xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 90099433)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102 int sysctl_tcp_early_retrans __read_mostly = 2;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
113 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 
118 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
122 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 /* Adapt the MSS value used to make delayed ack decision to the
128  * real world.
129  */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 	struct inet_connection_sock *icsk = inet_csk(sk);
133 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 	unsigned int len;
135 
136 	icsk->icsk_ack.last_seg_size = 0;
137 
138 	/* skb->len may jitter because of SACKs, even if peer
139 	 * sends good full-sized frames.
140 	 */
141 	len = skb_shinfo(skb)->gso_size ? : skb->len;
142 	if (len >= icsk->icsk_ack.rcv_mss) {
143 		icsk->icsk_ack.rcv_mss = len;
144 	} else {
145 		/* Otherwise, we make more careful check taking into account,
146 		 * that SACKs block is variable.
147 		 *
148 		 * "len" is invariant segment length, including TCP header.
149 		 */
150 		len += skb->data - skb_transport_header(skb);
151 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 		    /* If PSH is not set, packet should be
153 		     * full sized, provided peer TCP is not badly broken.
154 		     * This observation (if it is correct 8)) allows
155 		     * to handle super-low mtu links fairly.
156 		     */
157 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 			/* Subtract also invariant (if peer is RFC compliant),
160 			 * tcp header plus fixed timestamp option length.
161 			 * Resulting "len" is MSS free of SACK jitter.
162 			 */
163 			len -= tcp_sk(sk)->tcp_header_len;
164 			icsk->icsk_ack.last_seg_size = len;
165 			if (len == lss) {
166 				icsk->icsk_ack.rcv_mss = len;
167 				return;
168 			}
169 		}
170 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 	}
174 }
175 
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180 
181 	if (quickacks == 0)
182 		quickacks = 2;
183 	if (quickacks > icsk->icsk_ack.quick)
184 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186 
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 	struct inet_connection_sock *icsk = inet_csk(sk);
190 	tcp_incr_quickack(sk);
191 	icsk->icsk_ack.pingpong = 0;
192 	icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194 
195 /* Send ACKs quickly, if "quick" count is not exhausted
196  * and the session is not interactive.
197  */
198 
199 static inline int tcp_in_quickack_mode(const struct sock *sk)
200 {
201 	const struct inet_connection_sock *icsk = inet_csk(sk);
202 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 }
204 
205 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
206 {
207 	if (tp->ecn_flags & TCP_ECN_OK)
208 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 }
210 
211 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 {
213 	if (tcp_hdr(skb)->cwr)
214 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216 
217 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
218 {
219 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221 
222 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 {
224 	if (!(tp->ecn_flags & TCP_ECN_OK))
225 		return;
226 
227 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
228 	case INET_ECN_NOT_ECT:
229 		/* Funny extension: if ECT is not set on a segment,
230 		 * and we already seen ECT on a previous segment,
231 		 * it is probably a retransmit.
232 		 */
233 		if (tp->ecn_flags & TCP_ECN_SEEN)
234 			tcp_enter_quickack_mode((struct sock *)tp);
235 		break;
236 	case INET_ECN_CE:
237 		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
238 		/* fallinto */
239 	default:
240 		tp->ecn_flags |= TCP_ECN_SEEN;
241 	}
242 }
243 
244 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
245 {
246 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
247 		tp->ecn_flags &= ~TCP_ECN_OK;
248 }
249 
250 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
251 {
252 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
253 		tp->ecn_flags &= ~TCP_ECN_OK;
254 }
255 
256 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
257 {
258 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
259 		return 1;
260 	return 0;
261 }
262 
263 /* Buffer size and advertised window tuning.
264  *
265  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
266  */
267 
268 static void tcp_fixup_sndbuf(struct sock *sk)
269 {
270 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
271 
272 	sndmem *= TCP_INIT_CWND;
273 	if (sk->sk_sndbuf < sndmem)
274 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
275 }
276 
277 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
278  *
279  * All tcp_full_space() is split to two parts: "network" buffer, allocated
280  * forward and advertised in receiver window (tp->rcv_wnd) and
281  * "application buffer", required to isolate scheduling/application
282  * latencies from network.
283  * window_clamp is maximal advertised window. It can be less than
284  * tcp_full_space(), in this case tcp_full_space() - window_clamp
285  * is reserved for "application" buffer. The less window_clamp is
286  * the smoother our behaviour from viewpoint of network, but the lower
287  * throughput and the higher sensitivity of the connection to losses. 8)
288  *
289  * rcv_ssthresh is more strict window_clamp used at "slow start"
290  * phase to predict further behaviour of this connection.
291  * It is used for two goals:
292  * - to enforce header prediction at sender, even when application
293  *   requires some significant "application buffer". It is check #1.
294  * - to prevent pruning of receive queue because of misprediction
295  *   of receiver window. Check #2.
296  *
297  * The scheme does not work when sender sends good segments opening
298  * window and then starts to feed us spaghetti. But it should work
299  * in common situations. Otherwise, we have to rely on queue collapsing.
300  */
301 
302 /* Slow part of check#2. */
303 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
304 {
305 	struct tcp_sock *tp = tcp_sk(sk);
306 	/* Optimize this! */
307 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
308 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
309 
310 	while (tp->rcv_ssthresh <= window) {
311 		if (truesize <= skb->len)
312 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
313 
314 		truesize >>= 1;
315 		window >>= 1;
316 	}
317 	return 0;
318 }
319 
320 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
321 {
322 	struct tcp_sock *tp = tcp_sk(sk);
323 
324 	/* Check #1 */
325 	if (tp->rcv_ssthresh < tp->window_clamp &&
326 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
327 	    !sk_under_memory_pressure(sk)) {
328 		int incr;
329 
330 		/* Check #2. Increase window, if skb with such overhead
331 		 * will fit to rcvbuf in future.
332 		 */
333 		if (tcp_win_from_space(skb->truesize) <= skb->len)
334 			incr = 2 * tp->advmss;
335 		else
336 			incr = __tcp_grow_window(sk, skb);
337 
338 		if (incr) {
339 			incr = max_t(int, incr, 2 * skb->len);
340 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
341 					       tp->window_clamp);
342 			inet_csk(sk)->icsk_ack.quick |= 1;
343 		}
344 	}
345 }
346 
347 /* 3. Tuning rcvbuf, when connection enters established state. */
348 
349 static void tcp_fixup_rcvbuf(struct sock *sk)
350 {
351 	u32 mss = tcp_sk(sk)->advmss;
352 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
353 	int rcvmem;
354 
355 	/* Limit to 10 segments if mss <= 1460,
356 	 * or 14600/mss segments, with a minimum of two segments.
357 	 */
358 	if (mss > 1460)
359 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
360 
361 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
362 	while (tcp_win_from_space(rcvmem) < mss)
363 		rcvmem += 128;
364 
365 	rcvmem *= icwnd;
366 
367 	if (sk->sk_rcvbuf < rcvmem)
368 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
369 }
370 
371 /* 4. Try to fixup all. It is made immediately after connection enters
372  *    established state.
373  */
374 static void tcp_init_buffer_space(struct sock *sk)
375 {
376 	struct tcp_sock *tp = tcp_sk(sk);
377 	int maxwin;
378 
379 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
380 		tcp_fixup_rcvbuf(sk);
381 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
382 		tcp_fixup_sndbuf(sk);
383 
384 	tp->rcvq_space.space = tp->rcv_wnd;
385 
386 	maxwin = tcp_full_space(sk);
387 
388 	if (tp->window_clamp >= maxwin) {
389 		tp->window_clamp = maxwin;
390 
391 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
392 			tp->window_clamp = max(maxwin -
393 					       (maxwin >> sysctl_tcp_app_win),
394 					       4 * tp->advmss);
395 	}
396 
397 	/* Force reservation of one segment. */
398 	if (sysctl_tcp_app_win &&
399 	    tp->window_clamp > 2 * tp->advmss &&
400 	    tp->window_clamp + tp->advmss > maxwin)
401 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
402 
403 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
404 	tp->snd_cwnd_stamp = tcp_time_stamp;
405 }
406 
407 /* 5. Recalculate window clamp after socket hit its memory bounds. */
408 static void tcp_clamp_window(struct sock *sk)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	struct inet_connection_sock *icsk = inet_csk(sk);
412 
413 	icsk->icsk_ack.quick = 0;
414 
415 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
416 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
417 	    !sk_under_memory_pressure(sk) &&
418 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
419 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
420 				    sysctl_tcp_rmem[2]);
421 	}
422 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
423 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
424 }
425 
426 /* Initialize RCV_MSS value.
427  * RCV_MSS is an our guess about MSS used by the peer.
428  * We haven't any direct information about the MSS.
429  * It's better to underestimate the RCV_MSS rather than overestimate.
430  * Overestimations make us ACKing less frequently than needed.
431  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
432  */
433 void tcp_initialize_rcv_mss(struct sock *sk)
434 {
435 	const struct tcp_sock *tp = tcp_sk(sk);
436 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
437 
438 	hint = min(hint, tp->rcv_wnd / 2);
439 	hint = min(hint, TCP_MSS_DEFAULT);
440 	hint = max(hint, TCP_MIN_MSS);
441 
442 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
443 }
444 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
445 
446 /* Receiver "autotuning" code.
447  *
448  * The algorithm for RTT estimation w/o timestamps is based on
449  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
450  * <http://public.lanl.gov/radiant/pubs.html#DRS>
451  *
452  * More detail on this code can be found at
453  * <http://staff.psc.edu/jheffner/>,
454  * though this reference is out of date.  A new paper
455  * is pending.
456  */
457 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
458 {
459 	u32 new_sample = tp->rcv_rtt_est.rtt;
460 	long m = sample;
461 
462 	if (m == 0)
463 		m = 1;
464 
465 	if (new_sample != 0) {
466 		/* If we sample in larger samples in the non-timestamp
467 		 * case, we could grossly overestimate the RTT especially
468 		 * with chatty applications or bulk transfer apps which
469 		 * are stalled on filesystem I/O.
470 		 *
471 		 * Also, since we are only going for a minimum in the
472 		 * non-timestamp case, we do not smooth things out
473 		 * else with timestamps disabled convergence takes too
474 		 * long.
475 		 */
476 		if (!win_dep) {
477 			m -= (new_sample >> 3);
478 			new_sample += m;
479 		} else {
480 			m <<= 3;
481 			if (m < new_sample)
482 				new_sample = m;
483 		}
484 	} else {
485 		/* No previous measure. */
486 		new_sample = m << 3;
487 	}
488 
489 	if (tp->rcv_rtt_est.rtt != new_sample)
490 		tp->rcv_rtt_est.rtt = new_sample;
491 }
492 
493 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
494 {
495 	if (tp->rcv_rtt_est.time == 0)
496 		goto new_measure;
497 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
498 		return;
499 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
500 
501 new_measure:
502 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
503 	tp->rcv_rtt_est.time = tcp_time_stamp;
504 }
505 
506 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
507 					  const struct sk_buff *skb)
508 {
509 	struct tcp_sock *tp = tcp_sk(sk);
510 	if (tp->rx_opt.rcv_tsecr &&
511 	    (TCP_SKB_CB(skb)->end_seq -
512 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
513 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
514 }
515 
516 /*
517  * This function should be called every time data is copied to user space.
518  * It calculates the appropriate TCP receive buffer space.
519  */
520 void tcp_rcv_space_adjust(struct sock *sk)
521 {
522 	struct tcp_sock *tp = tcp_sk(sk);
523 	int time;
524 	int space;
525 
526 	if (tp->rcvq_space.time == 0)
527 		goto new_measure;
528 
529 	time = tcp_time_stamp - tp->rcvq_space.time;
530 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
531 		return;
532 
533 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
534 
535 	space = max(tp->rcvq_space.space, space);
536 
537 	if (tp->rcvq_space.space != space) {
538 		int rcvmem;
539 
540 		tp->rcvq_space.space = space;
541 
542 		if (sysctl_tcp_moderate_rcvbuf &&
543 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
544 			int new_clamp = space;
545 
546 			/* Receive space grows, normalize in order to
547 			 * take into account packet headers and sk_buff
548 			 * structure overhead.
549 			 */
550 			space /= tp->advmss;
551 			if (!space)
552 				space = 1;
553 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
554 			while (tcp_win_from_space(rcvmem) < tp->advmss)
555 				rcvmem += 128;
556 			space *= rcvmem;
557 			space = min(space, sysctl_tcp_rmem[2]);
558 			if (space > sk->sk_rcvbuf) {
559 				sk->sk_rcvbuf = space;
560 
561 				/* Make the window clamp follow along.  */
562 				tp->window_clamp = new_clamp;
563 			}
564 		}
565 	}
566 
567 new_measure:
568 	tp->rcvq_space.seq = tp->copied_seq;
569 	tp->rcvq_space.time = tcp_time_stamp;
570 }
571 
572 /* There is something which you must keep in mind when you analyze the
573  * behavior of the tp->ato delayed ack timeout interval.  When a
574  * connection starts up, we want to ack as quickly as possible.  The
575  * problem is that "good" TCP's do slow start at the beginning of data
576  * transmission.  The means that until we send the first few ACK's the
577  * sender will sit on his end and only queue most of his data, because
578  * he can only send snd_cwnd unacked packets at any given time.  For
579  * each ACK we send, he increments snd_cwnd and transmits more of his
580  * queue.  -DaveM
581  */
582 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
583 {
584 	struct tcp_sock *tp = tcp_sk(sk);
585 	struct inet_connection_sock *icsk = inet_csk(sk);
586 	u32 now;
587 
588 	inet_csk_schedule_ack(sk);
589 
590 	tcp_measure_rcv_mss(sk, skb);
591 
592 	tcp_rcv_rtt_measure(tp);
593 
594 	now = tcp_time_stamp;
595 
596 	if (!icsk->icsk_ack.ato) {
597 		/* The _first_ data packet received, initialize
598 		 * delayed ACK engine.
599 		 */
600 		tcp_incr_quickack(sk);
601 		icsk->icsk_ack.ato = TCP_ATO_MIN;
602 	} else {
603 		int m = now - icsk->icsk_ack.lrcvtime;
604 
605 		if (m <= TCP_ATO_MIN / 2) {
606 			/* The fastest case is the first. */
607 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
608 		} else if (m < icsk->icsk_ack.ato) {
609 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
610 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
611 				icsk->icsk_ack.ato = icsk->icsk_rto;
612 		} else if (m > icsk->icsk_rto) {
613 			/* Too long gap. Apparently sender failed to
614 			 * restart window, so that we send ACKs quickly.
615 			 */
616 			tcp_incr_quickack(sk);
617 			sk_mem_reclaim(sk);
618 		}
619 	}
620 	icsk->icsk_ack.lrcvtime = now;
621 
622 	TCP_ECN_check_ce(tp, skb);
623 
624 	if (skb->len >= 128)
625 		tcp_grow_window(sk, skb);
626 }
627 
628 /* Called to compute a smoothed rtt estimate. The data fed to this
629  * routine either comes from timestamps, or from segments that were
630  * known _not_ to have been retransmitted [see Karn/Partridge
631  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
632  * piece by Van Jacobson.
633  * NOTE: the next three routines used to be one big routine.
634  * To save cycles in the RFC 1323 implementation it was better to break
635  * it up into three procedures. -- erics
636  */
637 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
638 {
639 	struct tcp_sock *tp = tcp_sk(sk);
640 	long m = mrtt; /* RTT */
641 
642 	/*	The following amusing code comes from Jacobson's
643 	 *	article in SIGCOMM '88.  Note that rtt and mdev
644 	 *	are scaled versions of rtt and mean deviation.
645 	 *	This is designed to be as fast as possible
646 	 *	m stands for "measurement".
647 	 *
648 	 *	On a 1990 paper the rto value is changed to:
649 	 *	RTO = rtt + 4 * mdev
650 	 *
651 	 * Funny. This algorithm seems to be very broken.
652 	 * These formulae increase RTO, when it should be decreased, increase
653 	 * too slowly, when it should be increased quickly, decrease too quickly
654 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
655 	 * does not matter how to _calculate_ it. Seems, it was trap
656 	 * that VJ failed to avoid. 8)
657 	 */
658 	if (m == 0)
659 		m = 1;
660 	if (tp->srtt != 0) {
661 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
662 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
663 		if (m < 0) {
664 			m = -m;		/* m is now abs(error) */
665 			m -= (tp->mdev >> 2);   /* similar update on mdev */
666 			/* This is similar to one of Eifel findings.
667 			 * Eifel blocks mdev updates when rtt decreases.
668 			 * This solution is a bit different: we use finer gain
669 			 * for mdev in this case (alpha*beta).
