1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_ecn __read_mostly = 2; 85 EXPORT_SYMBOL(sysctl_tcp_ecn); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 /* rfc5961 challenge ack rate limiting */ 92 int sysctl_tcp_challenge_ack_limit = 100; 93 94 int sysctl_tcp_stdurg __read_mostly; 95 int sysctl_tcp_rfc1337 __read_mostly; 96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 97 int sysctl_tcp_frto __read_mostly = 2; 98 int sysctl_tcp_frto_response __read_mostly; 99 100 int sysctl_tcp_thin_dupack __read_mostly; 101 102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 103 int sysctl_tcp_abc __read_mostly; 104 int sysctl_tcp_early_retrans __read_mostly = 2; 105 106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 112 #define FLAG_ECE 0x40 /* ECE in this ACK */ 113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 114 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 117 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 119 120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 124 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 125 126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 128 129 /* Adapt the MSS value used to make delayed ack decision to the 130 * real world. 131 */ 132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 133 { 134 struct inet_connection_sock *icsk = inet_csk(sk); 135 const unsigned int lss = icsk->icsk_ack.last_seg_size; 136 unsigned int len; 137 138 icsk->icsk_ack.last_seg_size = 0; 139 140 /* skb->len may jitter because of SACKs, even if peer 141 * sends good full-sized frames. 142 */ 143 len = skb_shinfo(skb)->gso_size ? : skb->len; 144 if (len >= icsk->icsk_ack.rcv_mss) { 145 icsk->icsk_ack.rcv_mss = len; 146 } else { 147 /* Otherwise, we make more careful check taking into account, 148 * that SACKs block is variable. 149 * 150 * "len" is invariant segment length, including TCP header. 151 */ 152 len += skb->data - skb_transport_header(skb); 153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 154 /* If PSH is not set, packet should be 155 * full sized, provided peer TCP is not badly broken. 156 * This observation (if it is correct 8)) allows 157 * to handle super-low mtu links fairly. 158 */ 159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 161 /* Subtract also invariant (if peer is RFC compliant), 162 * tcp header plus fixed timestamp option length. 163 * Resulting "len" is MSS free of SACK jitter. 164 */ 165 len -= tcp_sk(sk)->tcp_header_len; 166 icsk->icsk_ack.last_seg_size = len; 167 if (len == lss) { 168 icsk->icsk_ack.rcv_mss = len; 169 return; 170 } 171 } 172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 175 } 176 } 177 178 static void tcp_incr_quickack(struct sock *sk) 179 { 180 struct inet_connection_sock *icsk = inet_csk(sk); 181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 182 183 if (quickacks == 0) 184 quickacks = 2; 185 if (quickacks > icsk->icsk_ack.quick) 186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 187 } 188 189 static void tcp_enter_quickack_mode(struct sock *sk) 190 { 191 struct inet_connection_sock *icsk = inet_csk(sk); 192 tcp_incr_quickack(sk); 193 icsk->icsk_ack.pingpong = 0; 194 icsk->icsk_ack.ato = TCP_ATO_MIN; 195 } 196 197 /* Send ACKs quickly, if "quick" count is not exhausted 198 * and the session is not interactive. 199 */ 200 201 static inline bool tcp_in_quickack_mode(const struct sock *sk) 202 { 203 const struct inet_connection_sock *icsk = inet_csk(sk); 204 205 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 206 } 207 208 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 209 { 210 if (tp->ecn_flags & TCP_ECN_OK) 211 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 212 } 213 214 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 215 { 216 if (tcp_hdr(skb)->cwr) 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 221 { 222 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 223 } 224 225 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 226 { 227 if (!(tp->ecn_flags & TCP_ECN_OK)) 228 return; 229 230 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 231 case INET_ECN_NOT_ECT: 232 /* Funny extension: if ECT is not set on a segment, 233 * and we already seen ECT on a previous segment, 234 * it is probably a retransmit. 235 */ 236 if (tp->ecn_flags & TCP_ECN_SEEN) 237 tcp_enter_quickack_mode((struct sock *)tp); 238 break; 239 case INET_ECN_CE: 240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 241 /* fallinto */ 242 default: 243 tp->ecn_flags |= TCP_ECN_SEEN; 244 } 245 } 246 247 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 248 { 249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 250 tp->ecn_flags &= ~TCP_ECN_OK; 251 } 252 253 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 254 { 255 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 256 tp->ecn_flags &= ~TCP_ECN_OK; 257 } 258 259 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 260 { 261 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 262 return true; 263 return false; 264 } 265 266 /* Buffer size and advertised window tuning. 267 * 268 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 269 */ 270 271 static void tcp_fixup_sndbuf(struct sock *sk) 272 { 273 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER); 274 275 sndmem *= TCP_INIT_CWND; 276 if (sk->sk_sndbuf < sndmem) 277 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 278 } 279 280 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 281 * 282 * All tcp_full_space() is split to two parts: "network" buffer, allocated 283 * forward and advertised in receiver window (tp->rcv_wnd) and 284 * "application buffer", required to isolate scheduling/application 285 * latencies from network. 286 * window_clamp is maximal advertised window. It can be less than 287 * tcp_full_space(), in this case tcp_full_space() - window_clamp 288 * is reserved for "application" buffer. The less window_clamp is 289 * the smoother our behaviour from viewpoint of network, but the lower 290 * throughput and the higher sensitivity of the connection to losses. 8) 291 * 292 * rcv_ssthresh is more strict window_clamp used at "slow start" 293 * phase to predict further behaviour of this connection. 294 * It is used for two goals: 295 * - to enforce header prediction at sender, even when application 296 * requires some significant "application buffer". It is check #1. 297 * - to prevent pruning of receive queue because of misprediction 298 * of receiver window. Check #2. 299 * 300 * The scheme does not work when sender sends good segments opening 301 * window and then starts to feed us spaghetti. But it should work 302 * in common situations. Otherwise, we have to rely on queue collapsing. 303 */ 304 305 /* Slow part of check#2. */ 306 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 307 { 308 struct tcp_sock *tp = tcp_sk(sk); 309 /* Optimize this! */ 310 int truesize = tcp_win_from_space(skb->truesize) >> 1; 311 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 312 313 while (tp->rcv_ssthresh <= window) { 314 if (truesize <= skb->len) 315 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 316 317 truesize >>= 1; 318 window >>= 1; 319 } 320 return 0; 321 } 322 323 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 324 { 325 struct tcp_sock *tp = tcp_sk(sk); 326 327 /* Check #1 */ 328 if (tp->rcv_ssthresh < tp->window_clamp && 329 (int)tp->rcv_ssthresh < tcp_space(sk) && 330 !sk_under_memory_pressure(sk)) { 331 int incr; 332 333 /* Check #2. Increase window, if skb with such overhead 334 * will fit to rcvbuf in future. 335 */ 336 if (tcp_win_from_space(skb->truesize) <= skb->len) 337 incr = 2 * tp->advmss; 338 else 339 incr = __tcp_grow_window(sk, skb); 340 341 if (incr) { 342 incr = max_t(int, incr, 2 * skb->len); 343 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 344 tp->window_clamp); 345 inet_csk(sk)->icsk_ack.quick |= 1; 346 } 347 } 348 } 349 350 /* 3. Tuning rcvbuf, when connection enters established state. */ 351 352 static void tcp_fixup_rcvbuf(struct sock *sk) 353 { 354 u32 mss = tcp_sk(sk)->advmss; 355 u32 icwnd = TCP_DEFAULT_INIT_RCVWND; 356 int rcvmem; 357 358 /* Limit to 10 segments if mss <= 1460, 359 * or 14600/mss segments, with a minimum of two segments. 360 */ 361 if (mss > 1460) 362 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 363 364 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER); 365 while (tcp_win_from_space(rcvmem) < mss) 366 rcvmem += 128; 367 368 rcvmem *= icwnd; 369 370 if (sk->sk_rcvbuf < rcvmem) 371 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 372 } 373 374 /* 4. Try to fixup all. It is made immediately after connection enters 375 * established state. 376 */ 377 static void tcp_init_buffer_space(struct sock *sk) 378 { 379 struct tcp_sock *tp = tcp_sk(sk); 380 int maxwin; 381 382 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 383 tcp_fixup_rcvbuf(sk); 384 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 385 tcp_fixup_sndbuf(sk); 386 387 tp->rcvq_space.space = tp->rcv_wnd; 388 389 maxwin = tcp_full_space(sk); 390 391 if (tp->window_clamp >= maxwin) { 392 tp->window_clamp = maxwin; 393 394 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 395 tp->window_clamp = max(maxwin - 396 (maxwin >> sysctl_tcp_app_win), 397 4 * tp->advmss); 398 } 399 400 /* Force reservation of one segment. */ 401 if (sysctl_tcp_app_win && 402 tp->window_clamp > 2 * tp->advmss && 403 tp->window_clamp + tp->advmss > maxwin) 404 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 405 406 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 407 tp->snd_cwnd_stamp = tcp_time_stamp; 408 } 409 410 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 411 static void tcp_clamp_window(struct sock *sk) 412 { 413 struct tcp_sock *tp = tcp_sk(sk); 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 416 icsk->icsk_ack.quick = 0; 417 418 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 419 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 420 !sk_under_memory_pressure(sk) && 421 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 422 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 423 sysctl_tcp_rmem[2]); 424 } 425 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 426 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 427 } 428 429 /* Initialize RCV_MSS value. 430 * RCV_MSS is an our guess about MSS used by the peer. 431 * We haven't any direct information about the MSS. 432 * It's better to underestimate the RCV_MSS rather than overestimate. 433 * Overestimations make us ACKing less frequently than needed. 434 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 435 */ 436 void tcp_initialize_rcv_mss(struct sock *sk) 437 { 438 const struct tcp_sock *tp = tcp_sk(sk); 439 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 440 441 hint = min(hint, tp->rcv_wnd / 2); 442 hint = min(hint, TCP_MSS_DEFAULT); 443 hint = max(hint, TCP_MIN_MSS); 444 445 inet_csk(sk)->icsk_ack.rcv_mss = hint; 446 } 447 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 448 449 /* Receiver "autotuning" code. 450 * 451 * The algorithm for RTT estimation w/o timestamps is based on 452 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 453 * <http://public.lanl.gov/radiant/pubs.html#DRS> 454 * 455 * More detail on this code can be found at 456 * <http://staff.psc.edu/jheffner/>, 457 * though this reference is out of date. A new paper 458 * is pending. 459 */ 460 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 461 { 462 u32 new_sample = tp->rcv_rtt_est.rtt; 463 long m = sample; 464 465 if (m == 0) 466 m = 1; 467 468 if (new_sample != 0) { 469 /* If we sample in larger samples in the non-timestamp 470 * case, we could grossly overestimate the RTT especially 471 * with chatty applications or bulk transfer apps which 472 * are stalled on filesystem I/O. 473 * 474 * Also, since we are only going for a minimum in the 475 * non-timestamp case, we do not smooth things out 476 * else with timestamps disabled convergence takes too 477 * long. 478 */ 479 if (!win_dep) { 480 m -= (new_sample >> 3); 481 new_sample += m; 482 } else { 483 m <<= 3; 484 if (m < new_sample) 485 new_sample = m; 486 } 487 } else { 488 /* No previous measure. */ 489 new_sample = m << 3; 490 } 491 492 if (tp->rcv_rtt_est.rtt != new_sample) 493 tp->rcv_rtt_est.rtt = new_sample; 494 } 495 496 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 497 { 498 if (tp->rcv_rtt_est.time == 0) 499 goto new_measure; 500 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 501 return; 502 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 503 504 new_measure: 505 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 506 tp->rcv_rtt_est.time = tcp_time_stamp; 507 } 508 509 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 510 const struct sk_buff *skb) 511 { 512 struct tcp_sock *tp = tcp_sk(sk); 513 if (tp->rx_opt.rcv_tsecr && 514 (TCP_SKB_CB(skb)->end_seq - 515 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 516 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 517 } 518 519 /* 520 * This function should be called every time data is copied to user space. 521 * It calculates the appropriate TCP receive buffer space. 522 */ 523 void tcp_rcv_space_adjust(struct sock *sk) 524 { 525 struct tcp_sock *tp = tcp_sk(sk); 526 int time; 527 int space; 528 529 if (tp->rcvq_space.time == 0) 530 goto new_measure; 531 532 time = tcp_time_stamp - tp->rcvq_space.time; 533 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 534 return; 535 536 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 537 538 space = max(tp->rcvq_space.space, space); 539 540 if (tp->rcvq_space.space != space) { 541 int rcvmem; 542 543 tp->rcvq_space.space = space; 544 545 if (sysctl_tcp_moderate_rcvbuf && 546 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 547 int new_clamp = space; 548 549 /* Receive space grows, normalize in order to 550 * take into account packet headers and sk_buff 551 * structure overhead. 552 */ 553 space /= tp->advmss; 554 if (!space) 555 space = 1; 556 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 557 while (tcp_win_from_space(rcvmem) < tp->advmss) 558 rcvmem += 128; 559 space *= rcvmem; 560 space = min(space, sysctl_tcp_rmem[2]); 561 if (space > sk->sk_rcvbuf) { 562 sk->sk_rcvbuf = space; 563 564 /* Make the window clamp follow along. */ 565 tp->window_clamp = new_clamp; 566 } 567 } 568 } 569 570 new_measure: 571 tp->rcvq_space.seq = tp->copied_seq; 572 tp->rcvq_space.time = tcp_time_stamp; 573 } 574 575 /* There is something which you must keep in mind when you analyze the 576 * behavior of the tp->ato delayed ack timeout interval. When a 577 * connection starts up, we want to ack as quickly as possible. The 578 * problem is that "good" TCP's do slow start at the beginning of data 579 * transmission. The means that until we send the first few ACK's the 580 * sender will sit on his end and only queue most of his data, because 581 * he can only send snd_cwnd unacked packets at any given time. For 582 * each ACK we send, he increments snd_cwnd and transmits more of his 583 * queue. -DaveM 584 */ 585 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 586 { 587 struct tcp_sock *tp = tcp_sk(sk); 588 struct inet_connection_sock *icsk = inet_csk(sk); 589 u32 now; 590 591 inet_csk_schedule_ack(sk); 592 593 tcp_measure_rcv_mss(sk, skb); 594 595 tcp_rcv_rtt_measure(tp); 596 597 now = tcp_time_stamp; 598 599 if (!icsk->icsk_ack.ato) { 600 /* The _first_ data packet received, initialize 601 * delayed ACK engine. 602 */ 603 tcp_incr_quickack(sk); 604 icsk->icsk_ack.ato = TCP_ATO_MIN; 605 } else { 606 int m = now - icsk->icsk_ack.lrcvtime; 607 608 if (m <= TCP_ATO_MIN / 2) { 609 /* The fastest case is the first. */ 610 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 611 } else if (m < icsk->icsk_ack.ato) { 612 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 613 if (icsk->icsk_ack.ato > icsk->icsk_rto) 614 icsk->icsk_ack.ato = icsk->icsk_rto; 615 } else if (m > icsk->icsk_rto) { 616 /* Too long gap. Apparently sender failed to 617 * restart window, so that we send ACKs quickly. 618 */ 619 tcp_incr_quickack(sk); 620 sk_mem_reclaim(sk); 621 } 622 } 623 icsk->icsk_ack.lrcvtime = now; 624 625 TCP_ECN_check_ce(tp, skb); 626 627 if (skb->len >= 128) 628 tcp_grow_window(sk, skb); 629 } 630 631 /* Called to compute a smoothed rtt estimate. The data fed to this 632 * routine either comes from timestamps, or from segments that were 633 * known _not_ to have been retransmitted [see Karn/Partridge 634 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 635 * piece by Van Jacobson. 636 * NOTE: the next three routines used to be one big routine. 637 * To save cycles in the RFC 1323 implementation it was better to break 638 * it up into three procedures. -- erics 639 */ 640 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 641 { 642 struct tcp_sock *tp = tcp_sk(sk); 643 long m = mrtt; /* RTT */ 644 645 /* The following amusing code comes from Jacobson's 646 * article in SIGCOMM '88. Note that rtt and mdev 647 * are scaled versions of rtt and mean deviation. 648 * This is designed to be as fast as possible 649 * m stands for "measurement". 650 * 651 * On a 1990 paper the rto value is changed to: 652 * RTO = rtt + 4 * mdev 653 * 654 * Funny. This algorithm seems to be very broken. 655 * These formulae increase RTO, when it should be decreased, increase 656 * too slowly, when it should be increased quickly, decrease too quickly 657 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 658 * does not matter how to _calculate_ it. Seems, it was trap 659 * that VJ failed to avoid. 8) 660 */ 661 if (m == 0) 662 m = 1; 663 if (tp->srtt != 0) { 664 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 665 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 666 if (m < 0) { 667 m = -m; /* m is now abs(error) */ 668 m -= (tp->mdev >> 2); /* similar update on mdev */ 669 /* This is similar to one of Eifel findings. 670 * Eifel blocks mdev updates when rtt decreases. 671 * This solution is a bit different: we use finer gain 672 * for mdev in this case (alpha*beta). 673 * Like Eifel it also prevents growth of rto, 674 * but also it limits too fast rto decreases, 675 * happening in pure Eifel. 676 */ 677 if (m > 0) 678 m >>= 3; 679 } else { 680 m -= (tp->mdev >> 2); /* similar update on mdev */ 681 } 682 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 683 if (tp->mdev > tp->mdev_max) { 684 tp->mdev_max = tp->mdev; 685 if (tp->mdev_max > tp->rttvar) 686 tp->rttvar = tp->mdev_max; 687 } 688 if (after(tp->snd_una, tp->rtt_seq)) { 689 if (tp->mdev_max < tp->rttvar) 690 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 691 tp->rtt_seq = tp->snd_nxt; 692 tp->mdev_max = tcp_rto_min(sk); 693 } 694 } else { 695 /* no previous measure. */ 696 tp->srtt = m << 3; /* take the measured time to be rtt */ 697 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 698 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 699 tp->rtt_seq = tp->snd_nxt; 700 } 701 } 702 703 /* Calculate rto without backoff. This is the second half of Van Jacobson's 704 * routine referred to above. 705 */ 706 void tcp_set_rto(struct sock *sk) 707 { 708 const struct tcp_sock *tp = tcp_sk(sk); 709 /* Old crap is replaced with new one. 8) 710 * 711 * More seriously: 712 * 1. If rtt variance happened to be less 50msec, it is hallucination. 713 * It cannot be less due to utterly erratic ACK generation made 714 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 715 * to do with delayed acks, because at cwnd>2 true delack timeout 716 * is invisible. Actually, Linux-2.4 also generates erratic 717 * ACKs in some circumstances. 718 */ 719 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 720 721 /* 2. Fixups made earlier cannot be right. 722 * If we do not estimate RTO correctly without them, 723 * all the algo is pure shit and should be replaced 724 * with correct one. It is exactly, which we pretend to do. 725 */ 726 727 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 728 * guarantees that rto is higher. 729 */ 730 tcp_bound_rto(sk); 731 } 732 733 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 734 { 735 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 736 737 if (!cwnd) 738 cwnd = TCP_INIT_CWND; 739 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 740 } 741 742 /* Set slow start threshold and cwnd not falling to slow start */ 743 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 744 { 745 struct tcp_sock *tp = tcp_sk(sk); 746 const struct inet_connection_sock *icsk = inet_csk(sk); 747 748 tp->prior_ssthresh = 0; 749 tp->bytes_acked = 0; 750 if (icsk->icsk_ca_state < TCP_CA_CWR) { 751 tp->undo_marker = 0; 752 if (set_ssthresh) 753 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 754 tp->snd_cwnd = min(tp->snd_cwnd, 755 tcp_packets_in_flight(tp) + 1U); 756 tp->snd_cwnd_cnt = 0; 757 tp->high_seq = tp->snd_nxt; 758 tp->snd_cwnd_stamp = tcp_time_stamp; 759 TCP_ECN_queue_cwr(tp); 760 761 tcp_set_ca_state(sk, TCP_CA_CWR); 762 } 763 } 764 765 /* 766 * Packet counting of FACK is based on in-order assumptions, therefore TCP 767 * disables it when reordering is detected 768 */ 769 void tcp_disable_fack(struct tcp_sock *tp) 770 { 771 /* RFC3517 uses different metric in lost marker => reset on change */ 772 if (tcp_is_fack(tp)) 773 tp->lost_skb_hint = NULL; 774 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 775 } 776 777 /* Take a notice that peer is sending D-SACKs */ 778 static void tcp_dsack_seen(struct tcp_sock *tp) 779 { 780 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 781 } 782 783 static void tcp_update_reordering(struct sock *sk, const int metric, 784 const int ts) 785 { 786 struct tcp_sock *tp = tcp_sk(sk); 787 if (metric > tp->reordering) { 788 int mib_idx; 789 790 tp->reordering = min(TCP_MAX_REORDERING, metric); 791 792 /* This exciting event is worth to be remembered. 8) */ 793 if (ts) 794 mib_idx = LINUX_MIB_TCPTSREORDER; 795 else if (tcp_is_reno(tp)) 796 mib_idx = LINUX_MIB_TCPRENOREORDER; 797 else if (tcp_is_fack(tp)) 798 mib_idx = LINUX_MIB_TCPFACKREORDER; 799 else 800 mib_idx = LINUX_MIB_TCPSACKREORDER; 801 802 NET_INC_STATS_BH(sock_net(sk), mib_idx); 803 #if FASTRETRANS_DEBUG > 1 804 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 805 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 806 tp->reordering, 807 tp->fackets_out, 808 tp->sacked_out, 809 tp->undo_marker ? tp->undo_retrans : 0); 810 #endif 811 tcp_disable_fack(tp); 812 } 813 814 if (metric > 0) 815 tcp_disable_early_retrans(tp); 816 } 817 818 /* This must be called before lost_out is incremented */ 819 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 820 { 821 if ((tp->retransmit_skb_hint == NULL) || 822 before(TCP_SKB_CB(skb)->seq, 823 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 824 tp->retransmit_skb_hint = skb; 825 826 if (!tp->lost_out || 827 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 828 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 829 } 830 831 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 832 { 833 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 834 tcp_verify_retransmit_hint(tp, skb); 835 836 tp->lost_out += tcp_skb_pcount(skb); 837 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 838 } 839 } 840 841 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 842 struct sk_buff *skb) 843 { 844 tcp_verify_retransmit_hint(tp, skb); 845 846 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 847 tp->lost_out += tcp_skb_pcount(skb); 848 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 849 } 850 } 851 852 /* This procedure tags the retransmission queue when SACKs arrive. 