xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_deferred_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 
133 void clean_acked_data_flush(void)
134 {
135 	static_key_deferred_flush(&clean_acked_data_enabled);
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138 #endif
139 
140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 			     unsigned int len)
142 {
143 	static bool __once __read_mostly;
144 
145 	if (!__once) {
146 		struct net_device *dev;
147 
148 		__once = true;
149 
150 		rcu_read_lock();
151 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 		if (!dev || len >= dev->mtu)
153 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 				dev ? dev->name : "Unknown driver");
155 		rcu_read_unlock();
156 	}
157 }
158 
159 /* Adapt the MSS value used to make delayed ack decision to the
160  * real world.
161  */
162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 	unsigned int len;
167 
168 	icsk->icsk_ack.last_seg_size = 0;
169 
170 	/* skb->len may jitter because of SACKs, even if peer
171 	 * sends good full-sized frames.
172 	 */
173 	len = skb_shinfo(skb)->gso_size ? : skb->len;
174 	if (len >= icsk->icsk_ack.rcv_mss) {
175 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 					       tcp_sk(sk)->advmss);
177 		/* Account for possibly-removed options */
178 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 				   MAX_TCP_OPTION_SPACE))
180 			tcp_gro_dev_warn(sk, skb, len);
181 	} else {
182 		/* Otherwise, we make more careful check taking into account,
183 		 * that SACKs block is variable.
184 		 *
185 		 * "len" is invariant segment length, including TCP header.
186 		 */
187 		len += skb->data - skb_transport_header(skb);
188 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 		    /* If PSH is not set, packet should be
190 		     * full sized, provided peer TCP is not badly broken.
191 		     * This observation (if it is correct 8)) allows
192 		     * to handle super-low mtu links fairly.
193 		     */
194 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 			/* Subtract also invariant (if peer is RFC compliant),
197 			 * tcp header plus fixed timestamp option length.
198 			 * Resulting "len" is MSS free of SACK jitter.
199 			 */
200 			len -= tcp_sk(sk)->tcp_header_len;
201 			icsk->icsk_ack.last_seg_size = len;
202 			if (len == lss) {
203 				icsk->icsk_ack.rcv_mss = len;
204 				return;
205 			}
206 		}
207 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 	}
211 }
212 
213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214 {
215 	struct inet_connection_sock *icsk = inet_csk(sk);
216 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217 
218 	if (quickacks == 0)
219 		quickacks = 2;
220 	quickacks = min(quickacks, max_quickacks);
221 	if (quickacks > icsk->icsk_ack.quick)
222 		icsk->icsk_ack.quick = quickacks;
223 }
224 
225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226 {
227 	struct inet_connection_sock *icsk = inet_csk(sk);
228 
229 	tcp_incr_quickack(sk, max_quickacks);
230 	inet_csk_exit_pingpong_mode(sk);
231 	icsk->icsk_ack.ato = TCP_ATO_MIN;
232 }
233 EXPORT_SYMBOL(tcp_enter_quickack_mode);
234 
235 /* Send ACKs quickly, if "quick" count is not exhausted
236  * and the session is not interactive.
237  */
238 
239 static bool tcp_in_quickack_mode(struct sock *sk)
240 {
241 	const struct inet_connection_sock *icsk = inet_csk(sk);
242 	const struct dst_entry *dst = __sk_dst_get(sk);
243 
244 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
246 }
247 
248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249 {
250 	if (tp->ecn_flags & TCP_ECN_OK)
251 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252 }
253 
254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255 {
256 	if (tcp_hdr(skb)->cwr) {
257 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258 
259 		/* If the sender is telling us it has entered CWR, then its
260 		 * cwnd may be very low (even just 1 packet), so we should ACK
261 		 * immediately.
262 		 */
263 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
264 	}
265 }
266 
267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
268 {
269 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
270 }
271 
272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 
276 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 	case INET_ECN_NOT_ECT:
278 		/* Funny extension: if ECT is not set on a segment,
279 		 * and we already seen ECT on a previous segment,
280 		 * it is probably a retransmit.
281 		 */
282 		if (tp->ecn_flags & TCP_ECN_SEEN)
283 			tcp_enter_quickack_mode(sk, 2);
284 		break;
285 	case INET_ECN_CE:
286 		if (tcp_ca_needs_ecn(sk))
287 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
288 
289 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 			/* Better not delay acks, sender can have a very low cwnd */
291 			tcp_enter_quickack_mode(sk, 2);
292 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 		}
294 		tp->ecn_flags |= TCP_ECN_SEEN;
295 		break;
296 	default:
297 		if (tcp_ca_needs_ecn(sk))
298 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 		tp->ecn_flags |= TCP_ECN_SEEN;
300 		break;
301 	}
302 }
303 
304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
305 {
306 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 		__tcp_ecn_check_ce(sk, skb);
308 }
309 
310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 		tp->ecn_flags &= ~TCP_ECN_OK;
320 }
321 
322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
323 {
324 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 		return true;
326 	return false;
327 }
328 
329 /* Buffer size and advertised window tuning.
330  *
331  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332  */
333 
334 static void tcp_sndbuf_expand(struct sock *sk)
335 {
336 	const struct tcp_sock *tp = tcp_sk(sk);
337 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 	int sndmem, per_mss;
339 	u32 nr_segs;
340 
341 	/* Worst case is non GSO/TSO : each frame consumes one skb
342 	 * and skb->head is kmalloced using power of two area of memory
343 	 */
344 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 		  MAX_TCP_HEADER +
346 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347 
348 	per_mss = roundup_pow_of_two(per_mss) +
349 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
350 
351 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353 
354 	/* Fast Recovery (RFC 5681 3.2) :
355 	 * Cubic needs 1.7 factor, rounded to 2 to include
356 	 * extra cushion (application might react slowly to EPOLLOUT)
357 	 */
358 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 	sndmem *= nr_segs * per_mss;
360 
361 	if (sk->sk_sndbuf < sndmem)
362 		WRITE_ONCE(sk->sk_sndbuf,
363 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
364 }
365 
366 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
367  *
368  * All tcp_full_space() is split to two parts: "network" buffer, allocated
369  * forward and advertised in receiver window (tp->rcv_wnd) and
370  * "application buffer", required to isolate scheduling/application
371  * latencies from network.
372  * window_clamp is maximal advertised window. It can be less than
373  * tcp_full_space(), in this case tcp_full_space() - window_clamp
374  * is reserved for "application" buffer. The less window_clamp is
375  * the smoother our behaviour from viewpoint of network, but the lower
376  * throughput and the higher sensitivity of the connection to losses. 8)
377  *
378  * rcv_ssthresh is more strict window_clamp used at "slow start"
379  * phase to predict further behaviour of this connection.
380  * It is used for two goals:
381  * - to enforce header prediction at sender, even when application
382  *   requires some significant "application buffer". It is check #1.
383  * - to prevent pruning of receive queue because of misprediction
384  *   of receiver window. Check #2.
385  *
386  * The scheme does not work when sender sends good segments opening
387  * window and then starts to feed us spaghetti. But it should work
388  * in common situations. Otherwise, we have to rely on queue collapsing.
389  */
390 
391 /* Slow part of check#2. */
392 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
393 {
394 	struct tcp_sock *tp = tcp_sk(sk);
395 	/* Optimize this! */
396 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
397 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
398 
399 	while (tp->rcv_ssthresh <= window) {
400 		if (truesize <= skb->len)
401 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
402 
403 		truesize >>= 1;
404 		window >>= 1;
405 	}
406 	return 0;
407 }
408 
409 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
410 {
411 	struct tcp_sock *tp = tcp_sk(sk);
412 	int room;
413 
414 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
415 
416 	/* Check #1 */
417 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
418 		int incr;
419 
420 		/* Check #2. Increase window, if skb with such overhead
421 		 * will fit to rcvbuf in future.
422 		 */
423 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
424 			incr = 2 * tp->advmss;
425 		else
426 			incr = __tcp_grow_window(sk, skb);
427 
428 		if (incr) {
429 			incr = max_t(int, incr, 2 * skb->len);
430 			tp->rcv_ssthresh += min(room, incr);
431 			inet_csk(sk)->icsk_ack.quick |= 1;
432 		}
433 	}
434 }
435 
436 /* 3. Try to fixup all. It is made immediately after connection enters
437  *    established state.
438  */
439 void tcp_init_buffer_space(struct sock *sk)
440 {
441 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	int maxwin;
444 
445 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
446 		tcp_sndbuf_expand(sk);
447 
448 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
449 	tcp_mstamp_refresh(tp);
450 	tp->rcvq_space.time = tp->tcp_mstamp;
451 	tp->rcvq_space.seq = tp->copied_seq;
452 
453 	maxwin = tcp_full_space(sk);
454 
455 	if (tp->window_clamp >= maxwin) {
456 		tp->window_clamp = maxwin;
457 
458 		if (tcp_app_win && maxwin > 4 * tp->advmss)
459 			tp->window_clamp = max(maxwin -
460 					       (maxwin >> tcp_app_win),
461 					       4 * tp->advmss);
462 	}
463 
464 	/* Force reservation of one segment. */
465 	if (tcp_app_win &&
466 	    tp->window_clamp > 2 * tp->advmss &&
467 	    tp->window_clamp + tp->advmss > maxwin)
468 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469 
470 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
471 	tp->snd_cwnd_stamp = tcp_jiffies32;
472 }
473 
474 /* 4. Recalculate window clamp after socket hit its memory bounds. */
475 static void tcp_clamp_window(struct sock *sk)
476 {
477 	struct tcp_sock *tp = tcp_sk(sk);
478 	struct inet_connection_sock *icsk = inet_csk(sk);
479 	struct net *net = sock_net(sk);
480 
481 	icsk->icsk_ack.quick = 0;
482 
483 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
484 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
485 	    !tcp_under_memory_pressure(sk) &&
486 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
487 		WRITE_ONCE(sk->sk_rcvbuf,
488 			   min(atomic_read(&sk->sk_rmem_alloc),
489 			       net->ipv4.sysctl_tcp_rmem[2]));
490 	}
491 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
492 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
493 }
494 
495 /* Initialize RCV_MSS value.
496  * RCV_MSS is an our guess about MSS used by the peer.
497  * We haven't any direct information about the MSS.
498  * It's better to underestimate the RCV_MSS rather than overestimate.
499  * Overestimations make us ACKing less frequently than needed.
500  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
501  */
502 void tcp_initialize_rcv_mss(struct sock *sk)
503 {
504 	const struct tcp_sock *tp = tcp_sk(sk);
505 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
506 
507 	hint = min(hint, tp->rcv_wnd / 2);
508 	hint = min(hint, TCP_MSS_DEFAULT);
509 	hint = max(hint, TCP_MIN_MSS);
510 
511 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
512 }
513 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
514 
515 /* Receiver "autotuning" code.
516  *
517  * The algorithm for RTT estimation w/o timestamps is based on
518  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
519  * <http://public.lanl.gov/radiant/pubs.html#DRS>
520  *
521  * More detail on this code can be found at
522  * <http://staff.psc.edu/jheffner/>,
523  * though this reference is out of date.  A new paper
524  * is pending.
525  */
526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
527 {
528 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
529 	long m = sample;
530 
531 	if (new_sample != 0) {
532 		/* If we sample in larger samples in the non-timestamp
533 		 * case, we could grossly overestimate the RTT especially
534 		 * with chatty applications or bulk transfer apps which
535 		 * are stalled on filesystem I/O.
536 		 *
537 		 * Also, since we are only going for a minimum in the
538 		 * non-timestamp case, we do not smooth things out
539 		 * else with timestamps disabled convergence takes too
540 		 * long.
541 		 */
542 		if (!win_dep) {
543 			m -= (new_sample >> 3);
544 			new_sample += m;
545 		} else {
546 			m <<= 3;
547 			if (m < new_sample)
548 				new_sample = m;
549 		}
550 	} else {
551 		/* No previous measure. */
552 		new_sample = m << 3;
553 	}
554 
555 	tp->rcv_rtt_est.rtt_us = new_sample;
556 }
557 
558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
559 {
560 	u32 delta_us;
561 
562 	if (tp->rcv_rtt_est.time == 0)
563 		goto new_measure;
564 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
565 		return;
566 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
567 	if (!delta_us)
568 		delta_us = 1;
569 	tcp_rcv_rtt_update(tp, delta_us, 1);
570 
571 new_measure:
572 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
573 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
574 }
575 
576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
577 					  const struct sk_buff *skb)
578 {
579 	struct tcp_sock *tp = tcp_sk(sk);
580 
581 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
582 		return;
583 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
584 
585 	if (TCP_SKB_CB(skb)->end_seq -
586 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
587 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
588 		u32 delta_us;
589 
590 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
591 			if (!delta)
592 				delta = 1;
593 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
594 			tcp_rcv_rtt_update(tp, delta_us, 0);
595 		}
596 	}
597 }
598 
599 /*
600  * This function should be called every time data is copied to user space.
601  * It calculates the appropriate TCP receive buffer space.
602  */
603 void tcp_rcv_space_adjust(struct sock *sk)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	u32 copied;
607 	int time;
608 
609 	trace_tcp_rcv_space_adjust(sk);
610 
611 	tcp_mstamp_refresh(tp);
612 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
613 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
614 		return;
615 
616 	/* Number of bytes copied to user in last RTT */
617 	copied = tp->copied_seq - tp->rcvq_space.seq;
618 	if (copied <= tp->rcvq_space.space)
619 		goto new_measure;
620 
621 	/* A bit of theory :
622 	 * copied = bytes received in previous RTT, our base window
623 	 * To cope with packet losses, we need a 2x factor
624 	 * To cope with slow start, and sender growing its cwin by 100 %
625 	 * every RTT, we need a 4x factor, because the ACK we are sending
626 	 * now is for the next RTT, not the current one :
627 	 * <prev RTT . ><current RTT .. ><next RTT .... >
628 	 */
629 
630 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
631 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
632 		int rcvmem, rcvbuf;
633 		u64 rcvwin, grow;
634 
635 		/* minimal window to cope with packet losses, assuming
636 		 * steady state. Add some cushion because of small variations.
637 		 */
638 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
639 
640 		/* Accommodate for sender rate increase (eg. slow start) */
641 		grow = rcvwin * (copied - tp->rcvq_space.space);
642 		do_div(grow, tp->rcvq_space.space);
643 		rcvwin += (grow << 1);
644 
645 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
646 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
647 			rcvmem += 128;
648 
649 		do_div(rcvwin, tp->advmss);
650 		rcvbuf = min_t(u64, rcvwin * rcvmem,
651 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
652 		if (rcvbuf > sk->sk_rcvbuf) {
653 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
654 
655 			/* Make the window clamp follow along.  */
656 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
657 		}
658 	}
659 	tp->rcvq_space.space = copied;
660 
661 new_measure:
662 	tp->rcvq_space.seq = tp->copied_seq;
663 	tp->rcvq_space.time = tp->tcp_mstamp;
664 }
665 
666 /* There is something which you must keep in mind when you analyze the
667  * behavior of the tp->ato delayed ack timeout interval.  When a
668  * connection starts up, we want to ack as quickly as possible.  The
669  * problem is that "good" TCP's do slow start at the beginning of data
670  * transmission.  The means that until we send the first few ACK's the
671  * sender will sit on his end and only queue most of his data, because
672  * he can only send snd_cwnd unacked packets at any given time.  For
673  * each ACK we send, he increments snd_cwnd and transmits more of his
674  * queue.  -DaveM
675  */
676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
677 {
678 	struct tcp_sock *tp = tcp_sk(sk);
679 	struct inet_connection_sock *icsk = inet_csk(sk);
680 	u32 now;
681 
682 	inet_csk_schedule_ack(sk);
683 
684 	tcp_measure_rcv_mss(sk, skb);
685 
686 	tcp_rcv_rtt_measure(tp);
687 
688 	now = tcp_jiffies32;
689 
690 	if (!icsk->icsk_ack.ato) {
691 		/* The _first_ data packet received, initialize
692 		 * delayed ACK engine.
693 		 */
694 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
695 		icsk->icsk_ack.ato = TCP_ATO_MIN;
696 	} else {
697 		int m = now - icsk->icsk_ack.lrcvtime;
698 
699 		if (m <= TCP_ATO_MIN / 2) {
700 			/* The fastest case is the first. */
701 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
702 		} else if (m < icsk->icsk_ack.ato) {
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
704 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
705 				icsk->icsk_ack.ato = icsk->icsk_rto;
706 		} else if (m > icsk->icsk_rto) {
707 			/* Too long gap. Apparently sender failed to
708 			 * restart window, so that we send ACKs quickly.
709 			 */
710 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
711 			sk_mem_reclaim(sk);
712 		}
713 	}
714 	icsk->icsk_ack.lrcvtime = now;
715 
716 	tcp_ecn_check_ce(sk, skb);
717 
718 	if (skb->len >= 128)
719 		tcp_grow_window(sk, skb);
720 }
721 
722 /* Called to compute a smoothed rtt estimate. The data fed to this
723  * routine either comes from timestamps, or from segments that were
724  * known _not_ to have been retransmitted [see Karn/Partridge
725  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
726  * piece by Van Jacobson.
727  * NOTE: the next three routines used to be one big routine.
728  * To save cycles in the RFC 1323 implementation it was better to break
729  * it up into three procedures. -- erics
730  */
731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
732 {
733 	struct tcp_sock *tp = tcp_sk(sk);
734 	long m = mrtt_us; /* RTT */
735 	u32 srtt = tp->srtt_us;
736 
737 	/*	The following amusing code comes from Jacobson's
738 	 *	article in SIGCOMM '88.  Note that rtt and mdev
739 	 *	are scaled versions of rtt and mean deviation.
740 	 *	This is designed to be as fast as possible
741 	 *	m stands for "measurement".
742 	 *
743 	 *	On a 1990 paper the rto value is changed to:
744 	 *	RTO = rtt + 4 * mdev
745 	 *
746 	 * Funny. This algorithm seems to be very broken.
747 	 * These formulae increase RTO, when it should be decreased, increase
748 	 * too slowly, when it should be increased quickly, decrease too quickly
749 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
750 	 * does not matter how to _calculate_ it. Seems, it was trap
751 	 * that VJ failed to avoid. 8)
752 	 */
753 	if (srtt != 0) {
754 		m -= (srtt >> 3);	/* m is now error in rtt est */
755 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
756 		if (m < 0) {
757 			m = -m;		/* m is now abs(error) */
758 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
759 			/* This is similar to one of Eifel findings.
760 			 * Eifel blocks mdev updates when rtt decreases.
761 			 * This solution is a bit different: we use finer gain
762 			 * for mdev in this case (alpha*beta).
763 			 * Like Eifel it also prevents growth of rto,
764 			 * but also it limits too fast rto decreases,
765 			 * happening in pure Eifel.
766 			 */
767 			if (m > 0)
768 				m >>= 3;
769 		} else {
770 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
771 		}
772 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
773 		if (tp->mdev_us > tp->mdev_max_us) {
774 			tp->mdev_max_us = tp->mdev_us;
775 			if (tp->mdev_max_us > tp->rttvar_us)
776 				tp->rttvar_us = tp->mdev_max_us;
777 		}
778 		if (after(tp->snd_una, tp->rtt_seq)) {
779 			if (tp->mdev_max_us < tp->rttvar_us)
780 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
781 			tp->rtt_seq = tp->snd_nxt;
782 			tp->mdev_max_us = tcp_rto_min_us(sk);
783 
784 			tcp_bpf_rtt(sk);
785 		}
786 	} else {
787 		/* no previous measure. */
788 		srtt = m << 3;		/* take the measured time to be rtt */
789 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
790 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
791 		tp->mdev_max_us = tp->rttvar_us;
792 		tp->rtt_seq = tp->snd_nxt;
793 
794 		tcp_bpf_rtt(sk);
795 	}
796 	tp->srtt_us = max(1U, srtt);
797 }
798 
799 static void tcp_update_pacing_rate(struct sock *sk)
800 {
801 	const struct tcp_sock *tp = tcp_sk(sk);
802 	u64 rate;
803 
804 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
805 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
806 
807 	/* current rate is (cwnd * mss) / srtt
808 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
809 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
810 	 *
811 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
812 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
813 	 *	 end of slow start and should slow down.
814 	 */
815 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
816 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
817 	else
818 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
819 
820 	rate *= max(tp->snd_cwnd, tp->packets_out);
821 
822 	if (likely(tp->srtt_us))
823 		do_div(rate, tp->srtt_us);
824 
825 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
826 	 * without any lock. We want to make sure compiler wont store
827 	 * intermediate values in this location.
828 	 */
829 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
830 					     sk->sk_max_pacing_rate));
831 }
832 
833 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
834  * routine referred to above.
835  */
836 static void tcp_set_rto(struct sock *sk)
837 {
838 	const struct tcp_sock *tp = tcp_sk(sk);
839 	/* Old crap is replaced with new one. 8)
840 	 *
841 	 * More seriously:
842 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
843 	 *    It cannot be less due to utterly erratic ACK generation made
844 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
845 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
846 	 *    is invisible. Actually, Linux-2.4 also generates erratic
847 	 *    ACKs in some circumstances.
848 	 */
849 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
850 
851 	/* 2. Fixups made earlier cannot be right.
852 	 *    If we do not estimate RTO correctly without them,
853 	 *    all the algo is pure shit and should be replaced
854 	 *    with correct one. It is exactly, which we pretend to do.
855 	 */
856 
857 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
858 	 * guarantees that rto is higher.
859 	 */
860 	tcp_bound_rto(sk);
861 }
862 
863 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
864 {
865 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
866 
867 	if (!cwnd)
868 		cwnd = TCP_INIT_CWND;
869 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
870 }
871 
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
876 	tp->rack.dsack_seen = 1;
877 	tp->dsack_dups++;
878 }
879 
880 /* It's reordering when higher sequence was delivered (i.e. sacked) before
881  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
882  * distance is approximated in full-mss packet distance ("reordering").
883  */
884 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
885 				      const int ts)
886 {
887 	struct tcp_sock *tp = tcp_sk(sk);
888 	const u32 mss = tp->mss_cache;
889 	u32 fack, metric;
890 
891 	fack = tcp_highest_sack_seq(tp);
892 	if (!before(low_seq, fack))
893 		return;
894 
895 	metric = fack - low_seq;
896 	if ((metric > tp->reordering * mss) && mss) {
897 #if FASTRETRANS_DEBUG > 1
898 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
899 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
900 			 tp->reordering,
901 			 0,
902 			 tp->sacked_out,
903 			 tp->undo_marker ? tp->undo_retrans : 0);
904 #endif
905 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
906 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
907 	}
908 
909 	/* This exciting event is worth to be remembered. 8) */
910 	tp->reord_seen++;
911 	NET_INC_STATS(sock_net(sk),
912 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
913 }
914 
915 /* This must be called before lost_out is incremented */
916 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
917 {
918 	if (!tp->retransmit_skb_hint ||
919 	    before(TCP_SKB_CB(skb)->seq,
920 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
921 		tp->retransmit_skb_hint = skb;
922 }
923 
924 /* Sum the number of packets on the wire we have marked as lost.
925  * There are two cases we care about here:
926  * a) Packet hasn't been marked lost (nor retransmitted),
927  *    and this is the first loss.
928  * b) Packet has been marked both lost and retransmitted,
929  *    and this means we think it was lost again.
930  */
931 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
932 {
933 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
934 
935 	if (!(sacked & TCPCB_LOST) ||
936 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
937 		tp->lost += tcp_skb_pcount(skb);
938 }
939 
940 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
941 {
942 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
943 		tcp_verify_retransmit_hint(tp, skb);
944 
945 		tp->lost_out += tcp_skb_pcount(skb);
946 		tcp_sum_lost(tp, skb);
947 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
948 	}
949 }
950 
951 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
952 {
953 	tcp_verify_retransmit_hint(tp, skb);
954 
955 	tcp_sum_lost(tp, skb);
956 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
957 		tp->lost_out += tcp_skb_pcount(skb);
958 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
959 	}
960 }
961 
962 /* This procedure tags the retransmission queue when SACKs arrive.
963  *
964  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
965  * Packets in queue with these bits set are counted in variables
966  * sacked_out, retrans_out and lost_out, correspondingly.
967  *
968  * Valid combinations are:
969  * Tag  InFlight	Description
970  * 0	1		- orig segment is in flight.
971  * S	0		- nothing flies, orig reached receiver.
972  * L	0		- nothing flies, orig lost by net.
973  * R	2		- both orig and retransmit are in flight.
974  * L|R	1		- orig is lost, retransmit is in flight.
975  * S|R  1		- orig reached receiver, retrans is still in flight.
976  * (L|S|R is logically valid, it could occur when L|R is sacked,
977  *  but it is equivalent to plain S and code short-curcuits it to S.
978  *  L|S is logically invalid, it would mean -1 packet in flight 8))
979  *
980  * These 6 states form finite state machine, controlled by the following events:
981  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
982  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
983  * 3. Loss detection event of two flavors:
984  *	A. Scoreboard estimator decided the packet is lost.
985  *	   A'. Reno "three dupacks" marks head of queue lost.
986  *	B. SACK arrives sacking SND.NXT at the moment, when the
987  *	   segment was retransmitted.
988  * 4. D-SACK added new rule: D-SACK changes any tag to S.
989  *
990  * It is pleasant to note, that state diagram turns out to be commutative,
991  * so that we are allowed not to be bothered by order of our actions,
992  * when multiple events arrive simultaneously. (see the function below).
993  *
994  * Reordering detection.
