xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 911b8eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 #ifdef CONFIG_CGROUP_BPF
142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
143 {
144 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
145 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
146 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
147 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
149 	struct bpf_sock_ops_kern sock_ops;
150 
151 	if (likely(!unknown_opt && !parse_all_opt))
152 		return;
153 
154 	/* The skb will be handled in the
155 	 * bpf_skops_established() or
156 	 * bpf_skops_write_hdr_opt().
157 	 */
158 	switch (sk->sk_state) {
159 	case TCP_SYN_RECV:
160 	case TCP_SYN_SENT:
161 	case TCP_LISTEN:
162 		return;
163 	}
164 
165 	sock_owned_by_me(sk);
166 
167 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
168 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
169 	sock_ops.is_fullsock = 1;
170 	sock_ops.sk = sk;
171 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
172 
173 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
174 }
175 
176 static void bpf_skops_established(struct sock *sk, int bpf_op,
177 				  struct sk_buff *skb)
178 {
179 	struct bpf_sock_ops_kern sock_ops;
180 
181 	sock_owned_by_me(sk);
182 
183 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
184 	sock_ops.op = bpf_op;
185 	sock_ops.is_fullsock = 1;
186 	sock_ops.sk = sk;
187 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
188 	if (skb)
189 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
190 
191 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
192 }
193 #else
194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
195 {
196 }
197 
198 static void bpf_skops_established(struct sock *sk, int bpf_op,
199 				  struct sk_buff *skb)
200 {
201 }
202 #endif
203 
204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
205 			     unsigned int len)
206 {
207 	static bool __once __read_mostly;
208 
209 	if (!__once) {
210 		struct net_device *dev;
211 
212 		__once = true;
213 
214 		rcu_read_lock();
215 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 		if (!dev || len >= dev->mtu)
217 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 				dev ? dev->name : "Unknown driver");
219 		rcu_read_unlock();
220 	}
221 }
222 
223 /* Adapt the MSS value used to make delayed ack decision to the
224  * real world.
225  */
226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
230 	unsigned int len;
231 
232 	icsk->icsk_ack.last_seg_size = 0;
233 
234 	/* skb->len may jitter because of SACKs, even if peer
235 	 * sends good full-sized frames.
236 	 */
237 	len = skb_shinfo(skb)->gso_size ? : skb->len;
238 	if (len >= icsk->icsk_ack.rcv_mss) {
239 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
240 					       tcp_sk(sk)->advmss);
241 		/* Account for possibly-removed options */
242 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
243 				   MAX_TCP_OPTION_SPACE))
244 			tcp_gro_dev_warn(sk, skb, len);
245 	} else {
246 		/* Otherwise, we make more careful check taking into account,
247 		 * that SACKs block is variable.
248 		 *
249 		 * "len" is invariant segment length, including TCP header.
250 		 */
251 		len += skb->data - skb_transport_header(skb);
252 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
253 		    /* If PSH is not set, packet should be
254 		     * full sized, provided peer TCP is not badly broken.
255 		     * This observation (if it is correct 8)) allows
256 		     * to handle super-low mtu links fairly.
257 		     */
258 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
259 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
260 			/* Subtract also invariant (if peer is RFC compliant),
261 			 * tcp header plus fixed timestamp option length.
262 			 * Resulting "len" is MSS free of SACK jitter.
263 			 */
264 			len -= tcp_sk(sk)->tcp_header_len;
265 			icsk->icsk_ack.last_seg_size = len;
266 			if (len == lss) {
267 				icsk->icsk_ack.rcv_mss = len;
268 				return;
269 			}
270 		}
271 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
272 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
273 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 	}
275 }
276 
277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
278 {
279 	struct inet_connection_sock *icsk = inet_csk(sk);
280 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
281 
282 	if (quickacks == 0)
283 		quickacks = 2;
284 	quickacks = min(quickacks, max_quickacks);
285 	if (quickacks > icsk->icsk_ack.quick)
286 		icsk->icsk_ack.quick = quickacks;
287 }
288 
289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
290 {
291 	struct inet_connection_sock *icsk = inet_csk(sk);
292 
293 	tcp_incr_quickack(sk, max_quickacks);
294 	inet_csk_exit_pingpong_mode(sk);
295 	icsk->icsk_ack.ato = TCP_ATO_MIN;
296 }
297 EXPORT_SYMBOL(tcp_enter_quickack_mode);
298 
299 /* Send ACKs quickly, if "quick" count is not exhausted
300  * and the session is not interactive.
301  */
302 
303 static bool tcp_in_quickack_mode(struct sock *sk)
304 {
305 	const struct inet_connection_sock *icsk = inet_csk(sk);
306 	const struct dst_entry *dst = __sk_dst_get(sk);
307 
308 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
309 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
310 }
311 
312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
313 {
314 	if (tp->ecn_flags & TCP_ECN_OK)
315 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
316 }
317 
318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
319 {
320 	if (tcp_hdr(skb)->cwr) {
321 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
322 
323 		/* If the sender is telling us it has entered CWR, then its
324 		 * cwnd may be very low (even just 1 packet), so we should ACK
325 		 * immediately.
326 		 */
327 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
328 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
329 	}
330 }
331 
332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
333 {
334 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
335 }
336 
337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 
341 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
342 	case INET_ECN_NOT_ECT:
343 		/* Funny extension: if ECT is not set on a segment,
344 		 * and we already seen ECT on a previous segment,
345 		 * it is probably a retransmit.
346 		 */
347 		if (tp->ecn_flags & TCP_ECN_SEEN)
348 			tcp_enter_quickack_mode(sk, 2);
349 		break;
350 	case INET_ECN_CE:
351 		if (tcp_ca_needs_ecn(sk))
352 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
353 
354 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
355 			/* Better not delay acks, sender can have a very low cwnd */
356 			tcp_enter_quickack_mode(sk, 2);
357 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
358 		}
359 		tp->ecn_flags |= TCP_ECN_SEEN;
360 		break;
361 	default:
362 		if (tcp_ca_needs_ecn(sk))
363 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
364 		tp->ecn_flags |= TCP_ECN_SEEN;
365 		break;
366 	}
367 }
368 
369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
370 {
371 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
372 		__tcp_ecn_check_ce(sk, skb);
373 }
374 
375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
376 {
377 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
378 		tp->ecn_flags &= ~TCP_ECN_OK;
379 }
380 
381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
382 {
383 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
384 		tp->ecn_flags &= ~TCP_ECN_OK;
385 }
386 
387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
388 {
389 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
390 		return true;
391 	return false;
392 }
393 
394 /* Buffer size and advertised window tuning.
395  *
396  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
397  */
398 
399 static void tcp_sndbuf_expand(struct sock *sk)
400 {
401 	const struct tcp_sock *tp = tcp_sk(sk);
402 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
403 	int sndmem, per_mss;
404 	u32 nr_segs;
405 
406 	/* Worst case is non GSO/TSO : each frame consumes one skb
407 	 * and skb->head is kmalloced using power of two area of memory
408 	 */
409 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
410 		  MAX_TCP_HEADER +
411 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
412 
413 	per_mss = roundup_pow_of_two(per_mss) +
414 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
415 
416 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
417 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
418 
419 	/* Fast Recovery (RFC 5681 3.2) :
420 	 * Cubic needs 1.7 factor, rounded to 2 to include
421 	 * extra cushion (application might react slowly to EPOLLOUT)
422 	 */
423 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
424 	sndmem *= nr_segs * per_mss;
425 
426 	if (sk->sk_sndbuf < sndmem)
427 		WRITE_ONCE(sk->sk_sndbuf,
428 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
429 }
430 
431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
432  *
433  * All tcp_full_space() is split to two parts: "network" buffer, allocated
434  * forward and advertised in receiver window (tp->rcv_wnd) and
435  * "application buffer", required to isolate scheduling/application
436  * latencies from network.
437  * window_clamp is maximal advertised window. It can be less than
438  * tcp_full_space(), in this case tcp_full_space() - window_clamp
439  * is reserved for "application" buffer. The less window_clamp is
440  * the smoother our behaviour from viewpoint of network, but the lower
441  * throughput and the higher sensitivity of the connection to losses. 8)
442  *
443  * rcv_ssthresh is more strict window_clamp used at "slow start"
444  * phase to predict further behaviour of this connection.
445  * It is used for two goals:
446  * - to enforce header prediction at sender, even when application
447  *   requires some significant "application buffer". It is check #1.
448  * - to prevent pruning of receive queue because of misprediction
449  *   of receiver window. Check #2.
450  *
451  * The scheme does not work when sender sends good segments opening
452  * window and then starts to feed us spaghetti. But it should work
453  * in common situations. Otherwise, we have to rely on queue collapsing.
454  */
455 
456 /* Slow part of check#2. */
457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
458 {
459 	struct tcp_sock *tp = tcp_sk(sk);
460 	/* Optimize this! */
461 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
462 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
463 
464 	while (tp->rcv_ssthresh <= window) {
465 		if (truesize <= skb->len)
466 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
467 
468 		truesize >>= 1;
469 		window >>= 1;
470 	}
471 	return 0;
472 }
473 
474 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
475 {
476 	struct tcp_sock *tp = tcp_sk(sk);
477 	int room;
478 
479 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
480 
481 	/* Check #1 */
482 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
483 		int incr;
484 
485 		/* Check #2. Increase window, if skb with such overhead
486 		 * will fit to rcvbuf in future.
487 		 */
488 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
489 			incr = 2 * tp->advmss;
490 		else
491 			incr = __tcp_grow_window(sk, skb);
492 
493 		if (incr) {
494 			incr = max_t(int, incr, 2 * skb->len);
495 			tp->rcv_ssthresh += min(room, incr);
496 			inet_csk(sk)->icsk_ack.quick |= 1;
497 		}
498 	}
499 }
500 
501 /* 3. Try to fixup all. It is made immediately after connection enters
502  *    established state.
503  */
504 static void tcp_init_buffer_space(struct sock *sk)
505 {
506 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
507 	struct tcp_sock *tp = tcp_sk(sk);
508 	int maxwin;
509 
510 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
511 		tcp_sndbuf_expand(sk);
512 
513 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
514 	tcp_mstamp_refresh(tp);
515 	tp->rcvq_space.time = tp->tcp_mstamp;
516 	tp->rcvq_space.seq = tp->copied_seq;
517 
518 	maxwin = tcp_full_space(sk);
519 
520 	if (tp->window_clamp >= maxwin) {
521 		tp->window_clamp = maxwin;
522 
523 		if (tcp_app_win && maxwin > 4 * tp->advmss)
524 			tp->window_clamp = max(maxwin -
525 					       (maxwin >> tcp_app_win),
526 					       4 * tp->advmss);
527 	}
528 
529 	/* Force reservation of one segment. */
530 	if (tcp_app_win &&
531 	    tp->window_clamp > 2 * tp->advmss &&
532 	    tp->window_clamp + tp->advmss > maxwin)
533 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
534 
535 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
536 	tp->snd_cwnd_stamp = tcp_jiffies32;
537 }
538 
539 /* 4. Recalculate window clamp after socket hit its memory bounds. */
540 static void tcp_clamp_window(struct sock *sk)
541 {
542 	struct tcp_sock *tp = tcp_sk(sk);
543 	struct inet_connection_sock *icsk = inet_csk(sk);
544 	struct net *net = sock_net(sk);
545 
546 	icsk->icsk_ack.quick = 0;
547 
548 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
549 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
550 	    !tcp_under_memory_pressure(sk) &&
551 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
552 		WRITE_ONCE(sk->sk_rcvbuf,
553 			   min(atomic_read(&sk->sk_rmem_alloc),
554 			       net->ipv4.sysctl_tcp_rmem[2]));
555 	}
556 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
557 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
558 }
559 
560 /* Initialize RCV_MSS value.
561  * RCV_MSS is an our guess about MSS used by the peer.
562  * We haven't any direct information about the MSS.
563  * It's better to underestimate the RCV_MSS rather than overestimate.
564  * Overestimations make us ACKing less frequently than needed.
565  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
566  */
567 void tcp_initialize_rcv_mss(struct sock *sk)
568 {
569 	const struct tcp_sock *tp = tcp_sk(sk);
570 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
571 
572 	hint = min(hint, tp->rcv_wnd / 2);
573 	hint = min(hint, TCP_MSS_DEFAULT);
574 	hint = max(hint, TCP_MIN_MSS);
575 
576 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
577 }
578 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
579 
580 /* Receiver "autotuning" code.
581  *
582  * The algorithm for RTT estimation w/o timestamps is based on
583  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
584  * <https://public.lanl.gov/radiant/pubs.html#DRS>
585  *
586  * More detail on this code can be found at
587  * <http://staff.psc.edu/jheffner/>,
588  * though this reference is out of date.  A new paper
589  * is pending.
590  */
591 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
592 {
593 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
594 	long m = sample;
595 
596 	if (new_sample != 0) {
597 		/* If we sample in larger samples in the non-timestamp
598 		 * case, we could grossly overestimate the RTT especially
599 		 * with chatty applications or bulk transfer apps which
600 		 * are stalled on filesystem I/O.
601 		 *
602 		 * Also, since we are only going for a minimum in the
603 		 * non-timestamp case, we do not smooth things out
604 		 * else with timestamps disabled convergence takes too
605 		 * long.
606 		 */
607 		if (!win_dep) {
608 			m -= (new_sample >> 3);
609 			new_sample += m;
610 		} else {
611 			m <<= 3;
612 			if (m < new_sample)
613 				new_sample = m;
614 		}
615 	} else {
616 		/* No previous measure. */
617 		new_sample = m << 3;
618 	}
619 
620 	tp->rcv_rtt_est.rtt_us = new_sample;
621 }
622 
623 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
624 {
625 	u32 delta_us;
626 
627 	if (tp->rcv_rtt_est.time == 0)
628 		goto new_measure;
629 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
630 		return;
631 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
632 	if (!delta_us)
633 		delta_us = 1;
634 	tcp_rcv_rtt_update(tp, delta_us, 1);
635 
636 new_measure:
637 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
638 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
639 }
640 
641 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
642 					  const struct sk_buff *skb)
643 {
644 	struct tcp_sock *tp = tcp_sk(sk);
645 
646 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
647 		return;
648 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
649 
650 	if (TCP_SKB_CB(skb)->end_seq -
651 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
652 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
653 		u32 delta_us;
654 
655 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
656 			if (!delta)
657 				delta = 1;
658 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
659 			tcp_rcv_rtt_update(tp, delta_us, 0);
660 		}
661 	}
662 }
663 
664 /*
665  * This function should be called every time data is copied to user space.
666  * It calculates the appropriate TCP receive buffer space.
667  */
668 void tcp_rcv_space_adjust(struct sock *sk)
669 {
670 	struct tcp_sock *tp = tcp_sk(sk);
671 	u32 copied;
672 	int time;
673 
674 	trace_tcp_rcv_space_adjust(sk);
675 
676 	tcp_mstamp_refresh(tp);
677 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
678 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
679 		return;
680 
681 	/* Number of bytes copied to user in last RTT */
682 	copied = tp->copied_seq - tp->rcvq_space.seq;
683 	if (copied <= tp->rcvq_space.space)
684 		goto new_measure;
685 
686 	/* A bit of theory :
687 	 * copied = bytes received in previous RTT, our base window
688 	 * To cope with packet losses, we need a 2x factor
689 	 * To cope with slow start, and sender growing its cwin by 100 %
690 	 * every RTT, we need a 4x factor, because the ACK we are sending
691 	 * now is for the next RTT, not the current one :
692 	 * <prev RTT . ><current RTT .. ><next RTT .... >
693 	 */
694 
695 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
696 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
697 		int rcvmem, rcvbuf;
698 		u64 rcvwin, grow;
699 
700 		/* minimal window to cope with packet losses, assuming
701 		 * steady state. Add some cushion because of small variations.
702 		 */
703 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
704 
705 		/* Accommodate for sender rate increase (eg. slow start) */
706 		grow = rcvwin * (copied - tp->rcvq_space.space);
707 		do_div(grow, tp->rcvq_space.space);
708 		rcvwin += (grow << 1);
709 
710 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
711 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
712 			rcvmem += 128;
713 
714 		do_div(rcvwin, tp->advmss);
715 		rcvbuf = min_t(u64, rcvwin * rcvmem,
716 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
717 		if (rcvbuf > sk->sk_rcvbuf) {
718 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
719 
720 			/* Make the window clamp follow along.  */
721 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
722 		}
723 	}
724 	tp->rcvq_space.space = copied;
725 
726 new_measure:
727 	tp->rcvq_space.seq = tp->copied_seq;
728 	tp->rcvq_space.time = tp->tcp_mstamp;
729 }
730 
731 /* There is something which you must keep in mind when you analyze the
732  * behavior of the tp->ato delayed ack timeout interval.  When a
733  * connection starts up, we want to ack as quickly as possible.  The
734  * problem is that "good" TCP's do slow start at the beginning of data
735  * transmission.  The means that until we send the first few ACK's the
736  * sender will sit on his end and only queue most of his data, because
737  * he can only send snd_cwnd unacked packets at any given time.  For
738  * each ACK we send, he increments snd_cwnd and transmits more of his
739  * queue.  -DaveM
740  */
741 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
742 {
743 	struct tcp_sock *tp = tcp_sk(sk);
744 	struct inet_connection_sock *icsk = inet_csk(sk);
745 	u32 now;
746 
747 	inet_csk_schedule_ack(sk);
748 
749 	tcp_measure_rcv_mss(sk, skb);
750 
751 	tcp_rcv_rtt_measure(tp);
752 
753 	now = tcp_jiffies32;
754 
755 	if (!icsk->icsk_ack.ato) {
756 		/* The _first_ data packet received, initialize
757 		 * delayed ACK engine.
758 		 */
759 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
760 		icsk->icsk_ack.ato = TCP_ATO_MIN;
761 	} else {
762 		int m = now - icsk->icsk_ack.lrcvtime;
763 
764 		if (m <= TCP_ATO_MIN / 2) {
765 			/* The fastest case is the first. */
766 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
767 		} else if (m < icsk->icsk_ack.ato) {
768 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
769 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
770 				icsk->icsk_ack.ato = icsk->icsk_rto;
771 		} else if (m > icsk->icsk_rto) {
772 			/* Too long gap. Apparently sender failed to
773 			 * restart window, so that we send ACKs quickly.
774 			 */
775 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
776 			sk_mem_reclaim(sk);
777 		}
778 	}
779 	icsk->icsk_ack.lrcvtime = now;
780 
781 	tcp_ecn_check_ce(sk, skb);
782 
783 	if (skb->len >= 128)
784 		tcp_grow_window(sk, skb);
785 }
786 
787 /* Called to compute a smoothed rtt estimate. The data fed to this
788  * routine either comes from timestamps, or from segments that were
789  * known _not_ to have been retransmitted [see Karn/Partridge
790  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
791  * piece by Van Jacobson.
792  * NOTE: the next three routines used to be one big routine.
793  * To save cycles in the RFC 1323 implementation it was better to break
794  * it up into three procedures. -- erics
795  */
796 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
797 {
798 	struct tcp_sock *tp = tcp_sk(sk);
799 	long m = mrtt_us; /* RTT */
800 	u32 srtt = tp->srtt_us;
801 
802 	/*	The following amusing code comes from Jacobson's
803 	 *	article in SIGCOMM '88.  Note that rtt and mdev
804 	 *	are scaled versions of rtt and mean deviation.
805 	 *	This is designed to be as fast as possible
806 	 *	m stands for "measurement".
807 	 *
808 	 *	On a 1990 paper the rto value is changed to:
809 	 *	RTO = rtt + 4 * mdev
810 	 *
811 	 * Funny. This algorithm seems to be very broken.
812 	 * These formulae increase RTO, when it should be decreased, increase
813 	 * too slowly, when it should be increased quickly, decrease too quickly
814 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
815 	 * does not matter how to _calculate_ it. Seems, it was trap
816 	 * that VJ failed to avoid. 8)
817 	 */
818 	if (srtt != 0) {
819 		m -= (srtt >> 3);	/* m is now error in rtt est */
820 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
821 		if (m < 0) {
822 			m = -m;		/* m is now abs(error) */
823 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
824 			/* This is similar to one of Eifel findings.
825 			 * Eifel blocks mdev updates when rtt decreases.
826 			 * This solution is a bit different: we use finer gain
827 			 * for mdev in this case (alpha*beta).
828 			 * Like Eifel it also prevents growth of rto,
829 			 * but also it limits too fast rto decreases,
830 			 * happening in pure Eifel.
831 			 */
832 			if (m > 0)
833 				m >>= 3;
834 		} else {
835 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
836 		}
837 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
838 		if (tp->mdev_us > tp->mdev_max_us) {
839 			tp->mdev_max_us = tp->mdev_us;
840 			if (tp->mdev_max_us > tp->rttvar_us)
841 				tp->rttvar_us = tp->mdev_max_us;
842 		}
843 		if (after(tp->snd_una, tp->rtt_seq)) {
844 			if (tp->mdev_max_us < tp->rttvar_us)
845 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
846 			tp->rtt_seq = tp->snd_nxt;
847 			tp->mdev_max_us = tcp_rto_min_us(sk);
848 
849 			tcp_bpf_rtt(sk);
850 		}
851 	} else {
852 		/* no previous measure. */
853 		srtt = m << 3;		/* take the measured time to be rtt */
854 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
855 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
856 		tp->mdev_max_us = tp->rttvar_us;
857 		tp->rtt_seq = tp->snd_nxt;
858 
859 		tcp_bpf_rtt(sk);
860 	}
861 	tp->srtt_us = max(1U, srtt);
862 }
863 
864 static void tcp_update_pacing_rate(struct sock *sk)
865 {
866 	const struct tcp_sock *tp = tcp_sk(sk);
867 	u64 rate;
868 
869 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
870 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
871 
872 	/* current rate is (cwnd * mss) / srtt
873 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
874 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
875 	 *
876 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
877 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
878 	 *	 end of slow start and should slow down.
879 	 */
880 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
881 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
882 	else
883 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
884 
885 	rate *= max(tp->snd_cwnd, tp->packets_out);
886 
887 	if (likely(tp->srtt_us))
888 		do_div(rate, tp->srtt_us);
889 
890 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
891 	 * without any lock. We want to make sure compiler wont store
892 	 * intermediate values in this location.
893 	 */
894 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
895 					     sk->sk_max_pacing_rate));
896 }
897 
898 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
899  * routine referred to above.
900  */
901 static void tcp_set_rto(struct sock *sk)
902 {
903 	const struct tcp_sock *tp = tcp_sk(sk);
904 	/* Old crap is replaced with new one. 8)
905 	 *
906 	 * More seriously:
907 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
908 	 *    It cannot be less due to utterly erratic ACK generation made
909 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
910 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
911 	 *    is invisible. Actually, Linux-2.4 also generates erratic
912 	 *    ACKs in some circumstances.
913 	 */
914 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
915 
916 	/* 2. Fixups made earlier cannot be right.
917 	 *    If we do not estimate RTO correctly without them,
918 	 *    all the algo is pure shit and should be replaced
919 	 *    with correct one. It is exactly, which we pretend to do.
920 	 */
921 
922 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
923 	 * guarantees that rto is higher.
924 	 */
925 	tcp_bound_rto(sk);
926 }
927 
928 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
929 {
930 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
931 
932 	if (!cwnd)
933 		cwnd = TCP_INIT_CWND;
934 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
935 }
936 
937 struct tcp_sacktag_state {
938 	/* Timestamps for earliest and latest never-retransmitted segment
939 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
940 	 * but congestion control should still get an accurate delay signal.
941 	 */
942 	u64	first_sackt;
943 	u64	last_sackt;
944 	u32	reord;
945 	u32	sack_delivered;
946 	int	flag;
947 	unsigned int mss_now;
948 	struct rate_sample *rate;
949 };
950 
951 /* Take a notice that peer is sending D-SACKs */
952 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
953 			  u32 end_seq, struct tcp_sacktag_state *state)
954 {
955 	u32 seq_len, dup_segs = 1;
956 
957 	if (before(start_seq, end_seq)) {
958 		seq_len = end_seq - start_seq;
959 		if (seq_len > tp->mss_cache)
960 			dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
961 	}
962 
963 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
964 	tp->rack.dsack_seen = 1;
965 	tp->dsack_dups += dup_segs;
966 
967 	state->flag |= FLAG_DSACKING_ACK;
968 	/* A spurious retransmission is delivered */
969 	state->sack_delivered += dup_segs;
970 
971 	return dup_segs;
972 }
973 
974 /* It's reordering when higher sequence was delivered (i.e. sacked) before
975  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
976  * distance is approximated in full-mss packet distance ("reordering").
977  */
978 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
979 				      const int ts)
980 {
981 	struct tcp_sock *tp = tcp_sk(sk);
982 	const u32 mss = tp->mss_cache;
983 	u32 fack, metric;
984 
985 	fack = tcp_highest_sack_seq(tp);
986 	if (!before(low_seq, fack))
987 		return;
988 
989 	metric = fack - low_seq;
990 	if ((metric > tp->reordering * mss) && mss) {
991 #if FASTRETRANS_DEBUG > 1
992 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
993 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
994 			 tp->reordering,
995 			 0,
996 			 tp->sacked_out,
997 			 tp->undo_marker ? tp->undo_retrans : 0);
998 #endif
999 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1000 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1001 	}
1002 
1003 	/* This exciting event is worth to be remembered. 8) */
1004 	tp->reord_seen++;
1005 	NET_INC_STATS(sock_net(sk),
1006 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1007 }
1008 
1009  /* This must be called before lost_out or retrans_out are updated
1010   * on a new loss, because we want to know if all skbs previously
1011   * known to be lost have already been retransmitted, indicating
1012   * that this newly lost skb is our next skb to retransmit.
