xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 97da55fc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_frto_response __read_mostly;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 2;
102 
103 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
104 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
105 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
106 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
107 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
108 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
109 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
110 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
116 
117 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 
126 /* Adapt the MSS value used to make delayed ack decision to the
127  * real world.
128  */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131 	struct inet_connection_sock *icsk = inet_csk(sk);
132 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 	unsigned int len;
134 
135 	icsk->icsk_ack.last_seg_size = 0;
136 
137 	/* skb->len may jitter because of SACKs, even if peer
138 	 * sends good full-sized frames.
139 	 */
140 	len = skb_shinfo(skb)->gso_size ? : skb->len;
141 	if (len >= icsk->icsk_ack.rcv_mss) {
142 		icsk->icsk_ack.rcv_mss = len;
143 	} else {
144 		/* Otherwise, we make more careful check taking into account,
145 		 * that SACKs block is variable.
146 		 *
147 		 * "len" is invariant segment length, including TCP header.
148 		 */
149 		len += skb->data - skb_transport_header(skb);
150 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 		    /* If PSH is not set, packet should be
152 		     * full sized, provided peer TCP is not badly broken.
153 		     * This observation (if it is correct 8)) allows
154 		     * to handle super-low mtu links fairly.
155 		     */
156 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 			/* Subtract also invariant (if peer is RFC compliant),
159 			 * tcp header plus fixed timestamp option length.
160 			 * Resulting "len" is MSS free of SACK jitter.
161 			 */
162 			len -= tcp_sk(sk)->tcp_header_len;
163 			icsk->icsk_ack.last_seg_size = len;
164 			if (len == lss) {
165 				icsk->icsk_ack.rcv_mss = len;
166 				return;
167 			}
168 		}
169 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 	}
173 }
174 
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177 	struct inet_connection_sock *icsk = inet_csk(sk);
178 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 
180 	if (quickacks == 0)
181 		quickacks = 2;
182 	if (quickacks > icsk->icsk_ack.quick)
183 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185 
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188 	struct inet_connection_sock *icsk = inet_csk(sk);
189 	tcp_incr_quickack(sk);
190 	icsk->icsk_ack.pingpong = 0;
191 	icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193 
194 /* Send ACKs quickly, if "quick" count is not exhausted
195  * and the session is not interactive.
196  */
197 
198 static inline bool tcp_in_quickack_mode(const struct sock *sk)
199 {
200 	const struct inet_connection_sock *icsk = inet_csk(sk);
201 
202 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 }
204 
205 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
206 {
207 	if (tp->ecn_flags & TCP_ECN_OK)
208 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 }
210 
211 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 {
213 	if (tcp_hdr(skb)->cwr)
214 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216 
217 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
218 {
219 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221 
222 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 {
224 	if (!(tp->ecn_flags & TCP_ECN_OK))
225 		return;
226 
227 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
228 	case INET_ECN_NOT_ECT:
229 		/* Funny extension: if ECT is not set on a segment,
230 		 * and we already seen ECT on a previous segment,
231 		 * it is probably a retransmit.
232 		 */
233 		if (tp->ecn_flags & TCP_ECN_SEEN)
234 			tcp_enter_quickack_mode((struct sock *)tp);
235 		break;
236 	case INET_ECN_CE:
237 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
238 			/* Better not delay acks, sender can have a very low cwnd */
239 			tcp_enter_quickack_mode((struct sock *)tp);
240 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 		}
242 		/* fallinto */
243 	default:
244 		tp->ecn_flags |= TCP_ECN_SEEN;
245 	}
246 }
247 
248 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
249 {
250 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
251 		tp->ecn_flags &= ~TCP_ECN_OK;
252 }
253 
254 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
255 {
256 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
257 		tp->ecn_flags &= ~TCP_ECN_OK;
258 }
259 
260 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
261 {
262 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
263 		return true;
264 	return false;
265 }
266 
267 /* Buffer size and advertised window tuning.
268  *
269  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
270  */
271 
272 static void tcp_fixup_sndbuf(struct sock *sk)
273 {
274 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
275 
276 	sndmem *= TCP_INIT_CWND;
277 	if (sk->sk_sndbuf < sndmem)
278 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
279 }
280 
281 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
282  *
283  * All tcp_full_space() is split to two parts: "network" buffer, allocated
284  * forward and advertised in receiver window (tp->rcv_wnd) and
285  * "application buffer", required to isolate scheduling/application
286  * latencies from network.
287  * window_clamp is maximal advertised window. It can be less than
288  * tcp_full_space(), in this case tcp_full_space() - window_clamp
289  * is reserved for "application" buffer. The less window_clamp is
290  * the smoother our behaviour from viewpoint of network, but the lower
291  * throughput and the higher sensitivity of the connection to losses. 8)
292  *
293  * rcv_ssthresh is more strict window_clamp used at "slow start"
294  * phase to predict further behaviour of this connection.
295  * It is used for two goals:
296  * - to enforce header prediction at sender, even when application
297  *   requires some significant "application buffer". It is check #1.
298  * - to prevent pruning of receive queue because of misprediction
299  *   of receiver window. Check #2.
300  *
301  * The scheme does not work when sender sends good segments opening
302  * window and then starts to feed us spaghetti. But it should work
303  * in common situations. Otherwise, we have to rely on queue collapsing.
304  */
305 
306 /* Slow part of check#2. */
307 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
308 {
309 	struct tcp_sock *tp = tcp_sk(sk);
310 	/* Optimize this! */
311 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
312 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
313 
314 	while (tp->rcv_ssthresh <= window) {
315 		if (truesize <= skb->len)
316 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
317 
318 		truesize >>= 1;
319 		window >>= 1;
320 	}
321 	return 0;
322 }
323 
324 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
325 {
326 	struct tcp_sock *tp = tcp_sk(sk);
327 
328 	/* Check #1 */
329 	if (tp->rcv_ssthresh < tp->window_clamp &&
330 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
331 	    !sk_under_memory_pressure(sk)) {
332 		int incr;
333 
334 		/* Check #2. Increase window, if skb with such overhead
335 		 * will fit to rcvbuf in future.
336 		 */
337 		if (tcp_win_from_space(skb->truesize) <= skb->len)
338 			incr = 2 * tp->advmss;
339 		else
340 			incr = __tcp_grow_window(sk, skb);
341 
342 		if (incr) {
343 			incr = max_t(int, incr, 2 * skb->len);
344 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
345 					       tp->window_clamp);
346 			inet_csk(sk)->icsk_ack.quick |= 1;
347 		}
348 	}
349 }
350 
351 /* 3. Tuning rcvbuf, when connection enters established state. */
352 
353 static void tcp_fixup_rcvbuf(struct sock *sk)
354 {
355 	u32 mss = tcp_sk(sk)->advmss;
356 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
357 	int rcvmem;
358 
359 	/* Limit to 10 segments if mss <= 1460,
360 	 * or 14600/mss segments, with a minimum of two segments.
361 	 */
362 	if (mss > 1460)
363 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
364 
365 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
366 	while (tcp_win_from_space(rcvmem) < mss)
367 		rcvmem += 128;
368 
369 	rcvmem *= icwnd;
370 
371 	if (sk->sk_rcvbuf < rcvmem)
372 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
373 }
374 
375 /* 4. Try to fixup all. It is made immediately after connection enters
376  *    established state.
377  */
378 void tcp_init_buffer_space(struct sock *sk)
379 {
380 	struct tcp_sock *tp = tcp_sk(sk);
381 	int maxwin;
382 
383 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
384 		tcp_fixup_rcvbuf(sk);
385 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
386 		tcp_fixup_sndbuf(sk);
387 
388 	tp->rcvq_space.space = tp->rcv_wnd;
389 
390 	maxwin = tcp_full_space(sk);
391 
392 	if (tp->window_clamp >= maxwin) {
393 		tp->window_clamp = maxwin;
394 
395 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
396 			tp->window_clamp = max(maxwin -
397 					       (maxwin >> sysctl_tcp_app_win),
398 					       4 * tp->advmss);
399 	}
400 
401 	/* Force reservation of one segment. */
402 	if (sysctl_tcp_app_win &&
403 	    tp->window_clamp > 2 * tp->advmss &&
404 	    tp->window_clamp + tp->advmss > maxwin)
405 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
406 
407 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
408 	tp->snd_cwnd_stamp = tcp_time_stamp;
409 }
410 
411 /* 5. Recalculate window clamp after socket hit its memory bounds. */
412 static void tcp_clamp_window(struct sock *sk)
413 {
414 	struct tcp_sock *tp = tcp_sk(sk);
415 	struct inet_connection_sock *icsk = inet_csk(sk);
416 
417 	icsk->icsk_ack.quick = 0;
418 
419 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
420 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
421 	    !sk_under_memory_pressure(sk) &&
422 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
423 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
424 				    sysctl_tcp_rmem[2]);
425 	}
426 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
427 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
428 }
429 
430 /* Initialize RCV_MSS value.
431  * RCV_MSS is an our guess about MSS used by the peer.
432  * We haven't any direct information about the MSS.
433  * It's better to underestimate the RCV_MSS rather than overestimate.
434  * Overestimations make us ACKing less frequently than needed.
435  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
436  */
437 void tcp_initialize_rcv_mss(struct sock *sk)
438 {
439 	const struct tcp_sock *tp = tcp_sk(sk);
440 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
441 
442 	hint = min(hint, tp->rcv_wnd / 2);
443 	hint = min(hint, TCP_MSS_DEFAULT);
444 	hint = max(hint, TCP_MIN_MSS);
445 
446 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
447 }
448 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
449 
450 /* Receiver "autotuning" code.
451  *
452  * The algorithm for RTT estimation w/o timestamps is based on
453  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
454  * <http://public.lanl.gov/radiant/pubs.html#DRS>
455  *
456  * More detail on this code can be found at
457  * <http://staff.psc.edu/jheffner/>,
458  * though this reference is out of date.  A new paper
459  * is pending.
460  */
461 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
462 {
463 	u32 new_sample = tp->rcv_rtt_est.rtt;
464 	long m = sample;
465 
466 	if (m == 0)
467 		m = 1;
468 
469 	if (new_sample != 0) {
470 		/* If we sample in larger samples in the non-timestamp
471 		 * case, we could grossly overestimate the RTT especially
472 		 * with chatty applications or bulk transfer apps which
473 		 * are stalled on filesystem I/O.
474 		 *
475 		 * Also, since we are only going for a minimum in the
476 		 * non-timestamp case, we do not smooth things out
477 		 * else with timestamps disabled convergence takes too
478 		 * long.
479 		 */
480 		if (!win_dep) {
481 			m -= (new_sample >> 3);
482 			new_sample += m;
483 		} else {
484 			m <<= 3;
485 			if (m < new_sample)
486 				new_sample = m;
487 		}
488 	} else {
489 		/* No previous measure. */
490 		new_sample = m << 3;
491 	}
492 
493 	if (tp->rcv_rtt_est.rtt != new_sample)
494 		tp->rcv_rtt_est.rtt = new_sample;
495 }
496 
497 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
498 {
499 	if (tp->rcv_rtt_est.time == 0)
500 		goto new_measure;
501 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
502 		return;
503 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
504 
505 new_measure:
506 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
507 	tp->rcv_rtt_est.time = tcp_time_stamp;
508 }
509 
510 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
511 					  const struct sk_buff *skb)
512 {
513 	struct tcp_sock *tp = tcp_sk(sk);
514 	if (tp->rx_opt.rcv_tsecr &&
515 	    (TCP_SKB_CB(skb)->end_seq -
516 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
517 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
518 }
519 
520 /*
521  * This function should be called every time data is copied to user space.
522  * It calculates the appropriate TCP receive buffer space.
523  */
524 void tcp_rcv_space_adjust(struct sock *sk)
525 {
526 	struct tcp_sock *tp = tcp_sk(sk);
527 	int time;
528 	int space;
529 
530 	if (tp->rcvq_space.time == 0)
531 		goto new_measure;
532 
533 	time = tcp_time_stamp - tp->rcvq_space.time;
534 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
535 		return;
536 
537 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
538 
539 	space = max(tp->rcvq_space.space, space);
540 
541 	if (tp->rcvq_space.space != space) {
542 		int rcvmem;
543 
544 		tp->rcvq_space.space = space;
545 
546 		if (sysctl_tcp_moderate_rcvbuf &&
547 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
548 			int new_clamp = space;
549 
550 			/* Receive space grows, normalize in order to
551 			 * take into account packet headers and sk_buff
552 			 * structure overhead.
553 			 */
554 			space /= tp->advmss;
555 			if (!space)
556 				space = 1;
557 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
558 			while (tcp_win_from_space(rcvmem) < tp->advmss)
559 				rcvmem += 128;
560 			space *= rcvmem;
561 			space = min(space, sysctl_tcp_rmem[2]);
562 			if (space > sk->sk_rcvbuf) {
563 				sk->sk_rcvbuf = space;
564 
565 				/* Make the window clamp follow along.  */
566 				tp->window_clamp = new_clamp;
567 			}
568 		}
569 	}
570 
571 new_measure:
572 	tp->rcvq_space.seq = tp->copied_seq;
573 	tp->rcvq_space.time = tcp_time_stamp;
574 }
575 
576 /* There is something which you must keep in mind when you analyze the
577  * behavior of the tp->ato delayed ack timeout interval.  When a
578  * connection starts up, we want to ack as quickly as possible.  The
579  * problem is that "good" TCP's do slow start at the beginning of data
580  * transmission.  The means that until we send the first few ACK's the
581  * sender will sit on his end and only queue most of his data, because
582  * he can only send snd_cwnd unacked packets at any given time.  For
583  * each ACK we send, he increments snd_cwnd and transmits more of his
584  * queue.  -DaveM
585  */
586 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
587 {
588 	struct tcp_sock *tp = tcp_sk(sk);
589 	struct inet_connection_sock *icsk = inet_csk(sk);
590 	u32 now;
591 
592 	inet_csk_schedule_ack(sk);
593 
594 	tcp_measure_rcv_mss(sk, skb);
595 
596 	tcp_rcv_rtt_measure(tp);
597 
598 	now = tcp_time_stamp;
599 
600 	if (!icsk->icsk_ack.ato) {
601 		/* The _first_ data packet received, initialize
602 		 * delayed ACK engine.
603 		 */
604 		tcp_incr_quickack(sk);
605 		icsk->icsk_ack.ato = TCP_ATO_MIN;
606 	} else {
607 		int m = now - icsk->icsk_ack.lrcvtime;
608 
609 		if (m <= TCP_ATO_MIN / 2) {
610 			/* The fastest case is the first. */
611 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
612 		} else if (m < icsk->icsk_ack.ato) {
613 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
614 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
615 				icsk->icsk_ack.ato = icsk->icsk_rto;
616 		} else if (m > icsk->icsk_rto) {
617 			/* Too long gap. Apparently sender failed to
618 			 * restart window, so that we send ACKs quickly.
619 			 */
620 			tcp_incr_quickack(sk);
621 			sk_mem_reclaim(sk);
622 		}
623 	}
624 	icsk->icsk_ack.lrcvtime = now;
625 
626 	TCP_ECN_check_ce(tp, skb);
627 
628 	if (skb->len >= 128)
629 		tcp_grow_window(sk, skb);
630 }
631 
632 /* Called to compute a smoothed rtt estimate. The data fed to this
633  * routine either comes from timestamps, or from segments that were
634  * known _not_ to have been retransmitted [see Karn/Partridge
635  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
636  * piece by Van Jacobson.
637  * NOTE: the next three routines used to be one big routine.
638  * To save cycles in the RFC 1323 implementation it was better to break
639  * it up into three procedures. -- erics
640  */
641 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
642 {
643 	struct tcp_sock *tp = tcp_sk(sk);
644 	long m = mrtt; /* RTT */
645 
646 	/*	The following amusing code comes from Jacobson's
647 	 *	article in SIGCOMM '88.  Note that rtt and mdev
648 	 *	are scaled versions of rtt and mean deviation.
649 	 *	This is designed to be as fast as possible
650 	 *	m stands for "measurement".
651 	 *
652 	 *	On a 1990 paper the rto value is changed to:
653 	 *	RTO = rtt + 4 * mdev
654 	 *
655 	 * Funny. This algorithm seems to be very broken.
656 	 * These formulae increase RTO, when it should be decreased, increase
657 	 * too slowly, when it should be increased quickly, decrease too quickly
658 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
659 	 * does not matter how to _calculate_ it. Seems, it was trap
660 	 * that VJ failed to avoid. 8)
661 	 */
662 	if (m == 0)
663 		m = 1;
664 	if (tp->srtt != 0) {
665 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
666 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
667 		if (m < 0) {
668 			m = -m;		/* m is now abs(error) */
669 			m -= (tp->mdev >> 2);   /* similar update on mdev */
670 			/* This is similar to one of Eifel findings.
671 			 * Eifel blocks mdev updates when rtt decreases.
672 			 * This solution is a bit different: we use finer gain
673 			 * for mdev in this case (alpha*beta).
674 			 * Like Eifel it also prevents growth of rto,
675 			 * but also it limits too fast rto decreases,
676 			 * happening in pure Eifel.
677 			 */
678 			if (m > 0)
679 				m >>= 3;
680 		} else {
681 			m -= (tp->mdev >> 2);   /* similar update on mdev */
682 		}
683 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
684 		if (tp->mdev > tp->mdev_max) {
685 			tp->mdev_max = tp->mdev;
686 			if (tp->mdev_max > tp->rttvar)
687 				tp->rttvar = tp->mdev_max;
688 		}
689 		if (after(tp->snd_una, tp->rtt_seq)) {
690 			if (tp->mdev_max < tp->rttvar)
691 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
692 			tp->rtt_seq = tp->snd_nxt;
693 			tp->mdev_max = tcp_rto_min(sk);
694 		}
695 	} else {
696 		/* no previous measure. */
697 		tp->srtt = m << 3;	/* take the measured time to be rtt */
698 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
699 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
700 		tp->rtt_seq = tp->snd_nxt;
701 	}
702 }
703 
704 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
705  * routine referred to above.
706  */
707 void tcp_set_rto(struct sock *sk)
708 {
709 	const struct tcp_sock *tp = tcp_sk(sk);
710 	/* Old crap is replaced with new one. 8)
711 	 *
712 	 * More seriously:
713 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
714 	 *    It cannot be less due to utterly erratic ACK generation made
715 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
716 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
717 	 *    is invisible. Actually, Linux-2.4 also generates erratic
718 	 *    ACKs in some circumstances.
719 	 */
720 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
721 
722 	/* 2. Fixups made earlier cannot be right.
723 	 *    If we do not estimate RTO correctly without them,
724 	 *    all the algo is pure shit and should be replaced
725 	 *    with correct one. It is exactly, which we pretend to do.
726 	 */
727 
728 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
729 	 * guarantees that rto is higher.
730 	 */
731 	tcp_bound_rto(sk);
732 }
733 
734 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
735 {
736 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
737 
738 	if (!cwnd)
739 		cwnd = TCP_INIT_CWND;
740 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
741 }
742 
743 /*
744  * Packet counting of FACK is based on in-order assumptions, therefore TCP
745  * disables it when reordering is detected
746  */
747 void tcp_disable_fack(struct tcp_sock *tp)
748 {
749 	/* RFC3517 uses different metric in lost marker => reset on change */
750 	if (tcp_is_fack(tp))
751 		tp->lost_skb_hint = NULL;
752 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
753 }
754 
755 /* Take a notice that peer is sending D-SACKs */
756 static void tcp_dsack_seen(struct tcp_sock *tp)
757 {
758 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
759 }
760 
761 static void tcp_update_reordering(struct sock *sk, const int metric,
762 				  const int ts)
763 {
764 	struct tcp_sock *tp = tcp_sk(sk);
765 	if (metric > tp->reordering) {
766 		int mib_idx;
767 
768 		tp->reordering = min(TCP_MAX_REORDERING, metric);
769 
770 		/* This exciting event is worth to be remembered. 8) */
771 		if (ts)
772 			mib_idx = LINUX_MIB_TCPTSREORDER;
773 		else if (tcp_is_reno(tp))
774 			mib_idx = LINUX_MIB_TCPRENOREORDER;
775 		else if (tcp_is_fack(tp))
776 			mib_idx = LINUX_MIB_TCPFACKREORDER;
777 		else
778 			mib_idx = LINUX_MIB_TCPSACKREORDER;
779 
780 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
781 #if FASTRETRANS_DEBUG > 1
782 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
783 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
784 			 tp->reordering,
785 			 tp->fackets_out,
786 			 tp->sacked_out,
787 			 tp->undo_marker ? tp->undo_retrans : 0);
788 #endif
789 		tcp_disable_fack(tp);
790 	}
791 
792 	if (metric > 0)
793 		tcp_disable_early_retrans(tp);
794 }
795 
796 /* This must be called before lost_out is incremented */
797 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
798 {
799 	if ((tp->retransmit_skb_hint == NULL) ||
800 	    before(TCP_SKB_CB(skb)->seq,
801 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
802 		tp->retransmit_skb_hint = skb;
803 
804 	if (!tp->lost_out ||
805 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
806 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
807 }
808 
809 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
810 {
811 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
812 		tcp_verify_retransmit_hint(tp, skb);
813 
814 		tp->lost_out += tcp_skb_pcount(skb);
815 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
816 	}
817 }
818 
819 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
820 					    struct sk_buff *skb)
821 {
822 	tcp_verify_retransmit_hint(tp, skb);
823 
824 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
825 		tp->lost_out += tcp_skb_pcount(skb);
826 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
827 	}
828 }
829 
830 /* This procedure tags the retransmission queue when SACKs arrive.
831  *
832  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
833  * Packets in queue with these bits set are counted in variables
834  * sacked_out, retrans_out and lost_out, correspondingly.
835  *
836  * Valid combinations are:
837  * Tag  InFlight	Description
838  * 0	1		- orig segment is in flight.
839  * S	0		- nothing flies, orig reached receiver.
840  * L	0		- nothing flies, orig lost by net.
841  * R	2		- both orig and retransmit are in flight.
842  * L|R	1		- orig is lost, retransmit is in flight.
843  * S|R  1		- orig reached receiver, retrans is still in flight.
844  * (L|S|R is logically valid, it could occur when L|R is sacked,
845  *  but it is equivalent to plain S and code short-curcuits it to S.
846  *  L|S is logically invalid, it would mean -1 packet in flight 8))
847  *
848  * These 6 states form finite state machine, controlled by the following events:
849  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
850  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
851  * 3. Loss detection event of two flavors:
852  *	A. Scoreboard estimator decided the packet is lost.
853  *	   A'. Reno "three dupacks" marks head of queue lost.
854  *	   A''. Its FACK modification, head until snd.fack is lost.
855  *	B. SACK arrives sacking SND.NXT at the moment, when the
856  *	   segment was retransmitted.
857  * 4. D-SACK added new rule: D-SACK changes any tag to S.
858  *
859  * It is pleasant to note, that state diagram turns out to be commutative,
860  * so that we are allowed not to be bothered by order of our actions,
861  * when multiple events arrive simultaneously. (see the function below).
862  *
863  * Reordering detection.
864  * --------------------
865  * Reordering metric is maximal distance, which a packet can be displaced
866  * in packet stream. With SACKs we can estimate it:
867  *
868  * 1. SACK fills old hole and the corresponding segment was not
869  *    ever retransmitted -> reordering. Alas, we cannot use it
870  *    when segment was retransmitted.
871  * 2. The last flaw is solved with D-SACK. D-SACK arrives
872  *    for retransmitted and already SACKed segment -> reordering..
873  * Both of these heuristics are not used in Loss state, when we cannot
874  * account for retransmits accurately.
875  *
876  * SACK block validation.
