1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_deferred_inc(&clean_acked_data_enabled); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 133 void clean_acked_data_flush(void) 134 { 135 static_key_deferred_flush(&clean_acked_data_enabled); 136 } 137 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 138 #endif 139 140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 141 unsigned int len) 142 { 143 static bool __once __read_mostly; 144 145 if (!__once) { 146 struct net_device *dev; 147 148 __once = true; 149 150 rcu_read_lock(); 151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 152 if (!dev || len >= dev->mtu) 153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 154 dev ? dev->name : "Unknown driver"); 155 rcu_read_unlock(); 156 } 157 } 158 159 /* Adapt the MSS value used to make delayed ack decision to the 160 * real world. 161 */ 162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const unsigned int lss = icsk->icsk_ack.last_seg_size; 166 unsigned int len; 167 168 icsk->icsk_ack.last_seg_size = 0; 169 170 /* skb->len may jitter because of SACKs, even if peer 171 * sends good full-sized frames. 172 */ 173 len = skb_shinfo(skb)->gso_size ? : skb->len; 174 if (len >= icsk->icsk_ack.rcv_mss) { 175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 176 tcp_sk(sk)->advmss); 177 /* Account for possibly-removed options */ 178 if (unlikely(len > icsk->icsk_ack.rcv_mss + 179 MAX_TCP_OPTION_SPACE)) 180 tcp_gro_dev_warn(sk, skb, len); 181 } else { 182 /* Otherwise, we make more careful check taking into account, 183 * that SACKs block is variable. 184 * 185 * "len" is invariant segment length, including TCP header. 186 */ 187 len += skb->data - skb_transport_header(skb); 188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 189 /* If PSH is not set, packet should be 190 * full sized, provided peer TCP is not badly broken. 191 * This observation (if it is correct 8)) allows 192 * to handle super-low mtu links fairly. 193 */ 194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 196 /* Subtract also invariant (if peer is RFC compliant), 197 * tcp header plus fixed timestamp option length. 198 * Resulting "len" is MSS free of SACK jitter. 199 */ 200 len -= tcp_sk(sk)->tcp_header_len; 201 icsk->icsk_ack.last_seg_size = len; 202 if (len == lss) { 203 icsk->icsk_ack.rcv_mss = len; 204 return; 205 } 206 } 207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 210 } 211 } 212 213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 214 { 215 struct inet_connection_sock *icsk = inet_csk(sk); 216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 217 218 if (quickacks == 0) 219 quickacks = 2; 220 quickacks = min(quickacks, max_quickacks); 221 if (quickacks > icsk->icsk_ack.quick) 222 icsk->icsk_ack.quick = quickacks; 223 } 224 225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 226 { 227 struct inet_connection_sock *icsk = inet_csk(sk); 228 229 tcp_incr_quickack(sk, max_quickacks); 230 inet_csk_exit_pingpong_mode(sk); 231 icsk->icsk_ack.ato = TCP_ATO_MIN; 232 } 233 EXPORT_SYMBOL(tcp_enter_quickack_mode); 234 235 /* Send ACKs quickly, if "quick" count is not exhausted 236 * and the session is not interactive. 237 */ 238 239 static bool tcp_in_quickack_mode(struct sock *sk) 240 { 241 const struct inet_connection_sock *icsk = inet_csk(sk); 242 const struct dst_entry *dst = __sk_dst_get(sk); 243 244 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 246 } 247 248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 249 { 250 if (tp->ecn_flags & TCP_ECN_OK) 251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 252 } 253 254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 255 { 256 if (tcp_hdr(skb)->cwr) { 257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 258 259 /* If the sender is telling us it has entered CWR, then its 260 * cwnd may be very low (even just 1 packet), so we should ACK 261 * immediately. 262 */ 263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 264 } 265 } 266 267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 268 { 269 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 270 } 271 272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 273 { 274 struct tcp_sock *tp = tcp_sk(sk); 275 276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 277 case INET_ECN_NOT_ECT: 278 /* Funny extension: if ECT is not set on a segment, 279 * and we already seen ECT on a previous segment, 280 * it is probably a retransmit. 281 */ 282 if (tp->ecn_flags & TCP_ECN_SEEN) 283 tcp_enter_quickack_mode(sk, 2); 284 break; 285 case INET_ECN_CE: 286 if (tcp_ca_needs_ecn(sk)) 287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 288 289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 290 /* Better not delay acks, sender can have a very low cwnd */ 291 tcp_enter_quickack_mode(sk, 2); 292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 293 } 294 tp->ecn_flags |= TCP_ECN_SEEN; 295 break; 296 default: 297 if (tcp_ca_needs_ecn(sk)) 298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 299 tp->ecn_flags |= TCP_ECN_SEEN; 300 break; 301 } 302 } 303 304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 305 { 306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 307 __tcp_ecn_check_ce(sk, skb); 308 } 309 310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 311 { 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 313 tp->ecn_flags &= ~TCP_ECN_OK; 314 } 315 316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 317 { 318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 319 tp->ecn_flags &= ~TCP_ECN_OK; 320 } 321 322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 323 { 324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 325 return true; 326 return false; 327 } 328 329 /* Buffer size and advertised window tuning. 330 * 331 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 332 */ 333 334 static void tcp_sndbuf_expand(struct sock *sk) 335 { 336 const struct tcp_sock *tp = tcp_sk(sk); 337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 338 int sndmem, per_mss; 339 u32 nr_segs; 340 341 /* Worst case is non GSO/TSO : each frame consumes one skb 342 * and skb->head is kmalloced using power of two area of memory 343 */ 344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 345 MAX_TCP_HEADER + 346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 347 348 per_mss = roundup_pow_of_two(per_mss) + 349 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 350 351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 353 354 /* Fast Recovery (RFC 5681 3.2) : 355 * Cubic needs 1.7 factor, rounded to 2 to include 356 * extra cushion (application might react slowly to EPOLLOUT) 357 */ 358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 359 sndmem *= nr_segs * per_mss; 360 361 if (sk->sk_sndbuf < sndmem) 362 WRITE_ONCE(sk->sk_sndbuf, 363 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 364 } 365 366 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 367 * 368 * All tcp_full_space() is split to two parts: "network" buffer, allocated 369 * forward and advertised in receiver window (tp->rcv_wnd) and 370 * "application buffer", required to isolate scheduling/application 371 * latencies from network. 372 * window_clamp is maximal advertised window. It can be less than 373 * tcp_full_space(), in this case tcp_full_space() - window_clamp 374 * is reserved for "application" buffer. The less window_clamp is 375 * the smoother our behaviour from viewpoint of network, but the lower 376 * throughput and the higher sensitivity of the connection to losses. 8) 377 * 378 * rcv_ssthresh is more strict window_clamp used at "slow start" 379 * phase to predict further behaviour of this connection. 380 * It is used for two goals: 381 * - to enforce header prediction at sender, even when application 382 * requires some significant "application buffer". It is check #1. 383 * - to prevent pruning of receive queue because of misprediction 384 * of receiver window. Check #2. 385 * 386 * The scheme does not work when sender sends good segments opening 387 * window and then starts to feed us spaghetti. But it should work 388 * in common situations. Otherwise, we have to rely on queue collapsing. 389 */ 390 391 /* Slow part of check#2. */ 392 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 393 { 394 struct tcp_sock *tp = tcp_sk(sk); 395 /* Optimize this! */ 396 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 397 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 398 399 while (tp->rcv_ssthresh <= window) { 400 if (truesize <= skb->len) 401 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 402 403 truesize >>= 1; 404 window >>= 1; 405 } 406 return 0; 407 } 408 409 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 410 { 411 struct tcp_sock *tp = tcp_sk(sk); 412 int room; 413 414 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 415 416 /* Check #1 */ 417 if (room > 0 && !tcp_under_memory_pressure(sk)) { 418 int incr; 419 420 /* Check #2. Increase window, if skb with such overhead 421 * will fit to rcvbuf in future. 422 */ 423 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 424 incr = 2 * tp->advmss; 425 else 426 incr = __tcp_grow_window(sk, skb); 427 428 if (incr) { 429 incr = max_t(int, incr, 2 * skb->len); 430 tp->rcv_ssthresh += min(room, incr); 431 inet_csk(sk)->icsk_ack.quick |= 1; 432 } 433 } 434 } 435 436 /* 3. Try to fixup all. It is made immediately after connection enters 437 * established state. 438 */ 439 void tcp_init_buffer_space(struct sock *sk) 440 { 441 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 442 struct tcp_sock *tp = tcp_sk(sk); 443 int maxwin; 444 445 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 446 tcp_sndbuf_expand(sk); 447 448 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 449 tcp_mstamp_refresh(tp); 450 tp->rcvq_space.time = tp->tcp_mstamp; 451 tp->rcvq_space.seq = tp->copied_seq; 452 453 maxwin = tcp_full_space(sk); 454 455 if (tp->window_clamp >= maxwin) { 456 tp->window_clamp = maxwin; 457 458 if (tcp_app_win && maxwin > 4 * tp->advmss) 459 tp->window_clamp = max(maxwin - 460 (maxwin >> tcp_app_win), 461 4 * tp->advmss); 462 } 463 464 /* Force reservation of one segment. */ 465 if (tcp_app_win && 466 tp->window_clamp > 2 * tp->advmss && 467 tp->window_clamp + tp->advmss > maxwin) 468 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 469 470 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 471 tp->snd_cwnd_stamp = tcp_jiffies32; 472 } 473 474 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 475 static void tcp_clamp_window(struct sock *sk) 476 { 477 struct tcp_sock *tp = tcp_sk(sk); 478 struct inet_connection_sock *icsk = inet_csk(sk); 479 struct net *net = sock_net(sk); 480 481 icsk->icsk_ack.quick = 0; 482 483 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 484 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 485 !tcp_under_memory_pressure(sk) && 486 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 487 WRITE_ONCE(sk->sk_rcvbuf, 488 min(atomic_read(&sk->sk_rmem_alloc), 489 net->ipv4.sysctl_tcp_rmem[2])); 490 } 491 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 492 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 493 } 494 495 /* Initialize RCV_MSS value. 496 * RCV_MSS is an our guess about MSS used by the peer. 497 * We haven't any direct information about the MSS. 498 * It's better to underestimate the RCV_MSS rather than overestimate. 499 * Overestimations make us ACKing less frequently than needed. 500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 501 */ 502 void tcp_initialize_rcv_mss(struct sock *sk) 503 { 504 const struct tcp_sock *tp = tcp_sk(sk); 505 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 506 507 hint = min(hint, tp->rcv_wnd / 2); 508 hint = min(hint, TCP_MSS_DEFAULT); 509 hint = max(hint, TCP_MIN_MSS); 510 511 inet_csk(sk)->icsk_ack.rcv_mss = hint; 512 } 513 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 514 515 /* Receiver "autotuning" code. 516 * 517 * The algorithm for RTT estimation w/o timestamps is based on 518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 519 * <http://public.lanl.gov/radiant/pubs.html#DRS> 520 * 521 * More detail on this code can be found at 522 * <http://staff.psc.edu/jheffner/>, 523 * though this reference is out of date. A new paper 524 * is pending. 525 */ 526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 527 { 528 u32 new_sample = tp->rcv_rtt_est.rtt_us; 529 long m = sample; 530 531 if (new_sample != 0) { 532 /* If we sample in larger samples in the non-timestamp 533 * case, we could grossly overestimate the RTT especially 534 * with chatty applications or bulk transfer apps which 535 * are stalled on filesystem I/O. 536 * 537 * Also, since we are only going for a minimum in the 538 * non-timestamp case, we do not smooth things out 539 * else with timestamps disabled convergence takes too 540 * long. 541 */ 542 if (!win_dep) { 543 m -= (new_sample >> 3); 544 new_sample += m; 545 } else { 546 m <<= 3; 547 if (m < new_sample) 548 new_sample = m; 549 } 550 } else { 551 /* No previous measure. */ 552 new_sample = m << 3; 553 } 554 555 tp->rcv_rtt_est.rtt_us = new_sample; 556 } 557 558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 559 { 560 u32 delta_us; 561 562 if (tp->rcv_rtt_est.time == 0) 563 goto new_measure; 564 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 565 return; 566 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 567 if (!delta_us) 568 delta_us = 1; 569 tcp_rcv_rtt_update(tp, delta_us, 1); 570 571 new_measure: 572 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 573 tp->rcv_rtt_est.time = tp->tcp_mstamp; 574 } 575 576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 577 const struct sk_buff *skb) 578 { 579 struct tcp_sock *tp = tcp_sk(sk); 580 581 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 582 return; 583 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 584 585 if (TCP_SKB_CB(skb)->end_seq - 586 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 587 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 588 u32 delta_us; 589 590 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 591 if (!delta) 592 delta = 1; 593 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 594 tcp_rcv_rtt_update(tp, delta_us, 0); 595 } 596 } 597 } 598 599 /* 600 * This function should be called every time data is copied to user space. 601 * It calculates the appropriate TCP receive buffer space. 602 */ 603 void tcp_rcv_space_adjust(struct sock *sk) 604 { 605 struct tcp_sock *tp = tcp_sk(sk); 606 u32 copied; 607 int time; 608 609 trace_tcp_rcv_space_adjust(sk); 610 611 tcp_mstamp_refresh(tp); 612 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 613 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 614 return; 615 616 /* Number of bytes copied to user in last RTT */ 617 copied = tp->copied_seq - tp->rcvq_space.seq; 618 if (copied <= tp->rcvq_space.space) 619 goto new_measure; 620 621 /* A bit of theory : 622 * copied = bytes received in previous RTT, our base window 623 * To cope with packet losses, we need a 2x factor 624 * To cope with slow start, and sender growing its cwin by 100 % 625 * every RTT, we need a 4x factor, because the ACK we are sending 626 * now is for the next RTT, not the current one : 627 * <prev RTT . ><current RTT .. ><next RTT .... > 628 */ 629 630 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 632 int rcvmem, rcvbuf; 633 u64 rcvwin, grow; 634 635 /* minimal window to cope with packet losses, assuming 636 * steady state. Add some cushion because of small variations. 637 */ 638 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 639 640 /* Accommodate for sender rate increase (eg. slow start) */ 641 grow = rcvwin * (copied - tp->rcvq_space.space); 642 do_div(grow, tp->rcvq_space.space); 643 rcvwin += (grow << 1); 644 645 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 646 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 647 rcvmem += 128; 648 649 do_div(rcvwin, tp->advmss); 650 rcvbuf = min_t(u64, rcvwin * rcvmem, 651 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 652 if (rcvbuf > sk->sk_rcvbuf) { 653 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 654 655 /* Make the window clamp follow along. */ 656 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 657 } 658 } 659 tp->rcvq_space.space = copied; 660 661 new_measure: 662 tp->rcvq_space.seq = tp->copied_seq; 663 tp->rcvq_space.time = tp->tcp_mstamp; 664 } 665 666 /* There is something which you must keep in mind when you analyze the 667 * behavior of the tp->ato delayed ack timeout interval. When a 668 * connection starts up, we want to ack as quickly as possible. The 669 * problem is that "good" TCP's do slow start at the beginning of data 670 * transmission. The means that until we send the first few ACK's the 671 * sender will sit on his end and only queue most of his data, because 672 * he can only send snd_cwnd unacked packets at any given time. For 673 * each ACK we send, he increments snd_cwnd and transmits more of his 674 * queue. -DaveM 675 */ 676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 677 { 678 struct tcp_sock *tp = tcp_sk(sk); 679 struct inet_connection_sock *icsk = inet_csk(sk); 680 u32 now; 681 682 inet_csk_schedule_ack(sk); 683 684 tcp_measure_rcv_mss(sk, skb); 685 686 tcp_rcv_rtt_measure(tp); 687 688 now = tcp_jiffies32; 689 690 if (!icsk->icsk_ack.ato) { 691 /* The _first_ data packet received, initialize 692 * delayed ACK engine. 693 */ 694 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 695 icsk->icsk_ack.ato = TCP_ATO_MIN; 696 } else { 697 int m = now - icsk->icsk_ack.lrcvtime; 698 699 if (m <= TCP_ATO_MIN / 2) { 700 /* The fastest case is the first. */ 701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 702 } else if (m < icsk->icsk_ack.ato) { 703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 704 if (icsk->icsk_ack.ato > icsk->icsk_rto) 705 icsk->icsk_ack.ato = icsk->icsk_rto; 706 } else if (m > icsk->icsk_rto) { 707 /* Too long gap. Apparently sender failed to 708 * restart window, so that we send ACKs quickly. 709 */ 710 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 711 sk_mem_reclaim(sk); 712 } 713 } 714 icsk->icsk_ack.lrcvtime = now; 715 716 tcp_ecn_check_ce(sk, skb); 717 718 if (skb->len >= 128) 719 tcp_grow_window(sk, skb); 720 } 721 722 /* Called to compute a smoothed rtt estimate. The data fed to this 723 * routine either comes from timestamps, or from segments that were 724 * known _not_ to have been retransmitted [see Karn/Partridge 725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 726 * piece by Van Jacobson. 727 * NOTE: the next three routines used to be one big routine. 728 * To save cycles in the RFC 1323 implementation it was better to break 729 * it up into three procedures. -- erics 730 */ 731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 732 { 733 struct tcp_sock *tp = tcp_sk(sk); 734 long m = mrtt_us; /* RTT */ 735 u32 srtt = tp->srtt_us; 736 737 /* The following amusing code comes from Jacobson's 738 * article in SIGCOMM '88. Note that rtt and mdev 739 * are scaled versions of rtt and mean deviation. 740 * This is designed to be as fast as possible 741 * m stands for "measurement". 742 * 743 * On a 1990 paper the rto value is changed to: 744 * RTO = rtt + 4 * mdev 745 * 746 * Funny. This algorithm seems to be very broken. 747 * These formulae increase RTO, when it should be decreased, increase 748 * too slowly, when it should be increased quickly, decrease too quickly 749 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 750 * does not matter how to _calculate_ it. Seems, it was trap 751 * that VJ failed to avoid. 8) 752 */ 753 if (srtt != 0) { 754 m -= (srtt >> 3); /* m is now error in rtt est */ 755 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 756 if (m < 0) { 757 m = -m; /* m is now abs(error) */ 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 759 /* This is similar to one of Eifel findings. 760 * Eifel blocks mdev updates when rtt decreases. 761 * This solution is a bit different: we use finer gain 762 * for mdev in this case (alpha*beta). 763 * Like Eifel it also prevents growth of rto, 764 * but also it limits too fast rto decreases, 765 * happening in pure Eifel. 766 */ 767 if (m > 0) 768 m >>= 3; 769 } else { 770 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 771 } 772 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 773 if (tp->mdev_us > tp->mdev_max_us) { 774 tp->mdev_max_us = tp->mdev_us; 775 if (tp->mdev_max_us > tp->rttvar_us) 776 tp->rttvar_us = tp->mdev_max_us; 777 } 778 if (after(tp->snd_una, tp->rtt_seq)) { 779 if (tp->mdev_max_us < tp->rttvar_us) 780 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 781 tp->rtt_seq = tp->snd_nxt; 782 tp->mdev_max_us = tcp_rto_min_us(sk); 783 784 tcp_bpf_rtt(sk); 785 } 786 } else { 787 /* no previous measure. */ 788 srtt = m << 3; /* take the measured time to be rtt */ 789 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 790 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 791 tp->mdev_max_us = tp->rttvar_us; 792 tp->rtt_seq = tp->snd_nxt; 793 794 tcp_bpf_rtt(sk); 795 } 796 tp->srtt_us = max(1U, srtt); 797 } 798 799 static void tcp_update_pacing_rate(struct sock *sk) 800 { 801 const struct tcp_sock *tp = tcp_sk(sk); 802 u64 rate; 803 804 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 805 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 806 807 /* current rate is (cwnd * mss) / srtt 808 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 809 * In Congestion Avoidance phase, set it to 120 % the current rate. 810 * 811 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 812 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 813 * end of slow start and should slow down. 814 */ 815 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 816 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 817 else 818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 819 820 rate *= max(tp->snd_cwnd, tp->packets_out); 821 822 if (likely(tp->srtt_us)) 823 do_div(rate, tp->srtt_us); 824 825 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 826 * without any lock. We want to make sure compiler wont store 827 * intermediate values in this location. 828 */ 829 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 830 sk->sk_max_pacing_rate)); 831 } 832 833 /* Calculate rto without backoff. This is the second half of Van Jacobson's 834 * routine referred to above. 835 */ 836 static void tcp_set_rto(struct sock *sk) 837 { 838 const struct tcp_sock *tp = tcp_sk(sk); 839 /* Old crap is replaced with new one. 8) 840 * 841 * More seriously: 842 * 1. If rtt variance happened to be less 50msec, it is hallucination. 843 * It cannot be less due to utterly erratic ACK generation made 844 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 845 * to do with delayed acks, because at cwnd>2 true delack timeout 846 * is invisible. Actually, Linux-2.4 also generates erratic 847 * ACKs in some circumstances. 848 */ 849 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 850 851 /* 2. Fixups made earlier cannot be right. 852 * If we do not estimate RTO correctly without them, 853 * all the algo is pure shit and should be replaced 854 * with correct one. It is exactly, which we pretend to do. 855 */ 856 857 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 858 * guarantees that rto is higher. 859 */ 860 tcp_bound_rto(sk); 861 } 862 863 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 864 { 865 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 866 867 if (!cwnd) 868 cwnd = TCP_INIT_CWND; 869 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 870 } 871 872 /* Take a notice that peer is sending D-SACKs */ 873 static void tcp_dsack_seen(struct tcp_sock *tp) 874 { 875 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 876 tp->rack.dsack_seen = 1; 877 tp->dsack_dups++; 878 } 879 880 /* It's reordering when higher sequence was delivered (i.e. sacked) before 881 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 882 * distance is approximated in full-mss packet distance ("reordering"). 883 */ 884 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 885 const int ts) 886 { 887 struct tcp_sock *tp = tcp_sk(sk); 888 const u32 mss = tp->mss_cache; 889 u32 fack, metric; 890 891 fack = tcp_highest_sack_seq(tp); 892 if (!before(low_seq, fack)) 893 return; 894 895 metric = fack - low_seq; 896 if ((metric > tp->reordering * mss) && mss) { 897 #if FASTRETRANS_DEBUG > 1 898 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 899 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 900 tp->reordering, 901 0, 902 tp->sacked_out, 903 tp->undo_marker ? tp->undo_retrans : 0); 904 #endif 905 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 906 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 907 } 908 909 /* This exciting event is worth to be remembered. 8) */ 910 tp->reord_seen++; 911 NET_INC_STATS(sock_net(sk), 912 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 913 } 914 915 /* This must be called before lost_out is incremented */ 916 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 917 { 918 if (!tp->retransmit_skb_hint || 919 before(TCP_SKB_CB(skb)->seq, 920 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 921 tp->retransmit_skb_hint = skb; 922 } 923 924 /* Sum the number of packets on the wire we have marked as lost. 925 * There are two cases we care about here: 926 * a) Packet hasn't been marked lost (nor retransmitted), 927 * and this is the first loss. 928 * b) Packet has been marked both lost and retransmitted, 929 * and this means we think it was lost again. 