670 			 * Like Eifel it also prevents growth of rto,
671 			 * but also it limits too fast rto decreases,
672 			 * happening in pure Eifel.
673 			 */
674 			if (m > 0)
675 				m >>= 3;
676 		} else {
677 			m -= (tp->mdev >> 2);   /* similar update on mdev */
678 		}
679 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
680 		if (tp->mdev > tp->mdev_max) {
681 			tp->mdev_max = tp->mdev;
682 			if (tp->mdev_max > tp->rttvar)
683 				tp->rttvar = tp->mdev_max;
684 		}
685 		if (after(tp->snd_una, tp->rtt_seq)) {
686 			if (tp->mdev_max < tp->rttvar)
687 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
688 			tp->rtt_seq = tp->snd_nxt;
689 			tp->mdev_max = tcp_rto_min(sk);
690 		}
691 	} else {
692 		/* no previous measure. */
693 		tp->srtt = m << 3;	/* take the measured time to be rtt */
694 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
695 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
696 		tp->rtt_seq = tp->snd_nxt;
697 	}
698 }
699 
700 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
701  * routine referred to above.
702  */
703 static inline void tcp_set_rto(struct sock *sk)
704 {
705 	const struct tcp_sock *tp = tcp_sk(sk);
706 	/* Old crap is replaced with new one. 8)
707 	 *
708 	 * More seriously:
709 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
710 	 *    It cannot be less due to utterly erratic ACK generation made
711 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
712 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
713 	 *    is invisible. Actually, Linux-2.4 also generates erratic
714 	 *    ACKs in some circumstances.
715 	 */
716 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
717 
718 	/* 2. Fixups made earlier cannot be right.
719 	 *    If we do not estimate RTO correctly without them,
720 	 *    all the algo is pure shit and should be replaced
721 	 *    with correct one. It is exactly, which we pretend to do.
722 	 */
723 
724 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
725 	 * guarantees that rto is higher.
726 	 */
727 	tcp_bound_rto(sk);
728 }
729 
730 /* Save metrics learned by this TCP session.
731    This function is called only, when TCP finishes successfully
732    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
733  */
734 void tcp_update_metrics(struct sock *sk)
735 {
736 	struct tcp_sock *tp = tcp_sk(sk);
737 	struct dst_entry *dst = __sk_dst_get(sk);
738 
739 	if (sysctl_tcp_nometrics_save)
740 		return;
741 
742 	dst_confirm(dst);
743 
744 	if (dst && (dst->flags & DST_HOST)) {
745 		const struct inet_connection_sock *icsk = inet_csk(sk);
746 		int m;
747 		unsigned long rtt;
748 
749 		if (icsk->icsk_backoff || !tp->srtt) {
750 			/* This session failed to estimate rtt. Why?
751 			 * Probably, no packets returned in time.
752 			 * Reset our results.
753 			 */
754 			if (!(dst_metric_locked(dst, RTAX_RTT)))
755 				dst_metric_set(dst, RTAX_RTT, 0);
756 			return;
757 		}
758 
759 		rtt = dst_metric_rtt(dst, RTAX_RTT);
760 		m = rtt - tp->srtt;
761 
762 		/* If newly calculated rtt larger than stored one,
763 		 * store new one. Otherwise, use EWMA. Remember,
764 		 * rtt overestimation is always better than underestimation.
765 		 */
766 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
767 			if (m <= 0)
768 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
769 			else
770 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
771 		}
772 
773 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
774 			unsigned long var;
775 			if (m < 0)
776 				m = -m;
777 
778 			/* Scale deviation to rttvar fixed point */
779 			m >>= 1;
780 			if (m < tp->mdev)
781 				m = tp->mdev;
782 
783 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
784 			if (m >= var)
785 				var = m;
786 			else
787 				var -= (var - m) >> 2;
788 
789 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
790 		}
791 
792 		if (tcp_in_initial_slowstart(tp)) {
793 			/* Slow start still did not finish. */
794 			if (dst_metric(dst, RTAX_SSTHRESH) &&
795 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
797 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
798 			if (!dst_metric_locked(dst, RTAX_CWND) &&
799 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
800 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
801 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
802 			   icsk->icsk_ca_state == TCP_CA_Open) {
803 			/* Cong. avoidance phase, cwnd is reliable. */
804 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
805 				dst_metric_set(dst, RTAX_SSTHRESH,
806 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
807 			if (!dst_metric_locked(dst, RTAX_CWND))
808 				dst_metric_set(dst, RTAX_CWND,
809 					       (dst_metric(dst, RTAX_CWND) +
810 						tp->snd_cwnd) >> 1);
811 		} else {
812 			/* Else slow start did not finish, cwnd is non-sense,
813 			   ssthresh may be also invalid.
814 			 */
815 			if (!dst_metric_locked(dst, RTAX_CWND))
816 				dst_metric_set(dst, RTAX_CWND,
817 					       (dst_metric(dst, RTAX_CWND) +
818 						tp->snd_ssthresh) >> 1);
819 			if (dst_metric(dst, RTAX_SSTHRESH) &&
820 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
821 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
822 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
823 		}
824 
825 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
826 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
827 			    tp->reordering != sysctl_tcp_reordering)
828 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
829 		}
830 	}
831 }
832 
833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
834 {
835 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836 
837 	if (!cwnd)
838 		cwnd = TCP_INIT_CWND;
839 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840 }
841 
842 /* Set slow start threshold and cwnd not falling to slow start */
843 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
844 {
845 	struct tcp_sock *tp = tcp_sk(sk);
846 	const struct inet_connection_sock *icsk = inet_csk(sk);
847 
848 	tp->prior_ssthresh = 0;
849 	tp->bytes_acked = 0;
850 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
851 		tp->undo_marker = 0;
852 		if (set_ssthresh)
853 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
854 		tp->snd_cwnd = min(tp->snd_cwnd,
855 				   tcp_packets_in_flight(tp) + 1U);
856 		tp->snd_cwnd_cnt = 0;
857 		tp->high_seq = tp->snd_nxt;
858 		tp->snd_cwnd_stamp = tcp_time_stamp;
859 		TCP_ECN_queue_cwr(tp);
860 
861 		tcp_set_ca_state(sk, TCP_CA_CWR);
862 	}
863 }
864 
865 /*
866  * Packet counting of FACK is based on in-order assumptions, therefore TCP
867  * disables it when reordering is detected
868  */
869 static void tcp_disable_fack(struct tcp_sock *tp)
870 {
871 	/* RFC3517 uses different metric in lost marker => reset on change */
872 	if (tcp_is_fack(tp))
873 		tp->lost_skb_hint = NULL;
874 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
875 }
876 
877 /* Take a notice that peer is sending D-SACKs */
878 static void tcp_dsack_seen(struct tcp_sock *tp)
879 {
880 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
881 }
882 
883 /* Initialize metrics on socket. */
884 
885 static void tcp_init_metrics(struct sock *sk)
886 {
887 	struct tcp_sock *tp = tcp_sk(sk);
888 	struct dst_entry *dst = __sk_dst_get(sk);
889 
890 	if (dst == NULL)
891 		goto reset;
892 
893 	dst_confirm(dst);
894 
895 	if (dst_metric_locked(dst, RTAX_CWND))
896 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
897 	if (dst_metric(dst, RTAX_SSTHRESH)) {
898 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
899 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
900 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
901 	} else {
902 		/* ssthresh may have been reduced unnecessarily during.
903 		 * 3WHS. Restore it back to its initial default.
904 		 */
905 		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
906 	}
907 	if (dst_metric(dst, RTAX_REORDERING) &&
908 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
909 		tcp_disable_fack(tp);
910 		tcp_disable_early_retrans(tp);
911 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
912 	}
913 
914 	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
915 		goto reset;
916 
917 	/* Initial rtt is determined from SYN,SYN-ACK.
918 	 * The segment is small and rtt may appear much
919 	 * less than real one. Use per-dst memory
920 	 * to make it more realistic.
921 	 *
922 	 * A bit of theory. RTT is time passed after "normal" sized packet
923 	 * is sent until it is ACKed. In normal circumstances sending small
924 	 * packets force peer to delay ACKs and calculation is correct too.
925 	 * The algorithm is adaptive and, provided we follow specs, it
926 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
927 	 * tricks sort of "quick acks" for time long enough to decrease RTT
928 	 * to low value, and then abruptly stops to do it and starts to delay
929 	 * ACKs, wait for troubles.
930 	 */
931 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
932 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
933 		tp->rtt_seq = tp->snd_nxt;
934 	}
935 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
936 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
937 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
938 	}
939 	tcp_set_rto(sk);
940 reset:
941 	if (tp->srtt == 0) {
942 		/* RFC6298: 5.7 We've failed to get a valid RTT sample from
943 		 * 3WHS. This is most likely due to retransmission,
944 		 * including spurious one. Reset the RTO back to 3secs
945 		 * from the more aggressive 1sec to avoid more spurious
946 		 * retransmission.
947 		 */
948 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
949 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
950 	}
951 	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
952 	 * retransmitted. In light of RFC6298 more aggressive 1sec
953 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
954 	 * retransmission has occurred.
955 	 */
956 	if (tp->total_retrans > 1)
957 		tp->snd_cwnd = 1;
958 	else
959 		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
960 	tp->snd_cwnd_stamp = tcp_time_stamp;
961 }
962 
963 static void tcp_update_reordering(struct sock *sk, const int metric,
964 				  const int ts)
965 {
966 	struct tcp_sock *tp = tcp_sk(sk);
967 	if (metric > tp->reordering) {
968 		int mib_idx;
969 
970 		tp->reordering = min(TCP_MAX_REORDERING, metric);
971 
972 		/* This exciting event is worth to be remembered. 8) */
973 		if (ts)
974 			mib_idx = LINUX_MIB_TCPTSREORDER;
975 		else if (tcp_is_reno(tp))
976 			mib_idx = LINUX_MIB_TCPRENOREORDER;
977 		else if (tcp_is_fack(tp))
978 			mib_idx = LINUX_MIB_TCPFACKREORDER;
979 		else
980 			mib_idx = LINUX_MIB_TCPSACKREORDER;
981 
982 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
983 #if FASTRETRANS_DEBUG > 1
984 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
985 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
986 		       tp->reordering,
987 		       tp->fackets_out,
988 		       tp->sacked_out,
989 		       tp->undo_marker ? tp->undo_retrans : 0);
990 #endif
991 		tcp_disable_fack(tp);
992 	}
993 
994 	if (metric > 0)
995 		tcp_disable_early_retrans(tp);
996 }
997 
998 /* This must be called before lost_out is incremented */
999 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1000 {
1001 	if ((tp->retransmit_skb_hint == NULL) ||
1002 	    before(TCP_SKB_CB(skb)->seq,
1003 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1004 		tp->retransmit_skb_hint = skb;
1005 
1006 	if (!tp->lost_out ||
1007 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1008 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1009 }
1010 
1011 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1012 {
1013 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1014 		tcp_verify_retransmit_hint(tp, skb);
1015 
1016 		tp->lost_out += tcp_skb_pcount(skb);
1017 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018 	}
1019 }
1020 
1021 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1022 					    struct sk_buff *skb)
1023 {
1024 	tcp_verify_retransmit_hint(tp, skb);
1025 
1026 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1027 		tp->lost_out += tcp_skb_pcount(skb);
1028 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1029 	}
1030 }
1031 
1032 /* This procedure tags the retransmission queue when SACKs arrive.
1033  *
1034  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1035  * Packets in queue with these bits set are counted in variables
1036  * sacked_out, retrans_out and lost_out, correspondingly.
1037  *
1038  * Valid combinations are:
1039  * Tag  InFlight	Description
1040  * 0	1		- orig segment is in flight.
1041  * S	0		- nothing flies, orig reached receiver.
1042  * L	0		- nothing flies, orig lost by net.
1043  * R	2		- both orig and retransmit are in flight.
1044  * L|R	1		- orig is lost, retransmit is in flight.
1045  * S|R  1		- orig reached receiver, retrans is still in flight.
1046  * (L|S|R is logically valid, it could occur when L|R is sacked,
1047  *  but it is equivalent to plain S and code short-curcuits it to S.
1048  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1049  *
1050  * These 6 states form finite state machine, controlled by the following events:
1051  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1052  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1053  * 3. Loss detection event of two flavors:
1054  *	A. Scoreboard estimator decided the packet is lost.
1055  *	   A'. Reno "three dupacks" marks head of queue lost.
1056  *	   A''. Its FACK modification, head until snd.fack is lost.
1057  *	B. SACK arrives sacking SND.NXT at the moment, when the
1058  *	   segment was retransmitted.
1059  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1060  *
1061  * It is pleasant to note, that state diagram turns out to be commutative,
1062  * so that we are allowed not to be bothered by order of our actions,
1063  * when multiple events arrive simultaneously. (see the function below).
1064  *
1065  * Reordering detection.
1066  * --------------------
1067  * Reordering metric is maximal distance, which a packet can be displaced
1068  * in packet stream. With SACKs we can estimate it:
1069  *
1070  * 1. SACK fills old hole and the corresponding segment was not
1071  *    ever retransmitted -> reordering. Alas, we cannot use it
1072  *    when segment was retransmitted.
1073  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1074  *    for retransmitted and already SACKed segment -> reordering..
1075  * Both of these heuristics are not used in Loss state, when we cannot
1076  * account for retransmits accurately.
1077  *
1078  * SACK block validation.
1079  * ----------------------
1080  *
1081  * SACK block range validation checks that the received SACK block fits to
1082  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1083  * Note that SND.UNA is not included to the range though being valid because
1084  * it means that the receiver is rather inconsistent with itself reporting
1085  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1086  * perfectly valid, however, in light of RFC2018 which explicitly states
1087  * that "SACK block MUST reflect the newest segment.  Even if the newest
1088  * segment is going to be discarded ...", not that it looks very clever
1089  * in case of head skb. Due to potentional receiver driven attacks, we
1090  * choose to avoid immediate execution of a walk in write queue due to
1091  * reneging and defer head skb's loss recovery to standard loss recovery
1092  * procedure that will eventually trigger (nothing forbids us doing this).
1093  *
1094  * Implements also blockage to start_seq wrap-around. Problem lies in the
1095  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1096  * there's no guarantee that it will be before snd_nxt (n). The problem
1097  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1098  * wrap (s_w):
1099  *
1100  *         <- outs wnd ->                          <- wrapzone ->
1101  *         u     e      n                         u_w   e_w  s n_w
1102  *         |     |      |                          |     |   |  |
1103  * |<------------+------+----- TCP seqno space --------------+---------->|
1104  * ...-- <2^31 ->|                                           |<--------...
1105  * ...---- >2^31 ------>|                                    |<--------...
1106  *
1107  * Current code wouldn't be vulnerable but it's better still to discard such
1108  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1109  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1110  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1111  * equal to the ideal case (infinite seqno space without wrap caused issues).
1112  *
1113  * With D-SACK the lower bound is extended to cover sequence space below
1114  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1115  * again, D-SACK block must not to go across snd_una (for the same reason as
1116  * for the normal SACK blocks, explained above). But there all simplicity
1117  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1118  * fully below undo_marker they do not affect behavior in anyway and can
1119  * therefore be safely ignored. In rare cases (which are more or less
1120  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1121  * fragmentation and packet reordering past skb's retransmission. To consider
1122  * them correctly, the acceptable range must be extended even more though
1123  * the exact amount is rather hard to quantify. However, tp->max_window can
1124  * be used as an exaggerated estimate.
1125  */
1126 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1127 				  u32 start_seq, u32 end_seq)
1128 {
1129 	/* Too far in future, or reversed (interpretation is ambiguous) */
1130 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1131 		return 0;
1132 
1133 	/* Nasty start_seq wrap-around check (see comments above) */
1134 	if (!before(start_seq, tp->snd_nxt))
1135 		return 0;
1136 
1137 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1138 	 * start_seq == snd_una is non-sensical (see comments above)
1139 	 */
1140 	if (after(start_seq, tp->snd_una))
1141 		return 1;
1142 
1143 	if (!is_dsack || !tp->undo_marker)
1144 		return 0;
1145 
1146 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1147 	if (after(end_seq, tp->snd_una))
1148 		return 0;
1149 
1150 	if (!before(start_seq, tp->undo_marker))
1151 		return 1;
1152 
1153 	/* Too old */
1154 	if (!after(end_seq, tp->undo_marker))
1155 		return 0;
1156 
1157 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1158 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1159 	 */
1160 	return !before(start_seq, end_seq - tp->max_window);
1161 }
1162 
1163 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1164  * Event "B". Later note: FACK people cheated me again 8), we have to account
1165  * for reordering! Ugly, but should help.
1166  *
1167  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1168  * less than what is now known to be received by the other end (derived from
1169  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1170  * retransmitted skbs to avoid some costly processing per ACKs.