853 * 854 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 855 * Packets in queue with these bits set are counted in variables 856 * sacked_out, retrans_out and lost_out, correspondingly. 857 * 858 * Valid combinations are: 859 * Tag InFlight Description 860 * 0 1 - orig segment is in flight. 861 * S 0 - nothing flies, orig reached receiver. 862 * L 0 - nothing flies, orig lost by net. 863 * R 2 - both orig and retransmit are in flight. 864 * L|R 1 - orig is lost, retransmit is in flight. 865 * S|R 1 - orig reached receiver, retrans is still in flight. 866 * (L|S|R is logically valid, it could occur when L|R is sacked, 867 * but it is equivalent to plain S and code short-curcuits it to S. 868 * L|S is logically invalid, it would mean -1 packet in flight 8)) 869 * 870 * These 6 states form finite state machine, controlled by the following events: 871 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 872 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 873 * 3. Loss detection event of two flavors: 874 * A. Scoreboard estimator decided the packet is lost. 875 * A'. Reno "three dupacks" marks head of queue lost. 876 * A''. Its FACK modification, head until snd.fack is lost. 877 * B. SACK arrives sacking SND.NXT at the moment, when the 878 * segment was retransmitted. 879 * 4. D-SACK added new rule: D-SACK changes any tag to S. 880 * 881 * It is pleasant to note, that state diagram turns out to be commutative, 882 * so that we are allowed not to be bothered by order of our actions, 883 * when multiple events arrive simultaneously. (see the function below). 884 * 885 * Reordering detection. 886 * -------------------- 887 * Reordering metric is maximal distance, which a packet can be displaced 888 * in packet stream. With SACKs we can estimate it: 889 * 890 * 1. SACK fills old hole and the corresponding segment was not 891 * ever retransmitted -> reordering. Alas, we cannot use it 892 * when segment was retransmitted. 893 * 2. The last flaw is solved with D-SACK. D-SACK arrives 894 * for retransmitted and already SACKed segment -> reordering.. 895 * Both of these heuristics are not used in Loss state, when we cannot 896 * account for retransmits accurately. 897 * 898 * SACK block validation. 899 * ---------------------- 900 * 901 * SACK block range validation checks that the received SACK block fits to 902 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 903 * Note that SND.UNA is not included to the range though being valid because 904 * it means that the receiver is rather inconsistent with itself reporting 905 * SACK reneging when it should advance SND.UNA. Such SACK block this is 906 * perfectly valid, however, in light of RFC2018 which explicitly states 907 * that "SACK block MUST reflect the newest segment. Even if the newest 908 * segment is going to be discarded ...", not that it looks very clever 909 * in case of head skb. Due to potentional receiver driven attacks, we 910 * choose to avoid immediate execution of a walk in write queue due to 911 * reneging and defer head skb's loss recovery to standard loss recovery 912 * procedure that will eventually trigger (nothing forbids us doing this). 913 * 914 * Implements also blockage to start_seq wrap-around. Problem lies in the 915 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 916 * there's no guarantee that it will be before snd_nxt (n). The problem 917 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 918 * wrap (s_w): 919 * 920 * <- outs wnd -> <- wrapzone -> 921 * u e n u_w e_w s n_w 922 * | | | | | | | 923 * |<------------+------+----- TCP seqno space --------------+---------->| 924 * ...-- <2^31 ->| |<--------... 925 * ...---- >2^31 ------>| |<--------... 926 * 927 * Current code wouldn't be vulnerable but it's better still to discard such 928 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 929 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 930 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 931 * equal to the ideal case (infinite seqno space without wrap caused issues). 932 * 933 * With D-SACK the lower bound is extended to cover sequence space below 934 * SND.UNA down to undo_marker, which is the last point of interest. Yet 935 * again, D-SACK block must not to go across snd_una (for the same reason as 936 * for the normal SACK blocks, explained above). But there all simplicity 937 * ends, TCP might receive valid D-SACKs below that. As long as they reside 938 * fully below undo_marker they do not affect behavior in anyway and can 939 * therefore be safely ignored. In rare cases (which are more or less 940 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 941 * fragmentation and packet reordering past skb's retransmission. To consider 942 * them correctly, the acceptable range must be extended even more though 943 * the exact amount is rather hard to quantify. However, tp->max_window can 944 * be used as an exaggerated estimate. 945 */ 946 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 947 u32 start_seq, u32 end_seq) 948 { 949 /* Too far in future, or reversed (interpretation is ambiguous) */ 950 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 951 return false; 952 953 /* Nasty start_seq wrap-around check (see comments above) */ 954 if (!before(start_seq, tp->snd_nxt)) 955 return false; 956 957 /* In outstanding window? ...This is valid exit for D-SACKs too. 958 * start_seq == snd_una is non-sensical (see comments above) 959 */ 960 if (after(start_seq, tp->snd_una)) 961 return true; 962 963 if (!is_dsack || !tp->undo_marker) 964 return false; 965 966 /* ...Then it's D-SACK, and must reside below snd_una completely */ 967 if (after(end_seq, tp->snd_una)) 968 return false; 969 970 if (!before(start_seq, tp->undo_marker)) 971 return true; 972 973 /* Too old */ 974 if (!after(end_seq, tp->undo_marker)) 975 return false; 976 977 /* Undo_marker boundary crossing (overestimates a lot). Known already: 978 * start_seq < undo_marker and end_seq >= undo_marker. 979 */ 980 return !before(start_seq, end_seq - tp->max_window); 981 } 982 983 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 984 * Event "B". Later note: FACK people cheated me again 8), we have to account 985 * for reordering! Ugly, but should help. 986 * 987 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 988 * less than what is now known to be received by the other end (derived from 989 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 990 * retransmitted skbs to avoid some costly processing per ACKs. 991 */ 992 static void tcp_mark_lost_retrans(struct sock *sk) 993 { 994 const struct inet_connection_sock *icsk = inet_csk(sk); 995 struct tcp_sock *tp = tcp_sk(sk); 996 struct sk_buff *skb; 997 int cnt = 0; 998 u32 new_low_seq = tp->snd_nxt; 999 u32 received_upto = tcp_highest_sack_seq(tp); 1000 1001 if (!tcp_is_fack(tp) || !tp->retrans_out || 1002 !after(received_upto, tp->lost_retrans_low) || 1003 icsk->icsk_ca_state != TCP_CA_Recovery) 1004 return; 1005 1006 tcp_for_write_queue(skb, sk) { 1007 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1008 1009 if (skb == tcp_send_head(sk)) 1010 break; 1011 if (cnt == tp->retrans_out) 1012 break; 1013 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1014 continue; 1015 1016 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1017 continue; 1018 1019 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1020 * constraint here (see above) but figuring out that at 1021 * least tp->reordering SACK blocks reside between ack_seq 1022 * and received_upto is not easy task to do cheaply with 1023 * the available datastructures. 1024 * 1025 * Whether FACK should check here for tp->reordering segs 1026 * in-between one could argue for either way (it would be 1027 * rather simple to implement as we could count fack_count 1028 * during the walk and do tp->fackets_out - fack_count). 1029 */ 1030 if (after(received_upto, ack_seq)) { 1031 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1032 tp->retrans_out -= tcp_skb_pcount(skb); 1033 1034 tcp_skb_mark_lost_uncond_verify(tp, skb); 1035 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1036 } else { 1037 if (before(ack_seq, new_low_seq)) 1038 new_low_seq = ack_seq; 1039 cnt += tcp_skb_pcount(skb); 1040 } 1041 } 1042 1043 if (tp->retrans_out) 1044 tp->lost_retrans_low = new_low_seq; 1045 } 1046 1047 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1048 struct tcp_sack_block_wire *sp, int num_sacks, 1049 u32 prior_snd_una) 1050 { 1051 struct tcp_sock *tp = tcp_sk(sk); 1052 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1053 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1054 bool dup_sack = false; 1055 1056 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1057 dup_sack = true; 1058 tcp_dsack_seen(tp); 1059 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1060 } else if (num_sacks > 1) { 1061 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1062 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1063 1064 if (!after(end_seq_0, end_seq_1) && 1065 !before(start_seq_0, start_seq_1)) { 1066 dup_sack = true; 1067 tcp_dsack_seen(tp); 1068 NET_INC_STATS_BH(sock_net(sk), 1069 LINUX_MIB_TCPDSACKOFORECV); 1070 } 1071 } 1072 1073 /* D-SACK for already forgotten data... Do dumb counting. */ 1074 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1075 !after(end_seq_0, prior_snd_una) && 1076 after(end_seq_0, tp->undo_marker)) 1077 tp->undo_retrans--; 1078 1079 return dup_sack; 1080 } 1081 1082 struct tcp_sacktag_state { 1083 int reord; 1084 int fack_count; 1085 int flag; 1086 }; 1087 1088 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1089 * the incoming SACK may not exactly match but we can find smaller MSS 1090 * aligned portion of it that matches. Therefore we might need to fragment 1091 * which may fail and creates some hassle (caller must handle error case 1092 * returns). 1093 * 1094 * FIXME: this could be merged to shift decision code 1095 */ 1096 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1097 u32 start_seq, u32 end_seq) 1098 { 1099 int err; 1100 bool in_sack; 1101 unsigned int pkt_len; 1102 unsigned int mss; 1103 1104 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1105 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1106 1107 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1108 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1109 mss = tcp_skb_mss(skb); 1110 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1111 1112 if (!in_sack) { 1113 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1114 if (pkt_len < mss) 1115 pkt_len = mss; 1116 } else { 1117 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1118 if (pkt_len < mss) 1119 return -EINVAL; 1120 } 1121 1122 /* Round if necessary so that SACKs cover only full MSSes 1123 * and/or the remaining small portion (if present) 1124 */ 1125 if (pkt_len > mss) { 1126 unsigned int new_len = (pkt_len / mss) * mss; 1127 if (!in_sack && new_len < pkt_len) { 1128 new_len += mss; 1129 if (new_len > skb->len) 1130 return 0; 1131 } 1132 pkt_len = new_len; 1133 } 1134 err = tcp_fragment(sk, skb, pkt_len, mss); 1135 if (err < 0) 1136 return err; 1137 } 1138 1139 return in_sack; 1140 } 1141 1142 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1143 static u8 tcp_sacktag_one(struct sock *sk, 1144 struct tcp_sacktag_state *state, u8 sacked, 1145 u32 start_seq, u32 end_seq, 1146 bool dup_sack, int pcount) 1147 { 1148 struct tcp_sock *tp = tcp_sk(sk); 1149 int fack_count = state->fack_count; 1150 1151 /* Account D-SACK for retransmitted packet. */ 1152 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1153 if (tp->undo_marker && tp->undo_retrans && 1154 after(end_seq, tp->undo_marker)) 1155 tp->undo_retrans--; 1156 if (sacked & TCPCB_SACKED_ACKED) 1157 state->reord = min(fack_count, state->reord); 1158 } 1159 1160 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1161 if (!after(end_seq, tp->snd_una)) 1162 return sacked; 1163 1164 if (!(sacked & TCPCB_SACKED_ACKED)) { 1165 if (sacked & TCPCB_SACKED_RETRANS) { 1166 /* If the segment is not tagged as lost, 1167 * we do not clear RETRANS, believing 1168 * that retransmission is still in flight. 1169 */ 1170 if (sacked & TCPCB_LOST) { 1171 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1172 tp->lost_out -= pcount; 1173 tp->retrans_out -= pcount; 1174 } 1175 } else { 1176 if (!(sacked & TCPCB_RETRANS)) { 1177 /* New sack for not retransmitted frame, 1178 * which was in hole. It is reordering. 1179 */ 1180 if (before(start_seq, 1181 tcp_highest_sack_seq(tp))) 1182 state->reord = min(fack_count, 1183 state->reord); 1184 1185 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1186 if (!after(end_seq, tp->frto_highmark)) 1187 state->flag |= FLAG_ONLY_ORIG_SACKED; 1188 } 1189 1190 if (sacked & TCPCB_LOST) { 1191 sacked &= ~TCPCB_LOST; 1192 tp->lost_out -= pcount; 1193 } 1194 } 1195 1196 sacked |= TCPCB_SACKED_ACKED; 1197 state->flag |= FLAG_DATA_SACKED; 1198 tp->sacked_out += pcount; 1199 1200 fack_count += pcount; 1201 1202 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1203 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1204 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1205 tp->lost_cnt_hint += pcount; 1206 1207 if (fack_count > tp->fackets_out) 1208 tp->fackets_out = fack_count; 1209 } 1210 1211 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1212 * frames and clear it. undo_retrans is decreased above, L|R frames 1213 * are accounted above as well. 1214 */ 1215 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1216 sacked &= ~TCPCB_SACKED_RETRANS; 1217 tp->retrans_out -= pcount; 1218 } 1219 1220 return sacked; 1221 } 1222 1223 /* Shift newly-SACKed bytes from this skb to the immediately previous 1224 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1225 */ 1226 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1227 struct tcp_sacktag_state *state, 1228 unsigned int pcount, int shifted, int mss, 1229 bool dup_sack) 1230 { 1231 struct tcp_sock *tp = tcp_sk(sk); 1232 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1233 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1234 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1235 1236 BUG_ON(!pcount); 1237 1238 /* Adjust counters and hints for the newly sacked sequence 1239 * range but discard the return value since prev is already 1240 * marked. We must tag the range first because the seq 1241 * advancement below implicitly advances 1242 * tcp_highest_sack_seq() when skb is highest_sack. 1243 */ 1244 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1245 start_seq, end_seq, dup_sack, pcount); 1246 1247 if (skb == tp->lost_skb_hint) 1248 tp->lost_cnt_hint += pcount; 1249 1250 TCP_SKB_CB(prev)->end_seq += shifted; 1251 TCP_SKB_CB(skb)->seq += shifted; 1252 1253 skb_shinfo(prev)->gso_segs += pcount; 1254 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1255 skb_shinfo(skb)->gso_segs -= pcount; 1256 1257 /* When we're adding to gso_segs == 1, gso_size will be zero, 1258 * in theory this shouldn't be necessary but as long as DSACK 1259 * code can come after this skb later on it's better to keep 1260 * setting gso_size to something. 1261 */ 1262 if (!skb_shinfo(prev)->gso_size) { 1263 skb_shinfo(prev)->gso_size = mss; 1264 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1265 } 1266 1267 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1268 if (skb_shinfo(skb)->gso_segs <= 1) { 1269 skb_shinfo(skb)->gso_size = 0; 1270 skb_shinfo(skb)->gso_type = 0; 1271 } 1272 1273 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1274 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1275 1276 if (skb->len > 0) { 1277 BUG_ON(!tcp_skb_pcount(skb)); 1278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1279 return false; 1280 } 1281 1282 /* Whole SKB was eaten :-) */ 1283 1284 if (skb == tp->retransmit_skb_hint) 1285 tp->retransmit_skb_hint = prev; 1286 if (skb == tp->scoreboard_skb_hint) 1287 tp->scoreboard_skb_hint = prev; 1288 if (skb == tp->lost_skb_hint) { 1289 tp->lost_skb_hint = prev; 1290 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1291 } 1292 1293 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags; 1294 if (skb == tcp_highest_sack(sk)) 1295 tcp_advance_highest_sack(sk, skb); 1296 1297 tcp_unlink_write_queue(skb, sk); 1298 sk_wmem_free_skb(sk, skb); 1299 1300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1301 1302 return true; 1303 } 1304 1305 /* I wish gso_size would have a bit more sane initialization than 1306 * something-or-zero which complicates things 1307 */ 1308 static int tcp_skb_seglen(const struct sk_buff *skb) 1309 { 1310 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1311 } 1312 1313 /* Shifting pages past head area doesn't work */ 1314 static int skb_can_shift(const struct sk_buff *skb) 1315 { 1316 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1317 } 1318 1319 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1320 * skb. 1321 */ 1322 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1323 struct tcp_sacktag_state *state, 1324 u32 start_seq, u32 end_seq, 1325 bool dup_sack) 1326 { 1327 struct tcp_sock *tp = tcp_sk(sk); 1328 struct sk_buff *prev; 1329 int mss; 1330 int pcount = 0; 1331 int len; 1332 int in_sack; 1333 1334 if (!sk_can_gso(sk)) 1335 goto fallback; 1336 1337 /* Normally R but no L won't result in plain S */ 1338 if (!dup_sack && 1339 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1340 goto fallback; 1341 if (!skb_can_shift(skb)) 1342 goto fallback; 1343 /* This frame is about to be dropped (was ACKed). */ 1344 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1345 goto fallback; 1346 1347 /* Can only happen with delayed DSACK + discard craziness */ 1348 if (unlikely(skb == tcp_write_queue_head(sk))) 1349 goto fallback; 1350 prev = tcp_write_queue_prev(sk, skb); 1351 1352 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1353 goto fallback; 1354 1355 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1356 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1357 1358 if (in_sack) { 1359 len = skb->len; 1360 pcount = tcp_skb_pcount(skb); 1361 mss = tcp_skb_seglen(skb); 1362 1363 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1364 * drop this restriction as unnecessary 1365 */ 1366 if (mss != tcp_skb_seglen(prev)) 1367 goto fallback; 1368 } else { 1369 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1370 goto noop; 1371 /* CHECKME: This is non-MSS split case only?, this will 1372 * cause skipped skbs due to advancing loop btw, original 1373 * has that feature too 1374 */ 1375 if (tcp_skb_pcount(skb) <= 1) 1376 goto noop; 1377 1378 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1379 if (!in_sack) { 1380 /* TODO: head merge to next could be attempted here 1381 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1382 * though it might not be worth of the additional hassle 1383 * 1384 * ...we can probably just fallback to what was done 1385 * previously. We could try merging non-SACKed ones 1386 * as well but it probably isn't going to buy off 1387 * because later SACKs might again split them, and 1388 * it would make skb timestamp tracking considerably 1389 * harder problem. 1390 */ 1391 goto fallback; 1392 } 1393 1394 len = end_seq - TCP_SKB_CB(skb)->seq; 1395 BUG_ON(len < 0); 1396 BUG_ON(len > skb->len); 1397 1398 /* MSS boundaries should be honoured or else pcount will 1399 * severely break even though it makes things bit trickier. 1400 * Optimize common case to avoid most of the divides 1401 */ 1402 mss = tcp_skb_mss(skb); 1403 1404 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1405 * drop this restriction as unnecessary 1406 */ 1407 if (mss != tcp_skb_seglen(prev)) 1408 goto fallback; 1409 1410 if (len == mss) { 1411 pcount = 1; 1412 } else if (len < mss) { 1413 goto noop; 1414 } else { 1415 pcount = len / mss; 1416 len = pcount * mss; 1417 } 1418 } 1419 1420 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1421 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1422 goto fallback; 1423 1424 if (!skb_shift(prev, skb, len)) 1425 goto fallback; 1426 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1427 goto out; 1428 1429 /* Hole filled allows collapsing with the next as well, this is very 1430 * useful when hole on every nth skb pattern happens 1431 */ 1432 if (prev == tcp_write_queue_tail(sk)) 1433 goto out; 1434 skb = tcp_write_queue_next(sk, prev); 1435 1436 if (!skb_can_shift(skb) || 1437 (skb == tcp_send_head(sk)) || 1438 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1439 (mss != tcp_skb_seglen(skb))) 1440 goto out; 1441 1442 len = skb->len; 1443 if (skb_shift(prev, skb, len)) { 1444 pcount += tcp_skb_pcount(skb); 1445 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1446 } 1447 1448 out: 1449 state->fack_count += pcount; 1450 return prev; 1451 1452 noop: 1453 return skb; 1454 1455 fallback: 1456 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1457 return NULL; 1458 } 1459 1460 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1461 struct tcp_sack_block *next_dup, 1462 struct tcp_sacktag_state *state, 1463 u32 start_seq, u32 end_seq, 1464 bool dup_sack_in) 1465 { 1466 struct tcp_sock *tp = tcp_sk(sk); 1467 struct sk_buff *tmp; 1468 1469 tcp_for_write_queue_from(skb, sk) { 1470 int in_sack = 0; 1471 bool dup_sack = dup_sack_in; 1472 1473 if (skb == tcp_send_head(sk)) 1474 break; 1475 1476 /* queue is in-order => we can short-circuit the walk early */ 1477 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1478 break; 1479 1480 if ((next_dup != NULL) && 1481 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1482 in_sack = tcp_match_skb_to_sack(sk, skb, 1483 next_dup->start_seq, 1484 next_dup->end_seq); 1485 if (in_sack > 0) 1486 dup_sack = true; 1487 } 1488 1489 /* skb reference here is a bit tricky to get right, since 1490 * shifting can eat and free both this skb and the next, 1491 * so not even _safe variant of the loop is enough. 