877  * ----------------------
878  *
879  * SACK block range validation checks that the received SACK block fits to
880  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
881  * Note that SND.UNA is not included to the range though being valid because
882  * it means that the receiver is rather inconsistent with itself reporting
883  * SACK reneging when it should advance SND.UNA. Such SACK block this is
884  * perfectly valid, however, in light of RFC2018 which explicitly states
885  * that "SACK block MUST reflect the newest segment.  Even if the newest
886  * segment is going to be discarded ...", not that it looks very clever
887  * in case of head skb. Due to potentional receiver driven attacks, we
888  * choose to avoid immediate execution of a walk in write queue due to
889  * reneging and defer head skb's loss recovery to standard loss recovery
890  * procedure that will eventually trigger (nothing forbids us doing this).
891  *
892  * Implements also blockage to start_seq wrap-around. Problem lies in the
893  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
894  * there's no guarantee that it will be before snd_nxt (n). The problem
895  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
896  * wrap (s_w):
897  *
898  *         <- outs wnd ->                          <- wrapzone ->
899  *         u     e      n                         u_w   e_w  s n_w
900  *         |     |      |                          |     |   |  |
901  * |<------------+------+----- TCP seqno space --------------+---------->|
902  * ...-- <2^31 ->|                                           |<--------...
903  * ...---- >2^31 ------>|                                    |<--------...
904  *
905  * Current code wouldn't be vulnerable but it's better still to discard such
906  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
907  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
908  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
909  * equal to the ideal case (infinite seqno space without wrap caused issues).
910  *
911  * With D-SACK the lower bound is extended to cover sequence space below
912  * SND.UNA down to undo_marker, which is the last point of interest. Yet
913  * again, D-SACK block must not to go across snd_una (for the same reason as
914  * for the normal SACK blocks, explained above). But there all simplicity
915  * ends, TCP might receive valid D-SACKs below that. As long as they reside
916  * fully below undo_marker they do not affect behavior in anyway and can
917  * therefore be safely ignored. In rare cases (which are more or less
918  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
919  * fragmentation and packet reordering past skb's retransmission. To consider
920  * them correctly, the acceptable range must be extended even more though
921  * the exact amount is rather hard to quantify. However, tp->max_window can
922  * be used as an exaggerated estimate.
923  */
924 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
925 				   u32 start_seq, u32 end_seq)
926 {
927 	/* Too far in future, or reversed (interpretation is ambiguous) */
928 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
929 		return false;
930 
931 	/* Nasty start_seq wrap-around check (see comments above) */
932 	if (!before(start_seq, tp->snd_nxt))
933 		return false;
934 
935 	/* In outstanding window? ...This is valid exit for D-SACKs too.
936 	 * start_seq == snd_una is non-sensical (see comments above)
937 	 */
938 	if (after(start_seq, tp->snd_una))
939 		return true;
940 
941 	if (!is_dsack || !tp->undo_marker)
942 		return false;
943 
944 	/* ...Then it's D-SACK, and must reside below snd_una completely */
945 	if (after(end_seq, tp->snd_una))
946 		return false;
947 
948 	if (!before(start_seq, tp->undo_marker))
949 		return true;
950 
951 	/* Too old */
952 	if (!after(end_seq, tp->undo_marker))
953 		return false;
954 
955 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
956 	 *   start_seq < undo_marker and end_seq >= undo_marker.
957 	 */
958 	return !before(start_seq, end_seq - tp->max_window);
959 }
960 
961 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
962  * Event "B". Later note: FACK people cheated me again 8), we have to account
963  * for reordering! Ugly, but should help.
964  *
965  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
966  * less than what is now known to be received by the other end (derived from
967  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
968  * retransmitted skbs to avoid some costly processing per ACKs.
969  */
970 static void tcp_mark_lost_retrans(struct sock *sk)
971 {
972 	const struct inet_connection_sock *icsk = inet_csk(sk);
973 	struct tcp_sock *tp = tcp_sk(sk);
974 	struct sk_buff *skb;
975 	int cnt = 0;
976 	u32 new_low_seq = tp->snd_nxt;
977 	u32 received_upto = tcp_highest_sack_seq(tp);
978 
979 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
980 	    !after(received_upto, tp->lost_retrans_low) ||
981 	    icsk->icsk_ca_state != TCP_CA_Recovery)
982 		return;
983 
984 	tcp_for_write_queue(skb, sk) {
985 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
986 
987 		if (skb == tcp_send_head(sk))
988 			break;
989 		if (cnt == tp->retrans_out)
990 			break;
991 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
992 			continue;
993 
994 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
995 			continue;
996 
997 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
998 		 * constraint here (see above) but figuring out that at
999 		 * least tp->reordering SACK blocks reside between ack_seq
1000 		 * and received_upto is not easy task to do cheaply with
1001 		 * the available datastructures.
1002 		 *
1003 		 * Whether FACK should check here for tp->reordering segs
1004 		 * in-between one could argue for either way (it would be
1005 		 * rather simple to implement as we could count fack_count
1006 		 * during the walk and do tp->fackets_out - fack_count).
1007 		 */
1008 		if (after(received_upto, ack_seq)) {
1009 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1010 			tp->retrans_out -= tcp_skb_pcount(skb);
1011 
1012 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1013 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1014 		} else {
1015 			if (before(ack_seq, new_low_seq))
1016 				new_low_seq = ack_seq;
1017 			cnt += tcp_skb_pcount(skb);
1018 		}
1019 	}
1020 
1021 	if (tp->retrans_out)
1022 		tp->lost_retrans_low = new_low_seq;
1023 }
1024 
1025 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1026 			    struct tcp_sack_block_wire *sp, int num_sacks,
1027 			    u32 prior_snd_una)
1028 {
1029 	struct tcp_sock *tp = tcp_sk(sk);
1030 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1031 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1032 	bool dup_sack = false;
1033 
1034 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1035 		dup_sack = true;
1036 		tcp_dsack_seen(tp);
1037 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1038 	} else if (num_sacks > 1) {
1039 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1040 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1041 
1042 		if (!after(end_seq_0, end_seq_1) &&
1043 		    !before(start_seq_0, start_seq_1)) {
1044 			dup_sack = true;
1045 			tcp_dsack_seen(tp);
1046 			NET_INC_STATS_BH(sock_net(sk),
1047 					LINUX_MIB_TCPDSACKOFORECV);
1048 		}
1049 	}
1050 
1051 	/* D-SACK for already forgotten data... Do dumb counting. */
1052 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1053 	    !after(end_seq_0, prior_snd_una) &&
1054 	    after(end_seq_0, tp->undo_marker))
1055 		tp->undo_retrans--;
1056 
1057 	return dup_sack;
1058 }
1059 
1060 struct tcp_sacktag_state {
1061 	int reord;
1062 	int fack_count;
1063 	int flag;
1064 };
1065 
1066 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1067  * the incoming SACK may not exactly match but we can find smaller MSS
1068  * aligned portion of it that matches. Therefore we might need to fragment
1069  * which may fail and creates some hassle (caller must handle error case
1070  * returns).
1071  *
1072  * FIXME: this could be merged to shift decision code
1073  */
1074 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1075 				  u32 start_seq, u32 end_seq)
1076 {
1077 	int err;
1078 	bool in_sack;
1079 	unsigned int pkt_len;
1080 	unsigned int mss;
1081 
1082 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1083 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1084 
1085 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1086 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1087 		mss = tcp_skb_mss(skb);
1088 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1089 
1090 		if (!in_sack) {
1091 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1092 			if (pkt_len < mss)
1093 				pkt_len = mss;
1094 		} else {
1095 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1096 			if (pkt_len < mss)
1097 				return -EINVAL;
1098 		}
1099 
1100 		/* Round if necessary so that SACKs cover only full MSSes
1101 		 * and/or the remaining small portion (if present)
1102 		 */
1103 		if (pkt_len > mss) {
1104 			unsigned int new_len = (pkt_len / mss) * mss;
1105 			if (!in_sack && new_len < pkt_len) {
1106 				new_len += mss;
1107 				if (new_len > skb->len)
1108 					return 0;
1109 			}
1110 			pkt_len = new_len;
1111 		}
1112 		err = tcp_fragment(sk, skb, pkt_len, mss);
1113 		if (err < 0)
1114 			return err;
1115 	}
1116 
1117 	return in_sack;
1118 }
1119 
1120 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1121 static u8 tcp_sacktag_one(struct sock *sk,
1122 			  struct tcp_sacktag_state *state, u8 sacked,
1123 			  u32 start_seq, u32 end_seq,
1124 			  bool dup_sack, int pcount)
1125 {
1126 	struct tcp_sock *tp = tcp_sk(sk);
1127 	int fack_count = state->fack_count;
1128 
1129 	/* Account D-SACK for retransmitted packet. */
1130 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1131 		if (tp->undo_marker && tp->undo_retrans &&
1132 		    after(end_seq, tp->undo_marker))
1133 			tp->undo_retrans--;
1134 		if (sacked & TCPCB_SACKED_ACKED)
1135 			state->reord = min(fack_count, state->reord);
1136 	}
1137 
1138 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1139 	if (!after(end_seq, tp->snd_una))
1140 		return sacked;
1141 
1142 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1143 		if (sacked & TCPCB_SACKED_RETRANS) {
1144 			/* If the segment is not tagged as lost,
1145 			 * we do not clear RETRANS, believing
1146 			 * that retransmission is still in flight.
1147 			 */
1148 			if (sacked & TCPCB_LOST) {
1149 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1150 				tp->lost_out -= pcount;
1151 				tp->retrans_out -= pcount;
1152 			}
1153 		} else {
1154 			if (!(sacked & TCPCB_RETRANS)) {
1155 				/* New sack for not retransmitted frame,
1156 				 * which was in hole. It is reordering.
1157 				 */
1158 				if (before(start_seq,
1159 					   tcp_highest_sack_seq(tp)))
1160 					state->reord = min(fack_count,
1161 							   state->reord);
1162 
1163 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1164 				if (!after(end_seq, tp->frto_highmark))
1165 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1166 			}
1167 
1168 			if (sacked & TCPCB_LOST) {
1169 				sacked &= ~TCPCB_LOST;
1170 				tp->lost_out -= pcount;
1171 			}
1172 		}
1173 
1174 		sacked |= TCPCB_SACKED_ACKED;
1175 		state->flag |= FLAG_DATA_SACKED;
1176 		tp->sacked_out += pcount;
1177 
1178 		fack_count += pcount;
1179 
1180 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1181 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1182 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1183 			tp->lost_cnt_hint += pcount;
1184 
1185 		if (fack_count > tp->fackets_out)
1186 			tp->fackets_out = fack_count;
1187 	}
1188 
1189 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1190 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1191 	 * are accounted above as well.
1192 	 */
1193 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1194 		sacked &= ~TCPCB_SACKED_RETRANS;
1195 		tp->retrans_out -= pcount;
1196 	}
1197 
1198 	return sacked;
1199 }
1200 
1201 /* Shift newly-SACKed bytes from this skb to the immediately previous
1202  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1203  */
1204 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1205 			    struct tcp_sacktag_state *state,
1206 			    unsigned int pcount, int shifted, int mss,
1207 			    bool dup_sack)
1208 {
1209 	struct tcp_sock *tp = tcp_sk(sk);
1210 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1211 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1212 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1213 
1214 	BUG_ON(!pcount);
1215 
1216 	/* Adjust counters and hints for the newly sacked sequence
1217 	 * range but discard the return value since prev is already
1218 	 * marked. We must tag the range first because the seq
1219 	 * advancement below implicitly advances
1220 	 * tcp_highest_sack_seq() when skb is highest_sack.
1221 	 */
1222 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1223 			start_seq, end_seq, dup_sack, pcount);
1224 
1225 	if (skb == tp->lost_skb_hint)
1226 		tp->lost_cnt_hint += pcount;
1227 
1228 	TCP_SKB_CB(prev)->end_seq += shifted;
1229 	TCP_SKB_CB(skb)->seq += shifted;
1230 
1231 	skb_shinfo(prev)->gso_segs += pcount;
1232 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1233 	skb_shinfo(skb)->gso_segs -= pcount;
1234 
1235 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1236 	 * in theory this shouldn't be necessary but as long as DSACK
1237 	 * code can come after this skb later on it's better to keep
1238 	 * setting gso_size to something.
1239 	 */
1240 	if (!skb_shinfo(prev)->gso_size) {
1241 		skb_shinfo(prev)->gso_size = mss;
1242 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1243 	}
1244 
1245 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1246 	if (skb_shinfo(skb)->gso_segs <= 1) {
1247 		skb_shinfo(skb)->gso_size = 0;
1248 		skb_shinfo(skb)->gso_type = 0;
1249 	}
1250 
1251 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1252 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1253 
1254 	if (skb->len > 0) {
1255 		BUG_ON(!tcp_skb_pcount(skb));
1256 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1257 		return false;
1258 	}
1259 
1260 	/* Whole SKB was eaten :-) */
1261 
1262 	if (skb == tp->retransmit_skb_hint)
1263 		tp->retransmit_skb_hint = prev;
1264 	if (skb == tp->scoreboard_skb_hint)
1265 		tp->scoreboard_skb_hint = prev;
1266 	if (skb == tp->lost_skb_hint) {
1267 		tp->lost_skb_hint = prev;
1268 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1269 	}
1270 
1271 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1272 	if (skb == tcp_highest_sack(sk))
1273 		tcp_advance_highest_sack(sk, skb);
1274 
1275 	tcp_unlink_write_queue(skb, sk);
1276 	sk_wmem_free_skb(sk, skb);
1277 
1278 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1279 
1280 	return true;
1281 }
1282 
1283 /* I wish gso_size would have a bit more sane initialization than
1284  * something-or-zero which complicates things
1285  */
1286 static int tcp_skb_seglen(const struct sk_buff *skb)
1287 {
1288 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1289 }
1290 
1291 /* Shifting pages past head area doesn't work */
1292 static int skb_can_shift(const struct sk_buff *skb)
1293 {
1294 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1295 }
1296 
1297 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1298  * skb.
1299  */
1300 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1301 					  struct tcp_sacktag_state *state,
1302 					  u32 start_seq, u32 end_seq,
1303 					  bool dup_sack)
1304 {
1305 	struct tcp_sock *tp = tcp_sk(sk);
1306 	struct sk_buff *prev;
1307 	int mss;
1308 	int pcount = 0;
1309 	int len;
1310 	int in_sack;
1311 
1312 	if (!sk_can_gso(sk))
1313 		goto fallback;
1314 
1315 	/* Normally R but no L won't result in plain S */
1316 	if (!dup_sack &&
1317 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1318 		goto fallback;
1319 	if (!skb_can_shift(skb))
1320 		goto fallback;
1321 	/* This frame is about to be dropped (was ACKed). */
1322 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1323 		goto fallback;
1324 
1325 	/* Can only happen with delayed DSACK + discard craziness */
1326 	if (unlikely(skb == tcp_write_queue_head(sk)))
1327 		goto fallback;
1328 	prev = tcp_write_queue_prev(sk, skb);
1329 
1330 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1331 		goto fallback;
1332 
1333 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1334 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1335 
1336 	if (in_sack) {
1337 		len = skb->len;
1338 		pcount = tcp_skb_pcount(skb);
1339 		mss = tcp_skb_seglen(skb);
1340 
1341 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1342 		 * drop this restriction as unnecessary
1343 		 */
1344 		if (mss != tcp_skb_seglen(prev))
1345 			goto fallback;
1346 	} else {
1347 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1348 			goto noop;
1349 		/* CHECKME: This is non-MSS split case only?, this will
1350 		 * cause skipped skbs due to advancing loop btw, original
1351 		 * has that feature too
1352 		 */
1353 		if (tcp_skb_pcount(skb) <= 1)
1354 			goto noop;
1355 
1356 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1357 		if (!in_sack) {
1358 			/* TODO: head merge to next could be attempted here
1359 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1360 			 * though it might not be worth of the additional hassle
1361 			 *
1362 			 * ...we can probably just fallback to what was done
1363 			 * previously. We could try merging non-SACKed ones
1364 			 * as well but it probably isn't going to buy off
1365 			 * because later SACKs might again split them, and
1366 			 * it would make skb timestamp tracking considerably
1367 			 * harder problem.
1368 			 */
1369 			goto fallback;
1370 		}
1371 
1372 		len = end_seq - TCP_SKB_CB(skb)->seq;
1373 		BUG_ON(len < 0);
1374 		BUG_ON(len > skb->len);
1375 
1376 		/* MSS boundaries should be honoured or else pcount will
1377 		 * severely break even though it makes things bit trickier.
1378 		 * Optimize common case to avoid most of the divides
1379 		 */
1380 		mss = tcp_skb_mss(skb);
1381 
1382 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1383 		 * drop this restriction as unnecessary
1384 		 */
1385 		if (mss != tcp_skb_seglen(prev))
1386 			goto fallback;
1387 
1388 		if (len == mss) {
1389 			pcount = 1;
1390 		} else if (len < mss) {
1391 			goto noop;
1392 		} else {
1393 			pcount = len / mss;
1394 			len = pcount * mss;
1395 		}
1396 	}
1397 
1398 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1399 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1400 		goto fallback;
1401 
1402 	if (!skb_shift(prev, skb, len))
1403 		goto fallback;
1404 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1405 		goto out;
1406 
1407 	/* Hole filled allows collapsing with the next as well, this is very
1408 	 * useful when hole on every nth skb pattern happens
1409 	 */
1410 	if (prev == tcp_write_queue_tail(sk))
1411 		goto out;
1412 	skb = tcp_write_queue_next(sk, prev);
1413 
1414 	if (!skb_can_shift(skb) ||
1415 	    (skb == tcp_send_head(sk)) ||
1416 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1417 	    (mss != tcp_skb_seglen(skb)))
1418 		goto out;
1419 
1420 	len = skb->len;
1421 	if (skb_shift(prev, skb, len)) {
1422 		pcount += tcp_skb_pcount(skb);
1423 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1424 	}
1425 
1426 out:
1427 	state->fack_count += pcount;
1428 	return prev;
1429 
1430 noop:
1431 	return skb;
1432 
1433 fallback:
1434 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1435 	return NULL;
1436 }
1437 
1438 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1439 					struct tcp_sack_block *next_dup,
1440 					struct tcp_sacktag_state *state,
1441 					u32 start_seq, u32 end_seq,
1442 					bool dup_sack_in)
1443 {
1444 	struct tcp_sock *tp = tcp_sk(sk);
1445 	struct sk_buff *tmp;
1446 
1447 	tcp_for_write_queue_from(skb, sk) {
1448 		int in_sack = 0;
1449 		bool dup_sack = dup_sack_in;
1450 
1451 		if (skb == tcp_send_head(sk))
1452 			break;
1453 
1454 		/* queue is in-order => we can short-circuit the walk early */
1455 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1456 			break;
1457 
1458 		if ((next_dup != NULL) &&
1459 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1460 			in_sack = tcp_match_skb_to_sack(sk, skb,
1461 							next_dup->start_seq,
1462 							next_dup->end_seq);
1463 			if (in_sack > 0)
1464 				dup_sack = true;
1465 		}
1466 
1467 		/* skb reference here is a bit tricky to get right, since
1468 		 * shifting can eat and free both this skb and the next,
1469 		 * so not even _safe variant of the loop is enough.
1470 		 */
1471 		if (in_sack <= 0) {
1472 			tmp = tcp_shift_skb_data(sk, skb, state,
1473 						 start_seq, end_seq, dup_sack);
1474 			if (tmp != NULL) {
1475 				if (tmp != skb) {
1476 					skb = tmp;
1477 					continue;
1478 				}
1479 
1480 				in_sack = 0;
1481 			} else {
1482 				in_sack = tcp_match_skb_to_sack(sk, skb,
1483 								start_seq,
1484 								end_seq);
1485 			}
1486 		}
1487 
1488 		if (unlikely(in_sack < 0))
1489 			break;
1490 
1491 		if (in_sack) {
1492 			TCP_SKB_CB(skb)->sacked =
1493 				tcp_sacktag_one(sk,
1494 						state,
1495 						TCP_SKB_CB(skb)->sacked,
1496 						TCP_SKB_CB(skb)->seq,
1497 						TCP_SKB_CB(skb)->end_seq,
1498 						dup_sack,
1499 						tcp_skb_pcount(skb));
1500 
1501 			if (!before(TCP_SKB_CB(skb)->seq,
1502 				    tcp_highest_sack_seq(tp)))
1503 				tcp_advance_highest_sack(sk, skb);
1504 		}
1505 
1506 		state->fack_count += tcp_skb_pcount(skb);
1507 	}
1508 	return skb;
1509 }
1510 
1511 /* Avoid all extra work that is being done by sacktag while walking in
1512  * a normal way
1513  */
1514 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1515 					struct tcp_sacktag_state *state,
1516 					u32 skip_to_seq)
1517 {
1518 	tcp_for_write_queue_from(skb, sk) {
1519 		if (skb == tcp_send_head(sk))
1520 			break;
1521 
1522 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1523 			break;
1524 
1525 		state->fack_count += tcp_skb_pcount(skb);
1526 	}
1527 	return skb;
1528 }
1529 
1530 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1531 						struct sock *sk,
1532 						struct tcp_sack_block *next_dup,
1533 						struct tcp_sacktag_state *state,
1534 						u32 skip_to_seq)
1535 {
1536 	if (next_dup == NULL)
1537 		return skb;
1538 
1539 	if (before(next_dup->start_seq, skip_to_seq)) {
1540 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1541 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1542 				       next_dup->start_seq, next_dup->end_seq,
1543 				       1);
1544 	}
1545 
1546 	return skb;
1547 }
1548 
1549 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1550 {
1551 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1552 }
1553 
1554 static int
1555 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1556 			u32 prior_snd_una)
1557 {
1558 	const struct inet_connection_sock *icsk = inet_csk(sk);
1559 	struct tcp_sock *tp = tcp_sk(sk);
1560 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1561 				    TCP_SKB_CB(ack_skb)->sacked);
1562 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1563 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1564 	struct tcp_sack_block *cache;
1565 	struct tcp_sacktag_state state;
1566 	struct sk_buff *skb;
1567 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1568 	int used_sacks;
1569 	bool found_dup_sack = false;
1570 	int i, j;
1571 	int first_sack_index;
1572 
1573 	state.flag = 0;
1574 	state.reord = tp->packets_out;
1575 
1576 	if (!tp->sacked_out) {
1577 		if (WARN_ON(tp->fackets_out))
1578 			tp->fackets_out = 0;
1579 		tcp_highest_sack_reset(sk);
1580 	}
1581 
1582 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1583 					 num_sacks, prior_snd_una);
1584 	if (found_dup_sack)
1585 		state.flag |= FLAG_DSACKING_ACK;
1586 
1587 	/* Eliminate too old ACKs, but take into
1588 	 * account more or less fresh ones, they can
1589 	 * contain valid SACK info.
