_set_ca_state(sk, state);
2851 		tp->high_seq = tp->snd_nxt;
2852 	}
2853 }
2854 
2855 static void tcp_try_to_open(struct sock *sk, int flag)
2856 {
2857 	struct tcp_sock *tp = tcp_sk(sk);
2858 
2859 	tcp_verify_left_out(tp);
2860 
2861 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2862 		tp->retrans_stamp = 0;
2863 
2864 	if (flag & FLAG_ECE)
2865 		tcp_enter_cwr(sk, 1);
2866 
2867 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2868 		tcp_try_keep_open(sk);
2869 		tcp_moderate_cwnd(tp);
2870 	} else {
2871 		tcp_cwnd_down(sk, flag);
2872 	}
2873 }
2874 
2875 static void tcp_mtup_probe_failed(struct sock *sk)
2876 {
2877 	struct inet_connection_sock *icsk = inet_csk(sk);
2878 
2879 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2880 	icsk->icsk_mtup.probe_size = 0;
2881 }
2882 
2883 static void tcp_mtup_probe_success(struct sock *sk)
2884 {
2885 	struct tcp_sock *tp = tcp_sk(sk);
2886 	struct inet_connection_sock *icsk = inet_csk(sk);
2887 
2888 	/* FIXME: breaks with very large cwnd */
2889 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2890 	tp->snd_cwnd = tp->snd_cwnd *
2891 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2892 		       icsk->icsk_mtup.probe_size;
2893 	tp->snd_cwnd_cnt = 0;
2894 	tp->snd_cwnd_stamp = tcp_time_stamp;
2895 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2896 
2897 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2898 	icsk->icsk_mtup.probe_size = 0;
2899 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2900 }
2901 
2902 /* Do a simple retransmit without using the backoff mechanisms in
2903  * tcp_timer. This is used for path mtu discovery.
2904  * The socket is already locked here.
2905  */
2906 void tcp_simple_retransmit(struct sock *sk)
2907 {
2908 	const struct inet_connection_sock *icsk = inet_csk(sk);
2909 	struct tcp_sock *tp = tcp_sk(sk);
2910 	struct sk_buff *skb;
2911 	unsigned int mss = tcp_current_mss(sk);
2912 	u32 prior_lost = tp->lost_out;
2913 
2914 	tcp_for_write_queue(skb, sk) {
2915 		if (skb == tcp_send_head(sk))
2916 			break;
2917 		if (tcp_skb_seglen(skb) > mss &&
2918 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2919 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2920 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2921 				tp->retrans_out -= tcp_skb_pcount(skb);
2922 			}
2923 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2924 		}
2925 	}
2926 
2927 	tcp_clear_retrans_hints_partial(tp);
2928 
2929 	if (prior_lost == tp->lost_out)
2930 		return;
2931 
2932 	if (tcp_is_reno(tp))
2933 		tcp_limit_reno_sacked(tp);
2934 
2935 	tcp_verify_left_out(tp);
2936 
2937 	/* Don't muck with the congestion window here.
2938 	 * Reason is that we do not increase amount of _data_
2939 	 * in network, but units changed and effective
2940 	 * cwnd/ssthresh really reduced now.
2941 	 */
2942 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2943 		tp->high_seq = tp->snd_nxt;
2944 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2945 		tp->prior_ssthresh = 0;
2946 		tp->undo_marker = 0;
2947 		tcp_set_ca_state(sk, TCP_CA_Loss);
2948 	}
2949 	tcp_xmit_retransmit_queue(sk);
2950 }
2951 EXPORT_SYMBOL(tcp_simple_retransmit);
2952 
2953 /* Process an event, which can update packets-in-flight not trivially.
2954  * Main goal of this function is to calculate new estimate for left_out,
2955  * taking into account both packets sitting in receiver's buffer and
2956  * packets lost by network.
2957  *
2958  * Besides that it does CWND reduction, when packet loss is detected
2959  * and changes state of machine.
2960  *
2961  * It does _not_ decide what to send, it is made in function
2962  * tcp_xmit_retransmit_queue().
2963  */
2964 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2965 {
2966 	struct inet_connection_sock *icsk = inet_csk(sk);
2967 	struct tcp_sock *tp = tcp_sk(sk);
2968 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2969 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2970 				    (tcp_fackets_out(tp) > tp->reordering));
2971 	int fast_rexmit = 0, mib_idx;
2972 
2973 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2974 		tp->sacked_out = 0;
2975 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2976 		tp->fackets_out = 0;
2977 
2978 	/* Now state machine starts.
2979 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2980 	if (flag & FLAG_ECE)
2981 		tp->prior_ssthresh = 0;
2982 
2983 	/* B. In all the states check for reneging SACKs. */
2984 	if (tcp_check_sack_reneging(sk, flag))
2985 		return;
2986 
2987 	/* C. Process data loss notification, provided it is valid. */
2988 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2989 	    before(tp->snd_una, tp->high_seq) &&
2990 	    icsk->icsk_ca_state != TCP_CA_Open &&
2991 	    tp->fackets_out > tp->reordering) {
2992 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2993 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2994 	}
2995 
2996 	/* D. Check consistency of the current state. */
2997 	tcp_verify_left_out(tp);
2998 
2999 	/* E. Check state exit conditions. State can be terminated
3000 	 *    when high_seq is ACKed. */
3001 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3002 		WARN_ON(tp->retrans_out != 0);
3003 		tp->retrans_stamp = 0;
3004 	} else if (!before(tp->snd_una, tp->high_seq)) {
3005 		switch (icsk->icsk_ca_state) {
3006 		case TCP_CA_Loss:
3007 			icsk->icsk_retransmits = 0;
3008 			if (tcp_try_undo_recovery(sk))
3009 				return;
3010 			break;
3011 
3012 		case TCP_CA_CWR:
3013 			/* CWR is to be held something *above* high_seq
3014 			 * is ACKed for CWR bit to reach receiver. */
3015 			if (tp->snd_una != tp->high_seq) {
3016 				tcp_complete_cwr(sk);
3017 				tcp_set_ca_state(sk, TCP_CA_Open);
3018 			}
3019 			break;
3020 
3021 		case TCP_CA_Disorder:
3022 			tcp_try_undo_dsack(sk);
3023 			if (!tp->undo_marker ||
3024 			    /* For SACK case do not Open to allow to undo
3025 			     * catching for all duplicate ACKs. */
3026 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3027 				tp->undo_marker = 0;
3028 				tcp_set_ca_state(sk, TCP_CA_Open);
3029 			}
3030 			break;
3031 
3032 		case TCP_CA_Recovery:
3033 			if (tcp_is_reno(tp))
3034 				tcp_reset_reno_sack(tp);
3035 			if (tcp_try_undo_recovery(sk))
3036 				return;
3037 			tcp_complete_cwr(sk);
3038 			break;
3039 		}
3040 	}
3041 
3042 	/* F. Process state. */
3043 	switch (icsk->icsk_ca_state) {
3044 	case TCP_CA_Recovery:
3045 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3046 			if (tcp_is_reno(tp) && is_dupack)
3047 				tcp_add_reno_sack(sk);
3048 		} else
3049 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3050 		break;
3051 	case TCP_CA_Loss:
3052 		if (flag & FLAG_DATA_ACKED)
3053 			icsk->icsk_retransmits = 0;
3054 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3055 			tcp_reset_reno_sack(tp);
3056 		if (!tcp_try_undo_loss(sk)) {
3057 			tcp_moderate_cwnd(tp);
3058 			tcp_xmit_retransmit_queue(sk);
3059 			return;
3060 		}
3061 		if (icsk->icsk_ca_state != TCP_CA_Open)
3062 			return;
3063 		/* Loss is undone; fall through to processing in Open state. */
3064 	default:
3065 		if (tcp_is_reno(tp)) {
3066 			if (flag & FLAG_SND_UNA_ADVANCED)
3067 				tcp_reset_reno_sack(tp);
3068 			if (is_dupack)
3069 				tcp_add_reno_sack(sk);
3070 		}
3071 
3072 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3073 			tcp_try_undo_dsack(sk);
3074 
3075 		if (!tcp_time_to_recover(sk)) {
3076 			tcp_try_to_open(sk, flag);
3077 			return;
3078 		}
3079 
3080 		/* MTU probe failure: don't reduce cwnd */
3081 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3082 		    icsk->icsk_mtup.probe_size &&
3083 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3084 			tcp_mtup_probe_failed(sk);
3085 			/* Restores the reduction we did in tcp_mtup_probe() */
3086 			tp->snd_cwnd++;
3087 			tcp_simple_retransmit(sk);
3088 			return;
3089 		}
3090 
3091 		/* Otherwise enter Recovery state */
3092 
3093 		if (tcp_is_reno(tp))
3094 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3095 		else
3096 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3097 
3098 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3099 
3100 		tp->high_seq = tp->snd_nxt;
3101 		tp->prior_ssthresh = 0;
3102 		tp->undo_marker = tp->snd_una;
3103 		tp->undo_retrans = tp->retrans_out;
3104 
3105 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3106 			if (!(flag & FLAG_ECE))
3107 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3108 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3109 			TCP_ECN_queue_cwr(tp);
3110 		}
3111 
3112 		tp->bytes_acked = 0;
3113 		tp->snd_cwnd_cnt = 0;
3114 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3115 		fast_rexmit = 1;
3116 	}
3117 
3118 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3119 		tcp_update_scoreboard(sk, fast_rexmit);
3120 	tcp_cwnd_down(sk, flag);
3121 	tcp_xmit_retransmit_queue(sk);
3122 }
3123 
3124 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3125 {
3126 	tcp_rtt_estimator(sk, seq_rtt);
3127 	tcp_set_rto(sk);
3128 	inet_csk(sk)->icsk_backoff = 0;
3129 }
3130 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3131 
3132 /* Read draft-ietf-tcplw-high-performance before mucking
3133  * with this code. (Supersedes RFC1323)
3134  */
3135 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3136 {
3137 	/* RTTM Rule: A TSecr value received in a segment is used to
3138 	 * update the averaged RTT measurement only if the segment
3139 	 * acknowledges some new data, i.e., only if it advances the
3140 	 * left edge of the send window.
3141 	 *
3142 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3143 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3144 	 *
3145 	 * Changed: reset backoff as soon as we see the first valid sample.
3146 	 * If we do not, we get strongly overestimated rto. With timestamps
3147 	 * samples are accepted even from very old segments: f.e., when rtt=1
3148 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3149 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3150 	 * in window is lost... Voila.	 			--ANK (010210)
3151 	 */
3152 	struct tcp_sock *tp = tcp_sk(sk);
3153 
3154 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3155 }
3156 
3157 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3158 {
3159 	/* We don't have a timestamp. Can only use
3160 	 * packets that are not retransmitted to determine
3161 	 * rtt estimates. Also, we must not reset the
3162 	 * backoff for rto until we get a non-retransmitted
3163 	 * packet. This allows us to deal with a situation
3164 	 * where the network delay has increased suddenly.
3165 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3166 	 */
3167 
3168 	if (flag & FLAG_RETRANS_DATA_ACKED)
3169 		return;
3170 
3171 	tcp_valid_rtt_meas(sk, seq_rtt);
3172 }
3173 
3174 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3175 				      const s32 seq_rtt)
3176 {
3177 	const struct tcp_sock *tp = tcp_sk(sk);
3178 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3179 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3180 		tcp_ack_saw_tstamp(sk, flag);
3181 	else if (seq_rtt >= 0)
3182 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3183 }
3184 
3185 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3186 {
3187 	const struct inet_connection_sock *icsk = inet_csk(sk);
3188 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3189 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3190 }
3191 
3192 /* Restart timer after forward progress on connection.
3193  * RFC2988 recommends to restart timer to now+rto.
3194  */
3195 static void tcp_rearm_rto(struct sock *sk)
3196 {
3197 	struct tcp_sock *tp = tcp_sk(sk);
3198 
3199 	if (!tp->packets_out) {
3200 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3201 	} else {
3202 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3203 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3204 	}
3205 }
3206 
3207 /* If we get here, the whole TSO packet has not been acked. */
3208 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3209 {
3210 	struct tcp_sock *tp = tcp_sk(sk);
3211 	u32 packets_acked;
3212 
3213 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3214 
3215 	packets_acked = tcp_skb_pcount(skb);
3216 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3217 		return 0;
3218 	packets_acked -= tcp_skb_pcount(skb);
3219 
3220 	if (packets_acked) {
3221 		BUG_ON(tcp_skb_pcount(skb) == 0);
3222 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3223 	}
3224 
3225 	return packets_acked;
3226 }
3227 
3228 /* Remove acknowledged frames from the retransmission queue. If our packet
3229  * is before the ack sequence we can discard it as it's confirmed to have
3230  * arrived at the other end.