1171  */
1172 static void tcp_mark_lost_retrans(struct sock *sk)
1173 {
1174 	const struct inet_connection_sock *icsk = inet_csk(sk);
1175 	struct tcp_sock *tp = tcp_sk(sk);
1176 	struct sk_buff *skb;
1177 	int cnt = 0;
1178 	u32 new_low_seq = tp->snd_nxt;
1179 	u32 received_upto = tcp_highest_sack_seq(tp);
1180 
1181 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1182 	    !after(received_upto, tp->lost_retrans_low) ||
1183 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1184 		return;
1185 
1186 	tcp_for_write_queue(skb, sk) {
1187 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1188 
1189 		if (skb == tcp_send_head(sk))
1190 			break;
1191 		if (cnt == tp->retrans_out)
1192 			break;
1193 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1194 			continue;
1195 
1196 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1197 			continue;
1198 
1199 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1200 		 * constraint here (see above) but figuring out that at
1201 		 * least tp->reordering SACK blocks reside between ack_seq
1202 		 * and received_upto is not easy task to do cheaply with
1203 		 * the available datastructures.
1204 		 *
1205 		 * Whether FACK should check here for tp->reordering segs
1206 		 * in-between one could argue for either way (it would be
1207 		 * rather simple to implement as we could count fack_count
1208 		 * during the walk and do tp->fackets_out - fack_count).
1209 		 */
1210 		if (after(received_upto, ack_seq)) {
1211 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1212 			tp->retrans_out -= tcp_skb_pcount(skb);
1213 
1214 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1215 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1216 		} else {
1217 			if (before(ack_seq, new_low_seq))
1218 				new_low_seq = ack_seq;
1219 			cnt += tcp_skb_pcount(skb);
1220 		}
1221 	}
1222 
1223 	if (tp->retrans_out)
1224 		tp->lost_retrans_low = new_low_seq;
1225 }
1226 
1227 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1228 			   struct tcp_sack_block_wire *sp, int num_sacks,
1229 			   u32 prior_snd_una)
1230 {
1231 	struct tcp_sock *tp = tcp_sk(sk);
1232 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1233 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1234 	int dup_sack = 0;
1235 
1236 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1237 		dup_sack = 1;
1238 		tcp_dsack_seen(tp);
1239 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1240 	} else if (num_sacks > 1) {
1241 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1242 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1243 
1244 		if (!after(end_seq_0, end_seq_1) &&
1245 		    !before(start_seq_0, start_seq_1)) {
1246 			dup_sack = 1;
1247 			tcp_dsack_seen(tp);
1248 			NET_INC_STATS_BH(sock_net(sk),
1249 					LINUX_MIB_TCPDSACKOFORECV);
1250 		}
1251 	}
1252 
1253 	/* D-SACK for already forgotten data... Do dumb counting. */
1254 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1255 	    !after(end_seq_0, prior_snd_una) &&
1256 	    after(end_seq_0, tp->undo_marker))
1257 		tp->undo_retrans--;
1258 
1259 	return dup_sack;
1260 }
1261 
1262 struct tcp_sacktag_state {
1263 	int reord;
1264 	int fack_count;
1265 	int flag;
1266 };
1267 
1268 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1269  * the incoming SACK may not exactly match but we can find smaller MSS
1270  * aligned portion of it that matches. Therefore we might need to fragment
1271  * which may fail and creates some hassle (caller must handle error case
1272  * returns).
1273  *
1274  * FIXME: this could be merged to shift decision code
1275  */
1276 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1277 				 u32 start_seq, u32 end_seq)
1278 {
1279 	int in_sack, err;
1280 	unsigned int pkt_len;
1281 	unsigned int mss;
1282 
1283 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1284 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1285 
1286 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1287 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1288 		mss = tcp_skb_mss(skb);
1289 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1290 
1291 		if (!in_sack) {
1292 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1293 			if (pkt_len < mss)
1294 				pkt_len = mss;
1295 		} else {
1296 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1297 			if (pkt_len < mss)
1298 				return -EINVAL;
1299 		}
1300 
1301 		/* Round if necessary so that SACKs cover only full MSSes
1302 		 * and/or the remaining small portion (if present)
1303 		 */
1304 		if (pkt_len > mss) {
1305 			unsigned int new_len = (pkt_len / mss) * mss;
1306 			if (!in_sack && new_len < pkt_len) {
1307 				new_len += mss;
1308 				if (new_len > skb->len)
1309 					return 0;
1310 			}
1311 			pkt_len = new_len;
1312 		}
1313 		err = tcp_fragment(sk, skb, pkt_len, mss);
1314 		if (err < 0)
1315 			return err;
1316 	}
1317 
1318 	return in_sack;
1319 }
1320 
1321 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1322 static u8 tcp_sacktag_one(struct sock *sk,
1323 			  struct tcp_sacktag_state *state, u8 sacked,
1324 			  u32 start_seq, u32 end_seq,
1325 			  int dup_sack, int pcount)
1326 {
1327 	struct tcp_sock *tp = tcp_sk(sk);
1328 	int fack_count = state->fack_count;
1329 
1330 	/* Account D-SACK for retransmitted packet. */
1331 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1332 		if (tp->undo_marker && tp->undo_retrans &&
1333 		    after(end_seq, tp->undo_marker))
1334 			tp->undo_retrans--;
1335 		if (sacked & TCPCB_SACKED_ACKED)
1336 			state->reord = min(fack_count, state->reord);
1337 	}
1338 
1339 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1340 	if (!after(end_seq, tp->snd_una))
1341 		return sacked;
1342 
1343 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1344 		if (sacked & TCPCB_SACKED_RETRANS) {
1345 			/* If the segment is not tagged as lost,
1346 			 * we do not clear RETRANS, believing
1347 			 * that retransmission is still in flight.
1348 			 */
1349 			if (sacked & TCPCB_LOST) {
1350 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1351 				tp->lost_out -= pcount;
1352 				tp->retrans_out -= pcount;
1353 			}
1354 		} else {
1355 			if (!(sacked & TCPCB_RETRANS)) {
1356 				/* New sack for not retransmitted frame,
1357 				 * which was in hole. It is reordering.
1358 				 */
1359 				if (before(start_seq,
1360 					   tcp_highest_sack_seq(tp)))
1361 					state->reord = min(fack_count,
1362 							   state->reord);
1363 
1364 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1365 				if (!after(end_seq, tp->frto_highmark))
1366 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1367 			}
1368 
1369 			if (sacked & TCPCB_LOST) {
1370 				sacked &= ~TCPCB_LOST;
1371 				tp->lost_out -= pcount;
1372 			}
1373 		}
1374 
1375 		sacked |= TCPCB_SACKED_ACKED;
1376 		state->flag |= FLAG_DATA_SACKED;
1377 		tp->sacked_out += pcount;
1378 
1379 		fack_count += pcount;
1380 
1381 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1382 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1383 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1384 			tp->lost_cnt_hint += pcount;
1385 
1386 		if (fack_count > tp->fackets_out)
1387 			tp->fackets_out = fack_count;
1388 	}
1389 
1390 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1391 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1392 	 * are accounted above as well.
1393 	 */
1394 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1395 		sacked &= ~TCPCB_SACKED_RETRANS;
1396 		tp->retrans_out -= pcount;
1397 	}
1398 
1399 	return sacked;
1400 }
1401 
1402 /* Shift newly-SACKed bytes from this skb to the immediately previous
1403  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1404  */
1405 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1406 			   struct tcp_sacktag_state *state,
1407 			   unsigned int pcount, int shifted, int mss,
1408 			   int dup_sack)
1409 {
1410 	struct tcp_sock *tp = tcp_sk(sk);
1411 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1412 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1413 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1414 
1415 	BUG_ON(!pcount);
1416 
1417 	/* Adjust counters and hints for the newly sacked sequence
1418 	 * range but discard the return value since prev is already
1419 	 * marked. We must tag the range first because the seq
1420 	 * advancement below implicitly advances
1421 	 * tcp_highest_sack_seq() when skb is highest_sack.
1422 	 */
1423 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1424 			start_seq, end_seq, dup_sack, pcount);
1425 
1426 	if (skb == tp->lost_skb_hint)
1427 		tp->lost_cnt_hint += pcount;
1428 
1429 	TCP_SKB_CB(prev)->end_seq += shifted;
1430 	TCP_SKB_CB(skb)->seq += shifted;
1431 
1432 	skb_shinfo(prev)->gso_segs += pcount;
1433 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1434 	skb_shinfo(skb)->gso_segs -= pcount;
1435 
1436 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1437 	 * in theory this shouldn't be necessary but as long as DSACK
1438 	 * code can come after this skb later on it's better to keep
1439 	 * setting gso_size to something.
1440 	 */
1441 	if (!skb_shinfo(prev)->gso_size) {
1442 		skb_shinfo(prev)->gso_size = mss;
1443 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1444 	}
1445 
1446 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1447 	if (skb_shinfo(skb)->gso_segs <= 1) {
1448 		skb_shinfo(skb)->gso_size = 0;
1449 		skb_shinfo(skb)->gso_type = 0;
1450 	}
1451 
1452 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1453 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1454 
1455 	if (skb->len > 0) {
1456 		BUG_ON(!tcp_skb_pcount(skb));
1457 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1458 		return 0;
1459 	}
1460 
1461 	/* Whole SKB was eaten :-) */
1462 
1463 	if (skb == tp->retransmit_skb_hint)
1464 		tp->retransmit_skb_hint = prev;
1465 	if (skb == tp->scoreboard_skb_hint)
1466 		tp->scoreboard_skb_hint = prev;
1467 	if (skb == tp->lost_skb_hint) {
1468 		tp->lost_skb_hint = prev;
1469 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1470 	}
1471 
1472 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1473 	if (skb == tcp_highest_sack(sk))
1474 		tcp_advance_highest_sack(sk, skb);
1475 
1476 	tcp_unlink_write_queue(skb, sk);
1477 	sk_wmem_free_skb(sk, skb);
1478 
1479 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1480 
1481 	return 1;
1482 }
1483 
1484 /* I wish gso_size would have a bit more sane initialization than
1485  * something-or-zero which complicates things
1486  */
1487 static int tcp_skb_seglen(const struct sk_buff *skb)
1488 {
1489 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1490 }
1491 
1492 /* Shifting pages past head area doesn't work */
1493 static int skb_can_shift(const struct sk_buff *skb)
1494 {
1495 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1496 }
1497 
1498 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1499  * skb.
1500  */
1501 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1502 					  struct tcp_sacktag_state *state,
1503 					  u32 start_seq, u32 end_seq,
1504 					  int dup_sack)
1505 {
1506 	struct tcp_sock *tp = tcp_sk(sk);
1507 	struct sk_buff *prev;
1508 	int mss;
1509 	int pcount = 0;
1510 	int len;
1511 	int in_sack;
1512 
1513 	if (!sk_can_gso(sk))
1514 		goto fallback;
1515 
1516 	/* Normally R but no L won't result in plain S */
1517 	if (!dup_sack &&
1518 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519 		goto fallback;
1520 	if (!skb_can_shift(skb))
1521 		goto fallback;
1522 	/* This frame is about to be dropped (was ACKed). */
1523 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524 		goto fallback;
1525 
1526 	/* Can only happen with delayed DSACK + discard craziness */
1527 	if (unlikely(skb == tcp_write_queue_head(sk)))
1528 		goto fallback;
1529 	prev = tcp_write_queue_prev(sk, skb);
1530 
1531 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532 		goto fallback;
1533 
1534 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1535 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1536 
1537 	if (in_sack) {
1538 		len = skb->len;
1539 		pcount = tcp_skb_pcount(skb);
1540 		mss = tcp_skb_seglen(skb);
1541 
1542 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1543 		 * drop this restriction as unnecessary
1544 		 */
1545 		if (mss != tcp_skb_seglen(prev))
1546 			goto fallback;
1547 	} else {
1548 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1549 			goto noop;
1550 		/* CHECKME: This is non-MSS split case only?, this will
1551 		 * cause skipped skbs due to advancing loop btw, original
1552 		 * has that feature too
1553 		 */
1554 		if (tcp_skb_pcount(skb) <= 1)
1555 			goto noop;
1556 
1557 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1558 		if (!in_sack) {
1559 			/* TODO: head merge to next could be attempted here
1560 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1561 			 * though it might not be worth of the additional hassle
1562 			 *
1563 			 * ...we can probably just fallback to what was done
1564 			 * previously. We could try merging non-SACKed ones
1565 			 * as well but it probably isn't going to buy off
1566 			 * because later SACKs might again split them, and
1567 			 * it would make skb timestamp tracking considerably
1568 			 * harder problem.
1569 			 */
1570 			goto fallback;
1571 		}
1572 
1573 		len = end_seq - TCP_SKB_CB(skb)->seq;
1574 		BUG_ON(len < 0);
1575 		BUG_ON(len > skb->len);
1576 
1577 		/* MSS boundaries should be honoured or else pcount will
1578 		 * severely break even though it makes things bit trickier.
1579 		 * Optimize common case to avoid most of the divides
1580 		 */
1581 		mss = tcp_skb_mss(skb);
1582 
1583 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1584 		 * drop this restriction as unnecessary
1585 		 */
1586 		if (mss != tcp_skb_seglen(prev))
1587 			goto fallback;
1588 
1589 		if (len == mss) {
1590 			pcount = 1;
1591 		} else if (len < mss) {
1592 			goto noop;
1593 		} else {
1594 			pcount = len / mss;
1595 			len = pcount * mss;
1596 		}
1597 	}
1598 
1599 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1600 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1601 		goto fallback;
1602 
1603 	if (!skb_shift(prev, skb, len))
1604 		goto fallback;
1605 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1606 		goto out;
1607 
1608 	/* Hole filled allows collapsing with the next as well, this is very
1609 	 * useful when hole on every nth skb pattern happens
1610 	 */
1611 	if (prev == tcp_write_queue_tail(sk))
1612 		goto out;
1613 	skb = tcp_write_queue_next(sk, prev);
1614 
1615 	if (!skb_can_shift(skb) ||
1616 	    (skb == tcp_send_head(sk)) ||
1617 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1618 	    (mss != tcp_skb_seglen(skb)))
1619 		goto out;
1620 
1621 	len = skb->len;
1622 	if (skb_shift(prev, skb, len)) {
1623 		pcount += tcp_skb_pcount(skb);
1624 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1625 	}
1626 
1627 out:
1628 	state->fack_count += pcount;
1629 	return prev;
1630 
1631 noop:
1632 	return skb;
1633 
1634 fallback:
1635 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1636 	return NULL;
1637 }
1638 
1639 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1640 					struct tcp_sack_block *next_dup,
1641 					struct tcp_sacktag_state *state,
1642 					u32 start_seq, u32 end_seq,
1643 					int dup_sack_in)
1644 {
1645 	struct tcp_sock *tp = tcp_sk(sk);
1646 	struct sk_buff *tmp;
1647 
1648 	tcp_for_write_queue_from(skb, sk) {
1649 		int in_sack = 0;
1650 		int dup_sack = dup_sack_in;
1651 
1652 		if (skb == tcp_send_head(sk))
1653 			break;
1654 
1655 		/* queue is in-order => we can short-circuit the walk early */
1656 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1657 			break;
1658 
1659 		if ((next_dup != NULL) &&
1660 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1661 			in_sack = tcp_match_skb_to_sack(sk, skb,
1662 							next_dup->start_seq,
1663 							next_dup->end_seq);
1664 			if (in_sack > 0)
1665 				dup_sack = 1;
1666 		}
1667 
1668 		/* skb reference here is a bit tricky to get right, since
1669 		 * shifting can eat and free both this skb and the next,
1670 		 * so not even _safe variant of the loop is enough.