1013   */
1014 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1015 {
1016 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1017 	    (tp->retransmit_skb_hint &&
1018 	     before(TCP_SKB_CB(skb)->seq,
1019 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1020 		tp->retransmit_skb_hint = skb;
1021 }
1022 
1023 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1024 {
1025 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1026 	struct tcp_sock *tp = tcp_sk(sk);
1027 
1028 	if (sacked & TCPCB_SACKED_ACKED)
1029 		return;
1030 
1031 	tcp_verify_retransmit_hint(tp, skb);
1032 	if (sacked & TCPCB_LOST) {
1033 		if (sacked & TCPCB_SACKED_RETRANS) {
1034 			/* Account for retransmits that are lost again */
1035 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1036 			tp->retrans_out -= tcp_skb_pcount(skb);
1037 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1038 				      tcp_skb_pcount(skb));
1039 		}
1040 	} else {
1041 		tp->lost_out += tcp_skb_pcount(skb);
1042 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1043 	}
1044 }
1045 
1046 /* Updates the delivered and delivered_ce counts */
1047 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1048 				bool ece_ack)
1049 {
1050 	tp->delivered += delivered;
1051 	if (ece_ack)
1052 		tp->delivered_ce += delivered;
1053 }
1054 
1055 /* This procedure tags the retransmission queue when SACKs arrive.
1056  *
1057  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1058  * Packets in queue with these bits set are counted in variables
1059  * sacked_out, retrans_out and lost_out, correspondingly.
1060  *
1061  * Valid combinations are:
1062  * Tag  InFlight	Description
1063  * 0	1		- orig segment is in flight.
1064  * S	0		- nothing flies, orig reached receiver.
1065  * L	0		- nothing flies, orig lost by net.
1066  * R	2		- both orig and retransmit are in flight.
1067  * L|R	1		- orig is lost, retransmit is in flight.
1068  * S|R  1		- orig reached receiver, retrans is still in flight.
1069  * (L|S|R is logically valid, it could occur when L|R is sacked,
1070  *  but it is equivalent to plain S and code short-curcuits it to S.
1071  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1072  *
1073  * These 6 states form finite state machine, controlled by the following events:
1074  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1075  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1076  * 3. Loss detection event of two flavors:
1077  *	A. Scoreboard estimator decided the packet is lost.
1078  *	   A'. Reno "three dupacks" marks head of queue lost.
1079  *	B. SACK arrives sacking SND.NXT at the moment, when the
1080  *	   segment was retransmitted.
1081  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1082  *
1083  * It is pleasant to note, that state diagram turns out to be commutative,
1084  * so that we are allowed not to be bothered by order of our actions,
1085  * when multiple events arrive simultaneously. (see the function below).
1086  *
1087  * Reordering detection.
1088  * --------------------
1089  * Reordering metric is maximal distance, which a packet can be displaced
1090  * in packet stream. With SACKs we can estimate it:
1091  *
1092  * 1. SACK fills old hole and the corresponding segment was not
1093  *    ever retransmitted -> reordering. Alas, we cannot use it
1094  *    when segment was retransmitted.
1095  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1096  *    for retransmitted and already SACKed segment -> reordering..
1097  * Both of these heuristics are not used in Loss state, when we cannot
1098  * account for retransmits accurately.
1099  *
1100  * SACK block validation.
1101  * ----------------------
1102  *
1103  * SACK block range validation checks that the received SACK block fits to
1104  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1105  * Note that SND.UNA is not included to the range though being valid because
1106  * it means that the receiver is rather inconsistent with itself reporting
1107  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1108  * perfectly valid, however, in light of RFC2018 which explicitly states
1109  * that "SACK block MUST reflect the newest segment.  Even if the newest
1110  * segment is going to be discarded ...", not that it looks very clever
1111  * in case of head skb. Due to potentional receiver driven attacks, we
1112  * choose to avoid immediate execution of a walk in write queue due to
1113  * reneging and defer head skb's loss recovery to standard loss recovery
1114  * procedure that will eventually trigger (nothing forbids us doing this).
1115  *
1116  * Implements also blockage to start_seq wrap-around. Problem lies in the
1117  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1118  * there's no guarantee that it will be before snd_nxt (n). The problem
1119  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1120  * wrap (s_w):
1121  *
1122  *         <- outs wnd ->                          <- wrapzone ->
1123  *         u     e      n                         u_w   e_w  s n_w
1124  *         |     |      |                          |     |   |  |
1125  * |<------------+------+----- TCP seqno space --------------+---------->|
1126  * ...-- <2^31 ->|                                           |<--------...
1127  * ...---- >2^31 ------>|                                    |<--------...
1128  *
1129  * Current code wouldn't be vulnerable but it's better still to discard such
1130  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1131  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1132  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1133  * equal to the ideal case (infinite seqno space without wrap caused issues).
1134  *
1135  * With D-SACK the lower bound is extended to cover sequence space below
1136  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1137  * again, D-SACK block must not to go across snd_una (for the same reason as
1138  * for the normal SACK blocks, explained above). But there all simplicity
1139  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1140  * fully below undo_marker they do not affect behavior in anyway and can
1141  * therefore be safely ignored. In rare cases (which are more or less
1142  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1143  * fragmentation and packet reordering past skb's retransmission. To consider
1144  * them correctly, the acceptable range must be extended even more though
1145  * the exact amount is rather hard to quantify. However, tp->max_window can
1146  * be used as an exaggerated estimate.
1147  */
1148 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1149 				   u32 start_seq, u32 end_seq)
1150 {
1151 	/* Too far in future, or reversed (interpretation is ambiguous) */
1152 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1153 		return false;
1154 
1155 	/* Nasty start_seq wrap-around check (see comments above) */
1156 	if (!before(start_seq, tp->snd_nxt))
1157 		return false;
1158 
1159 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1160 	 * start_seq == snd_una is non-sensical (see comments above)
1161 	 */
1162 	if (after(start_seq, tp->snd_una))
1163 		return true;
1164 
1165 	if (!is_dsack || !tp->undo_marker)
1166 		return false;
1167 
1168 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1169 	if (after(end_seq, tp->snd_una))
1170 		return false;
1171 
1172 	if (!before(start_seq, tp->undo_marker))
1173 		return true;
1174 
1175 	/* Too old */
1176 	if (!after(end_seq, tp->undo_marker))
1177 		return false;
1178 
1179 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1180 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1181 	 */
1182 	return !before(start_seq, end_seq - tp->max_window);
1183 }
1184 
1185 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1186 			    struct tcp_sack_block_wire *sp, int num_sacks,
1187 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1188 {
1189 	struct tcp_sock *tp = tcp_sk(sk);
1190 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1191 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1192 	u32 dup_segs;
1193 
1194 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1195 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1196 	} else if (num_sacks > 1) {
1197 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1198 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1199 
1200 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1201 			return false;
1202 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1203 	} else {
1204 		return false;
1205 	}
1206 
1207 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1208 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1209 
1210 	/* D-SACK for already forgotten data... Do dumb counting. */
1211 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1212 	    !after(end_seq_0, prior_snd_una) &&
1213 	    after(end_seq_0, tp->undo_marker))
1214 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1215 
1216 	return true;
1217 }
1218 
1219 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1220  * the incoming SACK may not exactly match but we can find smaller MSS
1221  * aligned portion of it that matches. Therefore we might need to fragment
1222  * which may fail and creates some hassle (caller must handle error case
1223  * returns).
1224  *
1225  * FIXME: this could be merged to shift decision code
1226  */
1227 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1228 				  u32 start_seq, u32 end_seq)
1229 {
1230 	int err;
1231 	bool in_sack;
1232 	unsigned int pkt_len;
1233 	unsigned int mss;
1234 
1235 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1236 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1237 
1238 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1239 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1240 		mss = tcp_skb_mss(skb);
1241 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1242 
1243 		if (!in_sack) {
1244 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1245 			if (pkt_len < mss)
1246 				pkt_len = mss;
1247 		} else {
1248 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1249 			if (pkt_len < mss)
1250 				return -EINVAL;
1251 		}
1252 
1253 		/* Round if necessary so that SACKs cover only full MSSes
1254 		 * and/or the remaining small portion (if present)
1255 		 */
1256 		if (pkt_len > mss) {
1257 			unsigned int new_len = (pkt_len / mss) * mss;
1258 			if (!in_sack && new_len < pkt_len)
1259 				new_len += mss;
1260 			pkt_len = new_len;
1261 		}
1262 
1263 		if (pkt_len >= skb->len && !in_sack)
1264 			return 0;
1265 
1266 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1267 				   pkt_len, mss, GFP_ATOMIC);
1268 		if (err < 0)
1269 			return err;
1270 	}
1271 
1272 	return in_sack;
1273 }
1274 
1275 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1276 static u8 tcp_sacktag_one(struct sock *sk,
1277 			  struct tcp_sacktag_state *state, u8 sacked,
1278 			  u32 start_seq, u32 end_seq,
1279 			  int dup_sack, int pcount,
1280 			  u64 xmit_time)
1281 {
1282 	struct tcp_sock *tp = tcp_sk(sk);
1283 
1284 	/* Account D-SACK for retransmitted packet. */
1285 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1286 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1287 		    after(end_seq, tp->undo_marker))
1288 			tp->undo_retrans--;
1289 		if ((sacked & TCPCB_SACKED_ACKED) &&
1290 		    before(start_seq, state->reord))
1291 				state->reord = start_seq;
1292 	}
1293 
1294 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1295 	if (!after(end_seq, tp->snd_una))
1296 		return sacked;
1297 
1298 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1299 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1300 
1301 		if (sacked & TCPCB_SACKED_RETRANS) {
1302 			/* If the segment is not tagged as lost,
1303 			 * we do not clear RETRANS, believing
1304 			 * that retransmission is still in flight.
1305 			 */
1306 			if (sacked & TCPCB_LOST) {
1307 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1308 				tp->lost_out -= pcount;
1309 				tp->retrans_out -= pcount;
1310 			}
1311 		} else {
1312 			if (!(sacked & TCPCB_RETRANS)) {
1313 				/* New sack for not retransmitted frame,
1314 				 * which was in hole. It is reordering.
1315 				 */
1316 				if (before(start_seq,
1317 					   tcp_highest_sack_seq(tp)) &&
1318 				    before(start_seq, state->reord))
1319 					state->reord = start_seq;
1320 
1321 				if (!after(end_seq, tp->high_seq))
1322 					state->flag |= FLAG_ORIG_SACK_ACKED;
1323 				if (state->first_sackt == 0)
1324 					state->first_sackt = xmit_time;
1325 				state->last_sackt = xmit_time;
1326 			}
1327 
1328 			if (sacked & TCPCB_LOST) {
1329 				sacked &= ~TCPCB_LOST;
1330 				tp->lost_out -= pcount;
1331 			}
1332 		}
1333 
1334 		sacked |= TCPCB_SACKED_ACKED;
1335 		state->flag |= FLAG_DATA_SACKED;
1336 		tp->sacked_out += pcount;
1337 		/* Out-of-order packets delivered */
1338 		state->sack_delivered += pcount;
1339 
1340 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1341 		if (tp->lost_skb_hint &&
1342 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1343 			tp->lost_cnt_hint += pcount;
1344 	}
1345 
1346 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1347 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1348 	 * are accounted above as well.
1349 	 */
1350 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1351 		sacked &= ~TCPCB_SACKED_RETRANS;
1352 		tp->retrans_out -= pcount;
1353 	}
1354 
1355 	return sacked;
1356 }
1357 
1358 /* Shift newly-SACKed bytes from this skb to the immediately previous
1359  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1360  */
1361 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1362 			    struct sk_buff *skb,
1363 			    struct tcp_sacktag_state *state,
1364 			    unsigned int pcount, int shifted, int mss,
1365 			    bool dup_sack)
1366 {
1367 	struct tcp_sock *tp = tcp_sk(sk);
1368 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1369 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1370 
1371 	BUG_ON(!pcount);
1372 
1373 	/* Adjust counters and hints for the newly sacked sequence
1374 	 * range but discard the return value since prev is already
1375 	 * marked. We must tag the range first because the seq
1376 	 * advancement below implicitly advances
1377 	 * tcp_highest_sack_seq() when skb is highest_sack.
1378 	 */
1379 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1380 			start_seq, end_seq, dup_sack, pcount,
1381 			tcp_skb_timestamp_us(skb));
1382 	tcp_rate_skb_delivered(sk, skb, state->rate);
1383 
1384 	if (skb == tp->lost_skb_hint)
1385 		tp->lost_cnt_hint += pcount;
1386 
1387 	TCP_SKB_CB(prev)->end_seq += shifted;
1388 	TCP_SKB_CB(skb)->seq += shifted;
1389 
1390 	tcp_skb_pcount_add(prev, pcount);
1391 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1392 	tcp_skb_pcount_add(skb, -pcount);
1393 
1394 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1395 	 * in theory this shouldn't be necessary but as long as DSACK
1396 	 * code can come after this skb later on it's better to keep
1397 	 * setting gso_size to something.
1398 	 */
1399 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1400 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1401 
1402 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1403 	if (tcp_skb_pcount(skb) <= 1)
1404 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1405 
1406 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1407 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1408 
1409 	if (skb->len > 0) {
1410 		BUG_ON(!tcp_skb_pcount(skb));
1411 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1412 		return false;
1413 	}
1414 
1415 	/* Whole SKB was eaten :-) */
1416 
1417 	if (skb == tp->retransmit_skb_hint)
1418 		tp->retransmit_skb_hint = prev;
1419 	if (skb == tp->lost_skb_hint) {
1420 		tp->lost_skb_hint = prev;
1421 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1422 	}
1423 
1424 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1425 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1426 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1427 		TCP_SKB_CB(prev)->end_seq++;
1428 
1429 	if (skb == tcp_highest_sack(sk))
1430 		tcp_advance_highest_sack(sk, skb);
1431 
1432 	tcp_skb_collapse_tstamp(prev, skb);
1433 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1434 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1435 
1436 	tcp_rtx_queue_unlink_and_free(skb, sk);
1437 
1438 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1439 
1440 	return true;
1441 }
1442 
1443 /* I wish gso_size would have a bit more sane initialization than
1444  * something-or-zero which complicates things
1445  */
1446 static int tcp_skb_seglen(const struct sk_buff *skb)
1447 {
1448 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1449 }
1450 
1451 /* Shifting pages past head area doesn't work */
1452 static int skb_can_shift(const struct sk_buff *skb)
1453 {
1454 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1455 }
1456 
1457 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1458 		  int pcount, int shiftlen)
1459 {
1460 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1461 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1462 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1463 	 * even if current MSS is bigger.
1464 	 */
1465 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1466 		return 0;
1467 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1468 		return 0;
1469 	return skb_shift(to, from, shiftlen);
1470 }
1471 
1472 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1473  * skb.
1474  */
1475 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1476 					  struct tcp_sacktag_state *state,
1477 					  u32 start_seq, u32 end_seq,
1478 					  bool dup_sack)
1479 {
1480 	struct tcp_sock *tp = tcp_sk(sk);
1481 	struct sk_buff *prev;
1482 	int mss;
1483 	int pcount = 0;
1484 	int len;
1485 	int in_sack;
1486 
1487 	/* Normally R but no L won't result in plain S */
1488 	if (!dup_sack &&
1489 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1490 		goto fallback;
1491 	if (!skb_can_shift(skb))
1492 		goto fallback;
1493 	/* This frame is about to be dropped (was ACKed). */
1494 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1495 		goto fallback;
1496 
1497 	/* Can only happen with delayed DSACK + discard craziness */
1498 	prev = skb_rb_prev(skb);
1499 	if (!prev)
1500 		goto fallback;
1501 
1502 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1503 		goto fallback;
1504 
1505 	if (!tcp_skb_can_collapse(prev, skb))
1506 		goto fallback;
1507 
1508 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1509 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1510 
1511 	if (in_sack) {
1512 		len = skb->len;
1513 		pcount = tcp_skb_pcount(skb);
1514 		mss = tcp_skb_seglen(skb);
1515 
1516 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1517 		 * drop this restriction as unnecessary
1518 		 */
1519 		if (mss != tcp_skb_seglen(prev))
1520 			goto fallback;
1521 	} else {
1522 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1523 			goto noop;
1524 		/* CHECKME: This is non-MSS split case only?, this will
1525 		 * cause skipped skbs due to advancing loop btw, original
1526 		 * has that feature too
1527 		 */
1528 		if (tcp_skb_pcount(skb) <= 1)
1529 			goto noop;
1530 
1531 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1532 		if (!in_sack) {
1533 			/* TODO: head merge to next could be attempted here
1534 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1535 			 * though it might not be worth of the additional hassle
1536 			 *
1537 			 * ...we can probably just fallback to what was done
1538 			 * previously. We could try merging non-SACKed ones
1539 			 * as well but it probably isn't going to buy off
1540 			 * because later SACKs might again split them, and
1541 			 * it would make skb timestamp tracking considerably
1542 			 * harder problem.
1543 			 */
1544 			goto fallback;
1545 		}
1546 
1547 		len = end_seq - TCP_SKB_CB(skb)->seq;
1548 		BUG_ON(len < 0);
1549 		BUG_ON(len > skb->len);
1550 
1551 		/* MSS boundaries should be honoured or else pcount will
1552 		 * severely break even though it makes things bit trickier.
1553 		 * Optimize common case to avoid most of the divides
1554 		 */
1555 		mss = tcp_skb_mss(skb);
1556 
1557 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1558 		 * drop this restriction as unnecessary
1559 		 */
1560 		if (mss != tcp_skb_seglen(prev))
1561 			goto fallback;
1562 
1563 		if (len == mss) {
1564 			pcount = 1;
1565 		} else if (len < mss) {
1566 			goto noop;
1567 		} else {
1568 			pcount = len / mss;
1569 			len = pcount * mss;
1570 		}
1571 	}
1572 
1573 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1574 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1575 		goto fallback;
1576 
1577 	if (!tcp_skb_shift(prev, skb, pcount, len))
1578 		goto fallback;
1579 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1580 		goto out;
1581 
1582 	/* Hole filled allows collapsing with the next as well, this is very
1583 	 * useful when hole on every nth skb pattern happens
1584 	 */
1585 	skb = skb_rb_next(prev);
1586 	if (!skb)
1587 		goto out;
1588 
1589 	if (!skb_can_shift(skb) ||
1590 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1591 	    (mss != tcp_skb_seglen(skb)))
1592 		goto out;
1593 
1594 	len = skb->len;
1595 	pcount = tcp_skb_pcount(skb);
1596 	if (tcp_skb_shift(prev, skb, pcount, len))
1597 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1598 				len, mss, 0);
1599 
1600 out:
1601 	return prev;
1602 
1603 noop:
1604 	return skb;
1605 
1606 fallback:
1607 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1608 	return NULL;
1609 }
1610 
1611 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1612 					struct tcp_sack_block *next_dup,
1613 					struct tcp_sacktag_state *state,
1614 					u32 start_seq, u32 end_seq,
1615 					bool dup_sack_in)
1616 {
1617 	struct tcp_sock *tp = tcp_sk(sk);
1618 	struct sk_buff *tmp;
1619 
1620 	skb_rbtree_walk_from(skb) {
1621 		int in_sack = 0;
1622 		bool dup_sack = dup_sack_in;
1623 
1624 		/* queue is in-order => we can short-circuit the walk early */
1625 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1626 			break;
1627 
1628 		if (next_dup  &&
1629 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1630 			in_sack = tcp_match_skb_to_sack(sk, skb,
1631 							next_dup->start_seq,
1632 							next_dup->end_seq);
1633 			if (in_sack > 0)
1634 				dup_sack = true;
1635 		}
1636 
1637 		/* skb reference here is a bit tricky to get right, since
1638 		 * shifting can eat and free both this skb and the next,
1639 		 * so not even _safe variant of the loop is enough.
1640 		 */
1641 		if (in_sack <= 0) {
1642 			tmp = tcp_shift_skb_data(sk, skb, state,
1643 						 start_seq, end_seq, dup_sack);
1644 			if (tmp) {
1645 				if (tmp != skb) {
1646 					skb = tmp;
1647 					continue;
1648 				}
1649 
1650 				in_sack = 0;
1651 			} else {
1652 				in_sack = tcp_match_skb_to_sack(sk, skb,
1653 								start_seq,
1654 								end_seq);
1655 			}
1656 		}
1657 
1658 		if (unlikely(in_sack < 0))
1659 			break;
1660 
1661 		if (in_sack) {
1662 			TCP_SKB_CB(skb)->sacked =
1663 				tcp_sacktag_one(sk,
1664 						state,
1665 						TCP_SKB_CB(skb)->sacked,
1666 						TCP_SKB_CB(skb)->seq,
1667 						TCP_SKB_CB(skb)->end_seq,
1668 						dup_sack,
1669 						tcp_skb_pcount(skb),
1670 						tcp_skb_timestamp_us(skb));
1671 			tcp_rate_skb_delivered(sk, skb, state->rate);
1672 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1673 				list_del_init(&skb->tcp_tsorted_anchor);
1674 
1675 			if (!before(TCP_SKB_CB(skb)->seq,
1676 				    tcp_highest_sack_seq(tp)))
1677 				tcp_advance_highest_sack(sk, skb);
1678 		}
1679 	}
1680 	return skb;
1681 }
1682 
1683 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1684 {
1685 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1686 	struct sk_buff *skb;
1687 
1688 	while (*p) {
1689 		parent = *p;
1690 		skb = rb_to_skb(parent);
1691 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1692 			p = &parent->rb_left;
1693 			continue;
1694 		}
1695 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1696 			p = &parent->rb_right;
1697 			continue;
1698 		}
1699 		return skb;
1700 	}
1701 	return NULL;
1702 }
1703 
1704 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1705 					u32 skip_to_seq)
1706 {
1707 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1708 		return skb;
1709 
1710 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1711 }
1712 
1713 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1714 						struct sock *sk,
1715 						struct tcp_sack_block *next_dup,
1716 						struct tcp_sacktag_state *state,
1717 						u32 skip_to_seq)
1718 {
1719 	if (!next_dup)
1720 		return skb;
1721 
1722 	if (before(next_dup->start_seq, skip_to_seq)) {
1723 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1724 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1725 				       next_dup->start_seq, next_dup->end_seq,
1726 				       1);
1727 	}
1728 
1729 	return skb;
1730 }
1731 
1732 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1733 {
1734 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1735 }
1736 
1737 static int
1738 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1739 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1740 {
1741 	struct tcp_sock *tp = tcp_sk(sk);
1742 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1743 				    TCP_SKB_CB(ack_skb)->sacked);
1744 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1745 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1746 	struct tcp_sack_block *cache;
1747 	struct sk_buff *skb;
1748 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1749 	int used_sacks;
1750 	bool found_dup_sack = false;
1751 	int i, j;
1752 	int first_sack_index;
1753 
1754 	state->flag = 0;
1755 	state->reord = tp->snd_nxt;
1756 
1757 	if (!tp->sacked_out)
1758 		tcp_highest_sack_reset(sk);
1759 
1760 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1761 					 num_sacks, prior_snd_una, state);
1762 
1763 	/* Eliminate too old ACKs, but take into
1764 	 * account more or less fresh ones, they can
1765 	 * contain valid SACK info.
1766 	 */
1767 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1768 		return 0;
1769 
1770 	if (!tp->packets_out)
1771 		goto out;
1772 
1773 	used_sacks = 0;
1774 	first_sack_index = 0;
1775 	for (i = 0; i < num_sacks; i++) {
1776 		bool dup_sack = !i && found_dup_sack;
1777 
1778 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1779 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1780 
1781 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1782 					    sp[used_sacks].start_seq,
1783 					    sp[used_sacks].end_seq)) {
1784 			int mib_idx;
1785 
1786 			if (dup_sack) {
1787 				if (!tp->undo_marker)
1788 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1789 				else
1790 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1791 			} else {
1792 				/* Don't count olds caused by ACK reordering */
1793 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1794 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1795 					continue;
1796 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1797 			}
1798 
1799 			NET_INC_STATS(sock_net(sk), mib_idx);
1800 			if (i == 0)
1801 				first_sack_index = -1;
1802 			continue;
1803 		}
1804 
1805 		/* Ignore very old stuff early */
1806 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1807 			if (i == 0)
1808 				first_sack_index = -1;
1809 			continue;
1810 		}
1811 
1812 		used_sacks++;
1813 	}
1814 
1815 	/* order SACK blocks to allow in order walk of the retrans queue */
1816 	for (i = used_sacks - 1; i > 0; i--) {
1817 		for (j = 0; j < i; j++) {
1818 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1819 				swap(sp[j], sp[j + 1]);
1820 
1821 				/* Track where the first SACK block goes to */
1822 				if (j == first_sack_index)
1823 					first_sack_index = j + 1;
1824 			}
1825 		}
1826 	}
1827 
1828 	state->mss_now = tcp_current_mss(sk);
1829 	skb = NULL;
1830 	i = 0;
1831 
1832 	if (!tp->sacked_out) {
1833 		/* It's already past, so skip checking against it */
1834 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1835 	} else {
1836 		cache = tp->recv_sack_cache;
1837 		/* Skip empty blocks in at head of the cache */
1838 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1839 		       !cache->end_seq)
1840 			cache++;
1841 	}
1842 
1843 	while (i < used_sacks) {
1844 		u32 start_seq = sp[i].start_seq;
1845 		u32 end_seq = sp[i].end_seq;
1846 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1847 		struct tcp_sack_block *next_dup = NULL;
1848 
1849 		if (found_dup_sack && ((i + 1) == first_sack_index))
1850 			next_dup = &sp[i + 1];
1851 
1852 		/* Skip too early cached blocks */
1853 		while (tcp_sack_cache_ok(tp, cache) &&
1854 		       !before(start_seq, cache->end_seq))
1855 			cache++;
1856 
1857 		/* Can skip some work by looking recv_sack_cache? */
1858 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1859 		    after(end_seq, cache->start_seq)) {
1860 
1861 			/* Head todo? */
1862 			if (before(start_seq, cache->start_seq)) {
1863 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1864 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1865 						       state,
1866 						       start_seq,
1867 						       cache->start_seq,
1868 						       dup_sack);
1869 			}
1870 
1871 			/* Rest of the block already fully processed? */
1872 			if (!after(end_seq, cache->end_seq))
1873 				goto advance_sp;
1874 
1875 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1876 						       state,
1877 						       cache->end_seq);
1878 
1879 			/* ...tail remains todo... */
1880 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1881 				/* ...but better entrypoint exists! */
1882 				skb = tcp_highest_sack(sk);
1883 				if (!skb)
1884 					break;
1885 				cache++;
1886 				goto walk;
1887 			}
1888 
1889 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1890 			/* Check overlap against next cached too (past this one already) */
1891 			cache++;
1892 			continue;
1893 		}
1894 
1895 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1896 			skb = tcp_highest_sack(sk);
1897 			if (!skb)
1898 				break;
1899 		}
1900 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1901 
1902 walk:
1903 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1904 				       start_seq, end_seq, dup_sack);
1905 
1906 advance_sp:
1907 		i++;
1908 	}
1909 
1910 	/* Clear the head of the cache sack blocks so we can skip it next time */
1911 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1912 		tp->recv_sack_cache[i].start_seq = 0;
1913 		tp->recv_sack_cache[i].end_seq = 0;
1914 	}
1915 	for (j = 0; j < used_sacks; j++)
1916 		tp->recv_sack_cache[i++] = sp[j];
1917 
1918 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1919 		tcp_check_sack_reordering(sk, state->reord, 0);
1920 
1921 	tcp_verify_left_out(tp);
1922 out:
1923 
1924 #if FASTRETRANS_DEBUG > 0
1925 	WARN_ON((int)tp->sacked_out < 0);
1926 	WARN_ON((int)tp->lost_out < 0);
1927 	WARN_ON((int)tp->retrans_out < 0);
1928 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1929 #endif
1930 	return state->flag;
1931 }
1932 
1933 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1934  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1935  */
1936 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1937 {
1938 	u32 holes;
1939 
1940 	holes = max(tp->lost_out, 1U);
1941 	holes = min(holes, tp->packets_out);
1942 
1943 	if ((tp->sacked_out + holes) > tp->packets_out) {
1944 		tp->sacked_out = tp->packets_out - holes;
1945 		return true;
1946 	}
1947 	return false;
1948 }
1949 
1950 /* If we receive more dupacks than we expected counting segments
1951  * in assumption of absent reordering, interpret this as reordering.