1492 */ 1493 if (in_sack <= 0) { 1494 tmp = tcp_shift_skb_data(sk, skb, state, 1495 start_seq, end_seq, dup_sack); 1496 if (tmp != NULL) { 1497 if (tmp != skb) { 1498 skb = tmp; 1499 continue; 1500 } 1501 1502 in_sack = 0; 1503 } else { 1504 in_sack = tcp_match_skb_to_sack(sk, skb, 1505 start_seq, 1506 end_seq); 1507 } 1508 } 1509 1510 if (unlikely(in_sack < 0)) 1511 break; 1512 1513 if (in_sack) { 1514 TCP_SKB_CB(skb)->sacked = 1515 tcp_sacktag_one(sk, 1516 state, 1517 TCP_SKB_CB(skb)->sacked, 1518 TCP_SKB_CB(skb)->seq, 1519 TCP_SKB_CB(skb)->end_seq, 1520 dup_sack, 1521 tcp_skb_pcount(skb)); 1522 1523 if (!before(TCP_SKB_CB(skb)->seq, 1524 tcp_highest_sack_seq(tp))) 1525 tcp_advance_highest_sack(sk, skb); 1526 } 1527 1528 state->fack_count += tcp_skb_pcount(skb); 1529 } 1530 return skb; 1531 } 1532 1533 /* Avoid all extra work that is being done by sacktag while walking in 1534 * a normal way 1535 */ 1536 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1537 struct tcp_sacktag_state *state, 1538 u32 skip_to_seq) 1539 { 1540 tcp_for_write_queue_from(skb, sk) { 1541 if (skb == tcp_send_head(sk)) 1542 break; 1543 1544 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1545 break; 1546 1547 state->fack_count += tcp_skb_pcount(skb); 1548 } 1549 return skb; 1550 } 1551 1552 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1553 struct sock *sk, 1554 struct tcp_sack_block *next_dup, 1555 struct tcp_sacktag_state *state, 1556 u32 skip_to_seq) 1557 { 1558 if (next_dup == NULL) 1559 return skb; 1560 1561 if (before(next_dup->start_seq, skip_to_seq)) { 1562 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1563 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1564 next_dup->start_seq, next_dup->end_seq, 1565 1); 1566 } 1567 1568 return skb; 1569 } 1570 1571 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1572 { 1573 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1574 } 1575 1576 static int 1577 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1578 u32 prior_snd_una) 1579 { 1580 const struct inet_connection_sock *icsk = inet_csk(sk); 1581 struct tcp_sock *tp = tcp_sk(sk); 1582 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1583 TCP_SKB_CB(ack_skb)->sacked); 1584 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1585 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1586 struct tcp_sack_block *cache; 1587 struct tcp_sacktag_state state; 1588 struct sk_buff *skb; 1589 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1590 int used_sacks; 1591 bool found_dup_sack = false; 1592 int i, j; 1593 int first_sack_index; 1594 1595 state.flag = 0; 1596 state.reord = tp->packets_out; 1597 1598 if (!tp->sacked_out) { 1599 if (WARN_ON(tp->fackets_out)) 1600 tp->fackets_out = 0; 1601 tcp_highest_sack_reset(sk); 1602 } 1603 1604 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1605 num_sacks, prior_snd_una); 1606 if (found_dup_sack) 1607 state.flag |= FLAG_DSACKING_ACK; 1608 1609 /* Eliminate too old ACKs, but take into 1610 * account more or less fresh ones, they can 1611 * contain valid SACK info. 1612 */ 1613 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1614 return 0; 1615 1616 if (!tp->packets_out) 1617 goto out; 1618 1619 used_sacks = 0; 1620 first_sack_index = 0; 1621 for (i = 0; i < num_sacks; i++) { 1622 bool dup_sack = !i && found_dup_sack; 1623 1624 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1625 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1626 1627 if (!tcp_is_sackblock_valid(tp, dup_sack, 1628 sp[used_sacks].start_seq, 1629 sp[used_sacks].end_seq)) { 1630 int mib_idx; 1631 1632 if (dup_sack) { 1633 if (!tp->undo_marker) 1634 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1635 else 1636 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1637 } else { 1638 /* Don't count olds caused by ACK reordering */ 1639 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1640 !after(sp[used_sacks].end_seq, tp->snd_una)) 1641 continue; 1642 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1643 } 1644 1645 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1646 if (i == 0) 1647 first_sack_index = -1; 1648 continue; 1649 } 1650 1651 /* Ignore very old stuff early */ 1652 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1653 continue; 1654 1655 used_sacks++; 1656 } 1657 1658 /* order SACK blocks to allow in order walk of the retrans queue */ 1659 for (i = used_sacks - 1; i > 0; i--) { 1660 for (j = 0; j < i; j++) { 1661 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1662 swap(sp[j], sp[j + 1]); 1663 1664 /* Track where the first SACK block goes to */ 1665 if (j == first_sack_index) 1666 first_sack_index = j + 1; 1667 } 1668 } 1669 } 1670 1671 skb = tcp_write_queue_head(sk); 1672 state.fack_count = 0; 1673 i = 0; 1674 1675 if (!tp->sacked_out) { 1676 /* It's already past, so skip checking against it */ 1677 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1678 } else { 1679 cache = tp->recv_sack_cache; 1680 /* Skip empty blocks in at head of the cache */ 1681 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1682 !cache->end_seq) 1683 cache++; 1684 } 1685 1686 while (i < used_sacks) { 1687 u32 start_seq = sp[i].start_seq; 1688 u32 end_seq = sp[i].end_seq; 1689 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1690 struct tcp_sack_block *next_dup = NULL; 1691 1692 if (found_dup_sack && ((i + 1) == first_sack_index)) 1693 next_dup = &sp[i + 1]; 1694 1695 /* Skip too early cached blocks */ 1696 while (tcp_sack_cache_ok(tp, cache) && 1697 !before(start_seq, cache->end_seq)) 1698 cache++; 1699 1700 /* Can skip some work by looking recv_sack_cache? */ 1701 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1702 after(end_seq, cache->start_seq)) { 1703 1704 /* Head todo? */ 1705 if (before(start_seq, cache->start_seq)) { 1706 skb = tcp_sacktag_skip(skb, sk, &state, 1707 start_seq); 1708 skb = tcp_sacktag_walk(skb, sk, next_dup, 1709 &state, 1710 start_seq, 1711 cache->start_seq, 1712 dup_sack); 1713 } 1714 1715 /* Rest of the block already fully processed? */ 1716 if (!after(end_seq, cache->end_seq)) 1717 goto advance_sp; 1718 1719 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1720 &state, 1721 cache->end_seq); 1722 1723 /* ...tail remains todo... */ 1724 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1725 /* ...but better entrypoint exists! */ 1726 skb = tcp_highest_sack(sk); 1727 if (skb == NULL) 1728 break; 1729 state.fack_count = tp->fackets_out; 1730 cache++; 1731 goto walk; 1732 } 1733 1734 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1735 /* Check overlap against next cached too (past this one already) */ 1736 cache++; 1737 continue; 1738 } 1739 1740 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1741 skb = tcp_highest_sack(sk); 1742 if (skb == NULL) 1743 break; 1744 state.fack_count = tp->fackets_out; 1745 } 1746 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1747 1748 walk: 1749 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1750 start_seq, end_seq, dup_sack); 1751 1752 advance_sp: 1753 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1754 * due to in-order walk 1755 */ 1756 if (after(end_seq, tp->frto_highmark)) 1757 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1758 1759 i++; 1760 } 1761 1762 /* Clear the head of the cache sack blocks so we can skip it next time */ 1763 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1764 tp->recv_sack_cache[i].start_seq = 0; 1765 tp->recv_sack_cache[i].end_seq = 0; 1766 } 1767 for (j = 0; j < used_sacks; j++) 1768 tp->recv_sack_cache[i++] = sp[j]; 1769 1770 tcp_mark_lost_retrans(sk); 1771 1772 tcp_verify_left_out(tp); 1773 1774 if ((state.reord < tp->fackets_out) && 1775 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1776 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1777 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1778 1779 out: 1780 1781 #if FASTRETRANS_DEBUG > 0 1782 WARN_ON((int)tp->sacked_out < 0); 1783 WARN_ON((int)tp->lost_out < 0); 1784 WARN_ON((int)tp->retrans_out < 0); 1785 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1786 #endif 1787 return state.flag; 1788 } 1789 1790 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1791 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1792 */ 1793 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1794 { 1795 u32 holes; 1796 1797 holes = max(tp->lost_out, 1U); 1798 holes = min(holes, tp->packets_out); 1799 1800 if ((tp->sacked_out + holes) > tp->packets_out) { 1801 tp->sacked_out = tp->packets_out - holes; 1802 return true; 1803 } 1804 return false; 1805 } 1806 1807 /* If we receive more dupacks than we expected counting segments 1808 * in assumption of absent reordering, interpret this as reordering. 1809 * The only another reason could be bug in receiver TCP. 1810 */ 1811 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1812 { 1813 struct tcp_sock *tp = tcp_sk(sk); 1814 if (tcp_limit_reno_sacked(tp)) 1815 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1816 } 1817 1818 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1819 1820 static void tcp_add_reno_sack(struct sock *sk) 1821 { 1822 struct tcp_sock *tp = tcp_sk(sk); 1823 tp->sacked_out++; 1824 tcp_check_reno_reordering(sk, 0); 1825 tcp_verify_left_out(tp); 1826 } 1827 1828 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1829 1830 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1831 { 1832 struct tcp_sock *tp = tcp_sk(sk); 1833 1834 if (acked > 0) { 1835 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1836 if (acked - 1 >= tp->sacked_out) 1837 tp->sacked_out = 0; 1838 else 1839 tp->sacked_out -= acked - 1; 1840 } 1841 tcp_check_reno_reordering(sk, acked); 1842 tcp_verify_left_out(tp); 1843 } 1844 1845 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1846 { 1847 tp->sacked_out = 0; 1848 } 1849 1850 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1851 { 1852 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1853 } 1854 1855 /* F-RTO can only be used if TCP has never retransmitted anything other than 1856 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1857 */ 1858 bool tcp_use_frto(struct sock *sk) 1859 { 1860 const struct tcp_sock *tp = tcp_sk(sk); 1861 const struct inet_connection_sock *icsk = inet_csk(sk); 1862 struct sk_buff *skb; 1863 1864 if (!sysctl_tcp_frto) 1865 return false; 1866 1867 /* MTU probe and F-RTO won't really play nicely along currently */ 1868 if (icsk->icsk_mtup.probe_size) 1869 return false; 1870 1871 if (tcp_is_sackfrto(tp)) 1872 return true; 1873 1874 /* Avoid expensive walking of rexmit queue if possible */ 1875 if (tp->retrans_out > 1) 1876 return false; 1877 1878 skb = tcp_write_queue_head(sk); 1879 if (tcp_skb_is_last(sk, skb)) 1880 return true; 1881 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1882 tcp_for_write_queue_from(skb, sk) { 1883 if (skb == tcp_send_head(sk)) 1884 break; 1885 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1886 return false; 1887 /* Short-circuit when first non-SACKed skb has been checked */ 1888 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1889 break; 1890 } 1891 return true; 1892 } 1893 1894 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1895 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1896 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1897 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1898 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1899 * bits are handled if the Loss state is really to be entered (in 1900 * tcp_enter_frto_loss). 1901 * 1902 * Do like tcp_enter_loss() would; when RTO expires the second time it 1903 * does: 1904 * "Reduce ssthresh if it has not yet been made inside this window." 1905 */ 1906 void tcp_enter_frto(struct sock *sk) 1907 { 1908 const struct inet_connection_sock *icsk = inet_csk(sk); 1909 struct tcp_sock *tp = tcp_sk(sk); 1910 struct sk_buff *skb; 1911 1912 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1913 tp->snd_una == tp->high_seq || 1914 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1915 !icsk->icsk_retransmits)) { 1916 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1917 /* Our state is too optimistic in ssthresh() call because cwnd 1918 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 1919 * recovery has not yet completed. Pattern would be this: RTO, 1920 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1921 * up here twice). 1922 * RFC4138 should be more specific on what to do, even though 1923 * RTO is quite unlikely to occur after the first Cumulative ACK 1924 * due to back-off and complexity of triggering events ... 1925 */ 1926 if (tp->frto_counter) { 1927 u32 stored_cwnd; 1928 stored_cwnd = tp->snd_cwnd; 1929 tp->snd_cwnd = 2; 1930 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1931 tp->snd_cwnd = stored_cwnd; 1932 } else { 1933 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1934 } 1935 /* ... in theory, cong.control module could do "any tricks" in 1936 * ssthresh(), which means that ca_state, lost bits and lost_out 1937 * counter would have to be faked before the call occurs. We 1938 * consider that too expensive, unlikely and hacky, so modules 1939 * using these in ssthresh() must deal these incompatibility 1940 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1941 */ 1942 tcp_ca_event(sk, CA_EVENT_FRTO); 1943 } 1944 1945 tp->undo_marker = tp->snd_una; 1946 tp->undo_retrans = 0; 1947 1948 skb = tcp_write_queue_head(sk); 1949 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1950 tp->undo_marker = 0; 1951 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1953 tp->retrans_out -= tcp_skb_pcount(skb); 1954 } 1955 tcp_verify_left_out(tp); 1956 1957 /* Too bad if TCP was application limited */ 1958 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 1959 1960 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1961 * The last condition is necessary at least in tp->frto_counter case. 1962 */ 1963 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 1964 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1965 after(tp->high_seq, tp->snd_una)) { 1966 tp->frto_highmark = tp->high_seq; 1967 } else { 1968 tp->frto_highmark = tp->snd_nxt; 1969 } 1970 tcp_set_ca_state(sk, TCP_CA_Disorder); 1971 tp->high_seq = tp->snd_nxt; 1972 tp->frto_counter = 1; 1973 } 1974 1975 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1976 * which indicates that we should follow the traditional RTO recovery, 1977 * i.e. mark everything lost and do go-back-N retransmission. 1978 */ 1979 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1980 { 1981 struct tcp_sock *tp = tcp_sk(sk); 1982 struct sk_buff *skb; 1983 1984 tp->lost_out = 0; 1985 tp->retrans_out = 0; 1986 if (tcp_is_reno(tp)) 1987 tcp_reset_reno_sack(tp); 1988 1989 tcp_for_write_queue(skb, sk) { 1990 if (skb == tcp_send_head(sk)) 1991 break; 1992 1993 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1994 /* 1995 * Count the retransmission made on RTO correctly (only when 1996 * waiting for the first ACK and did not get it)... 1997 */ 1998 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 1999 /* For some reason this R-bit might get cleared? */ 2000 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2001 tp->retrans_out += tcp_skb_pcount(skb); 2002 /* ...enter this if branch just for the first segment */ 2003 flag |= FLAG_DATA_ACKED; 2004 } else { 2005 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2006 tp->undo_marker = 0; 2007 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2008 } 2009 2010 /* Marking forward transmissions that were made after RTO lost 2011 * can cause unnecessary retransmissions in some scenarios, 2012 * SACK blocks will mitigate that in some but not in all cases. 2013 * We used to not mark them but it was causing break-ups with 2014 * receivers that do only in-order receival. 2015 * 2016 * TODO: we could detect presence of such receiver and select 2017 * different behavior per flow. 2018 */ 2019 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2020 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2021 tp->lost_out += tcp_skb_pcount(skb); 2022 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2023 } 2024 } 2025 tcp_verify_left_out(tp); 2026 2027 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2028 tp->snd_cwnd_cnt = 0; 2029 tp->snd_cwnd_stamp = tcp_time_stamp; 2030 tp->frto_counter = 0; 2031 tp->bytes_acked = 0; 2032 2033 tp->reordering = min_t(unsigned int, tp->reordering, 2034 sysctl_tcp_reordering); 2035 tcp_set_ca_state(sk, TCP_CA_Loss); 2036 tp->high_seq = tp->snd_nxt; 2037 TCP_ECN_queue_cwr(tp); 2038 2039 tcp_clear_all_retrans_hints(tp); 2040 } 2041 2042 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2043 { 2044 tp->retrans_out = 0; 2045 tp->lost_out = 0; 2046 2047 tp->undo_marker = 0; 2048 tp->undo_retrans = 0; 2049 } 2050 2051 void tcp_clear_retrans(struct tcp_sock *tp) 2052 { 2053 tcp_clear_retrans_partial(tp); 2054 2055 tp->fackets_out = 0; 2056 tp->sacked_out = 0; 2057 } 2058 2059 /* Enter Loss state. If "how" is not zero, forget all SACK information 2060 * and reset tags completely, otherwise preserve SACKs. If receiver 2061 * dropped its ofo queue, we will know this due to reneging detection. 2062 */ 2063 void tcp_enter_loss(struct sock *sk, int how) 2064 { 2065 const struct inet_connection_sock *icsk = inet_csk(sk); 2066 struct tcp_sock *tp = tcp_sk(sk); 2067 struct sk_buff *skb; 2068 2069 /* Reduce ssthresh if it has not yet been made inside this window. */ 2070 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2071 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2072 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2073 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2074 tcp_ca_event(sk, CA_EVENT_LOSS); 2075 } 2076 tp->snd_cwnd = 1; 2077 tp->snd_cwnd_cnt = 0; 2078 tp->snd_cwnd_stamp = tcp_time_stamp; 2079 2080 tp->bytes_acked = 0; 2081 tcp_clear_retrans_partial(tp); 2082 2083 if (tcp_is_reno(tp)) 2084 tcp_reset_reno_sack(tp); 2085 2086 if (!how) { 2087 /* Push undo marker, if it was plain RTO and nothing 2088 * was retransmitted. */ 2089 tp->undo_marker = tp->snd_una; 2090 } else { 2091 tp->sacked_out = 0; 2092 tp->fackets_out = 0; 2093 } 2094 tcp_clear_all_retrans_hints(tp); 2095 2096 tcp_for_write_queue(skb, sk) { 2097 if (skb == tcp_send_head(sk)) 2098 break; 2099 2100 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2101 tp->undo_marker = 0; 2102 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2103 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2104 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2105 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2106 tp->lost_out += tcp_skb_pcount(skb); 2107 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2108 } 2109 } 2110 tcp_verify_left_out(tp); 2111 2112 tp->reordering = min_t(unsigned int, tp->reordering, 2113 sysctl_tcp_reordering); 2114 tcp_set_ca_state(sk, TCP_CA_Loss); 2115 tp->high_seq = tp->snd_nxt; 2116 TCP_ECN_queue_cwr(tp); 2117 /* Abort F-RTO algorithm if one is in progress */ 2118 tp->frto_counter = 0; 2119 } 2120 2121 /* If ACK arrived pointing to a remembered SACK, it means that our 2122 * remembered SACKs do not reflect real state of receiver i.e. 2123 * receiver _host_ is heavily congested (or buggy). 2124 * 2125 * Do processing similar to RTO timeout. 2126 */ 2127 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2128 { 2129 if (flag & FLAG_SACK_RENEGING) { 2130 struct inet_connection_sock *icsk = inet_csk(sk); 2131 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2132 2133 tcp_enter_loss(sk, 1); 2134 icsk->icsk_retransmits++; 2135 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2136 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2137 icsk->icsk_rto, TCP_RTO_MAX); 2138 return true; 2139 } 2140 return false; 2141 } 2142 2143 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2144 { 2145 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2146 } 2147 2148 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2149 * counter when SACK is enabled (without SACK, sacked_out is used for 2150 * that purpose). 2151 * 2152 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2153 * segments up to the highest received SACK block so far and holes in 2154 * between them. 2155 * 2156 * With reordering, holes may still be in flight, so RFC3517 recovery 2157 * uses pure sacked_out (total number of SACKed segments) even though 2158 * it violates the RFC that uses duplicate ACKs, often these are equal 2159 * but when e.g. out-of-window ACKs or packet duplication occurs, 2160 * they differ. Since neither occurs due to loss, TCP should really 2161 * ignore them. 2162 */ 2163 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2164 { 2165 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2166 } 2167 2168 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2169 { 2170 struct tcp_sock *tp = tcp_sk(sk); 2171 unsigned long delay; 2172 2173 /* Delay early retransmit and entering fast recovery for 2174 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2175 * available, or RTO is scheduled to fire first. 2176 */ 2177 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt) 2178 return false; 2179 2180 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2)); 2181 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2182 return false; 2183 2184 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX); 2185 tp->early_retrans_delayed = 1; 2186 return true; 2187 } 2188 2189 static inline int tcp_skb_timedout(const struct sock *sk, 2190 const struct sk_buff *skb) 2191 { 2192 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2193 } 2194 2195 static inline int tcp_head_timedout(const struct sock *sk) 2196 { 2197 const struct tcp_sock *tp = tcp_sk(sk); 2198 2199 return tp->packets_out && 2200 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2201 } 2202 2203 /* Linux NewReno/SACK/FACK/ECN state machine. 2204 * -------------------------------------- 2205 * 2206 * "Open" Normal state, no dubious events, fast path. 2207 * "Disorder" In all the respects it is "Open", 2208 * but requires a bit more attention. It is entered when 2209 * we see some SACKs or dupacks. It is split of "Open" 2210 * mainly to move some processing from fast path to slow one. 2211 * "CWR" CWND was reduced due to some Congestion Notification event. 2212 * It can be ECN, ICMP source quench, local device congestion. 2213 * "Recovery" CWND was reduced, we are fast-retransmitting. 2214 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2215 * 2216 * tcp_fastretrans_alert() is entered: 2217 * - each incoming ACK, if state is not "Open" 2218 * - when arrived ACK is unusual, namely: 2219 * * SACK 2220 * * Duplicate ACK. 2221 * * ECN ECE. 2222 * 2223 * Counting packets in flight is pretty simple. 2224 * 2225 * in_flight = packets_out - left_out + retrans_out 2226 * 2227 * packets_out is SND.NXT-SND.UNA counted in packets. 2228 * 2229 * retrans_out is number of retransmitted segments. 2230 * 2231 * left_out is number of segments left network, but not ACKed yet. 2232 * 2233 * left_out = sacked_out + lost_out 2234 * 2235 * sacked_out: Packets, which arrived to receiver out of order 2236 * and hence not ACKed. With SACKs this number is simply 2237 * amount of SACKed data. Even without SACKs 2238 * it is easy to give pretty reliable estimate of this number, 2239 * counting duplicate ACKs. 2240 * 2241 * lost_out: Packets lost by network. TCP has no explicit 2242 * "loss notification" feedback from network (for now). 2243 * It means that this number can be only _guessed_. 2244 * Actually, it is the heuristics to predict lossage that 2245 * distinguishes different algorithms. 2246 * 2247 * F.e. after RTO, when all the queue is considered as lost, 2248 * lost_out = packets_out and in_flight = retrans_out. 2249 * 2250 * Essentially, we have now two algorithms counting 2251 * lost packets. 2252 * 2253 * FACK: It is the simplest heuristics. As soon as we decided 2254 * that something is lost, we decide that _all_ not SACKed 2255 * packets until the most forward SACK are lost. I.e. 2256 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2257 * It is absolutely correct estimate, if network does not reorder 2258 * packets. And it loses any connection to reality when reordering 2259 * takes place. We use FACK by default until reordering 2260 * is suspected on the path to this destination. 2261 * 2262 * NewReno: when Recovery is entered, we assume that one segment 2263 * is lost (classic Reno). While we are in Recovery and 2264 * a partial ACK arrives, we assume that one more packet 2265 * is lost (NewReno). This heuristics are the same in NewReno 2266 * and SACK. 2267 * 2268 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2269 * deflation etc. CWND is real congestion window, never inflated, changes 2270 * only according to classic VJ rules. 