930 */ 931 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 932 { 933 __u8 sacked = TCP_SKB_CB(skb)->sacked; 934 935 if (!(sacked & TCPCB_LOST) || 936 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 937 tp->lost += tcp_skb_pcount(skb); 938 } 939 940 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 941 { 942 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 943 tcp_verify_retransmit_hint(tp, skb); 944 945 tp->lost_out += tcp_skb_pcount(skb); 946 tcp_sum_lost(tp, skb); 947 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 948 } 949 } 950 951 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 952 { 953 tcp_verify_retransmit_hint(tp, skb); 954 955 tcp_sum_lost(tp, skb); 956 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 957 tp->lost_out += tcp_skb_pcount(skb); 958 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 959 } 960 } 961 962 /* This procedure tags the retransmission queue when SACKs arrive. 963 * 964 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 965 * Packets in queue with these bits set are counted in variables 966 * sacked_out, retrans_out and lost_out, correspondingly. 967 * 968 * Valid combinations are: 969 * Tag InFlight Description 970 * 0 1 - orig segment is in flight. 971 * S 0 - nothing flies, orig reached receiver. 972 * L 0 - nothing flies, orig lost by net. 973 * R 2 - both orig and retransmit are in flight. 974 * L|R 1 - orig is lost, retransmit is in flight. 975 * S|R 1 - orig reached receiver, retrans is still in flight. 976 * (L|S|R is logically valid, it could occur when L|R is sacked, 977 * but it is equivalent to plain S and code short-curcuits it to S. 978 * L|S is logically invalid, it would mean -1 packet in flight 8)) 979 * 980 * These 6 states form finite state machine, controlled by the following events: 981 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 982 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 983 * 3. Loss detection event of two flavors: 984 * A. Scoreboard estimator decided the packet is lost. 985 * A'. Reno "three dupacks" marks head of queue lost. 986 * B. SACK arrives sacking SND.NXT at the moment, when the 987 * segment was retransmitted. 988 * 4. D-SACK added new rule: D-SACK changes any tag to S. 989 * 990 * It is pleasant to note, that state diagram turns out to be commutative, 991 * so that we are allowed not to be bothered by order of our actions, 992 * when multiple events arrive simultaneously. (see the function below). 993 * 994 * Reordering detection. 995 * -------------------- 996 * Reordering metric is maximal distance, which a packet can be displaced 997 * in packet stream. With SACKs we can estimate it: 998 * 999 * 1. SACK fills old hole and the corresponding segment was not 1000 * ever retransmitted -> reordering. Alas, we cannot use it 1001 * when segment was retransmitted. 1002 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1003 * for retransmitted and already SACKed segment -> reordering.. 1004 * Both of these heuristics are not used in Loss state, when we cannot 1005 * account for retransmits accurately. 1006 * 1007 * SACK block validation. 1008 * ---------------------- 1009 * 1010 * SACK block range validation checks that the received SACK block fits to 1011 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1012 * Note that SND.UNA is not included to the range though being valid because 1013 * it means that the receiver is rather inconsistent with itself reporting 1014 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1015 * perfectly valid, however, in light of RFC2018 which explicitly states 1016 * that "SACK block MUST reflect the newest segment. Even if the newest 1017 * segment is going to be discarded ...", not that it looks very clever 1018 * in case of head skb. Due to potentional receiver driven attacks, we 1019 * choose to avoid immediate execution of a walk in write queue due to 1020 * reneging and defer head skb's loss recovery to standard loss recovery 1021 * procedure that will eventually trigger (nothing forbids us doing this). 1022 * 1023 * Implements also blockage to start_seq wrap-around. Problem lies in the 1024 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1025 * there's no guarantee that it will be before snd_nxt (n). The problem 1026 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1027 * wrap (s_w): 1028 * 1029 * <- outs wnd -> <- wrapzone -> 1030 * u e n u_w e_w s n_w 1031 * | | | | | | | 1032 * |<------------+------+----- TCP seqno space --------------+---------->| 1033 * ...-- <2^31 ->| |<--------... 1034 * ...---- >2^31 ------>| |<--------... 1035 * 1036 * Current code wouldn't be vulnerable but it's better still to discard such 1037 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1038 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1039 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1040 * equal to the ideal case (infinite seqno space without wrap caused issues). 1041 * 1042 * With D-SACK the lower bound is extended to cover sequence space below 1043 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1044 * again, D-SACK block must not to go across snd_una (for the same reason as 1045 * for the normal SACK blocks, explained above). But there all simplicity 1046 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1047 * fully below undo_marker they do not affect behavior in anyway and can 1048 * therefore be safely ignored. In rare cases (which are more or less 1049 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1050 * fragmentation and packet reordering past skb's retransmission. To consider 1051 * them correctly, the acceptable range must be extended even more though 1052 * the exact amount is rather hard to quantify. However, tp->max_window can 1053 * be used as an exaggerated estimate. 1054 */ 1055 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1056 u32 start_seq, u32 end_seq) 1057 { 1058 /* Too far in future, or reversed (interpretation is ambiguous) */ 1059 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1060 return false; 1061 1062 /* Nasty start_seq wrap-around check (see comments above) */ 1063 if (!before(start_seq, tp->snd_nxt)) 1064 return false; 1065 1066 /* In outstanding window? ...This is valid exit for D-SACKs too. 1067 * start_seq == snd_una is non-sensical (see comments above) 1068 */ 1069 if (after(start_seq, tp->snd_una)) 1070 return true; 1071 1072 if (!is_dsack || !tp->undo_marker) 1073 return false; 1074 1075 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1076 if (after(end_seq, tp->snd_una)) 1077 return false; 1078 1079 if (!before(start_seq, tp->undo_marker)) 1080 return true; 1081 1082 /* Too old */ 1083 if (!after(end_seq, tp->undo_marker)) 1084 return false; 1085 1086 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1087 * start_seq < undo_marker and end_seq >= undo_marker. 1088 */ 1089 return !before(start_seq, end_seq - tp->max_window); 1090 } 1091 1092 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1093 struct tcp_sack_block_wire *sp, int num_sacks, 1094 u32 prior_snd_una) 1095 { 1096 struct tcp_sock *tp = tcp_sk(sk); 1097 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1098 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1099 bool dup_sack = false; 1100 1101 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1102 dup_sack = true; 1103 tcp_dsack_seen(tp); 1104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1105 } else if (num_sacks > 1) { 1106 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1107 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1108 1109 if (!after(end_seq_0, end_seq_1) && 1110 !before(start_seq_0, start_seq_1)) { 1111 dup_sack = true; 1112 tcp_dsack_seen(tp); 1113 NET_INC_STATS(sock_net(sk), 1114 LINUX_MIB_TCPDSACKOFORECV); 1115 } 1116 } 1117 1118 /* D-SACK for already forgotten data... Do dumb counting. */ 1119 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1120 !after(end_seq_0, prior_snd_una) && 1121 after(end_seq_0, tp->undo_marker)) 1122 tp->undo_retrans--; 1123 1124 return dup_sack; 1125 } 1126 1127 struct tcp_sacktag_state { 1128 u32 reord; 1129 /* Timestamps for earliest and latest never-retransmitted segment 1130 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1131 * but congestion control should still get an accurate delay signal. 1132 */ 1133 u64 first_sackt; 1134 u64 last_sackt; 1135 struct rate_sample *rate; 1136 int flag; 1137 unsigned int mss_now; 1138 }; 1139 1140 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1141 * the incoming SACK may not exactly match but we can find smaller MSS 1142 * aligned portion of it that matches. Therefore we might need to fragment 1143 * which may fail and creates some hassle (caller must handle error case 1144 * returns). 1145 * 1146 * FIXME: this could be merged to shift decision code 1147 */ 1148 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1149 u32 start_seq, u32 end_seq) 1150 { 1151 int err; 1152 bool in_sack; 1153 unsigned int pkt_len; 1154 unsigned int mss; 1155 1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1157 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1158 1159 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1160 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1161 mss = tcp_skb_mss(skb); 1162 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1163 1164 if (!in_sack) { 1165 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1166 if (pkt_len < mss) 1167 pkt_len = mss; 1168 } else { 1169 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1170 if (pkt_len < mss) 1171 return -EINVAL; 1172 } 1173 1174 /* Round if necessary so that SACKs cover only full MSSes 1175 * and/or the remaining small portion (if present) 1176 */ 1177 if (pkt_len > mss) { 1178 unsigned int new_len = (pkt_len / mss) * mss; 1179 if (!in_sack && new_len < pkt_len) 1180 new_len += mss; 1181 pkt_len = new_len; 1182 } 1183 1184 if (pkt_len >= skb->len && !in_sack) 1185 return 0; 1186 1187 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1188 pkt_len, mss, GFP_ATOMIC); 1189 if (err < 0) 1190 return err; 1191 } 1192 1193 return in_sack; 1194 } 1195 1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1197 static u8 tcp_sacktag_one(struct sock *sk, 1198 struct tcp_sacktag_state *state, u8 sacked, 1199 u32 start_seq, u32 end_seq, 1200 int dup_sack, int pcount, 1201 u64 xmit_time) 1202 { 1203 struct tcp_sock *tp = tcp_sk(sk); 1204 1205 /* Account D-SACK for retransmitted packet. */ 1206 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1207 if (tp->undo_marker && tp->undo_retrans > 0 && 1208 after(end_seq, tp->undo_marker)) 1209 tp->undo_retrans--; 1210 if ((sacked & TCPCB_SACKED_ACKED) && 1211 before(start_seq, state->reord)) 1212 state->reord = start_seq; 1213 } 1214 1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1216 if (!after(end_seq, tp->snd_una)) 1217 return sacked; 1218 1219 if (!(sacked & TCPCB_SACKED_ACKED)) { 1220 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1221 1222 if (sacked & TCPCB_SACKED_RETRANS) { 1223 /* If the segment is not tagged as lost, 1224 * we do not clear RETRANS, believing 1225 * that retransmission is still in flight. 1226 */ 1227 if (sacked & TCPCB_LOST) { 1228 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1229 tp->lost_out -= pcount; 1230 tp->retrans_out -= pcount; 1231 } 1232 } else { 1233 if (!(sacked & TCPCB_RETRANS)) { 1234 /* New sack for not retransmitted frame, 1235 * which was in hole. It is reordering. 1236 */ 1237 if (before(start_seq, 1238 tcp_highest_sack_seq(tp)) && 1239 before(start_seq, state->reord)) 1240 state->reord = start_seq; 1241 1242 if (!after(end_seq, tp->high_seq)) 1243 state->flag |= FLAG_ORIG_SACK_ACKED; 1244 if (state->first_sackt == 0) 1245 state->first_sackt = xmit_time; 1246 state->last_sackt = xmit_time; 1247 } 1248 1249 if (sacked & TCPCB_LOST) { 1250 sacked &= ~TCPCB_LOST; 1251 tp->lost_out -= pcount; 1252 } 1253 } 1254 1255 sacked |= TCPCB_SACKED_ACKED; 1256 state->flag |= FLAG_DATA_SACKED; 1257 tp->sacked_out += pcount; 1258 tp->delivered += pcount; /* Out-of-order packets delivered */ 1259 1260 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1261 if (tp->lost_skb_hint && 1262 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1263 tp->lost_cnt_hint += pcount; 1264 } 1265 1266 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1267 * frames and clear it. undo_retrans is decreased above, L|R frames 1268 * are accounted above as well. 1269 */ 1270 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1271 sacked &= ~TCPCB_SACKED_RETRANS; 1272 tp->retrans_out -= pcount; 1273 } 1274 1275 return sacked; 1276 } 1277 1278 /* Shift newly-SACKed bytes from this skb to the immediately previous 1279 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1280 */ 1281 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1282 struct sk_buff *skb, 1283 struct tcp_sacktag_state *state, 1284 unsigned int pcount, int shifted, int mss, 1285 bool dup_sack) 1286 { 1287 struct tcp_sock *tp = tcp_sk(sk); 1288 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1289 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1290 1291 BUG_ON(!pcount); 1292 1293 /* Adjust counters and hints for the newly sacked sequence 1294 * range but discard the return value since prev is already 1295 * marked. We must tag the range first because the seq 1296 * advancement below implicitly advances 1297 * tcp_highest_sack_seq() when skb is highest_sack. 1298 */ 1299 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1300 start_seq, end_seq, dup_sack, pcount, 1301 tcp_skb_timestamp_us(skb)); 1302 tcp_rate_skb_delivered(sk, skb, state->rate); 1303 1304 if (skb == tp->lost_skb_hint) 1305 tp->lost_cnt_hint += pcount; 1306 1307 TCP_SKB_CB(prev)->end_seq += shifted; 1308 TCP_SKB_CB(skb)->seq += shifted; 1309 1310 tcp_skb_pcount_add(prev, pcount); 1311 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1312 tcp_skb_pcount_add(skb, -pcount); 1313 1314 /* When we're adding to gso_segs == 1, gso_size will be zero, 1315 * in theory this shouldn't be necessary but as long as DSACK 1316 * code can come after this skb later on it's better to keep 1317 * setting gso_size to something. 1318 */ 1319 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1320 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1321 1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1323 if (tcp_skb_pcount(skb) <= 1) 1324 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1325 1326 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1327 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1328 1329 if (skb->len > 0) { 1330 BUG_ON(!tcp_skb_pcount(skb)); 1331 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1332 return false; 1333 } 1334 1335 /* Whole SKB was eaten :-) */ 1336 1337 if (skb == tp->retransmit_skb_hint) 1338 tp->retransmit_skb_hint = prev; 1339 if (skb == tp->lost_skb_hint) { 1340 tp->lost_skb_hint = prev; 1341 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1342 } 1343 1344 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1345 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1346 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1347 TCP_SKB_CB(prev)->end_seq++; 1348 1349 if (skb == tcp_highest_sack(sk)) 1350 tcp_advance_highest_sack(sk, skb); 1351 1352 tcp_skb_collapse_tstamp(prev, skb); 1353 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1354 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1355 1356 tcp_rtx_queue_unlink_and_free(skb, sk); 1357 1358 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1359 1360 return true; 1361 } 1362 1363 /* I wish gso_size would have a bit more sane initialization than 1364 * something-or-zero which complicates things 1365 */ 1366 static int tcp_skb_seglen(const struct sk_buff *skb) 1367 { 1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1369 } 1370 1371 /* Shifting pages past head area doesn't work */ 1372 static int skb_can_shift(const struct sk_buff *skb) 1373 { 1374 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1375 } 1376 1377 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1378 int pcount, int shiftlen) 1379 { 1380 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1381 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1382 * to make sure not storing more than 65535 * 8 bytes per skb, 1383 * even if current MSS is bigger. 1384 */ 1385 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1386 return 0; 1387 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1388 return 0; 1389 return skb_shift(to, from, shiftlen); 1390 } 1391 1392 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1393 * skb. 1394 */ 1395 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1396 struct tcp_sacktag_state *state, 1397 u32 start_seq, u32 end_seq, 1398 bool dup_sack) 1399 { 1400 struct tcp_sock *tp = tcp_sk(sk); 1401 struct sk_buff *prev; 1402 int mss; 1403 int pcount = 0; 1404 int len; 1405 int in_sack; 1406 1407 /* Normally R but no L won't result in plain S */ 1408 if (!dup_sack && 1409 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1410 goto fallback; 1411 if (!skb_can_shift(skb)) 1412 goto fallback; 1413 /* This frame is about to be dropped (was ACKed). */ 1414 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1415 goto fallback; 1416 1417 /* Can only happen with delayed DSACK + discard craziness */ 1418 prev = skb_rb_prev(skb); 1419 if (!prev) 1420 goto fallback; 1421 1422 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1423 goto fallback; 1424 1425 if (!tcp_skb_can_collapse_to(prev)) 1426 goto fallback; 1427 1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1430 1431 if (in_sack) { 1432 len = skb->len; 1433 pcount = tcp_skb_pcount(skb); 1434 mss = tcp_skb_seglen(skb); 1435 1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1437 * drop this restriction as unnecessary 1438 */ 1439 if (mss != tcp_skb_seglen(prev)) 1440 goto fallback; 1441 } else { 1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1443 goto noop; 1444 /* CHECKME: This is non-MSS split case only?, this will 1445 * cause skipped skbs due to advancing loop btw, original 1446 * has that feature too 1447 */ 1448 if (tcp_skb_pcount(skb) <= 1) 1449 goto noop; 1450 1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1452 if (!in_sack) { 1453 /* TODO: head merge to next could be attempted here 1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1455 * though it might not be worth of the additional hassle 1456 * 1457 * ...we can probably just fallback to what was done 1458 * previously. We could try merging non-SACKed ones 1459 * as well but it probably isn't going to buy off 1460 * because later SACKs might again split them, and 1461 * it would make skb timestamp tracking considerably 1462 * harder problem. 1463 */ 1464 goto fallback; 1465 } 1466 1467 len = end_seq - TCP_SKB_CB(skb)->seq; 1468 BUG_ON(len < 0); 1469 BUG_ON(len > skb->len); 1470 1471 /* MSS boundaries should be honoured or else pcount will 1472 * severely break even though it makes things bit trickier. 1473 * Optimize common case to avoid most of the divides 1474 */ 1475 mss = tcp_skb_mss(skb); 1476 1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1478 * drop this restriction as unnecessary 1479 */ 1480 if (mss != tcp_skb_seglen(prev)) 1481 goto fallback; 1482 1483 if (len == mss) { 1484 pcount = 1; 1485 } else if (len < mss) { 1486 goto noop; 1487 } else { 1488 pcount = len / mss; 1489 len = pcount * mss; 1490 } 1491 } 1492 1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1495 goto fallback; 1496 1497 if (!tcp_skb_shift(prev, skb, pcount, len)) 1498 goto fallback; 1499 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1500 goto out; 1501 1502 /* Hole filled allows collapsing with the next as well, this is very 1503 * useful when hole on every nth skb pattern happens 1504 */ 1505 skb = skb_rb_next(prev); 1506 if (!skb) 1507 goto out; 1508 1509 if (!skb_can_shift(skb) || 1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1511 (mss != tcp_skb_seglen(skb))) 1512 goto out; 1513 1514 len = skb->len; 1515 pcount = tcp_skb_pcount(skb); 1516 if (tcp_skb_shift(prev, skb, pcount, len)) 1517 tcp_shifted_skb(sk, prev, skb, state, pcount, 1518 len, mss, 0); 1519 1520 out: 1521 return prev; 1522 1523 noop: 1524 return skb; 1525 1526 fallback: 1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1528 return NULL; 1529 } 1530 1531 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1532 struct tcp_sack_block *next_dup, 1533 struct tcp_sacktag_state *state, 1534 u32 start_seq, u32 end_seq, 1535 bool dup_sack_in) 1536 { 1537 struct tcp_sock *tp = tcp_sk(sk); 1538 struct sk_buff *tmp; 1539 1540 skb_rbtree_walk_from(skb) { 1541 int in_sack = 0; 1542 bool dup_sack = dup_sack_in; 1543 1544 /* queue is in-order => we can short-circuit the walk early */ 1545 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1546 break; 1547 1548 if (next_dup && 1549 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1550 in_sack = tcp_match_skb_to_sack(sk, skb, 1551 next_dup->start_seq, 1552 next_dup->end_seq); 1553 if (in_sack > 0) 1554 dup_sack = true; 1555 } 1556 1557 /* skb reference here is a bit tricky to get right, since 1558 * shifting can eat and free both this skb and the next, 1559 * so not even _safe variant of the loop is enough. 1560 */ 1561 if (in_sack <= 0) { 1562 tmp = tcp_shift_skb_data(sk, skb, state, 1563 start_seq, end_seq, dup_sack); 1564 if (tmp) { 1565 if (tmp != skb) { 1566 skb = tmp; 1567 continue; 1568 } 1569 1570 in_sack = 0; 1571 } else { 1572 in_sack = tcp_match_skb_to_sack(sk, skb, 1573 start_seq, 1574 end_seq); 1575 } 1576 } 1577 1578 if (unlikely(in_sack < 0)) 1579 break; 1580 1581 if (in_sack) { 1582 TCP_SKB_CB(skb)->sacked = 1583 tcp_sacktag_one(sk, 1584 state, 1585 TCP_SKB_CB(skb)->sacked, 1586 TCP_SKB_CB(skb)->seq, 1587 TCP_SKB_CB(skb)->end_seq, 1588 dup_sack, 1589 tcp_skb_pcount(skb), 1590 tcp_skb_timestamp_us(skb)); 1591 tcp_rate_skb_delivered(sk, skb, state->rate); 1592 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1593 list_del_init(&skb->tcp_tsorted_anchor); 1594 1595 if (!before(TCP_SKB_CB(skb)->seq, 1596 tcp_highest_sack_seq(tp))) 1597 tcp_advance_highest_sack(sk, skb); 1598 } 1599 } 1600 return skb; 1601 } 1602 1603 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1604 { 1605 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1606 struct sk_buff *skb; 1607 1608 while (*p) { 1609 parent = *p; 1610 skb = rb_to_skb(parent); 1611 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1612 p = &parent->rb_left; 1613 continue; 1614 } 1615 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1616 p = &parent->rb_right; 1617 continue; 1618 } 1619 return skb; 1620 } 1621 return NULL; 1622 } 1623 1624 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1625 u32 skip_to_seq) 1626 { 1627 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1628 return skb; 1629 1630 return tcp_sacktag_bsearch(sk, skip_to_seq); 1631 } 1632 1633 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1634 struct sock *sk, 1635 struct tcp_sack_block *next_dup, 1636 struct tcp_sacktag_state *state, 1637 u32 skip_to_seq) 1638 { 1639 if (!next_dup) 1640 return skb; 1641 1642 if (before(next_dup->start_seq, skip_to_seq)) { 1643 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1644 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1645 next_dup->start_seq, next_dup->end_seq, 1646 1); 1647 } 1648 1649 return skb; 1650 } 1651 1652 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1653 { 1654 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1655 } 1656 1657 static int 1658 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1659 u32 prior_snd_una, struct tcp_sacktag_state *state) 1660 { 1661 struct tcp_sock *tp = tcp_sk(sk); 1662 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1663 TCP_SKB_CB(ack_skb)->sacked); 1664 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1665 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1666 struct tcp_sack_block *cache; 1667 struct sk_buff *skb; 1668 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1669 int used_sacks; 1670 bool found_dup_sack = false; 1671 int i, j; 1672 int first_sack_index; 1673 1674 state->flag = 0; 1675 state->reord = tp->snd_nxt; 1676 1677 if (!tp->sacked_out) 1678 tcp_highest_sack_reset(sk); 1679 1680 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1681 num_sacks, prior_snd_una); 1682 if (found_dup_sack) { 1683 state->flag |= FLAG_DSACKING_ACK; 1684 tp->delivered++; /* A spurious retransmission is delivered */ 1685 } 1686 1687 /* Eliminate too old ACKs, but take into 1688 * account more or less fresh ones, they can 1689 * contain valid SACK info. 1690 */ 1691 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1692 return 0; 1693 1694 if (!tp->packets_out) 1695 goto out; 1696 1697 used_sacks = 0; 1698 first_sack_index = 0; 1699 for (i = 0; i < num_sacks; i++) { 1700 bool dup_sack = !i && found_dup_sack; 1701 1702 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1703 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1704 1705 if (!tcp_is_sackblock_valid(tp, dup_sack, 1706 sp[used_sacks].start_seq, 1707 sp[used_sacks].end_seq)) { 1708 int mib_idx; 1709 1710 if (dup_sack) { 1711 if (!tp->undo_marker) 1712 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1713 else 1714 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1715 } else { 1716 /* Don't count olds caused by ACK reordering */ 1717 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1718 !after(sp[used_sacks].end_seq, tp->snd_una)) 1719 continue; 1720 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1721 } 1722 1723 