1952  * The only another reason could be bug in receiver TCP.
1953  */
1954 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1955 {
1956 	struct tcp_sock *tp = tcp_sk(sk);
1957 
1958 	if (!tcp_limit_reno_sacked(tp))
1959 		return;
1960 
1961 	tp->reordering = min_t(u32, tp->packets_out + addend,
1962 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1963 	tp->reord_seen++;
1964 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1965 }
1966 
1967 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1968 
1969 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1970 {
1971 	if (num_dupack) {
1972 		struct tcp_sock *tp = tcp_sk(sk);
1973 		u32 prior_sacked = tp->sacked_out;
1974 		s32 delivered;
1975 
1976 		tp->sacked_out += num_dupack;
1977 		tcp_check_reno_reordering(sk, 0);
1978 		delivered = tp->sacked_out - prior_sacked;
1979 		if (delivered > 0)
1980 			tcp_count_delivered(tp, delivered, ece_ack);
1981 		tcp_verify_left_out(tp);
1982 	}
1983 }
1984 
1985 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1986 
1987 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
1988 {
1989 	struct tcp_sock *tp = tcp_sk(sk);
1990 
1991 	if (acked > 0) {
1992 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1993 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
1994 				    ece_ack);
1995 		if (acked - 1 >= tp->sacked_out)
1996 			tp->sacked_out = 0;
1997 		else
1998 			tp->sacked_out -= acked - 1;
1999 	}
2000 	tcp_check_reno_reordering(sk, acked);
2001 	tcp_verify_left_out(tp);
2002 }
2003 
2004 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2005 {
2006 	tp->sacked_out = 0;
2007 }
2008 
2009 void tcp_clear_retrans(struct tcp_sock *tp)
2010 {
2011 	tp->retrans_out = 0;
2012 	tp->lost_out = 0;
2013 	tp->undo_marker = 0;
2014 	tp->undo_retrans = -1;
2015 	tp->sacked_out = 0;
2016 }
2017 
2018 static inline void tcp_init_undo(struct tcp_sock *tp)
2019 {
2020 	tp->undo_marker = tp->snd_una;
2021 	/* Retransmission still in flight may cause DSACKs later. */
2022 	tp->undo_retrans = tp->retrans_out ? : -1;
2023 }
2024 
2025 static bool tcp_is_rack(const struct sock *sk)
2026 {
2027 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2028 }
2029 
2030 /* If we detect SACK reneging, forget all SACK information
2031  * and reset tags completely, otherwise preserve SACKs. If receiver
2032  * dropped its ofo queue, we will know this due to reneging detection.
2033  */
2034 static void tcp_timeout_mark_lost(struct sock *sk)
2035 {
2036 	struct tcp_sock *tp = tcp_sk(sk);
2037 	struct sk_buff *skb, *head;
2038 	bool is_reneg;			/* is receiver reneging on SACKs? */
2039 
2040 	head = tcp_rtx_queue_head(sk);
2041 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2042 	if (is_reneg) {
2043 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2044 		tp->sacked_out = 0;
2045 		/* Mark SACK reneging until we recover from this loss event. */
2046 		tp->is_sack_reneg = 1;
2047 	} else if (tcp_is_reno(tp)) {
2048 		tcp_reset_reno_sack(tp);
2049 	}
2050 
2051 	skb = head;
2052 	skb_rbtree_walk_from(skb) {
2053 		if (is_reneg)
2054 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2055 		else if (tcp_is_rack(sk) && skb != head &&
2056 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2057 			continue; /* Don't mark recently sent ones lost yet */
2058 		tcp_mark_skb_lost(sk, skb);
2059 	}
2060 	tcp_verify_left_out(tp);
2061 	tcp_clear_all_retrans_hints(tp);
2062 }
2063 
2064 /* Enter Loss state. */
2065 void tcp_enter_loss(struct sock *sk)
2066 {
2067 	const struct inet_connection_sock *icsk = inet_csk(sk);
2068 	struct tcp_sock *tp = tcp_sk(sk);
2069 	struct net *net = sock_net(sk);
2070 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2071 
2072 	tcp_timeout_mark_lost(sk);
2073 
2074 	/* Reduce ssthresh if it has not yet been made inside this window. */
2075 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2076 	    !after(tp->high_seq, tp->snd_una) ||
2077 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2078 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2079 		tp->prior_cwnd = tp->snd_cwnd;
2080 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081 		tcp_ca_event(sk, CA_EVENT_LOSS);
2082 		tcp_init_undo(tp);
2083 	}
2084 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2085 	tp->snd_cwnd_cnt   = 0;
2086 	tp->snd_cwnd_stamp = tcp_jiffies32;
2087 
2088 	/* Timeout in disordered state after receiving substantial DUPACKs
2089 	 * suggests that the degree of reordering is over-estimated.
2090 	 */
2091 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2092 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2093 		tp->reordering = min_t(unsigned int, tp->reordering,
2094 				       net->ipv4.sysctl_tcp_reordering);
2095 	tcp_set_ca_state(sk, TCP_CA_Loss);
2096 	tp->high_seq = tp->snd_nxt;
2097 	tcp_ecn_queue_cwr(tp);
2098 
2099 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2100 	 * loss recovery is underway except recurring timeout(s) on
2101 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2102 	 */
2103 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2104 		   (new_recovery || icsk->icsk_retransmits) &&
2105 		   !inet_csk(sk)->icsk_mtup.probe_size;
2106 }
2107 
2108 /* If ACK arrived pointing to a remembered SACK, it means that our
2109  * remembered SACKs do not reflect real state of receiver i.e.
2110  * receiver _host_ is heavily congested (or buggy).
2111  *
2112  * To avoid big spurious retransmission bursts due to transient SACK
2113  * scoreboard oddities that look like reneging, we give the receiver a
2114  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2115  * restore sanity to the SACK scoreboard. If the apparent reneging
2116  * persists until this RTO then we'll clear the SACK scoreboard.
2117  */
2118 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2119 {
2120 	if (flag & FLAG_SACK_RENEGING) {
2121 		struct tcp_sock *tp = tcp_sk(sk);
2122 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2123 					  msecs_to_jiffies(10));
2124 
2125 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2126 					  delay, TCP_RTO_MAX);
2127 		return true;
2128 	}
2129 	return false;
2130 }
2131 
2132 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2133  * counter when SACK is enabled (without SACK, sacked_out is used for
2134  * that purpose).
2135  *
2136  * With reordering, holes may still be in flight, so RFC3517 recovery
2137  * uses pure sacked_out (total number of SACKed segments) even though
2138  * it violates the RFC that uses duplicate ACKs, often these are equal
2139  * but when e.g. out-of-window ACKs or packet duplication occurs,
2140  * they differ. Since neither occurs due to loss, TCP should really
2141  * ignore them.
2142  */
2143 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2144 {
2145 	return tp->sacked_out + 1;
2146 }
2147 
2148 /* Linux NewReno/SACK/ECN state machine.
2149  * --------------------------------------
2150  *
2151  * "Open"	Normal state, no dubious events, fast path.
2152  * "Disorder"   In all the respects it is "Open",
2153  *		but requires a bit more attention. It is entered when
2154  *		we see some SACKs or dupacks. It is split of "Open"
2155  *		mainly to move some processing from fast path to slow one.
2156  * "CWR"	CWND was reduced due to some Congestion Notification event.
2157  *		It can be ECN, ICMP source quench, local device congestion.
2158  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2159  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2160  *
2161  * tcp_fastretrans_alert() is entered:
2162  * - each incoming ACK, if state is not "Open"
2163  * - when arrived ACK is unusual, namely:
2164  *	* SACK
2165  *	* Duplicate ACK.
2166  *	* ECN ECE.
2167  *
2168  * Counting packets in flight is pretty simple.
2169  *
2170  *	in_flight = packets_out - left_out + retrans_out
2171  *
2172  *	packets_out is SND.NXT-SND.UNA counted in packets.
2173  *
2174  *	retrans_out is number of retransmitted segments.
2175  *
2176  *	left_out is number of segments left network, but not ACKed yet.
2177  *
2178  *		left_out = sacked_out + lost_out
2179  *
2180  *     sacked_out: Packets, which arrived to receiver out of order
2181  *		   and hence not ACKed. With SACKs this number is simply
2182  *		   amount of SACKed data. Even without SACKs
2183  *		   it is easy to give pretty reliable estimate of this number,
2184  *		   counting duplicate ACKs.
2185  *
2186  *       lost_out: Packets lost by network. TCP has no explicit
2187  *		   "loss notification" feedback from network (for now).
2188  *		   It means that this number can be only _guessed_.
2189  *		   Actually, it is the heuristics to predict lossage that
2190  *		   distinguishes different algorithms.
2191  *
2192  *	F.e. after RTO, when all the queue is considered as lost,
2193  *	lost_out = packets_out and in_flight = retrans_out.
2194  *
2195  *		Essentially, we have now a few algorithms detecting
2196  *		lost packets.
2197  *
2198  *		If the receiver supports SACK:
2199  *
2200  *		RFC6675/3517: It is the conventional algorithm. A packet is
2201  *		considered lost if the number of higher sequence packets
2202  *		SACKed is greater than or equal the DUPACK thoreshold
2203  *		(reordering). This is implemented in tcp_mark_head_lost and
2204  *		tcp_update_scoreboard.
2205  *
2206  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2207  *		(2017-) that checks timing instead of counting DUPACKs.
2208  *		Essentially a packet is considered lost if it's not S/ACKed
2209  *		after RTT + reordering_window, where both metrics are
2210  *		dynamically measured and adjusted. This is implemented in
2211  *		tcp_rack_mark_lost.
2212  *
2213  *		If the receiver does not support SACK:
2214  *
2215  *		NewReno (RFC6582): in Recovery we assume that one segment
2216  *		is lost (classic Reno). While we are in Recovery and
2217  *		a partial ACK arrives, we assume that one more packet
2218  *		is lost (NewReno). This heuristics are the same in NewReno
2219  *		and SACK.
2220  *
2221  * Really tricky (and requiring careful tuning) part of algorithm
2222  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2223  * The first determines the moment _when_ we should reduce CWND and,
2224  * hence, slow down forward transmission. In fact, it determines the moment
2225  * when we decide that hole is caused by loss, rather than by a reorder.
2226  *
2227  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2228  * holes, caused by lost packets.
2229  *
2230  * And the most logically complicated part of algorithm is undo
2231  * heuristics. We detect false retransmits due to both too early
2232  * fast retransmit (reordering) and underestimated RTO, analyzing
2233  * timestamps and D-SACKs. When we detect that some segments were
2234  * retransmitted by mistake and CWND reduction was wrong, we undo
2235  * window reduction and abort recovery phase. This logic is hidden
2236  * inside several functions named tcp_try_undo_<something>.
2237  */
2238 
2239 /* This function decides, when we should leave Disordered state
2240  * and enter Recovery phase, reducing congestion window.
2241  *
2242  * Main question: may we further continue forward transmission
2243  * with the same cwnd?
2244  */
2245 static bool tcp_time_to_recover(struct sock *sk, int flag)
2246 {
2247 	struct tcp_sock *tp = tcp_sk(sk);
2248 
2249 	/* Trick#1: The loss is proven. */
2250 	if (tp->lost_out)
2251 		return true;
2252 
2253 	/* Not-A-Trick#2 : Classic rule... */
2254 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2255 		return true;
2256 
2257 	return false;
2258 }
2259 
2260 /* Detect loss in event "A" above by marking head of queue up as lost.
2261  * For RFC3517 SACK, a segment is considered lost if it
2262  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2263  * the maximum SACKed segments to pass before reaching this limit.
2264  */
2265 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2266 {
2267 	struct tcp_sock *tp = tcp_sk(sk);
2268 	struct sk_buff *skb;
2269 	int cnt;
2270 	/* Use SACK to deduce losses of new sequences sent during recovery */
2271 	const u32 loss_high = tp->snd_nxt;
2272 
2273 	WARN_ON(packets > tp->packets_out);
2274 	skb = tp->lost_skb_hint;
2275 	if (skb) {
2276 		/* Head already handled? */
2277 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2278 			return;
2279 		cnt = tp->lost_cnt_hint;
2280 	} else {
2281 		skb = tcp_rtx_queue_head(sk);
2282 		cnt = 0;
2283 	}
2284 
2285 	skb_rbtree_walk_from(skb) {
2286 		/* TODO: do this better */
2287 		/* this is not the most efficient way to do this... */
2288 		tp->lost_skb_hint = skb;
2289 		tp->lost_cnt_hint = cnt;
2290 
2291 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2292 			break;
2293 
2294 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2295 			cnt += tcp_skb_pcount(skb);
2296 
2297 		if (cnt > packets)
2298 			break;
2299 
2300 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2301 			tcp_mark_skb_lost(sk, skb);
2302 
2303 		if (mark_head)
2304 			break;
2305 	}
2306 	tcp_verify_left_out(tp);
2307 }
2308 
2309 /* Account newly detected lost packet(s) */
2310 
2311 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2312 {
2313 	struct tcp_sock *tp = tcp_sk(sk);
2314 
2315 	if (tcp_is_sack(tp)) {
2316 		int sacked_upto = tp->sacked_out - tp->reordering;
2317 		if (sacked_upto >= 0)
2318 			tcp_mark_head_lost(sk, sacked_upto, 0);
2319 		else if (fast_rexmit)
2320 			tcp_mark_head_lost(sk, 1, 1);
2321 	}
2322 }
2323 
2324 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2325 {
2326 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2327 	       before(tp->rx_opt.rcv_tsecr, when);
2328 }
2329 
2330 /* skb is spurious retransmitted if the returned timestamp echo
2331  * reply is prior to the skb transmission time
2332  */
2333 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2334 				     const struct sk_buff *skb)
2335 {
2336 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2337 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2338 }
2339 
2340 /* Nothing was retransmitted or returned timestamp is less
2341  * than timestamp of the first retransmission.
2342  */
2343 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2344 {
2345 	return tp->retrans_stamp &&
2346 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2347 }
2348 
2349 /* Undo procedures. */
2350 
2351 /* We can clear retrans_stamp when there are no retransmissions in the
2352  * window. It would seem that it is trivially available for us in
2353  * tp->retrans_out, however, that kind of assumptions doesn't consider
2354  * what will happen if errors occur when sending retransmission for the
2355  * second time. ...It could the that such segment has only
2356  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2357  * the head skb is enough except for some reneging corner cases that
2358  * are not worth the effort.
2359  *
2360  * Main reason for all this complexity is the fact that connection dying
2361  * time now depends on the validity of the retrans_stamp, in particular,
2362  * that successive retransmissions of a segment must not advance
2363  * retrans_stamp under any conditions.
2364  */
2365 static bool tcp_any_retrans_done(const struct sock *sk)
2366 {
2367 	const struct tcp_sock *tp = tcp_sk(sk);
2368 	struct sk_buff *skb;
2369 
2370 	if (tp->retrans_out)
2371 		return true;
2372 
2373 	skb = tcp_rtx_queue_head(sk);
2374 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2375 		return true;
2376 
2377 	return false;
2378 }
2379 
2380 static void DBGUNDO(struct sock *sk, const char *msg)
2381 {
2382 #if FASTRETRANS_DEBUG > 1
2383 	struct tcp_sock *tp = tcp_sk(sk);
2384 	struct inet_sock *inet = inet_sk(sk);
2385 
2386 	if (sk->sk_family == AF_INET) {
2387 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2388 			 msg,
2389 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2390 			 tp->snd_cwnd, tcp_left_out(tp),
2391 			 tp->snd_ssthresh, tp->prior_ssthresh,
2392 			 tp->packets_out);
2393 	}
2394 #if IS_ENABLED(CONFIG_IPV6)
2395 	else if (sk->sk_family == AF_INET6) {
2396 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2397 			 msg,
2398 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2399 			 tp->snd_cwnd, tcp_left_out(tp),
2400 			 tp->snd_ssthresh, tp->prior_ssthresh,
2401 			 tp->packets_out);
2402 	}
2403 #endif
2404 #endif
2405 }
2406 
2407 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2408 {
2409 	struct tcp_sock *tp = tcp_sk(sk);
2410 
2411 	if (unmark_loss) {
2412 		struct sk_buff *skb;
2413 
2414 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2415 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2416 		}
2417 		tp->lost_out = 0;
2418 		tcp_clear_all_retrans_hints(tp);
2419 	}
2420 
2421 	if (tp->prior_ssthresh) {
2422 		const struct inet_connection_sock *icsk = inet_csk(sk);
2423 
2424 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2425 
2426 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2427 			tp->snd_ssthresh = tp->prior_ssthresh;
2428 			tcp_ecn_withdraw_cwr(tp);
2429 		}
2430 	}
2431 	tp->snd_cwnd_stamp = tcp_jiffies32;
2432 	tp->undo_marker = 0;
2433 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2434 }
2435 
2436 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2437 {
2438 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2439 }
2440 
2441 /* People celebrate: "We love our President!" */
2442 static bool tcp_try_undo_recovery(struct sock *sk)
2443 {
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 
2446 	if (tcp_may_undo(tp)) {
2447 		int mib_idx;
2448 
2449 		/* Happy end! We did not retransmit anything
2450 		 * or our original transmission succeeded.
2451 		 */
2452 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2453 		tcp_undo_cwnd_reduction(sk, false);
2454 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2455 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2456 		else
2457 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2458 
2459 		NET_INC_STATS(sock_net(sk), mib_idx);
2460 	} else if (tp->rack.reo_wnd_persist) {
2461 		tp->rack.reo_wnd_persist--;
2462 	}
2463 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2464 		/* Hold old state until something *above* high_seq
2465 		 * is ACKed. For Reno it is MUST to prevent false
2466 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2467 		if (!tcp_any_retrans_done(sk))
2468 			tp->retrans_stamp = 0;
2469 		return true;
2470 	}
2471 	tcp_set_ca_state(sk, TCP_CA_Open);
2472 	tp->is_sack_reneg = 0;
2473 	return false;
2474 }
2475 
2476 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2477 static bool tcp_try_undo_dsack(struct sock *sk)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 
2481 	if (tp->undo_marker && !tp->undo_retrans) {
2482 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2483 					       tp->rack.reo_wnd_persist + 1);
2484 		DBGUNDO(sk, "D-SACK");
2485 		tcp_undo_cwnd_reduction(sk, false);
2486 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2487 		return true;
2488 	}
2489 	return false;
2490 }
2491 
2492 /* Undo during loss recovery after partial ACK or using F-RTO. */
2493 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2494 {
2495 	struct tcp_sock *tp = tcp_sk(sk);
2496 
2497 	if (frto_undo || tcp_may_undo(tp)) {
2498 		tcp_undo_cwnd_reduction(sk, true);
2499 
2500 		DBGUNDO(sk, "partial loss");
2501 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2502 		if (frto_undo)
2503 			NET_INC_STATS(sock_net(sk),
2504 					LINUX_MIB_TCPSPURIOUSRTOS);
2505 		inet_csk(sk)->icsk_retransmits = 0;
2506 		if (frto_undo || tcp_is_sack(tp)) {
2507 			tcp_set_ca_state(sk, TCP_CA_Open);
2508 			tp->is_sack_reneg = 0;
2509 		}
2510 		return true;
2511 	}
2512 	return false;
2513 }
2514 
2515 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2516  * It computes the number of packets to send (sndcnt) based on packets newly
2517  * delivered:
2518  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2519  *	cwnd reductions across a full RTT.
2520  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2521  *      But when the retransmits are acked without further losses, PRR
2522  *      slow starts cwnd up to ssthresh to speed up the recovery.
2523  */
2524 static void tcp_init_cwnd_reduction(struct sock *sk)
2525 {
2526 	struct tcp_sock *tp = tcp_sk(sk);
2527 
2528 	tp->high_seq = tp->snd_nxt;
2529 	tp->tlp_high_seq = 0;
2530 	tp->snd_cwnd_cnt = 0;
2531 	tp->prior_cwnd = tp->snd_cwnd;
2532 	tp->prr_delivered = 0;
2533 	tp->prr_out = 0;
2534 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2535 	tcp_ecn_queue_cwr(tp);
2536 }
2537 
2538 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2539 {
2540 	struct tcp_sock *tp = tcp_sk(sk);
2541 	int sndcnt = 0;
2542 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2543 
2544 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2545 		return;
2546 
2547 	tp->prr_delivered += newly_acked_sacked;
2548 	if (delta < 0) {
2549 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2550 			       tp->prior_cwnd - 1;
2551 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2552 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2553 		   FLAG_RETRANS_DATA_ACKED) {
2554 		sndcnt = min_t(int, delta,
2555 			       max_t(int, tp->prr_delivered - tp->prr_out,
2556 				     newly_acked_sacked) + 1);
2557 	} else {
2558 		sndcnt = min(delta, newly_acked_sacked);
2559 	}
2560 	/* Force a fast retransmit upon entering fast recovery */
2561 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2562 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2563 }
2564 
2565 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2566 {
2567 	struct tcp_sock *tp = tcp_sk(sk);
2568 
2569 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2570 		return;
2571 
2572 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2573 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2574 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2575 		tp->snd_cwnd = tp->snd_ssthresh;
2576 		tp->snd_cwnd_stamp = tcp_jiffies32;
2577 	}
2578 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2579 }
2580 
2581 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2582 void tcp_enter_cwr(struct sock *sk)
2583 {
2584 	struct tcp_sock *tp = tcp_sk(sk);
2585 
2586 	tp->prior_ssthresh = 0;
2587 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2588 		tp->undo_marker = 0;
2589 		tcp_init_cwnd_reduction(sk);
2590 		tcp_set_ca_state(sk, TCP_CA_CWR);
2591 	}
2592 }
2593 EXPORT_SYMBOL(tcp_enter_cwr);
2594 
2595 static void tcp_try_keep_open(struct sock *sk)
2596 {
2597 	struct tcp_sock *tp = tcp_sk(sk);
2598 	int state = TCP_CA_Open;
2599 
2600 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2601 		state = TCP_CA_Disorder;
2602 
2603 	if (inet_csk(sk)->icsk_ca_state != state) {
2604 		tcp_set_ca_state(sk, state);
2605 		tp->high_seq = tp->snd_nxt;
2606 	}
2607 }
2608 
2609 static void tcp_try_to_open(struct sock *sk, int flag)
2610 {
2611 	struct tcp_sock *tp = tcp_sk(sk);
2612 
2613 	tcp_verify_left_out(tp);
2614 
2615 	if (!tcp_any_retrans_done(sk))
2616 		tp->retrans_stamp = 0;
2617 
2618 	if (flag & FLAG_ECE)
2619 		tcp_enter_cwr(sk);
2620 
2621 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2622 		tcp_try_keep_open(sk);
2623 	}
2624 }
2625 
2626 static void tcp_mtup_probe_failed(struct sock *sk)
2627 {
2628 	struct inet_connection_sock *icsk = inet_csk(sk);
2629 
2630 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2631 	icsk->icsk_mtup.probe_size = 0;
2632 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2633 }
2634 
2635 static void tcp_mtup_probe_success(struct sock *sk)
2636 {
2637 	struct tcp_sock *tp = tcp_sk(sk);
2638 	struct inet_connection_sock *icsk = inet_csk(sk);
2639 
2640 	/* FIXME: breaks with very large cwnd */
2641 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2642 	tp->snd_cwnd = tp->snd_cwnd *
2643 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2644 		       icsk->icsk_mtup.probe_size;
2645 	tp->snd_cwnd_cnt = 0;
2646 	tp->snd_cwnd_stamp = tcp_jiffies32;
2647 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2648 
2649 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2650 	icsk->icsk_mtup.probe_size = 0;
2651 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2652 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2653 }
2654 
2655 /* Do a simple retransmit without using the backoff mechanisms in
2656  * tcp_timer. This is used for path mtu discovery.
2657  * The socket is already locked here.
