1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_fack __read_mostly; 80 int sysctl_tcp_max_reordering __read_mostly = 300; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 1; 84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 85 86 /* rfc5961 challenge ack rate limiting */ 87 int sysctl_tcp_challenge_ack_limit = 1000; 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 95 int sysctl_tcp_early_retrans __read_mostly = 3; 96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 97 98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 104 #define FLAG_ECE 0x40 /* ECE in this ACK */ 105 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 107 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 110 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 111 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 112 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 113 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 114 115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 119 120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 121 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 122 123 #define REXMIT_NONE 0 /* no loss recovery to do */ 124 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 125 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 126 127 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 128 unsigned int len) 129 { 130 static bool __once __read_mostly; 131 132 if (!__once) { 133 struct net_device *dev; 134 135 __once = true; 136 137 rcu_read_lock(); 138 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 139 if (!dev || len >= dev->mtu) 140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 141 dev ? dev->name : "Unknown driver"); 142 rcu_read_unlock(); 143 } 144 } 145 146 /* Adapt the MSS value used to make delayed ack decision to the 147 * real world. 148 */ 149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 150 { 151 struct inet_connection_sock *icsk = inet_csk(sk); 152 const unsigned int lss = icsk->icsk_ack.last_seg_size; 153 unsigned int len; 154 155 icsk->icsk_ack.last_seg_size = 0; 156 157 /* skb->len may jitter because of SACKs, even if peer 158 * sends good full-sized frames. 159 */ 160 len = skb_shinfo(skb)->gso_size ? : skb->len; 161 if (len >= icsk->icsk_ack.rcv_mss) { 162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 163 tcp_sk(sk)->advmss); 164 /* Account for possibly-removed options */ 165 if (unlikely(len > icsk->icsk_ack.rcv_mss + 166 MAX_TCP_OPTION_SPACE)) 167 tcp_gro_dev_warn(sk, skb, len); 168 } else { 169 /* Otherwise, we make more careful check taking into account, 170 * that SACKs block is variable. 171 * 172 * "len" is invariant segment length, including TCP header. 173 */ 174 len += skb->data - skb_transport_header(skb); 175 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 176 /* If PSH is not set, packet should be 177 * full sized, provided peer TCP is not badly broken. 178 * This observation (if it is correct 8)) allows 179 * to handle super-low mtu links fairly. 180 */ 181 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 182 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 183 /* Subtract also invariant (if peer is RFC compliant), 184 * tcp header plus fixed timestamp option length. 185 * Resulting "len" is MSS free of SACK jitter. 186 */ 187 len -= tcp_sk(sk)->tcp_header_len; 188 icsk->icsk_ack.last_seg_size = len; 189 if (len == lss) { 190 icsk->icsk_ack.rcv_mss = len; 191 return; 192 } 193 } 194 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 197 } 198 } 199 200 static void tcp_incr_quickack(struct sock *sk) 201 { 202 struct inet_connection_sock *icsk = inet_csk(sk); 203 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 204 205 if (quickacks == 0) 206 quickacks = 2; 207 if (quickacks > icsk->icsk_ack.quick) 208 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 209 } 210 211 static void tcp_enter_quickack_mode(struct sock *sk) 212 { 213 struct inet_connection_sock *icsk = inet_csk(sk); 214 tcp_incr_quickack(sk); 215 icsk->icsk_ack.pingpong = 0; 216 icsk->icsk_ack.ato = TCP_ATO_MIN; 217 } 218 219 /* Send ACKs quickly, if "quick" count is not exhausted 220 * and the session is not interactive. 221 */ 222 223 static bool tcp_in_quickack_mode(struct sock *sk) 224 { 225 const struct inet_connection_sock *icsk = inet_csk(sk); 226 const struct dst_entry *dst = __sk_dst_get(sk); 227 228 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 229 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 230 } 231 232 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 233 { 234 if (tp->ecn_flags & TCP_ECN_OK) 235 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 236 } 237 238 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 239 { 240 if (tcp_hdr(skb)->cwr) 241 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 242 } 243 244 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 245 { 246 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 247 } 248 249 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 250 { 251 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 252 case INET_ECN_NOT_ECT: 253 /* Funny extension: if ECT is not set on a segment, 254 * and we already seen ECT on a previous segment, 255 * it is probably a retransmit. 256 */ 257 if (tp->ecn_flags & TCP_ECN_SEEN) 258 tcp_enter_quickack_mode((struct sock *)tp); 259 break; 260 case INET_ECN_CE: 261 if (tcp_ca_needs_ecn((struct sock *)tp)) 262 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 263 264 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 265 /* Better not delay acks, sender can have a very low cwnd */ 266 tcp_enter_quickack_mode((struct sock *)tp); 267 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 268 } 269 tp->ecn_flags |= TCP_ECN_SEEN; 270 break; 271 default: 272 if (tcp_ca_needs_ecn((struct sock *)tp)) 273 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 274 tp->ecn_flags |= TCP_ECN_SEEN; 275 break; 276 } 277 } 278 279 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 280 { 281 if (tp->ecn_flags & TCP_ECN_OK) 282 __tcp_ecn_check_ce(tp, skb); 283 } 284 285 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 286 { 287 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 288 tp->ecn_flags &= ~TCP_ECN_OK; 289 } 290 291 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 292 { 293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 294 tp->ecn_flags &= ~TCP_ECN_OK; 295 } 296 297 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 298 { 299 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 300 return true; 301 return false; 302 } 303 304 /* Buffer size and advertised window tuning. 305 * 306 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 307 */ 308 309 static void tcp_sndbuf_expand(struct sock *sk) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 313 int sndmem, per_mss; 314 u32 nr_segs; 315 316 /* Worst case is non GSO/TSO : each frame consumes one skb 317 * and skb->head is kmalloced using power of two area of memory 318 */ 319 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 320 MAX_TCP_HEADER + 321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 322 323 per_mss = roundup_pow_of_two(per_mss) + 324 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 325 326 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 327 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 328 329 /* Fast Recovery (RFC 5681 3.2) : 330 * Cubic needs 1.7 factor, rounded to 2 to include 331 * extra cushion (application might react slowly to POLLOUT) 332 */ 333 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 334 sndmem *= nr_segs * per_mss; 335 336 if (sk->sk_sndbuf < sndmem) 337 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 338 } 339 340 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 341 * 342 * All tcp_full_space() is split to two parts: "network" buffer, allocated 343 * forward and advertised in receiver window (tp->rcv_wnd) and 344 * "application buffer", required to isolate scheduling/application 345 * latencies from network. 346 * window_clamp is maximal advertised window. It can be less than 347 * tcp_full_space(), in this case tcp_full_space() - window_clamp 348 * is reserved for "application" buffer. The less window_clamp is 349 * the smoother our behaviour from viewpoint of network, but the lower 350 * throughput and the higher sensitivity of the connection to losses. 8) 351 * 352 * rcv_ssthresh is more strict window_clamp used at "slow start" 353 * phase to predict further behaviour of this connection. 354 * It is used for two goals: 355 * - to enforce header prediction at sender, even when application 356 * requires some significant "application buffer". It is check #1. 357 * - to prevent pruning of receive queue because of misprediction 358 * of receiver window. Check #2. 359 * 360 * The scheme does not work when sender sends good segments opening 361 * window and then starts to feed us spaghetti. But it should work 362 * in common situations. Otherwise, we have to rely on queue collapsing. 363 */ 364 365 /* Slow part of check#2. */ 366 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 /* Optimize this! */ 370 int truesize = tcp_win_from_space(skb->truesize) >> 1; 371 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 372 373 while (tp->rcv_ssthresh <= window) { 374 if (truesize <= skb->len) 375 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 376 377 truesize >>= 1; 378 window >>= 1; 379 } 380 return 0; 381 } 382 383 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 384 { 385 struct tcp_sock *tp = tcp_sk(sk); 386 387 /* Check #1 */ 388 if (tp->rcv_ssthresh < tp->window_clamp && 389 (int)tp->rcv_ssthresh < tcp_space(sk) && 390 !tcp_under_memory_pressure(sk)) { 391 int incr; 392 393 /* Check #2. Increase window, if skb with such overhead 394 * will fit to rcvbuf in future. 395 */ 396 if (tcp_win_from_space(skb->truesize) <= skb->len) 397 incr = 2 * tp->advmss; 398 else 399 incr = __tcp_grow_window(sk, skb); 400 401 if (incr) { 402 incr = max_t(int, incr, 2 * skb->len); 403 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 404 tp->window_clamp); 405 inet_csk(sk)->icsk_ack.quick |= 1; 406 } 407 } 408 } 409 410 /* 3. Tuning rcvbuf, when connection enters established state. */ 411 static void tcp_fixup_rcvbuf(struct sock *sk) 412 { 413 u32 mss = tcp_sk(sk)->advmss; 414 int rcvmem; 415 416 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 417 tcp_default_init_rwnd(mss); 418 419 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 420 * Allow enough cushion so that sender is not limited by our window 421 */ 422 if (sysctl_tcp_moderate_rcvbuf) 423 rcvmem <<= 2; 424 425 if (sk->sk_rcvbuf < rcvmem) 426 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 427 } 428 429 /* 4. Try to fixup all. It is made immediately after connection enters 430 * established state. 431 */ 432 void tcp_init_buffer_space(struct sock *sk) 433 { 434 struct tcp_sock *tp = tcp_sk(sk); 435 int maxwin; 436 437 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 438 tcp_fixup_rcvbuf(sk); 439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 440 tcp_sndbuf_expand(sk); 441 442 tp->rcvq_space.space = tp->rcv_wnd; 443 tcp_mstamp_refresh(tp); 444 tp->rcvq_space.time = tp->tcp_mstamp; 445 tp->rcvq_space.seq = tp->copied_seq; 446 447 maxwin = tcp_full_space(sk); 448 449 if (tp->window_clamp >= maxwin) { 450 tp->window_clamp = maxwin; 451 452 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 453 tp->window_clamp = max(maxwin - 454 (maxwin >> sysctl_tcp_app_win), 455 4 * tp->advmss); 456 } 457 458 /* Force reservation of one segment. */ 459 if (sysctl_tcp_app_win && 460 tp->window_clamp > 2 * tp->advmss && 461 tp->window_clamp + tp->advmss > maxwin) 462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 463 464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 465 tp->snd_cwnd_stamp = tcp_jiffies32; 466 } 467 468 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 469 static void tcp_clamp_window(struct sock *sk) 470 { 471 struct tcp_sock *tp = tcp_sk(sk); 472 struct inet_connection_sock *icsk = inet_csk(sk); 473 474 icsk->icsk_ack.quick = 0; 475 476 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 478 !tcp_under_memory_pressure(sk) && 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 481 sysctl_tcp_rmem[2]); 482 } 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 485 } 486 487 /* Initialize RCV_MSS value. 488 * RCV_MSS is an our guess about MSS used by the peer. 489 * We haven't any direct information about the MSS. 490 * It's better to underestimate the RCV_MSS rather than overestimate. 491 * Overestimations make us ACKing less frequently than needed. 492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 493 */ 494 void tcp_initialize_rcv_mss(struct sock *sk) 495 { 496 const struct tcp_sock *tp = tcp_sk(sk); 497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 498 499 hint = min(hint, tp->rcv_wnd / 2); 500 hint = min(hint, TCP_MSS_DEFAULT); 501 hint = max(hint, TCP_MIN_MSS); 502 503 inet_csk(sk)->icsk_ack.rcv_mss = hint; 504 } 505 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 506 507 /* Receiver "autotuning" code. 508 * 509 * The algorithm for RTT estimation w/o timestamps is based on 510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 511 * <http://public.lanl.gov/radiant/pubs.html#DRS> 512 * 513 * More detail on this code can be found at 514 * <http://staff.psc.edu/jheffner/>, 515 * though this reference is out of date. A new paper 516 * is pending. 517 */ 518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 519 { 520 u32 new_sample = tp->rcv_rtt_est.rtt_us; 521 long m = sample; 522 523 if (m == 0) 524 m = 1; 525 526 if (new_sample != 0) { 527 /* If we sample in larger samples in the non-timestamp 528 * case, we could grossly overestimate the RTT especially 529 * with chatty applications or bulk transfer apps which 530 * are stalled on filesystem I/O. 531 * 532 * Also, since we are only going for a minimum in the 533 * non-timestamp case, we do not smooth things out 534 * else with timestamps disabled convergence takes too 535 * long. 536 */ 537 if (!win_dep) { 538 m -= (new_sample >> 3); 539 new_sample += m; 540 } else { 541 m <<= 3; 542 if (m < new_sample) 543 new_sample = m; 544 } 545 } else { 546 /* No previous measure. */ 547 new_sample = m << 3; 548 } 549 550 tp->rcv_rtt_est.rtt_us = new_sample; 551 } 552 553 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 554 { 555 u32 delta_us; 556 557 if (tp->rcv_rtt_est.time == 0) 558 goto new_measure; 559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 560 return; 561 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 562 tcp_rcv_rtt_update(tp, delta_us, 1); 563 564 new_measure: 565 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 566 tp->rcv_rtt_est.time = tp->tcp_mstamp; 567 } 568 569 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 570 const struct sk_buff *skb) 571 { 572 struct tcp_sock *tp = tcp_sk(sk); 573 574 if (tp->rx_opt.rcv_tsecr && 575 (TCP_SKB_CB(skb)->end_seq - 576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 577 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 578 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 579 580 tcp_rcv_rtt_update(tp, delta_us, 0); 581 } 582 } 583 584 /* 585 * This function should be called every time data is copied to user space. 586 * It calculates the appropriate TCP receive buffer space. 587 */ 588 void tcp_rcv_space_adjust(struct sock *sk) 589 { 590 struct tcp_sock *tp = tcp_sk(sk); 591 int time; 592 int copied; 593 594 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 595 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 596 return; 597 598 /* Number of bytes copied to user in last RTT */ 599 copied = tp->copied_seq - tp->rcvq_space.seq; 600 if (copied <= tp->rcvq_space.space) 601 goto new_measure; 602 603 /* A bit of theory : 604 * copied = bytes received in previous RTT, our base window 605 * To cope with packet losses, we need a 2x factor 606 * To cope with slow start, and sender growing its cwin by 100 % 607 * every RTT, we need a 4x factor, because the ACK we are sending 608 * now is for the next RTT, not the current one : 609 * <prev RTT . ><current RTT .. ><next RTT .... > 610 */ 611 612 if (sysctl_tcp_moderate_rcvbuf && 613 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 614 int rcvwin, rcvmem, rcvbuf; 615 616 /* minimal window to cope with packet losses, assuming 617 * steady state. Add some cushion because of small variations. 618 */ 619 rcvwin = (copied << 1) + 16 * tp->advmss; 620 621 /* If rate increased by 25%, 622 * assume slow start, rcvwin = 3 * copied 623 * If rate increased by 50%, 624 * assume sender can use 2x growth, rcvwin = 4 * copied 625 */ 626 if (copied >= 627 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 628 if (copied >= 629 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 630 rcvwin <<= 1; 631 else 632 rcvwin += (rcvwin >> 1); 633 } 634 635 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 636 while (tcp_win_from_space(rcvmem) < tp->advmss) 637 rcvmem += 128; 638 639 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 640 if (rcvbuf > sk->sk_rcvbuf) { 641 sk->sk_rcvbuf = rcvbuf; 642 643 /* Make the window clamp follow along. */ 644 tp->window_clamp = rcvwin; 645 } 646 } 647 tp->rcvq_space.space = copied; 648 649 new_measure: 650 tp->rcvq_space.seq = tp->copied_seq; 651 tp->rcvq_space.time = tp->tcp_mstamp; 652 } 653 654 /* There is something which you must keep in mind when you analyze the 655 * behavior of the tp->ato delayed ack timeout interval. When a 656 * connection starts up, we want to ack as quickly as possible. The 657 * problem is that "good" TCP's do slow start at the beginning of data 658 * transmission. The means that until we send the first few ACK's the 659 * sender will sit on his end and only queue most of his data, because 660 * he can only send snd_cwnd unacked packets at any given time. For 661 * each ACK we send, he increments snd_cwnd and transmits more of his 662 * queue. -DaveM 663 */ 664 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 665 { 666 struct tcp_sock *tp = tcp_sk(sk); 667 struct inet_connection_sock *icsk = inet_csk(sk); 668 u32 now; 669 670 inet_csk_schedule_ack(sk); 671 672 tcp_measure_rcv_mss(sk, skb); 673 674 tcp_rcv_rtt_measure(tp); 675 676 now = tcp_jiffies32; 677 678 if (!icsk->icsk_ack.ato) { 679 /* The _first_ data packet received, initialize 680 * delayed ACK engine. 681 */ 682 tcp_incr_quickack(sk); 683 icsk->icsk_ack.ato = TCP_ATO_MIN; 684 } else { 685 int m = now - icsk->icsk_ack.lrcvtime; 686 687 if (m <= TCP_ATO_MIN / 2) { 688 /* The fastest case is the first. */ 689 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 690 } else if (m < icsk->icsk_ack.ato) { 691 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 692 if (icsk->icsk_ack.ato > icsk->icsk_rto) 693 icsk->icsk_ack.ato = icsk->icsk_rto; 694 } else if (m > icsk->icsk_rto) { 695 /* Too long gap. Apparently sender failed to 696 * restart window, so that we send ACKs quickly. 697 */ 698 tcp_incr_quickack(sk); 699 sk_mem_reclaim(sk); 700 } 701 } 702 icsk->icsk_ack.lrcvtime = now; 703 704 tcp_ecn_check_ce(tp, skb); 705 706 if (skb->len >= 128) 707 tcp_grow_window(sk, skb); 708 } 709 710 /* Called to compute a smoothed rtt estimate. The data fed to this 711 * routine either comes from timestamps, or from segments that were 712 * known _not_ to have been retransmitted [see Karn/Partridge 713 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 714 * piece by Van Jacobson. 715 * NOTE: the next three routines used to be one big routine. 716 * To save cycles in the RFC 1323 implementation it was better to break 717 * it up into three procedures. -- erics 718 */ 719 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 720 { 721 struct tcp_sock *tp = tcp_sk(sk); 722 long m = mrtt_us; /* RTT */ 723 u32 srtt = tp->srtt_us; 724 725 /* The following amusing code comes from Jacobson's 726 * article in SIGCOMM '88. Note that rtt and mdev 727 * are scaled versions of rtt and mean deviation. 728 * This is designed to be as fast as possible 729 * m stands for "measurement". 730 * 731 * On a 1990 paper the rto value is changed to: 732 * RTO = rtt + 4 * mdev 733 * 734 * Funny. This algorithm seems to be very broken. 735 * These formulae increase RTO, when it should be decreased, increase 736 * too slowly, when it should be increased quickly, decrease too quickly 737 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 738 * does not matter how to _calculate_ it. Seems, it was trap 739 * that VJ failed to avoid. 8) 740 */ 741 if (srtt != 0) { 742 m -= (srtt >> 3); /* m is now error in rtt est */ 743 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 744 if (m < 0) { 745 m = -m; /* m is now abs(error) */ 746 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 747 /* This is similar to one of Eifel findings. 748 * Eifel blocks mdev updates when rtt decreases. 749 * This solution is a bit different: we use finer gain 750 * for mdev in this case (alpha*beta). 751 * Like Eifel it also prevents growth of rto, 752 * but also it limits too fast rto decreases, 753 * happening in pure Eifel. 754 */ 755 if (m > 0) 756 m >>= 3; 757 } else { 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 759 } 760 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 761 if (tp->mdev_us > tp->mdev_max_us) { 762 tp->mdev_max_us = tp->mdev_us; 763 if (tp->mdev_max_us > tp->rttvar_us) 764 tp->rttvar_us = tp->mdev_max_us; 765 } 766 if (after(tp->snd_una, tp->rtt_seq)) { 767 if (tp->mdev_max_us < tp->rttvar_us) 768 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 769 tp->rtt_seq = tp->snd_nxt; 770 tp->mdev_max_us = tcp_rto_min_us(sk); 771 } 772 } else { 773 /* no previous measure. */ 774 srtt = m << 3; /* take the measured time to be rtt */ 775 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 776 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 777 tp->mdev_max_us = tp->rttvar_us; 778 tp->rtt_seq = tp->snd_nxt; 779 } 780 tp->srtt_us = max(1U, srtt); 781 } 782 783 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 784 * Note: TCP stack does not yet implement pacing. 785 * FQ packet scheduler can be used to implement cheap but effective 786 * TCP pacing, to smooth the burst on large writes when packets 787 * in flight is significantly lower than cwnd (or rwin) 788 */ 789 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 790 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 791 792 static void tcp_update_pacing_rate(struct sock *sk) 793 { 794 const struct tcp_sock *tp = tcp_sk(sk); 795 u64 rate; 796 797 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 798 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 799 800 /* current rate is (cwnd * mss) / srtt 801 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 802 * In Congestion Avoidance phase, set it to 120 % the current rate. 803 * 804 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 805 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 806 * end of slow start and should slow down. 807 */ 808 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 809 rate *= sysctl_tcp_pacing_ss_ratio; 810 else 811 rate *= sysctl_tcp_pacing_ca_ratio; 812 813 rate *= max(tp->snd_cwnd, tp->packets_out); 814 815 if (likely(tp->srtt_us)) 816 do_div(rate, tp->srtt_us); 817 818 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 819 * without any lock. We want to make sure compiler wont store 820 * intermediate values in this location. 821 */ 822 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 823 sk->sk_max_pacing_rate); 824 } 825 826 /* Calculate rto without backoff. This is the second half of Van Jacobson's 827 * routine referred to above. 828 */ 829 static void tcp_set_rto(struct sock *sk) 830 { 831 const struct tcp_sock *tp = tcp_sk(sk); 832 /* Old crap is replaced with new one. 8) 833 * 834 * More seriously: 835 * 1. If rtt variance happened to be less 50msec, it is hallucination. 836 * It cannot be less due to utterly erratic ACK generation made 837 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 838 * to do with delayed acks, because at cwnd>2 true delack timeout 839 * is invisible. Actually, Linux-2.4 also generates erratic 840 * ACKs in some circumstances. 841 */ 842 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 843 844 /* 2. Fixups made earlier cannot be right. 845 * If we do not estimate RTO correctly without them, 846 * all the algo is pure shit and should be replaced 847 * with correct one. It is exactly, which we pretend to do. 848 */ 849 850 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 851 * guarantees that rto is higher. 