NET_INC_STATS(sock_net(sk), mib_idx); 1724 if (i == 0) 1725 first_sack_index = -1; 1726 continue; 1727 } 1728 1729 /* Ignore very old stuff early */ 1730 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1731 continue; 1732 1733 used_sacks++; 1734 } 1735 1736 /* order SACK blocks to allow in order walk of the retrans queue */ 1737 for (i = used_sacks - 1; i > 0; i--) { 1738 for (j = 0; j < i; j++) { 1739 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1740 swap(sp[j], sp[j + 1]); 1741 1742 /* Track where the first SACK block goes to */ 1743 if (j == first_sack_index) 1744 first_sack_index = j + 1; 1745 } 1746 } 1747 } 1748 1749 state->mss_now = tcp_current_mss(sk); 1750 skb = NULL; 1751 i = 0; 1752 1753 if (!tp->sacked_out) { 1754 /* It's already past, so skip checking against it */ 1755 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1756 } else { 1757 cache = tp->recv_sack_cache; 1758 /* Skip empty blocks in at head of the cache */ 1759 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1760 !cache->end_seq) 1761 cache++; 1762 } 1763 1764 while (i < used_sacks) { 1765 u32 start_seq = sp[i].start_seq; 1766 u32 end_seq = sp[i].end_seq; 1767 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1768 struct tcp_sack_block *next_dup = NULL; 1769 1770 if (found_dup_sack && ((i + 1) == first_sack_index)) 1771 next_dup = &sp[i + 1]; 1772 1773 /* Skip too early cached blocks */ 1774 while (tcp_sack_cache_ok(tp, cache) && 1775 !before(start_seq, cache->end_seq)) 1776 cache++; 1777 1778 /* Can skip some work by looking recv_sack_cache? */ 1779 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1780 after(end_seq, cache->start_seq)) { 1781 1782 /* Head todo? */ 1783 if (before(start_seq, cache->start_seq)) { 1784 skb = tcp_sacktag_skip(skb, sk, start_seq); 1785 skb = tcp_sacktag_walk(skb, sk, next_dup, 1786 state, 1787 start_seq, 1788 cache->start_seq, 1789 dup_sack); 1790 } 1791 1792 /* Rest of the block already fully processed? */ 1793 if (!after(end_seq, cache->end_seq)) 1794 goto advance_sp; 1795 1796 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1797 state, 1798 cache->end_seq); 1799 1800 /* ...tail remains todo... */ 1801 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1802 /* ...but better entrypoint exists! */ 1803 skb = tcp_highest_sack(sk); 1804 if (!skb) 1805 break; 1806 cache++; 1807 goto walk; 1808 } 1809 1810 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1811 /* Check overlap against next cached too (past this one already) */ 1812 cache++; 1813 continue; 1814 } 1815 1816 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1817 skb = tcp_highest_sack(sk); 1818 if (!skb) 1819 break; 1820 } 1821 skb = tcp_sacktag_skip(skb, sk, start_seq); 1822 1823 walk: 1824 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1825 start_seq, end_seq, dup_sack); 1826 1827 advance_sp: 1828 i++; 1829 } 1830 1831 /* Clear the head of the cache sack blocks so we can skip it next time */ 1832 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1833 tp->recv_sack_cache[i].start_seq = 0; 1834 tp->recv_sack_cache[i].end_seq = 0; 1835 } 1836 for (j = 0; j < used_sacks; j++) 1837 tp->recv_sack_cache[i++] = sp[j]; 1838 1839 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1840 tcp_check_sack_reordering(sk, state->reord, 0); 1841 1842 tcp_verify_left_out(tp); 1843 out: 1844 1845 #if FASTRETRANS_DEBUG > 0 1846 WARN_ON((int)tp->sacked_out < 0); 1847 WARN_ON((int)tp->lost_out < 0); 1848 WARN_ON((int)tp->retrans_out < 0); 1849 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1850 #endif 1851 return state->flag; 1852 } 1853 1854 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1855 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1856 */ 1857 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1858 { 1859 u32 holes; 1860 1861 holes = max(tp->lost_out, 1U); 1862 holes = min(holes, tp->packets_out); 1863 1864 if ((tp->sacked_out + holes) > tp->packets_out) { 1865 tp->sacked_out = tp->packets_out - holes; 1866 return true; 1867 } 1868 return false; 1869 } 1870 1871 /* If we receive more dupacks than we expected counting segments 1872 * in assumption of absent reordering, interpret this as reordering. 1873 * The only another reason could be bug in receiver TCP. 1874 */ 1875 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1876 { 1877 struct tcp_sock *tp = tcp_sk(sk); 1878 1879 if (!tcp_limit_reno_sacked(tp)) 1880 return; 1881 1882 tp->reordering = min_t(u32, tp->packets_out + addend, 1883 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1884 tp->reord_seen++; 1885 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1886 } 1887 1888 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1889 1890 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1891 { 1892 if (num_dupack) { 1893 struct tcp_sock *tp = tcp_sk(sk); 1894 u32 prior_sacked = tp->sacked_out; 1895 s32 delivered; 1896 1897 tp->sacked_out += num_dupack; 1898 tcp_check_reno_reordering(sk, 0); 1899 delivered = tp->sacked_out - prior_sacked; 1900 if (delivered > 0) 1901 tp->delivered += delivered; 1902 tcp_verify_left_out(tp); 1903 } 1904 } 1905 1906 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1907 1908 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1909 { 1910 struct tcp_sock *tp = tcp_sk(sk); 1911 1912 if (acked > 0) { 1913 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1914 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1915 if (acked - 1 >= tp->sacked_out) 1916 tp->sacked_out = 0; 1917 else 1918 tp->sacked_out -= acked - 1; 1919 } 1920 tcp_check_reno_reordering(sk, acked); 1921 tcp_verify_left_out(tp); 1922 } 1923 1924 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1925 { 1926 tp->sacked_out = 0; 1927 } 1928 1929 void tcp_clear_retrans(struct tcp_sock *tp) 1930 { 1931 tp->retrans_out = 0; 1932 tp->lost_out = 0; 1933 tp->undo_marker = 0; 1934 tp->undo_retrans = -1; 1935 tp->sacked_out = 0; 1936 } 1937 1938 static inline void tcp_init_undo(struct tcp_sock *tp) 1939 { 1940 tp->undo_marker = tp->snd_una; 1941 /* Retransmission still in flight may cause DSACKs later. */ 1942 tp->undo_retrans = tp->retrans_out ? : -1; 1943 } 1944 1945 static bool tcp_is_rack(const struct sock *sk) 1946 { 1947 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1948 } 1949 1950 /* If we detect SACK reneging, forget all SACK information 1951 * and reset tags completely, otherwise preserve SACKs. If receiver 1952 * dropped its ofo queue, we will know this due to reneging detection. 1953 */ 1954 static void tcp_timeout_mark_lost(struct sock *sk) 1955 { 1956 struct tcp_sock *tp = tcp_sk(sk); 1957 struct sk_buff *skb, *head; 1958 bool is_reneg; /* is receiver reneging on SACKs? */ 1959 1960 head = tcp_rtx_queue_head(sk); 1961 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1962 if (is_reneg) { 1963 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1964 tp->sacked_out = 0; 1965 /* Mark SACK reneging until we recover from this loss event. */ 1966 tp->is_sack_reneg = 1; 1967 } else if (tcp_is_reno(tp)) { 1968 tcp_reset_reno_sack(tp); 1969 } 1970 1971 skb = head; 1972 skb_rbtree_walk_from(skb) { 1973 if (is_reneg) 1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1975 else if (tcp_is_rack(sk) && skb != head && 1976 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1977 continue; /* Don't mark recently sent ones lost yet */ 1978 tcp_mark_skb_lost(sk, skb); 1979 } 1980 tcp_verify_left_out(tp); 1981 tcp_clear_all_retrans_hints(tp); 1982 } 1983 1984 /* Enter Loss state. */ 1985 void tcp_enter_loss(struct sock *sk) 1986 { 1987 const struct inet_connection_sock *icsk = inet_csk(sk); 1988 struct tcp_sock *tp = tcp_sk(sk); 1989 struct net *net = sock_net(sk); 1990 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1991 1992 tcp_timeout_mark_lost(sk); 1993 1994 /* Reduce ssthresh if it has not yet been made inside this window. */ 1995 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1996 !after(tp->high_seq, tp->snd_una) || 1997 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1998 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1999 tp->prior_cwnd = tp->snd_cwnd; 2000 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2001 tcp_ca_event(sk, CA_EVENT_LOSS); 2002 tcp_init_undo(tp); 2003 } 2004 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2005 tp->snd_cwnd_cnt = 0; 2006 tp->snd_cwnd_stamp = tcp_jiffies32; 2007 2008 /* Timeout in disordered state after receiving substantial DUPACKs 2009 * suggests that the degree of reordering is over-estimated. 2010 */ 2011 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2012 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2013 tp->reordering = min_t(unsigned int, tp->reordering, 2014 net->ipv4.sysctl_tcp_reordering); 2015 tcp_set_ca_state(sk, TCP_CA_Loss); 2016 tp->high_seq = tp->snd_nxt; 2017 tcp_ecn_queue_cwr(tp); 2018 2019 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2020 * loss recovery is underway except recurring timeout(s) on 2021 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2022 */ 2023 tp->frto = net->ipv4.sysctl_tcp_frto && 2024 (new_recovery || icsk->icsk_retransmits) && 2025 !inet_csk(sk)->icsk_mtup.probe_size; 2026 } 2027 2028 /* If ACK arrived pointing to a remembered SACK, it means that our 2029 * remembered SACKs do not reflect real state of receiver i.e. 2030 * receiver _host_ is heavily congested (or buggy). 2031 * 2032 * To avoid big spurious retransmission bursts due to transient SACK 2033 * scoreboard oddities that look like reneging, we give the receiver a 2034 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2035 * restore sanity to the SACK scoreboard. If the apparent reneging 2036 * persists until this RTO then we'll clear the SACK scoreboard. 2037 */ 2038 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2039 { 2040 if (flag & FLAG_SACK_RENEGING) { 2041 struct tcp_sock *tp = tcp_sk(sk); 2042 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2043 msecs_to_jiffies(10)); 2044 2045 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2046 delay, TCP_RTO_MAX); 2047 return true; 2048 } 2049 return false; 2050 } 2051 2052 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2053 * counter when SACK is enabled (without SACK, sacked_out is used for 2054 * that purpose). 2055 * 2056 * With reordering, holes may still be in flight, so RFC3517 recovery 2057 * uses pure sacked_out (total number of SACKed segments) even though 2058 * it violates the RFC that uses duplicate ACKs, often these are equal 2059 * but when e.g. out-of-window ACKs or packet duplication occurs, 2060 * they differ. Since neither occurs due to loss, TCP should really 2061 * ignore them. 2062 */ 2063 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2064 { 2065 return tp->sacked_out + 1; 2066 } 2067 2068 /* Linux NewReno/SACK/ECN state machine. 2069 * -------------------------------------- 2070 * 2071 * "Open" Normal state, no dubious events, fast path. 2072 * "Disorder" In all the respects it is "Open", 2073 * but requires a bit more attention. It is entered when 2074 * we see some SACKs or dupacks. It is split of "Open" 2075 * mainly to move some processing from fast path to slow one. 2076 * "CWR" CWND was reduced due to some Congestion Notification event. 2077 * It can be ECN, ICMP source quench, local device congestion. 2078 * "Recovery" CWND was reduced, we are fast-retransmitting. 2079 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2080 * 2081 * tcp_fastretrans_alert() is entered: 2082 * - each incoming ACK, if state is not "Open" 2083 * - when arrived ACK is unusual, namely: 2084 * * SACK 2085 * * Duplicate ACK. 2086 * * ECN ECE. 2087 * 2088 * Counting packets in flight is pretty simple. 2089 * 2090 * in_flight = packets_out - left_out + retrans_out 2091 * 2092 * packets_out is SND.NXT-SND.UNA counted in packets. 2093 * 2094 * retrans_out is number of retransmitted segments. 2095 * 2096 * left_out is number of segments left network, but not ACKed yet. 2097 * 2098 * left_out = sacked_out + lost_out 2099 * 2100 * sacked_out: Packets, which arrived to receiver out of order 2101 * and hence not ACKed. With SACKs this number is simply 2102 * amount of SACKed data. Even without SACKs 2103 * it is easy to give pretty reliable estimate of this number, 2104 * counting duplicate ACKs. 2105 * 2106 * lost_out: Packets lost by network. TCP has no explicit 2107 * "loss notification" feedback from network (for now). 2108 * It means that this number can be only _guessed_. 2109 * Actually, it is the heuristics to predict lossage that 2110 * distinguishes different algorithms. 2111 * 2112 * F.e. after RTO, when all the queue is considered as lost, 2113 * lost_out = packets_out and in_flight = retrans_out. 2114 * 2115 * Essentially, we have now a few algorithms detecting 2116 * lost packets. 2117 * 2118 * If the receiver supports SACK: 2119 * 2120 * RFC6675/3517: It is the conventional algorithm. A packet is 2121 * considered lost if the number of higher sequence packets 2122 * SACKed is greater than or equal the DUPACK thoreshold 2123 * (reordering). This is implemented in tcp_mark_head_lost and 2124 * tcp_update_scoreboard. 2125 * 2126 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2127 * (2017-) that checks timing instead of counting DUPACKs. 2128 * Essentially a packet is considered lost if it's not S/ACKed 2129 * after RTT + reordering_window, where both metrics are 2130 * dynamically measured and adjusted. This is implemented in 2131 * tcp_rack_mark_lost. 2132 * 2133 * If the receiver does not support SACK: 2134 * 2135 * NewReno (RFC6582): in Recovery we assume that one segment 2136 * is lost (classic Reno). While we are in Recovery and 2137 * a partial ACK arrives, we assume that one more packet 2138 * is lost (NewReno). This heuristics are the same in NewReno 2139 * and SACK. 2140 * 2141 * Really tricky (and requiring careful tuning) part of algorithm 2142 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2143 * The first determines the moment _when_ we should reduce CWND and, 2144 * hence, slow down forward transmission. In fact, it determines the moment 2145 * when we decide that hole is caused by loss, rather than by a reorder. 2146 * 2147 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2148 * holes, caused by lost packets. 2149 * 2150 * And the most logically complicated part of algorithm is undo 2151 * heuristics. We detect false retransmits due to both too early 2152 * fast retransmit (reordering) and underestimated RTO, analyzing 2153 * timestamps and D-SACKs. When we detect that some segments were 2154 * retransmitted by mistake and CWND reduction was wrong, we undo 2155 * window reduction and abort recovery phase. This logic is hidden 2156 * inside several functions named tcp_try_undo_<something>. 2157 */ 2158 2159 /* This function decides, when we should leave Disordered state 2160 * and enter Recovery phase, reducing congestion window. 2161 * 2162 * Main question: may we further continue forward transmission 2163 * with the same cwnd? 2164 */ 2165 static bool tcp_time_to_recover(struct sock *sk, int flag) 2166 { 2167 struct tcp_sock *tp = tcp_sk(sk); 2168 2169 /* Trick#1: The loss is proven. */ 2170 if (tp->lost_out) 2171 return true; 2172 2173 /* Not-A-Trick#2 : Classic rule... */ 2174 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2175 return true; 2176 2177 return false; 2178 } 2179 2180 /* Detect loss in event "A" above by marking head of queue up as lost. 2181 * For non-SACK(Reno) senders, the first "packets" number of segments 2182 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2183 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2184 * the maximum SACKed segments to pass before reaching this limit. 2185 */ 2186 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2187 { 2188 struct tcp_sock *tp = tcp_sk(sk); 2189 struct sk_buff *skb; 2190 int cnt, oldcnt, lost; 2191 unsigned int mss; 2192 /* Use SACK to deduce losses of new sequences sent during recovery */ 2193 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2194 2195 WARN_ON(packets > tp->packets_out); 2196 skb = tp->lost_skb_hint; 2197 if (skb) { 2198 /* Head already handled? */ 2199 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2200 return; 2201 cnt = tp->lost_cnt_hint; 2202 } else { 2203 skb = tcp_rtx_queue_head(sk); 2204 cnt = 0; 2205 } 2206 2207 skb_rbtree_walk_from(skb) { 2208 /* TODO: do this better */ 2209 /* this is not the most efficient way to do this... */ 2210 tp->lost_skb_hint = skb; 2211 tp->lost_cnt_hint = cnt; 2212 2213 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2214 break; 2215 2216 oldcnt = cnt; 2217 if (tcp_is_reno(tp) || 2218 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2219 cnt += tcp_skb_pcount(skb); 2220 2221 if (cnt > packets) { 2222 if (tcp_is_sack(tp) || 2223 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2224 (oldcnt >= packets)) 2225 break; 2226 2227 mss = tcp_skb_mss(skb); 2228 /* If needed, chop off the prefix to mark as lost. */ 2229 lost = (packets - oldcnt) * mss; 2230 if (lost < skb->len && 2231 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2232 lost, mss, GFP_ATOMIC) < 0) 2233 break; 2234 cnt = packets; 2235 } 2236 2237 tcp_skb_mark_lost(tp, skb); 2238 2239 if (mark_head) 2240 break; 2241 } 2242 tcp_verify_left_out(tp); 2243 } 2244 2245 /* Account newly detected lost packet(s) */ 2246 2247 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2248 { 2249 struct tcp_sock *tp = tcp_sk(sk); 2250 2251 if (tcp_is_sack(tp)) { 2252 int sacked_upto = tp->sacked_out - tp->reordering; 2253 if (sacked_upto >= 0) 2254 tcp_mark_head_lost(sk, sacked_upto, 0); 2255 else if (fast_rexmit) 2256 tcp_mark_head_lost(sk, 1, 1); 2257 } 2258 } 2259 2260 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2261 { 2262 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2263 before(tp->rx_opt.rcv_tsecr, when); 2264 } 2265 2266 /* skb is spurious retransmitted if the returned timestamp echo 2267 * reply is prior to the skb transmission time 2268 */ 2269 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2270 const struct sk_buff *skb) 2271 { 2272 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2273 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2274 } 2275 2276 /* Nothing was retransmitted or returned timestamp is less 2277 * than timestamp of the first retransmission. 2278 */ 2279 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2280 { 2281 return tp->retrans_stamp && 2282 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2283 } 2284 2285 /* Undo procedures. */ 2286 2287 /* We can clear retrans_stamp when there are no retransmissions in the 2288 * window. It would seem that it is trivially available for us in 2289 * tp->retrans_out, however, that kind of assumptions doesn't consider 2290 * what will happen if errors occur when sending retransmission for the 2291 * second time. ...It could the that such segment has only 2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2293 * the head skb is enough except for some reneging corner cases that 2294 * are not worth the effort. 2295 * 2296 * Main reason for all this complexity is the fact that connection dying 2297 * time now depends on the validity of the retrans_stamp, in particular, 2298 * that successive retransmissions of a segment must not advance 2299 * retrans_stamp under any conditions. 2300 */ 2301 static bool tcp_any_retrans_done(const struct sock *sk) 2302 { 2303 const struct tcp_sock *tp = tcp_sk(sk); 2304 struct sk_buff *skb; 2305 2306 if (tp->retrans_out) 2307 return true; 2308 2309 skb = tcp_rtx_queue_head(sk); 2310 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2311 return true; 2312 2313 return false; 2314 } 2315 2316 static void DBGUNDO(struct sock *sk, const char *msg) 2317 { 2318 #if FASTRETRANS_DEBUG > 1 2319 struct tcp_sock *tp = tcp_sk(sk); 2320 struct inet_sock *inet = inet_sk(sk); 2321 2322 if (sk->sk_family == AF_INET) { 2323 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2324 msg, 2325 &inet->inet_daddr, ntohs(inet->inet_dport), 2326 tp->snd_cwnd, tcp_left_out(tp), 2327 tp->snd_ssthresh, tp->prior_ssthresh, 2328 tp->packets_out); 2329 } 2330 #if IS_ENABLED(CONFIG_IPV6) 2331 else if (sk->sk_family == AF_INET6) { 2332 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2333 msg, 2334 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2335 tp->snd_cwnd, tcp_left_out(tp), 2336 tp->snd_ssthresh, tp->prior_ssthresh, 2337 tp->packets_out); 2338 } 2339 #endif 2340 #endif 2341 } 2342 2343 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2344 { 2345 struct tcp_sock *tp = tcp_sk(sk); 2346 2347 if (unmark_loss) { 2348 struct sk_buff *skb; 2349 2350 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2351 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2352 } 2353 tp->lost_out = 0; 2354 tcp_clear_all_retrans_hints(tp); 2355 } 2356 2357 if (tp->prior_ssthresh) { 2358 const struct inet_connection_sock *icsk = inet_csk(sk); 2359 2360 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2361 2362 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2363 tp->snd_ssthresh = tp->prior_ssthresh; 2364 tcp_ecn_withdraw_cwr(tp); 2365 } 2366 } 2367 tp->snd_cwnd_stamp = tcp_jiffies32; 2368 tp->undo_marker = 0; 2369 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2370 } 2371 2372 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2373 { 2374 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2375 } 2376 2377 /* People celebrate: "We love our President!" */ 2378 static bool tcp_try_undo_recovery(struct sock *sk) 2379 { 2380 struct tcp_sock *tp = tcp_sk(sk); 2381 2382 if (tcp_may_undo(tp)) { 2383 int mib_idx; 2384 2385 /* Happy end! We did not retransmit anything 2386 * or our original transmission succeeded. 2387 */ 2388 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2389 tcp_undo_cwnd_reduction(sk, false); 2390 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2391 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2392 else 2393 mib_idx = LINUX_MIB_TCPFULLUNDO; 2394 2395 NET_INC_STATS(sock_net(sk), mib_idx); 2396 } else if (tp->rack.reo_wnd_persist) { 2397 tp->rack.reo_wnd_persist--; 2398 } 2399 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2400 /* Hold old state until something *above* high_seq 2401 * is ACKed. For Reno it is MUST to prevent false 2402 * fast retransmits (RFC2582). SACK TCP is safe. */ 2403 if (!tcp_any_retrans_done(sk)) 2404 tp->retrans_stamp = 0; 2405 return true; 2406 } 2407 tcp_set_ca_state(sk, TCP_CA_Open); 2408 tp->is_sack_reneg = 0; 2409 return false; 2410 } 2411 2412 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2413 static bool tcp_try_undo_dsack(struct sock *sk) 2414 { 2415 struct tcp_sock *tp = tcp_sk(sk); 2416 2417 if (tp->undo_marker && !tp->undo_retrans) { 2418 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2419 tp->rack.reo_wnd_persist + 1); 2420 DBGUNDO(sk, "D-SACK"); 2421 tcp_undo_cwnd_reduction(sk, false); 2422 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2423 return true; 2424 } 2425 return false; 2426 } 2427 2428 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2429 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2430 { 2431 struct tcp_sock *tp = tcp_sk(sk); 2432 2433 if (frto_undo || tcp_may_undo(tp)) { 2434 tcp_undo_cwnd_reduction(sk, true); 2435 2436 DBGUNDO(sk, "partial loss"); 2437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2438 if (frto_undo) 2439 NET_INC_STATS(sock_net(sk), 2440 LINUX_MIB_TCPSPURIOUSRTOS); 2441 inet_csk(sk)->icsk_retransmits = 0; 2442 if (frto_undo || tcp_is_sack(tp)) { 2443 tcp_set_ca_state(sk, TCP_CA_Open); 2444 tp->is_sack_reneg = 0; 2445 } 2446 return true; 2447 } 2448 return false; 2449 } 2450 2451 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2452 * It computes the number of packets to send (sndcnt) based on packets newly 2453 * delivered: 2454 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2455 * cwnd reductions across a full RTT. 2456 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2457 * But when the retransmits are acked without further losses, PRR 2458 * slow starts cwnd up to ssthresh to speed up the recovery. 