995  * --------------------
996  * Reordering metric is maximal distance, which a packet can be displaced
997  * in packet stream. With SACKs we can estimate it:
998  *
999  * 1. SACK fills old hole and the corresponding segment was not
1000  *    ever retransmitted -> reordering. Alas, we cannot use it
1001  *    when segment was retransmitted.
1002  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1003  *    for retransmitted and already SACKed segment -> reordering..
1004  * Both of these heuristics are not used in Loss state, when we cannot
1005  * account for retransmits accurately.
1006  *
1007  * SACK block validation.
1008  * ----------------------
1009  *
1010  * SACK block range validation checks that the received SACK block fits to
1011  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1012  * Note that SND.UNA is not included to the range though being valid because
1013  * it means that the receiver is rather inconsistent with itself reporting
1014  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1015  * perfectly valid, however, in light of RFC2018 which explicitly states
1016  * that "SACK block MUST reflect the newest segment.  Even if the newest
1017  * segment is going to be discarded ...", not that it looks very clever
1018  * in case of head skb. Due to potentional receiver driven attacks, we
1019  * choose to avoid immediate execution of a walk in write queue due to
1020  * reneging and defer head skb's loss recovery to standard loss recovery
1021  * procedure that will eventually trigger (nothing forbids us doing this).
1022  *
1023  * Implements also blockage to start_seq wrap-around. Problem lies in the
1024  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1025  * there's no guarantee that it will be before snd_nxt (n). The problem
1026  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1027  * wrap (s_w):
1028  *
1029  *         <- outs wnd ->                          <- wrapzone ->
1030  *         u     e      n                         u_w   e_w  s n_w
1031  *         |     |      |                          |     |   |  |
1032  * |<------------+------+----- TCP seqno space --------------+---------->|
1033  * ...-- <2^31 ->|                                           |<--------...
1034  * ...---- >2^31 ------>|                                    |<--------...
1035  *
1036  * Current code wouldn't be vulnerable but it's better still to discard such
1037  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1038  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1039  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1040  * equal to the ideal case (infinite seqno space without wrap caused issues).
1041  *
1042  * With D-SACK the lower bound is extended to cover sequence space below
1043  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1044  * again, D-SACK block must not to go across snd_una (for the same reason as
1045  * for the normal SACK blocks, explained above). But there all simplicity
1046  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1047  * fully below undo_marker they do not affect behavior in anyway and can
1048  * therefore be safely ignored. In rare cases (which are more or less
1049  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1050  * fragmentation and packet reordering past skb's retransmission. To consider
1051  * them correctly, the acceptable range must be extended even more though
1052  * the exact amount is rather hard to quantify. However, tp->max_window can
1053  * be used as an exaggerated estimate.
1054  */
1055 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1056 				   u32 start_seq, u32 end_seq)
1057 {
1058 	/* Too far in future, or reversed (interpretation is ambiguous) */
1059 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1060 		return false;
1061 
1062 	/* Nasty start_seq wrap-around check (see comments above) */
1063 	if (!before(start_seq, tp->snd_nxt))
1064 		return false;
1065 
1066 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1067 	 * start_seq == snd_una is non-sensical (see comments above)
1068 	 */
1069 	if (after(start_seq, tp->snd_una))
1070 		return true;
1071 
1072 	if (!is_dsack || !tp->undo_marker)
1073 		return false;
1074 
1075 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1076 	if (after(end_seq, tp->snd_una))
1077 		return false;
1078 
1079 	if (!before(start_seq, tp->undo_marker))
1080 		return true;
1081 
1082 	/* Too old */
1083 	if (!after(end_seq, tp->undo_marker))
1084 		return false;
1085 
1086 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1087 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1088 	 */
1089 	return !before(start_seq, end_seq - tp->max_window);
1090 }
1091 
1092 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1093 			    struct tcp_sack_block_wire *sp, int num_sacks,
1094 			    u32 prior_snd_una)
1095 {
1096 	struct tcp_sock *tp = tcp_sk(sk);
1097 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1098 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1099 	bool dup_sack = false;
1100 
1101 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1102 		dup_sack = true;
1103 		tcp_dsack_seen(tp);
1104 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1105 	} else if (num_sacks > 1) {
1106 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1107 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1108 
1109 		if (!after(end_seq_0, end_seq_1) &&
1110 		    !before(start_seq_0, start_seq_1)) {
1111 			dup_sack = true;
1112 			tcp_dsack_seen(tp);
1113 			NET_INC_STATS(sock_net(sk),
1114 					LINUX_MIB_TCPDSACKOFORECV);
1115 		}
1116 	}
1117 
1118 	/* D-SACK for already forgotten data... Do dumb counting. */
1119 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1120 	    !after(end_seq_0, prior_snd_una) &&
1121 	    after(end_seq_0, tp->undo_marker))
1122 		tp->undo_retrans--;
1123 
1124 	return dup_sack;
1125 }
1126 
1127 struct tcp_sacktag_state {
1128 	u32	reord;
1129 	/* Timestamps for earliest and latest never-retransmitted segment
1130 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1131 	 * but congestion control should still get an accurate delay signal.
1132 	 */
1133 	u64	first_sackt;
1134 	u64	last_sackt;
1135 	struct rate_sample *rate;
1136 	int	flag;
1137 	unsigned int mss_now;
1138 };
1139 
1140 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1141  * the incoming SACK may not exactly match but we can find smaller MSS
1142  * aligned portion of it that matches. Therefore we might need to fragment
1143  * which may fail and creates some hassle (caller must handle error case
1144  * returns).
1145  *
1146  * FIXME: this could be merged to shift decision code
1147  */
1148 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1149 				  u32 start_seq, u32 end_seq)
1150 {
1151 	int err;
1152 	bool in_sack;
1153 	unsigned int pkt_len;
1154 	unsigned int mss;
1155 
1156 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1157 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1158 
1159 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1160 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1161 		mss = tcp_skb_mss(skb);
1162 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1163 
1164 		if (!in_sack) {
1165 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1166 			if (pkt_len < mss)
1167 				pkt_len = mss;
1168 		} else {
1169 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1170 			if (pkt_len < mss)
1171 				return -EINVAL;
1172 		}
1173 
1174 		/* Round if necessary so that SACKs cover only full MSSes
1175 		 * and/or the remaining small portion (if present)
1176 		 */
1177 		if (pkt_len > mss) {
1178 			unsigned int new_len = (pkt_len / mss) * mss;
1179 			if (!in_sack && new_len < pkt_len)
1180 				new_len += mss;
1181 			pkt_len = new_len;
1182 		}
1183 
1184 		if (pkt_len >= skb->len && !in_sack)
1185 			return 0;
1186 
1187 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1188 				   pkt_len, mss, GFP_ATOMIC);
1189 		if (err < 0)
1190 			return err;
1191 	}
1192 
1193 	return in_sack;
1194 }
1195 
1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197 static u8 tcp_sacktag_one(struct sock *sk,
1198 			  struct tcp_sacktag_state *state, u8 sacked,
1199 			  u32 start_seq, u32 end_seq,
1200 			  int dup_sack, int pcount,
1201 			  u64 xmit_time)
1202 {
1203 	struct tcp_sock *tp = tcp_sk(sk);
1204 
1205 	/* Account D-SACK for retransmitted packet. */
1206 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1207 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1208 		    after(end_seq, tp->undo_marker))
1209 			tp->undo_retrans--;
1210 		if ((sacked & TCPCB_SACKED_ACKED) &&
1211 		    before(start_seq, state->reord))
1212 				state->reord = start_seq;
1213 	}
1214 
1215 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216 	if (!after(end_seq, tp->snd_una))
1217 		return sacked;
1218 
1219 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1220 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1221 
1222 		if (sacked & TCPCB_SACKED_RETRANS) {
1223 			/* If the segment is not tagged as lost,
1224 			 * we do not clear RETRANS, believing
1225 			 * that retransmission is still in flight.
1226 			 */
1227 			if (sacked & TCPCB_LOST) {
1228 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1229 				tp->lost_out -= pcount;
1230 				tp->retrans_out -= pcount;
1231 			}
1232 		} else {
1233 			if (!(sacked & TCPCB_RETRANS)) {
1234 				/* New sack for not retransmitted frame,
1235 				 * which was in hole. It is reordering.
1236 				 */
1237 				if (before(start_seq,
1238 					   tcp_highest_sack_seq(tp)) &&
1239 				    before(start_seq, state->reord))
1240 					state->reord = start_seq;
1241 
1242 				if (!after(end_seq, tp->high_seq))
1243 					state->flag |= FLAG_ORIG_SACK_ACKED;
1244 				if (state->first_sackt == 0)
1245 					state->first_sackt = xmit_time;
1246 				state->last_sackt = xmit_time;
1247 			}
1248 
1249 			if (sacked & TCPCB_LOST) {
1250 				sacked &= ~TCPCB_LOST;
1251 				tp->lost_out -= pcount;
1252 			}
1253 		}
1254 
1255 		sacked |= TCPCB_SACKED_ACKED;
1256 		state->flag |= FLAG_DATA_SACKED;
1257 		tp->sacked_out += pcount;
1258 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1259 
1260 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1261 		if (tp->lost_skb_hint &&
1262 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1263 			tp->lost_cnt_hint += pcount;
1264 	}
1265 
1266 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1267 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1268 	 * are accounted above as well.
1269 	 */
1270 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1271 		sacked &= ~TCPCB_SACKED_RETRANS;
1272 		tp->retrans_out -= pcount;
1273 	}
1274 
1275 	return sacked;
1276 }
1277 
1278 /* Shift newly-SACKed bytes from this skb to the immediately previous
1279  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1280  */
1281 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1282 			    struct sk_buff *skb,
1283 			    struct tcp_sacktag_state *state,
1284 			    unsigned int pcount, int shifted, int mss,
1285 			    bool dup_sack)
1286 {
1287 	struct tcp_sock *tp = tcp_sk(sk);
1288 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1289 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1290 
1291 	BUG_ON(!pcount);
1292 
1293 	/* Adjust counters and hints for the newly sacked sequence
1294 	 * range but discard the return value since prev is already
1295 	 * marked. We must tag the range first because the seq
1296 	 * advancement below implicitly advances
1297 	 * tcp_highest_sack_seq() when skb is highest_sack.
1298 	 */
1299 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1300 			start_seq, end_seq, dup_sack, pcount,
1301 			tcp_skb_timestamp_us(skb));
1302 	tcp_rate_skb_delivered(sk, skb, state->rate);
1303 
1304 	if (skb == tp->lost_skb_hint)
1305 		tp->lost_cnt_hint += pcount;
1306 
1307 	TCP_SKB_CB(prev)->end_seq += shifted;
1308 	TCP_SKB_CB(skb)->seq += shifted;
1309 
1310 	tcp_skb_pcount_add(prev, pcount);
1311 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1312 	tcp_skb_pcount_add(skb, -pcount);
1313 
1314 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1315 	 * in theory this shouldn't be necessary but as long as DSACK
1316 	 * code can come after this skb later on it's better to keep
1317 	 * setting gso_size to something.
1318 	 */
1319 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1320 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1321 
1322 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323 	if (tcp_skb_pcount(skb) <= 1)
1324 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1325 
1326 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1327 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1328 
1329 	if (skb->len > 0) {
1330 		BUG_ON(!tcp_skb_pcount(skb));
1331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1332 		return false;
1333 	}
1334 
1335 	/* Whole SKB was eaten :-) */
1336 
1337 	if (skb == tp->retransmit_skb_hint)
1338 		tp->retransmit_skb_hint = prev;
1339 	if (skb == tp->lost_skb_hint) {
1340 		tp->lost_skb_hint = prev;
1341 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1342 	}
1343 
1344 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1345 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1346 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1347 		TCP_SKB_CB(prev)->end_seq++;
1348 
1349 	if (skb == tcp_highest_sack(sk))
1350 		tcp_advance_highest_sack(sk, skb);
1351 
1352 	tcp_skb_collapse_tstamp(prev, skb);
1353 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1354 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1355 
1356 	tcp_rtx_queue_unlink_and_free(skb, sk);
1357 
1358 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1359 
1360 	return true;
1361 }
1362 
1363 /* I wish gso_size would have a bit more sane initialization than
1364  * something-or-zero which complicates things
1365  */
1366 static int tcp_skb_seglen(const struct sk_buff *skb)
1367 {
1368 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369 }
1370 
1371 /* Shifting pages past head area doesn't work */
1372 static int skb_can_shift(const struct sk_buff *skb)
1373 {
1374 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375 }
1376 
1377 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1378 		  int pcount, int shiftlen)
1379 {
1380 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1381 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1382 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1383 	 * even if current MSS is bigger.
1384 	 */
1385 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1386 		return 0;
1387 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1388 		return 0;
1389 	return skb_shift(to, from, shiftlen);
1390 }
1391 
1392 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1393  * skb.
1394  */
1395 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1396 					  struct tcp_sacktag_state *state,
1397 					  u32 start_seq, u32 end_seq,
1398 					  bool dup_sack)
1399 {
1400 	struct tcp_sock *tp = tcp_sk(sk);
1401 	struct sk_buff *prev;
1402 	int mss;
1403 	int pcount = 0;
1404 	int len;
1405 	int in_sack;
1406 
1407 	/* Normally R but no L won't result in plain S */
1408 	if (!dup_sack &&
1409 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1410 		goto fallback;
1411 	if (!skb_can_shift(skb))
1412 		goto fallback;
1413 	/* This frame is about to be dropped (was ACKed). */
1414 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1415 		goto fallback;
1416 
1417 	/* Can only happen with delayed DSACK + discard craziness */
1418 	prev = skb_rb_prev(skb);
1419 	if (!prev)
1420 		goto fallback;
1421 
1422 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1423 		goto fallback;
1424 
1425 	if (!tcp_skb_can_collapse_to(prev))
1426 		goto fallback;
1427 
1428 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430 
1431 	if (in_sack) {
1432 		len = skb->len;
1433 		pcount = tcp_skb_pcount(skb);
1434 		mss = tcp_skb_seglen(skb);
1435 
1436 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1437 		 * drop this restriction as unnecessary
1438 		 */
1439 		if (mss != tcp_skb_seglen(prev))
1440 			goto fallback;
1441 	} else {
1442 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443 			goto noop;
1444 		/* CHECKME: This is non-MSS split case only?, this will
1445 		 * cause skipped skbs due to advancing loop btw, original
1446 		 * has that feature too
1447 		 */
1448 		if (tcp_skb_pcount(skb) <= 1)
1449 			goto noop;
1450 
1451 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452 		if (!in_sack) {
1453 			/* TODO: head merge to next could be attempted here
1454 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455 			 * though it might not be worth of the additional hassle
1456 			 *
1457 			 * ...we can probably just fallback to what was done
1458 			 * previously. We could try merging non-SACKed ones
1459 			 * as well but it probably isn't going to buy off
1460 			 * because later SACKs might again split them, and
1461 			 * it would make skb timestamp tracking considerably
1462 			 * harder problem.
1463 			 */
1464 			goto fallback;
1465 		}
1466 
1467 		len = end_seq - TCP_SKB_CB(skb)->seq;
1468 		BUG_ON(len < 0);
1469 		BUG_ON(len > skb->len);
1470 
1471 		/* MSS boundaries should be honoured or else pcount will
1472 		 * severely break even though it makes things bit trickier.
1473 		 * Optimize common case to avoid most of the divides
1474 		 */
1475 		mss = tcp_skb_mss(skb);
1476 
1477 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1478 		 * drop this restriction as unnecessary
1479 		 */
1480 		if (mss != tcp_skb_seglen(prev))
1481 			goto fallback;
1482 
1483 		if (len == mss) {
1484 			pcount = 1;
1485 		} else if (len < mss) {
1486 			goto noop;
1487 		} else {
1488 			pcount = len / mss;
1489 			len = pcount * mss;
1490 		}
1491 	}
1492 
1493 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495 		goto fallback;
1496 
1497 	if (!tcp_skb_shift(prev, skb, pcount, len))
1498 		goto fallback;
1499 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1500 		goto out;
1501 
1502 	/* Hole filled allows collapsing with the next as well, this is very
1503 	 * useful when hole on every nth skb pattern happens
1504 	 */
1505 	skb = skb_rb_next(prev);
1506 	if (!skb)
1507 		goto out;
1508 
1509 	if (!skb_can_shift(skb) ||
1510 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1511 	    (mss != tcp_skb_seglen(skb)))
1512 		goto out;
1513 
1514 	len = skb->len;
1515 	pcount = tcp_skb_pcount(skb);
1516 	if (tcp_skb_shift(prev, skb, pcount, len))
1517 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1518 				len, mss, 0);
1519 
1520 out:
1521 	return prev;
1522 
1523 noop:
1524 	return skb;
1525 
1526 fallback:
1527 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1528 	return NULL;
1529 }
1530 
1531 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1532 					struct tcp_sack_block *next_dup,
1533 					struct tcp_sacktag_state *state,
1534 					u32 start_seq, u32 end_seq,
1535 					bool dup_sack_in)
1536 {
1537 	struct tcp_sock *tp = tcp_sk(sk);
1538 	struct sk_buff *tmp;
1539 
1540 	skb_rbtree_walk_from(skb) {
1541 		int in_sack = 0;
1542 		bool dup_sack = dup_sack_in;
1543 
1544 		/* queue is in-order => we can short-circuit the walk early */
1545 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546 			break;
1547 
1548 		if (next_dup  &&
1549 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550 			in_sack = tcp_match_skb_to_sack(sk, skb,
1551 							next_dup->start_seq,
1552 							next_dup->end_seq);
1553 			if (in_sack > 0)
1554 				dup_sack = true;
1555 		}
1556 
1557 		/* skb reference here is a bit tricky to get right, since
1558 		 * shifting can eat and free both this skb and the next,
1559 		 * so not even _safe variant of the loop is enough.
1560 		 */
1561 		if (in_sack <= 0) {
1562 			tmp = tcp_shift_skb_data(sk, skb, state,
1563 						 start_seq, end_seq, dup_sack);
1564 			if (tmp) {
1565 				if (tmp != skb) {
1566 					skb = tmp;
1567 					continue;
1568 				}
1569 
1570 				in_sack = 0;
1571 			} else {
1572 				in_sack = tcp_match_skb_to_sack(sk, skb,
1573 								start_seq,
1574 								end_seq);
1575 			}
1576 		}
1577 
1578 		if (unlikely(in_sack < 0))
1579 			break;
1580 
1581 		if (in_sack) {
1582 			TCP_SKB_CB(skb)->sacked =
1583 				tcp_sacktag_one(sk,
1584 						state,
1585 						TCP_SKB_CB(skb)->sacked,
1586 						TCP_SKB_CB(skb)->seq,
1587 						TCP_SKB_CB(skb)->end_seq,
1588 						dup_sack,
1589 						tcp_skb_pcount(skb),
1590 						tcp_skb_timestamp_us(skb));
1591 			tcp_rate_skb_delivered(sk, skb, state->rate);
1592 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1593 				list_del_init(&skb->tcp_tsorted_anchor);
1594 
1595 			if (!before(TCP_SKB_CB(skb)->seq,
1596 				    tcp_highest_sack_seq(tp)))
1597 				tcp_advance_highest_sack(sk, skb);
1598 		}
1599 	}
1600 	return skb;
1601 }
1602 
1603 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1604 {
1605 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1606 	struct sk_buff *skb;
1607 
1608 	while (*p) {
1609 		parent = *p;
1610 		skb = rb_to_skb(parent);
1611 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1612 			p = &parent->rb_left;
1613 			continue;
1614 		}
1615 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1616 			p = &parent->rb_right;
1617 			continue;
1618 		}
1619 		return skb;
1620 	}
1621 	return NULL;
1622 }
1623 
1624 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1625 					u32 skip_to_seq)
1626 {
1627 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1628 		return skb;
1629 
1630 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1631 }
1632 
1633 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1634 						struct sock *sk,
1635 						struct tcp_sack_block *next_dup,
1636 						struct tcp_sacktag_state *state,
1637 						u32 skip_to_seq)
1638 {
1639 	if (!next_dup)
1640 		return skb;
1641 
1642 	if (before(next_dup->start_seq, skip_to_seq)) {
1643 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1644 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1645 				       next_dup->start_seq, next_dup->end_seq,
1646 				       1);
1647 	}
1648 
1649 	return skb;
1650 }
1651 
1652 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1653 {
1654 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1655 }
1656 
1657 static int
1658 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1659 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1660 {
1661 	struct tcp_sock *tp = tcp_sk(sk);
1662 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1663 				    TCP_SKB_CB(ack_skb)->sacked);
1664 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1665 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1666 	struct tcp_sack_block *cache;
1667 	struct sk_buff *skb;
1668 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1669 	int used_sacks;
1670 	bool found_dup_sack = false;
1671 	int i, j;
1672 	int first_sack_index;
1673 
1674 	state->flag = 0;
1675 	state->reord = tp->snd_nxt;
1676 
1677 	if (!tp->sacked_out)
1678 		tcp_highest_sack_reset(sk);
1679 
1680 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1681 					 num_sacks, prior_snd_una);
1682 	if (found_dup_sack) {
1683 		state->flag |= FLAG_DSACKING_ACK;
1684 		tp->delivered++; /* A spurious retransmission is delivered */
1685 	}
1686 
1687 	/* Eliminate too old ACKs, but take into
1688 	 * account more or less fresh ones, they can
1689 	 * contain valid SACK info.
1690 	 */
1691 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1692 		return 0;
1693 
1694 	if (!tp->packets_out)
1695 		goto out;
1696 
1697 	used_sacks = 0;
1698 	first_sack_index = 0;
1699 	for (i = 0; i < num_sacks; i++) {
1700 		bool dup_sack = !i && found_dup_sack;
1701 
1702 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1703 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1704 
1705 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1706 					    sp[used_sacks].start_seq,
1707 					    sp[used_sacks].end_seq)) {
1708 			int mib_idx;
1709 
1710 			if (dup_sack) {
1711 				if (!tp->undo_marker)
1712 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1713 				else
1714 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1715 			} else {
1716 				/* Don't count olds caused by ACK reordering */
1717 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1718 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1719 					continue;
1720 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1721 			}
1722 
1723 			NET_INC_STATS(sock_net(sk), mib_idx);
1724 			if (i == 0)
1725 				first_sack_index = -1;
1726 			continue;
1727 		}
1728 
1729 		/* Ignore very old stuff early */
1730 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1731 			continue;
1732 
1733 		used_sacks++;
1734 	}
1735 
1736 	/* order SACK blocks to allow in order walk of the retrans queue */
1737 	for (i = used_sacks - 1; i > 0; i--) {
1738 		for (j = 0; j < i; j++) {
1739 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1740 				swap(sp[j], sp[j + 1]);
1741 
1742 				/* Track where the first SACK block goes to */
1743 				if (j == first_sack_index)
1744 					first_sack_index = j + 1;
1745 			}
1746 		}
1747 	}
1748 
1749 	state->mss_now = tcp_current_mss(sk);
1750 	skb = NULL;
1751 	i = 0;
1752 
1753 	if (!tp->sacked_out) {
1754 		/* It's already past, so skip checking against it */
1755 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1756 	} else {
1757 		cache = tp->recv_sack_cache;
1758 		/* Skip empty blocks in at head of the cache */
1759 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1760 		       !cache->end_seq)
1761 			cache++;
1762 	}
1763 
1764 	while (i < used_sacks) {
1765 		u32 start_seq = sp[i].start_seq;
1766 		u32 end_seq = sp[i].end_seq;
1767 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1768 		struct tcp_sack_block *next_dup = NULL;
1769 
1770 		if (found_dup_sack && ((i + 1) == first_sack_index))
1771 			next_dup = &sp[i + 1];
1772 
1773 		/* Skip too early cached blocks */
1774 		while (tcp_sack_cache_ok(tp, cache) &&
1775 		       !before(start_seq, cache->end_seq))
1776 			cache++;
1777 
1778 		/* Can skip some work by looking recv_sack_cache? */
1779 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1780 		    after(end_seq, cache->start_seq)) {
1781 
1782 			/* Head todo? */
1783 			if (before(start_seq, cache->start_seq)) {
1784 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1785 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1786 						       state,
1787 						       start_seq,
1788 						       cache->start_seq,
1789 						       dup_sack);
1790 			}
1791 
1792 			/* Rest of the block already fully processed? */
1793 			if (!after(end_seq, cache->end_seq))
1794 				goto advance_sp;
1795 
1796 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1797 						       state,
1798 						       cache->end_seq);
1799 
1800 			/* ...tail remains todo... */
1801 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1802 				/* ...but better entrypoint exists! */
1803 				skb = tcp_highest_sack(sk);
1804 				if (!skb)
1805 					break;
1806 				cache++;
1807 				goto walk;
1808 			}
1809 
1810 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1811 			/* Check overlap against next cached too (past this one already) */
1812 			cache++;
1813 			continue;
1814 		}
1815 
1816 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1817 			skb = tcp_highest_sack(sk);
1818 			if (!skb)
1819 				break;
1820 		}
1821 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1822 
1823 walk:
1824 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1825 				       start_seq, end_seq, dup_sack);
1826 
1827 advance_sp:
1828 		i++;
1829 	}
1830 
1831 	/* Clear the head of the cache sack blocks so we can skip it next time */
1832 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1833 		tp->recv_sack_cache[i].start_seq = 0;
1834 		tp->recv_sack_cache[i].end_seq = 0;
1835 	}
1836 	for (j = 0; j < used_sacks; j++)
1837 		tp->recv_sack_cache[i++] = sp[j];
1838 
1839 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1840 		tcp_check_sack_reordering(sk, state->reord, 0);
1841 
1842 	tcp_verify_left_out(tp);
1843 out:
1844 
1845 #if FASTRETRANS_DEBUG > 0
1846 	WARN_ON((int)tp->sacked_out < 0);
1847 	WARN_ON((int)tp->lost_out < 0);
1848 	WARN_ON((int)tp->retrans_out < 0);
1849 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1850 #endif
1851 	return state->flag;
1852 }
1853 
1854 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1855  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1856  */
1857 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1858 {
1859 	u32 holes;
1860 
1861 	holes = max(tp->lost_out, 1U);
1862 	holes = min(holes, tp->packets_out);
1863 
1864 	if ((tp->sacked_out + holes) > tp->packets_out) {
1865 		tp->sacked_out = tp->packets_out - holes;
1866 		return true;
1867 	}
1868 	return false;
1869 }
1870 
1871 /* If we receive more dupacks than we expected counting segments
1872  * in assumption of absent reordering, interpret this as reordering.