3231  */
3232 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3233 			       u32 prior_snd_una)
3234 {
3235 	struct tcp_sock *tp = tcp_sk(sk);
3236 	const struct inet_connection_sock *icsk = inet_csk(sk);
3237 	struct sk_buff *skb;
3238 	u32 now = tcp_time_stamp;
3239 	int fully_acked = 1;
3240 	int flag = 0;
3241 	u32 pkts_acked = 0;
3242 	u32 reord = tp->packets_out;
3243 	u32 prior_sacked = tp->sacked_out;
3244 	s32 seq_rtt = -1;
3245 	s32 ca_seq_rtt = -1;
3246 	ktime_t last_ackt = net_invalid_timestamp();
3247 
3248 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3249 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3250 		u32 acked_pcount;
3251 		u8 sacked = scb->sacked;
3252 
3253 		/* Determine how many packets and what bytes were acked, tso and else */
3254 		if (after(scb->end_seq, tp->snd_una)) {
3255 			if (tcp_skb_pcount(skb) == 1 ||
3256 			    !after(tp->snd_una, scb->seq))
3257 				break;
3258 
3259 			acked_pcount = tcp_tso_acked(sk, skb);
3260 			if (!acked_pcount)
3261 				break;
3262 
3263 			fully_acked = 0;
3264 		} else {
3265 			acked_pcount = tcp_skb_pcount(skb);
3266 		}
3267 
3268 		if (sacked & TCPCB_RETRANS) {
3269 			if (sacked & TCPCB_SACKED_RETRANS)
3270 				tp->retrans_out -= acked_pcount;
3271 			flag |= FLAG_RETRANS_DATA_ACKED;
3272 			ca_seq_rtt = -1;
3273 			seq_rtt = -1;
3274 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3275 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3276 		} else {
3277 			ca_seq_rtt = now - scb->when;
3278 			last_ackt = skb->tstamp;
3279 			if (seq_rtt < 0) {
3280 				seq_rtt = ca_seq_rtt;
3281 			}
3282 			if (!(sacked & TCPCB_SACKED_ACKED))
3283 				reord = min(pkts_acked, reord);
3284 		}
3285 
3286 		if (sacked & TCPCB_SACKED_ACKED)
3287 			tp->sacked_out -= acked_pcount;
3288 		if (sacked & TCPCB_LOST)
3289 			tp->lost_out -= acked_pcount;
3290 
3291 		tp->packets_out -= acked_pcount;
3292 		pkts_acked += acked_pcount;
3293 
3294 		/* Initial outgoing SYN's get put onto the write_queue
3295 		 * just like anything else we transmit.  It is not
3296 		 * true data, and if we misinform our callers that
3297 		 * this ACK acks real data, we will erroneously exit
3298 		 * connection startup slow start one packet too
3299 		 * quickly.  This is severely frowned upon behavior.
3300 		 */
3301 		if (!(scb->flags & TCPHDR_SYN)) {
3302 			flag |= FLAG_DATA_ACKED;
3303 		} else {
3304 			flag |= FLAG_SYN_ACKED;
3305 			tp->retrans_stamp = 0;
3306 		}
3307 
3308 		if (!fully_acked)
3309 			break;
3310 
3311 		tcp_unlink_write_queue(skb, sk);
3312 		sk_wmem_free_skb(sk, skb);
3313 		tp->scoreboard_skb_hint = NULL;
3314 		if (skb == tp->retransmit_skb_hint)
3315 			tp->retransmit_skb_hint = NULL;
3316 		if (skb == tp->lost_skb_hint)
3317 			tp->lost_skb_hint = NULL;
3318 	}
3319 
3320 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3321 		tp->snd_up = tp->snd_una;
3322 
3323 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3324 		flag |= FLAG_SACK_RENEGING;
3325 
3326 	if (flag & FLAG_ACKED) {
3327 		const struct tcp_congestion_ops *ca_ops
3328 			= inet_csk(sk)->icsk_ca_ops;
3329 
3330 		if (unlikely(icsk->icsk_mtup.probe_size &&
3331 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3332 			tcp_mtup_probe_success(sk);
3333 		}
3334 
3335 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3336 		tcp_rearm_rto(sk);
3337 
3338 		if (tcp_is_reno(tp)) {
3339 			tcp_remove_reno_sacks(sk, pkts_acked);
3340 		} else {
3341 			int delta;
3342 
3343 			/* Non-retransmitted hole got filled? That's reordering */
3344 			if (reord < prior_fackets)
3345 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3346 
3347 			delta = tcp_is_fack(tp) ? pkts_acked :
3348 						  prior_sacked - tp->sacked_out;
3349 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3350 		}
3351 
3352 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3353 
3354 		if (ca_ops->pkts_acked) {
3355 			s32 rtt_us = -1;
3356 
3357 			/* Is the ACK triggering packet unambiguous? */
3358 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3359 				/* High resolution needed and available? */
3360 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3361 				    !ktime_equal(last_ackt,
3362 						 net_invalid_timestamp()))
3363 					rtt_us = ktime_us_delta(ktime_get_real(),
3364 								last_ackt);
3365 				else if (ca_seq_rtt >= 0)
3366 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3367 			}
3368 
3369 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3370 		}
3371 	}
3372 
3373 #if FASTRETRANS_DEBUG > 0
3374 	WARN_ON((int)tp->sacked_out < 0);
3375 	WARN_ON((int)tp->lost_out < 0);
3376 	WARN_ON((int)tp->retrans_out < 0);
3377 	if (!tp->packets_out && tcp_is_sack(tp)) {
3378 		icsk = inet_csk(sk);
3379 		if (tp->lost_out) {
3380 			printk(KERN_DEBUG "Leak l=%u %d\n",
3381 			       tp->lost_out, icsk->icsk_ca_state);
3382 			tp->lost_out = 0;
3383 		}
3384 		if (tp->sacked_out) {
3385 			printk(KERN_DEBUG "Leak s=%u %d\n",
3386 			       tp->sacked_out, icsk->icsk_ca_state);
3387 			tp->sacked_out = 0;
3388 		}
3389 		if (tp->retrans_out) {
3390 			printk(KERN_DEBUG "Leak r=%u %d\n",
3391 			       tp->retrans_out, icsk->icsk_ca_state);
3392 			tp->retrans_out = 0;
3393 		}
3394 	}
3395 #endif
3396 	return flag;
3397 }
3398 
3399 static void tcp_ack_probe(struct sock *sk)
3400 {
3401 	const struct tcp_sock *tp = tcp_sk(sk);
3402 	struct inet_connection_sock *icsk = inet_csk(sk);
3403 
3404 	/* Was it a usable window open? */
3405 
3406 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3407 		icsk->icsk_backoff = 0;
3408 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3409 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3410 		 * This function is not for random using!
3411 		 */
3412 	} else {
3413 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3414 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3415 					  TCP_RTO_MAX);
3416 	}
3417 }
3418 
3419 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3420 {
3421 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3422 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3423 }
3424 
3425 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3426 {
3427 	const struct tcp_sock *tp = tcp_sk(sk);
3428 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3429 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3430 }
3431 
3432 /* Check that window update is acceptable.
3433  * The function assumes that snd_una<=ack<=snd_next.
3434  */
3435 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3436 					const u32 ack, const u32 ack_seq,
3437 					const u32 nwin)
3438 {
3439 	return	after(ack, tp->snd_una) ||
3440 		after(ack_seq, tp->snd_wl1) ||
3441 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3442 }
3443 
3444 /* Update our send window.
3445  *
3446  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3447  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3448  */
3449 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3450 				 u32 ack_seq)
3451 {
3452 	struct tcp_sock *tp = tcp_sk(sk);
3453 	int flag = 0;
3454 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3455 
3456 	if (likely(!tcp_hdr(skb)->syn))
3457 		nwin <<= tp->rx_opt.snd_wscale;
3458 
3459 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3460 		flag |= FLAG_WIN_UPDATE;
3461 		tcp_update_wl(tp, ack_seq);
3462 
3463 		if (tp->snd_wnd != nwin) {
3464 			tp->snd_wnd = nwin;
3465 
3466 			/* Note, it is the only place, where
3467 			 * fast path is recovered for sending TCP.
3468 			 */
3469 			tp->pred_flags = 0;
3470 			tcp_fast_path_check(sk);
3471 
3472 			if (nwin > tp->max_window) {
3473 				tp->max_window = nwin;
3474 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3475 			}
3476 		}
3477 	}
3478 
3479 	tp->snd_una = ack;
3480 
3481 	return flag;
3482 }
3483 
3484 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3485  * continue in congestion avoidance.
3486  */
3487 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3488 {
3489 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3490 	tp->snd_cwnd_cnt = 0;
3491 	tp->bytes_acked = 0;
3492 	TCP_ECN_queue_cwr(tp);
3493 	tcp_moderate_cwnd(tp);
3494 }
3495 
3496 /* A conservative spurious RTO response algorithm: reduce cwnd using
3497  * rate halving and continue in congestion avoidance.
3498  */
3499 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3500 {
3501 	tcp_enter_cwr(sk, 0);
3502 }
3503 
3504 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3505 {
3506 	if (flag & FLAG_ECE)
3507 		tcp_ratehalving_spur_to_response(sk);
3508 	else
3509 		tcp_undo_cwr(sk, true);
3510 }
3511 
3512 /* F-RTO spurious RTO detection algorithm (RFC4138)
3513  *
3514  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3515  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3516  * window (but not to or beyond highest sequence sent before RTO):
3517  *   On First ACK,  send two new segments out.
3518  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3519  *                  algorithm is not part of the F-RTO detection algorithm
3520  *                  given in RFC4138 but can be selected separately).
3521  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3522  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3523  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3524  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3525  *
3526  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3527  * original window even after we transmit two new data segments.
3528  *
3529  * SACK version:
3530  *   on first step, wait until first cumulative ACK arrives, then move to
3531  *   the second step. In second step, the next ACK decides.
3532  *
3533  * F-RTO is implemented (mainly) in four functions:
3534  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3535  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3536  *     called when tcp_use_frto() showed green light
3537  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3538  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3539  *     to prove that the RTO is indeed spurious. It transfers the control
3540  *     from F-RTO to the conventional RTO recovery
3541  */
3542 static int tcp_process_frto(struct sock *sk, int flag)
3543 {
3544 	struct tcp_sock *tp = tcp_sk(sk);
3545 
3546 	tcp_verify_left_out(tp);
3547 
3548 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3549 	if (flag & FLAG_DATA_ACKED)
3550 		inet_csk(sk)->icsk_retransmits = 0;
3551 
3552 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3553 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3554 		tp->undo_marker = 0;
3555 
3556 	if (!before(tp->snd_una, tp->frto_highmark)) {
3557 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3558 		return 1;
3559 	}
3560 
3561 	if (!tcp_is_sackfrto(tp)) {
3562 		/* RFC4138 shortcoming in step 2; should also have case c):
3563 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3564 		 * data, winupdate
3565 		 */
3566 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3567 			return 1;
3568 
3569 		if (!(flag & FLAG_DATA_ACKED)) {
3570 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3571 					    flag);
3572 			return 1;
3573 		}
3574 	} else {
3575 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3576 			/* Prevent sending of new data. */
3577 			tp->snd_cwnd = min(tp->snd_cwnd,
3578 					   tcp_packets_in_flight(tp));
3579 			return 1;
3580 		}
3581 
3582 		if ((tp->frto_counter >= 2) &&
3583 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3584 		     ((flag & FLAG_DATA_SACKED) &&
3585 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3586 			/* RFC4138 shortcoming (see comment above) */
3587 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3588 			    (flag & FLAG_NOT_DUP))
3589 				return 1;
3590 
3591 			tcp_enter_frto_loss(sk, 3, flag);
3592 			return 1;
3593 		}
3594 	}
3595 
3596 	if (tp->frto_counter == 1) {
3597 		/* tcp_may_send_now needs to see updated state */
3598 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3599 		tp->frto_counter = 2;
3600 
3601 		if (!tcp_may_send_now(sk))
3602 			tcp_enter_frto_loss(sk, 2, flag);
3603 
3604 		return 1;
3605 	} else {
3606 		switch (sysctl_tcp_frto_response) {
3607 		case 2:
3608 			tcp_undo_spur_to_response(sk, flag);
3609 			break;
3610 		case 1:
3611 			tcp_conservative_spur_to_response(tp);
3612 			break;
3613 		default:
3614 			tcp_ratehalving_spur_to_response(sk);
3615 			break;
3616 		}
3617 		tp->frto_counter = 0;
3618 		tp->undo_marker = 0;
3619 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3620 	}
3621 	return 0;
3622 }
3623 
3624 /* This routine deals with incoming acks, but not outgoing ones. */
3625 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3626 {
3627 	struct inet_connection_sock *icsk = inet_csk(sk);
3628 	struct tcp_sock *tp = tcp_sk(sk);
3629 	u32 prior_snd_una = tp->snd_una;
3630 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3631 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3632 	u32 prior_in_flight;
3633 	u32 prior_fackets;
3634 	int prior_packets;
3635 	int frto_cwnd = 0;
3636 
3637 	/* If the ack is older than previous acks
3638 	 * then we can probably ignore it.