852 */ 853 tcp_bound_rto(sk); 854 } 855 856 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 857 { 858 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 859 860 if (!cwnd) 861 cwnd = TCP_INIT_CWND; 862 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 863 } 864 865 /* 866 * Packet counting of FACK is based on in-order assumptions, therefore TCP 867 * disables it when reordering is detected 868 */ 869 void tcp_disable_fack(struct tcp_sock *tp) 870 { 871 /* RFC3517 uses different metric in lost marker => reset on change */ 872 if (tcp_is_fack(tp)) 873 tp->lost_skb_hint = NULL; 874 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 875 } 876 877 /* Take a notice that peer is sending D-SACKs */ 878 static void tcp_dsack_seen(struct tcp_sock *tp) 879 { 880 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 881 } 882 883 static void tcp_update_reordering(struct sock *sk, const int metric, 884 const int ts) 885 { 886 struct tcp_sock *tp = tcp_sk(sk); 887 int mib_idx; 888 889 if (WARN_ON_ONCE(metric < 0)) 890 return; 891 892 if (metric > tp->reordering) { 893 tp->reordering = min(sysctl_tcp_max_reordering, metric); 894 895 #if FASTRETRANS_DEBUG > 1 896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 898 tp->reordering, 899 tp->fackets_out, 900 tp->sacked_out, 901 tp->undo_marker ? tp->undo_retrans : 0); 902 #endif 903 tcp_disable_fack(tp); 904 } 905 906 tp->rack.reord = 1; 907 908 /* This exciting event is worth to be remembered. 8) */ 909 if (ts) 910 mib_idx = LINUX_MIB_TCPTSREORDER; 911 else if (tcp_is_reno(tp)) 912 mib_idx = LINUX_MIB_TCPRENOREORDER; 913 else if (tcp_is_fack(tp)) 914 mib_idx = LINUX_MIB_TCPFACKREORDER; 915 else 916 mib_idx = LINUX_MIB_TCPSACKREORDER; 917 918 NET_INC_STATS(sock_net(sk), mib_idx); 919 } 920 921 /* This must be called before lost_out is incremented */ 922 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 923 { 924 if (!tp->retransmit_skb_hint || 925 before(TCP_SKB_CB(skb)->seq, 926 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 927 tp->retransmit_skb_hint = skb; 928 } 929 930 /* Sum the number of packets on the wire we have marked as lost. 931 * There are two cases we care about here: 932 * a) Packet hasn't been marked lost (nor retransmitted), 933 * and this is the first loss. 934 * b) Packet has been marked both lost and retransmitted, 935 * and this means we think it was lost again. 936 */ 937 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 938 { 939 __u8 sacked = TCP_SKB_CB(skb)->sacked; 940 941 if (!(sacked & TCPCB_LOST) || 942 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 943 tp->lost += tcp_skb_pcount(skb); 944 } 945 946 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 947 { 948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 949 tcp_verify_retransmit_hint(tp, skb); 950 951 tp->lost_out += tcp_skb_pcount(skb); 952 tcp_sum_lost(tp, skb); 953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 954 } 955 } 956 957 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 958 { 959 tcp_verify_retransmit_hint(tp, skb); 960 961 tcp_sum_lost(tp, skb); 962 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 963 tp->lost_out += tcp_skb_pcount(skb); 964 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 965 } 966 } 967 968 /* This procedure tags the retransmission queue when SACKs arrive. 969 * 970 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 971 * Packets in queue with these bits set are counted in variables 972 * sacked_out, retrans_out and lost_out, correspondingly. 973 * 974 * Valid combinations are: 975 * Tag InFlight Description 976 * 0 1 - orig segment is in flight. 977 * S 0 - nothing flies, orig reached receiver. 978 * L 0 - nothing flies, orig lost by net. 979 * R 2 - both orig and retransmit are in flight. 980 * L|R 1 - orig is lost, retransmit is in flight. 981 * S|R 1 - orig reached receiver, retrans is still in flight. 982 * (L|S|R is logically valid, it could occur when L|R is sacked, 983 * but it is equivalent to plain S and code short-curcuits it to S. 984 * L|S is logically invalid, it would mean -1 packet in flight 8)) 985 * 986 * These 6 states form finite state machine, controlled by the following events: 987 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 988 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 989 * 3. Loss detection event of two flavors: 990 * A. Scoreboard estimator decided the packet is lost. 991 * A'. Reno "three dupacks" marks head of queue lost. 992 * A''. Its FACK modification, head until snd.fack is lost. 993 * B. SACK arrives sacking SND.NXT at the moment, when the 994 * segment was retransmitted. 995 * 4. D-SACK added new rule: D-SACK changes any tag to S. 996 * 997 * It is pleasant to note, that state diagram turns out to be commutative, 998 * so that we are allowed not to be bothered by order of our actions, 999 * when multiple events arrive simultaneously. (see the function below). 1000 * 1001 * Reordering detection. 1002 * -------------------- 1003 * Reordering metric is maximal distance, which a packet can be displaced 1004 * in packet stream. With SACKs we can estimate it: 1005 * 1006 * 1. SACK fills old hole and the corresponding segment was not 1007 * ever retransmitted -> reordering. Alas, we cannot use it 1008 * when segment was retransmitted. 1009 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1010 * for retransmitted and already SACKed segment -> reordering.. 1011 * Both of these heuristics are not used in Loss state, when we cannot 1012 * account for retransmits accurately. 1013 * 1014 * SACK block validation. 1015 * ---------------------- 1016 * 1017 * SACK block range validation checks that the received SACK block fits to 1018 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1019 * Note that SND.UNA is not included to the range though being valid because 1020 * it means that the receiver is rather inconsistent with itself reporting 1021 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1022 * perfectly valid, however, in light of RFC2018 which explicitly states 1023 * that "SACK block MUST reflect the newest segment. Even if the newest 1024 * segment is going to be discarded ...", not that it looks very clever 1025 * in case of head skb. Due to potentional receiver driven attacks, we 1026 * choose to avoid immediate execution of a walk in write queue due to 1027 * reneging and defer head skb's loss recovery to standard loss recovery 1028 * procedure that will eventually trigger (nothing forbids us doing this). 1029 * 1030 * Implements also blockage to start_seq wrap-around. Problem lies in the 1031 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1032 * there's no guarantee that it will be before snd_nxt (n). The problem 1033 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1034 * wrap (s_w): 1035 * 1036 * <- outs wnd -> <- wrapzone -> 1037 * u e n u_w e_w s n_w 1038 * | | | | | | | 1039 * |<------------+------+----- TCP seqno space --------------+---------->| 1040 * ...-- <2^31 ->| |<--------... 1041 * ...---- >2^31 ------>| |<--------... 1042 * 1043 * Current code wouldn't be vulnerable but it's better still to discard such 1044 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1045 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1046 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1047 * equal to the ideal case (infinite seqno space without wrap caused issues). 1048 * 1049 * With D-SACK the lower bound is extended to cover sequence space below 1050 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1051 * again, D-SACK block must not to go across snd_una (for the same reason as 1052 * for the normal SACK blocks, explained above). But there all simplicity 1053 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1054 * fully below undo_marker they do not affect behavior in anyway and can 1055 * therefore be safely ignored. In rare cases (which are more or less 1056 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1057 * fragmentation and packet reordering past skb's retransmission. To consider 1058 * them correctly, the acceptable range must be extended even more though 1059 * the exact amount is rather hard to quantify. However, tp->max_window can 1060 * be used as an exaggerated estimate. 1061 */ 1062 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1063 u32 start_seq, u32 end_seq) 1064 { 1065 /* Too far in future, or reversed (interpretation is ambiguous) */ 1066 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1067 return false; 1068 1069 /* Nasty start_seq wrap-around check (see comments above) */ 1070 if (!before(start_seq, tp->snd_nxt)) 1071 return false; 1072 1073 /* In outstanding window? ...This is valid exit for D-SACKs too. 1074 * start_seq == snd_una is non-sensical (see comments above) 1075 */ 1076 if (after(start_seq, tp->snd_una)) 1077 return true; 1078 1079 if (!is_dsack || !tp->undo_marker) 1080 return false; 1081 1082 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1083 if (after(end_seq, tp->snd_una)) 1084 return false; 1085 1086 if (!before(start_seq, tp->undo_marker)) 1087 return true; 1088 1089 /* Too old */ 1090 if (!after(end_seq, tp->undo_marker)) 1091 return false; 1092 1093 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1094 * start_seq < undo_marker and end_seq >= undo_marker. 1095 */ 1096 return !before(start_seq, end_seq - tp->max_window); 1097 } 1098 1099 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1100 struct tcp_sack_block_wire *sp, int num_sacks, 1101 u32 prior_snd_una) 1102 { 1103 struct tcp_sock *tp = tcp_sk(sk); 1104 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1105 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1106 bool dup_sack = false; 1107 1108 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1109 dup_sack = true; 1110 tcp_dsack_seen(tp); 1111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1112 } else if (num_sacks > 1) { 1113 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1114 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1115 1116 if (!after(end_seq_0, end_seq_1) && 1117 !before(start_seq_0, start_seq_1)) { 1118 dup_sack = true; 1119 tcp_dsack_seen(tp); 1120 NET_INC_STATS(sock_net(sk), 1121 LINUX_MIB_TCPDSACKOFORECV); 1122 } 1123 } 1124 1125 /* D-SACK for already forgotten data... Do dumb counting. */ 1126 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1127 !after(end_seq_0, prior_snd_una) && 1128 after(end_seq_0, tp->undo_marker)) 1129 tp->undo_retrans--; 1130 1131 return dup_sack; 1132 } 1133 1134 struct tcp_sacktag_state { 1135 int reord; 1136 int fack_count; 1137 /* Timestamps for earliest and latest never-retransmitted segment 1138 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1139 * but congestion control should still get an accurate delay signal. 1140 */ 1141 u64 first_sackt; 1142 u64 last_sackt; 1143 struct rate_sample *rate; 1144 int flag; 1145 }; 1146 1147 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1148 * the incoming SACK may not exactly match but we can find smaller MSS 1149 * aligned portion of it that matches. Therefore we might need to fragment 1150 * which may fail and creates some hassle (caller must handle error case 1151 * returns). 1152 * 1153 * FIXME: this could be merged to shift decision code 1154 */ 1155 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1156 u32 start_seq, u32 end_seq) 1157 { 1158 int err; 1159 bool in_sack; 1160 unsigned int pkt_len; 1161 unsigned int mss; 1162 1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1164 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1165 1166 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1167 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1168 mss = tcp_skb_mss(skb); 1169 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1170 1171 if (!in_sack) { 1172 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1173 if (pkt_len < mss) 1174 pkt_len = mss; 1175 } else { 1176 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1177 if (pkt_len < mss) 1178 return -EINVAL; 1179 } 1180 1181 /* Round if necessary so that SACKs cover only full MSSes 1182 * and/or the remaining small portion (if present) 1183 */ 1184 if (pkt_len > mss) { 1185 unsigned int new_len = (pkt_len / mss) * mss; 1186 if (!in_sack && new_len < pkt_len) 1187 new_len += mss; 1188 pkt_len = new_len; 1189 } 1190 1191 if (pkt_len >= skb->len && !in_sack) 1192 return 0; 1193 1194 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1195 if (err < 0) 1196 return err; 1197 } 1198 1199 return in_sack; 1200 } 1201 1202 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1203 static u8 tcp_sacktag_one(struct sock *sk, 1204 struct tcp_sacktag_state *state, u8 sacked, 1205 u32 start_seq, u32 end_seq, 1206 int dup_sack, int pcount, 1207 u64 xmit_time) 1208 { 1209 struct tcp_sock *tp = tcp_sk(sk); 1210 int fack_count = state->fack_count; 1211 1212 /* Account D-SACK for retransmitted packet. */ 1213 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1214 if (tp->undo_marker && tp->undo_retrans > 0 && 1215 after(end_seq, tp->undo_marker)) 1216 tp->undo_retrans--; 1217 if (sacked & TCPCB_SACKED_ACKED) 1218 state->reord = min(fack_count, state->reord); 1219 } 1220 1221 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1222 if (!after(end_seq, tp->snd_una)) 1223 return sacked; 1224 1225 if (!(sacked & TCPCB_SACKED_ACKED)) { 1226 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1227 1228 if (sacked & TCPCB_SACKED_RETRANS) { 1229 /* If the segment is not tagged as lost, 1230 * we do not clear RETRANS, believing 1231 * that retransmission is still in flight. 1232 */ 1233 if (sacked & TCPCB_LOST) { 1234 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1235 tp->lost_out -= pcount; 1236 tp->retrans_out -= pcount; 1237 } 1238 } else { 1239 if (!(sacked & TCPCB_RETRANS)) { 1240 /* New sack for not retransmitted frame, 1241 * which was in hole. It is reordering. 1242 */ 1243 if (before(start_seq, 1244 tcp_highest_sack_seq(tp))) 1245 state->reord = min(fack_count, 1246 state->reord); 1247 if (!after(end_seq, tp->high_seq)) 1248 state->flag |= FLAG_ORIG_SACK_ACKED; 1249 if (state->first_sackt == 0) 1250 state->first_sackt = xmit_time; 1251 state->last_sackt = xmit_time; 1252 } 1253 1254 if (sacked & TCPCB_LOST) { 1255 sacked &= ~TCPCB_LOST; 1256 tp->lost_out -= pcount; 1257 } 1258 } 1259 1260 sacked |= TCPCB_SACKED_ACKED; 1261 state->flag |= FLAG_DATA_SACKED; 1262 tp->sacked_out += pcount; 1263 tp->delivered += pcount; /* Out-of-order packets delivered */ 1264 1265 fack_count += pcount; 1266 1267 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1268 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1269 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1270 tp->lost_cnt_hint += pcount; 1271 1272 if (fack_count > tp->fackets_out) 1273 tp->fackets_out = fack_count; 1274 } 1275 1276 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1277 * frames and clear it. undo_retrans is decreased above, L|R frames 1278 * are accounted above as well. 1279 */ 1280 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1281 sacked &= ~TCPCB_SACKED_RETRANS; 1282 tp->retrans_out -= pcount; 1283 } 1284 1285 return sacked; 1286 } 1287 1288 /* Shift newly-SACKed bytes from this skb to the immediately previous 1289 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1290 */ 1291 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1292 struct tcp_sacktag_state *state, 1293 unsigned int pcount, int shifted, int mss, 1294 bool dup_sack) 1295 { 1296 struct tcp_sock *tp = tcp_sk(sk); 1297 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1298 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1299 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1300 1301 BUG_ON(!pcount); 1302 1303 /* Adjust counters and hints for the newly sacked sequence 1304 * range but discard the return value since prev is already 1305 * marked. We must tag the range first because the seq 1306 * advancement below implicitly advances 1307 * tcp_highest_sack_seq() when skb is highest_sack. 1308 */ 1309 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1310 start_seq, end_seq, dup_sack, pcount, 1311 skb->skb_mstamp); 1312 tcp_rate_skb_delivered(sk, skb, state->rate); 1313 1314 if (skb == tp->lost_skb_hint) 1315 tp->lost_cnt_hint += pcount; 1316 1317 TCP_SKB_CB(prev)->end_seq += shifted; 1318 TCP_SKB_CB(skb)->seq += shifted; 1319 1320 tcp_skb_pcount_add(prev, pcount); 1321 BUG_ON(tcp_skb_pcount(skb) < pcount); 1322 tcp_skb_pcount_add(skb, -pcount); 1323 1324 /* When we're adding to gso_segs == 1, gso_size will be zero, 1325 * in theory this shouldn't be necessary but as long as DSACK 1326 * code can come after this skb later on it's better to keep 1327 * setting gso_size to something. 1328 */ 1329 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1330 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1331 1332 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1333 if (tcp_skb_pcount(skb) <= 1) 1334 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1335 1336 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1337 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1338 1339 if (skb->len > 0) { 1340 BUG_ON(!tcp_skb_pcount(skb)); 1341 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1342 return false; 1343 } 1344 1345 /* Whole SKB was eaten :-) */ 1346 1347 if (skb == tp->retransmit_skb_hint) 1348 tp->retransmit_skb_hint = prev; 1349 if (skb == tp->lost_skb_hint) { 1350 tp->lost_skb_hint = prev; 1351 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1352 } 1353 1354 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1355 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1356 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1357 TCP_SKB_CB(prev)->end_seq++; 1358 1359 if (skb == tcp_highest_sack(sk)) 1360 tcp_advance_highest_sack(sk, skb); 1361 1362 tcp_skb_collapse_tstamp(prev, skb); 1363 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1364 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1365 1366 tcp_unlink_write_queue(skb, sk); 1367 sk_wmem_free_skb(sk, skb); 1368 1369 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1370 1371 return true; 1372 } 1373 1374 /* I wish gso_size would have a bit more sane initialization than 1375 * something-or-zero which complicates things 1376 */ 1377 static int tcp_skb_seglen(const struct sk_buff *skb) 1378 { 1379 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1380 } 1381 1382 /* Shifting pages past head area doesn't work */ 1383 static int skb_can_shift(const struct sk_buff *skb) 1384 { 1385 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1386 } 1387 1388 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1389 * skb. 1390 */ 1391 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1392 struct tcp_sacktag_state *state, 1393 u32 start_seq, u32 end_seq, 1394 bool dup_sack) 1395 { 1396 struct tcp_sock *tp = tcp_sk(sk); 1397 struct sk_buff *prev; 1398 int mss; 1399 int pcount = 0; 1400 int len; 1401 int in_sack; 1402 1403 if (!sk_can_gso(sk)) 1404 goto fallback; 1405 1406 /* Normally R but no L won't result in plain S */ 1407 if (!dup_sack && 1408 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1409 goto fallback; 1410 if (!skb_can_shift(skb)) 1411 goto fallback; 1412 /* This frame is about to be dropped (was ACKed). */ 1413 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1414 goto fallback; 1415 1416 /* Can only happen with delayed DSACK + discard craziness */ 1417 if (unlikely(skb == tcp_write_queue_head(sk))) 1418 goto fallback; 1419 prev = tcp_write_queue_prev(sk, skb); 1420 1421 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1422 goto fallback; 1423 1424 if (!tcp_skb_can_collapse_to(prev)) 1425 goto fallback; 1426 1427 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1428 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1429 1430 if (in_sack) { 1431 len = skb->len; 1432 pcount = tcp_skb_pcount(skb); 1433 mss = tcp_skb_seglen(skb); 1434 1435 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1436 * drop this restriction as unnecessary 1437 */ 1438 if (mss != tcp_skb_seglen(prev)) 1439 goto fallback; 1440 } else { 1441 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1442 goto noop; 1443 /* CHECKME: This is non-MSS split case only?, this will 1444 * cause skipped skbs due to advancing loop btw, original 1445 * has that feature too 1446 */ 1447 if (tcp_skb_pcount(skb) <= 1) 1448 goto noop; 1449 1450 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1451 if (!in_sack) { 1452 /* TODO: head merge to next could be attempted here 1453 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1454 * though it might not be worth of the additional hassle 1455 * 1456 * ...we can probably just fallback to what was done 1457 * previously. We could try merging non-SACKed ones 1458 * as well but it probably isn't going to buy off 1459 * because later SACKs might again split them, and 1460 * it would make skb timestamp tracking considerably 1461 * harder problem. 1462 */ 1463 goto fallback; 1464 } 1465 1466 len = end_seq - TCP_SKB_CB(skb)->seq; 1467 BUG_ON(len < 0); 1468 BUG_ON(len > skb->len); 1469 1470 /* MSS boundaries should be honoured or else pcount will 1471 * severely break even though it makes things bit trickier. 1472 * Optimize common case to avoid most of the divides 1473 */ 1474 mss = tcp_skb_mss(skb); 1475 1476 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1477 * drop this restriction as unnecessary 1478 */ 1479 if (mss != tcp_skb_seglen(prev)) 1480 goto fallback; 1481 1482 if (len == mss) { 1483 pcount = 1; 1484 } else if (len < mss) { 1485 goto noop; 1486 } else { 1487 pcount = len / mss; 1488 len = pcount * mss; 1489 } 1490 } 1491 1492 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1493 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1494 goto fallback; 1495 1496 if (!skb_shift(prev, skb, len)) 1497 goto fallback; 1498 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1499 goto out; 1500 1501 /* Hole filled allows collapsing with the next as well, this is very 1502 * useful when hole on every nth skb pattern happens 1503 */ 1504 if (prev == tcp_write_queue_tail(sk)) 1505 goto out; 1506 skb = tcp_write_queue_next(sk, prev); 1507 1508 if (!skb_can_shift(skb) || 1509 (skb == tcp_send_head(sk)) || 1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1511 (mss != tcp_skb_seglen(skb))) 1512 goto out; 1513 1514 len = skb->len; 1515 if (skb_shift(prev, skb, len)) { 1516 pcount += tcp_skb_pcount(skb); 1517 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1518 } 1519 1520 out: 1521 state->fack_count += pcount; 1522 return prev; 1523 1524 noop: 1525 return skb; 1526 1527 fallback: 1528 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1529 return NULL; 1530 } 1531 1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1533 struct tcp_sack_block *next_dup, 1534 struct tcp_sacktag_state *state, 1535 u32 start_seq, u32 end_seq, 1536 bool dup_sack_in) 1537 { 1538 struct tcp_sock *tp = tcp_sk(sk); 1539 struct sk_buff *tmp; 1540 1541 tcp_for_write_queue_from(skb, sk) { 1542 int in_sack = 0; 1543 bool dup_sack = dup_sack_in; 1544 1545 if (skb == tcp_send_head(sk)) 1546 break; 1547 1548 /* queue is in-order => we can short-circuit the walk early */ 1549 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1550 break; 1551 1552 if (next_dup && 1553 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1554 in_sack = tcp_match_skb_to_sack(sk, skb, 1555 next_dup->start_seq, 1556 next_dup->end_seq); 1557 if (in_sack > 0) 1558 dup_sack = true; 1559 } 1560 1561 /* skb reference here is a bit tricky to get right, since 1562 * shifting can eat and free both this skb and the next, 1563 * so not even _safe variant of the loop is enough. 