1873  * The only another reason could be bug in receiver TCP.
1874  */
1875 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1876 {
1877 	struct tcp_sock *tp = tcp_sk(sk);
1878 
1879 	if (!tcp_limit_reno_sacked(tp))
1880 		return;
1881 
1882 	tp->reordering = min_t(u32, tp->packets_out + addend,
1883 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1884 	tp->reord_seen++;
1885 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1886 }
1887 
1888 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1889 
1890 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1891 {
1892 	if (num_dupack) {
1893 		struct tcp_sock *tp = tcp_sk(sk);
1894 		u32 prior_sacked = tp->sacked_out;
1895 		s32 delivered;
1896 
1897 		tp->sacked_out += num_dupack;
1898 		tcp_check_reno_reordering(sk, 0);
1899 		delivered = tp->sacked_out - prior_sacked;
1900 		if (delivered > 0)
1901 			tp->delivered += delivered;
1902 		tcp_verify_left_out(tp);
1903 	}
1904 }
1905 
1906 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1907 
1908 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1909 {
1910 	struct tcp_sock *tp = tcp_sk(sk);
1911 
1912 	if (acked > 0) {
1913 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1914 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1915 		if (acked - 1 >= tp->sacked_out)
1916 			tp->sacked_out = 0;
1917 		else
1918 			tp->sacked_out -= acked - 1;
1919 	}
1920 	tcp_check_reno_reordering(sk, acked);
1921 	tcp_verify_left_out(tp);
1922 }
1923 
1924 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1925 {
1926 	tp->sacked_out = 0;
1927 }
1928 
1929 void tcp_clear_retrans(struct tcp_sock *tp)
1930 {
1931 	tp->retrans_out = 0;
1932 	tp->lost_out = 0;
1933 	tp->undo_marker = 0;
1934 	tp->undo_retrans = -1;
1935 	tp->sacked_out = 0;
1936 }
1937 
1938 static inline void tcp_init_undo(struct tcp_sock *tp)
1939 {
1940 	tp->undo_marker = tp->snd_una;
1941 	/* Retransmission still in flight may cause DSACKs later. */
1942 	tp->undo_retrans = tp->retrans_out ? : -1;
1943 }
1944 
1945 static bool tcp_is_rack(const struct sock *sk)
1946 {
1947 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1948 }
1949 
1950 /* If we detect SACK reneging, forget all SACK information
1951  * and reset tags completely, otherwise preserve SACKs. If receiver
1952  * dropped its ofo queue, we will know this due to reneging detection.
1953  */
1954 static void tcp_timeout_mark_lost(struct sock *sk)
1955 {
1956 	struct tcp_sock *tp = tcp_sk(sk);
1957 	struct sk_buff *skb, *head;
1958 	bool is_reneg;			/* is receiver reneging on SACKs? */
1959 
1960 	head = tcp_rtx_queue_head(sk);
1961 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1962 	if (is_reneg) {
1963 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1964 		tp->sacked_out = 0;
1965 		/* Mark SACK reneging until we recover from this loss event. */
1966 		tp->is_sack_reneg = 1;
1967 	} else if (tcp_is_reno(tp)) {
1968 		tcp_reset_reno_sack(tp);
1969 	}
1970 
1971 	skb = head;
1972 	skb_rbtree_walk_from(skb) {
1973 		if (is_reneg)
1974 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1975 		else if (tcp_is_rack(sk) && skb != head &&
1976 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1977 			continue; /* Don't mark recently sent ones lost yet */
1978 		tcp_mark_skb_lost(sk, skb);
1979 	}
1980 	tcp_verify_left_out(tp);
1981 	tcp_clear_all_retrans_hints(tp);
1982 }
1983 
1984 /* Enter Loss state. */
1985 void tcp_enter_loss(struct sock *sk)
1986 {
1987 	const struct inet_connection_sock *icsk = inet_csk(sk);
1988 	struct tcp_sock *tp = tcp_sk(sk);
1989 	struct net *net = sock_net(sk);
1990 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1991 
1992 	tcp_timeout_mark_lost(sk);
1993 
1994 	/* Reduce ssthresh if it has not yet been made inside this window. */
1995 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1996 	    !after(tp->high_seq, tp->snd_una) ||
1997 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1998 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1999 		tp->prior_cwnd = tp->snd_cwnd;
2000 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2001 		tcp_ca_event(sk, CA_EVENT_LOSS);
2002 		tcp_init_undo(tp);
2003 	}
2004 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2005 	tp->snd_cwnd_cnt   = 0;
2006 	tp->snd_cwnd_stamp = tcp_jiffies32;
2007 
2008 	/* Timeout in disordered state after receiving substantial DUPACKs
2009 	 * suggests that the degree of reordering is over-estimated.
2010 	 */
2011 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2012 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2013 		tp->reordering = min_t(unsigned int, tp->reordering,
2014 				       net->ipv4.sysctl_tcp_reordering);
2015 	tcp_set_ca_state(sk, TCP_CA_Loss);
2016 	tp->high_seq = tp->snd_nxt;
2017 	tcp_ecn_queue_cwr(tp);
2018 
2019 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2020 	 * loss recovery is underway except recurring timeout(s) on
2021 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2022 	 */
2023 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2024 		   (new_recovery || icsk->icsk_retransmits) &&
2025 		   !inet_csk(sk)->icsk_mtup.probe_size;
2026 }
2027 
2028 /* If ACK arrived pointing to a remembered SACK, it means that our
2029  * remembered SACKs do not reflect real state of receiver i.e.
2030  * receiver _host_ is heavily congested (or buggy).
2031  *
2032  * To avoid big spurious retransmission bursts due to transient SACK
2033  * scoreboard oddities that look like reneging, we give the receiver a
2034  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2035  * restore sanity to the SACK scoreboard. If the apparent reneging
2036  * persists until this RTO then we'll clear the SACK scoreboard.
2037  */
2038 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2039 {
2040 	if (flag & FLAG_SACK_RENEGING) {
2041 		struct tcp_sock *tp = tcp_sk(sk);
2042 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2043 					  msecs_to_jiffies(10));
2044 
2045 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2046 					  delay, TCP_RTO_MAX);
2047 		return true;
2048 	}
2049 	return false;
2050 }
2051 
2052 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2053  * counter when SACK is enabled (without SACK, sacked_out is used for
2054  * that purpose).
2055  *
2056  * With reordering, holes may still be in flight, so RFC3517 recovery
2057  * uses pure sacked_out (total number of SACKed segments) even though
2058  * it violates the RFC that uses duplicate ACKs, often these are equal
2059  * but when e.g. out-of-window ACKs or packet duplication occurs,
2060  * they differ. Since neither occurs due to loss, TCP should really
2061  * ignore them.
2062  */
2063 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2064 {
2065 	return tp->sacked_out + 1;
2066 }
2067 
2068 /* Linux NewReno/SACK/ECN state machine.
2069  * --------------------------------------
2070  *
2071  * "Open"	Normal state, no dubious events, fast path.
2072  * "Disorder"   In all the respects it is "Open",
2073  *		but requires a bit more attention. It is entered when
2074  *		we see some SACKs or dupacks. It is split of "Open"
2075  *		mainly to move some processing from fast path to slow one.
2076  * "CWR"	CWND was reduced due to some Congestion Notification event.
2077  *		It can be ECN, ICMP source quench, local device congestion.
2078  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2079  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2080  *
2081  * tcp_fastretrans_alert() is entered:
2082  * - each incoming ACK, if state is not "Open"
2083  * - when arrived ACK is unusual, namely:
2084  *	* SACK
2085  *	* Duplicate ACK.
2086  *	* ECN ECE.
2087  *
2088  * Counting packets in flight is pretty simple.
2089  *
2090  *	in_flight = packets_out - left_out + retrans_out
2091  *
2092  *	packets_out is SND.NXT-SND.UNA counted in packets.
2093  *
2094  *	retrans_out is number of retransmitted segments.
2095  *
2096  *	left_out is number of segments left network, but not ACKed yet.
2097  *
2098  *		left_out = sacked_out + lost_out
2099  *
2100  *     sacked_out: Packets, which arrived to receiver out of order
2101  *		   and hence not ACKed. With SACKs this number is simply
2102  *		   amount of SACKed data. Even without SACKs
2103  *		   it is easy to give pretty reliable estimate of this number,
2104  *		   counting duplicate ACKs.
2105  *
2106  *       lost_out: Packets lost by network. TCP has no explicit
2107  *		   "loss notification" feedback from network (for now).
2108  *		   It means that this number can be only _guessed_.
2109  *		   Actually, it is the heuristics to predict lossage that
2110  *		   distinguishes different algorithms.
2111  *
2112  *	F.e. after RTO, when all the queue is considered as lost,
2113  *	lost_out = packets_out and in_flight = retrans_out.
2114  *
2115  *		Essentially, we have now a few algorithms detecting
2116  *		lost packets.
2117  *
2118  *		If the receiver supports SACK:
2119  *
2120  *		RFC6675/3517: It is the conventional algorithm. A packet is
2121  *		considered lost if the number of higher sequence packets
2122  *		SACKed is greater than or equal the DUPACK thoreshold
2123  *		(reordering). This is implemented in tcp_mark_head_lost and
2124  *		tcp_update_scoreboard.
2125  *
2126  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2127  *		(2017-) that checks timing instead of counting DUPACKs.
2128  *		Essentially a packet is considered lost if it's not S/ACKed
2129  *		after RTT + reordering_window, where both metrics are
2130  *		dynamically measured and adjusted. This is implemented in
2131  *		tcp_rack_mark_lost.
2132  *
2133  *		If the receiver does not support SACK:
2134  *
2135  *		NewReno (RFC6582): in Recovery we assume that one segment
2136  *		is lost (classic Reno). While we are in Recovery and
2137  *		a partial ACK arrives, we assume that one more packet
2138  *		is lost (NewReno). This heuristics are the same in NewReno
2139  *		and SACK.
2140  *
2141  * Really tricky (and requiring careful tuning) part of algorithm
2142  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2143  * The first determines the moment _when_ we should reduce CWND and,
2144  * hence, slow down forward transmission. In fact, it determines the moment
2145  * when we decide that hole is caused by loss, rather than by a reorder.
2146  *
2147  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2148  * holes, caused by lost packets.
2149  *
2150  * And the most logically complicated part of algorithm is undo
2151  * heuristics. We detect false retransmits due to both too early
2152  * fast retransmit (reordering) and underestimated RTO, analyzing
2153  * timestamps and D-SACKs. When we detect that some segments were
2154  * retransmitted by mistake and CWND reduction was wrong, we undo
2155  * window reduction and abort recovery phase. This logic is hidden
2156  * inside several functions named tcp_try_undo_<something>.
2157  */
2158 
2159 /* This function decides, when we should leave Disordered state
2160  * and enter Recovery phase, reducing congestion window.
2161  *
2162  * Main question: may we further continue forward transmission
2163  * with the same cwnd?
2164  */
2165 static bool tcp_time_to_recover(struct sock *sk, int flag)
2166 {
2167 	struct tcp_sock *tp = tcp_sk(sk);
2168 
2169 	/* Trick#1: The loss is proven. */
2170 	if (tp->lost_out)
2171 		return true;
2172 
2173 	/* Not-A-Trick#2 : Classic rule... */
2174 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2175 		return true;
2176 
2177 	return false;
2178 }
2179 
2180 /* Detect loss in event "A" above by marking head of queue up as lost.
2181  * For non-SACK(Reno) senders, the first "packets" number of segments
2182  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2183  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2184  * the maximum SACKed segments to pass before reaching this limit.
2185  */
2186 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2187 {
2188 	struct tcp_sock *tp = tcp_sk(sk);
2189 	struct sk_buff *skb;
2190 	int cnt, oldcnt, lost;
2191 	unsigned int mss;
2192 	/* Use SACK to deduce losses of new sequences sent during recovery */
2193 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2194 
2195 	WARN_ON(packets > tp->packets_out);
2196 	skb = tp->lost_skb_hint;
2197 	if (skb) {
2198 		/* Head already handled? */
2199 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2200 			return;
2201 		cnt = tp->lost_cnt_hint;
2202 	} else {
2203 		skb = tcp_rtx_queue_head(sk);
2204 		cnt = 0;
2205 	}
2206 
2207 	skb_rbtree_walk_from(skb) {
2208 		/* TODO: do this better */
2209 		/* this is not the most efficient way to do this... */
2210 		tp->lost_skb_hint = skb;
2211 		tp->lost_cnt_hint = cnt;
2212 
2213 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2214 			break;
2215 
2216 		oldcnt = cnt;
2217 		if (tcp_is_reno(tp) ||
2218 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2219 			cnt += tcp_skb_pcount(skb);
2220 
2221 		if (cnt > packets) {
2222 			if (tcp_is_sack(tp) ||
2223 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2224 			    (oldcnt >= packets))
2225 				break;
2226 
2227 			mss = tcp_skb_mss(skb);
2228 			/* If needed, chop off the prefix to mark as lost. */
2229 			lost = (packets - oldcnt) * mss;
2230 			if (lost < skb->len &&
2231 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2232 					 lost, mss, GFP_ATOMIC) < 0)
2233 				break;
2234 			cnt = packets;
2235 		}
2236 
2237 		tcp_skb_mark_lost(tp, skb);
2238 
2239 		if (mark_head)
2240 			break;
2241 	}
2242 	tcp_verify_left_out(tp);
2243 }
2244 
2245 /* Account newly detected lost packet(s) */
2246 
2247 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2248 {
2249 	struct tcp_sock *tp = tcp_sk(sk);
2250 
2251 	if (tcp_is_sack(tp)) {
2252 		int sacked_upto = tp->sacked_out - tp->reordering;
2253 		if (sacked_upto >= 0)
2254 			tcp_mark_head_lost(sk, sacked_upto, 0);
2255 		else if (fast_rexmit)
2256 			tcp_mark_head_lost(sk, 1, 1);
2257 	}
2258 }
2259 
2260 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2261 {
2262 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2263 	       before(tp->rx_opt.rcv_tsecr, when);
2264 }
2265 
2266 /* skb is spurious retransmitted if the returned timestamp echo
2267  * reply is prior to the skb transmission time
2268  */
2269 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2270 				     const struct sk_buff *skb)
2271 {
2272 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2273 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2274 }
2275 
2276 /* Nothing was retransmitted or returned timestamp is less
2277  * than timestamp of the first retransmission.
2278  */
2279 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2280 {
2281 	return tp->retrans_stamp &&
2282 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2283 }
2284 
2285 /* Undo procedures. */
2286 
2287 /* We can clear retrans_stamp when there are no retransmissions in the
2288  * window. It would seem that it is trivially available for us in
2289  * tp->retrans_out, however, that kind of assumptions doesn't consider
2290  * what will happen if errors occur when sending retransmission for the
2291  * second time. ...It could the that such segment has only
2292  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293  * the head skb is enough except for some reneging corner cases that
2294  * are not worth the effort.
2295  *
2296  * Main reason for all this complexity is the fact that connection dying
2297  * time now depends on the validity of the retrans_stamp, in particular,
2298  * that successive retransmissions of a segment must not advance
2299  * retrans_stamp under any conditions.
2300  */
2301 static bool tcp_any_retrans_done(const struct sock *sk)
2302 {
2303 	const struct tcp_sock *tp = tcp_sk(sk);
2304 	struct sk_buff *skb;
2305 
2306 	if (tp->retrans_out)
2307 		return true;
2308 
2309 	skb = tcp_rtx_queue_head(sk);
2310 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2311 		return true;
2312 
2313 	return false;
2314 }
2315 
2316 static void DBGUNDO(struct sock *sk, const char *msg)
2317 {
2318 #if FASTRETRANS_DEBUG > 1
2319 	struct tcp_sock *tp = tcp_sk(sk);
2320 	struct inet_sock *inet = inet_sk(sk);
2321 
2322 	if (sk->sk_family == AF_INET) {
2323 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2324 			 msg,
2325 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2326 			 tp->snd_cwnd, tcp_left_out(tp),
2327 			 tp->snd_ssthresh, tp->prior_ssthresh,
2328 			 tp->packets_out);
2329 	}
2330 #if IS_ENABLED(CONFIG_IPV6)
2331 	else if (sk->sk_family == AF_INET6) {
2332 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2333 			 msg,
2334 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2335 			 tp->snd_cwnd, tcp_left_out(tp),
2336 			 tp->snd_ssthresh, tp->prior_ssthresh,
2337 			 tp->packets_out);
2338 	}
2339 #endif
2340 #endif
2341 }
2342 
2343 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2344 {
2345 	struct tcp_sock *tp = tcp_sk(sk);
2346 
2347 	if (unmark_loss) {
2348 		struct sk_buff *skb;
2349 
2350 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2351 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352 		}
2353 		tp->lost_out = 0;
2354 		tcp_clear_all_retrans_hints(tp);
2355 	}
2356 
2357 	if (tp->prior_ssthresh) {
2358 		const struct inet_connection_sock *icsk = inet_csk(sk);
2359 
2360 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2361 
2362 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2363 			tp->snd_ssthresh = tp->prior_ssthresh;
2364 			tcp_ecn_withdraw_cwr(tp);
2365 		}
2366 	}
2367 	tp->snd_cwnd_stamp = tcp_jiffies32;
2368 	tp->undo_marker = 0;
2369 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2370 }
2371 
2372 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2373 {
2374 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2375 }
2376 
2377 /* People celebrate: "We love our President!" */
2378 static bool tcp_try_undo_recovery(struct sock *sk)
2379 {
2380 	struct tcp_sock *tp = tcp_sk(sk);
2381 
2382 	if (tcp_may_undo(tp)) {
2383 		int mib_idx;
2384 
2385 		/* Happy end! We did not retransmit anything
2386 		 * or our original transmission succeeded.
2387 		 */
2388 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2389 		tcp_undo_cwnd_reduction(sk, false);
2390 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2391 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2392 		else
2393 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2394 
2395 		NET_INC_STATS(sock_net(sk), mib_idx);
2396 	} else if (tp->rack.reo_wnd_persist) {
2397 		tp->rack.reo_wnd_persist--;
2398 	}
2399 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2400 		/* Hold old state until something *above* high_seq
2401 		 * is ACKed. For Reno it is MUST to prevent false
2402 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2403 		if (!tcp_any_retrans_done(sk))
2404 			tp->retrans_stamp = 0;
2405 		return true;
2406 	}
2407 	tcp_set_ca_state(sk, TCP_CA_Open);
2408 	tp->is_sack_reneg = 0;
2409 	return false;
2410 }
2411 
2412 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2413 static bool tcp_try_undo_dsack(struct sock *sk)
2414 {
2415 	struct tcp_sock *tp = tcp_sk(sk);
2416 
2417 	if (tp->undo_marker && !tp->undo_retrans) {
2418 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2419 					       tp->rack.reo_wnd_persist + 1);
2420 		DBGUNDO(sk, "D-SACK");
2421 		tcp_undo_cwnd_reduction(sk, false);
2422 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2423 		return true;
2424 	}
2425 	return false;
2426 }
2427 
2428 /* Undo during loss recovery after partial ACK or using F-RTO. */
2429 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2430 {
2431 	struct tcp_sock *tp = tcp_sk(sk);
2432 
2433 	if (frto_undo || tcp_may_undo(tp)) {
2434 		tcp_undo_cwnd_reduction(sk, true);
2435 
2436 		DBGUNDO(sk, "partial loss");
2437 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2438 		if (frto_undo)
2439 			NET_INC_STATS(sock_net(sk),
2440 					LINUX_MIB_TCPSPURIOUSRTOS);
2441 		inet_csk(sk)->icsk_retransmits = 0;
2442 		if (frto_undo || tcp_is_sack(tp)) {
2443 			tcp_set_ca_state(sk, TCP_CA_Open);
2444 			tp->is_sack_reneg = 0;
2445 		}
2446 		return true;
2447 	}
2448 	return false;
2449 }
2450 
2451 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2452  * It computes the number of packets to send (sndcnt) based on packets newly
2453  * delivered:
2454  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2455  *	cwnd reductions across a full RTT.
2456  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2457  *      But when the retransmits are acked without further losses, PRR
2458  *      slow starts cwnd up to ssthresh to speed up the recovery.
2459  */
2460 static void tcp_init_cwnd_reduction(struct sock *sk)
2461 {
2462 	struct tcp_sock *tp = tcp_sk(sk);
2463 
2464 	tp->high_seq = tp->snd_nxt;
2465 	tp->tlp_high_seq = 0;
2466 	tp->snd_cwnd_cnt = 0;
2467 	tp->prior_cwnd = tp->snd_cwnd;
2468 	tp->prr_delivered = 0;
2469 	tp->prr_out = 0;
2470 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2471 	tcp_ecn_queue_cwr(tp);
2472 }
2473 
2474 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2475 {
2476 	struct tcp_sock *tp = tcp_sk(sk);
2477 	int sndcnt = 0;
2478 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2479 
2480 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2481 		return;
2482 
2483 	tp->prr_delivered += newly_acked_sacked;
2484 	if (delta < 0) {
2485 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2486 			       tp->prior_cwnd - 1;
2487 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2488 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2489 		   FLAG_RETRANS_DATA_ACKED) {
2490 		sndcnt = min_t(int, delta,
2491 			       max_t(int, tp->prr_delivered - tp->prr_out,
2492 				     newly_acked_sacked) + 1);
2493 	} else {
2494 		sndcnt = min(delta, newly_acked_sacked);
2495 	}
2496 	/* Force a fast retransmit upon entering fast recovery */
2497 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2498 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2499 }
2500 
2501 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2502 {
2503 	struct tcp_sock *tp = tcp_sk(sk);
2504 
2505 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2506 		return;
2507 
2508 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2509 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2510 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2511 		tp->snd_cwnd = tp->snd_ssthresh;
2512 		tp->snd_cwnd_stamp = tcp_jiffies32;
2513 	}
2514 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2515 }
2516 
2517 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2518 void tcp_enter_cwr(struct sock *sk)
2519 {
2520 	struct tcp_sock *tp = tcp_sk(sk);
2521 
2522 	tp->prior_ssthresh = 0;
2523 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2524 		tp->undo_marker = 0;
2525 		tcp_init_cwnd_reduction(sk);
2526 		tcp_set_ca_state(sk, TCP_CA_CWR);
2527 	}
2528 }
2529 EXPORT_SYMBOL(tcp_enter_cwr);
2530 
2531 static void tcp_try_keep_open(struct sock *sk)
2532 {
2533 	struct tcp_sock *tp = tcp_sk(sk);
2534 	int state = TCP_CA_Open;
2535 
2536 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2537 		state = TCP_CA_Disorder;
2538 
2539 	if (inet_csk(sk)->icsk_ca_state != state) {
2540 		tcp_set_ca_state(sk, state);
2541 		tp->high_seq = tp->snd_nxt;
2542 	}
2543 }
2544 
2545 static void tcp_try_to_open(struct sock *sk, int flag)
2546 {
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 
2549 	tcp_verify_left_out(tp);
2550 
2551 	if (!tcp_any_retrans_done(sk))
2552 		tp->retrans_stamp = 0;
2553 
2554 	if (flag & FLAG_ECE)
2555 		tcp_enter_cwr(sk);
2556 
2557 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2558 		tcp_try_keep_open(sk);
2559 	}
2560 }
2561 
2562 static void tcp_mtup_probe_failed(struct sock *sk)
2563 {
2564 	struct inet_connection_sock *icsk = inet_csk(sk);
2565 
2566 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2567 	icsk->icsk_mtup.probe_size = 0;
2568 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2569 }
2570 
2571 static void tcp_mtup_probe_success(struct sock *sk)
2572 {
2573 	struct tcp_sock *tp = tcp_sk(sk);
2574 	struct inet_connection_sock *icsk = inet_csk(sk);
2575 
2576 	/* FIXME: breaks with very large cwnd */
2577 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2578 	tp->snd_cwnd = tp->snd_cwnd *
2579 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2580 		       icsk->icsk_mtup.probe_size;
2581 	tp->snd_cwnd_cnt = 0;
2582 	tp->snd_cwnd_stamp = tcp_jiffies32;
2583 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2584 
2585 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2586 	icsk->icsk_mtup.probe_size = 0;
2587 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2588 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2589 }
2590 
2591 /* Do a simple retransmit without using the backoff mechanisms in
2592  * tcp_timer. This is used for path mtu discovery.
2593  * The socket is already locked here.