3639 	 */
3640 	if (before(ack, prior_snd_una))
3641 		goto old_ack;
3642 
3643 	/* If the ack includes data we haven't sent yet, discard
3644 	 * this segment (RFC793 Section 3.9).
3645 	 */
3646 	if (after(ack, tp->snd_nxt))
3647 		goto invalid_ack;
3648 
3649 	if (after(ack, prior_snd_una))
3650 		flag |= FLAG_SND_UNA_ADVANCED;
3651 
3652 	if (sysctl_tcp_abc) {
3653 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3654 			tp->bytes_acked += ack - prior_snd_una;
3655 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3656 			/* we assume just one segment left network */
3657 			tp->bytes_acked += min(ack - prior_snd_una,
3658 					       tp->mss_cache);
3659 	}
3660 
3661 	prior_fackets = tp->fackets_out;
3662 	prior_in_flight = tcp_packets_in_flight(tp);
3663 
3664 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3665 		/* Window is constant, pure forward advance.
3666 		 * No more checks are required.
3667 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3668 		 */
3669 		tcp_update_wl(tp, ack_seq);
3670 		tp->snd_una = ack;
3671 		flag |= FLAG_WIN_UPDATE;
3672 
3673 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3674 
3675 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3676 	} else {
3677 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3678 			flag |= FLAG_DATA;
3679 		else
3680 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3681 
3682 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3683 
3684 		if (TCP_SKB_CB(skb)->sacked)
3685 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3686 
3687 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3688 			flag |= FLAG_ECE;
3689 
3690 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3691 	}
3692 
3693 	/* We passed data and got it acked, remove any soft error
3694 	 * log. Something worked...
3695 	 */
3696 	sk->sk_err_soft = 0;
3697 	icsk->icsk_probes_out = 0;
3698 	tp->rcv_tstamp = tcp_time_stamp;
3699 	prior_packets = tp->packets_out;
3700 	if (!prior_packets)
3701 		goto no_queue;
3702 
3703 	/* See if we can take anything off of the retransmit queue. */
3704 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3705 
3706 	if (tp->frto_counter)
3707 		frto_cwnd = tcp_process_frto(sk, flag);
3708 	/* Guarantee sacktag reordering detection against wrap-arounds */
3709 	if (before(tp->frto_highmark, tp->snd_una))
3710 		tp->frto_highmark = 0;
3711 
3712 	if (tcp_ack_is_dubious(sk, flag)) {
3713 		/* Advance CWND, if state allows this. */
3714 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3715 		    tcp_may_raise_cwnd(sk, flag))
3716 			tcp_cong_avoid(sk, ack, prior_in_flight);
3717 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3718 				      flag);
3719 	} else {
3720 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3721 			tcp_cong_avoid(sk, ack, prior_in_flight);
3722 	}
3723 
3724 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3725 		dst_confirm(__sk_dst_get(sk));
3726 
3727 	return 1;
3728 
3729 no_queue:
3730 	/* If this ack opens up a zero window, clear backoff.  It was
3731 	 * being used to time the probes, and is probably far higher than
3732 	 * it needs to be for normal retransmission.
3733 	 */
3734 	if (tcp_send_head(sk))
3735 		tcp_ack_probe(sk);
3736 	return 1;
3737 
3738 invalid_ack:
3739 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3740 	return -1;
3741 
3742 old_ack:
3743 	if (TCP_SKB_CB(skb)->sacked) {
3744 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3745 		if (icsk->icsk_ca_state == TCP_CA_Open)
3746 			tcp_try_keep_open(sk);
3747 	}
3748 
3749 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3750 	return 0;
3751 }
3752 
3753 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3754  * But, this can also be called on packets in the established flow when
3755  * the fast version below fails.
3756  */
3757 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3758 		       u8 **hvpp, int estab)
3759 {
3760 	unsigned char *ptr;
3761 	struct tcphdr *th = tcp_hdr(skb);
3762 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3763 
3764 	ptr = (unsigned char *)(th + 1);
3765 	opt_rx->saw_tstamp = 0;
3766 
3767 	while (length > 0) {
3768 		int opcode = *ptr++;
3769 		int opsize;
3770 
3771 		switch (opcode) {
3772 		case TCPOPT_EOL:
3773 			return;
3774 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3775 			length--;
3776 			continue;
3777 		default:
3778 			opsize = *ptr++;
3779 			if (opsize < 2) /* "silly options" */
3780 				return;
3781 			if (opsize > length)
3782 				return;	/* don't parse partial options */
3783 			switch (opcode) {
3784 			case TCPOPT_MSS:
3785 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3786 					u16 in_mss = get_unaligned_be16(ptr);
3787 					if (in_mss) {
3788 						if (opt_rx->user_mss &&
3789 						    opt_rx->user_mss < in_mss)
3790 							in_mss = opt_rx->user_mss;
3791 						opt_rx->mss_clamp = in_mss;
3792 					}
3793 				}
3794 				break;
3795 			case TCPOPT_WINDOW:
3796 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3797 				    !estab && sysctl_tcp_window_scaling) {
3798 					__u8 snd_wscale = *(__u8 *)ptr;
3799 					opt_rx->wscale_ok = 1;
3800 					if (snd_wscale > 14) {
3801 						if (net_ratelimit())
3802 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3803 							       "scaling value %d >14 received.\n",
3804 							       snd_wscale);
3805 						snd_wscale = 14;
3806 					}
3807 					opt_rx->snd_wscale = snd_wscale;
3808 				}
3809 				break;
3810 			case TCPOPT_TIMESTAMP:
3811 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3812 				    ((estab && opt_rx->tstamp_ok) ||
3813 				     (!estab && sysctl_tcp_timestamps))) {
3814 					opt_rx->saw_tstamp = 1;
3815 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3816 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3817 				}
3818 				break;
3819 			case TCPOPT_SACK_PERM:
3820 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3821 				    !estab && sysctl_tcp_sack) {
3822 					opt_rx->sack_ok = 1;
3823 					tcp_sack_reset(opt_rx);
3824 				}
3825 				break;
3826 
3827 			case TCPOPT_SACK:
3828 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3829 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3830 				   opt_rx->sack_ok) {
3831 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3832 				}
3833 				break;
3834 #ifdef CONFIG_TCP_MD5SIG
3835 			case TCPOPT_MD5SIG:
3836 				/*
3837 				 * The MD5 Hash has already been
3838 				 * checked (see tcp_v{4,6}_do_rcv()).
3839 				 */
3840 				break;
3841 #endif
3842 			case TCPOPT_COOKIE:
3843 				/* This option is variable length.
3844 				 */
3845 				switch (opsize) {
3846 				case TCPOLEN_COOKIE_BASE:
3847 					/* not yet implemented */
3848 					break;
3849 				case TCPOLEN_COOKIE_PAIR:
3850 					/* not yet implemented */
3851 					break;
3852 				case TCPOLEN_COOKIE_MIN+0:
3853 				case TCPOLEN_COOKIE_MIN+2:
3854 				case TCPOLEN_COOKIE_MIN+4:
3855 				case TCPOLEN_COOKIE_MIN+6:
3856 				case TCPOLEN_COOKIE_MAX:
3857 					/* 16-bit multiple */
3858 					opt_rx->cookie_plus = opsize;
3859 					*hvpp = ptr;
3860 					break;
3861 				default:
3862 					/* ignore option */
3863 					break;
3864 				}
3865 				break;
3866 			}
3867 
3868 			ptr += opsize-2;
3869 			length -= opsize;
3870 		}
3871 	}
3872 }
3873 EXPORT_SYMBOL(tcp_parse_options);
3874 
3875 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3876 {
3877 	__be32 *ptr = (__be32 *)(th + 1);
3878 
3879 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3880 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3881 		tp->rx_opt.saw_tstamp = 1;
3882 		++ptr;
3883 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3884 		++ptr;
3885 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3886 		return 1;
3887 	}
3888 	return 0;
3889 }
3890 
3891 /* Fast parse options. This hopes to only see timestamps.
3892  * If it is wrong it falls back on tcp_parse_options().
3893  */
3894 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3895 				  struct tcp_sock *tp, u8 **hvpp)
3896 {
3897 	/* In the spirit of fast parsing, compare doff directly to constant
3898 	 * values.  Because equality is used, short doff can be ignored here.
3899 	 */
3900 	if (th->doff == (sizeof(*th) / 4)) {
3901 		tp->rx_opt.saw_tstamp = 0;
3902 		return 0;
3903 	} else if (tp->rx_opt.tstamp_ok &&
3904 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3905 		if (tcp_parse_aligned_timestamp(tp, th))
3906 			return 1;
3907 	}
3908 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3909 	return 1;
3910 }
3911 
3912 #ifdef CONFIG_TCP_MD5SIG
3913 /*
3914  * Parse MD5 Signature option
3915  */
3916 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3917 {
3918 	int length = (th->doff << 2) - sizeof (*th);
3919 	u8 *ptr = (u8*)(th + 1);
3920 
3921 	/* If the TCP option is too short, we can short cut */
3922 	if (length < TCPOLEN_MD5SIG)
3923 		return NULL;
3924 
3925 	while (length > 0) {
3926 		int opcode = *ptr++;
3927 		int opsize;
3928 
3929 		switch(opcode) {
3930 		case TCPOPT_EOL:
3931 			return NULL;
3932 		case TCPOPT_NOP:
3933 			length--;
3934 			continue;
3935 		default:
3936 			opsize = *ptr++;
3937 			if (opsize < 2 || opsize > length)
3938 				return NULL;
3939 			if (opcode == TCPOPT_MD5SIG)
3940 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3941 		}
3942 		ptr += opsize - 2;
3943 		length -= opsize;
3944 	}
3945 	return NULL;
3946 }
3947 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3948 #endif
3949 
3950 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3951 {
3952 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3953 	tp->rx_opt.ts_recent_stamp = get_seconds();
3954 }
3955 
3956 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3957 {
3958 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3959 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3960 		 * extra check below makes sure this can only happen
3961 		 * for pure ACK frames.  -DaveM
3962 		 *
3963 		 * Not only, also it occurs for expired timestamps.
3964 		 */
3965 
3966 		if (tcp_paws_check(&tp->rx_opt, 0))
3967 			tcp_store_ts_recent(tp);
3968 	}
3969 }
3970 
3971 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3972  *
3973  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3974  * it can pass through stack. So, the following predicate verifies that
3975  * this segment is not used for anything but congestion avoidance or
3976  * fast retransmit. Moreover, we even are able to eliminate most of such
3977  * second order effects, if we apply some small "replay" window (~RTO)
3978  * to timestamp space.
3979  *
3980  * All these measures still do not guarantee that we reject wrapped ACKs
3981  * on networks with high bandwidth, when sequence space is recycled fastly,
3982  * but it guarantees that such events will be very rare and do not affect
3983  * connection seriously. This doesn't look nice, but alas, PAWS is really
3984  * buggy extension.
3985  *
3986  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3987  * states that events when retransmit arrives after original data are rare.
3988  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3989  * the biggest problem on large power networks even with minor reordering.