1590 	 */
1591 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1592 		return 0;
1593 
1594 	if (!tp->packets_out)
1595 		goto out;
1596 
1597 	used_sacks = 0;
1598 	first_sack_index = 0;
1599 	for (i = 0; i < num_sacks; i++) {
1600 		bool dup_sack = !i && found_dup_sack;
1601 
1602 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1603 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1604 
1605 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1606 					    sp[used_sacks].start_seq,
1607 					    sp[used_sacks].end_seq)) {
1608 			int mib_idx;
1609 
1610 			if (dup_sack) {
1611 				if (!tp->undo_marker)
1612 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1613 				else
1614 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1615 			} else {
1616 				/* Don't count olds caused by ACK reordering */
1617 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1618 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1619 					continue;
1620 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1621 			}
1622 
1623 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1624 			if (i == 0)
1625 				first_sack_index = -1;
1626 			continue;
1627 		}
1628 
1629 		/* Ignore very old stuff early */
1630 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1631 			continue;
1632 
1633 		used_sacks++;
1634 	}
1635 
1636 	/* order SACK blocks to allow in order walk of the retrans queue */
1637 	for (i = used_sacks - 1; i > 0; i--) {
1638 		for (j = 0; j < i; j++) {
1639 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1640 				swap(sp[j], sp[j + 1]);
1641 
1642 				/* Track where the first SACK block goes to */
1643 				if (j == first_sack_index)
1644 					first_sack_index = j + 1;
1645 			}
1646 		}
1647 	}
1648 
1649 	skb = tcp_write_queue_head(sk);
1650 	state.fack_count = 0;
1651 	i = 0;
1652 
1653 	if (!tp->sacked_out) {
1654 		/* It's already past, so skip checking against it */
1655 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1656 	} else {
1657 		cache = tp->recv_sack_cache;
1658 		/* Skip empty blocks in at head of the cache */
1659 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1660 		       !cache->end_seq)
1661 			cache++;
1662 	}
1663 
1664 	while (i < used_sacks) {
1665 		u32 start_seq = sp[i].start_seq;
1666 		u32 end_seq = sp[i].end_seq;
1667 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1668 		struct tcp_sack_block *next_dup = NULL;
1669 
1670 		if (found_dup_sack && ((i + 1) == first_sack_index))
1671 			next_dup = &sp[i + 1];
1672 
1673 		/* Skip too early cached blocks */
1674 		while (tcp_sack_cache_ok(tp, cache) &&
1675 		       !before(start_seq, cache->end_seq))
1676 			cache++;
1677 
1678 		/* Can skip some work by looking recv_sack_cache? */
1679 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1680 		    after(end_seq, cache->start_seq)) {
1681 
1682 			/* Head todo? */
1683 			if (before(start_seq, cache->start_seq)) {
1684 				skb = tcp_sacktag_skip(skb, sk, &state,
1685 						       start_seq);
1686 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1687 						       &state,
1688 						       start_seq,
1689 						       cache->start_seq,
1690 						       dup_sack);
1691 			}
1692 
1693 			/* Rest of the block already fully processed? */
1694 			if (!after(end_seq, cache->end_seq))
1695 				goto advance_sp;
1696 
1697 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1698 						       &state,
1699 						       cache->end_seq);
1700 
1701 			/* ...tail remains todo... */
1702 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1703 				/* ...but better entrypoint exists! */
1704 				skb = tcp_highest_sack(sk);
1705 				if (skb == NULL)
1706 					break;
1707 				state.fack_count = tp->fackets_out;
1708 				cache++;
1709 				goto walk;
1710 			}
1711 
1712 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1713 			/* Check overlap against next cached too (past this one already) */
1714 			cache++;
1715 			continue;
1716 		}
1717 
1718 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1719 			skb = tcp_highest_sack(sk);
1720 			if (skb == NULL)
1721 				break;
1722 			state.fack_count = tp->fackets_out;
1723 		}
1724 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1725 
1726 walk:
1727 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1728 				       start_seq, end_seq, dup_sack);
1729 
1730 advance_sp:
1731 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1732 		 * due to in-order walk
1733 		 */
1734 		if (after(end_seq, tp->frto_highmark))
1735 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1736 
1737 		i++;
1738 	}
1739 
1740 	/* Clear the head of the cache sack blocks so we can skip it next time */
1741 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1742 		tp->recv_sack_cache[i].start_seq = 0;
1743 		tp->recv_sack_cache[i].end_seq = 0;
1744 	}
1745 	for (j = 0; j < used_sacks; j++)
1746 		tp->recv_sack_cache[i++] = sp[j];
1747 
1748 	tcp_mark_lost_retrans(sk);
1749 
1750 	tcp_verify_left_out(tp);
1751 
1752 	if ((state.reord < tp->fackets_out) &&
1753 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1754 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1755 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1756 
1757 out:
1758 
1759 #if FASTRETRANS_DEBUG > 0
1760 	WARN_ON((int)tp->sacked_out < 0);
1761 	WARN_ON((int)tp->lost_out < 0);
1762 	WARN_ON((int)tp->retrans_out < 0);
1763 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1764 #endif
1765 	return state.flag;
1766 }
1767 
1768 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1769  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1770  */
1771 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1772 {
1773 	u32 holes;
1774 
1775 	holes = max(tp->lost_out, 1U);
1776 	holes = min(holes, tp->packets_out);
1777 
1778 	if ((tp->sacked_out + holes) > tp->packets_out) {
1779 		tp->sacked_out = tp->packets_out - holes;
1780 		return true;
1781 	}
1782 	return false;
1783 }
1784 
1785 /* If we receive more dupacks than we expected counting segments
1786  * in assumption of absent reordering, interpret this as reordering.
1787  * The only another reason could be bug in receiver TCP.
1788  */
1789 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1790 {
1791 	struct tcp_sock *tp = tcp_sk(sk);
1792 	if (tcp_limit_reno_sacked(tp))
1793 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1794 }
1795 
1796 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1797 
1798 static void tcp_add_reno_sack(struct sock *sk)
1799 {
1800 	struct tcp_sock *tp = tcp_sk(sk);
1801 	tp->sacked_out++;
1802 	tcp_check_reno_reordering(sk, 0);
1803 	tcp_verify_left_out(tp);
1804 }
1805 
1806 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1807 
1808 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1809 {
1810 	struct tcp_sock *tp = tcp_sk(sk);
1811 
1812 	if (acked > 0) {
1813 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1814 		if (acked - 1 >= tp->sacked_out)
1815 			tp->sacked_out = 0;
1816 		else
1817 			tp->sacked_out -= acked - 1;
1818 	}
1819 	tcp_check_reno_reordering(sk, acked);
1820 	tcp_verify_left_out(tp);
1821 }
1822 
1823 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1824 {
1825 	tp->sacked_out = 0;
1826 }
1827 
1828 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1829 {
1830 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1831 }
1832 
1833 /* F-RTO can only be used if TCP has never retransmitted anything other than
1834  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1835  */
1836 bool tcp_use_frto(struct sock *sk)
1837 {
1838 	const struct tcp_sock *tp = tcp_sk(sk);
1839 	const struct inet_connection_sock *icsk = inet_csk(sk);
1840 	struct sk_buff *skb;
1841 
1842 	if (!sysctl_tcp_frto)
1843 		return false;
1844 
1845 	/* MTU probe and F-RTO won't really play nicely along currently */
1846 	if (icsk->icsk_mtup.probe_size)
1847 		return false;
1848 
1849 	if (tcp_is_sackfrto(tp))
1850 		return true;
1851 
1852 	/* Avoid expensive walking of rexmit queue if possible */
1853 	if (tp->retrans_out > 1)
1854 		return false;
1855 
1856 	skb = tcp_write_queue_head(sk);
1857 	if (tcp_skb_is_last(sk, skb))
1858 		return true;
1859 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1860 	tcp_for_write_queue_from(skb, sk) {
1861 		if (skb == tcp_send_head(sk))
1862 			break;
1863 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1864 			return false;
1865 		/* Short-circuit when first non-SACKed skb has been checked */
1866 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1867 			break;
1868 	}
1869 	return true;
1870 }
1871 
1872 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1873  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1874  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1875  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1876  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1877  * bits are handled if the Loss state is really to be entered (in
1878  * tcp_enter_frto_loss).
1879  *
1880  * Do like tcp_enter_loss() would; when RTO expires the second time it
1881  * does:
1882  *  "Reduce ssthresh if it has not yet been made inside this window."
1883  */
1884 void tcp_enter_frto(struct sock *sk)
1885 {
1886 	const struct inet_connection_sock *icsk = inet_csk(sk);
1887 	struct tcp_sock *tp = tcp_sk(sk);
1888 	struct sk_buff *skb;
1889 
1890 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1891 	    tp->snd_una == tp->high_seq ||
1892 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1893 	     !icsk->icsk_retransmits)) {
1894 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895 		/* Our state is too optimistic in ssthresh() call because cwnd
1896 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1897 		 * recovery has not yet completed. Pattern would be this: RTO,
1898 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1899 		 * up here twice).
1900 		 * RFC4138 should be more specific on what to do, even though
1901 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1902 		 * due to back-off and complexity of triggering events ...
1903 		 */
1904 		if (tp->frto_counter) {
1905 			u32 stored_cwnd;
1906 			stored_cwnd = tp->snd_cwnd;
1907 			tp->snd_cwnd = 2;
1908 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1909 			tp->snd_cwnd = stored_cwnd;
1910 		} else {
1911 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1912 		}
1913 		/* ... in theory, cong.control module could do "any tricks" in
1914 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1915 		 * counter would have to be faked before the call occurs. We
1916 		 * consider that too expensive, unlikely and hacky, so modules
1917 		 * using these in ssthresh() must deal these incompatibility
1918 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1919 		 */
1920 		tcp_ca_event(sk, CA_EVENT_FRTO);
1921 	}
1922 
1923 	tp->undo_marker = tp->snd_una;
1924 	tp->undo_retrans = 0;
1925 
1926 	skb = tcp_write_queue_head(sk);
1927 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1928 		tp->undo_marker = 0;
1929 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1930 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1931 		tp->retrans_out -= tcp_skb_pcount(skb);
1932 	}
1933 	tcp_verify_left_out(tp);
1934 
1935 	/* Too bad if TCP was application limited */
1936 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1937 
1938 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1939 	 * The last condition is necessary at least in tp->frto_counter case.
1940 	 */
1941 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1942 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1943 	    after(tp->high_seq, tp->snd_una)) {
1944 		tp->frto_highmark = tp->high_seq;
1945 	} else {
1946 		tp->frto_highmark = tp->snd_nxt;
1947 	}
1948 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1949 	tp->high_seq = tp->snd_nxt;
1950 	tp->frto_counter = 1;
1951 }
1952 
1953 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1954  * which indicates that we should follow the traditional RTO recovery,
1955  * i.e. mark everything lost and do go-back-N retransmission.
1956  */
1957 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1958 {
1959 	struct tcp_sock *tp = tcp_sk(sk);
1960 	struct sk_buff *skb;
1961 
1962 	tp->lost_out = 0;
1963 	tp->retrans_out = 0;
1964 	if (tcp_is_reno(tp))
1965 		tcp_reset_reno_sack(tp);
1966 
1967 	tcp_for_write_queue(skb, sk) {
1968 		if (skb == tcp_send_head(sk))
1969 			break;
1970 
1971 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1972 		/*
1973 		 * Count the retransmission made on RTO correctly (only when
1974 		 * waiting for the first ACK and did not get it)...
1975 		 */
1976 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1977 			/* For some reason this R-bit might get cleared? */
1978 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1979 				tp->retrans_out += tcp_skb_pcount(skb);
1980 			/* ...enter this if branch just for the first segment */
1981 			flag |= FLAG_DATA_ACKED;
1982 		} else {
1983 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1984 				tp->undo_marker = 0;
1985 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1986 		}
1987 
1988 		/* Marking forward transmissions that were made after RTO lost
1989 		 * can cause unnecessary retransmissions in some scenarios,
1990 		 * SACK blocks will mitigate that in some but not in all cases.
1991 		 * We used to not mark them but it was causing break-ups with
1992 		 * receivers that do only in-order receival.
1993 		 *
1994 		 * TODO: we could detect presence of such receiver and select
1995 		 * different behavior per flow.
1996 		 */
1997 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1998 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1999 			tp->lost_out += tcp_skb_pcount(skb);
2000 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2001 		}
2002 	}
2003 	tcp_verify_left_out(tp);
2004 
2005 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2006 	tp->snd_cwnd_cnt = 0;
2007 	tp->snd_cwnd_stamp = tcp_time_stamp;
2008 	tp->frto_counter = 0;
2009 
2010 	tp->reordering = min_t(unsigned int, tp->reordering,
2011 			       sysctl_tcp_reordering);
2012 	tcp_set_ca_state(sk, TCP_CA_Loss);
2013 	tp->high_seq = tp->snd_nxt;
2014 	TCP_ECN_queue_cwr(tp);
2015 
2016 	tcp_clear_all_retrans_hints(tp);
2017 }
2018 
2019 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2020 {
2021 	tp->retrans_out = 0;
2022 	tp->lost_out = 0;
2023 
2024 	tp->undo_marker = 0;
2025 	tp->undo_retrans = 0;
2026 }
2027 
2028 void tcp_clear_retrans(struct tcp_sock *tp)
2029 {
2030 	tcp_clear_retrans_partial(tp);
2031 
2032 	tp->fackets_out = 0;
2033 	tp->sacked_out = 0;
2034 }
2035 
2036 /* Enter Loss state. If "how" is not zero, forget all SACK information
2037  * and reset tags completely, otherwise preserve SACKs. If receiver
2038  * dropped its ofo queue, we will know this due to reneging detection.
2039  */
2040 void tcp_enter_loss(struct sock *sk, int how)
2041 {
2042 	const struct inet_connection_sock *icsk = inet_csk(sk);
2043 	struct tcp_sock *tp = tcp_sk(sk);
2044 	struct sk_buff *skb;
2045 
2046 	/* Reduce ssthresh if it has not yet been made inside this window. */
2047 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2048 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2049 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2050 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2051 		tcp_ca_event(sk, CA_EVENT_LOSS);
2052 	}
2053 	tp->snd_cwnd	   = 1;
2054 	tp->snd_cwnd_cnt   = 0;
2055 	tp->snd_cwnd_stamp = tcp_time_stamp;
2056 
2057 	tcp_clear_retrans_partial(tp);
2058 
2059 	if (tcp_is_reno(tp))
2060 		tcp_reset_reno_sack(tp);
2061 
2062 	if (!how) {
2063 		/* Push undo marker, if it was plain RTO and nothing
2064 		 * was retransmitted. */
2065 		tp->undo_marker = tp->snd_una;
2066 	} else {
2067 		tp->sacked_out = 0;
2068 		tp->fackets_out = 0;
2069 	}
2070 	tcp_clear_all_retrans_hints(tp);
2071 
2072 	tcp_for_write_queue(skb, sk) {
2073 		if (skb == tcp_send_head(sk))
2074 			break;
2075 
2076 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2077 			tp->undo_marker = 0;
2078 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2079 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2080 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2081 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2082 			tp->lost_out += tcp_skb_pcount(skb);
2083 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2084 		}
2085 	}
2086 	tcp_verify_left_out(tp);
2087 
2088 	tp->reordering = min_t(unsigned int, tp->reordering,
2089 			       sysctl_tcp_reordering);
2090 	tcp_set_ca_state(sk, TCP_CA_Loss);
2091 	tp->high_seq = tp->snd_nxt;
2092 	TCP_ECN_queue_cwr(tp);
2093 	/* Abort F-RTO algorithm if one is in progress */
2094 	tp->frto_counter = 0;
2095 }
2096 
2097 /* If ACK arrived pointing to a remembered SACK, it means that our
2098  * remembered SACKs do not reflect real state of receiver i.e.
2099  * receiver _host_ is heavily congested (or buggy).
2100  *
2101  * Do processing similar to RTO timeout.
2102  */
2103 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2104 {
2105 	if (flag & FLAG_SACK_RENEGING) {
2106 		struct inet_connection_sock *icsk = inet_csk(sk);
2107 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2108 
2109 		tcp_enter_loss(sk, 1);
2110 		icsk->icsk_retransmits++;
2111 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2112 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2113 					  icsk->icsk_rto, TCP_RTO_MAX);
2114 		return true;
2115 	}
2116 	return false;
2117 }
2118 
2119 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2120 {
2121 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2122 }
2123 
2124 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2125  * counter when SACK is enabled (without SACK, sacked_out is used for
2126  * that purpose).
2127  *
2128  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2129  * segments up to the highest received SACK block so far and holes in
2130  * between them.
2131  *
2132  * With reordering, holes may still be in flight, so RFC3517 recovery
2133  * uses pure sacked_out (total number of SACKed segments) even though
2134  * it violates the RFC that uses duplicate ACKs, often these are equal
2135  * but when e.g. out-of-window ACKs or packet duplication occurs,
2136  * they differ. Since neither occurs due to loss, TCP should really
2137  * ignore them.
2138  */
2139 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2140 {
2141 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2142 }
2143 
2144 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2145 {
2146 	struct tcp_sock *tp = tcp_sk(sk);
2147 	unsigned long delay;
2148 
2149 	/* Delay early retransmit and entering fast recovery for
2150 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2151 	 * available, or RTO is scheduled to fire first.
2152 	 */
2153 	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2154 		return false;
2155 
2156 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2157 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2158 		return false;
2159 
2160 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2161 	tp->early_retrans_delayed = 1;
2162 	return true;
2163 }
2164 
2165 static inline int tcp_skb_timedout(const struct sock *sk,
2166 				   const struct sk_buff *skb)
2167 {
2168 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2169 }
2170 
2171 static inline int tcp_head_timedout(const struct sock *sk)
2172 {
2173 	const struct tcp_sock *tp = tcp_sk(sk);
2174 
2175 	return tp->packets_out &&
2176 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2177 }
2178 
2179 /* Linux NewReno/SACK/FACK/ECN state machine.
2180  * --------------------------------------
2181  *
2182  * "Open"	Normal state, no dubious events, fast path.
2183  * "Disorder"   In all the respects it is "Open",
2184  *		but requires a bit more attention. It is entered when
2185  *		we see some SACKs or dupacks. It is split of "Open"
2186  *		mainly to move some processing from fast path to slow one.
2187  * "CWR"	CWND was reduced due to some Congestion Notification event.
2188  *		It can be ECN, ICMP source quench, local device congestion.
2189  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2190  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2191  *
2192  * tcp_fastretrans_alert() is entered:
2193  * - each incoming ACK, if state is not "Open"
2194  * - when arrived ACK is unusual, namely:
2195  *	* SACK
2196  *	* Duplicate ACK.
2197  *	* ECN ECE.
2198  *
2199  * Counting packets in flight is pretty simple.
2200  *
2201  *	in_flight = packets_out - left_out + retrans_out
2202  *
2203  *	packets_out is SND.NXT-SND.UNA counted in packets.
2204  *
2205  *	retrans_out is number of retransmitted segments.
2206  *
2207  *	left_out is number of segments left network, but not ACKed yet.
2208  *
2209  *		left_out = sacked_out + lost_out
2210  *
2211  *     sacked_out: Packets, which arrived to receiver out of order
2212  *		   and hence not ACKed. With SACKs this number is simply
2213  *		   amount of SACKed data. Even without SACKs
2214  *		   it is easy to give pretty reliable estimate of this number,
2215  *		   counting duplicate ACKs.
2216  *
2217  *       lost_out: Packets lost by network. TCP has no explicit
2218  *		   "loss notification" feedback from network (for now).
2219  *		   It means that this number can be only _guessed_.
2220  *		   Actually, it is the heuristics to predict lossage that
2221  *		   distinguishes different algorithms.
2222  *
2223  *	F.e. after RTO, when all the queue is considered as lost,
2224  *	lost_out = packets_out and in_flight = retrans_out.
2225  *
2226  *		Essentially, we have now two algorithms counting
2227  *		lost packets.
2228  *
2229  *		FACK: It is the simplest heuristics. As soon as we decided
2230  *		that something is lost, we decide that _all_ not SACKed
2231  *		packets until the most forward SACK are lost. I.e.
2232  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2233  *		It is absolutely correct estimate, if network does not reorder
2234  *		packets. And it loses any connection to reality when reordering
2235  *		takes place. We use FACK by default until reordering
2236  *		is suspected on the path to this destination.
2237  *
2238  *		NewReno: when Recovery is entered, we assume that one segment
2239  *		is lost (classic Reno). While we are in Recovery and
2240  *		a partial ACK arrives, we assume that one more packet
2241  *		is lost (NewReno). This heuristics are the same in NewReno
2242  *		and SACK.
2243  *
2244  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2245  *  deflation etc. CWND is real congestion window, never inflated, changes
2246  *  only according to classic VJ rules.
2247  *
2248  * Really tricky (and requiring careful tuning) part of algorithm
2249  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2250  * The first determines the moment _when_ we should reduce CWND and,
2251  * hence, slow down forward transmission. In fact, it determines the moment
2252  * when we decide that hole is caused by loss, rather than by a reorder.
2253  *
2254  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2255  * holes, caused by lost packets.
2256  *
2257  * And the most logically complicated part of algorithm is undo
2258  * heuristics. We detect false retransmits due to both too early
2259  * fast retransmit (reordering) and underestimated RTO, analyzing
2260  * timestamps and D-SACKs. When we detect that some segments were
2261  * retransmitted by mistake and CWND reduction was wrong, we undo
2262  * window reduction and abort recovery phase. This logic is hidden
2263  * inside several functions named tcp_try_undo_<something>.
2264  */
2265 
2266 /* This function decides, when we should leave Disordered state
2267  * and enter Recovery phase, reducing congestion window.
2268  *
2269  * Main question: may we further continue forward transmission
2270  * with the same cwnd?
2271  */
2272 static bool tcp_time_to_recover(struct sock *sk, int flag)
2273 {
2274 	struct tcp_sock *tp = tcp_sk(sk);
2275 	__u32 packets_out;
2276 
2277 	/* Do not perform any recovery during F-RTO algorithm */
2278 	if (tp->frto_counter)
2279 		return false;
2280 
2281 	/* Trick#1: The loss is proven. */
2282 	if (tp->lost_out)
2283 		return true;
2284 
2285 	/* Not-A-Trick#2 : Classic rule... */
2286 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2287 		return true;
2288 
2289 	/* Trick#3 : when we use RFC2988 timer restart, fast
2290 	 * retransmit can be triggered by timeout of queue head.
2291 	 */
2292 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2293 		return true;
2294 
2295 	/* Trick#4: It is still not OK... But will it be useful to delay
2296 	 * recovery more?
2297 	 */
2298 	packets_out = tp->packets_out;
2299 	if (packets_out <= tp->reordering &&
2300 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2301 	    !tcp_may_send_now(sk)) {
2302 		/* We have nothing to send. This connection is limited
2303 		 * either by receiver window or by application.
2304 		 */
2305 		return true;
2306 	}
2307 
2308 	/* If a thin stream is detected, retransmit after first
2309 	 * received dupack. Employ only if SACK is supported in order
2310 	 * to avoid possible corner-case series of spurious retransmissions
2311 	 * Use only if there are no unsent data.
2312 	 */
2313 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2314 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2315 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2316 		return true;
2317 
2318 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2319 	 * retransmissions due to small network reorderings, we implement
2320 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2321 	 * interval if appropriate.
2322 	 */
2323 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2324 	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2325 	    !tcp_may_send_now(sk))
2326 		return !tcp_pause_early_retransmit(sk, flag);
2327 
2328 	return false;
2329 }
2330 
2331 /* New heuristics: it is possible only after we switched to restart timer
2332  * each time when something is ACKed. Hence, we can detect timed out packets
2333  * during fast retransmit without falling to slow start.
2334  *
2335  * Usefulness of this as is very questionable, since we should know which of
2336  * the segments is the next to timeout which is relatively expensive to find
2337  * in general case unless we add some data structure just for that. The
2338  * current approach certainly won't find the right one too often and when it
2339  * finally does find _something_ it usually marks large part of the window
2340  * right away (because a retransmission with a larger timestamp blocks the
2341  * loop from advancing). -ij
2342  */
2343 static void tcp_timeout_skbs(struct sock *sk)
2344 {
2345 	struct tcp_sock *tp = tcp_sk(sk);
2346 	struct sk_buff *skb;
2347 
2348 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2349 		return;
2350 
2351 	skb = tp->scoreboard_skb_hint;
2352 	if (tp->scoreboard_skb_hint == NULL)
2353 		skb = tcp_write_queue_head(sk);
2354 
2355 	tcp_for_write_queue_from(skb, sk) {
2356 		if (skb == tcp_send_head(sk))
2357 			break;
2358 		if (!tcp_skb_timedout(sk, skb))
2359 			break;
2360 
2361 		tcp_skb_mark_lost(tp, skb);
2362 	}
2363 
2364 	tp->scoreboard_skb_hint = skb;
2365 
2366 	tcp_verify_left_out(tp);
2367 }
2368 
2369 /* Detect loss in event "A" above by marking head of queue up as lost.
2370  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2371  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2372  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2373  * the maximum SACKed segments to pass before reaching this limit.