2658  */
2659 void tcp_simple_retransmit(struct sock *sk)
2660 {
2661 	const struct inet_connection_sock *icsk = inet_csk(sk);
2662 	struct tcp_sock *tp = tcp_sk(sk);
2663 	struct sk_buff *skb;
2664 	unsigned int mss = tcp_current_mss(sk);
2665 
2666 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2667 		if (tcp_skb_seglen(skb) > mss)
2668 			tcp_mark_skb_lost(sk, skb);
2669 	}
2670 
2671 	tcp_clear_retrans_hints_partial(tp);
2672 
2673 	if (!tp->lost_out)
2674 		return;
2675 
2676 	if (tcp_is_reno(tp))
2677 		tcp_limit_reno_sacked(tp);
2678 
2679 	tcp_verify_left_out(tp);
2680 
2681 	/* Don't muck with the congestion window here.
2682 	 * Reason is that we do not increase amount of _data_
2683 	 * in network, but units changed and effective
2684 	 * cwnd/ssthresh really reduced now.
2685 	 */
2686 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2687 		tp->high_seq = tp->snd_nxt;
2688 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2689 		tp->prior_ssthresh = 0;
2690 		tp->undo_marker = 0;
2691 		tcp_set_ca_state(sk, TCP_CA_Loss);
2692 	}
2693 	tcp_xmit_retransmit_queue(sk);
2694 }
2695 EXPORT_SYMBOL(tcp_simple_retransmit);
2696 
2697 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2698 {
2699 	struct tcp_sock *tp = tcp_sk(sk);
2700 	int mib_idx;
2701 
2702 	if (tcp_is_reno(tp))
2703 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2704 	else
2705 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2706 
2707 	NET_INC_STATS(sock_net(sk), mib_idx);
2708 
2709 	tp->prior_ssthresh = 0;
2710 	tcp_init_undo(tp);
2711 
2712 	if (!tcp_in_cwnd_reduction(sk)) {
2713 		if (!ece_ack)
2714 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2715 		tcp_init_cwnd_reduction(sk);
2716 	}
2717 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2718 }
2719 
2720 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2721  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2722  */
2723 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2724 			     int *rexmit)
2725 {
2726 	struct tcp_sock *tp = tcp_sk(sk);
2727 	bool recovered = !before(tp->snd_una, tp->high_seq);
2728 
2729 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2730 	    tcp_try_undo_loss(sk, false))
2731 		return;
2732 
2733 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2734 		/* Step 3.b. A timeout is spurious if not all data are
2735 		 * lost, i.e., never-retransmitted data are (s)acked.
2736 		 */
2737 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2738 		    tcp_try_undo_loss(sk, true))
2739 			return;
2740 
2741 		if (after(tp->snd_nxt, tp->high_seq)) {
2742 			if (flag & FLAG_DATA_SACKED || num_dupack)
2743 				tp->frto = 0; /* Step 3.a. loss was real */
2744 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2745 			tp->high_seq = tp->snd_nxt;
2746 			/* Step 2.b. Try send new data (but deferred until cwnd
2747 			 * is updated in tcp_ack()). Otherwise fall back to
2748 			 * the conventional recovery.
2749 			 */
2750 			if (!tcp_write_queue_empty(sk) &&
2751 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2752 				*rexmit = REXMIT_NEW;
2753 				return;
2754 			}
2755 			tp->frto = 0;
2756 		}
2757 	}
2758 
2759 	if (recovered) {
2760 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2761 		tcp_try_undo_recovery(sk);
2762 		return;
2763 	}
2764 	if (tcp_is_reno(tp)) {
2765 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2766 		 * delivered. Lower inflight to clock out (re)tranmissions.
2767 		 */
2768 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2769 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2770 		else if (flag & FLAG_SND_UNA_ADVANCED)
2771 			tcp_reset_reno_sack(tp);
2772 	}
2773 	*rexmit = REXMIT_LOST;
2774 }
2775 
2776 /* Undo during fast recovery after partial ACK. */
2777 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2778 {
2779 	struct tcp_sock *tp = tcp_sk(sk);
2780 
2781 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2782 		/* Plain luck! Hole if filled with delayed
2783 		 * packet, rather than with a retransmit. Check reordering.
2784 		 */
2785 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2786 
2787 		/* We are getting evidence that the reordering degree is higher
2788 		 * than we realized. If there are no retransmits out then we
2789 		 * can undo. Otherwise we clock out new packets but do not
2790 		 * mark more packets lost or retransmit more.
2791 		 */
2792 		if (tp->retrans_out)
2793 			return true;
2794 
2795 		if (!tcp_any_retrans_done(sk))
2796 			tp->retrans_stamp = 0;
2797 
2798 		DBGUNDO(sk, "partial recovery");
2799 		tcp_undo_cwnd_reduction(sk, true);
2800 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2801 		tcp_try_keep_open(sk);
2802 		return true;
2803 	}
2804 	return false;
2805 }
2806 
2807 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2808 {
2809 	struct tcp_sock *tp = tcp_sk(sk);
2810 
2811 	if (tcp_rtx_queue_empty(sk))
2812 		return;
2813 
2814 	if (unlikely(tcp_is_reno(tp))) {
2815 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2816 	} else if (tcp_is_rack(sk)) {
2817 		u32 prior_retrans = tp->retrans_out;
2818 
2819 		tcp_rack_mark_lost(sk);
2820 		if (prior_retrans > tp->retrans_out)
2821 			*ack_flag |= FLAG_LOST_RETRANS;
2822 	}
2823 }
2824 
2825 static bool tcp_force_fast_retransmit(struct sock *sk)
2826 {
2827 	struct tcp_sock *tp = tcp_sk(sk);
2828 
2829 	return after(tcp_highest_sack_seq(tp),
2830 		     tp->snd_una + tp->reordering * tp->mss_cache);
2831 }
2832 
2833 /* Process an event, which can update packets-in-flight not trivially.
2834  * Main goal of this function is to calculate new estimate for left_out,
2835  * taking into account both packets sitting in receiver's buffer and
2836  * packets lost by network.
2837  *
2838  * Besides that it updates the congestion state when packet loss or ECN
2839  * is detected. But it does not reduce the cwnd, it is done by the
2840  * congestion control later.
2841  *
2842  * It does _not_ decide what to send, it is made in function
2843  * tcp_xmit_retransmit_queue().
2844  */
2845 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2846 				  int num_dupack, int *ack_flag, int *rexmit)
2847 {
2848 	struct inet_connection_sock *icsk = inet_csk(sk);
2849 	struct tcp_sock *tp = tcp_sk(sk);
2850 	int fast_rexmit = 0, flag = *ack_flag;
2851 	bool ece_ack = flag & FLAG_ECE;
2852 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2853 				      tcp_force_fast_retransmit(sk));
2854 
2855 	if (!tp->packets_out && tp->sacked_out)
2856 		tp->sacked_out = 0;
2857 
2858 	/* Now state machine starts.
2859 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2860 	if (ece_ack)
2861 		tp->prior_ssthresh = 0;
2862 
2863 	/* B. In all the states check for reneging SACKs. */
2864 	if (tcp_check_sack_reneging(sk, flag))
2865 		return;
2866 
2867 	/* C. Check consistency of the current state. */
2868 	tcp_verify_left_out(tp);
2869 
2870 	/* D. Check state exit conditions. State can be terminated
2871 	 *    when high_seq is ACKed. */
2872 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2873 		WARN_ON(tp->retrans_out != 0);
2874 		tp->retrans_stamp = 0;
2875 	} else if (!before(tp->snd_una, tp->high_seq)) {
2876 		switch (icsk->icsk_ca_state) {
2877 		case TCP_CA_CWR:
2878 			/* CWR is to be held something *above* high_seq
2879 			 * is ACKed for CWR bit to reach receiver. */
2880 			if (tp->snd_una != tp->high_seq) {
2881 				tcp_end_cwnd_reduction(sk);
2882 				tcp_set_ca_state(sk, TCP_CA_Open);
2883 			}
2884 			break;
2885 
2886 		case TCP_CA_Recovery:
2887 			if (tcp_is_reno(tp))
2888 				tcp_reset_reno_sack(tp);
2889 			if (tcp_try_undo_recovery(sk))
2890 				return;
2891 			tcp_end_cwnd_reduction(sk);
2892 			break;
2893 		}
2894 	}
2895 
2896 	/* E. Process state. */
2897 	switch (icsk->icsk_ca_state) {
2898 	case TCP_CA_Recovery:
2899 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2900 			if (tcp_is_reno(tp))
2901 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2902 		} else {
2903 			if (tcp_try_undo_partial(sk, prior_snd_una))
2904 				return;
2905 			/* Partial ACK arrived. Force fast retransmit. */
2906 			do_lost = tcp_force_fast_retransmit(sk);
2907 		}
2908 		if (tcp_try_undo_dsack(sk)) {
2909 			tcp_try_keep_open(sk);
2910 			return;
2911 		}
2912 		tcp_identify_packet_loss(sk, ack_flag);
2913 		break;
2914 	case TCP_CA_Loss:
2915 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2916 		tcp_identify_packet_loss(sk, ack_flag);
2917 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2918 		      (*ack_flag & FLAG_LOST_RETRANS)))
2919 			return;
2920 		/* Change state if cwnd is undone or retransmits are lost */
2921 		fallthrough;
2922 	default:
2923 		if (tcp_is_reno(tp)) {
2924 			if (flag & FLAG_SND_UNA_ADVANCED)
2925 				tcp_reset_reno_sack(tp);
2926 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2927 		}
2928 
2929 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2930 			tcp_try_undo_dsack(sk);
2931 
2932 		tcp_identify_packet_loss(sk, ack_flag);
2933 		if (!tcp_time_to_recover(sk, flag)) {
2934 			tcp_try_to_open(sk, flag);
2935 			return;
2936 		}
2937 
2938 		/* MTU probe failure: don't reduce cwnd */
2939 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2940 		    icsk->icsk_mtup.probe_size &&
2941 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2942 			tcp_mtup_probe_failed(sk);
2943 			/* Restores the reduction we did in tcp_mtup_probe() */
2944 			tp->snd_cwnd++;
2945 			tcp_simple_retransmit(sk);
2946 			return;
2947 		}
2948 
2949 		/* Otherwise enter Recovery state */
2950 		tcp_enter_recovery(sk, ece_ack);
2951 		fast_rexmit = 1;
2952 	}
2953 
2954 	if (!tcp_is_rack(sk) && do_lost)
2955 		tcp_update_scoreboard(sk, fast_rexmit);
2956 	*rexmit = REXMIT_LOST;
2957 }
2958 
2959 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2960 {
2961 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2962 	struct tcp_sock *tp = tcp_sk(sk);
2963 
2964 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2965 		/* If the remote keeps returning delayed ACKs, eventually
2966 		 * the min filter would pick it up and overestimate the
2967 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2968 		 */
2969 		return;
2970 	}
2971 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2972 			   rtt_us ? : jiffies_to_usecs(1));
2973 }
2974 
2975 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2976 			       long seq_rtt_us, long sack_rtt_us,
2977 			       long ca_rtt_us, struct rate_sample *rs)
2978 {
2979 	const struct tcp_sock *tp = tcp_sk(sk);
2980 
2981 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2982 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2983 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2984 	 * is acked (RFC6298).
2985 	 */
2986 	if (seq_rtt_us < 0)
2987 		seq_rtt_us = sack_rtt_us;
2988 
2989 	/* RTTM Rule: A TSecr value received in a segment is used to
2990 	 * update the averaged RTT measurement only if the segment
2991 	 * acknowledges some new data, i.e., only if it advances the
2992 	 * left edge of the send window.
2993 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2994 	 */
2995 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2996 	    flag & FLAG_ACKED) {
2997 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2998 
2999 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3000 			if (!delta)
3001 				delta = 1;
3002 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3003 			ca_rtt_us = seq_rtt_us;
3004 		}
3005 	}
3006 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3007 	if (seq_rtt_us < 0)
3008 		return false;
3009 
3010 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3011 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3012 	 * values will be skipped with the seq_rtt_us < 0 check above.
3013 	 */
3014 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3015 	tcp_rtt_estimator(sk, seq_rtt_us);
3016 	tcp_set_rto(sk);
3017 
3018 	/* RFC6298: only reset backoff on valid RTT measurement. */
3019 	inet_csk(sk)->icsk_backoff = 0;
3020 	return true;
3021 }
3022 
3023 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3024 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3025 {
3026 	struct rate_sample rs;
3027 	long rtt_us = -1L;
3028 
3029 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3030 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3031 
3032 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3033 }
3034 
3035 
3036 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3037 {
3038 	const struct inet_connection_sock *icsk = inet_csk(sk);
3039 
3040 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3041 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3042 }
3043 
3044 /* Restart timer after forward progress on connection.
3045  * RFC2988 recommends to restart timer to now+rto.
3046  */
3047 void tcp_rearm_rto(struct sock *sk)
3048 {
3049 	const struct inet_connection_sock *icsk = inet_csk(sk);
3050 	struct tcp_sock *tp = tcp_sk(sk);
3051 
3052 	/* If the retrans timer is currently being used by Fast Open
3053 	 * for SYN-ACK retrans purpose, stay put.
3054 	 */
3055 	if (rcu_access_pointer(tp->fastopen_rsk))
3056 		return;
3057 
3058 	if (!tp->packets_out) {
3059 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3060 	} else {
3061 		u32 rto = inet_csk(sk)->icsk_rto;
3062 		/* Offset the time elapsed after installing regular RTO */
3063 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3064 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3065 			s64 delta_us = tcp_rto_delta_us(sk);
3066 			/* delta_us may not be positive if the socket is locked
3067 			 * when the retrans timer fires and is rescheduled.
3068 			 */
3069 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3070 		}
3071 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3072 				     TCP_RTO_MAX);
3073 	}
3074 }
3075 
3076 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3077 static void tcp_set_xmit_timer(struct sock *sk)
3078 {
3079 	if (!tcp_schedule_loss_probe(sk, true))
3080 		tcp_rearm_rto(sk);
3081 }
3082 
3083 /* If we get here, the whole TSO packet has not been acked. */
3084 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3085 {
3086 	struct tcp_sock *tp = tcp_sk(sk);
3087 	u32 packets_acked;
3088 
3089 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3090 
3091 	packets_acked = tcp_skb_pcount(skb);
3092 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3093 		return 0;
3094 	packets_acked -= tcp_skb_pcount(skb);
3095 
3096 	if (packets_acked) {
3097 		BUG_ON(tcp_skb_pcount(skb) == 0);
3098 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3099 	}
3100 
3101 	return packets_acked;
3102 }
3103 
3104 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3105 			   u32 prior_snd_una)
3106 {
3107 	const struct skb_shared_info *shinfo;
3108 
3109 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3110 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3111 		return;
3112 
3113 	shinfo = skb_shinfo(skb);
3114 	if (!before(shinfo->tskey, prior_snd_una) &&
3115 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3116 		tcp_skb_tsorted_save(skb) {
3117 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3118 		} tcp_skb_tsorted_restore(skb);
3119 	}
3120 }
3121 
3122 /* Remove acknowledged frames from the retransmission queue. If our packet
3123  * is before the ack sequence we can discard it as it's confirmed to have
3124  * arrived at the other end.
3125  */
3126 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3127 			       u32 prior_snd_una,
3128 			       struct tcp_sacktag_state *sack, bool ece_ack)
3129 {
3130 	const struct inet_connection_sock *icsk = inet_csk(sk);
3131 	u64 first_ackt, last_ackt;
3132 	struct tcp_sock *tp = tcp_sk(sk);
3133 	u32 prior_sacked = tp->sacked_out;
3134 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3135 	struct sk_buff *skb, *next;
3136 	bool fully_acked = true;
3137 	long sack_rtt_us = -1L;
3138 	long seq_rtt_us = -1L;
3139 	long ca_rtt_us = -1L;
3140 	u32 pkts_acked = 0;
3141 	u32 last_in_flight = 0;
3142 	bool rtt_update;
3143 	int flag = 0;
3144 
3145 	first_ackt = 0;
3146 
3147 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3148 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3149 		const u32 start_seq = scb->seq;
3150 		u8 sacked = scb->sacked;
3151 		u32 acked_pcount;
3152 
3153 		/* Determine how many packets and what bytes were acked, tso and else */
3154 		if (after(scb->end_seq, tp->snd_una)) {
3155 			if (tcp_skb_pcount(skb) == 1 ||
3156 			    !after(tp->snd_una, scb->seq))
3157 				break;
3158 
3159 			acked_pcount = tcp_tso_acked(sk, skb);
3160 			if (!acked_pcount)
3161 				break;
3162 			fully_acked = false;
3163 		} else {
3164 			acked_pcount = tcp_skb_pcount(skb);
3165 		}
3166 
3167 		if (unlikely(sacked & TCPCB_RETRANS)) {
3168 			if (sacked & TCPCB_SACKED_RETRANS)
3169 				tp->retrans_out -= acked_pcount;
3170 			flag |= FLAG_RETRANS_DATA_ACKED;
3171 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3172 			last_ackt = tcp_skb_timestamp_us(skb);
3173 			WARN_ON_ONCE(last_ackt == 0);
3174 			if (!first_ackt)
3175 				first_ackt = last_ackt;
3176 
3177 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3178 			if (before(start_seq, reord))
3179 				reord = start_seq;
3180 			if (!after(scb->end_seq, tp->high_seq))
3181 				flag |= FLAG_ORIG_SACK_ACKED;
3182 		}
3183 
3184 		if (sacked & TCPCB_SACKED_ACKED) {
3185 			tp->sacked_out -= acked_pcount;
3186 		} else if (tcp_is_sack(tp)) {
3187 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3188 			if (!tcp_skb_spurious_retrans(tp, skb))
3189 				tcp_rack_advance(tp, sacked, scb->end_seq,
3190 						 tcp_skb_timestamp_us(skb));
3191 		}
3192 		if (sacked & TCPCB_LOST)
3193 			tp->lost_out -= acked_pcount;
3194 
3195 		tp->packets_out -= acked_pcount;
3196 		pkts_acked += acked_pcount;
3197 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3198 
3199 		/* Initial outgoing SYN's get put onto the write_queue
3200 		 * just like anything else we transmit.  It is not
3201 		 * true data, and if we misinform our callers that
3202 		 * this ACK acks real data, we will erroneously exit
3203 		 * connection startup slow start one packet too
3204 		 * quickly.  This is severely frowned upon behavior.
3205 		 */
3206 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3207 			flag |= FLAG_DATA_ACKED;
3208 		} else {
3209 			flag |= FLAG_SYN_ACKED;
3210 			tp->retrans_stamp = 0;
3211 		}
3212 
3213 		if (!fully_acked)
3214 			break;
3215 
3216 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3217 
3218 		next = skb_rb_next(skb);
3219 		if (unlikely(skb == tp->retransmit_skb_hint))
3220 			tp->retransmit_skb_hint = NULL;
3221 		if (unlikely(skb == tp->lost_skb_hint))
3222 			tp->lost_skb_hint = NULL;
3223 		tcp_highest_sack_replace(sk, skb, next);
3224 		tcp_rtx_queue_unlink_and_free(skb, sk);
3225 	}
3226 
3227 	if (!skb)
3228 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3229 
3230 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3231 		tp->snd_up = tp->snd_una;
3232 
3233 	if (skb) {
3234 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3235 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3236 			flag |= FLAG_SACK_RENEGING;
3237 	}
3238 
3239 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3240 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3241 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3242 
3243 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3244 		    last_in_flight && !prior_sacked && fully_acked &&
3245 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3246 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3247 			/* Conservatively mark a delayed ACK. It's typically
3248 			 * from a lone runt packet over the round trip to
3249 			 * a receiver w/o out-of-order or CE events.
3250 			 */
3251 			flag |= FLAG_ACK_MAYBE_DELAYED;
3252 		}
3253 	}
3254 	if (sack->first_sackt) {
3255 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3256 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3257 	}
3258 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3259 					ca_rtt_us, sack->rate);
3260 
3261 	if (flag & FLAG_ACKED) {
3262 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3263 		if (unlikely(icsk->icsk_mtup.probe_size &&
3264 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3265 			tcp_mtup_probe_success(sk);
3266 		}
3267 
3268 		if (tcp_is_reno(tp)) {
3269 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3270 
3271 			/* If any of the cumulatively ACKed segments was
3272 			 * retransmitted, non-SACK case cannot confirm that
3273 			 * progress was due to original transmission due to
3274 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3275 			 * the packets may have been never retransmitted.
3276 			 */
3277 			if (flag & FLAG_RETRANS_DATA_ACKED)
3278 				flag &= ~FLAG_ORIG_SACK_ACKED;
3279 		} else {
3280 			int delta;
3281 
3282 			/* Non-retransmitted hole got filled? That's reordering */
3283 			if (before(reord, prior_fack))
3284 				tcp_check_sack_reordering(sk, reord, 0);
3285 
3286 			delta = prior_sacked - tp->sacked_out;
3287 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3288 		}
3289 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3290 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3291 						    tcp_skb_timestamp_us(skb))) {
3292 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3293 		 * after when the head was last (re)transmitted. Otherwise the
3294 		 * timeout may continue to extend in loss recovery.
3295 		 */
3296 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3297 	}
3298 
3299 	if (icsk->icsk_ca_ops->pkts_acked) {
3300 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3301 					     .rtt_us = sack->rate->rtt_us,
3302 					     .in_flight = last_in_flight };
3303 
3304 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3305 	}
3306 
3307 #if FASTRETRANS_DEBUG > 0
3308 	WARN_ON((int)tp->sacked_out < 0);
3309 	WARN_ON((int)tp->lost_out < 0);
3310 	WARN_ON((int)tp->retrans_out < 0);
3311 	if (!tp->packets_out && tcp_is_sack(tp)) {
3312 		icsk = inet_csk(sk);
3313 		if (tp->lost_out) {
3314 			pr_debug("Leak l=%u %d\n",
3315 				 tp->lost_out, icsk->icsk_ca_state);
3316 			tp->lost_out = 0;
3317 		}
3318 		if (tp->sacked_out) {
3319 			pr_debug("Leak s=%u %d\n",
3320 				 tp->sacked_out, icsk->icsk_ca_state);
3321 			tp->sacked_out = 0;
3322 		}
3323 		if (tp->retrans_out) {
3324 			pr_debug("Leak r=%u %d\n",
3325 				 tp->retrans_out, icsk->icsk_ca_state);
3326 			tp->retrans_out = 0;
3327 		}
3328 	}
3329 #endif
3330 	return flag;
3331 }
3332 
3333 static void tcp_ack_probe(struct sock *sk)
3334 {
3335 	struct inet_connection_sock *icsk = inet_csk(sk);
3336 	struct sk_buff *head = tcp_send_head(sk);
3337 	const struct tcp_sock *tp = tcp_sk(sk);
3338 
3339 	/* Was it a usable window open? */
3340 	if (!head)
3341 		return;
3342 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3343 		icsk->icsk_backoff = 0;
3344 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3345 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3346 		 * This function is not for random using!
3347 		 */
3348 	} else {
3349 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3350 
3351 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3352 				     when, TCP_RTO_MAX);
3353 	}
3354 }
3355 
3356 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3357 {
3358 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3359 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3360 }
3361 
3362 /* Decide wheather to run the increase function of congestion control. */
3363 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3364 {
3365 	/* If reordering is high then always grow cwnd whenever data is
3366 	 * delivered regardless of its ordering. Otherwise stay conservative
3367 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3368 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3369 	 * cwnd in tcp_fastretrans_alert() based on more states.
3370 	 */
3371 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3372 		return flag & FLAG_FORWARD_PROGRESS;
3373 
3374 	return flag & FLAG_DATA_ACKED;
3375 }
3376 
3377 /* The "ultimate" congestion control function that aims to replace the rigid
3378  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3379  * It's called toward the end of processing an ACK with precise rate
3380  * information. All transmission or retransmission are delayed afterwards.
3381  */
3382 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3383 			     int flag, const struct rate_sample *rs)
3384 {
3385 	const struct inet_connection_sock *icsk = inet_csk(sk);
3386 
3387 	if (icsk->icsk_ca_ops->cong_control) {
3388 		icsk->icsk_ca_ops->cong_control(sk, rs);
3389 		return;
3390 	}
3391 
3392 	if (tcp_in_cwnd_reduction(sk)) {
3393 		/* Reduce cwnd if state mandates */
3394 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3395 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3396 		/* Advance cwnd if state allows */
3397 		tcp_cong_avoid(sk, ack, acked_sacked);
3398 	}
3399 	tcp_update_pacing_rate(sk);
3400 }
3401 
3402 /* Check that window update is acceptable.
3403  * The function assumes that snd_una<=ack<=snd_next.
3404  */
3405 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3406 					const u32 ack, const u32 ack_seq,
3407 					const u32 nwin)
3408 {
3409 	return	after(ack, tp->snd_una) ||
3410 		after(ack_seq, tp->snd_wl1) ||
3411 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3412 }
3413 
3414 /* If we update tp->snd_una, also update tp->bytes_acked */
3415 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3416 {
3417 	u32 delta = ack - tp->snd_una;
3418 
3419 	sock_owned_by_me((struct sock *)tp);
3420 	tp->bytes_acked += delta;
3421 	tp->snd_una = ack;
3422 }
3423 
3424 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3425 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3426 {
3427 	u32 delta = seq - tp->rcv_nxt;
3428 
3429 	sock_owned_by_me((struct sock *)tp);
3430 	tp->bytes_received += delta;
3431 	WRITE_ONCE(tp->rcv_nxt, seq);
3432 }
3433 
3434 /* Update our send window.
3435  *
3436  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3437  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3438  */
3439 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3440 				 u32 ack_seq)
3441 {
3442 	struct tcp_sock *tp = tcp_sk(sk);
3443 	int flag = 0;
3444 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3445 
3446 	if (likely(!tcp_hdr(skb)->syn))
3447 		nwin <<= tp->rx_opt.snd_wscale;
3448 
3449 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3450 		flag |= FLAG_WIN_UPDATE;
3451 		tcp_update_wl(tp, ack_seq);
3452 
3453 		if (tp->snd_wnd != nwin) {
3454 			tp->snd_wnd = nwin;
3455 
3456 			/* Note, it is the only place, where
3457 			 * fast path is recovered for sending TCP.