1671 		 */
1672 		if (in_sack <= 0) {
1673 			tmp = tcp_shift_skb_data(sk, skb, state,
1674 						 start_seq, end_seq, dup_sack);
1675 			if (tmp != NULL) {
1676 				if (tmp != skb) {
1677 					skb = tmp;
1678 					continue;
1679 				}
1680 
1681 				in_sack = 0;
1682 			} else {
1683 				in_sack = tcp_match_skb_to_sack(sk, skb,
1684 								start_seq,
1685 								end_seq);
1686 			}
1687 		}
1688 
1689 		if (unlikely(in_sack < 0))
1690 			break;
1691 
1692 		if (in_sack) {
1693 			TCP_SKB_CB(skb)->sacked =
1694 				tcp_sacktag_one(sk,
1695 						state,
1696 						TCP_SKB_CB(skb)->sacked,
1697 						TCP_SKB_CB(skb)->seq,
1698 						TCP_SKB_CB(skb)->end_seq,
1699 						dup_sack,
1700 						tcp_skb_pcount(skb));
1701 
1702 			if (!before(TCP_SKB_CB(skb)->seq,
1703 				    tcp_highest_sack_seq(tp)))
1704 				tcp_advance_highest_sack(sk, skb);
1705 		}
1706 
1707 		state->fack_count += tcp_skb_pcount(skb);
1708 	}
1709 	return skb;
1710 }
1711 
1712 /* Avoid all extra work that is being done by sacktag while walking in
1713  * a normal way
1714  */
1715 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1716 					struct tcp_sacktag_state *state,
1717 					u32 skip_to_seq)
1718 {
1719 	tcp_for_write_queue_from(skb, sk) {
1720 		if (skb == tcp_send_head(sk))
1721 			break;
1722 
1723 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1724 			break;
1725 
1726 		state->fack_count += tcp_skb_pcount(skb);
1727 	}
1728 	return skb;
1729 }
1730 
1731 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1732 						struct sock *sk,
1733 						struct tcp_sack_block *next_dup,
1734 						struct tcp_sacktag_state *state,
1735 						u32 skip_to_seq)
1736 {
1737 	if (next_dup == NULL)
1738 		return skb;
1739 
1740 	if (before(next_dup->start_seq, skip_to_seq)) {
1741 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1742 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1743 				       next_dup->start_seq, next_dup->end_seq,
1744 				       1);
1745 	}
1746 
1747 	return skb;
1748 }
1749 
1750 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1751 {
1752 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1753 }
1754 
1755 static int
1756 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1757 			u32 prior_snd_una)
1758 {
1759 	const struct inet_connection_sock *icsk = inet_csk(sk);
1760 	struct tcp_sock *tp = tcp_sk(sk);
1761 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1762 				    TCP_SKB_CB(ack_skb)->sacked);
1763 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1764 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1765 	struct tcp_sack_block *cache;
1766 	struct tcp_sacktag_state state;
1767 	struct sk_buff *skb;
1768 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1769 	int used_sacks;
1770 	int found_dup_sack = 0;
1771 	int i, j;
1772 	int first_sack_index;
1773 
1774 	state.flag = 0;
1775 	state.reord = tp->packets_out;
1776 
1777 	if (!tp->sacked_out) {
1778 		if (WARN_ON(tp->fackets_out))
1779 			tp->fackets_out = 0;
1780 		tcp_highest_sack_reset(sk);
1781 	}
1782 
1783 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1784 					 num_sacks, prior_snd_una);
1785 	if (found_dup_sack)
1786 		state.flag |= FLAG_DSACKING_ACK;
1787 
1788 	/* Eliminate too old ACKs, but take into
1789 	 * account more or less fresh ones, they can
1790 	 * contain valid SACK info.
1791 	 */
1792 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1793 		return 0;
1794 
1795 	if (!tp->packets_out)
1796 		goto out;
1797 
1798 	used_sacks = 0;
1799 	first_sack_index = 0;
1800 	for (i = 0; i < num_sacks; i++) {
1801 		int dup_sack = !i && found_dup_sack;
1802 
1803 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1804 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1805 
1806 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1807 					    sp[used_sacks].start_seq,
1808 					    sp[used_sacks].end_seq)) {
1809 			int mib_idx;
1810 
1811 			if (dup_sack) {
1812 				if (!tp->undo_marker)
1813 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1814 				else
1815 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1816 			} else {
1817 				/* Don't count olds caused by ACK reordering */
1818 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1819 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1820 					continue;
1821 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1822 			}
1823 
1824 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1825 			if (i == 0)
1826 				first_sack_index = -1;
1827 			continue;
1828 		}
1829 
1830 		/* Ignore very old stuff early */
1831 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1832 			continue;
1833 
1834 		used_sacks++;
1835 	}
1836 
1837 	/* order SACK blocks to allow in order walk of the retrans queue */
1838 	for (i = used_sacks - 1; i > 0; i--) {
1839 		for (j = 0; j < i; j++) {
1840 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1841 				swap(sp[j], sp[j + 1]);
1842 
1843 				/* Track where the first SACK block goes to */
1844 				if (j == first_sack_index)
1845 					first_sack_index = j + 1;
1846 			}
1847 		}
1848 	}
1849 
1850 	skb = tcp_write_queue_head(sk);
1851 	state.fack_count = 0;
1852 	i = 0;
1853 
1854 	if (!tp->sacked_out) {
1855 		/* It's already past, so skip checking against it */
1856 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1857 	} else {
1858 		cache = tp->recv_sack_cache;
1859 		/* Skip empty blocks in at head of the cache */
1860 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1861 		       !cache->end_seq)
1862 			cache++;
1863 	}
1864 
1865 	while (i < used_sacks) {
1866 		u32 start_seq = sp[i].start_seq;
1867 		u32 end_seq = sp[i].end_seq;
1868 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1869 		struct tcp_sack_block *next_dup = NULL;
1870 
1871 		if (found_dup_sack && ((i + 1) == first_sack_index))
1872 			next_dup = &sp[i + 1];
1873 
1874 		/* Skip too early cached blocks */
1875 		while (tcp_sack_cache_ok(tp, cache) &&
1876 		       !before(start_seq, cache->end_seq))
1877 			cache++;
1878 
1879 		/* Can skip some work by looking recv_sack_cache? */
1880 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1881 		    after(end_seq, cache->start_seq)) {
1882 
1883 			/* Head todo? */
1884 			if (before(start_seq, cache->start_seq)) {
1885 				skb = tcp_sacktag_skip(skb, sk, &state,
1886 						       start_seq);
1887 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1888 						       &state,
1889 						       start_seq,
1890 						       cache->start_seq,
1891 						       dup_sack);
1892 			}
1893 
1894 			/* Rest of the block already fully processed? */
1895 			if (!after(end_seq, cache->end_seq))
1896 				goto advance_sp;
1897 
1898 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1899 						       &state,
1900 						       cache->end_seq);
1901 
1902 			/* ...tail remains todo... */
1903 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1904 				/* ...but better entrypoint exists! */
1905 				skb = tcp_highest_sack(sk);
1906 				if (skb == NULL)
1907 					break;
1908 				state.fack_count = tp->fackets_out;
1909 				cache++;
1910 				goto walk;
1911 			}
1912 
1913 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1914 			/* Check overlap against next cached too (past this one already) */
1915 			cache++;
1916 			continue;
1917 		}
1918 
1919 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1920 			skb = tcp_highest_sack(sk);
1921 			if (skb == NULL)
1922 				break;
1923 			state.fack_count = tp->fackets_out;
1924 		}
1925 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1926 
1927 walk:
1928 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1929 				       start_seq, end_seq, dup_sack);
1930 
1931 advance_sp:
1932 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1933 		 * due to in-order walk
1934 		 */
1935 		if (after(end_seq, tp->frto_highmark))
1936 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1937 
1938 		i++;
1939 	}
1940 
1941 	/* Clear the head of the cache sack blocks so we can skip it next time */
1942 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1943 		tp->recv_sack_cache[i].start_seq = 0;
1944 		tp->recv_sack_cache[i].end_seq = 0;
1945 	}
1946 	for (j = 0; j < used_sacks; j++)
1947 		tp->recv_sack_cache[i++] = sp[j];
1948 
1949 	tcp_mark_lost_retrans(sk);
1950 
1951 	tcp_verify_left_out(tp);
1952 
1953 	if ((state.reord < tp->fackets_out) &&
1954 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1955 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1956 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1957 
1958 out:
1959 
1960 #if FASTRETRANS_DEBUG > 0
1961 	WARN_ON((int)tp->sacked_out < 0);
1962 	WARN_ON((int)tp->lost_out < 0);
1963 	WARN_ON((int)tp->retrans_out < 0);
1964 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1965 #endif
1966 	return state.flag;
1967 }
1968 
1969 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1970  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1971  */
1972 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1973 {
1974 	u32 holes;
1975 
1976 	holes = max(tp->lost_out, 1U);
1977 	holes = min(holes, tp->packets_out);
1978 
1979 	if ((tp->sacked_out + holes) > tp->packets_out) {
1980 		tp->sacked_out = tp->packets_out - holes;
1981 		return 1;
1982 	}
1983 	return 0;
1984 }
1985 
1986 /* If we receive more dupacks than we expected counting segments
1987  * in assumption of absent reordering, interpret this as reordering.
1988  * The only another reason could be bug in receiver TCP.
1989  */
1990 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1991 {
1992 	struct tcp_sock *tp = tcp_sk(sk);
1993 	if (tcp_limit_reno_sacked(tp))
1994 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1995 }
1996 
1997 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1998 
1999 static void tcp_add_reno_sack(struct sock *sk)
2000 {
2001 	struct tcp_sock *tp = tcp_sk(sk);
2002 	tp->sacked_out++;
2003 	tcp_check_reno_reordering(sk, 0);
2004 	tcp_verify_left_out(tp);
2005 }
2006 
2007 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2008 
2009 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2010 {
2011 	struct tcp_sock *tp = tcp_sk(sk);
2012 
2013 	if (acked > 0) {
2014 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2015 		if (acked - 1 >= tp->sacked_out)
2016 			tp->sacked_out = 0;
2017 		else
2018 			tp->sacked_out -= acked - 1;
2019 	}
2020 	tcp_check_reno_reordering(sk, acked);
2021 	tcp_verify_left_out(tp);
2022 }
2023 
2024 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2025 {
2026 	tp->sacked_out = 0;
2027 }
2028 
2029 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2030 {
2031 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2032 }
2033 
2034 /* F-RTO can only be used if TCP has never retransmitted anything other than
2035  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2036  */
2037 int tcp_use_frto(struct sock *sk)
2038 {
2039 	const struct tcp_sock *tp = tcp_sk(sk);
2040 	const struct inet_connection_sock *icsk = inet_csk(sk);
2041 	struct sk_buff *skb;
2042 
2043 	if (!sysctl_tcp_frto)
2044 		return 0;
2045 
2046 	/* MTU probe and F-RTO won't really play nicely along currently */
2047 	if (icsk->icsk_mtup.probe_size)
2048 		return 0;
2049 
2050 	if (tcp_is_sackfrto(tp))
2051 		return 1;
2052 
2053 	/* Avoid expensive walking of rexmit queue if possible */
2054 	if (tp->retrans_out > 1)
2055 		return 0;
2056 
2057 	skb = tcp_write_queue_head(sk);
2058 	if (tcp_skb_is_last(sk, skb))
2059 		return 1;
2060 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2061 	tcp_for_write_queue_from(skb, sk) {
2062 		if (skb == tcp_send_head(sk))
2063 			break;
2064 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2065 			return 0;
2066 		/* Short-circuit when first non-SACKed skb has been checked */
2067 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2068 			break;
2069 	}
2070 	return 1;
2071 }
2072 
2073 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2074  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2075  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2076  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2077  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2078  * bits are handled if the Loss state is really to be entered (in
2079  * tcp_enter_frto_loss).
2080  *
2081  * Do like tcp_enter_loss() would; when RTO expires the second time it
2082  * does:
2083  *  "Reduce ssthresh if it has not yet been made inside this window."
2084  */
2085 void tcp_enter_frto(struct sock *sk)
2086 {
2087 	const struct inet_connection_sock *icsk = inet_csk(sk);
2088 	struct tcp_sock *tp = tcp_sk(sk);
2089 	struct sk_buff *skb;
2090 
2091 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2092 	    tp->snd_una == tp->high_seq ||
2093 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2094 	     !icsk->icsk_retransmits)) {
2095 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2096 		/* Our state is too optimistic in ssthresh() call because cwnd
2097 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2098 		 * recovery has not yet completed. Pattern would be this: RTO,
2099 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2100 		 * up here twice).
2101 		 * RFC4138 should be more specific on what to do, even though
2102 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2103 		 * due to back-off and complexity of triggering events ...
2104 		 */
2105 		if (tp->frto_counter) {
2106 			u32 stored_cwnd;
2107 			stored_cwnd = tp->snd_cwnd;
2108 			tp->snd_cwnd = 2;
2109 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110 			tp->snd_cwnd = stored_cwnd;
2111 		} else {
2112 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2113 		}
2114 		/* ... in theory, cong.control module could do "any tricks" in
2115 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2116 		 * counter would have to be faked before the call occurs. We
2117 		 * consider that too expensive, unlikely and hacky, so modules
2118 		 * using these in ssthresh() must deal these incompatibility
2119 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2120 		 */
2121 		tcp_ca_event(sk, CA_EVENT_FRTO);
2122 	}
2123 
2124 	tp->undo_marker = tp->snd_una;
2125 	tp->undo_retrans = 0;
2126 
2127 	skb = tcp_write_queue_head(sk);
2128 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2129 		tp->undo_marker = 0;
2130 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2131 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2132 		tp->retrans_out -= tcp_skb_pcount(skb);
2133 	}
2134 	tcp_verify_left_out(tp);
2135 
2136 	/* Too bad if TCP was application limited */
2137 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2138 
2139 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2140 	 * The last condition is necessary at least in tp->frto_counter case.
2141 	 */
2142 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2143 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2144 	    after(tp->high_seq, tp->snd_una)) {
2145 		tp->frto_highmark = tp->high_seq;
2146 	} else {
2147 		tp->frto_highmark = tp->snd_nxt;
2148 	}
2149 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2150 	tp->high_seq = tp->snd_nxt;
2151 	tp->frto_counter = 1;
2152 }
2153 
2154 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2155  * which indicates that we should follow the traditional RTO recovery,
2156  * i.e. mark everything lost and do go-back-N retransmission.
2157  */
2158 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2159 {
2160 	struct tcp_sock *tp = tcp_sk(sk);
2161 	struct sk_buff *skb;
2162 
2163 	tp->lost_out = 0;
2164 	tp->retrans_out = 0;
2165 	if (tcp_is_reno(tp))
2166 		tcp_reset_reno_sack(tp);
2167 
2168 	tcp_for_write_queue(skb, sk) {
2169 		if (skb == tcp_send_head(sk))
2170 			break;
2171 
2172 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2173 		/*
2174 		 * Count the retransmission made on RTO correctly (only when
2175 		 * waiting for the first ACK and did not get it)...
2176 		 */
2177 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2178 			/* For some reason this R-bit might get cleared? */
2179 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2180 				tp->retrans_out += tcp_skb_pcount(skb);
2181 			/* ...enter this if branch just for the first segment */
2182 			flag |= FLAG_DATA_ACKED;
2183 		} else {
2184 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2185 				tp->undo_marker = 0;
2186 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2187 		}
2188 
2189 		/* Marking forward transmissions that were made after RTO lost
2190 		 * can cause unnecessary retransmissions in some scenarios,
2191 		 * SACK blocks will mitigate that in some but not in all cases.
2192 		 * We used to not mark them but it was causing break-ups with
2193 		 * receivers that do only in-order receival.
2194 		 *
2195 		 * TODO: we could detect presence of such receiver and select
2196 		 * different behavior per flow.
2197 		 */
2198 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2199 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2200 			tp->lost_out += tcp_skb_pcount(skb);
2201 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2202 		}
2203 	}
2204 	tcp_verify_left_out(tp);
2205 
2206 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2207 	tp->snd_cwnd_cnt = 0;
2208 	tp->snd_cwnd_stamp = tcp_time_stamp;
2209 	tp->frto_counter = 0;
2210 	tp->bytes_acked = 0;
2211 
2212 	tp->reordering = min_t(unsigned int, tp->reordering,
2213 			       sysctl_tcp_reordering);
2214 	tcp_set_ca_state(sk, TCP_CA_Loss);
2215 	tp->high_seq = tp->snd_nxt;
2216 	TCP_ECN_queue_cwr(tp);
2217 
2218 	tcp_clear_all_retrans_hints(tp);
2219 }
2220 
2221 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2222 {
2223 	tp->retrans_out = 0;
2224 	tp->lost_out = 0;
2225 
2226 	tp->undo_marker = 0;
2227 	tp->undo_retrans = 0;
2228 }
2229 
2230 void tcp_clear_retrans(struct tcp_sock *tp)
2231 {
2232 	tcp_clear_retrans_partial(tp);
2233 
2234 	tp->fackets_out = 0;
2235 	tp->sacked_out = 0;
2236 }
2237 
2238 /* Enter Loss state. If "how" is not zero, forget all SACK information
2239  * and reset tags completely, otherwise preserve SACKs. If receiver
2240  * dropped its ofo queue, we will know this due to reneging detection.