2594  */
2595 void tcp_simple_retransmit(struct sock *sk)
2596 {
2597 	const struct inet_connection_sock *icsk = inet_csk(sk);
2598 	struct tcp_sock *tp = tcp_sk(sk);
2599 	struct sk_buff *skb;
2600 	unsigned int mss = tcp_current_mss(sk);
2601 
2602 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2603 		if (tcp_skb_seglen(skb) > mss &&
2604 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2605 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2606 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2607 				tp->retrans_out -= tcp_skb_pcount(skb);
2608 			}
2609 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2610 		}
2611 	}
2612 
2613 	tcp_clear_retrans_hints_partial(tp);
2614 
2615 	if (!tp->lost_out)
2616 		return;
2617 
2618 	if (tcp_is_reno(tp))
2619 		tcp_limit_reno_sacked(tp);
2620 
2621 	tcp_verify_left_out(tp);
2622 
2623 	/* Don't muck with the congestion window here.
2624 	 * Reason is that we do not increase amount of _data_
2625 	 * in network, but units changed and effective
2626 	 * cwnd/ssthresh really reduced now.
2627 	 */
2628 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2629 		tp->high_seq = tp->snd_nxt;
2630 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2631 		tp->prior_ssthresh = 0;
2632 		tp->undo_marker = 0;
2633 		tcp_set_ca_state(sk, TCP_CA_Loss);
2634 	}
2635 	tcp_xmit_retransmit_queue(sk);
2636 }
2637 EXPORT_SYMBOL(tcp_simple_retransmit);
2638 
2639 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2640 {
2641 	struct tcp_sock *tp = tcp_sk(sk);
2642 	int mib_idx;
2643 
2644 	if (tcp_is_reno(tp))
2645 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2646 	else
2647 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2648 
2649 	NET_INC_STATS(sock_net(sk), mib_idx);
2650 
2651 	tp->prior_ssthresh = 0;
2652 	tcp_init_undo(tp);
2653 
2654 	if (!tcp_in_cwnd_reduction(sk)) {
2655 		if (!ece_ack)
2656 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2657 		tcp_init_cwnd_reduction(sk);
2658 	}
2659 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2660 }
2661 
2662 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2663  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2664  */
2665 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2666 			     int *rexmit)
2667 {
2668 	struct tcp_sock *tp = tcp_sk(sk);
2669 	bool recovered = !before(tp->snd_una, tp->high_seq);
2670 
2671 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2672 	    tcp_try_undo_loss(sk, false))
2673 		return;
2674 
2675 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2676 		/* Step 3.b. A timeout is spurious if not all data are
2677 		 * lost, i.e., never-retransmitted data are (s)acked.
2678 		 */
2679 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2680 		    tcp_try_undo_loss(sk, true))
2681 			return;
2682 
2683 		if (after(tp->snd_nxt, tp->high_seq)) {
2684 			if (flag & FLAG_DATA_SACKED || num_dupack)
2685 				tp->frto = 0; /* Step 3.a. loss was real */
2686 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2687 			tp->high_seq = tp->snd_nxt;
2688 			/* Step 2.b. Try send new data (but deferred until cwnd
2689 			 * is updated in tcp_ack()). Otherwise fall back to
2690 			 * the conventional recovery.
2691 			 */
2692 			if (!tcp_write_queue_empty(sk) &&
2693 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2694 				*rexmit = REXMIT_NEW;
2695 				return;
2696 			}
2697 			tp->frto = 0;
2698 		}
2699 	}
2700 
2701 	if (recovered) {
2702 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2703 		tcp_try_undo_recovery(sk);
2704 		return;
2705 	}
2706 	if (tcp_is_reno(tp)) {
2707 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2708 		 * delivered. Lower inflight to clock out (re)tranmissions.
2709 		 */
2710 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2711 			tcp_add_reno_sack(sk, num_dupack);
2712 		else if (flag & FLAG_SND_UNA_ADVANCED)
2713 			tcp_reset_reno_sack(tp);
2714 	}
2715 	*rexmit = REXMIT_LOST;
2716 }
2717 
2718 /* Undo during fast recovery after partial ACK. */
2719 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2720 {
2721 	struct tcp_sock *tp = tcp_sk(sk);
2722 
2723 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2724 		/* Plain luck! Hole if filled with delayed
2725 		 * packet, rather than with a retransmit. Check reordering.
2726 		 */
2727 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2728 
2729 		/* We are getting evidence that the reordering degree is higher
2730 		 * than we realized. If there are no retransmits out then we
2731 		 * can undo. Otherwise we clock out new packets but do not
2732 		 * mark more packets lost or retransmit more.
2733 		 */
2734 		if (tp->retrans_out)
2735 			return true;
2736 
2737 		if (!tcp_any_retrans_done(sk))
2738 			tp->retrans_stamp = 0;
2739 
2740 		DBGUNDO(sk, "partial recovery");
2741 		tcp_undo_cwnd_reduction(sk, true);
2742 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2743 		tcp_try_keep_open(sk);
2744 		return true;
2745 	}
2746 	return false;
2747 }
2748 
2749 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2750 {
2751 	struct tcp_sock *tp = tcp_sk(sk);
2752 
2753 	if (tcp_rtx_queue_empty(sk))
2754 		return;
2755 
2756 	if (unlikely(tcp_is_reno(tp))) {
2757 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2758 	} else if (tcp_is_rack(sk)) {
2759 		u32 prior_retrans = tp->retrans_out;
2760 
2761 		tcp_rack_mark_lost(sk);
2762 		if (prior_retrans > tp->retrans_out)
2763 			*ack_flag |= FLAG_LOST_RETRANS;
2764 	}
2765 }
2766 
2767 static bool tcp_force_fast_retransmit(struct sock *sk)
2768 {
2769 	struct tcp_sock *tp = tcp_sk(sk);
2770 
2771 	return after(tcp_highest_sack_seq(tp),
2772 		     tp->snd_una + tp->reordering * tp->mss_cache);
2773 }
2774 
2775 /* Process an event, which can update packets-in-flight not trivially.
2776  * Main goal of this function is to calculate new estimate for left_out,
2777  * taking into account both packets sitting in receiver's buffer and
2778  * packets lost by network.
2779  *
2780  * Besides that it updates the congestion state when packet loss or ECN
2781  * is detected. But it does not reduce the cwnd, it is done by the
2782  * congestion control later.
2783  *
2784  * It does _not_ decide what to send, it is made in function
2785  * tcp_xmit_retransmit_queue().
2786  */
2787 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2788 				  int num_dupack, int *ack_flag, int *rexmit)
2789 {
2790 	struct inet_connection_sock *icsk = inet_csk(sk);
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	int fast_rexmit = 0, flag = *ack_flag;
2793 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2794 				      tcp_force_fast_retransmit(sk));
2795 
2796 	if (!tp->packets_out && tp->sacked_out)
2797 		tp->sacked_out = 0;
2798 
2799 	/* Now state machine starts.
2800 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2801 	if (flag & FLAG_ECE)
2802 		tp->prior_ssthresh = 0;
2803 
2804 	/* B. In all the states check for reneging SACKs. */
2805 	if (tcp_check_sack_reneging(sk, flag))
2806 		return;
2807 
2808 	/* C. Check consistency of the current state. */
2809 	tcp_verify_left_out(tp);
2810 
2811 	/* D. Check state exit conditions. State can be terminated
2812 	 *    when high_seq is ACKed. */
2813 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2814 		WARN_ON(tp->retrans_out != 0);
2815 		tp->retrans_stamp = 0;
2816 	} else if (!before(tp->snd_una, tp->high_seq)) {
2817 		switch (icsk->icsk_ca_state) {
2818 		case TCP_CA_CWR:
2819 			/* CWR is to be held something *above* high_seq
2820 			 * is ACKed for CWR bit to reach receiver. */
2821 			if (tp->snd_una != tp->high_seq) {
2822 				tcp_end_cwnd_reduction(sk);
2823 				tcp_set_ca_state(sk, TCP_CA_Open);
2824 			}
2825 			break;
2826 
2827 		case TCP_CA_Recovery:
2828 			if (tcp_is_reno(tp))
2829 				tcp_reset_reno_sack(tp);
2830 			if (tcp_try_undo_recovery(sk))
2831 				return;
2832 			tcp_end_cwnd_reduction(sk);
2833 			break;
2834 		}
2835 	}
2836 
2837 	/* E. Process state. */
2838 	switch (icsk->icsk_ca_state) {
2839 	case TCP_CA_Recovery:
2840 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2841 			if (tcp_is_reno(tp))
2842 				tcp_add_reno_sack(sk, num_dupack);
2843 		} else {
2844 			if (tcp_try_undo_partial(sk, prior_snd_una))
2845 				return;
2846 			/* Partial ACK arrived. Force fast retransmit. */
2847 			do_lost = tcp_is_reno(tp) ||
2848 				  tcp_force_fast_retransmit(sk);
2849 		}
2850 		if (tcp_try_undo_dsack(sk)) {
2851 			tcp_try_keep_open(sk);
2852 			return;
2853 		}
2854 		tcp_identify_packet_loss(sk, ack_flag);
2855 		break;
2856 	case TCP_CA_Loss:
2857 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2858 		tcp_identify_packet_loss(sk, ack_flag);
2859 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2860 		      (*ack_flag & FLAG_LOST_RETRANS)))
2861 			return;
2862 		/* Change state if cwnd is undone or retransmits are lost */
2863 		/* fall through */
2864 	default:
2865 		if (tcp_is_reno(tp)) {
2866 			if (flag & FLAG_SND_UNA_ADVANCED)
2867 				tcp_reset_reno_sack(tp);
2868 			tcp_add_reno_sack(sk, num_dupack);
2869 		}
2870 
2871 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2872 			tcp_try_undo_dsack(sk);
2873 
2874 		tcp_identify_packet_loss(sk, ack_flag);
2875 		if (!tcp_time_to_recover(sk, flag)) {
2876 			tcp_try_to_open(sk, flag);
2877 			return;
2878 		}
2879 
2880 		/* MTU probe failure: don't reduce cwnd */
2881 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2882 		    icsk->icsk_mtup.probe_size &&
2883 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2884 			tcp_mtup_probe_failed(sk);
2885 			/* Restores the reduction we did in tcp_mtup_probe() */
2886 			tp->snd_cwnd++;
2887 			tcp_simple_retransmit(sk);
2888 			return;
2889 		}
2890 
2891 		/* Otherwise enter Recovery state */
2892 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2893 		fast_rexmit = 1;
2894 	}
2895 
2896 	if (!tcp_is_rack(sk) && do_lost)
2897 		tcp_update_scoreboard(sk, fast_rexmit);
2898 	*rexmit = REXMIT_LOST;
2899 }
2900 
2901 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2902 {
2903 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2904 	struct tcp_sock *tp = tcp_sk(sk);
2905 
2906 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2907 		/* If the remote keeps returning delayed ACKs, eventually
2908 		 * the min filter would pick it up and overestimate the
2909 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2910 		 */
2911 		return;
2912 	}
2913 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2914 			   rtt_us ? : jiffies_to_usecs(1));
2915 }
2916 
2917 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2918 			       long seq_rtt_us, long sack_rtt_us,
2919 			       long ca_rtt_us, struct rate_sample *rs)
2920 {
2921 	const struct tcp_sock *tp = tcp_sk(sk);
2922 
2923 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2924 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2925 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2926 	 * is acked (RFC6298).
2927 	 */
2928 	if (seq_rtt_us < 0)
2929 		seq_rtt_us = sack_rtt_us;
2930 
2931 	/* RTTM Rule: A TSecr value received in a segment is used to
2932 	 * update the averaged RTT measurement only if the segment
2933 	 * acknowledges some new data, i.e., only if it advances the
2934 	 * left edge of the send window.
2935 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2936 	 */
2937 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2938 	    flag & FLAG_ACKED) {
2939 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2940 
2941 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2942 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2943 			ca_rtt_us = seq_rtt_us;
2944 		}
2945 	}
2946 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2947 	if (seq_rtt_us < 0)
2948 		return false;
2949 
2950 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2951 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2952 	 * values will be skipped with the seq_rtt_us < 0 check above.
2953 	 */
2954 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2955 	tcp_rtt_estimator(sk, seq_rtt_us);
2956 	tcp_set_rto(sk);
2957 
2958 	/* RFC6298: only reset backoff on valid RTT measurement. */
2959 	inet_csk(sk)->icsk_backoff = 0;
2960 	return true;
2961 }
2962 
2963 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2964 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2965 {
2966 	struct rate_sample rs;
2967 	long rtt_us = -1L;
2968 
2969 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2970 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2971 
2972 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2973 }
2974 
2975 
2976 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2977 {
2978 	const struct inet_connection_sock *icsk = inet_csk(sk);
2979 
2980 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2981 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2982 }
2983 
2984 /* Restart timer after forward progress on connection.
2985  * RFC2988 recommends to restart timer to now+rto.
2986  */
2987 void tcp_rearm_rto(struct sock *sk)
2988 {
2989 	const struct inet_connection_sock *icsk = inet_csk(sk);
2990 	struct tcp_sock *tp = tcp_sk(sk);
2991 
2992 	/* If the retrans timer is currently being used by Fast Open
2993 	 * for SYN-ACK retrans purpose, stay put.
2994 	 */
2995 	if (rcu_access_pointer(tp->fastopen_rsk))
2996 		return;
2997 
2998 	if (!tp->packets_out) {
2999 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3000 	} else {
3001 		u32 rto = inet_csk(sk)->icsk_rto;
3002 		/* Offset the time elapsed after installing regular RTO */
3003 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3004 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3005 			s64 delta_us = tcp_rto_delta_us(sk);
3006 			/* delta_us may not be positive if the socket is locked
3007 			 * when the retrans timer fires and is rescheduled.
3008 			 */
3009 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3010 		}
3011 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3012 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3013 	}
3014 }
3015 
3016 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3017 static void tcp_set_xmit_timer(struct sock *sk)
3018 {
3019 	if (!tcp_schedule_loss_probe(sk, true))
3020 		tcp_rearm_rto(sk);
3021 }
3022 
3023 /* If we get here, the whole TSO packet has not been acked. */
3024 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3025 {
3026 	struct tcp_sock *tp = tcp_sk(sk);
3027 	u32 packets_acked;
3028 
3029 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3030 
3031 	packets_acked = tcp_skb_pcount(skb);
3032 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3033 		return 0;
3034 	packets_acked -= tcp_skb_pcount(skb);
3035 
3036 	if (packets_acked) {
3037 		BUG_ON(tcp_skb_pcount(skb) == 0);
3038 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3039 	}
3040 
3041 	return packets_acked;
3042 }
3043 
3044 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3045 			   u32 prior_snd_una)
3046 {
3047 	const struct skb_shared_info *shinfo;
3048 
3049 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3050 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3051 		return;
3052 
3053 	shinfo = skb_shinfo(skb);
3054 	if (!before(shinfo->tskey, prior_snd_una) &&
3055 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3056 		tcp_skb_tsorted_save(skb) {
3057 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3058 		} tcp_skb_tsorted_restore(skb);
3059 	}
3060 }
3061 
3062 /* Remove acknowledged frames from the retransmission queue. If our packet
3063  * is before the ack sequence we can discard it as it's confirmed to have
3064  * arrived at the other end.
3065  */
3066 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3067 			       u32 prior_snd_una,
3068 			       struct tcp_sacktag_state *sack)
3069 {
3070 	const struct inet_connection_sock *icsk = inet_csk(sk);
3071 	u64 first_ackt, last_ackt;
3072 	struct tcp_sock *tp = tcp_sk(sk);
3073 	u32 prior_sacked = tp->sacked_out;
3074 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3075 	struct sk_buff *skb, *next;
3076 	bool fully_acked = true;
3077 	long sack_rtt_us = -1L;
3078 	long seq_rtt_us = -1L;
3079 	long ca_rtt_us = -1L;
3080 	u32 pkts_acked = 0;
3081 	u32 last_in_flight = 0;
3082 	bool rtt_update;
3083 	int flag = 0;
3084 
3085 	first_ackt = 0;
3086 
3087 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3088 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3089 		const u32 start_seq = scb->seq;
3090 		u8 sacked = scb->sacked;
3091 		u32 acked_pcount;
3092 
3093 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3094 
3095 		/* Determine how many packets and what bytes were acked, tso and else */
3096 		if (after(scb->end_seq, tp->snd_una)) {
3097 			if (tcp_skb_pcount(skb) == 1 ||
3098 			    !after(tp->snd_una, scb->seq))
3099 				break;
3100 
3101 			acked_pcount = tcp_tso_acked(sk, skb);
3102 			if (!acked_pcount)
3103 				break;
3104 			fully_acked = false;
3105 		} else {
3106 			acked_pcount = tcp_skb_pcount(skb);
3107 		}
3108 
3109 		if (unlikely(sacked & TCPCB_RETRANS)) {
3110 			if (sacked & TCPCB_SACKED_RETRANS)
3111 				tp->retrans_out -= acked_pcount;
3112 			flag |= FLAG_RETRANS_DATA_ACKED;
3113 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3114 			last_ackt = tcp_skb_timestamp_us(skb);
3115 			WARN_ON_ONCE(last_ackt == 0);
3116 			if (!first_ackt)
3117 				first_ackt = last_ackt;
3118 
3119 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3120 			if (before(start_seq, reord))
3121 				reord = start_seq;
3122 			if (!after(scb->end_seq, tp->high_seq))
3123 				flag |= FLAG_ORIG_SACK_ACKED;
3124 		}
3125 
3126 		if (sacked & TCPCB_SACKED_ACKED) {
3127 			tp->sacked_out -= acked_pcount;
3128 		} else if (tcp_is_sack(tp)) {
3129 			tp->delivered += acked_pcount;
3130 			if (!tcp_skb_spurious_retrans(tp, skb))
3131 				tcp_rack_advance(tp, sacked, scb->end_seq,
3132 						 tcp_skb_timestamp_us(skb));
3133 		}
3134 		if (sacked & TCPCB_LOST)
3135 			tp->lost_out -= acked_pcount;
3136 
3137 		tp->packets_out -= acked_pcount;
3138 		pkts_acked += acked_pcount;
3139 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3140 
3141 		/* Initial outgoing SYN's get put onto the write_queue
3142 		 * just like anything else we transmit.  It is not
3143 		 * true data, and if we misinform our callers that
3144 		 * this ACK acks real data, we will erroneously exit
3145 		 * connection startup slow start one packet too
3146 		 * quickly.  This is severely frowned upon behavior.
3147 		 */
3148 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3149 			flag |= FLAG_DATA_ACKED;
3150 		} else {
3151 			flag |= FLAG_SYN_ACKED;
3152 			tp->retrans_stamp = 0;
3153 		}
3154 
3155 		if (!fully_acked)
3156 			break;
3157 
3158 		next = skb_rb_next(skb);
3159 		if (unlikely(skb == tp->retransmit_skb_hint))
3160 			tp->retransmit_skb_hint = NULL;
3161 		if (unlikely(skb == tp->lost_skb_hint))
3162 			tp->lost_skb_hint = NULL;
3163 		tcp_rtx_queue_unlink_and_free(skb, sk);
3164 	}
3165 
3166 	if (!skb)
3167 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3168 
3169 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3170 		tp->snd_up = tp->snd_una;
3171 
3172 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3173 		flag |= FLAG_SACK_RENEGING;
3174 
3175 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3176 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3177 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3178 
3179 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3180 		    last_in_flight && !prior_sacked && fully_acked &&
3181 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3182 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3183 			/* Conservatively mark a delayed ACK. It's typically
3184 			 * from a lone runt packet over the round trip to
3185 			 * a receiver w/o out-of-order or CE events.
3186 			 */
3187 			flag |= FLAG_ACK_MAYBE_DELAYED;
3188 		}
3189 	}
3190 	if (sack->first_sackt) {
3191 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3192 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3193 	}
3194 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3195 					ca_rtt_us, sack->rate);
3196 
3197 	if (flag & FLAG_ACKED) {
3198 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3199 		if (unlikely(icsk->icsk_mtup.probe_size &&
3200 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3201 			tcp_mtup_probe_success(sk);
3202 		}
3203 
3204 		if (tcp_is_reno(tp)) {
3205 			tcp_remove_reno_sacks(sk, pkts_acked);
3206 
3207 			/* If any of the cumulatively ACKed segments was
3208 			 * retransmitted, non-SACK case cannot confirm that
3209 			 * progress was due to original transmission due to
3210 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3211 			 * the packets may have been never retransmitted.
3212 			 */
3213 			if (flag & FLAG_RETRANS_DATA_ACKED)
3214 				flag &= ~FLAG_ORIG_SACK_ACKED;
3215 		} else {
3216 			int delta;
3217 
3218 			/* Non-retransmitted hole got filled? That's reordering */
3219 			if (before(reord, prior_fack))
3220 				tcp_check_sack_reordering(sk, reord, 0);
3221 
3222 			delta = prior_sacked - tp->sacked_out;
3223 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3224 		}
3225 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3226 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3227 						    tcp_skb_timestamp_us(skb))) {
3228 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3229 		 * after when the head was last (re)transmitted. Otherwise the
3230 		 * timeout may continue to extend in loss recovery.
3231 		 */
3232 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3233 	}
3234 
3235 	if (icsk->icsk_ca_ops->pkts_acked) {
3236 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3237 					     .rtt_us = sack->rate->rtt_us,
3238 					     .in_flight = last_in_flight };
3239 
3240 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3241 	}
3242 
3243 #if FASTRETRANS_DEBUG > 0
3244 	WARN_ON((int)tp->sacked_out < 0);
3245 	WARN_ON((int)tp->lost_out < 0);
3246 	WARN_ON((int)tp->retrans_out < 0);
3247 	if (!tp->packets_out && tcp_is_sack(tp)) {
3248 		icsk = inet_csk(sk);
3249 		if (tp->lost_out) {
3250 			pr_debug("Leak l=%u %d\n",
3251 				 tp->lost_out, icsk->icsk_ca_state);
3252 			tp->lost_out = 0;
3253 		}
3254 		if (tp->sacked_out) {
3255 			pr_debug("Leak s=%u %d\n",
3256 				 tp->sacked_out, icsk->icsk_ca_state);
3257 			tp->sacked_out = 0;
3258 		}
3259 		if (tp->retrans_out) {
3260 			pr_debug("Leak r=%u %d\n",
3261 				 tp->retrans_out, icsk->icsk_ca_state);
3262 			tp->retrans_out = 0;
3263 		}
3264 	}
3265 #endif
3266 	return flag;
3267 }
3268 
3269 static void tcp_ack_probe(struct sock *sk)
3270 {
3271 	struct inet_connection_sock *icsk = inet_csk(sk);
3272 	struct sk_buff *head = tcp_send_head(sk);
3273 	const struct tcp_sock *tp = tcp_sk(sk);
3274 
3275 	/* Was it a usable window open? */
3276 	if (!head)
3277 		return;
3278 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3279 		icsk->icsk_backoff = 0;
3280 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3281 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3282 		 * This function is not for random using!
3283 		 */
3284 	} else {
3285 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3286 
3287 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3288 				     when, TCP_RTO_MAX, NULL);
3289 	}
3290 }
3291 
3292 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3293 {
3294 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3295 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3296 }
3297 
3298 /* Decide wheather to run the increase function of congestion control. */
3299 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3300 {
3301 	/* If reordering is high then always grow cwnd whenever data is
3302 	 * delivered regardless of its ordering. Otherwise stay conservative
3303 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3304 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3305 	 * cwnd in tcp_fastretrans_alert() based on more states.
3306 	 */
3307 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3308 		return flag & FLAG_FORWARD_PROGRESS;
3309 
3310 	return flag & FLAG_DATA_ACKED;
3311 }
3312 
3313 /* The "ultimate" congestion control function that aims to replace the rigid
3314  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3315  * It's called toward the end of processing an ACK with precise rate
3316  * information. All transmission or retransmission are delayed afterwards.
3317  */
3318 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3319 			     int flag, const struct rate_sample *rs)
3320 {
3321 	const struct inet_connection_sock *icsk = inet_csk(sk);
3322 
3323 	if (icsk->icsk_ca_ops->cong_control) {
3324 		icsk->icsk_ca_ops->cong_control(sk, rs);
3325 		return;
3326 	}
3327 
3328 	if (tcp_in_cwnd_reduction(sk)) {
3329 		/* Reduce cwnd if state mandates */
3330 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3331 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3332 		/* Advance cwnd if state allows */
3333 		tcp_cong_avoid(sk, ack, acked_sacked);
3334 	}
3335 	tcp_update_pacing_rate(sk);
3336 }
3337 
3338 /* Check that window update is acceptable.
3339  * The function assumes that snd_una<=ack<=snd_next.
3340  */
3341 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3342 					const u32 ack, const u32 ack_seq,
3343 					const u32 nwin)
3344 {
3345 	return	after(ack, tp->snd_una) ||
3346 		after(ack_seq, tp->snd_wl1) ||
3347 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3348 }
3349 
3350 /* If we update tp->snd_una, also update tp->bytes_acked */
3351 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3352 {
3353 	u32 delta = ack - tp->snd_una;
3354 
3355 	sock_owned_by_me((struct sock *)tp);
3356 	tp->bytes_acked += delta;
3357 	tp->snd_una = ack;
3358 }
3359 
3360 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3361 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3362 {
3363 	u32 delta = seq - tp->rcv_nxt;
3364 
3365 	sock_owned_by_me((struct sock *)tp);
3366 	tp->bytes_received += delta;
3367 	WRITE_ONCE(tp->rcv_nxt, seq);
3368 }
3369 
3370 /* Update our send window.