3990  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3991  * up to bandwidth of 18Gigabit/sec. 8) ]
3992  */
3993 
3994 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3995 {
3996 	struct tcp_sock *tp = tcp_sk(sk);
3997 	struct tcphdr *th = tcp_hdr(skb);
3998 	u32 seq = TCP_SKB_CB(skb)->seq;
3999 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4000 
4001 	return (/* 1. Pure ACK with correct sequence number. */
4002 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4003 
4004 		/* 2. ... and duplicate ACK. */
4005 		ack == tp->snd_una &&
4006 
4007 		/* 3. ... and does not update window. */
4008 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4009 
4010 		/* 4. ... and sits in replay window. */
4011 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4012 }
4013 
4014 static inline int tcp_paws_discard(const struct sock *sk,
4015 				   const struct sk_buff *skb)
4016 {
4017 	const struct tcp_sock *tp = tcp_sk(sk);
4018 
4019 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4020 	       !tcp_disordered_ack(sk, skb);
4021 }
4022 
4023 /* Check segment sequence number for validity.
4024  *
4025  * Segment controls are considered valid, if the segment
4026  * fits to the window after truncation to the window. Acceptability
4027  * of data (and SYN, FIN, of course) is checked separately.
4028  * See tcp_data_queue(), for example.
4029  *
4030  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4031  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4032  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4033  * (borrowed from freebsd)
4034  */
4035 
4036 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4037 {
4038 	return	!before(end_seq, tp->rcv_wup) &&
4039 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4040 }
4041 
4042 /* When we get a reset we do this. */
4043 static void tcp_reset(struct sock *sk)
4044 {
4045 	/* We want the right error as BSD sees it (and indeed as we do). */
4046 	switch (sk->sk_state) {
4047 	case TCP_SYN_SENT:
4048 		sk->sk_err = ECONNREFUSED;
4049 		break;
4050 	case TCP_CLOSE_WAIT:
4051 		sk->sk_err = EPIPE;
4052 		break;
4053 	case TCP_CLOSE:
4054 		return;
4055 	default:
4056 		sk->sk_err = ECONNRESET;
4057 	}
4058 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4059 	smp_wmb();
4060 
4061 	if (!sock_flag(sk, SOCK_DEAD))
4062 		sk->sk_error_report(sk);
4063 
4064 	tcp_done(sk);
4065 }
4066 
4067 /*
4068  * 	Process the FIN bit. This now behaves as it is supposed to work
4069  *	and the FIN takes effect when it is validly part of sequence
4070  *	space. Not before when we get holes.
4071  *
4072  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4073  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4074  *	TIME-WAIT)
4075  *
4076  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4077  *	close and we go into CLOSING (and later onto TIME-WAIT)
4078  *
4079  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4080  */
4081 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4082 {
4083 	struct tcp_sock *tp = tcp_sk(sk);
4084 
4085 	inet_csk_schedule_ack(sk);
4086 
4087 	sk->sk_shutdown |= RCV_SHUTDOWN;
4088 	sock_set_flag(sk, SOCK_DONE);
4089 
4090 	switch (sk->sk_state) {
4091 	case TCP_SYN_RECV:
4092 	case TCP_ESTABLISHED:
4093 		/* Move to CLOSE_WAIT */
4094 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4095 		inet_csk(sk)->icsk_ack.pingpong = 1;
4096 		break;
4097 
4098 	case TCP_CLOSE_WAIT:
4099 	case TCP_CLOSING:
4100 		/* Received a retransmission of the FIN, do
4101 		 * nothing.
4102 		 */
4103 		break;
4104 	case TCP_LAST_ACK:
4105 		/* RFC793: Remain in the LAST-ACK state. */
4106 		break;
4107 
4108 	case TCP_FIN_WAIT1:
4109 		/* This case occurs when a simultaneous close
4110 		 * happens, we must ack the received FIN and
4111 		 * enter the CLOSING state.
4112 		 */
4113 		tcp_send_ack(sk);
4114 		tcp_set_state(sk, TCP_CLOSING);
4115 		break;
4116 	case TCP_FIN_WAIT2:
4117 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4118 		tcp_send_ack(sk);
4119 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4120 		break;
4121 	default:
4122 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4123 		 * cases we should never reach this piece of code.
4124 		 */
4125 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4126 		       __func__, sk->sk_state);
4127 		break;
4128 	}
4129 
4130 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4131 	 * Probably, we should reset in this case. For now drop them.
4132 	 */
4133 	__skb_queue_purge(&tp->out_of_order_queue);
4134 	if (tcp_is_sack(tp))
4135 		tcp_sack_reset(&tp->rx_opt);
4136 	sk_mem_reclaim(sk);
4137 
4138 	if (!sock_flag(sk, SOCK_DEAD)) {
4139 		sk->sk_state_change(sk);
4140 
4141 		/* Do not send POLL_HUP for half duplex close. */
4142 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4143 		    sk->sk_state == TCP_CLOSE)
4144 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4145 		else
4146 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4147 	}
4148 }
4149 
4150 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4151 				  u32 end_seq)
4152 {
4153 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4154 		if (before(seq, sp->start_seq))
4155 			sp->start_seq = seq;
4156 		if (after(end_seq, sp->end_seq))
4157 			sp->end_seq = end_seq;
4158 		return 1;
4159 	}
4160 	return 0;
4161 }
4162 
4163 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4164 {
4165 	struct tcp_sock *tp = tcp_sk(sk);
4166 
4167 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4168 		int mib_idx;
4169 
4170 		if (before(seq, tp->rcv_nxt))
4171 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4172 		else
4173 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4174 
4175 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4176 
4177 		tp->rx_opt.dsack = 1;
4178 		tp->duplicate_sack[0].start_seq = seq;
4179 		tp->duplicate_sack[0].end_seq = end_seq;
4180 	}
4181 }
4182 
4183 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4184 {
4185 	struct tcp_sock *tp = tcp_sk(sk);
4186 
4187 	if (!tp->rx_opt.dsack)
4188 		tcp_dsack_set(sk, seq, end_seq);
4189 	else
4190 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4191 }
4192 
4193 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4194 {
4195 	struct tcp_sock *tp = tcp_sk(sk);
4196 
4197 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4198 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4199 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4200 		tcp_enter_quickack_mode(sk);
4201 
4202 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4203 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4204 
4205 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4206 				end_seq = tp->rcv_nxt;
4207 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4208 		}
4209 	}
4210 
4211 	tcp_send_ack(sk);
4212 }
4213 
4214 /* These routines update the SACK block as out-of-order packets arrive or
4215  * in-order packets close up the sequence space.
4216  */
4217 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4218 {
4219 	int this_sack;
4220 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4221 	struct tcp_sack_block *swalk = sp + 1;
4222 
4223 	/* See if the recent change to the first SACK eats into
4224 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4225 	 */
4226 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4227 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4228 			int i;
4229 
4230 			/* Zap SWALK, by moving every further SACK up by one slot.
4231 			 * Decrease num_sacks.
4232 			 */
4233 			tp->rx_opt.num_sacks--;
4234 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4235 				sp[i] = sp[i + 1];
4236 			continue;
4237 		}
4238 		this_sack++, swalk++;
4239 	}
4240 }
4241 
4242 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4243 {
4244 	struct tcp_sock *tp = tcp_sk(sk);
4245 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4246 	int cur_sacks = tp->rx_opt.num_sacks;
4247 	int this_sack;
4248 
4249 	if (!cur_sacks)
4250 		goto new_sack;
4251 
4252 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4253 		if (tcp_sack_extend(sp, seq, end_seq)) {
4254 			/* Rotate this_sack to the first one. */
4255 			for (; this_sack > 0; this_sack--, sp--)
4256 				swap(*sp, *(sp - 1));
4257 			if (cur_sacks > 1)
4258 				tcp_sack_maybe_coalesce(tp);
4259 			return;
4260 		}
4261 	}
4262 
4263 	/* Could not find an adjacent existing SACK, build a new one,
4264 	 * put it at the front, and shift everyone else down.  We
4265 	 * always know there is at least one SACK present already here.
4266 	 *
4267 	 * If the sack array is full, forget about the last one.
4268 	 */
4269 	if (this_sack >= TCP_NUM_SACKS) {
4270 		this_sack--;
4271 		tp->rx_opt.num_sacks--;
4272 		sp--;
4273 	}
4274 	for (; this_sack > 0; this_sack--, sp--)
4275 		*sp = *(sp - 1);
4276 
4277 new_sack:
4278 	/* Build the new head SACK, and we're done. */
4279 	sp->start_seq = seq;
4280 	sp->end_seq = end_seq;
4281 	tp->rx_opt.num_sacks++;
4282 }
4283 
4284 /* RCV.NXT advances, some SACKs should be eaten. */
4285 
4286 static void tcp_sack_remove(struct tcp_sock *tp)
4287 {
4288 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4289 	int num_sacks = tp->rx_opt.num_sacks;
4290 	int this_sack;
4291 
4292 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4293 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4294 		tp->rx_opt.num_sacks = 0;
4295 		return;
4296 	}
4297 
4298 	for (this_sack = 0; this_sack < num_sacks;) {
4299 		/* Check if the start of the sack is covered by RCV.NXT. */
4300 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4301 			int i;
4302 
4303 			/* RCV.NXT must cover all the block! */
4304 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4305 
4306 			/* Zap this SACK, by moving forward any other SACKS. */
4307 			for (i=this_sack+1; i < num_sacks; i++)
4308 				tp->selective_acks[i-1] = tp->selective_acks[i];
4309 			num_sacks--;
4310 			continue;
4311 		}
4312 		this_sack++;
4313 		sp++;
4314 	}
4315 	tp->rx_opt.num_sacks = num_sacks;
4316 }
4317 
4318 /* This one checks to see if we can put data from the
4319  * out_of_order queue into the receive_queue.
4320  */
4321 static void tcp_ofo_queue(struct sock *sk)
4322 {
4323 	struct tcp_sock *tp = tcp_sk(sk);
4324 	__u32 dsack_high = tp->rcv_nxt;
4325 	struct sk_buff *skb;
4326 
4327 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4328 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4329 			break;
4330 
4331 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4332 			__u32 dsack = dsack_high;
4333 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4334 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4335 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4336 		}
4337 
4338 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4339 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4340 			__skb_unlink(skb, &tp->out_of_order_queue);
4341 			__kfree_skb(skb);
4342 			continue;
4343 		}
4344 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4345 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4346 			   TCP_SKB_CB(skb)->end_seq);
4347 
4348 		__skb_unlink(skb, &tp->out_of_order_queue);
4349 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4350 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4351 		if (tcp_hdr(skb)->fin)
4352 			tcp_fin(skb, sk, tcp_hdr(skb));
4353 	}
4354 }
4355 
4356 static int tcp_prune_ofo_queue(struct sock *sk);
4357 static int tcp_prune_queue(struct sock *sk);
4358 
4359 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4360 {
4361 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4362 	    !sk_rmem_schedule(sk, size)) {
4363 
4364 		if (tcp_prune_queue(sk) < 0)
4365 			return -1;
4366 
4367 		if (!sk_rmem_schedule(sk, size)) {
4368 			if (!tcp_prune_ofo_queue(sk))
4369 				return -1;
4370 
4371 			if (!sk_rmem_schedule(sk, size))
4372 				return -1;
4373 		}
4374 	}
4375 	return 0;
4376 }
4377 
4378 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4379 {
4380 	struct tcphdr *th = tcp_hdr(skb);
4381 	struct tcp_sock *tp = tcp_sk(sk);
4382 	int eaten = -1;
4383 
4384 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4385 		goto drop;
4386 
4387 	skb_dst_drop(skb);
4388 	__skb_pull(skb, th->doff * 4);
4389 
4390 	TCP_ECN_accept_cwr(tp, skb);
4391 
4392 	tp->rx_opt.dsack = 0;
4393 
4394 	/*  Queue data for delivery to the user.
4395 	 *  Packets in sequence go to the receive queue.
4396 	 *  Out of sequence packets to the out_of_order_queue.