1564 */ 1565 if (in_sack <= 0) { 1566 tmp = tcp_shift_skb_data(sk, skb, state, 1567 start_seq, end_seq, dup_sack); 1568 if (tmp) { 1569 if (tmp != skb) { 1570 skb = tmp; 1571 continue; 1572 } 1573 1574 in_sack = 0; 1575 } else { 1576 in_sack = tcp_match_skb_to_sack(sk, skb, 1577 start_seq, 1578 end_seq); 1579 } 1580 } 1581 1582 if (unlikely(in_sack < 0)) 1583 break; 1584 1585 if (in_sack) { 1586 TCP_SKB_CB(skb)->sacked = 1587 tcp_sacktag_one(sk, 1588 state, 1589 TCP_SKB_CB(skb)->sacked, 1590 TCP_SKB_CB(skb)->seq, 1591 TCP_SKB_CB(skb)->end_seq, 1592 dup_sack, 1593 tcp_skb_pcount(skb), 1594 skb->skb_mstamp); 1595 tcp_rate_skb_delivered(sk, skb, state->rate); 1596 1597 if (!before(TCP_SKB_CB(skb)->seq, 1598 tcp_highest_sack_seq(tp))) 1599 tcp_advance_highest_sack(sk, skb); 1600 } 1601 1602 state->fack_count += tcp_skb_pcount(skb); 1603 } 1604 return skb; 1605 } 1606 1607 /* Avoid all extra work that is being done by sacktag while walking in 1608 * a normal way 1609 */ 1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1611 struct tcp_sacktag_state *state, 1612 u32 skip_to_seq) 1613 { 1614 tcp_for_write_queue_from(skb, sk) { 1615 if (skb == tcp_send_head(sk)) 1616 break; 1617 1618 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1619 break; 1620 1621 state->fack_count += tcp_skb_pcount(skb); 1622 } 1623 return skb; 1624 } 1625 1626 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1627 struct sock *sk, 1628 struct tcp_sack_block *next_dup, 1629 struct tcp_sacktag_state *state, 1630 u32 skip_to_seq) 1631 { 1632 if (!next_dup) 1633 return skb; 1634 1635 if (before(next_dup->start_seq, skip_to_seq)) { 1636 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1637 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1638 next_dup->start_seq, next_dup->end_seq, 1639 1); 1640 } 1641 1642 return skb; 1643 } 1644 1645 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1646 { 1647 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1648 } 1649 1650 static int 1651 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1652 u32 prior_snd_una, struct tcp_sacktag_state *state) 1653 { 1654 struct tcp_sock *tp = tcp_sk(sk); 1655 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1656 TCP_SKB_CB(ack_skb)->sacked); 1657 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1658 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1659 struct tcp_sack_block *cache; 1660 struct sk_buff *skb; 1661 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1662 int used_sacks; 1663 bool found_dup_sack = false; 1664 int i, j; 1665 int first_sack_index; 1666 1667 state->flag = 0; 1668 state->reord = tp->packets_out; 1669 1670 if (!tp->sacked_out) { 1671 if (WARN_ON(tp->fackets_out)) 1672 tp->fackets_out = 0; 1673 tcp_highest_sack_reset(sk); 1674 } 1675 1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1677 num_sacks, prior_snd_una); 1678 if (found_dup_sack) { 1679 state->flag |= FLAG_DSACKING_ACK; 1680 tp->delivered++; /* A spurious retransmission is delivered */ 1681 } 1682 1683 /* Eliminate too old ACKs, but take into 1684 * account more or less fresh ones, they can 1685 * contain valid SACK info. 1686 */ 1687 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1688 return 0; 1689 1690 if (!tp->packets_out) 1691 goto out; 1692 1693 used_sacks = 0; 1694 first_sack_index = 0; 1695 for (i = 0; i < num_sacks; i++) { 1696 bool dup_sack = !i && found_dup_sack; 1697 1698 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1699 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1700 1701 if (!tcp_is_sackblock_valid(tp, dup_sack, 1702 sp[used_sacks].start_seq, 1703 sp[used_sacks].end_seq)) { 1704 int mib_idx; 1705 1706 if (dup_sack) { 1707 if (!tp->undo_marker) 1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1709 else 1710 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1711 } else { 1712 /* Don't count olds caused by ACK reordering */ 1713 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1714 !after(sp[used_sacks].end_seq, tp->snd_una)) 1715 continue; 1716 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1717 } 1718 1719 NET_INC_STATS(sock_net(sk), mib_idx); 1720 if (i == 0) 1721 first_sack_index = -1; 1722 continue; 1723 } 1724 1725 /* Ignore very old stuff early */ 1726 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1727 continue; 1728 1729 used_sacks++; 1730 } 1731 1732 /* order SACK blocks to allow in order walk of the retrans queue */ 1733 for (i = used_sacks - 1; i > 0; i--) { 1734 for (j = 0; j < i; j++) { 1735 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1736 swap(sp[j], sp[j + 1]); 1737 1738 /* Track where the first SACK block goes to */ 1739 if (j == first_sack_index) 1740 first_sack_index = j + 1; 1741 } 1742 } 1743 } 1744 1745 skb = tcp_write_queue_head(sk); 1746 state->fack_count = 0; 1747 i = 0; 1748 1749 if (!tp->sacked_out) { 1750 /* It's already past, so skip checking against it */ 1751 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1752 } else { 1753 cache = tp->recv_sack_cache; 1754 /* Skip empty blocks in at head of the cache */ 1755 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1756 !cache->end_seq) 1757 cache++; 1758 } 1759 1760 while (i < used_sacks) { 1761 u32 start_seq = sp[i].start_seq; 1762 u32 end_seq = sp[i].end_seq; 1763 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1764 struct tcp_sack_block *next_dup = NULL; 1765 1766 if (found_dup_sack && ((i + 1) == first_sack_index)) 1767 next_dup = &sp[i + 1]; 1768 1769 /* Skip too early cached blocks */ 1770 while (tcp_sack_cache_ok(tp, cache) && 1771 !before(start_seq, cache->end_seq)) 1772 cache++; 1773 1774 /* Can skip some work by looking recv_sack_cache? */ 1775 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1776 after(end_seq, cache->start_seq)) { 1777 1778 /* Head todo? */ 1779 if (before(start_seq, cache->start_seq)) { 1780 skb = tcp_sacktag_skip(skb, sk, state, 1781 start_seq); 1782 skb = tcp_sacktag_walk(skb, sk, next_dup, 1783 state, 1784 start_seq, 1785 cache->start_seq, 1786 dup_sack); 1787 } 1788 1789 /* Rest of the block already fully processed? */ 1790 if (!after(end_seq, cache->end_seq)) 1791 goto advance_sp; 1792 1793 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1794 state, 1795 cache->end_seq); 1796 1797 /* ...tail remains todo... */ 1798 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1799 /* ...but better entrypoint exists! */ 1800 skb = tcp_highest_sack(sk); 1801 if (!skb) 1802 break; 1803 state->fack_count = tp->fackets_out; 1804 cache++; 1805 goto walk; 1806 } 1807 1808 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1809 /* Check overlap against next cached too (past this one already) */ 1810 cache++; 1811 continue; 1812 } 1813 1814 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1815 skb = tcp_highest_sack(sk); 1816 if (!skb) 1817 break; 1818 state->fack_count = tp->fackets_out; 1819 } 1820 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1821 1822 walk: 1823 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1824 start_seq, end_seq, dup_sack); 1825 1826 advance_sp: 1827 i++; 1828 } 1829 1830 /* Clear the head of the cache sack blocks so we can skip it next time */ 1831 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1832 tp->recv_sack_cache[i].start_seq = 0; 1833 tp->recv_sack_cache[i].end_seq = 0; 1834 } 1835 for (j = 0; j < used_sacks; j++) 1836 tp->recv_sack_cache[i++] = sp[j]; 1837 1838 if ((state->reord < tp->fackets_out) && 1839 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1840 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1841 1842 tcp_verify_left_out(tp); 1843 out: 1844 1845 #if FASTRETRANS_DEBUG > 0 1846 WARN_ON((int)tp->sacked_out < 0); 1847 WARN_ON((int)tp->lost_out < 0); 1848 WARN_ON((int)tp->retrans_out < 0); 1849 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1850 #endif 1851 return state->flag; 1852 } 1853 1854 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1855 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1856 */ 1857 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1858 { 1859 u32 holes; 1860 1861 holes = max(tp->lost_out, 1U); 1862 holes = min(holes, tp->packets_out); 1863 1864 if ((tp->sacked_out + holes) > tp->packets_out) { 1865 tp->sacked_out = tp->packets_out - holes; 1866 return true; 1867 } 1868 return false; 1869 } 1870 1871 /* If we receive more dupacks than we expected counting segments 1872 * in assumption of absent reordering, interpret this as reordering. 1873 * The only another reason could be bug in receiver TCP. 1874 */ 1875 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1876 { 1877 struct tcp_sock *tp = tcp_sk(sk); 1878 if (tcp_limit_reno_sacked(tp)) 1879 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1880 } 1881 1882 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1883 1884 static void tcp_add_reno_sack(struct sock *sk) 1885 { 1886 struct tcp_sock *tp = tcp_sk(sk); 1887 u32 prior_sacked = tp->sacked_out; 1888 1889 tp->sacked_out++; 1890 tcp_check_reno_reordering(sk, 0); 1891 if (tp->sacked_out > prior_sacked) 1892 tp->delivered++; /* Some out-of-order packet is delivered */ 1893 tcp_verify_left_out(tp); 1894 } 1895 1896 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1897 1898 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1899 { 1900 struct tcp_sock *tp = tcp_sk(sk); 1901 1902 if (acked > 0) { 1903 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1904 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1905 if (acked - 1 >= tp->sacked_out) 1906 tp->sacked_out = 0; 1907 else 1908 tp->sacked_out -= acked - 1; 1909 } 1910 tcp_check_reno_reordering(sk, acked); 1911 tcp_verify_left_out(tp); 1912 } 1913 1914 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1915 { 1916 tp->sacked_out = 0; 1917 } 1918 1919 void tcp_clear_retrans(struct tcp_sock *tp) 1920 { 1921 tp->retrans_out = 0; 1922 tp->lost_out = 0; 1923 tp->undo_marker = 0; 1924 tp->undo_retrans = -1; 1925 tp->fackets_out = 0; 1926 tp->sacked_out = 0; 1927 } 1928 1929 static inline void tcp_init_undo(struct tcp_sock *tp) 1930 { 1931 tp->undo_marker = tp->snd_una; 1932 /* Retransmission still in flight may cause DSACKs later. */ 1933 tp->undo_retrans = tp->retrans_out ? : -1; 1934 } 1935 1936 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1937 * and reset tags completely, otherwise preserve SACKs. If receiver 1938 * dropped its ofo queue, we will know this due to reneging detection. 1939 */ 1940 void tcp_enter_loss(struct sock *sk) 1941 { 1942 const struct inet_connection_sock *icsk = inet_csk(sk); 1943 struct tcp_sock *tp = tcp_sk(sk); 1944 struct net *net = sock_net(sk); 1945 struct sk_buff *skb; 1946 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1947 bool is_reneg; /* is receiver reneging on SACKs? */ 1948 bool mark_lost; 1949 1950 /* Reduce ssthresh if it has not yet been made inside this window. */ 1951 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1952 !after(tp->high_seq, tp->snd_una) || 1953 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1954 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1955 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1956 tcp_ca_event(sk, CA_EVENT_LOSS); 1957 tcp_init_undo(tp); 1958 } 1959 tp->snd_cwnd = 1; 1960 tp->snd_cwnd_cnt = 0; 1961 tp->snd_cwnd_stamp = tcp_jiffies32; 1962 1963 tp->retrans_out = 0; 1964 tp->lost_out = 0; 1965 1966 if (tcp_is_reno(tp)) 1967 tcp_reset_reno_sack(tp); 1968 1969 skb = tcp_write_queue_head(sk); 1970 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1971 if (is_reneg) { 1972 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1973 tp->sacked_out = 0; 1974 tp->fackets_out = 0; 1975 } 1976 tcp_clear_all_retrans_hints(tp); 1977 1978 tcp_for_write_queue(skb, sk) { 1979 if (skb == tcp_send_head(sk)) 1980 break; 1981 1982 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1983 is_reneg); 1984 if (mark_lost) 1985 tcp_sum_lost(tp, skb); 1986 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1987 if (mark_lost) { 1988 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1989 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1990 tp->lost_out += tcp_skb_pcount(skb); 1991 } 1992 } 1993 tcp_verify_left_out(tp); 1994 1995 /* Timeout in disordered state after receiving substantial DUPACKs 1996 * suggests that the degree of reordering is over-estimated. 1997 */ 1998 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1999 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2000 tp->reordering = min_t(unsigned int, tp->reordering, 2001 net->ipv4.sysctl_tcp_reordering); 2002 tcp_set_ca_state(sk, TCP_CA_Loss); 2003 tp->high_seq = tp->snd_nxt; 2004 tcp_ecn_queue_cwr(tp); 2005 2006 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2007 * loss recovery is underway except recurring timeout(s) on 2008 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2009 * 2010 * In theory F-RTO can be used repeatedly during loss recovery. 2011 * In practice this interacts badly with broken middle-boxes that 2012 * falsely raise the receive window, which results in repeated 2013 * timeouts and stop-and-go behavior. 2014 */ 2015 tp->frto = sysctl_tcp_frto && 2016 (new_recovery || icsk->icsk_retransmits) && 2017 !inet_csk(sk)->icsk_mtup.probe_size; 2018 } 2019 2020 /* If ACK arrived pointing to a remembered SACK, it means that our 2021 * remembered SACKs do not reflect real state of receiver i.e. 2022 * receiver _host_ is heavily congested (or buggy). 2023 * 2024 * To avoid big spurious retransmission bursts due to transient SACK 2025 * scoreboard oddities that look like reneging, we give the receiver a 2026 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2027 * restore sanity to the SACK scoreboard. If the apparent reneging 2028 * persists until this RTO then we'll clear the SACK scoreboard. 2029 */ 2030 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2031 { 2032 if (flag & FLAG_SACK_RENEGING) { 2033 struct tcp_sock *tp = tcp_sk(sk); 2034 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2035 msecs_to_jiffies(10)); 2036 2037 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2038 delay, TCP_RTO_MAX); 2039 return true; 2040 } 2041 return false; 2042 } 2043 2044 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2045 { 2046 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2047 } 2048 2049 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2050 * counter when SACK is enabled (without SACK, sacked_out is used for 2051 * that purpose). 2052 * 2053 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2054 * segments up to the highest received SACK block so far and holes in 2055 * between them. 2056 * 2057 * With reordering, holes may still be in flight, so RFC3517 recovery 2058 * uses pure sacked_out (total number of SACKed segments) even though 2059 * it violates the RFC that uses duplicate ACKs, often these are equal 2060 * but when e.g. out-of-window ACKs or packet duplication occurs, 2061 * they differ. Since neither occurs due to loss, TCP should really 2062 * ignore them. 2063 */ 2064 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2065 { 2066 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2067 } 2068 2069 /* Linux NewReno/SACK/FACK/ECN state machine. 2070 * -------------------------------------- 2071 * 2072 * "Open" Normal state, no dubious events, fast path. 2073 * "Disorder" In all the respects it is "Open", 2074 * but requires a bit more attention. It is entered when 2075 * we see some SACKs or dupacks. It is split of "Open" 2076 * mainly to move some processing from fast path to slow one. 2077 * "CWR" CWND was reduced due to some Congestion Notification event. 2078 * It can be ECN, ICMP source quench, local device congestion. 2079 * "Recovery" CWND was reduced, we are fast-retransmitting. 2080 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2081 * 2082 * tcp_fastretrans_alert() is entered: 2083 * - each incoming ACK, if state is not "Open" 2084 * - when arrived ACK is unusual, namely: 2085 * * SACK 2086 * * Duplicate ACK. 2087 * * ECN ECE. 2088 * 2089 * Counting packets in flight is pretty simple. 2090 * 2091 * in_flight = packets_out - left_out + retrans_out 2092 * 2093 * packets_out is SND.NXT-SND.UNA counted in packets. 2094 * 2095 * retrans_out is number of retransmitted segments. 2096 * 2097 * left_out is number of segments left network, but not ACKed yet. 2098 * 2099 * left_out = sacked_out + lost_out 2100 * 2101 * sacked_out: Packets, which arrived to receiver out of order 2102 * and hence not ACKed. With SACKs this number is simply 2103 * amount of SACKed data. Even without SACKs 2104 * it is easy to give pretty reliable estimate of this number, 2105 * counting duplicate ACKs. 2106 * 2107 * lost_out: Packets lost by network. TCP has no explicit 2108 * "loss notification" feedback from network (for now). 2109 * It means that this number can be only _guessed_. 2110 * Actually, it is the heuristics to predict lossage that 2111 * distinguishes different algorithms. 2112 * 2113 * F.e. after RTO, when all the queue is considered as lost, 2114 * lost_out = packets_out and in_flight = retrans_out. 2115 * 2116 * Essentially, we have now a few algorithms detecting 2117 * lost packets. 2118 * 2119 * If the receiver supports SACK: 2120 * 2121 * RFC6675/3517: It is the conventional algorithm. A packet is 2122 * considered lost if the number of higher sequence packets 2123 * SACKed is greater than or equal the DUPACK thoreshold 2124 * (reordering). This is implemented in tcp_mark_head_lost and 2125 * tcp_update_scoreboard. 2126 * 2127 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2128 * (2017-) that checks timing instead of counting DUPACKs. 2129 * Essentially a packet is considered lost if it's not S/ACKed 2130 * after RTT + reordering_window, where both metrics are 2131 * dynamically measured and adjusted. This is implemented in 2132 * tcp_rack_mark_lost. 2133 * 2134 * FACK (Disabled by default. Subsumbed by RACK): 2135 * It is the simplest heuristics. As soon as we decided 2136 * that something is lost, we decide that _all_ not SACKed 2137 * packets until the most forward SACK are lost. I.e. 2138 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2139 * It is absolutely correct estimate, if network does not reorder 2140 * packets. And it loses any connection to reality when reordering 2141 * takes place. We use FACK by default until reordering 2142 * is suspected on the path to this destination. 2143 * 2144 * If the receiver does not support SACK: 2145 * 2146 * NewReno (RFC6582): in Recovery we assume that one segment 2147 * is lost (classic Reno). While we are in Recovery and 2148 * a partial ACK arrives, we assume that one more packet 2149 * is lost (NewReno). This heuristics are the same in NewReno 2150 * and SACK. 2151 * 2152 * Really tricky (and requiring careful tuning) part of algorithm 2153 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2154 * The first determines the moment _when_ we should reduce CWND and, 2155 * hence, slow down forward transmission. In fact, it determines the moment 2156 * when we decide that hole is caused by loss, rather than by a reorder. 2157 * 2158 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2159 * holes, caused by lost packets. 2160 * 2161 * And the most logically complicated part of algorithm is undo 2162 * heuristics. We detect false retransmits due to both too early 2163 * fast retransmit (reordering) and underestimated RTO, analyzing 2164 * timestamps and D-SACKs. When we detect that some segments were 2165 * retransmitted by mistake and CWND reduction was wrong, we undo 2166 * window reduction and abort recovery phase. This logic is hidden 2167 * inside several functions named tcp_try_undo_<something>. 2168 */ 2169 2170 /* This function decides, when we should leave Disordered state 2171 * and enter Recovery phase, reducing congestion window. 2172 * 2173 * Main question: may we further continue forward transmission 2174 * with the same cwnd? 2175 */ 2176 static bool tcp_time_to_recover(struct sock *sk, int flag) 2177 { 2178 struct tcp_sock *tp = tcp_sk(sk); 2179 2180 /* Trick#1: The loss is proven. */ 2181 if (tp->lost_out) 2182 return true; 2183 2184 /* Not-A-Trick#2 : Classic rule... */ 2185 if (tcp_dupack_heuristics(tp) > tp->reordering) 2186 return true; 2187 2188 return false; 2189 } 2190 2191 /* Detect loss in event "A" above by marking head of queue up as lost. 2192 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2193 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2194 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2195 * the maximum SACKed segments to pass before reaching this limit. 2196 */ 2197 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2198 { 2199 struct tcp_sock *tp = tcp_sk(sk); 2200 struct sk_buff *skb; 2201 int cnt, oldcnt, lost; 2202 unsigned int mss; 2203 /* Use SACK to deduce losses of new sequences sent during recovery */ 2204 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2205 2206 WARN_ON(packets > tp->packets_out); 2207 if (tp->lost_skb_hint) { 2208 skb = tp->lost_skb_hint; 2209 cnt = tp->lost_cnt_hint; 2210 /* Head already handled? */ 2211 if (mark_head && skb != tcp_write_queue_head(sk)) 2212 return; 2213 } else { 2214 skb = tcp_write_queue_head(sk); 2215 cnt = 0; 2216 } 2217 2218 tcp_for_write_queue_from(skb, sk) { 2219 if (skb == tcp_send_head(sk)) 2220 break; 2221 /* TODO: do this better */ 2222 /* this is not the most efficient way to do this... */ 2223 tp->lost_skb_hint = skb; 2224 tp->lost_cnt_hint = cnt; 2225 2226 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2227 break; 2228 2229 oldcnt = cnt; 2230 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2231 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2232 cnt += tcp_skb_pcount(skb); 2233 2234 if (cnt > packets) { 2235 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2236 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2237 (oldcnt >= packets)) 2238 break; 2239 2240 mss = tcp_skb_mss(skb); 2241 /* If needed, chop off the prefix to mark as lost. */ 2242 lost = (packets - oldcnt) * mss; 2243 if (lost < skb->len && 2244 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2245 break; 2246 cnt = packets; 2247 } 2248 2249 tcp_skb_mark_lost(tp, skb); 2250 2251 if (mark_head) 2252 break; 2253 } 2254 tcp_verify_left_out(tp); 2255 } 2256 2257 /* Account newly detected lost packet(s) */ 2258 2259 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2260 { 2261 struct tcp_sock *tp = tcp_sk(sk); 2262 2263 if (tcp_is_reno(tp)) { 2264 tcp_mark_head_lost(sk, 1, 1); 2265 } else if (tcp_is_fack(tp)) { 2266 int lost = tp->fackets_out - tp->reordering; 2267 if (lost <= 0) 2268 lost = 1; 2269 tcp_mark_head_lost(sk, lost, 0); 2270 } else { 2271 int sacked_upto = tp->sacked_out - tp->reordering; 2272 if (sacked_upto >= 0) 2273 tcp_mark_head_lost(sk, sacked_upto, 0); 2274 else if (fast_rexmit) 2275 tcp_mark_head_lost(sk, 1, 1); 2276 } 2277 } 2278 2279 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2280 { 2281 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2282 before(tp->rx_opt.rcv_tsecr, when); 2283 } 2284 2285 /* skb is spurious retransmitted if the returned timestamp echo 2286 * reply is prior to the skb transmission time 2287 */ 2288 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2289 const struct sk_buff *skb) 2290 { 2291 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2292 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2293 } 2294 2295 /* Nothing was retransmitted or returned timestamp is less 2296 * than timestamp of the first retransmission. 2297 */ 2298 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2299 { 2300 return !tp->retrans_stamp || 2301 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2302 } 2303 2304 /* Undo procedures. */ 2305 2306 /* We can clear retrans_stamp when there are no retransmissions in the 2307 * window. It would seem that it is trivially available for us in 2308 * tp->retrans_out, however, that kind of assumptions doesn't consider 2309 * what will happen if errors occur when sending retransmission for the 2310 * second time. ...It could the that such segment has only 2311 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2312 * the head skb is enough except for some reneging corner cases that 2313 * are not worth the effort. 2314 * 2315 * Main reason for all this complexity is the fact that connection dying 2316 * time now depends on the validity of the retrans_stamp, in particular, 2317 * that successive retransmissions of a segment must not advance 2318 * retrans_stamp under any conditions. 2319 */ 2320 static bool tcp_any_retrans_done(const struct sock *sk) 2321 { 2322 const struct tcp_sock *tp = tcp_sk(sk); 2323 struct sk_buff *skb; 2324 2325 if (tp->retrans_out) 2326 return true; 2327 2328 skb = tcp_write_queue_head(sk); 2329 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2330 return true; 2331 2332 return false; 2333 } 2334 2335 #if FASTRETRANS_DEBUG > 1 2336 static void DBGUNDO(struct sock *sk, const char *msg) 2337 { 2338 struct tcp_sock *tp = tcp_sk(sk); 2339 struct inet_sock *inet = inet_sk(sk); 2340 2341 if (sk->sk_family == AF_INET) { 2342 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2343 msg, 2344 &inet->inet_daddr, ntohs(inet->inet_dport), 2345 tp->snd_cwnd, tcp_left_out(tp), 2346 tp->snd_ssthresh, tp->prior_ssthresh, 2347 tp->packets_out); 2348 } 2349 #if IS_ENABLED(CONFIG_IPV6) 2350 else if (sk->sk_family == AF_INET6) { 2351 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2352 msg, 2353 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2354 tp->snd_cwnd, tcp_left_out(tp), 2355 tp->snd_ssthresh, tp->prior_ssthresh, 2356 tp->packets_out); 2357 } 2358 #endif 2359 } 2360 #else 2361 #define DBGUNDO(x...) do { } while (0) 2362 #endif 2363 2364 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2365 { 2366 struct tcp_sock *tp = tcp_sk(sk); 2367 2368 if (unmark_loss) { 2369 struct sk_buff *skb; 2370 2371 tcp_for_write_queue(skb, sk) { 2372 if (skb == tcp_send_head(sk)) 2373 break; 2374 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2375 } 2376 tp->lost_out = 0; 2377 tcp_clear_all_retrans_hints(tp); 2378 } 2379 2380 if (tp->prior_ssthresh) { 2381 const struct inet_connection_sock *icsk = inet_csk(sk); 2382 2383 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2384 2385 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2386 tp->snd_ssthresh = tp->prior_ssthresh; 2387 tcp_ecn_withdraw_cwr(tp); 2388 } 2389 } 2390 tp->snd_cwnd_stamp = tcp_jiffies32; 2391 tp->undo_marker = 0; 2392 } 2393 2394 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2395 { 2396 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2397 } 2398 2399 /* People celebrate: "We love our President!" */ 2400 static bool tcp_try_undo_recovery(struct sock *sk) 2401 { 2402 struct tcp_sock *tp = tcp_sk(sk); 2403 2404 if (tcp_may_undo(tp)) { 2405 int mib_idx; 2406 2407 /* Happy end! We did not retransmit anything 2408 * or our original transmission succeeded. 