2271 * 2272 * Really tricky (and requiring careful tuning) part of algorithm 2273 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2274 * The first determines the moment _when_ we should reduce CWND and, 2275 * hence, slow down forward transmission. In fact, it determines the moment 2276 * when we decide that hole is caused by loss, rather than by a reorder. 2277 * 2278 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2279 * holes, caused by lost packets. 2280 * 2281 * And the most logically complicated part of algorithm is undo 2282 * heuristics. We detect false retransmits due to both too early 2283 * fast retransmit (reordering) and underestimated RTO, analyzing 2284 * timestamps and D-SACKs. When we detect that some segments were 2285 * retransmitted by mistake and CWND reduction was wrong, we undo 2286 * window reduction and abort recovery phase. This logic is hidden 2287 * inside several functions named tcp_try_undo_<something>. 2288 */ 2289 2290 /* This function decides, when we should leave Disordered state 2291 * and enter Recovery phase, reducing congestion window. 2292 * 2293 * Main question: may we further continue forward transmission 2294 * with the same cwnd? 2295 */ 2296 static bool tcp_time_to_recover(struct sock *sk, int flag) 2297 { 2298 struct tcp_sock *tp = tcp_sk(sk); 2299 __u32 packets_out; 2300 2301 /* Do not perform any recovery during F-RTO algorithm */ 2302 if (tp->frto_counter) 2303 return false; 2304 2305 /* Trick#1: The loss is proven. */ 2306 if (tp->lost_out) 2307 return true; 2308 2309 /* Not-A-Trick#2 : Classic rule... */ 2310 if (tcp_dupack_heuristics(tp) > tp->reordering) 2311 return true; 2312 2313 /* Trick#3 : when we use RFC2988 timer restart, fast 2314 * retransmit can be triggered by timeout of queue head. 2315 */ 2316 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2317 return true; 2318 2319 /* Trick#4: It is still not OK... But will it be useful to delay 2320 * recovery more? 2321 */ 2322 packets_out = tp->packets_out; 2323 if (packets_out <= tp->reordering && 2324 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2325 !tcp_may_send_now(sk)) { 2326 /* We have nothing to send. This connection is limited 2327 * either by receiver window or by application. 2328 */ 2329 return true; 2330 } 2331 2332 /* If a thin stream is detected, retransmit after first 2333 * received dupack. Employ only if SACK is supported in order 2334 * to avoid possible corner-case series of spurious retransmissions 2335 * Use only if there are no unsent data. 2336 */ 2337 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2338 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2339 tcp_is_sack(tp) && !tcp_send_head(sk)) 2340 return true; 2341 2342 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2343 * retransmissions due to small network reorderings, we implement 2344 * Mitigation A.3 in the RFC and delay the retransmission for a short 2345 * interval if appropriate. 2346 */ 2347 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2348 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) && 2349 !tcp_may_send_now(sk)) 2350 return !tcp_pause_early_retransmit(sk, flag); 2351 2352 return false; 2353 } 2354 2355 /* New heuristics: it is possible only after we switched to restart timer 2356 * each time when something is ACKed. Hence, we can detect timed out packets 2357 * during fast retransmit without falling to slow start. 2358 * 2359 * Usefulness of this as is very questionable, since we should know which of 2360 * the segments is the next to timeout which is relatively expensive to find 2361 * in general case unless we add some data structure just for that. The 2362 * current approach certainly won't find the right one too often and when it 2363 * finally does find _something_ it usually marks large part of the window 2364 * right away (because a retransmission with a larger timestamp blocks the 2365 * loop from advancing). -ij 2366 */ 2367 static void tcp_timeout_skbs(struct sock *sk) 2368 { 2369 struct tcp_sock *tp = tcp_sk(sk); 2370 struct sk_buff *skb; 2371 2372 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2373 return; 2374 2375 skb = tp->scoreboard_skb_hint; 2376 if (tp->scoreboard_skb_hint == NULL) 2377 skb = tcp_write_queue_head(sk); 2378 2379 tcp_for_write_queue_from(skb, sk) { 2380 if (skb == tcp_send_head(sk)) 2381 break; 2382 if (!tcp_skb_timedout(sk, skb)) 2383 break; 2384 2385 tcp_skb_mark_lost(tp, skb); 2386 } 2387 2388 tp->scoreboard_skb_hint = skb; 2389 2390 tcp_verify_left_out(tp); 2391 } 2392 2393 /* Detect loss in event "A" above by marking head of queue up as lost. 2394 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2395 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2396 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2397 * the maximum SACKed segments to pass before reaching this limit. 2398 */ 2399 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2400 { 2401 struct tcp_sock *tp = tcp_sk(sk); 2402 struct sk_buff *skb; 2403 int cnt, oldcnt; 2404 int err; 2405 unsigned int mss; 2406 /* Use SACK to deduce losses of new sequences sent during recovery */ 2407 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2408 2409 WARN_ON(packets > tp->packets_out); 2410 if (tp->lost_skb_hint) { 2411 skb = tp->lost_skb_hint; 2412 cnt = tp->lost_cnt_hint; 2413 /* Head already handled? */ 2414 if (mark_head && skb != tcp_write_queue_head(sk)) 2415 return; 2416 } else { 2417 skb = tcp_write_queue_head(sk); 2418 cnt = 0; 2419 } 2420 2421 tcp_for_write_queue_from(skb, sk) { 2422 if (skb == tcp_send_head(sk)) 2423 break; 2424 /* TODO: do this better */ 2425 /* this is not the most efficient way to do this... */ 2426 tp->lost_skb_hint = skb; 2427 tp->lost_cnt_hint = cnt; 2428 2429 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2430 break; 2431 2432 oldcnt = cnt; 2433 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2434 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2435 cnt += tcp_skb_pcount(skb); 2436 2437 if (cnt > packets) { 2438 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2439 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2440 (oldcnt >= packets)) 2441 break; 2442 2443 mss = skb_shinfo(skb)->gso_size; 2444 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2445 if (err < 0) 2446 break; 2447 cnt = packets; 2448 } 2449 2450 tcp_skb_mark_lost(tp, skb); 2451 2452 if (mark_head) 2453 break; 2454 } 2455 tcp_verify_left_out(tp); 2456 } 2457 2458 /* Account newly detected lost packet(s) */ 2459 2460 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2461 { 2462 struct tcp_sock *tp = tcp_sk(sk); 2463 2464 if (tcp_is_reno(tp)) { 2465 tcp_mark_head_lost(sk, 1, 1); 2466 } else if (tcp_is_fack(tp)) { 2467 int lost = tp->fackets_out - tp->reordering; 2468 if (lost <= 0) 2469 lost = 1; 2470 tcp_mark_head_lost(sk, lost, 0); 2471 } else { 2472 int sacked_upto = tp->sacked_out - tp->reordering; 2473 if (sacked_upto >= 0) 2474 tcp_mark_head_lost(sk, sacked_upto, 0); 2475 else if (fast_rexmit) 2476 tcp_mark_head_lost(sk, 1, 1); 2477 } 2478 2479 tcp_timeout_skbs(sk); 2480 } 2481 2482 /* CWND moderation, preventing bursts due to too big ACKs 2483 * in dubious situations. 2484 */ 2485 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2486 { 2487 tp->snd_cwnd = min(tp->snd_cwnd, 2488 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2489 tp->snd_cwnd_stamp = tcp_time_stamp; 2490 } 2491 2492 /* Lower bound on congestion window is slow start threshold 2493 * unless congestion avoidance choice decides to overide it. 2494 */ 2495 static inline u32 tcp_cwnd_min(const struct sock *sk) 2496 { 2497 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2498 2499 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2500 } 2501 2502 /* Decrease cwnd each second ack. */ 2503 static void tcp_cwnd_down(struct sock *sk, int flag) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 int decr = tp->snd_cwnd_cnt + 1; 2507 2508 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2509 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2510 tp->snd_cwnd_cnt = decr & 1; 2511 decr >>= 1; 2512 2513 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2514 tp->snd_cwnd -= decr; 2515 2516 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2517 tp->snd_cwnd_stamp = tcp_time_stamp; 2518 } 2519 } 2520 2521 /* Nothing was retransmitted or returned timestamp is less 2522 * than timestamp of the first retransmission. 2523 */ 2524 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2525 { 2526 return !tp->retrans_stamp || 2527 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2528 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2529 } 2530 2531 /* Undo procedures. */ 2532 2533 #if FASTRETRANS_DEBUG > 1 2534 static void DBGUNDO(struct sock *sk, const char *msg) 2535 { 2536 struct tcp_sock *tp = tcp_sk(sk); 2537 struct inet_sock *inet = inet_sk(sk); 2538 2539 if (sk->sk_family == AF_INET) { 2540 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2541 msg, 2542 &inet->inet_daddr, ntohs(inet->inet_dport), 2543 tp->snd_cwnd, tcp_left_out(tp), 2544 tp->snd_ssthresh, tp->prior_ssthresh, 2545 tp->packets_out); 2546 } 2547 #if IS_ENABLED(CONFIG_IPV6) 2548 else if (sk->sk_family == AF_INET6) { 2549 struct ipv6_pinfo *np = inet6_sk(sk); 2550 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2551 msg, 2552 &np->daddr, ntohs(inet->inet_dport), 2553 tp->snd_cwnd, tcp_left_out(tp), 2554 tp->snd_ssthresh, tp->prior_ssthresh, 2555 tp->packets_out); 2556 } 2557 #endif 2558 } 2559 #else 2560 #define DBGUNDO(x...) do { } while (0) 2561 #endif 2562 2563 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh) 2564 { 2565 struct tcp_sock *tp = tcp_sk(sk); 2566 2567 if (tp->prior_ssthresh) { 2568 const struct inet_connection_sock *icsk = inet_csk(sk); 2569 2570 if (icsk->icsk_ca_ops->undo_cwnd) 2571 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2572 else 2573 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2574 2575 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) { 2576 tp->snd_ssthresh = tp->prior_ssthresh; 2577 TCP_ECN_withdraw_cwr(tp); 2578 } 2579 } else { 2580 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2581 } 2582 tp->snd_cwnd_stamp = tcp_time_stamp; 2583 } 2584 2585 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2586 { 2587 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2588 } 2589 2590 /* People celebrate: "We love our President!" */ 2591 static bool tcp_try_undo_recovery(struct sock *sk) 2592 { 2593 struct tcp_sock *tp = tcp_sk(sk); 2594 2595 if (tcp_may_undo(tp)) { 2596 int mib_idx; 2597 2598 /* Happy end! We did not retransmit anything 2599 * or our original transmission succeeded. 2600 */ 2601 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2602 tcp_undo_cwr(sk, true); 2603 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2604 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2605 else 2606 mib_idx = LINUX_MIB_TCPFULLUNDO; 2607 2608 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2609 tp->undo_marker = 0; 2610 } 2611 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2612 /* Hold old state until something *above* high_seq 2613 * is ACKed. For Reno it is MUST to prevent false 2614 * fast retransmits (RFC2582). SACK TCP is safe. */ 2615 tcp_moderate_cwnd(tp); 2616 return true; 2617 } 2618 tcp_set_ca_state(sk, TCP_CA_Open); 2619 return false; 2620 } 2621 2622 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2623 static void tcp_try_undo_dsack(struct sock *sk) 2624 { 2625 struct tcp_sock *tp = tcp_sk(sk); 2626 2627 if (tp->undo_marker && !tp->undo_retrans) { 2628 DBGUNDO(sk, "D-SACK"); 2629 tcp_undo_cwr(sk, true); 2630 tp->undo_marker = 0; 2631 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2632 } 2633 } 2634 2635 /* We can clear retrans_stamp when there are no retransmissions in the 2636 * window. It would seem that it is trivially available for us in 2637 * tp->retrans_out, however, that kind of assumptions doesn't consider 2638 * what will happen if errors occur when sending retransmission for the 2639 * second time. ...It could the that such segment has only 2640 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2641 * the head skb is enough except for some reneging corner cases that 2642 * are not worth the effort. 2643 * 2644 * Main reason for all this complexity is the fact that connection dying 2645 * time now depends on the validity of the retrans_stamp, in particular, 2646 * that successive retransmissions of a segment must not advance 2647 * retrans_stamp under any conditions. 2648 */ 2649 static bool tcp_any_retrans_done(const struct sock *sk) 2650 { 2651 const struct tcp_sock *tp = tcp_sk(sk); 2652 struct sk_buff *skb; 2653 2654 if (tp->retrans_out) 2655 return true; 2656 2657 skb = tcp_write_queue_head(sk); 2658 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2659 return true; 2660 2661 return false; 2662 } 2663 2664 /* Undo during fast recovery after partial ACK. */ 2665 2666 static int tcp_try_undo_partial(struct sock *sk, int acked) 2667 { 2668 struct tcp_sock *tp = tcp_sk(sk); 2669 /* Partial ACK arrived. Force Hoe's retransmit. */ 2670 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2671 2672 if (tcp_may_undo(tp)) { 2673 /* Plain luck! Hole if filled with delayed 2674 * packet, rather than with a retransmit. 2675 */ 2676 if (!tcp_any_retrans_done(sk)) 2677 tp->retrans_stamp = 0; 2678 2679 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2680 2681 DBGUNDO(sk, "Hoe"); 2682 tcp_undo_cwr(sk, false); 2683 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2684 2685 /* So... Do not make Hoe's retransmit yet. 2686 * If the first packet was delayed, the rest 2687 * ones are most probably delayed as well. 2688 */ 2689 failed = 0; 2690 } 2691 return failed; 2692 } 2693 2694 /* Undo during loss recovery after partial ACK. */ 2695 static bool tcp_try_undo_loss(struct sock *sk) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 2699 if (tcp_may_undo(tp)) { 2700 struct sk_buff *skb; 2701 tcp_for_write_queue(skb, sk) { 2702 if (skb == tcp_send_head(sk)) 2703 break; 2704 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2705 } 2706 2707 tcp_clear_all_retrans_hints(tp); 2708 2709 DBGUNDO(sk, "partial loss"); 2710 tp->lost_out = 0; 2711 tcp_undo_cwr(sk, true); 2712 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2713 inet_csk(sk)->icsk_retransmits = 0; 2714 tp->undo_marker = 0; 2715 if (tcp_is_sack(tp)) 2716 tcp_set_ca_state(sk, TCP_CA_Open); 2717 return true; 2718 } 2719 return false; 2720 } 2721 2722 static inline void tcp_complete_cwr(struct sock *sk) 2723 { 2724 struct tcp_sock *tp = tcp_sk(sk); 2725 2726 /* Do not moderate cwnd if it's already undone in cwr or recovery. */ 2727 if (tp->undo_marker) { 2728 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) { 2729 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2730 tp->snd_cwnd_stamp = tcp_time_stamp; 2731 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) { 2732 /* PRR algorithm. */ 2733 tp->snd_cwnd = tp->snd_ssthresh; 2734 tp->snd_cwnd_stamp = tcp_time_stamp; 2735 } 2736 } 2737 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2738 } 2739 2740 static void tcp_try_keep_open(struct sock *sk) 2741 { 2742 struct tcp_sock *tp = tcp_sk(sk); 2743 int state = TCP_CA_Open; 2744 2745 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2746 state = TCP_CA_Disorder; 2747 2748 if (inet_csk(sk)->icsk_ca_state != state) { 2749 tcp_set_ca_state(sk, state); 2750 tp->high_seq = tp->snd_nxt; 2751 } 2752 } 2753 2754 static void tcp_try_to_open(struct sock *sk, int flag) 2755 { 2756 struct tcp_sock *tp = tcp_sk(sk); 2757 2758 tcp_verify_left_out(tp); 2759 2760 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2761 tp->retrans_stamp = 0; 2762 2763 if (flag & FLAG_ECE) 2764 tcp_enter_cwr(sk, 1); 2765 2766 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2767 tcp_try_keep_open(sk); 2768 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2769 tcp_moderate_cwnd(tp); 2770 } else { 2771 tcp_cwnd_down(sk, flag); 2772 } 2773 } 2774 2775 static void tcp_mtup_probe_failed(struct sock *sk) 2776 { 2777 struct inet_connection_sock *icsk = inet_csk(sk); 2778 2779 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2780 icsk->icsk_mtup.probe_size = 0; 2781 } 2782 2783 static void tcp_mtup_probe_success(struct sock *sk) 2784 { 2785 struct tcp_sock *tp = tcp_sk(sk); 2786 struct inet_connection_sock *icsk = inet_csk(sk); 2787 2788 /* FIXME: breaks with very large cwnd */ 2789 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2790 tp->snd_cwnd = tp->snd_cwnd * 2791 tcp_mss_to_mtu(sk, tp->mss_cache) / 2792 icsk->icsk_mtup.probe_size; 2793 tp->snd_cwnd_cnt = 0; 2794 tp->snd_cwnd_stamp = tcp_time_stamp; 2795 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2796 2797 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2798 icsk->icsk_mtup.probe_size = 0; 2799 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2800 } 2801 2802 /* Do a simple retransmit without using the backoff mechanisms in 2803 * tcp_timer. This is used for path mtu discovery. 2804 * The socket is already locked here. 2805 */ 2806 void tcp_simple_retransmit(struct sock *sk) 2807 { 2808 const struct inet_connection_sock *icsk = inet_csk(sk); 2809 struct tcp_sock *tp = tcp_sk(sk); 2810 struct sk_buff *skb; 2811 unsigned int mss = tcp_current_mss(sk); 2812 u32 prior_lost = tp->lost_out; 2813 2814 tcp_for_write_queue(skb, sk) { 2815 if (skb == tcp_send_head(sk)) 2816 break; 2817 if (tcp_skb_seglen(skb) > mss && 2818 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2819 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2820 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2821 tp->retrans_out -= tcp_skb_pcount(skb); 2822 } 2823 tcp_skb_mark_lost_uncond_verify(tp, skb); 2824 } 2825 } 2826 2827 tcp_clear_retrans_hints_partial(tp); 2828 2829 if (prior_lost == tp->lost_out) 2830 return; 2831 2832 if (tcp_is_reno(tp)) 2833 tcp_limit_reno_sacked(tp); 2834 2835 tcp_verify_left_out(tp); 2836 2837 /* Don't muck with the congestion window here. 2838 * Reason is that we do not increase amount of _data_ 2839 * in network, but units changed and effective 2840 * cwnd/ssthresh really reduced now. 2841 */ 2842 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2843 tp->high_seq = tp->snd_nxt; 2844 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2845 tp->prior_ssthresh = 0; 2846 tp->undo_marker = 0; 2847 tcp_set_ca_state(sk, TCP_CA_Loss); 2848 } 2849 tcp_xmit_retransmit_queue(sk); 2850 } 2851 EXPORT_SYMBOL(tcp_simple_retransmit); 2852 2853 /* This function implements the PRR algorithm, specifcally the PRR-SSRB 2854 * (proportional rate reduction with slow start reduction bound) as described in 2855 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt. 2856 * It computes the number of packets to send (sndcnt) based on packets newly 2857 * delivered: 2858 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2859 * cwnd reductions across a full RTT. 2860 * 2) If packets in flight is lower than ssthresh (such as due to excess 2861 * losses and/or application stalls), do not perform any further cwnd 2862 * reductions, but instead slow start up to ssthresh. 2863 */ 2864 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked, 2865 int fast_rexmit, int flag) 2866 { 2867 struct tcp_sock *tp = tcp_sk(sk); 2868 int sndcnt = 0; 2869 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2870 2871 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2872 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2873 tp->prior_cwnd - 1; 2874 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2875 } else { 2876 sndcnt = min_t(int, delta, 2877 max_t(int, tp->prr_delivered - tp->prr_out, 2878 newly_acked_sacked) + 1); 2879 } 2880 2881 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2882 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2883 } 2884 2885 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2886 { 2887 struct tcp_sock *tp = tcp_sk(sk); 2888 int mib_idx; 2889 2890 if (tcp_is_reno(tp)) 2891 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2892 else 2893 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2894 2895 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2896 2897 tp->high_seq = tp->snd_nxt; 2898 tp->prior_ssthresh = 0; 2899 tp->undo_marker = tp->snd_una; 2900 tp->undo_retrans = tp->retrans_out; 2901 2902 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2903 if (!ece_ack) 2904 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2905 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2906 TCP_ECN_queue_cwr(tp); 2907 } 2908 2909 tp->bytes_acked = 0; 2910 tp->snd_cwnd_cnt = 0; 2911 tp->prior_cwnd = tp->snd_cwnd; 2912 tp->prr_delivered = 0; 2913 tp->prr_out = 0; 2914 tcp_set_ca_state(sk, TCP_CA_Recovery); 2915 } 2916 2917 /* Process an event, which can update packets-in-flight not trivially. 2918 * Main goal of this function is to calculate new estimate for left_out, 2919 * taking into account both packets sitting in receiver's buffer and 2920 * packets lost by network. 2921 * 2922 * Besides that it does CWND reduction, when packet loss is detected 2923 * and changes state of machine. 2924 * 2925 * It does _not_ decide what to send, it is made in function 2926 * tcp_xmit_retransmit_queue(). 2927 */ 2928 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, 2929 int prior_sacked, bool is_dupack, 2930 int flag) 2931 { 2932 struct inet_connection_sock *icsk = inet_csk(sk); 2933 struct tcp_sock *tp = tcp_sk(sk); 2934 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2935 (tcp_fackets_out(tp) > tp->reordering)); 2936 int newly_acked_sacked = 0; 2937 int fast_rexmit = 0; 2938 2939 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2940 tp->sacked_out = 0; 2941 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2942 tp->fackets_out = 0; 2943 2944 /* Now state machine starts. 