2374  */
2375 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2376 {
2377 	struct tcp_sock *tp = tcp_sk(sk);
2378 	struct sk_buff *skb;
2379 	int cnt, oldcnt;
2380 	int err;
2381 	unsigned int mss;
2382 	/* Use SACK to deduce losses of new sequences sent during recovery */
2383 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2384 
2385 	WARN_ON(packets > tp->packets_out);
2386 	if (tp->lost_skb_hint) {
2387 		skb = tp->lost_skb_hint;
2388 		cnt = tp->lost_cnt_hint;
2389 		/* Head already handled? */
2390 		if (mark_head && skb != tcp_write_queue_head(sk))
2391 			return;
2392 	} else {
2393 		skb = tcp_write_queue_head(sk);
2394 		cnt = 0;
2395 	}
2396 
2397 	tcp_for_write_queue_from(skb, sk) {
2398 		if (skb == tcp_send_head(sk))
2399 			break;
2400 		/* TODO: do this better */
2401 		/* this is not the most efficient way to do this... */
2402 		tp->lost_skb_hint = skb;
2403 		tp->lost_cnt_hint = cnt;
2404 
2405 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2406 			break;
2407 
2408 		oldcnt = cnt;
2409 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2410 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2411 			cnt += tcp_skb_pcount(skb);
2412 
2413 		if (cnt > packets) {
2414 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2415 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2416 			    (oldcnt >= packets))
2417 				break;
2418 
2419 			mss = skb_shinfo(skb)->gso_size;
2420 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2421 			if (err < 0)
2422 				break;
2423 			cnt = packets;
2424 		}
2425 
2426 		tcp_skb_mark_lost(tp, skb);
2427 
2428 		if (mark_head)
2429 			break;
2430 	}
2431 	tcp_verify_left_out(tp);
2432 }
2433 
2434 /* Account newly detected lost packet(s) */
2435 
2436 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2437 {
2438 	struct tcp_sock *tp = tcp_sk(sk);
2439 
2440 	if (tcp_is_reno(tp)) {
2441 		tcp_mark_head_lost(sk, 1, 1);
2442 	} else if (tcp_is_fack(tp)) {
2443 		int lost = tp->fackets_out - tp->reordering;
2444 		if (lost <= 0)
2445 			lost = 1;
2446 		tcp_mark_head_lost(sk, lost, 0);
2447 	} else {
2448 		int sacked_upto = tp->sacked_out - tp->reordering;
2449 		if (sacked_upto >= 0)
2450 			tcp_mark_head_lost(sk, sacked_upto, 0);
2451 		else if (fast_rexmit)
2452 			tcp_mark_head_lost(sk, 1, 1);
2453 	}
2454 
2455 	tcp_timeout_skbs(sk);
2456 }
2457 
2458 /* CWND moderation, preventing bursts due to too big ACKs
2459  * in dubious situations.
2460  */
2461 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2462 {
2463 	tp->snd_cwnd = min(tp->snd_cwnd,
2464 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2465 	tp->snd_cwnd_stamp = tcp_time_stamp;
2466 }
2467 
2468 /* Nothing was retransmitted or returned timestamp is less
2469  * than timestamp of the first retransmission.
2470  */
2471 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2472 {
2473 	return !tp->retrans_stamp ||
2474 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2475 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2476 }
2477 
2478 /* Undo procedures. */
2479 
2480 #if FASTRETRANS_DEBUG > 1
2481 static void DBGUNDO(struct sock *sk, const char *msg)
2482 {
2483 	struct tcp_sock *tp = tcp_sk(sk);
2484 	struct inet_sock *inet = inet_sk(sk);
2485 
2486 	if (sk->sk_family == AF_INET) {
2487 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2488 			 msg,
2489 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2490 			 tp->snd_cwnd, tcp_left_out(tp),
2491 			 tp->snd_ssthresh, tp->prior_ssthresh,
2492 			 tp->packets_out);
2493 	}
2494 #if IS_ENABLED(CONFIG_IPV6)
2495 	else if (sk->sk_family == AF_INET6) {
2496 		struct ipv6_pinfo *np = inet6_sk(sk);
2497 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2498 			 msg,
2499 			 &np->daddr, ntohs(inet->inet_dport),
2500 			 tp->snd_cwnd, tcp_left_out(tp),
2501 			 tp->snd_ssthresh, tp->prior_ssthresh,
2502 			 tp->packets_out);
2503 	}
2504 #endif
2505 }
2506 #else
2507 #define DBGUNDO(x...) do { } while (0)
2508 #endif
2509 
2510 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2511 {
2512 	struct tcp_sock *tp = tcp_sk(sk);
2513 
2514 	if (tp->prior_ssthresh) {
2515 		const struct inet_connection_sock *icsk = inet_csk(sk);
2516 
2517 		if (icsk->icsk_ca_ops->undo_cwnd)
2518 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2519 		else
2520 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2521 
2522 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2523 			tp->snd_ssthresh = tp->prior_ssthresh;
2524 			TCP_ECN_withdraw_cwr(tp);
2525 		}
2526 	} else {
2527 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2528 	}
2529 	tp->snd_cwnd_stamp = tcp_time_stamp;
2530 }
2531 
2532 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2533 {
2534 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2535 }
2536 
2537 /* People celebrate: "We love our President!" */
2538 static bool tcp_try_undo_recovery(struct sock *sk)
2539 {
2540 	struct tcp_sock *tp = tcp_sk(sk);
2541 
2542 	if (tcp_may_undo(tp)) {
2543 		int mib_idx;
2544 
2545 		/* Happy end! We did not retransmit anything
2546 		 * or our original transmission succeeded.
2547 		 */
2548 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2549 		tcp_undo_cwr(sk, true);
2550 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2551 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2552 		else
2553 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2554 
2555 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2556 		tp->undo_marker = 0;
2557 	}
2558 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2559 		/* Hold old state until something *above* high_seq
2560 		 * is ACKed. For Reno it is MUST to prevent false
2561 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2562 		tcp_moderate_cwnd(tp);
2563 		return true;
2564 	}
2565 	tcp_set_ca_state(sk, TCP_CA_Open);
2566 	return false;
2567 }
2568 
2569 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2570 static void tcp_try_undo_dsack(struct sock *sk)
2571 {
2572 	struct tcp_sock *tp = tcp_sk(sk);
2573 
2574 	if (tp->undo_marker && !tp->undo_retrans) {
2575 		DBGUNDO(sk, "D-SACK");
2576 		tcp_undo_cwr(sk, true);
2577 		tp->undo_marker = 0;
2578 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2579 	}
2580 }
2581 
2582 /* We can clear retrans_stamp when there are no retransmissions in the
2583  * window. It would seem that it is trivially available for us in
2584  * tp->retrans_out, however, that kind of assumptions doesn't consider
2585  * what will happen if errors occur when sending retransmission for the
2586  * second time. ...It could the that such segment has only
2587  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2588  * the head skb is enough except for some reneging corner cases that
2589  * are not worth the effort.
2590  *
2591  * Main reason for all this complexity is the fact that connection dying
2592  * time now depends on the validity of the retrans_stamp, in particular,
2593  * that successive retransmissions of a segment must not advance
2594  * retrans_stamp under any conditions.
2595  */
2596 static bool tcp_any_retrans_done(const struct sock *sk)
2597 {
2598 	const struct tcp_sock *tp = tcp_sk(sk);
2599 	struct sk_buff *skb;
2600 
2601 	if (tp->retrans_out)
2602 		return true;
2603 
2604 	skb = tcp_write_queue_head(sk);
2605 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2606 		return true;
2607 
2608 	return false;
2609 }
2610 
2611 /* Undo during fast recovery after partial ACK. */
2612 
2613 static int tcp_try_undo_partial(struct sock *sk, int acked)
2614 {
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 	/* Partial ACK arrived. Force Hoe's retransmit. */
2617 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2618 
2619 	if (tcp_may_undo(tp)) {
2620 		/* Plain luck! Hole if filled with delayed
2621 		 * packet, rather than with a retransmit.
2622 		 */
2623 		if (!tcp_any_retrans_done(sk))
2624 			tp->retrans_stamp = 0;
2625 
2626 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2627 
2628 		DBGUNDO(sk, "Hoe");
2629 		tcp_undo_cwr(sk, false);
2630 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2631 
2632 		/* So... Do not make Hoe's retransmit yet.
2633 		 * If the first packet was delayed, the rest
2634 		 * ones are most probably delayed as well.
2635 		 */
2636 		failed = 0;
2637 	}
2638 	return failed;
2639 }
2640 
2641 /* Undo during loss recovery after partial ACK. */
2642 static bool tcp_try_undo_loss(struct sock *sk)
2643 {
2644 	struct tcp_sock *tp = tcp_sk(sk);
2645 
2646 	if (tcp_may_undo(tp)) {
2647 		struct sk_buff *skb;
2648 		tcp_for_write_queue(skb, sk) {
2649 			if (skb == tcp_send_head(sk))
2650 				break;
2651 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2652 		}
2653 
2654 		tcp_clear_all_retrans_hints(tp);
2655 
2656 		DBGUNDO(sk, "partial loss");
2657 		tp->lost_out = 0;
2658 		tcp_undo_cwr(sk, true);
2659 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2660 		inet_csk(sk)->icsk_retransmits = 0;
2661 		tp->undo_marker = 0;
2662 		if (tcp_is_sack(tp))
2663 			tcp_set_ca_state(sk, TCP_CA_Open);
2664 		return true;
2665 	}
2666 	return false;
2667 }
2668 
2669 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2670  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2671  * It computes the number of packets to send (sndcnt) based on packets newly
2672  * delivered:
2673  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2674  *	cwnd reductions across a full RTT.
2675  *   2) If packets in flight is lower than ssthresh (such as due to excess
2676  *	losses and/or application stalls), do not perform any further cwnd
2677  *	reductions, but instead slow start up to ssthresh.
2678  */
2679 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 
2683 	tp->high_seq = tp->snd_nxt;
2684 	tp->snd_cwnd_cnt = 0;
2685 	tp->prior_cwnd = tp->snd_cwnd;
2686 	tp->prr_delivered = 0;
2687 	tp->prr_out = 0;
2688 	if (set_ssthresh)
2689 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2690 	TCP_ECN_queue_cwr(tp);
2691 }
2692 
2693 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2694 			       int fast_rexmit)
2695 {
2696 	struct tcp_sock *tp = tcp_sk(sk);
2697 	int sndcnt = 0;
2698 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2699 
2700 	tp->prr_delivered += newly_acked_sacked;
2701 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2702 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2703 			       tp->prior_cwnd - 1;
2704 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2705 	} else {
2706 		sndcnt = min_t(int, delta,
2707 			       max_t(int, tp->prr_delivered - tp->prr_out,
2708 				     newly_acked_sacked) + 1);
2709 	}
2710 
2711 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2712 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2713 }
2714 
2715 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2716 {
2717 	struct tcp_sock *tp = tcp_sk(sk);
2718 
2719 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2720 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2721 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2722 		tp->snd_cwnd = tp->snd_ssthresh;
2723 		tp->snd_cwnd_stamp = tcp_time_stamp;
2724 	}
2725 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2726 }
2727 
2728 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2729 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2730 {
2731 	struct tcp_sock *tp = tcp_sk(sk);
2732 
2733 	tp->prior_ssthresh = 0;
2734 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2735 		tp->undo_marker = 0;
2736 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2737 		tcp_set_ca_state(sk, TCP_CA_CWR);
2738 	}
2739 }
2740 
2741 static void tcp_try_keep_open(struct sock *sk)
2742 {
2743 	struct tcp_sock *tp = tcp_sk(sk);
2744 	int state = TCP_CA_Open;
2745 
2746 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2747 		state = TCP_CA_Disorder;
2748 
2749 	if (inet_csk(sk)->icsk_ca_state != state) {
2750 		tcp_set_ca_state(sk, state);
2751 		tp->high_seq = tp->snd_nxt;
2752 	}
2753 }
2754 
2755 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2756 {
2757 	struct tcp_sock *tp = tcp_sk(sk);
2758 
2759 	tcp_verify_left_out(tp);
2760 
2761 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2762 		tp->retrans_stamp = 0;
2763 
2764 	if (flag & FLAG_ECE)
2765 		tcp_enter_cwr(sk, 1);
2766 
2767 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2768 		tcp_try_keep_open(sk);
2769 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2770 			tcp_moderate_cwnd(tp);
2771 	} else {
2772 		tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2773 	}
2774 }
2775 
2776 static void tcp_mtup_probe_failed(struct sock *sk)
2777 {
2778 	struct inet_connection_sock *icsk = inet_csk(sk);
2779 
2780 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2781 	icsk->icsk_mtup.probe_size = 0;
2782 }
2783 
2784 static void tcp_mtup_probe_success(struct sock *sk)
2785 {
2786 	struct tcp_sock *tp = tcp_sk(sk);
2787 	struct inet_connection_sock *icsk = inet_csk(sk);
2788 
2789 	/* FIXME: breaks with very large cwnd */
2790 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2791 	tp->snd_cwnd = tp->snd_cwnd *
2792 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2793 		       icsk->icsk_mtup.probe_size;
2794 	tp->snd_cwnd_cnt = 0;
2795 	tp->snd_cwnd_stamp = tcp_time_stamp;
2796 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2797 
2798 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2799 	icsk->icsk_mtup.probe_size = 0;
2800 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2801 }
2802 
2803 /* Do a simple retransmit without using the backoff mechanisms in
2804  * tcp_timer. This is used for path mtu discovery.
2805  * The socket is already locked here.
2806  */
2807 void tcp_simple_retransmit(struct sock *sk)
2808 {
2809 	const struct inet_connection_sock *icsk = inet_csk(sk);
2810 	struct tcp_sock *tp = tcp_sk(sk);
2811 	struct sk_buff *skb;
2812 	unsigned int mss = tcp_current_mss(sk);
2813 	u32 prior_lost = tp->lost_out;
2814 
2815 	tcp_for_write_queue(skb, sk) {
2816 		if (skb == tcp_send_head(sk))
2817 			break;
2818 		if (tcp_skb_seglen(skb) > mss &&
2819 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2820 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2821 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2822 				tp->retrans_out -= tcp_skb_pcount(skb);
2823 			}
2824 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2825 		}
2826 	}
2827 
2828 	tcp_clear_retrans_hints_partial(tp);
2829 
2830 	if (prior_lost == tp->lost_out)
2831 		return;
2832 
2833 	if (tcp_is_reno(tp))
2834 		tcp_limit_reno_sacked(tp);
2835 
2836 	tcp_verify_left_out(tp);
2837 
2838 	/* Don't muck with the congestion window here.
2839 	 * Reason is that we do not increase amount of _data_
2840 	 * in network, but units changed and effective
2841 	 * cwnd/ssthresh really reduced now.
2842 	 */
2843 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2844 		tp->high_seq = tp->snd_nxt;
2845 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2846 		tp->prior_ssthresh = 0;
2847 		tp->undo_marker = 0;
2848 		tcp_set_ca_state(sk, TCP_CA_Loss);
2849 	}
2850 	tcp_xmit_retransmit_queue(sk);
2851 }
2852 EXPORT_SYMBOL(tcp_simple_retransmit);
2853 
2854 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2855 {
2856 	struct tcp_sock *tp = tcp_sk(sk);
2857 	int mib_idx;
2858 
2859 	if (tcp_is_reno(tp))
2860 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2861 	else
2862 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2863 
2864 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2865 
2866 	tp->prior_ssthresh = 0;
2867 	tp->undo_marker = tp->snd_una;
2868 	tp->undo_retrans = tp->retrans_out;
2869 
2870 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2871 		if (!ece_ack)
2872 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2873 		tcp_init_cwnd_reduction(sk, true);
2874 	}
2875 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2876 }
2877 
2878 /* Process an event, which can update packets-in-flight not trivially.
2879  * Main goal of this function is to calculate new estimate for left_out,
2880  * taking into account both packets sitting in receiver's buffer and
2881  * packets lost by network.
2882  *
2883  * Besides that it does CWND reduction, when packet loss is detected
2884  * and changes state of machine.
2885  *
2886  * It does _not_ decide what to send, it is made in function
2887  * tcp_xmit_retransmit_queue().
2888  */
2889 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2890 				  int prior_sacked, bool is_dupack,
2891 				  int flag)
2892 {
2893 	struct inet_connection_sock *icsk = inet_csk(sk);
2894 	struct tcp_sock *tp = tcp_sk(sk);
2895 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2896 				    (tcp_fackets_out(tp) > tp->reordering));
2897 	int newly_acked_sacked = 0;
2898 	int fast_rexmit = 0;
2899 
2900 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2901 		tp->sacked_out = 0;
2902 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2903 		tp->fackets_out = 0;
2904 
2905 	/* Now state machine starts.
2906 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2907 	if (flag & FLAG_ECE)
2908 		tp->prior_ssthresh = 0;
2909 
2910 	/* B. In all the states check for reneging SACKs. */
2911 	if (tcp_check_sack_reneging(sk, flag))
2912 		return;
2913 
2914 	/* C. Check consistency of the current state. */
2915 	tcp_verify_left_out(tp);
2916 
2917 	/* D. Check state exit conditions. State can be terminated
2918 	 *    when high_seq is ACKed. */
2919 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2920 		WARN_ON(tp->retrans_out != 0);
2921 		tp->retrans_stamp = 0;
2922 	} else if (!before(tp->snd_una, tp->high_seq)) {
2923 		switch (icsk->icsk_ca_state) {
2924 		case TCP_CA_Loss:
2925 			icsk->icsk_retransmits = 0;
2926 			if (tcp_try_undo_recovery(sk))
2927 				return;
2928 			break;
2929 
2930 		case TCP_CA_CWR:
2931 			/* CWR is to be held something *above* high_seq
2932 			 * is ACKed for CWR bit to reach receiver. */
2933 			if (tp->snd_una != tp->high_seq) {
2934 				tcp_end_cwnd_reduction(sk);
2935 				tcp_set_ca_state(sk, TCP_CA_Open);
2936 			}
2937 			break;
2938 
2939 		case TCP_CA_Recovery:
2940 			if (tcp_is_reno(tp))
2941 				tcp_reset_reno_sack(tp);
2942 			if (tcp_try_undo_recovery(sk))
2943 				return;
2944 			tcp_end_cwnd_reduction(sk);
2945 			break;
2946 		}
2947 	}
2948 
2949 	/* E. Process state. */
2950 	switch (icsk->icsk_ca_state) {
2951 	case TCP_CA_Recovery:
2952 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2953 			if (tcp_is_reno(tp) && is_dupack)
2954 				tcp_add_reno_sack(sk);
2955 		} else
2956 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2957 		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2958 		break;
2959 	case TCP_CA_Loss:
2960 		if (flag & FLAG_DATA_ACKED)
2961 			icsk->icsk_retransmits = 0;
2962 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2963 			tcp_reset_reno_sack(tp);
2964 		if (!tcp_try_undo_loss(sk)) {
2965 			tcp_moderate_cwnd(tp);
2966 			tcp_xmit_retransmit_queue(sk);
2967 			return;
2968 		}
2969 		if (icsk->icsk_ca_state != TCP_CA_Open)
2970 			return;
2971 		/* Loss is undone; fall through to processing in Open state. */
2972 	default:
2973 		if (tcp_is_reno(tp)) {
2974 			if (flag & FLAG_SND_UNA_ADVANCED)
2975 				tcp_reset_reno_sack(tp);
2976 			if (is_dupack)
2977 				tcp_add_reno_sack(sk);
2978 		}
2979 		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2980 
2981 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2982 			tcp_try_undo_dsack(sk);
2983 
2984 		if (!tcp_time_to_recover(sk, flag)) {
2985 			tcp_try_to_open(sk, flag, newly_acked_sacked);
2986 			return;
2987 		}
2988 
2989 		/* MTU probe failure: don't reduce cwnd */
2990 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2991 		    icsk->icsk_mtup.probe_size &&
2992 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2993 			tcp_mtup_probe_failed(sk);
2994 			/* Restores the reduction we did in tcp_mtup_probe() */
2995 			tp->snd_cwnd++;
2996 			tcp_simple_retransmit(sk);
2997 			return;
2998 		}
2999 
3000 		/* Otherwise enter Recovery state */
3001 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3002 		fast_rexmit = 1;
3003 	}
3004 
3005 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3006 		tcp_update_scoreboard(sk, fast_rexmit);
3007 	tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
3008 	tcp_xmit_retransmit_queue(sk);
3009 }
3010 
3011 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3012 {
3013 	tcp_rtt_estimator(sk, seq_rtt);
3014 	tcp_set_rto(sk);
3015 	inet_csk(sk)->icsk_backoff = 0;
3016 }
3017 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3018 
3019 /* Read draft-ietf-tcplw-high-performance before mucking
3020  * with this code. (Supersedes RFC1323)
3021  */
3022 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3023 {
3024 	/* RTTM Rule: A TSecr value received in a segment is used to
3025 	 * update the averaged RTT measurement only if the segment
3026 	 * acknowledges some new data, i.e., only if it advances the
3027 	 * left edge of the send window.
3028 	 *
3029 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3030 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3031 	 *
3032 	 * Changed: reset backoff as soon as we see the first valid sample.
3033 	 * If we do not, we get strongly overestimated rto. With timestamps
3034 	 * samples are accepted even from very old segments: f.e., when rtt=1
3035 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3036 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3037 	 * in window is lost... Voila.	 			--ANK (010210)
3038 	 */
3039 	struct tcp_sock *tp = tcp_sk(sk);
3040 
3041 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3042 }
3043 
3044 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3045 {
3046 	/* We don't have a timestamp. Can only use
3047 	 * packets that are not retransmitted to determine
3048 	 * rtt estimates. Also, we must not reset the
3049 	 * backoff for rto until we get a non-retransmitted
3050 	 * packet. This allows us to deal with a situation
3051 	 * where the network delay has increased suddenly.
3052 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3053 	 */
3054 
3055 	if (flag & FLAG_RETRANS_DATA_ACKED)
3056 		return;
3057 
3058 	tcp_valid_rtt_meas(sk, seq_rtt);
3059 }
3060 
3061 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3062 				      const s32 seq_rtt)
3063 {
3064 	const struct tcp_sock *tp = tcp_sk(sk);
3065 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3066 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3067 		tcp_ack_saw_tstamp(sk, flag);
3068 	else if (seq_rtt >= 0)
3069 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3070 }
3071 
3072 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3073 {
3074 	const struct inet_connection_sock *icsk = inet_csk(sk);
3075 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3076 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3077 }
3078 
3079 /* Restart timer after forward progress on connection.
3080  * RFC2988 recommends to restart timer to now+rto.
3081  */
3082 void tcp_rearm_rto(struct sock *sk)
3083 {
3084 	struct tcp_sock *tp = tcp_sk(sk);
3085 
3086 	/* If the retrans timer is currently being used by Fast Open
3087 	 * for SYN-ACK retrans purpose, stay put.
3088 	 */
3089 	if (tp->fastopen_rsk)
3090 		return;
3091 
3092 	if (!tp->packets_out) {
3093 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3094 	} else {
3095 		u32 rto = inet_csk(sk)->icsk_rto;
3096 		/* Offset the time elapsed after installing regular RTO */
3097 		if (tp->early_retrans_delayed) {
3098 			struct sk_buff *skb = tcp_write_queue_head(sk);
3099 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3100 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3101 			/* delta may not be positive if the socket is locked
3102 			 * when the delayed ER timer fires and is rescheduled.
3103 			 */
3104 			if (delta > 0)
3105 				rto = delta;
3106 		}
3107 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3108 					  TCP_RTO_MAX);
3109 	}
3110 	tp->early_retrans_delayed = 0;
3111 }
3112 
3113 /* This function is called when the delayed ER timer fires. TCP enters
3114  * fast recovery and performs fast-retransmit.