3458 			 */
3459 			tp->pred_flags = 0;
3460 			tcp_fast_path_check(sk);
3461 
3462 			if (!tcp_write_queue_empty(sk))
3463 				tcp_slow_start_after_idle_check(sk);
3464 
3465 			if (nwin > tp->max_window) {
3466 				tp->max_window = nwin;
3467 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3468 			}
3469 		}
3470 	}
3471 
3472 	tcp_snd_una_update(tp, ack);
3473 
3474 	return flag;
3475 }
3476 
3477 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3478 				   u32 *last_oow_ack_time)
3479 {
3480 	if (*last_oow_ack_time) {
3481 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3482 
3483 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3484 			NET_INC_STATS(net, mib_idx);
3485 			return true;	/* rate-limited: don't send yet! */
3486 		}
3487 	}
3488 
3489 	*last_oow_ack_time = tcp_jiffies32;
3490 
3491 	return false;	/* not rate-limited: go ahead, send dupack now! */
3492 }
3493 
3494 /* Return true if we're currently rate-limiting out-of-window ACKs and
3495  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3496  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3497  * attacks that send repeated SYNs or ACKs for the same connection. To
3498  * do this, we do not send a duplicate SYNACK or ACK if the remote
3499  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3500  */
3501 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3502 			  int mib_idx, u32 *last_oow_ack_time)
3503 {
3504 	/* Data packets without SYNs are not likely part of an ACK loop. */
3505 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3506 	    !tcp_hdr(skb)->syn)
3507 		return false;
3508 
3509 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3510 }
3511 
3512 /* RFC 5961 7 [ACK Throttling] */
3513 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3514 {
3515 	/* unprotected vars, we dont care of overwrites */
3516 	static u32 challenge_timestamp;
3517 	static unsigned int challenge_count;
3518 	struct tcp_sock *tp = tcp_sk(sk);
3519 	struct net *net = sock_net(sk);
3520 	u32 count, now;
3521 
3522 	/* First check our per-socket dupack rate limit. */
3523 	if (__tcp_oow_rate_limited(net,
3524 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3525 				   &tp->last_oow_ack_time))
3526 		return;
3527 
3528 	/* Then check host-wide RFC 5961 rate limit. */
3529 	now = jiffies / HZ;
3530 	if (now != challenge_timestamp) {
3531 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3532 		u32 half = (ack_limit + 1) >> 1;
3533 
3534 		challenge_timestamp = now;
3535 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3536 	}
3537 	count = READ_ONCE(challenge_count);
3538 	if (count > 0) {
3539 		WRITE_ONCE(challenge_count, count - 1);
3540 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3541 		tcp_send_ack(sk);
3542 	}
3543 }
3544 
3545 static void tcp_store_ts_recent(struct tcp_sock *tp)
3546 {
3547 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3548 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3549 }
3550 
3551 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3552 {
3553 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3554 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3555 		 * extra check below makes sure this can only happen
3556 		 * for pure ACK frames.  -DaveM
3557 		 *
3558 		 * Not only, also it occurs for expired timestamps.
3559 		 */
3560 
3561 		if (tcp_paws_check(&tp->rx_opt, 0))
3562 			tcp_store_ts_recent(tp);
3563 	}
3564 }
3565 
3566 /* This routine deals with acks during a TLP episode and ends an episode by
3567  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3568  */
3569 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3570 {
3571 	struct tcp_sock *tp = tcp_sk(sk);
3572 
3573 	if (before(ack, tp->tlp_high_seq))
3574 		return;
3575 
3576 	if (!tp->tlp_retrans) {
3577 		/* TLP of new data has been acknowledged */
3578 		tp->tlp_high_seq = 0;
3579 	} else if (flag & FLAG_DSACKING_ACK) {
3580 		/* This DSACK means original and TLP probe arrived; no loss */
3581 		tp->tlp_high_seq = 0;
3582 	} else if (after(ack, tp->tlp_high_seq)) {
3583 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3584 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3585 		 */
3586 		tcp_init_cwnd_reduction(sk);
3587 		tcp_set_ca_state(sk, TCP_CA_CWR);
3588 		tcp_end_cwnd_reduction(sk);
3589 		tcp_try_keep_open(sk);
3590 		NET_INC_STATS(sock_net(sk),
3591 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3592 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3593 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3594 		/* Pure dupack: original and TLP probe arrived; no loss */
3595 		tp->tlp_high_seq = 0;
3596 	}
3597 }
3598 
3599 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3600 {
3601 	const struct inet_connection_sock *icsk = inet_csk(sk);
3602 
3603 	if (icsk->icsk_ca_ops->in_ack_event)
3604 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3605 }
3606 
3607 /* Congestion control has updated the cwnd already. So if we're in
3608  * loss recovery then now we do any new sends (for FRTO) or
3609  * retransmits (for CA_Loss or CA_recovery) that make sense.
3610  */
3611 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3612 {
3613 	struct tcp_sock *tp = tcp_sk(sk);
3614 
3615 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3616 		return;
3617 
3618 	if (unlikely(rexmit == REXMIT_NEW)) {
3619 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3620 					  TCP_NAGLE_OFF);
3621 		if (after(tp->snd_nxt, tp->high_seq))
3622 			return;
3623 		tp->frto = 0;
3624 	}
3625 	tcp_xmit_retransmit_queue(sk);
3626 }
3627 
3628 /* Returns the number of packets newly acked or sacked by the current ACK */
3629 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3630 {
3631 	const struct net *net = sock_net(sk);
3632 	struct tcp_sock *tp = tcp_sk(sk);
3633 	u32 delivered;
3634 
3635 	delivered = tp->delivered - prior_delivered;
3636 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3637 	if (flag & FLAG_ECE)
3638 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3639 
3640 	return delivered;
3641 }
3642 
3643 /* This routine deals with incoming acks, but not outgoing ones. */
3644 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3645 {
3646 	struct inet_connection_sock *icsk = inet_csk(sk);
3647 	struct tcp_sock *tp = tcp_sk(sk);
3648 	struct tcp_sacktag_state sack_state;
3649 	struct rate_sample rs = { .prior_delivered = 0 };
3650 	u32 prior_snd_una = tp->snd_una;
3651 	bool is_sack_reneg = tp->is_sack_reneg;
3652 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3653 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3654 	int num_dupack = 0;
3655 	int prior_packets = tp->packets_out;
3656 	u32 delivered = tp->delivered;
3657 	u32 lost = tp->lost;
3658 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3659 	u32 prior_fack;
3660 
3661 	sack_state.first_sackt = 0;
3662 	sack_state.rate = &rs;
3663 	sack_state.sack_delivered = 0;
3664 
3665 	/* We very likely will need to access rtx queue. */
3666 	prefetch(sk->tcp_rtx_queue.rb_node);
3667 
3668 	/* If the ack is older than previous acks
3669 	 * then we can probably ignore it.
3670 	 */
3671 	if (before(ack, prior_snd_una)) {
3672 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3673 		if (before(ack, prior_snd_una - tp->max_window)) {
3674 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3675 				tcp_send_challenge_ack(sk, skb);
3676 			return -1;
3677 		}
3678 		goto old_ack;
3679 	}
3680 
3681 	/* If the ack includes data we haven't sent yet, discard
3682 	 * this segment (RFC793 Section 3.9).
3683 	 */
3684 	if (after(ack, tp->snd_nxt))
3685 		return -1;
3686 
3687 	if (after(ack, prior_snd_una)) {
3688 		flag |= FLAG_SND_UNA_ADVANCED;
3689 		icsk->icsk_retransmits = 0;
3690 
3691 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3692 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3693 			if (icsk->icsk_clean_acked)
3694 				icsk->icsk_clean_acked(sk, ack);
3695 #endif
3696 	}
3697 
3698 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3699 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3700 
3701 	/* ts_recent update must be made after we are sure that the packet
3702 	 * is in window.
3703 	 */
3704 	if (flag & FLAG_UPDATE_TS_RECENT)
3705 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3706 
3707 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3708 	    FLAG_SND_UNA_ADVANCED) {
3709 		/* Window is constant, pure forward advance.
3710 		 * No more checks are required.
3711 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3712 		 */
3713 		tcp_update_wl(tp, ack_seq);
3714 		tcp_snd_una_update(tp, ack);
3715 		flag |= FLAG_WIN_UPDATE;
3716 
3717 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3718 
3719 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3720 	} else {
3721 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3722 
3723 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3724 			flag |= FLAG_DATA;
3725 		else
3726 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3727 
3728 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3729 
3730 		if (TCP_SKB_CB(skb)->sacked)
3731 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3732 							&sack_state);
3733 
3734 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3735 			flag |= FLAG_ECE;
3736 			ack_ev_flags |= CA_ACK_ECE;
3737 		}
3738 
3739 		if (sack_state.sack_delivered)
3740 			tcp_count_delivered(tp, sack_state.sack_delivered,
3741 					    flag & FLAG_ECE);
3742 
3743 		if (flag & FLAG_WIN_UPDATE)
3744 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3745 
3746 		tcp_in_ack_event(sk, ack_ev_flags);
3747 	}
3748 
3749 	/* This is a deviation from RFC3168 since it states that:
3750 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3751 	 * the congestion window, it SHOULD set the CWR bit only on the first
3752 	 * new data packet that it transmits."
3753 	 * We accept CWR on pure ACKs to be more robust
3754 	 * with widely-deployed TCP implementations that do this.
3755 	 */
3756 	tcp_ecn_accept_cwr(sk, skb);
3757 
3758 	/* We passed data and got it acked, remove any soft error
3759 	 * log. Something worked...
3760 	 */
3761 	sk->sk_err_soft = 0;
3762 	icsk->icsk_probes_out = 0;
3763 	tp->rcv_tstamp = tcp_jiffies32;
3764 	if (!prior_packets)
3765 		goto no_queue;
3766 
3767 	/* See if we can take anything off of the retransmit queue. */
3768 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3769 				    flag & FLAG_ECE);
3770 
3771 	tcp_rack_update_reo_wnd(sk, &rs);
3772 
3773 	if (tp->tlp_high_seq)
3774 		tcp_process_tlp_ack(sk, ack, flag);
3775 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3776 	if (flag & FLAG_SET_XMIT_TIMER)
3777 		tcp_set_xmit_timer(sk);
3778 
3779 	if (tcp_ack_is_dubious(sk, flag)) {
3780 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3781 			num_dupack = 1;
3782 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3783 			if (!(flag & FLAG_DATA))
3784 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3785 		}
3786 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3787 				      &rexmit);
3788 	}
3789 
3790 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3791 		sk_dst_confirm(sk);
3792 
3793 	delivered = tcp_newly_delivered(sk, delivered, flag);
3794 	lost = tp->lost - lost;			/* freshly marked lost */
3795 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3796 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3797 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3798 	tcp_xmit_recovery(sk, rexmit);
3799 	return 1;
3800 
3801 no_queue:
3802 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3803 	if (flag & FLAG_DSACKING_ACK) {
3804 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3805 				      &rexmit);
3806 		tcp_newly_delivered(sk, delivered, flag);
3807 	}
3808 	/* If this ack opens up a zero window, clear backoff.  It was
3809 	 * being used to time the probes, and is probably far higher than
3810 	 * it needs to be for normal retransmission.
3811 	 */
3812 	tcp_ack_probe(sk);
3813 
3814 	if (tp->tlp_high_seq)
3815 		tcp_process_tlp_ack(sk, ack, flag);
3816 	return 1;
3817 
3818 old_ack:
3819 	/* If data was SACKed, tag it and see if we should send more data.
3820 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3821 	 */
3822 	if (TCP_SKB_CB(skb)->sacked) {
3823 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3824 						&sack_state);
3825 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3826 				      &rexmit);
3827 		tcp_newly_delivered(sk, delivered, flag);
3828 		tcp_xmit_recovery(sk, rexmit);
3829 	}
3830 
3831 	return 0;
3832 }
3833 
3834 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3835 				      bool syn, struct tcp_fastopen_cookie *foc,
3836 				      bool exp_opt)
3837 {
3838 	/* Valid only in SYN or SYN-ACK with an even length.  */
3839 	if (!foc || !syn || len < 0 || (len & 1))
3840 		return;
3841 
3842 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3843 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3844 		memcpy(foc->val, cookie, len);
3845 	else if (len != 0)
3846 		len = -1;
3847 	foc->len = len;
3848 	foc->exp = exp_opt;
3849 }
3850 
3851 static bool smc_parse_options(const struct tcphdr *th,
3852 			      struct tcp_options_received *opt_rx,
3853 			      const unsigned char *ptr,
3854 			      int opsize)
3855 {
3856 #if IS_ENABLED(CONFIG_SMC)
3857 	if (static_branch_unlikely(&tcp_have_smc)) {
3858 		if (th->syn && !(opsize & 1) &&
3859 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3860 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3861 			opt_rx->smc_ok = 1;
3862 			return true;
3863 		}
3864 	}
3865 #endif
3866 	return false;
3867 }
3868 
3869 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3870  * value on success.
3871  */
3872 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3873 {
3874 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3875 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3876 	u16 mss = 0;
3877 
3878 	while (length > 0) {
3879 		int opcode = *ptr++;
3880 		int opsize;
3881 
3882 		switch (opcode) {
3883 		case TCPOPT_EOL:
3884 			return mss;
3885 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3886 			length--;
3887 			continue;
3888 		default:
3889 			if (length < 2)
3890 				return mss;
3891 			opsize = *ptr++;
3892 			if (opsize < 2) /* "silly options" */
3893 				return mss;
3894 			if (opsize > length)
3895 				return mss;	/* fail on partial options */
3896 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3897 				u16 in_mss = get_unaligned_be16(ptr);
3898 
3899 				if (in_mss) {
3900 					if (user_mss && user_mss < in_mss)
3901 						in_mss = user_mss;
3902 					mss = in_mss;
3903 				}
3904 			}
3905 			ptr += opsize - 2;
3906 			length -= opsize;
3907 		}
3908 	}
3909 	return mss;
3910 }
3911 
3912 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3913  * But, this can also be called on packets in the established flow when
3914  * the fast version below fails.
3915  */
3916 void tcp_parse_options(const struct net *net,
3917 		       const struct sk_buff *skb,
3918 		       struct tcp_options_received *opt_rx, int estab,
3919 		       struct tcp_fastopen_cookie *foc)
3920 {
3921 	const unsigned char *ptr;
3922 	const struct tcphdr *th = tcp_hdr(skb);
3923 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3924 
3925 	ptr = (const unsigned char *)(th + 1);
3926 	opt_rx->saw_tstamp = 0;
3927 	opt_rx->saw_unknown = 0;
3928 
3929 	while (length > 0) {
3930 		int opcode = *ptr++;
3931 		int opsize;
3932 
3933 		switch (opcode) {
3934 		case TCPOPT_EOL:
3935 			return;
3936 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3937 			length--;
3938 			continue;
3939 		default:
3940 			if (length < 2)
3941 				return;
3942 			opsize = *ptr++;
3943 			if (opsize < 2) /* "silly options" */
3944 				return;
3945 			if (opsize > length)
3946 				return;	/* don't parse partial options */
3947 			switch (opcode) {
3948 			case TCPOPT_MSS:
3949 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3950 					u16 in_mss = get_unaligned_be16(ptr);
3951 					if (in_mss) {
3952 						if (opt_rx->user_mss &&
3953 						    opt_rx->user_mss < in_mss)
3954 							in_mss = opt_rx->user_mss;
3955 						opt_rx->mss_clamp = in_mss;
3956 					}
3957 				}
3958 				break;
3959 			case TCPOPT_WINDOW:
3960 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3961 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3962 					__u8 snd_wscale = *(__u8 *)ptr;
3963 					opt_rx->wscale_ok = 1;
3964 					if (snd_wscale > TCP_MAX_WSCALE) {
3965 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3966 								     __func__,
3967 								     snd_wscale,
3968 								     TCP_MAX_WSCALE);
3969 						snd_wscale = TCP_MAX_WSCALE;
3970 					}
3971 					opt_rx->snd_wscale = snd_wscale;
3972 				}
3973 				break;
3974 			case TCPOPT_TIMESTAMP:
3975 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3976 				    ((estab && opt_rx->tstamp_ok) ||
3977 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3978 					opt_rx->saw_tstamp = 1;
3979 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3980 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3981 				}
3982 				break;
3983 			case TCPOPT_SACK_PERM:
3984 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3985 				    !estab && net->ipv4.sysctl_tcp_sack) {
3986 					opt_rx->sack_ok = TCP_SACK_SEEN;
3987 					tcp_sack_reset(opt_rx);
3988 				}
3989 				break;
3990 
3991 			case TCPOPT_SACK:
3992 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3993 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3994 				   opt_rx->sack_ok) {
3995 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3996 				}
3997 				break;
3998 #ifdef CONFIG_TCP_MD5SIG
3999 			case TCPOPT_MD5SIG:
4000 				/*
4001 				 * The MD5 Hash has already been
4002 				 * checked (see tcp_v{4,6}_do_rcv()).
4003 				 */
4004 				break;
4005 #endif
4006 			case TCPOPT_FASTOPEN:
4007 				tcp_parse_fastopen_option(
4008 					opsize - TCPOLEN_FASTOPEN_BASE,
4009 					ptr, th->syn, foc, false);
4010 				break;
4011 
4012 			case TCPOPT_EXP:
4013 				/* Fast Open option shares code 254 using a
4014 				 * 16 bits magic number.
4015 				 */
4016 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4017 				    get_unaligned_be16(ptr) ==
4018 				    TCPOPT_FASTOPEN_MAGIC) {
4019 					tcp_parse_fastopen_option(opsize -
4020 						TCPOLEN_EXP_FASTOPEN_BASE,
4021 						ptr + 2, th->syn, foc, true);
4022 					break;
4023 				}
4024 
4025 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4026 					break;
4027 
4028 				opt_rx->saw_unknown = 1;
4029 				break;
4030 
4031 			default:
4032 				opt_rx->saw_unknown = 1;
4033 			}
4034 			ptr += opsize-2;
4035 			length -= opsize;
4036 		}
4037 	}
4038 }
4039 EXPORT_SYMBOL(tcp_parse_options);
4040 
4041 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4042 {
4043 	const __be32 *ptr = (const __be32 *)(th + 1);
4044 
4045 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4046 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4047 		tp->rx_opt.saw_tstamp = 1;
4048 		++ptr;
4049 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4050 		++ptr;
4051 		if (*ptr)
4052 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4053 		else
4054 			tp->rx_opt.rcv_tsecr = 0;
4055 		return true;
4056 	}
4057 	return false;
4058 }
4059 
4060 /* Fast parse options. This hopes to only see timestamps.
4061  * If it is wrong it falls back on tcp_parse_options().
4062  */
4063 static bool tcp_fast_parse_options(const struct net *net,
4064 				   const struct sk_buff *skb,
4065 				   const struct tcphdr *th, struct tcp_sock *tp)
4066 {
4067 	/* In the spirit of fast parsing, compare doff directly to constant
4068 	 * values.  Because equality is used, short doff can be ignored here.
4069 	 */
4070 	if (th->doff == (sizeof(*th) / 4)) {
4071 		tp->rx_opt.saw_tstamp = 0;
4072 		return false;
4073 	} else if (tp->rx_opt.tstamp_ok &&
4074 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4075 		if (tcp_parse_aligned_timestamp(tp, th))
4076 			return true;
4077 	}
4078 
4079 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4080 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4081 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4082 
4083 	return true;
4084 }
4085 
4086 #ifdef CONFIG_TCP_MD5SIG
4087 /*
4088  * Parse MD5 Signature option
4089  */
4090 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4091 {
4092 	int length = (th->doff << 2) - sizeof(*th);
4093 	const u8 *ptr = (const u8 *)(th + 1);
4094 
4095 	/* If not enough data remaining, we can short cut */
4096 	while (length >= TCPOLEN_MD5SIG) {
4097 		int opcode = *ptr++;
4098 		int opsize;
4099 
4100 		switch (opcode) {
4101 		case TCPOPT_EOL:
4102 			return NULL;
4103 		case TCPOPT_NOP:
4104 			length--;
4105 			continue;
4106 		default:
4107 			opsize = *ptr++;
4108 			if (opsize < 2 || opsize > length)
4109 				return NULL;
4110 			if (opcode == TCPOPT_MD5SIG)
4111 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4112 		}
4113 		ptr += opsize - 2;
4114 		length -= opsize;
4115 	}
4116 	return NULL;
4117 }
4118 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4119 #endif
4120 
4121 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4122  *
4123  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4124  * it can pass through stack. So, the following predicate verifies that
4125  * this segment is not used for anything but congestion avoidance or
4126  * fast retransmit. Moreover, we even are able to eliminate most of such
4127  * second order effects, if we apply some small "replay" window (~RTO)
4128  * to timestamp space.
4129  *
4130  * All these measures still do not guarantee that we reject wrapped ACKs
4131  * on networks with high bandwidth, when sequence space is recycled fastly,
4132  * but it guarantees that such events will be very rare and do not affect
4133  * connection seriously. This doesn't look nice, but alas, PAWS is really
4134  * buggy extension.
4135  *
4136  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4137  * states that events when retransmit arrives after original data are rare.
4138  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4139  * the biggest problem on large power networks even with minor reordering.
4140  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4141  * up to bandwidth of 18Gigabit/sec. 8) ]
4142  */
4143 
4144 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4145 {
4146 	const struct tcp_sock *tp = tcp_sk(sk);
4147 	const struct tcphdr *th = tcp_hdr(skb);
4148 	u32 seq = TCP_SKB_CB(skb)->seq;
4149 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4150 
4151 	return (/* 1. Pure ACK with correct sequence number. */
4152 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4153 
4154 		/* 2. ... and duplicate ACK. */
4155 		ack == tp->snd_una &&
4156 
4157 		/* 3. ... and does not update window. */
4158 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4159 
4160 		/* 4. ... and sits in replay window. */
4161 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4162 }
4163 
4164 static inline bool tcp_paws_discard(const struct sock *sk,
4165 				   const struct sk_buff *skb)
4166 {
4167 	const struct tcp_sock *tp = tcp_sk(sk);
4168 
4169 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4170 	       !tcp_disordered_ack(sk, skb);
4171 }
4172 
4173 /* Check segment sequence number for validity.
4174  *
4175  * Segment controls are considered valid, if the segment
4176  * fits to the window after truncation to the window. Acceptability
4177  * of data (and SYN, FIN, of course) is checked separately.
4178  * See tcp_data_queue(), for example.
4179  *
4180  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4181  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4182  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4183  * (borrowed from freebsd)
4184  */
4185 
4186 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4187 {
4188 	return	!before(end_seq, tp->rcv_wup) &&
4189 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4190 }
4191 
4192 /* When we get a reset we do this. */
4193 void tcp_reset(struct sock *sk)
4194 {
4195 	trace_tcp_receive_reset(sk);
4196 
4197 	/* We want the right error as BSD sees it (and indeed as we do). */
4198 	switch (sk->sk_state) {
4199 	case TCP_SYN_SENT:
4200 		sk->sk_err = ECONNREFUSED;
4201 		break;
4202 	case TCP_CLOSE_WAIT:
4203 		sk->sk_err = EPIPE;
4204 		break;
4205 	case TCP_CLOSE:
4206 		return;
4207 	default:
4208 		sk->sk_err = ECONNRESET;
4209 	}
4210 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4211 	smp_wmb();
4212 
4213 	tcp_write_queue_purge(sk);
4214 	tcp_done(sk);
4215 
4216 	if (!sock_flag(sk, SOCK_DEAD))
4217 		sk->sk_error_report(sk);
4218 }
4219 
4220 /*
4221  * 	Process the FIN bit. This now behaves as it is supposed to work
4222  *	and the FIN takes effect when it is validly part of sequence
4223  *	space. Not before when we get holes.
4224  *
4225  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4226  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4227  *	TIME-WAIT)
4228  *
4229  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4230  *	close and we go into CLOSING (and later onto TIME-WAIT)
4231  *
4232  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4233  */
4234 void tcp_fin(struct sock *sk)
4235 {
4236 	struct tcp_sock *tp = tcp_sk(sk);
4237 
4238 	inet_csk_schedule_ack(sk);
4239 
4240 	sk->sk_shutdown |= RCV_SHUTDOWN;
4241 	sock_set_flag(sk, SOCK_DONE);
4242 
4243 	switch (sk->sk_state) {
4244 	case TCP_SYN_RECV:
4245 	case TCP_ESTABLISHED:
4246 		/* Move to CLOSE_WAIT */
4247 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4248 		inet_csk_enter_pingpong_mode(sk);
4249 		break;
4250 
4251 	case TCP_CLOSE_WAIT:
4252 	case TCP_CLOSING:
4253 		/* Received a retransmission of the FIN, do
4254 		 * nothing.
4255 		 */
4256 		break;
4257 	case TCP_LAST_ACK:
4258 		/* RFC793: Remain in the LAST-ACK state. */
4259 		break;
4260 
4261 	case TCP_FIN_WAIT1:
4262 		/* This case occurs when a simultaneous close
4263 		 * happens, we must ack the received FIN and
4264 		 * enter the CLOSING state.
4265 		 */
4266 		tcp_send_ack(sk);
4267 		tcp_set_state(sk, TCP_CLOSING);
4268 		break;
4269 	case TCP_FIN_WAIT2:
4270 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4271 		tcp_send_ack(sk);
4272 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4273 		break;
4274 	default:
4275 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4276 		 * cases we should never reach this piece of code.
4277 		 */
4278 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4279 		       __func__, sk->sk_state);
4280 		break;
4281 	}
4282 
4283 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4284 	 * Probably, we should reset in this case. For now drop them.