2945 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2946 if (flag & FLAG_ECE) 2947 tp->prior_ssthresh = 0; 2948 2949 /* B. In all the states check for reneging SACKs. */ 2950 if (tcp_check_sack_reneging(sk, flag)) 2951 return; 2952 2953 /* C. Check consistency of the current state. */ 2954 tcp_verify_left_out(tp); 2955 2956 /* D. Check state exit conditions. State can be terminated 2957 * when high_seq is ACKed. */ 2958 if (icsk->icsk_ca_state == TCP_CA_Open) { 2959 WARN_ON(tp->retrans_out != 0); 2960 tp->retrans_stamp = 0; 2961 } else if (!before(tp->snd_una, tp->high_seq)) { 2962 switch (icsk->icsk_ca_state) { 2963 case TCP_CA_Loss: 2964 icsk->icsk_retransmits = 0; 2965 if (tcp_try_undo_recovery(sk)) 2966 return; 2967 break; 2968 2969 case TCP_CA_CWR: 2970 /* CWR is to be held something *above* high_seq 2971 * is ACKed for CWR bit to reach receiver. */ 2972 if (tp->snd_una != tp->high_seq) { 2973 tcp_complete_cwr(sk); 2974 tcp_set_ca_state(sk, TCP_CA_Open); 2975 } 2976 break; 2977 2978 case TCP_CA_Recovery: 2979 if (tcp_is_reno(tp)) 2980 tcp_reset_reno_sack(tp); 2981 if (tcp_try_undo_recovery(sk)) 2982 return; 2983 tcp_complete_cwr(sk); 2984 break; 2985 } 2986 } 2987 2988 /* E. Process state. */ 2989 switch (icsk->icsk_ca_state) { 2990 case TCP_CA_Recovery: 2991 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2992 if (tcp_is_reno(tp) && is_dupack) 2993 tcp_add_reno_sack(sk); 2994 } else 2995 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2996 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked; 2997 break; 2998 case TCP_CA_Loss: 2999 if (flag & FLAG_DATA_ACKED) 3000 icsk->icsk_retransmits = 0; 3001 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3002 tcp_reset_reno_sack(tp); 3003 if (!tcp_try_undo_loss(sk)) { 3004 tcp_moderate_cwnd(tp); 3005 tcp_xmit_retransmit_queue(sk); 3006 return; 3007 } 3008 if (icsk->icsk_ca_state != TCP_CA_Open) 3009 return; 3010 /* Loss is undone; fall through to processing in Open state. */ 3011 default: 3012 if (tcp_is_reno(tp)) { 3013 if (flag & FLAG_SND_UNA_ADVANCED) 3014 tcp_reset_reno_sack(tp); 3015 if (is_dupack) 3016 tcp_add_reno_sack(sk); 3017 } 3018 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked; 3019 3020 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3021 tcp_try_undo_dsack(sk); 3022 3023 if (!tcp_time_to_recover(sk, flag)) { 3024 tcp_try_to_open(sk, flag); 3025 return; 3026 } 3027 3028 /* MTU probe failure: don't reduce cwnd */ 3029 if (icsk->icsk_ca_state < TCP_CA_CWR && 3030 icsk->icsk_mtup.probe_size && 3031 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3032 tcp_mtup_probe_failed(sk); 3033 /* Restores the reduction we did in tcp_mtup_probe() */ 3034 tp->snd_cwnd++; 3035 tcp_simple_retransmit(sk); 3036 return; 3037 } 3038 3039 /* Otherwise enter Recovery state */ 3040 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 3041 fast_rexmit = 1; 3042 } 3043 3044 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3045 tcp_update_scoreboard(sk, fast_rexmit); 3046 tp->prr_delivered += newly_acked_sacked; 3047 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag); 3048 tcp_xmit_retransmit_queue(sk); 3049 } 3050 3051 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3052 { 3053 tcp_rtt_estimator(sk, seq_rtt); 3054 tcp_set_rto(sk); 3055 inet_csk(sk)->icsk_backoff = 0; 3056 } 3057 EXPORT_SYMBOL(tcp_valid_rtt_meas); 3058 3059 /* Read draft-ietf-tcplw-high-performance before mucking 3060 * with this code. (Supersedes RFC1323) 3061 */ 3062 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3063 { 3064 /* RTTM Rule: A TSecr value received in a segment is used to 3065 * update the averaged RTT measurement only if the segment 3066 * acknowledges some new data, i.e., only if it advances the 3067 * left edge of the send window. 3068 * 3069 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3070 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3071 * 3072 * Changed: reset backoff as soon as we see the first valid sample. 3073 * If we do not, we get strongly overestimated rto. With timestamps 3074 * samples are accepted even from very old segments: f.e., when rtt=1 3075 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3076 * answer arrives rto becomes 120 seconds! If at least one of segments 3077 * in window is lost... Voila. --ANK (010210) 3078 */ 3079 struct tcp_sock *tp = tcp_sk(sk); 3080 3081 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3082 } 3083 3084 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3085 { 3086 /* We don't have a timestamp. Can only use 3087 * packets that are not retransmitted to determine 3088 * rtt estimates. Also, we must not reset the 3089 * backoff for rto until we get a non-retransmitted 3090 * packet. This allows us to deal with a situation 3091 * where the network delay has increased suddenly. 3092 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3093 */ 3094 3095 if (flag & FLAG_RETRANS_DATA_ACKED) 3096 return; 3097 3098 tcp_valid_rtt_meas(sk, seq_rtt); 3099 } 3100 3101 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3102 const s32 seq_rtt) 3103 { 3104 const struct tcp_sock *tp = tcp_sk(sk); 3105 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3106 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3107 tcp_ack_saw_tstamp(sk, flag); 3108 else if (seq_rtt >= 0) 3109 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3110 } 3111 3112 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3113 { 3114 const struct inet_connection_sock *icsk = inet_csk(sk); 3115 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3116 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3117 } 3118 3119 /* Restart timer after forward progress on connection. 3120 * RFC2988 recommends to restart timer to now+rto. 3121 */ 3122 void tcp_rearm_rto(struct sock *sk) 3123 { 3124 struct tcp_sock *tp = tcp_sk(sk); 3125 3126 if (!tp->packets_out) { 3127 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3128 } else { 3129 u32 rto = inet_csk(sk)->icsk_rto; 3130 /* Offset the time elapsed after installing regular RTO */ 3131 if (tp->early_retrans_delayed) { 3132 struct sk_buff *skb = tcp_write_queue_head(sk); 3133 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto; 3134 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3135 /* delta may not be positive if the socket is locked 3136 * when the delayed ER timer fires and is rescheduled. 3137 */ 3138 if (delta > 0) 3139 rto = delta; 3140 } 3141 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3142 TCP_RTO_MAX); 3143 } 3144 tp->early_retrans_delayed = 0; 3145 } 3146 3147 /* This function is called when the delayed ER timer fires. TCP enters 3148 * fast recovery and performs fast-retransmit. 3149 */ 3150 void tcp_resume_early_retransmit(struct sock *sk) 3151 { 3152 struct tcp_sock *tp = tcp_sk(sk); 3153 3154 tcp_rearm_rto(sk); 3155 3156 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3157 if (!tp->do_early_retrans) 3158 return; 3159 3160 tcp_enter_recovery(sk, false); 3161 tcp_update_scoreboard(sk, 1); 3162 tcp_xmit_retransmit_queue(sk); 3163 } 3164 3165 /* If we get here, the whole TSO packet has not been acked. */ 3166 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3167 { 3168 struct tcp_sock *tp = tcp_sk(sk); 3169 u32 packets_acked; 3170 3171 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3172 3173 packets_acked = tcp_skb_pcount(skb); 3174 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3175 return 0; 3176 packets_acked -= tcp_skb_pcount(skb); 3177 3178 if (packets_acked) { 3179 BUG_ON(tcp_skb_pcount(skb) == 0); 3180 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3181 } 3182 3183 return packets_acked; 3184 } 3185 3186 /* Remove acknowledged frames from the retransmission queue. If our packet 3187 * is before the ack sequence we can discard it as it's confirmed to have 3188 * arrived at the other end. 3189 */ 3190 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3191 u32 prior_snd_una) 3192 { 3193 struct tcp_sock *tp = tcp_sk(sk); 3194 const struct inet_connection_sock *icsk = inet_csk(sk); 3195 struct sk_buff *skb; 3196 u32 now = tcp_time_stamp; 3197 int fully_acked = true; 3198 int flag = 0; 3199 u32 pkts_acked = 0; 3200 u32 reord = tp->packets_out; 3201 u32 prior_sacked = tp->sacked_out; 3202 s32 seq_rtt = -1; 3203 s32 ca_seq_rtt = -1; 3204 ktime_t last_ackt = net_invalid_timestamp(); 3205 3206 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3207 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3208 u32 acked_pcount; 3209 u8 sacked = scb->sacked; 3210 3211 /* Determine how many packets and what bytes were acked, tso and else */ 3212 if (after(scb->end_seq, tp->snd_una)) { 3213 if (tcp_skb_pcount(skb) == 1 || 3214 !after(tp->snd_una, scb->seq)) 3215 break; 3216 3217 acked_pcount = tcp_tso_acked(sk, skb); 3218 if (!acked_pcount) 3219 break; 3220 3221 fully_acked = false; 3222 } else { 3223 acked_pcount = tcp_skb_pcount(skb); 3224 } 3225 3226 if (sacked & TCPCB_RETRANS) { 3227 if (sacked & TCPCB_SACKED_RETRANS) 3228 tp->retrans_out -= acked_pcount; 3229 flag |= FLAG_RETRANS_DATA_ACKED; 3230 ca_seq_rtt = -1; 3231 seq_rtt = -1; 3232 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3233 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3234 } else { 3235 ca_seq_rtt = now - scb->when; 3236 last_ackt = skb->tstamp; 3237 if (seq_rtt < 0) { 3238 seq_rtt = ca_seq_rtt; 3239 } 3240 if (!(sacked & TCPCB_SACKED_ACKED)) 3241 reord = min(pkts_acked, reord); 3242 } 3243 3244 if (sacked & TCPCB_SACKED_ACKED) 3245 tp->sacked_out -= acked_pcount; 3246 if (sacked & TCPCB_LOST) 3247 tp->lost_out -= acked_pcount; 3248 3249 tp->packets_out -= acked_pcount; 3250 pkts_acked += acked_pcount; 3251 3252 /* Initial outgoing SYN's get put onto the write_queue 3253 * just like anything else we transmit. It is not 3254 * true data, and if we misinform our callers that 3255 * this ACK acks real data, we will erroneously exit 3256 * connection startup slow start one packet too 3257 * quickly. This is severely frowned upon behavior. 3258 */ 3259 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3260 flag |= FLAG_DATA_ACKED; 3261 } else { 3262 flag |= FLAG_SYN_ACKED; 3263 tp->retrans_stamp = 0; 3264 } 3265 3266 if (!fully_acked) 3267 break; 3268 3269 tcp_unlink_write_queue(skb, sk); 3270 sk_wmem_free_skb(sk, skb); 3271 tp->scoreboard_skb_hint = NULL; 3272 if (skb == tp->retransmit_skb_hint) 3273 tp->retransmit_skb_hint = NULL; 3274 if (skb == tp->lost_skb_hint) 3275 tp->lost_skb_hint = NULL; 3276 } 3277 3278 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3279 tp->snd_up = tp->snd_una; 3280 3281 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3282 flag |= FLAG_SACK_RENEGING; 3283 3284 if (flag & FLAG_ACKED) { 3285 const struct tcp_congestion_ops *ca_ops 3286 = inet_csk(sk)->icsk_ca_ops; 3287 3288 if (unlikely(icsk->icsk_mtup.probe_size && 3289 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3290 tcp_mtup_probe_success(sk); 3291 } 3292 3293 tcp_ack_update_rtt(sk, flag, seq_rtt); 3294 tcp_rearm_rto(sk); 3295 3296 if (tcp_is_reno(tp)) { 3297 tcp_remove_reno_sacks(sk, pkts_acked); 3298 } else { 3299 int delta; 3300 3301 /* Non-retransmitted hole got filled? That's reordering */ 3302 if (reord < prior_fackets) 3303 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3304 3305 delta = tcp_is_fack(tp) ? pkts_acked : 3306 prior_sacked - tp->sacked_out; 3307 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3308 } 3309 3310 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3311 3312 if (ca_ops->pkts_acked) { 3313 s32 rtt_us = -1; 3314 3315 /* Is the ACK triggering packet unambiguous? */ 3316 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3317 /* High resolution needed and available? */ 3318 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3319 !ktime_equal(last_ackt, 3320 net_invalid_timestamp())) 3321 rtt_us = ktime_us_delta(ktime_get_real(), 3322 last_ackt); 3323 else if (ca_seq_rtt >= 0) 3324 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3325 } 3326 3327 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3328 } 3329 } 3330 3331 #if FASTRETRANS_DEBUG > 0 3332 WARN_ON((int)tp->sacked_out < 0); 3333 WARN_ON((int)tp->lost_out < 0); 3334 WARN_ON((int)tp->retrans_out < 0); 3335 if (!tp->packets_out && tcp_is_sack(tp)) { 3336 icsk = inet_csk(sk); 3337 if (tp->lost_out) { 3338 pr_debug("Leak l=%u %d\n", 3339 tp->lost_out, icsk->icsk_ca_state); 3340 tp->lost_out = 0; 3341 } 3342 if (tp->sacked_out) { 3343 pr_debug("Leak s=%u %d\n", 3344 tp->sacked_out, icsk->icsk_ca_state); 3345 tp->sacked_out = 0; 3346 } 3347 if (tp->retrans_out) { 3348 pr_debug("Leak r=%u %d\n", 3349 tp->retrans_out, icsk->icsk_ca_state); 3350 tp->retrans_out = 0; 3351 } 3352 } 3353 #endif 3354 return flag; 3355 } 3356 3357 static void tcp_ack_probe(struct sock *sk) 3358 { 3359 const struct tcp_sock *tp = tcp_sk(sk); 3360 struct inet_connection_sock *icsk = inet_csk(sk); 3361 3362 /* Was it a usable window open? */ 3363 3364 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3365 icsk->icsk_backoff = 0; 3366 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3367 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3368 * This function is not for random using! 3369 */ 3370 } else { 3371 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3372 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3373 TCP_RTO_MAX); 3374 } 3375 } 3376 3377 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3378 { 3379 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3380 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3381 } 3382 3383 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3384 { 3385 const struct tcp_sock *tp = tcp_sk(sk); 3386 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3387 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3388 } 3389 3390 /* Check that window update is acceptable. 3391 * The function assumes that snd_una<=ack<=snd_next. 3392 */ 3393 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3394 const u32 ack, const u32 ack_seq, 3395 const u32 nwin) 3396 { 3397 return after(ack, tp->snd_una) || 3398 after(ack_seq, tp->snd_wl1) || 3399 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3400 } 3401 3402 /* Update our send window. 3403 * 3404 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3405 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3406 */ 3407 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3408 u32 ack_seq) 3409 { 3410 struct tcp_sock *tp = tcp_sk(sk); 3411 int flag = 0; 3412 u32 nwin = ntohs(tcp_hdr(skb)->window); 3413 3414 if (likely(!tcp_hdr(skb)->syn)) 3415 nwin <<= tp->rx_opt.snd_wscale; 3416 3417 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3418 flag |= FLAG_WIN_UPDATE; 3419 tcp_update_wl(tp, ack_seq); 3420 3421 if (tp->snd_wnd != nwin) { 3422 tp->snd_wnd = nwin; 3423 3424 /* Note, it is the only place, where 3425 * fast path is recovered for sending TCP. 3426 */ 3427 tp->pred_flags = 0; 3428 tcp_fast_path_check(sk); 3429 3430 if (nwin > tp->max_window) { 3431 tp->max_window = nwin; 3432 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3433 } 3434 } 3435 } 3436 3437 tp->snd_una = ack; 3438 3439 return flag; 3440 } 3441 3442 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3443 * continue in congestion avoidance. 3444 */ 3445 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3446 { 3447 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3448 tp->snd_cwnd_cnt = 0; 3449 tp->bytes_acked = 0; 3450 TCP_ECN_queue_cwr(tp); 3451 tcp_moderate_cwnd(tp); 3452 } 3453 3454 /* A conservative spurious RTO response algorithm: reduce cwnd using 3455 * rate halving and continue in congestion avoidance. 3456 */ 3457 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3458 { 3459 tcp_enter_cwr(sk, 0); 3460 } 3461 3462 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3463 { 3464 if (flag & FLAG_ECE) 3465 tcp_ratehalving_spur_to_response(sk); 3466 else 3467 tcp_undo_cwr(sk, true); 3468 } 3469 3470 /* F-RTO spurious RTO detection algorithm (RFC4138) 3471 * 3472 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3473 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3474 * window (but not to or beyond highest sequence sent before RTO): 3475 * On First ACK, send two new segments out. 3476 * On Second ACK, RTO was likely spurious. Do spurious response (response 3477 * algorithm is not part of the F-RTO detection algorithm 3478 * given in RFC4138 but can be selected separately). 3479 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3480 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3481 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3482 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3483 * 3484 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3485 * original window even after we transmit two new data segments. 3486 * 3487 * SACK version: 3488 * on first step, wait until first cumulative ACK arrives, then move to 3489 * the second step. In second step, the next ACK decides. 3490 * 3491 * F-RTO is implemented (mainly) in four functions: 3492 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3493 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3494 * called when tcp_use_frto() showed green light 3495 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3496 * - tcp_enter_frto_loss() is called if there is not enough evidence 3497 * to prove that the RTO is indeed spurious. It transfers the control 3498 * from F-RTO to the conventional RTO recovery 3499 */ 3500 static bool tcp_process_frto(struct sock *sk, int flag) 3501 { 3502 struct tcp_sock *tp = tcp_sk(sk); 3503 3504 tcp_verify_left_out(tp); 3505 3506 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3507 if (flag & FLAG_DATA_ACKED) 3508 inet_csk(sk)->icsk_retransmits = 0; 3509 3510 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3511 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3512 tp->undo_marker = 0; 3513 3514 if (!before(tp->snd_una, tp->frto_highmark)) { 3515 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3516 return true; 3517 } 3518 3519 if (!tcp_is_sackfrto(tp)) { 3520 /* RFC4138 shortcoming in step 2; should also have case c): 3521 * ACK isn't duplicate nor advances window, e.g., opposite dir 3522 * data, winupdate 3523 */ 3524 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3525 return true; 3526 3527 if (!(flag & FLAG_DATA_ACKED)) { 3528 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3529 flag); 3530 return true; 3531 } 3532 } else { 3533 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3534 /* Prevent sending of new data. */ 3535 tp->snd_cwnd = min(tp->snd_cwnd, 3536 tcp_packets_in_flight(tp)); 3537 return true; 3538 } 3539 3540 if ((tp->frto_counter >= 2) && 3541 (!(flag & FLAG_FORWARD_PROGRESS) || 3542 ((flag & FLAG_DATA_SACKED) && 3543 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3544 /* RFC4138 shortcoming (see comment above) */ 3545 if (!(flag & FLAG_FORWARD_PROGRESS) && 3546 (flag & FLAG_NOT_DUP)) 3547 return true; 3548 3549 tcp_enter_frto_loss(sk, 3, flag); 3550 return true; 3551 } 3552 } 3553 3554 if (tp->frto_counter == 1) { 3555 /* tcp_may_send_now needs to see updated state */ 3556 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3557 tp->frto_counter = 2; 3558 3559 if (!tcp_may_send_now(sk)) 3560 tcp_enter_frto_loss(sk, 2, flag); 3561 3562 return true; 3563 } else { 3564 switch (sysctl_tcp_frto_response) { 3565 case 2: 3566 tcp_undo_spur_to_response(sk, flag); 3567 break; 3568 case 1: 3569 tcp_conservative_spur_to_response(tp); 3570 break; 3571 default: 3572 tcp_ratehalving_spur_to_response(sk); 3573 break; 3574 } 3575 tp->frto_counter = 0; 3576 tp->undo_marker = 0; 3577 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3578 } 3579 return false; 3580 } 3581 3582 /* This routine deals with incoming acks, but not outgoing ones. */ 3583 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3584 { 3585 struct inet_connection_sock *icsk = inet_csk(sk); 3586 struct tcp_sock *tp = tcp_sk(sk); 3587 u32 prior_snd_una = tp->snd_una; 3588 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3589 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3590 bool is_dupack = false; 3591 u32 prior_in_flight; 3592 u32 prior_fackets; 3593 int prior_packets; 3594 int prior_sacked = tp->sacked_out; 3595 int pkts_acked = 0; 3596 bool frto_cwnd = false; 3597 3598 /* If the ack is older than previous acks 3599 * then we can probably ignore it. 3600 */ 3601 if (before(ack, prior_snd_una)) 3602 goto old_ack; 3603 3604 /* If the ack includes data we haven't sent yet, discard 3605 * this segment (RFC793 Section 3.9). 3606 */ 3607 if (after(ack, tp->snd_nxt)) 3608 goto invalid_ack; 3609 3610 if (tp->early_retrans_delayed) 3611 tcp_rearm_rto(sk); 3612 3613 if (after(ack, prior_snd_una)) 3614 flag |= FLAG_SND_UNA_ADVANCED; 3615 3616 if (sysctl_tcp_abc) { 3617 if (icsk->icsk_ca_state < TCP_CA_CWR) 3618 tp->bytes_acked += ack - prior_snd_una; 3619 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3620 /* we assume just one segment left network */ 3621 tp->bytes_acked += min(ack - prior_snd_una, 3622 tp->mss_cache); 3623 } 3624 3625 prior_fackets = tp->fackets_out; 3626 prior_in_flight = tcp_packets_in_flight(tp); 3627 3628 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3629 /* Window is constant, pure forward advance. 3630 * No more checks are required. 3631 * Note, we use the fact that SND.UNA>=SND.WL2. 3632 */ 3633 tcp_update_wl(tp, ack_seq); 3634 tp->snd_una = ack; 3635 flag |= FLAG_WIN_UPDATE; 3636 3637 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3638 3639 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3640 } else { 3641 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3642 flag |= FLAG_DATA; 3643 else 3644 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3645 3646 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3647 3648 if (TCP_SKB_CB(skb)->sacked) 3649 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3650 3651 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3652 flag |= FLAG_ECE; 3653 3654 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3655 } 3656 3657 /* We passed data and got it acked, remove any soft error 3658 * log. Something worked... 3659 */ 3660 sk->sk_err_soft = 0; 3661 icsk->icsk_probes_out = 0; 3662 tp->rcv_tstamp = tcp_time_stamp; 3663 prior_packets = tp->packets_out; 3664 if (!prior_packets) 3665 goto no_queue; 3666 3667 /* See if we can take anything off of the retransmit queue. */ 3668 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3669 3670 pkts_acked = prior_packets - tp->packets_out; 3671 3672 if (tp->frto_counter) 3673 frto_cwnd = tcp_process_frto(sk, flag); 3674 /* Guarantee sacktag reordering detection against wrap-arounds */ 3675 if (before(tp->frto_highmark, tp->snd_una)) 3676 tp->frto_highmark = 0; 3677 3678 if (tcp_ack_is_dubious(sk, flag)) { 3679 /* Advance CWND, if state allows this. */ 3680 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3681 tcp_may_raise_cwnd(sk, flag)) 3682 tcp_cong_avoid(sk, ack, prior_in_flight); 3683 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3684 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3685 is_dupack, flag); 3686 } else { 3687 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3688 tcp_cong_avoid(sk, ack, prior_in_flight); 3689 } 3690 3691 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3692 struct dst_entry *dst = __sk_dst_get(sk); 3693 if (dst) 3694 dst_confirm(dst); 3695 } 3696 return 1; 3697 3698 no_queue: 3699 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3700 if (flag & FLAG_DSACKING_ACK) 3701 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3702 is_dupack, flag); 3703 /* If this ack opens up a zero window, clear backoff. It was 3704 * being used to time the probes, and is probably far higher than 3705 * it needs to be for normal retransmission. 3706 */ 3707 if (tcp_send_head(sk)) 3708 tcp_ack_probe(sk); 3709 return 1; 3710 3711 invalid_ack: 3712 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3713 return -1; 3714 3715 old_ack: 3716 /* If data was SACKed, tag it and see if we should send more data. 3717 * If data was DSACKed, see if we can undo a cwnd reduction. 3718 */ 3719 if (TCP_SKB_CB(skb)->sacked) { 3720 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3721 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3722 is_dupack, flag); 3723 } 3724 3725 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3726 return 0; 3727 } 3728 3729 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3730 * But, this can also be called on packets in the established flow when 3731 * the fast version below fails. 