4397 	 */
4398 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4399 		if (tcp_receive_window(tp) == 0)
4400 			goto out_of_window;
4401 
4402 		/* Ok. In sequence. In window. */
4403 		if (tp->ucopy.task == current &&
4404 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4405 		    sock_owned_by_user(sk) && !tp->urg_data) {
4406 			int chunk = min_t(unsigned int, skb->len,
4407 					  tp->ucopy.len);
4408 
4409 			__set_current_state(TASK_RUNNING);
4410 
4411 			local_bh_enable();
4412 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4413 				tp->ucopy.len -= chunk;
4414 				tp->copied_seq += chunk;
4415 				eaten = (chunk == skb->len);
4416 				tcp_rcv_space_adjust(sk);
4417 			}
4418 			local_bh_disable();
4419 		}
4420 
4421 		if (eaten <= 0) {
4422 queue_and_out:
4423 			if (eaten < 0 &&
4424 			    tcp_try_rmem_schedule(sk, skb->truesize))
4425 				goto drop;
4426 
4427 			skb_set_owner_r(skb, sk);
4428 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4429 		}
4430 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4431 		if (skb->len)
4432 			tcp_event_data_recv(sk, skb);
4433 		if (th->fin)
4434 			tcp_fin(skb, sk, th);
4435 
4436 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4437 			tcp_ofo_queue(sk);
4438 
4439 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4440 			 * gap in queue is filled.
4441 			 */
4442 			if (skb_queue_empty(&tp->out_of_order_queue))
4443 				inet_csk(sk)->icsk_ack.pingpong = 0;
4444 		}
4445 
4446 		if (tp->rx_opt.num_sacks)
4447 			tcp_sack_remove(tp);
4448 
4449 		tcp_fast_path_check(sk);
4450 
4451 		if (eaten > 0)
4452 			__kfree_skb(skb);
4453 		else if (!sock_flag(sk, SOCK_DEAD))
4454 			sk->sk_data_ready(sk, 0);
4455 		return;
4456 	}
4457 
4458 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4459 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4460 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4461 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4462 
4463 out_of_window:
4464 		tcp_enter_quickack_mode(sk);
4465 		inet_csk_schedule_ack(sk);
4466 drop:
4467 		__kfree_skb(skb);
4468 		return;
4469 	}
4470 
4471 	/* Out of window. F.e. zero window probe. */
4472 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4473 		goto out_of_window;
4474 
4475 	tcp_enter_quickack_mode(sk);
4476 
4477 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4478 		/* Partial packet, seq < rcv_next < end_seq */
4479 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4480 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4481 			   TCP_SKB_CB(skb)->end_seq);
4482 
4483 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4484 
4485 		/* If window is closed, drop tail of packet. But after
4486 		 * remembering D-SACK for its head made in previous line.
4487 		 */
4488 		if (!tcp_receive_window(tp))
4489 			goto out_of_window;
4490 		goto queue_and_out;
4491 	}
4492 
4493 	TCP_ECN_check_ce(tp, skb);
4494 
4495 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4496 		goto drop;
4497 
4498 	/* Disable header prediction. */
4499 	tp->pred_flags = 0;
4500 	inet_csk_schedule_ack(sk);
4501 
4502 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4503 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4504 
4505 	skb_set_owner_r(skb, sk);
4506 
4507 	if (!skb_peek(&tp->out_of_order_queue)) {
4508 		/* Initial out of order segment, build 1 SACK. */
4509 		if (tcp_is_sack(tp)) {
4510 			tp->rx_opt.num_sacks = 1;
4511 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4512 			tp->selective_acks[0].end_seq =
4513 						TCP_SKB_CB(skb)->end_seq;
4514 		}
4515 		__skb_queue_head(&tp->out_of_order_queue, skb);
4516 	} else {
4517 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4518 		u32 seq = TCP_SKB_CB(skb)->seq;
4519 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4520 
4521 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4522 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4523 
4524 			if (!tp->rx_opt.num_sacks ||
4525 			    tp->selective_acks[0].end_seq != seq)
4526 				goto add_sack;
4527 
4528 			/* Common case: data arrive in order after hole. */
4529 			tp->selective_acks[0].end_seq = end_seq;
4530 			return;
4531 		}
4532 
4533 		/* Find place to insert this segment. */
4534 		while (1) {
4535 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4536 				break;
4537 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4538 				skb1 = NULL;
4539 				break;
4540 			}
4541 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4542 		}
4543 
4544 		/* Do skb overlap to previous one? */
4545 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4546 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4547 				/* All the bits are present. Drop. */
4548 				__kfree_skb(skb);
4549 				tcp_dsack_set(sk, seq, end_seq);
4550 				goto add_sack;
4551 			}
4552 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4553 				/* Partial overlap. */
4554 				tcp_dsack_set(sk, seq,
4555 					      TCP_SKB_CB(skb1)->end_seq);
4556 			} else {
4557 				if (skb_queue_is_first(&tp->out_of_order_queue,
4558 						       skb1))
4559 					skb1 = NULL;
4560 				else
4561 					skb1 = skb_queue_prev(
4562 						&tp->out_of_order_queue,
4563 						skb1);
4564 			}
4565 		}
4566 		if (!skb1)
4567 			__skb_queue_head(&tp->out_of_order_queue, skb);
4568 		else
4569 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4570 
4571 		/* And clean segments covered by new one as whole. */
4572 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4573 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4574 
4575 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4576 				break;
4577 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4578 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4579 						 end_seq);
4580 				break;
4581 			}
4582 			__skb_unlink(skb1, &tp->out_of_order_queue);
4583 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4584 					 TCP_SKB_CB(skb1)->end_seq);
4585 			__kfree_skb(skb1);
4586 		}
4587 
4588 add_sack:
4589 		if (tcp_is_sack(tp))
4590 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4591 	}
4592 }
4593 
4594 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4595 					struct sk_buff_head *list)
4596 {
4597 	struct sk_buff *next = NULL;
4598 
4599 	if (!skb_queue_is_last(list, skb))
4600 		next = skb_queue_next(list, skb);
4601 
4602 	__skb_unlink(skb, list);
4603 	__kfree_skb(skb);
4604 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4605 
4606 	return next;
4607 }
4608 
4609 /* Collapse contiguous sequence of skbs head..tail with
4610  * sequence numbers start..end.
4611  *
4612  * If tail is NULL, this means until the end of the list.
4613  *
4614  * Segments with FIN/SYN are not collapsed (only because this
4615  * simplifies code)
4616  */
4617 static void
4618 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4619 	     struct sk_buff *head, struct sk_buff *tail,
4620 	     u32 start, u32 end)
4621 {
4622 	struct sk_buff *skb, *n;
4623 	bool end_of_skbs;
4624 
4625 	/* First, check that queue is collapsible and find
4626 	 * the point where collapsing can be useful. */
4627 	skb = head;
4628 restart:
4629 	end_of_skbs = true;
4630 	skb_queue_walk_from_safe(list, skb, n) {
4631 		if (skb == tail)
4632 			break;
4633 		/* No new bits? It is possible on ofo queue. */
4634 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4635 			skb = tcp_collapse_one(sk, skb, list);
4636 			if (!skb)
4637 				break;
4638 			goto restart;
4639 		}
4640 
4641 		/* The first skb to collapse is:
4642 		 * - not SYN/FIN and
4643 		 * - bloated or contains data before "start" or
4644 		 *   overlaps to the next one.
4645 		 */
4646 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4647 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4648 		     before(TCP_SKB_CB(skb)->seq, start))) {
4649 			end_of_skbs = false;
4650 			break;
4651 		}
4652 
4653 		if (!skb_queue_is_last(list, skb)) {
4654 			struct sk_buff *next = skb_queue_next(list, skb);
4655 			if (next != tail &&
4656 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4657 				end_of_skbs = false;
4658 				break;
4659 			}
4660 		}
4661 
4662 		/* Decided to skip this, advance start seq. */
4663 		start = TCP_SKB_CB(skb)->end_seq;
4664 	}
4665 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4666 		return;
4667 
4668 	while (before(start, end)) {
4669 		struct sk_buff *nskb;
4670 		unsigned int header = skb_headroom(skb);
4671 		int copy = SKB_MAX_ORDER(header, 0);
4672 
4673 		/* Too big header? This can happen with IPv6. */
4674 		if (copy < 0)
4675 			return;
4676 		if (end - start < copy)
4677 			copy = end - start;
4678 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4679 		if (!nskb)
4680 			return;
4681 
4682 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4683 		skb_set_network_header(nskb, (skb_network_header(skb) -
4684 					      skb->head));
4685 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4686 						skb->head));
4687 		skb_reserve(nskb, header);
4688 		memcpy(nskb->head, skb->head, header);
4689 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4690 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4691 		__skb_queue_before(list, skb, nskb);
4692 		skb_set_owner_r(nskb, sk);
4693 
4694 		/* Copy data, releasing collapsed skbs. */
4695 		while (copy > 0) {
4696 			int offset = start - TCP_SKB_CB(skb)->seq;
4697 			int size = TCP_SKB_CB(skb)->end_seq - start;
4698 
4699 			BUG_ON(offset < 0);
4700 			if (size > 0) {
4701 				size = min(copy, size);
4702 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4703 					BUG();
4704 				TCP_SKB_CB(nskb)->end_seq += size;
4705 				copy -= size;
4706 				start += size;
4707 			}
4708 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4709 				skb = tcp_collapse_one(sk, skb, list);
4710 				if (!skb ||
4711 				    skb == tail ||
4712 				    tcp_hdr(skb)->syn ||
4713 				    tcp_hdr(skb)->fin)
4714 					return;
4715 			}
4716 		}
4717 	}
4718 }
4719 
4720 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4721  * and tcp_collapse() them until all the queue is collapsed.
4722  */
4723 static void tcp_collapse_ofo_queue(struct sock *sk)
4724 {
4725 	struct tcp_sock *tp = tcp_sk(sk);
4726 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4727 	struct sk_buff *head;
4728 	u32 start, end;
4729 
4730 	if (skb == NULL)
4731 		return;
4732 
4733 	start = TCP_SKB_CB(skb)->seq;
4734 	end = TCP_SKB_CB(skb)->end_seq;
4735 	head = skb;
4736 
4737 	for (;;) {
4738 		struct sk_buff *next = NULL;
4739 
4740 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4741 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4742 		skb = next;
4743 
4744 		/* Segment is terminated when we see gap or when
4745 		 * we are at the end of all the queue. */
4746 		if (!skb ||
4747 		    after(TCP_SKB_CB(skb)->seq, end) ||
4748 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4749 			tcp_collapse(sk, &tp->out_of_order_queue,
4750 				     head, skb, start, end);
4751 			head = skb;
4752 			if (!skb)
4753 				break;
4754 			/* Start new segment */
4755 			start = TCP_SKB_CB(skb)->seq;
4756 			end = TCP_SKB_CB(skb)->end_seq;
4757 		} else {
4758 			if (before(TCP_SKB_CB(skb)->seq, start))
4759 				start = TCP_SKB_CB(skb)->seq;
4760 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4761 				end = TCP_SKB_CB(skb)->end_seq;
4762 		}
4763 	}
4764 }
4765 
4766 /*
4767  * Purge the out-of-order queue.
4768  * Return true if queue was pruned.
4769  */
4770 static int tcp_prune_ofo_queue(struct sock *sk)
4771 {
4772 	struct tcp_sock *tp = tcp_sk(sk);
4773 	int res = 0;
4774 
4775 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4776 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4777 		__skb_queue_purge(&tp->out_of_order_queue);
4778 
4779 		/* Reset SACK state.  A conforming SACK implementation will
4780 		 * do the same at a timeout based retransmit.  When a connection
4781 		 * is in a sad state like this, we care only about integrity
4782 		 * of the connection not performance.
4783 		 */
4784 		if (tp->rx_opt.sack_ok)
4785 			tcp_sack_reset(&tp->rx_opt);
4786 		sk_mem_reclaim(sk);
4787 		res = 1;
4788 	}
4789 	return res;
4790 }
4791 
4792 /* Reduce allocated memory if we can, trying to get
4793  * the socket within its memory limits again.
4794  *
4795  * Return less than zero if we should start dropping frames
4796  * until the socket owning process reads some of the data
4797  * to stabilize the situation.