2409 */ 2410 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2411 tcp_undo_cwnd_reduction(sk, false); 2412 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2413 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2414 else 2415 mib_idx = LINUX_MIB_TCPFULLUNDO; 2416 2417 NET_INC_STATS(sock_net(sk), mib_idx); 2418 } 2419 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2420 /* Hold old state until something *above* high_seq 2421 * is ACKed. For Reno it is MUST to prevent false 2422 * fast retransmits (RFC2582). SACK TCP is safe. */ 2423 if (!tcp_any_retrans_done(sk)) 2424 tp->retrans_stamp = 0; 2425 return true; 2426 } 2427 tcp_set_ca_state(sk, TCP_CA_Open); 2428 return false; 2429 } 2430 2431 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2432 static bool tcp_try_undo_dsack(struct sock *sk) 2433 { 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 2436 if (tp->undo_marker && !tp->undo_retrans) { 2437 DBGUNDO(sk, "D-SACK"); 2438 tcp_undo_cwnd_reduction(sk, false); 2439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2440 return true; 2441 } 2442 return false; 2443 } 2444 2445 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2446 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2447 { 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 2450 if (frto_undo || tcp_may_undo(tp)) { 2451 tcp_undo_cwnd_reduction(sk, true); 2452 2453 DBGUNDO(sk, "partial loss"); 2454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2455 if (frto_undo) 2456 NET_INC_STATS(sock_net(sk), 2457 LINUX_MIB_TCPSPURIOUSRTOS); 2458 inet_csk(sk)->icsk_retransmits = 0; 2459 if (frto_undo || tcp_is_sack(tp)) 2460 tcp_set_ca_state(sk, TCP_CA_Open); 2461 return true; 2462 } 2463 return false; 2464 } 2465 2466 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2467 * It computes the number of packets to send (sndcnt) based on packets newly 2468 * delivered: 2469 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2470 * cwnd reductions across a full RTT. 2471 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2472 * But when the retransmits are acked without further losses, PRR 2473 * slow starts cwnd up to ssthresh to speed up the recovery. 2474 */ 2475 static void tcp_init_cwnd_reduction(struct sock *sk) 2476 { 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 2479 tp->high_seq = tp->snd_nxt; 2480 tp->tlp_high_seq = 0; 2481 tp->snd_cwnd_cnt = 0; 2482 tp->prior_cwnd = tp->snd_cwnd; 2483 tp->prr_delivered = 0; 2484 tp->prr_out = 0; 2485 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2486 tcp_ecn_queue_cwr(tp); 2487 } 2488 2489 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2490 { 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 int sndcnt = 0; 2493 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2494 2495 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2496 return; 2497 2498 tp->prr_delivered += newly_acked_sacked; 2499 if (delta < 0) { 2500 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2501 tp->prior_cwnd - 1; 2502 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2503 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2504 !(flag & FLAG_LOST_RETRANS)) { 2505 sndcnt = min_t(int, delta, 2506 max_t(int, tp->prr_delivered - tp->prr_out, 2507 newly_acked_sacked) + 1); 2508 } else { 2509 sndcnt = min(delta, newly_acked_sacked); 2510 } 2511 /* Force a fast retransmit upon entering fast recovery */ 2512 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2513 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2514 } 2515 2516 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2517 { 2518 struct tcp_sock *tp = tcp_sk(sk); 2519 2520 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2521 return; 2522 2523 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2524 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2525 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2526 tp->snd_cwnd = tp->snd_ssthresh; 2527 tp->snd_cwnd_stamp = tcp_jiffies32; 2528 } 2529 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2530 } 2531 2532 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2533 void tcp_enter_cwr(struct sock *sk) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 2537 tp->prior_ssthresh = 0; 2538 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2539 tp->undo_marker = 0; 2540 tcp_init_cwnd_reduction(sk); 2541 tcp_set_ca_state(sk, TCP_CA_CWR); 2542 } 2543 } 2544 EXPORT_SYMBOL(tcp_enter_cwr); 2545 2546 static void tcp_try_keep_open(struct sock *sk) 2547 { 2548 struct tcp_sock *tp = tcp_sk(sk); 2549 int state = TCP_CA_Open; 2550 2551 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2552 state = TCP_CA_Disorder; 2553 2554 if (inet_csk(sk)->icsk_ca_state != state) { 2555 tcp_set_ca_state(sk, state); 2556 tp->high_seq = tp->snd_nxt; 2557 } 2558 } 2559 2560 static void tcp_try_to_open(struct sock *sk, int flag) 2561 { 2562 struct tcp_sock *tp = tcp_sk(sk); 2563 2564 tcp_verify_left_out(tp); 2565 2566 if (!tcp_any_retrans_done(sk)) 2567 tp->retrans_stamp = 0; 2568 2569 if (flag & FLAG_ECE) 2570 tcp_enter_cwr(sk); 2571 2572 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2573 tcp_try_keep_open(sk); 2574 } 2575 } 2576 2577 static void tcp_mtup_probe_failed(struct sock *sk) 2578 { 2579 struct inet_connection_sock *icsk = inet_csk(sk); 2580 2581 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2582 icsk->icsk_mtup.probe_size = 0; 2583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2584 } 2585 2586 static void tcp_mtup_probe_success(struct sock *sk) 2587 { 2588 struct tcp_sock *tp = tcp_sk(sk); 2589 struct inet_connection_sock *icsk = inet_csk(sk); 2590 2591 /* FIXME: breaks with very large cwnd */ 2592 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2593 tp->snd_cwnd = tp->snd_cwnd * 2594 tcp_mss_to_mtu(sk, tp->mss_cache) / 2595 icsk->icsk_mtup.probe_size; 2596 tp->snd_cwnd_cnt = 0; 2597 tp->snd_cwnd_stamp = tcp_jiffies32; 2598 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2599 2600 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2601 icsk->icsk_mtup.probe_size = 0; 2602 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2603 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2604 } 2605 2606 /* Do a simple retransmit without using the backoff mechanisms in 2607 * tcp_timer. This is used for path mtu discovery. 2608 * The socket is already locked here. 2609 */ 2610 void tcp_simple_retransmit(struct sock *sk) 2611 { 2612 const struct inet_connection_sock *icsk = inet_csk(sk); 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 struct sk_buff *skb; 2615 unsigned int mss = tcp_current_mss(sk); 2616 u32 prior_lost = tp->lost_out; 2617 2618 tcp_for_write_queue(skb, sk) { 2619 if (skb == tcp_send_head(sk)) 2620 break; 2621 if (tcp_skb_seglen(skb) > mss && 2622 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2623 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2624 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2625 tp->retrans_out -= tcp_skb_pcount(skb); 2626 } 2627 tcp_skb_mark_lost_uncond_verify(tp, skb); 2628 } 2629 } 2630 2631 tcp_clear_retrans_hints_partial(tp); 2632 2633 if (prior_lost == tp->lost_out) 2634 return; 2635 2636 if (tcp_is_reno(tp)) 2637 tcp_limit_reno_sacked(tp); 2638 2639 tcp_verify_left_out(tp); 2640 2641 /* Don't muck with the congestion window here. 2642 * Reason is that we do not increase amount of _data_ 2643 * in network, but units changed and effective 2644 * cwnd/ssthresh really reduced now. 2645 */ 2646 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2647 tp->high_seq = tp->snd_nxt; 2648 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2649 tp->prior_ssthresh = 0; 2650 tp->undo_marker = 0; 2651 tcp_set_ca_state(sk, TCP_CA_Loss); 2652 } 2653 tcp_xmit_retransmit_queue(sk); 2654 } 2655 EXPORT_SYMBOL(tcp_simple_retransmit); 2656 2657 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2658 { 2659 struct tcp_sock *tp = tcp_sk(sk); 2660 int mib_idx; 2661 2662 if (tcp_is_reno(tp)) 2663 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2664 else 2665 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2666 2667 NET_INC_STATS(sock_net(sk), mib_idx); 2668 2669 tp->prior_ssthresh = 0; 2670 tcp_init_undo(tp); 2671 2672 if (!tcp_in_cwnd_reduction(sk)) { 2673 if (!ece_ack) 2674 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2675 tcp_init_cwnd_reduction(sk); 2676 } 2677 tcp_set_ca_state(sk, TCP_CA_Recovery); 2678 } 2679 2680 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2681 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2682 */ 2683 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2684 int *rexmit) 2685 { 2686 struct tcp_sock *tp = tcp_sk(sk); 2687 bool recovered = !before(tp->snd_una, tp->high_seq); 2688 2689 if ((flag & FLAG_SND_UNA_ADVANCED) && 2690 tcp_try_undo_loss(sk, false)) 2691 return; 2692 2693 /* The ACK (s)acks some never-retransmitted data meaning not all 2694 * the data packets before the timeout were lost. Therefore we 2695 * undo the congestion window and state. This is essentially 2696 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2697 * a retransmitted skb is permantly marked, we can apply such an 2698 * operation even if F-RTO was not used. 2699 */ 2700 if ((flag & FLAG_ORIG_SACK_ACKED) && 2701 tcp_try_undo_loss(sk, tp->undo_marker)) 2702 return; 2703 2704 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2705 if (after(tp->snd_nxt, tp->high_seq)) { 2706 if (flag & FLAG_DATA_SACKED || is_dupack) 2707 tp->frto = 0; /* Step 3.a. loss was real */ 2708 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2709 tp->high_seq = tp->snd_nxt; 2710 /* Step 2.b. Try send new data (but deferred until cwnd 2711 * is updated in tcp_ack()). Otherwise fall back to 2712 * the conventional recovery. 2713 */ 2714 if (tcp_send_head(sk) && 2715 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2716 *rexmit = REXMIT_NEW; 2717 return; 2718 } 2719 tp->frto = 0; 2720 } 2721 } 2722 2723 if (recovered) { 2724 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2725 tcp_try_undo_recovery(sk); 2726 return; 2727 } 2728 if (tcp_is_reno(tp)) { 2729 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2730 * delivered. Lower inflight to clock out (re)tranmissions. 2731 */ 2732 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2733 tcp_add_reno_sack(sk); 2734 else if (flag & FLAG_SND_UNA_ADVANCED) 2735 tcp_reset_reno_sack(tp); 2736 } 2737 *rexmit = REXMIT_LOST; 2738 } 2739 2740 /* Undo during fast recovery after partial ACK. */ 2741 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2742 { 2743 struct tcp_sock *tp = tcp_sk(sk); 2744 2745 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2746 /* Plain luck! Hole if filled with delayed 2747 * packet, rather than with a retransmit. 2748 */ 2749 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2750 2751 /* We are getting evidence that the reordering degree is higher 2752 * than we realized. If there are no retransmits out then we 2753 * can undo. Otherwise we clock out new packets but do not 2754 * mark more packets lost or retransmit more. 2755 */ 2756 if (tp->retrans_out) 2757 return true; 2758 2759 if (!tcp_any_retrans_done(sk)) 2760 tp->retrans_stamp = 0; 2761 2762 DBGUNDO(sk, "partial recovery"); 2763 tcp_undo_cwnd_reduction(sk, true); 2764 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2765 tcp_try_keep_open(sk); 2766 return true; 2767 } 2768 return false; 2769 } 2770 2771 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2772 { 2773 struct tcp_sock *tp = tcp_sk(sk); 2774 2775 /* Use RACK to detect loss */ 2776 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2777 u32 prior_retrans = tp->retrans_out; 2778 2779 tcp_rack_mark_lost(sk); 2780 if (prior_retrans > tp->retrans_out) 2781 *ack_flag |= FLAG_LOST_RETRANS; 2782 } 2783 } 2784 2785 /* Process an event, which can update packets-in-flight not trivially. 2786 * Main goal of this function is to calculate new estimate for left_out, 2787 * taking into account both packets sitting in receiver's buffer and 2788 * packets lost by network. 2789 * 2790 * Besides that it updates the congestion state when packet loss or ECN 2791 * is detected. But it does not reduce the cwnd, it is done by the 2792 * congestion control later. 2793 * 2794 * It does _not_ decide what to send, it is made in function 2795 * tcp_xmit_retransmit_queue(). 2796 */ 2797 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2798 bool is_dupack, int *ack_flag, int *rexmit) 2799 { 2800 struct inet_connection_sock *icsk = inet_csk(sk); 2801 struct tcp_sock *tp = tcp_sk(sk); 2802 int fast_rexmit = 0, flag = *ack_flag; 2803 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2804 (tcp_fackets_out(tp) > tp->reordering)); 2805 2806 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2807 tp->sacked_out = 0; 2808 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2809 tp->fackets_out = 0; 2810 2811 /* Now state machine starts. 2812 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2813 if (flag & FLAG_ECE) 2814 tp->prior_ssthresh = 0; 2815 2816 /* B. In all the states check for reneging SACKs. */ 2817 if (tcp_check_sack_reneging(sk, flag)) 2818 return; 2819 2820 /* C. Check consistency of the current state. */ 2821 tcp_verify_left_out(tp); 2822 2823 /* D. Check state exit conditions. State can be terminated 2824 * when high_seq is ACKed. */ 2825 if (icsk->icsk_ca_state == TCP_CA_Open) { 2826 WARN_ON(tp->retrans_out != 0); 2827 tp->retrans_stamp = 0; 2828 } else if (!before(tp->snd_una, tp->high_seq)) { 2829 switch (icsk->icsk_ca_state) { 2830 case TCP_CA_CWR: 2831 /* CWR is to be held something *above* high_seq 2832 * is ACKed for CWR bit to reach receiver. */ 2833 if (tp->snd_una != tp->high_seq) { 2834 tcp_end_cwnd_reduction(sk); 2835 tcp_set_ca_state(sk, TCP_CA_Open); 2836 } 2837 break; 2838 2839 case TCP_CA_Recovery: 2840 if (tcp_is_reno(tp)) 2841 tcp_reset_reno_sack(tp); 2842 if (tcp_try_undo_recovery(sk)) 2843 return; 2844 tcp_end_cwnd_reduction(sk); 2845 break; 2846 } 2847 } 2848 2849 /* E. Process state. */ 2850 switch (icsk->icsk_ca_state) { 2851 case TCP_CA_Recovery: 2852 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2853 if (tcp_is_reno(tp) && is_dupack) 2854 tcp_add_reno_sack(sk); 2855 } else { 2856 if (tcp_try_undo_partial(sk, acked)) 2857 return; 2858 /* Partial ACK arrived. Force fast retransmit. */ 2859 do_lost = tcp_is_reno(tp) || 2860 tcp_fackets_out(tp) > tp->reordering; 2861 } 2862 if (tcp_try_undo_dsack(sk)) { 2863 tcp_try_keep_open(sk); 2864 return; 2865 } 2866 tcp_rack_identify_loss(sk, ack_flag); 2867 break; 2868 case TCP_CA_Loss: 2869 tcp_process_loss(sk, flag, is_dupack, rexmit); 2870 tcp_rack_identify_loss(sk, ack_flag); 2871 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2872 (*ack_flag & FLAG_LOST_RETRANS))) 2873 return; 2874 /* Change state if cwnd is undone or retransmits are lost */ 2875 default: 2876 if (tcp_is_reno(tp)) { 2877 if (flag & FLAG_SND_UNA_ADVANCED) 2878 tcp_reset_reno_sack(tp); 2879 if (is_dupack) 2880 tcp_add_reno_sack(sk); 2881 } 2882 2883 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2884 tcp_try_undo_dsack(sk); 2885 2886 tcp_rack_identify_loss(sk, ack_flag); 2887 if (!tcp_time_to_recover(sk, flag)) { 2888 tcp_try_to_open(sk, flag); 2889 return; 2890 } 2891 2892 /* MTU probe failure: don't reduce cwnd */ 2893 if (icsk->icsk_ca_state < TCP_CA_CWR && 2894 icsk->icsk_mtup.probe_size && 2895 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2896 tcp_mtup_probe_failed(sk); 2897 /* Restores the reduction we did in tcp_mtup_probe() */ 2898 tp->snd_cwnd++; 2899 tcp_simple_retransmit(sk); 2900 return; 2901 } 2902 2903 /* Otherwise enter Recovery state */ 2904 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2905 fast_rexmit = 1; 2906 } 2907 2908 if (do_lost) 2909 tcp_update_scoreboard(sk, fast_rexmit); 2910 *rexmit = REXMIT_LOST; 2911 } 2912 2913 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2914 { 2915 struct tcp_sock *tp = tcp_sk(sk); 2916 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2917 2918 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2919 rtt_us ? : jiffies_to_usecs(1)); 2920 } 2921 2922 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2923 long seq_rtt_us, long sack_rtt_us, 2924 long ca_rtt_us, struct rate_sample *rs) 2925 { 2926 const struct tcp_sock *tp = tcp_sk(sk); 2927 2928 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2929 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2930 * Karn's algorithm forbids taking RTT if some retransmitted data 2931 * is acked (RFC6298). 2932 */ 2933 if (seq_rtt_us < 0) 2934 seq_rtt_us = sack_rtt_us; 2935 2936 /* RTTM Rule: A TSecr value received in a segment is used to 2937 * update the averaged RTT measurement only if the segment 2938 * acknowledges some new data, i.e., only if it advances the 2939 * left edge of the send window. 2940 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2941 */ 2942 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2943 flag & FLAG_ACKED) { 2944 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2945 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2946 2947 seq_rtt_us = ca_rtt_us = delta_us; 2948 } 2949 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2950 if (seq_rtt_us < 0) 2951 return false; 2952 2953 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2954 * always taken together with ACK, SACK, or TS-opts. Any negative 2955 * values will be skipped with the seq_rtt_us < 0 check above. 2956 */ 2957 tcp_update_rtt_min(sk, ca_rtt_us); 2958 tcp_rtt_estimator(sk, seq_rtt_us); 2959 tcp_set_rto(sk); 2960 2961 /* RFC6298: only reset backoff on valid RTT measurement. */ 2962 inet_csk(sk)->icsk_backoff = 0; 2963 return true; 2964 } 2965 2966 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2967 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2968 { 2969 struct rate_sample rs; 2970 long rtt_us = -1L; 2971 2972 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2973 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2974 2975 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2976 } 2977 2978 2979 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2980 { 2981 const struct inet_connection_sock *icsk = inet_csk(sk); 2982 2983 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2984 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2985 } 2986 2987 /* Restart timer after forward progress on connection. 2988 * RFC2988 recommends to restart timer to now+rto. 2989 */ 2990 void tcp_rearm_rto(struct sock *sk) 2991 { 2992 const struct inet_connection_sock *icsk = inet_csk(sk); 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 2995 /* If the retrans timer is currently being used by Fast Open 2996 * for SYN-ACK retrans purpose, stay put. 2997 */ 2998 if (tp->fastopen_rsk) 2999 return; 3000 3001 if (!tp->packets_out) { 3002 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3003 } else { 3004 u32 rto = inet_csk(sk)->icsk_rto; 3005 /* Offset the time elapsed after installing regular RTO */ 3006 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3007 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3008 s64 delta_us = tcp_rto_delta_us(sk); 3009 /* delta_us may not be positive if the socket is locked 3010 * when the retrans timer fires and is rescheduled. 3011 */ 3012 if (delta_us > 0) 3013 rto = usecs_to_jiffies(delta_us); 3014 } 3015 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3016 TCP_RTO_MAX); 3017 } 3018 } 3019 3020 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3021 static void tcp_set_xmit_timer(struct sock *sk) 3022 { 3023 if (!tcp_schedule_loss_probe(sk)) 3024 tcp_rearm_rto(sk); 3025 } 3026 3027 /* If we get here, the whole TSO packet has not been acked. */ 3028 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3029 { 3030 struct tcp_sock *tp = tcp_sk(sk); 3031 u32 packets_acked; 3032 3033 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3034 3035 packets_acked = tcp_skb_pcount(skb); 3036 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3037 return 0; 3038 packets_acked -= tcp_skb_pcount(skb); 3039 3040 if (packets_acked) { 3041 BUG_ON(tcp_skb_pcount(skb) == 0); 3042 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3043 } 3044 3045 return packets_acked; 3046 } 3047 3048 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3049 u32 prior_snd_una) 3050 { 3051 const struct skb_shared_info *shinfo; 3052 3053 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3054 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3055 return; 3056 3057 shinfo = skb_shinfo(skb); 3058 if (!before(shinfo->tskey, prior_snd_una) && 3059 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3060 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3061 } 3062 3063 /* Remove acknowledged frames from the retransmission queue. If our packet 3064 * is before the ack sequence we can discard it as it's confirmed to have 3065 * arrived at the other end. 3066 */ 3067 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3068 u32 prior_snd_una, int *acked, 3069 struct tcp_sacktag_state *sack) 3070 { 3071 const struct inet_connection_sock *icsk = inet_csk(sk); 3072 u64 first_ackt, last_ackt; 3073 struct tcp_sock *tp = tcp_sk(sk); 3074 u32 prior_sacked = tp->sacked_out; 3075 u32 reord = tp->packets_out; 3076 bool fully_acked = true; 3077 long sack_rtt_us = -1L; 3078 long seq_rtt_us = -1L; 3079 long ca_rtt_us = -1L; 3080 struct sk_buff *skb; 3081 u32 pkts_acked = 0; 3082 u32 last_in_flight = 0; 3083 bool rtt_update; 3084 int flag = 0; 3085 3086 first_ackt = 0; 3087 3088 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3089 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3090 u8 sacked = scb->sacked; 3091 u32 acked_pcount; 3092 3093 tcp_ack_tstamp(sk, skb, prior_snd_una); 3094 3095 /* Determine how many packets and what bytes were acked, tso and else */ 3096 if (after(scb->end_seq, tp->snd_una)) { 3097 if (tcp_skb_pcount(skb) == 1 || 3098 !after(tp->snd_una, scb->seq)) 3099 break; 3100 3101 acked_pcount = tcp_tso_acked(sk, skb); 3102 if (!acked_pcount) 3103 break; 3104 fully_acked = false; 3105 } else { 3106 /* Speedup tcp_unlink_write_queue() and next loop */ 3107 prefetchw(skb->next); 3108 acked_pcount = tcp_skb_pcount(skb); 3109 } 3110 3111 if (unlikely(sacked & TCPCB_RETRANS)) { 3112 if (sacked & TCPCB_SACKED_RETRANS) 3113 tp->retrans_out -= acked_pcount; 3114 flag |= FLAG_RETRANS_DATA_ACKED; 3115 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3116 last_ackt = skb->skb_mstamp; 3117 WARN_ON_ONCE(last_ackt == 0); 3118 if (!first_ackt) 3119 first_ackt = last_ackt; 3120 3121 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3122 reord = min(pkts_acked, reord); 3123 if (!after(scb->end_seq, tp->high_seq)) 3124 flag |= FLAG_ORIG_SACK_ACKED; 3125 } 3126 3127 if (sacked & TCPCB_SACKED_ACKED) { 3128 tp->sacked_out -= acked_pcount; 3129 } else if (tcp_is_sack(tp)) { 3130 tp->delivered += acked_pcount; 3131 if (!tcp_skb_spurious_retrans(tp, skb)) 3132 tcp_rack_advance(tp, sacked, scb->end_seq, 3133 skb->skb_mstamp); 3134 } 3135 if (sacked & TCPCB_LOST) 3136 tp->lost_out -= acked_pcount; 3137 3138 tp->packets_out -= acked_pcount; 3139 pkts_acked += acked_pcount; 3140 tcp_rate_skb_delivered(sk, skb, sack->rate); 3141 3142 /* Initial outgoing SYN's get put onto the write_queue 3143 * just like anything else we transmit. It is not 3144 * true data, and if we misinform our callers that 3145 * this ACK acks real data, we will erroneously exit 3146 * connection startup slow start one packet too 3147 * quickly. This is severely frowned upon behavior. 