3732 */ 3733 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx, 3734 const u8 **hvpp, int estab, 3735 struct tcp_fastopen_cookie *foc) 3736 { 3737 const unsigned char *ptr; 3738 const struct tcphdr *th = tcp_hdr(skb); 3739 int length = (th->doff * 4) - sizeof(struct tcphdr); 3740 3741 ptr = (const unsigned char *)(th + 1); 3742 opt_rx->saw_tstamp = 0; 3743 3744 while (length > 0) { 3745 int opcode = *ptr++; 3746 int opsize; 3747 3748 switch (opcode) { 3749 case TCPOPT_EOL: 3750 return; 3751 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3752 length--; 3753 continue; 3754 default: 3755 opsize = *ptr++; 3756 if (opsize < 2) /* "silly options" */ 3757 return; 3758 if (opsize > length) 3759 return; /* don't parse partial options */ 3760 switch (opcode) { 3761 case TCPOPT_MSS: 3762 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3763 u16 in_mss = get_unaligned_be16(ptr); 3764 if (in_mss) { 3765 if (opt_rx->user_mss && 3766 opt_rx->user_mss < in_mss) 3767 in_mss = opt_rx->user_mss; 3768 opt_rx->mss_clamp = in_mss; 3769 } 3770 } 3771 break; 3772 case TCPOPT_WINDOW: 3773 if (opsize == TCPOLEN_WINDOW && th->syn && 3774 !estab && sysctl_tcp_window_scaling) { 3775 __u8 snd_wscale = *(__u8 *)ptr; 3776 opt_rx->wscale_ok = 1; 3777 if (snd_wscale > 14) { 3778 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3779 __func__, 3780 snd_wscale); 3781 snd_wscale = 14; 3782 } 3783 opt_rx->snd_wscale = snd_wscale; 3784 } 3785 break; 3786 case TCPOPT_TIMESTAMP: 3787 if ((opsize == TCPOLEN_TIMESTAMP) && 3788 ((estab && opt_rx->tstamp_ok) || 3789 (!estab && sysctl_tcp_timestamps))) { 3790 opt_rx->saw_tstamp = 1; 3791 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3792 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3793 } 3794 break; 3795 case TCPOPT_SACK_PERM: 3796 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3797 !estab && sysctl_tcp_sack) { 3798 opt_rx->sack_ok = TCP_SACK_SEEN; 3799 tcp_sack_reset(opt_rx); 3800 } 3801 break; 3802 3803 case TCPOPT_SACK: 3804 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3805 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3806 opt_rx->sack_ok) { 3807 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3808 } 3809 break; 3810 #ifdef CONFIG_TCP_MD5SIG 3811 case TCPOPT_MD5SIG: 3812 /* 3813 * The MD5 Hash has already been 3814 * checked (see tcp_v{4,6}_do_rcv()). 3815 */ 3816 break; 3817 #endif 3818 case TCPOPT_COOKIE: 3819 /* This option is variable length. 3820 */ 3821 switch (opsize) { 3822 case TCPOLEN_COOKIE_BASE: 3823 /* not yet implemented */ 3824 break; 3825 case TCPOLEN_COOKIE_PAIR: 3826 /* not yet implemented */ 3827 break; 3828 case TCPOLEN_COOKIE_MIN+0: 3829 case TCPOLEN_COOKIE_MIN+2: 3830 case TCPOLEN_COOKIE_MIN+4: 3831 case TCPOLEN_COOKIE_MIN+6: 3832 case TCPOLEN_COOKIE_MAX: 3833 /* 16-bit multiple */ 3834 opt_rx->cookie_plus = opsize; 3835 *hvpp = ptr; 3836 break; 3837 default: 3838 /* ignore option */ 3839 break; 3840 } 3841 break; 3842 3843 case TCPOPT_EXP: 3844 /* Fast Open option shares code 254 using a 3845 * 16 bits magic number. It's valid only in 3846 * SYN or SYN-ACK with an even size. 3847 */ 3848 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3849 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3850 foc == NULL || !th->syn || (opsize & 1)) 3851 break; 3852 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3853 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3854 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3855 memcpy(foc->val, ptr + 2, foc->len); 3856 else if (foc->len != 0) 3857 foc->len = -1; 3858 break; 3859 3860 } 3861 ptr += opsize-2; 3862 length -= opsize; 3863 } 3864 } 3865 } 3866 EXPORT_SYMBOL(tcp_parse_options); 3867 3868 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3869 { 3870 const __be32 *ptr = (const __be32 *)(th + 1); 3871 3872 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3873 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3874 tp->rx_opt.saw_tstamp = 1; 3875 ++ptr; 3876 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3877 ++ptr; 3878 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3879 return true; 3880 } 3881 return false; 3882 } 3883 3884 /* Fast parse options. This hopes to only see timestamps. 3885 * If it is wrong it falls back on tcp_parse_options(). 3886 */ 3887 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3888 const struct tcphdr *th, 3889 struct tcp_sock *tp, const u8 **hvpp) 3890 { 3891 /* In the spirit of fast parsing, compare doff directly to constant 3892 * values. Because equality is used, short doff can be ignored here. 3893 */ 3894 if (th->doff == (sizeof(*th) / 4)) { 3895 tp->rx_opt.saw_tstamp = 0; 3896 return false; 3897 } else if (tp->rx_opt.tstamp_ok && 3898 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3899 if (tcp_parse_aligned_timestamp(tp, th)) 3900 return true; 3901 } 3902 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL); 3903 return true; 3904 } 3905 3906 #ifdef CONFIG_TCP_MD5SIG 3907 /* 3908 * Parse MD5 Signature option 3909 */ 3910 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3911 { 3912 int length = (th->doff << 2) - sizeof(*th); 3913 const u8 *ptr = (const u8 *)(th + 1); 3914 3915 /* If the TCP option is too short, we can short cut */ 3916 if (length < TCPOLEN_MD5SIG) 3917 return NULL; 3918 3919 while (length > 0) { 3920 int opcode = *ptr++; 3921 int opsize; 3922 3923 switch(opcode) { 3924 case TCPOPT_EOL: 3925 return NULL; 3926 case TCPOPT_NOP: 3927 length--; 3928 continue; 3929 default: 3930 opsize = *ptr++; 3931 if (opsize < 2 || opsize > length) 3932 return NULL; 3933 if (opcode == TCPOPT_MD5SIG) 3934 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3935 } 3936 ptr += opsize - 2; 3937 length -= opsize; 3938 } 3939 return NULL; 3940 } 3941 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3942 #endif 3943 3944 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3945 { 3946 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3947 tp->rx_opt.ts_recent_stamp = get_seconds(); 3948 } 3949 3950 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3951 { 3952 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3953 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3954 * extra check below makes sure this can only happen 3955 * for pure ACK frames. -DaveM 3956 * 3957 * Not only, also it occurs for expired timestamps. 3958 */ 3959 3960 if (tcp_paws_check(&tp->rx_opt, 0)) 3961 tcp_store_ts_recent(tp); 3962 } 3963 } 3964 3965 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3966 * 3967 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3968 * it can pass through stack. So, the following predicate verifies that 3969 * this segment is not used for anything but congestion avoidance or 3970 * fast retransmit. Moreover, we even are able to eliminate most of such 3971 * second order effects, if we apply some small "replay" window (~RTO) 3972 * to timestamp space. 3973 * 3974 * All these measures still do not guarantee that we reject wrapped ACKs 3975 * on networks with high bandwidth, when sequence space is recycled fastly, 3976 * but it guarantees that such events will be very rare and do not affect 3977 * connection seriously. This doesn't look nice, but alas, PAWS is really 3978 * buggy extension. 3979 * 3980 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3981 * states that events when retransmit arrives after original data are rare. 3982 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3983 * the biggest problem on large power networks even with minor reordering. 3984 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3985 * up to bandwidth of 18Gigabit/sec. 8) ] 3986 */ 3987 3988 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3989 { 3990 const struct tcp_sock *tp = tcp_sk(sk); 3991 const struct tcphdr *th = tcp_hdr(skb); 3992 u32 seq = TCP_SKB_CB(skb)->seq; 3993 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3994 3995 return (/* 1. Pure ACK with correct sequence number. */ 3996 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3997 3998 /* 2. ... and duplicate ACK. */ 3999 ack == tp->snd_una && 4000 4001 /* 3. ... and does not update window. */ 4002 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4003 4004 /* 4. ... and sits in replay window. */ 4005 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4006 } 4007 4008 static inline bool tcp_paws_discard(const struct sock *sk, 4009 const struct sk_buff *skb) 4010 { 4011 const struct tcp_sock *tp = tcp_sk(sk); 4012 4013 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4014 !tcp_disordered_ack(sk, skb); 4015 } 4016 4017 /* Check segment sequence number for validity. 4018 * 4019 * Segment controls are considered valid, if the segment 4020 * fits to the window after truncation to the window. Acceptability 4021 * of data (and SYN, FIN, of course) is checked separately. 4022 * See tcp_data_queue(), for example. 4023 * 4024 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4025 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4026 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4027 * (borrowed from freebsd) 4028 */ 4029 4030 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4031 { 4032 return !before(end_seq, tp->rcv_wup) && 4033 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4034 } 4035 4036 /* When we get a reset we do this. */ 4037 static void tcp_reset(struct sock *sk) 4038 { 4039 /* We want the right error as BSD sees it (and indeed as we do). */ 4040 switch (sk->sk_state) { 4041 case TCP_SYN_SENT: 4042 sk->sk_err = ECONNREFUSED; 4043 break; 4044 case TCP_CLOSE_WAIT: 4045 sk->sk_err = EPIPE; 4046 break; 4047 case TCP_CLOSE: 4048 return; 4049 default: 4050 sk->sk_err = ECONNRESET; 4051 } 4052 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4053 smp_wmb(); 4054 4055 if (!sock_flag(sk, SOCK_DEAD)) 4056 sk->sk_error_report(sk); 4057 4058 tcp_done(sk); 4059 } 4060 4061 /* 4062 * Process the FIN bit. This now behaves as it is supposed to work 4063 * and the FIN takes effect when it is validly part of sequence 4064 * space. Not before when we get holes. 4065 * 4066 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4067 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4068 * TIME-WAIT) 4069 * 4070 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4071 * close and we go into CLOSING (and later onto TIME-WAIT) 4072 * 4073 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4074 */ 4075 static void tcp_fin(struct sock *sk) 4076 { 4077 struct tcp_sock *tp = tcp_sk(sk); 4078 4079 inet_csk_schedule_ack(sk); 4080 4081 sk->sk_shutdown |= RCV_SHUTDOWN; 4082 sock_set_flag(sk, SOCK_DONE); 4083 4084 switch (sk->sk_state) { 4085 case TCP_SYN_RECV: 4086 case TCP_ESTABLISHED: 4087 /* Move to CLOSE_WAIT */ 4088 tcp_set_state(sk, TCP_CLOSE_WAIT); 4089 inet_csk(sk)->icsk_ack.pingpong = 1; 4090 break; 4091 4092 case TCP_CLOSE_WAIT: 4093 case TCP_CLOSING: 4094 /* Received a retransmission of the FIN, do 4095 * nothing. 4096 */ 4097 break; 4098 case TCP_LAST_ACK: 4099 /* RFC793: Remain in the LAST-ACK state. */ 4100 break; 4101 4102 case TCP_FIN_WAIT1: 4103 /* This case occurs when a simultaneous close 4104 * happens, we must ack the received FIN and 4105 * enter the CLOSING state. 4106 */ 4107 tcp_send_ack(sk); 4108 tcp_set_state(sk, TCP_CLOSING); 4109 break; 4110 case TCP_FIN_WAIT2: 4111 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4112 tcp_send_ack(sk); 4113 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4114 break; 4115 default: 4116 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4117 * cases we should never reach this piece of code. 4118 */ 4119 pr_err("%s: Impossible, sk->sk_state=%d\n", 4120 __func__, sk->sk_state); 4121 break; 4122 } 4123 4124 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4125 * Probably, we should reset in this case. For now drop them. 4126 */ 4127 __skb_queue_purge(&tp->out_of_order_queue); 4128 if (tcp_is_sack(tp)) 4129 tcp_sack_reset(&tp->rx_opt); 4130 sk_mem_reclaim(sk); 4131 4132 if (!sock_flag(sk, SOCK_DEAD)) { 4133 sk->sk_state_change(sk); 4134 4135 /* Do not send POLL_HUP for half duplex close. */ 4136 if (sk->sk_shutdown == SHUTDOWN_MASK || 4137 sk->sk_state == TCP_CLOSE) 4138 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4139 else 4140 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4141 } 4142 } 4143 4144 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4145 u32 end_seq) 4146 { 4147 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4148 if (before(seq, sp->start_seq)) 4149 sp->start_seq = seq; 4150 if (after(end_seq, sp->end_seq)) 4151 sp->end_seq = end_seq; 4152 return true; 4153 } 4154 return false; 4155 } 4156 4157 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4158 { 4159 struct tcp_sock *tp = tcp_sk(sk); 4160 4161 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4162 int mib_idx; 4163 4164 if (before(seq, tp->rcv_nxt)) 4165 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4166 else 4167 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4168 4169 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4170 4171 tp->rx_opt.dsack = 1; 4172 tp->duplicate_sack[0].start_seq = seq; 4173 tp->duplicate_sack[0].end_seq = end_seq; 4174 } 4175 } 4176 4177 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4178 { 4179 struct tcp_sock *tp = tcp_sk(sk); 4180 4181 if (!tp->rx_opt.dsack) 4182 tcp_dsack_set(sk, seq, end_seq); 4183 else 4184 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4185 } 4186 4187 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4188 { 4189 struct tcp_sock *tp = tcp_sk(sk); 4190 4191 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4192 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4193 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4194 tcp_enter_quickack_mode(sk); 4195 4196 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4197 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4198 4199 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4200 end_seq = tp->rcv_nxt; 4201 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4202 } 4203 } 4204 4205 tcp_send_ack(sk); 4206 } 4207 4208 /* These routines update the SACK block as out-of-order packets arrive or 4209 * in-order packets close up the sequence space. 4210 */ 4211 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4212 { 4213 int this_sack; 4214 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4215 struct tcp_sack_block *swalk = sp + 1; 4216 4217 /* See if the recent change to the first SACK eats into 4218 * or hits the sequence space of other SACK blocks, if so coalesce. 4219 */ 4220 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4221 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4222 int i; 4223 4224 /* Zap SWALK, by moving every further SACK up by one slot. 4225 * Decrease num_sacks. 4226 */ 4227 tp->rx_opt.num_sacks--; 4228 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4229 sp[i] = sp[i + 1]; 4230 continue; 4231 } 4232 this_sack++, swalk++; 4233 } 4234 } 4235 4236 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4237 { 4238 struct tcp_sock *tp = tcp_sk(sk); 4239 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4240 int cur_sacks = tp->rx_opt.num_sacks; 4241 int this_sack; 4242 4243 if (!cur_sacks) 4244 goto new_sack; 4245 4246 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4247 if (tcp_sack_extend(sp, seq, end_seq)) { 4248 /* Rotate this_sack to the first one. */ 4249 for (; this_sack > 0; this_sack--, sp--) 4250 swap(*sp, *(sp - 1)); 4251 if (cur_sacks > 1) 4252 tcp_sack_maybe_coalesce(tp); 4253 return; 4254 } 4255 } 4256 4257 /* Could not find an adjacent existing SACK, build a new one, 4258 * put it at the front, and shift everyone else down. We 4259 * always know there is at least one SACK present already here. 4260 * 4261 * If the sack array is full, forget about the last one. 4262 */ 4263 if (this_sack >= TCP_NUM_SACKS) { 4264 this_sack--; 4265 tp->rx_opt.num_sacks--; 4266 sp--; 4267 } 4268 for (; this_sack > 0; this_sack--, sp--) 4269 *sp = *(sp - 1); 4270 4271 new_sack: 4272 /* Build the new head SACK, and we're done. */ 4273 sp->start_seq = seq; 4274 sp->end_seq = end_seq; 4275 tp->rx_opt.num_sacks++; 4276 } 4277 4278 /* RCV.NXT advances, some SACKs should be eaten. */ 4279 4280 static void tcp_sack_remove(struct tcp_sock *tp) 4281 { 4282 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4283 int num_sacks = tp->rx_opt.num_sacks; 4284 int this_sack; 4285 4286 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4287 if (skb_queue_empty(&tp->out_of_order_queue)) { 4288 tp->rx_opt.num_sacks = 0; 4289 return; 4290 } 4291 4292 for (this_sack = 0; this_sack < num_sacks;) { 4293 /* Check if the start of the sack is covered by RCV.NXT. */ 4294 if (!before(tp->rcv_nxt, sp->start_seq)) { 4295 int i; 4296 4297 /* RCV.NXT must cover all the block! */ 4298 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4299 4300 /* Zap this SACK, by moving forward any other SACKS. */ 4301 for (i=this_sack+1; i < num_sacks; i++) 4302 tp->selective_acks[i-1] = tp->selective_acks[i]; 4303 num_sacks--; 4304 continue; 4305 } 4306 this_sack++; 4307 sp++; 4308 } 4309 tp->rx_opt.num_sacks = num_sacks; 4310 } 4311 4312 /* This one checks to see if we can put data from the 4313 * out_of_order queue into the receive_queue. 4314 */ 4315 static void tcp_ofo_queue(struct sock *sk) 4316 { 4317 struct tcp_sock *tp = tcp_sk(sk); 4318 __u32 dsack_high = tp->rcv_nxt; 4319 struct sk_buff *skb; 4320 4321 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4322 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4323 break; 4324 4325 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4326 __u32 dsack = dsack_high; 4327 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4328 dsack_high = TCP_SKB_CB(skb)->end_seq; 4329 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4330 } 4331 4332 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4333 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4334 __skb_unlink(skb, &tp->out_of_order_queue); 4335 __kfree_skb(skb); 4336 continue; 4337 } 4338 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4339 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4340 TCP_SKB_CB(skb)->end_seq); 4341 4342 __skb_unlink(skb, &tp->out_of_order_queue); 4343 __skb_queue_tail(&sk->sk_receive_queue, skb); 4344 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4345 if (tcp_hdr(skb)->fin) 4346 tcp_fin(sk); 4347 } 4348 } 4349 4350 static bool tcp_prune_ofo_queue(struct sock *sk); 4351 static int tcp_prune_queue(struct sock *sk); 4352 4353 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4354 unsigned int size) 4355 { 4356 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4357 !sk_rmem_schedule(sk, skb, size)) { 4358 4359 if (tcp_prune_queue(sk) < 0) 4360 return -1; 4361 4362 if (!sk_rmem_schedule(sk, skb, size)) { 4363 if (!tcp_prune_ofo_queue(sk)) 4364 return -1; 4365 4366 if (!sk_rmem_schedule(sk, skb, size)) 4367 return -1; 4368 } 4369 } 4370 return 0; 4371 } 4372 4373 /** 4374 * tcp_try_coalesce - try to merge skb to prior one 4375 * @sk: socket 4376 * @to: prior buffer 4377 * @from: buffer to add in queue 4378 * @fragstolen: pointer to boolean 4379 * 4380 * Before queueing skb @from after @to, try to merge them 4381 * to reduce overall memory use and queue lengths, if cost is small. 4382 * Packets in ofo or receive queues can stay a long time. 4383 * Better try to coalesce them right now to avoid future collapses. 4384 * Returns true if caller should free @from instead of queueing it 4385 */ 4386 static bool tcp_try_coalesce(struct sock *sk, 4387 struct sk_buff *to, 4388 struct sk_buff *from, 4389 bool *fragstolen) 4390 { 4391 int delta; 4392 4393 *fragstolen = false; 4394 4395 if (tcp_hdr(from)->fin) 4396 return false; 4397 4398 /* Its possible this segment overlaps with prior segment in queue */ 4399 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4400 return false; 4401 4402 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4403 return false; 4404 4405 atomic_add(delta, &sk->sk_rmem_alloc); 4406 sk_mem_charge(sk, delta); 4407 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4408 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4409 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4410 return true; 4411 } 4412 4413 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4414 { 4415 struct tcp_sock *tp = tcp_sk(sk); 4416 struct sk_buff *skb1; 4417 u32 seq, end_seq; 4418 4419 TCP_ECN_check_ce(tp, skb); 4420 4421 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4423 __kfree_skb(skb); 4424 return; 4425 } 4426 4427 /* Disable header prediction. */ 4428 tp->pred_flags = 0; 4429 inet_csk_schedule_ack(sk); 4430 4431 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4432 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4433 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4434 4435 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4436 if (!skb1) { 4437 /* Initial out of order segment, build 1 SACK. */ 4438 if (tcp_is_sack(tp)) { 4439 tp->rx_opt.num_sacks = 1; 4440 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4441 tp->selective_acks[0].end_seq = 4442 TCP_SKB_CB(skb)->end_seq; 4443 } 4444 __skb_queue_head(&tp->out_of_order_queue, skb); 4445 goto end; 4446 } 4447 4448 seq = TCP_SKB_CB(skb)->seq; 4449 end_seq = TCP_SKB_CB(skb)->end_seq; 4450 4451 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4452 bool fragstolen; 4453 4454 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4455 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4456 } else { 4457 kfree_skb_partial(skb, fragstolen); 4458 skb = NULL; 4459 } 4460 4461 if (!tp->rx_opt.num_sacks || 4462 tp->selective_acks[0].end_seq != seq) 4463 goto add_sack; 4464 4465 /* Common case: data arrive in order after hole. */ 4466 tp->selective_acks[0].end_seq = end_seq; 4467 goto end; 4468 } 4469 4470 /* Find place to insert this segment. */ 4471 while (1) { 4472 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4473 break; 4474 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4475 skb1 = NULL; 4476 break; 4477 } 4478 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4479 } 4480 4481 /* Do skb overlap to previous one? */ 4482 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4483 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4484 /* All the bits are present. Drop. */ 4485 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4486 __kfree_skb(skb); 4487 skb = NULL; 4488 tcp_dsack_set(sk, seq, end_seq); 4489 goto add_sack; 4490 } 4491 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4492 /* Partial overlap. */ 4493 tcp_dsack_set(sk, seq, 4494 TCP_SKB_CB(skb1)->end_seq); 4495 } else { 4496 if (skb_queue_is_first(&tp->out_of_order_queue, 4497 skb1)) 4498 skb1 = NULL; 4499 else 4500 skb1 = skb_queue_prev( 4501 &tp->out_of_order_queue, 4502 skb1); 4503 } 4504 } 4505 if (!skb1) 4506 __skb_queue_head(&tp->out_of_order_queue, skb); 4507 else 4508 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4509 4510 /* And clean segments covered by new one as whole. */ 4511 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4512 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4513 4514 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4515 break; 4516 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4517 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4518 end_seq); 4519 break; 4520 } 4521 __skb_unlink(skb1, &tp->out_of_order_queue); 4522 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4523 TCP_SKB_CB(skb1)->end_seq); 4524 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4525 __kfree_skb(skb1); 4526 } 4527 4528 add_sack: 4529 if (tcp_is_sack(tp)) 4530 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4531 end: 4532 if (skb) 4533 skb_set_owner_r(skb, sk); 4534 } 4535 4536 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4537 bool *fragstolen) 4538 { 4539 int eaten; 4540 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4541 4542 __skb_pull(skb, hdrlen); 4543 eaten = (tail && 4544 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4545 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4546 if (!eaten) { 4547 __skb_queue_tail(&sk->sk_receive_queue, skb); 4548 skb_set_owner_r(skb, sk); 4549 } 4550 return eaten; 4551 } 4552 4553 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4554 { 4555 struct sk_buff *skb = NULL; 4556 struct tcphdr *th; 4557 bool fragstolen; 4558 4559 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation); 4560 if (!skb) 4561 goto err; 4562 4563 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th))) 4564 goto err_free; 4565 4566 th = (struct tcphdr *)skb_put(skb, sizeof(*th)); 4567 skb_reset_transport_header(skb); 4568 memset(th, 0, sizeof(*th)); 4569 4570 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4571 goto err_free; 4572 4573 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4574 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4575 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4576 4577 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) { 4578 WARN_ON_ONCE(fragstolen); /* should not happen */ 4579 __kfree_skb(skb); 4580 } 4581 return size; 4582 4583 err_free: 4584 kfree_skb(skb); 4585 err: 4586 return -ENOMEM; 4587 } 4588 4589 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4590 { 4591 const struct tcphdr *th = tcp_hdr(skb); 4592 struct tcp_sock *tp = tcp_sk(sk); 4593 int eaten = -1; 4594 bool fragstolen = false; 4595 4596 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4597 goto drop; 4598 4599 skb_dst_drop(skb); 4600 __skb_pull(skb, th->doff * 4); 4601 4602 TCP_ECN_accept_cwr(tp, skb); 4603 4604 tp->rx_opt.dsack = 0; 4605 4606 /* Queue data for delivery to the user. 4607 * Packets in sequence go to the receive queue. 