2241  */
2242 void tcp_enter_loss(struct sock *sk, int how)
2243 {
2244 	const struct inet_connection_sock *icsk = inet_csk(sk);
2245 	struct tcp_sock *tp = tcp_sk(sk);
2246 	struct sk_buff *skb;
2247 
2248 	/* Reduce ssthresh if it has not yet been made inside this window. */
2249 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2250 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2251 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2253 		tcp_ca_event(sk, CA_EVENT_LOSS);
2254 	}
2255 	tp->snd_cwnd	   = 1;
2256 	tp->snd_cwnd_cnt   = 0;
2257 	tp->snd_cwnd_stamp = tcp_time_stamp;
2258 
2259 	tp->bytes_acked = 0;
2260 	tcp_clear_retrans_partial(tp);
2261 
2262 	if (tcp_is_reno(tp))
2263 		tcp_reset_reno_sack(tp);
2264 
2265 	if (!how) {
2266 		/* Push undo marker, if it was plain RTO and nothing
2267 		 * was retransmitted. */
2268 		tp->undo_marker = tp->snd_una;
2269 	} else {
2270 		tp->sacked_out = 0;
2271 		tp->fackets_out = 0;
2272 	}
2273 	tcp_clear_all_retrans_hints(tp);
2274 
2275 	tcp_for_write_queue(skb, sk) {
2276 		if (skb == tcp_send_head(sk))
2277 			break;
2278 
2279 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2280 			tp->undo_marker = 0;
2281 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2282 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2283 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2284 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2285 			tp->lost_out += tcp_skb_pcount(skb);
2286 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2287 		}
2288 	}
2289 	tcp_verify_left_out(tp);
2290 
2291 	tp->reordering = min_t(unsigned int, tp->reordering,
2292 			       sysctl_tcp_reordering);
2293 	tcp_set_ca_state(sk, TCP_CA_Loss);
2294 	tp->high_seq = tp->snd_nxt;
2295 	TCP_ECN_queue_cwr(tp);
2296 	/* Abort F-RTO algorithm if one is in progress */
2297 	tp->frto_counter = 0;
2298 }
2299 
2300 /* If ACK arrived pointing to a remembered SACK, it means that our
2301  * remembered SACKs do not reflect real state of receiver i.e.
2302  * receiver _host_ is heavily congested (or buggy).
2303  *
2304  * Do processing similar to RTO timeout.
2305  */
2306 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2307 {
2308 	if (flag & FLAG_SACK_RENEGING) {
2309 		struct inet_connection_sock *icsk = inet_csk(sk);
2310 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2311 
2312 		tcp_enter_loss(sk, 1);
2313 		icsk->icsk_retransmits++;
2314 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2315 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2316 					  icsk->icsk_rto, TCP_RTO_MAX);
2317 		return 1;
2318 	}
2319 	return 0;
2320 }
2321 
2322 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2323 {
2324 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2325 }
2326 
2327 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2328  * counter when SACK is enabled (without SACK, sacked_out is used for
2329  * that purpose).
2330  *
2331  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2332  * segments up to the highest received SACK block so far and holes in
2333  * between them.
2334  *
2335  * With reordering, holes may still be in flight, so RFC3517 recovery
2336  * uses pure sacked_out (total number of SACKed segments) even though
2337  * it violates the RFC that uses duplicate ACKs, often these are equal
2338  * but when e.g. out-of-window ACKs or packet duplication occurs,
2339  * they differ. Since neither occurs due to loss, TCP should really
2340  * ignore them.
2341  */
2342 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2343 {
2344 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2345 }
2346 
2347 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2348 {
2349 	struct tcp_sock *tp = tcp_sk(sk);
2350 	unsigned long delay;
2351 
2352 	/* Delay early retransmit and entering fast recovery for
2353 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2354 	 * available, or RTO is scheduled to fire first.
2355 	 */
2356 	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2357 		return false;
2358 
2359 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2360 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2361 		return false;
2362 
2363 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2364 	tp->early_retrans_delayed = 1;
2365 	return true;
2366 }
2367 
2368 static inline int tcp_skb_timedout(const struct sock *sk,
2369 				   const struct sk_buff *skb)
2370 {
2371 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2372 }
2373 
2374 static inline int tcp_head_timedout(const struct sock *sk)
2375 {
2376 	const struct tcp_sock *tp = tcp_sk(sk);
2377 
2378 	return tp->packets_out &&
2379 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2380 }
2381 
2382 /* Linux NewReno/SACK/FACK/ECN state machine.
2383  * --------------------------------------
2384  *
2385  * "Open"	Normal state, no dubious events, fast path.
2386  * "Disorder"   In all the respects it is "Open",
2387  *		but requires a bit more attention. It is entered when
2388  *		we see some SACKs or dupacks. It is split of "Open"
2389  *		mainly to move some processing from fast path to slow one.
2390  * "CWR"	CWND was reduced due to some Congestion Notification event.
2391  *		It can be ECN, ICMP source quench, local device congestion.
2392  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2393  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2394  *
2395  * tcp_fastretrans_alert() is entered:
2396  * - each incoming ACK, if state is not "Open"
2397  * - when arrived ACK is unusual, namely:
2398  *	* SACK
2399  *	* Duplicate ACK.
2400  *	* ECN ECE.
2401  *
2402  * Counting packets in flight is pretty simple.
2403  *
2404  *	in_flight = packets_out - left_out + retrans_out
2405  *
2406  *	packets_out is SND.NXT-SND.UNA counted in packets.
2407  *
2408  *	retrans_out is number of retransmitted segments.
2409  *
2410  *	left_out is number of segments left network, but not ACKed yet.
2411  *
2412  *		left_out = sacked_out + lost_out
2413  *
2414  *     sacked_out: Packets, which arrived to receiver out of order
2415  *		   and hence not ACKed. With SACKs this number is simply
2416  *		   amount of SACKed data. Even without SACKs
2417  *		   it is easy to give pretty reliable estimate of this number,
2418  *		   counting duplicate ACKs.
2419  *
2420  *       lost_out: Packets lost by network. TCP has no explicit
2421  *		   "loss notification" feedback from network (for now).
2422  *		   It means that this number can be only _guessed_.
2423  *		   Actually, it is the heuristics to predict lossage that
2424  *		   distinguishes different algorithms.
2425  *
2426  *	F.e. after RTO, when all the queue is considered as lost,
2427  *	lost_out = packets_out and in_flight = retrans_out.
2428  *
2429  *		Essentially, we have now two algorithms counting
2430  *		lost packets.
2431  *
2432  *		FACK: It is the simplest heuristics. As soon as we decided
2433  *		that something is lost, we decide that _all_ not SACKed
2434  *		packets until the most forward SACK are lost. I.e.
2435  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2436  *		It is absolutely correct estimate, if network does not reorder
2437  *		packets. And it loses any connection to reality when reordering
2438  *		takes place. We use FACK by default until reordering
2439  *		is suspected on the path to this destination.
2440  *
2441  *		NewReno: when Recovery is entered, we assume that one segment
2442  *		is lost (classic Reno). While we are in Recovery and
2443  *		a partial ACK arrives, we assume that one more packet
2444  *		is lost (NewReno). This heuristics are the same in NewReno
2445  *		and SACK.
2446  *
2447  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2448  *  deflation etc. CWND is real congestion window, never inflated, changes
2449  *  only according to classic VJ rules.
2450  *
2451  * Really tricky (and requiring careful tuning) part of algorithm
2452  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2453  * The first determines the moment _when_ we should reduce CWND and,
2454  * hence, slow down forward transmission. In fact, it determines the moment
2455  * when we decide that hole is caused by loss, rather than by a reorder.
2456  *
2457  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2458  * holes, caused by lost packets.
2459  *
2460  * And the most logically complicated part of algorithm is undo
2461  * heuristics. We detect false retransmits due to both too early
2462  * fast retransmit (reordering) and underestimated RTO, analyzing
2463  * timestamps and D-SACKs. When we detect that some segments were
2464  * retransmitted by mistake and CWND reduction was wrong, we undo
2465  * window reduction and abort recovery phase. This logic is hidden
2466  * inside several functions named tcp_try_undo_<something>.
2467  */
2468 
2469 /* This function decides, when we should leave Disordered state
2470  * and enter Recovery phase, reducing congestion window.
2471  *
2472  * Main question: may we further continue forward transmission
2473  * with the same cwnd?
2474  */
2475 static int tcp_time_to_recover(struct sock *sk, int flag)
2476 {
2477 	struct tcp_sock *tp = tcp_sk(sk);
2478 	__u32 packets_out;
2479 
2480 	/* Do not perform any recovery during F-RTO algorithm */
2481 	if (tp->frto_counter)
2482 		return 0;
2483 
2484 	/* Trick#1: The loss is proven. */
2485 	if (tp->lost_out)
2486 		return 1;
2487 
2488 	/* Not-A-Trick#2 : Classic rule... */
2489 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2490 		return 1;
2491 
2492 	/* Trick#3 : when we use RFC2988 timer restart, fast
2493 	 * retransmit can be triggered by timeout of queue head.
2494 	 */
2495 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2496 		return 1;
2497 
2498 	/* Trick#4: It is still not OK... But will it be useful to delay
2499 	 * recovery more?
2500 	 */
2501 	packets_out = tp->packets_out;
2502 	if (packets_out <= tp->reordering &&
2503 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2504 	    !tcp_may_send_now(sk)) {
2505 		/* We have nothing to send. This connection is limited
2506 		 * either by receiver window or by application.
2507 		 */
2508 		return 1;
2509 	}
2510 
2511 	/* If a thin stream is detected, retransmit after first
2512 	 * received dupack. Employ only if SACK is supported in order
2513 	 * to avoid possible corner-case series of spurious retransmissions
2514 	 * Use only if there are no unsent data.
2515 	 */
2516 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2517 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2518 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2519 		return 1;
2520 
2521 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2522 	 * retransmissions due to small network reorderings, we implement
2523 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2524 	 * interval if appropriate.
2525 	 */
2526 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2527 	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2528 	    !tcp_may_send_now(sk))
2529 		return !tcp_pause_early_retransmit(sk, flag);
2530 
2531 	return 0;
2532 }
2533 
2534 /* New heuristics: it is possible only after we switched to restart timer
2535  * each time when something is ACKed. Hence, we can detect timed out packets
2536  * during fast retransmit without falling to slow start.
2537  *
2538  * Usefulness of this as is very questionable, since we should know which of
2539  * the segments is the next to timeout which is relatively expensive to find
2540  * in general case unless we add some data structure just for that. The
2541  * current approach certainly won't find the right one too often and when it
2542  * finally does find _something_ it usually marks large part of the window
2543  * right away (because a retransmission with a larger timestamp blocks the
2544  * loop from advancing). -ij
2545  */
2546 static void tcp_timeout_skbs(struct sock *sk)
2547 {
2548 	struct tcp_sock *tp = tcp_sk(sk);
2549 	struct sk_buff *skb;
2550 
2551 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2552 		return;
2553 
2554 	skb = tp->scoreboard_skb_hint;
2555 	if (tp->scoreboard_skb_hint == NULL)
2556 		skb = tcp_write_queue_head(sk);
2557 
2558 	tcp_for_write_queue_from(skb, sk) {
2559 		if (skb == tcp_send_head(sk))
2560 			break;
2561 		if (!tcp_skb_timedout(sk, skb))
2562 			break;
2563 
2564 		tcp_skb_mark_lost(tp, skb);
2565 	}
2566 
2567 	tp->scoreboard_skb_hint = skb;
2568 
2569 	tcp_verify_left_out(tp);
2570 }
2571 
2572 /* Detect loss in event "A" above by marking head of queue up as lost.
2573  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2574  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2575  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2576  * the maximum SACKed segments to pass before reaching this limit.
2577  */
2578 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2579 {
2580 	struct tcp_sock *tp = tcp_sk(sk);
2581 	struct sk_buff *skb;
2582 	int cnt, oldcnt;
2583 	int err;
2584 	unsigned int mss;
2585 	/* Use SACK to deduce losses of new sequences sent during recovery */
2586 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2587 
2588 	WARN_ON(packets > tp->packets_out);
2589 	if (tp->lost_skb_hint) {
2590 		skb = tp->lost_skb_hint;
2591 		cnt = tp->lost_cnt_hint;
2592 		/* Head already handled? */
2593 		if (mark_head && skb != tcp_write_queue_head(sk))
2594 			return;
2595 	} else {
2596 		skb = tcp_write_queue_head(sk);
2597 		cnt = 0;
2598 	}
2599 
2600 	tcp_for_write_queue_from(skb, sk) {
2601 		if (skb == tcp_send_head(sk))
2602 			break;
2603 		/* TODO: do this better */
2604 		/* this is not the most efficient way to do this... */
2605 		tp->lost_skb_hint = skb;
2606 		tp->lost_cnt_hint = cnt;
2607 
2608 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2609 			break;
2610 
2611 		oldcnt = cnt;
2612 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2613 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2614 			cnt += tcp_skb_pcount(skb);
2615 
2616 		if (cnt > packets) {
2617 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2618 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2619 			    (oldcnt >= packets))
2620 				break;
2621 
2622 			mss = skb_shinfo(skb)->gso_size;
2623 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2624 			if (err < 0)
2625 				break;
2626 			cnt = packets;
2627 		}
2628 
2629 		tcp_skb_mark_lost(tp, skb);
2630 
2631 		if (mark_head)
2632 			break;
2633 	}
2634 	tcp_verify_left_out(tp);
2635 }
2636 
2637 /* Account newly detected lost packet(s) */
2638 
2639 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2640 {
2641 	struct tcp_sock *tp = tcp_sk(sk);
2642 
2643 	if (tcp_is_reno(tp)) {
2644 		tcp_mark_head_lost(sk, 1, 1);
2645 	} else if (tcp_is_fack(tp)) {
2646 		int lost = tp->fackets_out - tp->reordering;
2647 		if (lost <= 0)
2648 			lost = 1;
2649 		tcp_mark_head_lost(sk, lost, 0);
2650 	} else {
2651 		int sacked_upto = tp->sacked_out - tp->reordering;
2652 		if (sacked_upto >= 0)
2653 			tcp_mark_head_lost(sk, sacked_upto, 0);
2654 		else if (fast_rexmit)
2655 			tcp_mark_head_lost(sk, 1, 1);
2656 	}
2657 
2658 	tcp_timeout_skbs(sk);
2659 }
2660 
2661 /* CWND moderation, preventing bursts due to too big ACKs
2662  * in dubious situations.
2663  */
2664 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2665 {
2666 	tp->snd_cwnd = min(tp->snd_cwnd,
2667 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2668 	tp->snd_cwnd_stamp = tcp_time_stamp;
2669 }
2670 
2671 /* Lower bound on congestion window is slow start threshold
2672  * unless congestion avoidance choice decides to overide it.
2673  */
2674 static inline u32 tcp_cwnd_min(const struct sock *sk)
2675 {
2676 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2677 
2678 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2679 }
2680 
2681 /* Decrease cwnd each second ack. */
2682 static void tcp_cwnd_down(struct sock *sk, int flag)
2683 {
2684 	struct tcp_sock *tp = tcp_sk(sk);
2685 	int decr = tp->snd_cwnd_cnt + 1;
2686 
2687 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2688 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2689 		tp->snd_cwnd_cnt = decr & 1;
2690 		decr >>= 1;
2691 
2692 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2693 			tp->snd_cwnd -= decr;
2694 
2695 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2696 		tp->snd_cwnd_stamp = tcp_time_stamp;
2697 	}
2698 }
2699 
2700 /* Nothing was retransmitted or returned timestamp is less
2701  * than timestamp of the first retransmission.
2702  */
2703 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2704 {
2705 	return !tp->retrans_stamp ||
2706 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2707 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2708 }
2709 
2710 /* Undo procedures. */
2711 
2712 #if FASTRETRANS_DEBUG > 1
2713 static void DBGUNDO(struct sock *sk, const char *msg)
2714 {
2715 	struct tcp_sock *tp = tcp_sk(sk);
2716 	struct inet_sock *inet = inet_sk(sk);
2717 
2718 	if (sk->sk_family == AF_INET) {
2719 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2720 		       msg,
2721 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2722 		       tp->snd_cwnd, tcp_left_out(tp),
2723 		       tp->snd_ssthresh, tp->prior_ssthresh,
2724 		       tp->packets_out);
2725 	}
2726 #if IS_ENABLED(CONFIG_IPV6)
2727 	else if (sk->sk_family == AF_INET6) {
2728 		struct ipv6_pinfo *np = inet6_sk(sk);
2729 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2730 		       msg,
2731 		       &np->daddr, ntohs(inet->inet_dport),
2732 		       tp->snd_cwnd, tcp_left_out(tp),
2733 		       tp->snd_ssthresh, tp->prior_ssthresh,
2734 		       tp->packets_out);
2735 	}
2736 #endif
2737 }
2738 #else
2739 #define DBGUNDO(x...) do { } while (0)
2740 #endif
2741 
2742 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2743 {
2744 	struct tcp_sock *tp = tcp_sk(sk);
2745 
2746 	if (tp->prior_ssthresh) {
2747 		const struct inet_connection_sock *icsk = inet_csk(sk);
2748 
2749 		if (icsk->icsk_ca_ops->undo_cwnd)
2750 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2751 		else
2752 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2753 
2754 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2755 			tp->snd_ssthresh = tp->prior_ssthresh;
2756 			TCP_ECN_withdraw_cwr(tp);
2757 		}
2758 	} else {
2759 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2760 	}
2761 	tp->snd_cwnd_stamp = tcp_time_stamp;
2762 }
2763 
2764 static inline int tcp_may_undo(const struct tcp_sock *tp)
2765 {
2766 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2767 }
2768 
2769 /* People celebrate: "We love our President!" */
2770 static int tcp_try_undo_recovery(struct sock *sk)
2771 {
2772 	struct tcp_sock *tp = tcp_sk(sk);
2773 
2774 	if (tcp_may_undo(tp)) {
2775 		int mib_idx;
2776 
2777 		/* Happy end! We did not retransmit anything
2778 		 * or our original transmission succeeded.