3115  */
3116 void tcp_resume_early_retransmit(struct sock *sk)
3117 {
3118 	struct tcp_sock *tp = tcp_sk(sk);
3119 
3120 	tcp_rearm_rto(sk);
3121 
3122 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3123 	if (!tp->do_early_retrans)
3124 		return;
3125 
3126 	tcp_enter_recovery(sk, false);
3127 	tcp_update_scoreboard(sk, 1);
3128 	tcp_xmit_retransmit_queue(sk);
3129 }
3130 
3131 /* If we get here, the whole TSO packet has not been acked. */
3132 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3133 {
3134 	struct tcp_sock *tp = tcp_sk(sk);
3135 	u32 packets_acked;
3136 
3137 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3138 
3139 	packets_acked = tcp_skb_pcount(skb);
3140 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3141 		return 0;
3142 	packets_acked -= tcp_skb_pcount(skb);
3143 
3144 	if (packets_acked) {
3145 		BUG_ON(tcp_skb_pcount(skb) == 0);
3146 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3147 	}
3148 
3149 	return packets_acked;
3150 }
3151 
3152 /* Remove acknowledged frames from the retransmission queue. If our packet
3153  * is before the ack sequence we can discard it as it's confirmed to have
3154  * arrived at the other end.
3155  */
3156 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3157 			       u32 prior_snd_una)
3158 {
3159 	struct tcp_sock *tp = tcp_sk(sk);
3160 	const struct inet_connection_sock *icsk = inet_csk(sk);
3161 	struct sk_buff *skb;
3162 	u32 now = tcp_time_stamp;
3163 	int fully_acked = true;
3164 	int flag = 0;
3165 	u32 pkts_acked = 0;
3166 	u32 reord = tp->packets_out;
3167 	u32 prior_sacked = tp->sacked_out;
3168 	s32 seq_rtt = -1;
3169 	s32 ca_seq_rtt = -1;
3170 	ktime_t last_ackt = net_invalid_timestamp();
3171 
3172 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3173 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3174 		u32 acked_pcount;
3175 		u8 sacked = scb->sacked;
3176 
3177 		/* Determine how many packets and what bytes were acked, tso and else */
3178 		if (after(scb->end_seq, tp->snd_una)) {
3179 			if (tcp_skb_pcount(skb) == 1 ||
3180 			    !after(tp->snd_una, scb->seq))
3181 				break;
3182 
3183 			acked_pcount = tcp_tso_acked(sk, skb);
3184 			if (!acked_pcount)
3185 				break;
3186 
3187 			fully_acked = false;
3188 		} else {
3189 			acked_pcount = tcp_skb_pcount(skb);
3190 		}
3191 
3192 		if (sacked & TCPCB_RETRANS) {
3193 			if (sacked & TCPCB_SACKED_RETRANS)
3194 				tp->retrans_out -= acked_pcount;
3195 			flag |= FLAG_RETRANS_DATA_ACKED;
3196 			ca_seq_rtt = -1;
3197 			seq_rtt = -1;
3198 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3199 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3200 		} else {
3201 			ca_seq_rtt = now - scb->when;
3202 			last_ackt = skb->tstamp;
3203 			if (seq_rtt < 0) {
3204 				seq_rtt = ca_seq_rtt;
3205 			}
3206 			if (!(sacked & TCPCB_SACKED_ACKED))
3207 				reord = min(pkts_acked, reord);
3208 		}
3209 
3210 		if (sacked & TCPCB_SACKED_ACKED)
3211 			tp->sacked_out -= acked_pcount;
3212 		if (sacked & TCPCB_LOST)
3213 			tp->lost_out -= acked_pcount;
3214 
3215 		tp->packets_out -= acked_pcount;
3216 		pkts_acked += acked_pcount;
3217 
3218 		/* Initial outgoing SYN's get put onto the write_queue
3219 		 * just like anything else we transmit.  It is not
3220 		 * true data, and if we misinform our callers that
3221 		 * this ACK acks real data, we will erroneously exit
3222 		 * connection startup slow start one packet too
3223 		 * quickly.  This is severely frowned upon behavior.
3224 		 */
3225 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3226 			flag |= FLAG_DATA_ACKED;
3227 		} else {
3228 			flag |= FLAG_SYN_ACKED;
3229 			tp->retrans_stamp = 0;
3230 		}
3231 
3232 		if (!fully_acked)
3233 			break;
3234 
3235 		tcp_unlink_write_queue(skb, sk);
3236 		sk_wmem_free_skb(sk, skb);
3237 		tp->scoreboard_skb_hint = NULL;
3238 		if (skb == tp->retransmit_skb_hint)
3239 			tp->retransmit_skb_hint = NULL;
3240 		if (skb == tp->lost_skb_hint)
3241 			tp->lost_skb_hint = NULL;
3242 	}
3243 
3244 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3245 		tp->snd_up = tp->snd_una;
3246 
3247 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3248 		flag |= FLAG_SACK_RENEGING;
3249 
3250 	if (flag & FLAG_ACKED) {
3251 		const struct tcp_congestion_ops *ca_ops
3252 			= inet_csk(sk)->icsk_ca_ops;
3253 
3254 		if (unlikely(icsk->icsk_mtup.probe_size &&
3255 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3256 			tcp_mtup_probe_success(sk);
3257 		}
3258 
3259 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3260 		tcp_rearm_rto(sk);
3261 
3262 		if (tcp_is_reno(tp)) {
3263 			tcp_remove_reno_sacks(sk, pkts_acked);
3264 		} else {
3265 			int delta;
3266 
3267 			/* Non-retransmitted hole got filled? That's reordering */
3268 			if (reord < prior_fackets)
3269 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3270 
3271 			delta = tcp_is_fack(tp) ? pkts_acked :
3272 						  prior_sacked - tp->sacked_out;
3273 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3274 		}
3275 
3276 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3277 
3278 		if (ca_ops->pkts_acked) {
3279 			s32 rtt_us = -1;
3280 
3281 			/* Is the ACK triggering packet unambiguous? */
3282 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3283 				/* High resolution needed and available? */
3284 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3285 				    !ktime_equal(last_ackt,
3286 						 net_invalid_timestamp()))
3287 					rtt_us = ktime_us_delta(ktime_get_real(),
3288 								last_ackt);
3289 				else if (ca_seq_rtt >= 0)
3290 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3291 			}
3292 
3293 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3294 		}
3295 	}
3296 
3297 #if FASTRETRANS_DEBUG > 0
3298 	WARN_ON((int)tp->sacked_out < 0);
3299 	WARN_ON((int)tp->lost_out < 0);
3300 	WARN_ON((int)tp->retrans_out < 0);
3301 	if (!tp->packets_out && tcp_is_sack(tp)) {
3302 		icsk = inet_csk(sk);
3303 		if (tp->lost_out) {
3304 			pr_debug("Leak l=%u %d\n",
3305 				 tp->lost_out, icsk->icsk_ca_state);
3306 			tp->lost_out = 0;
3307 		}
3308 		if (tp->sacked_out) {
3309 			pr_debug("Leak s=%u %d\n",
3310 				 tp->sacked_out, icsk->icsk_ca_state);
3311 			tp->sacked_out = 0;
3312 		}
3313 		if (tp->retrans_out) {
3314 			pr_debug("Leak r=%u %d\n",
3315 				 tp->retrans_out, icsk->icsk_ca_state);
3316 			tp->retrans_out = 0;
3317 		}
3318 	}
3319 #endif
3320 	return flag;
3321 }
3322 
3323 static void tcp_ack_probe(struct sock *sk)
3324 {
3325 	const struct tcp_sock *tp = tcp_sk(sk);
3326 	struct inet_connection_sock *icsk = inet_csk(sk);
3327 
3328 	/* Was it a usable window open? */
3329 
3330 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3331 		icsk->icsk_backoff = 0;
3332 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3333 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3334 		 * This function is not for random using!
3335 		 */
3336 	} else {
3337 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3338 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3339 					  TCP_RTO_MAX);
3340 	}
3341 }
3342 
3343 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3344 {
3345 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3346 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3347 }
3348 
3349 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3350 {
3351 	const struct tcp_sock *tp = tcp_sk(sk);
3352 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3353 		!tcp_in_cwnd_reduction(sk);
3354 }
3355 
3356 /* Check that window update is acceptable.
3357  * The function assumes that snd_una<=ack<=snd_next.
3358  */
3359 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3360 					const u32 ack, const u32 ack_seq,
3361 					const u32 nwin)
3362 {
3363 	return	after(ack, tp->snd_una) ||
3364 		after(ack_seq, tp->snd_wl1) ||
3365 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3366 }
3367 
3368 /* Update our send window.
3369  *
3370  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3371  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3372  */
3373 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3374 				 u32 ack_seq)
3375 {
3376 	struct tcp_sock *tp = tcp_sk(sk);
3377 	int flag = 0;
3378 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3379 
3380 	if (likely(!tcp_hdr(skb)->syn))
3381 		nwin <<= tp->rx_opt.snd_wscale;
3382 
3383 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3384 		flag |= FLAG_WIN_UPDATE;
3385 		tcp_update_wl(tp, ack_seq);
3386 
3387 		if (tp->snd_wnd != nwin) {
3388 			tp->snd_wnd = nwin;
3389 
3390 			/* Note, it is the only place, where
3391 			 * fast path is recovered for sending TCP.
3392 			 */
3393 			tp->pred_flags = 0;
3394 			tcp_fast_path_check(sk);
3395 
3396 			if (nwin > tp->max_window) {
3397 				tp->max_window = nwin;
3398 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3399 			}
3400 		}
3401 	}
3402 
3403 	tp->snd_una = ack;
3404 
3405 	return flag;
3406 }
3407 
3408 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3409  * continue in congestion avoidance.
3410  */
3411 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3412 {
3413 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3414 	tp->snd_cwnd_cnt = 0;
3415 	TCP_ECN_queue_cwr(tp);
3416 	tcp_moderate_cwnd(tp);
3417 }
3418 
3419 /* A conservative spurious RTO response algorithm: reduce cwnd using
3420  * PRR and continue in congestion avoidance.
3421  */
3422 static void tcp_cwr_spur_to_response(struct sock *sk)
3423 {
3424 	tcp_enter_cwr(sk, 0);
3425 }
3426 
3427 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3428 {
3429 	if (flag & FLAG_ECE)
3430 		tcp_cwr_spur_to_response(sk);
3431 	else
3432 		tcp_undo_cwr(sk, true);
3433 }
3434 
3435 /* F-RTO spurious RTO detection algorithm (RFC4138)
3436  *
3437  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3438  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3439  * window (but not to or beyond highest sequence sent before RTO):
3440  *   On First ACK,  send two new segments out.
3441  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3442  *                  algorithm is not part of the F-RTO detection algorithm
3443  *                  given in RFC4138 but can be selected separately).
3444  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3445  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3446  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3447  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3448  *
3449  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3450  * original window even after we transmit two new data segments.
3451  *
3452  * SACK version:
3453  *   on first step, wait until first cumulative ACK arrives, then move to
3454  *   the second step. In second step, the next ACK decides.
3455  *
3456  * F-RTO is implemented (mainly) in four functions:
3457  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3458  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3459  *     called when tcp_use_frto() showed green light
3460  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3461  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3462  *     to prove that the RTO is indeed spurious. It transfers the control
3463  *     from F-RTO to the conventional RTO recovery
3464  */
3465 static bool tcp_process_frto(struct sock *sk, int flag)
3466 {
3467 	struct tcp_sock *tp = tcp_sk(sk);
3468 
3469 	tcp_verify_left_out(tp);
3470 
3471 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3472 	if (flag & FLAG_DATA_ACKED)
3473 		inet_csk(sk)->icsk_retransmits = 0;
3474 
3475 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3476 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3477 		tp->undo_marker = 0;
3478 
3479 	if (!before(tp->snd_una, tp->frto_highmark)) {
3480 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3481 		return true;
3482 	}
3483 
3484 	if (!tcp_is_sackfrto(tp)) {
3485 		/* RFC4138 shortcoming in step 2; should also have case c):
3486 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3487 		 * data, winupdate
3488 		 */
3489 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3490 			return true;
3491 
3492 		if (!(flag & FLAG_DATA_ACKED)) {
3493 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3494 					    flag);
3495 			return true;
3496 		}
3497 	} else {
3498 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3499 			if (!tcp_packets_in_flight(tp)) {
3500 				tcp_enter_frto_loss(sk, 2, flag);
3501 				return true;
3502 			}
3503 
3504 			/* Prevent sending of new data. */
3505 			tp->snd_cwnd = min(tp->snd_cwnd,
3506 					   tcp_packets_in_flight(tp));
3507 			return true;
3508 		}
3509 
3510 		if ((tp->frto_counter >= 2) &&
3511 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3512 		     ((flag & FLAG_DATA_SACKED) &&
3513 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3514 			/* RFC4138 shortcoming (see comment above) */
3515 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3516 			    (flag & FLAG_NOT_DUP))
3517 				return true;
3518 
3519 			tcp_enter_frto_loss(sk, 3, flag);
3520 			return true;
3521 		}
3522 	}
3523 
3524 	if (tp->frto_counter == 1) {
3525 		/* tcp_may_send_now needs to see updated state */
3526 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3527 		tp->frto_counter = 2;
3528 
3529 		if (!tcp_may_send_now(sk))
3530 			tcp_enter_frto_loss(sk, 2, flag);
3531 
3532 		return true;
3533 	} else {
3534 		switch (sysctl_tcp_frto_response) {
3535 		case 2:
3536 			tcp_undo_spur_to_response(sk, flag);
3537 			break;
3538 		case 1:
3539 			tcp_conservative_spur_to_response(tp);
3540 			break;
3541 		default:
3542 			tcp_cwr_spur_to_response(sk);
3543 			break;
3544 		}
3545 		tp->frto_counter = 0;
3546 		tp->undo_marker = 0;
3547 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3548 	}
3549 	return false;
3550 }
3551 
3552 /* RFC 5961 7 [ACK Throttling] */
3553 static void tcp_send_challenge_ack(struct sock *sk)
3554 {
3555 	/* unprotected vars, we dont care of overwrites */
3556 	static u32 challenge_timestamp;
3557 	static unsigned int challenge_count;
3558 	u32 now = jiffies / HZ;
3559 
3560 	if (now != challenge_timestamp) {
3561 		challenge_timestamp = now;
3562 		challenge_count = 0;
3563 	}
3564 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3565 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3566 		tcp_send_ack(sk);
3567 	}
3568 }
3569 
3570 /* This routine deals with incoming acks, but not outgoing ones. */
3571 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3572 {
3573 	struct inet_connection_sock *icsk = inet_csk(sk);
3574 	struct tcp_sock *tp = tcp_sk(sk);
3575 	u32 prior_snd_una = tp->snd_una;
3576 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3577 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3578 	bool is_dupack = false;
3579 	u32 prior_in_flight;
3580 	u32 prior_fackets;
3581 	int prior_packets;
3582 	int prior_sacked = tp->sacked_out;
3583 	int pkts_acked = 0;
3584 	bool frto_cwnd = false;
3585 
3586 	/* If the ack is older than previous acks
3587 	 * then we can probably ignore it.
3588 	 */
3589 	if (before(ack, prior_snd_una)) {
3590 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591 		if (before(ack, prior_snd_una - tp->max_window)) {
3592 			tcp_send_challenge_ack(sk);
3593 			return -1;
3594 		}
3595 		goto old_ack;
3596 	}
3597 
3598 	/* If the ack includes data we haven't sent yet, discard
3599 	 * this segment (RFC793 Section 3.9).
3600 	 */
3601 	if (after(ack, tp->snd_nxt))
3602 		goto invalid_ack;
3603 
3604 	if (tp->early_retrans_delayed)
3605 		tcp_rearm_rto(sk);
3606 
3607 	if (after(ack, prior_snd_una))
3608 		flag |= FLAG_SND_UNA_ADVANCED;
3609 
3610 	prior_fackets = tp->fackets_out;
3611 	prior_in_flight = tcp_packets_in_flight(tp);
3612 
3613 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3614 		/* Window is constant, pure forward advance.
3615 		 * No more checks are required.
3616 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3617 		 */
3618 		tcp_update_wl(tp, ack_seq);
3619 		tp->snd_una = ack;
3620 		flag |= FLAG_WIN_UPDATE;
3621 
3622 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3623 
3624 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3625 	} else {
3626 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3627 			flag |= FLAG_DATA;
3628 		else
3629 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3630 
3631 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3632 
3633 		if (TCP_SKB_CB(skb)->sacked)
3634 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3635 
3636 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3637 			flag |= FLAG_ECE;
3638 
3639 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3640 	}
3641 
3642 	/* We passed data and got it acked, remove any soft error
3643 	 * log. Something worked...
3644 	 */
3645 	sk->sk_err_soft = 0;
3646 	icsk->icsk_probes_out = 0;
3647 	tp->rcv_tstamp = tcp_time_stamp;
3648 	prior_packets = tp->packets_out;
3649 	if (!prior_packets)
3650 		goto no_queue;
3651 
3652 	/* See if we can take anything off of the retransmit queue. */
3653 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3654 
3655 	pkts_acked = prior_packets - tp->packets_out;
3656 
3657 	if (tp->frto_counter)
3658 		frto_cwnd = tcp_process_frto(sk, flag);
3659 	/* Guarantee sacktag reordering detection against wrap-arounds */
3660 	if (before(tp->frto_highmark, tp->snd_una))
3661 		tp->frto_highmark = 0;
3662 
3663 	if (tcp_ack_is_dubious(sk, flag)) {
3664 		/* Advance CWND, if state allows this. */
3665 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3666 		    tcp_may_raise_cwnd(sk, flag))
3667 			tcp_cong_avoid(sk, ack, prior_in_flight);
3668 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3669 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3670 				      is_dupack, flag);
3671 	} else {
3672 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3673 			tcp_cong_avoid(sk, ack, prior_in_flight);
3674 	}
3675 
3676 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3677 		struct dst_entry *dst = __sk_dst_get(sk);
3678 		if (dst)
3679 			dst_confirm(dst);
3680 	}
3681 	return 1;
3682 
3683 no_queue:
3684 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3685 	if (flag & FLAG_DSACKING_ACK)
3686 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3687 				      is_dupack, flag);
3688 	/* If this ack opens up a zero window, clear backoff.  It was
3689 	 * being used to time the probes, and is probably far higher than
3690 	 * it needs to be for normal retransmission.
3691 	 */
3692 	if (tcp_send_head(sk))
3693 		tcp_ack_probe(sk);
3694 	return 1;
3695 
3696 invalid_ack:
3697 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3698 	return -1;
3699 
3700 old_ack:
3701 	/* If data was SACKed, tag it and see if we should send more data.
3702 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3703 	 */
3704 	if (TCP_SKB_CB(skb)->sacked) {
3705 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3706 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3707 				      is_dupack, flag);
3708 	}
3709 
3710 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3711 	return 0;
3712 }
3713 
3714 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3715  * But, this can also be called on packets in the established flow when
3716  * the fast version below fails.
3717  */
3718 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3719 		       const u8 **hvpp, int estab,
3720 		       struct tcp_fastopen_cookie *foc)
3721 {
3722 	const unsigned char *ptr;
3723 	const struct tcphdr *th = tcp_hdr(skb);
3724 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3725 
3726 	ptr = (const unsigned char *)(th + 1);
3727 	opt_rx->saw_tstamp = 0;
3728 
3729 	while (length > 0) {
3730 		int opcode = *ptr++;
3731 		int opsize;
3732 
3733 		switch (opcode) {
3734 		case TCPOPT_EOL:
3735 			return;
3736 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3737 			length--;
3738 			continue;
3739 		default:
3740 			opsize = *ptr++;
3741 			if (opsize < 2) /* "silly options" */
3742 				return;
3743 			if (opsize > length)
3744 				return;	/* don't parse partial options */
3745 			switch (opcode) {
3746 			case TCPOPT_MSS:
3747 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3748 					u16 in_mss = get_unaligned_be16(ptr);
3749 					if (in_mss) {
3750 						if (opt_rx->user_mss &&
3751 						    opt_rx->user_mss < in_mss)
3752 							in_mss = opt_rx->user_mss;
3753 						opt_rx->mss_clamp = in_mss;
3754 					}
3755 				}
3756 				break;
3757 			case TCPOPT_WINDOW:
3758 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3759 				    !estab && sysctl_tcp_window_scaling) {
3760 					__u8 snd_wscale = *(__u8 *)ptr;
3761 					opt_rx->wscale_ok = 1;
3762 					if (snd_wscale > 14) {
3763 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3764 								     __func__,
3765 								     snd_wscale);
3766 						snd_wscale = 14;
3767 					}
3768 					opt_rx->snd_wscale = snd_wscale;
3769 				}
3770 				break;
3771 			case TCPOPT_TIMESTAMP:
3772 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3773 				    ((estab && opt_rx->tstamp_ok) ||
3774 				     (!estab && sysctl_tcp_timestamps))) {
3775 					opt_rx->saw_tstamp = 1;
3776 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3777 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3778 				}
3779 				break;
3780 			case TCPOPT_SACK_PERM:
3781 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3782 				    !estab && sysctl_tcp_sack) {
3783 					opt_rx->sack_ok = TCP_SACK_SEEN;
3784 					tcp_sack_reset(opt_rx);
3785 				}
3786 				break;
3787 
3788 			case TCPOPT_SACK:
3789 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3790 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3791 				   opt_rx->sack_ok) {
3792 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3793 				}
3794 				break;
3795 #ifdef CONFIG_TCP_MD5SIG
3796 			case TCPOPT_MD5SIG:
3797 				/*
3798 				 * The MD5 Hash has already been
3799 				 * checked (see tcp_v{4,6}_do_rcv()).
3800 				 */
3801 				break;
3802 #endif
3803 			case TCPOPT_COOKIE:
3804 				/* This option is variable length.
3805 				 */
3806 				switch (opsize) {
3807 				case TCPOLEN_COOKIE_BASE:
3808 					/* not yet implemented */
3809 					break;
3810 				case TCPOLEN_COOKIE_PAIR:
3811 					/* not yet implemented */
3812 					break;
3813 				case TCPOLEN_COOKIE_MIN+0:
3814 				case TCPOLEN_COOKIE_MIN+2:
3815 				case TCPOLEN_COOKIE_MIN+4:
3816 				case TCPOLEN_COOKIE_MIN+6:
3817 				case TCPOLEN_COOKIE_MAX:
3818 					/* 16-bit multiple */
3819 					opt_rx->cookie_plus = opsize;
3820 					*hvpp = ptr;
3821 					break;
3822 				default:
3823 					/* ignore option */
3824 					break;
3825 				}
3826 				break;
3827 
3828 			case TCPOPT_EXP:
3829 				/* Fast Open option shares code 254 using a
3830 				 * 16 bits magic number. It's valid only in
3831 				 * SYN or SYN-ACK with an even size.
3832 				 */
3833 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3834 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3835 				    foc == NULL || !th->syn || (opsize & 1))
3836 					break;
3837 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3838 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3839 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3840 					memcpy(foc->val, ptr + 2, foc->len);
3841 				else if (foc->len != 0)
3842 					foc->len = -1;
3843 				break;
3844 
3845 			}
3846 			ptr += opsize-2;
3847 			length -= opsize;
3848 		}
3849 	}
3850 }
3851 EXPORT_SYMBOL(tcp_parse_options);
3852 
3853 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3854 {
3855 	const __be32 *ptr = (const __be32 *)(th + 1);
3856 
3857 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3858 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3859 		tp->rx_opt.saw_tstamp = 1;
3860 		++ptr;
3861 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3862 		++ptr;
3863 		tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3864 		return true;
3865 	}
3866 	return false;
3867 }
3868 
3869 /* Fast parse options. This hopes to only see timestamps.
3870  * If it is wrong it falls back on tcp_parse_options().
3871  */
3872 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3873 				   const struct tcphdr *th,
3874 				   struct tcp_sock *tp, const u8 **hvpp)
3875 {
3876 	/* In the spirit of fast parsing, compare doff directly to constant
3877 	 * values.  Because equality is used, short doff can be ignored here.