4608 * Out of sequence packets to the out_of_order_queue. 4609 */ 4610 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4611 if (tcp_receive_window(tp) == 0) 4612 goto out_of_window; 4613 4614 /* Ok. In sequence. In window. */ 4615 if (tp->ucopy.task == current && 4616 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4617 sock_owned_by_user(sk) && !tp->urg_data) { 4618 int chunk = min_t(unsigned int, skb->len, 4619 tp->ucopy.len); 4620 4621 __set_current_state(TASK_RUNNING); 4622 4623 local_bh_enable(); 4624 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4625 tp->ucopy.len -= chunk; 4626 tp->copied_seq += chunk; 4627 eaten = (chunk == skb->len); 4628 tcp_rcv_space_adjust(sk); 4629 } 4630 local_bh_disable(); 4631 } 4632 4633 if (eaten <= 0) { 4634 queue_and_out: 4635 if (eaten < 0 && 4636 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4637 goto drop; 4638 4639 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4640 } 4641 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4642 if (skb->len) 4643 tcp_event_data_recv(sk, skb); 4644 if (th->fin) 4645 tcp_fin(sk); 4646 4647 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4648 tcp_ofo_queue(sk); 4649 4650 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4651 * gap in queue is filled. 4652 */ 4653 if (skb_queue_empty(&tp->out_of_order_queue)) 4654 inet_csk(sk)->icsk_ack.pingpong = 0; 4655 } 4656 4657 if (tp->rx_opt.num_sacks) 4658 tcp_sack_remove(tp); 4659 4660 tcp_fast_path_check(sk); 4661 4662 if (eaten > 0) 4663 kfree_skb_partial(skb, fragstolen); 4664 else if (!sock_flag(sk, SOCK_DEAD)) 4665 sk->sk_data_ready(sk, 0); 4666 return; 4667 } 4668 4669 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4670 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4671 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4672 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4673 4674 out_of_window: 4675 tcp_enter_quickack_mode(sk); 4676 inet_csk_schedule_ack(sk); 4677 drop: 4678 __kfree_skb(skb); 4679 return; 4680 } 4681 4682 /* Out of window. F.e. zero window probe. */ 4683 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4684 goto out_of_window; 4685 4686 tcp_enter_quickack_mode(sk); 4687 4688 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4689 /* Partial packet, seq < rcv_next < end_seq */ 4690 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4691 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4692 TCP_SKB_CB(skb)->end_seq); 4693 4694 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4695 4696 /* If window is closed, drop tail of packet. But after 4697 * remembering D-SACK for its head made in previous line. 4698 */ 4699 if (!tcp_receive_window(tp)) 4700 goto out_of_window; 4701 goto queue_and_out; 4702 } 4703 4704 tcp_data_queue_ofo(sk, skb); 4705 } 4706 4707 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4708 struct sk_buff_head *list) 4709 { 4710 struct sk_buff *next = NULL; 4711 4712 if (!skb_queue_is_last(list, skb)) 4713 next = skb_queue_next(list, skb); 4714 4715 __skb_unlink(skb, list); 4716 __kfree_skb(skb); 4717 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4718 4719 return next; 4720 } 4721 4722 /* Collapse contiguous sequence of skbs head..tail with 4723 * sequence numbers start..end. 4724 * 4725 * If tail is NULL, this means until the end of the list. 4726 * 4727 * Segments with FIN/SYN are not collapsed (only because this 4728 * simplifies code) 4729 */ 4730 static void 4731 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4732 struct sk_buff *head, struct sk_buff *tail, 4733 u32 start, u32 end) 4734 { 4735 struct sk_buff *skb, *n; 4736 bool end_of_skbs; 4737 4738 /* First, check that queue is collapsible and find 4739 * the point where collapsing can be useful. */ 4740 skb = head; 4741 restart: 4742 end_of_skbs = true; 4743 skb_queue_walk_from_safe(list, skb, n) { 4744 if (skb == tail) 4745 break; 4746 /* No new bits? It is possible on ofo queue. */ 4747 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4748 skb = tcp_collapse_one(sk, skb, list); 4749 if (!skb) 4750 break; 4751 goto restart; 4752 } 4753 4754 /* The first skb to collapse is: 4755 * - not SYN/FIN and 4756 * - bloated or contains data before "start" or 4757 * overlaps to the next one. 4758 */ 4759 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4760 (tcp_win_from_space(skb->truesize) > skb->len || 4761 before(TCP_SKB_CB(skb)->seq, start))) { 4762 end_of_skbs = false; 4763 break; 4764 } 4765 4766 if (!skb_queue_is_last(list, skb)) { 4767 struct sk_buff *next = skb_queue_next(list, skb); 4768 if (next != tail && 4769 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4770 end_of_skbs = false; 4771 break; 4772 } 4773 } 4774 4775 /* Decided to skip this, advance start seq. */ 4776 start = TCP_SKB_CB(skb)->end_seq; 4777 } 4778 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4779 return; 4780 4781 while (before(start, end)) { 4782 struct sk_buff *nskb; 4783 unsigned int header = skb_headroom(skb); 4784 int copy = SKB_MAX_ORDER(header, 0); 4785 4786 /* Too big header? This can happen with IPv6. */ 4787 if (copy < 0) 4788 return; 4789 if (end - start < copy) 4790 copy = end - start; 4791 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4792 if (!nskb) 4793 return; 4794 4795 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4796 skb_set_network_header(nskb, (skb_network_header(skb) - 4797 skb->head)); 4798 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4799 skb->head)); 4800 skb_reserve(nskb, header); 4801 memcpy(nskb->head, skb->head, header); 4802 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4803 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4804 __skb_queue_before(list, skb, nskb); 4805 skb_set_owner_r(nskb, sk); 4806 4807 /* Copy data, releasing collapsed skbs. */ 4808 while (copy > 0) { 4809 int offset = start - TCP_SKB_CB(skb)->seq; 4810 int size = TCP_SKB_CB(skb)->end_seq - start; 4811 4812 BUG_ON(offset < 0); 4813 if (size > 0) { 4814 size = min(copy, size); 4815 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4816 BUG(); 4817 TCP_SKB_CB(nskb)->end_seq += size; 4818 copy -= size; 4819 start += size; 4820 } 4821 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4822 skb = tcp_collapse_one(sk, skb, list); 4823 if (!skb || 4824 skb == tail || 4825 tcp_hdr(skb)->syn || 4826 tcp_hdr(skb)->fin) 4827 return; 4828 } 4829 } 4830 } 4831 } 4832 4833 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4834 * and tcp_collapse() them until all the queue is collapsed. 4835 */ 4836 static void tcp_collapse_ofo_queue(struct sock *sk) 4837 { 4838 struct tcp_sock *tp = tcp_sk(sk); 4839 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4840 struct sk_buff *head; 4841 u32 start, end; 4842 4843 if (skb == NULL) 4844 return; 4845 4846 start = TCP_SKB_CB(skb)->seq; 4847 end = TCP_SKB_CB(skb)->end_seq; 4848 head = skb; 4849 4850 for (;;) { 4851 struct sk_buff *next = NULL; 4852 4853 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4854 next = skb_queue_next(&tp->out_of_order_queue, skb); 4855 skb = next; 4856 4857 /* Segment is terminated when we see gap or when 4858 * we are at the end of all the queue. */ 4859 if (!skb || 4860 after(TCP_SKB_CB(skb)->seq, end) || 4861 before(TCP_SKB_CB(skb)->end_seq, start)) { 4862 tcp_collapse(sk, &tp->out_of_order_queue, 4863 head, skb, start, end); 4864 head = skb; 4865 if (!skb) 4866 break; 4867 /* Start new segment */ 4868 start = TCP_SKB_CB(skb)->seq; 4869 end = TCP_SKB_CB(skb)->end_seq; 4870 } else { 4871 if (before(TCP_SKB_CB(skb)->seq, start)) 4872 start = TCP_SKB_CB(skb)->seq; 4873 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4874 end = TCP_SKB_CB(skb)->end_seq; 4875 } 4876 } 4877 } 4878 4879 /* 4880 * Purge the out-of-order queue. 4881 * Return true if queue was pruned. 4882 */ 4883 static bool tcp_prune_ofo_queue(struct sock *sk) 4884 { 4885 struct tcp_sock *tp = tcp_sk(sk); 4886 bool res = false; 4887 4888 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4889 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4890 __skb_queue_purge(&tp->out_of_order_queue); 4891 4892 /* Reset SACK state. A conforming SACK implementation will 4893 * do the same at a timeout based retransmit. When a connection 4894 * is in a sad state like this, we care only about integrity 4895 * of the connection not performance. 4896 */ 4897 if (tp->rx_opt.sack_ok) 4898 tcp_sack_reset(&tp->rx_opt); 4899 sk_mem_reclaim(sk); 4900 res = true; 4901 } 4902 return res; 4903 } 4904 4905 /* Reduce allocated memory if we can, trying to get 4906 * the socket within its memory limits again. 4907 * 4908 * Return less than zero if we should start dropping frames 4909 * until the socket owning process reads some of the data 4910 * to stabilize the situation. 4911 */ 4912 static int tcp_prune_queue(struct sock *sk) 4913 { 4914 struct tcp_sock *tp = tcp_sk(sk); 4915 4916 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4917 4918 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4919 4920 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4921 tcp_clamp_window(sk); 4922 else if (sk_under_memory_pressure(sk)) 4923 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4924 4925 tcp_collapse_ofo_queue(sk); 4926 if (!skb_queue_empty(&sk->sk_receive_queue)) 4927 tcp_collapse(sk, &sk->sk_receive_queue, 4928 skb_peek(&sk->sk_receive_queue), 4929 NULL, 4930 tp->copied_seq, tp->rcv_nxt); 4931 sk_mem_reclaim(sk); 4932 4933 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4934 return 0; 4935 4936 /* Collapsing did not help, destructive actions follow. 4937 * This must not ever occur. */ 4938 4939 tcp_prune_ofo_queue(sk); 4940 4941 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4942 return 0; 4943 4944 /* If we are really being abused, tell the caller to silently 4945 * drop receive data on the floor. It will get retransmitted 4946 * and hopefully then we'll have sufficient space. 4947 */ 4948 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4949 4950 /* Massive buffer overcommit. */ 4951 tp->pred_flags = 0; 4952 return -1; 4953 } 4954 4955 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4956 * As additional protections, we do not touch cwnd in retransmission phases, 4957 * and if application hit its sndbuf limit recently. 4958 */ 4959 void tcp_cwnd_application_limited(struct sock *sk) 4960 { 4961 struct tcp_sock *tp = tcp_sk(sk); 4962 4963 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4964 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4965 /* Limited by application or receiver window. */ 4966 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4967 u32 win_used = max(tp->snd_cwnd_used, init_win); 4968 if (win_used < tp->snd_cwnd) { 4969 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4970 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4971 } 4972 tp->snd_cwnd_used = 0; 4973 } 4974 tp->snd_cwnd_stamp = tcp_time_stamp; 4975 } 4976 4977 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4978 { 4979 const struct tcp_sock *tp = tcp_sk(sk); 4980 4981 /* If the user specified a specific send buffer setting, do 4982 * not modify it. 4983 */ 4984 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4985 return false; 4986 4987 /* If we are under global TCP memory pressure, do not expand. */ 4988 if (sk_under_memory_pressure(sk)) 4989 return false; 4990 4991 /* If we are under soft global TCP memory pressure, do not expand. */ 4992 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4993 return false; 4994 4995 /* If we filled the congestion window, do not expand. */ 4996 if (tp->packets_out >= tp->snd_cwnd) 4997 return false; 4998 4999 return true; 5000 } 5001 5002 /* When incoming ACK allowed to free some skb from write_queue, 5003 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5004 * on the exit from tcp input handler. 5005 * 5006 * PROBLEM: sndbuf expansion does not work well with largesend. 5007 */ 5008 static void tcp_new_space(struct sock *sk) 5009 { 5010 struct tcp_sock *tp = tcp_sk(sk); 5011 5012 if (tcp_should_expand_sndbuf(sk)) { 5013 int sndmem = SKB_TRUESIZE(max_t(u32, 5014 tp->rx_opt.mss_clamp, 5015 tp->mss_cache) + 5016 MAX_TCP_HEADER); 5017 int demanded = max_t(unsigned int, tp->snd_cwnd, 5018 tp->reordering + 1); 5019 sndmem *= 2 * demanded; 5020 if (sndmem > sk->sk_sndbuf) 5021 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 5022 tp->snd_cwnd_stamp = tcp_time_stamp; 5023 } 5024 5025 sk->sk_write_space(sk); 5026 } 5027 5028 static void tcp_check_space(struct sock *sk) 5029 { 5030 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5031 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5032 if (sk->sk_socket && 5033 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5034 tcp_new_space(sk); 5035 } 5036 } 5037 5038 static inline void tcp_data_snd_check(struct sock *sk) 5039 { 5040 tcp_push_pending_frames(sk); 5041 tcp_check_space(sk); 5042 } 5043 5044 /* 5045 * Check if sending an ack is needed. 5046 */ 5047 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5048 { 5049 struct tcp_sock *tp = tcp_sk(sk); 5050 5051 /* More than one full frame received... */ 5052 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5053 /* ... and right edge of window advances far enough. 5054 * (tcp_recvmsg() will send ACK otherwise). Or... 5055 */ 5056 __tcp_select_window(sk) >= tp->rcv_wnd) || 5057 /* We ACK each frame or... */ 5058 tcp_in_quickack_mode(sk) || 5059 /* We have out of order data. */ 5060 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 5061 /* Then ack it now */ 5062 tcp_send_ack(sk); 5063 } else { 5064 /* Else, send delayed ack. */ 5065 tcp_send_delayed_ack(sk); 5066 } 5067 } 5068 5069 static inline void tcp_ack_snd_check(struct sock *sk) 5070 { 5071 if (!inet_csk_ack_scheduled(sk)) { 5072 /* We sent a data segment already. */ 5073 return; 5074 } 5075 __tcp_ack_snd_check(sk, 1); 5076 } 5077 5078 /* 5079 * This routine is only called when we have urgent data 5080 * signaled. Its the 'slow' part of tcp_urg. It could be 5081 * moved inline now as tcp_urg is only called from one 5082 * place. We handle URGent data wrong. We have to - as 5083 * BSD still doesn't use the correction from RFC961. 5084 * For 1003.1g we should support a new option TCP_STDURG to permit 5085 * either form (or just set the sysctl tcp_stdurg). 5086 */ 5087 5088 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5089 { 5090 struct tcp_sock *tp = tcp_sk(sk); 5091 u32 ptr = ntohs(th->urg_ptr); 5092 5093 if (ptr && !sysctl_tcp_stdurg) 5094 ptr--; 5095 ptr += ntohl(th->seq); 5096 5097 /* Ignore urgent data that we've already seen and read. */ 5098 if (after(tp->copied_seq, ptr)) 5099 return; 5100 5101 /* Do not replay urg ptr. 5102 * 5103 * NOTE: interesting situation not covered by specs. 5104 * Misbehaving sender may send urg ptr, pointing to segment, 5105 * which we already have in ofo queue. We are not able to fetch 5106 * such data and will stay in TCP_URG_NOTYET until will be eaten 5107 * by recvmsg(). Seems, we are not obliged to handle such wicked 5108 * situations. But it is worth to think about possibility of some 5109 * DoSes using some hypothetical application level deadlock. 5110 */ 5111 if (before(ptr, tp->rcv_nxt)) 5112 return; 5113 5114 /* Do we already have a newer (or duplicate) urgent pointer? */ 5115 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5116 return; 5117 5118 /* Tell the world about our new urgent pointer. */ 5119 sk_send_sigurg(sk); 5120 5121 /* We may be adding urgent data when the last byte read was 5122 * urgent. To do this requires some care. We cannot just ignore 5123 * tp->copied_seq since we would read the last urgent byte again 5124 * as data, nor can we alter copied_seq until this data arrives 5125 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5126 * 5127 * NOTE. Double Dutch. Rendering to plain English: author of comment 5128 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5129 * and expect that both A and B disappear from stream. This is _wrong_. 5130 * Though this happens in BSD with high probability, this is occasional. 5131 * Any application relying on this is buggy. Note also, that fix "works" 5132 * only in this artificial test. Insert some normal data between A and B and we will 5133 * decline of BSD again. Verdict: it is better to remove to trap 5134 * buggy users. 5135 */ 5136 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5137 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5138 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5139 tp->copied_seq++; 5140 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5141 __skb_unlink(skb, &sk->sk_receive_queue); 5142 __kfree_skb(skb); 5143 } 5144 } 5145 5146 tp->urg_data = TCP_URG_NOTYET; 5147 tp->urg_seq = ptr; 5148 5149 /* Disable header prediction. */ 5150 tp->pred_flags = 0; 5151 } 5152 5153 /* This is the 'fast' part of urgent handling. */ 5154 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5155 { 5156 struct tcp_sock *tp = tcp_sk(sk); 5157 5158 /* Check if we get a new urgent pointer - normally not. */ 5159 if (th->urg) 5160 tcp_check_urg(sk, th); 5161 5162 /* Do we wait for any urgent data? - normally not... */ 5163 if (tp->urg_data == TCP_URG_NOTYET) { 5164 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5165 th->syn; 5166 5167 /* Is the urgent pointer pointing into this packet? */ 5168 if (ptr < skb->len) { 5169 u8 tmp; 5170 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5171 BUG(); 5172 tp->urg_data = TCP_URG_VALID | tmp; 5173 if (!sock_flag(sk, SOCK_DEAD)) 5174 sk->sk_data_ready(sk, 0); 5175 } 5176 } 5177 } 5178 5179 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5180 { 5181 struct tcp_sock *tp = tcp_sk(sk); 5182 int chunk = skb->len - hlen; 5183 int err; 5184 5185 local_bh_enable(); 5186 if (skb_csum_unnecessary(skb)) 5187 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5188 else 5189 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5190 tp->ucopy.iov); 5191 5192 if (!err) { 5193 tp->ucopy.len -= chunk; 5194 tp->copied_seq += chunk; 5195 tcp_rcv_space_adjust(sk); 5196 } 5197 5198 local_bh_disable(); 5199 return err; 5200 } 5201 5202 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5203 struct sk_buff *skb) 5204 { 5205 __sum16 result; 5206 5207 if (sock_owned_by_user(sk)) { 5208 local_bh_enable(); 5209 result = __tcp_checksum_complete(skb); 5210 local_bh_disable(); 5211 } else { 5212 result = __tcp_checksum_complete(skb); 5213 } 5214 return result; 5215 } 5216 5217 static inline bool tcp_checksum_complete_user(struct sock *sk, 5218 struct sk_buff *skb) 5219 { 5220 return !skb_csum_unnecessary(skb) && 5221 __tcp_checksum_complete_user(sk, skb); 5222 } 5223 5224 #ifdef CONFIG_NET_DMA 5225 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5226 int hlen) 5227 { 5228 struct tcp_sock *tp = tcp_sk(sk); 5229 int chunk = skb->len - hlen; 5230 int dma_cookie; 5231 bool copied_early = false; 5232 5233 if (tp->ucopy.wakeup) 5234 return false; 5235 5236 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5237 tp->ucopy.dma_chan = net_dma_find_channel(); 5238 5239 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5240 5241 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5242 skb, hlen, 5243 tp->ucopy.iov, chunk, 5244 tp->ucopy.pinned_list); 5245 5246 if (dma_cookie < 0) 5247 goto out; 5248 5249 tp->ucopy.dma_cookie = dma_cookie; 5250 copied_early = true; 5251 5252 tp->ucopy.len -= chunk; 5253 tp->copied_seq += chunk; 5254 tcp_rcv_space_adjust(sk); 5255 5256 if ((tp->ucopy.len == 0) || 5257 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5258 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5259 tp->ucopy.wakeup = 1; 5260 sk->sk_data_ready(sk, 0); 5261 } 5262 } else if (chunk > 0) { 5263 tp->ucopy.wakeup = 1; 5264 sk->sk_data_ready(sk, 0); 5265 } 5266 out: 5267 return copied_early; 5268 } 5269 #endif /* CONFIG_NET_DMA */ 5270 5271 static void tcp_send_challenge_ack(struct sock *sk) 5272 { 5273 /* unprotected vars, we dont care of overwrites */ 5274 static u32 challenge_timestamp; 5275 static unsigned int challenge_count; 5276 u32 now = jiffies / HZ; 5277 5278 if (now != challenge_timestamp) { 5279 challenge_timestamp = now; 5280 challenge_count = 0; 5281 } 5282 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 5283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 5284 tcp_send_ack(sk); 5285 } 5286 } 5287 5288 /* Does PAWS and seqno based validation of an incoming segment, flags will 5289 * play significant role here. 5290 */ 5291 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5292 const struct tcphdr *th, int syn_inerr) 5293 { 5294 const u8 *hash_location; 5295 struct tcp_sock *tp = tcp_sk(sk); 5296 5297 /* RFC1323: H1. Apply PAWS check first. */ 5298 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5299 tp->rx_opt.saw_tstamp && 5300 tcp_paws_discard(sk, skb)) { 5301 if (!th->rst) { 5302 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5303 tcp_send_dupack(sk, skb); 5304 goto discard; 5305 } 5306 /* Reset is accepted even if it did not pass PAWS. */ 5307 } 5308 5309 /* Step 1: check sequence number */ 5310 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5311 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5312 * (RST) segments are validated by checking their SEQ-fields." 5313 * And page 69: "If an incoming segment is not acceptable, 5314 * an acknowledgment should be sent in reply (unless the RST 5315 * bit is set, if so drop the segment and return)". 5316 */ 5317 if (!th->rst) { 5318 if (th->syn) 5319 goto syn_challenge; 5320 tcp_send_dupack(sk, skb); 5321 } 5322 goto discard; 5323 } 5324 5325 /* Step 2: check RST bit */ 5326 if (th->rst) { 5327 /* RFC 5961 3.2 : 5328 * If sequence number exactly matches RCV.NXT, then 5329 * RESET the connection 5330 * else 5331 * Send a challenge ACK 5332 */ 5333 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5334 tcp_reset(sk); 5335 else 5336 tcp_send_challenge_ack(sk); 5337 goto discard; 5338 } 5339 5340 /* ts_recent update must be made after we are sure that the packet 5341 * is in window. 