2779 		 */
2780 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2781 		tcp_undo_cwr(sk, true);
2782 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2783 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2784 		else
2785 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2786 
2787 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2788 		tp->undo_marker = 0;
2789 	}
2790 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2791 		/* Hold old state until something *above* high_seq
2792 		 * is ACKed. For Reno it is MUST to prevent false
2793 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2794 		tcp_moderate_cwnd(tp);
2795 		return 1;
2796 	}
2797 	tcp_set_ca_state(sk, TCP_CA_Open);
2798 	return 0;
2799 }
2800 
2801 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2802 static void tcp_try_undo_dsack(struct sock *sk)
2803 {
2804 	struct tcp_sock *tp = tcp_sk(sk);
2805 
2806 	if (tp->undo_marker && !tp->undo_retrans) {
2807 		DBGUNDO(sk, "D-SACK");
2808 		tcp_undo_cwr(sk, true);
2809 		tp->undo_marker = 0;
2810 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2811 	}
2812 }
2813 
2814 /* We can clear retrans_stamp when there are no retransmissions in the
2815  * window. It would seem that it is trivially available for us in
2816  * tp->retrans_out, however, that kind of assumptions doesn't consider
2817  * what will happen if errors occur when sending retransmission for the
2818  * second time. ...It could the that such segment has only
2819  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2820  * the head skb is enough except for some reneging corner cases that
2821  * are not worth the effort.
2822  *
2823  * Main reason for all this complexity is the fact that connection dying
2824  * time now depends on the validity of the retrans_stamp, in particular,
2825  * that successive retransmissions of a segment must not advance
2826  * retrans_stamp under any conditions.
2827  */
2828 static int tcp_any_retrans_done(const struct sock *sk)
2829 {
2830 	const struct tcp_sock *tp = tcp_sk(sk);
2831 	struct sk_buff *skb;
2832 
2833 	if (tp->retrans_out)
2834 		return 1;
2835 
2836 	skb = tcp_write_queue_head(sk);
2837 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2838 		return 1;
2839 
2840 	return 0;
2841 }
2842 
2843 /* Undo during fast recovery after partial ACK. */
2844 
2845 static int tcp_try_undo_partial(struct sock *sk, int acked)
2846 {
2847 	struct tcp_sock *tp = tcp_sk(sk);
2848 	/* Partial ACK arrived. Force Hoe's retransmit. */
2849 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2850 
2851 	if (tcp_may_undo(tp)) {
2852 		/* Plain luck! Hole if filled with delayed
2853 		 * packet, rather than with a retransmit.
2854 		 */
2855 		if (!tcp_any_retrans_done(sk))
2856 			tp->retrans_stamp = 0;
2857 
2858 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2859 
2860 		DBGUNDO(sk, "Hoe");
2861 		tcp_undo_cwr(sk, false);
2862 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2863 
2864 		/* So... Do not make Hoe's retransmit yet.
2865 		 * If the first packet was delayed, the rest
2866 		 * ones are most probably delayed as well.
2867 		 */
2868 		failed = 0;
2869 	}
2870 	return failed;
2871 }
2872 
2873 /* Undo during loss recovery after partial ACK. */
2874 static int tcp_try_undo_loss(struct sock *sk)
2875 {
2876 	struct tcp_sock *tp = tcp_sk(sk);
2877 
2878 	if (tcp_may_undo(tp)) {
2879 		struct sk_buff *skb;
2880 		tcp_for_write_queue(skb, sk) {
2881 			if (skb == tcp_send_head(sk))
2882 				break;
2883 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2884 		}
2885 
2886 		tcp_clear_all_retrans_hints(tp);
2887 
2888 		DBGUNDO(sk, "partial loss");
2889 		tp->lost_out = 0;
2890 		tcp_undo_cwr(sk, true);
2891 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2892 		inet_csk(sk)->icsk_retransmits = 0;
2893 		tp->undo_marker = 0;
2894 		if (tcp_is_sack(tp))
2895 			tcp_set_ca_state(sk, TCP_CA_Open);
2896 		return 1;
2897 	}
2898 	return 0;
2899 }
2900 
2901 static inline void tcp_complete_cwr(struct sock *sk)
2902 {
2903 	struct tcp_sock *tp = tcp_sk(sk);
2904 
2905 	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2906 	if (tp->undo_marker) {
2907 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2908 			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2909 			tp->snd_cwnd_stamp = tcp_time_stamp;
2910 		} else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2911 			/* PRR algorithm. */
2912 			tp->snd_cwnd = tp->snd_ssthresh;
2913 			tp->snd_cwnd_stamp = tcp_time_stamp;
2914 		}
2915 	}
2916 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2917 }
2918 
2919 static void tcp_try_keep_open(struct sock *sk)
2920 {
2921 	struct tcp_sock *tp = tcp_sk(sk);
2922 	int state = TCP_CA_Open;
2923 
2924 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2925 		state = TCP_CA_Disorder;
2926 
2927 	if (inet_csk(sk)->icsk_ca_state != state) {
2928 		tcp_set_ca_state(sk, state);
2929 		tp->high_seq = tp->snd_nxt;
2930 	}
2931 }
2932 
2933 static void tcp_try_to_open(struct sock *sk, int flag)
2934 {
2935 	struct tcp_sock *tp = tcp_sk(sk);
2936 
2937 	tcp_verify_left_out(tp);
2938 
2939 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2940 		tp->retrans_stamp = 0;
2941 
2942 	if (flag & FLAG_ECE)
2943 		tcp_enter_cwr(sk, 1);
2944 
2945 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2946 		tcp_try_keep_open(sk);
2947 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2948 			tcp_moderate_cwnd(tp);
2949 	} else {
2950 		tcp_cwnd_down(sk, flag);
2951 	}
2952 }
2953 
2954 static void tcp_mtup_probe_failed(struct sock *sk)
2955 {
2956 	struct inet_connection_sock *icsk = inet_csk(sk);
2957 
2958 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2959 	icsk->icsk_mtup.probe_size = 0;
2960 }
2961 
2962 static void tcp_mtup_probe_success(struct sock *sk)
2963 {
2964 	struct tcp_sock *tp = tcp_sk(sk);
2965 	struct inet_connection_sock *icsk = inet_csk(sk);
2966 
2967 	/* FIXME: breaks with very large cwnd */
2968 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2969 	tp->snd_cwnd = tp->snd_cwnd *
2970 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2971 		       icsk->icsk_mtup.probe_size;
2972 	tp->snd_cwnd_cnt = 0;
2973 	tp->snd_cwnd_stamp = tcp_time_stamp;
2974 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2975 
2976 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2977 	icsk->icsk_mtup.probe_size = 0;
2978 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2979 }
2980 
2981 /* Do a simple retransmit without using the backoff mechanisms in
2982  * tcp_timer. This is used for path mtu discovery.
2983  * The socket is already locked here.
2984  */
2985 void tcp_simple_retransmit(struct sock *sk)
2986 {
2987 	const struct inet_connection_sock *icsk = inet_csk(sk);
2988 	struct tcp_sock *tp = tcp_sk(sk);
2989 	struct sk_buff *skb;
2990 	unsigned int mss = tcp_current_mss(sk);
2991 	u32 prior_lost = tp->lost_out;
2992 
2993 	tcp_for_write_queue(skb, sk) {
2994 		if (skb == tcp_send_head(sk))
2995 			break;
2996 		if (tcp_skb_seglen(skb) > mss &&
2997 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2998 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2999 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
3000 				tp->retrans_out -= tcp_skb_pcount(skb);
3001 			}
3002 			tcp_skb_mark_lost_uncond_verify(tp, skb);
3003 		}
3004 	}
3005 
3006 	tcp_clear_retrans_hints_partial(tp);
3007 
3008 	if (prior_lost == tp->lost_out)
3009 		return;
3010 
3011 	if (tcp_is_reno(tp))
3012 		tcp_limit_reno_sacked(tp);
3013 
3014 	tcp_verify_left_out(tp);
3015 
3016 	/* Don't muck with the congestion window here.
3017 	 * Reason is that we do not increase amount of _data_
3018 	 * in network, but units changed and effective
3019 	 * cwnd/ssthresh really reduced now.
3020 	 */
3021 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
3022 		tp->high_seq = tp->snd_nxt;
3023 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
3024 		tp->prior_ssthresh = 0;
3025 		tp->undo_marker = 0;
3026 		tcp_set_ca_state(sk, TCP_CA_Loss);
3027 	}
3028 	tcp_xmit_retransmit_queue(sk);
3029 }
3030 EXPORT_SYMBOL(tcp_simple_retransmit);
3031 
3032 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3033  * (proportional rate reduction with slow start reduction bound) as described in
3034  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3035  * It computes the number of packets to send (sndcnt) based on packets newly
3036  * delivered:
3037  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3038  *	cwnd reductions across a full RTT.
3039  *   2) If packets in flight is lower than ssthresh (such as due to excess
3040  *	losses and/or application stalls), do not perform any further cwnd
3041  *	reductions, but instead slow start up to ssthresh.
3042  */
3043 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3044 					int fast_rexmit, int flag)
3045 {
3046 	struct tcp_sock *tp = tcp_sk(sk);
3047 	int sndcnt = 0;
3048 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3049 
3050 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3051 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3052 			       tp->prior_cwnd - 1;
3053 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3054 	} else {
3055 		sndcnt = min_t(int, delta,
3056 			       max_t(int, tp->prr_delivered - tp->prr_out,
3057 				     newly_acked_sacked) + 1);
3058 	}
3059 
3060 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3061 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3062 }
3063 
3064 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3065 {
3066 	struct tcp_sock *tp = tcp_sk(sk);
3067 	int mib_idx;
3068 
3069 	if (tcp_is_reno(tp))
3070 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
3071 	else
3072 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3073 
3074 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
3075 
3076 	tp->high_seq = tp->snd_nxt;
3077 	tp->prior_ssthresh = 0;
3078 	tp->undo_marker = tp->snd_una;
3079 	tp->undo_retrans = tp->retrans_out;
3080 
3081 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3082 		if (!ece_ack)
3083 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
3084 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3085 		TCP_ECN_queue_cwr(tp);
3086 	}
3087 
3088 	tp->bytes_acked = 0;
3089 	tp->snd_cwnd_cnt = 0;
3090 	tp->prior_cwnd = tp->snd_cwnd;
3091 	tp->prr_delivered = 0;
3092 	tp->prr_out = 0;
3093 	tcp_set_ca_state(sk, TCP_CA_Recovery);
3094 }
3095 
3096 /* Process an event, which can update packets-in-flight not trivially.
3097  * Main goal of this function is to calculate new estimate for left_out,
3098  * taking into account both packets sitting in receiver's buffer and
3099  * packets lost by network.
3100  *
3101  * Besides that it does CWND reduction, when packet loss is detected
3102  * and changes state of machine.
3103  *
3104  * It does _not_ decide what to send, it is made in function
3105  * tcp_xmit_retransmit_queue().
3106  */
3107 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3108 				  int newly_acked_sacked, bool is_dupack,
3109 				  int flag)
3110 {
3111 	struct inet_connection_sock *icsk = inet_csk(sk);
3112 	struct tcp_sock *tp = tcp_sk(sk);
3113 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3114 				    (tcp_fackets_out(tp) > tp->reordering));
3115 	int fast_rexmit = 0;
3116 
3117 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3118 		tp->sacked_out = 0;
3119 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3120 		tp->fackets_out = 0;
3121 
3122 	/* Now state machine starts.
3123 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3124 	if (flag & FLAG_ECE)
3125 		tp->prior_ssthresh = 0;
3126 
3127 	/* B. In all the states check for reneging SACKs. */
3128 	if (tcp_check_sack_reneging(sk, flag))
3129 		return;
3130 
3131 	/* C. Check consistency of the current state. */
3132 	tcp_verify_left_out(tp);
3133 
3134 	/* D. Check state exit conditions. State can be terminated
3135 	 *    when high_seq is ACKed. */
3136 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3137 		WARN_ON(tp->retrans_out != 0);
3138 		tp->retrans_stamp = 0;
3139 	} else if (!before(tp->snd_una, tp->high_seq)) {
3140 		switch (icsk->icsk_ca_state) {
3141 		case TCP_CA_Loss:
3142 			icsk->icsk_retransmits = 0;
3143 			if (tcp_try_undo_recovery(sk))
3144 				return;
3145 			break;
3146 
3147 		case TCP_CA_CWR:
3148 			/* CWR is to be held something *above* high_seq
3149 			 * is ACKed for CWR bit to reach receiver. */
3150 			if (tp->snd_una != tp->high_seq) {
3151 				tcp_complete_cwr(sk);
3152 				tcp_set_ca_state(sk, TCP_CA_Open);
3153 			}
3154 			break;
3155 
3156 		case TCP_CA_Recovery:
3157 			if (tcp_is_reno(tp))
3158 				tcp_reset_reno_sack(tp);
3159 			if (tcp_try_undo_recovery(sk))
3160 				return;
3161 			tcp_complete_cwr(sk);
3162 			break;
3163 		}
3164 	}
3165 
3166 	/* E. Process state. */
3167 	switch (icsk->icsk_ca_state) {
3168 	case TCP_CA_Recovery:
3169 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3170 			if (tcp_is_reno(tp) && is_dupack)
3171 				tcp_add_reno_sack(sk);
3172 		} else
3173 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3174 		break;
3175 	case TCP_CA_Loss:
3176 		if (flag & FLAG_DATA_ACKED)
3177 			icsk->icsk_retransmits = 0;
3178 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3179 			tcp_reset_reno_sack(tp);
3180 		if (!tcp_try_undo_loss(sk)) {
3181 			tcp_moderate_cwnd(tp);
3182 			tcp_xmit_retransmit_queue(sk);
3183 			return;
3184 		}
3185 		if (icsk->icsk_ca_state != TCP_CA_Open)
3186 			return;
3187 		/* Loss is undone; fall through to processing in Open state. */
3188 	default:
3189 		if (tcp_is_reno(tp)) {
3190 			if (flag & FLAG_SND_UNA_ADVANCED)
3191 				tcp_reset_reno_sack(tp);
3192 			if (is_dupack)
3193 				tcp_add_reno_sack(sk);
3194 		}
3195 
3196 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3197 			tcp_try_undo_dsack(sk);
3198 
3199 		if (!tcp_time_to_recover(sk, flag)) {
3200 			tcp_try_to_open(sk, flag);
3201 			return;
3202 		}
3203 
3204 		/* MTU probe failure: don't reduce cwnd */
3205 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3206 		    icsk->icsk_mtup.probe_size &&
3207 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3208 			tcp_mtup_probe_failed(sk);
3209 			/* Restores the reduction we did in tcp_mtup_probe() */
3210 			tp->snd_cwnd++;
3211 			tcp_simple_retransmit(sk);
3212 			return;
3213 		}
3214 
3215 		/* Otherwise enter Recovery state */
3216 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3217 		fast_rexmit = 1;
3218 	}
3219 
3220 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3221 		tcp_update_scoreboard(sk, fast_rexmit);
3222 	tp->prr_delivered += newly_acked_sacked;
3223 	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3224 	tcp_xmit_retransmit_queue(sk);
3225 }
3226 
3227 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3228 {
3229 	tcp_rtt_estimator(sk, seq_rtt);
3230 	tcp_set_rto(sk);
3231 	inet_csk(sk)->icsk_backoff = 0;
3232 }
3233 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3234 
3235 /* Read draft-ietf-tcplw-high-performance before mucking
3236  * with this code. (Supersedes RFC1323)
3237  */
3238 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3239 {
3240 	/* RTTM Rule: A TSecr value received in a segment is used to
3241 	 * update the averaged RTT measurement only if the segment
3242 	 * acknowledges some new data, i.e., only if it advances the
3243 	 * left edge of the send window.