4285 	 */
4286 	skb_rbtree_purge(&tp->out_of_order_queue);
4287 	if (tcp_is_sack(tp))
4288 		tcp_sack_reset(&tp->rx_opt);
4289 	sk_mem_reclaim(sk);
4290 
4291 	if (!sock_flag(sk, SOCK_DEAD)) {
4292 		sk->sk_state_change(sk);
4293 
4294 		/* Do not send POLL_HUP for half duplex close. */
4295 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4296 		    sk->sk_state == TCP_CLOSE)
4297 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4298 		else
4299 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4300 	}
4301 }
4302 
4303 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4304 				  u32 end_seq)
4305 {
4306 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4307 		if (before(seq, sp->start_seq))
4308 			sp->start_seq = seq;
4309 		if (after(end_seq, sp->end_seq))
4310 			sp->end_seq = end_seq;
4311 		return true;
4312 	}
4313 	return false;
4314 }
4315 
4316 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4317 {
4318 	struct tcp_sock *tp = tcp_sk(sk);
4319 
4320 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4321 		int mib_idx;
4322 
4323 		if (before(seq, tp->rcv_nxt))
4324 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4325 		else
4326 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4327 
4328 		NET_INC_STATS(sock_net(sk), mib_idx);
4329 
4330 		tp->rx_opt.dsack = 1;
4331 		tp->duplicate_sack[0].start_seq = seq;
4332 		tp->duplicate_sack[0].end_seq = end_seq;
4333 	}
4334 }
4335 
4336 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4337 {
4338 	struct tcp_sock *tp = tcp_sk(sk);
4339 
4340 	if (!tp->rx_opt.dsack)
4341 		tcp_dsack_set(sk, seq, end_seq);
4342 	else
4343 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4344 }
4345 
4346 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4347 {
4348 	/* When the ACK path fails or drops most ACKs, the sender would
4349 	 * timeout and spuriously retransmit the same segment repeatedly.
4350 	 * The receiver remembers and reflects via DSACKs. Leverage the
4351 	 * DSACK state and change the txhash to re-route speculatively.
4352 	 */
4353 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4354 		sk_rethink_txhash(sk);
4355 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4356 	}
4357 }
4358 
4359 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4360 {
4361 	struct tcp_sock *tp = tcp_sk(sk);
4362 
4363 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4364 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4365 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4366 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4367 
4368 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4369 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4370 
4371 			tcp_rcv_spurious_retrans(sk, skb);
4372 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4373 				end_seq = tp->rcv_nxt;
4374 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4375 		}
4376 	}
4377 
4378 	tcp_send_ack(sk);
4379 }
4380 
4381 /* These routines update the SACK block as out-of-order packets arrive or
4382  * in-order packets close up the sequence space.
4383  */
4384 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4385 {
4386 	int this_sack;
4387 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4388 	struct tcp_sack_block *swalk = sp + 1;
4389 
4390 	/* See if the recent change to the first SACK eats into
4391 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4392 	 */
4393 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4394 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4395 			int i;
4396 
4397 			/* Zap SWALK, by moving every further SACK up by one slot.
4398 			 * Decrease num_sacks.
4399 			 */
4400 			tp->rx_opt.num_sacks--;
4401 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4402 				sp[i] = sp[i + 1];
4403 			continue;
4404 		}
4405 		this_sack++, swalk++;
4406 	}
4407 }
4408 
4409 static void tcp_sack_compress_send_ack(struct sock *sk)
4410 {
4411 	struct tcp_sock *tp = tcp_sk(sk);
4412 
4413 	if (!tp->compressed_ack)
4414 		return;
4415 
4416 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4417 		__sock_put(sk);
4418 
4419 	/* Since we have to send one ack finally,
4420 	 * substract one from tp->compressed_ack to keep
4421 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4422 	 */
4423 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4424 		      tp->compressed_ack - 1);
4425 
4426 	tp->compressed_ack = 0;
4427 	tcp_send_ack(sk);
4428 }
4429 
4430 /* Reasonable amount of sack blocks included in TCP SACK option
4431  * The max is 4, but this becomes 3 if TCP timestamps are there.
4432  * Given that SACK packets might be lost, be conservative and use 2.
4433  */
4434 #define TCP_SACK_BLOCKS_EXPECTED 2
4435 
4436 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4437 {
4438 	struct tcp_sock *tp = tcp_sk(sk);
4439 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4440 	int cur_sacks = tp->rx_opt.num_sacks;
4441 	int this_sack;
4442 
4443 	if (!cur_sacks)
4444 		goto new_sack;
4445 
4446 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4447 		if (tcp_sack_extend(sp, seq, end_seq)) {
4448 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4449 				tcp_sack_compress_send_ack(sk);
4450 			/* Rotate this_sack to the first one. */
4451 			for (; this_sack > 0; this_sack--, sp--)
4452 				swap(*sp, *(sp - 1));
4453 			if (cur_sacks > 1)
4454 				tcp_sack_maybe_coalesce(tp);
4455 			return;
4456 		}
4457 	}
4458 
4459 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4460 		tcp_sack_compress_send_ack(sk);
4461 
4462 	/* Could not find an adjacent existing SACK, build a new one,
4463 	 * put it at the front, and shift everyone else down.  We
4464 	 * always know there is at least one SACK present already here.
4465 	 *
4466 	 * If the sack array is full, forget about the last one.
4467 	 */
4468 	if (this_sack >= TCP_NUM_SACKS) {
4469 		this_sack--;
4470 		tp->rx_opt.num_sacks--;
4471 		sp--;
4472 	}
4473 	for (; this_sack > 0; this_sack--, sp--)
4474 		*sp = *(sp - 1);
4475 
4476 new_sack:
4477 	/* Build the new head SACK, and we're done. */
4478 	sp->start_seq = seq;
4479 	sp->end_seq = end_seq;
4480 	tp->rx_opt.num_sacks++;
4481 }
4482 
4483 /* RCV.NXT advances, some SACKs should be eaten. */
4484 
4485 static void tcp_sack_remove(struct tcp_sock *tp)
4486 {
4487 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4488 	int num_sacks = tp->rx_opt.num_sacks;
4489 	int this_sack;
4490 
4491 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4492 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4493 		tp->rx_opt.num_sacks = 0;
4494 		return;
4495 	}
4496 
4497 	for (this_sack = 0; this_sack < num_sacks;) {
4498 		/* Check if the start of the sack is covered by RCV.NXT. */
4499 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4500 			int i;
4501 
4502 			/* RCV.NXT must cover all the block! */
4503 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4504 
4505 			/* Zap this SACK, by moving forward any other SACKS. */
4506 			for (i = this_sack+1; i < num_sacks; i++)
4507 				tp->selective_acks[i-1] = tp->selective_acks[i];
4508 			num_sacks--;
4509 			continue;
4510 		}
4511 		this_sack++;
4512 		sp++;
4513 	}
4514 	tp->rx_opt.num_sacks = num_sacks;
4515 }
4516 
4517 /**
4518  * tcp_try_coalesce - try to merge skb to prior one
4519  * @sk: socket
4520  * @to: prior buffer
4521  * @from: buffer to add in queue
4522  * @fragstolen: pointer to boolean
4523  *
4524  * Before queueing skb @from after @to, try to merge them
4525  * to reduce overall memory use and queue lengths, if cost is small.
4526  * Packets in ofo or receive queues can stay a long time.
4527  * Better try to coalesce them right now to avoid future collapses.
4528  * Returns true if caller should free @from instead of queueing it
4529  */
4530 static bool tcp_try_coalesce(struct sock *sk,
4531 			     struct sk_buff *to,
4532 			     struct sk_buff *from,
4533 			     bool *fragstolen)
4534 {
4535 	int delta;
4536 
4537 	*fragstolen = false;
4538 
4539 	/* Its possible this segment overlaps with prior segment in queue */
4540 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4541 		return false;
4542 
4543 	if (!mptcp_skb_can_collapse(to, from))
4544 		return false;
4545 
4546 #ifdef CONFIG_TLS_DEVICE
4547 	if (from->decrypted != to->decrypted)
4548 		return false;
4549 #endif
4550 
4551 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4552 		return false;
4553 
4554 	atomic_add(delta, &sk->sk_rmem_alloc);
4555 	sk_mem_charge(sk, delta);
4556 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4557 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4558 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4559 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4560 
4561 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4562 		TCP_SKB_CB(to)->has_rxtstamp = true;
4563 		to->tstamp = from->tstamp;
4564 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4565 	}
4566 
4567 	return true;
4568 }
4569 
4570 static bool tcp_ooo_try_coalesce(struct sock *sk,
4571 			     struct sk_buff *to,
4572 			     struct sk_buff *from,
4573 			     bool *fragstolen)
4574 {
4575 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4576 
4577 	/* In case tcp_drop() is called later, update to->gso_segs */
4578 	if (res) {
4579 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4580 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4581 
4582 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4583 	}
4584 	return res;
4585 }
4586 
4587 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4588 {
4589 	sk_drops_add(sk, skb);
4590 	__kfree_skb(skb);
4591 }
4592 
4593 /* This one checks to see if we can put data from the
4594  * out_of_order queue into the receive_queue.
4595  */
4596 static void tcp_ofo_queue(struct sock *sk)
4597 {
4598 	struct tcp_sock *tp = tcp_sk(sk);
4599 	__u32 dsack_high = tp->rcv_nxt;
4600 	bool fin, fragstolen, eaten;
4601 	struct sk_buff *skb, *tail;
4602 	struct rb_node *p;
4603 
4604 	p = rb_first(&tp->out_of_order_queue);
4605 	while (p) {
4606 		skb = rb_to_skb(p);
4607 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4608 			break;
4609 
4610 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4611 			__u32 dsack = dsack_high;
4612 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4613 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4614 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4615 		}
4616 		p = rb_next(p);
4617 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4618 
4619 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4620 			tcp_drop(sk, skb);
4621 			continue;
4622 		}
4623 
4624 		tail = skb_peek_tail(&sk->sk_receive_queue);
4625 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4626 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4627 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4628 		if (!eaten)
4629 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4630 		else
4631 			kfree_skb_partial(skb, fragstolen);
4632 
4633 		if (unlikely(fin)) {
4634 			tcp_fin(sk);
4635 			/* tcp_fin() purges tp->out_of_order_queue,
4636 			 * so we must end this loop right now.
4637 			 */
4638 			break;
4639 		}
4640 	}
4641 }
4642 
4643 static bool tcp_prune_ofo_queue(struct sock *sk);
4644 static int tcp_prune_queue(struct sock *sk);
4645 
4646 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4647 				 unsigned int size)
4648 {
4649 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4650 	    !sk_rmem_schedule(sk, skb, size)) {
4651 
4652 		if (tcp_prune_queue(sk) < 0)
4653 			return -1;
4654 
4655 		while (!sk_rmem_schedule(sk, skb, size)) {
4656 			if (!tcp_prune_ofo_queue(sk))
4657 				return -1;
4658 		}
4659 	}
4660 	return 0;
4661 }
4662 
4663 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4664 {
4665 	struct tcp_sock *tp = tcp_sk(sk);
4666 	struct rb_node **p, *parent;
4667 	struct sk_buff *skb1;
4668 	u32 seq, end_seq;
4669 	bool fragstolen;
4670 
4671 	tcp_ecn_check_ce(sk, skb);
4672 
4673 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4674 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4675 		sk->sk_data_ready(sk);
4676 		tcp_drop(sk, skb);
4677 		return;
4678 	}
4679 
4680 	/* Disable header prediction. */
4681 	tp->pred_flags = 0;
4682 	inet_csk_schedule_ack(sk);
4683 
4684 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4685 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4686 	seq = TCP_SKB_CB(skb)->seq;
4687 	end_seq = TCP_SKB_CB(skb)->end_seq;
4688 
4689 	p = &tp->out_of_order_queue.rb_node;
4690 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4691 		/* Initial out of order segment, build 1 SACK. */
4692 		if (tcp_is_sack(tp)) {
4693 			tp->rx_opt.num_sacks = 1;
4694 			tp->selective_acks[0].start_seq = seq;
4695 			tp->selective_acks[0].end_seq = end_seq;
4696 		}
4697 		rb_link_node(&skb->rbnode, NULL, p);
4698 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4699 		tp->ooo_last_skb = skb;
4700 		goto end;
4701 	}
4702 
4703 	/* In the typical case, we are adding an skb to the end of the list.
4704 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4705 	 */
4706 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4707 				 skb, &fragstolen)) {
4708 coalesce_done:
4709 		/* For non sack flows, do not grow window to force DUPACK
4710 		 * and trigger fast retransmit.
4711 		 */
4712 		if (tcp_is_sack(tp))
4713 			tcp_grow_window(sk, skb);
4714 		kfree_skb_partial(skb, fragstolen);
4715 		skb = NULL;
4716 		goto add_sack;
4717 	}
4718 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4719 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4720 		parent = &tp->ooo_last_skb->rbnode;
4721 		p = &parent->rb_right;
4722 		goto insert;
4723 	}
4724 
4725 	/* Find place to insert this segment. Handle overlaps on the way. */
4726 	parent = NULL;
4727 	while (*p) {
4728 		parent = *p;
4729 		skb1 = rb_to_skb(parent);
4730 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4731 			p = &parent->rb_left;
4732 			continue;
4733 		}
4734 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4735 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4736 				/* All the bits are present. Drop. */
4737 				NET_INC_STATS(sock_net(sk),
4738 					      LINUX_MIB_TCPOFOMERGE);
4739 				tcp_drop(sk, skb);
4740 				skb = NULL;
4741 				tcp_dsack_set(sk, seq, end_seq);
4742 				goto add_sack;
4743 			}
4744 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4745 				/* Partial overlap. */
4746 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4747 			} else {
4748 				/* skb's seq == skb1's seq and skb covers skb1.
4749 				 * Replace skb1 with skb.
4750 				 */
4751 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4752 						&tp->out_of_order_queue);
4753 				tcp_dsack_extend(sk,
4754 						 TCP_SKB_CB(skb1)->seq,
4755 						 TCP_SKB_CB(skb1)->end_seq);
4756 				NET_INC_STATS(sock_net(sk),
4757 					      LINUX_MIB_TCPOFOMERGE);
4758 				tcp_drop(sk, skb1);
4759 				goto merge_right;
4760 			}
4761 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4762 						skb, &fragstolen)) {
4763 			goto coalesce_done;
4764 		}
4765 		p = &parent->rb_right;
4766 	}
4767 insert:
4768 	/* Insert segment into RB tree. */
4769 	rb_link_node(&skb->rbnode, parent, p);
4770 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4771 
4772 merge_right:
4773 	/* Remove other segments covered by skb. */
4774 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4775 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4776 			break;
4777 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4778 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4779 					 end_seq);
4780 			break;
4781 		}
4782 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4783 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4784 				 TCP_SKB_CB(skb1)->end_seq);
4785 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4786 		tcp_drop(sk, skb1);
4787 	}
4788 	/* If there is no skb after us, we are the last_skb ! */
4789 	if (!skb1)
4790 		tp->ooo_last_skb = skb;
4791 
4792 add_sack:
4793 	if (tcp_is_sack(tp))
4794 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4795 end:
4796 	if (skb) {
4797 		/* For non sack flows, do not grow window to force DUPACK
4798 		 * and trigger fast retransmit.
4799 		 */
4800 		if (tcp_is_sack(tp))
4801 			tcp_grow_window(sk, skb);
4802 		skb_condense(skb);
4803 		skb_set_owner_r(skb, sk);
4804 	}
4805 }
4806 
4807 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4808 				      bool *fragstolen)
4809 {
4810 	int eaten;
4811 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4812 
4813 	eaten = (tail &&
4814 		 tcp_try_coalesce(sk, tail,
4815 				  skb, fragstolen)) ? 1 : 0;
4816 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4817 	if (!eaten) {
4818 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4819 		skb_set_owner_r(skb, sk);
4820 	}
4821 	return eaten;
4822 }
4823 
4824 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4825 {
4826 	struct sk_buff *skb;
4827 	int err = -ENOMEM;
4828 	int data_len = 0;
4829 	bool fragstolen;
4830 
4831 	if (size == 0)
4832 		return 0;
4833 
4834 	if (size > PAGE_SIZE) {
4835 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4836 
4837 		data_len = npages << PAGE_SHIFT;
4838 		size = data_len + (size & ~PAGE_MASK);
4839 	}
4840 	skb = alloc_skb_with_frags(size - data_len, data_len,
4841 				   PAGE_ALLOC_COSTLY_ORDER,
4842 				   &err, sk->sk_allocation);
4843 	if (!skb)
4844 		goto err;
4845 
4846 	skb_put(skb, size - data_len);
4847 	skb->data_len = data_len;
4848 	skb->len = size;
4849 
4850 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4851 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4852 		goto err_free;
4853 	}
4854 
4855 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4856 	if (err)
4857 		goto err_free;
4858 
4859 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4860 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4861 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4862 
4863 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4864 		WARN_ON_ONCE(fragstolen); /* should not happen */
4865 		__kfree_skb(skb);
4866 	}
4867 	return size;
4868 
4869 err_free:
4870 	kfree_skb(skb);
4871 err:
4872 	return err;
4873 
4874 }
4875 
4876 void tcp_data_ready(struct sock *sk)
4877 {
4878 	const struct tcp_sock *tp = tcp_sk(sk);
4879 	int avail = tp->rcv_nxt - tp->copied_seq;
4880 
4881 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4882 	    !sock_flag(sk, SOCK_DONE))
4883 		return;
4884 
4885 	sk->sk_data_ready(sk);
4886 }
4887 
4888 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4889 {
4890 	struct tcp_sock *tp = tcp_sk(sk);
4891 	bool fragstolen;
4892 	int eaten;
4893 
4894 	if (sk_is_mptcp(sk))
4895 		mptcp_incoming_options(sk, skb);
4896 
4897 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4898 		__kfree_skb(skb);
4899 		return;
4900 	}
4901 	skb_dst_drop(skb);
4902 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4903 
4904 	tp->rx_opt.dsack = 0;
4905 
4906 	/*  Queue data for delivery to the user.
4907 	 *  Packets in sequence go to the receive queue.
4908 	 *  Out of sequence packets to the out_of_order_queue.
4909 	 */
4910 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4911 		if (tcp_receive_window(tp) == 0) {
4912 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4913 			goto out_of_window;
4914 		}
4915 
4916 		/* Ok. In sequence. In window. */
4917 queue_and_out:
4918 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4919 			sk_forced_mem_schedule(sk, skb->truesize);
4920 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4921 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4922 			sk->sk_data_ready(sk);
4923 			goto drop;
4924 		}
4925 
4926 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4927 		if (skb->len)
4928 			tcp_event_data_recv(sk, skb);
4929 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4930 			tcp_fin(sk);
4931 
4932 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4933 			tcp_ofo_queue(sk);
4934 
4935 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4936 			 * gap in queue is filled.
4937 			 */
4938 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4939 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4940 		}
4941 
4942 		if (tp->rx_opt.num_sacks)
4943 			tcp_sack_remove(tp);
4944 
4945 		tcp_fast_path_check(sk);
4946 
4947 		if (eaten > 0)
4948 			kfree_skb_partial(skb, fragstolen);
4949 		if (!sock_flag(sk, SOCK_DEAD))
4950 			tcp_data_ready(sk);
4951 		return;
4952 	}
4953 
4954 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4955 		tcp_rcv_spurious_retrans(sk, skb);
4956 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4957 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4958 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4959 
4960 out_of_window:
4961 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4962 		inet_csk_schedule_ack(sk);
4963 drop:
4964 		tcp_drop(sk, skb);
4965 		return;
4966 	}
4967 
4968 	/* Out of window. F.e. zero window probe. */
4969 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4970 		goto out_of_window;
4971 
4972 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4973 		/* Partial packet, seq < rcv_next < end_seq */
4974 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4975 
4976 		/* If window is closed, drop tail of packet. But after
4977 		 * remembering D-SACK for its head made in previous line.
4978 		 */
4979 		if (!tcp_receive_window(tp)) {
4980 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4981 			goto out_of_window;
4982 		}
4983 		goto queue_and_out;
4984 	}
4985 
4986 	tcp_data_queue_ofo(sk, skb);
4987 }
4988 
4989 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4990 {
4991 	if (list)
4992 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4993 
4994 	return skb_rb_next(skb);
4995 }
4996 
4997 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4998 					struct sk_buff_head *list,
4999 					struct rb_root *root)
5000 {
5001 	struct sk_buff *next = tcp_skb_next(skb, list);
5002 
5003 	if (list)
5004 		__skb_unlink(skb, list);
5005 	else
5006 		rb_erase(&skb->rbnode, root);
5007 
5008 	__kfree_skb(skb);
5009 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5010 
5011 	return next;
5012 }
5013 
5014 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5015 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5016 {
5017 	struct rb_node **p = &root->rb_node;
5018 	struct rb_node *parent = NULL;
5019 	struct sk_buff *skb1;
5020 
5021 	while (*p) {
5022 		parent = *p;
5023 		skb1 = rb_to_skb(parent);
5024 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5025 			p = &parent->rb_left;
5026 		else
5027 			p = &parent->rb_right;
5028 	}
5029 	rb_link_node(&skb->rbnode, parent, p);
5030 	rb_insert_color(&skb->rbnode, root);
5031 }
5032 
5033 /* Collapse contiguous sequence of skbs head..tail with
5034  * sequence numbers start..end.
5035  *
5036  * If tail is NULL, this means until the end of the queue.
5037  *
5038  * Segments with FIN/SYN are not collapsed (only because this
5039  * simplifies code)
5040  */
5041 static void
5042 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5043 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5044 {
5045 	struct sk_buff *skb = head, *n;
5046 	struct sk_buff_head tmp;
5047 	bool end_of_skbs;
5048 
5049 	/* First, check that queue is collapsible and find
5050 	 * the point where collapsing can be useful.
5051 	 */
5052 restart:
5053 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5054 		n = tcp_skb_next(skb, list);
5055 
5056 		/* No new bits? It is possible on ofo queue. */
5057 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5058 			skb = tcp_collapse_one(sk, skb, list, root);
5059 			if (!skb)
5060 				break;
5061 			goto restart;
5062 		}
5063 
5064 		/* The first skb to collapse is:
5065 		 * - not SYN/FIN and
5066 		 * - bloated or contains data before "start" or
5067 		 *   overlaps to the next one and mptcp allow collapsing.
5068 		 */
5069 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5070 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5071 		     before(TCP_SKB_CB(skb)->seq, start))) {
5072 			end_of_skbs = false;
5073 			break;
5074 		}
5075 
5076 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5077 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5078 			end_of_skbs = false;
5079 			break;
5080 		}
5081 
5082 		/* Decided to skip this, advance start seq. */
5083 		start = TCP_SKB_CB(skb)->end_seq;
5084 	}
5085 	if (end_of_skbs ||
5086 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5087 		return;
5088 
5089 	__skb_queue_head_init(&tmp);
5090 
5091 	while (before(start, end)) {
5092 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5093 		struct sk_buff *nskb;
5094 
5095 		nskb = alloc_skb(copy, GFP_ATOMIC);
5096 		if (!nskb)
5097 			break;
5098 
5099 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5100 #ifdef CONFIG_TLS_DEVICE
5101 		nskb->decrypted = skb->decrypted;
5102 #endif
5103 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5104 		if (list)
5105 			__skb_queue_before(list, skb, nskb);
5106 		else
5107 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5108 		skb_set_owner_r(nskb, sk);
5109 		mptcp_skb_ext_move(nskb, skb);
5110 
5111 		/* Copy data, releasing collapsed skbs. */
5112 		while (copy > 0) {
5113 			int offset = start - TCP_SKB_CB(skb)->seq;
5114 			int size = TCP_SKB_CB(skb)->end_seq - start;
5115 
5116 			BUG_ON(offset < 0);
5117 			if (size > 0) {
5118 				size = min(copy, size);
5119 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5120 					BUG();
5121 				TCP_SKB_CB(nskb)->end_seq += size;
5122 				copy -= size;
5123 				start += size;
5124 			}
5125 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5126 				skb = tcp_collapse_one(sk, skb, list, root);
5127 				if (!skb ||
5128 				    skb == tail ||
5129 				    !mptcp_skb_can_collapse(nskb, skb) ||
5130 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5131 					goto end;
5132 #ifdef CONFIG_TLS_DEVICE
5133 				if (skb->decrypted != nskb->decrypted)
5134 					goto end;
5135 #endif
5136 			}
5137 		}
5138 	}
5139 end:
5140 	skb_queue_walk_safe(&tmp, skb, n)
5141 		tcp_rbtree_insert(root, skb);
5142 }
5143 
5144 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5145  * and tcp_collapse() them until all the queue is collapsed.
5146  */
5147 static void tcp_collapse_ofo_queue(struct sock *sk)
5148 {
5149 	struct tcp_sock *tp = tcp_sk(sk);
5150 	u32 range_truesize, sum_tiny = 0;
5151 	struct sk_buff *skb, *head;
5152 	u32 start, end;
5153 
5154 	skb = skb_rb_first(&tp->out_of_order_queue);
5155 new_range:
5156 	if (!skb) {
5157 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5158 		return;
5159 	}
5160 	start = TCP_SKB_CB(skb)->seq;
5161 	end = TCP_SKB_CB(skb)->end_seq;
5162 	range_truesize = skb->truesize;
5163 
5164 	for (head = skb;;) {
5165 		skb = skb_rb_next(skb);
5166 
5167 		/* Range is terminated when we see a gap or when
5168 		 * we are at the queue end.
5169 		 */
5170 		if (!skb ||
5171 		    after(TCP_SKB_CB(skb)->seq, end) ||
5172 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5173 			/* Do not attempt collapsing tiny skbs */
5174 			if (range_truesize != head->truesize ||
5175 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5176 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5177 					     head, skb, start, end);
5178 			} else {
5179 				sum_tiny += range_truesize;
5180 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5181 					return;
5182 			}
5183 			goto new_range;
5184 		}
5185 
5186 		range_truesize += skb->truesize;
5187 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5188 			start = TCP_SKB_CB(skb)->seq;
5189 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5190 			end = TCP_SKB_CB(skb)->end_seq;
5191 	}
5192 }
5193 
5194 /*
5195  * Clean the out-of-order queue to make room.
5196  * We drop high sequences packets to :
5197  * 1) Let a chance for holes to be filled.
5198  * 2) not add too big latencies if thousands of packets sit there.
5199  *    (But if application shrinks SO_RCVBUF, we could still end up
5200  *     freeing whole queue here)
5201  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5202  *
5203  * Return true if queue has shrunk.