5342 */ 5343 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5344 5345 /* step 3: check security and precedence [ignored] */ 5346 5347 /* step 4: Check for a SYN 5348 * RFC 5691 4.2 : Send a challenge ack 5349 */ 5350 if (th->syn) { 5351 syn_challenge: 5352 if (syn_inerr) 5353 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5355 tcp_send_challenge_ack(sk); 5356 goto discard; 5357 } 5358 5359 return true; 5360 5361 discard: 5362 __kfree_skb(skb); 5363 return false; 5364 } 5365 5366 /* 5367 * TCP receive function for the ESTABLISHED state. 5368 * 5369 * It is split into a fast path and a slow path. The fast path is 5370 * disabled when: 5371 * - A zero window was announced from us - zero window probing 5372 * is only handled properly in the slow path. 5373 * - Out of order segments arrived. 5374 * - Urgent data is expected. 5375 * - There is no buffer space left 5376 * - Unexpected TCP flags/window values/header lengths are received 5377 * (detected by checking the TCP header against pred_flags) 5378 * - Data is sent in both directions. Fast path only supports pure senders 5379 * or pure receivers (this means either the sequence number or the ack 5380 * value must stay constant) 5381 * - Unexpected TCP option. 5382 * 5383 * When these conditions are not satisfied it drops into a standard 5384 * receive procedure patterned after RFC793 to handle all cases. 5385 * The first three cases are guaranteed by proper pred_flags setting, 5386 * the rest is checked inline. Fast processing is turned on in 5387 * tcp_data_queue when everything is OK. 5388 */ 5389 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5390 const struct tcphdr *th, unsigned int len) 5391 { 5392 struct tcp_sock *tp = tcp_sk(sk); 5393 5394 if (unlikely(sk->sk_rx_dst == NULL)) 5395 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5396 /* 5397 * Header prediction. 5398 * The code loosely follows the one in the famous 5399 * "30 instruction TCP receive" Van Jacobson mail. 5400 * 5401 * Van's trick is to deposit buffers into socket queue 5402 * on a device interrupt, to call tcp_recv function 5403 * on the receive process context and checksum and copy 5404 * the buffer to user space. smart... 5405 * 5406 * Our current scheme is not silly either but we take the 5407 * extra cost of the net_bh soft interrupt processing... 5408 * We do checksum and copy also but from device to kernel. 5409 */ 5410 5411 tp->rx_opt.saw_tstamp = 0; 5412 5413 /* pred_flags is 0xS?10 << 16 + snd_wnd 5414 * if header_prediction is to be made 5415 * 'S' will always be tp->tcp_header_len >> 2 5416 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5417 * turn it off (when there are holes in the receive 5418 * space for instance) 5419 * PSH flag is ignored. 5420 */ 5421 5422 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5423 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5424 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5425 int tcp_header_len = tp->tcp_header_len; 5426 5427 /* Timestamp header prediction: tcp_header_len 5428 * is automatically equal to th->doff*4 due to pred_flags 5429 * match. 5430 */ 5431 5432 /* Check timestamp */ 5433 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5434 /* No? Slow path! */ 5435 if (!tcp_parse_aligned_timestamp(tp, th)) 5436 goto slow_path; 5437 5438 /* If PAWS failed, check it more carefully in slow path */ 5439 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5440 goto slow_path; 5441 5442 /* DO NOT update ts_recent here, if checksum fails 5443 * and timestamp was corrupted part, it will result 5444 * in a hung connection since we will drop all 5445 * future packets due to the PAWS test. 5446 */ 5447 } 5448 5449 if (len <= tcp_header_len) { 5450 /* Bulk data transfer: sender */ 5451 if (len == tcp_header_len) { 5452 /* Predicted packet is in window by definition. 5453 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5454 * Hence, check seq<=rcv_wup reduces to: 5455 */ 5456 if (tcp_header_len == 5457 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5458 tp->rcv_nxt == tp->rcv_wup) 5459 tcp_store_ts_recent(tp); 5460 5461 /* We know that such packets are checksummed 5462 * on entry. 5463 */ 5464 tcp_ack(sk, skb, 0); 5465 __kfree_skb(skb); 5466 tcp_data_snd_check(sk); 5467 return 0; 5468 } else { /* Header too small */ 5469 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5470 goto discard; 5471 } 5472 } else { 5473 int eaten = 0; 5474 int copied_early = 0; 5475 bool fragstolen = false; 5476 5477 if (tp->copied_seq == tp->rcv_nxt && 5478 len - tcp_header_len <= tp->ucopy.len) { 5479 #ifdef CONFIG_NET_DMA 5480 if (tp->ucopy.task == current && 5481 sock_owned_by_user(sk) && 5482 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5483 copied_early = 1; 5484 eaten = 1; 5485 } 5486 #endif 5487 if (tp->ucopy.task == current && 5488 sock_owned_by_user(sk) && !copied_early) { 5489 __set_current_state(TASK_RUNNING); 5490 5491 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5492 eaten = 1; 5493 } 5494 if (eaten) { 5495 /* Predicted packet is in window by definition. 5496 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5497 * Hence, check seq<=rcv_wup reduces to: 5498 */ 5499 if (tcp_header_len == 5500 (sizeof(struct tcphdr) + 5501 TCPOLEN_TSTAMP_ALIGNED) && 5502 tp->rcv_nxt == tp->rcv_wup) 5503 tcp_store_ts_recent(tp); 5504 5505 tcp_rcv_rtt_measure_ts(sk, skb); 5506 5507 __skb_pull(skb, tcp_header_len); 5508 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5509 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5510 } 5511 if (copied_early) 5512 tcp_cleanup_rbuf(sk, skb->len); 5513 } 5514 if (!eaten) { 5515 if (tcp_checksum_complete_user(sk, skb)) 5516 goto csum_error; 5517 5518 /* Predicted packet is in window by definition. 5519 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5520 * Hence, check seq<=rcv_wup reduces to: 5521 */ 5522 if (tcp_header_len == 5523 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5524 tp->rcv_nxt == tp->rcv_wup) 5525 tcp_store_ts_recent(tp); 5526 5527 tcp_rcv_rtt_measure_ts(sk, skb); 5528 5529 if ((int)skb->truesize > sk->sk_forward_alloc) 5530 goto step5; 5531 5532 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5533 5534 /* Bulk data transfer: receiver */ 5535 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5536 &fragstolen); 5537 } 5538 5539 tcp_event_data_recv(sk, skb); 5540 5541 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5542 /* Well, only one small jumplet in fast path... */ 5543 tcp_ack(sk, skb, FLAG_DATA); 5544 tcp_data_snd_check(sk); 5545 if (!inet_csk_ack_scheduled(sk)) 5546 goto no_ack; 5547 } 5548 5549 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5550 __tcp_ack_snd_check(sk, 0); 5551 no_ack: 5552 #ifdef CONFIG_NET_DMA 5553 if (copied_early) 5554 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5555 else 5556 #endif 5557 if (eaten) 5558 kfree_skb_partial(skb, fragstolen); 5559 else 5560 sk->sk_data_ready(sk, 0); 5561 return 0; 5562 } 5563 } 5564 5565 slow_path: 5566 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5567 goto csum_error; 5568 5569 /* 5570 * Standard slow path. 5571 */ 5572 5573 if (!tcp_validate_incoming(sk, skb, th, 1)) 5574 return 0; 5575 5576 step5: 5577 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5578 goto discard; 5579 5580 tcp_rcv_rtt_measure_ts(sk, skb); 5581 5582 /* Process urgent data. */ 5583 tcp_urg(sk, skb, th); 5584 5585 /* step 7: process the segment text */ 5586 tcp_data_queue(sk, skb); 5587 5588 tcp_data_snd_check(sk); 5589 tcp_ack_snd_check(sk); 5590 return 0; 5591 5592 csum_error: 5593 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5594 5595 discard: 5596 __kfree_skb(skb); 5597 return 0; 5598 } 5599 EXPORT_SYMBOL(tcp_rcv_established); 5600 5601 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5602 { 5603 struct tcp_sock *tp = tcp_sk(sk); 5604 struct inet_connection_sock *icsk = inet_csk(sk); 5605 5606 tcp_set_state(sk, TCP_ESTABLISHED); 5607 5608 if (skb != NULL) { 5609 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5610 security_inet_conn_established(sk, skb); 5611 } 5612 5613 /* Make sure socket is routed, for correct metrics. */ 5614 icsk->icsk_af_ops->rebuild_header(sk); 5615 5616 tcp_init_metrics(sk); 5617 5618 tcp_init_congestion_control(sk); 5619 5620 /* Prevent spurious tcp_cwnd_restart() on first data 5621 * packet. 5622 */ 5623 tp->lsndtime = tcp_time_stamp; 5624 5625 tcp_init_buffer_space(sk); 5626 5627 if (sock_flag(sk, SOCK_KEEPOPEN)) 5628 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5629 5630 if (!tp->rx_opt.snd_wscale) 5631 __tcp_fast_path_on(tp, tp->snd_wnd); 5632 else 5633 tp->pred_flags = 0; 5634 5635 if (!sock_flag(sk, SOCK_DEAD)) { 5636 sk->sk_state_change(sk); 5637 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5638 } 5639 } 5640 5641 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5642 struct tcp_fastopen_cookie *cookie) 5643 { 5644 struct tcp_sock *tp = tcp_sk(sk); 5645 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5646 u16 mss = tp->rx_opt.mss_clamp; 5647 bool syn_drop; 5648 5649 if (mss == tp->rx_opt.user_mss) { 5650 struct tcp_options_received opt; 5651 const u8 *hash_location; 5652 5653 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5654 tcp_clear_options(&opt); 5655 opt.user_mss = opt.mss_clamp = 0; 5656 tcp_parse_options(synack, &opt, &hash_location, 0, NULL); 5657 mss = opt.mss_clamp; 5658 } 5659 5660 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5661 cookie->len = -1; 5662 5663 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5664 * the remote receives only the retransmitted (regular) SYNs: either 5665 * the original SYN-data or the corresponding SYN-ACK is lost. 5666 */ 5667 syn_drop = (cookie->len <= 0 && data && 5668 inet_csk(sk)->icsk_retransmits); 5669 5670 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5671 5672 if (data) { /* Retransmit unacked data in SYN */ 5673 tcp_retransmit_skb(sk, data); 5674 tcp_rearm_rto(sk); 5675 return true; 5676 } 5677 return false; 5678 } 5679 5680 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5681 const struct tcphdr *th, unsigned int len) 5682 { 5683 const u8 *hash_location; 5684 struct inet_connection_sock *icsk = inet_csk(sk); 5685 struct tcp_sock *tp = tcp_sk(sk); 5686 struct tcp_cookie_values *cvp = tp->cookie_values; 5687 struct tcp_fastopen_cookie foc = { .len = -1 }; 5688 int saved_clamp = tp->rx_opt.mss_clamp; 5689 5690 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc); 5691 5692 if (th->ack) { 5693 /* rfc793: 5694 * "If the state is SYN-SENT then 5695 * first check the ACK bit 5696 * If the ACK bit is set 5697 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5698 * a reset (unless the RST bit is set, if so drop 5699 * the segment and return)" 5700 */ 5701 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5702 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5703 goto reset_and_undo; 5704 5705 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5706 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5707 tcp_time_stamp)) { 5708 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5709 goto reset_and_undo; 5710 } 5711 5712 /* Now ACK is acceptable. 5713 * 5714 * "If the RST bit is set 5715 * If the ACK was acceptable then signal the user "error: 5716 * connection reset", drop the segment, enter CLOSED state, 5717 * delete TCB, and return." 5718 */ 5719 5720 if (th->rst) { 5721 tcp_reset(sk); 5722 goto discard; 5723 } 5724 5725 /* rfc793: 5726 * "fifth, if neither of the SYN or RST bits is set then 5727 * drop the segment and return." 5728 * 5729 * See note below! 5730 * --ANK(990513) 5731 */ 5732 if (!th->syn) 5733 goto discard_and_undo; 5734 5735 /* rfc793: 5736 * "If the SYN bit is on ... 5737 * are acceptable then ... 5738 * (our SYN has been ACKed), change the connection 5739 * state to ESTABLISHED..." 5740 */ 5741 5742 TCP_ECN_rcv_synack(tp, th); 5743 5744 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5745 tcp_ack(sk, skb, FLAG_SLOWPATH); 5746 5747 /* Ok.. it's good. Set up sequence numbers and 5748 * move to established. 5749 */ 5750 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5751 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5752 5753 /* RFC1323: The window in SYN & SYN/ACK segments is 5754 * never scaled. 5755 */ 5756 tp->snd_wnd = ntohs(th->window); 5757 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5758 5759 if (!tp->rx_opt.wscale_ok) { 5760 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5761 tp->window_clamp = min(tp->window_clamp, 65535U); 5762 } 5763 5764 if (tp->rx_opt.saw_tstamp) { 5765 tp->rx_opt.tstamp_ok = 1; 5766 tp->tcp_header_len = 5767 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5768 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5769 tcp_store_ts_recent(tp); 5770 } else { 5771 tp->tcp_header_len = sizeof(struct tcphdr); 5772 } 5773 5774 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5775 tcp_enable_fack(tp); 5776 5777 tcp_mtup_init(sk); 5778 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5779 tcp_initialize_rcv_mss(sk); 5780 5781 /* Remember, tcp_poll() does not lock socket! 5782 * Change state from SYN-SENT only after copied_seq 5783 * is initialized. */ 5784 tp->copied_seq = tp->rcv_nxt; 5785 5786 if (cvp != NULL && 5787 cvp->cookie_pair_size > 0 && 5788 tp->rx_opt.cookie_plus > 0) { 5789 int cookie_size = tp->rx_opt.cookie_plus 5790 - TCPOLEN_COOKIE_BASE; 5791 int cookie_pair_size = cookie_size 5792 + cvp->cookie_desired; 5793 5794 /* A cookie extension option was sent and returned. 5795 * Note that each incoming SYNACK replaces the 5796 * Responder cookie. The initial exchange is most 5797 * fragile, as protection against spoofing relies 5798 * entirely upon the sequence and timestamp (above). 5799 * This replacement strategy allows the correct pair to 5800 * pass through, while any others will be filtered via 5801 * Responder verification later. 5802 */ 5803 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5804 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5805 hash_location, cookie_size); 5806 cvp->cookie_pair_size = cookie_pair_size; 5807 } 5808 } 5809 5810 smp_mb(); 5811 5812 tcp_finish_connect(sk, skb); 5813 5814 if ((tp->syn_fastopen || tp->syn_data) && 5815 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5816 return -1; 5817 5818 if (sk->sk_write_pending || 5819 icsk->icsk_accept_queue.rskq_defer_accept || 5820 icsk->icsk_ack.pingpong) { 5821 /* Save one ACK. Data will be ready after 5822 * several ticks, if write_pending is set. 5823 * 5824 * It may be deleted, but with this feature tcpdumps 5825 * look so _wonderfully_ clever, that I was not able 5826 * to stand against the temptation 8) --ANK 5827 */ 5828 inet_csk_schedule_ack(sk); 5829 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5830 tcp_enter_quickack_mode(sk); 5831 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5832 TCP_DELACK_MAX, TCP_RTO_MAX); 5833 5834 discard: 5835 __kfree_skb(skb); 5836 return 0; 5837 } else { 5838 tcp_send_ack(sk); 5839 } 5840 return -1; 5841 } 5842 5843 /* No ACK in the segment */ 5844 5845 if (th->rst) { 5846 /* rfc793: 5847 * "If the RST bit is set 5848 * 5849 * Otherwise (no ACK) drop the segment and return." 5850 */ 5851 5852 goto discard_and_undo; 5853 } 5854 5855 /* PAWS check. */ 5856 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5857 tcp_paws_reject(&tp->rx_opt, 0)) 5858 goto discard_and_undo; 5859 5860 if (th->syn) { 5861 /* We see SYN without ACK. It is attempt of 5862 * simultaneous connect with crossed SYNs. 5863 * Particularly, it can be connect to self. 5864 */ 5865 tcp_set_state(sk, TCP_SYN_RECV); 5866 5867 if (tp->rx_opt.saw_tstamp) { 5868 tp->rx_opt.tstamp_ok = 1; 5869 tcp_store_ts_recent(tp); 5870 tp->tcp_header_len = 5871 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5872 } else { 5873 tp->tcp_header_len = sizeof(struct tcphdr); 5874 } 5875 5876 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5877 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5878 5879 /* RFC1323: The window in SYN & SYN/ACK segments is 5880 * never scaled. 5881 */ 5882 tp->snd_wnd = ntohs(th->window); 5883 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5884 tp->max_window = tp->snd_wnd; 5885 5886 TCP_ECN_rcv_syn(tp, th); 5887 5888 tcp_mtup_init(sk); 5889 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5890 tcp_initialize_rcv_mss(sk); 5891 5892 tcp_send_synack(sk); 5893 #if 0 5894 /* Note, we could accept data and URG from this segment. 5895 * There are no obstacles to make this. 5896 * 5897 * However, if we ignore data in ACKless segments sometimes, 5898 * we have no reasons to accept it sometimes. 5899 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5900 * is not flawless. So, discard packet for sanity. 5901 * Uncomment this return to process the data. 5902 */ 5903 return -1; 5904 #else 5905 goto discard; 5906 #endif 5907 } 5908 /* "fifth, if neither of the SYN or RST bits is set then 5909 * drop the segment and return." 5910 */ 5911 5912 discard_and_undo: 5913 tcp_clear_options(&tp->rx_opt); 5914 tp->rx_opt.mss_clamp = saved_clamp; 5915 goto discard; 5916 5917 reset_and_undo: 5918 tcp_clear_options(&tp->rx_opt); 5919 tp->rx_opt.mss_clamp = saved_clamp; 5920 return 1; 5921 } 5922 5923 /* 5924 * This function implements the receiving procedure of RFC 793 for 5925 * all states except ESTABLISHED and TIME_WAIT. 5926 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5927 * address independent. 5928 */ 5929 5930 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5931 const struct tcphdr *th, unsigned int len) 5932 { 5933 struct tcp_sock *tp = tcp_sk(sk); 5934 struct inet_connection_sock *icsk = inet_csk(sk); 5935 int queued = 0; 5936 5937 tp->rx_opt.saw_tstamp = 0; 5938 5939 switch (sk->sk_state) { 5940 case TCP_CLOSE: 5941 goto discard; 5942 5943 case TCP_LISTEN: 5944 if (th->ack) 5945 return 1; 5946 5947 if (th->rst) 5948 goto discard; 5949 5950 if (th->syn) { 5951 if (th->fin) 5952 goto discard; 5953 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5954 return 1; 5955 5956 /* Now we have several options: In theory there is 5957 * nothing else in the frame. KA9Q has an option to 5958 * send data with the syn, BSD accepts data with the 5959 * syn up to the [to be] advertised window and 5960 * Solaris 2.1 gives you a protocol error. For now 5961 * we just ignore it, that fits the spec precisely 5962 * and avoids incompatibilities. It would be nice in 5963 * future to drop through and process the data. 5964 * 5965 * Now that TTCP is starting to be used we ought to 5966 * queue this data. 5967 * But, this leaves one open to an easy denial of 5968 * service attack, and SYN cookies can't defend 5969 * against this problem. So, we drop the data 5970 * in the interest of security over speed unless 5971 * it's still in use. 5972 */ 5973 kfree_skb(skb); 5974 return 0; 5975 } 5976 goto discard; 5977 5978 case TCP_SYN_SENT: 5979 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5980 if (queued >= 0) 5981 return queued; 5982 5983 /* Do step6 onward by hand. */ 5984 tcp_urg(sk, skb, th); 5985 __kfree_skb(skb); 5986 tcp_data_snd_check(sk); 5987 return 0; 5988 } 5989 5990 if (!tcp_validate_incoming(sk, skb, th, 0)) 5991 return 0; 5992 5993 /* step 5: check the ACK field */ 5994 if (th->ack) { 5995 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5996 5997 switch (sk->sk_state) { 5998 case TCP_SYN_RECV: 5999 if (acceptable) { 6000 tp->copied_seq = tp->rcv_nxt; 6001 smp_mb(); 6002 tcp_set_state(sk, TCP_ESTABLISHED); 6003 sk->sk_state_change(sk); 6004 6005 /* Note, that this wakeup is only for marginal 6006 * crossed SYN case. Passively open sockets 6007 * are not waked up, because sk->sk_sleep == 6008 * NULL and sk->sk_socket == NULL. 6009 */ 6010 if (sk->sk_socket) 6011 sk_wake_async(sk, 6012 SOCK_WAKE_IO, POLL_OUT); 6013 6014 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6015 tp->snd_wnd = ntohs(th->window) << 6016 tp->rx_opt.snd_wscale; 6017 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6018 6019 if (tp->rx_opt.tstamp_ok) 6020 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6021 6022 /* Make sure socket is routed, for 6023 * correct metrics. 6024 */ 6025 icsk->icsk_af_ops->rebuild_header(sk); 6026 6027 tcp_init_metrics(sk); 6028 6029 tcp_init_congestion_control(sk); 6030 6031 /* Prevent spurious tcp_cwnd_restart() on 6032 * first data packet. 6033 */ 6034 tp->lsndtime = tcp_time_stamp; 6035 6036 tcp_mtup_init(sk); 6037 tcp_initialize_rcv_mss(sk); 6038 tcp_init_buffer_space(sk); 6039 tcp_fast_path_on(tp); 6040 } else { 6041 return 1; 6042 } 6043 break; 6044 6045 case TCP_FIN_WAIT1: 6046 if (tp->snd_una == tp->write_seq) { 6047 struct dst_entry *dst; 6048 6049 tcp_set_state(sk, TCP_FIN_WAIT2); 6050 sk->sk_shutdown |= SEND_SHUTDOWN; 6051 6052 dst = __sk_dst_get(sk); 6053 if (dst) 6054 dst_confirm(dst); 6055 6056 if (!sock_flag(sk, SOCK_DEAD)) 6057 /* Wake up lingering close() */ 6058 sk->sk_state_change(sk); 6059 else { 6060 int tmo; 6061 6062 if (tp->linger2 < 0 || 6063 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6064 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6065 tcp_done(sk); 6066 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6067 return 1; 6068 } 6069 6070 tmo = tcp_fin_time(sk); 6071 if (tmo > TCP_TIMEWAIT_LEN) { 6072 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6073 } else if (th->fin || sock_owned_by_user(sk)) { 6074 /* Bad case. We could lose such FIN otherwise. 6075 * It is not a big problem, but it looks confusing 6076 * and not so rare event. We still can lose it now, 6077 * if it spins in bh_lock_sock(), but it is really 6078 * marginal case. 6079 */ 6080 inet_csk_reset_keepalive_timer(sk, tmo); 6081 } else { 6082 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6083 goto discard; 6084 } 6085 } 6086 } 6087 break; 6088 6089 case TCP_CLOSING: 6090 if (tp->snd_una == tp->write_seq) { 6091 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6092 goto discard; 6093 } 6094 break; 6095 6096 case TCP_LAST_ACK: 6097 if (tp->snd_una == tp->write_seq) { 6098 tcp_update_metrics(sk); 6099 tcp_done(sk); 6100 goto discard; 6101 } 6102 break; 6103 } 6104 } else 6105 goto discard; 6106 6107 /* step 6: check the URG bit */ 6108 tcp_urg(sk, skb, th); 6109 6110 /* step 7: process the segment text */ 6111 switch (sk->sk_state) { 6112 case TCP_CLOSE_WAIT: 6113 case TCP_CLOSING: 6114 case TCP_LAST_ACK: 6115 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6116 break; 6117 case TCP_FIN_WAIT1: 6118 case TCP_FIN_WAIT2: 6119 /* RFC 793 says to queue data in these states, 6120 * RFC 1122 says we MUST send a reset. 6121 * BSD 4.4 also does reset. 6122 */ 6123 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6124 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6125 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6126 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6127 tcp_reset(sk); 6128 return 1; 6129 } 6130 } 6131 /* Fall through */ 6132 case TCP_ESTABLISHED: 6133 tcp_data_queue(sk, skb); 6134 queued = 1; 6135 break; 6136 } 6137 6138 /* tcp_data could move socket to TIME-WAIT */ 6139 if (sk->sk_state != TCP_CLOSE) { 6140 tcp_data_snd_check(sk); 6141 tcp_ack_snd_check(sk); 6142 } 6143 6144 if (!queued) { 6145 discard: 6146 __kfree_skb(skb); 6147 } 6148 return 0; 6149 } 6150 EXPORT_SYMBOL(tcp_rcv_state_process); 6151