3244 	 *
3245 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3246 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3247 	 *
3248 	 * Changed: reset backoff as soon as we see the first valid sample.
3249 	 * If we do not, we get strongly overestimated rto. With timestamps
3250 	 * samples are accepted even from very old segments: f.e., when rtt=1
3251 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3252 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3253 	 * in window is lost... Voila.	 			--ANK (010210)
3254 	 */
3255 	struct tcp_sock *tp = tcp_sk(sk);
3256 
3257 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3258 }
3259 
3260 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3261 {
3262 	/* We don't have a timestamp. Can only use
3263 	 * packets that are not retransmitted to determine
3264 	 * rtt estimates. Also, we must not reset the
3265 	 * backoff for rto until we get a non-retransmitted
3266 	 * packet. This allows us to deal with a situation
3267 	 * where the network delay has increased suddenly.
3268 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3269 	 */
3270 
3271 	if (flag & FLAG_RETRANS_DATA_ACKED)
3272 		return;
3273 
3274 	tcp_valid_rtt_meas(sk, seq_rtt);
3275 }
3276 
3277 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3278 				      const s32 seq_rtt)
3279 {
3280 	const struct tcp_sock *tp = tcp_sk(sk);
3281 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3282 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3283 		tcp_ack_saw_tstamp(sk, flag);
3284 	else if (seq_rtt >= 0)
3285 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3286 }
3287 
3288 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3289 {
3290 	const struct inet_connection_sock *icsk = inet_csk(sk);
3291 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3292 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3293 }
3294 
3295 /* Restart timer after forward progress on connection.
3296  * RFC2988 recommends to restart timer to now+rto.
3297  */
3298 void tcp_rearm_rto(struct sock *sk)
3299 {
3300 	struct tcp_sock *tp = tcp_sk(sk);
3301 
3302 	if (!tp->packets_out) {
3303 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3304 	} else {
3305 		u32 rto = inet_csk(sk)->icsk_rto;
3306 		/* Offset the time elapsed after installing regular RTO */
3307 		if (tp->early_retrans_delayed) {
3308 			struct sk_buff *skb = tcp_write_queue_head(sk);
3309 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3310 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3311 			/* delta may not be positive if the socket is locked
3312 			 * when the delayed ER timer fires and is rescheduled.
3313 			 */
3314 			if (delta > 0)
3315 				rto = delta;
3316 		}
3317 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3318 					  TCP_RTO_MAX);
3319 	}
3320 	tp->early_retrans_delayed = 0;
3321 }
3322 
3323 /* This function is called when the delayed ER timer fires. TCP enters
3324  * fast recovery and performs fast-retransmit.
3325  */
3326 void tcp_resume_early_retransmit(struct sock *sk)
3327 {
3328 	struct tcp_sock *tp = tcp_sk(sk);
3329 
3330 	tcp_rearm_rto(sk);
3331 
3332 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3333 	if (!tp->do_early_retrans)
3334 		return;
3335 
3336 	tcp_enter_recovery(sk, false);
3337 	tcp_update_scoreboard(sk, 1);
3338 	tcp_xmit_retransmit_queue(sk);
3339 }
3340 
3341 /* If we get here, the whole TSO packet has not been acked. */
3342 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3343 {
3344 	struct tcp_sock *tp = tcp_sk(sk);
3345 	u32 packets_acked;
3346 
3347 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3348 
3349 	packets_acked = tcp_skb_pcount(skb);
3350 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3351 		return 0;
3352 	packets_acked -= tcp_skb_pcount(skb);
3353 
3354 	if (packets_acked) {
3355 		BUG_ON(tcp_skb_pcount(skb) == 0);
3356 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3357 	}
3358 
3359 	return packets_acked;
3360 }
3361 
3362 /* Remove acknowledged frames from the retransmission queue. If our packet
3363  * is before the ack sequence we can discard it as it's confirmed to have
3364  * arrived at the other end.
3365  */
3366 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3367 			       u32 prior_snd_una)
3368 {
3369 	struct tcp_sock *tp = tcp_sk(sk);
3370 	const struct inet_connection_sock *icsk = inet_csk(sk);
3371 	struct sk_buff *skb;
3372 	u32 now = tcp_time_stamp;
3373 	int fully_acked = 1;
3374 	int flag = 0;
3375 	u32 pkts_acked = 0;
3376 	u32 reord = tp->packets_out;
3377 	u32 prior_sacked = tp->sacked_out;
3378 	s32 seq_rtt = -1;
3379 	s32 ca_seq_rtt = -1;
3380 	ktime_t last_ackt = net_invalid_timestamp();
3381 
3382 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3383 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3384 		u32 acked_pcount;
3385 		u8 sacked = scb->sacked;
3386 
3387 		/* Determine how many packets and what bytes were acked, tso and else */
3388 		if (after(scb->end_seq, tp->snd_una)) {
3389 			if (tcp_skb_pcount(skb) == 1 ||
3390 			    !after(tp->snd_una, scb->seq))
3391 				break;
3392 
3393 			acked_pcount = tcp_tso_acked(sk, skb);
3394 			if (!acked_pcount)
3395 				break;
3396 
3397 			fully_acked = 0;
3398 		} else {
3399 			acked_pcount = tcp_skb_pcount(skb);
3400 		}
3401 
3402 		if (sacked & TCPCB_RETRANS) {
3403 			if (sacked & TCPCB_SACKED_RETRANS)
3404 				tp->retrans_out -= acked_pcount;
3405 			flag |= FLAG_RETRANS_DATA_ACKED;
3406 			ca_seq_rtt = -1;
3407 			seq_rtt = -1;
3408 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3409 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3410 		} else {
3411 			ca_seq_rtt = now - scb->when;
3412 			last_ackt = skb->tstamp;
3413 			if (seq_rtt < 0) {
3414 				seq_rtt = ca_seq_rtt;
3415 			}
3416 			if (!(sacked & TCPCB_SACKED_ACKED))
3417 				reord = min(pkts_acked, reord);
3418 		}
3419 
3420 		if (sacked & TCPCB_SACKED_ACKED)
3421 			tp->sacked_out -= acked_pcount;
3422 		if (sacked & TCPCB_LOST)
3423 			tp->lost_out -= acked_pcount;
3424 
3425 		tp->packets_out -= acked_pcount;
3426 		pkts_acked += acked_pcount;
3427 
3428 		/* Initial outgoing SYN's get put onto the write_queue
3429 		 * just like anything else we transmit.  It is not
3430 		 * true data, and if we misinform our callers that
3431 		 * this ACK acks real data, we will erroneously exit
3432 		 * connection startup slow start one packet too
3433 		 * quickly.  This is severely frowned upon behavior.
3434 		 */
3435 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3436 			flag |= FLAG_DATA_ACKED;
3437 		} else {
3438 			flag |= FLAG_SYN_ACKED;
3439 			tp->retrans_stamp = 0;
3440 		}
3441 
3442 		if (!fully_acked)
3443 			break;
3444 
3445 		tcp_unlink_write_queue(skb, sk);
3446 		sk_wmem_free_skb(sk, skb);
3447 		tp->scoreboard_skb_hint = NULL;
3448 		if (skb == tp->retransmit_skb_hint)
3449 			tp->retransmit_skb_hint = NULL;
3450 		if (skb == tp->lost_skb_hint)
3451 			tp->lost_skb_hint = NULL;
3452 	}
3453 
3454 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3455 		tp->snd_up = tp->snd_una;
3456 
3457 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3458 		flag |= FLAG_SACK_RENEGING;
3459 
3460 	if (flag & FLAG_ACKED) {
3461 		const struct tcp_congestion_ops *ca_ops
3462 			= inet_csk(sk)->icsk_ca_ops;
3463 
3464 		if (unlikely(icsk->icsk_mtup.probe_size &&
3465 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3466 			tcp_mtup_probe_success(sk);
3467 		}
3468 
3469 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3470 		tcp_rearm_rto(sk);
3471 
3472 		if (tcp_is_reno(tp)) {
3473 			tcp_remove_reno_sacks(sk, pkts_acked);
3474 		} else {
3475 			int delta;
3476 
3477 			/* Non-retransmitted hole got filled? That's reordering */
3478 			if (reord < prior_fackets)
3479 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3480 
3481 			delta = tcp_is_fack(tp) ? pkts_acked :
3482 						  prior_sacked - tp->sacked_out;
3483 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3484 		}
3485 
3486 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3487 
3488 		if (ca_ops->pkts_acked) {
3489 			s32 rtt_us = -1;
3490 
3491 			/* Is the ACK triggering packet unambiguous? */
3492 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3493 				/* High resolution needed and available? */
3494 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3495 				    !ktime_equal(last_ackt,
3496 						 net_invalid_timestamp()))
3497 					rtt_us = ktime_us_delta(ktime_get_real(),
3498 								last_ackt);
3499 				else if (ca_seq_rtt >= 0)
3500 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3501 			}
3502 
3503 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3504 		}
3505 	}
3506 
3507 #if FASTRETRANS_DEBUG > 0
3508 	WARN_ON((int)tp->sacked_out < 0);
3509 	WARN_ON((int)tp->lost_out < 0);
3510 	WARN_ON((int)tp->retrans_out < 0);
3511 	if (!tp->packets_out && tcp_is_sack(tp)) {
3512 		icsk = inet_csk(sk);
3513 		if (tp->lost_out) {
3514 			printk(KERN_DEBUG "Leak l=%u %d\n",
3515 			       tp->lost_out, icsk->icsk_ca_state);
3516 			tp->lost_out = 0;
3517 		}
3518 		if (tp->sacked_out) {
3519 			printk(KERN_DEBUG "Leak s=%u %d\n",
3520 			       tp->sacked_out, icsk->icsk_ca_state);
3521 			tp->sacked_out = 0;
3522 		}
3523 		if (tp->retrans_out) {
3524 			printk(KERN_DEBUG "Leak r=%u %d\n",
3525 			       tp->retrans_out, icsk->icsk_ca_state);
3526 			tp->retrans_out = 0;
3527 		}
3528 	}
3529 #endif
3530 	return flag;
3531 }
3532 
3533 static void tcp_ack_probe(struct sock *sk)
3534 {
3535 	const struct tcp_sock *tp = tcp_sk(sk);
3536 	struct inet_connection_sock *icsk = inet_csk(sk);
3537 
3538 	/* Was it a usable window open? */
3539 
3540 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3541 		icsk->icsk_backoff = 0;
3542 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3543 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3544 		 * This function is not for random using!
3545 		 */
3546 	} else {
3547 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3548 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3549 					  TCP_RTO_MAX);
3550 	}
3551 }
3552 
3553 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3554 {
3555 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3556 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3557 }
3558 
3559 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3560 {
3561 	const struct tcp_sock *tp = tcp_sk(sk);
3562 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3563 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3564 }
3565 
3566 /* Check that window update is acceptable.
3567  * The function assumes that snd_una<=ack<=snd_next.
3568  */
3569 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3570 					const u32 ack, const u32 ack_seq,
3571 					const u32 nwin)
3572 {
3573 	return	after(ack, tp->snd_una) ||
3574 		after(ack_seq, tp->snd_wl1) ||
3575 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3576 }
3577 
3578 /* Update our send window.
3579  *
3580  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3581  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3582  */
3583 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3584 				 u32 ack_seq)
3585 {
3586 	struct tcp_sock *tp = tcp_sk(sk);
3587 	int flag = 0;
3588 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3589 
3590 	if (likely(!tcp_hdr(skb)->syn))
3591 		nwin <<= tp->rx_opt.snd_wscale;
3592 
3593 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3594 		flag |= FLAG_WIN_UPDATE;
3595 		tcp_update_wl(tp, ack_seq);
3596 
3597 		if (tp->snd_wnd != nwin) {
3598 			tp->snd_wnd = nwin;
3599 
3600 			/* Note, it is the only place, where
3601 			 * fast path is recovered for sending TCP.
3602 			 */
3603 			tp->pred_flags = 0;
3604 			tcp_fast_path_check(sk);
3605 
3606 			if (nwin > tp->max_window) {
3607 				tp->max_window = nwin;
3608 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3609 			}
3610 		}
3611 	}
3612 
3613 	tp->snd_una = ack;
3614 
3615 	return flag;
3616 }
3617 
3618 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3619  * continue in congestion avoidance.
3620  */
3621 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3622 {
3623 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3624 	tp->snd_cwnd_cnt = 0;
3625 	tp->bytes_acked = 0;
3626 	TCP_ECN_queue_cwr(tp);
3627 	tcp_moderate_cwnd(tp);
3628 }
3629 
3630 /* A conservative spurious RTO response algorithm: reduce cwnd using
3631  * rate halving and continue in congestion avoidance.
3632  */
3633 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3634 {
3635 	tcp_enter_cwr(sk, 0);
3636 }
3637 
3638 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3639 {
3640 	if (flag & FLAG_ECE)
3641 		tcp_ratehalving_spur_to_response(sk);
3642 	else
3643 		tcp_undo_cwr(sk, true);
3644 }
3645 
3646 /* F-RTO spurious RTO detection algorithm (RFC4138)
3647  *
3648  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3649  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3650  * window (but not to or beyond highest sequence sent before RTO):
3651  *   On First ACK,  send two new segments out.
3652  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3653  *                  algorithm is not part of the F-RTO detection algorithm
3654  *                  given in RFC4138 but can be selected separately).
3655  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3656  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3657  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3658  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3659  *
3660  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3661  * original window even after we transmit two new data segments.
3662  *
3663  * SACK version:
3664  *   on first step, wait until first cumulative ACK arrives, then move to
3665  *   the second step. In second step, the next ACK decides.
3666  *
3667  * F-RTO is implemented (mainly) in four functions:
3668  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3669  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3670  *     called when tcp_use_frto() showed green light
3671  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3672  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3673  *     to prove that the RTO is indeed spurious. It transfers the control
3674  *     from F-RTO to the conventional RTO recovery
3675  */
3676 static int tcp_process_frto(struct sock *sk, int flag)
3677 {
3678 	struct tcp_sock *tp = tcp_sk(sk);
3679 
3680 	tcp_verify_left_out(tp);
3681 
3682 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3683 	if (flag & FLAG_DATA_ACKED)
3684 		inet_csk(sk)->icsk_retransmits = 0;
3685 
3686 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3687 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3688 		tp->undo_marker = 0;
3689 
3690 	if (!before(tp->snd_una, tp->frto_highmark)) {
3691 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3692 		return 1;
3693 	}
3694 
3695 	if (!tcp_is_sackfrto(tp)) {
3696 		/* RFC4138 shortcoming in step 2; should also have case c):
3697 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3698 		 * data, winupdate
3699 		 */
3700 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3701 			return 1;
3702 
3703 		if (!(flag & FLAG_DATA_ACKED)) {
3704 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3705 					    flag);
3706 			return 1;
3707 		}
3708 	} else {
3709 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3710 			/* Prevent sending of new data. */
3711 			tp->snd_cwnd = min(tp->snd_cwnd,
3712 					   tcp_packets_in_flight(tp));
3713 			return 1;
3714 		}
3715 
3716 		if ((tp->frto_counter >= 2) &&
3717 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3718 		     ((flag & FLAG_DATA_SACKED) &&
3719 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3720 			/* RFC4138 shortcoming (see comment above) */
3721 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3722 			    (flag & FLAG_NOT_DUP))
3723 				return 1;
3724 
3725 			tcp_enter_frto_loss(sk, 3, flag);
3726 			return 1;
3727 		}
3728 	}
3729 
3730 	if (tp->frto_counter == 1) {
3731 		/* tcp_may_send_now needs to see updated state */
3732 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3733 		tp->frto_counter = 2;
3734 
3735 		if (!tcp_may_send_now(sk))
3736 			tcp_enter_frto_loss(sk, 2, flag);
3737 
3738 		return 1;
3739 	} else {
3740 		switch (sysctl_tcp_frto_response) {
3741 		case 2:
3742 			tcp_undo_spur_to_response(sk, flag);
3743 			break;
3744 		case 1:
3745 			tcp_conservative_spur_to_response(tp);
3746 			break;
3747 		default:
3748 			tcp_ratehalving_spur_to_response(sk);
3749 			break;
3750 		}
3751 		tp->frto_counter = 0;
3752 		tp->undo_marker = 0;
3753 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3754 	}
3755 	return 0;
3756 }
3757 
3758 /* This routine deals with incoming acks, but not outgoing ones. */
3759 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3760 {
3761 	struct inet_connection_sock *icsk = inet_csk(sk);
3762 	struct tcp_sock *tp = tcp_sk(sk);
3763 	u32 prior_snd_una = tp->snd_una;
3764 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3765 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3766 	bool is_dupack = false;
3767 	u32 prior_in_flight;
3768 	u32 prior_fackets;
3769 	int prior_packets;
3770 	int prior_sacked = tp->sacked_out;
3771 	int pkts_acked = 0;
3772 	int newly_acked_sacked = 0;
3773 	int frto_cwnd = 0;
3774 
3775 	/* If the ack is older than previous acks
3776 	 * then we can probably ignore it.