3371  *
3372  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3373  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3374  */
3375 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3376 				 u32 ack_seq)
3377 {
3378 	struct tcp_sock *tp = tcp_sk(sk);
3379 	int flag = 0;
3380 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3381 
3382 	if (likely(!tcp_hdr(skb)->syn))
3383 		nwin <<= tp->rx_opt.snd_wscale;
3384 
3385 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3386 		flag |= FLAG_WIN_UPDATE;
3387 		tcp_update_wl(tp, ack_seq);
3388 
3389 		if (tp->snd_wnd != nwin) {
3390 			tp->snd_wnd = nwin;
3391 
3392 			/* Note, it is the only place, where
3393 			 * fast path is recovered for sending TCP.
3394 			 */
3395 			tp->pred_flags = 0;
3396 			tcp_fast_path_check(sk);
3397 
3398 			if (!tcp_write_queue_empty(sk))
3399 				tcp_slow_start_after_idle_check(sk);
3400 
3401 			if (nwin > tp->max_window) {
3402 				tp->max_window = nwin;
3403 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3404 			}
3405 		}
3406 	}
3407 
3408 	tcp_snd_una_update(tp, ack);
3409 
3410 	return flag;
3411 }
3412 
3413 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3414 				   u32 *last_oow_ack_time)
3415 {
3416 	if (*last_oow_ack_time) {
3417 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3418 
3419 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3420 			NET_INC_STATS(net, mib_idx);
3421 			return true;	/* rate-limited: don't send yet! */
3422 		}
3423 	}
3424 
3425 	*last_oow_ack_time = tcp_jiffies32;
3426 
3427 	return false;	/* not rate-limited: go ahead, send dupack now! */
3428 }
3429 
3430 /* Return true if we're currently rate-limiting out-of-window ACKs and
3431  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3432  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3433  * attacks that send repeated SYNs or ACKs for the same connection. To
3434  * do this, we do not send a duplicate SYNACK or ACK if the remote
3435  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3436  */
3437 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3438 			  int mib_idx, u32 *last_oow_ack_time)
3439 {
3440 	/* Data packets without SYNs are not likely part of an ACK loop. */
3441 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3442 	    !tcp_hdr(skb)->syn)
3443 		return false;
3444 
3445 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3446 }
3447 
3448 /* RFC 5961 7 [ACK Throttling] */
3449 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3450 {
3451 	/* unprotected vars, we dont care of overwrites */
3452 	static u32 challenge_timestamp;
3453 	static unsigned int challenge_count;
3454 	struct tcp_sock *tp = tcp_sk(sk);
3455 	struct net *net = sock_net(sk);
3456 	u32 count, now;
3457 
3458 	/* First check our per-socket dupack rate limit. */
3459 	if (__tcp_oow_rate_limited(net,
3460 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3461 				   &tp->last_oow_ack_time))
3462 		return;
3463 
3464 	/* Then check host-wide RFC 5961 rate limit. */
3465 	now = jiffies / HZ;
3466 	if (now != challenge_timestamp) {
3467 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3468 		u32 half = (ack_limit + 1) >> 1;
3469 
3470 		challenge_timestamp = now;
3471 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3472 	}
3473 	count = READ_ONCE(challenge_count);
3474 	if (count > 0) {
3475 		WRITE_ONCE(challenge_count, count - 1);
3476 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3477 		tcp_send_ack(sk);
3478 	}
3479 }
3480 
3481 static void tcp_store_ts_recent(struct tcp_sock *tp)
3482 {
3483 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3484 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3485 }
3486 
3487 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3488 {
3489 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3490 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3491 		 * extra check below makes sure this can only happen
3492 		 * for pure ACK frames.  -DaveM
3493 		 *
3494 		 * Not only, also it occurs for expired timestamps.
3495 		 */
3496 
3497 		if (tcp_paws_check(&tp->rx_opt, 0))
3498 			tcp_store_ts_recent(tp);
3499 	}
3500 }
3501 
3502 /* This routine deals with acks during a TLP episode.
3503  * We mark the end of a TLP episode on receiving TLP dupack or when
3504  * ack is after tlp_high_seq.
3505  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3506  */
3507 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3508 {
3509 	struct tcp_sock *tp = tcp_sk(sk);
3510 
3511 	if (before(ack, tp->tlp_high_seq))
3512 		return;
3513 
3514 	if (flag & FLAG_DSACKING_ACK) {
3515 		/* This DSACK means original and TLP probe arrived; no loss */
3516 		tp->tlp_high_seq = 0;
3517 	} else if (after(ack, tp->tlp_high_seq)) {
3518 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3519 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3520 		 */
3521 		tcp_init_cwnd_reduction(sk);
3522 		tcp_set_ca_state(sk, TCP_CA_CWR);
3523 		tcp_end_cwnd_reduction(sk);
3524 		tcp_try_keep_open(sk);
3525 		NET_INC_STATS(sock_net(sk),
3526 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3527 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3528 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3529 		/* Pure dupack: original and TLP probe arrived; no loss */
3530 		tp->tlp_high_seq = 0;
3531 	}
3532 }
3533 
3534 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3535 {
3536 	const struct inet_connection_sock *icsk = inet_csk(sk);
3537 
3538 	if (icsk->icsk_ca_ops->in_ack_event)
3539 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3540 }
3541 
3542 /* Congestion control has updated the cwnd already. So if we're in
3543  * loss recovery then now we do any new sends (for FRTO) or
3544  * retransmits (for CA_Loss or CA_recovery) that make sense.
3545  */
3546 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3547 {
3548 	struct tcp_sock *tp = tcp_sk(sk);
3549 
3550 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3551 		return;
3552 
3553 	if (unlikely(rexmit == 2)) {
3554 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3555 					  TCP_NAGLE_OFF);
3556 		if (after(tp->snd_nxt, tp->high_seq))
3557 			return;
3558 		tp->frto = 0;
3559 	}
3560 	tcp_xmit_retransmit_queue(sk);
3561 }
3562 
3563 /* Returns the number of packets newly acked or sacked by the current ACK */
3564 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3565 {
3566 	const struct net *net = sock_net(sk);
3567 	struct tcp_sock *tp = tcp_sk(sk);
3568 	u32 delivered;
3569 
3570 	delivered = tp->delivered - prior_delivered;
3571 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3572 	if (flag & FLAG_ECE) {
3573 		tp->delivered_ce += delivered;
3574 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3575 	}
3576 	return delivered;
3577 }
3578 
3579 /* This routine deals with incoming acks, but not outgoing ones. */
3580 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3581 {
3582 	struct inet_connection_sock *icsk = inet_csk(sk);
3583 	struct tcp_sock *tp = tcp_sk(sk);
3584 	struct tcp_sacktag_state sack_state;
3585 	struct rate_sample rs = { .prior_delivered = 0 };
3586 	u32 prior_snd_una = tp->snd_una;
3587 	bool is_sack_reneg = tp->is_sack_reneg;
3588 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3589 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3590 	int num_dupack = 0;
3591 	int prior_packets = tp->packets_out;
3592 	u32 delivered = tp->delivered;
3593 	u32 lost = tp->lost;
3594 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3595 	u32 prior_fack;
3596 
3597 	sack_state.first_sackt = 0;
3598 	sack_state.rate = &rs;
3599 
3600 	/* We very likely will need to access rtx queue. */
3601 	prefetch(sk->tcp_rtx_queue.rb_node);
3602 
3603 	/* If the ack is older than previous acks
3604 	 * then we can probably ignore it.
3605 	 */
3606 	if (before(ack, prior_snd_una)) {
3607 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3608 		if (before(ack, prior_snd_una - tp->max_window)) {
3609 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3610 				tcp_send_challenge_ack(sk, skb);
3611 			return -1;
3612 		}
3613 		goto old_ack;
3614 	}
3615 
3616 	/* If the ack includes data we haven't sent yet, discard
3617 	 * this segment (RFC793 Section 3.9).
3618 	 */
3619 	if (after(ack, tp->snd_nxt))
3620 		return -1;
3621 
3622 	if (after(ack, prior_snd_una)) {
3623 		flag |= FLAG_SND_UNA_ADVANCED;
3624 		icsk->icsk_retransmits = 0;
3625 
3626 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3627 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3628 			if (icsk->icsk_clean_acked)
3629 				icsk->icsk_clean_acked(sk, ack);
3630 #endif
3631 	}
3632 
3633 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3634 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3635 
3636 	/* ts_recent update must be made after we are sure that the packet
3637 	 * is in window.
3638 	 */
3639 	if (flag & FLAG_UPDATE_TS_RECENT)
3640 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3641 
3642 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3643 	    FLAG_SND_UNA_ADVANCED) {
3644 		/* Window is constant, pure forward advance.
3645 		 * No more checks are required.
3646 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3647 		 */
3648 		tcp_update_wl(tp, ack_seq);
3649 		tcp_snd_una_update(tp, ack);
3650 		flag |= FLAG_WIN_UPDATE;
3651 
3652 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3653 
3654 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3655 	} else {
3656 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3657 
3658 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3659 			flag |= FLAG_DATA;
3660 		else
3661 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3662 
3663 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3664 
3665 		if (TCP_SKB_CB(skb)->sacked)
3666 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3667 							&sack_state);
3668 
3669 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3670 			flag |= FLAG_ECE;
3671 			ack_ev_flags |= CA_ACK_ECE;
3672 		}
3673 
3674 		if (flag & FLAG_WIN_UPDATE)
3675 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3676 
3677 		tcp_in_ack_event(sk, ack_ev_flags);
3678 	}
3679 
3680 	/* We passed data and got it acked, remove any soft error
3681 	 * log. Something worked...
3682 	 */
3683 	sk->sk_err_soft = 0;
3684 	icsk->icsk_probes_out = 0;
3685 	tp->rcv_tstamp = tcp_jiffies32;
3686 	if (!prior_packets)
3687 		goto no_queue;
3688 
3689 	/* See if we can take anything off of the retransmit queue. */
3690 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3691 
3692 	tcp_rack_update_reo_wnd(sk, &rs);
3693 
3694 	if (tp->tlp_high_seq)
3695 		tcp_process_tlp_ack(sk, ack, flag);
3696 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3697 	if (flag & FLAG_SET_XMIT_TIMER)
3698 		tcp_set_xmit_timer(sk);
3699 
3700 	if (tcp_ack_is_dubious(sk, flag)) {
3701 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3702 			num_dupack = 1;
3703 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3704 			if (!(flag & FLAG_DATA))
3705 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3706 		}
3707 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3708 				      &rexmit);
3709 	}
3710 
3711 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712 		sk_dst_confirm(sk);
3713 
3714 	delivered = tcp_newly_delivered(sk, delivered, flag);
3715 	lost = tp->lost - lost;			/* freshly marked lost */
3716 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3717 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3718 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3719 	tcp_xmit_recovery(sk, rexmit);
3720 	return 1;
3721 
3722 no_queue:
3723 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3724 	if (flag & FLAG_DSACKING_ACK) {
3725 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3726 				      &rexmit);
3727 		tcp_newly_delivered(sk, delivered, flag);
3728 	}
3729 	/* If this ack opens up a zero window, clear backoff.  It was
3730 	 * being used to time the probes, and is probably far higher than
3731 	 * it needs to be for normal retransmission.
3732 	 */
3733 	tcp_ack_probe(sk);
3734 
3735 	if (tp->tlp_high_seq)
3736 		tcp_process_tlp_ack(sk, ack, flag);
3737 	return 1;
3738 
3739 old_ack:
3740 	/* If data was SACKed, tag it and see if we should send more data.
3741 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3742 	 */
3743 	if (TCP_SKB_CB(skb)->sacked) {
3744 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3745 						&sack_state);
3746 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3747 				      &rexmit);
3748 		tcp_newly_delivered(sk, delivered, flag);
3749 		tcp_xmit_recovery(sk, rexmit);
3750 	}
3751 
3752 	return 0;
3753 }
3754 
3755 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3756 				      bool syn, struct tcp_fastopen_cookie *foc,
3757 				      bool exp_opt)
3758 {
3759 	/* Valid only in SYN or SYN-ACK with an even length.  */
3760 	if (!foc || !syn || len < 0 || (len & 1))
3761 		return;
3762 
3763 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3764 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3765 		memcpy(foc->val, cookie, len);
3766 	else if (len != 0)
3767 		len = -1;
3768 	foc->len = len;
3769 	foc->exp = exp_opt;
3770 }
3771 
3772 static void smc_parse_options(const struct tcphdr *th,
3773 			      struct tcp_options_received *opt_rx,
3774 			      const unsigned char *ptr,
3775 			      int opsize)
3776 {
3777 #if IS_ENABLED(CONFIG_SMC)
3778 	if (static_branch_unlikely(&tcp_have_smc)) {
3779 		if (th->syn && !(opsize & 1) &&
3780 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3781 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3782 			opt_rx->smc_ok = 1;
3783 	}
3784 #endif
3785 }
3786 
3787 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3788  * value on success.
3789  */
3790 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3791 {
3792 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3793 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3794 	u16 mss = 0;
3795 
3796 	while (length > 0) {
3797 		int opcode = *ptr++;
3798 		int opsize;
3799 
3800 		switch (opcode) {
3801 		case TCPOPT_EOL:
3802 			return mss;
3803 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3804 			length--;
3805 			continue;
3806 		default:
3807 			if (length < 2)
3808 				return mss;
3809 			opsize = *ptr++;
3810 			if (opsize < 2) /* "silly options" */
3811 				return mss;
3812 			if (opsize > length)
3813 				return mss;	/* fail on partial options */
3814 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3815 				u16 in_mss = get_unaligned_be16(ptr);
3816 
3817 				if (in_mss) {
3818 					if (user_mss && user_mss < in_mss)
3819 						in_mss = user_mss;
3820 					mss = in_mss;
3821 				}
3822 			}
3823 			ptr += opsize - 2;
3824 			length -= opsize;
3825 		}
3826 	}
3827 	return mss;
3828 }
3829 
3830 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3831  * But, this can also be called on packets in the established flow when
3832  * the fast version below fails.
3833  */
3834 void tcp_parse_options(const struct net *net,
3835 		       const struct sk_buff *skb,
3836 		       struct tcp_options_received *opt_rx, int estab,
3837 		       struct tcp_fastopen_cookie *foc)
3838 {
3839 	const unsigned char *ptr;
3840 	const struct tcphdr *th = tcp_hdr(skb);
3841 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3842 
3843 	ptr = (const unsigned char *)(th + 1);
3844 	opt_rx->saw_tstamp = 0;
3845 
3846 	while (length > 0) {
3847 		int opcode = *ptr++;
3848 		int opsize;
3849 
3850 		switch (opcode) {
3851 		case TCPOPT_EOL:
3852 			return;
3853 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3854 			length--;
3855 			continue;
3856 		default:
3857 			if (length < 2)
3858 				return;
3859 			opsize = *ptr++;
3860 			if (opsize < 2) /* "silly options" */
3861 				return;
3862 			if (opsize > length)
3863 				return;	/* don't parse partial options */
3864 			switch (opcode) {
3865 			case TCPOPT_MSS:
3866 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3867 					u16 in_mss = get_unaligned_be16(ptr);
3868 					if (in_mss) {
3869 						if (opt_rx->user_mss &&
3870 						    opt_rx->user_mss < in_mss)
3871 							in_mss = opt_rx->user_mss;
3872 						opt_rx->mss_clamp = in_mss;
3873 					}
3874 				}
3875 				break;
3876 			case TCPOPT_WINDOW:
3877 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3878 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3879 					__u8 snd_wscale = *(__u8 *)ptr;
3880 					opt_rx->wscale_ok = 1;
3881 					if (snd_wscale > TCP_MAX_WSCALE) {
3882 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3883 								     __func__,
3884 								     snd_wscale,
3885 								     TCP_MAX_WSCALE);
3886 						snd_wscale = TCP_MAX_WSCALE;
3887 					}
3888 					opt_rx->snd_wscale = snd_wscale;
3889 				}
3890 				break;
3891 			case TCPOPT_TIMESTAMP:
3892 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3893 				    ((estab && opt_rx->tstamp_ok) ||
3894 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3895 					opt_rx->saw_tstamp = 1;
3896 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3897 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3898 				}
3899 				break;
3900 			case TCPOPT_SACK_PERM:
3901 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3902 				    !estab && net->ipv4.sysctl_tcp_sack) {
3903 					opt_rx->sack_ok = TCP_SACK_SEEN;
3904 					tcp_sack_reset(opt_rx);
3905 				}
3906 				break;
3907 
3908 			case TCPOPT_SACK:
3909 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3910 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3911 				   opt_rx->sack_ok) {
3912 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3913 				}
3914 				break;
3915 #ifdef CONFIG_TCP_MD5SIG
3916 			case TCPOPT_MD5SIG:
3917 				/*
3918 				 * The MD5 Hash has already been
3919 				 * checked (see tcp_v{4,6}_do_rcv()).
3920 				 */
3921 				break;
3922 #endif
3923 			case TCPOPT_FASTOPEN:
3924 				tcp_parse_fastopen_option(
3925 					opsize - TCPOLEN_FASTOPEN_BASE,
3926 					ptr, th->syn, foc, false);
3927 				break;
3928 
3929 			case TCPOPT_EXP:
3930 				/* Fast Open option shares code 254 using a
3931 				 * 16 bits magic number.
3932 				 */
3933 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3934 				    get_unaligned_be16(ptr) ==
3935 				    TCPOPT_FASTOPEN_MAGIC)
3936 					tcp_parse_fastopen_option(opsize -
3937 						TCPOLEN_EXP_FASTOPEN_BASE,
3938 						ptr + 2, th->syn, foc, true);
3939 				else
3940 					smc_parse_options(th, opt_rx, ptr,
3941 							  opsize);
3942 				break;
3943 
3944 			}
3945 			ptr += opsize-2;
3946 			length -= opsize;
3947 		}
3948 	}
3949 }
3950 EXPORT_SYMBOL(tcp_parse_options);
3951 
3952 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3953 {
3954 	const __be32 *ptr = (const __be32 *)(th + 1);
3955 
3956 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3957 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3958 		tp->rx_opt.saw_tstamp = 1;
3959 		++ptr;
3960 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3961 		++ptr;
3962 		if (*ptr)
3963 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3964 		else
3965 			tp->rx_opt.rcv_tsecr = 0;
3966 		return true;
3967 	}
3968 	return false;
3969 }
3970 
3971 /* Fast parse options. This hopes to only see timestamps.
3972  * If it is wrong it falls back on tcp_parse_options().
3973  */
3974 static bool tcp_fast_parse_options(const struct net *net,
3975 				   const struct sk_buff *skb,
3976 				   const struct tcphdr *th, struct tcp_sock *tp)
3977 {
3978 	/* In the spirit of fast parsing, compare doff directly to constant
3979 	 * values.  Because equality is used, short doff can be ignored here.
3980 	 */
3981 	if (th->doff == (sizeof(*th) / 4)) {
3982 		tp->rx_opt.saw_tstamp = 0;
3983 		return false;
3984 	} else if (tp->rx_opt.tstamp_ok &&
3985 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3986 		if (tcp_parse_aligned_timestamp(tp, th))
3987 			return true;
3988 	}
3989 
3990 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3991 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3992 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3993 
3994 	return true;
3995 }
3996 
3997 #ifdef CONFIG_TCP_MD5SIG
3998 /*
3999  * Parse MD5 Signature option
4000  */
4001 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4002 {
4003 	int length = (th->doff << 2) - sizeof(*th);
4004 	const u8 *ptr = (const u8 *)(th + 1);
4005 
4006 	/* If not enough data remaining, we can short cut */
4007 	while (length >= TCPOLEN_MD5SIG) {
4008 		int opcode = *ptr++;
4009 		int opsize;
4010 
4011 		switch (opcode) {
4012 		case TCPOPT_EOL:
4013 			return NULL;
4014 		case TCPOPT_NOP:
4015 			length--;
4016 			continue;
4017 		default:
4018 			opsize = *ptr++;
4019 			if (opsize < 2 || opsize > length)
4020 				return NULL;
4021 			if (opcode == TCPOPT_MD5SIG)
4022 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4023 		}
4024 		ptr += opsize - 2;
4025 		length -= opsize;
4026 	}
4027 	return NULL;
4028 }
4029 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4030 #endif
4031 
4032 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4033  *
4034  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4035  * it can pass through stack. So, the following predicate verifies that
4036  * this segment is not used for anything but congestion avoidance or
4037  * fast retransmit. Moreover, we even are able to eliminate most of such
4038  * second order effects, if we apply some small "replay" window (~RTO)
4039  * to timestamp space.
4040  *
4041  * All these measures still do not guarantee that we reject wrapped ACKs
4042  * on networks with high bandwidth, when sequence space is recycled fastly,
4043  * but it guarantees that such events will be very rare and do not affect
4044  * connection seriously. This doesn't look nice, but alas, PAWS is really
4045  * buggy extension.
4046  *
4047  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4048  * states that events when retransmit arrives after original data are rare.
4049  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4050  * the biggest problem on large power networks even with minor reordering.
4051  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4052  * up to bandwidth of 18Gigabit/sec. 8) ]
4053  */
4054 
4055 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4056 {
4057 	const struct tcp_sock *tp = tcp_sk(sk);
4058 	const struct tcphdr *th = tcp_hdr(skb);
4059 	u32 seq = TCP_SKB_CB(skb)->seq;
4060 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4061 
4062 	return (/* 1. Pure ACK with correct sequence number. */
4063 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4064 
4065 		/* 2. ... and duplicate ACK. */
4066 		ack == tp->snd_una &&
4067 
4068 		/* 3. ... and does not update window. */
4069 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4070 
4071 		/* 4. ... and sits in replay window. */
4072 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4073 }
4074 
4075 static inline bool tcp_paws_discard(const struct sock *sk,
4076 				   const struct sk_buff *skb)
4077 {
4078 	const struct tcp_sock *tp = tcp_sk(sk);
4079 
4080 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4081 	       !tcp_disordered_ack(sk, skb);
4082 }
4083 
4084 /* Check segment sequence number for validity.
4085  *
4086  * Segment controls are considered valid, if the segment
4087  * fits to the window after truncation to the window. Acceptability
4088  * of data (and SYN, FIN, of course) is checked separately.
4089  * See tcp_data_queue(), for example.
4090  *
4091  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4092  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4093  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4094  * (borrowed from freebsd)
4095  */
4096 
4097 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4098 {
4099 	return	!before(end_seq, tp->rcv_wup) &&
4100 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4101 }
4102 
4103 /* When we get a reset we do this. */
4104 void tcp_reset(struct sock *sk)
4105 {
4106 	trace_tcp_receive_reset(sk);
4107 
4108 	/* We want the right error as BSD sees it (and indeed as we do). */
4109 	switch (sk->sk_state) {
4110 	case TCP_SYN_SENT:
4111 		sk->sk_err = ECONNREFUSED;
4112 		break;
4113 	case TCP_CLOSE_WAIT:
4114 		sk->sk_err = EPIPE;
4115 		break;
4116 	case TCP_CLOSE:
4117 		return;
4118 	default:
4119 		sk->sk_err = ECONNRESET;
4120 	}
4121 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4122 	smp_wmb();
4123 
4124 	tcp_write_queue_purge(sk);
4125 	tcp_done(sk);
4126 
4127 	if (!sock_flag(sk, SOCK_DEAD))
4128 		sk->sk_error_report(sk);
4129 }
4130 
4131 /*
4132  * 	Process the FIN bit. This now behaves as it is supposed to work
4133  *	and the FIN takes effect when it is validly part of sequence
4134  *	space. Not before when we get holes.
4135  *
4136  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4137  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4138  *	TIME-WAIT)
4139  *
4140  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4141  *	close and we go into CLOSING (and later onto TIME-WAIT)
4142  *
4143  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4144  */
4145 void tcp_fin(struct sock *sk)
4146 {
4147 	struct tcp_sock *tp = tcp_sk(sk);
4148 
4149 	inet_csk_schedule_ack(sk);
4150 
4151 	sk->sk_shutdown |= RCV_SHUTDOWN;
4152 	sock_set_flag(sk, SOCK_DONE);
4153 
4154 	switch (sk->sk_state) {
4155 	case TCP_SYN_RECV:
4156 	case TCP_ESTABLISHED:
4157 		/* Move to CLOSE_WAIT */
4158 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4159 		inet_csk_enter_pingpong_mode(sk);
4160 		break;
4161 
4162 	case TCP_CLOSE_WAIT:
4163 	case TCP_CLOSING:
4164 		/* Received a retransmission of the FIN, do
4165 		 * nothing.
4166 		 */
4167 		break;
4168 	case TCP_LAST_ACK:
4169 		/* RFC793: Remain in the LAST-ACK state. */
4170 		break;
4171 
4172 	case TCP_FIN_WAIT1:
4173 		/* This case occurs when a simultaneous close
4174 		 * happens, we must ack the received FIN and
4175 		 * enter the CLOSING state.
4176 		 */
4177 		tcp_send_ack(sk);
4178 		tcp_set_state(sk, TCP_CLOSING);
4179 		break;
4180 	case TCP_FIN_WAIT2:
4181 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4182 		tcp_send_ack(sk);
4183 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4184 		break;
4185 	default:
4186 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4187 		 * cases we should never reach this piece of code.
4188 		 */
4189 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4190 		       __func__, sk->sk_state);
4191 		break;
4192 	}
4193 
4194 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4195 	 * Probably, we should reset in this case. For now drop them.