5204  */
5205 static bool tcp_prune_ofo_queue(struct sock *sk)
5206 {
5207 	struct tcp_sock *tp = tcp_sk(sk);
5208 	struct rb_node *node, *prev;
5209 	int goal;
5210 
5211 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5212 		return false;
5213 
5214 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5215 	goal = sk->sk_rcvbuf >> 3;
5216 	node = &tp->ooo_last_skb->rbnode;
5217 	do {
5218 		prev = rb_prev(node);
5219 		rb_erase(node, &tp->out_of_order_queue);
5220 		goal -= rb_to_skb(node)->truesize;
5221 		tcp_drop(sk, rb_to_skb(node));
5222 		if (!prev || goal <= 0) {
5223 			sk_mem_reclaim(sk);
5224 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5225 			    !tcp_under_memory_pressure(sk))
5226 				break;
5227 			goal = sk->sk_rcvbuf >> 3;
5228 		}
5229 		node = prev;
5230 	} while (node);
5231 	tp->ooo_last_skb = rb_to_skb(prev);
5232 
5233 	/* Reset SACK state.  A conforming SACK implementation will
5234 	 * do the same at a timeout based retransmit.  When a connection
5235 	 * is in a sad state like this, we care only about integrity
5236 	 * of the connection not performance.
5237 	 */
5238 	if (tp->rx_opt.sack_ok)
5239 		tcp_sack_reset(&tp->rx_opt);
5240 	return true;
5241 }
5242 
5243 /* Reduce allocated memory if we can, trying to get
5244  * the socket within its memory limits again.
5245  *
5246  * Return less than zero if we should start dropping frames
5247  * until the socket owning process reads some of the data
5248  * to stabilize the situation.
5249  */
5250 static int tcp_prune_queue(struct sock *sk)
5251 {
5252 	struct tcp_sock *tp = tcp_sk(sk);
5253 
5254 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5255 
5256 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5257 		tcp_clamp_window(sk);
5258 	else if (tcp_under_memory_pressure(sk))
5259 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5260 
5261 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5262 		return 0;
5263 
5264 	tcp_collapse_ofo_queue(sk);
5265 	if (!skb_queue_empty(&sk->sk_receive_queue))
5266 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5267 			     skb_peek(&sk->sk_receive_queue),
5268 			     NULL,
5269 			     tp->copied_seq, tp->rcv_nxt);
5270 	sk_mem_reclaim(sk);
5271 
5272 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5273 		return 0;
5274 
5275 	/* Collapsing did not help, destructive actions follow.
5276 	 * This must not ever occur. */
5277 
5278 	tcp_prune_ofo_queue(sk);
5279 
5280 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5281 		return 0;
5282 
5283 	/* If we are really being abused, tell the caller to silently
5284 	 * drop receive data on the floor.  It will get retransmitted
5285 	 * and hopefully then we'll have sufficient space.
5286 	 */
5287 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5288 
5289 	/* Massive buffer overcommit. */
5290 	tp->pred_flags = 0;
5291 	return -1;
5292 }
5293 
5294 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5295 {
5296 	const struct tcp_sock *tp = tcp_sk(sk);
5297 
5298 	/* If the user specified a specific send buffer setting, do
5299 	 * not modify it.
5300 	 */
5301 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5302 		return false;
5303 
5304 	/* If we are under global TCP memory pressure, do not expand.  */
5305 	if (tcp_under_memory_pressure(sk))
5306 		return false;
5307 
5308 	/* If we are under soft global TCP memory pressure, do not expand.  */
5309 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5310 		return false;
5311 
5312 	/* If we filled the congestion window, do not expand.  */
5313 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5314 		return false;
5315 
5316 	return true;
5317 }
5318 
5319 static void tcp_new_space(struct sock *sk)
5320 {
5321 	struct tcp_sock *tp = tcp_sk(sk);
5322 
5323 	if (tcp_should_expand_sndbuf(sk)) {
5324 		tcp_sndbuf_expand(sk);
5325 		tp->snd_cwnd_stamp = tcp_jiffies32;
5326 	}
5327 
5328 	sk->sk_write_space(sk);
5329 }
5330 
5331 static void tcp_check_space(struct sock *sk)
5332 {
5333 	/* pairs with tcp_poll() */
5334 	smp_mb();
5335 	if (sk->sk_socket &&
5336 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5337 		tcp_new_space(sk);
5338 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5339 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5340 	}
5341 }
5342 
5343 static inline void tcp_data_snd_check(struct sock *sk)
5344 {
5345 	tcp_push_pending_frames(sk);
5346 	tcp_check_space(sk);
5347 }
5348 
5349 /*
5350  * Check if sending an ack is needed.
5351  */
5352 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5353 {
5354 	struct tcp_sock *tp = tcp_sk(sk);
5355 	unsigned long rtt, delay;
5356 
5357 	    /* More than one full frame received... */
5358 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5359 	     /* ... and right edge of window advances far enough.
5360 	      * (tcp_recvmsg() will send ACK otherwise).
5361 	      * If application uses SO_RCVLOWAT, we want send ack now if
5362 	      * we have not received enough bytes to satisfy the condition.
5363 	      */
5364 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5365 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5366 	    /* We ACK each frame or... */
5367 	    tcp_in_quickack_mode(sk) ||
5368 	    /* Protocol state mandates a one-time immediate ACK */
5369 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5370 send_now:
5371 		tcp_send_ack(sk);
5372 		return;
5373 	}
5374 
5375 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5376 		tcp_send_delayed_ack(sk);
5377 		return;
5378 	}
5379 
5380 	if (!tcp_is_sack(tp) ||
5381 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5382 		goto send_now;
5383 
5384 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5385 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5386 		tp->dup_ack_counter = 0;
5387 	}
5388 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5389 		tp->dup_ack_counter++;
5390 		goto send_now;
5391 	}
5392 	tp->compressed_ack++;
5393 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5394 		return;
5395 
5396 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5397 
5398 	rtt = tp->rcv_rtt_est.rtt_us;
5399 	if (tp->srtt_us && tp->srtt_us < rtt)
5400 		rtt = tp->srtt_us;
5401 
5402 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5403 		      rtt * (NSEC_PER_USEC >> 3)/20);
5404 	sock_hold(sk);
5405 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5406 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5407 			       HRTIMER_MODE_REL_PINNED_SOFT);
5408 }
5409 
5410 static inline void tcp_ack_snd_check(struct sock *sk)
5411 {
5412 	if (!inet_csk_ack_scheduled(sk)) {
5413 		/* We sent a data segment already. */
5414 		return;
5415 	}
5416 	__tcp_ack_snd_check(sk, 1);
5417 }
5418 
5419 /*
5420  *	This routine is only called when we have urgent data
5421  *	signaled. Its the 'slow' part of tcp_urg. It could be
5422  *	moved inline now as tcp_urg is only called from one
5423  *	place. We handle URGent data wrong. We have to - as
5424  *	BSD still doesn't use the correction from RFC961.
5425  *	For 1003.1g we should support a new option TCP_STDURG to permit
5426  *	either form (or just set the sysctl tcp_stdurg).
5427  */
5428 
5429 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5430 {
5431 	struct tcp_sock *tp = tcp_sk(sk);
5432 	u32 ptr = ntohs(th->urg_ptr);
5433 
5434 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5435 		ptr--;
5436 	ptr += ntohl(th->seq);
5437 
5438 	/* Ignore urgent data that we've already seen and read. */
5439 	if (after(tp->copied_seq, ptr))
5440 		return;
5441 
5442 	/* Do not replay urg ptr.
5443 	 *
5444 	 * NOTE: interesting situation not covered by specs.
5445 	 * Misbehaving sender may send urg ptr, pointing to segment,
5446 	 * which we already have in ofo queue. We are not able to fetch
5447 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5448 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5449 	 * situations. But it is worth to think about possibility of some
5450 	 * DoSes using some hypothetical application level deadlock.
5451 	 */
5452 	if (before(ptr, tp->rcv_nxt))
5453 		return;
5454 
5455 	/* Do we already have a newer (or duplicate) urgent pointer? */
5456 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5457 		return;
5458 
5459 	/* Tell the world about our new urgent pointer. */
5460 	sk_send_sigurg(sk);
5461 
5462 	/* We may be adding urgent data when the last byte read was
5463 	 * urgent. To do this requires some care. We cannot just ignore
5464 	 * tp->copied_seq since we would read the last urgent byte again
5465 	 * as data, nor can we alter copied_seq until this data arrives
5466 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5467 	 *
5468 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5469 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5470 	 * and expect that both A and B disappear from stream. This is _wrong_.
5471 	 * Though this happens in BSD with high probability, this is occasional.
5472 	 * Any application relying on this is buggy. Note also, that fix "works"
5473 	 * only in this artificial test. Insert some normal data between A and B and we will
5474 	 * decline of BSD again. Verdict: it is better to remove to trap
5475 	 * buggy users.
5476 	 */
5477 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5478 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5479 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5480 		tp->copied_seq++;
5481 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5482 			__skb_unlink(skb, &sk->sk_receive_queue);
5483 			__kfree_skb(skb);
5484 		}
5485 	}
5486 
5487 	tp->urg_data = TCP_URG_NOTYET;
5488 	WRITE_ONCE(tp->urg_seq, ptr);
5489 
5490 	/* Disable header prediction. */
5491 	tp->pred_flags = 0;
5492 }
5493 
5494 /* This is the 'fast' part of urgent handling. */
5495 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5496 {
5497 	struct tcp_sock *tp = tcp_sk(sk);
5498 
5499 	/* Check if we get a new urgent pointer - normally not. */
5500 	if (th->urg)
5501 		tcp_check_urg(sk, th);
5502 
5503 	/* Do we wait for any urgent data? - normally not... */
5504 	if (tp->urg_data == TCP_URG_NOTYET) {
5505 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5506 			  th->syn;
5507 
5508 		/* Is the urgent pointer pointing into this packet? */
5509 		if (ptr < skb->len) {
5510 			u8 tmp;
5511 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5512 				BUG();
5513 			tp->urg_data = TCP_URG_VALID | tmp;
5514 			if (!sock_flag(sk, SOCK_DEAD))
5515 				sk->sk_data_ready(sk);
5516 		}
5517 	}
5518 }
5519 
5520 /* Accept RST for rcv_nxt - 1 after a FIN.
5521  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5522  * FIN is sent followed by a RST packet. The RST is sent with the same
5523  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5524  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5525  * ACKs on the closed socket. In addition middleboxes can drop either the
5526  * challenge ACK or a subsequent RST.
5527  */
5528 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5529 {
5530 	struct tcp_sock *tp = tcp_sk(sk);
5531 
5532 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5533 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5534 					       TCPF_CLOSING));
5535 }
5536 
5537 /* Does PAWS and seqno based validation of an incoming segment, flags will
5538  * play significant role here.
5539  */
5540 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5541 				  const struct tcphdr *th, int syn_inerr)
5542 {
5543 	struct tcp_sock *tp = tcp_sk(sk);
5544 	bool rst_seq_match = false;
5545 
5546 	/* RFC1323: H1. Apply PAWS check first. */
5547 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5548 	    tp->rx_opt.saw_tstamp &&
5549 	    tcp_paws_discard(sk, skb)) {
5550 		if (!th->rst) {
5551 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5552 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5553 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5554 						  &tp->last_oow_ack_time))
5555 				tcp_send_dupack(sk, skb);
5556 			goto discard;
5557 		}
5558 		/* Reset is accepted even if it did not pass PAWS. */
5559 	}
5560 
5561 	/* Step 1: check sequence number */
5562 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5563 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5564 		 * (RST) segments are validated by checking their SEQ-fields."
5565 		 * And page 69: "If an incoming segment is not acceptable,
5566 		 * an acknowledgment should be sent in reply (unless the RST
5567 		 * bit is set, if so drop the segment and return)".
5568 		 */
5569 		if (!th->rst) {
5570 			if (th->syn)
5571 				goto syn_challenge;
5572 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5573 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5574 						  &tp->last_oow_ack_time))
5575 				tcp_send_dupack(sk, skb);
5576 		} else if (tcp_reset_check(sk, skb)) {
5577 			tcp_reset(sk);
5578 		}
5579 		goto discard;
5580 	}
5581 
5582 	/* Step 2: check RST bit */
5583 	if (th->rst) {
5584 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5585 		 * FIN and SACK too if available):
5586 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5587 		 * the right-most SACK block,
5588 		 * then
5589 		 *     RESET the connection
5590 		 * else
5591 		 *     Send a challenge ACK
5592 		 */
5593 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5594 		    tcp_reset_check(sk, skb)) {
5595 			rst_seq_match = true;
5596 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5597 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5598 			int max_sack = sp[0].end_seq;
5599 			int this_sack;
5600 
5601 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5602 			     ++this_sack) {
5603 				max_sack = after(sp[this_sack].end_seq,
5604 						 max_sack) ?
5605 					sp[this_sack].end_seq : max_sack;
5606 			}
5607 
5608 			if (TCP_SKB_CB(skb)->seq == max_sack)
5609 				rst_seq_match = true;
5610 		}
5611 
5612 		if (rst_seq_match)
5613 			tcp_reset(sk);
5614 		else {
5615 			/* Disable TFO if RST is out-of-order
5616 			 * and no data has been received
5617 			 * for current active TFO socket
5618 			 */
5619 			if (tp->syn_fastopen && !tp->data_segs_in &&
5620 			    sk->sk_state == TCP_ESTABLISHED)
5621 				tcp_fastopen_active_disable(sk);
5622 			tcp_send_challenge_ack(sk, skb);
5623 		}
5624 		goto discard;
5625 	}
5626 
5627 	/* step 3: check security and precedence [ignored] */
5628 
5629 	/* step 4: Check for a SYN
5630 	 * RFC 5961 4.2 : Send a challenge ack
5631 	 */
5632 	if (th->syn) {
5633 syn_challenge:
5634 		if (syn_inerr)
5635 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5636 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5637 		tcp_send_challenge_ack(sk, skb);
5638 		goto discard;
5639 	}
5640 
5641 	bpf_skops_parse_hdr(sk, skb);
5642 
5643 	return true;
5644 
5645 discard:
5646 	tcp_drop(sk, skb);
5647 	return false;
5648 }
5649 
5650 /*
5651  *	TCP receive function for the ESTABLISHED state.
5652  *
5653  *	It is split into a fast path and a slow path. The fast path is
5654  * 	disabled when:
5655  *	- A zero window was announced from us - zero window probing
5656  *        is only handled properly in the slow path.
5657  *	- Out of order segments arrived.
5658  *	- Urgent data is expected.
5659  *	- There is no buffer space left
5660  *	- Unexpected TCP flags/window values/header lengths are received
5661  *	  (detected by checking the TCP header against pred_flags)
5662  *	- Data is sent in both directions. Fast path only supports pure senders
5663  *	  or pure receivers (this means either the sequence number or the ack
5664  *	  value must stay constant)
5665  *	- Unexpected TCP option.
5666  *
5667  *	When these conditions are not satisfied it drops into a standard
5668  *	receive procedure patterned after RFC793 to handle all cases.
5669  *	The first three cases are guaranteed by proper pred_flags setting,
5670  *	the rest is checked inline. Fast processing is turned on in
5671  *	tcp_data_queue when everything is OK.
5672  */
5673 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5674 {
5675 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5676 	struct tcp_sock *tp = tcp_sk(sk);
5677 	unsigned int len = skb->len;
5678 
5679 	/* TCP congestion window tracking */
5680 	trace_tcp_probe(sk, skb);
5681 
5682 	tcp_mstamp_refresh(tp);
5683 	if (unlikely(!sk->sk_rx_dst))
5684 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5685 	/*
5686 	 *	Header prediction.
5687 	 *	The code loosely follows the one in the famous
5688 	 *	"30 instruction TCP receive" Van Jacobson mail.
5689 	 *
5690 	 *	Van's trick is to deposit buffers into socket queue
5691 	 *	on a device interrupt, to call tcp_recv function
5692 	 *	on the receive process context and checksum and copy
5693 	 *	the buffer to user space. smart...
5694 	 *
5695 	 *	Our current scheme is not silly either but we take the
5696 	 *	extra cost of the net_bh soft interrupt processing...
5697 	 *	We do checksum and copy also but from device to kernel.
5698 	 */
5699 
5700 	tp->rx_opt.saw_tstamp = 0;
5701 
5702 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5703 	 *	if header_prediction is to be made
5704 	 *	'S' will always be tp->tcp_header_len >> 2
5705 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5706 	 *  turn it off	(when there are holes in the receive
5707 	 *	 space for instance)
5708 	 *	PSH flag is ignored.
5709 	 */
5710 
5711 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5712 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5713 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5714 		int tcp_header_len = tp->tcp_header_len;
5715 
5716 		/* Timestamp header prediction: tcp_header_len
5717 		 * is automatically equal to th->doff*4 due to pred_flags
5718 		 * match.
5719 		 */
5720 
5721 		/* Check timestamp */
5722 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5723 			/* No? Slow path! */
5724 			if (!tcp_parse_aligned_timestamp(tp, th))
5725 				goto slow_path;
5726 
5727 			/* If PAWS failed, check it more carefully in slow path */
5728 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5729 				goto slow_path;
5730 
5731 			/* DO NOT update ts_recent here, if checksum fails
5732 			 * and timestamp was corrupted part, it will result
5733 			 * in a hung connection since we will drop all
5734 			 * future packets due to the PAWS test.
5735 			 */
5736 		}
5737 
5738 		if (len <= tcp_header_len) {
5739 			/* Bulk data transfer: sender */
5740 			if (len == tcp_header_len) {
5741 				/* Predicted packet is in window by definition.
5742 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5743 				 * Hence, check seq<=rcv_wup reduces to:
5744 				 */
5745 				if (tcp_header_len ==
5746 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5747 				    tp->rcv_nxt == tp->rcv_wup)
5748 					tcp_store_ts_recent(tp);
5749 
5750 				/* We know that such packets are checksummed
5751 				 * on entry.
5752 				 */
5753 				tcp_ack(sk, skb, 0);
5754 				__kfree_skb(skb);
5755 				tcp_data_snd_check(sk);
5756 				/* When receiving pure ack in fast path, update
5757 				 * last ts ecr directly instead of calling
5758 				 * tcp_rcv_rtt_measure_ts()
5759 				 */
5760 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5761 				return;
5762 			} else { /* Header too small */
5763 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5764 				goto discard;
5765 			}
5766 		} else {
5767 			int eaten = 0;
5768 			bool fragstolen = false;
5769 
5770 			if (tcp_checksum_complete(skb))
5771 				goto csum_error;
5772 
5773 			if ((int)skb->truesize > sk->sk_forward_alloc)
5774 				goto step5;
5775 
5776 			/* Predicted packet is in window by definition.
5777 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5778 			 * Hence, check seq<=rcv_wup reduces to:
5779 			 */
5780 			if (tcp_header_len ==
5781 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5782 			    tp->rcv_nxt == tp->rcv_wup)
5783 				tcp_store_ts_recent(tp);
5784 
5785 			tcp_rcv_rtt_measure_ts(sk, skb);
5786 
5787 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5788 
5789 			/* Bulk data transfer: receiver */
5790 			__skb_pull(skb, tcp_header_len);
5791 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5792 
5793 			tcp_event_data_recv(sk, skb);
5794 
5795 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5796 				/* Well, only one small jumplet in fast path... */
5797 				tcp_ack(sk, skb, FLAG_DATA);
5798 				tcp_data_snd_check(sk);
5799 				if (!inet_csk_ack_scheduled(sk))
5800 					goto no_ack;
5801 			}
5802 
5803 			__tcp_ack_snd_check(sk, 0);
5804 no_ack:
5805 			if (eaten)
5806 				kfree_skb_partial(skb, fragstolen);
5807 			tcp_data_ready(sk);
5808 			return;
5809 		}
5810 	}
5811 
5812 slow_path:
5813 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5814 		goto csum_error;
5815 
5816 	if (!th->ack && !th->rst && !th->syn)
5817 		goto discard;
5818 
5819 	/*
5820 	 *	Standard slow path.
5821 	 */
5822 
5823 	if (!tcp_validate_incoming(sk, skb, th, 1))
5824 		return;
5825 
5826 step5:
5827 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5828 		goto discard;
5829 
5830 	tcp_rcv_rtt_measure_ts(sk, skb);
5831 
5832 	/* Process urgent data. */
5833 	tcp_urg(sk, skb, th);
5834 
5835 	/* step 7: process the segment text */
5836 	tcp_data_queue(sk, skb);
5837 
5838 	tcp_data_snd_check(sk);
5839 	tcp_ack_snd_check(sk);
5840 	return;
5841 
5842 csum_error:
5843 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5844 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5845 
5846 discard:
5847 	tcp_drop(sk, skb);
5848 }
5849 EXPORT_SYMBOL(tcp_rcv_established);
5850 
5851 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5852 {
5853 	struct inet_connection_sock *icsk = inet_csk(sk);
5854 	struct tcp_sock *tp = tcp_sk(sk);
5855 
5856 	tcp_mtup_init(sk);
5857 	icsk->icsk_af_ops->rebuild_header(sk);
5858 	tcp_init_metrics(sk);
5859 
5860 	/* Initialize the congestion window to start the transfer.
5861 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5862 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5863 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5864 	 * retransmission has occurred.
5865 	 */
5866 	if (tp->total_retrans > 1 && tp->undo_marker)
5867 		tp->snd_cwnd = 1;
5868 	else
5869 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5870 	tp->snd_cwnd_stamp = tcp_jiffies32;
5871 
5872 	icsk->icsk_ca_initialized = 0;
5873 	bpf_skops_established(sk, bpf_op, skb);
5874 	if (!icsk->icsk_ca_initialized)
5875 		tcp_init_congestion_control(sk);
5876 	tcp_init_buffer_space(sk);
5877 }
5878 
5879 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5880 {
5881 	struct tcp_sock *tp = tcp_sk(sk);
5882 	struct inet_connection_sock *icsk = inet_csk(sk);
5883 
5884 	tcp_set_state(sk, TCP_ESTABLISHED);
5885 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5886 
5887 	if (skb) {
5888 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5889 		security_inet_conn_established(sk, skb);
5890 		sk_mark_napi_id(sk, skb);
5891 	}
5892 
5893 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5894 
5895 	/* Prevent spurious tcp_cwnd_restart() on first data
5896 	 * packet.
5897 	 */
5898 	tp->lsndtime = tcp_jiffies32;
5899 
5900 	if (sock_flag(sk, SOCK_KEEPOPEN))
5901 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5902 
5903 	if (!tp->rx_opt.snd_wscale)
5904 		__tcp_fast_path_on(tp, tp->snd_wnd);
5905 	else
5906 		tp->pred_flags = 0;
5907 }
5908 
5909 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5910 				    struct tcp_fastopen_cookie *cookie)
5911 {
5912 	struct tcp_sock *tp = tcp_sk(sk);
5913 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5914 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5915 	bool syn_drop = false;
5916 
5917 	if (mss == tp->rx_opt.user_mss) {
5918 		struct tcp_options_received opt;
5919 
5920 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5921 		tcp_clear_options(&opt);
5922 		opt.user_mss = opt.mss_clamp = 0;
5923 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5924 		mss = opt.mss_clamp;
5925 	}
5926 
5927 	if (!tp->syn_fastopen) {
5928 		/* Ignore an unsolicited cookie */
5929 		cookie->len = -1;
5930 	} else if (tp->total_retrans) {
5931 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5932 		 * acknowledges data. Presumably the remote received only
5933 		 * the retransmitted (regular) SYNs: either the original
5934 		 * SYN-data or the corresponding SYN-ACK was dropped.
5935 		 */
5936 		syn_drop = (cookie->len < 0 && data);
5937 	} else if (cookie->len < 0 && !tp->syn_data) {
5938 		/* We requested a cookie but didn't get it. If we did not use
5939 		 * the (old) exp opt format then try so next time (try_exp=1).
5940 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5941 		 */
5942 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5943 	}
5944 
5945 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5946 
5947 	if (data) { /* Retransmit unacked data in SYN */
5948 		if (tp->total_retrans)
5949 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5950 		else
5951 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5952 		skb_rbtree_walk_from(data) {
5953 			if (__tcp_retransmit_skb(sk, data, 1))
5954 				break;
5955 		}
5956 		tcp_rearm_rto(sk);
5957 		NET_INC_STATS(sock_net(sk),
5958 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5959 		return true;
5960 	}
5961 	tp->syn_data_acked = tp->syn_data;
5962 	if (tp->syn_data_acked) {
5963 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5964 		/* SYN-data is counted as two separate packets in tcp_ack() */
5965 		if (tp->delivered > 1)
5966 			--tp->delivered;
5967 	}
5968 
5969 	tcp_fastopen_add_skb(sk, synack);
5970 
5971 	return false;
5972 }
5973 
5974 static void smc_check_reset_syn(struct tcp_sock *tp)
5975 {
5976 #if IS_ENABLED(CONFIG_SMC)
5977 	if (static_branch_unlikely(&tcp_have_smc)) {
5978 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5979 			tp->syn_smc = 0;
5980 	}
5981 #endif
5982 }
5983 
5984 static void tcp_try_undo_spurious_syn(struct sock *sk)
5985 {
5986 	struct tcp_sock *tp = tcp_sk(sk);
5987 	u32 syn_stamp;
5988 
5989 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5990 	 * spurious if the ACK's timestamp option echo value matches the
5991 	 * original SYN timestamp.
5992 	 */
5993 	syn_stamp = tp->retrans_stamp;
5994 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5995 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5996 		tp->undo_marker = 0;
5997 }
5998 
5999 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6000 					 const struct tcphdr *th)
6001 {
6002 	struct inet_connection_sock *icsk = inet_csk(sk);
6003 	struct tcp_sock *tp = tcp_sk(sk);
6004 	struct tcp_fastopen_cookie foc = { .len = -1 };
6005 	int saved_clamp = tp->rx_opt.mss_clamp;
6006 	bool fastopen_fail;
6007 
6008 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6009 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6010 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6011 
6012 	if (th->ack) {
6013 		/* rfc793:
6014 		 * "If the state is SYN-SENT then
6015 		 *    first check the ACK bit
6016 		 *      If the ACK bit is set
6017 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6018 		 *        a reset (unless the RST bit is set, if so drop
6019 		 *        the segment and return)"
6020 		 */
6021 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6022 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6023 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6024 			if (icsk->icsk_retransmits == 0)
6025 				inet_csk_reset_xmit_timer(sk,
6026 						ICSK_TIME_RETRANS,
6027 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6028 			goto reset_and_undo;
6029 		}
6030 
6031 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6032 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6033 			     tcp_time_stamp(tp))) {
6034 			NET_INC_STATS(sock_net(sk),
6035 					LINUX_MIB_PAWSACTIVEREJECTED);
6036 			goto reset_and_undo;
6037 		}
6038 
6039 		/* Now ACK is acceptable.