2459 */ 2460 static void tcp_init_cwnd_reduction(struct sock *sk) 2461 { 2462 struct tcp_sock *tp = tcp_sk(sk); 2463 2464 tp->high_seq = tp->snd_nxt; 2465 tp->tlp_high_seq = 0; 2466 tp->snd_cwnd_cnt = 0; 2467 tp->prior_cwnd = tp->snd_cwnd; 2468 tp->prr_delivered = 0; 2469 tp->prr_out = 0; 2470 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2471 tcp_ecn_queue_cwr(tp); 2472 } 2473 2474 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2475 { 2476 struct tcp_sock *tp = tcp_sk(sk); 2477 int sndcnt = 0; 2478 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2479 2480 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2481 return; 2482 2483 tp->prr_delivered += newly_acked_sacked; 2484 if (delta < 0) { 2485 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2486 tp->prior_cwnd - 1; 2487 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2488 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2489 FLAG_RETRANS_DATA_ACKED) { 2490 sndcnt = min_t(int, delta, 2491 max_t(int, tp->prr_delivered - tp->prr_out, 2492 newly_acked_sacked) + 1); 2493 } else { 2494 sndcnt = min(delta, newly_acked_sacked); 2495 } 2496 /* Force a fast retransmit upon entering fast recovery */ 2497 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2498 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2499 } 2500 2501 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2502 { 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 2505 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2506 return; 2507 2508 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2509 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2510 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2511 tp->snd_cwnd = tp->snd_ssthresh; 2512 tp->snd_cwnd_stamp = tcp_jiffies32; 2513 } 2514 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2515 } 2516 2517 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2518 void tcp_enter_cwr(struct sock *sk) 2519 { 2520 struct tcp_sock *tp = tcp_sk(sk); 2521 2522 tp->prior_ssthresh = 0; 2523 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2524 tp->undo_marker = 0; 2525 tcp_init_cwnd_reduction(sk); 2526 tcp_set_ca_state(sk, TCP_CA_CWR); 2527 } 2528 } 2529 EXPORT_SYMBOL(tcp_enter_cwr); 2530 2531 static void tcp_try_keep_open(struct sock *sk) 2532 { 2533 struct tcp_sock *tp = tcp_sk(sk); 2534 int state = TCP_CA_Open; 2535 2536 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2537 state = TCP_CA_Disorder; 2538 2539 if (inet_csk(sk)->icsk_ca_state != state) { 2540 tcp_set_ca_state(sk, state); 2541 tp->high_seq = tp->snd_nxt; 2542 } 2543 } 2544 2545 static void tcp_try_to_open(struct sock *sk, int flag) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 2549 tcp_verify_left_out(tp); 2550 2551 if (!tcp_any_retrans_done(sk)) 2552 tp->retrans_stamp = 0; 2553 2554 if (flag & FLAG_ECE) 2555 tcp_enter_cwr(sk); 2556 2557 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2558 tcp_try_keep_open(sk); 2559 } 2560 } 2561 2562 static void tcp_mtup_probe_failed(struct sock *sk) 2563 { 2564 struct inet_connection_sock *icsk = inet_csk(sk); 2565 2566 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2567 icsk->icsk_mtup.probe_size = 0; 2568 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2569 } 2570 2571 static void tcp_mtup_probe_success(struct sock *sk) 2572 { 2573 struct tcp_sock *tp = tcp_sk(sk); 2574 struct inet_connection_sock *icsk = inet_csk(sk); 2575 2576 /* FIXME: breaks with very large cwnd */ 2577 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2578 tp->snd_cwnd = tp->snd_cwnd * 2579 tcp_mss_to_mtu(sk, tp->mss_cache) / 2580 icsk->icsk_mtup.probe_size; 2581 tp->snd_cwnd_cnt = 0; 2582 tp->snd_cwnd_stamp = tcp_jiffies32; 2583 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2584 2585 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2586 icsk->icsk_mtup.probe_size = 0; 2587 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2588 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2589 } 2590 2591 /* Do a simple retransmit without using the backoff mechanisms in 2592 * tcp_timer. This is used for path mtu discovery. 2593 * The socket is already locked here. 2594 */ 2595 void tcp_simple_retransmit(struct sock *sk) 2596 { 2597 const struct inet_connection_sock *icsk = inet_csk(sk); 2598 struct tcp_sock *tp = tcp_sk(sk); 2599 struct sk_buff *skb; 2600 unsigned int mss = tcp_current_mss(sk); 2601 2602 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2603 if (tcp_skb_seglen(skb) > mss && 2604 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2605 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2606 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2607 tp->retrans_out -= tcp_skb_pcount(skb); 2608 } 2609 tcp_skb_mark_lost_uncond_verify(tp, skb); 2610 } 2611 } 2612 2613 tcp_clear_retrans_hints_partial(tp); 2614 2615 if (!tp->lost_out) 2616 return; 2617 2618 if (tcp_is_reno(tp)) 2619 tcp_limit_reno_sacked(tp); 2620 2621 tcp_verify_left_out(tp); 2622 2623 /* Don't muck with the congestion window here. 2624 * Reason is that we do not increase amount of _data_ 2625 * in network, but units changed and effective 2626 * cwnd/ssthresh really reduced now. 2627 */ 2628 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2629 tp->high_seq = tp->snd_nxt; 2630 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2631 tp->prior_ssthresh = 0; 2632 tp->undo_marker = 0; 2633 tcp_set_ca_state(sk, TCP_CA_Loss); 2634 } 2635 tcp_xmit_retransmit_queue(sk); 2636 } 2637 EXPORT_SYMBOL(tcp_simple_retransmit); 2638 2639 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2640 { 2641 struct tcp_sock *tp = tcp_sk(sk); 2642 int mib_idx; 2643 2644 if (tcp_is_reno(tp)) 2645 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2646 else 2647 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2648 2649 NET_INC_STATS(sock_net(sk), mib_idx); 2650 2651 tp->prior_ssthresh = 0; 2652 tcp_init_undo(tp); 2653 2654 if (!tcp_in_cwnd_reduction(sk)) { 2655 if (!ece_ack) 2656 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2657 tcp_init_cwnd_reduction(sk); 2658 } 2659 tcp_set_ca_state(sk, TCP_CA_Recovery); 2660 } 2661 2662 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2663 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2664 */ 2665 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2666 int *rexmit) 2667 { 2668 struct tcp_sock *tp = tcp_sk(sk); 2669 bool recovered = !before(tp->snd_una, tp->high_seq); 2670 2671 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2672 tcp_try_undo_loss(sk, false)) 2673 return; 2674 2675 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2676 /* Step 3.b. A timeout is spurious if not all data are 2677 * lost, i.e., never-retransmitted data are (s)acked. 2678 */ 2679 if ((flag & FLAG_ORIG_SACK_ACKED) && 2680 tcp_try_undo_loss(sk, true)) 2681 return; 2682 2683 if (after(tp->snd_nxt, tp->high_seq)) { 2684 if (flag & FLAG_DATA_SACKED || num_dupack) 2685 tp->frto = 0; /* Step 3.a. loss was real */ 2686 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2687 tp->high_seq = tp->snd_nxt; 2688 /* Step 2.b. Try send new data (but deferred until cwnd 2689 * is updated in tcp_ack()). Otherwise fall back to 2690 * the conventional recovery. 2691 */ 2692 if (!tcp_write_queue_empty(sk) && 2693 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2694 *rexmit = REXMIT_NEW; 2695 return; 2696 } 2697 tp->frto = 0; 2698 } 2699 } 2700 2701 if (recovered) { 2702 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2703 tcp_try_undo_recovery(sk); 2704 return; 2705 } 2706 if (tcp_is_reno(tp)) { 2707 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2708 * delivered. Lower inflight to clock out (re)tranmissions. 2709 */ 2710 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2711 tcp_add_reno_sack(sk, num_dupack); 2712 else if (flag & FLAG_SND_UNA_ADVANCED) 2713 tcp_reset_reno_sack(tp); 2714 } 2715 *rexmit = REXMIT_LOST; 2716 } 2717 2718 /* Undo during fast recovery after partial ACK. */ 2719 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2720 { 2721 struct tcp_sock *tp = tcp_sk(sk); 2722 2723 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2724 /* Plain luck! Hole if filled with delayed 2725 * packet, rather than with a retransmit. Check reordering. 2726 */ 2727 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2728 2729 /* We are getting evidence that the reordering degree is higher 2730 * than we realized. If there are no retransmits out then we 2731 * can undo. Otherwise we clock out new packets but do not 2732 * mark more packets lost or retransmit more. 2733 */ 2734 if (tp->retrans_out) 2735 return true; 2736 2737 if (!tcp_any_retrans_done(sk)) 2738 tp->retrans_stamp = 0; 2739 2740 DBGUNDO(sk, "partial recovery"); 2741 tcp_undo_cwnd_reduction(sk, true); 2742 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2743 tcp_try_keep_open(sk); 2744 return true; 2745 } 2746 return false; 2747 } 2748 2749 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2750 { 2751 struct tcp_sock *tp = tcp_sk(sk); 2752 2753 if (tcp_rtx_queue_empty(sk)) 2754 return; 2755 2756 if (unlikely(tcp_is_reno(tp))) { 2757 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2758 } else if (tcp_is_rack(sk)) { 2759 u32 prior_retrans = tp->retrans_out; 2760 2761 tcp_rack_mark_lost(sk); 2762 if (prior_retrans > tp->retrans_out) 2763 *ack_flag |= FLAG_LOST_RETRANS; 2764 } 2765 } 2766 2767 static bool tcp_force_fast_retransmit(struct sock *sk) 2768 { 2769 struct tcp_sock *tp = tcp_sk(sk); 2770 2771 return after(tcp_highest_sack_seq(tp), 2772 tp->snd_una + tp->reordering * tp->mss_cache); 2773 } 2774 2775 /* Process an event, which can update packets-in-flight not trivially. 2776 * Main goal of this function is to calculate new estimate for left_out, 2777 * taking into account both packets sitting in receiver's buffer and 2778 * packets lost by network. 2779 * 2780 * Besides that it updates the congestion state when packet loss or ECN 2781 * is detected. But it does not reduce the cwnd, it is done by the 2782 * congestion control later. 2783 * 2784 * It does _not_ decide what to send, it is made in function 2785 * tcp_xmit_retransmit_queue(). 2786 */ 2787 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2788 int num_dupack, int *ack_flag, int *rexmit) 2789 { 2790 struct inet_connection_sock *icsk = inet_csk(sk); 2791 struct tcp_sock *tp = tcp_sk(sk); 2792 int fast_rexmit = 0, flag = *ack_flag; 2793 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2794 tcp_force_fast_retransmit(sk)); 2795 2796 if (!tp->packets_out && tp->sacked_out) 2797 tp->sacked_out = 0; 2798 2799 /* Now state machine starts. 2800 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2801 if (flag & FLAG_ECE) 2802 tp->prior_ssthresh = 0; 2803 2804 /* B. In all the states check for reneging SACKs. */ 2805 if (tcp_check_sack_reneging(sk, flag)) 2806 return; 2807 2808 /* C. Check consistency of the current state. */ 2809 tcp_verify_left_out(tp); 2810 2811 /* D. Check state exit conditions. State can be terminated 2812 * when high_seq is ACKed. */ 2813 if (icsk->icsk_ca_state == TCP_CA_Open) { 2814 WARN_ON(tp->retrans_out != 0); 2815 tp->retrans_stamp = 0; 2816 } else if (!before(tp->snd_una, tp->high_seq)) { 2817 switch (icsk->icsk_ca_state) { 2818 case TCP_CA_CWR: 2819 /* CWR is to be held something *above* high_seq 2820 * is ACKed for CWR bit to reach receiver. */ 2821 if (tp->snd_una != tp->high_seq) { 2822 tcp_end_cwnd_reduction(sk); 2823 tcp_set_ca_state(sk, TCP_CA_Open); 2824 } 2825 break; 2826 2827 case TCP_CA_Recovery: 2828 if (tcp_is_reno(tp)) 2829 tcp_reset_reno_sack(tp); 2830 if (tcp_try_undo_recovery(sk)) 2831 return; 2832 tcp_end_cwnd_reduction(sk); 2833 break; 2834 } 2835 } 2836 2837 /* E. Process state. */ 2838 switch (icsk->icsk_ca_state) { 2839 case TCP_CA_Recovery: 2840 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2841 if (tcp_is_reno(tp)) 2842 tcp_add_reno_sack(sk, num_dupack); 2843 } else { 2844 if (tcp_try_undo_partial(sk, prior_snd_una)) 2845 return; 2846 /* Partial ACK arrived. Force fast retransmit. */ 2847 do_lost = tcp_is_reno(tp) || 2848 tcp_force_fast_retransmit(sk); 2849 } 2850 if (tcp_try_undo_dsack(sk)) { 2851 tcp_try_keep_open(sk); 2852 return; 2853 } 2854 tcp_identify_packet_loss(sk, ack_flag); 2855 break; 2856 case TCP_CA_Loss: 2857 tcp_process_loss(sk, flag, num_dupack, rexmit); 2858 tcp_identify_packet_loss(sk, ack_flag); 2859 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2860 (*ack_flag & FLAG_LOST_RETRANS))) 2861 return; 2862 /* Change state if cwnd is undone or retransmits are lost */ 2863 /* fall through */ 2864 default: 2865 if (tcp_is_reno(tp)) { 2866 if (flag & FLAG_SND_UNA_ADVANCED) 2867 tcp_reset_reno_sack(tp); 2868 tcp_add_reno_sack(sk, num_dupack); 2869 } 2870 2871 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2872 tcp_try_undo_dsack(sk); 2873 2874 tcp_identify_packet_loss(sk, ack_flag); 2875 if (!tcp_time_to_recover(sk, flag)) { 2876 tcp_try_to_open(sk, flag); 2877 return; 2878 } 2879 2880 /* MTU probe failure: don't reduce cwnd */ 2881 if (icsk->icsk_ca_state < TCP_CA_CWR && 2882 icsk->icsk_mtup.probe_size && 2883 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2884 tcp_mtup_probe_failed(sk); 2885 /* Restores the reduction we did in tcp_mtup_probe() */ 2886 tp->snd_cwnd++; 2887 tcp_simple_retransmit(sk); 2888 return; 2889 } 2890 2891 /* Otherwise enter Recovery state */ 2892 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2893 fast_rexmit = 1; 2894 } 2895 2896 if (!tcp_is_rack(sk) && do_lost) 2897 tcp_update_scoreboard(sk, fast_rexmit); 2898 *rexmit = REXMIT_LOST; 2899 } 2900 2901 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2902 { 2903 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2904 struct tcp_sock *tp = tcp_sk(sk); 2905 2906 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2907 /* If the remote keeps returning delayed ACKs, eventually 2908 * the min filter would pick it up and overestimate the 2909 * prop. delay when it expires. Skip suspected delayed ACKs. 2910 */ 2911 return; 2912 } 2913 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2914 rtt_us ? : jiffies_to_usecs(1)); 2915 } 2916 2917 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2918 long seq_rtt_us, long sack_rtt_us, 2919 long ca_rtt_us, struct rate_sample *rs) 2920 { 2921 const struct tcp_sock *tp = tcp_sk(sk); 2922 2923 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2924 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2925 * Karn's algorithm forbids taking RTT if some retransmitted data 2926 * is acked (RFC6298). 2927 */ 2928 if (seq_rtt_us < 0) 2929 seq_rtt_us = sack_rtt_us; 2930 2931 /* RTTM Rule: A TSecr value received in a segment is used to 2932 * update the averaged RTT measurement only if the segment 2933 * acknowledges some new data, i.e., only if it advances the 2934 * left edge of the send window. 2935 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2936 */ 2937 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2938 flag & FLAG_ACKED) { 2939 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2940 2941 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2942 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2943 ca_rtt_us = seq_rtt_us; 2944 } 2945 } 2946 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2947 if (seq_rtt_us < 0) 2948 return false; 2949 2950 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2951 * always taken together with ACK, SACK, or TS-opts. Any negative 2952 * values will be skipped with the seq_rtt_us < 0 check above. 2953 */ 2954 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2955 tcp_rtt_estimator(sk, seq_rtt_us); 2956 tcp_set_rto(sk); 2957 2958 /* RFC6298: only reset backoff on valid RTT measurement. */ 2959 inet_csk(sk)->icsk_backoff = 0; 2960 return true; 2961 } 2962 2963 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2964 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2965 { 2966 struct rate_sample rs; 2967 long rtt_us = -1L; 2968 2969 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2970 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2971 2972 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2973 } 2974 2975 2976 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2977 { 2978 const struct inet_connection_sock *icsk = inet_csk(sk); 2979 2980 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2981 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2982 } 2983 2984 /* Restart timer after forward progress on connection. 2985 * RFC2988 recommends to restart timer to now+rto. 2986 */ 2987 void tcp_rearm_rto(struct sock *sk) 2988 { 2989 const struct inet_connection_sock *icsk = inet_csk(sk); 2990 struct tcp_sock *tp = tcp_sk(sk); 2991 2992 /* If the retrans timer is currently being used by Fast Open 2993 * for SYN-ACK retrans purpose, stay put. 2994 */ 2995 if (rcu_access_pointer(tp->fastopen_rsk)) 2996 return; 2997 2998 if (!tp->packets_out) { 2999 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3000 } else { 3001 u32 rto = inet_csk(sk)->icsk_rto; 3002 /* Offset the time elapsed after installing regular RTO */ 3003 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3004 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3005 s64 delta_us = tcp_rto_delta_us(sk); 3006 /* delta_us may not be positive if the socket is locked 3007 * when the retrans timer fires and is rescheduled. 3008 */ 3009 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3010 } 3011 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3012 TCP_RTO_MAX, tcp_rtx_queue_head(sk)); 3013 } 3014 } 3015 3016 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3017 static void tcp_set_xmit_timer(struct sock *sk) 3018 { 3019 if (!tcp_schedule_loss_probe(sk, true)) 3020 tcp_rearm_rto(sk); 3021 } 3022 3023 /* If we get here, the whole TSO packet has not been acked. */ 3024 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3025 { 3026 struct tcp_sock *tp = tcp_sk(sk); 3027 u32 packets_acked; 3028 3029 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3030 3031 packets_acked = tcp_skb_pcount(skb); 3032 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3033 return 0; 3034 packets_acked -= tcp_skb_pcount(skb); 3035 3036 if (packets_acked) { 3037 BUG_ON(tcp_skb_pcount(skb) == 0); 3038 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3039 } 3040 3041 return packets_acked; 3042 } 3043 3044 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3045 u32 prior_snd_una) 3046 { 3047 const struct skb_shared_info *shinfo; 3048 3049 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3050 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3051 return; 3052 3053 shinfo = skb_shinfo(skb); 3054 if (!before(shinfo->tskey, prior_snd_una) && 3055 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3056 tcp_skb_tsorted_save(skb) { 3057 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3058 } tcp_skb_tsorted_restore(skb); 3059 } 3060 } 3061 3062 /* Remove acknowledged frames from the retransmission queue. If our packet 3063 * is before the ack sequence we can discard it as it's confirmed to have 3064 * arrived at the other end. 3065 */ 3066 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3067 u32 prior_snd_una, 3068 struct tcp_sacktag_state *sack) 3069 { 3070 const struct inet_connection_sock *icsk = inet_csk(sk); 3071 u64 first_ackt, last_ackt; 3072 struct tcp_sock *tp = tcp_sk(sk); 3073 u32 prior_sacked = tp->sacked_out; 3074 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3075 struct sk_buff *skb, *next; 3076 bool fully_acked = true; 3077 long sack_rtt_us = -1L; 3078 long seq_rtt_us = -1L; 3079 long ca_rtt_us = -1L; 3080 u32 pkts_acked = 0; 3081 u32 last_in_flight = 0; 3082 bool rtt_update; 3083 int flag = 0; 3084 3085 first_ackt = 0; 3086 3087 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3088 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3089 const u32 start_seq = scb->seq; 3090 u8 sacked = scb->sacked; 3091 u32 acked_pcount; 3092 3093 tcp_ack_tstamp(sk, skb, prior_snd_una); 3094 3095 /* Determine how many packets and what bytes were acked, tso and else */ 3096 if (after(scb->end_seq, tp->snd_una)) { 3097 if (tcp_skb_pcount(skb) == 1 || 3098 !after(tp->snd_una, scb->seq)) 3099 break; 3100 3101 acked_pcount = tcp_tso_acked(sk, skb); 3102 if (!acked_pcount) 3103 break; 3104 fully_acked = false; 3105 } else { 3106 acked_pcount = tcp_skb_pcount(skb); 3107 } 3108 3109 if (unlikely(sacked & TCPCB_RETRANS)) { 3110 if (sacked & TCPCB_SACKED_RETRANS) 3111 tp->retrans_out -= acked_pcount; 3112 flag |= FLAG_RETRANS_DATA_ACKED; 3113 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3114 last_ackt = tcp_skb_timestamp_us(skb); 3115 WARN_ON_ONCE(last_ackt == 0); 3116 if (!first_ackt) 3117 first_ackt = last_ackt; 3118 3119 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3120 if (before(start_seq, reord)) 3121 reord = start_seq; 3122 if (!after(scb->end_seq, tp->high_seq)) 3123 flag |= FLAG_ORIG_SACK_ACKED; 3124 } 3125 3126 if (sacked & TCPCB_SACKED_ACKED) { 3127 tp->sacked_out -= acked_pcount; 3128 } else if (tcp_is_sack(tp)) { 3129 tp->delivered += acked_pcount; 3130 if (!tcp_skb_spurious_retrans(tp, skb)) 3131 tcp_rack_advance(tp, sacked, scb->end_seq, 3132 tcp_skb_timestamp_us(skb)); 3133 } 3134 if (sacked & TCPCB_LOST) 3135 tp->lost_out -= acked_pcount; 3136 3137 tp->packets_out -= acked_pcount; 3138 pkts_acked += acked_pcount; 3139 tcp_rate_skb_delivered(sk, skb, sack->rate); 3140 3141 /* Initial outgoing SYN's get put onto the write_queue 3142 * just like anything else we transmit. It is not 3143 * true data, and if we misinform our callers that 3144 * this ACK acks real data, we will erroneously exit 3145 * connection startup slow start one packet too 3146 * quickly. This is severely frowned upon behavior. 3147 */ 3148 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3149 flag |= FLAG_DATA_ACKED; 3150 } else { 3151 flag |= FLAG_SYN_ACKED; 3152 tp->retrans_stamp = 0; 3153 } 3154 3155 if (!fully_acked) 3156 break; 3157 3158 next = skb_rb_next(skb); 3159 if (unlikely(skb == tp->retransmit_skb_hint)) 3160 tp->retransmit_skb_hint = NULL; 3161 if (unlikely(skb == tp->lost_skb_hint)) 3162 tp->lost_skb_hint = NULL; 3163 tcp_rtx_queue_unlink_and_free(skb, sk); 3164 } 3165 3166 if (!skb) 3167 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3168 3169 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3170 tp->snd_up = tp->snd_una; 3171 3172 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3173 flag |= FLAG_SACK_RENEGING; 3174 3175 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3176 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3177 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3178 3179 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3180 last_in_flight && !prior_sacked && fully_acked && 3181 sack->rate->prior_delivered + 1 == tp->delivered && 3182 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3183 /* Conservatively mark a delayed ACK. It's typically 3184 * from a lone runt packet over the round trip to 3185 * a receiver w/o out-of-order or CE events. 3186 */ 3187 flag |= FLAG_ACK_MAYBE_DELAYED; 3188 } 3189 } 3190 if (sack->first_sackt) { 3191 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3192 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3193 } 3194 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3195 ca_rtt_us, sack->rate); 3196 3197 if (flag & FLAG_ACKED) { 3198 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3199 if (unlikely(icsk->icsk_mtup.probe_size && 3200 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3201 tcp_mtup_probe_success(sk); 3202 } 3203 3204 if (tcp_is_reno(tp)) { 3205 tcp_remove_reno_sacks(sk, pkts_acked); 3206 3207 /* If any of the cumulatively ACKed segments was 3208 * retransmitted, non-SACK case cannot confirm that 3209 * progress was due to original transmission due to 3210 * lack of TCPCB_SACKED_ACKED bits even if some of 3211 * the packets may have been never retransmitted. 3212 */ 3213 if (flag & FLAG_RETRANS_DATA_ACKED) 3214 flag &= ~FLAG_ORIG_SACK_ACKED; 3215 } else { 3216 int delta; 3217 3218 /* Non-retransmitted hole got filled? That's reordering */ 3219 if (before(reord, prior_fack)) 3220 tcp_check_sack_reordering(sk, reord, 0); 3221 3222 delta = prior_sacked - tp->sacked_out; 3223 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3224 } 3225 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3226 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3227 tcp_skb_timestamp_us(skb))) { 3228 /* Do not re-arm RTO if the sack RTT is measured from data sent 3229 * after when the head was last (re)transmitted. Otherwise the 3230 * timeout may continue to extend in loss recovery. 3231 */ 3232 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3233 } 3234 3235 if (icsk->icsk_ca_ops->pkts_acked) { 3236 struct ack_sample sample = { .pkts_acked = pkts_acked, 3237 .rtt_us = sack->rate->rtt_us, 3238 .in_flight = last_in_flight }; 3239 3240 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3241 } 3242 3243 #if FASTRETRANS_DEBUG > 0 3244 WARN_ON((int)tp->sacked_out < 0); 3245 WARN_ON((int)tp->lost_out < 0); 3246 WARN_ON((int)tp->retrans_out < 0); 3247 if (!tp->packets_out && tcp_is_sack(tp)) { 3248 icsk = inet_csk(sk); 3249 if (tp->lost_out) { 3250 pr_debug("Leak l=%u %d\n", 3251 tp->lost_out, icsk->icsk_ca_state); 3252 tp->lost_out = 0; 3253 } 3254 if (tp->sacked_out) { 3255 pr_debug("Leak s=%u %d\n", 3256 tp->sacked_out, icsk->icsk_ca_state); 3257 tp->sacked_out = 0; 3258 } 3259 if (tp->retrans_out) { 3260 pr_debug("Leak r=%u %d\n", 3261 tp->retrans_out, icsk->icsk_ca_state); 3262 tp->retrans_out = 0; 3263 } 3264 } 3265 #endif 3266 return flag; 3267 } 3268 3269 static void tcp_ack_probe(struct sock *sk) 3270 { 3271 struct inet_connection_sock *icsk = inet_csk(sk); 3272 struct sk_buff *head = tcp_send_head(sk); 3273 const struct tcp_sock *tp = tcp_sk(sk); 3274 3275 /* Was it a usable window open? */ 3276 if (!head) 3277 return; 3278 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3279 icsk->icsk_backoff = 0; 3280 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3281 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3282 * This function is not for random using! 3283 */ 3284 } else { 3285 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3286 3287 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3288 when, TCP_RTO_MAX, NULL); 3289 } 3290 } 3291 3292 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3293 { 3294 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3295 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3296 } 3297 3298 /* Decide wheather to run the increase function of congestion control. */ 3299 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3300 { 3301 /* If reordering is high then always grow cwnd whenever data is 3302 * delivered regardless of its ordering. Otherwise stay conservative 3303 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3304 * new SACK or ECE mark may first advance cwnd here and later reduce 3305 * cwnd in tcp_fastretrans_alert() based on more states. 