3148 */ 3149 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3150 flag |= FLAG_DATA_ACKED; 3151 } else { 3152 flag |= FLAG_SYN_ACKED; 3153 tp->retrans_stamp = 0; 3154 } 3155 3156 if (!fully_acked) 3157 break; 3158 3159 tcp_unlink_write_queue(skb, sk); 3160 sk_wmem_free_skb(sk, skb); 3161 if (unlikely(skb == tp->retransmit_skb_hint)) 3162 tp->retransmit_skb_hint = NULL; 3163 if (unlikely(skb == tp->lost_skb_hint)) 3164 tp->lost_skb_hint = NULL; 3165 } 3166 3167 if (!skb) 3168 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3169 3170 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3171 tp->snd_up = tp->snd_una; 3172 3173 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3174 flag |= FLAG_SACK_RENEGING; 3175 3176 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3177 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3178 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3179 } 3180 if (sack->first_sackt) { 3181 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3182 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3183 } 3184 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3185 ca_rtt_us, sack->rate); 3186 3187 if (flag & FLAG_ACKED) { 3188 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3189 if (unlikely(icsk->icsk_mtup.probe_size && 3190 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3191 tcp_mtup_probe_success(sk); 3192 } 3193 3194 if (tcp_is_reno(tp)) { 3195 tcp_remove_reno_sacks(sk, pkts_acked); 3196 } else { 3197 int delta; 3198 3199 /* Non-retransmitted hole got filled? That's reordering */ 3200 if (reord < prior_fackets && reord <= tp->fackets_out) 3201 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3202 3203 delta = tcp_is_fack(tp) ? pkts_acked : 3204 prior_sacked - tp->sacked_out; 3205 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3206 } 3207 3208 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3209 3210 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3211 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3212 /* Do not re-arm RTO if the sack RTT is measured from data sent 3213 * after when the head was last (re)transmitted. Otherwise the 3214 * timeout may continue to extend in loss recovery. 3215 */ 3216 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3217 } 3218 3219 if (icsk->icsk_ca_ops->pkts_acked) { 3220 struct ack_sample sample = { .pkts_acked = pkts_acked, 3221 .rtt_us = sack->rate->rtt_us, 3222 .in_flight = last_in_flight }; 3223 3224 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3225 } 3226 3227 #if FASTRETRANS_DEBUG > 0 3228 WARN_ON((int)tp->sacked_out < 0); 3229 WARN_ON((int)tp->lost_out < 0); 3230 WARN_ON((int)tp->retrans_out < 0); 3231 if (!tp->packets_out && tcp_is_sack(tp)) { 3232 icsk = inet_csk(sk); 3233 if (tp->lost_out) { 3234 pr_debug("Leak l=%u %d\n", 3235 tp->lost_out, icsk->icsk_ca_state); 3236 tp->lost_out = 0; 3237 } 3238 if (tp->sacked_out) { 3239 pr_debug("Leak s=%u %d\n", 3240 tp->sacked_out, icsk->icsk_ca_state); 3241 tp->sacked_out = 0; 3242 } 3243 if (tp->retrans_out) { 3244 pr_debug("Leak r=%u %d\n", 3245 tp->retrans_out, icsk->icsk_ca_state); 3246 tp->retrans_out = 0; 3247 } 3248 } 3249 #endif 3250 *acked = pkts_acked; 3251 return flag; 3252 } 3253 3254 static void tcp_ack_probe(struct sock *sk) 3255 { 3256 const struct tcp_sock *tp = tcp_sk(sk); 3257 struct inet_connection_sock *icsk = inet_csk(sk); 3258 3259 /* Was it a usable window open? */ 3260 3261 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3262 icsk->icsk_backoff = 0; 3263 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3264 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3265 * This function is not for random using! 3266 */ 3267 } else { 3268 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3269 3270 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3271 when, TCP_RTO_MAX); 3272 } 3273 } 3274 3275 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3276 { 3277 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3278 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3279 } 3280 3281 /* Decide wheather to run the increase function of congestion control. */ 3282 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3283 { 3284 /* If reordering is high then always grow cwnd whenever data is 3285 * delivered regardless of its ordering. Otherwise stay conservative 3286 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3287 * new SACK or ECE mark may first advance cwnd here and later reduce 3288 * cwnd in tcp_fastretrans_alert() based on more states. 3289 */ 3290 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3291 return flag & FLAG_FORWARD_PROGRESS; 3292 3293 return flag & FLAG_DATA_ACKED; 3294 } 3295 3296 /* The "ultimate" congestion control function that aims to replace the rigid 3297 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3298 * It's called toward the end of processing an ACK with precise rate 3299 * information. All transmission or retransmission are delayed afterwards. 3300 */ 3301 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3302 int flag, const struct rate_sample *rs) 3303 { 3304 const struct inet_connection_sock *icsk = inet_csk(sk); 3305 3306 if (icsk->icsk_ca_ops->cong_control) { 3307 icsk->icsk_ca_ops->cong_control(sk, rs); 3308 return; 3309 } 3310 3311 if (tcp_in_cwnd_reduction(sk)) { 3312 /* Reduce cwnd if state mandates */ 3313 tcp_cwnd_reduction(sk, acked_sacked, flag); 3314 } else if (tcp_may_raise_cwnd(sk, flag)) { 3315 /* Advance cwnd if state allows */ 3316 tcp_cong_avoid(sk, ack, acked_sacked); 3317 } 3318 tcp_update_pacing_rate(sk); 3319 } 3320 3321 /* Check that window update is acceptable. 3322 * The function assumes that snd_una<=ack<=snd_next. 3323 */ 3324 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3325 const u32 ack, const u32 ack_seq, 3326 const u32 nwin) 3327 { 3328 return after(ack, tp->snd_una) || 3329 after(ack_seq, tp->snd_wl1) || 3330 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3331 } 3332 3333 /* If we update tp->snd_una, also update tp->bytes_acked */ 3334 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3335 { 3336 u32 delta = ack - tp->snd_una; 3337 3338 sock_owned_by_me((struct sock *)tp); 3339 tp->bytes_acked += delta; 3340 tp->snd_una = ack; 3341 } 3342 3343 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3344 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3345 { 3346 u32 delta = seq - tp->rcv_nxt; 3347 3348 sock_owned_by_me((struct sock *)tp); 3349 tp->bytes_received += delta; 3350 tp->rcv_nxt = seq; 3351 } 3352 3353 /* Update our send window. 3354 * 3355 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3356 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3357 */ 3358 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3359 u32 ack_seq) 3360 { 3361 struct tcp_sock *tp = tcp_sk(sk); 3362 int flag = 0; 3363 u32 nwin = ntohs(tcp_hdr(skb)->window); 3364 3365 if (likely(!tcp_hdr(skb)->syn)) 3366 nwin <<= tp->rx_opt.snd_wscale; 3367 3368 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3369 flag |= FLAG_WIN_UPDATE; 3370 tcp_update_wl(tp, ack_seq); 3371 3372 if (tp->snd_wnd != nwin) { 3373 tp->snd_wnd = nwin; 3374 3375 /* Note, it is the only place, where 3376 * fast path is recovered for sending TCP. 3377 */ 3378 tp->pred_flags = 0; 3379 tcp_fast_path_check(sk); 3380 3381 if (tcp_send_head(sk)) 3382 tcp_slow_start_after_idle_check(sk); 3383 3384 if (nwin > tp->max_window) { 3385 tp->max_window = nwin; 3386 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3387 } 3388 } 3389 } 3390 3391 tcp_snd_una_update(tp, ack); 3392 3393 return flag; 3394 } 3395 3396 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3397 u32 *last_oow_ack_time) 3398 { 3399 if (*last_oow_ack_time) { 3400 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3401 3402 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3403 NET_INC_STATS(net, mib_idx); 3404 return true; /* rate-limited: don't send yet! */ 3405 } 3406 } 3407 3408 *last_oow_ack_time = tcp_jiffies32; 3409 3410 return false; /* not rate-limited: go ahead, send dupack now! */ 3411 } 3412 3413 /* Return true if we're currently rate-limiting out-of-window ACKs and 3414 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3415 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3416 * attacks that send repeated SYNs or ACKs for the same connection. To 3417 * do this, we do not send a duplicate SYNACK or ACK if the remote 3418 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3419 */ 3420 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3421 int mib_idx, u32 *last_oow_ack_time) 3422 { 3423 /* Data packets without SYNs are not likely part of an ACK loop. */ 3424 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3425 !tcp_hdr(skb)->syn) 3426 return false; 3427 3428 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3429 } 3430 3431 /* RFC 5961 7 [ACK Throttling] */ 3432 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3433 { 3434 /* unprotected vars, we dont care of overwrites */ 3435 static u32 challenge_timestamp; 3436 static unsigned int challenge_count; 3437 struct tcp_sock *tp = tcp_sk(sk); 3438 u32 count, now; 3439 3440 /* First check our per-socket dupack rate limit. */ 3441 if (__tcp_oow_rate_limited(sock_net(sk), 3442 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3443 &tp->last_oow_ack_time)) 3444 return; 3445 3446 /* Then check host-wide RFC 5961 rate limit. */ 3447 now = jiffies / HZ; 3448 if (now != challenge_timestamp) { 3449 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3450 3451 challenge_timestamp = now; 3452 WRITE_ONCE(challenge_count, half + 3453 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3454 } 3455 count = READ_ONCE(challenge_count); 3456 if (count > 0) { 3457 WRITE_ONCE(challenge_count, count - 1); 3458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3459 tcp_send_ack(sk); 3460 } 3461 } 3462 3463 static void tcp_store_ts_recent(struct tcp_sock *tp) 3464 { 3465 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3466 tp->rx_opt.ts_recent_stamp = get_seconds(); 3467 } 3468 3469 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3470 { 3471 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3472 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3473 * extra check below makes sure this can only happen 3474 * for pure ACK frames. -DaveM 3475 * 3476 * Not only, also it occurs for expired timestamps. 3477 */ 3478 3479 if (tcp_paws_check(&tp->rx_opt, 0)) 3480 tcp_store_ts_recent(tp); 3481 } 3482 } 3483 3484 /* This routine deals with acks during a TLP episode. 3485 * We mark the end of a TLP episode on receiving TLP dupack or when 3486 * ack is after tlp_high_seq. 3487 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3488 */ 3489 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3490 { 3491 struct tcp_sock *tp = tcp_sk(sk); 3492 3493 if (before(ack, tp->tlp_high_seq)) 3494 return; 3495 3496 if (flag & FLAG_DSACKING_ACK) { 3497 /* This DSACK means original and TLP probe arrived; no loss */ 3498 tp->tlp_high_seq = 0; 3499 } else if (after(ack, tp->tlp_high_seq)) { 3500 /* ACK advances: there was a loss, so reduce cwnd. Reset 3501 * tlp_high_seq in tcp_init_cwnd_reduction() 3502 */ 3503 tcp_init_cwnd_reduction(sk); 3504 tcp_set_ca_state(sk, TCP_CA_CWR); 3505 tcp_end_cwnd_reduction(sk); 3506 tcp_try_keep_open(sk); 3507 NET_INC_STATS(sock_net(sk), 3508 LINUX_MIB_TCPLOSSPROBERECOVERY); 3509 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3510 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3511 /* Pure dupack: original and TLP probe arrived; no loss */ 3512 tp->tlp_high_seq = 0; 3513 } 3514 } 3515 3516 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3517 { 3518 const struct inet_connection_sock *icsk = inet_csk(sk); 3519 3520 if (icsk->icsk_ca_ops->in_ack_event) 3521 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3522 } 3523 3524 /* Congestion control has updated the cwnd already. So if we're in 3525 * loss recovery then now we do any new sends (for FRTO) or 3526 * retransmits (for CA_Loss or CA_recovery) that make sense. 3527 */ 3528 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3529 { 3530 struct tcp_sock *tp = tcp_sk(sk); 3531 3532 if (rexmit == REXMIT_NONE) 3533 return; 3534 3535 if (unlikely(rexmit == 2)) { 3536 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3537 TCP_NAGLE_OFF); 3538 if (after(tp->snd_nxt, tp->high_seq)) 3539 return; 3540 tp->frto = 0; 3541 } 3542 tcp_xmit_retransmit_queue(sk); 3543 } 3544 3545 /* This routine deals with incoming acks, but not outgoing ones. */ 3546 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3547 { 3548 struct inet_connection_sock *icsk = inet_csk(sk); 3549 struct tcp_sock *tp = tcp_sk(sk); 3550 struct tcp_sacktag_state sack_state; 3551 struct rate_sample rs = { .prior_delivered = 0 }; 3552 u32 prior_snd_una = tp->snd_una; 3553 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3554 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3555 bool is_dupack = false; 3556 u32 prior_fackets; 3557 int prior_packets = tp->packets_out; 3558 u32 delivered = tp->delivered; 3559 u32 lost = tp->lost; 3560 int acked = 0; /* Number of packets newly acked */ 3561 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3562 3563 sack_state.first_sackt = 0; 3564 sack_state.rate = &rs; 3565 3566 /* We very likely will need to access write queue head. */ 3567 prefetchw(sk->sk_write_queue.next); 3568 3569 /* If the ack is older than previous acks 3570 * then we can probably ignore it. 3571 */ 3572 if (before(ack, prior_snd_una)) { 3573 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3574 if (before(ack, prior_snd_una - tp->max_window)) { 3575 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3576 tcp_send_challenge_ack(sk, skb); 3577 return -1; 3578 } 3579 goto old_ack; 3580 } 3581 3582 /* If the ack includes data we haven't sent yet, discard 3583 * this segment (RFC793 Section 3.9). 3584 */ 3585 if (after(ack, tp->snd_nxt)) 3586 goto invalid_ack; 3587 3588 if (after(ack, prior_snd_una)) { 3589 flag |= FLAG_SND_UNA_ADVANCED; 3590 icsk->icsk_retransmits = 0; 3591 } 3592 3593 prior_fackets = tp->fackets_out; 3594 rs.prior_in_flight = tcp_packets_in_flight(tp); 3595 3596 /* ts_recent update must be made after we are sure that the packet 3597 * is in window. 3598 */ 3599 if (flag & FLAG_UPDATE_TS_RECENT) 3600 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3601 3602 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3603 /* Window is constant, pure forward advance. 3604 * No more checks are required. 3605 * Note, we use the fact that SND.UNA>=SND.WL2. 3606 */ 3607 tcp_update_wl(tp, ack_seq); 3608 tcp_snd_una_update(tp, ack); 3609 flag |= FLAG_WIN_UPDATE; 3610 3611 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3612 3613 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3614 } else { 3615 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3616 3617 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3618 flag |= FLAG_DATA; 3619 else 3620 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3621 3622 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3623 3624 if (TCP_SKB_CB(skb)->sacked) 3625 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3626 &sack_state); 3627 3628 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3629 flag |= FLAG_ECE; 3630 ack_ev_flags |= CA_ACK_ECE; 3631 } 3632 3633 if (flag & FLAG_WIN_UPDATE) 3634 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3635 3636 tcp_in_ack_event(sk, ack_ev_flags); 3637 } 3638 3639 /* We passed data and got it acked, remove any soft error 3640 * log. Something worked... 3641 */ 3642 sk->sk_err_soft = 0; 3643 icsk->icsk_probes_out = 0; 3644 tp->rcv_tstamp = tcp_jiffies32; 3645 if (!prior_packets) 3646 goto no_queue; 3647 3648 /* See if we can take anything off of the retransmit queue. */ 3649 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3650 &sack_state); 3651 3652 if (tp->tlp_high_seq) 3653 tcp_process_tlp_ack(sk, ack, flag); 3654 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3655 if (flag & FLAG_SET_XMIT_TIMER) 3656 tcp_set_xmit_timer(sk); 3657 3658 if (tcp_ack_is_dubious(sk, flag)) { 3659 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3660 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3661 } 3662 3663 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3664 sk_dst_confirm(sk); 3665 3666 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3667 lost = tp->lost - lost; /* freshly marked lost */ 3668 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3669 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3670 tcp_xmit_recovery(sk, rexmit); 3671 return 1; 3672 3673 no_queue: 3674 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3675 if (flag & FLAG_DSACKING_ACK) 3676 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3677 /* If this ack opens up a zero window, clear backoff. It was 3678 * being used to time the probes, and is probably far higher than 3679 * it needs to be for normal retransmission. 3680 */ 3681 if (tcp_send_head(sk)) 3682 tcp_ack_probe(sk); 3683 3684 if (tp->tlp_high_seq) 3685 tcp_process_tlp_ack(sk, ack, flag); 3686 return 1; 3687 3688 invalid_ack: 3689 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3690 return -1; 3691 3692 old_ack: 3693 /* If data was SACKed, tag it and see if we should send more data. 3694 * If data was DSACKed, see if we can undo a cwnd reduction. 3695 */ 3696 if (TCP_SKB_CB(skb)->sacked) { 3697 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3698 &sack_state); 3699 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3700 tcp_xmit_recovery(sk, rexmit); 3701 } 3702 3703 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3704 return 0; 3705 } 3706 3707 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3708 bool syn, struct tcp_fastopen_cookie *foc, 3709 bool exp_opt) 3710 { 3711 /* Valid only in SYN or SYN-ACK with an even length. */ 3712 if (!foc || !syn || len < 0 || (len & 1)) 3713 return; 3714 3715 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3716 len <= TCP_FASTOPEN_COOKIE_MAX) 3717 memcpy(foc->val, cookie, len); 3718 else if (len != 0) 3719 len = -1; 3720 foc->len = len; 3721 foc->exp = exp_opt; 3722 } 3723 3724 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3725 * But, this can also be called on packets in the established flow when 3726 * the fast version below fails. 3727 */ 3728 void tcp_parse_options(const struct net *net, 3729 const struct sk_buff *skb, 3730 struct tcp_options_received *opt_rx, int estab, 3731 struct tcp_fastopen_cookie *foc) 3732 { 3733 const unsigned char *ptr; 3734 const struct tcphdr *th = tcp_hdr(skb); 3735 int length = (th->doff * 4) - sizeof(struct tcphdr); 3736 3737 ptr = (const unsigned char *)(th + 1); 3738 opt_rx->saw_tstamp = 0; 3739 3740 while (length > 0) { 3741 int opcode = *ptr++; 3742 int opsize; 3743 3744 switch (opcode) { 3745 case TCPOPT_EOL: 3746 return; 3747 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3748 length--; 3749 continue; 3750 default: 3751 opsize = *ptr++; 3752 if (opsize < 2) /* "silly options" */ 3753 return; 3754 if (opsize > length) 3755 return; /* don't parse partial options */ 3756 switch (opcode) { 3757 case TCPOPT_MSS: 3758 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3759 u16 in_mss = get_unaligned_be16(ptr); 3760 if (in_mss) { 3761 if (opt_rx->user_mss && 3762 opt_rx->user_mss < in_mss) 3763 in_mss = opt_rx->user_mss; 3764 opt_rx->mss_clamp = in_mss; 3765 } 3766 } 3767 break; 3768 case TCPOPT_WINDOW: 3769 if (opsize == TCPOLEN_WINDOW && th->syn && 3770 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3771 __u8 snd_wscale = *(__u8 *)ptr; 3772 opt_rx->wscale_ok = 1; 3773 if (snd_wscale > TCP_MAX_WSCALE) { 3774 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3775 __func__, 3776 snd_wscale, 3777 TCP_MAX_WSCALE); 3778 snd_wscale = TCP_MAX_WSCALE; 3779 } 3780 opt_rx->snd_wscale = snd_wscale; 3781 } 3782 break; 3783 case TCPOPT_TIMESTAMP: 3784 if ((opsize == TCPOLEN_TIMESTAMP) && 3785 ((estab && opt_rx->tstamp_ok) || 3786 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3787 opt_rx->saw_tstamp = 1; 3788 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3789 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3790 } 3791 break; 3792 case TCPOPT_SACK_PERM: 3793 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3794 !estab && net->ipv4.sysctl_tcp_sack) { 3795 opt_rx->sack_ok = TCP_SACK_SEEN; 3796 tcp_sack_reset(opt_rx); 3797 } 3798 break; 3799 3800 case TCPOPT_SACK: 3801 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3802 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3803 opt_rx->sack_ok) { 3804 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3805 } 3806 break; 3807 #ifdef CONFIG_TCP_MD5SIG 3808 case TCPOPT_MD5SIG: 3809 /* 3810 * The MD5 Hash has already been 3811 * checked (see tcp_v{4,6}_do_rcv()). 3812 */ 3813 break; 3814 #endif 3815 case TCPOPT_FASTOPEN: 3816 tcp_parse_fastopen_option( 3817 opsize - TCPOLEN_FASTOPEN_BASE, 3818 ptr, th->syn, foc, false); 3819 break; 3820 3821 case TCPOPT_EXP: 3822 /* Fast Open option shares code 254 using a 3823 * 16 bits magic number. 3824 */ 3825 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3826 get_unaligned_be16(ptr) == 3827 TCPOPT_FASTOPEN_MAGIC) 3828 tcp_parse_fastopen_option(opsize - 3829 TCPOLEN_EXP_FASTOPEN_BASE, 3830 ptr + 2, th->syn, foc, true); 3831 break; 3832 3833 } 3834 ptr += opsize-2; 3835 length -= opsize; 3836 } 3837 } 3838 } 3839 EXPORT_SYMBOL(tcp_parse_options); 3840 3841 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3842 { 3843 const __be32 *ptr = (const __be32 *)(th + 1); 3844 3845 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3846 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3847 tp->rx_opt.saw_tstamp = 1; 3848 ++ptr; 3849 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3850 ++ptr; 3851 if (*ptr) 3852 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3853 else 3854 tp->rx_opt.rcv_tsecr = 0; 3855 return true; 3856 } 3857 return false; 3858 } 3859 3860 /* Fast parse options. This hopes to only see timestamps. 3861 * If it is wrong it falls back on tcp_parse_options(). 3862 */ 3863 static bool tcp_fast_parse_options(const struct net *net, 3864 const struct sk_buff *skb, 3865 const struct tcphdr *th, struct tcp_sock *tp) 3866 { 3867 /* In the spirit of fast parsing, compare doff directly to constant 3868 * values. Because equality is used, short doff can be ignored here. 3869 */ 3870 if (th->doff == (sizeof(*th) / 4)) { 3871 tp->rx_opt.saw_tstamp = 0; 3872 return false; 3873 } else if (tp->rx_opt.tstamp_ok && 3874 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3875 if (tcp_parse_aligned_timestamp(tp, th)) 3876 return true; 3877 } 3878 3879 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3880 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3881 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3882 3883 return true; 3884 } 3885 3886 #ifdef CONFIG_TCP_MD5SIG 3887 /* 3888 * Parse MD5 Signature option 3889 */ 3890 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3891 { 3892 int length = (th->doff << 2) - sizeof(*th); 3893 const u8 *ptr = (const u8 *)(th + 1); 3894 3895 /* If the TCP option is too short, we can short cut */ 3896 if (length < TCPOLEN_MD5SIG) 3897 return NULL; 3898 3899 while (length > 0) { 3900 int opcode = *ptr++; 3901 int opsize; 3902 3903 switch (opcode) { 3904 case TCPOPT_EOL: 3905 return NULL; 3906 case TCPOPT_NOP: 3907 length--; 3908 continue; 3909 default: 3910 opsize = *ptr++; 3911 if (opsize < 2 || opsize > length) 3912 return NULL; 3913 if (opcode == TCPOPT_MD5SIG) 3914 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3915 } 3916 ptr += opsize - 2; 3917 length -= opsize; 3918 } 3919 return NULL; 3920 } 3921 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3922 #endif 3923 3924 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3925 * 3926 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3927 * it can pass through stack. So, the following predicate verifies that 3928 * this segment is not used for anything but congestion avoidance or 3929 * fast retransmit. Moreover, we even are able to eliminate most of such 3930 * second order effects, if we apply some small "replay" window (~RTO) 3931 * to timestamp space. 3932 * 3933 * All these measures still do not guarantee that we reject wrapped ACKs 3934 * on networks with high bandwidth, when sequence space is recycled fastly, 3935 * but it guarantees that such events will be very rare and do not affect 3936 * connection seriously. This doesn't look nice, but alas, PAWS is really 3937 * buggy extension. 3938 * 3939 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3940 * states that events when retransmit arrives after original data are rare. 3941 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3942 * the biggest problem on large power networks even with minor reordering. 