4196 	 */
4197 	skb_rbtree_purge(&tp->out_of_order_queue);
4198 	if (tcp_is_sack(tp))
4199 		tcp_sack_reset(&tp->rx_opt);
4200 	sk_mem_reclaim(sk);
4201 
4202 	if (!sock_flag(sk, SOCK_DEAD)) {
4203 		sk->sk_state_change(sk);
4204 
4205 		/* Do not send POLL_HUP for half duplex close. */
4206 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4207 		    sk->sk_state == TCP_CLOSE)
4208 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4209 		else
4210 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4211 	}
4212 }
4213 
4214 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4215 				  u32 end_seq)
4216 {
4217 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4218 		if (before(seq, sp->start_seq))
4219 			sp->start_seq = seq;
4220 		if (after(end_seq, sp->end_seq))
4221 			sp->end_seq = end_seq;
4222 		return true;
4223 	}
4224 	return false;
4225 }
4226 
4227 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4228 {
4229 	struct tcp_sock *tp = tcp_sk(sk);
4230 
4231 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4232 		int mib_idx;
4233 
4234 		if (before(seq, tp->rcv_nxt))
4235 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4236 		else
4237 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4238 
4239 		NET_INC_STATS(sock_net(sk), mib_idx);
4240 
4241 		tp->rx_opt.dsack = 1;
4242 		tp->duplicate_sack[0].start_seq = seq;
4243 		tp->duplicate_sack[0].end_seq = end_seq;
4244 	}
4245 }
4246 
4247 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4248 {
4249 	struct tcp_sock *tp = tcp_sk(sk);
4250 
4251 	if (!tp->rx_opt.dsack)
4252 		tcp_dsack_set(sk, seq, end_seq);
4253 	else
4254 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4255 }
4256 
4257 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4258 {
4259 	/* When the ACK path fails or drops most ACKs, the sender would
4260 	 * timeout and spuriously retransmit the same segment repeatedly.
4261 	 * The receiver remembers and reflects via DSACKs. Leverage the
4262 	 * DSACK state and change the txhash to re-route speculatively.
4263 	 */
4264 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4265 		sk_rethink_txhash(sk);
4266 }
4267 
4268 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4269 {
4270 	struct tcp_sock *tp = tcp_sk(sk);
4271 
4272 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4273 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4274 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4275 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4276 
4277 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4278 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4279 
4280 			tcp_rcv_spurious_retrans(sk, skb);
4281 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4282 				end_seq = tp->rcv_nxt;
4283 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4284 		}
4285 	}
4286 
4287 	tcp_send_ack(sk);
4288 }
4289 
4290 /* These routines update the SACK block as out-of-order packets arrive or
4291  * in-order packets close up the sequence space.
4292  */
4293 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4294 {
4295 	int this_sack;
4296 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4297 	struct tcp_sack_block *swalk = sp + 1;
4298 
4299 	/* See if the recent change to the first SACK eats into
4300 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4301 	 */
4302 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4303 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4304 			int i;
4305 
4306 			/* Zap SWALK, by moving every further SACK up by one slot.
4307 			 * Decrease num_sacks.
4308 			 */
4309 			tp->rx_opt.num_sacks--;
4310 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4311 				sp[i] = sp[i + 1];
4312 			continue;
4313 		}
4314 		this_sack++, swalk++;
4315 	}
4316 }
4317 
4318 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4319 {
4320 	struct tcp_sock *tp = tcp_sk(sk);
4321 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4322 	int cur_sacks = tp->rx_opt.num_sacks;
4323 	int this_sack;
4324 
4325 	if (!cur_sacks)
4326 		goto new_sack;
4327 
4328 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4329 		if (tcp_sack_extend(sp, seq, end_seq)) {
4330 			/* Rotate this_sack to the first one. */
4331 			for (; this_sack > 0; this_sack--, sp--)
4332 				swap(*sp, *(sp - 1));
4333 			if (cur_sacks > 1)
4334 				tcp_sack_maybe_coalesce(tp);
4335 			return;
4336 		}
4337 	}
4338 
4339 	/* Could not find an adjacent existing SACK, build a new one,
4340 	 * put it at the front, and shift everyone else down.  We
4341 	 * always know there is at least one SACK present already here.
4342 	 *
4343 	 * If the sack array is full, forget about the last one.
4344 	 */
4345 	if (this_sack >= TCP_NUM_SACKS) {
4346 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4347 			tcp_send_ack(sk);
4348 		this_sack--;
4349 		tp->rx_opt.num_sacks--;
4350 		sp--;
4351 	}
4352 	for (; this_sack > 0; this_sack--, sp--)
4353 		*sp = *(sp - 1);
4354 
4355 new_sack:
4356 	/* Build the new head SACK, and we're done. */
4357 	sp->start_seq = seq;
4358 	sp->end_seq = end_seq;
4359 	tp->rx_opt.num_sacks++;
4360 }
4361 
4362 /* RCV.NXT advances, some SACKs should be eaten. */
4363 
4364 static void tcp_sack_remove(struct tcp_sock *tp)
4365 {
4366 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4367 	int num_sacks = tp->rx_opt.num_sacks;
4368 	int this_sack;
4369 
4370 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4371 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4372 		tp->rx_opt.num_sacks = 0;
4373 		return;
4374 	}
4375 
4376 	for (this_sack = 0; this_sack < num_sacks;) {
4377 		/* Check if the start of the sack is covered by RCV.NXT. */
4378 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4379 			int i;
4380 
4381 			/* RCV.NXT must cover all the block! */
4382 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4383 
4384 			/* Zap this SACK, by moving forward any other SACKS. */
4385 			for (i = this_sack+1; i < num_sacks; i++)
4386 				tp->selective_acks[i-1] = tp->selective_acks[i];
4387 			num_sacks--;
4388 			continue;
4389 		}
4390 		this_sack++;
4391 		sp++;
4392 	}
4393 	tp->rx_opt.num_sacks = num_sacks;
4394 }
4395 
4396 /**
4397  * tcp_try_coalesce - try to merge skb to prior one
4398  * @sk: socket
4399  * @dest: destination queue
4400  * @to: prior buffer
4401  * @from: buffer to add in queue
4402  * @fragstolen: pointer to boolean
4403  *
4404  * Before queueing skb @from after @to, try to merge them
4405  * to reduce overall memory use and queue lengths, if cost is small.
4406  * Packets in ofo or receive queues can stay a long time.
4407  * Better try to coalesce them right now to avoid future collapses.
4408  * Returns true if caller should free @from instead of queueing it
4409  */
4410 static bool tcp_try_coalesce(struct sock *sk,
4411 			     struct sk_buff *to,
4412 			     struct sk_buff *from,
4413 			     bool *fragstolen)
4414 {
4415 	int delta;
4416 
4417 	*fragstolen = false;
4418 
4419 	/* Its possible this segment overlaps with prior segment in queue */
4420 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4421 		return false;
4422 
4423 #ifdef CONFIG_TLS_DEVICE
4424 	if (from->decrypted != to->decrypted)
4425 		return false;
4426 #endif
4427 
4428 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4429 		return false;
4430 
4431 	atomic_add(delta, &sk->sk_rmem_alloc);
4432 	sk_mem_charge(sk, delta);
4433 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4434 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4435 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4436 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4437 
4438 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4439 		TCP_SKB_CB(to)->has_rxtstamp = true;
4440 		to->tstamp = from->tstamp;
4441 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4442 	}
4443 
4444 	return true;
4445 }
4446 
4447 static bool tcp_ooo_try_coalesce(struct sock *sk,
4448 			     struct sk_buff *to,
4449 			     struct sk_buff *from,
4450 			     bool *fragstolen)
4451 {
4452 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4453 
4454 	/* In case tcp_drop() is called later, update to->gso_segs */
4455 	if (res) {
4456 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4457 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4458 
4459 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4460 	}
4461 	return res;
4462 }
4463 
4464 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4465 {
4466 	sk_drops_add(sk, skb);
4467 	__kfree_skb(skb);
4468 }
4469 
4470 /* This one checks to see if we can put data from the
4471  * out_of_order queue into the receive_queue.
4472  */
4473 static void tcp_ofo_queue(struct sock *sk)
4474 {
4475 	struct tcp_sock *tp = tcp_sk(sk);
4476 	__u32 dsack_high = tp->rcv_nxt;
4477 	bool fin, fragstolen, eaten;
4478 	struct sk_buff *skb, *tail;
4479 	struct rb_node *p;
4480 
4481 	p = rb_first(&tp->out_of_order_queue);
4482 	while (p) {
4483 		skb = rb_to_skb(p);
4484 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4485 			break;
4486 
4487 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4488 			__u32 dsack = dsack_high;
4489 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4490 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4491 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4492 		}
4493 		p = rb_next(p);
4494 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4495 
4496 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4497 			tcp_drop(sk, skb);
4498 			continue;
4499 		}
4500 
4501 		tail = skb_peek_tail(&sk->sk_receive_queue);
4502 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4503 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4504 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4505 		if (!eaten)
4506 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4507 		else
4508 			kfree_skb_partial(skb, fragstolen);
4509 
4510 		if (unlikely(fin)) {
4511 			tcp_fin(sk);
4512 			/* tcp_fin() purges tp->out_of_order_queue,
4513 			 * so we must end this loop right now.
4514 			 */
4515 			break;
4516 		}
4517 	}
4518 }
4519 
4520 static bool tcp_prune_ofo_queue(struct sock *sk);
4521 static int tcp_prune_queue(struct sock *sk);
4522 
4523 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4524 				 unsigned int size)
4525 {
4526 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4527 	    !sk_rmem_schedule(sk, skb, size)) {
4528 
4529 		if (tcp_prune_queue(sk) < 0)
4530 			return -1;
4531 
4532 		while (!sk_rmem_schedule(sk, skb, size)) {
4533 			if (!tcp_prune_ofo_queue(sk))
4534 				return -1;
4535 		}
4536 	}
4537 	return 0;
4538 }
4539 
4540 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4541 {
4542 	struct tcp_sock *tp = tcp_sk(sk);
4543 	struct rb_node **p, *parent;
4544 	struct sk_buff *skb1;
4545 	u32 seq, end_seq;
4546 	bool fragstolen;
4547 
4548 	tcp_ecn_check_ce(sk, skb);
4549 
4550 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4551 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4552 		tcp_drop(sk, skb);
4553 		return;
4554 	}
4555 
4556 	/* Disable header prediction. */
4557 	tp->pred_flags = 0;
4558 	inet_csk_schedule_ack(sk);
4559 
4560 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4561 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4562 	seq = TCP_SKB_CB(skb)->seq;
4563 	end_seq = TCP_SKB_CB(skb)->end_seq;
4564 
4565 	p = &tp->out_of_order_queue.rb_node;
4566 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4567 		/* Initial out of order segment, build 1 SACK. */
4568 		if (tcp_is_sack(tp)) {
4569 			tp->rx_opt.num_sacks = 1;
4570 			tp->selective_acks[0].start_seq = seq;
4571 			tp->selective_acks[0].end_seq = end_seq;
4572 		}
4573 		rb_link_node(&skb->rbnode, NULL, p);
4574 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4575 		tp->ooo_last_skb = skb;
4576 		goto end;
4577 	}
4578 
4579 	/* In the typical case, we are adding an skb to the end of the list.
4580 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4581 	 */
4582 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4583 				 skb, &fragstolen)) {
4584 coalesce_done:
4585 		tcp_grow_window(sk, skb);
4586 		kfree_skb_partial(skb, fragstolen);
4587 		skb = NULL;
4588 		goto add_sack;
4589 	}
4590 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4591 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4592 		parent = &tp->ooo_last_skb->rbnode;
4593 		p = &parent->rb_right;
4594 		goto insert;
4595 	}
4596 
4597 	/* Find place to insert this segment. Handle overlaps on the way. */
4598 	parent = NULL;
4599 	while (*p) {
4600 		parent = *p;
4601 		skb1 = rb_to_skb(parent);
4602 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4603 			p = &parent->rb_left;
4604 			continue;
4605 		}
4606 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4607 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4608 				/* All the bits are present. Drop. */
4609 				NET_INC_STATS(sock_net(sk),
4610 					      LINUX_MIB_TCPOFOMERGE);
4611 				tcp_drop(sk, skb);
4612 				skb = NULL;
4613 				tcp_dsack_set(sk, seq, end_seq);
4614 				goto add_sack;
4615 			}
4616 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4617 				/* Partial overlap. */
4618 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4619 			} else {
4620 				/* skb's seq == skb1's seq and skb covers skb1.
4621 				 * Replace skb1 with skb.
4622 				 */
4623 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4624 						&tp->out_of_order_queue);
4625 				tcp_dsack_extend(sk,
4626 						 TCP_SKB_CB(skb1)->seq,
4627 						 TCP_SKB_CB(skb1)->end_seq);
4628 				NET_INC_STATS(sock_net(sk),
4629 					      LINUX_MIB_TCPOFOMERGE);
4630 				tcp_drop(sk, skb1);
4631 				goto merge_right;
4632 			}
4633 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4634 						skb, &fragstolen)) {
4635 			goto coalesce_done;
4636 		}
4637 		p = &parent->rb_right;
4638 	}
4639 insert:
4640 	/* Insert segment into RB tree. */
4641 	rb_link_node(&skb->rbnode, parent, p);
4642 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4643 
4644 merge_right:
4645 	/* Remove other segments covered by skb. */
4646 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4647 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4648 			break;
4649 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4650 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4651 					 end_seq);
4652 			break;
4653 		}
4654 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4655 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4656 				 TCP_SKB_CB(skb1)->end_seq);
4657 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4658 		tcp_drop(sk, skb1);
4659 	}
4660 	/* If there is no skb after us, we are the last_skb ! */
4661 	if (!skb1)
4662 		tp->ooo_last_skb = skb;
4663 
4664 add_sack:
4665 	if (tcp_is_sack(tp))
4666 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4667 end:
4668 	if (skb) {
4669 		tcp_grow_window(sk, skb);
4670 		skb_condense(skb);
4671 		skb_set_owner_r(skb, sk);
4672 	}
4673 }
4674 
4675 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4676 				      bool *fragstolen)
4677 {
4678 	int eaten;
4679 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4680 
4681 	eaten = (tail &&
4682 		 tcp_try_coalesce(sk, tail,
4683 				  skb, fragstolen)) ? 1 : 0;
4684 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4685 	if (!eaten) {
4686 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4687 		skb_set_owner_r(skb, sk);
4688 	}
4689 	return eaten;
4690 }
4691 
4692 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4693 {
4694 	struct sk_buff *skb;
4695 	int err = -ENOMEM;
4696 	int data_len = 0;
4697 	bool fragstolen;
4698 
4699 	if (size == 0)
4700 		return 0;
4701 
4702 	if (size > PAGE_SIZE) {
4703 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4704 
4705 		data_len = npages << PAGE_SHIFT;
4706 		size = data_len + (size & ~PAGE_MASK);
4707 	}
4708 	skb = alloc_skb_with_frags(size - data_len, data_len,
4709 				   PAGE_ALLOC_COSTLY_ORDER,
4710 				   &err, sk->sk_allocation);
4711 	if (!skb)
4712 		goto err;
4713 
4714 	skb_put(skb, size - data_len);
4715 	skb->data_len = data_len;
4716 	skb->len = size;
4717 
4718 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4719 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4720 		goto err_free;
4721 	}
4722 
4723 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4724 	if (err)
4725 		goto err_free;
4726 
4727 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4728 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4729 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4730 
4731 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4732 		WARN_ON_ONCE(fragstolen); /* should not happen */
4733 		__kfree_skb(skb);
4734 	}
4735 	return size;
4736 
4737 err_free:
4738 	kfree_skb(skb);
4739 err:
4740 	return err;
4741 
4742 }
4743 
4744 void tcp_data_ready(struct sock *sk)
4745 {
4746 	const struct tcp_sock *tp = tcp_sk(sk);
4747 	int avail = tp->rcv_nxt - tp->copied_seq;
4748 
4749 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4750 		return;
4751 
4752 	sk->sk_data_ready(sk);
4753 }
4754 
4755 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4756 {
4757 	struct tcp_sock *tp = tcp_sk(sk);
4758 	bool fragstolen;
4759 	int eaten;
4760 
4761 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4762 		__kfree_skb(skb);
4763 		return;
4764 	}
4765 	skb_dst_drop(skb);
4766 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4767 
4768 	tcp_ecn_accept_cwr(sk, skb);
4769 
4770 	tp->rx_opt.dsack = 0;
4771 
4772 	/*  Queue data for delivery to the user.
4773 	 *  Packets in sequence go to the receive queue.
4774 	 *  Out of sequence packets to the out_of_order_queue.
4775 	 */
4776 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4777 		if (tcp_receive_window(tp) == 0) {
4778 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4779 			goto out_of_window;
4780 		}
4781 
4782 		/* Ok. In sequence. In window. */
4783 queue_and_out:
4784 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4785 			sk_forced_mem_schedule(sk, skb->truesize);
4786 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4787 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4788 			goto drop;
4789 		}
4790 
4791 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4792 		if (skb->len)
4793 			tcp_event_data_recv(sk, skb);
4794 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4795 			tcp_fin(sk);
4796 
4797 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4798 			tcp_ofo_queue(sk);
4799 
4800 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4801 			 * gap in queue is filled.
4802 			 */
4803 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4804 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4805 		}
4806 
4807 		if (tp->rx_opt.num_sacks)
4808 			tcp_sack_remove(tp);
4809 
4810 		tcp_fast_path_check(sk);
4811 
4812 		if (eaten > 0)
4813 			kfree_skb_partial(skb, fragstolen);
4814 		if (!sock_flag(sk, SOCK_DEAD))
4815 			tcp_data_ready(sk);
4816 		return;
4817 	}
4818 
4819 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4820 		tcp_rcv_spurious_retrans(sk, skb);
4821 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4822 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4823 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4824 
4825 out_of_window:
4826 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4827 		inet_csk_schedule_ack(sk);
4828 drop:
4829 		tcp_drop(sk, skb);
4830 		return;
4831 	}
4832 
4833 	/* Out of window. F.e. zero window probe. */
4834 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4835 		goto out_of_window;
4836 
4837 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4838 		/* Partial packet, seq < rcv_next < end_seq */
4839 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4840 
4841 		/* If window is closed, drop tail of packet. But after
4842 		 * remembering D-SACK for its head made in previous line.
4843 		 */
4844 		if (!tcp_receive_window(tp)) {
4845 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4846 			goto out_of_window;
4847 		}
4848 		goto queue_and_out;
4849 	}
4850 
4851 	tcp_data_queue_ofo(sk, skb);
4852 }
4853 
4854 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4855 {
4856 	if (list)
4857 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4858 
4859 	return skb_rb_next(skb);
4860 }
4861 
4862 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4863 					struct sk_buff_head *list,
4864 					struct rb_root *root)
4865 {
4866 	struct sk_buff *next = tcp_skb_next(skb, list);
4867 
4868 	if (list)
4869 		__skb_unlink(skb, list);
4870 	else
4871 		rb_erase(&skb->rbnode, root);
4872 
4873 	__kfree_skb(skb);
4874 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4875 
4876 	return next;
4877 }
4878 
4879 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4880 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4881 {
4882 	struct rb_node **p = &root->rb_node;
4883 	struct rb_node *parent = NULL;
4884 	struct sk_buff *skb1;
4885 
4886 	while (*p) {
4887 		parent = *p;
4888 		skb1 = rb_to_skb(parent);
4889 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4890 			p = &parent->rb_left;
4891 		else
4892 			p = &parent->rb_right;
4893 	}
4894 	rb_link_node(&skb->rbnode, parent, p);
4895 	rb_insert_color(&skb->rbnode, root);
4896 }
4897 
4898 /* Collapse contiguous sequence of skbs head..tail with
4899  * sequence numbers start..end.
4900  *
4901  * If tail is NULL, this means until the end of the queue.
4902  *
4903  * Segments with FIN/SYN are not collapsed (only because this
4904  * simplifies code)
4905  */
4906 static void
4907 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4908 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4909 {
4910 	struct sk_buff *skb = head, *n;
4911 	struct sk_buff_head tmp;
4912 	bool end_of_skbs;
4913 
4914 	/* First, check that queue is collapsible and find
4915 	 * the point where collapsing can be useful.
4916 	 */
4917 restart:
4918 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4919 		n = tcp_skb_next(skb, list);
4920 
4921 		/* No new bits? It is possible on ofo queue. */
4922 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4923 			skb = tcp_collapse_one(sk, skb, list, root);
4924 			if (!skb)
4925 				break;
4926 			goto restart;
4927 		}
4928 
4929 		/* The first skb to collapse is:
4930 		 * - not SYN/FIN and
4931 		 * - bloated or contains data before "start" or
4932 		 *   overlaps to the next one.
4933 		 */
4934 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4935 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4936 		     before(TCP_SKB_CB(skb)->seq, start))) {
4937 			end_of_skbs = false;
4938 			break;
4939 		}
4940 
4941 		if (n && n != tail &&
4942 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4943 			end_of_skbs = false;
4944 			break;
4945 		}
4946 
4947 		/* Decided to skip this, advance start seq. */
4948 		start = TCP_SKB_CB(skb)->end_seq;
4949 	}
4950 	if (end_of_skbs ||
4951 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4952 		return;
4953 
4954 	__skb_queue_head_init(&tmp);
4955 
4956 	while (before(start, end)) {
4957 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4958 		struct sk_buff *nskb;
4959 
4960 		nskb = alloc_skb(copy, GFP_ATOMIC);
4961 		if (!nskb)
4962 			break;
4963 
4964 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4965 #ifdef CONFIG_TLS_DEVICE
4966 		nskb->decrypted = skb->decrypted;
4967 #endif
4968 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4969 		if (list)
4970 			__skb_queue_before(list, skb, nskb);
4971 		else
4972 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4973 		skb_set_owner_r(nskb, sk);
4974 
4975 		/* Copy data, releasing collapsed skbs. */
4976 		while (copy > 0) {
4977 			int offset = start - TCP_SKB_CB(skb)->seq;
4978 			int size = TCP_SKB_CB(skb)->end_seq - start;
4979 
4980 			BUG_ON(offset < 0);
4981 			if (size > 0) {
4982 				size = min(copy, size);
4983 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4984 					BUG();
4985 				TCP_SKB_CB(nskb)->end_seq += size;
4986 				copy -= size;
4987 				start += size;
4988 			}
4989 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4990 				skb = tcp_collapse_one(sk, skb, list, root);
4991 				if (!skb ||
4992 				    skb == tail ||
4993 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4994 					goto end;
4995 #ifdef CONFIG_TLS_DEVICE
4996 				if (skb->decrypted != nskb->decrypted)
4997 					goto end;
4998 #endif
4999 			}
5000 		}
5001 	}
5002 end:
5003 	skb_queue_walk_safe(&tmp, skb, n)
5004 		tcp_rbtree_insert(root, skb);
5005 }
5006 
5007 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5008  * and tcp_collapse() them until all the queue is collapsed.
5009  */
5010 static void tcp_collapse_ofo_queue(struct sock *sk)
5011 {
5012 	struct tcp_sock *tp = tcp_sk(sk);
5013 	u32 range_truesize, sum_tiny = 0;
5014 	struct sk_buff *skb, *head;
5015 	u32 start, end;
5016 
5017 	skb = skb_rb_first(&tp->out_of_order_queue);
5018 new_range:
5019 	if (!skb) {
5020 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5021 		return;
5022 	}
5023 	start = TCP_SKB_CB(skb)->seq;
5024 	end = TCP_SKB_CB(skb)->end_seq;
5025 	range_truesize = skb->truesize;
5026 
5027 	for (head = skb;;) {
5028 		skb = skb_rb_next(skb);
5029 
5030 		/* Range is terminated when we see a gap or when
5031 		 * we are at the queue end.
5032 		 */
5033 		if (!skb ||
5034 		    after(TCP_SKB_CB(skb)->seq, end) ||
5035 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5036 			/* Do not attempt collapsing tiny skbs */
5037 			if (range_truesize != head->truesize ||
5038 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5039 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5040 					     head, skb, start, end);
5041 			} else {
5042 				sum_tiny += range_truesize;
5043 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5044 					return;
5045 			}
5046 			goto new_range;
5047 		}
5048 
5049 		range_truesize += skb->truesize;
5050 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5051 			start = TCP_SKB_CB(skb)->seq;
5052 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5053 			end = TCP_SKB_CB(skb)->end_seq;
5054 	}
5055 }
5056 
5057 /*
5058  * Clean the out-of-order queue to make room.
5059  * We drop high sequences packets to :
5060  * 1) Let a chance for holes to be filled.
5061  * 2) not add too big latencies if thousands of packets sit there.
5062  *    (But if application shrinks SO_RCVBUF, we could still end up
5063  *     freeing whole queue here)
5064  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5065  *
5066  * Return true if queue has shrunk.