3306 */ 3307 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3308 return flag & FLAG_FORWARD_PROGRESS; 3309 3310 return flag & FLAG_DATA_ACKED; 3311 } 3312 3313 /* The "ultimate" congestion control function that aims to replace the rigid 3314 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3315 * It's called toward the end of processing an ACK with precise rate 3316 * information. All transmission or retransmission are delayed afterwards. 3317 */ 3318 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3319 int flag, const struct rate_sample *rs) 3320 { 3321 const struct inet_connection_sock *icsk = inet_csk(sk); 3322 3323 if (icsk->icsk_ca_ops->cong_control) { 3324 icsk->icsk_ca_ops->cong_control(sk, rs); 3325 return; 3326 } 3327 3328 if (tcp_in_cwnd_reduction(sk)) { 3329 /* Reduce cwnd if state mandates */ 3330 tcp_cwnd_reduction(sk, acked_sacked, flag); 3331 } else if (tcp_may_raise_cwnd(sk, flag)) { 3332 /* Advance cwnd if state allows */ 3333 tcp_cong_avoid(sk, ack, acked_sacked); 3334 } 3335 tcp_update_pacing_rate(sk); 3336 } 3337 3338 /* Check that window update is acceptable. 3339 * The function assumes that snd_una<=ack<=snd_next. 3340 */ 3341 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3342 const u32 ack, const u32 ack_seq, 3343 const u32 nwin) 3344 { 3345 return after(ack, tp->snd_una) || 3346 after(ack_seq, tp->snd_wl1) || 3347 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3348 } 3349 3350 /* If we update tp->snd_una, also update tp->bytes_acked */ 3351 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3352 { 3353 u32 delta = ack - tp->snd_una; 3354 3355 sock_owned_by_me((struct sock *)tp); 3356 tp->bytes_acked += delta; 3357 tp->snd_una = ack; 3358 } 3359 3360 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3361 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3362 { 3363 u32 delta = seq - tp->rcv_nxt; 3364 3365 sock_owned_by_me((struct sock *)tp); 3366 tp->bytes_received += delta; 3367 WRITE_ONCE(tp->rcv_nxt, seq); 3368 } 3369 3370 /* Update our send window. 3371 * 3372 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3373 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3374 */ 3375 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3376 u32 ack_seq) 3377 { 3378 struct tcp_sock *tp = tcp_sk(sk); 3379 int flag = 0; 3380 u32 nwin = ntohs(tcp_hdr(skb)->window); 3381 3382 if (likely(!tcp_hdr(skb)->syn)) 3383 nwin <<= tp->rx_opt.snd_wscale; 3384 3385 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3386 flag |= FLAG_WIN_UPDATE; 3387 tcp_update_wl(tp, ack_seq); 3388 3389 if (tp->snd_wnd != nwin) { 3390 tp->snd_wnd = nwin; 3391 3392 /* Note, it is the only place, where 3393 * fast path is recovered for sending TCP. 3394 */ 3395 tp->pred_flags = 0; 3396 tcp_fast_path_check(sk); 3397 3398 if (!tcp_write_queue_empty(sk)) 3399 tcp_slow_start_after_idle_check(sk); 3400 3401 if (nwin > tp->max_window) { 3402 tp->max_window = nwin; 3403 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3404 } 3405 } 3406 } 3407 3408 tcp_snd_una_update(tp, ack); 3409 3410 return flag; 3411 } 3412 3413 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3414 u32 *last_oow_ack_time) 3415 { 3416 if (*last_oow_ack_time) { 3417 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3418 3419 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3420 NET_INC_STATS(net, mib_idx); 3421 return true; /* rate-limited: don't send yet! */ 3422 } 3423 } 3424 3425 *last_oow_ack_time = tcp_jiffies32; 3426 3427 return false; /* not rate-limited: go ahead, send dupack now! */ 3428 } 3429 3430 /* Return true if we're currently rate-limiting out-of-window ACKs and 3431 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3432 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3433 * attacks that send repeated SYNs or ACKs for the same connection. To 3434 * do this, we do not send a duplicate SYNACK or ACK if the remote 3435 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3436 */ 3437 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3438 int mib_idx, u32 *last_oow_ack_time) 3439 { 3440 /* Data packets without SYNs are not likely part of an ACK loop. */ 3441 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3442 !tcp_hdr(skb)->syn) 3443 return false; 3444 3445 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3446 } 3447 3448 /* RFC 5961 7 [ACK Throttling] */ 3449 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3450 { 3451 /* unprotected vars, we dont care of overwrites */ 3452 static u32 challenge_timestamp; 3453 static unsigned int challenge_count; 3454 struct tcp_sock *tp = tcp_sk(sk); 3455 struct net *net = sock_net(sk); 3456 u32 count, now; 3457 3458 /* First check our per-socket dupack rate limit. */ 3459 if (__tcp_oow_rate_limited(net, 3460 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3461 &tp->last_oow_ack_time)) 3462 return; 3463 3464 /* Then check host-wide RFC 5961 rate limit. */ 3465 now = jiffies / HZ; 3466 if (now != challenge_timestamp) { 3467 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3468 u32 half = (ack_limit + 1) >> 1; 3469 3470 challenge_timestamp = now; 3471 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3472 } 3473 count = READ_ONCE(challenge_count); 3474 if (count > 0) { 3475 WRITE_ONCE(challenge_count, count - 1); 3476 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3477 tcp_send_ack(sk); 3478 } 3479 } 3480 3481 static void tcp_store_ts_recent(struct tcp_sock *tp) 3482 { 3483 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3484 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3485 } 3486 3487 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3488 { 3489 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3490 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3491 * extra check below makes sure this can only happen 3492 * for pure ACK frames. -DaveM 3493 * 3494 * Not only, also it occurs for expired timestamps. 3495 */ 3496 3497 if (tcp_paws_check(&tp->rx_opt, 0)) 3498 tcp_store_ts_recent(tp); 3499 } 3500 } 3501 3502 /* This routine deals with acks during a TLP episode. 3503 * We mark the end of a TLP episode on receiving TLP dupack or when 3504 * ack is after tlp_high_seq. 3505 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3506 */ 3507 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3508 { 3509 struct tcp_sock *tp = tcp_sk(sk); 3510 3511 if (before(ack, tp->tlp_high_seq)) 3512 return; 3513 3514 if (flag & FLAG_DSACKING_ACK) { 3515 /* This DSACK means original and TLP probe arrived; no loss */ 3516 tp->tlp_high_seq = 0; 3517 } else if (after(ack, tp->tlp_high_seq)) { 3518 /* ACK advances: there was a loss, so reduce cwnd. Reset 3519 * tlp_high_seq in tcp_init_cwnd_reduction() 3520 */ 3521 tcp_init_cwnd_reduction(sk); 3522 tcp_set_ca_state(sk, TCP_CA_CWR); 3523 tcp_end_cwnd_reduction(sk); 3524 tcp_try_keep_open(sk); 3525 NET_INC_STATS(sock_net(sk), 3526 LINUX_MIB_TCPLOSSPROBERECOVERY); 3527 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3528 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3529 /* Pure dupack: original and TLP probe arrived; no loss */ 3530 tp->tlp_high_seq = 0; 3531 } 3532 } 3533 3534 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3535 { 3536 const struct inet_connection_sock *icsk = inet_csk(sk); 3537 3538 if (icsk->icsk_ca_ops->in_ack_event) 3539 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3540 } 3541 3542 /* Congestion control has updated the cwnd already. So if we're in 3543 * loss recovery then now we do any new sends (for FRTO) or 3544 * retransmits (for CA_Loss or CA_recovery) that make sense. 3545 */ 3546 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3547 { 3548 struct tcp_sock *tp = tcp_sk(sk); 3549 3550 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3551 return; 3552 3553 if (unlikely(rexmit == 2)) { 3554 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3555 TCP_NAGLE_OFF); 3556 if (after(tp->snd_nxt, tp->high_seq)) 3557 return; 3558 tp->frto = 0; 3559 } 3560 tcp_xmit_retransmit_queue(sk); 3561 } 3562 3563 /* Returns the number of packets newly acked or sacked by the current ACK */ 3564 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3565 { 3566 const struct net *net = sock_net(sk); 3567 struct tcp_sock *tp = tcp_sk(sk); 3568 u32 delivered; 3569 3570 delivered = tp->delivered - prior_delivered; 3571 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3572 if (flag & FLAG_ECE) { 3573 tp->delivered_ce += delivered; 3574 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3575 } 3576 return delivered; 3577 } 3578 3579 /* This routine deals with incoming acks, but not outgoing ones. */ 3580 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3581 { 3582 struct inet_connection_sock *icsk = inet_csk(sk); 3583 struct tcp_sock *tp = tcp_sk(sk); 3584 struct tcp_sacktag_state sack_state; 3585 struct rate_sample rs = { .prior_delivered = 0 }; 3586 u32 prior_snd_una = tp->snd_una; 3587 bool is_sack_reneg = tp->is_sack_reneg; 3588 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3589 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3590 int num_dupack = 0; 3591 int prior_packets = tp->packets_out; 3592 u32 delivered = tp->delivered; 3593 u32 lost = tp->lost; 3594 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3595 u32 prior_fack; 3596 3597 sack_state.first_sackt = 0; 3598 sack_state.rate = &rs; 3599 3600 /* We very likely will need to access rtx queue. */ 3601 prefetch(sk->tcp_rtx_queue.rb_node); 3602 3603 /* If the ack is older than previous acks 3604 * then we can probably ignore it. 3605 */ 3606 if (before(ack, prior_snd_una)) { 3607 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3608 if (before(ack, prior_snd_una - tp->max_window)) { 3609 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3610 tcp_send_challenge_ack(sk, skb); 3611 return -1; 3612 } 3613 goto old_ack; 3614 } 3615 3616 /* If the ack includes data we haven't sent yet, discard 3617 * this segment (RFC793 Section 3.9). 3618 */ 3619 if (after(ack, tp->snd_nxt)) 3620 return -1; 3621 3622 if (after(ack, prior_snd_una)) { 3623 flag |= FLAG_SND_UNA_ADVANCED; 3624 icsk->icsk_retransmits = 0; 3625 3626 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3627 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3628 if (icsk->icsk_clean_acked) 3629 icsk->icsk_clean_acked(sk, ack); 3630 #endif 3631 } 3632 3633 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3634 rs.prior_in_flight = tcp_packets_in_flight(tp); 3635 3636 /* ts_recent update must be made after we are sure that the packet 3637 * is in window. 3638 */ 3639 if (flag & FLAG_UPDATE_TS_RECENT) 3640 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3641 3642 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3643 FLAG_SND_UNA_ADVANCED) { 3644 /* Window is constant, pure forward advance. 3645 * No more checks are required. 3646 * Note, we use the fact that SND.UNA>=SND.WL2. 3647 */ 3648 tcp_update_wl(tp, ack_seq); 3649 tcp_snd_una_update(tp, ack); 3650 flag |= FLAG_WIN_UPDATE; 3651 3652 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3653 3654 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3655 } else { 3656 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3657 3658 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3659 flag |= FLAG_DATA; 3660 else 3661 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3662 3663 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3664 3665 if (TCP_SKB_CB(skb)->sacked) 3666 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3667 &sack_state); 3668 3669 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3670 flag |= FLAG_ECE; 3671 ack_ev_flags |= CA_ACK_ECE; 3672 } 3673 3674 if (flag & FLAG_WIN_UPDATE) 3675 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3676 3677 tcp_in_ack_event(sk, ack_ev_flags); 3678 } 3679 3680 /* We passed data and got it acked, remove any soft error 3681 * log. Something worked... 3682 */ 3683 sk->sk_err_soft = 0; 3684 icsk->icsk_probes_out = 0; 3685 tp->rcv_tstamp = tcp_jiffies32; 3686 if (!prior_packets) 3687 goto no_queue; 3688 3689 /* See if we can take anything off of the retransmit queue. */ 3690 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3691 3692 tcp_rack_update_reo_wnd(sk, &rs); 3693 3694 if (tp->tlp_high_seq) 3695 tcp_process_tlp_ack(sk, ack, flag); 3696 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3697 if (flag & FLAG_SET_XMIT_TIMER) 3698 tcp_set_xmit_timer(sk); 3699 3700 if (tcp_ack_is_dubious(sk, flag)) { 3701 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3702 num_dupack = 1; 3703 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3704 if (!(flag & FLAG_DATA)) 3705 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3706 } 3707 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3708 &rexmit); 3709 } 3710 3711 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3712 sk_dst_confirm(sk); 3713 3714 delivered = tcp_newly_delivered(sk, delivered, flag); 3715 lost = tp->lost - lost; /* freshly marked lost */ 3716 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3717 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3718 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3719 tcp_xmit_recovery(sk, rexmit); 3720 return 1; 3721 3722 no_queue: 3723 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3724 if (flag & FLAG_DSACKING_ACK) { 3725 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3726 &rexmit); 3727 tcp_newly_delivered(sk, delivered, flag); 3728 } 3729 /* If this ack opens up a zero window, clear backoff. It was 3730 * being used to time the probes, and is probably far higher than 3731 * it needs to be for normal retransmission. 3732 */ 3733 tcp_ack_probe(sk); 3734 3735 if (tp->tlp_high_seq) 3736 tcp_process_tlp_ack(sk, ack, flag); 3737 return 1; 3738 3739 old_ack: 3740 /* If data was SACKed, tag it and see if we should send more data. 3741 * If data was DSACKed, see if we can undo a cwnd reduction. 3742 */ 3743 if (TCP_SKB_CB(skb)->sacked) { 3744 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3745 &sack_state); 3746 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3747 &rexmit); 3748 tcp_newly_delivered(sk, delivered, flag); 3749 tcp_xmit_recovery(sk, rexmit); 3750 } 3751 3752 return 0; 3753 } 3754 3755 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3756 bool syn, struct tcp_fastopen_cookie *foc, 3757 bool exp_opt) 3758 { 3759 /* Valid only in SYN or SYN-ACK with an even length. */ 3760 if (!foc || !syn || len < 0 || (len & 1)) 3761 return; 3762 3763 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3764 len <= TCP_FASTOPEN_COOKIE_MAX) 3765 memcpy(foc->val, cookie, len); 3766 else if (len != 0) 3767 len = -1; 3768 foc->len = len; 3769 foc->exp = exp_opt; 3770 } 3771 3772 static void smc_parse_options(const struct tcphdr *th, 3773 struct tcp_options_received *opt_rx, 3774 const unsigned char *ptr, 3775 int opsize) 3776 { 3777 #if IS_ENABLED(CONFIG_SMC) 3778 if (static_branch_unlikely(&tcp_have_smc)) { 3779 if (th->syn && !(opsize & 1) && 3780 opsize >= TCPOLEN_EXP_SMC_BASE && 3781 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3782 opt_rx->smc_ok = 1; 3783 } 3784 #endif 3785 } 3786 3787 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3788 * value on success. 3789 */ 3790 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3791 { 3792 const unsigned char *ptr = (const unsigned char *)(th + 1); 3793 int length = (th->doff * 4) - sizeof(struct tcphdr); 3794 u16 mss = 0; 3795 3796 while (length > 0) { 3797 int opcode = *ptr++; 3798 int opsize; 3799 3800 switch (opcode) { 3801 case TCPOPT_EOL: 3802 return mss; 3803 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3804 length--; 3805 continue; 3806 default: 3807 if (length < 2) 3808 return mss; 3809 opsize = *ptr++; 3810 if (opsize < 2) /* "silly options" */ 3811 return mss; 3812 if (opsize > length) 3813 return mss; /* fail on partial options */ 3814 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3815 u16 in_mss = get_unaligned_be16(ptr); 3816 3817 if (in_mss) { 3818 if (user_mss && user_mss < in_mss) 3819 in_mss = user_mss; 3820 mss = in_mss; 3821 } 3822 } 3823 ptr += opsize - 2; 3824 length -= opsize; 3825 } 3826 } 3827 return mss; 3828 } 3829 3830 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3831 * But, this can also be called on packets in the established flow when 3832 * the fast version below fails. 3833 */ 3834 void tcp_parse_options(const struct net *net, 3835 const struct sk_buff *skb, 3836 struct tcp_options_received *opt_rx, int estab, 3837 struct tcp_fastopen_cookie *foc) 3838 { 3839 const unsigned char *ptr; 3840 const struct tcphdr *th = tcp_hdr(skb); 3841 int length = (th->doff * 4) - sizeof(struct tcphdr); 3842 3843 ptr = (const unsigned char *)(th + 1); 3844 opt_rx->saw_tstamp = 0; 3845 3846 while (length > 0) { 3847 int opcode = *ptr++; 3848 int opsize; 3849 3850 switch (opcode) { 3851 case TCPOPT_EOL: 3852 return; 3853 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3854 length--; 3855 continue; 3856 default: 3857 if (length < 2) 3858 return; 3859 opsize = *ptr++; 3860 if (opsize < 2) /* "silly options" */ 3861 return; 3862 if (opsize > length) 3863 return; /* don't parse partial options */ 3864 switch (opcode) { 3865 case TCPOPT_MSS: 3866 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3867 u16 in_mss = get_unaligned_be16(ptr); 3868 if (in_mss) { 3869 if (opt_rx->user_mss && 3870 opt_rx->user_mss < in_mss) 3871 in_mss = opt_rx->user_mss; 3872 opt_rx->mss_clamp = in_mss; 3873 } 3874 } 3875 break; 3876 case TCPOPT_WINDOW: 3877 if (opsize == TCPOLEN_WINDOW && th->syn && 3878 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3879 __u8 snd_wscale = *(__u8 *)ptr; 3880 opt_rx->wscale_ok = 1; 3881 if (snd_wscale > TCP_MAX_WSCALE) { 3882 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3883 __func__, 3884 snd_wscale, 3885 TCP_MAX_WSCALE); 3886 snd_wscale = TCP_MAX_WSCALE; 3887 } 3888 opt_rx->snd_wscale = snd_wscale; 3889 } 3890 break; 3891 case TCPOPT_TIMESTAMP: 3892 if ((opsize == TCPOLEN_TIMESTAMP) && 3893 ((estab && opt_rx->tstamp_ok) || 3894 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3895 opt_rx->saw_tstamp = 1; 3896 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3897 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3898 } 3899 break; 3900 case TCPOPT_SACK_PERM: 3901 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3902 !estab && net->ipv4.sysctl_tcp_sack) { 3903 opt_rx->sack_ok = TCP_SACK_SEEN; 3904 tcp_sack_reset(opt_rx); 3905 } 3906 break; 3907 3908 case TCPOPT_SACK: 3909 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3910 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3911 opt_rx->sack_ok) { 3912 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3913 } 3914 break; 3915 #ifdef CONFIG_TCP_MD5SIG 3916 case TCPOPT_MD5SIG: 3917 /* 3918 * The MD5 Hash has already been 3919 * checked (see tcp_v{4,6}_do_rcv()). 3920 */ 3921 break; 3922 #endif 3923 case TCPOPT_FASTOPEN: 3924 tcp_parse_fastopen_option( 3925 opsize - TCPOLEN_FASTOPEN_BASE, 3926 ptr, th->syn, foc, false); 3927 break; 3928 3929 case TCPOPT_EXP: 3930 /* Fast Open option shares code 254 using a 3931 * 16 bits magic number. 3932 */ 3933 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3934 get_unaligned_be16(ptr) == 3935 TCPOPT_FASTOPEN_MAGIC) 3936 tcp_parse_fastopen_option(opsize - 3937 TCPOLEN_EXP_FASTOPEN_BASE, 3938 ptr + 2, th->syn, foc, true); 3939 else 3940 smc_parse_options(th, opt_rx, ptr, 3941 opsize); 3942 break; 3943 3944 } 3945 ptr += opsize-2; 3946 length -= opsize; 3947 } 3948 } 3949 } 3950 EXPORT_SYMBOL(tcp_parse_options); 3951 3952 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3953 { 3954 const __be32 *ptr = (const __be32 *)(th + 1); 3955 3956 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3957 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3958 tp->rx_opt.saw_tstamp = 1; 3959 ++ptr; 3960 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3961 ++ptr; 3962 if (*ptr) 3963 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3964 else 3965 tp->rx_opt.rcv_tsecr = 0; 3966 return true; 3967 } 3968 return false; 3969 } 3970 3971 /* Fast parse options. This hopes to only see timestamps. 3972 * If it is wrong it falls back on tcp_parse_options(). 3973 */ 3974 static bool tcp_fast_parse_options(const struct net *net, 3975 const struct sk_buff *skb, 3976 const struct tcphdr *th, struct tcp_sock *tp) 3977 { 3978 /* In the spirit of fast parsing, compare doff directly to constant 3979 * values. Because equality is used, short doff can be ignored here. 3980 */ 3981 if (th->doff == (sizeof(*th) / 4)) { 3982 tp->rx_opt.saw_tstamp = 0; 3983 return false; 3984 } else if (tp->rx_opt.tstamp_ok && 3985 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3986 if (tcp_parse_aligned_timestamp(tp, th)) 3987 return true; 3988 } 3989 3990 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3991 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3992 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3993 3994 return true; 3995 } 3996 3997 #ifdef CONFIG_TCP_MD5SIG 3998 /* 3999 * Parse MD5 Signature option 4000 */ 4001 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4002 { 4003 int length = (th->doff << 2) - sizeof(*th); 4004 const u8 *ptr = (const u8 *)(th + 1); 4005 4006 /* If not enough data remaining, we can short cut */ 4007 while (length >= TCPOLEN_MD5SIG) { 4008 int opcode = *ptr++; 4009 int opsize; 4010 4011 switch (opcode) { 4012 case TCPOPT_EOL: 4013 return NULL; 4014 case TCPOPT_NOP: 4015 length--; 4016 continue; 4017 default: 4018 opsize = *ptr++; 4019 if (opsize < 2 || opsize > length) 4020 return NULL; 4021 if (opcode == TCPOPT_MD5SIG) 4022 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4023 } 4024 ptr += opsize - 2; 4025 length -= opsize; 4026 } 4027 return NULL; 4028 } 4029 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4030 #endif 4031 4032 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4033 * 4034 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4035 * it can pass through stack. So, the following predicate verifies that 4036 * this segment is not used for anything but congestion avoidance or 4037 * fast retransmit. Moreover, we even are able to eliminate most of such 4038 * second order effects, if we apply some small "replay" window (~RTO) 4039 * to timestamp space. 4040 * 4041 * All these measures still do not guarantee that we reject wrapped ACKs 4042 * on networks with high bandwidth, when sequence space is recycled fastly, 4043 * but it guarantees that such events will be very rare and do not affect 4044 * connection seriously. This doesn't look nice, but alas, PAWS is really 4045 * buggy extension. 4046 * 4047 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4048 * states that events when retransmit arrives after original data are rare. 4049 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4050 * the biggest problem on large power networks even with minor reordering. 4051 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4052 * up to bandwidth of 18Gigabit/sec. 8) ] 4053 */ 4054 4055 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4056 { 4057 const struct tcp_sock *tp = tcp_sk(sk); 4058 const struct tcphdr *th = tcp_hdr(skb); 4059 u32 seq = TCP_SKB_CB(skb)->seq; 4060 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4061 4062 return (/* 1. Pure ACK with correct sequence number. */ 4063 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4064 4065 /* 2. ... and duplicate ACK. */ 4066 ack == tp->snd_una && 4067 4068 /* 3. ... and does not update window. */ 4069 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4070 4071 /* 4. ... and sits in replay window. */ 4072 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4073 } 4074 4075 static inline bool tcp_paws_discard(const struct sock *sk, 4076 const struct sk_buff *skb) 4077 { 4078 const struct tcp_sock *tp = tcp_sk(sk); 4079 4080 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4081 !tcp_disordered_ack(sk, skb); 4082 } 4083 4084 /* Check segment sequence number for validity. 4085 * 4086 * Segment controls are considered valid, if the segment 4087 * fits to the window after truncation to the window. Acceptability 4088 * of data (and SYN, FIN, of course) is checked separately. 4089 * See tcp_data_queue(), for example. 4090 * 4091 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4092 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4093 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4094 * (borrowed from freebsd) 4095 */ 4096 4097 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4098 { 4099 return !before(end_seq, tp->rcv_wup) && 4100 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4101 } 4102 4103 /* When we get a reset we do this. */ 4104 void tcp_reset(struct sock *sk) 4105 { 4106 trace_tcp_receive_reset(sk); 4107 4108 /* We want the right error as BSD sees it (and indeed as we do). */ 4109 switch (sk->sk_state) { 4110 case TCP_SYN_SENT: 4111 sk->sk_err = ECONNREFUSED; 4112 break; 4113 case TCP_CLOSE_WAIT: 4114 sk->sk_err = EPIPE; 4115 break; 4116 case TCP_CLOSE: 4117 return; 4118 default: 4119 sk->sk_err = ECONNRESET; 4120 } 4121 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4122 smp_wmb(); 4123 4124 tcp_write_queue_purge(sk); 4125 tcp_done(sk); 4126 4127 if (!sock_flag(sk, SOCK_DEAD)) 4128 sk->sk_error_report(sk); 4129 } 4130 4131 /* 4132 * Process the FIN bit. This now behaves as it is supposed to work 4133 * and the FIN takes effect when it is validly part of sequence 4134 * space. Not before when we get holes. 