3943 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3944 * up to bandwidth of 18Gigabit/sec. 8) ] 3945 */ 3946 3947 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3948 { 3949 const struct tcp_sock *tp = tcp_sk(sk); 3950 const struct tcphdr *th = tcp_hdr(skb); 3951 u32 seq = TCP_SKB_CB(skb)->seq; 3952 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3953 3954 return (/* 1. Pure ACK with correct sequence number. */ 3955 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3956 3957 /* 2. ... and duplicate ACK. */ 3958 ack == tp->snd_una && 3959 3960 /* 3. ... and does not update window. */ 3961 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3962 3963 /* 4. ... and sits in replay window. */ 3964 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3965 } 3966 3967 static inline bool tcp_paws_discard(const struct sock *sk, 3968 const struct sk_buff *skb) 3969 { 3970 const struct tcp_sock *tp = tcp_sk(sk); 3971 3972 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3973 !tcp_disordered_ack(sk, skb); 3974 } 3975 3976 /* Check segment sequence number for validity. 3977 * 3978 * Segment controls are considered valid, if the segment 3979 * fits to the window after truncation to the window. Acceptability 3980 * of data (and SYN, FIN, of course) is checked separately. 3981 * See tcp_data_queue(), for example. 3982 * 3983 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3984 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3985 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3986 * (borrowed from freebsd) 3987 */ 3988 3989 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3990 { 3991 return !before(end_seq, tp->rcv_wup) && 3992 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3993 } 3994 3995 /* When we get a reset we do this. */ 3996 void tcp_reset(struct sock *sk) 3997 { 3998 /* We want the right error as BSD sees it (and indeed as we do). */ 3999 switch (sk->sk_state) { 4000 case TCP_SYN_SENT: 4001 sk->sk_err = ECONNREFUSED; 4002 break; 4003 case TCP_CLOSE_WAIT: 4004 sk->sk_err = EPIPE; 4005 break; 4006 case TCP_CLOSE: 4007 return; 4008 default: 4009 sk->sk_err = ECONNRESET; 4010 } 4011 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4012 smp_wmb(); 4013 4014 tcp_done(sk); 4015 4016 if (!sock_flag(sk, SOCK_DEAD)) 4017 sk->sk_error_report(sk); 4018 } 4019 4020 /* 4021 * Process the FIN bit. This now behaves as it is supposed to work 4022 * and the FIN takes effect when it is validly part of sequence 4023 * space. Not before when we get holes. 4024 * 4025 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4026 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4027 * TIME-WAIT) 4028 * 4029 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4030 * close and we go into CLOSING (and later onto TIME-WAIT) 4031 * 4032 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4033 */ 4034 void tcp_fin(struct sock *sk) 4035 { 4036 struct tcp_sock *tp = tcp_sk(sk); 4037 4038 inet_csk_schedule_ack(sk); 4039 4040 sk->sk_shutdown |= RCV_SHUTDOWN; 4041 sock_set_flag(sk, SOCK_DONE); 4042 4043 switch (sk->sk_state) { 4044 case TCP_SYN_RECV: 4045 case TCP_ESTABLISHED: 4046 /* Move to CLOSE_WAIT */ 4047 tcp_set_state(sk, TCP_CLOSE_WAIT); 4048 inet_csk(sk)->icsk_ack.pingpong = 1; 4049 break; 4050 4051 case TCP_CLOSE_WAIT: 4052 case TCP_CLOSING: 4053 /* Received a retransmission of the FIN, do 4054 * nothing. 4055 */ 4056 break; 4057 case TCP_LAST_ACK: 4058 /* RFC793: Remain in the LAST-ACK state. */ 4059 break; 4060 4061 case TCP_FIN_WAIT1: 4062 /* This case occurs when a simultaneous close 4063 * happens, we must ack the received FIN and 4064 * enter the CLOSING state. 4065 */ 4066 tcp_send_ack(sk); 4067 tcp_set_state(sk, TCP_CLOSING); 4068 break; 4069 case TCP_FIN_WAIT2: 4070 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4071 tcp_send_ack(sk); 4072 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4073 break; 4074 default: 4075 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4076 * cases we should never reach this piece of code. 4077 */ 4078 pr_err("%s: Impossible, sk->sk_state=%d\n", 4079 __func__, sk->sk_state); 4080 break; 4081 } 4082 4083 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4084 * Probably, we should reset in this case. For now drop them. 4085 */ 4086 skb_rbtree_purge(&tp->out_of_order_queue); 4087 if (tcp_is_sack(tp)) 4088 tcp_sack_reset(&tp->rx_opt); 4089 sk_mem_reclaim(sk); 4090 4091 if (!sock_flag(sk, SOCK_DEAD)) { 4092 sk->sk_state_change(sk); 4093 4094 /* Do not send POLL_HUP for half duplex close. */ 4095 if (sk->sk_shutdown == SHUTDOWN_MASK || 4096 sk->sk_state == TCP_CLOSE) 4097 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4098 else 4099 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4100 } 4101 } 4102 4103 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4104 u32 end_seq) 4105 { 4106 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4107 if (before(seq, sp->start_seq)) 4108 sp->start_seq = seq; 4109 if (after(end_seq, sp->end_seq)) 4110 sp->end_seq = end_seq; 4111 return true; 4112 } 4113 return false; 4114 } 4115 4116 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4117 { 4118 struct tcp_sock *tp = tcp_sk(sk); 4119 4120 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4121 int mib_idx; 4122 4123 if (before(seq, tp->rcv_nxt)) 4124 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4125 else 4126 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4127 4128 NET_INC_STATS(sock_net(sk), mib_idx); 4129 4130 tp->rx_opt.dsack = 1; 4131 tp->duplicate_sack[0].start_seq = seq; 4132 tp->duplicate_sack[0].end_seq = end_seq; 4133 } 4134 } 4135 4136 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4137 { 4138 struct tcp_sock *tp = tcp_sk(sk); 4139 4140 if (!tp->rx_opt.dsack) 4141 tcp_dsack_set(sk, seq, end_seq); 4142 else 4143 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4144 } 4145 4146 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4147 { 4148 struct tcp_sock *tp = tcp_sk(sk); 4149 4150 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4151 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4152 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4153 tcp_enter_quickack_mode(sk); 4154 4155 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4156 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4157 4158 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4159 end_seq = tp->rcv_nxt; 4160 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4161 } 4162 } 4163 4164 tcp_send_ack(sk); 4165 } 4166 4167 /* These routines update the SACK block as out-of-order packets arrive or 4168 * in-order packets close up the sequence space. 4169 */ 4170 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4171 { 4172 int this_sack; 4173 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4174 struct tcp_sack_block *swalk = sp + 1; 4175 4176 /* See if the recent change to the first SACK eats into 4177 * or hits the sequence space of other SACK blocks, if so coalesce. 4178 */ 4179 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4180 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4181 int i; 4182 4183 /* Zap SWALK, by moving every further SACK up by one slot. 4184 * Decrease num_sacks. 4185 */ 4186 tp->rx_opt.num_sacks--; 4187 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4188 sp[i] = sp[i + 1]; 4189 continue; 4190 } 4191 this_sack++, swalk++; 4192 } 4193 } 4194 4195 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4196 { 4197 struct tcp_sock *tp = tcp_sk(sk); 4198 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4199 int cur_sacks = tp->rx_opt.num_sacks; 4200 int this_sack; 4201 4202 if (!cur_sacks) 4203 goto new_sack; 4204 4205 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4206 if (tcp_sack_extend(sp, seq, end_seq)) { 4207 /* Rotate this_sack to the first one. */ 4208 for (; this_sack > 0; this_sack--, sp--) 4209 swap(*sp, *(sp - 1)); 4210 if (cur_sacks > 1) 4211 tcp_sack_maybe_coalesce(tp); 4212 return; 4213 } 4214 } 4215 4216 /* Could not find an adjacent existing SACK, build a new one, 4217 * put it at the front, and shift everyone else down. We 4218 * always know there is at least one SACK present already here. 4219 * 4220 * If the sack array is full, forget about the last one. 4221 */ 4222 if (this_sack >= TCP_NUM_SACKS) { 4223 this_sack--; 4224 tp->rx_opt.num_sacks--; 4225 sp--; 4226 } 4227 for (; this_sack > 0; this_sack--, sp--) 4228 *sp = *(sp - 1); 4229 4230 new_sack: 4231 /* Build the new head SACK, and we're done. */ 4232 sp->start_seq = seq; 4233 sp->end_seq = end_seq; 4234 tp->rx_opt.num_sacks++; 4235 } 4236 4237 /* RCV.NXT advances, some SACKs should be eaten. */ 4238 4239 static void tcp_sack_remove(struct tcp_sock *tp) 4240 { 4241 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4242 int num_sacks = tp->rx_opt.num_sacks; 4243 int this_sack; 4244 4245 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4246 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4247 tp->rx_opt.num_sacks = 0; 4248 return; 4249 } 4250 4251 for (this_sack = 0; this_sack < num_sacks;) { 4252 /* Check if the start of the sack is covered by RCV.NXT. */ 4253 if (!before(tp->rcv_nxt, sp->start_seq)) { 4254 int i; 4255 4256 /* RCV.NXT must cover all the block! */ 4257 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4258 4259 /* Zap this SACK, by moving forward any other SACKS. */ 4260 for (i = this_sack+1; i < num_sacks; i++) 4261 tp->selective_acks[i-1] = tp->selective_acks[i]; 4262 num_sacks--; 4263 continue; 4264 } 4265 this_sack++; 4266 sp++; 4267 } 4268 tp->rx_opt.num_sacks = num_sacks; 4269 } 4270 4271 /** 4272 * tcp_try_coalesce - try to merge skb to prior one 4273 * @sk: socket 4274 * @to: prior buffer 4275 * @from: buffer to add in queue 4276 * @fragstolen: pointer to boolean 4277 * 4278 * Before queueing skb @from after @to, try to merge them 4279 * to reduce overall memory use and queue lengths, if cost is small. 4280 * Packets in ofo or receive queues can stay a long time. 4281 * Better try to coalesce them right now to avoid future collapses. 4282 * Returns true if caller should free @from instead of queueing it 4283 */ 4284 static bool tcp_try_coalesce(struct sock *sk, 4285 struct sk_buff *to, 4286 struct sk_buff *from, 4287 bool *fragstolen) 4288 { 4289 int delta; 4290 4291 *fragstolen = false; 4292 4293 /* Its possible this segment overlaps with prior segment in queue */ 4294 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4295 return false; 4296 4297 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4298 return false; 4299 4300 atomic_add(delta, &sk->sk_rmem_alloc); 4301 sk_mem_charge(sk, delta); 4302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4303 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4304 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4305 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4306 return true; 4307 } 4308 4309 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4310 { 4311 sk_drops_add(sk, skb); 4312 __kfree_skb(skb); 4313 } 4314 4315 /* This one checks to see if we can put data from the 4316 * out_of_order queue into the receive_queue. 4317 */ 4318 static void tcp_ofo_queue(struct sock *sk) 4319 { 4320 struct tcp_sock *tp = tcp_sk(sk); 4321 __u32 dsack_high = tp->rcv_nxt; 4322 bool fin, fragstolen, eaten; 4323 struct sk_buff *skb, *tail; 4324 struct rb_node *p; 4325 4326 p = rb_first(&tp->out_of_order_queue); 4327 while (p) { 4328 skb = rb_entry(p, struct sk_buff, rbnode); 4329 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4330 break; 4331 4332 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4333 __u32 dsack = dsack_high; 4334 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4335 dsack_high = TCP_SKB_CB(skb)->end_seq; 4336 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4337 } 4338 p = rb_next(p); 4339 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4340 4341 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4342 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4343 tcp_drop(sk, skb); 4344 continue; 4345 } 4346 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4347 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4348 TCP_SKB_CB(skb)->end_seq); 4349 4350 tail = skb_peek_tail(&sk->sk_receive_queue); 4351 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4352 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4353 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4354 if (!eaten) 4355 __skb_queue_tail(&sk->sk_receive_queue, skb); 4356 else 4357 kfree_skb_partial(skb, fragstolen); 4358 4359 if (unlikely(fin)) { 4360 tcp_fin(sk); 4361 /* tcp_fin() purges tp->out_of_order_queue, 4362 * so we must end this loop right now. 4363 */ 4364 break; 4365 } 4366 } 4367 } 4368 4369 static bool tcp_prune_ofo_queue(struct sock *sk); 4370 static int tcp_prune_queue(struct sock *sk); 4371 4372 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4373 unsigned int size) 4374 { 4375 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4376 !sk_rmem_schedule(sk, skb, size)) { 4377 4378 if (tcp_prune_queue(sk) < 0) 4379 return -1; 4380 4381 while (!sk_rmem_schedule(sk, skb, size)) { 4382 if (!tcp_prune_ofo_queue(sk)) 4383 return -1; 4384 } 4385 } 4386 return 0; 4387 } 4388 4389 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4390 { 4391 struct tcp_sock *tp = tcp_sk(sk); 4392 struct rb_node **p, *q, *parent; 4393 struct sk_buff *skb1; 4394 u32 seq, end_seq; 4395 bool fragstolen; 4396 4397 tcp_ecn_check_ce(tp, skb); 4398 4399 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4400 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4401 tcp_drop(sk, skb); 4402 return; 4403 } 4404 4405 /* Disable header prediction. */ 4406 tp->pred_flags = 0; 4407 inet_csk_schedule_ack(sk); 4408 4409 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4410 seq = TCP_SKB_CB(skb)->seq; 4411 end_seq = TCP_SKB_CB(skb)->end_seq; 4412 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4413 tp->rcv_nxt, seq, end_seq); 4414 4415 p = &tp->out_of_order_queue.rb_node; 4416 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4417 /* Initial out of order segment, build 1 SACK. */ 4418 if (tcp_is_sack(tp)) { 4419 tp->rx_opt.num_sacks = 1; 4420 tp->selective_acks[0].start_seq = seq; 4421 tp->selective_acks[0].end_seq = end_seq; 4422 } 4423 rb_link_node(&skb->rbnode, NULL, p); 4424 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4425 tp->ooo_last_skb = skb; 4426 goto end; 4427 } 4428 4429 /* In the typical case, we are adding an skb to the end of the list. 4430 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4431 */ 4432 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4433 coalesce_done: 4434 tcp_grow_window(sk, skb); 4435 kfree_skb_partial(skb, fragstolen); 4436 skb = NULL; 4437 goto add_sack; 4438 } 4439 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4440 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4441 parent = &tp->ooo_last_skb->rbnode; 4442 p = &parent->rb_right; 4443 goto insert; 4444 } 4445 4446 /* Find place to insert this segment. Handle overlaps on the way. */ 4447 parent = NULL; 4448 while (*p) { 4449 parent = *p; 4450 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4451 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4452 p = &parent->rb_left; 4453 continue; 4454 } 4455 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4456 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4457 /* All the bits are present. Drop. */ 4458 NET_INC_STATS(sock_net(sk), 4459 LINUX_MIB_TCPOFOMERGE); 4460 __kfree_skb(skb); 4461 skb = NULL; 4462 tcp_dsack_set(sk, seq, end_seq); 4463 goto add_sack; 4464 } 4465 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4466 /* Partial overlap. */ 4467 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4468 } else { 4469 /* skb's seq == skb1's seq and skb covers skb1. 4470 * Replace skb1 with skb. 4471 */ 4472 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4473 &tp->out_of_order_queue); 4474 tcp_dsack_extend(sk, 4475 TCP_SKB_CB(skb1)->seq, 4476 TCP_SKB_CB(skb1)->end_seq); 4477 NET_INC_STATS(sock_net(sk), 4478 LINUX_MIB_TCPOFOMERGE); 4479 __kfree_skb(skb1); 4480 goto merge_right; 4481 } 4482 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4483 goto coalesce_done; 4484 } 4485 p = &parent->rb_right; 4486 } 4487 insert: 4488 /* Insert segment into RB tree. */ 4489 rb_link_node(&skb->rbnode, parent, p); 4490 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4491 4492 merge_right: 4493 /* Remove other segments covered by skb. */ 4494 while ((q = rb_next(&skb->rbnode)) != NULL) { 4495 skb1 = rb_entry(q, struct sk_buff, rbnode); 4496 4497 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4498 break; 4499 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4500 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4501 end_seq); 4502 break; 4503 } 4504 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4505 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4506 TCP_SKB_CB(skb1)->end_seq); 4507 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4508 tcp_drop(sk, skb1); 4509 } 4510 /* If there is no skb after us, we are the last_skb ! */ 4511 if (!q) 4512 tp->ooo_last_skb = skb; 4513 4514 add_sack: 4515 if (tcp_is_sack(tp)) 4516 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4517 end: 4518 if (skb) { 4519 tcp_grow_window(sk, skb); 4520 skb_condense(skb); 4521 skb_set_owner_r(skb, sk); 4522 } 4523 } 4524 4525 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4526 bool *fragstolen) 4527 { 4528 int eaten; 4529 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4530 4531 __skb_pull(skb, hdrlen); 4532 eaten = (tail && 4533 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4534 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4535 if (!eaten) { 4536 __skb_queue_tail(&sk->sk_receive_queue, skb); 4537 skb_set_owner_r(skb, sk); 4538 } 4539 return eaten; 4540 } 4541 4542 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4543 { 4544 struct sk_buff *skb; 4545 int err = -ENOMEM; 4546 int data_len = 0; 4547 bool fragstolen; 4548 4549 if (size == 0) 4550 return 0; 4551 4552 if (size > PAGE_SIZE) { 4553 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4554 4555 data_len = npages << PAGE_SHIFT; 4556 size = data_len + (size & ~PAGE_MASK); 4557 } 4558 skb = alloc_skb_with_frags(size - data_len, data_len, 4559 PAGE_ALLOC_COSTLY_ORDER, 4560 &err, sk->sk_allocation); 4561 if (!skb) 4562 goto err; 4563 4564 skb_put(skb, size - data_len); 4565 skb->data_len = data_len; 4566 skb->len = size; 4567 4568 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4569 goto err_free; 4570 4571 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4572 if (err) 4573 goto err_free; 4574 4575 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4576 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4577 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4578 4579 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4580 WARN_ON_ONCE(fragstolen); /* should not happen */ 4581 __kfree_skb(skb); 4582 } 4583 return size; 4584 4585 err_free: 4586 kfree_skb(skb); 4587 err: 4588 return err; 4589 4590 } 4591 4592 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4593 { 4594 struct tcp_sock *tp = tcp_sk(sk); 4595 bool fragstolen = false; 4596 int eaten = -1; 4597 4598 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4599 __kfree_skb(skb); 4600 return; 4601 } 4602 skb_dst_drop(skb); 4603 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4604 4605 tcp_ecn_accept_cwr(tp, skb); 4606 4607 tp->rx_opt.dsack = 0; 4608 4609 /* Queue data for delivery to the user. 4610 * Packets in sequence go to the receive queue. 4611 * Out of sequence packets to the out_of_order_queue. 4612 */ 4613 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4614 if (tcp_receive_window(tp) == 0) 4615 goto out_of_window; 4616 4617 /* Ok. In sequence. In window. */ 4618 if (tp->ucopy.task == current && 4619 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4620 sock_owned_by_user(sk) && !tp->urg_data) { 4621 int chunk = min_t(unsigned int, skb->len, 4622 tp->ucopy.len); 4623 4624 __set_current_state(TASK_RUNNING); 4625 4626 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4627 tp->ucopy.len -= chunk; 4628 tp->copied_seq += chunk; 4629 eaten = (chunk == skb->len); 4630 tcp_rcv_space_adjust(sk); 4631 } 4632 } 4633 4634 if (eaten <= 0) { 4635 queue_and_out: 4636 if (eaten < 0) { 4637 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4638 sk_forced_mem_schedule(sk, skb->truesize); 4639 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4640 goto drop; 4641 } 4642 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4643 } 4644 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4645 if (skb->len) 4646 tcp_event_data_recv(sk, skb); 4647 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4648 tcp_fin(sk); 4649 4650 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4651 tcp_ofo_queue(sk); 4652 4653 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4654 * gap in queue is filled. 4655 */ 4656 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4657 inet_csk(sk)->icsk_ack.pingpong = 0; 4658 } 4659 4660 if (tp->rx_opt.num_sacks) 4661 tcp_sack_remove(tp); 4662 4663 tcp_fast_path_check(sk); 4664 4665 if (eaten > 0) 4666 kfree_skb_partial(skb, fragstolen); 4667 if (!sock_flag(sk, SOCK_DEAD)) 4668 sk->sk_data_ready(sk); 4669 return; 4670 } 4671 4672 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4673 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4674 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4675 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4676 4677 out_of_window: 4678 tcp_enter_quickack_mode(sk); 4679 inet_csk_schedule_ack(sk); 4680 drop: 4681 tcp_drop(sk, skb); 4682 return; 4683 } 4684 4685 /* Out of window. F.e. zero window probe. */ 4686 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4687 goto out_of_window; 4688 4689 tcp_enter_quickack_mode(sk); 4690 4691 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4692 /* Partial packet, seq < rcv_next < end_seq */ 4693 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4694 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4695 TCP_SKB_CB(skb)->end_seq); 4696 4697 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4698 4699 /* If window is closed, drop tail of packet. But after 4700 * remembering D-SACK for its head made in previous line. 4701 */ 4702 if (!tcp_receive_window(tp)) 4703 goto out_of_window; 4704 goto queue_and_out; 4705 } 4706 4707 tcp_data_queue_ofo(sk, skb); 4708 } 4709 4710 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4711 { 4712 if (list) 4713 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4714 4715 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4716 } 4717 4718 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4719 struct sk_buff_head *list, 4720 struct rb_root *root) 4721 { 4722 struct sk_buff *next = tcp_skb_next(skb, list); 4723 4724 if (list) 4725 __skb_unlink(skb, list); 4726 else 4727 rb_erase(&skb->rbnode, root); 4728 4729 __kfree_skb(skb); 4730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4731 4732 return next; 4733 } 4734 4735 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4736 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4737 { 4738 struct rb_node **p = &root->rb_node; 4739 struct rb_node *parent = NULL; 4740 struct sk_buff *skb1; 4741 4742 while (*p) { 4743 parent = *p; 4744 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4745 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4746 p = &parent->rb_left; 4747 else 4748 p = &parent->rb_right; 4749 } 4750 rb_link_node(&skb->rbnode, parent, p); 4751 rb_insert_color(&skb->rbnode, root); 4752 } 4753 4754 /* Collapse contiguous sequence of skbs head..tail with 4755 * sequence numbers start..end. 4756 * 4757 * If tail is NULL, this means until the end of the queue. 4758 * 4759 * Segments with FIN/SYN are not collapsed (only because this 4760 * simplifies code) 4761 */ 4762 static void 4763 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4764 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4765 { 4766 struct sk_buff *skb = head, *n; 4767 struct sk_buff_head tmp; 4768 bool end_of_skbs; 4769 4770 /* First, check that queue is collapsible and find 4771 * the point where collapsing can be useful. 