6040 		 *
6041 		 * "If the RST bit is set
6042 		 *    If the ACK was acceptable then signal the user "error:
6043 		 *    connection reset", drop the segment, enter CLOSED state,
6044 		 *    delete TCB, and return."
6045 		 */
6046 
6047 		if (th->rst) {
6048 			tcp_reset(sk);
6049 			goto discard;
6050 		}
6051 
6052 		/* rfc793:
6053 		 *   "fifth, if neither of the SYN or RST bits is set then
6054 		 *    drop the segment and return."
6055 		 *
6056 		 *    See note below!
6057 		 *                                        --ANK(990513)
6058 		 */
6059 		if (!th->syn)
6060 			goto discard_and_undo;
6061 
6062 		/* rfc793:
6063 		 *   "If the SYN bit is on ...
6064 		 *    are acceptable then ...
6065 		 *    (our SYN has been ACKed), change the connection
6066 		 *    state to ESTABLISHED..."
6067 		 */
6068 
6069 		tcp_ecn_rcv_synack(tp, th);
6070 
6071 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6072 		tcp_try_undo_spurious_syn(sk);
6073 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6074 
6075 		/* Ok.. it's good. Set up sequence numbers and
6076 		 * move to established.
6077 		 */
6078 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6079 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6080 
6081 		/* RFC1323: The window in SYN & SYN/ACK segments is
6082 		 * never scaled.
6083 		 */
6084 		tp->snd_wnd = ntohs(th->window);
6085 
6086 		if (!tp->rx_opt.wscale_ok) {
6087 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6088 			tp->window_clamp = min(tp->window_clamp, 65535U);
6089 		}
6090 
6091 		if (tp->rx_opt.saw_tstamp) {
6092 			tp->rx_opt.tstamp_ok	   = 1;
6093 			tp->tcp_header_len =
6094 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6095 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6096 			tcp_store_ts_recent(tp);
6097 		} else {
6098 			tp->tcp_header_len = sizeof(struct tcphdr);
6099 		}
6100 
6101 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6102 		tcp_initialize_rcv_mss(sk);
6103 
6104 		/* Remember, tcp_poll() does not lock socket!
6105 		 * Change state from SYN-SENT only after copied_seq
6106 		 * is initialized. */
6107 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6108 
6109 		smc_check_reset_syn(tp);
6110 
6111 		smp_mb();
6112 
6113 		tcp_finish_connect(sk, skb);
6114 
6115 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6116 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6117 
6118 		if (!sock_flag(sk, SOCK_DEAD)) {
6119 			sk->sk_state_change(sk);
6120 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6121 		}
6122 		if (fastopen_fail)
6123 			return -1;
6124 		if (sk->sk_write_pending ||
6125 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6126 		    inet_csk_in_pingpong_mode(sk)) {
6127 			/* Save one ACK. Data will be ready after
6128 			 * several ticks, if write_pending is set.
6129 			 *
6130 			 * It may be deleted, but with this feature tcpdumps
6131 			 * look so _wonderfully_ clever, that I was not able
6132 			 * to stand against the temptation 8)     --ANK
6133 			 */
6134 			inet_csk_schedule_ack(sk);
6135 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6136 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6137 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6138 
6139 discard:
6140 			tcp_drop(sk, skb);
6141 			return 0;
6142 		} else {
6143 			tcp_send_ack(sk);
6144 		}
6145 		return -1;
6146 	}
6147 
6148 	/* No ACK in the segment */
6149 
6150 	if (th->rst) {
6151 		/* rfc793:
6152 		 * "If the RST bit is set
6153 		 *
6154 		 *      Otherwise (no ACK) drop the segment and return."
6155 		 */
6156 
6157 		goto discard_and_undo;
6158 	}
6159 
6160 	/* PAWS check. */
6161 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6162 	    tcp_paws_reject(&tp->rx_opt, 0))
6163 		goto discard_and_undo;
6164 
6165 	if (th->syn) {
6166 		/* We see SYN without ACK. It is attempt of
6167 		 * simultaneous connect with crossed SYNs.
6168 		 * Particularly, it can be connect to self.
6169 		 */
6170 		tcp_set_state(sk, TCP_SYN_RECV);
6171 
6172 		if (tp->rx_opt.saw_tstamp) {
6173 			tp->rx_opt.tstamp_ok = 1;
6174 			tcp_store_ts_recent(tp);
6175 			tp->tcp_header_len =
6176 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6177 		} else {
6178 			tp->tcp_header_len = sizeof(struct tcphdr);
6179 		}
6180 
6181 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6182 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6183 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6184 
6185 		/* RFC1323: The window in SYN & SYN/ACK segments is
6186 		 * never scaled.
6187 		 */
6188 		tp->snd_wnd    = ntohs(th->window);
6189 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6190 		tp->max_window = tp->snd_wnd;
6191 
6192 		tcp_ecn_rcv_syn(tp, th);
6193 
6194 		tcp_mtup_init(sk);
6195 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6196 		tcp_initialize_rcv_mss(sk);
6197 
6198 		tcp_send_synack(sk);
6199 #if 0
6200 		/* Note, we could accept data and URG from this segment.
6201 		 * There are no obstacles to make this (except that we must
6202 		 * either change tcp_recvmsg() to prevent it from returning data
6203 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6204 		 *
6205 		 * However, if we ignore data in ACKless segments sometimes,
6206 		 * we have no reasons to accept it sometimes.
6207 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6208 		 * is not flawless. So, discard packet for sanity.
6209 		 * Uncomment this return to process the data.
6210 		 */
6211 		return -1;
6212 #else
6213 		goto discard;
6214 #endif
6215 	}
6216 	/* "fifth, if neither of the SYN or RST bits is set then
6217 	 * drop the segment and return."
6218 	 */
6219 
6220 discard_and_undo:
6221 	tcp_clear_options(&tp->rx_opt);
6222 	tp->rx_opt.mss_clamp = saved_clamp;
6223 	goto discard;
6224 
6225 reset_and_undo:
6226 	tcp_clear_options(&tp->rx_opt);
6227 	tp->rx_opt.mss_clamp = saved_clamp;
6228 	return 1;
6229 }
6230 
6231 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6232 {
6233 	struct request_sock *req;
6234 
6235 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6236 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6237 	 */
6238 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6239 		tcp_try_undo_loss(sk, false);
6240 
6241 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6242 	tcp_sk(sk)->retrans_stamp = 0;
6243 	inet_csk(sk)->icsk_retransmits = 0;
6244 
6245 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6246 	 * we no longer need req so release it.
6247 	 */
6248 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6249 					lockdep_sock_is_held(sk));
6250 	reqsk_fastopen_remove(sk, req, false);
6251 
6252 	/* Re-arm the timer because data may have been sent out.
6253 	 * This is similar to the regular data transmission case
6254 	 * when new data has just been ack'ed.
6255 	 *
6256 	 * (TFO) - we could try to be more aggressive and
6257 	 * retransmitting any data sooner based on when they
6258 	 * are sent out.
6259 	 */
6260 	tcp_rearm_rto(sk);
6261 }
6262 
6263 /*
6264  *	This function implements the receiving procedure of RFC 793 for
6265  *	all states except ESTABLISHED and TIME_WAIT.
6266  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6267  *	address independent.
6268  */
6269 
6270 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6271 {
6272 	struct tcp_sock *tp = tcp_sk(sk);
6273 	struct inet_connection_sock *icsk = inet_csk(sk);
6274 	const struct tcphdr *th = tcp_hdr(skb);
6275 	struct request_sock *req;
6276 	int queued = 0;
6277 	bool acceptable;
6278 
6279 	switch (sk->sk_state) {
6280 	case TCP_CLOSE:
6281 		goto discard;
6282 
6283 	case TCP_LISTEN:
6284 		if (th->ack)
6285 			return 1;
6286 
6287 		if (th->rst)
6288 			goto discard;
6289 
6290 		if (th->syn) {
6291 			if (th->fin)
6292 				goto discard;
6293 			/* It is possible that we process SYN packets from backlog,
6294 			 * so we need to make sure to disable BH and RCU right there.
6295 			 */
6296 			rcu_read_lock();
6297 			local_bh_disable();
6298 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6299 			local_bh_enable();
6300 			rcu_read_unlock();
6301 
6302 			if (!acceptable)
6303 				return 1;
6304 			consume_skb(skb);
6305 			return 0;
6306 		}
6307 		goto discard;
6308 
6309 	case TCP_SYN_SENT:
6310 		tp->rx_opt.saw_tstamp = 0;
6311 		tcp_mstamp_refresh(tp);
6312 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6313 		if (queued >= 0)
6314 			return queued;
6315 
6316 		/* Do step6 onward by hand. */
6317 		tcp_urg(sk, skb, th);
6318 		__kfree_skb(skb);
6319 		tcp_data_snd_check(sk);
6320 		return 0;
6321 	}
6322 
6323 	tcp_mstamp_refresh(tp);
6324 	tp->rx_opt.saw_tstamp = 0;
6325 	req = rcu_dereference_protected(tp->fastopen_rsk,
6326 					lockdep_sock_is_held(sk));
6327 	if (req) {
6328 		bool req_stolen;
6329 
6330 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6331 		    sk->sk_state != TCP_FIN_WAIT1);
6332 
6333 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6334 			goto discard;
6335 	}
6336 
6337 	if (!th->ack && !th->rst && !th->syn)
6338 		goto discard;
6339 
6340 	if (!tcp_validate_incoming(sk, skb, th, 0))
6341 		return 0;
6342 
6343 	/* step 5: check the ACK field */
6344 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6345 				      FLAG_UPDATE_TS_RECENT |
6346 				      FLAG_NO_CHALLENGE_ACK) > 0;
6347 
6348 	if (!acceptable) {
6349 		if (sk->sk_state == TCP_SYN_RECV)
6350 			return 1;	/* send one RST */
6351 		tcp_send_challenge_ack(sk, skb);
6352 		goto discard;
6353 	}
6354 	switch (sk->sk_state) {
6355 	case TCP_SYN_RECV:
6356 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6357 		if (!tp->srtt_us)
6358 			tcp_synack_rtt_meas(sk, req);
6359 
6360 		if (req) {
6361 			tcp_rcv_synrecv_state_fastopen(sk);
6362 		} else {
6363 			tcp_try_undo_spurious_syn(sk);
6364 			tp->retrans_stamp = 0;
6365 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6366 					  skb);
6367 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6368 		}
6369 		smp_mb();
6370 		tcp_set_state(sk, TCP_ESTABLISHED);
6371 		sk->sk_state_change(sk);
6372 
6373 		/* Note, that this wakeup is only for marginal crossed SYN case.
6374 		 * Passively open sockets are not waked up, because
6375 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6376 		 */
6377 		if (sk->sk_socket)
6378 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6379 
6380 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6381 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6382 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6383 
6384 		if (tp->rx_opt.tstamp_ok)
6385 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6386 
6387 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6388 			tcp_update_pacing_rate(sk);
6389 
6390 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6391 		tp->lsndtime = tcp_jiffies32;
6392 
6393 		tcp_initialize_rcv_mss(sk);
6394 		tcp_fast_path_on(tp);
6395 		break;
6396 
6397 	case TCP_FIN_WAIT1: {
6398 		int tmo;
6399 
6400 		if (req)
6401 			tcp_rcv_synrecv_state_fastopen(sk);
6402 
6403 		if (tp->snd_una != tp->write_seq)
6404 			break;
6405 
6406 		tcp_set_state(sk, TCP_FIN_WAIT2);
6407 		sk->sk_shutdown |= SEND_SHUTDOWN;
6408 
6409 		sk_dst_confirm(sk);
6410 
6411 		if (!sock_flag(sk, SOCK_DEAD)) {
6412 			/* Wake up lingering close() */
6413 			sk->sk_state_change(sk);
6414 			break;
6415 		}
6416 
6417 		if (tp->linger2 < 0) {
6418 			tcp_done(sk);
6419 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6420 			return 1;
6421 		}
6422 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6423 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6424 			/* Receive out of order FIN after close() */
6425 			if (tp->syn_fastopen && th->fin)
6426 				tcp_fastopen_active_disable(sk);
6427 			tcp_done(sk);
6428 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6429 			return 1;
6430 		}
6431 
6432 		tmo = tcp_fin_time(sk);
6433 		if (tmo > TCP_TIMEWAIT_LEN) {
6434 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6435 		} else if (th->fin || sock_owned_by_user(sk)) {
6436 			/* Bad case. We could lose such FIN otherwise.
6437 			 * It is not a big problem, but it looks confusing
6438 			 * and not so rare event. We still can lose it now,
6439 			 * if it spins in bh_lock_sock(), but it is really
6440 			 * marginal case.
6441 			 */
6442 			inet_csk_reset_keepalive_timer(sk, tmo);
6443 		} else {
6444 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6445 			goto discard;
6446 		}
6447 		break;
6448 	}
6449 
6450 	case TCP_CLOSING:
6451 		if (tp->snd_una == tp->write_seq) {
6452 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6453 			goto discard;
6454 		}
6455 		break;
6456 
6457 	case TCP_LAST_ACK:
6458 		if (tp->snd_una == tp->write_seq) {
6459 			tcp_update_metrics(sk);
6460 			tcp_done(sk);
6461 			goto discard;
6462 		}
6463 		break;
6464 	}
6465 
6466 	/* step 6: check the URG bit */
6467 	tcp_urg(sk, skb, th);
6468 
6469 	/* step 7: process the segment text */
6470 	switch (sk->sk_state) {
6471 	case TCP_CLOSE_WAIT:
6472 	case TCP_CLOSING:
6473 	case TCP_LAST_ACK:
6474 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6475 			if (sk_is_mptcp(sk))
6476 				mptcp_incoming_options(sk, skb);
6477 			break;
6478 		}
6479 		fallthrough;
6480 	case TCP_FIN_WAIT1:
6481 	case TCP_FIN_WAIT2:
6482 		/* RFC 793 says to queue data in these states,
6483 		 * RFC 1122 says we MUST send a reset.
6484 		 * BSD 4.4 also does reset.
6485 		 */
6486 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6487 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6488 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6489 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6490 				tcp_reset(sk);
6491 				return 1;
6492 			}
6493 		}
6494 		fallthrough;
6495 	case TCP_ESTABLISHED:
6496 		tcp_data_queue(sk, skb);
6497 		queued = 1;
6498 		break;
6499 	}
6500 
6501 	/* tcp_data could move socket to TIME-WAIT */
6502 	if (sk->sk_state != TCP_CLOSE) {
6503 		tcp_data_snd_check(sk);
6504 		tcp_ack_snd_check(sk);
6505 	}
6506 
6507 	if (!queued) {
6508 discard:
6509 		tcp_drop(sk, skb);
6510 	}
6511 	return 0;
6512 }
6513 EXPORT_SYMBOL(tcp_rcv_state_process);
6514 
6515 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6516 {
6517 	struct inet_request_sock *ireq = inet_rsk(req);
6518 
6519 	if (family == AF_INET)
6520 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6521 				    &ireq->ir_rmt_addr, port);
6522 #if IS_ENABLED(CONFIG_IPV6)
6523 	else if (family == AF_INET6)
6524 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6525 				    &ireq->ir_v6_rmt_addr, port);
6526 #endif
6527 }
6528 
6529 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6530  *
6531  * If we receive a SYN packet with these bits set, it means a
6532  * network is playing bad games with TOS bits. In order to
6533  * avoid possible false congestion notifications, we disable
6534  * TCP ECN negotiation.
6535  *
6536  * Exception: tcp_ca wants ECN. This is required for DCTCP
6537  * congestion control: Linux DCTCP asserts ECT on all packets,
6538  * including SYN, which is most optimal solution; however,
6539  * others, such as FreeBSD do not.
6540  *
6541  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6542  * set, indicating the use of a future TCP extension (such as AccECN). See
6543  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6544  * extensions.
6545  */
6546 static void tcp_ecn_create_request(struct request_sock *req,
6547 				   const struct sk_buff *skb,
6548 				   const struct sock *listen_sk,
6549 				   const struct dst_entry *dst)
6550 {
6551 	const struct tcphdr *th = tcp_hdr(skb);
6552 	const struct net *net = sock_net(listen_sk);
6553 	bool th_ecn = th->ece && th->cwr;
6554 	bool ect, ecn_ok;
6555 	u32 ecn_ok_dst;
6556 
6557 	if (!th_ecn)
6558 		return;
6559 
6560 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6561 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6562 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6563 
6564 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6565 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6566 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6567 		inet_rsk(req)->ecn_ok = 1;
6568 }
6569 
6570 static void tcp_openreq_init(struct request_sock *req,
6571 			     const struct tcp_options_received *rx_opt,
6572 			     struct sk_buff *skb, const struct sock *sk)
6573 {
6574 	struct inet_request_sock *ireq = inet_rsk(req);
6575 
6576 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6577 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6578 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6579 	tcp_rsk(req)->snt_synack = 0;
6580 	tcp_rsk(req)->last_oow_ack_time = 0;
6581 	req->mss = rx_opt->mss_clamp;
6582 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6583 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6584 	ireq->sack_ok = rx_opt->sack_ok;
6585 	ireq->snd_wscale = rx_opt->snd_wscale;
6586 	ireq->wscale_ok = rx_opt->wscale_ok;
6587 	ireq->acked = 0;
6588 	ireq->ecn_ok = 0;
6589 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6590 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6591 	ireq->ir_mark = inet_request_mark(sk, skb);
6592 #if IS_ENABLED(CONFIG_SMC)
6593 	ireq->smc_ok = rx_opt->smc_ok;
6594 #endif
6595 }
6596 
6597 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6598 				      struct sock *sk_listener,
6599 				      bool attach_listener)
6600 {
6601 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6602 					       attach_listener);
6603 
6604 	if (req) {
6605 		struct inet_request_sock *ireq = inet_rsk(req);
6606 
6607 		ireq->ireq_opt = NULL;
6608 #if IS_ENABLED(CONFIG_IPV6)
6609 		ireq->pktopts = NULL;
6610 #endif
6611 		atomic64_set(&ireq->ir_cookie, 0);
6612 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6613 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6614 		ireq->ireq_family = sk_listener->sk_family;
6615 	}
6616 
6617 	return req;
6618 }
6619 EXPORT_SYMBOL(inet_reqsk_alloc);
6620 
6621 /*
6622  * Return true if a syncookie should be sent
6623  */
6624 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6625 {
6626 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6627 	const char *msg = "Dropping request";
6628 	bool want_cookie = false;
6629 	struct net *net = sock_net(sk);
6630 
6631 #ifdef CONFIG_SYN_COOKIES
6632 	if (net->ipv4.sysctl_tcp_syncookies) {
6633 		msg = "Sending cookies";
6634 		want_cookie = true;
6635 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6636 	} else
6637 #endif
6638 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6639 
6640 	if (!queue->synflood_warned &&
6641 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6642 	    xchg(&queue->synflood_warned, 1) == 0)
6643 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6644 				     proto, sk->sk_num, msg);
6645 
6646 	return want_cookie;
6647 }
6648 
6649 static void tcp_reqsk_record_syn(const struct sock *sk,
6650 				 struct request_sock *req,
6651 				 const struct sk_buff *skb)
6652 {
6653 	if (tcp_sk(sk)->save_syn) {
6654 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6655 		struct saved_syn *saved_syn;
6656 		u32 mac_hdrlen;
6657 		void *base;
6658 
6659 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6660 			base = skb_mac_header(skb);
6661 			mac_hdrlen = skb_mac_header_len(skb);
6662 			len += mac_hdrlen;
6663 		} else {
6664 			base = skb_network_header(skb);
6665 			mac_hdrlen = 0;
6666 		}
6667 
6668 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6669 				    GFP_ATOMIC);
6670 		if (saved_syn) {
6671 			saved_syn->mac_hdrlen = mac_hdrlen;
6672 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6673 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6674 			memcpy(saved_syn->data, base, len);
6675 			req->saved_syn = saved_syn;
6676 		}
6677 	}
6678 }
6679 
6680 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6681  * used for SYN cookie generation.
6682  */
6683 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6684 			  const struct tcp_request_sock_ops *af_ops,
6685 			  struct sock *sk, struct tcphdr *th)
6686 {
6687 	struct tcp_sock *tp = tcp_sk(sk);
6688 	u16 mss;
6689 
6690 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6691 	    !inet_csk_reqsk_queue_is_full(sk))
6692 		return 0;
6693 
6694 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6695 		return 0;
6696 
6697 	if (sk_acceptq_is_full(sk)) {
6698 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6699 		return 0;
6700 	}
6701 
6702 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6703 	if (!mss)
6704 		mss = af_ops->mss_clamp;
6705 
6706 	return mss;
6707 }
6708 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6709 
6710 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6711 		     const struct tcp_request_sock_ops *af_ops,
6712 		     struct sock *sk, struct sk_buff *skb)
6713 {
6714 	struct tcp_fastopen_cookie foc = { .len = -1 };
6715 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6716 	struct tcp_options_received tmp_opt;
6717 	struct tcp_sock *tp = tcp_sk(sk);
6718 	struct net *net = sock_net(sk);
6719 	struct sock *fastopen_sk = NULL;
6720 	struct request_sock *req;
6721 	bool want_cookie = false;
6722 	struct dst_entry *dst;
6723 	struct flowi fl;
6724 
6725 	/* TW buckets are converted to open requests without
6726 	 * limitations, they conserve resources and peer is
6727 	 * evidently real one.
6728 	 */
6729 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6730 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6731 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6732 		if (!want_cookie)
6733 			goto drop;
6734 	}
6735 
6736 	if (sk_acceptq_is_full(sk)) {
6737 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6738 		goto drop;
6739 	}
6740 
6741 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6742 	if (!req)
6743 		goto drop;
6744 
6745 	req->syncookie = want_cookie;
6746 	tcp_rsk(req)->af_specific = af_ops;
6747 	tcp_rsk(req)->ts_off = 0;
6748 #if IS_ENABLED(CONFIG_MPTCP)
6749 	tcp_rsk(req)->is_mptcp = 0;
6750 #endif
6751 
6752 	tcp_clear_options(&tmp_opt);
6753 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6754 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6755 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6756 			  want_cookie ? NULL : &foc);
6757 
6758 	if (want_cookie && !tmp_opt.saw_tstamp)
6759 		tcp_clear_options(&tmp_opt);
6760 
6761 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6762 		tmp_opt.smc_ok = 0;
6763 
6764 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6765 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6766 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6767 
6768 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6769 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6770 
6771 	af_ops->init_req(req, sk, skb);
6772 
6773 	if (security_inet_conn_request(sk, skb, req))
6774 		goto drop_and_free;
6775 
6776 	if (tmp_opt.tstamp_ok)
6777 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6778 
6779 	dst = af_ops->route_req(sk, &fl, req);
6780 	if (!dst)
6781 		goto drop_and_free;
6782 
6783 	if (!want_cookie && !isn) {
6784 		/* Kill the following clause, if you dislike this way. */
6785 		if (!net->ipv4.sysctl_tcp_syncookies &&
6786 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6787 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6788 		    !tcp_peer_is_proven(req, dst)) {
6789 			/* Without syncookies last quarter of
6790 			 * backlog is filled with destinations,
6791 			 * proven to be alive.
6792 			 * It means that we continue to communicate
6793 			 * to destinations, already remembered
6794 			 * to the moment of synflood.
6795 			 */
6796 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6797 				    rsk_ops->family);
6798 			goto drop_and_release;
6799 		}
6800 
6801 		isn = af_ops->init_seq(skb);
6802 	}
6803 
6804 	tcp_ecn_create_request(req, skb, sk, dst);
6805 
6806 	if (want_cookie) {
6807 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6808 		if (!tmp_opt.tstamp_ok)
6809 			inet_rsk(req)->ecn_ok = 0;
6810 	}
6811 
6812 	tcp_rsk(req)->snt_isn = isn;
6813 	tcp_rsk(req)->txhash = net_tx_rndhash();
6814 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6815 	tcp_openreq_init_rwin(req, sk, dst);
6816 	sk_rx_queue_set(req_to_sk(req), skb);
6817 	if (!want_cookie) {
6818 		tcp_reqsk_record_syn(sk, req, skb);
6819 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6820 	}
6821 	if (fastopen_sk) {
6822 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6823 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6824 		/* Add the child socket directly into the accept queue */
6825 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6826 			reqsk_fastopen_remove(fastopen_sk, req, false);
6827 			bh_unlock_sock(fastopen_sk);
6828 			sock_put(fastopen_sk);
6829 			goto drop_and_free;
6830 		}
6831 		sk->sk_data_ready(sk);
6832 		bh_unlock_sock(fastopen_sk);
6833 		sock_put(fastopen_sk);
6834 	} else {
6835 		tcp_rsk(req)->tfo_listener = false;
6836 		if (!want_cookie)
6837 			inet_csk_reqsk_queue_hash_add(sk, req,
6838 				tcp_timeout_init((struct sock *)req));
6839 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6840 				    !want_cookie ? TCP_SYNACK_NORMAL :
6841 						   TCP_SYNACK_COOKIE,
6842 				    skb);
6843 		if (want_cookie) {
6844 			reqsk_free(req);
6845 			return 0;
6846 		}
6847 	}
6848 	reqsk_put(req);
6849 	return 0;
6850 
6851 drop_and_release:
6852 	dst_release(dst);
6853 drop_and_free:
6854 	__reqsk_free(req);
6855 drop:
6856 	tcp_listendrop(sk);
6857 	return 0;
6858 }
6859 EXPORT_SYMBOL(tcp_conn_request);
6860