4135 * 4136 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4137 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4138 * TIME-WAIT) 4139 * 4140 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4141 * close and we go into CLOSING (and later onto TIME-WAIT) 4142 * 4143 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4144 */ 4145 void tcp_fin(struct sock *sk) 4146 { 4147 struct tcp_sock *tp = tcp_sk(sk); 4148 4149 inet_csk_schedule_ack(sk); 4150 4151 sk->sk_shutdown |= RCV_SHUTDOWN; 4152 sock_set_flag(sk, SOCK_DONE); 4153 4154 switch (sk->sk_state) { 4155 case TCP_SYN_RECV: 4156 case TCP_ESTABLISHED: 4157 /* Move to CLOSE_WAIT */ 4158 tcp_set_state(sk, TCP_CLOSE_WAIT); 4159 inet_csk_enter_pingpong_mode(sk); 4160 break; 4161 4162 case TCP_CLOSE_WAIT: 4163 case TCP_CLOSING: 4164 /* Received a retransmission of the FIN, do 4165 * nothing. 4166 */ 4167 break; 4168 case TCP_LAST_ACK: 4169 /* RFC793: Remain in the LAST-ACK state. */ 4170 break; 4171 4172 case TCP_FIN_WAIT1: 4173 /* This case occurs when a simultaneous close 4174 * happens, we must ack the received FIN and 4175 * enter the CLOSING state. 4176 */ 4177 tcp_send_ack(sk); 4178 tcp_set_state(sk, TCP_CLOSING); 4179 break; 4180 case TCP_FIN_WAIT2: 4181 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4182 tcp_send_ack(sk); 4183 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4184 break; 4185 default: 4186 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4187 * cases we should never reach this piece of code. 4188 */ 4189 pr_err("%s: Impossible, sk->sk_state=%d\n", 4190 __func__, sk->sk_state); 4191 break; 4192 } 4193 4194 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4195 * Probably, we should reset in this case. For now drop them. 4196 */ 4197 skb_rbtree_purge(&tp->out_of_order_queue); 4198 if (tcp_is_sack(tp)) 4199 tcp_sack_reset(&tp->rx_opt); 4200 sk_mem_reclaim(sk); 4201 4202 if (!sock_flag(sk, SOCK_DEAD)) { 4203 sk->sk_state_change(sk); 4204 4205 /* Do not send POLL_HUP for half duplex close. */ 4206 if (sk->sk_shutdown == SHUTDOWN_MASK || 4207 sk->sk_state == TCP_CLOSE) 4208 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4209 else 4210 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4211 } 4212 } 4213 4214 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4215 u32 end_seq) 4216 { 4217 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4218 if (before(seq, sp->start_seq)) 4219 sp->start_seq = seq; 4220 if (after(end_seq, sp->end_seq)) 4221 sp->end_seq = end_seq; 4222 return true; 4223 } 4224 return false; 4225 } 4226 4227 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4228 { 4229 struct tcp_sock *tp = tcp_sk(sk); 4230 4231 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4232 int mib_idx; 4233 4234 if (before(seq, tp->rcv_nxt)) 4235 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4236 else 4237 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4238 4239 NET_INC_STATS(sock_net(sk), mib_idx); 4240 4241 tp->rx_opt.dsack = 1; 4242 tp->duplicate_sack[0].start_seq = seq; 4243 tp->duplicate_sack[0].end_seq = end_seq; 4244 } 4245 } 4246 4247 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4248 { 4249 struct tcp_sock *tp = tcp_sk(sk); 4250 4251 if (!tp->rx_opt.dsack) 4252 tcp_dsack_set(sk, seq, end_seq); 4253 else 4254 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4255 } 4256 4257 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4258 { 4259 /* When the ACK path fails or drops most ACKs, the sender would 4260 * timeout and spuriously retransmit the same segment repeatedly. 4261 * The receiver remembers and reflects via DSACKs. Leverage the 4262 * DSACK state and change the txhash to re-route speculatively. 4263 */ 4264 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) 4265 sk_rethink_txhash(sk); 4266 } 4267 4268 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4269 { 4270 struct tcp_sock *tp = tcp_sk(sk); 4271 4272 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4273 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4274 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4275 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4276 4277 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4278 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4279 4280 tcp_rcv_spurious_retrans(sk, skb); 4281 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4282 end_seq = tp->rcv_nxt; 4283 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4284 } 4285 } 4286 4287 tcp_send_ack(sk); 4288 } 4289 4290 /* These routines update the SACK block as out-of-order packets arrive or 4291 * in-order packets close up the sequence space. 4292 */ 4293 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4294 { 4295 int this_sack; 4296 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4297 struct tcp_sack_block *swalk = sp + 1; 4298 4299 /* See if the recent change to the first SACK eats into 4300 * or hits the sequence space of other SACK blocks, if so coalesce. 4301 */ 4302 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4303 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4304 int i; 4305 4306 /* Zap SWALK, by moving every further SACK up by one slot. 4307 * Decrease num_sacks. 4308 */ 4309 tp->rx_opt.num_sacks--; 4310 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4311 sp[i] = sp[i + 1]; 4312 continue; 4313 } 4314 this_sack++, swalk++; 4315 } 4316 } 4317 4318 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4319 { 4320 struct tcp_sock *tp = tcp_sk(sk); 4321 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4322 int cur_sacks = tp->rx_opt.num_sacks; 4323 int this_sack; 4324 4325 if (!cur_sacks) 4326 goto new_sack; 4327 4328 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4329 if (tcp_sack_extend(sp, seq, end_seq)) { 4330 /* Rotate this_sack to the first one. */ 4331 for (; this_sack > 0; this_sack--, sp--) 4332 swap(*sp, *(sp - 1)); 4333 if (cur_sacks > 1) 4334 tcp_sack_maybe_coalesce(tp); 4335 return; 4336 } 4337 } 4338 4339 /* Could not find an adjacent existing SACK, build a new one, 4340 * put it at the front, and shift everyone else down. We 4341 * always know there is at least one SACK present already here. 4342 * 4343 * If the sack array is full, forget about the last one. 4344 */ 4345 if (this_sack >= TCP_NUM_SACKS) { 4346 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 4347 tcp_send_ack(sk); 4348 this_sack--; 4349 tp->rx_opt.num_sacks--; 4350 sp--; 4351 } 4352 for (; this_sack > 0; this_sack--, sp--) 4353 *sp = *(sp - 1); 4354 4355 new_sack: 4356 /* Build the new head SACK, and we're done. */ 4357 sp->start_seq = seq; 4358 sp->end_seq = end_seq; 4359 tp->rx_opt.num_sacks++; 4360 } 4361 4362 /* RCV.NXT advances, some SACKs should be eaten. */ 4363 4364 static void tcp_sack_remove(struct tcp_sock *tp) 4365 { 4366 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4367 int num_sacks = tp->rx_opt.num_sacks; 4368 int this_sack; 4369 4370 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4371 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4372 tp->rx_opt.num_sacks = 0; 4373 return; 4374 } 4375 4376 for (this_sack = 0; this_sack < num_sacks;) { 4377 /* Check if the start of the sack is covered by RCV.NXT. */ 4378 if (!before(tp->rcv_nxt, sp->start_seq)) { 4379 int i; 4380 4381 /* RCV.NXT must cover all the block! */ 4382 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4383 4384 /* Zap this SACK, by moving forward any other SACKS. */ 4385 for (i = this_sack+1; i < num_sacks; i++) 4386 tp->selective_acks[i-1] = tp->selective_acks[i]; 4387 num_sacks--; 4388 continue; 4389 } 4390 this_sack++; 4391 sp++; 4392 } 4393 tp->rx_opt.num_sacks = num_sacks; 4394 } 4395 4396 /** 4397 * tcp_try_coalesce - try to merge skb to prior one 4398 * @sk: socket 4399 * @dest: destination queue 4400 * @to: prior buffer 4401 * @from: buffer to add in queue 4402 * @fragstolen: pointer to boolean 4403 * 4404 * Before queueing skb @from after @to, try to merge them 4405 * to reduce overall memory use and queue lengths, if cost is small. 4406 * Packets in ofo or receive queues can stay a long time. 4407 * Better try to coalesce them right now to avoid future collapses. 4408 * Returns true if caller should free @from instead of queueing it 4409 */ 4410 static bool tcp_try_coalesce(struct sock *sk, 4411 struct sk_buff *to, 4412 struct sk_buff *from, 4413 bool *fragstolen) 4414 { 4415 int delta; 4416 4417 *fragstolen = false; 4418 4419 /* Its possible this segment overlaps with prior segment in queue */ 4420 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4421 return false; 4422 4423 #ifdef CONFIG_TLS_DEVICE 4424 if (from->decrypted != to->decrypted) 4425 return false; 4426 #endif 4427 4428 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4429 return false; 4430 4431 atomic_add(delta, &sk->sk_rmem_alloc); 4432 sk_mem_charge(sk, delta); 4433 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4434 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4435 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4436 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4437 4438 if (TCP_SKB_CB(from)->has_rxtstamp) { 4439 TCP_SKB_CB(to)->has_rxtstamp = true; 4440 to->tstamp = from->tstamp; 4441 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4442 } 4443 4444 return true; 4445 } 4446 4447 static bool tcp_ooo_try_coalesce(struct sock *sk, 4448 struct sk_buff *to, 4449 struct sk_buff *from, 4450 bool *fragstolen) 4451 { 4452 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4453 4454 /* In case tcp_drop() is called later, update to->gso_segs */ 4455 if (res) { 4456 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4457 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4458 4459 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4460 } 4461 return res; 4462 } 4463 4464 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4465 { 4466 sk_drops_add(sk, skb); 4467 __kfree_skb(skb); 4468 } 4469 4470 /* This one checks to see if we can put data from the 4471 * out_of_order queue into the receive_queue. 4472 */ 4473 static void tcp_ofo_queue(struct sock *sk) 4474 { 4475 struct tcp_sock *tp = tcp_sk(sk); 4476 __u32 dsack_high = tp->rcv_nxt; 4477 bool fin, fragstolen, eaten; 4478 struct sk_buff *skb, *tail; 4479 struct rb_node *p; 4480 4481 p = rb_first(&tp->out_of_order_queue); 4482 while (p) { 4483 skb = rb_to_skb(p); 4484 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4485 break; 4486 4487 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4488 __u32 dsack = dsack_high; 4489 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4490 dsack_high = TCP_SKB_CB(skb)->end_seq; 4491 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4492 } 4493 p = rb_next(p); 4494 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4495 4496 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4497 tcp_drop(sk, skb); 4498 continue; 4499 } 4500 4501 tail = skb_peek_tail(&sk->sk_receive_queue); 4502 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4503 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4504 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4505 if (!eaten) 4506 __skb_queue_tail(&sk->sk_receive_queue, skb); 4507 else 4508 kfree_skb_partial(skb, fragstolen); 4509 4510 if (unlikely(fin)) { 4511 tcp_fin(sk); 4512 /* tcp_fin() purges tp->out_of_order_queue, 4513 * so we must end this loop right now. 4514 */ 4515 break; 4516 } 4517 } 4518 } 4519 4520 static bool tcp_prune_ofo_queue(struct sock *sk); 4521 static int tcp_prune_queue(struct sock *sk); 4522 4523 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4524 unsigned int size) 4525 { 4526 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4527 !sk_rmem_schedule(sk, skb, size)) { 4528 4529 if (tcp_prune_queue(sk) < 0) 4530 return -1; 4531 4532 while (!sk_rmem_schedule(sk, skb, size)) { 4533 if (!tcp_prune_ofo_queue(sk)) 4534 return -1; 4535 } 4536 } 4537 return 0; 4538 } 4539 4540 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4541 { 4542 struct tcp_sock *tp = tcp_sk(sk); 4543 struct rb_node **p, *parent; 4544 struct sk_buff *skb1; 4545 u32 seq, end_seq; 4546 bool fragstolen; 4547 4548 tcp_ecn_check_ce(sk, skb); 4549 4550 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4551 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4552 tcp_drop(sk, skb); 4553 return; 4554 } 4555 4556 /* Disable header prediction. */ 4557 tp->pred_flags = 0; 4558 inet_csk_schedule_ack(sk); 4559 4560 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4561 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4562 seq = TCP_SKB_CB(skb)->seq; 4563 end_seq = TCP_SKB_CB(skb)->end_seq; 4564 4565 p = &tp->out_of_order_queue.rb_node; 4566 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4567 /* Initial out of order segment, build 1 SACK. */ 4568 if (tcp_is_sack(tp)) { 4569 tp->rx_opt.num_sacks = 1; 4570 tp->selective_acks[0].start_seq = seq; 4571 tp->selective_acks[0].end_seq = end_seq; 4572 } 4573 rb_link_node(&skb->rbnode, NULL, p); 4574 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4575 tp->ooo_last_skb = skb; 4576 goto end; 4577 } 4578 4579 /* In the typical case, we are adding an skb to the end of the list. 4580 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4581 */ 4582 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4583 skb, &fragstolen)) { 4584 coalesce_done: 4585 tcp_grow_window(sk, skb); 4586 kfree_skb_partial(skb, fragstolen); 4587 skb = NULL; 4588 goto add_sack; 4589 } 4590 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4591 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4592 parent = &tp->ooo_last_skb->rbnode; 4593 p = &parent->rb_right; 4594 goto insert; 4595 } 4596 4597 /* Find place to insert this segment. Handle overlaps on the way. */ 4598 parent = NULL; 4599 while (*p) { 4600 parent = *p; 4601 skb1 = rb_to_skb(parent); 4602 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4603 p = &parent->rb_left; 4604 continue; 4605 } 4606 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4607 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4608 /* All the bits are present. Drop. */ 4609 NET_INC_STATS(sock_net(sk), 4610 LINUX_MIB_TCPOFOMERGE); 4611 tcp_drop(sk, skb); 4612 skb = NULL; 4613 tcp_dsack_set(sk, seq, end_seq); 4614 goto add_sack; 4615 } 4616 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4617 /* Partial overlap. */ 4618 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4619 } else { 4620 /* skb's seq == skb1's seq and skb covers skb1. 4621 * Replace skb1 with skb. 4622 */ 4623 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4624 &tp->out_of_order_queue); 4625 tcp_dsack_extend(sk, 4626 TCP_SKB_CB(skb1)->seq, 4627 TCP_SKB_CB(skb1)->end_seq); 4628 NET_INC_STATS(sock_net(sk), 4629 LINUX_MIB_TCPOFOMERGE); 4630 tcp_drop(sk, skb1); 4631 goto merge_right; 4632 } 4633 } else if (tcp_ooo_try_coalesce(sk, skb1, 4634 skb, &fragstolen)) { 4635 goto coalesce_done; 4636 } 4637 p = &parent->rb_right; 4638 } 4639 insert: 4640 /* Insert segment into RB tree. */ 4641 rb_link_node(&skb->rbnode, parent, p); 4642 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4643 4644 merge_right: 4645 /* Remove other segments covered by skb. */ 4646 while ((skb1 = skb_rb_next(skb)) != NULL) { 4647 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4648 break; 4649 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4650 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4651 end_seq); 4652 break; 4653 } 4654 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4655 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4656 TCP_SKB_CB(skb1)->end_seq); 4657 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4658 tcp_drop(sk, skb1); 4659 } 4660 /* If there is no skb after us, we are the last_skb ! */ 4661 if (!skb1) 4662 tp->ooo_last_skb = skb; 4663 4664 add_sack: 4665 if (tcp_is_sack(tp)) 4666 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4667 end: 4668 if (skb) { 4669 tcp_grow_window(sk, skb); 4670 skb_condense(skb); 4671 skb_set_owner_r(skb, sk); 4672 } 4673 } 4674 4675 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4676 bool *fragstolen) 4677 { 4678 int eaten; 4679 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4680 4681 eaten = (tail && 4682 tcp_try_coalesce(sk, tail, 4683 skb, fragstolen)) ? 1 : 0; 4684 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4685 if (!eaten) { 4686 __skb_queue_tail(&sk->sk_receive_queue, skb); 4687 skb_set_owner_r(skb, sk); 4688 } 4689 return eaten; 4690 } 4691 4692 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4693 { 4694 struct sk_buff *skb; 4695 int err = -ENOMEM; 4696 int data_len = 0; 4697 bool fragstolen; 4698 4699 if (size == 0) 4700 return 0; 4701 4702 if (size > PAGE_SIZE) { 4703 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4704 4705 data_len = npages << PAGE_SHIFT; 4706 size = data_len + (size & ~PAGE_MASK); 4707 } 4708 skb = alloc_skb_with_frags(size - data_len, data_len, 4709 PAGE_ALLOC_COSTLY_ORDER, 4710 &err, sk->sk_allocation); 4711 if (!skb) 4712 goto err; 4713 4714 skb_put(skb, size - data_len); 4715 skb->data_len = data_len; 4716 skb->len = size; 4717 4718 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4719 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4720 goto err_free; 4721 } 4722 4723 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4724 if (err) 4725 goto err_free; 4726 4727 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4728 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4729 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4730 4731 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4732 WARN_ON_ONCE(fragstolen); /* should not happen */ 4733 __kfree_skb(skb); 4734 } 4735 return size; 4736 4737 err_free: 4738 kfree_skb(skb); 4739 err: 4740 return err; 4741 4742 } 4743 4744 void tcp_data_ready(struct sock *sk) 4745 { 4746 const struct tcp_sock *tp = tcp_sk(sk); 4747 int avail = tp->rcv_nxt - tp->copied_seq; 4748 4749 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4750 return; 4751 4752 sk->sk_data_ready(sk); 4753 } 4754 4755 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4756 { 4757 struct tcp_sock *tp = tcp_sk(sk); 4758 bool fragstolen; 4759 int eaten; 4760 4761 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4762 __kfree_skb(skb); 4763 return; 4764 } 4765 skb_dst_drop(skb); 4766 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4767 4768 tcp_ecn_accept_cwr(sk, skb); 4769 4770 tp->rx_opt.dsack = 0; 4771 4772 /* Queue data for delivery to the user. 4773 * Packets in sequence go to the receive queue. 4774 * Out of sequence packets to the out_of_order_queue. 4775 */ 4776 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4777 if (tcp_receive_window(tp) == 0) { 4778 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4779 goto out_of_window; 4780 } 4781 4782 /* Ok. In sequence. In window. */ 4783 queue_and_out: 4784 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4785 sk_forced_mem_schedule(sk, skb->truesize); 4786 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4787 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4788 goto drop; 4789 } 4790 4791 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4792 if (skb->len) 4793 tcp_event_data_recv(sk, skb); 4794 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4795 tcp_fin(sk); 4796 4797 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4798 tcp_ofo_queue(sk); 4799 4800 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4801 * gap in queue is filled. 4802 */ 4803 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4804 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4805 } 4806 4807 if (tp->rx_opt.num_sacks) 4808 tcp_sack_remove(tp); 4809 4810 tcp_fast_path_check(sk); 4811 4812 if (eaten > 0) 4813 kfree_skb_partial(skb, fragstolen); 4814 if (!sock_flag(sk, SOCK_DEAD)) 4815 tcp_data_ready(sk); 4816 return; 4817 } 4818 4819 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4820 tcp_rcv_spurious_retrans(sk, skb); 4821 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4822 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4823 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4824 4825 out_of_window: 4826 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4827 inet_csk_schedule_ack(sk); 4828 drop: 4829 tcp_drop(sk, skb); 4830 return; 4831 } 4832 4833 /* Out of window. F.e. zero window probe. */ 4834 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4835 goto out_of_window; 4836 4837 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4838 /* Partial packet, seq < rcv_next < end_seq */ 4839 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4840 4841 /* If window is closed, drop tail of packet. But after 4842 * remembering D-SACK for its head made in previous line. 4843 */ 4844 if (!tcp_receive_window(tp)) { 4845 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4846 goto out_of_window; 4847 } 4848 goto queue_and_out; 4849 } 4850 4851 tcp_data_queue_ofo(sk, skb); 4852 } 4853 4854 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4855 { 4856 if (list) 4857 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4858 4859 return skb_rb_next(skb); 4860 } 4861 4862 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4863 struct sk_buff_head *list, 4864 struct rb_root *root) 4865 { 4866 struct sk_buff *next = tcp_skb_next(skb, list); 4867 4868 if (list) 4869 __skb_unlink(skb, list); 4870 else 4871 rb_erase(&skb->rbnode, root); 4872 4873 __kfree_skb(skb); 4874 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4875 4876 return next; 4877 } 4878 4879 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4880 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4881 { 4882 struct rb_node **p = &root->rb_node; 4883 struct rb_node *parent = NULL; 4884 struct sk_buff *skb1; 4885 4886 while (*p) { 4887 parent = *p; 4888 skb1 = rb_to_skb(parent); 4889 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4890 p = &parent->rb_left; 4891 else 4892 p = &parent->rb_right; 4893 } 4894 rb_link_node(&skb->rbnode, parent, p); 4895 rb_insert_color(&skb->rbnode, root); 4896 } 4897 4898 /* Collapse contiguous sequence of skbs head..tail with 4899 * sequence numbers start..end. 4900 * 4901 * If tail is NULL, this means until the end of the queue. 4902 * 4903 * Segments with FIN/SYN are not collapsed (only because this 4904 * simplifies code) 4905 */ 4906 static void 4907 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4908 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4909 { 4910 struct sk_buff *skb = head, *n; 4911 struct sk_buff_head tmp; 4912 bool end_of_skbs; 4913 4914 /* First, check that queue is collapsible and find 4915 * the point where collapsing can be useful. 4916 */ 4917 restart: 4918 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4919 n = tcp_skb_next(skb, list); 4920 4921 /* No new bits? It is possible on ofo queue. */ 4922 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4923 skb = tcp_collapse_one(sk, skb, list, root); 4924 if (!skb) 4925 break; 4926 goto restart; 4927 } 4928 4929 /* The first skb to collapse is: 4930 * - not SYN/FIN and 4931 * - bloated or contains data before "start" or 4932 * overlaps to the next one. 4933 */ 4934 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4935 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4936 before(TCP_SKB_CB(skb)->seq, start))) { 4937 end_of_skbs = false; 4938 break; 4939 } 4940 4941 if (n && n != tail && 4942 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4943 end_of_skbs = false; 4944 break; 4945 } 4946 4947 /* Decided to skip this, advance start seq. */ 4948 start = TCP_SKB_CB(skb)->end_seq; 4949 } 4950 if (end_of_skbs || 4951 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4952 return; 4953 4954 __skb_queue_head_init(&tmp); 4955 4956 while (before(start, end)) { 4957 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4958 struct sk_buff *nskb; 4959 4960 nskb = alloc_skb(copy, GFP_ATOMIC); 4961 if (!nskb) 4962 break; 4963 4964 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4965 #ifdef CONFIG_TLS_DEVICE 4966 nskb->decrypted = skb->decrypted; 4967 #endif 4968 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4969 if (list) 4970 __skb_queue_before(list, skb, nskb); 4971 else 4972 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4973 skb_set_owner_r(nskb, sk); 4974 4975 /* Copy data, releasing collapsed skbs. */ 4976 while (copy > 0) { 4977 int offset = start - TCP_SKB_CB(skb)->seq; 4978 int size = TCP_SKB_CB(skb)->end_seq - start; 4979 4980 BUG_ON(offset < 0); 4981 if (size > 0) { 4982 size = min(copy, size); 4983 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4984 BUG(); 4985 TCP_SKB_CB(nskb)->end_seq += size; 4986 copy -= size; 4987 start += size; 4988 } 4989 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4990 skb = tcp_collapse_one(sk, skb, list, root); 4991 if (!skb || 4992 skb == tail || 4993 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4994 goto end; 4995 #ifdef CONFIG_TLS_DEVICE 4996 if (skb->decrypted != nskb->decrypted) 4997 goto end; 4998 #endif 4999 } 5000 } 5001 } 5002 end: 5003 skb_queue_walk_safe(&tmp, skb, n) 5004 tcp_rbtree_insert(root, skb); 5005 } 5006 5007 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5008 * and tcp_collapse() them until all the queue is collapsed. 