5067  */
5068 static bool tcp_prune_ofo_queue(struct sock *sk)
5069 {
5070 	struct tcp_sock *tp = tcp_sk(sk);
5071 	struct rb_node *node, *prev;
5072 	int goal;
5073 
5074 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5075 		return false;
5076 
5077 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5078 	goal = sk->sk_rcvbuf >> 3;
5079 	node = &tp->ooo_last_skb->rbnode;
5080 	do {
5081 		prev = rb_prev(node);
5082 		rb_erase(node, &tp->out_of_order_queue);
5083 		goal -= rb_to_skb(node)->truesize;
5084 		tcp_drop(sk, rb_to_skb(node));
5085 		if (!prev || goal <= 0) {
5086 			sk_mem_reclaim(sk);
5087 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5088 			    !tcp_under_memory_pressure(sk))
5089 				break;
5090 			goal = sk->sk_rcvbuf >> 3;
5091 		}
5092 		node = prev;
5093 	} while (node);
5094 	tp->ooo_last_skb = rb_to_skb(prev);
5095 
5096 	/* Reset SACK state.  A conforming SACK implementation will
5097 	 * do the same at a timeout based retransmit.  When a connection
5098 	 * is in a sad state like this, we care only about integrity
5099 	 * of the connection not performance.
5100 	 */
5101 	if (tp->rx_opt.sack_ok)
5102 		tcp_sack_reset(&tp->rx_opt);
5103 	return true;
5104 }
5105 
5106 /* Reduce allocated memory if we can, trying to get
5107  * the socket within its memory limits again.
5108  *
5109  * Return less than zero if we should start dropping frames
5110  * until the socket owning process reads some of the data
5111  * to stabilize the situation.
5112  */
5113 static int tcp_prune_queue(struct sock *sk)
5114 {
5115 	struct tcp_sock *tp = tcp_sk(sk);
5116 
5117 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5118 
5119 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5120 		tcp_clamp_window(sk);
5121 	else if (tcp_under_memory_pressure(sk))
5122 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5123 
5124 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5125 		return 0;
5126 
5127 	tcp_collapse_ofo_queue(sk);
5128 	if (!skb_queue_empty(&sk->sk_receive_queue))
5129 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5130 			     skb_peek(&sk->sk_receive_queue),
5131 			     NULL,
5132 			     tp->copied_seq, tp->rcv_nxt);
5133 	sk_mem_reclaim(sk);
5134 
5135 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5136 		return 0;
5137 
5138 	/* Collapsing did not help, destructive actions follow.
5139 	 * This must not ever occur. */
5140 
5141 	tcp_prune_ofo_queue(sk);
5142 
5143 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5144 		return 0;
5145 
5146 	/* If we are really being abused, tell the caller to silently
5147 	 * drop receive data on the floor.  It will get retransmitted
5148 	 * and hopefully then we'll have sufficient space.
5149 	 */
5150 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5151 
5152 	/* Massive buffer overcommit. */
5153 	tp->pred_flags = 0;
5154 	return -1;
5155 }
5156 
5157 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5158 {
5159 	const struct tcp_sock *tp = tcp_sk(sk);
5160 
5161 	/* If the user specified a specific send buffer setting, do
5162 	 * not modify it.
5163 	 */
5164 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5165 		return false;
5166 
5167 	/* If we are under global TCP memory pressure, do not expand.  */
5168 	if (tcp_under_memory_pressure(sk))
5169 		return false;
5170 
5171 	/* If we are under soft global TCP memory pressure, do not expand.  */
5172 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5173 		return false;
5174 
5175 	/* If we filled the congestion window, do not expand.  */
5176 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5177 		return false;
5178 
5179 	return true;
5180 }
5181 
5182 /* When incoming ACK allowed to free some skb from write_queue,
5183  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5184  * on the exit from tcp input handler.
5185  *
5186  * PROBLEM: sndbuf expansion does not work well with largesend.
5187  */
5188 static void tcp_new_space(struct sock *sk)
5189 {
5190 	struct tcp_sock *tp = tcp_sk(sk);
5191 
5192 	if (tcp_should_expand_sndbuf(sk)) {
5193 		tcp_sndbuf_expand(sk);
5194 		tp->snd_cwnd_stamp = tcp_jiffies32;
5195 	}
5196 
5197 	sk->sk_write_space(sk);
5198 }
5199 
5200 static void tcp_check_space(struct sock *sk)
5201 {
5202 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5203 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5204 		/* pairs with tcp_poll() */
5205 		smp_mb();
5206 		if (sk->sk_socket &&
5207 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5208 			tcp_new_space(sk);
5209 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5210 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5211 		}
5212 	}
5213 }
5214 
5215 static inline void tcp_data_snd_check(struct sock *sk)
5216 {
5217 	tcp_push_pending_frames(sk);
5218 	tcp_check_space(sk);
5219 }
5220 
5221 /*
5222  * Check if sending an ack is needed.
5223  */
5224 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5225 {
5226 	struct tcp_sock *tp = tcp_sk(sk);
5227 	unsigned long rtt, delay;
5228 
5229 	    /* More than one full frame received... */
5230 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5231 	     /* ... and right edge of window advances far enough.
5232 	      * (tcp_recvmsg() will send ACK otherwise).
5233 	      * If application uses SO_RCVLOWAT, we want send ack now if
5234 	      * we have not received enough bytes to satisfy the condition.
5235 	      */
5236 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5237 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5238 	    /* We ACK each frame or... */
5239 	    tcp_in_quickack_mode(sk) ||
5240 	    /* Protocol state mandates a one-time immediate ACK */
5241 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5242 send_now:
5243 		tcp_send_ack(sk);
5244 		return;
5245 	}
5246 
5247 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5248 		tcp_send_delayed_ack(sk);
5249 		return;
5250 	}
5251 
5252 	if (!tcp_is_sack(tp) ||
5253 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5254 		goto send_now;
5255 
5256 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5257 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5258 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5259 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5260 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5261 		tp->compressed_ack = 0;
5262 	}
5263 
5264 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5265 		goto send_now;
5266 
5267 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5268 		return;
5269 
5270 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5271 
5272 	rtt = tp->rcv_rtt_est.rtt_us;
5273 	if (tp->srtt_us && tp->srtt_us < rtt)
5274 		rtt = tp->srtt_us;
5275 
5276 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5277 		      rtt * (NSEC_PER_USEC >> 3)/20);
5278 	sock_hold(sk);
5279 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5280 		      HRTIMER_MODE_REL_PINNED_SOFT);
5281 }
5282 
5283 static inline void tcp_ack_snd_check(struct sock *sk)
5284 {
5285 	if (!inet_csk_ack_scheduled(sk)) {
5286 		/* We sent a data segment already. */
5287 		return;
5288 	}
5289 	__tcp_ack_snd_check(sk, 1);
5290 }
5291 
5292 /*
5293  *	This routine is only called when we have urgent data
5294  *	signaled. Its the 'slow' part of tcp_urg. It could be
5295  *	moved inline now as tcp_urg is only called from one
5296  *	place. We handle URGent data wrong. We have to - as
5297  *	BSD still doesn't use the correction from RFC961.
5298  *	For 1003.1g we should support a new option TCP_STDURG to permit
5299  *	either form (or just set the sysctl tcp_stdurg).
5300  */
5301 
5302 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5303 {
5304 	struct tcp_sock *tp = tcp_sk(sk);
5305 	u32 ptr = ntohs(th->urg_ptr);
5306 
5307 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5308 		ptr--;
5309 	ptr += ntohl(th->seq);
5310 
5311 	/* Ignore urgent data that we've already seen and read. */
5312 	if (after(tp->copied_seq, ptr))
5313 		return;
5314 
5315 	/* Do not replay urg ptr.
5316 	 *
5317 	 * NOTE: interesting situation not covered by specs.
5318 	 * Misbehaving sender may send urg ptr, pointing to segment,
5319 	 * which we already have in ofo queue. We are not able to fetch
5320 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5321 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5322 	 * situations. But it is worth to think about possibility of some
5323 	 * DoSes using some hypothetical application level deadlock.
5324 	 */
5325 	if (before(ptr, tp->rcv_nxt))
5326 		return;
5327 
5328 	/* Do we already have a newer (or duplicate) urgent pointer? */
5329 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5330 		return;
5331 
5332 	/* Tell the world about our new urgent pointer. */
5333 	sk_send_sigurg(sk);
5334 
5335 	/* We may be adding urgent data when the last byte read was
5336 	 * urgent. To do this requires some care. We cannot just ignore
5337 	 * tp->copied_seq since we would read the last urgent byte again
5338 	 * as data, nor can we alter copied_seq until this data arrives
5339 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5340 	 *
5341 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5342 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5343 	 * and expect that both A and B disappear from stream. This is _wrong_.
5344 	 * Though this happens in BSD with high probability, this is occasional.
5345 	 * Any application relying on this is buggy. Note also, that fix "works"
5346 	 * only in this artificial test. Insert some normal data between A and B and we will
5347 	 * decline of BSD again. Verdict: it is better to remove to trap
5348 	 * buggy users.
5349 	 */
5350 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5351 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5352 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5353 		tp->copied_seq++;
5354 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5355 			__skb_unlink(skb, &sk->sk_receive_queue);
5356 			__kfree_skb(skb);
5357 		}
5358 	}
5359 
5360 	tp->urg_data = TCP_URG_NOTYET;
5361 	WRITE_ONCE(tp->urg_seq, ptr);
5362 
5363 	/* Disable header prediction. */
5364 	tp->pred_flags = 0;
5365 }
5366 
5367 /* This is the 'fast' part of urgent handling. */
5368 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5369 {
5370 	struct tcp_sock *tp = tcp_sk(sk);
5371 
5372 	/* Check if we get a new urgent pointer - normally not. */
5373 	if (th->urg)
5374 		tcp_check_urg(sk, th);
5375 
5376 	/* Do we wait for any urgent data? - normally not... */
5377 	if (tp->urg_data == TCP_URG_NOTYET) {
5378 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5379 			  th->syn;
5380 
5381 		/* Is the urgent pointer pointing into this packet? */
5382 		if (ptr < skb->len) {
5383 			u8 tmp;
5384 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5385 				BUG();
5386 			tp->urg_data = TCP_URG_VALID | tmp;
5387 			if (!sock_flag(sk, SOCK_DEAD))
5388 				sk->sk_data_ready(sk);
5389 		}
5390 	}
5391 }
5392 
5393 /* Accept RST for rcv_nxt - 1 after a FIN.
5394  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5395  * FIN is sent followed by a RST packet. The RST is sent with the same
5396  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5397  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5398  * ACKs on the closed socket. In addition middleboxes can drop either the
5399  * challenge ACK or a subsequent RST.
5400  */
5401 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5402 {
5403 	struct tcp_sock *tp = tcp_sk(sk);
5404 
5405 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5406 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5407 					       TCPF_CLOSING));
5408 }
5409 
5410 /* Does PAWS and seqno based validation of an incoming segment, flags will
5411  * play significant role here.
5412  */
5413 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5414 				  const struct tcphdr *th, int syn_inerr)
5415 {
5416 	struct tcp_sock *tp = tcp_sk(sk);
5417 	bool rst_seq_match = false;
5418 
5419 	/* RFC1323: H1. Apply PAWS check first. */
5420 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5421 	    tp->rx_opt.saw_tstamp &&
5422 	    tcp_paws_discard(sk, skb)) {
5423 		if (!th->rst) {
5424 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5425 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5426 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5427 						  &tp->last_oow_ack_time))
5428 				tcp_send_dupack(sk, skb);
5429 			goto discard;
5430 		}
5431 		/* Reset is accepted even if it did not pass PAWS. */
5432 	}
5433 
5434 	/* Step 1: check sequence number */
5435 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5436 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5437 		 * (RST) segments are validated by checking their SEQ-fields."
5438 		 * And page 69: "If an incoming segment is not acceptable,
5439 		 * an acknowledgment should be sent in reply (unless the RST
5440 		 * bit is set, if so drop the segment and return)".
5441 		 */
5442 		if (!th->rst) {
5443 			if (th->syn)
5444 				goto syn_challenge;
5445 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5446 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5447 						  &tp->last_oow_ack_time))
5448 				tcp_send_dupack(sk, skb);
5449 		} else if (tcp_reset_check(sk, skb)) {
5450 			tcp_reset(sk);
5451 		}
5452 		goto discard;
5453 	}
5454 
5455 	/* Step 2: check RST bit */
5456 	if (th->rst) {
5457 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5458 		 * FIN and SACK too if available):
5459 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5460 		 * the right-most SACK block,
5461 		 * then
5462 		 *     RESET the connection
5463 		 * else
5464 		 *     Send a challenge ACK
5465 		 */
5466 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5467 		    tcp_reset_check(sk, skb)) {
5468 			rst_seq_match = true;
5469 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5470 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5471 			int max_sack = sp[0].end_seq;
5472 			int this_sack;
5473 
5474 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5475 			     ++this_sack) {
5476 				max_sack = after(sp[this_sack].end_seq,
5477 						 max_sack) ?
5478 					sp[this_sack].end_seq : max_sack;
5479 			}
5480 
5481 			if (TCP_SKB_CB(skb)->seq == max_sack)
5482 				rst_seq_match = true;
5483 		}
5484 
5485 		if (rst_seq_match)
5486 			tcp_reset(sk);
5487 		else {
5488 			/* Disable TFO if RST is out-of-order
5489 			 * and no data has been received
5490 			 * for current active TFO socket
5491 			 */
5492 			if (tp->syn_fastopen && !tp->data_segs_in &&
5493 			    sk->sk_state == TCP_ESTABLISHED)
5494 				tcp_fastopen_active_disable(sk);
5495 			tcp_send_challenge_ack(sk, skb);
5496 		}
5497 		goto discard;
5498 	}
5499 
5500 	/* step 3: check security and precedence [ignored] */
5501 
5502 	/* step 4: Check for a SYN
5503 	 * RFC 5961 4.2 : Send a challenge ack
5504 	 */
5505 	if (th->syn) {
5506 syn_challenge:
5507 		if (syn_inerr)
5508 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5509 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5510 		tcp_send_challenge_ack(sk, skb);
5511 		goto discard;
5512 	}
5513 
5514 	return true;
5515 
5516 discard:
5517 	tcp_drop(sk, skb);
5518 	return false;
5519 }
5520 
5521 /*
5522  *	TCP receive function for the ESTABLISHED state.
5523  *
5524  *	It is split into a fast path and a slow path. The fast path is
5525  * 	disabled when:
5526  *	- A zero window was announced from us - zero window probing
5527  *        is only handled properly in the slow path.
5528  *	- Out of order segments arrived.
5529  *	- Urgent data is expected.
5530  *	- There is no buffer space left
5531  *	- Unexpected TCP flags/window values/header lengths are received
5532  *	  (detected by checking the TCP header against pred_flags)
5533  *	- Data is sent in both directions. Fast path only supports pure senders
5534  *	  or pure receivers (this means either the sequence number or the ack
5535  *	  value must stay constant)
5536  *	- Unexpected TCP option.
5537  *
5538  *	When these conditions are not satisfied it drops into a standard
5539  *	receive procedure patterned after RFC793 to handle all cases.
5540  *	The first three cases are guaranteed by proper pred_flags setting,
5541  *	the rest is checked inline. Fast processing is turned on in
5542  *	tcp_data_queue when everything is OK.
5543  */
5544 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5545 {
5546 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5547 	struct tcp_sock *tp = tcp_sk(sk);
5548 	unsigned int len = skb->len;
5549 
5550 	/* TCP congestion window tracking */
5551 	trace_tcp_probe(sk, skb);
5552 
5553 	tcp_mstamp_refresh(tp);
5554 	if (unlikely(!sk->sk_rx_dst))
5555 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5556 	/*
5557 	 *	Header prediction.
5558 	 *	The code loosely follows the one in the famous
5559 	 *	"30 instruction TCP receive" Van Jacobson mail.
5560 	 *
5561 	 *	Van's trick is to deposit buffers into socket queue
5562 	 *	on a device interrupt, to call tcp_recv function
5563 	 *	on the receive process context and checksum and copy
5564 	 *	the buffer to user space. smart...
5565 	 *
5566 	 *	Our current scheme is not silly either but we take the
5567 	 *	extra cost of the net_bh soft interrupt processing...
5568 	 *	We do checksum and copy also but from device to kernel.
5569 	 */
5570 
5571 	tp->rx_opt.saw_tstamp = 0;
5572 
5573 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5574 	 *	if header_prediction is to be made
5575 	 *	'S' will always be tp->tcp_header_len >> 2
5576 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5577 	 *  turn it off	(when there are holes in the receive
5578 	 *	 space for instance)
5579 	 *	PSH flag is ignored.
5580 	 */
5581 
5582 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5583 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5584 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5585 		int tcp_header_len = tp->tcp_header_len;
5586 
5587 		/* Timestamp header prediction: tcp_header_len
5588 		 * is automatically equal to th->doff*4 due to pred_flags
5589 		 * match.
5590 		 */
5591 
5592 		/* Check timestamp */
5593 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5594 			/* No? Slow path! */
5595 			if (!tcp_parse_aligned_timestamp(tp, th))
5596 				goto slow_path;
5597 
5598 			/* If PAWS failed, check it more carefully in slow path */
5599 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5600 				goto slow_path;
5601 
5602 			/* DO NOT update ts_recent here, if checksum fails
5603 			 * and timestamp was corrupted part, it will result
5604 			 * in a hung connection since we will drop all
5605 			 * future packets due to the PAWS test.
5606 			 */
5607 		}
5608 
5609 		if (len <= tcp_header_len) {
5610 			/* Bulk data transfer: sender */
5611 			if (len == tcp_header_len) {
5612 				/* Predicted packet is in window by definition.
5613 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5614 				 * Hence, check seq<=rcv_wup reduces to:
5615 				 */
5616 				if (tcp_header_len ==
5617 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5618 				    tp->rcv_nxt == tp->rcv_wup)
5619 					tcp_store_ts_recent(tp);
5620 
5621 				/* We know that such packets are checksummed
5622 				 * on entry.
5623 				 */
5624 				tcp_ack(sk, skb, 0);
5625 				__kfree_skb(skb);
5626 				tcp_data_snd_check(sk);
5627 				/* When receiving pure ack in fast path, update
5628 				 * last ts ecr directly instead of calling
5629 				 * tcp_rcv_rtt_measure_ts()
5630 				 */
5631 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5632 				return;
5633 			} else { /* Header too small */
5634 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5635 				goto discard;
5636 			}
5637 		} else {
5638 			int eaten = 0;
5639 			bool fragstolen = false;
5640 
5641 			if (tcp_checksum_complete(skb))
5642 				goto csum_error;
5643 
5644 			if ((int)skb->truesize > sk->sk_forward_alloc)
5645 				goto step5;
5646 
5647 			/* Predicted packet is in window by definition.
5648 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5649 			 * Hence, check seq<=rcv_wup reduces to:
5650 			 */
5651 			if (tcp_header_len ==
5652 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5653 			    tp->rcv_nxt == tp->rcv_wup)
5654 				tcp_store_ts_recent(tp);
5655 
5656 			tcp_rcv_rtt_measure_ts(sk, skb);
5657 
5658 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5659 
5660 			/* Bulk data transfer: receiver */
5661 			__skb_pull(skb, tcp_header_len);
5662 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5663 
5664 			tcp_event_data_recv(sk, skb);
5665 
5666 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5667 				/* Well, only one small jumplet in fast path... */
5668 				tcp_ack(sk, skb, FLAG_DATA);
5669 				tcp_data_snd_check(sk);
5670 				if (!inet_csk_ack_scheduled(sk))
5671 					goto no_ack;
5672 			}
5673 
5674 			__tcp_ack_snd_check(sk, 0);
5675 no_ack:
5676 			if (eaten)
5677 				kfree_skb_partial(skb, fragstolen);
5678 			tcp_data_ready(sk);
5679 			return;
5680 		}
5681 	}
5682 
5683 slow_path:
5684 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5685 		goto csum_error;
5686 
5687 	if (!th->ack && !th->rst && !th->syn)
5688 		goto discard;
5689 
5690 	/*
5691 	 *	Standard slow path.
5692 	 */
5693 
5694 	if (!tcp_validate_incoming(sk, skb, th, 1))
5695 		return;
5696 
5697 step5:
5698 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5699 		goto discard;
5700 
5701 	tcp_rcv_rtt_measure_ts(sk, skb);
5702 
5703 	/* Process urgent data. */
5704 	tcp_urg(sk, skb, th);
5705 
5706 	/* step 7: process the segment text */
5707 	tcp_data_queue(sk, skb);
5708 
5709 	tcp_data_snd_check(sk);
5710 	tcp_ack_snd_check(sk);
5711 	return;
5712 
5713 csum_error:
5714 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5715 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5716 
5717 discard:
5718 	tcp_drop(sk, skb);
5719 }
5720 EXPORT_SYMBOL(tcp_rcv_established);
5721 
5722 void tcp_init_transfer(struct sock *sk, int bpf_op)
5723 {
5724 	struct inet_connection_sock *icsk = inet_csk(sk);
5725 	struct tcp_sock *tp = tcp_sk(sk);
5726 
5727 	tcp_mtup_init(sk);
5728 	icsk->icsk_af_ops->rebuild_header(sk);
5729 	tcp_init_metrics(sk);
5730 
5731 	/* Initialize the congestion window to start the transfer.
5732 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5733 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5734 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5735 	 * retransmission has occurred.
5736 	 */
5737 	if (tp->total_retrans > 1 && tp->undo_marker)
5738 		tp->snd_cwnd = 1;
5739 	else
5740 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5741 	tp->snd_cwnd_stamp = tcp_jiffies32;
5742 
5743 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5744 	tcp_init_congestion_control(sk);
5745 	tcp_init_buffer_space(sk);
5746 }
5747 
5748 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5749 {
5750 	struct tcp_sock *tp = tcp_sk(sk);
5751 	struct inet_connection_sock *icsk = inet_csk(sk);
5752 
5753 	tcp_set_state(sk, TCP_ESTABLISHED);
5754 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5755 
5756 	if (skb) {
5757 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5758 		security_inet_conn_established(sk, skb);
5759 		sk_mark_napi_id(sk, skb);
5760 	}
5761 
5762 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5763 
5764 	/* Prevent spurious tcp_cwnd_restart() on first data
5765 	 * packet.
5766 	 */
5767 	tp->lsndtime = tcp_jiffies32;
5768 
5769 	if (sock_flag(sk, SOCK_KEEPOPEN))
5770 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5771 
5772 	if (!tp->rx_opt.snd_wscale)
5773 		__tcp_fast_path_on(tp, tp->snd_wnd);
5774 	else
5775 		tp->pred_flags = 0;
5776 }
5777 
5778 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5779 				    struct tcp_fastopen_cookie *cookie)
5780 {
5781 	struct tcp_sock *tp = tcp_sk(sk);
5782 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5783 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5784 	bool syn_drop = false;
5785 
5786 	if (mss == tp->rx_opt.user_mss) {
5787 		struct tcp_options_received opt;
5788 
5789 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5790 		tcp_clear_options(&opt);
5791 		opt.user_mss = opt.mss_clamp = 0;
5792 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5793 		mss = opt.mss_clamp;
5794 	}
5795 
5796 	if (!tp->syn_fastopen) {
5797 		/* Ignore an unsolicited cookie */
5798 		cookie->len = -1;
5799 	} else if (tp->total_retrans) {
5800 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5801 		 * acknowledges data. Presumably the remote received only
5802 		 * the retransmitted (regular) SYNs: either the original
5803 		 * SYN-data or the corresponding SYN-ACK was dropped.
5804 		 */
5805 		syn_drop = (cookie->len < 0 && data);
5806 	} else if (cookie->len < 0 && !tp->syn_data) {
5807 		/* We requested a cookie but didn't get it. If we did not use
5808 		 * the (old) exp opt format then try so next time (try_exp=1).
5809 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5810 		 */
5811 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5812 	}
5813 
5814 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5815 
5816 	if (data) { /* Retransmit unacked data in SYN */
5817 		if (tp->total_retrans)
5818 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5819 		else
5820 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5821 		skb_rbtree_walk_from(data) {
5822 			if (__tcp_retransmit_skb(sk, data, 1))
5823 				break;
5824 		}
5825 		tcp_rearm_rto(sk);
5826 		NET_INC_STATS(sock_net(sk),
5827 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5828 		return true;
5829 	}
5830 	tp->syn_data_acked = tp->syn_data;
5831 	if (tp->syn_data_acked) {
5832 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5833 		/* SYN-data is counted as two separate packets in tcp_ack() */
5834 		if (tp->delivered > 1)
5835 			--tp->delivered;
5836 	}
5837 
5838 	tcp_fastopen_add_skb(sk, synack);
5839 
5840 	return false;
5841 }
5842 
5843 static void smc_check_reset_syn(struct tcp_sock *tp)
5844 {
5845 #if IS_ENABLED(CONFIG_SMC)
5846 	if (static_branch_unlikely(&tcp_have_smc)) {
5847 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5848 			tp->syn_smc = 0;
5849 	}
5850 #endif
5851 }
5852 
5853 static void tcp_try_undo_spurious_syn(struct sock *sk)
5854 {
5855 	struct tcp_sock *tp = tcp_sk(sk);
5856 	u32 syn_stamp;
5857 
5858 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5859 	 * spurious if the ACK's timestamp option echo value matches the
5860 	 * original SYN timestamp.