4798  */
4799 static int tcp_prune_queue(struct sock *sk)
4800 {
4801 	struct tcp_sock *tp = tcp_sk(sk);
4802 
4803 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4804 
4805 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4806 
4807 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4808 		tcp_clamp_window(sk);
4809 	else if (tcp_memory_pressure)
4810 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4811 
4812 	tcp_collapse_ofo_queue(sk);
4813 	if (!skb_queue_empty(&sk->sk_receive_queue))
4814 		tcp_collapse(sk, &sk->sk_receive_queue,
4815 			     skb_peek(&sk->sk_receive_queue),
4816 			     NULL,
4817 			     tp->copied_seq, tp->rcv_nxt);
4818 	sk_mem_reclaim(sk);
4819 
4820 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4821 		return 0;
4822 
4823 	/* Collapsing did not help, destructive actions follow.
4824 	 * This must not ever occur. */
4825 
4826 	tcp_prune_ofo_queue(sk);
4827 
4828 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4829 		return 0;
4830 
4831 	/* If we are really being abused, tell the caller to silently
4832 	 * drop receive data on the floor.  It will get retransmitted
4833 	 * and hopefully then we'll have sufficient space.
4834 	 */
4835 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4836 
4837 	/* Massive buffer overcommit. */
4838 	tp->pred_flags = 0;
4839 	return -1;
4840 }
4841 
4842 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4843  * As additional protections, we do not touch cwnd in retransmission phases,
4844  * and if application hit its sndbuf limit recently.
4845  */
4846 void tcp_cwnd_application_limited(struct sock *sk)
4847 {
4848 	struct tcp_sock *tp = tcp_sk(sk);
4849 
4850 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4851 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4852 		/* Limited by application or receiver window. */
4853 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4854 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4855 		if (win_used < tp->snd_cwnd) {
4856 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4857 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4858 		}
4859 		tp->snd_cwnd_used = 0;
4860 	}
4861 	tp->snd_cwnd_stamp = tcp_time_stamp;
4862 }
4863 
4864 static int tcp_should_expand_sndbuf(struct sock *sk)
4865 {
4866 	struct tcp_sock *tp = tcp_sk(sk);
4867 
4868 	/* If the user specified a specific send buffer setting, do
4869 	 * not modify it.
4870 	 */
4871 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4872 		return 0;
4873 
4874 	/* If we are under global TCP memory pressure, do not expand.  */
4875 	if (tcp_memory_pressure)
4876 		return 0;
4877 
4878 	/* If we are under soft global TCP memory pressure, do not expand.  */
4879 	if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4880 		return 0;
4881 
4882 	/* If we filled the congestion window, do not expand.  */
4883 	if (tp->packets_out >= tp->snd_cwnd)
4884 		return 0;
4885 
4886 	return 1;
4887 }
4888 
4889 /* When incoming ACK allowed to free some skb from write_queue,
4890  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4891  * on the exit from tcp input handler.
4892  *
4893  * PROBLEM: sndbuf expansion does not work well with largesend.
4894  */
4895 static void tcp_new_space(struct sock *sk)
4896 {
4897 	struct tcp_sock *tp = tcp_sk(sk);
4898 
4899 	if (tcp_should_expand_sndbuf(sk)) {
4900 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4901 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4902 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4903 				     tp->reordering + 1);
4904 		sndmem *= 2 * demanded;
4905 		if (sndmem > sk->sk_sndbuf)
4906 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4907 		tp->snd_cwnd_stamp = tcp_time_stamp;
4908 	}
4909 
4910 	sk->sk_write_space(sk);
4911 }
4912 
4913 static void tcp_check_space(struct sock *sk)
4914 {
4915 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4916 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4917 		if (sk->sk_socket &&
4918 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4919 			tcp_new_space(sk);
4920 	}
4921 }
4922 
4923 static inline void tcp_data_snd_check(struct sock *sk)
4924 {
4925 	tcp_push_pending_frames(sk);
4926 	tcp_check_space(sk);
4927 }
4928 
4929 /*
4930  * Check if sending an ack is needed.
4931  */
4932 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4933 {
4934 	struct tcp_sock *tp = tcp_sk(sk);
4935 
4936 	    /* More than one full frame received... */
4937 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4938 	     /* ... and right edge of window advances far enough.
4939 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4940 	      */
4941 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4942 	    /* We ACK each frame or... */
4943 	    tcp_in_quickack_mode(sk) ||
4944 	    /* We have out of order data. */
4945 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4946 		/* Then ack it now */
4947 		tcp_send_ack(sk);
4948 	} else {
4949 		/* Else, send delayed ack. */
4950 		tcp_send_delayed_ack(sk);
4951 	}
4952 }
4953 
4954 static inline void tcp_ack_snd_check(struct sock *sk)
4955 {
4956 	if (!inet_csk_ack_scheduled(sk)) {
4957 		/* We sent a data segment already. */
4958 		return;
4959 	}
4960 	__tcp_ack_snd_check(sk, 1);
4961 }
4962 
4963 /*
4964  *	This routine is only called when we have urgent data
4965  *	signaled. Its the 'slow' part of tcp_urg. It could be
4966  *	moved inline now as tcp_urg is only called from one
4967  *	place. We handle URGent data wrong. We have to - as
4968  *	BSD still doesn't use the correction from RFC961.
4969  *	For 1003.1g we should support a new option TCP_STDURG to permit
4970  *	either form (or just set the sysctl tcp_stdurg).
4971  */
4972 
4973 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4974 {
4975 	struct tcp_sock *tp = tcp_sk(sk);
4976 	u32 ptr = ntohs(th->urg_ptr);
4977 
4978 	if (ptr && !sysctl_tcp_stdurg)
4979 		ptr--;
4980 	ptr += ntohl(th->seq);
4981 
4982 	/* Ignore urgent data that we've already seen and read. */
4983 	if (after(tp->copied_seq, ptr))
4984 		return;
4985 
4986 	/* Do not replay urg ptr.
4987 	 *
4988 	 * NOTE: interesting situation not covered by specs.
4989 	 * Misbehaving sender may send urg ptr, pointing to segment,
4990 	 * which we already have in ofo queue. We are not able to fetch
4991 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4992 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4993 	 * situations. But it is worth to think about possibility of some
4994 	 * DoSes using some hypothetical application level deadlock.
4995 	 */
4996 	if (before(ptr, tp->rcv_nxt))
4997 		return;
4998 
4999 	/* Do we already have a newer (or duplicate) urgent pointer? */
5000 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5001 		return;
5002 
5003 	/* Tell the world about our new urgent pointer. */
5004 	sk_send_sigurg(sk);
5005 
5006 	/* We may be adding urgent data when the last byte read was
5007 	 * urgent. To do this requires some care. We cannot just ignore
5008 	 * tp->copied_seq since we would read the last urgent byte again
5009 	 * as data, nor can we alter copied_seq until this data arrives
5010 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5011 	 *
5012 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5013 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5014 	 * and expect that both A and B disappear from stream. This is _wrong_.
5015 	 * Though this happens in BSD with high probability, this is occasional.
5016 	 * Any application relying on this is buggy. Note also, that fix "works"
5017 	 * only in this artificial test. Insert some normal data between A and B and we will
5018 	 * decline of BSD again. Verdict: it is better to remove to trap
5019 	 * buggy users.
5020 	 */
5021 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5022 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5023 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5024 		tp->copied_seq++;
5025 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5026 			__skb_unlink(skb, &sk->sk_receive_queue);
5027 			__kfree_skb(skb);
5028 		}
5029 	}
5030 
5031 	tp->urg_data = TCP_URG_NOTYET;
5032 	tp->urg_seq = ptr;
5033 
5034 	/* Disable header prediction. */
5035 	tp->pred_flags = 0;
5036 }
5037 
5038 /* This is the 'fast' part of urgent handling. */
5039 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5040 {
5041 	struct tcp_sock *tp = tcp_sk(sk);
5042 
5043 	/* Check if we get a new urgent pointer - normally not. */
5044 	if (th->urg)
5045 		tcp_check_urg(sk, th);
5046 
5047 	/* Do we wait for any urgent data? - normally not... */
5048 	if (tp->urg_data == TCP_URG_NOTYET) {
5049 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5050 			  th->syn;
5051 
5052 		/* Is the urgent pointer pointing into this packet? */
5053 		if (ptr < skb->len) {
5054 			u8 tmp;
5055 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5056 				BUG();
5057 			tp->urg_data = TCP_URG_VALID | tmp;
5058 			if (!sock_flag(sk, SOCK_DEAD))
5059 				sk->sk_data_ready(sk, 0);
5060 		}
5061 	}
5062 }
5063 
5064 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5065 {
5066 	struct tcp_sock *tp = tcp_sk(sk);
5067 	int chunk = skb->len - hlen;
5068 	int err;
5069 
5070 	local_bh_enable();
5071 	if (skb_csum_unnecessary(skb))
5072 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5073 	else
5074 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5075 						       tp->ucopy.iov);
5076 
5077 	if (!err) {
5078 		tp->ucopy.len -= chunk;
5079 		tp->copied_seq += chunk;
5080 		tcp_rcv_space_adjust(sk);
5081 	}
5082 
5083 	local_bh_disable();
5084 	return err;
5085 }
5086 
5087 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5088 					    struct sk_buff *skb)
5089 {
5090 	__sum16 result;
5091 
5092 	if (sock_owned_by_user(sk)) {
5093 		local_bh_enable();
5094 		result = __tcp_checksum_complete(skb);
5095 		local_bh_disable();
5096 	} else {
5097 		result = __tcp_checksum_complete(skb);
5098 	}
5099 	return result;
5100 }
5101 
5102 static inline int tcp_checksum_complete_user(struct sock *sk,
5103 					     struct sk_buff *skb)
5104 {
5105 	return !skb_csum_unnecessary(skb) &&
5106 	       __tcp_checksum_complete_user(sk, skb);
5107 }
5108 
5109 #ifdef CONFIG_NET_DMA
5110 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5111 				  int hlen)
5112 {
5113 	struct tcp_sock *tp = tcp_sk(sk);
5114 	int chunk = skb->len - hlen;
5115 	int dma_cookie;
5116 	int copied_early = 0;
5117 
5118 	if (tp->ucopy.wakeup)
5119 		return 0;
5120 
5121 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5122 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5123 
5124 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5125 
5126 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5127 							 skb, hlen,
5128 							 tp->ucopy.iov, chunk,
5129 							 tp->ucopy.pinned_list);
5130 
5131 		if (dma_cookie < 0)
5132 			goto out;
5133 
5134 		tp->ucopy.dma_cookie = dma_cookie;
5135 		copied_early = 1;
5136 
5137 		tp->ucopy.len -= chunk;
5138 		tp->copied_seq += chunk;
5139 		tcp_rcv_space_adjust(sk);
5140 
5141 		if ((tp->ucopy.len == 0) ||
5142 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5143 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5144 			tp->ucopy.wakeup = 1;
5145 			sk->sk_data_ready(sk, 0);
5146 		}
5147 	} else if (chunk > 0) {
5148 		tp->ucopy.wakeup = 1;
5149 		sk->sk_data_ready(sk, 0);
5150 	}
5151 out:
5152 	return copied_early;
5153 }
5154 #endif /* CONFIG_NET_DMA */
5155 
5156 /* Does PAWS and seqno based validation of an incoming segment, flags will
5157  * play significant role here.
5158  */
5159 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5160 			      struct tcphdr *th, int syn_inerr)
5161 {
5162 	u8 *hash_location;
5163 	struct tcp_sock *tp = tcp_sk(sk);
5164 
5165 	/* RFC1323: H1. Apply PAWS check first. */
5166 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5167 	    tp->rx_opt.saw_tstamp &&
5168 	    tcp_paws_discard(sk, skb)) {
5169 		if (!th->rst) {
5170 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5171 			tcp_send_dupack(sk, skb);
5172 			goto discard;
5173 		}
5174 		/* Reset is accepted even if it did not pass PAWS. */
5175 	}
5176 
5177 	/* Step 1: check sequence number */
5178 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5179 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5180 		 * (RST) segments are validated by checking their SEQ-fields."
5181 		 * And page 69: "If an incoming segment is not acceptable,
5182 		 * an acknowledgment should be sent in reply (unless the RST
5183 		 * bit is set, if so drop the segment and return)".
5184 		 */
5185 		if (!th->rst)
5186 			tcp_send_dupack(sk, skb);
5187 		goto discard;
5188 	}
5189 
5190 	/* Step 2: check RST bit */
5191 	if (th->rst) {
5192 		tcp_reset(sk);
5193 		goto discard;
5194 	}
5195 
5196 	/* ts_recent update must be made after we are sure that the packet
5197 	 * is in window.