5009 */ 5010 static void tcp_collapse_ofo_queue(struct sock *sk) 5011 { 5012 struct tcp_sock *tp = tcp_sk(sk); 5013 u32 range_truesize, sum_tiny = 0; 5014 struct sk_buff *skb, *head; 5015 u32 start, end; 5016 5017 skb = skb_rb_first(&tp->out_of_order_queue); 5018 new_range: 5019 if (!skb) { 5020 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5021 return; 5022 } 5023 start = TCP_SKB_CB(skb)->seq; 5024 end = TCP_SKB_CB(skb)->end_seq; 5025 range_truesize = skb->truesize; 5026 5027 for (head = skb;;) { 5028 skb = skb_rb_next(skb); 5029 5030 /* Range is terminated when we see a gap or when 5031 * we are at the queue end. 5032 */ 5033 if (!skb || 5034 after(TCP_SKB_CB(skb)->seq, end) || 5035 before(TCP_SKB_CB(skb)->end_seq, start)) { 5036 /* Do not attempt collapsing tiny skbs */ 5037 if (range_truesize != head->truesize || 5038 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5039 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5040 head, skb, start, end); 5041 } else { 5042 sum_tiny += range_truesize; 5043 if (sum_tiny > sk->sk_rcvbuf >> 3) 5044 return; 5045 } 5046 goto new_range; 5047 } 5048 5049 range_truesize += skb->truesize; 5050 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5051 start = TCP_SKB_CB(skb)->seq; 5052 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5053 end = TCP_SKB_CB(skb)->end_seq; 5054 } 5055 } 5056 5057 /* 5058 * Clean the out-of-order queue to make room. 5059 * We drop high sequences packets to : 5060 * 1) Let a chance for holes to be filled. 5061 * 2) not add too big latencies if thousands of packets sit there. 5062 * (But if application shrinks SO_RCVBUF, we could still end up 5063 * freeing whole queue here) 5064 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5065 * 5066 * Return true if queue has shrunk. 5067 */ 5068 static bool tcp_prune_ofo_queue(struct sock *sk) 5069 { 5070 struct tcp_sock *tp = tcp_sk(sk); 5071 struct rb_node *node, *prev; 5072 int goal; 5073 5074 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5075 return false; 5076 5077 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5078 goal = sk->sk_rcvbuf >> 3; 5079 node = &tp->ooo_last_skb->rbnode; 5080 do { 5081 prev = rb_prev(node); 5082 rb_erase(node, &tp->out_of_order_queue); 5083 goal -= rb_to_skb(node)->truesize; 5084 tcp_drop(sk, rb_to_skb(node)); 5085 if (!prev || goal <= 0) { 5086 sk_mem_reclaim(sk); 5087 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5088 !tcp_under_memory_pressure(sk)) 5089 break; 5090 goal = sk->sk_rcvbuf >> 3; 5091 } 5092 node = prev; 5093 } while (node); 5094 tp->ooo_last_skb = rb_to_skb(prev); 5095 5096 /* Reset SACK state. A conforming SACK implementation will 5097 * do the same at a timeout based retransmit. When a connection 5098 * is in a sad state like this, we care only about integrity 5099 * of the connection not performance. 5100 */ 5101 if (tp->rx_opt.sack_ok) 5102 tcp_sack_reset(&tp->rx_opt); 5103 return true; 5104 } 5105 5106 /* Reduce allocated memory if we can, trying to get 5107 * the socket within its memory limits again. 5108 * 5109 * Return less than zero if we should start dropping frames 5110 * until the socket owning process reads some of the data 5111 * to stabilize the situation. 5112 */ 5113 static int tcp_prune_queue(struct sock *sk) 5114 { 5115 struct tcp_sock *tp = tcp_sk(sk); 5116 5117 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5118 5119 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5120 tcp_clamp_window(sk); 5121 else if (tcp_under_memory_pressure(sk)) 5122 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5123 5124 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5125 return 0; 5126 5127 tcp_collapse_ofo_queue(sk); 5128 if (!skb_queue_empty(&sk->sk_receive_queue)) 5129 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5130 skb_peek(&sk->sk_receive_queue), 5131 NULL, 5132 tp->copied_seq, tp->rcv_nxt); 5133 sk_mem_reclaim(sk); 5134 5135 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5136 return 0; 5137 5138 /* Collapsing did not help, destructive actions follow. 5139 * This must not ever occur. */ 5140 5141 tcp_prune_ofo_queue(sk); 5142 5143 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5144 return 0; 5145 5146 /* If we are really being abused, tell the caller to silently 5147 * drop receive data on the floor. It will get retransmitted 5148 * and hopefully then we'll have sufficient space. 5149 */ 5150 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5151 5152 /* Massive buffer overcommit. */ 5153 tp->pred_flags = 0; 5154 return -1; 5155 } 5156 5157 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5158 { 5159 const struct tcp_sock *tp = tcp_sk(sk); 5160 5161 /* If the user specified a specific send buffer setting, do 5162 * not modify it. 5163 */ 5164 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5165 return false; 5166 5167 /* If we are under global TCP memory pressure, do not expand. */ 5168 if (tcp_under_memory_pressure(sk)) 5169 return false; 5170 5171 /* If we are under soft global TCP memory pressure, do not expand. */ 5172 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5173 return false; 5174 5175 /* If we filled the congestion window, do not expand. */ 5176 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5177 return false; 5178 5179 return true; 5180 } 5181 5182 /* When incoming ACK allowed to free some skb from write_queue, 5183 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5184 * on the exit from tcp input handler. 5185 * 5186 * PROBLEM: sndbuf expansion does not work well with largesend. 5187 */ 5188 static void tcp_new_space(struct sock *sk) 5189 { 5190 struct tcp_sock *tp = tcp_sk(sk); 5191 5192 if (tcp_should_expand_sndbuf(sk)) { 5193 tcp_sndbuf_expand(sk); 5194 tp->snd_cwnd_stamp = tcp_jiffies32; 5195 } 5196 5197 sk->sk_write_space(sk); 5198 } 5199 5200 static void tcp_check_space(struct sock *sk) 5201 { 5202 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5203 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5204 /* pairs with tcp_poll() */ 5205 smp_mb(); 5206 if (sk->sk_socket && 5207 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5208 tcp_new_space(sk); 5209 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5210 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5211 } 5212 } 5213 } 5214 5215 static inline void tcp_data_snd_check(struct sock *sk) 5216 { 5217 tcp_push_pending_frames(sk); 5218 tcp_check_space(sk); 5219 } 5220 5221 /* 5222 * Check if sending an ack is needed. 5223 */ 5224 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5225 { 5226 struct tcp_sock *tp = tcp_sk(sk); 5227 unsigned long rtt, delay; 5228 5229 /* More than one full frame received... */ 5230 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5231 /* ... and right edge of window advances far enough. 5232 * (tcp_recvmsg() will send ACK otherwise). 5233 * If application uses SO_RCVLOWAT, we want send ack now if 5234 * we have not received enough bytes to satisfy the condition. 5235 */ 5236 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5237 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5238 /* We ACK each frame or... */ 5239 tcp_in_quickack_mode(sk) || 5240 /* Protocol state mandates a one-time immediate ACK */ 5241 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5242 send_now: 5243 tcp_send_ack(sk); 5244 return; 5245 } 5246 5247 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5248 tcp_send_delayed_ack(sk); 5249 return; 5250 } 5251 5252 if (!tcp_is_sack(tp) || 5253 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5254 goto send_now; 5255 5256 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5257 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5258 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 5259 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 5260 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 5261 tp->compressed_ack = 0; 5262 } 5263 5264 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH) 5265 goto send_now; 5266 5267 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5268 return; 5269 5270 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5271 5272 rtt = tp->rcv_rtt_est.rtt_us; 5273 if (tp->srtt_us && tp->srtt_us < rtt) 5274 rtt = tp->srtt_us; 5275 5276 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5277 rtt * (NSEC_PER_USEC >> 3)/20); 5278 sock_hold(sk); 5279 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5280 HRTIMER_MODE_REL_PINNED_SOFT); 5281 } 5282 5283 static inline void tcp_ack_snd_check(struct sock *sk) 5284 { 5285 if (!inet_csk_ack_scheduled(sk)) { 5286 /* We sent a data segment already. */ 5287 return; 5288 } 5289 __tcp_ack_snd_check(sk, 1); 5290 } 5291 5292 /* 5293 * This routine is only called when we have urgent data 5294 * signaled. Its the 'slow' part of tcp_urg. It could be 5295 * moved inline now as tcp_urg is only called from one 5296 * place. We handle URGent data wrong. We have to - as 5297 * BSD still doesn't use the correction from RFC961. 5298 * For 1003.1g we should support a new option TCP_STDURG to permit 5299 * either form (or just set the sysctl tcp_stdurg). 5300 */ 5301 5302 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5303 { 5304 struct tcp_sock *tp = tcp_sk(sk); 5305 u32 ptr = ntohs(th->urg_ptr); 5306 5307 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5308 ptr--; 5309 ptr += ntohl(th->seq); 5310 5311 /* Ignore urgent data that we've already seen and read. */ 5312 if (after(tp->copied_seq, ptr)) 5313 return; 5314 5315 /* Do not replay urg ptr. 5316 * 5317 * NOTE: interesting situation not covered by specs. 5318 * Misbehaving sender may send urg ptr, pointing to segment, 5319 * which we already have in ofo queue. We are not able to fetch 5320 * such data and will stay in TCP_URG_NOTYET until will be eaten 5321 * by recvmsg(). Seems, we are not obliged to handle such wicked 5322 * situations. But it is worth to think about possibility of some 5323 * DoSes using some hypothetical application level deadlock. 5324 */ 5325 if (before(ptr, tp->rcv_nxt)) 5326 return; 5327 5328 /* Do we already have a newer (or duplicate) urgent pointer? */ 5329 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5330 return; 5331 5332 /* Tell the world about our new urgent pointer. */ 5333 sk_send_sigurg(sk); 5334 5335 /* We may be adding urgent data when the last byte read was 5336 * urgent. To do this requires some care. We cannot just ignore 5337 * tp->copied_seq since we would read the last urgent byte again 5338 * as data, nor can we alter copied_seq until this data arrives 5339 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5340 * 5341 * NOTE. Double Dutch. Rendering to plain English: author of comment 5342 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5343 * and expect that both A and B disappear from stream. This is _wrong_. 5344 * Though this happens in BSD with high probability, this is occasional. 5345 * Any application relying on this is buggy. Note also, that fix "works" 5346 * only in this artificial test. Insert some normal data between A and B and we will 5347 * decline of BSD again. Verdict: it is better to remove to trap 5348 * buggy users. 5349 */ 5350 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5351 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5352 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5353 tp->copied_seq++; 5354 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5355 __skb_unlink(skb, &sk->sk_receive_queue); 5356 __kfree_skb(skb); 5357 } 5358 } 5359 5360 tp->urg_data = TCP_URG_NOTYET; 5361 WRITE_ONCE(tp->urg_seq, ptr); 5362 5363 /* Disable header prediction. */ 5364 tp->pred_flags = 0; 5365 } 5366 5367 /* This is the 'fast' part of urgent handling. */ 5368 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5369 { 5370 struct tcp_sock *tp = tcp_sk(sk); 5371 5372 /* Check if we get a new urgent pointer - normally not. */ 5373 if (th->urg) 5374 tcp_check_urg(sk, th); 5375 5376 /* Do we wait for any urgent data? - normally not... */ 5377 if (tp->urg_data == TCP_URG_NOTYET) { 5378 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5379 th->syn; 5380 5381 /* Is the urgent pointer pointing into this packet? */ 5382 if (ptr < skb->len) { 5383 u8 tmp; 5384 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5385 BUG(); 5386 tp->urg_data = TCP_URG_VALID | tmp; 5387 if (!sock_flag(sk, SOCK_DEAD)) 5388 sk->sk_data_ready(sk); 5389 } 5390 } 5391 } 5392 5393 /* Accept RST for rcv_nxt - 1 after a FIN. 5394 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5395 * FIN is sent followed by a RST packet. The RST is sent with the same 5396 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5397 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5398 * ACKs on the closed socket. In addition middleboxes can drop either the 5399 * challenge ACK or a subsequent RST. 5400 */ 5401 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5402 { 5403 struct tcp_sock *tp = tcp_sk(sk); 5404 5405 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5406 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5407 TCPF_CLOSING)); 5408 } 5409 5410 /* Does PAWS and seqno based validation of an incoming segment, flags will 5411 * play significant role here. 5412 */ 5413 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5414 const struct tcphdr *th, int syn_inerr) 5415 { 5416 struct tcp_sock *tp = tcp_sk(sk); 5417 bool rst_seq_match = false; 5418 5419 /* RFC1323: H1. Apply PAWS check first. */ 5420 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5421 tp->rx_opt.saw_tstamp && 5422 tcp_paws_discard(sk, skb)) { 5423 if (!th->rst) { 5424 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5425 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5426 LINUX_MIB_TCPACKSKIPPEDPAWS, 5427 &tp->last_oow_ack_time)) 5428 tcp_send_dupack(sk, skb); 5429 goto discard; 5430 } 5431 /* Reset is accepted even if it did not pass PAWS. */ 5432 } 5433 5434 /* Step 1: check sequence number */ 5435 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5436 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5437 * (RST) segments are validated by checking their SEQ-fields." 5438 * And page 69: "If an incoming segment is not acceptable, 5439 * an acknowledgment should be sent in reply (unless the RST 5440 * bit is set, if so drop the segment and return)". 5441 */ 5442 if (!th->rst) { 5443 if (th->syn) 5444 goto syn_challenge; 5445 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5446 LINUX_MIB_TCPACKSKIPPEDSEQ, 5447 &tp->last_oow_ack_time)) 5448 tcp_send_dupack(sk, skb); 5449 } else if (tcp_reset_check(sk, skb)) { 5450 tcp_reset(sk); 5451 } 5452 goto discard; 5453 } 5454 5455 /* Step 2: check RST bit */ 5456 if (th->rst) { 5457 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5458 * FIN and SACK too if available): 5459 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5460 * the right-most SACK block, 5461 * then 5462 * RESET the connection 5463 * else 5464 * Send a challenge ACK 5465 */ 5466 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5467 tcp_reset_check(sk, skb)) { 5468 rst_seq_match = true; 5469 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5470 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5471 int max_sack = sp[0].end_seq; 5472 int this_sack; 5473 5474 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5475 ++this_sack) { 5476 max_sack = after(sp[this_sack].end_seq, 5477 max_sack) ? 5478 sp[this_sack].end_seq : max_sack; 5479 } 5480 5481 if (TCP_SKB_CB(skb)->seq == max_sack) 5482 rst_seq_match = true; 5483 } 5484 5485 if (rst_seq_match) 5486 tcp_reset(sk); 5487 else { 5488 /* Disable TFO if RST is out-of-order 5489 * and no data has been received 5490 * for current active TFO socket 5491 */ 5492 if (tp->syn_fastopen && !tp->data_segs_in && 5493 sk->sk_state == TCP_ESTABLISHED) 5494 tcp_fastopen_active_disable(sk); 5495 tcp_send_challenge_ack(sk, skb); 5496 } 5497 goto discard; 5498 } 5499 5500 /* step 3: check security and precedence [ignored] */ 5501 5502 /* step 4: Check for a SYN 5503 * RFC 5961 4.2 : Send a challenge ack 5504 */ 5505 if (th->syn) { 5506 syn_challenge: 5507 if (syn_inerr) 5508 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5509 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5510 tcp_send_challenge_ack(sk, skb); 5511 goto discard; 5512 } 5513 5514 return true; 5515 5516 discard: 5517 tcp_drop(sk, skb); 5518 return false; 5519 } 5520 5521 /* 5522 * TCP receive function for the ESTABLISHED state. 5523 * 5524 * It is split into a fast path and a slow path. The fast path is 5525 * disabled when: 5526 * - A zero window was announced from us - zero window probing 5527 * is only handled properly in the slow path. 5528 * - Out of order segments arrived. 5529 * - Urgent data is expected. 5530 * - There is no buffer space left 5531 * - Unexpected TCP flags/window values/header lengths are received 5532 * (detected by checking the TCP header against pred_flags) 5533 * - Data is sent in both directions. Fast path only supports pure senders 5534 * or pure receivers (this means either the sequence number or the ack 5535 * value must stay constant) 5536 * - Unexpected TCP option. 5537 * 5538 * When these conditions are not satisfied it drops into a standard 5539 * receive procedure patterned after RFC793 to handle all cases. 5540 * The first three cases are guaranteed by proper pred_flags setting, 5541 * the rest is checked inline. Fast processing is turned on in 5542 * tcp_data_queue when everything is OK. 5543 */ 5544 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5545 { 5546 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5547 struct tcp_sock *tp = tcp_sk(sk); 5548 unsigned int len = skb->len; 5549 5550 /* TCP congestion window tracking */ 5551 trace_tcp_probe(sk, skb); 5552 5553 tcp_mstamp_refresh(tp); 5554 if (unlikely(!sk->sk_rx_dst)) 5555 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5556 /* 5557 * Header prediction. 5558 * The code loosely follows the one in the famous 5559 * "30 instruction TCP receive" Van Jacobson mail. 5560 * 5561 * Van's trick is to deposit buffers into socket queue 5562 * on a device interrupt, to call tcp_recv function 5563 * on the receive process context and checksum and copy 5564 * the buffer to user space. smart... 5565 * 5566 * Our current scheme is not silly either but we take the 5567 * extra cost of the net_bh soft interrupt processing... 5568 * We do checksum and copy also but from device to kernel. 5569 */ 5570 5571 tp->rx_opt.saw_tstamp = 0; 5572 5573 /* pred_flags is 0xS?10 << 16 + snd_wnd 5574 * if header_prediction is to be made 5575 * 'S' will always be tp->tcp_header_len >> 2 5576 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5577 * turn it off (when there are holes in the receive 5578 * space for instance) 5579 * PSH flag is ignored. 5580 */ 5581 5582 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5583 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5584 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5585 int tcp_header_len = tp->tcp_header_len; 5586 5587 /* Timestamp header prediction: tcp_header_len 5588 * is automatically equal to th->doff*4 due to pred_flags 5589 * match. 5590 */ 5591 5592 /* Check timestamp */ 5593 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5594 /* No? Slow path! */ 5595 if (!tcp_parse_aligned_timestamp(tp, th)) 5596 goto slow_path; 5597 5598 /* If PAWS failed, check it more carefully in slow path */ 5599 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5600 goto slow_path; 5601 5602 /* DO NOT update ts_recent here, if checksum fails 5603 * and timestamp was corrupted part, it will result 5604 * in a hung connection since we will drop all 5605 * future packets due to the PAWS test. 5606 */ 5607 } 5608 5609 if (len <= tcp_header_len) { 5610 /* Bulk data transfer: sender */ 5611 if (len == tcp_header_len) { 5612 /* Predicted packet is in window by definition. 5613 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5614 * Hence, check seq<=rcv_wup reduces to: 5615 */ 5616 if (tcp_header_len == 5617 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5618 tp->rcv_nxt == tp->rcv_wup) 5619 tcp_store_ts_recent(tp); 5620 5621 /* We know that such packets are checksummed 5622 * on entry. 5623 */ 5624 tcp_ack(sk, skb, 0); 5625 __kfree_skb(skb); 5626 tcp_data_snd_check(sk); 5627 /* When receiving pure ack in fast path, update 5628 * last ts ecr directly instead of calling 5629 * tcp_rcv_rtt_measure_ts() 5630 */ 5631 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5632 return; 5633 } else { /* Header too small */ 5634 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5635 goto discard; 5636 } 5637 } else { 5638 int eaten = 0; 5639 bool fragstolen = false; 5640 5641 if (tcp_checksum_complete(skb)) 5642 goto csum_error; 5643 5644 if ((int)skb->truesize > sk->sk_forward_alloc) 5645 goto step5; 5646 5647 /* Predicted packet is in window by definition. 5648 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5649 * Hence, check seq<=rcv_wup reduces to: 5650 */ 5651 if (tcp_header_len == 5652 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5653 tp->rcv_nxt == tp->rcv_wup) 5654 tcp_store_ts_recent(tp); 5655 5656 tcp_rcv_rtt_measure_ts(sk, skb); 5657 5658 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5659 5660 /* Bulk data transfer: receiver */ 5661 __skb_pull(skb, tcp_header_len); 5662 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5663 5664 tcp_event_data_recv(sk, skb); 5665 5666 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5667 /* Well, only one small jumplet in fast path... */ 5668 tcp_ack(sk, skb, FLAG_DATA); 5669 tcp_data_snd_check(sk); 5670 if (!inet_csk_ack_scheduled(sk)) 5671 goto no_ack; 5672 } 5673 5674 __tcp_ack_snd_check(sk, 0); 5675 no_ack: 5676 if (eaten) 5677 kfree_skb_partial(skb, fragstolen); 5678 tcp_data_ready(sk); 5679 return; 5680 } 5681 } 5682 5683 slow_path: 5684 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5685 goto csum_error; 5686 5687 if (!th->ack && !th->rst && !th->syn) 5688 goto discard; 5689 5690 /* 5691 * Standard slow path. 5692 */ 5693 5694 if (!tcp_validate_incoming(sk, skb, th, 1)) 5695 return; 5696 5697 step5: 5698 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5699 goto discard; 5700 5701 tcp_rcv_rtt_measure_ts(sk, skb); 5702 5703 /* Process urgent data. */ 5704 tcp_urg(sk, skb, th); 5705 5706 /* step 7: process the segment text */ 5707 tcp_data_queue(sk, skb); 5708 5709 tcp_data_snd_check(sk); 5710 tcp_ack_snd_check(sk); 5711 return; 5712 5713 csum_error: 5714 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5715 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5716 5717 discard: 5718 tcp_drop(sk, skb); 5719 } 5720 EXPORT_SYMBOL(tcp_rcv_established); 5721 5722 void tcp_init_transfer(struct sock *sk, int bpf_op) 5723 { 5724 struct inet_connection_sock *icsk = inet_csk(sk); 5725 struct tcp_sock *tp = tcp_sk(sk); 5726 5727 tcp_mtup_init(sk); 5728 icsk->icsk_af_ops->rebuild_header(sk); 5729 tcp_init_metrics(sk); 5730 5731 /* Initialize the congestion window to start the transfer. 5732 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5733 * retransmitted. In light of RFC6298 more aggressive 1sec 5734 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5735 * retransmission has occurred. 5736 */ 5737 if (tp->total_retrans > 1 && tp->undo_marker) 5738 tp->snd_cwnd = 1; 5739 else 5740 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5741 tp->snd_cwnd_stamp = tcp_jiffies32; 5742 5743 tcp_call_bpf(sk, bpf_op, 0, NULL); 5744 tcp_init_congestion_control(sk); 5745 tcp_init_buffer_space(sk); 5746 } 5747 5748 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5749 { 5750 struct tcp_sock *tp = tcp_sk(sk); 5751 struct inet_connection_sock *icsk = inet_csk(sk); 5752 5753 tcp_set_state(sk, TCP_ESTABLISHED); 5754 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5755 5756 if (skb) { 5757 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5758 security_inet_conn_established(sk, skb); 5759 sk_mark_napi_id(sk, skb); 5760 } 5761 5762 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5763 5764 /* Prevent spurious tcp_cwnd_restart() on first data 5765 * packet. 5766 */ 5767 tp->lsndtime = tcp_jiffies32; 5768 5769 if (sock_flag(sk, SOCK_KEEPOPEN)) 5770 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5771 5772 if (!tp->rx_opt.snd_wscale) 5773 __tcp_fast_path_on(tp, tp->snd_wnd); 5774 else 5775 tp->pred_flags = 0; 5776 } 5777 5778 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5779 struct tcp_fastopen_cookie *cookie) 5780 { 5781 struct tcp_sock *tp = tcp_sk(sk); 5782 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5783 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5784 bool syn_drop = false; 5785 5786 if (mss == tp->rx_opt.user_mss) { 5787 struct tcp_options_received opt; 5788 5789 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5790 tcp_clear_options(&opt); 5791 opt.user_mss = opt.mss_clamp = 0; 5792 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5793 mss = opt.mss_clamp; 5794 } 5795 5796 if (!tp->syn_fastopen) { 5797 /* Ignore an unsolicited cookie */ 5798 cookie->len = -1; 5799 } else if (tp->total_retrans) { 5800 /* SYN timed out and the SYN-ACK neither has a cookie nor 5801 * acknowledges data. Presumably the remote received only 5802 * the retransmitted (regular) SYNs: either the original 5803 * SYN-data or the corresponding SYN-ACK was dropped. 5804 */ 5805 syn_drop = (cookie->len < 0 && data); 5806 } else if (cookie->len < 0 && !tp->syn_data) { 5807 /* We requested a cookie but didn't get it. If we did not use 5808 * the (old) exp opt format then try so next time (try_exp=1). 