3878 	 */
3879 	if (th->doff == (sizeof(*th) / 4)) {
3880 		tp->rx_opt.saw_tstamp = 0;
3881 		return false;
3882 	} else if (tp->rx_opt.tstamp_ok &&
3883 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3884 		if (tcp_parse_aligned_timestamp(tp, th))
3885 			return true;
3886 	}
3887 
3888 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3889 	if (tp->rx_opt.saw_tstamp)
3890 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3891 
3892 	return true;
3893 }
3894 
3895 #ifdef CONFIG_TCP_MD5SIG
3896 /*
3897  * Parse MD5 Signature option
3898  */
3899 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3900 {
3901 	int length = (th->doff << 2) - sizeof(*th);
3902 	const u8 *ptr = (const u8 *)(th + 1);
3903 
3904 	/* If the TCP option is too short, we can short cut */
3905 	if (length < TCPOLEN_MD5SIG)
3906 		return NULL;
3907 
3908 	while (length > 0) {
3909 		int opcode = *ptr++;
3910 		int opsize;
3911 
3912 		switch(opcode) {
3913 		case TCPOPT_EOL:
3914 			return NULL;
3915 		case TCPOPT_NOP:
3916 			length--;
3917 			continue;
3918 		default:
3919 			opsize = *ptr++;
3920 			if (opsize < 2 || opsize > length)
3921 				return NULL;
3922 			if (opcode == TCPOPT_MD5SIG)
3923 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3924 		}
3925 		ptr += opsize - 2;
3926 		length -= opsize;
3927 	}
3928 	return NULL;
3929 }
3930 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3931 #endif
3932 
3933 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3934 {
3935 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3936 	tp->rx_opt.ts_recent_stamp = get_seconds();
3937 }
3938 
3939 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3940 {
3941 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3942 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3943 		 * extra check below makes sure this can only happen
3944 		 * for pure ACK frames.  -DaveM
3945 		 *
3946 		 * Not only, also it occurs for expired timestamps.
3947 		 */
3948 
3949 		if (tcp_paws_check(&tp->rx_opt, 0))
3950 			tcp_store_ts_recent(tp);
3951 	}
3952 }
3953 
3954 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3955  *
3956  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3957  * it can pass through stack. So, the following predicate verifies that
3958  * this segment is not used for anything but congestion avoidance or
3959  * fast retransmit. Moreover, we even are able to eliminate most of such
3960  * second order effects, if we apply some small "replay" window (~RTO)
3961  * to timestamp space.
3962  *
3963  * All these measures still do not guarantee that we reject wrapped ACKs
3964  * on networks with high bandwidth, when sequence space is recycled fastly,
3965  * but it guarantees that such events will be very rare and do not affect
3966  * connection seriously. This doesn't look nice, but alas, PAWS is really
3967  * buggy extension.
3968  *
3969  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3970  * states that events when retransmit arrives after original data are rare.
3971  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3972  * the biggest problem on large power networks even with minor reordering.
3973  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3974  * up to bandwidth of 18Gigabit/sec. 8) ]
3975  */
3976 
3977 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3978 {
3979 	const struct tcp_sock *tp = tcp_sk(sk);
3980 	const struct tcphdr *th = tcp_hdr(skb);
3981 	u32 seq = TCP_SKB_CB(skb)->seq;
3982 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3983 
3984 	return (/* 1. Pure ACK with correct sequence number. */
3985 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3986 
3987 		/* 2. ... and duplicate ACK. */
3988 		ack == tp->snd_una &&
3989 
3990 		/* 3. ... and does not update window. */
3991 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3992 
3993 		/* 4. ... and sits in replay window. */
3994 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3995 }
3996 
3997 static inline bool tcp_paws_discard(const struct sock *sk,
3998 				   const struct sk_buff *skb)
3999 {
4000 	const struct tcp_sock *tp = tcp_sk(sk);
4001 
4002 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4003 	       !tcp_disordered_ack(sk, skb);
4004 }
4005 
4006 /* Check segment sequence number for validity.
4007  *
4008  * Segment controls are considered valid, if the segment
4009  * fits to the window after truncation to the window. Acceptability
4010  * of data (and SYN, FIN, of course) is checked separately.
4011  * See tcp_data_queue(), for example.
4012  *
4013  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4014  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4015  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4016  * (borrowed from freebsd)
4017  */
4018 
4019 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4020 {
4021 	return	!before(end_seq, tp->rcv_wup) &&
4022 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4023 }
4024 
4025 /* When we get a reset we do this. */
4026 void tcp_reset(struct sock *sk)
4027 {
4028 	/* We want the right error as BSD sees it (and indeed as we do). */
4029 	switch (sk->sk_state) {
4030 	case TCP_SYN_SENT:
4031 		sk->sk_err = ECONNREFUSED;
4032 		break;
4033 	case TCP_CLOSE_WAIT:
4034 		sk->sk_err = EPIPE;
4035 		break;
4036 	case TCP_CLOSE:
4037 		return;
4038 	default:
4039 		sk->sk_err = ECONNRESET;
4040 	}
4041 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4042 	smp_wmb();
4043 
4044 	if (!sock_flag(sk, SOCK_DEAD))
4045 		sk->sk_error_report(sk);
4046 
4047 	tcp_done(sk);
4048 }
4049 
4050 /*
4051  * 	Process the FIN bit. This now behaves as it is supposed to work
4052  *	and the FIN takes effect when it is validly part of sequence
4053  *	space. Not before when we get holes.
4054  *
4055  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4056  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4057  *	TIME-WAIT)
4058  *
4059  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4060  *	close and we go into CLOSING (and later onto TIME-WAIT)
4061  *
4062  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4063  */
4064 static void tcp_fin(struct sock *sk)
4065 {
4066 	struct tcp_sock *tp = tcp_sk(sk);
4067 
4068 	inet_csk_schedule_ack(sk);
4069 
4070 	sk->sk_shutdown |= RCV_SHUTDOWN;
4071 	sock_set_flag(sk, SOCK_DONE);
4072 
4073 	switch (sk->sk_state) {
4074 	case TCP_SYN_RECV:
4075 	case TCP_ESTABLISHED:
4076 		/* Move to CLOSE_WAIT */
4077 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4078 		inet_csk(sk)->icsk_ack.pingpong = 1;
4079 		break;
4080 
4081 	case TCP_CLOSE_WAIT:
4082 	case TCP_CLOSING:
4083 		/* Received a retransmission of the FIN, do
4084 		 * nothing.
4085 		 */
4086 		break;
4087 	case TCP_LAST_ACK:
4088 		/* RFC793: Remain in the LAST-ACK state. */
4089 		break;
4090 
4091 	case TCP_FIN_WAIT1:
4092 		/* This case occurs when a simultaneous close
4093 		 * happens, we must ack the received FIN and
4094 		 * enter the CLOSING state.
4095 		 */
4096 		tcp_send_ack(sk);
4097 		tcp_set_state(sk, TCP_CLOSING);
4098 		break;
4099 	case TCP_FIN_WAIT2:
4100 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4101 		tcp_send_ack(sk);
4102 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4103 		break;
4104 	default:
4105 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4106 		 * cases we should never reach this piece of code.
4107 		 */
4108 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4109 		       __func__, sk->sk_state);
4110 		break;
4111 	}
4112 
4113 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4114 	 * Probably, we should reset in this case. For now drop them.
4115 	 */
4116 	__skb_queue_purge(&tp->out_of_order_queue);
4117 	if (tcp_is_sack(tp))
4118 		tcp_sack_reset(&tp->rx_opt);
4119 	sk_mem_reclaim(sk);
4120 
4121 	if (!sock_flag(sk, SOCK_DEAD)) {
4122 		sk->sk_state_change(sk);
4123 
4124 		/* Do not send POLL_HUP for half duplex close. */
4125 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4126 		    sk->sk_state == TCP_CLOSE)
4127 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4128 		else
4129 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4130 	}
4131 }
4132 
4133 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4134 				  u32 end_seq)
4135 {
4136 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4137 		if (before(seq, sp->start_seq))
4138 			sp->start_seq = seq;
4139 		if (after(end_seq, sp->end_seq))
4140 			sp->end_seq = end_seq;
4141 		return true;
4142 	}
4143 	return false;
4144 }
4145 
4146 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4147 {
4148 	struct tcp_sock *tp = tcp_sk(sk);
4149 
4150 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4151 		int mib_idx;
4152 
4153 		if (before(seq, tp->rcv_nxt))
4154 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4155 		else
4156 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4157 
4158 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4159 
4160 		tp->rx_opt.dsack = 1;
4161 		tp->duplicate_sack[0].start_seq = seq;
4162 		tp->duplicate_sack[0].end_seq = end_seq;
4163 	}
4164 }
4165 
4166 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4167 {
4168 	struct tcp_sock *tp = tcp_sk(sk);
4169 
4170 	if (!tp->rx_opt.dsack)
4171 		tcp_dsack_set(sk, seq, end_seq);
4172 	else
4173 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4174 }
4175 
4176 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4177 {
4178 	struct tcp_sock *tp = tcp_sk(sk);
4179 
4180 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4181 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4182 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4183 		tcp_enter_quickack_mode(sk);
4184 
4185 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4186 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4187 
4188 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4189 				end_seq = tp->rcv_nxt;
4190 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4191 		}
4192 	}
4193 
4194 	tcp_send_ack(sk);
4195 }
4196 
4197 /* These routines update the SACK block as out-of-order packets arrive or
4198  * in-order packets close up the sequence space.
4199  */
4200 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4201 {
4202 	int this_sack;
4203 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4204 	struct tcp_sack_block *swalk = sp + 1;
4205 
4206 	/* See if the recent change to the first SACK eats into
4207 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4208 	 */
4209 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4210 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4211 			int i;
4212 
4213 			/* Zap SWALK, by moving every further SACK up by one slot.
4214 			 * Decrease num_sacks.
4215 			 */
4216 			tp->rx_opt.num_sacks--;
4217 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4218 				sp[i] = sp[i + 1];
4219 			continue;
4220 		}
4221 		this_sack++, swalk++;
4222 	}
4223 }
4224 
4225 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4226 {
4227 	struct tcp_sock *tp = tcp_sk(sk);
4228 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4229 	int cur_sacks = tp->rx_opt.num_sacks;
4230 	int this_sack;
4231 
4232 	if (!cur_sacks)
4233 		goto new_sack;
4234 
4235 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4236 		if (tcp_sack_extend(sp, seq, end_seq)) {
4237 			/* Rotate this_sack to the first one. */
4238 			for (; this_sack > 0; this_sack--, sp--)
4239 				swap(*sp, *(sp - 1));
4240 			if (cur_sacks > 1)
4241 				tcp_sack_maybe_coalesce(tp);
4242 			return;
4243 		}
4244 	}
4245 
4246 	/* Could not find an adjacent existing SACK, build a new one,
4247 	 * put it at the front, and shift everyone else down.  We
4248 	 * always know there is at least one SACK present already here.
4249 	 *
4250 	 * If the sack array is full, forget about the last one.
4251 	 */
4252 	if (this_sack >= TCP_NUM_SACKS) {
4253 		this_sack--;
4254 		tp->rx_opt.num_sacks--;
4255 		sp--;
4256 	}
4257 	for (; this_sack > 0; this_sack--, sp--)
4258 		*sp = *(sp - 1);
4259 
4260 new_sack:
4261 	/* Build the new head SACK, and we're done. */
4262 	sp->start_seq = seq;
4263 	sp->end_seq = end_seq;
4264 	tp->rx_opt.num_sacks++;
4265 }
4266 
4267 /* RCV.NXT advances, some SACKs should be eaten. */
4268 
4269 static void tcp_sack_remove(struct tcp_sock *tp)
4270 {
4271 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4272 	int num_sacks = tp->rx_opt.num_sacks;
4273 	int this_sack;
4274 
4275 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4276 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4277 		tp->rx_opt.num_sacks = 0;
4278 		return;
4279 	}
4280 
4281 	for (this_sack = 0; this_sack < num_sacks;) {
4282 		/* Check if the start of the sack is covered by RCV.NXT. */
4283 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4284 			int i;
4285 
4286 			/* RCV.NXT must cover all the block! */
4287 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4288 
4289 			/* Zap this SACK, by moving forward any other SACKS. */
4290 			for (i=this_sack+1; i < num_sacks; i++)
4291 				tp->selective_acks[i-1] = tp->selective_acks[i];
4292 			num_sacks--;
4293 			continue;
4294 		}
4295 		this_sack++;
4296 		sp++;
4297 	}
4298 	tp->rx_opt.num_sacks = num_sacks;
4299 }
4300 
4301 /* This one checks to see if we can put data from the
4302  * out_of_order queue into the receive_queue.
4303  */
4304 static void tcp_ofo_queue(struct sock *sk)
4305 {
4306 	struct tcp_sock *tp = tcp_sk(sk);
4307 	__u32 dsack_high = tp->rcv_nxt;
4308 	struct sk_buff *skb;
4309 
4310 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4311 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4312 			break;
4313 
4314 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4315 			__u32 dsack = dsack_high;
4316 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4317 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4318 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4319 		}
4320 
4321 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4322 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4323 			__skb_unlink(skb, &tp->out_of_order_queue);
4324 			__kfree_skb(skb);
4325 			continue;
4326 		}
4327 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4328 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4329 			   TCP_SKB_CB(skb)->end_seq);
4330 
4331 		__skb_unlink(skb, &tp->out_of_order_queue);
4332 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4333 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4334 		if (tcp_hdr(skb)->fin)
4335 			tcp_fin(sk);
4336 	}
4337 }
4338 
4339 static bool tcp_prune_ofo_queue(struct sock *sk);
4340 static int tcp_prune_queue(struct sock *sk);
4341 
4342 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4343 				 unsigned int size)
4344 {
4345 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4346 	    !sk_rmem_schedule(sk, skb, size)) {
4347 
4348 		if (tcp_prune_queue(sk) < 0)
4349 			return -1;
4350 
4351 		if (!sk_rmem_schedule(sk, skb, size)) {
4352 			if (!tcp_prune_ofo_queue(sk))
4353 				return -1;
4354 
4355 			if (!sk_rmem_schedule(sk, skb, size))
4356 				return -1;
4357 		}
4358 	}
4359 	return 0;
4360 }
4361 
4362 /**
4363  * tcp_try_coalesce - try to merge skb to prior one
4364  * @sk: socket
4365  * @to: prior buffer
4366  * @from: buffer to add in queue
4367  * @fragstolen: pointer to boolean
4368  *
4369  * Before queueing skb @from after @to, try to merge them
4370  * to reduce overall memory use and queue lengths, if cost is small.
4371  * Packets in ofo or receive queues can stay a long time.
4372  * Better try to coalesce them right now to avoid future collapses.
4373  * Returns true if caller should free @from instead of queueing it
4374  */
4375 static bool tcp_try_coalesce(struct sock *sk,
4376 			     struct sk_buff *to,
4377 			     struct sk_buff *from,
4378 			     bool *fragstolen)
4379 {
4380 	int delta;
4381 
4382 	*fragstolen = false;
4383 
4384 	if (tcp_hdr(from)->fin)
4385 		return false;
4386 
4387 	/* Its possible this segment overlaps with prior segment in queue */
4388 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4389 		return false;
4390 
4391 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4392 		return false;
4393 
4394 	atomic_add(delta, &sk->sk_rmem_alloc);
4395 	sk_mem_charge(sk, delta);
4396 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4397 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4398 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4399 	return true;
4400 }
4401 
4402 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4403 {
4404 	struct tcp_sock *tp = tcp_sk(sk);
4405 	struct sk_buff *skb1;
4406 	u32 seq, end_seq;
4407 
4408 	TCP_ECN_check_ce(tp, skb);
4409 
4410 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4411 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4412 		__kfree_skb(skb);
4413 		return;
4414 	}
4415 
4416 	/* Disable header prediction. */
4417 	tp->pred_flags = 0;
4418 	inet_csk_schedule_ack(sk);
4419 
4420 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4421 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4422 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4423 
4424 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4425 	if (!skb1) {
4426 		/* Initial out of order segment, build 1 SACK. */
4427 		if (tcp_is_sack(tp)) {
4428 			tp->rx_opt.num_sacks = 1;
4429 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4430 			tp->selective_acks[0].end_seq =
4431 						TCP_SKB_CB(skb)->end_seq;
4432 		}
4433 		__skb_queue_head(&tp->out_of_order_queue, skb);
4434 		goto end;
4435 	}
4436 
4437 	seq = TCP_SKB_CB(skb)->seq;
4438 	end_seq = TCP_SKB_CB(skb)->end_seq;
4439 
4440 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4441 		bool fragstolen;
4442 
4443 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4444 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4445 		} else {
4446 			kfree_skb_partial(skb, fragstolen);
4447 			skb = NULL;
4448 		}
4449 
4450 		if (!tp->rx_opt.num_sacks ||
4451 		    tp->selective_acks[0].end_seq != seq)
4452 			goto add_sack;
4453 
4454 		/* Common case: data arrive in order after hole. */
4455 		tp->selective_acks[0].end_seq = end_seq;
4456 		goto end;
4457 	}
4458 
4459 	/* Find place to insert this segment. */
4460 	while (1) {
4461 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4462 			break;
4463 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4464 			skb1 = NULL;
4465 			break;
4466 		}
4467 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4468 	}
4469 
4470 	/* Do skb overlap to previous one? */
4471 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4472 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4473 			/* All the bits are present. Drop. */
4474 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4475 			__kfree_skb(skb);
4476 			skb = NULL;
4477 			tcp_dsack_set(sk, seq, end_seq);
4478 			goto add_sack;
4479 		}
4480 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4481 			/* Partial overlap. */
4482 			tcp_dsack_set(sk, seq,
4483 				      TCP_SKB_CB(skb1)->end_seq);
4484 		} else {
4485 			if (skb_queue_is_first(&tp->out_of_order_queue,
4486 					       skb1))
4487 				skb1 = NULL;
4488 			else
4489 				skb1 = skb_queue_prev(
4490 					&tp->out_of_order_queue,
4491 					skb1);
4492 		}
4493 	}
4494 	if (!skb1)
4495 		__skb_queue_head(&tp->out_of_order_queue, skb);
4496 	else
4497 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4498 
4499 	/* And clean segments covered by new one as whole. */
4500 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4501 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4502 
4503 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4504 			break;
4505 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4506 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4507 					 end_seq);
4508 			break;
4509 		}
4510 		__skb_unlink(skb1, &tp->out_of_order_queue);
4511 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4512 				 TCP_SKB_CB(skb1)->end_seq);
4513 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4514 		__kfree_skb(skb1);
4515 	}
4516 
4517 add_sack:
4518 	if (tcp_is_sack(tp))
4519 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4520 end:
4521 	if (skb)
4522 		skb_set_owner_r(skb, sk);
4523 }
4524 
4525 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4526 		  bool *fragstolen)
4527 {
4528 	int eaten;
4529 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4530 
4531 	__skb_pull(skb, hdrlen);
4532 	eaten = (tail &&
4533 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4534 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4535 	if (!eaten) {
4536 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4537 		skb_set_owner_r(skb, sk);
4538 	}
4539 	return eaten;
4540 }
4541 
4542 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4543 {
4544 	struct sk_buff *skb = NULL;
4545 	struct tcphdr *th;
4546 	bool fragstolen;
4547 
4548 	if (size == 0)
4549 		return 0;
4550 
4551 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4552 	if (!skb)
4553 		goto err;
4554 
4555 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4556 		goto err_free;
4557 
4558 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4559 	skb_reset_transport_header(skb);
4560 	memset(th, 0, sizeof(*th));
4561 
4562 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4563 		goto err_free;
4564 
4565 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4568 
4569 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4570 		WARN_ON_ONCE(fragstolen); /* should not happen */
4571 		__kfree_skb(skb);
4572 	}
4573 	return size;
4574 
4575 err_free:
4576 	kfree_skb(skb);
4577 err:
4578 	return -ENOMEM;
4579 }
4580 
4581 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4582 {
4583 	const struct tcphdr *th = tcp_hdr(skb);
4584 	struct tcp_sock *tp = tcp_sk(sk);
4585 	int eaten = -1;
4586 	bool fragstolen = false;
4587 
4588 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4589 		goto drop;
4590 
4591 	skb_dst_drop(skb);
4592 	__skb_pull(skb, th->doff * 4);
4593 
4594 	TCP_ECN_accept_cwr(tp, skb);
4595 
4596 	tp->rx_opt.dsack = 0;
4597 
4598 	/*  Queue data for delivery to the user.
4599 	 *  Packets in sequence go to the receive queue.
4600 	 *  Out of sequence packets to the out_of_order_queue.
4601 	 */
4602 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4603 		if (tcp_receive_window(tp) == 0)
4604 			goto out_of_window;
4605 
4606 		/* Ok. In sequence. In window. */
4607 		if (tp->ucopy.task == current &&
4608 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4609 		    sock_owned_by_user(sk) && !tp->urg_data) {
4610 			int chunk = min_t(unsigned int, skb->len,
4611 					  tp->ucopy.len);
4612 
4613 			__set_current_state(TASK_RUNNING);
4614 
4615 			local_bh_enable();
4616 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4617 				tp->ucopy.len -= chunk;
4618 				tp->copied_seq += chunk;
4619 				eaten = (chunk == skb->len);
4620 				tcp_rcv_space_adjust(sk);
4621 			}
4622 			local_bh_disable();
4623 		}
4624 
4625 		if (eaten <= 0) {
4626 queue_and_out:
4627 			if (eaten < 0 &&
4628 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4629 				goto drop;
4630 
4631 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4632 		}
4633 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4634 		if (skb->len)
4635 			tcp_event_data_recv(sk, skb);
4636 		if (th->fin)
4637 			tcp_fin(sk);
4638 
4639 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4640 			tcp_ofo_queue(sk);
4641 
4642 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4643 			 * gap in queue is filled.
4644 			 */
4645 			if (skb_queue_empty(&tp->out_of_order_queue))
4646 				inet_csk(sk)->icsk_ack.pingpong = 0;
4647 		}
4648 
4649 		if (tp->rx_opt.num_sacks)
4650 			tcp_sack_remove(tp);
4651 
4652 		tcp_fast_path_check(sk);
4653 
4654 		if (eaten > 0)
4655 			kfree_skb_partial(skb, fragstolen);
4656 		if (!sock_flag(sk, SOCK_DEAD))
4657 			sk->sk_data_ready(sk, 0);
4658 		return;
4659 	}
4660 
4661 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4662 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4663 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4664 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4665 
4666 out_of_window:
4667 		tcp_enter_quickack_mode(sk);
4668 		inet_csk_schedule_ack(sk);
4669 drop:
4670 		__kfree_skb(skb);
4671 		return;
4672 	}
4673 
4674 	/* Out of window. F.e. zero window probe. */
4675 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4676 		goto out_of_window;
4677 
4678 	tcp_enter_quickack_mode(sk);
4679 
4680 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4681 		/* Partial packet, seq < rcv_next < end_seq */
4682 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4683 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4684 			   TCP_SKB_CB(skb)->end_seq);
4685 
4686 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4687 
4688 		/* If window is closed, drop tail of packet. But after
4689 		 * remembering D-SACK for its head made in previous line.
4690 		 */
4691 		if (!tcp_receive_window(tp))
4692 			goto out_of_window;
4693 		goto queue_and_out;
4694 	}
4695 
4696 	tcp_data_queue_ofo(sk, skb);
4697 }
4698 
4699 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4700 					struct sk_buff_head *list)
4701 {
4702 	struct sk_buff *next = NULL;
4703 
4704 	if (!skb_queue_is_last(list, skb))
4705 		next = skb_queue_next(list, skb);
4706 
4707 	__skb_unlink(skb, list);
4708 	__kfree_skb(skb);
4709 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4710 
4711 	return next;
4712 }
4713 
4714 /* Collapse contiguous sequence of skbs head..tail with
4715  * sequence numbers start..end.