5198 	 */
5199 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5200 
5201 	/* step 3: check security and precedence [ignored] */
5202 
5203 	/* step 4: Check for a SYN in window. */
5204 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5205 		if (syn_inerr)
5206 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5207 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5208 		tcp_reset(sk);
5209 		return -1;
5210 	}
5211 
5212 	return 1;
5213 
5214 discard:
5215 	__kfree_skb(skb);
5216 	return 0;
5217 }
5218 
5219 /*
5220  *	TCP receive function for the ESTABLISHED state.
5221  *
5222  *	It is split into a fast path and a slow path. The fast path is
5223  * 	disabled when:
5224  *	- A zero window was announced from us - zero window probing
5225  *        is only handled properly in the slow path.
5226  *	- Out of order segments arrived.
5227  *	- Urgent data is expected.
5228  *	- There is no buffer space left
5229  *	- Unexpected TCP flags/window values/header lengths are received
5230  *	  (detected by checking the TCP header against pred_flags)
5231  *	- Data is sent in both directions. Fast path only supports pure senders
5232  *	  or pure receivers (this means either the sequence number or the ack
5233  *	  value must stay constant)
5234  *	- Unexpected TCP option.
5235  *
5236  *	When these conditions are not satisfied it drops into a standard
5237  *	receive procedure patterned after RFC793 to handle all cases.
5238  *	The first three cases are guaranteed by proper pred_flags setting,
5239  *	the rest is checked inline. Fast processing is turned on in
5240  *	tcp_data_queue when everything is OK.
5241  */
5242 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5243 			struct tcphdr *th, unsigned len)
5244 {
5245 	struct tcp_sock *tp = tcp_sk(sk);
5246 	int res;
5247 
5248 	/*
5249 	 *	Header prediction.
5250 	 *	The code loosely follows the one in the famous
5251 	 *	"30 instruction TCP receive" Van Jacobson mail.
5252 	 *
5253 	 *	Van's trick is to deposit buffers into socket queue
5254 	 *	on a device interrupt, to call tcp_recv function
5255 	 *	on the receive process context and checksum and copy
5256 	 *	the buffer to user space. smart...
5257 	 *
5258 	 *	Our current scheme is not silly either but we take the
5259 	 *	extra cost of the net_bh soft interrupt processing...
5260 	 *	We do checksum and copy also but from device to kernel.
5261 	 */
5262 
5263 	tp->rx_opt.saw_tstamp = 0;
5264 
5265 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5266 	 *	if header_prediction is to be made
5267 	 *	'S' will always be tp->tcp_header_len >> 2
5268 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5269 	 *  turn it off	(when there are holes in the receive
5270 	 *	 space for instance)
5271 	 *	PSH flag is ignored.
5272 	 */
5273 
5274 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5275 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5276 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5277 		int tcp_header_len = tp->tcp_header_len;
5278 
5279 		/* Timestamp header prediction: tcp_header_len
5280 		 * is automatically equal to th->doff*4 due to pred_flags
5281 		 * match.
5282 		 */
5283 
5284 		/* Check timestamp */
5285 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5286 			/* No? Slow path! */
5287 			if (!tcp_parse_aligned_timestamp(tp, th))
5288 				goto slow_path;
5289 
5290 			/* If PAWS failed, check it more carefully in slow path */
5291 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5292 				goto slow_path;
5293 
5294 			/* DO NOT update ts_recent here, if checksum fails
5295 			 * and timestamp was corrupted part, it will result
5296 			 * in a hung connection since we will drop all
5297 			 * future packets due to the PAWS test.
5298 			 */
5299 		}
5300 
5301 		if (len <= tcp_header_len) {
5302 			/* Bulk data transfer: sender */
5303 			if (len == tcp_header_len) {
5304 				/* Predicted packet is in window by definition.
5305 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5306 				 * Hence, check seq<=rcv_wup reduces to:
5307 				 */
5308 				if (tcp_header_len ==
5309 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5310 				    tp->rcv_nxt == tp->rcv_wup)
5311 					tcp_store_ts_recent(tp);
5312 
5313 				/* We know that such packets are checksummed
5314 				 * on entry.
5315 				 */
5316 				tcp_ack(sk, skb, 0);
5317 				__kfree_skb(skb);
5318 				tcp_data_snd_check(sk);
5319 				return 0;
5320 			} else { /* Header too small */
5321 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5322 				goto discard;
5323 			}
5324 		} else {
5325 			int eaten = 0;
5326 			int copied_early = 0;
5327 
5328 			if (tp->copied_seq == tp->rcv_nxt &&
5329 			    len - tcp_header_len <= tp->ucopy.len) {
5330 #ifdef CONFIG_NET_DMA
5331 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5332 					copied_early = 1;
5333 					eaten = 1;
5334 				}
5335 #endif
5336 				if (tp->ucopy.task == current &&
5337 				    sock_owned_by_user(sk) && !copied_early) {
5338 					__set_current_state(TASK_RUNNING);
5339 
5340 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5341 						eaten = 1;
5342 				}
5343 				if (eaten) {
5344 					/* Predicted packet is in window by definition.
5345 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5346 					 * Hence, check seq<=rcv_wup reduces to:
5347 					 */
5348 					if (tcp_header_len ==
5349 					    (sizeof(struct tcphdr) +
5350 					     TCPOLEN_TSTAMP_ALIGNED) &&
5351 					    tp->rcv_nxt == tp->rcv_wup)
5352 						tcp_store_ts_recent(tp);
5353 
5354 					tcp_rcv_rtt_measure_ts(sk, skb);
5355 
5356 					__skb_pull(skb, tcp_header_len);
5357 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5358 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5359 				}
5360 				if (copied_early)
5361 					tcp_cleanup_rbuf(sk, skb->len);
5362 			}
5363 			if (!eaten) {
5364 				if (tcp_checksum_complete_user(sk, skb))
5365 					goto csum_error;
5366 
5367 				/* Predicted packet is in window by definition.
5368 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5369 				 * Hence, check seq<=rcv_wup reduces to:
5370 				 */
5371 				if (tcp_header_len ==
5372 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5373 				    tp->rcv_nxt == tp->rcv_wup)
5374 					tcp_store_ts_recent(tp);
5375 
5376 				tcp_rcv_rtt_measure_ts(sk, skb);
5377 
5378 				if ((int)skb->truesize > sk->sk_forward_alloc)
5379 					goto step5;
5380 
5381 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5382 
5383 				/* Bulk data transfer: receiver */
5384 				__skb_pull(skb, tcp_header_len);
5385 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5386 				skb_set_owner_r(skb, sk);
5387 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5388 			}
5389 
5390 			tcp_event_data_recv(sk, skb);
5391 
5392 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5393 				/* Well, only one small jumplet in fast path... */
5394 				tcp_ack(sk, skb, FLAG_DATA);
5395 				tcp_data_snd_check(sk);
5396 				if (!inet_csk_ack_scheduled(sk))
5397 					goto no_ack;
5398 			}
5399 
5400 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5401 				__tcp_ack_snd_check(sk, 0);
5402 no_ack:
5403 #ifdef CONFIG_NET_DMA
5404 			if (copied_early)
5405 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5406 			else
5407 #endif
5408 			if (eaten)
5409 				__kfree_skb(skb);
5410 			else
5411 				sk->sk_data_ready(sk, 0);
5412 			return 0;
5413 		}
5414 	}
5415 
5416 slow_path:
5417 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5418 		goto csum_error;
5419 
5420 	/*
5421 	 *	Standard slow path.
5422 	 */
5423 
5424 	res = tcp_validate_incoming(sk, skb, th, 1);
5425 	if (res <= 0)
5426 		return -res;
5427 
5428 step5:
5429 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5430 		goto discard;
5431 
5432 	tcp_rcv_rtt_measure_ts(sk, skb);
5433 
5434 	/* Process urgent data. */
5435 	tcp_urg(sk, skb, th);
5436 
5437 	/* step 7: process the segment text */
5438 	tcp_data_queue(sk, skb);
5439 
5440 	tcp_data_snd_check(sk);
5441 	tcp_ack_snd_check(sk);
5442 	return 0;
5443 
5444 csum_error:
5445 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5446 
5447 discard:
5448 	__kfree_skb(skb);
5449 	return 0;
5450 }
5451 EXPORT_SYMBOL(tcp_rcv_established);
5452 
5453 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5454 					 struct tcphdr *th, unsigned len)
5455 {
5456 	u8 *hash_location;
5457 	struct inet_connection_sock *icsk = inet_csk(sk);
5458 	struct tcp_sock *tp = tcp_sk(sk);
5459 	struct tcp_cookie_values *cvp = tp->cookie_values;
5460 	int saved_clamp = tp->rx_opt.mss_clamp;
5461 
5462 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5463 
5464 	if (th->ack) {
5465 		/* rfc793:
5466 		 * "If the state is SYN-SENT then
5467 		 *    first check the ACK bit
5468 		 *      If the ACK bit is set
5469 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5470 		 *        a reset (unless the RST bit is set, if so drop
5471 		 *        the segment and return)"
5472 		 *
5473 		 *  We do not send data with SYN, so that RFC-correct
5474 		 *  test reduces to:
5475 		 */
5476 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5477 			goto reset_and_undo;
5478 
5479 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5480 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5481 			     tcp_time_stamp)) {
5482 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5483 			goto reset_and_undo;
5484 		}
5485 
5486 		/* Now ACK is acceptable.
5487 		 *
5488 		 * "If the RST bit is set
5489 		 *    If the ACK was acceptable then signal the user "error:
5490 		 *    connection reset", drop the segment, enter CLOSED state,
5491 		 *    delete TCB, and return."
5492 		 */
5493 
5494 		if (th->rst) {
5495 			tcp_reset(sk);
5496 			goto discard;
5497 		}
5498 
5499 		/* rfc793:
5500 		 *   "fifth, if neither of the SYN or RST bits is set then
5501 		 *    drop the segment and return."
5502 		 *
5503 		 *    See note below!
5504 		 *                                        --ANK(990513)
5505 		 */
5506 		if (!th->syn)
5507 			goto discard_and_undo;
5508 
5509 		/* rfc793:
5510 		 *   "If the SYN bit is on ...
5511 		 *    are acceptable then ...
5512 		 *    (our SYN has been ACKed), change the connection
5513 		 *    state to ESTABLISHED..."
5514 		 */
5515 
5516 		TCP_ECN_rcv_synack(tp, th);
5517 
5518 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5519 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5520 
5521 		/* Ok.. it's good. Set up sequence numbers and
5522 		 * move to established.
5523 		 */
5524 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5525 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5526 
5527 		/* RFC1323: The window in SYN & SYN/ACK segments is
5528 		 * never scaled.
5529 		 */
5530 		tp->snd_wnd = ntohs(th->window);
5531 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5532 
5533 		if (!tp->rx_opt.wscale_ok) {
5534 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5535 			tp->window_clamp = min(tp->window_clamp, 65535U);
5536 		}
5537 
5538 		if (tp->rx_opt.saw_tstamp) {
5539 			tp->rx_opt.tstamp_ok	   = 1;
5540 			tp->tcp_header_len =
5541 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5542 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5543 			tcp_store_ts_recent(tp);
5544 		} else {
5545 			tp->tcp_header_len = sizeof(struct tcphdr);
5546 		}
5547 
5548 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5549 			tcp_enable_fack(tp);
5550 
5551 		tcp_mtup_init(sk);
5552 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5553 		tcp_initialize_rcv_mss(sk);
5554 
5555 		/* Remember, tcp_poll() does not lock socket!
5556 		 * Change state from SYN-SENT only after copied_seq
5557 		 * is initialized. */
5558 		tp->copied_seq = tp->rcv_nxt;
5559 
5560 		if (cvp != NULL &&
5561 		    cvp->cookie_pair_size > 0 &&
5562 		    tp->rx_opt.cookie_plus > 0) {
5563 			int cookie_size = tp->rx_opt.cookie_plus
5564 					- TCPOLEN_COOKIE_BASE;
5565 			int cookie_pair_size = cookie_size
5566 					     + cvp->cookie_desired;
5567 
5568 			/* A cookie extension option was sent and returned.
5569 			 * Note that each incoming SYNACK replaces the
5570 			 * Responder cookie.  The initial exchange is most
5571 			 * fragile, as protection against spoofing relies
5572 			 * entirely upon the sequence and timestamp (above).