5861 	 */
5862 	syn_stamp = tp->retrans_stamp;
5863 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5864 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5865 		tp->undo_marker = 0;
5866 }
5867 
5868 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5869 					 const struct tcphdr *th)
5870 {
5871 	struct inet_connection_sock *icsk = inet_csk(sk);
5872 	struct tcp_sock *tp = tcp_sk(sk);
5873 	struct tcp_fastopen_cookie foc = { .len = -1 };
5874 	int saved_clamp = tp->rx_opt.mss_clamp;
5875 	bool fastopen_fail;
5876 
5877 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5878 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5879 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5880 
5881 	if (th->ack) {
5882 		/* rfc793:
5883 		 * "If the state is SYN-SENT then
5884 		 *    first check the ACK bit
5885 		 *      If the ACK bit is set
5886 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5887 		 *        a reset (unless the RST bit is set, if so drop
5888 		 *        the segment and return)"
5889 		 */
5890 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5891 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5892 			goto reset_and_undo;
5893 
5894 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5895 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5896 			     tcp_time_stamp(tp))) {
5897 			NET_INC_STATS(sock_net(sk),
5898 					LINUX_MIB_PAWSACTIVEREJECTED);
5899 			goto reset_and_undo;
5900 		}
5901 
5902 		/* Now ACK is acceptable.
5903 		 *
5904 		 * "If the RST bit is set
5905 		 *    If the ACK was acceptable then signal the user "error:
5906 		 *    connection reset", drop the segment, enter CLOSED state,
5907 		 *    delete TCB, and return."
5908 		 */
5909 
5910 		if (th->rst) {
5911 			tcp_reset(sk);
5912 			goto discard;
5913 		}
5914 
5915 		/* rfc793:
5916 		 *   "fifth, if neither of the SYN or RST bits is set then
5917 		 *    drop the segment and return."
5918 		 *
5919 		 *    See note below!
5920 		 *                                        --ANK(990513)
5921 		 */
5922 		if (!th->syn)
5923 			goto discard_and_undo;
5924 
5925 		/* rfc793:
5926 		 *   "If the SYN bit is on ...
5927 		 *    are acceptable then ...
5928 		 *    (our SYN has been ACKed), change the connection
5929 		 *    state to ESTABLISHED..."
5930 		 */
5931 
5932 		tcp_ecn_rcv_synack(tp, th);
5933 
5934 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5935 		tcp_try_undo_spurious_syn(sk);
5936 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5937 
5938 		/* Ok.. it's good. Set up sequence numbers and
5939 		 * move to established.
5940 		 */
5941 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5942 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5943 
5944 		/* RFC1323: The window in SYN & SYN/ACK segments is
5945 		 * never scaled.
5946 		 */
5947 		tp->snd_wnd = ntohs(th->window);
5948 
5949 		if (!tp->rx_opt.wscale_ok) {
5950 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5951 			tp->window_clamp = min(tp->window_clamp, 65535U);
5952 		}
5953 
5954 		if (tp->rx_opt.saw_tstamp) {
5955 			tp->rx_opt.tstamp_ok	   = 1;
5956 			tp->tcp_header_len =
5957 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5958 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5959 			tcp_store_ts_recent(tp);
5960 		} else {
5961 			tp->tcp_header_len = sizeof(struct tcphdr);
5962 		}
5963 
5964 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5965 		tcp_initialize_rcv_mss(sk);
5966 
5967 		/* Remember, tcp_poll() does not lock socket!
5968 		 * Change state from SYN-SENT only after copied_seq
5969 		 * is initialized. */
5970 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5971 
5972 		smc_check_reset_syn(tp);
5973 
5974 		smp_mb();
5975 
5976 		tcp_finish_connect(sk, skb);
5977 
5978 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5979 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5980 
5981 		if (!sock_flag(sk, SOCK_DEAD)) {
5982 			sk->sk_state_change(sk);
5983 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5984 		}
5985 		if (fastopen_fail)
5986 			return -1;
5987 		if (sk->sk_write_pending ||
5988 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5989 		    inet_csk_in_pingpong_mode(sk)) {
5990 			/* Save one ACK. Data will be ready after
5991 			 * several ticks, if write_pending is set.
5992 			 *
5993 			 * It may be deleted, but with this feature tcpdumps
5994 			 * look so _wonderfully_ clever, that I was not able
5995 			 * to stand against the temptation 8)     --ANK
5996 			 */
5997 			inet_csk_schedule_ack(sk);
5998 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5999 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6000 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6001 
6002 discard:
6003 			tcp_drop(sk, skb);
6004 			return 0;
6005 		} else {
6006 			tcp_send_ack(sk);
6007 		}
6008 		return -1;
6009 	}
6010 
6011 	/* No ACK in the segment */
6012 
6013 	if (th->rst) {
6014 		/* rfc793:
6015 		 * "If the RST bit is set
6016 		 *
6017 		 *      Otherwise (no ACK) drop the segment and return."
6018 		 */
6019 
6020 		goto discard_and_undo;
6021 	}
6022 
6023 	/* PAWS check. */
6024 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6025 	    tcp_paws_reject(&tp->rx_opt, 0))
6026 		goto discard_and_undo;
6027 
6028 	if (th->syn) {
6029 		/* We see SYN without ACK. It is attempt of
6030 		 * simultaneous connect with crossed SYNs.
6031 		 * Particularly, it can be connect to self.
6032 		 */
6033 		tcp_set_state(sk, TCP_SYN_RECV);
6034 
6035 		if (tp->rx_opt.saw_tstamp) {
6036 			tp->rx_opt.tstamp_ok = 1;
6037 			tcp_store_ts_recent(tp);
6038 			tp->tcp_header_len =
6039 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6040 		} else {
6041 			tp->tcp_header_len = sizeof(struct tcphdr);
6042 		}
6043 
6044 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6045 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6046 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6047 
6048 		/* RFC1323: The window in SYN & SYN/ACK segments is
6049 		 * never scaled.
6050 		 */
6051 		tp->snd_wnd    = ntohs(th->window);
6052 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6053 		tp->max_window = tp->snd_wnd;
6054 
6055 		tcp_ecn_rcv_syn(tp, th);
6056 
6057 		tcp_mtup_init(sk);
6058 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6059 		tcp_initialize_rcv_mss(sk);
6060 
6061 		tcp_send_synack(sk);
6062 #if 0
6063 		/* Note, we could accept data and URG from this segment.
6064 		 * There are no obstacles to make this (except that we must
6065 		 * either change tcp_recvmsg() to prevent it from returning data
6066 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6067 		 *
6068 		 * However, if we ignore data in ACKless segments sometimes,
6069 		 * we have no reasons to accept it sometimes.
6070 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6071 		 * is not flawless. So, discard packet for sanity.
6072 		 * Uncomment this return to process the data.
6073 		 */
6074 		return -1;
6075 #else
6076 		goto discard;
6077 #endif
6078 	}
6079 	/* "fifth, if neither of the SYN or RST bits is set then
6080 	 * drop the segment and return."
6081 	 */
6082 
6083 discard_and_undo:
6084 	tcp_clear_options(&tp->rx_opt);
6085 	tp->rx_opt.mss_clamp = saved_clamp;
6086 	goto discard;
6087 
6088 reset_and_undo:
6089 	tcp_clear_options(&tp->rx_opt);
6090 	tp->rx_opt.mss_clamp = saved_clamp;
6091 	return 1;
6092 }
6093 
6094 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6095 {
6096 	struct request_sock *req;
6097 
6098 	tcp_try_undo_loss(sk, false);
6099 
6100 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6101 	tcp_sk(sk)->retrans_stamp = 0;
6102 	inet_csk(sk)->icsk_retransmits = 0;
6103 
6104 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6105 	 * we no longer need req so release it.
6106 	 */
6107 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6108 					lockdep_sock_is_held(sk));
6109 	reqsk_fastopen_remove(sk, req, false);
6110 
6111 	/* Re-arm the timer because data may have been sent out.
6112 	 * This is similar to the regular data transmission case
6113 	 * when new data has just been ack'ed.
6114 	 *
6115 	 * (TFO) - we could try to be more aggressive and
6116 	 * retransmitting any data sooner based on when they
6117 	 * are sent out.
6118 	 */
6119 	tcp_rearm_rto(sk);
6120 }
6121 
6122 /*
6123  *	This function implements the receiving procedure of RFC 793 for
6124  *	all states except ESTABLISHED and TIME_WAIT.
6125  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6126  *	address independent.
6127  */
6128 
6129 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6130 {
6131 	struct tcp_sock *tp = tcp_sk(sk);
6132 	struct inet_connection_sock *icsk = inet_csk(sk);
6133 	const struct tcphdr *th = tcp_hdr(skb);
6134 	struct request_sock *req;
6135 	int queued = 0;
6136 	bool acceptable;
6137 
6138 	switch (sk->sk_state) {
6139 	case TCP_CLOSE:
6140 		goto discard;
6141 
6142 	case TCP_LISTEN:
6143 		if (th->ack)
6144 			return 1;
6145 
6146 		if (th->rst)
6147 			goto discard;
6148 
6149 		if (th->syn) {
6150 			if (th->fin)
6151 				goto discard;
6152 			/* It is possible that we process SYN packets from backlog,
6153 			 * so we need to make sure to disable BH and RCU right there.
6154 			 */
6155 			rcu_read_lock();
6156 			local_bh_disable();
6157 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6158 			local_bh_enable();
6159 			rcu_read_unlock();
6160 
6161 			if (!acceptable)
6162 				return 1;
6163 			consume_skb(skb);
6164 			return 0;
6165 		}
6166 		goto discard;
6167 
6168 	case TCP_SYN_SENT:
6169 		tp->rx_opt.saw_tstamp = 0;
6170 		tcp_mstamp_refresh(tp);
6171 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6172 		if (queued >= 0)
6173 			return queued;
6174 
6175 		/* Do step6 onward by hand. */
6176 		tcp_urg(sk, skb, th);
6177 		__kfree_skb(skb);
6178 		tcp_data_snd_check(sk);
6179 		return 0;
6180 	}
6181 
6182 	tcp_mstamp_refresh(tp);
6183 	tp->rx_opt.saw_tstamp = 0;
6184 	req = rcu_dereference_protected(tp->fastopen_rsk,
6185 					lockdep_sock_is_held(sk));
6186 	if (req) {
6187 		bool req_stolen;
6188 
6189 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6190 		    sk->sk_state != TCP_FIN_WAIT1);
6191 
6192 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6193 			goto discard;
6194 	}
6195 
6196 	if (!th->ack && !th->rst && !th->syn)
6197 		goto discard;
6198 
6199 	if (!tcp_validate_incoming(sk, skb, th, 0))
6200 		return 0;
6201 
6202 	/* step 5: check the ACK field */
6203 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6204 				      FLAG_UPDATE_TS_RECENT |
6205 				      FLAG_NO_CHALLENGE_ACK) > 0;
6206 
6207 	if (!acceptable) {
6208 		if (sk->sk_state == TCP_SYN_RECV)
6209 			return 1;	/* send one RST */
6210 		tcp_send_challenge_ack(sk, skb);
6211 		goto discard;
6212 	}
6213 	switch (sk->sk_state) {
6214 	case TCP_SYN_RECV:
6215 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6216 		if (!tp->srtt_us)
6217 			tcp_synack_rtt_meas(sk, req);
6218 
6219 		if (req) {
6220 			tcp_rcv_synrecv_state_fastopen(sk);
6221 		} else {
6222 			tcp_try_undo_spurious_syn(sk);
6223 			tp->retrans_stamp = 0;
6224 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6225 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6226 		}
6227 		smp_mb();
6228 		tcp_set_state(sk, TCP_ESTABLISHED);
6229 		sk->sk_state_change(sk);
6230 
6231 		/* Note, that this wakeup is only for marginal crossed SYN case.
6232 		 * Passively open sockets are not waked up, because
6233 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6234 		 */
6235 		if (sk->sk_socket)
6236 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6237 
6238 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6239 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6240 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6241 
6242 		if (tp->rx_opt.tstamp_ok)
6243 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6244 
6245 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6246 			tcp_update_pacing_rate(sk);
6247 
6248 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6249 		tp->lsndtime = tcp_jiffies32;
6250 
6251 		tcp_initialize_rcv_mss(sk);
6252 		tcp_fast_path_on(tp);
6253 		break;
6254 
6255 	case TCP_FIN_WAIT1: {
6256 		int tmo;
6257 
6258 		if (req)
6259 			tcp_rcv_synrecv_state_fastopen(sk);
6260 
6261 		if (tp->snd_una != tp->write_seq)
6262 			break;
6263 
6264 		tcp_set_state(sk, TCP_FIN_WAIT2);
6265 		sk->sk_shutdown |= SEND_SHUTDOWN;
6266 
6267 		sk_dst_confirm(sk);
6268 
6269 		if (!sock_flag(sk, SOCK_DEAD)) {
6270 			/* Wake up lingering close() */
6271 			sk->sk_state_change(sk);
6272 			break;
6273 		}
6274 
6275 		if (tp->linger2 < 0) {
6276 			tcp_done(sk);
6277 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6278 			return 1;
6279 		}
6280 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6281 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6282 			/* Receive out of order FIN after close() */
6283 			if (tp->syn_fastopen && th->fin)
6284 				tcp_fastopen_active_disable(sk);
6285 			tcp_done(sk);
6286 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6287 			return 1;
6288 		}
6289 
6290 		tmo = tcp_fin_time(sk);
6291 		if (tmo > TCP_TIMEWAIT_LEN) {
6292 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6293 		} else if (th->fin || sock_owned_by_user(sk)) {
6294 			/* Bad case. We could lose such FIN otherwise.
6295 			 * It is not a big problem, but it looks confusing
6296 			 * and not so rare event. We still can lose it now,
6297 			 * if it spins in bh_lock_sock(), but it is really
6298 			 * marginal case.
6299 			 */
6300 			inet_csk_reset_keepalive_timer(sk, tmo);
6301 		} else {
6302 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6303 			goto discard;
6304 		}
6305 		break;
6306 	}
6307 
6308 	case TCP_CLOSING:
6309 		if (tp->snd_una == tp->write_seq) {
6310 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6311 			goto discard;
6312 		}
6313 		break;
6314 
6315 	case TCP_LAST_ACK:
6316 		if (tp->snd_una == tp->write_seq) {
6317 			tcp_update_metrics(sk);
6318 			tcp_done(sk);
6319 			goto discard;
6320 		}
6321 		break;
6322 	}
6323 
6324 	/* step 6: check the URG bit */
6325 	tcp_urg(sk, skb, th);
6326 
6327 	/* step 7: process the segment text */
6328 	switch (sk->sk_state) {
6329 	case TCP_CLOSE_WAIT:
6330 	case TCP_CLOSING:
6331 	case TCP_LAST_ACK:
6332 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6333 			break;
6334 		/* fall through */
6335 	case TCP_FIN_WAIT1:
6336 	case TCP_FIN_WAIT2:
6337 		/* RFC 793 says to queue data in these states,
6338 		 * RFC 1122 says we MUST send a reset.
6339 		 * BSD 4.4 also does reset.
6340 		 */
6341 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6342 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6343 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6344 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6345 				tcp_reset(sk);
6346 				return 1;
6347 			}
6348 		}
6349 		/* Fall through */
6350 	case TCP_ESTABLISHED:
6351 		tcp_data_queue(sk, skb);
6352 		queued = 1;
6353 		break;
6354 	}
6355 
6356 	/* tcp_data could move socket to TIME-WAIT */
6357 	if (sk->sk_state != TCP_CLOSE) {
6358 		tcp_data_snd_check(sk);
6359 		tcp_ack_snd_check(sk);
6360 	}
6361 
6362 	if (!queued) {
6363 discard:
6364 		tcp_drop(sk, skb);
6365 	}
6366 	return 0;
6367 }
6368 EXPORT_SYMBOL(tcp_rcv_state_process);
6369 
6370 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6371 {
6372 	struct inet_request_sock *ireq = inet_rsk(req);
6373 
6374 	if (family == AF_INET)
6375 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6376 				    &ireq->ir_rmt_addr, port);
6377 #if IS_ENABLED(CONFIG_IPV6)
6378 	else if (family == AF_INET6)
6379 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6380 				    &ireq->ir_v6_rmt_addr, port);
6381 #endif
6382 }
6383 
6384 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6385  *
6386  * If we receive a SYN packet with these bits set, it means a
6387  * network is playing bad games with TOS bits. In order to
6388  * avoid possible false congestion notifications, we disable
6389  * TCP ECN negotiation.
6390  *
6391  * Exception: tcp_ca wants ECN. This is required for DCTCP
6392  * congestion control: Linux DCTCP asserts ECT on all packets,
6393  * including SYN, which is most optimal solution; however,
6394  * others, such as FreeBSD do not.
6395  *
6396  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6397  * set, indicating the use of a future TCP extension (such as AccECN). See
6398  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6399  * extensions.
6400  */
6401 static void tcp_ecn_create_request(struct request_sock *req,
6402 				   const struct sk_buff *skb,
6403 				   const struct sock *listen_sk,
6404 				   const struct dst_entry *dst)
6405 {
6406 	const struct tcphdr *th = tcp_hdr(skb);
6407 	const struct net *net = sock_net(listen_sk);
6408 	bool th_ecn = th->ece && th->cwr;
6409 	bool ect, ecn_ok;
6410 	u32 ecn_ok_dst;
6411 
6412 	if (!th_ecn)
6413 		return;
6414 
6415 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6416 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6417 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6418 
6419 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6420 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6421 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6422 		inet_rsk(req)->ecn_ok = 1;
6423 }
6424 
6425 static void tcp_openreq_init(struct request_sock *req,
6426 			     const struct tcp_options_received *rx_opt,
6427 			     struct sk_buff *skb, const struct sock *sk)
6428 {
6429 	struct inet_request_sock *ireq = inet_rsk(req);
6430 
6431 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6432 	req->cookie_ts = 0;
6433 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6434 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6435 	tcp_rsk(req)->snt_synack = 0;
6436 	tcp_rsk(req)->last_oow_ack_time = 0;
6437 	req->mss = rx_opt->mss_clamp;
6438 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6439 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6440 	ireq->sack_ok = rx_opt->sack_ok;
6441 	ireq->snd_wscale = rx_opt->snd_wscale;
6442 	ireq->wscale_ok = rx_opt->wscale_ok;
6443 	ireq->acked = 0;
6444 	ireq->ecn_ok = 0;
6445 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6446 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6447 	ireq->ir_mark = inet_request_mark(sk, skb);
6448 #if IS_ENABLED(CONFIG_SMC)
6449 	ireq->smc_ok = rx_opt->smc_ok;
6450 #endif
6451 }
6452 
6453 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6454 				      struct sock *sk_listener,
6455 				      bool attach_listener)
6456 {
6457 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6458 					       attach_listener);
6459 
6460 	if (req) {
6461 		struct inet_request_sock *ireq = inet_rsk(req);
6462 
6463 		ireq->ireq_opt = NULL;
6464 #if IS_ENABLED(CONFIG_IPV6)
6465 		ireq->pktopts = NULL;
6466 #endif
6467 		atomic64_set(&ireq->ir_cookie, 0);
6468 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6469 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6470 		ireq->ireq_family = sk_listener->sk_family;
6471 	}
6472 
6473 	return req;
6474 }
6475 EXPORT_SYMBOL(inet_reqsk_alloc);
6476 
6477 /*
6478  * Return true if a syncookie should be sent
6479  */
6480 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6481 {
6482 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6483 	const char *msg = "Dropping request";
6484 	bool want_cookie = false;
6485 	struct net *net = sock_net(sk);
6486 
6487 #ifdef CONFIG_SYN_COOKIES
6488 	if (net->ipv4.sysctl_tcp_syncookies) {
6489 		msg = "Sending cookies";
6490 		want_cookie = true;
6491 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6492 	} else
6493 #endif
6494 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6495 
6496 	if (!queue->synflood_warned &&
6497 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6498 	    xchg(&queue->synflood_warned, 1) == 0)
6499 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6500 				     proto, sk->sk_num, msg);
6501 
6502 	return want_cookie;
6503 }
6504 
6505 static void tcp_reqsk_record_syn(const struct sock *sk,
6506 				 struct request_sock *req,
6507 				 const struct sk_buff *skb)
6508 {
6509 	if (tcp_sk(sk)->save_syn) {
6510 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6511 		u32 *copy;
6512 
6513 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6514 		if (copy) {
6515 			copy[0] = len;
6516 			memcpy(&copy[1], skb_network_header(skb), len);
6517 			req->saved_syn = copy;
6518 		}
6519 	}
6520 }
6521 
6522 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6523  * used for SYN cookie generation.
6524  */
6525 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6526 			  const struct tcp_request_sock_ops *af_ops,
6527 			  struct sock *sk, struct tcphdr *th)
6528 {
6529 	struct tcp_sock *tp = tcp_sk(sk);
6530 	u16 mss;
6531 
6532 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6533 	    !inet_csk_reqsk_queue_is_full(sk))
6534 		return 0;
6535 
6536 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6537 		return 0;
6538 
6539 	if (sk_acceptq_is_full(sk)) {
6540 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6541 		return 0;
6542 	}
6543 
6544 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6545 	if (!mss)
6546 		mss = af_ops->mss_clamp;
6547 
6548 	return mss;
6549 }
6550 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6551 
6552 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6553 		     const struct tcp_request_sock_ops *af_ops,
6554 		     struct sock *sk, struct sk_buff *skb)
6555 {
6556 	struct tcp_fastopen_cookie foc = { .len = -1 };
6557 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6558 	struct tcp_options_received tmp_opt;
6559 	struct tcp_sock *tp = tcp_sk(sk);
6560 	struct net *net = sock_net(sk);
6561 	struct sock *fastopen_sk = NULL;
6562 	struct request_sock *req;
6563 	bool want_cookie = false;
6564 	struct dst_entry *dst;
6565 	struct flowi fl;
6566 
6567 	/* TW buckets are converted to open requests without
6568 	 * limitations, they conserve resources and peer is
6569 	 * evidently real one.
6570 	 */
6571 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6572 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6573 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6574 		if (!want_cookie)
6575 			goto drop;
6576 	}
6577 
6578 	if (sk_acceptq_is_full(sk)) {
6579 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6580 		goto drop;
6581 	}
6582 
6583 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6584 	if (!req)
6585 		goto drop;
6586 
6587 	tcp_rsk(req)->af_specific = af_ops;
6588 	tcp_rsk(req)->ts_off = 0;
6589 
6590 	tcp_clear_options(&tmp_opt);
6591 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6592 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6593 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6594 			  want_cookie ? NULL : &foc);
6595 
6596 	if (want_cookie && !tmp_opt.saw_tstamp)
6597 		tcp_clear_options(&tmp_opt);
6598 
6599 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6600 		tmp_opt.smc_ok = 0;
6601 
6602 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6603 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6604 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6605 
6606 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6607 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6608 
6609 	af_ops->init_req(req, sk, skb);
6610 
6611 	if (security_inet_conn_request(sk, skb, req))
6612 		goto drop_and_free;
6613 
6614 	if (tmp_opt.tstamp_ok)
6615 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6616 
6617 	dst = af_ops->route_req(sk, &fl, req);
6618 	if (!dst)
6619 		goto drop_and_free;
6620 
6621 	if (!want_cookie && !isn) {
6622 		/* Kill the following clause, if you dislike this way. */
6623 		if (!net->ipv4.sysctl_tcp_syncookies &&
6624 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6625 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6626 		    !tcp_peer_is_proven(req, dst)) {
6627 			/* Without syncookies last quarter of
6628 			 * backlog is filled with destinations,
6629 			 * proven to be alive.
6630 			 * It means that we continue to communicate
6631 			 * to destinations, already remembered
6632 			 * to the moment of synflood.
6633 			 */
6634 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6635 				    rsk_ops->family);
6636 			goto drop_and_release;
6637 		}
6638 
6639 		isn = af_ops->init_seq(skb);
6640 	}
6641 
6642 	tcp_ecn_create_request(req, skb, sk, dst);
6643 
6644 	if (want_cookie) {
6645 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6646 		req->cookie_ts = tmp_opt.tstamp_ok;
6647 		if (!tmp_opt.tstamp_ok)
6648 			inet_rsk(req)->ecn_ok = 0;
6649 	}
6650 
6651 	tcp_rsk(req)->snt_isn = isn;
6652 	tcp_rsk(req)->txhash = net_tx_rndhash();
6653 	tcp_openreq_init_rwin(req, sk, dst);
6654 	sk_rx_queue_set(req_to_sk(req), skb);
6655 	if (!want_cookie) {
6656 		tcp_reqsk_record_syn(sk, req, skb);
6657 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6658 	}
6659 	if (fastopen_sk) {
6660 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6661 				    &foc, TCP_SYNACK_FASTOPEN);
6662 		/* Add the child socket directly into the accept queue */
6663 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6664 			reqsk_fastopen_remove(fastopen_sk, req, false);
6665 			bh_unlock_sock(fastopen_sk);
6666 			sock_put(fastopen_sk);
6667 			goto drop_and_free;
6668 		}
6669 		sk->sk_data_ready(sk);
6670 		bh_unlock_sock(fastopen_sk);
6671 		sock_put(fastopen_sk);
6672 	} else {
6673 		tcp_rsk(req)->tfo_listener = false;
6674 		if (!want_cookie)
6675 			inet_csk_reqsk_queue_hash_add(sk, req,
6676 				tcp_timeout_init((struct sock *)req));
6677 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6678 				    !want_cookie ? TCP_SYNACK_NORMAL :
6679 						   TCP_SYNACK_COOKIE);
6680 		if (want_cookie) {
6681 			reqsk_free(req);
6682 			return 0;
6683 		}
6684 	}
6685 	reqsk_put(req);
6686 	return 0;
6687 
6688 drop_and_release:
6689 	dst_release(dst);
6690 drop_and_free:
6691 	__reqsk_free(req);
6692 drop:
6693 	tcp_listendrop(sk);
6694 	return 0;
6695 }
6696 EXPORT_SYMBOL(tcp_conn_request);
6697