5809 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5810 */ 5811 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5812 } 5813 5814 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5815 5816 if (data) { /* Retransmit unacked data in SYN */ 5817 if (tp->total_retrans) 5818 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5819 else 5820 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5821 skb_rbtree_walk_from(data) { 5822 if (__tcp_retransmit_skb(sk, data, 1)) 5823 break; 5824 } 5825 tcp_rearm_rto(sk); 5826 NET_INC_STATS(sock_net(sk), 5827 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5828 return true; 5829 } 5830 tp->syn_data_acked = tp->syn_data; 5831 if (tp->syn_data_acked) { 5832 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5833 /* SYN-data is counted as two separate packets in tcp_ack() */ 5834 if (tp->delivered > 1) 5835 --tp->delivered; 5836 } 5837 5838 tcp_fastopen_add_skb(sk, synack); 5839 5840 return false; 5841 } 5842 5843 static void smc_check_reset_syn(struct tcp_sock *tp) 5844 { 5845 #if IS_ENABLED(CONFIG_SMC) 5846 if (static_branch_unlikely(&tcp_have_smc)) { 5847 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5848 tp->syn_smc = 0; 5849 } 5850 #endif 5851 } 5852 5853 static void tcp_try_undo_spurious_syn(struct sock *sk) 5854 { 5855 struct tcp_sock *tp = tcp_sk(sk); 5856 u32 syn_stamp; 5857 5858 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5859 * spurious if the ACK's timestamp option echo value matches the 5860 * original SYN timestamp. 5861 */ 5862 syn_stamp = tp->retrans_stamp; 5863 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5864 syn_stamp == tp->rx_opt.rcv_tsecr) 5865 tp->undo_marker = 0; 5866 } 5867 5868 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5869 const struct tcphdr *th) 5870 { 5871 struct inet_connection_sock *icsk = inet_csk(sk); 5872 struct tcp_sock *tp = tcp_sk(sk); 5873 struct tcp_fastopen_cookie foc = { .len = -1 }; 5874 int saved_clamp = tp->rx_opt.mss_clamp; 5875 bool fastopen_fail; 5876 5877 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5878 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5879 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5880 5881 if (th->ack) { 5882 /* rfc793: 5883 * "If the state is SYN-SENT then 5884 * first check the ACK bit 5885 * If the ACK bit is set 5886 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5887 * a reset (unless the RST bit is set, if so drop 5888 * the segment and return)" 5889 */ 5890 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5891 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5892 goto reset_and_undo; 5893 5894 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5895 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5896 tcp_time_stamp(tp))) { 5897 NET_INC_STATS(sock_net(sk), 5898 LINUX_MIB_PAWSACTIVEREJECTED); 5899 goto reset_and_undo; 5900 } 5901 5902 /* Now ACK is acceptable. 5903 * 5904 * "If the RST bit is set 5905 * If the ACK was acceptable then signal the user "error: 5906 * connection reset", drop the segment, enter CLOSED state, 5907 * delete TCB, and return." 5908 */ 5909 5910 if (th->rst) { 5911 tcp_reset(sk); 5912 goto discard; 5913 } 5914 5915 /* rfc793: 5916 * "fifth, if neither of the SYN or RST bits is set then 5917 * drop the segment and return." 5918 * 5919 * See note below! 5920 * --ANK(990513) 5921 */ 5922 if (!th->syn) 5923 goto discard_and_undo; 5924 5925 /* rfc793: 5926 * "If the SYN bit is on ... 5927 * are acceptable then ... 5928 * (our SYN has been ACKed), change the connection 5929 * state to ESTABLISHED..." 5930 */ 5931 5932 tcp_ecn_rcv_synack(tp, th); 5933 5934 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5935 tcp_try_undo_spurious_syn(sk); 5936 tcp_ack(sk, skb, FLAG_SLOWPATH); 5937 5938 /* Ok.. it's good. Set up sequence numbers and 5939 * move to established. 5940 */ 5941 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 5942 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5943 5944 /* RFC1323: The window in SYN & SYN/ACK segments is 5945 * never scaled. 5946 */ 5947 tp->snd_wnd = ntohs(th->window); 5948 5949 if (!tp->rx_opt.wscale_ok) { 5950 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5951 tp->window_clamp = min(tp->window_clamp, 65535U); 5952 } 5953 5954 if (tp->rx_opt.saw_tstamp) { 5955 tp->rx_opt.tstamp_ok = 1; 5956 tp->tcp_header_len = 5957 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5958 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5959 tcp_store_ts_recent(tp); 5960 } else { 5961 tp->tcp_header_len = sizeof(struct tcphdr); 5962 } 5963 5964 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5965 tcp_initialize_rcv_mss(sk); 5966 5967 /* Remember, tcp_poll() does not lock socket! 5968 * Change state from SYN-SENT only after copied_seq 5969 * is initialized. */ 5970 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 5971 5972 smc_check_reset_syn(tp); 5973 5974 smp_mb(); 5975 5976 tcp_finish_connect(sk, skb); 5977 5978 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5979 tcp_rcv_fastopen_synack(sk, skb, &foc); 5980 5981 if (!sock_flag(sk, SOCK_DEAD)) { 5982 sk->sk_state_change(sk); 5983 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5984 } 5985 if (fastopen_fail) 5986 return -1; 5987 if (sk->sk_write_pending || 5988 icsk->icsk_accept_queue.rskq_defer_accept || 5989 inet_csk_in_pingpong_mode(sk)) { 5990 /* Save one ACK. Data will be ready after 5991 * several ticks, if write_pending is set. 5992 * 5993 * It may be deleted, but with this feature tcpdumps 5994 * look so _wonderfully_ clever, that I was not able 5995 * to stand against the temptation 8) --ANK 5996 */ 5997 inet_csk_schedule_ack(sk); 5998 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5999 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6000 TCP_DELACK_MAX, TCP_RTO_MAX); 6001 6002 discard: 6003 tcp_drop(sk, skb); 6004 return 0; 6005 } else { 6006 tcp_send_ack(sk); 6007 } 6008 return -1; 6009 } 6010 6011 /* No ACK in the segment */ 6012 6013 if (th->rst) { 6014 /* rfc793: 6015 * "If the RST bit is set 6016 * 6017 * Otherwise (no ACK) drop the segment and return." 6018 */ 6019 6020 goto discard_and_undo; 6021 } 6022 6023 /* PAWS check. */ 6024 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6025 tcp_paws_reject(&tp->rx_opt, 0)) 6026 goto discard_and_undo; 6027 6028 if (th->syn) { 6029 /* We see SYN without ACK. It is attempt of 6030 * simultaneous connect with crossed SYNs. 6031 * Particularly, it can be connect to self. 6032 */ 6033 tcp_set_state(sk, TCP_SYN_RECV); 6034 6035 if (tp->rx_opt.saw_tstamp) { 6036 tp->rx_opt.tstamp_ok = 1; 6037 tcp_store_ts_recent(tp); 6038 tp->tcp_header_len = 6039 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6040 } else { 6041 tp->tcp_header_len = sizeof(struct tcphdr); 6042 } 6043 6044 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6045 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6046 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6047 6048 /* RFC1323: The window in SYN & SYN/ACK segments is 6049 * never scaled. 6050 */ 6051 tp->snd_wnd = ntohs(th->window); 6052 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6053 tp->max_window = tp->snd_wnd; 6054 6055 tcp_ecn_rcv_syn(tp, th); 6056 6057 tcp_mtup_init(sk); 6058 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6059 tcp_initialize_rcv_mss(sk); 6060 6061 tcp_send_synack(sk); 6062 #if 0 6063 /* Note, we could accept data and URG from this segment. 6064 * There are no obstacles to make this (except that we must 6065 * either change tcp_recvmsg() to prevent it from returning data 6066 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6067 * 6068 * However, if we ignore data in ACKless segments sometimes, 6069 * we have no reasons to accept it sometimes. 6070 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6071 * is not flawless. So, discard packet for sanity. 6072 * Uncomment this return to process the data. 6073 */ 6074 return -1; 6075 #else 6076 goto discard; 6077 #endif 6078 } 6079 /* "fifth, if neither of the SYN or RST bits is set then 6080 * drop the segment and return." 6081 */ 6082 6083 discard_and_undo: 6084 tcp_clear_options(&tp->rx_opt); 6085 tp->rx_opt.mss_clamp = saved_clamp; 6086 goto discard; 6087 6088 reset_and_undo: 6089 tcp_clear_options(&tp->rx_opt); 6090 tp->rx_opt.mss_clamp = saved_clamp; 6091 return 1; 6092 } 6093 6094 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6095 { 6096 struct request_sock *req; 6097 6098 tcp_try_undo_loss(sk, false); 6099 6100 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6101 tcp_sk(sk)->retrans_stamp = 0; 6102 inet_csk(sk)->icsk_retransmits = 0; 6103 6104 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6105 * we no longer need req so release it. 6106 */ 6107 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6108 lockdep_sock_is_held(sk)); 6109 reqsk_fastopen_remove(sk, req, false); 6110 6111 /* Re-arm the timer because data may have been sent out. 6112 * This is similar to the regular data transmission case 6113 * when new data has just been ack'ed. 6114 * 6115 * (TFO) - we could try to be more aggressive and 6116 * retransmitting any data sooner based on when they 6117 * are sent out. 6118 */ 6119 tcp_rearm_rto(sk); 6120 } 6121 6122 /* 6123 * This function implements the receiving procedure of RFC 793 for 6124 * all states except ESTABLISHED and TIME_WAIT. 6125 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6126 * address independent. 6127 */ 6128 6129 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6130 { 6131 struct tcp_sock *tp = tcp_sk(sk); 6132 struct inet_connection_sock *icsk = inet_csk(sk); 6133 const struct tcphdr *th = tcp_hdr(skb); 6134 struct request_sock *req; 6135 int queued = 0; 6136 bool acceptable; 6137 6138 switch (sk->sk_state) { 6139 case TCP_CLOSE: 6140 goto discard; 6141 6142 case TCP_LISTEN: 6143 if (th->ack) 6144 return 1; 6145 6146 if (th->rst) 6147 goto discard; 6148 6149 if (th->syn) { 6150 if (th->fin) 6151 goto discard; 6152 /* It is possible that we process SYN packets from backlog, 6153 * so we need to make sure to disable BH and RCU right there. 6154 */ 6155 rcu_read_lock(); 6156 local_bh_disable(); 6157 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6158 local_bh_enable(); 6159 rcu_read_unlock(); 6160 6161 if (!acceptable) 6162 return 1; 6163 consume_skb(skb); 6164 return 0; 6165 } 6166 goto discard; 6167 6168 case TCP_SYN_SENT: 6169 tp->rx_opt.saw_tstamp = 0; 6170 tcp_mstamp_refresh(tp); 6171 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6172 if (queued >= 0) 6173 return queued; 6174 6175 /* Do step6 onward by hand. */ 6176 tcp_urg(sk, skb, th); 6177 __kfree_skb(skb); 6178 tcp_data_snd_check(sk); 6179 return 0; 6180 } 6181 6182 tcp_mstamp_refresh(tp); 6183 tp->rx_opt.saw_tstamp = 0; 6184 req = rcu_dereference_protected(tp->fastopen_rsk, 6185 lockdep_sock_is_held(sk)); 6186 if (req) { 6187 bool req_stolen; 6188 6189 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6190 sk->sk_state != TCP_FIN_WAIT1); 6191 6192 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6193 goto discard; 6194 } 6195 6196 if (!th->ack && !th->rst && !th->syn) 6197 goto discard; 6198 6199 if (!tcp_validate_incoming(sk, skb, th, 0)) 6200 return 0; 6201 6202 /* step 5: check the ACK field */ 6203 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6204 FLAG_UPDATE_TS_RECENT | 6205 FLAG_NO_CHALLENGE_ACK) > 0; 6206 6207 if (!acceptable) { 6208 if (sk->sk_state == TCP_SYN_RECV) 6209 return 1; /* send one RST */ 6210 tcp_send_challenge_ack(sk, skb); 6211 goto discard; 6212 } 6213 switch (sk->sk_state) { 6214 case TCP_SYN_RECV: 6215 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6216 if (!tp->srtt_us) 6217 tcp_synack_rtt_meas(sk, req); 6218 6219 if (req) { 6220 tcp_rcv_synrecv_state_fastopen(sk); 6221 } else { 6222 tcp_try_undo_spurious_syn(sk); 6223 tp->retrans_stamp = 0; 6224 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6225 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6226 } 6227 smp_mb(); 6228 tcp_set_state(sk, TCP_ESTABLISHED); 6229 sk->sk_state_change(sk); 6230 6231 /* Note, that this wakeup is only for marginal crossed SYN case. 6232 * Passively open sockets are not waked up, because 6233 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6234 */ 6235 if (sk->sk_socket) 6236 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6237 6238 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6239 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6240 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6241 6242 if (tp->rx_opt.tstamp_ok) 6243 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6244 6245 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6246 tcp_update_pacing_rate(sk); 6247 6248 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6249 tp->lsndtime = tcp_jiffies32; 6250 6251 tcp_initialize_rcv_mss(sk); 6252 tcp_fast_path_on(tp); 6253 break; 6254 6255 case TCP_FIN_WAIT1: { 6256 int tmo; 6257 6258 if (req) 6259 tcp_rcv_synrecv_state_fastopen(sk); 6260 6261 if (tp->snd_una != tp->write_seq) 6262 break; 6263 6264 tcp_set_state(sk, TCP_FIN_WAIT2); 6265 sk->sk_shutdown |= SEND_SHUTDOWN; 6266 6267 sk_dst_confirm(sk); 6268 6269 if (!sock_flag(sk, SOCK_DEAD)) { 6270 /* Wake up lingering close() */ 6271 sk->sk_state_change(sk); 6272 break; 6273 } 6274 6275 if (tp->linger2 < 0) { 6276 tcp_done(sk); 6277 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6278 return 1; 6279 } 6280 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6281 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6282 /* Receive out of order FIN after close() */ 6283 if (tp->syn_fastopen && th->fin) 6284 tcp_fastopen_active_disable(sk); 6285 tcp_done(sk); 6286 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6287 return 1; 6288 } 6289 6290 tmo = tcp_fin_time(sk); 6291 if (tmo > TCP_TIMEWAIT_LEN) { 6292 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6293 } else if (th->fin || sock_owned_by_user(sk)) { 6294 /* Bad case. We could lose such FIN otherwise. 6295 * It is not a big problem, but it looks confusing 6296 * and not so rare event. We still can lose it now, 6297 * if it spins in bh_lock_sock(), but it is really 6298 * marginal case. 6299 */ 6300 inet_csk_reset_keepalive_timer(sk, tmo); 6301 } else { 6302 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6303 goto discard; 6304 } 6305 break; 6306 } 6307 6308 case TCP_CLOSING: 6309 if (tp->snd_una == tp->write_seq) { 6310 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6311 goto discard; 6312 } 6313 break; 6314 6315 case TCP_LAST_ACK: 6316 if (tp->snd_una == tp->write_seq) { 6317 tcp_update_metrics(sk); 6318 tcp_done(sk); 6319 goto discard; 6320 } 6321 break; 6322 } 6323 6324 /* step 6: check the URG bit */ 6325 tcp_urg(sk, skb, th); 6326 6327 /* step 7: process the segment text */ 6328 switch (sk->sk_state) { 6329 case TCP_CLOSE_WAIT: 6330 case TCP_CLOSING: 6331 case TCP_LAST_ACK: 6332 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6333 break; 6334 /* fall through */ 6335 case TCP_FIN_WAIT1: 6336 case TCP_FIN_WAIT2: 6337 /* RFC 793 says to queue data in these states, 6338 * RFC 1122 says we MUST send a reset. 6339 * BSD 4.4 also does reset. 6340 */ 6341 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6342 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6343 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6344 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6345 tcp_reset(sk); 6346 return 1; 6347 } 6348 } 6349 /* Fall through */ 6350 case TCP_ESTABLISHED: 6351 tcp_data_queue(sk, skb); 6352 queued = 1; 6353 break; 6354 } 6355 6356 /* tcp_data could move socket to TIME-WAIT */ 6357 if (sk->sk_state != TCP_CLOSE) { 6358 tcp_data_snd_check(sk); 6359 tcp_ack_snd_check(sk); 6360 } 6361 6362 if (!queued) { 6363 discard: 6364 tcp_drop(sk, skb); 6365 } 6366 return 0; 6367 } 6368 EXPORT_SYMBOL(tcp_rcv_state_process); 6369 6370 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6371 { 6372 struct inet_request_sock *ireq = inet_rsk(req); 6373 6374 if (family == AF_INET) 6375 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6376 &ireq->ir_rmt_addr, port); 6377 #if IS_ENABLED(CONFIG_IPV6) 6378 else if (family == AF_INET6) 6379 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6380 &ireq->ir_v6_rmt_addr, port); 6381 #endif 6382 } 6383 6384 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6385 * 6386 * If we receive a SYN packet with these bits set, it means a 6387 * network is playing bad games with TOS bits. In order to 6388 * avoid possible false congestion notifications, we disable 6389 * TCP ECN negotiation. 6390 * 6391 * Exception: tcp_ca wants ECN. This is required for DCTCP 6392 * congestion control: Linux DCTCP asserts ECT on all packets, 6393 * including SYN, which is most optimal solution; however, 6394 * others, such as FreeBSD do not. 6395 * 6396 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6397 * set, indicating the use of a future TCP extension (such as AccECN). See 6398 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6399 * extensions. 6400 */ 6401 static void tcp_ecn_create_request(struct request_sock *req, 6402 const struct sk_buff *skb, 6403 const struct sock *listen_sk, 6404 const struct dst_entry *dst) 6405 { 6406 const struct tcphdr *th = tcp_hdr(skb); 6407 const struct net *net = sock_net(listen_sk); 6408 bool th_ecn = th->ece && th->cwr; 6409 bool ect, ecn_ok; 6410 u32 ecn_ok_dst; 6411 6412 if (!th_ecn) 6413 return; 6414 6415 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6416 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6417 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6418 6419 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6420 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6421 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6422 inet_rsk(req)->ecn_ok = 1; 6423 } 6424 6425 static void tcp_openreq_init(struct request_sock *req, 6426 const struct tcp_options_received *rx_opt, 6427 struct sk_buff *skb, const struct sock *sk) 6428 { 6429 struct inet_request_sock *ireq = inet_rsk(req); 6430 6431 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6432 req->cookie_ts = 0; 6433 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6434 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6435 tcp_rsk(req)->snt_synack = 0; 6436 tcp_rsk(req)->last_oow_ack_time = 0; 6437 req->mss = rx_opt->mss_clamp; 6438 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6439 ireq->tstamp_ok = rx_opt->tstamp_ok; 6440 ireq->sack_ok = rx_opt->sack_ok; 6441 ireq->snd_wscale = rx_opt->snd_wscale; 6442 ireq->wscale_ok = rx_opt->wscale_ok; 6443 ireq->acked = 0; 6444 ireq->ecn_ok = 0; 6445 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6446 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6447 ireq->ir_mark = inet_request_mark(sk, skb); 6448 #if IS_ENABLED(CONFIG_SMC) 6449 ireq->smc_ok = rx_opt->smc_ok; 6450 #endif 6451 } 6452 6453 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6454 struct sock *sk_listener, 6455 bool attach_listener) 6456 { 6457 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6458 attach_listener); 6459 6460 if (req) { 6461 struct inet_request_sock *ireq = inet_rsk(req); 6462 6463 ireq->ireq_opt = NULL; 6464 #if IS_ENABLED(CONFIG_IPV6) 6465 ireq->pktopts = NULL; 6466 #endif 6467 atomic64_set(&ireq->ir_cookie, 0); 6468 ireq->ireq_state = TCP_NEW_SYN_RECV; 6469 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6470 ireq->ireq_family = sk_listener->sk_family; 6471 } 6472 6473 return req; 6474 } 6475 EXPORT_SYMBOL(inet_reqsk_alloc); 6476 6477 /* 6478 * Return true if a syncookie should be sent 6479 */ 6480 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6481 { 6482 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6483 const char *msg = "Dropping request"; 6484 bool want_cookie = false; 6485 struct net *net = sock_net(sk); 6486 6487 #ifdef CONFIG_SYN_COOKIES 6488 if (net->ipv4.sysctl_tcp_syncookies) { 6489 msg = "Sending cookies"; 6490 want_cookie = true; 6491 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6492 } else 6493 #endif 6494 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6495 6496 if (!queue->synflood_warned && 6497 net->ipv4.sysctl_tcp_syncookies != 2 && 6498 xchg(&queue->synflood_warned, 1) == 0) 6499 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6500 proto, sk->sk_num, msg); 6501 6502 return want_cookie; 6503 } 6504 6505 static void tcp_reqsk_record_syn(const struct sock *sk, 6506 struct request_sock *req, 6507 const struct sk_buff *skb) 6508 { 6509 if (tcp_sk(sk)->save_syn) { 6510 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6511 u32 *copy; 6512 6513 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6514 if (copy) { 6515 copy[0] = len; 6516 memcpy(©[1], skb_network_header(skb), len); 6517 req->saved_syn = copy; 6518 } 6519 } 6520 } 6521 6522 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6523 * used for SYN cookie generation. 6524 */ 6525 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6526 const struct tcp_request_sock_ops *af_ops, 6527 struct sock *sk, struct tcphdr *th) 6528 { 6529 struct tcp_sock *tp = tcp_sk(sk); 6530 u16 mss; 6531 6532 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6533 !inet_csk_reqsk_queue_is_full(sk)) 6534 return 0; 6535 6536 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6537 return 0; 6538 6539 if (sk_acceptq_is_full(sk)) { 6540 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6541 return 0; 6542 } 6543 6544 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6545 if (!mss) 6546 mss = af_ops->mss_clamp; 6547 6548 return mss; 6549 } 6550 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6551 6552 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6553 const struct tcp_request_sock_ops *af_ops, 6554 struct sock *sk, struct sk_buff *skb) 6555 { 6556 struct tcp_fastopen_cookie foc = { .len = -1 }; 6557 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6558 struct tcp_options_received tmp_opt; 6559 struct tcp_sock *tp = tcp_sk(sk); 6560 struct net *net = sock_net(sk); 6561 struct sock *fastopen_sk = NULL; 6562 struct request_sock *req; 6563 bool want_cookie = false; 6564 struct dst_entry *dst; 6565 struct flowi fl; 6566 6567 /* TW buckets are converted to open requests without 6568 * limitations, they conserve resources and peer is 6569 * evidently real one. 6570 */ 6571 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6572 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6573 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6574 if (!want_cookie) 6575 goto drop; 6576 } 6577 6578 if (sk_acceptq_is_full(sk)) { 6579 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6580 goto drop; 6581 } 6582 6583 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6584 if (!req) 6585 goto drop; 6586 6587 tcp_rsk(req)->af_specific = af_ops; 6588 tcp_rsk(req)->ts_off = 0; 6589 6590 tcp_clear_options(&tmp_opt); 6591 tmp_opt.mss_clamp = af_ops->mss_clamp; 6592 tmp_opt.user_mss = tp->rx_opt.user_mss; 6593 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6594 want_cookie ? NULL : &foc); 6595 6596 if (want_cookie && !tmp_opt.saw_tstamp) 6597 tcp_clear_options(&tmp_opt); 6598 6599 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6600 tmp_opt.smc_ok = 0; 6601 6602 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6603 tcp_openreq_init(req, &tmp_opt, skb, sk); 6604 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6605 6606 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6607 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6608 6609 af_ops->init_req(req, sk, skb); 6610 6611 if (security_inet_conn_request(sk, skb, req)) 6612 goto drop_and_free; 6613 6614 if (tmp_opt.tstamp_ok) 6615 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6616 6617 dst = af_ops->route_req(sk, &fl, req); 6618 if (!dst) 6619 goto drop_and_free; 6620 6621 if (!want_cookie && !isn) { 6622 /* Kill the following clause, if you dislike this way. */ 6623 if (!net->ipv4.sysctl_tcp_syncookies && 6624 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6625 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6626 !tcp_peer_is_proven(req, dst)) { 6627 /* Without syncookies last quarter of 6628 * backlog is filled with destinations, 6629 * proven to be alive. 6630 * It means that we continue to communicate 6631 * to destinations, already remembered 6632 * to the moment of synflood. 6633 */ 6634 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6635 rsk_ops->family); 6636 goto drop_and_release; 6637 } 6638 6639 isn = af_ops->init_seq(skb); 6640 } 6641 6642 tcp_ecn_create_request(req, skb, sk, dst); 6643 6644 if (want_cookie) { 6645 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6646 req->cookie_ts = tmp_opt.tstamp_ok; 6647 if (!tmp_opt.tstamp_ok) 6648 inet_rsk(req)->ecn_ok = 0; 6649 } 6650 6651 tcp_rsk(req)->snt_isn = isn; 6652 tcp_rsk(req)->txhash = net_tx_rndhash(); 6653 tcp_openreq_init_rwin(req, sk, dst); 6654 sk_rx_queue_set(req_to_sk(req), skb); 6655 if (!want_cookie) { 6656 tcp_reqsk_record_syn(sk, req, skb); 6657 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6658 } 6659 if (fastopen_sk) { 6660 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6661 &foc, TCP_SYNACK_FASTOPEN); 6662 /* Add the child socket directly into the accept queue */ 6663 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6664 reqsk_fastopen_remove(fastopen_sk, req, false); 6665 bh_unlock_sock(fastopen_sk); 6666 sock_put(fastopen_sk); 6667 goto drop_and_free; 6668 } 6669 sk->sk_data_ready(sk); 6670 bh_unlock_sock(fastopen_sk); 6671 sock_put(fastopen_sk); 6672 } else { 6673 tcp_rsk(req)->tfo_listener = false; 6674 if (!want_cookie) 6675 inet_csk_reqsk_queue_hash_add(sk, req, 6676 tcp_timeout_init((struct sock *)req)); 6677 af_ops->send_synack(sk, dst, &fl, req, &foc, 6678 !want_cookie ? TCP_SYNACK_NORMAL : 6679 TCP_SYNACK_COOKIE); 6680 if (want_cookie) { 6681 reqsk_free(req); 6682 return 0; 6683 } 6684 } 6685 reqsk_put(req); 6686 return 0; 6687 6688 drop_and_release: 6689 dst_release(dst); 6690 drop_and_free: 6691 __reqsk_free(req); 6692 drop: 6693 tcp_listendrop(sk); 6694 return 0; 6695 } 6696 EXPORT_SYMBOL(tcp_conn_request); 6697