5573 			 * This replacement strategy allows the correct pair to
5574 			 * pass through, while any others will be filtered via
5575 			 * Responder verification later.
5576 			 */
5577 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5578 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5579 				       hash_location, cookie_size);
5580 				cvp->cookie_pair_size = cookie_pair_size;
5581 			}
5582 		}
5583 
5584 		smp_mb();
5585 		tcp_set_state(sk, TCP_ESTABLISHED);
5586 
5587 		security_inet_conn_established(sk, skb);
5588 
5589 		/* Make sure socket is routed, for correct metrics.  */
5590 		icsk->icsk_af_ops->rebuild_header(sk);
5591 
5592 		tcp_init_metrics(sk);
5593 
5594 		tcp_init_congestion_control(sk);
5595 
5596 		/* Prevent spurious tcp_cwnd_restart() on first data
5597 		 * packet.
5598 		 */
5599 		tp->lsndtime = tcp_time_stamp;
5600 
5601 		tcp_init_buffer_space(sk);
5602 
5603 		if (sock_flag(sk, SOCK_KEEPOPEN))
5604 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5605 
5606 		if (!tp->rx_opt.snd_wscale)
5607 			__tcp_fast_path_on(tp, tp->snd_wnd);
5608 		else
5609 			tp->pred_flags = 0;
5610 
5611 		if (!sock_flag(sk, SOCK_DEAD)) {
5612 			sk->sk_state_change(sk);
5613 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5614 		}
5615 
5616 		if (sk->sk_write_pending ||
5617 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5618 		    icsk->icsk_ack.pingpong) {
5619 			/* Save one ACK. Data will be ready after
5620 			 * several ticks, if write_pending is set.
5621 			 *
5622 			 * It may be deleted, but with this feature tcpdumps
5623 			 * look so _wonderfully_ clever, that I was not able
5624 			 * to stand against the temptation 8)     --ANK
5625 			 */
5626 			inet_csk_schedule_ack(sk);
5627 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5628 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5629 			tcp_incr_quickack(sk);
5630 			tcp_enter_quickack_mode(sk);
5631 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5632 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5633 
5634 discard:
5635 			__kfree_skb(skb);
5636 			return 0;
5637 		} else {
5638 			tcp_send_ack(sk);
5639 		}
5640 		return -1;
5641 	}
5642 
5643 	/* No ACK in the segment */
5644 
5645 	if (th->rst) {
5646 		/* rfc793:
5647 		 * "If the RST bit is set
5648 		 *
5649 		 *      Otherwise (no ACK) drop the segment and return."
5650 		 */
5651 
5652 		goto discard_and_undo;
5653 	}
5654 
5655 	/* PAWS check. */
5656 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5657 	    tcp_paws_reject(&tp->rx_opt, 0))
5658 		goto discard_and_undo;
5659 
5660 	if (th->syn) {
5661 		/* We see SYN without ACK. It is attempt of
5662 		 * simultaneous connect with crossed SYNs.
5663 		 * Particularly, it can be connect to self.
5664 		 */
5665 		tcp_set_state(sk, TCP_SYN_RECV);
5666 
5667 		if (tp->rx_opt.saw_tstamp) {
5668 			tp->rx_opt.tstamp_ok = 1;
5669 			tcp_store_ts_recent(tp);
5670 			tp->tcp_header_len =
5671 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5672 		} else {
5673 			tp->tcp_header_len = sizeof(struct tcphdr);
5674 		}
5675 
5676 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5677 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5678 
5679 		/* RFC1323: The window in SYN & SYN/ACK segments is
5680 		 * never scaled.
5681 		 */
5682 		tp->snd_wnd    = ntohs(th->window);
5683 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5684 		tp->max_window = tp->snd_wnd;
5685 
5686 		TCP_ECN_rcv_syn(tp, th);
5687 
5688 		tcp_mtup_init(sk);
5689 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5690 		tcp_initialize_rcv_mss(sk);
5691 
5692 		tcp_send_synack(sk);
5693 #if 0
5694 		/* Note, we could accept data and URG from this segment.
5695 		 * There are no obstacles to make this.
5696 		 *
5697 		 * However, if we ignore data in ACKless segments sometimes,
5698 		 * we have no reasons to accept it sometimes.
5699 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5700 		 * is not flawless. So, discard packet for sanity.
5701 		 * Uncomment this return to process the data.
5702 		 */
5703 		return -1;
5704 #else
5705 		goto discard;
5706 #endif
5707 	}
5708 	/* "fifth, if neither of the SYN or RST bits is set then
5709 	 * drop the segment and return."
5710 	 */
5711 
5712 discard_and_undo:
5713 	tcp_clear_options(&tp->rx_opt);
5714 	tp->rx_opt.mss_clamp = saved_clamp;
5715 	goto discard;
5716 
5717 reset_and_undo:
5718 	tcp_clear_options(&tp->rx_opt);
5719 	tp->rx_opt.mss_clamp = saved_clamp;
5720 	return 1;
5721 }
5722 
5723 /*
5724  *	This function implements the receiving procedure of RFC 793 for
5725  *	all states except ESTABLISHED and TIME_WAIT.
5726  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5727  *	address independent.
5728  */
5729 
5730 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5731 			  struct tcphdr *th, unsigned len)
5732 {
5733 	struct tcp_sock *tp = tcp_sk(sk);
5734 	struct inet_connection_sock *icsk = inet_csk(sk);
5735 	int queued = 0;
5736 	int res;
5737 
5738 	tp->rx_opt.saw_tstamp = 0;
5739 
5740 	switch (sk->sk_state) {
5741 	case TCP_CLOSE:
5742 		goto discard;
5743 
5744 	case TCP_LISTEN:
5745 		if (th->ack)
5746 			return 1;
5747 
5748 		if (th->rst)
5749 			goto discard;
5750 
5751 		if (th->syn) {
5752 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5753 				return 1;
5754 
5755 			/* Now we have several options: In theory there is
5756 			 * nothing else in the frame. KA9Q has an option to
5757 			 * send data with the syn, BSD accepts data with the
5758 			 * syn up to the [to be] advertised window and
5759 			 * Solaris 2.1 gives you a protocol error. For now
5760 			 * we just ignore it, that fits the spec precisely
5761 			 * and avoids incompatibilities. It would be nice in
5762 			 * future to drop through and process the data.
5763 			 *
5764 			 * Now that TTCP is starting to be used we ought to
5765 			 * queue this data.
5766 			 * But, this leaves one open to an easy denial of
5767 			 * service attack, and SYN cookies can't defend
5768 			 * against this problem. So, we drop the data
5769 			 * in the interest of security over speed unless
5770 			 * it's still in use.
5771 			 */
5772 			kfree_skb(skb);
5773 			return 0;
5774 		}
5775 		goto discard;
5776 
5777 	case TCP_SYN_SENT:
5778 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5779 		if (queued >= 0)
5780 			return queued;
5781 
5782 		/* Do step6 onward by hand. */
5783 		tcp_urg(sk, skb, th);
5784 		__kfree_skb(skb);
5785 		tcp_data_snd_check(sk);
5786 		return 0;
5787 	}
5788 
5789 	res = tcp_validate_incoming(sk, skb, th, 0);
5790 	if (res <= 0)
5791 		return -res;
5792 
5793 	/* step 5: check the ACK field */
5794 	if (th->ack) {
5795 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5796 
5797 		switch (sk->sk_state) {
5798 		case TCP_SYN_RECV:
5799 			if (acceptable) {
5800 				tp->copied_seq = tp->rcv_nxt;
5801 				smp_mb();
5802 				tcp_set_state(sk, TCP_ESTABLISHED);
5803 				sk->sk_state_change(sk);
5804 
5805 				/* Note, that this wakeup is only for marginal
5806 				 * crossed SYN case. Passively open sockets
5807 				 * are not waked up, because sk->sk_sleep ==
5808 				 * NULL and sk->sk_socket == NULL.
5809 				 */
5810 				if (sk->sk_socket)
5811 					sk_wake_async(sk,
5812 						      SOCK_WAKE_IO, POLL_OUT);
5813 
5814 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5815 				tp->snd_wnd = ntohs(th->window) <<
5816 					      tp->rx_opt.snd_wscale;
5817 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5818 
5819 				if (tp->rx_opt.tstamp_ok)
5820 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5821 
5822 				/* Make sure socket is routed, for
5823 				 * correct metrics.
5824 				 */
5825 				icsk->icsk_af_ops->rebuild_header(sk);
5826 
5827 				tcp_init_metrics(sk);
5828 
5829 				tcp_init_congestion_control(sk);
5830 
5831 				/* Prevent spurious tcp_cwnd_restart() on
5832 				 * first data packet.
5833 				 */
5834 				tp->lsndtime = tcp_time_stamp;
5835 
5836 				tcp_mtup_init(sk);
5837 				tcp_initialize_rcv_mss(sk);
5838 				tcp_init_buffer_space(sk);
5839 				tcp_fast_path_on(tp);
5840 			} else {
5841 				return 1;
5842 			}
5843 			break;
5844 
5845 		case TCP_FIN_WAIT1:
5846 			if (tp->snd_una == tp->write_seq) {
5847 				tcp_set_state(sk, TCP_FIN_WAIT2);
5848 				sk->sk_shutdown |= SEND_SHUTDOWN;
5849 				dst_confirm(__sk_dst_get(sk));
5850 
5851 				if (!sock_flag(sk, SOCK_DEAD))
5852 					/* Wake up lingering close() */
5853 					sk->sk_state_change(sk);
5854 				else {
5855 					int tmo;
5856 
5857 					if (tp->linger2 < 0 ||
5858 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5859 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5860 						tcp_done(sk);
5861 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5862 						return 1;
5863 					}
5864 
5865 					tmo = tcp_fin_time(sk);
5866 					if (tmo > TCP_TIMEWAIT_LEN) {
5867 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5868 					} else if (th->fin || sock_owned_by_user(sk)) {
5869 						/* Bad case. We could lose such FIN otherwise.
5870 						 * It is not a big problem, but it looks confusing
5871 						 * and not so rare event. We still can lose it now,
5872 						 * if it spins in bh_lock_sock(), but it is really
5873 						 * marginal case.
5874 						 */
5875 						inet_csk_reset_keepalive_timer(sk, tmo);
5876 					} else {
5877 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5878 						goto discard;
5879 					}
5880 				}
5881 			}
5882 			break;
5883 
5884 		case TCP_CLOSING:
5885 			if (tp->snd_una == tp->write_seq) {
5886 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5887 				goto discard;
5888 			}
5889 			break;
5890 
5891 		case TCP_LAST_ACK:
5892 			if (tp->snd_una == tp->write_seq) {
5893 				tcp_update_metrics(sk);
5894 				tcp_done(sk);
5895 				goto discard;
5896 			}
5897 			break;
5898 		}
5899 	} else
5900 		goto discard;
5901 
5902 	/* step 6: check the URG bit */
5903 	tcp_urg(sk, skb, th);
5904 
5905 	/* step 7: process the segment text */
5906 	switch (sk->sk_state) {
5907 	case TCP_CLOSE_WAIT:
5908 	case TCP_CLOSING:
5909 	case TCP_LAST_ACK:
5910 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5911 			break;
5912 	case TCP_FIN_WAIT1:
5913 	case TCP_FIN_WAIT2:
5914 		/* RFC 793 says to queue data in these states,
5915 		 * RFC 1122 says we MUST send a reset.
5916 		 * BSD 4.4 also does reset.
5917 		 */
5918 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5919 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5920 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5921 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5922 				tcp_reset(sk);
5923 				return 1;
5924 			}
5925 		}
5926 		/* Fall through */
5927 	case TCP_ESTABLISHED:
5928 		tcp_data_queue(sk, skb);
5929 		queued = 1;
5930 		break;
5931 	}
5932 
5933 	/* tcp_data could move socket to TIME-WAIT */
5934 	if (sk->sk_state != TCP_CLOSE) {
5935 		tcp_data_snd_check(sk);
5936 		tcp_ack_snd_check(sk);
5937 	}
5938 
5939 	if (!queued) {
5940 discard:
5941 		__kfree_skb(skb);
5942 	}
5943 	return 0;
5944 }
5945 EXPORT_SYMBOL(tcp_rcv_state_process);
5946