4716  *
4717  * If tail is NULL, this means until the end of the list.
4718  *
4719  * Segments with FIN/SYN are not collapsed (only because this
4720  * simplifies code)
4721  */
4722 static void
4723 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4724 	     struct sk_buff *head, struct sk_buff *tail,
4725 	     u32 start, u32 end)
4726 {
4727 	struct sk_buff *skb, *n;
4728 	bool end_of_skbs;
4729 
4730 	/* First, check that queue is collapsible and find
4731 	 * the point where collapsing can be useful. */
4732 	skb = head;
4733 restart:
4734 	end_of_skbs = true;
4735 	skb_queue_walk_from_safe(list, skb, n) {
4736 		if (skb == tail)
4737 			break;
4738 		/* No new bits? It is possible on ofo queue. */
4739 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4740 			skb = tcp_collapse_one(sk, skb, list);
4741 			if (!skb)
4742 				break;
4743 			goto restart;
4744 		}
4745 
4746 		/* The first skb to collapse is:
4747 		 * - not SYN/FIN and
4748 		 * - bloated or contains data before "start" or
4749 		 *   overlaps to the next one.
4750 		 */
4751 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4752 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4753 		     before(TCP_SKB_CB(skb)->seq, start))) {
4754 			end_of_skbs = false;
4755 			break;
4756 		}
4757 
4758 		if (!skb_queue_is_last(list, skb)) {
4759 			struct sk_buff *next = skb_queue_next(list, skb);
4760 			if (next != tail &&
4761 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4762 				end_of_skbs = false;
4763 				break;
4764 			}
4765 		}
4766 
4767 		/* Decided to skip this, advance start seq. */
4768 		start = TCP_SKB_CB(skb)->end_seq;
4769 	}
4770 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4771 		return;
4772 
4773 	while (before(start, end)) {
4774 		struct sk_buff *nskb;
4775 		unsigned int header = skb_headroom(skb);
4776 		int copy = SKB_MAX_ORDER(header, 0);
4777 
4778 		/* Too big header? This can happen with IPv6. */
4779 		if (copy < 0)
4780 			return;
4781 		if (end - start < copy)
4782 			copy = end - start;
4783 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4784 		if (!nskb)
4785 			return;
4786 
4787 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4788 		skb_set_network_header(nskb, (skb_network_header(skb) -
4789 					      skb->head));
4790 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4791 						skb->head));
4792 		skb_reserve(nskb, header);
4793 		memcpy(nskb->head, skb->head, header);
4794 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4795 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4796 		__skb_queue_before(list, skb, nskb);
4797 		skb_set_owner_r(nskb, sk);
4798 
4799 		/* Copy data, releasing collapsed skbs. */
4800 		while (copy > 0) {
4801 			int offset = start - TCP_SKB_CB(skb)->seq;
4802 			int size = TCP_SKB_CB(skb)->end_seq - start;
4803 
4804 			BUG_ON(offset < 0);
4805 			if (size > 0) {
4806 				size = min(copy, size);
4807 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4808 					BUG();
4809 				TCP_SKB_CB(nskb)->end_seq += size;
4810 				copy -= size;
4811 				start += size;
4812 			}
4813 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4814 				skb = tcp_collapse_one(sk, skb, list);
4815 				if (!skb ||
4816 				    skb == tail ||
4817 				    tcp_hdr(skb)->syn ||
4818 				    tcp_hdr(skb)->fin)
4819 					return;
4820 			}
4821 		}
4822 	}
4823 }
4824 
4825 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4826  * and tcp_collapse() them until all the queue is collapsed.
4827  */
4828 static void tcp_collapse_ofo_queue(struct sock *sk)
4829 {
4830 	struct tcp_sock *tp = tcp_sk(sk);
4831 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4832 	struct sk_buff *head;
4833 	u32 start, end;
4834 
4835 	if (skb == NULL)
4836 		return;
4837 
4838 	start = TCP_SKB_CB(skb)->seq;
4839 	end = TCP_SKB_CB(skb)->end_seq;
4840 	head = skb;
4841 
4842 	for (;;) {
4843 		struct sk_buff *next = NULL;
4844 
4845 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4846 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4847 		skb = next;
4848 
4849 		/* Segment is terminated when we see gap or when
4850 		 * we are at the end of all the queue. */
4851 		if (!skb ||
4852 		    after(TCP_SKB_CB(skb)->seq, end) ||
4853 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4854 			tcp_collapse(sk, &tp->out_of_order_queue,
4855 				     head, skb, start, end);
4856 			head = skb;
4857 			if (!skb)
4858 				break;
4859 			/* Start new segment */
4860 			start = TCP_SKB_CB(skb)->seq;
4861 			end = TCP_SKB_CB(skb)->end_seq;
4862 		} else {
4863 			if (before(TCP_SKB_CB(skb)->seq, start))
4864 				start = TCP_SKB_CB(skb)->seq;
4865 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4866 				end = TCP_SKB_CB(skb)->end_seq;
4867 		}
4868 	}
4869 }
4870 
4871 /*
4872  * Purge the out-of-order queue.
4873  * Return true if queue was pruned.
4874  */
4875 static bool tcp_prune_ofo_queue(struct sock *sk)
4876 {
4877 	struct tcp_sock *tp = tcp_sk(sk);
4878 	bool res = false;
4879 
4880 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4881 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4882 		__skb_queue_purge(&tp->out_of_order_queue);
4883 
4884 		/* Reset SACK state.  A conforming SACK implementation will
4885 		 * do the same at a timeout based retransmit.  When a connection
4886 		 * is in a sad state like this, we care only about integrity
4887 		 * of the connection not performance.
4888 		 */
4889 		if (tp->rx_opt.sack_ok)
4890 			tcp_sack_reset(&tp->rx_opt);
4891 		sk_mem_reclaim(sk);
4892 		res = true;
4893 	}
4894 	return res;
4895 }
4896 
4897 /* Reduce allocated memory if we can, trying to get
4898  * the socket within its memory limits again.
4899  *
4900  * Return less than zero if we should start dropping frames
4901  * until the socket owning process reads some of the data
4902  * to stabilize the situation.
4903  */
4904 static int tcp_prune_queue(struct sock *sk)
4905 {
4906 	struct tcp_sock *tp = tcp_sk(sk);
4907 
4908 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4909 
4910 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4911 
4912 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4913 		tcp_clamp_window(sk);
4914 	else if (sk_under_memory_pressure(sk))
4915 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4916 
4917 	tcp_collapse_ofo_queue(sk);
4918 	if (!skb_queue_empty(&sk->sk_receive_queue))
4919 		tcp_collapse(sk, &sk->sk_receive_queue,
4920 			     skb_peek(&sk->sk_receive_queue),
4921 			     NULL,
4922 			     tp->copied_seq, tp->rcv_nxt);
4923 	sk_mem_reclaim(sk);
4924 
4925 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4926 		return 0;
4927 
4928 	/* Collapsing did not help, destructive actions follow.
4929 	 * This must not ever occur. */
4930 
4931 	tcp_prune_ofo_queue(sk);
4932 
4933 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4934 		return 0;
4935 
4936 	/* If we are really being abused, tell the caller to silently
4937 	 * drop receive data on the floor.  It will get retransmitted
4938 	 * and hopefully then we'll have sufficient space.
4939 	 */
4940 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4941 
4942 	/* Massive buffer overcommit. */
4943 	tp->pred_flags = 0;
4944 	return -1;
4945 }
4946 
4947 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4948  * As additional protections, we do not touch cwnd in retransmission phases,
4949  * and if application hit its sndbuf limit recently.
4950  */
4951 void tcp_cwnd_application_limited(struct sock *sk)
4952 {
4953 	struct tcp_sock *tp = tcp_sk(sk);
4954 
4955 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4956 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4957 		/* Limited by application or receiver window. */
4958 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4959 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4960 		if (win_used < tp->snd_cwnd) {
4961 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4962 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4963 		}
4964 		tp->snd_cwnd_used = 0;
4965 	}
4966 	tp->snd_cwnd_stamp = tcp_time_stamp;
4967 }
4968 
4969 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4970 {
4971 	const struct tcp_sock *tp = tcp_sk(sk);
4972 
4973 	/* If the user specified a specific send buffer setting, do
4974 	 * not modify it.
4975 	 */
4976 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4977 		return false;
4978 
4979 	/* If we are under global TCP memory pressure, do not expand.  */
4980 	if (sk_under_memory_pressure(sk))
4981 		return false;
4982 
4983 	/* If we are under soft global TCP memory pressure, do not expand.  */
4984 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4985 		return false;
4986 
4987 	/* If we filled the congestion window, do not expand.  */
4988 	if (tp->packets_out >= tp->snd_cwnd)
4989 		return false;
4990 
4991 	return true;
4992 }
4993 
4994 /* When incoming ACK allowed to free some skb from write_queue,
4995  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4996  * on the exit from tcp input handler.
4997  *
4998  * PROBLEM: sndbuf expansion does not work well with largesend.
4999  */
5000 static void tcp_new_space(struct sock *sk)
5001 {
5002 	struct tcp_sock *tp = tcp_sk(sk);
5003 
5004 	if (tcp_should_expand_sndbuf(sk)) {
5005 		int sndmem = SKB_TRUESIZE(max_t(u32,
5006 						tp->rx_opt.mss_clamp,
5007 						tp->mss_cache) +
5008 					  MAX_TCP_HEADER);
5009 		int demanded = max_t(unsigned int, tp->snd_cwnd,
5010 				     tp->reordering + 1);
5011 		sndmem *= 2 * demanded;
5012 		if (sndmem > sk->sk_sndbuf)
5013 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5014 		tp->snd_cwnd_stamp = tcp_time_stamp;
5015 	}
5016 
5017 	sk->sk_write_space(sk);
5018 }
5019 
5020 static void tcp_check_space(struct sock *sk)
5021 {
5022 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5023 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5024 		if (sk->sk_socket &&
5025 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5026 			tcp_new_space(sk);
5027 	}
5028 }
5029 
5030 static inline void tcp_data_snd_check(struct sock *sk)
5031 {
5032 	tcp_push_pending_frames(sk);
5033 	tcp_check_space(sk);
5034 }
5035 
5036 /*
5037  * Check if sending an ack is needed.
5038  */
5039 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5040 {
5041 	struct tcp_sock *tp = tcp_sk(sk);
5042 
5043 	    /* More than one full frame received... */
5044 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5045 	     /* ... and right edge of window advances far enough.
5046 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5047 	      */
5048 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5049 	    /* We ACK each frame or... */
5050 	    tcp_in_quickack_mode(sk) ||
5051 	    /* We have out of order data. */
5052 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5053 		/* Then ack it now */
5054 		tcp_send_ack(sk);
5055 	} else {
5056 		/* Else, send delayed ack. */
5057 		tcp_send_delayed_ack(sk);
5058 	}
5059 }
5060 
5061 static inline void tcp_ack_snd_check(struct sock *sk)
5062 {
5063 	if (!inet_csk_ack_scheduled(sk)) {
5064 		/* We sent a data segment already. */
5065 		return;
5066 	}
5067 	__tcp_ack_snd_check(sk, 1);
5068 }
5069 
5070 /*
5071  *	This routine is only called when we have urgent data
5072  *	signaled. Its the 'slow' part of tcp_urg. It could be
5073  *	moved inline now as tcp_urg is only called from one
5074  *	place. We handle URGent data wrong. We have to - as
5075  *	BSD still doesn't use the correction from RFC961.
5076  *	For 1003.1g we should support a new option TCP_STDURG to permit
5077  *	either form (or just set the sysctl tcp_stdurg).
5078  */
5079 
5080 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5081 {
5082 	struct tcp_sock *tp = tcp_sk(sk);
5083 	u32 ptr = ntohs(th->urg_ptr);
5084 
5085 	if (ptr && !sysctl_tcp_stdurg)
5086 		ptr--;
5087 	ptr += ntohl(th->seq);
5088 
5089 	/* Ignore urgent data that we've already seen and read. */
5090 	if (after(tp->copied_seq, ptr))
5091 		return;
5092 
5093 	/* Do not replay urg ptr.
5094 	 *
5095 	 * NOTE: interesting situation not covered by specs.
5096 	 * Misbehaving sender may send urg ptr, pointing to segment,
5097 	 * which we already have in ofo queue. We are not able to fetch
5098 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5099 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5100 	 * situations. But it is worth to think about possibility of some
5101 	 * DoSes using some hypothetical application level deadlock.
5102 	 */
5103 	if (before(ptr, tp->rcv_nxt))
5104 		return;
5105 
5106 	/* Do we already have a newer (or duplicate) urgent pointer? */
5107 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5108 		return;
5109 
5110 	/* Tell the world about our new urgent pointer. */
5111 	sk_send_sigurg(sk);
5112 
5113 	/* We may be adding urgent data when the last byte read was
5114 	 * urgent. To do this requires some care. We cannot just ignore
5115 	 * tp->copied_seq since we would read the last urgent byte again
5116 	 * as data, nor can we alter copied_seq until this data arrives
5117 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5118 	 *
5119 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5120 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5121 	 * and expect that both A and B disappear from stream. This is _wrong_.
5122 	 * Though this happens in BSD with high probability, this is occasional.
5123 	 * Any application relying on this is buggy. Note also, that fix "works"
5124 	 * only in this artificial test. Insert some normal data between A and B and we will
5125 	 * decline of BSD again. Verdict: it is better to remove to trap
5126 	 * buggy users.
5127 	 */
5128 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5129 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5130 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5131 		tp->copied_seq++;
5132 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5133 			__skb_unlink(skb, &sk->sk_receive_queue);
5134 			__kfree_skb(skb);
5135 		}
5136 	}
5137 
5138 	tp->urg_data = TCP_URG_NOTYET;
5139 	tp->urg_seq = ptr;
5140 
5141 	/* Disable header prediction. */
5142 	tp->pred_flags = 0;
5143 }
5144 
5145 /* This is the 'fast' part of urgent handling. */
5146 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5147 {
5148 	struct tcp_sock *tp = tcp_sk(sk);
5149 
5150 	/* Check if we get a new urgent pointer - normally not. */
5151 	if (th->urg)
5152 		tcp_check_urg(sk, th);
5153 
5154 	/* Do we wait for any urgent data? - normally not... */
5155 	if (tp->urg_data == TCP_URG_NOTYET) {
5156 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5157 			  th->syn;
5158 
5159 		/* Is the urgent pointer pointing into this packet? */
5160 		if (ptr < skb->len) {
5161 			u8 tmp;
5162 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5163 				BUG();
5164 			tp->urg_data = TCP_URG_VALID | tmp;
5165 			if (!sock_flag(sk, SOCK_DEAD))
5166 				sk->sk_data_ready(sk, 0);
5167 		}
5168 	}
5169 }
5170 
5171 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5172 {
5173 	struct tcp_sock *tp = tcp_sk(sk);
5174 	int chunk = skb->len - hlen;
5175 	int err;
5176 
5177 	local_bh_enable();
5178 	if (skb_csum_unnecessary(skb))
5179 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5180 	else
5181 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5182 						       tp->ucopy.iov);
5183 
5184 	if (!err) {
5185 		tp->ucopy.len -= chunk;
5186 		tp->copied_seq += chunk;
5187 		tcp_rcv_space_adjust(sk);
5188 	}
5189 
5190 	local_bh_disable();
5191 	return err;
5192 }
5193 
5194 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5195 					    struct sk_buff *skb)
5196 {
5197 	__sum16 result;
5198 
5199 	if (sock_owned_by_user(sk)) {
5200 		local_bh_enable();
5201 		result = __tcp_checksum_complete(skb);
5202 		local_bh_disable();
5203 	} else {
5204 		result = __tcp_checksum_complete(skb);
5205 	}
5206 	return result;
5207 }
5208 
5209 static inline bool tcp_checksum_complete_user(struct sock *sk,
5210 					     struct sk_buff *skb)
5211 {
5212 	return !skb_csum_unnecessary(skb) &&
5213 	       __tcp_checksum_complete_user(sk, skb);
5214 }
5215 
5216 #ifdef CONFIG_NET_DMA
5217 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5218 				  int hlen)
5219 {
5220 	struct tcp_sock *tp = tcp_sk(sk);
5221 	int chunk = skb->len - hlen;
5222 	int dma_cookie;
5223 	bool copied_early = false;
5224 
5225 	if (tp->ucopy.wakeup)
5226 		return false;
5227 
5228 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5229 		tp->ucopy.dma_chan = net_dma_find_channel();
5230 
5231 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5232 
5233 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5234 							 skb, hlen,
5235 							 tp->ucopy.iov, chunk,
5236 							 tp->ucopy.pinned_list);
5237 
5238 		if (dma_cookie < 0)
5239 			goto out;
5240 
5241 		tp->ucopy.dma_cookie = dma_cookie;
5242 		copied_early = true;
5243 
5244 		tp->ucopy.len -= chunk;
5245 		tp->copied_seq += chunk;
5246 		tcp_rcv_space_adjust(sk);
5247 
5248 		if ((tp->ucopy.len == 0) ||
5249 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5250 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5251 			tp->ucopy.wakeup = 1;
5252 			sk->sk_data_ready(sk, 0);
5253 		}
5254 	} else if (chunk > 0) {
5255 		tp->ucopy.wakeup = 1;
5256 		sk->sk_data_ready(sk, 0);
5257 	}
5258 out:
5259 	return copied_early;
5260 }
5261 #endif /* CONFIG_NET_DMA */
5262 
5263 /* Does PAWS and seqno based validation of an incoming segment, flags will
5264  * play significant role here.
5265  */
5266 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5267 				  const struct tcphdr *th, int syn_inerr)
5268 {
5269 	const u8 *hash_location;
5270 	struct tcp_sock *tp = tcp_sk(sk);
5271 
5272 	/* RFC1323: H1. Apply PAWS check first. */
5273 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5274 	    tp->rx_opt.saw_tstamp &&
5275 	    tcp_paws_discard(sk, skb)) {
5276 		if (!th->rst) {
5277 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5278 			tcp_send_dupack(sk, skb);
5279 			goto discard;
5280 		}
5281 		/* Reset is accepted even if it did not pass PAWS. */
5282 	}
5283 
5284 	/* Step 1: check sequence number */
5285 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5286 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5287 		 * (RST) segments are validated by checking their SEQ-fields."
5288 		 * And page 69: "If an incoming segment is not acceptable,
5289 		 * an acknowledgment should be sent in reply (unless the RST
5290 		 * bit is set, if so drop the segment and return)".
5291 		 */
5292 		if (!th->rst) {
5293 			if (th->syn)
5294 				goto syn_challenge;
5295 			tcp_send_dupack(sk, skb);
5296 		}
5297 		goto discard;
5298 	}
5299 
5300 	/* Step 2: check RST bit */
5301 	if (th->rst) {
5302 		/* RFC 5961 3.2 :
5303 		 * If sequence number exactly matches RCV.NXT, then
5304 		 *     RESET the connection
5305 		 * else
5306 		 *     Send a challenge ACK
5307 		 */
5308 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5309 			tcp_reset(sk);
5310 		else
5311 			tcp_send_challenge_ack(sk);
5312 		goto discard;
5313 	}
5314 
5315 	/* step 3: check security and precedence [ignored] */
5316 
5317 	/* step 4: Check for a SYN
5318 	 * RFC 5691 4.2 : Send a challenge ack
5319 	 */
5320 	if (th->syn) {
5321 syn_challenge:
5322 		if (syn_inerr)
5323 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5324 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5325 		tcp_send_challenge_ack(sk);
5326 		goto discard;
5327 	}
5328 
5329 	return true;
5330 
5331 discard:
5332 	__kfree_skb(skb);
5333 	return false;
5334 }
5335 
5336 /*
5337  *	TCP receive function for the ESTABLISHED state.
5338  *
5339  *	It is split into a fast path and a slow path. The fast path is
5340  * 	disabled when:
5341  *	- A zero window was announced from us - zero window probing
5342  *        is only handled properly in the slow path.
5343  *	- Out of order segments arrived.
5344  *	- Urgent data is expected.
5345  *	- There is no buffer space left
5346  *	- Unexpected TCP flags/window values/header lengths are received
5347  *	  (detected by checking the TCP header against pred_flags)
5348  *	- Data is sent in both directions. Fast path only supports pure senders
5349  *	  or pure receivers (this means either the sequence number or the ack
5350  *	  value must stay constant)
5351  *	- Unexpected TCP option.
5352  *
5353  *	When these conditions are not satisfied it drops into a standard
5354  *	receive procedure patterned after RFC793 to handle all cases.
5355  *	The first three cases are guaranteed by proper pred_flags setting,
5356  *	the rest is checked inline. Fast processing is turned on in
5357  *	tcp_data_queue when everything is OK.
5358  */
5359 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5360 			const struct tcphdr *th, unsigned int len)
5361 {
5362 	struct tcp_sock *tp = tcp_sk(sk);
5363 
5364 	if (unlikely(sk->sk_rx_dst == NULL))
5365 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5366 	/*
5367 	 *	Header prediction.
5368 	 *	The code loosely follows the one in the famous
5369 	 *	"30 instruction TCP receive" Van Jacobson mail.
5370 	 *
5371 	 *	Van's trick is to deposit buffers into socket queue
5372 	 *	on a device interrupt, to call tcp_recv function
5373 	 *	on the receive process context and checksum and copy
5374 	 *	the buffer to user space. smart...
5375 	 *
5376 	 *	Our current scheme is not silly either but we take the
5377 	 *	extra cost of the net_bh soft interrupt processing...
5378 	 *	We do checksum and copy also but from device to kernel.
5379 	 */
5380 
5381 	tp->rx_opt.saw_tstamp = 0;
5382 
5383 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5384 	 *	if header_prediction is to be made
5385 	 *	'S' will always be tp->tcp_header_len >> 2
5386 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5387 	 *  turn it off	(when there are holes in the receive
5388 	 *	 space for instance)
5389 	 *	PSH flag is ignored.
5390 	 */
5391 
5392 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5393 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5394 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5395 		int tcp_header_len = tp->tcp_header_len;
5396 
5397 		/* Timestamp header prediction: tcp_header_len
5398 		 * is automatically equal to th->doff*4 due to pred_flags
5399 		 * match.
5400 		 */
5401 
5402 		/* Check timestamp */
5403 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5404 			/* No? Slow path! */
5405 			if (!tcp_parse_aligned_timestamp(tp, th))
5406 				goto slow_path;
5407 
5408 			/* If PAWS failed, check it more carefully in slow path */
5409 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5410 				goto slow_path;
5411 
5412 			/* DO NOT update ts_recent here, if checksum fails
5413 			 * and timestamp was corrupted part, it will result
5414 			 * in a hung connection since we will drop all
5415 			 * future packets due to the PAWS test.
5416 			 */
5417 		}
5418 
5419 		if (len <= tcp_header_len) {
5420 			/* Bulk data transfer: sender */
5421 			if (len == tcp_header_len) {
5422 				/* Predicted packet is in window by definition.
5423 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5424 				 * Hence, check seq<=rcv_wup reduces to:
5425 				 */
5426 				if (tcp_header_len ==
5427 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5428 				    tp->rcv_nxt == tp->rcv_wup)
5429 					tcp_store_ts_recent(tp);
5430 
5431 				/* We know that such packets are checksummed
5432 				 * on entry.
5433 				 */
5434 				tcp_ack(sk, skb, 0);
5435 				__kfree_skb(skb);
5436 				tcp_data_snd_check(sk);
5437 				return 0;
5438 			} else { /* Header too small */
5439 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5440 				goto discard;
5441 			}
5442 		} else {
5443 			int eaten = 0;
5444 			int copied_early = 0;
5445 			bool fragstolen = false;
5446 
5447 			if (tp->copied_seq == tp->rcv_nxt &&
5448 			    len - tcp_header_len <= tp->ucopy.len) {
5449 #ifdef CONFIG_NET_DMA
5450 				if (tp->ucopy.task == current &&
5451 				    sock_owned_by_user(sk) &&
5452 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5453 					copied_early = 1;
5454 					eaten = 1;
5455 				}
5456 #endif
5457 				if (tp->ucopy.task == current &&
5458 				    sock_owned_by_user(sk) && !copied_early) {
5459 					__set_current_state(TASK_RUNNING);
5460 
5461 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5462 						eaten = 1;
5463 				}
5464 				if (eaten) {
5465 					/* Predicted packet is in window by definition.