4772 */ 4773 restart: 4774 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4775 n = tcp_skb_next(skb, list); 4776 4777 /* No new bits? It is possible on ofo queue. */ 4778 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4779 skb = tcp_collapse_one(sk, skb, list, root); 4780 if (!skb) 4781 break; 4782 goto restart; 4783 } 4784 4785 /* The first skb to collapse is: 4786 * - not SYN/FIN and 4787 * - bloated or contains data before "start" or 4788 * overlaps to the next one. 4789 */ 4790 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4791 (tcp_win_from_space(skb->truesize) > skb->len || 4792 before(TCP_SKB_CB(skb)->seq, start))) { 4793 end_of_skbs = false; 4794 break; 4795 } 4796 4797 if (n && n != tail && 4798 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4799 end_of_skbs = false; 4800 break; 4801 } 4802 4803 /* Decided to skip this, advance start seq. */ 4804 start = TCP_SKB_CB(skb)->end_seq; 4805 } 4806 if (end_of_skbs || 4807 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4808 return; 4809 4810 __skb_queue_head_init(&tmp); 4811 4812 while (before(start, end)) { 4813 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4814 struct sk_buff *nskb; 4815 4816 nskb = alloc_skb(copy, GFP_ATOMIC); 4817 if (!nskb) 4818 break; 4819 4820 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4821 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4822 if (list) 4823 __skb_queue_before(list, skb, nskb); 4824 else 4825 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4826 skb_set_owner_r(nskb, sk); 4827 4828 /* Copy data, releasing collapsed skbs. */ 4829 while (copy > 0) { 4830 int offset = start - TCP_SKB_CB(skb)->seq; 4831 int size = TCP_SKB_CB(skb)->end_seq - start; 4832 4833 BUG_ON(offset < 0); 4834 if (size > 0) { 4835 size = min(copy, size); 4836 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4837 BUG(); 4838 TCP_SKB_CB(nskb)->end_seq += size; 4839 copy -= size; 4840 start += size; 4841 } 4842 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4843 skb = tcp_collapse_one(sk, skb, list, root); 4844 if (!skb || 4845 skb == tail || 4846 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4847 goto end; 4848 } 4849 } 4850 } 4851 end: 4852 skb_queue_walk_safe(&tmp, skb, n) 4853 tcp_rbtree_insert(root, skb); 4854 } 4855 4856 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4857 * and tcp_collapse() them until all the queue is collapsed. 4858 */ 4859 static void tcp_collapse_ofo_queue(struct sock *sk) 4860 { 4861 struct tcp_sock *tp = tcp_sk(sk); 4862 struct sk_buff *skb, *head; 4863 struct rb_node *p; 4864 u32 start, end; 4865 4866 p = rb_first(&tp->out_of_order_queue); 4867 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4868 new_range: 4869 if (!skb) { 4870 p = rb_last(&tp->out_of_order_queue); 4871 /* Note: This is possible p is NULL here. We do not 4872 * use rb_entry_safe(), as ooo_last_skb is valid only 4873 * if rbtree is not empty. 4874 */ 4875 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4876 return; 4877 } 4878 start = TCP_SKB_CB(skb)->seq; 4879 end = TCP_SKB_CB(skb)->end_seq; 4880 4881 for (head = skb;;) { 4882 skb = tcp_skb_next(skb, NULL); 4883 4884 /* Range is terminated when we see a gap or when 4885 * we are at the queue end. 4886 */ 4887 if (!skb || 4888 after(TCP_SKB_CB(skb)->seq, end) || 4889 before(TCP_SKB_CB(skb)->end_seq, start)) { 4890 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4891 head, skb, start, end); 4892 goto new_range; 4893 } 4894 4895 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4896 start = TCP_SKB_CB(skb)->seq; 4897 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4898 end = TCP_SKB_CB(skb)->end_seq; 4899 } 4900 } 4901 4902 /* 4903 * Clean the out-of-order queue to make room. 4904 * We drop high sequences packets to : 4905 * 1) Let a chance for holes to be filled. 4906 * 2) not add too big latencies if thousands of packets sit there. 4907 * (But if application shrinks SO_RCVBUF, we could still end up 4908 * freeing whole queue here) 4909 * 4910 * Return true if queue has shrunk. 4911 */ 4912 static bool tcp_prune_ofo_queue(struct sock *sk) 4913 { 4914 struct tcp_sock *tp = tcp_sk(sk); 4915 struct rb_node *node, *prev; 4916 4917 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4918 return false; 4919 4920 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4921 node = &tp->ooo_last_skb->rbnode; 4922 do { 4923 prev = rb_prev(node); 4924 rb_erase(node, &tp->out_of_order_queue); 4925 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4926 sk_mem_reclaim(sk); 4927 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4928 !tcp_under_memory_pressure(sk)) 4929 break; 4930 node = prev; 4931 } while (node); 4932 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4933 4934 /* Reset SACK state. A conforming SACK implementation will 4935 * do the same at a timeout based retransmit. When a connection 4936 * is in a sad state like this, we care only about integrity 4937 * of the connection not performance. 4938 */ 4939 if (tp->rx_opt.sack_ok) 4940 tcp_sack_reset(&tp->rx_opt); 4941 return true; 4942 } 4943 4944 /* Reduce allocated memory if we can, trying to get 4945 * the socket within its memory limits again. 4946 * 4947 * Return less than zero if we should start dropping frames 4948 * until the socket owning process reads some of the data 4949 * to stabilize the situation. 4950 */ 4951 static int tcp_prune_queue(struct sock *sk) 4952 { 4953 struct tcp_sock *tp = tcp_sk(sk); 4954 4955 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4956 4957 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4958 4959 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4960 tcp_clamp_window(sk); 4961 else if (tcp_under_memory_pressure(sk)) 4962 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4963 4964 tcp_collapse_ofo_queue(sk); 4965 if (!skb_queue_empty(&sk->sk_receive_queue)) 4966 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4967 skb_peek(&sk->sk_receive_queue), 4968 NULL, 4969 tp->copied_seq, tp->rcv_nxt); 4970 sk_mem_reclaim(sk); 4971 4972 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4973 return 0; 4974 4975 /* Collapsing did not help, destructive actions follow. 4976 * This must not ever occur. */ 4977 4978 tcp_prune_ofo_queue(sk); 4979 4980 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4981 return 0; 4982 4983 /* If we are really being abused, tell the caller to silently 4984 * drop receive data on the floor. It will get retransmitted 4985 * and hopefully then we'll have sufficient space. 4986 */ 4987 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4988 4989 /* Massive buffer overcommit. */ 4990 tp->pred_flags = 0; 4991 return -1; 4992 } 4993 4994 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4995 { 4996 const struct tcp_sock *tp = tcp_sk(sk); 4997 4998 /* If the user specified a specific send buffer setting, do 4999 * not modify it. 5000 */ 5001 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5002 return false; 5003 5004 /* If we are under global TCP memory pressure, do not expand. */ 5005 if (tcp_under_memory_pressure(sk)) 5006 return false; 5007 5008 /* If we are under soft global TCP memory pressure, do not expand. */ 5009 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5010 return false; 5011 5012 /* If we filled the congestion window, do not expand. */ 5013 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5014 return false; 5015 5016 return true; 5017 } 5018 5019 /* When incoming ACK allowed to free some skb from write_queue, 5020 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5021 * on the exit from tcp input handler. 5022 * 5023 * PROBLEM: sndbuf expansion does not work well with largesend. 5024 */ 5025 static void tcp_new_space(struct sock *sk) 5026 { 5027 struct tcp_sock *tp = tcp_sk(sk); 5028 5029 if (tcp_should_expand_sndbuf(sk)) { 5030 tcp_sndbuf_expand(sk); 5031 tp->snd_cwnd_stamp = tcp_jiffies32; 5032 } 5033 5034 sk->sk_write_space(sk); 5035 } 5036 5037 static void tcp_check_space(struct sock *sk) 5038 { 5039 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5040 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5041 /* pairs with tcp_poll() */ 5042 smp_mb(); 5043 if (sk->sk_socket && 5044 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5045 tcp_new_space(sk); 5046 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5047 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5048 } 5049 } 5050 } 5051 5052 static inline void tcp_data_snd_check(struct sock *sk) 5053 { 5054 tcp_push_pending_frames(sk); 5055 tcp_check_space(sk); 5056 } 5057 5058 /* 5059 * Check if sending an ack is needed. 5060 */ 5061 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5062 { 5063 struct tcp_sock *tp = tcp_sk(sk); 5064 5065 /* More than one full frame received... */ 5066 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5067 /* ... and right edge of window advances far enough. 5068 * (tcp_recvmsg() will send ACK otherwise). Or... 5069 */ 5070 __tcp_select_window(sk) >= tp->rcv_wnd) || 5071 /* We ACK each frame or... */ 5072 tcp_in_quickack_mode(sk) || 5073 /* We have out of order data. */ 5074 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5075 /* Then ack it now */ 5076 tcp_send_ack(sk); 5077 } else { 5078 /* Else, send delayed ack. */ 5079 tcp_send_delayed_ack(sk); 5080 } 5081 } 5082 5083 static inline void tcp_ack_snd_check(struct sock *sk) 5084 { 5085 if (!inet_csk_ack_scheduled(sk)) { 5086 /* We sent a data segment already. */ 5087 return; 5088 } 5089 __tcp_ack_snd_check(sk, 1); 5090 } 5091 5092 /* 5093 * This routine is only called when we have urgent data 5094 * signaled. Its the 'slow' part of tcp_urg. It could be 5095 * moved inline now as tcp_urg is only called from one 5096 * place. We handle URGent data wrong. We have to - as 5097 * BSD still doesn't use the correction from RFC961. 5098 * For 1003.1g we should support a new option TCP_STDURG to permit 5099 * either form (or just set the sysctl tcp_stdurg). 5100 */ 5101 5102 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5103 { 5104 struct tcp_sock *tp = tcp_sk(sk); 5105 u32 ptr = ntohs(th->urg_ptr); 5106 5107 if (ptr && !sysctl_tcp_stdurg) 5108 ptr--; 5109 ptr += ntohl(th->seq); 5110 5111 /* Ignore urgent data that we've already seen and read. */ 5112 if (after(tp->copied_seq, ptr)) 5113 return; 5114 5115 /* Do not replay urg ptr. 5116 * 5117 * NOTE: interesting situation not covered by specs. 5118 * Misbehaving sender may send urg ptr, pointing to segment, 5119 * which we already have in ofo queue. We are not able to fetch 5120 * such data and will stay in TCP_URG_NOTYET until will be eaten 5121 * by recvmsg(). Seems, we are not obliged to handle such wicked 5122 * situations. But it is worth to think about possibility of some 5123 * DoSes using some hypothetical application level deadlock. 5124 */ 5125 if (before(ptr, tp->rcv_nxt)) 5126 return; 5127 5128 /* Do we already have a newer (or duplicate) urgent pointer? */ 5129 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5130 return; 5131 5132 /* Tell the world about our new urgent pointer. */ 5133 sk_send_sigurg(sk); 5134 5135 /* We may be adding urgent data when the last byte read was 5136 * urgent. To do this requires some care. We cannot just ignore 5137 * tp->copied_seq since we would read the last urgent byte again 5138 * as data, nor can we alter copied_seq until this data arrives 5139 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5140 * 5141 * NOTE. Double Dutch. Rendering to plain English: author of comment 5142 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5143 * and expect that both A and B disappear from stream. This is _wrong_. 5144 * Though this happens in BSD with high probability, this is occasional. 5145 * Any application relying on this is buggy. Note also, that fix "works" 5146 * only in this artificial test. Insert some normal data between A and B and we will 5147 * decline of BSD again. Verdict: it is better to remove to trap 5148 * buggy users. 5149 */ 5150 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5151 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5152 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5153 tp->copied_seq++; 5154 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5155 __skb_unlink(skb, &sk->sk_receive_queue); 5156 __kfree_skb(skb); 5157 } 5158 } 5159 5160 tp->urg_data = TCP_URG_NOTYET; 5161 tp->urg_seq = ptr; 5162 5163 /* Disable header prediction. */ 5164 tp->pred_flags = 0; 5165 } 5166 5167 /* This is the 'fast' part of urgent handling. */ 5168 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5169 { 5170 struct tcp_sock *tp = tcp_sk(sk); 5171 5172 /* Check if we get a new urgent pointer - normally not. */ 5173 if (th->urg) 5174 tcp_check_urg(sk, th); 5175 5176 /* Do we wait for any urgent data? - normally not... */ 5177 if (tp->urg_data == TCP_URG_NOTYET) { 5178 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5179 th->syn; 5180 5181 /* Is the urgent pointer pointing into this packet? */ 5182 if (ptr < skb->len) { 5183 u8 tmp; 5184 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5185 BUG(); 5186 tp->urg_data = TCP_URG_VALID | tmp; 5187 if (!sock_flag(sk, SOCK_DEAD)) 5188 sk->sk_data_ready(sk); 5189 } 5190 } 5191 } 5192 5193 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5194 { 5195 struct tcp_sock *tp = tcp_sk(sk); 5196 int chunk = skb->len - hlen; 5197 int err; 5198 5199 if (skb_csum_unnecessary(skb)) 5200 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5201 else 5202 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5203 5204 if (!err) { 5205 tp->ucopy.len -= chunk; 5206 tp->copied_seq += chunk; 5207 tcp_rcv_space_adjust(sk); 5208 } 5209 5210 return err; 5211 } 5212 5213 /* Accept RST for rcv_nxt - 1 after a FIN. 5214 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5215 * FIN is sent followed by a RST packet. The RST is sent with the same 5216 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5217 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5218 * ACKs on the closed socket. In addition middleboxes can drop either the 5219 * challenge ACK or a subsequent RST. 5220 */ 5221 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5222 { 5223 struct tcp_sock *tp = tcp_sk(sk); 5224 5225 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5226 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5227 TCPF_CLOSING)); 5228 } 5229 5230 /* Does PAWS and seqno based validation of an incoming segment, flags will 5231 * play significant role here. 5232 */ 5233 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5234 const struct tcphdr *th, int syn_inerr) 5235 { 5236 struct tcp_sock *tp = tcp_sk(sk); 5237 bool rst_seq_match = false; 5238 5239 /* RFC1323: H1. Apply PAWS check first. */ 5240 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5241 tp->rx_opt.saw_tstamp && 5242 tcp_paws_discard(sk, skb)) { 5243 if (!th->rst) { 5244 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5245 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5246 LINUX_MIB_TCPACKSKIPPEDPAWS, 5247 &tp->last_oow_ack_time)) 5248 tcp_send_dupack(sk, skb); 5249 goto discard; 5250 } 5251 /* Reset is accepted even if it did not pass PAWS. */ 5252 } 5253 5254 /* Step 1: check sequence number */ 5255 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5256 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5257 * (RST) segments are validated by checking their SEQ-fields." 5258 * And page 69: "If an incoming segment is not acceptable, 5259 * an acknowledgment should be sent in reply (unless the RST 5260 * bit is set, if so drop the segment and return)". 5261 */ 5262 if (!th->rst) { 5263 if (th->syn) 5264 goto syn_challenge; 5265 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5266 LINUX_MIB_TCPACKSKIPPEDSEQ, 5267 &tp->last_oow_ack_time)) 5268 tcp_send_dupack(sk, skb); 5269 } else if (tcp_reset_check(sk, skb)) { 5270 tcp_reset(sk); 5271 } 5272 goto discard; 5273 } 5274 5275 /* Step 2: check RST bit */ 5276 if (th->rst) { 5277 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5278 * FIN and SACK too if available): 5279 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5280 * the right-most SACK block, 5281 * then 5282 * RESET the connection 5283 * else 5284 * Send a challenge ACK 5285 */ 5286 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5287 tcp_reset_check(sk, skb)) { 5288 rst_seq_match = true; 5289 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5290 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5291 int max_sack = sp[0].end_seq; 5292 int this_sack; 5293 5294 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5295 ++this_sack) { 5296 max_sack = after(sp[this_sack].end_seq, 5297 max_sack) ? 5298 sp[this_sack].end_seq : max_sack; 5299 } 5300 5301 if (TCP_SKB_CB(skb)->seq == max_sack) 5302 rst_seq_match = true; 5303 } 5304 5305 if (rst_seq_match) 5306 tcp_reset(sk); 5307 else { 5308 /* Disable TFO if RST is out-of-order 5309 * and no data has been received 5310 * for current active TFO socket 5311 */ 5312 if (tp->syn_fastopen && !tp->data_segs_in && 5313 sk->sk_state == TCP_ESTABLISHED) 5314 tcp_fastopen_active_disable(sk); 5315 tcp_send_challenge_ack(sk, skb); 5316 } 5317 goto discard; 5318 } 5319 5320 /* step 3: check security and precedence [ignored] */ 5321 5322 /* step 4: Check for a SYN 5323 * RFC 5961 4.2 : Send a challenge ack 5324 */ 5325 if (th->syn) { 5326 syn_challenge: 5327 if (syn_inerr) 5328 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5329 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5330 tcp_send_challenge_ack(sk, skb); 5331 goto discard; 5332 } 5333 5334 return true; 5335 5336 discard: 5337 tcp_drop(sk, skb); 5338 return false; 5339 } 5340 5341 /* 5342 * TCP receive function for the ESTABLISHED state. 5343 * 5344 * It is split into a fast path and a slow path. The fast path is 5345 * disabled when: 5346 * - A zero window was announced from us - zero window probing 5347 * is only handled properly in the slow path. 5348 * - Out of order segments arrived. 5349 * - Urgent data is expected. 5350 * - There is no buffer space left 5351 * - Unexpected TCP flags/window values/header lengths are received 5352 * (detected by checking the TCP header against pred_flags) 5353 * - Data is sent in both directions. Fast path only supports pure senders 5354 * or pure receivers (this means either the sequence number or the ack 5355 * value must stay constant) 5356 * - Unexpected TCP option. 5357 * 5358 * When these conditions are not satisfied it drops into a standard 5359 * receive procedure patterned after RFC793 to handle all cases. 5360 * The first three cases are guaranteed by proper pred_flags setting, 5361 * the rest is checked inline. Fast processing is turned on in 5362 * tcp_data_queue when everything is OK. 5363 */ 5364 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5365 const struct tcphdr *th, unsigned int len) 5366 { 5367 struct tcp_sock *tp = tcp_sk(sk); 5368 5369 tcp_mstamp_refresh(tp); 5370 if (unlikely(!sk->sk_rx_dst)) 5371 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5372 /* 5373 * Header prediction. 5374 * The code loosely follows the one in the famous 5375 * "30 instruction TCP receive" Van Jacobson mail. 5376 * 5377 * Van's trick is to deposit buffers into socket queue 5378 * on a device interrupt, to call tcp_recv function 5379 * on the receive process context and checksum and copy 5380 * the buffer to user space. smart... 5381 * 5382 * Our current scheme is not silly either but we take the 5383 * extra cost of the net_bh soft interrupt processing... 5384 * We do checksum and copy also but from device to kernel. 5385 */ 5386 5387 tp->rx_opt.saw_tstamp = 0; 5388 5389 /* pred_flags is 0xS?10 << 16 + snd_wnd 5390 * if header_prediction is to be made 5391 * 'S' will always be tp->tcp_header_len >> 2 5392 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5393 * turn it off (when there are holes in the receive 5394 * space for instance) 5395 * PSH flag is ignored. 5396 */ 5397 5398 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5399 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5400 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5401 int tcp_header_len = tp->tcp_header_len; 5402 5403 /* Timestamp header prediction: tcp_header_len 5404 * is automatically equal to th->doff*4 due to pred_flags 5405 * match. 5406 */ 5407 5408 /* Check timestamp */ 5409 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5410 /* No? Slow path! */ 5411 if (!tcp_parse_aligned_timestamp(tp, th)) 5412 goto slow_path; 5413 5414 /* If PAWS failed, check it more carefully in slow path */ 5415 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5416 goto slow_path; 5417 5418 /* DO NOT update ts_recent here, if checksum fails 5419 * and timestamp was corrupted part, it will result 5420 * in a hung connection since we will drop all 5421 * future packets due to the PAWS test. 5422 */ 5423 } 5424 5425 if (len <= tcp_header_len) { 5426 /* Bulk data transfer: sender */ 5427 if (len == tcp_header_len) { 5428 /* Predicted packet is in window by definition. 5429 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5430 * Hence, check seq<=rcv_wup reduces to: 5431 */ 5432 if (tcp_header_len == 5433 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5434 tp->rcv_nxt == tp->rcv_wup) 5435 tcp_store_ts_recent(tp); 5436 5437 /* We know that such packets are checksummed 5438 * on entry. 5439 */ 5440 tcp_ack(sk, skb, 0); 5441 __kfree_skb(skb); 5442 tcp_data_snd_check(sk); 5443 return; 5444 } else { /* Header too small */ 5445 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5446 goto discard; 5447 } 5448 } else { 5449 int eaten = 0; 5450 bool fragstolen = false; 5451 5452 if (tp->ucopy.task == current && 5453 tp->copied_seq == tp->rcv_nxt && 5454 len - tcp_header_len <= tp->ucopy.len && 5455 sock_owned_by_user(sk)) { 5456 __set_current_state(TASK_RUNNING); 5457 5458 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5459 /* Predicted packet is in window by definition. 5460 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5461 * Hence, check seq<=rcv_wup reduces to: 5462 */ 5463 if (tcp_header_len == 5464 (sizeof(struct tcphdr) + 5465 TCPOLEN_TSTAMP_ALIGNED) && 5466 tp->rcv_nxt == tp->rcv_wup) 5467 tcp_store_ts_recent(tp); 5468 5469 tcp_rcv_rtt_measure_ts(sk, skb); 5470 5471 __skb_pull(skb, tcp_header_len); 5472 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5473 NET_INC_STATS(sock_net(sk), 5474 LINUX_MIB_TCPHPHITSTOUSER); 5475 eaten = 1; 5476 } 5477 } 5478 if (!eaten) { 5479 if (tcp_checksum_complete(skb)) 5480 goto csum_error; 5481 5482 if ((int)skb->truesize > sk->sk_forward_alloc) 5483 goto step5; 5484 5485 /* Predicted packet is in window by definition. 5486 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5487 * Hence, check seq<=rcv_wup reduces to: 5488 */ 5489 if (tcp_header_len == 5490 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5491 tp->rcv_nxt == tp->rcv_wup) 5492 tcp_store_ts_recent(tp); 5493 5494 tcp_rcv_rtt_measure_ts(sk, skb); 5495 5496 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5497 5498 /* Bulk data transfer: receiver */ 5499 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5500 &fragstolen); 5501 } 5502 5503 tcp_event_data_recv(sk, skb); 5504 5505 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5506 /* Well, only one small jumplet in fast path... */ 5507 tcp_ack(sk, skb, FLAG_DATA); 5508 tcp_data_snd_check(sk); 5509 if (!inet_csk_ack_scheduled(sk)) 5510 goto no_ack; 5511 } 5512 5513 __tcp_ack_snd_check(sk, 0); 5514 no_ack: 5515 if (eaten) 5516 kfree_skb_partial(skb, fragstolen); 5517 sk->sk_data_ready(sk); 5518 return; 5519 } 5520 } 5521 5522 slow_path: 5523 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5524 goto csum_error; 5525 5526 if (!th->ack && !th->rst && !th->syn) 5527 goto discard; 5528 5529 /* 5530 * Standard slow path. 5531 */ 5532 5533 if (!tcp_validate_incoming(sk, skb, th, 1)) 5534 return; 5535 5536 step5: 5537 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5538 goto discard; 5539 5540 tcp_rcv_rtt_measure_ts(sk, skb); 5541 5542 /* Process urgent data. */ 5543 tcp_urg(sk, skb, th); 5544 5545 /* step 7: process the segment text */ 5546 tcp_data_queue(sk, skb); 5547 5548 tcp_data_snd_check(sk); 5549 tcp_ack_snd_check(sk); 5550 return; 5551 5552 csum_error: 5553 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5554 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5555 5556 discard: 5557 tcp_drop(sk, skb); 5558 } 5559 EXPORT_SYMBOL(tcp_rcv_established); 5560 5561 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5562 { 5563 struct tcp_sock *tp = tcp_sk(sk); 5564 struct inet_connection_sock *icsk = inet_csk(sk); 5565 5566 tcp_set_state(sk, TCP_ESTABLISHED); 5567 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5568 5569 if (skb) { 5570 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5571 security_inet_conn_established(sk, skb); 5572 } 5573 5574 /* Make sure socket is routed, for correct metrics. */ 5575 icsk->icsk_af_ops->rebuild_header(sk); 5576 5577 tcp_init_metrics(sk); 5578 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5579 tcp_init_congestion_control(sk); 5580 5581 /* Prevent spurious tcp_cwnd_restart() on first data 5582 * packet. 