5466 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5467 					 * Hence, check seq<=rcv_wup reduces to:
5468 					 */
5469 					if (tcp_header_len ==
5470 					    (sizeof(struct tcphdr) +
5471 					     TCPOLEN_TSTAMP_ALIGNED) &&
5472 					    tp->rcv_nxt == tp->rcv_wup)
5473 						tcp_store_ts_recent(tp);
5474 
5475 					tcp_rcv_rtt_measure_ts(sk, skb);
5476 
5477 					__skb_pull(skb, tcp_header_len);
5478 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5479 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5480 				}
5481 				if (copied_early)
5482 					tcp_cleanup_rbuf(sk, skb->len);
5483 			}
5484 			if (!eaten) {
5485 				if (tcp_checksum_complete_user(sk, skb))
5486 					goto csum_error;
5487 
5488 				if ((int)skb->truesize > sk->sk_forward_alloc)
5489 					goto step5;
5490 
5491 				/* Predicted packet is in window by definition.
5492 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5493 				 * Hence, check seq<=rcv_wup reduces to:
5494 				 */
5495 				if (tcp_header_len ==
5496 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5497 				    tp->rcv_nxt == tp->rcv_wup)
5498 					tcp_store_ts_recent(tp);
5499 
5500 				tcp_rcv_rtt_measure_ts(sk, skb);
5501 
5502 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5503 
5504 				/* Bulk data transfer: receiver */
5505 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5506 						      &fragstolen);
5507 			}
5508 
5509 			tcp_event_data_recv(sk, skb);
5510 
5511 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5512 				/* Well, only one small jumplet in fast path... */
5513 				tcp_ack(sk, skb, FLAG_DATA);
5514 				tcp_data_snd_check(sk);
5515 				if (!inet_csk_ack_scheduled(sk))
5516 					goto no_ack;
5517 			}
5518 
5519 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5520 				__tcp_ack_snd_check(sk, 0);
5521 no_ack:
5522 #ifdef CONFIG_NET_DMA
5523 			if (copied_early)
5524 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5525 			else
5526 #endif
5527 			if (eaten)
5528 				kfree_skb_partial(skb, fragstolen);
5529 			sk->sk_data_ready(sk, 0);
5530 			return 0;
5531 		}
5532 	}
5533 
5534 slow_path:
5535 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5536 		goto csum_error;
5537 
5538 	if (!th->ack && !th->rst)
5539 		goto discard;
5540 
5541 	/*
5542 	 *	Standard slow path.
5543 	 */
5544 
5545 	if (!tcp_validate_incoming(sk, skb, th, 1))
5546 		return 0;
5547 
5548 step5:
5549 	if (tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5550 		goto discard;
5551 
5552 	/* ts_recent update must be made after we are sure that the packet
5553 	 * is in window.
5554 	 */
5555 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5556 
5557 	tcp_rcv_rtt_measure_ts(sk, skb);
5558 
5559 	/* Process urgent data. */
5560 	tcp_urg(sk, skb, th);
5561 
5562 	/* step 7: process the segment text */
5563 	tcp_data_queue(sk, skb);
5564 
5565 	tcp_data_snd_check(sk);
5566 	tcp_ack_snd_check(sk);
5567 	return 0;
5568 
5569 csum_error:
5570 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5571 
5572 discard:
5573 	__kfree_skb(skb);
5574 	return 0;
5575 }
5576 EXPORT_SYMBOL(tcp_rcv_established);
5577 
5578 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5579 {
5580 	struct tcp_sock *tp = tcp_sk(sk);
5581 	struct inet_connection_sock *icsk = inet_csk(sk);
5582 
5583 	tcp_set_state(sk, TCP_ESTABLISHED);
5584 
5585 	if (skb != NULL) {
5586 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5587 		security_inet_conn_established(sk, skb);
5588 	}
5589 
5590 	/* Make sure socket is routed, for correct metrics.  */
5591 	icsk->icsk_af_ops->rebuild_header(sk);
5592 
5593 	tcp_init_metrics(sk);
5594 
5595 	tcp_init_congestion_control(sk);
5596 
5597 	/* Prevent spurious tcp_cwnd_restart() on first data
5598 	 * packet.
5599 	 */
5600 	tp->lsndtime = tcp_time_stamp;
5601 
5602 	tcp_init_buffer_space(sk);
5603 
5604 	if (sock_flag(sk, SOCK_KEEPOPEN))
5605 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5606 
5607 	if (!tp->rx_opt.snd_wscale)
5608 		__tcp_fast_path_on(tp, tp->snd_wnd);
5609 	else
5610 		tp->pred_flags = 0;
5611 
5612 	if (!sock_flag(sk, SOCK_DEAD)) {
5613 		sk->sk_state_change(sk);
5614 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5615 	}
5616 }
5617 
5618 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5619 				    struct tcp_fastopen_cookie *cookie)
5620 {
5621 	struct tcp_sock *tp = tcp_sk(sk);
5622 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5623 	u16 mss = tp->rx_opt.mss_clamp;
5624 	bool syn_drop;
5625 
5626 	if (mss == tp->rx_opt.user_mss) {
5627 		struct tcp_options_received opt;
5628 		const u8 *hash_location;
5629 
5630 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5631 		tcp_clear_options(&opt);
5632 		opt.user_mss = opt.mss_clamp = 0;
5633 		tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5634 		mss = opt.mss_clamp;
5635 	}
5636 
5637 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5638 		cookie->len = -1;
5639 
5640 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5641 	 * the remote receives only the retransmitted (regular) SYNs: either
5642 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5643 	 */
5644 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5645 
5646 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5647 
5648 	if (data) { /* Retransmit unacked data in SYN */
5649 		tcp_for_write_queue_from(data, sk) {
5650 			if (data == tcp_send_head(sk) ||
5651 			    __tcp_retransmit_skb(sk, data))
5652 				break;
5653 		}
5654 		tcp_rearm_rto(sk);
5655 		return true;
5656 	}
5657 	tp->syn_data_acked = tp->syn_data;
5658 	return false;
5659 }
5660 
5661 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5662 					 const struct tcphdr *th, unsigned int len)
5663 {
5664 	const u8 *hash_location;
5665 	struct inet_connection_sock *icsk = inet_csk(sk);
5666 	struct tcp_sock *tp = tcp_sk(sk);
5667 	struct tcp_cookie_values *cvp = tp->cookie_values;
5668 	struct tcp_fastopen_cookie foc = { .len = -1 };
5669 	int saved_clamp = tp->rx_opt.mss_clamp;
5670 
5671 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5672 	if (tp->rx_opt.saw_tstamp)
5673 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5674 
5675 	if (th->ack) {
5676 		/* rfc793:
5677 		 * "If the state is SYN-SENT then
5678 		 *    first check the ACK bit
5679 		 *      If the ACK bit is set
5680 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5681 		 *        a reset (unless the RST bit is set, if so drop
5682 		 *        the segment and return)"
5683 		 */
5684 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5685 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5686 			goto reset_and_undo;
5687 
5688 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5689 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5690 			     tcp_time_stamp)) {
5691 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5692 			goto reset_and_undo;
5693 		}
5694 
5695 		/* Now ACK is acceptable.
5696 		 *
5697 		 * "If the RST bit is set
5698 		 *    If the ACK was acceptable then signal the user "error:
5699 		 *    connection reset", drop the segment, enter CLOSED state,
5700 		 *    delete TCB, and return."
5701 		 */
5702 
5703 		if (th->rst) {
5704 			tcp_reset(sk);
5705 			goto discard;
5706 		}
5707 
5708 		/* rfc793:
5709 		 *   "fifth, if neither of the SYN or RST bits is set then
5710 		 *    drop the segment and return."
5711 		 *
5712 		 *    See note below!
5713 		 *                                        --ANK(990513)
5714 		 */
5715 		if (!th->syn)
5716 			goto discard_and_undo;
5717 
5718 		/* rfc793:
5719 		 *   "If the SYN bit is on ...
5720 		 *    are acceptable then ...
5721 		 *    (our SYN has been ACKed), change the connection
5722 		 *    state to ESTABLISHED..."
5723 		 */
5724 
5725 		TCP_ECN_rcv_synack(tp, th);
5726 
5727 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5728 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5729 
5730 		/* Ok.. it's good. Set up sequence numbers and
5731 		 * move to established.
5732 		 */
5733 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5734 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5735 
5736 		/* RFC1323: The window in SYN & SYN/ACK segments is
5737 		 * never scaled.
5738 		 */
5739 		tp->snd_wnd = ntohs(th->window);
5740 
5741 		if (!tp->rx_opt.wscale_ok) {
5742 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5743 			tp->window_clamp = min(tp->window_clamp, 65535U);
5744 		}
5745 
5746 		if (tp->rx_opt.saw_tstamp) {
5747 			tp->rx_opt.tstamp_ok	   = 1;
5748 			tp->tcp_header_len =
5749 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5750 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5751 			tcp_store_ts_recent(tp);
5752 		} else {
5753 			tp->tcp_header_len = sizeof(struct tcphdr);
5754 		}
5755 
5756 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5757 			tcp_enable_fack(tp);
5758 
5759 		tcp_mtup_init(sk);
5760 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5761 		tcp_initialize_rcv_mss(sk);
5762 
5763 		/* Remember, tcp_poll() does not lock socket!
5764 		 * Change state from SYN-SENT only after copied_seq
5765 		 * is initialized. */
5766 		tp->copied_seq = tp->rcv_nxt;
5767 
5768 		if (cvp != NULL &&
5769 		    cvp->cookie_pair_size > 0 &&
5770 		    tp->rx_opt.cookie_plus > 0) {
5771 			int cookie_size = tp->rx_opt.cookie_plus
5772 					- TCPOLEN_COOKIE_BASE;
5773 			int cookie_pair_size = cookie_size
5774 					     + cvp->cookie_desired;
5775 
5776 			/* A cookie extension option was sent and returned.
5777 			 * Note that each incoming SYNACK replaces the
5778 			 * Responder cookie.  The initial exchange is most
5779 			 * fragile, as protection against spoofing relies
5780 			 * entirely upon the sequence and timestamp (above).
5781 			 * This replacement strategy allows the correct pair to
5782 			 * pass through, while any others will be filtered via
5783 			 * Responder verification later.
5784 			 */
5785 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5786 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5787 				       hash_location, cookie_size);
5788 				cvp->cookie_pair_size = cookie_pair_size;
5789 			}
5790 		}
5791 
5792 		smp_mb();
5793 
5794 		tcp_finish_connect(sk, skb);
5795 
5796 		if ((tp->syn_fastopen || tp->syn_data) &&
5797 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5798 			return -1;
5799 
5800 		if (sk->sk_write_pending ||
5801 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5802 		    icsk->icsk_ack.pingpong) {
5803 			/* Save one ACK. Data will be ready after
5804 			 * several ticks, if write_pending is set.
5805 			 *
5806 			 * It may be deleted, but with this feature tcpdumps
5807 			 * look so _wonderfully_ clever, that I was not able
5808 			 * to stand against the temptation 8)     --ANK
5809 			 */
5810 			inet_csk_schedule_ack(sk);
5811 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5812 			tcp_enter_quickack_mode(sk);
5813 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5814 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5815 
5816 discard:
5817 			__kfree_skb(skb);
5818 			return 0;
5819 		} else {
5820 			tcp_send_ack(sk);
5821 		}
5822 		return -1;
5823 	}
5824 
5825 	/* No ACK in the segment */
5826 
5827 	if (th->rst) {
5828 		/* rfc793:
5829 		 * "If the RST bit is set
5830 		 *
5831 		 *      Otherwise (no ACK) drop the segment and return."
5832 		 */
5833 
5834 		goto discard_and_undo;
5835 	}
5836 
5837 	/* PAWS check. */
5838 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5839 	    tcp_paws_reject(&tp->rx_opt, 0))
5840 		goto discard_and_undo;
5841 
5842 	if (th->syn) {
5843 		/* We see SYN without ACK. It is attempt of
5844 		 * simultaneous connect with crossed SYNs.
5845 		 * Particularly, it can be connect to self.
5846 		 */
5847 		tcp_set_state(sk, TCP_SYN_RECV);
5848 
5849 		if (tp->rx_opt.saw_tstamp) {
5850 			tp->rx_opt.tstamp_ok = 1;
5851 			tcp_store_ts_recent(tp);
5852 			tp->tcp_header_len =
5853 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5854 		} else {
5855 			tp->tcp_header_len = sizeof(struct tcphdr);
5856 		}
5857 
5858 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5859 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5860 
5861 		/* RFC1323: The window in SYN & SYN/ACK segments is
5862 		 * never scaled.
5863 		 */
5864 		tp->snd_wnd    = ntohs(th->window);
5865 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5866 		tp->max_window = tp->snd_wnd;
5867 
5868 		TCP_ECN_rcv_syn(tp, th);
5869 
5870 		tcp_mtup_init(sk);
5871 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5872 		tcp_initialize_rcv_mss(sk);
5873 
5874 		tcp_send_synack(sk);
5875 #if 0
5876 		/* Note, we could accept data and URG from this segment.
5877 		 * There are no obstacles to make this (except that we must
5878 		 * either change tcp_recvmsg() to prevent it from returning data
5879 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5880 		 *
5881 		 * However, if we ignore data in ACKless segments sometimes,
5882 		 * we have no reasons to accept it sometimes.
5883 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5884 		 * is not flawless. So, discard packet for sanity.
5885 		 * Uncomment this return to process the data.
5886 		 */
5887 		return -1;
5888 #else
5889 		goto discard;
5890 #endif
5891 	}
5892 	/* "fifth, if neither of the SYN or RST bits is set then
5893 	 * drop the segment and return."
5894 	 */
5895 
5896 discard_and_undo:
5897 	tcp_clear_options(&tp->rx_opt);
5898 	tp->rx_opt.mss_clamp = saved_clamp;
5899 	goto discard;
5900 
5901 reset_and_undo:
5902 	tcp_clear_options(&tp->rx_opt);
5903 	tp->rx_opt.mss_clamp = saved_clamp;
5904 	return 1;
5905 }
5906 
5907 /*
5908  *	This function implements the receiving procedure of RFC 793 for
5909  *	all states except ESTABLISHED and TIME_WAIT.
5910  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5911  *	address independent.
5912  */
5913 
5914 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5915 			  const struct tcphdr *th, unsigned int len)
5916 {
5917 	struct tcp_sock *tp = tcp_sk(sk);
5918 	struct inet_connection_sock *icsk = inet_csk(sk);
5919 	struct request_sock *req;
5920 	int queued = 0;
5921 
5922 	tp->rx_opt.saw_tstamp = 0;
5923 
5924 	switch (sk->sk_state) {
5925 	case TCP_CLOSE:
5926 		goto discard;
5927 
5928 	case TCP_LISTEN:
5929 		if (th->ack)
5930 			return 1;
5931 
5932 		if (th->rst)
5933 			goto discard;
5934 
5935 		if (th->syn) {
5936 			if (th->fin)
5937 				goto discard;
5938 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5939 				return 1;
5940 
5941 			/* Now we have several options: In theory there is
5942 			 * nothing else in the frame. KA9Q has an option to
5943 			 * send data with the syn, BSD accepts data with the
5944 			 * syn up to the [to be] advertised window and
5945 			 * Solaris 2.1 gives you a protocol error. For now
5946 			 * we just ignore it, that fits the spec precisely
5947 			 * and avoids incompatibilities. It would be nice in
5948 			 * future to drop through and process the data.
5949 			 *
5950 			 * Now that TTCP is starting to be used we ought to
5951 			 * queue this data.
5952 			 * But, this leaves one open to an easy denial of
5953 			 * service attack, and SYN cookies can't defend
5954 			 * against this problem. So, we drop the data
5955 			 * in the interest of security over speed unless
5956 			 * it's still in use.
5957 			 */
5958 			kfree_skb(skb);
5959 			return 0;
5960 		}
5961 		goto discard;
5962 
5963 	case TCP_SYN_SENT:
5964 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5965 		if (queued >= 0)
5966 			return queued;
5967 
5968 		/* Do step6 onward by hand. */
5969 		tcp_urg(sk, skb, th);
5970 		__kfree_skb(skb);
5971 		tcp_data_snd_check(sk);
5972 		return 0;
5973 	}
5974 
5975 	req = tp->fastopen_rsk;
5976 	if (req != NULL) {
5977 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5978 		    sk->sk_state != TCP_FIN_WAIT1);
5979 
5980 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5981 			goto discard;
5982 	}
5983 
5984 	if (!th->ack && !th->rst)
5985 		goto discard;
5986 
5987 	if (!tcp_validate_incoming(sk, skb, th, 0))
5988 		return 0;
5989 
5990 	/* step 5: check the ACK field */
5991 	if (true) {
5992 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5993 
5994 		switch (sk->sk_state) {
5995 		case TCP_SYN_RECV:
5996 			if (acceptable) {
5997 				/* Once we leave TCP_SYN_RECV, we no longer
5998 				 * need req so release it.
5999 				 */
6000 				if (req) {
6001 					tcp_synack_rtt_meas(sk, req);
6002 					tp->total_retrans = req->num_retrans;
6003 
6004 					reqsk_fastopen_remove(sk, req, false);
6005 				} else {
6006 					/* Make sure socket is routed, for
6007 					 * correct metrics.
6008 					 */
6009 					icsk->icsk_af_ops->rebuild_header(sk);
6010 					tcp_init_congestion_control(sk);
6011 
6012 					tcp_mtup_init(sk);
6013 					tcp_init_buffer_space(sk);
6014 					tp->copied_seq = tp->rcv_nxt;
6015 				}
6016 				smp_mb();
6017 				tcp_set_state(sk, TCP_ESTABLISHED);
6018 				sk->sk_state_change(sk);
6019 
6020 				/* Note, that this wakeup is only for marginal
6021 				 * crossed SYN case. Passively open sockets
6022 				 * are not waked up, because sk->sk_sleep ==
6023 				 * NULL and sk->sk_socket == NULL.
6024 				 */
6025 				if (sk->sk_socket)
6026 					sk_wake_async(sk,
6027 						      SOCK_WAKE_IO, POLL_OUT);
6028 
6029 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6030 				tp->snd_wnd = ntohs(th->window) <<
6031 					      tp->rx_opt.snd_wscale;
6032 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6033 
6034 				if (tp->rx_opt.tstamp_ok)
6035 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6036 
6037 				if (req) {
6038 					/* Re-arm the timer because data may
6039 					 * have been sent out. This is similar
6040 					 * to the regular data transmission case
6041 					 * when new data has just been ack'ed.
6042 					 *
6043 					 * (TFO) - we could try to be more
6044 					 * aggressive and retranmitting any data
6045 					 * sooner based on when they were sent
6046 					 * out.
6047 					 */
6048 					tcp_rearm_rto(sk);
6049 				} else
6050 					tcp_init_metrics(sk);
6051 
6052 				/* Prevent spurious tcp_cwnd_restart() on
6053 				 * first data packet.
6054 				 */
6055 				tp->lsndtime = tcp_time_stamp;
6056 
6057 				tcp_initialize_rcv_mss(sk);
6058 				tcp_fast_path_on(tp);
6059 			} else {
6060 				return 1;
6061 			}
6062 			break;
6063 
6064 		case TCP_FIN_WAIT1:
6065 			/* If we enter the TCP_FIN_WAIT1 state and we are a
6066 			 * Fast Open socket and this is the first acceptable
6067 			 * ACK we have received, this would have acknowledged
6068 			 * our SYNACK so stop the SYNACK timer.
6069 			 */
6070 			if (req != NULL) {
6071 				/* Return RST if ack_seq is invalid.
6072 				 * Note that RFC793 only says to generate a
6073 				 * DUPACK for it but for TCP Fast Open it seems
6074 				 * better to treat this case like TCP_SYN_RECV
6075 				 * above.
6076 				 */
6077 				if (!acceptable)
6078 					return 1;
6079 				/* We no longer need the request sock. */
6080 				reqsk_fastopen_remove(sk, req, false);
6081 				tcp_rearm_rto(sk);
6082 			}
6083 			if (tp->snd_una == tp->write_seq) {
6084 				struct dst_entry *dst;
6085 
6086 				tcp_set_state(sk, TCP_FIN_WAIT2);
6087 				sk->sk_shutdown |= SEND_SHUTDOWN;
6088 
6089 				dst = __sk_dst_get(sk);
6090 				if (dst)
6091 					dst_confirm(dst);
6092 
6093 				if (!sock_flag(sk, SOCK_DEAD))
6094 					/* Wake up lingering close() */
6095 					sk->sk_state_change(sk);
6096 				else {
6097 					int tmo;
6098 
6099 					if (tp->linger2 < 0 ||
6100 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6101 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6102 						tcp_done(sk);
6103 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6104 						return 1;
6105 					}
6106 
6107 					tmo = tcp_fin_time(sk);
6108 					if (tmo > TCP_TIMEWAIT_LEN) {
6109 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6110 					} else if (th->fin || sock_owned_by_user(sk)) {
6111 						/* Bad case. We could lose such FIN otherwise.
6112 						 * It is not a big problem, but it looks confusing
6113 						 * and not so rare event. We still can lose it now,
6114 						 * if it spins in bh_lock_sock(), but it is really
6115 						 * marginal case.
6116 						 */
6117 						inet_csk_reset_keepalive_timer(sk, tmo);
6118 					} else {
6119 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6120 						goto discard;
6121 					}
6122 				}
6123 			}
6124 			break;
6125 
6126 		case TCP_CLOSING:
6127 			if (tp->snd_una == tp->write_seq) {
6128 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6129 				goto discard;
6130 			}
6131 			break;
6132 
6133 		case TCP_LAST_ACK:
6134 			if (tp->snd_una == tp->write_seq) {
6135 				tcp_update_metrics(sk);
6136 				tcp_done(sk);
6137 				goto discard;
6138 			}
6139 			break;
6140 		}
6141 	}
6142 
6143 	/* ts_recent update must be made after we are sure that the packet
6144 	 * is in window.
6145 	 */
6146 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
6147 
6148 	/* step 6: check the URG bit */
6149 	tcp_urg(sk, skb, th);
6150 
6151 	/* step 7: process the segment text */
6152 	switch (sk->sk_state) {
6153 	case TCP_CLOSE_WAIT:
6154 	case TCP_CLOSING:
6155 	case TCP_LAST_ACK:
6156 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6157 			break;
6158 	case TCP_FIN_WAIT1:
6159 	case TCP_FIN_WAIT2:
6160 		/* RFC 793 says to queue data in these states,
6161 		 * RFC 1122 says we MUST send a reset.
6162 		 * BSD 4.4 also does reset.
6163 		 */
6164 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6165 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6166 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6167 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6168 				tcp_reset(sk);
6169 				return 1;
6170 			}
6171 		}
6172 		/* Fall through */
6173 	case TCP_ESTABLISHED:
6174 		tcp_data_queue(sk, skb);
6175 		queued = 1;
6176 		break;
6177 	}
6178 
6179 	/* tcp_data could move socket to TIME-WAIT */
6180 	if (sk->sk_state != TCP_CLOSE) {
6181 		tcp_data_snd_check(sk);
6182 		tcp_ack_snd_check(sk);
6183 	}
6184 
6185 	if (!queued) {
6186 discard:
6187 		__kfree_skb(skb);
6188 	}
6189 	return 0;
6190 }
6191 EXPORT_SYMBOL(tcp_rcv_state_process);
6192