5583 */ 5584 tp->lsndtime = tcp_jiffies32; 5585 5586 tcp_init_buffer_space(sk); 5587 5588 if (sock_flag(sk, SOCK_KEEPOPEN)) 5589 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5590 5591 if (!tp->rx_opt.snd_wscale) 5592 __tcp_fast_path_on(tp, tp->snd_wnd); 5593 else 5594 tp->pred_flags = 0; 5595 5596 } 5597 5598 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5599 struct tcp_fastopen_cookie *cookie) 5600 { 5601 struct tcp_sock *tp = tcp_sk(sk); 5602 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5603 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5604 bool syn_drop = false; 5605 5606 if (mss == tp->rx_opt.user_mss) { 5607 struct tcp_options_received opt; 5608 5609 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5610 tcp_clear_options(&opt); 5611 opt.user_mss = opt.mss_clamp = 0; 5612 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5613 mss = opt.mss_clamp; 5614 } 5615 5616 if (!tp->syn_fastopen) { 5617 /* Ignore an unsolicited cookie */ 5618 cookie->len = -1; 5619 } else if (tp->total_retrans) { 5620 /* SYN timed out and the SYN-ACK neither has a cookie nor 5621 * acknowledges data. Presumably the remote received only 5622 * the retransmitted (regular) SYNs: either the original 5623 * SYN-data or the corresponding SYN-ACK was dropped. 5624 */ 5625 syn_drop = (cookie->len < 0 && data); 5626 } else if (cookie->len < 0 && !tp->syn_data) { 5627 /* We requested a cookie but didn't get it. If we did not use 5628 * the (old) exp opt format then try so next time (try_exp=1). 5629 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5630 */ 5631 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5632 } 5633 5634 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5635 5636 if (data) { /* Retransmit unacked data in SYN */ 5637 tcp_for_write_queue_from(data, sk) { 5638 if (data == tcp_send_head(sk) || 5639 __tcp_retransmit_skb(sk, data, 1)) 5640 break; 5641 } 5642 tcp_rearm_rto(sk); 5643 NET_INC_STATS(sock_net(sk), 5644 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5645 return true; 5646 } 5647 tp->syn_data_acked = tp->syn_data; 5648 if (tp->syn_data_acked) 5649 NET_INC_STATS(sock_net(sk), 5650 LINUX_MIB_TCPFASTOPENACTIVE); 5651 5652 tcp_fastopen_add_skb(sk, synack); 5653 5654 return false; 5655 } 5656 5657 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5658 const struct tcphdr *th) 5659 { 5660 struct inet_connection_sock *icsk = inet_csk(sk); 5661 struct tcp_sock *tp = tcp_sk(sk); 5662 struct tcp_fastopen_cookie foc = { .len = -1 }; 5663 int saved_clamp = tp->rx_opt.mss_clamp; 5664 bool fastopen_fail; 5665 5666 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5667 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5668 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5669 5670 if (th->ack) { 5671 /* rfc793: 5672 * "If the state is SYN-SENT then 5673 * first check the ACK bit 5674 * If the ACK bit is set 5675 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5676 * a reset (unless the RST bit is set, if so drop 5677 * the segment and return)" 5678 */ 5679 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5680 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5681 goto reset_and_undo; 5682 5683 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5684 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5685 tcp_time_stamp(tp))) { 5686 NET_INC_STATS(sock_net(sk), 5687 LINUX_MIB_PAWSACTIVEREJECTED); 5688 goto reset_and_undo; 5689 } 5690 5691 /* Now ACK is acceptable. 5692 * 5693 * "If the RST bit is set 5694 * If the ACK was acceptable then signal the user "error: 5695 * connection reset", drop the segment, enter CLOSED state, 5696 * delete TCB, and return." 5697 */ 5698 5699 if (th->rst) { 5700 tcp_reset(sk); 5701 goto discard; 5702 } 5703 5704 /* rfc793: 5705 * "fifth, if neither of the SYN or RST bits is set then 5706 * drop the segment and return." 5707 * 5708 * See note below! 5709 * --ANK(990513) 5710 */ 5711 if (!th->syn) 5712 goto discard_and_undo; 5713 5714 /* rfc793: 5715 * "If the SYN bit is on ... 5716 * are acceptable then ... 5717 * (our SYN has been ACKed), change the connection 5718 * state to ESTABLISHED..." 5719 */ 5720 5721 tcp_ecn_rcv_synack(tp, th); 5722 5723 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5724 tcp_ack(sk, skb, FLAG_SLOWPATH); 5725 5726 /* Ok.. it's good. Set up sequence numbers and 5727 * move to established. 5728 */ 5729 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5730 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5731 5732 /* RFC1323: The window in SYN & SYN/ACK segments is 5733 * never scaled. 5734 */ 5735 tp->snd_wnd = ntohs(th->window); 5736 5737 if (!tp->rx_opt.wscale_ok) { 5738 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5739 tp->window_clamp = min(tp->window_clamp, 65535U); 5740 } 5741 5742 if (tp->rx_opt.saw_tstamp) { 5743 tp->rx_opt.tstamp_ok = 1; 5744 tp->tcp_header_len = 5745 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5746 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5747 tcp_store_ts_recent(tp); 5748 } else { 5749 tp->tcp_header_len = sizeof(struct tcphdr); 5750 } 5751 5752 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5753 tcp_enable_fack(tp); 5754 5755 tcp_mtup_init(sk); 5756 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5757 tcp_initialize_rcv_mss(sk); 5758 5759 /* Remember, tcp_poll() does not lock socket! 5760 * Change state from SYN-SENT only after copied_seq 5761 * is initialized. */ 5762 tp->copied_seq = tp->rcv_nxt; 5763 5764 smp_mb(); 5765 5766 tcp_finish_connect(sk, skb); 5767 5768 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5769 tcp_rcv_fastopen_synack(sk, skb, &foc); 5770 5771 if (!sock_flag(sk, SOCK_DEAD)) { 5772 sk->sk_state_change(sk); 5773 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5774 } 5775 if (fastopen_fail) 5776 return -1; 5777 if (sk->sk_write_pending || 5778 icsk->icsk_accept_queue.rskq_defer_accept || 5779 icsk->icsk_ack.pingpong) { 5780 /* Save one ACK. Data will be ready after 5781 * several ticks, if write_pending is set. 5782 * 5783 * It may be deleted, but with this feature tcpdumps 5784 * look so _wonderfully_ clever, that I was not able 5785 * to stand against the temptation 8) --ANK 5786 */ 5787 inet_csk_schedule_ack(sk); 5788 tcp_enter_quickack_mode(sk); 5789 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5790 TCP_DELACK_MAX, TCP_RTO_MAX); 5791 5792 discard: 5793 tcp_drop(sk, skb); 5794 return 0; 5795 } else { 5796 tcp_send_ack(sk); 5797 } 5798 return -1; 5799 } 5800 5801 /* No ACK in the segment */ 5802 5803 if (th->rst) { 5804 /* rfc793: 5805 * "If the RST bit is set 5806 * 5807 * Otherwise (no ACK) drop the segment and return." 5808 */ 5809 5810 goto discard_and_undo; 5811 } 5812 5813 /* PAWS check. */ 5814 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5815 tcp_paws_reject(&tp->rx_opt, 0)) 5816 goto discard_and_undo; 5817 5818 if (th->syn) { 5819 /* We see SYN without ACK. It is attempt of 5820 * simultaneous connect with crossed SYNs. 5821 * Particularly, it can be connect to self. 5822 */ 5823 tcp_set_state(sk, TCP_SYN_RECV); 5824 5825 if (tp->rx_opt.saw_tstamp) { 5826 tp->rx_opt.tstamp_ok = 1; 5827 tcp_store_ts_recent(tp); 5828 tp->tcp_header_len = 5829 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5830 } else { 5831 tp->tcp_header_len = sizeof(struct tcphdr); 5832 } 5833 5834 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5835 tp->copied_seq = tp->rcv_nxt; 5836 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5837 5838 /* RFC1323: The window in SYN & SYN/ACK segments is 5839 * never scaled. 5840 */ 5841 tp->snd_wnd = ntohs(th->window); 5842 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5843 tp->max_window = tp->snd_wnd; 5844 5845 tcp_ecn_rcv_syn(tp, th); 5846 5847 tcp_mtup_init(sk); 5848 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5849 tcp_initialize_rcv_mss(sk); 5850 5851 tcp_send_synack(sk); 5852 #if 0 5853 /* Note, we could accept data and URG from this segment. 5854 * There are no obstacles to make this (except that we must 5855 * either change tcp_recvmsg() to prevent it from returning data 5856 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5857 * 5858 * However, if we ignore data in ACKless segments sometimes, 5859 * we have no reasons to accept it sometimes. 5860 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5861 * is not flawless. So, discard packet for sanity. 5862 * Uncomment this return to process the data. 5863 */ 5864 return -1; 5865 #else 5866 goto discard; 5867 #endif 5868 } 5869 /* "fifth, if neither of the SYN or RST bits is set then 5870 * drop the segment and return." 5871 */ 5872 5873 discard_and_undo: 5874 tcp_clear_options(&tp->rx_opt); 5875 tp->rx_opt.mss_clamp = saved_clamp; 5876 goto discard; 5877 5878 reset_and_undo: 5879 tcp_clear_options(&tp->rx_opt); 5880 tp->rx_opt.mss_clamp = saved_clamp; 5881 return 1; 5882 } 5883 5884 /* 5885 * This function implements the receiving procedure of RFC 793 for 5886 * all states except ESTABLISHED and TIME_WAIT. 5887 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5888 * address independent. 5889 */ 5890 5891 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5892 { 5893 struct tcp_sock *tp = tcp_sk(sk); 5894 struct inet_connection_sock *icsk = inet_csk(sk); 5895 const struct tcphdr *th = tcp_hdr(skb); 5896 struct request_sock *req; 5897 int queued = 0; 5898 bool acceptable; 5899 5900 switch (sk->sk_state) { 5901 case TCP_CLOSE: 5902 goto discard; 5903 5904 case TCP_LISTEN: 5905 if (th->ack) 5906 return 1; 5907 5908 if (th->rst) 5909 goto discard; 5910 5911 if (th->syn) { 5912 if (th->fin) 5913 goto discard; 5914 /* It is possible that we process SYN packets from backlog, 5915 * so we need to make sure to disable BH right there. 5916 */ 5917 local_bh_disable(); 5918 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5919 local_bh_enable(); 5920 5921 if (!acceptable) 5922 return 1; 5923 consume_skb(skb); 5924 return 0; 5925 } 5926 goto discard; 5927 5928 case TCP_SYN_SENT: 5929 tp->rx_opt.saw_tstamp = 0; 5930 tcp_mstamp_refresh(tp); 5931 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5932 if (queued >= 0) 5933 return queued; 5934 5935 /* Do step6 onward by hand. */ 5936 tcp_urg(sk, skb, th); 5937 __kfree_skb(skb); 5938 tcp_data_snd_check(sk); 5939 return 0; 5940 } 5941 5942 tcp_mstamp_refresh(tp); 5943 tp->rx_opt.saw_tstamp = 0; 5944 req = tp->fastopen_rsk; 5945 if (req) { 5946 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5947 sk->sk_state != TCP_FIN_WAIT1); 5948 5949 if (!tcp_check_req(sk, skb, req, true)) 5950 goto discard; 5951 } 5952 5953 if (!th->ack && !th->rst && !th->syn) 5954 goto discard; 5955 5956 if (!tcp_validate_incoming(sk, skb, th, 0)) 5957 return 0; 5958 5959 /* step 5: check the ACK field */ 5960 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5961 FLAG_UPDATE_TS_RECENT | 5962 FLAG_NO_CHALLENGE_ACK) > 0; 5963 5964 if (!acceptable) { 5965 if (sk->sk_state == TCP_SYN_RECV) 5966 return 1; /* send one RST */ 5967 tcp_send_challenge_ack(sk, skb); 5968 goto discard; 5969 } 5970 switch (sk->sk_state) { 5971 case TCP_SYN_RECV: 5972 if (!tp->srtt_us) 5973 tcp_synack_rtt_meas(sk, req); 5974 5975 /* Once we leave TCP_SYN_RECV, we no longer need req 5976 * so release it. 5977 */ 5978 if (req) { 5979 inet_csk(sk)->icsk_retransmits = 0; 5980 reqsk_fastopen_remove(sk, req, false); 5981 } else { 5982 /* Make sure socket is routed, for correct metrics. */ 5983 icsk->icsk_af_ops->rebuild_header(sk); 5984 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5985 tcp_init_congestion_control(sk); 5986 5987 tcp_mtup_init(sk); 5988 tp->copied_seq = tp->rcv_nxt; 5989 tcp_init_buffer_space(sk); 5990 } 5991 smp_mb(); 5992 tcp_set_state(sk, TCP_ESTABLISHED); 5993 sk->sk_state_change(sk); 5994 5995 /* Note, that this wakeup is only for marginal crossed SYN case. 5996 * Passively open sockets are not waked up, because 5997 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5998 */ 5999 if (sk->sk_socket) 6000 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6001 6002 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6003 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6004 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6005 6006 if (tp->rx_opt.tstamp_ok) 6007 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6008 6009 if (req) { 6010 /* Re-arm the timer because data may have been sent out. 6011 * This is similar to the regular data transmission case 6012 * when new data has just been ack'ed. 6013 * 6014 * (TFO) - we could try to be more aggressive and 6015 * retransmitting any data sooner based on when they 6016 * are sent out. 6017 */ 6018 tcp_rearm_rto(sk); 6019 } else 6020 tcp_init_metrics(sk); 6021 6022 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6023 tcp_update_pacing_rate(sk); 6024 6025 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6026 tp->lsndtime = tcp_jiffies32; 6027 6028 tcp_initialize_rcv_mss(sk); 6029 tcp_fast_path_on(tp); 6030 break; 6031 6032 case TCP_FIN_WAIT1: { 6033 int tmo; 6034 6035 /* If we enter the TCP_FIN_WAIT1 state and we are a 6036 * Fast Open socket and this is the first acceptable 6037 * ACK we have received, this would have acknowledged 6038 * our SYNACK so stop the SYNACK timer. 6039 */ 6040 if (req) { 6041 /* We no longer need the request sock. */ 6042 reqsk_fastopen_remove(sk, req, false); 6043 tcp_rearm_rto(sk); 6044 } 6045 if (tp->snd_una != tp->write_seq) 6046 break; 6047 6048 tcp_set_state(sk, TCP_FIN_WAIT2); 6049 sk->sk_shutdown |= SEND_SHUTDOWN; 6050 6051 sk_dst_confirm(sk); 6052 6053 if (!sock_flag(sk, SOCK_DEAD)) { 6054 /* Wake up lingering close() */ 6055 sk->sk_state_change(sk); 6056 break; 6057 } 6058 6059 if (tp->linger2 < 0) { 6060 tcp_done(sk); 6061 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6062 return 1; 6063 } 6064 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6065 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6066 /* Receive out of order FIN after close() */ 6067 if (tp->syn_fastopen && th->fin) 6068 tcp_fastopen_active_disable(sk); 6069 tcp_done(sk); 6070 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6071 return 1; 6072 } 6073 6074 tmo = tcp_fin_time(sk); 6075 if (tmo > TCP_TIMEWAIT_LEN) { 6076 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6077 } else if (th->fin || sock_owned_by_user(sk)) { 6078 /* Bad case. We could lose such FIN otherwise. 6079 * It is not a big problem, but it looks confusing 6080 * and not so rare event. We still can lose it now, 6081 * if it spins in bh_lock_sock(), but it is really 6082 * marginal case. 6083 */ 6084 inet_csk_reset_keepalive_timer(sk, tmo); 6085 } else { 6086 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6087 goto discard; 6088 } 6089 break; 6090 } 6091 6092 case TCP_CLOSING: 6093 if (tp->snd_una == tp->write_seq) { 6094 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6095 goto discard; 6096 } 6097 break; 6098 6099 case TCP_LAST_ACK: 6100 if (tp->snd_una == tp->write_seq) { 6101 tcp_update_metrics(sk); 6102 tcp_done(sk); 6103 goto discard; 6104 } 6105 break; 6106 } 6107 6108 /* step 6: check the URG bit */ 6109 tcp_urg(sk, skb, th); 6110 6111 /* step 7: process the segment text */ 6112 switch (sk->sk_state) { 6113 case TCP_CLOSE_WAIT: 6114 case TCP_CLOSING: 6115 case TCP_LAST_ACK: 6116 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6117 break; 6118 case TCP_FIN_WAIT1: 6119 case TCP_FIN_WAIT2: 6120 /* RFC 793 says to queue data in these states, 6121 * RFC 1122 says we MUST send a reset. 6122 * BSD 4.4 also does reset. 6123 */ 6124 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6125 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6126 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6127 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6128 tcp_reset(sk); 6129 return 1; 6130 } 6131 } 6132 /* Fall through */ 6133 case TCP_ESTABLISHED: 6134 tcp_data_queue(sk, skb); 6135 queued = 1; 6136 break; 6137 } 6138 6139 /* tcp_data could move socket to TIME-WAIT */ 6140 if (sk->sk_state != TCP_CLOSE) { 6141 tcp_data_snd_check(sk); 6142 tcp_ack_snd_check(sk); 6143 } 6144 6145 if (!queued) { 6146 discard: 6147 tcp_drop(sk, skb); 6148 } 6149 return 0; 6150 } 6151 EXPORT_SYMBOL(tcp_rcv_state_process); 6152 6153 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6154 { 6155 struct inet_request_sock *ireq = inet_rsk(req); 6156 6157 if (family == AF_INET) 6158 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6159 &ireq->ir_rmt_addr, port); 6160 #if IS_ENABLED(CONFIG_IPV6) 6161 else if (family == AF_INET6) 6162 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6163 &ireq->ir_v6_rmt_addr, port); 6164 #endif 6165 } 6166 6167 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6168 * 6169 * If we receive a SYN packet with these bits set, it means a 6170 * network is playing bad games with TOS bits. In order to 6171 * avoid possible false congestion notifications, we disable 6172 * TCP ECN negotiation. 6173 * 6174 * Exception: tcp_ca wants ECN. This is required for DCTCP 6175 * congestion control: Linux DCTCP asserts ECT on all packets, 6176 * including SYN, which is most optimal solution; however, 6177 * others, such as FreeBSD do not. 6178 */ 6179 static void tcp_ecn_create_request(struct request_sock *req, 6180 const struct sk_buff *skb, 6181 const struct sock *listen_sk, 6182 const struct dst_entry *dst) 6183 { 6184 const struct tcphdr *th = tcp_hdr(skb); 6185 const struct net *net = sock_net(listen_sk); 6186 bool th_ecn = th->ece && th->cwr; 6187 bool ect, ecn_ok; 6188 u32 ecn_ok_dst; 6189 6190 if (!th_ecn) 6191 return; 6192 6193 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6194 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6195 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6196 6197 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6198 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6199 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6200 inet_rsk(req)->ecn_ok = 1; 6201 } 6202 6203 static void tcp_openreq_init(struct request_sock *req, 6204 const struct tcp_options_received *rx_opt, 6205 struct sk_buff *skb, const struct sock *sk) 6206 { 6207 struct inet_request_sock *ireq = inet_rsk(req); 6208 6209 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6210 req->cookie_ts = 0; 6211 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6212 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6213 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6214 tcp_rsk(req)->last_oow_ack_time = 0; 6215 req->mss = rx_opt->mss_clamp; 6216 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6217 ireq->tstamp_ok = rx_opt->tstamp_ok; 6218 ireq->sack_ok = rx_opt->sack_ok; 6219 ireq->snd_wscale = rx_opt->snd_wscale; 6220 ireq->wscale_ok = rx_opt->wscale_ok; 6221 ireq->acked = 0; 6222 ireq->ecn_ok = 0; 6223 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6224 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6225 ireq->ir_mark = inet_request_mark(sk, skb); 6226 } 6227 6228 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6229 struct sock *sk_listener, 6230 bool attach_listener) 6231 { 6232 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6233 attach_listener); 6234 6235 if (req) { 6236 struct inet_request_sock *ireq = inet_rsk(req); 6237 6238 kmemcheck_annotate_bitfield(ireq, flags); 6239 ireq->opt = NULL; 6240 #if IS_ENABLED(CONFIG_IPV6) 6241 ireq->pktopts = NULL; 6242 #endif 6243 atomic64_set(&ireq->ir_cookie, 0); 6244 ireq->ireq_state = TCP_NEW_SYN_RECV; 6245 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6246 ireq->ireq_family = sk_listener->sk_family; 6247 } 6248 6249 return req; 6250 } 6251 EXPORT_SYMBOL(inet_reqsk_alloc); 6252 6253 /* 6254 * Return true if a syncookie should be sent 6255 */ 6256 static bool tcp_syn_flood_action(const struct sock *sk, 6257 const struct sk_buff *skb, 6258 const char *proto) 6259 { 6260 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6261 const char *msg = "Dropping request"; 6262 bool want_cookie = false; 6263 struct net *net = sock_net(sk); 6264 6265 #ifdef CONFIG_SYN_COOKIES 6266 if (net->ipv4.sysctl_tcp_syncookies) { 6267 msg = "Sending cookies"; 6268 want_cookie = true; 6269 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6270 } else 6271 #endif 6272 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6273 6274 if (!queue->synflood_warned && 6275 net->ipv4.sysctl_tcp_syncookies != 2 && 6276 xchg(&queue->synflood_warned, 1) == 0) 6277 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6278 proto, ntohs(tcp_hdr(skb)->dest), msg); 6279 6280 return want_cookie; 6281 } 6282 6283 static void tcp_reqsk_record_syn(const struct sock *sk, 6284 struct request_sock *req, 6285 const struct sk_buff *skb) 6286 { 6287 if (tcp_sk(sk)->save_syn) { 6288 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6289 u32 *copy; 6290 6291 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6292 if (copy) { 6293 copy[0] = len; 6294 memcpy(©[1], skb_network_header(skb), len); 6295 req->saved_syn = copy; 6296 } 6297 } 6298 } 6299 6300 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6301 const struct tcp_request_sock_ops *af_ops, 6302 struct sock *sk, struct sk_buff *skb) 6303 { 6304 struct tcp_fastopen_cookie foc = { .len = -1 }; 6305 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6306 struct tcp_options_received tmp_opt; 6307 struct tcp_sock *tp = tcp_sk(sk); 6308 struct net *net = sock_net(sk); 6309 struct sock *fastopen_sk = NULL; 6310 struct dst_entry *dst = NULL; 6311 struct request_sock *req; 6312 bool want_cookie = false; 6313 struct flowi fl; 6314 6315 /* TW buckets are converted to open requests without 6316 * limitations, they conserve resources and peer is 6317 * evidently real one. 6318 */ 6319 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6320 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6321 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6322 if (!want_cookie) 6323 goto drop; 6324 } 6325 6326 if (sk_acceptq_is_full(sk)) { 6327 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6328 goto drop; 6329 } 6330 6331 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6332 if (!req) 6333 goto drop; 6334 6335 tcp_rsk(req)->af_specific = af_ops; 6336 tcp_rsk(req)->ts_off = 0; 6337 6338 tcp_clear_options(&tmp_opt); 6339 tmp_opt.mss_clamp = af_ops->mss_clamp; 6340 tmp_opt.user_mss = tp->rx_opt.user_mss; 6341 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6342 want_cookie ? NULL : &foc); 6343 6344 if (want_cookie && !tmp_opt.saw_tstamp) 6345 tcp_clear_options(&tmp_opt); 6346 6347 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6348 tcp_openreq_init(req, &tmp_opt, skb, sk); 6349 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6350 6351 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6352 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6353 6354 af_ops->init_req(req, sk, skb); 6355 6356 if (security_inet_conn_request(sk, skb, req)) 6357 goto drop_and_free; 6358 6359 if (tmp_opt.tstamp_ok) 6360 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6361 6362 if (!want_cookie && !isn) { 6363 /* Kill the following clause, if you dislike this way. */ 6364 if (!net->ipv4.sysctl_tcp_syncookies && 6365 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6366 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6367 !tcp_peer_is_proven(req, dst)) { 6368 /* Without syncookies last quarter of 6369 * backlog is filled with destinations, 6370 * proven to be alive. 6371 * It means that we continue to communicate 6372 * to destinations, already remembered 6373 * to the moment of synflood. 6374 */ 6375 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6376 rsk_ops->family); 6377 goto drop_and_release; 6378 } 6379 6380 isn = af_ops->init_seq(skb); 6381 } 6382 if (!dst) { 6383 dst = af_ops->route_req(sk, &fl, req); 6384 if (!dst) 6385 goto drop_and_free; 6386 } 6387 6388 tcp_ecn_create_request(req, skb, sk, dst); 6389 6390 if (want_cookie) { 6391 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6392 req->cookie_ts = tmp_opt.tstamp_ok; 6393 if (!tmp_opt.tstamp_ok) 6394 inet_rsk(req)->ecn_ok = 0; 6395 } 6396 6397 tcp_rsk(req)->snt_isn = isn; 6398 tcp_rsk(req)->txhash = net_tx_rndhash(); 6399 tcp_openreq_init_rwin(req, sk, dst); 6400 if (!want_cookie) { 6401 tcp_reqsk_record_syn(sk, req, skb); 6402 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6403 } 6404 if (fastopen_sk) { 6405 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6406 &foc, TCP_SYNACK_FASTOPEN); 6407 /* Add the child socket directly into the accept queue */ 6408 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6409 sk->sk_data_ready(sk); 6410 bh_unlock_sock(fastopen_sk); 6411 sock_put(fastopen_sk); 6412 } else { 6413 tcp_rsk(req)->tfo_listener = false; 6414 if (!want_cookie) 6415 inet_csk_reqsk_queue_hash_add(sk, req, 6416 tcp_timeout_init((struct sock *)req)); 6417 af_ops->send_synack(sk, dst, &fl, req, &foc, 6418 !want_cookie ? TCP_SYNACK_NORMAL : 6419 TCP_SYNACK_COOKIE); 6420 if (want_cookie) { 6421 reqsk_free(req); 6422 return 0; 6423 } 6424 } 6425 reqsk_put(req); 6426 return 0; 6427 6428 drop_and_release: 6429 dst_release(dst); 6430 drop_and_free: 6431 reqsk_free(req); 6432 drop: 6433 tcp_listendrop(sk); 6434 return 0; 6435 } 6436 EXPORT_SYMBOL(tcp_conn_request); 6437