3777 	 */
3778 	if (before(ack, prior_snd_una))
3779 		goto old_ack;
3780 
3781 	/* If the ack includes data we haven't sent yet, discard
3782 	 * this segment (RFC793 Section 3.9).
3783 	 */
3784 	if (after(ack, tp->snd_nxt))
3785 		goto invalid_ack;
3786 
3787 	if (tp->early_retrans_delayed)
3788 		tcp_rearm_rto(sk);
3789 
3790 	if (after(ack, prior_snd_una))
3791 		flag |= FLAG_SND_UNA_ADVANCED;
3792 
3793 	if (sysctl_tcp_abc) {
3794 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3795 			tp->bytes_acked += ack - prior_snd_una;
3796 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3797 			/* we assume just one segment left network */
3798 			tp->bytes_acked += min(ack - prior_snd_una,
3799 					       tp->mss_cache);
3800 	}
3801 
3802 	prior_fackets = tp->fackets_out;
3803 	prior_in_flight = tcp_packets_in_flight(tp);
3804 
3805 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3806 		/* Window is constant, pure forward advance.
3807 		 * No more checks are required.
3808 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3809 		 */
3810 		tcp_update_wl(tp, ack_seq);
3811 		tp->snd_una = ack;
3812 		flag |= FLAG_WIN_UPDATE;
3813 
3814 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3815 
3816 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3817 	} else {
3818 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3819 			flag |= FLAG_DATA;
3820 		else
3821 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3822 
3823 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3824 
3825 		if (TCP_SKB_CB(skb)->sacked)
3826 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3827 
3828 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3829 			flag |= FLAG_ECE;
3830 
3831 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3832 	}
3833 
3834 	/* We passed data and got it acked, remove any soft error
3835 	 * log. Something worked...
3836 	 */
3837 	sk->sk_err_soft = 0;
3838 	icsk->icsk_probes_out = 0;
3839 	tp->rcv_tstamp = tcp_time_stamp;
3840 	prior_packets = tp->packets_out;
3841 	if (!prior_packets)
3842 		goto no_queue;
3843 
3844 	/* See if we can take anything off of the retransmit queue. */
3845 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3846 
3847 	pkts_acked = prior_packets - tp->packets_out;
3848 	newly_acked_sacked = (prior_packets - prior_sacked) -
3849 			     (tp->packets_out - tp->sacked_out);
3850 
3851 	if (tp->frto_counter)
3852 		frto_cwnd = tcp_process_frto(sk, flag);
3853 	/* Guarantee sacktag reordering detection against wrap-arounds */
3854 	if (before(tp->frto_highmark, tp->snd_una))
3855 		tp->frto_highmark = 0;
3856 
3857 	if (tcp_ack_is_dubious(sk, flag)) {
3858 		/* Advance CWND, if state allows this. */
3859 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3860 		    tcp_may_raise_cwnd(sk, flag))
3861 			tcp_cong_avoid(sk, ack, prior_in_flight);
3862 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3863 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3864 				      is_dupack, flag);
3865 	} else {
3866 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3867 			tcp_cong_avoid(sk, ack, prior_in_flight);
3868 	}
3869 
3870 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3871 		dst_confirm(__sk_dst_get(sk));
3872 
3873 	return 1;
3874 
3875 no_queue:
3876 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3877 	if (flag & FLAG_DSACKING_ACK)
3878 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3879 				      is_dupack, flag);
3880 	/* If this ack opens up a zero window, clear backoff.  It was
3881 	 * being used to time the probes, and is probably far higher than
3882 	 * it needs to be for normal retransmission.
3883 	 */
3884 	if (tcp_send_head(sk))
3885 		tcp_ack_probe(sk);
3886 	return 1;
3887 
3888 invalid_ack:
3889 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3890 	return -1;
3891 
3892 old_ack:
3893 	/* If data was SACKed, tag it and see if we should send more data.
3894 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3895 	 */
3896 	if (TCP_SKB_CB(skb)->sacked) {
3897 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3898 		newly_acked_sacked = tp->sacked_out - prior_sacked;
3899 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3900 				      is_dupack, flag);
3901 	}
3902 
3903 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3904 	return 0;
3905 }
3906 
3907 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3908  * But, this can also be called on packets in the established flow when
3909  * the fast version below fails.
3910  */
3911 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3912 		       const u8 **hvpp, int estab)
3913 {
3914 	const unsigned char *ptr;
3915 	const struct tcphdr *th = tcp_hdr(skb);
3916 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3917 
3918 	ptr = (const unsigned char *)(th + 1);
3919 	opt_rx->saw_tstamp = 0;
3920 
3921 	while (length > 0) {
3922 		int opcode = *ptr++;
3923 		int opsize;
3924 
3925 		switch (opcode) {
3926 		case TCPOPT_EOL:
3927 			return;
3928 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3929 			length--;
3930 			continue;
3931 		default:
3932 			opsize = *ptr++;
3933 			if (opsize < 2) /* "silly options" */
3934 				return;
3935 			if (opsize > length)
3936 				return;	/* don't parse partial options */
3937 			switch (opcode) {
3938 			case TCPOPT_MSS:
3939 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3940 					u16 in_mss = get_unaligned_be16(ptr);
3941 					if (in_mss) {
3942 						if (opt_rx->user_mss &&
3943 						    opt_rx->user_mss < in_mss)
3944 							in_mss = opt_rx->user_mss;
3945 						opt_rx->mss_clamp = in_mss;
3946 					}
3947 				}
3948 				break;
3949 			case TCPOPT_WINDOW:
3950 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3951 				    !estab && sysctl_tcp_window_scaling) {
3952 					__u8 snd_wscale = *(__u8 *)ptr;
3953 					opt_rx->wscale_ok = 1;
3954 					if (snd_wscale > 14) {
3955 						if (net_ratelimit())
3956 							pr_info("%s: Illegal window scaling value %d >14 received\n",
3957 								__func__,
3958 								snd_wscale);
3959 						snd_wscale = 14;
3960 					}
3961 					opt_rx->snd_wscale = snd_wscale;
3962 				}
3963 				break;
3964 			case TCPOPT_TIMESTAMP:
3965 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3966 				    ((estab && opt_rx->tstamp_ok) ||
3967 				     (!estab && sysctl_tcp_timestamps))) {
3968 					opt_rx->saw_tstamp = 1;
3969 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3970 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3971 				}
3972 				break;
3973 			case TCPOPT_SACK_PERM:
3974 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3975 				    !estab && sysctl_tcp_sack) {
3976 					opt_rx->sack_ok = TCP_SACK_SEEN;
3977 					tcp_sack_reset(opt_rx);
3978 				}
3979 				break;
3980 
3981 			case TCPOPT_SACK:
3982 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3983 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3984 				   opt_rx->sack_ok) {
3985 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3986 				}
3987 				break;
3988 #ifdef CONFIG_TCP_MD5SIG
3989 			case TCPOPT_MD5SIG:
3990 				/*
3991 				 * The MD5 Hash has already been
3992 				 * checked (see tcp_v{4,6}_do_rcv()).
3993 				 */
3994 				break;
3995 #endif
3996 			case TCPOPT_COOKIE:
3997 				/* This option is variable length.
3998 				 */
3999 				switch (opsize) {
4000 				case TCPOLEN_COOKIE_BASE:
4001 					/* not yet implemented */
4002 					break;
4003 				case TCPOLEN_COOKIE_PAIR:
4004 					/* not yet implemented */
4005 					break;
4006 				case TCPOLEN_COOKIE_MIN+0:
4007 				case TCPOLEN_COOKIE_MIN+2:
4008 				case TCPOLEN_COOKIE_MIN+4:
4009 				case TCPOLEN_COOKIE_MIN+6:
4010 				case TCPOLEN_COOKIE_MAX:
4011 					/* 16-bit multiple */
4012 					opt_rx->cookie_plus = opsize;
4013 					*hvpp = ptr;
4014 					break;
4015 				default:
4016 					/* ignore option */
4017 					break;
4018 				}
4019 				break;
4020 			}
4021 
4022 			ptr += opsize-2;
4023 			length -= opsize;
4024 		}
4025 	}
4026 }
4027 EXPORT_SYMBOL(tcp_parse_options);
4028 
4029 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4030 {
4031 	const __be32 *ptr = (const __be32 *)(th + 1);
4032 
4033 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4034 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4035 		tp->rx_opt.saw_tstamp = 1;
4036 		++ptr;
4037 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4038 		++ptr;
4039 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4040 		return 1;
4041 	}
4042 	return 0;
4043 }
4044 
4045 /* Fast parse options. This hopes to only see timestamps.
4046  * If it is wrong it falls back on tcp_parse_options().
4047  */
4048 static int tcp_fast_parse_options(const struct sk_buff *skb,
4049 				  const struct tcphdr *th,
4050 				  struct tcp_sock *tp, const u8 **hvpp)
4051 {
4052 	/* In the spirit of fast parsing, compare doff directly to constant
4053 	 * values.  Because equality is used, short doff can be ignored here.
4054 	 */
4055 	if (th->doff == (sizeof(*th) / 4)) {
4056 		tp->rx_opt.saw_tstamp = 0;
4057 		return 0;
4058 	} else if (tp->rx_opt.tstamp_ok &&
4059 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4060 		if (tcp_parse_aligned_timestamp(tp, th))
4061 			return 1;
4062 	}
4063 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4064 	return 1;
4065 }
4066 
4067 #ifdef CONFIG_TCP_MD5SIG
4068 /*
4069  * Parse MD5 Signature option
4070  */
4071 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4072 {
4073 	int length = (th->doff << 2) - sizeof(*th);
4074 	const u8 *ptr = (const u8 *)(th + 1);
4075 
4076 	/* If the TCP option is too short, we can short cut */
4077 	if (length < TCPOLEN_MD5SIG)
4078 		return NULL;
4079 
4080 	while (length > 0) {
4081 		int opcode = *ptr++;
4082 		int opsize;
4083 
4084 		switch(opcode) {
4085 		case TCPOPT_EOL:
4086 			return NULL;
4087 		case TCPOPT_NOP:
4088 			length--;
4089 			continue;
4090 		default:
4091 			opsize = *ptr++;
4092 			if (opsize < 2 || opsize > length)
4093 				return NULL;
4094 			if (opcode == TCPOPT_MD5SIG)
4095 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4096 		}
4097 		ptr += opsize - 2;
4098 		length -= opsize;
4099 	}
4100 	return NULL;
4101 }
4102 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4103 #endif
4104 
4105 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4106 {
4107 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4108 	tp->rx_opt.ts_recent_stamp = get_seconds();
4109 }
4110 
4111 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4112 {
4113 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4114 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4115 		 * extra check below makes sure this can only happen
4116 		 * for pure ACK frames.  -DaveM
4117 		 *
4118 		 * Not only, also it occurs for expired timestamps.
4119 		 */
4120 
4121 		if (tcp_paws_check(&tp->rx_opt, 0))
4122 			tcp_store_ts_recent(tp);
4123 	}
4124 }
4125 
4126 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4127  *
4128  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4129  * it can pass through stack. So, the following predicate verifies that
4130  * this segment is not used for anything but congestion avoidance or
4131  * fast retransmit. Moreover, we even are able to eliminate most of such
4132  * second order effects, if we apply some small "replay" window (~RTO)
4133  * to timestamp space.
4134  *
4135  * All these measures still do not guarantee that we reject wrapped ACKs
4136  * on networks with high bandwidth, when sequence space is recycled fastly,
4137  * but it guarantees that such events will be very rare and do not affect
4138  * connection seriously. This doesn't look nice, but alas, PAWS is really
4139  * buggy extension.
4140  *
4141  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4142  * states that events when retransmit arrives after original data are rare.
4143  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4144  * the biggest problem on large power networks even with minor reordering.
4145  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4146  * up to bandwidth of 18Gigabit/sec. 8) ]
4147  */
4148 
4149 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4150 {
4151 	const struct tcp_sock *tp = tcp_sk(sk);
4152 	const struct tcphdr *th = tcp_hdr(skb);
4153 	u32 seq = TCP_SKB_CB(skb)->seq;
4154 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4155 
4156 	return (/* 1. Pure ACK with correct sequence number. */
4157 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4158 
4159 		/* 2. ... and duplicate ACK. */
4160 		ack == tp->snd_una &&
4161 
4162 		/* 3. ... and does not update window. */
4163 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4164 
4165 		/* 4. ... and sits in replay window. */
4166 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4167 }
4168 
4169 static inline int tcp_paws_discard(const struct sock *sk,
4170 				   const struct sk_buff *skb)
4171 {
4172 	const struct tcp_sock *tp = tcp_sk(sk);
4173 
4174 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4175 	       !tcp_disordered_ack(sk, skb);
4176 }
4177 
4178 /* Check segment sequence number for validity.
4179  *
4180  * Segment controls are considered valid, if the segment
4181  * fits to the window after truncation to the window. Acceptability
4182  * of data (and SYN, FIN, of course) is checked separately.
4183  * See tcp_data_queue(), for example.
4184  *
4185  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4186  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4187  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4188  * (borrowed from freebsd)
4189  */
4190 
4191 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4192 {
4193 	return	!before(end_seq, tp->rcv_wup) &&
4194 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4195 }
4196 
4197 /* When we get a reset we do this. */
4198 static void tcp_reset(struct sock *sk)
4199 {
4200 	/* We want the right error as BSD sees it (and indeed as we do). */
4201 	switch (sk->sk_state) {
4202 	case TCP_SYN_SENT:
4203 		sk->sk_err = ECONNREFUSED;
4204 		break;
4205 	case TCP_CLOSE_WAIT:
4206 		sk->sk_err = EPIPE;
4207 		break;
4208 	case TCP_CLOSE:
4209 		return;
4210 	default:
4211 		sk->sk_err = ECONNRESET;
4212 	}
4213 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4214 	smp_wmb();
4215 
4216 	if (!sock_flag(sk, SOCK_DEAD))
4217 		sk->sk_error_report(sk);
4218 
4219 	tcp_done(sk);
4220 }
4221 
4222 /*
4223  * 	Process the FIN bit. This now behaves as it is supposed to work
4224  *	and the FIN takes effect when it is validly part of sequence
4225  *	space. Not before when we get holes.
4226  *
4227  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4228  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4229  *	TIME-WAIT)
4230  *
4231  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4232  *	close and we go into CLOSING (and later onto TIME-WAIT)
4233  *
4234  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4235  */
4236 static void tcp_fin(struct sock *sk)
4237 {
4238 	struct tcp_sock *tp = tcp_sk(sk);
4239 
4240 	inet_csk_schedule_ack(sk);
4241 
4242 	sk->sk_shutdown |= RCV_SHUTDOWN;
4243 	sock_set_flag(sk, SOCK_DONE);
4244 
4245 	switch (sk->sk_state) {
4246 	case TCP_SYN_RECV:
4247 	case TCP_ESTABLISHED:
4248 		/* Move to CLOSE_WAIT */
4249 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4250 		inet_csk(sk)->icsk_ack.pingpong = 1;
4251 		break;
4252 
4253 	case TCP_CLOSE_WAIT:
4254 	case TCP_CLOSING:
4255 		/* Received a retransmission of the FIN, do
4256 		 * nothing.
4257 		 */
4258 		break;
4259 	case TCP_LAST_ACK:
4260 		/* RFC793: Remain in the LAST-ACK state. */
4261 		break;
4262 
4263 	case TCP_FIN_WAIT1:
4264 		/* This case occurs when a simultaneous close
4265 		 * happens, we must ack the received FIN and
4266 		 * enter the CLOSING state.
4267 		 */
4268 		tcp_send_ack(sk);
4269 		tcp_set_state(sk, TCP_CLOSING);
4270 		break;
4271 	case TCP_FIN_WAIT2:
4272 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4273 		tcp_send_ack(sk);
4274 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4275 		break;
4276 	default:
4277 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4278 		 * cases we should never reach this piece of code.
4279 		 */
4280 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4281 		       __func__, sk->sk_state);
4282 		break;
4283 	}
4284 
4285 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4286 	 * Probably, we should reset in this case. For now drop them.
4287 	 */
4288 	__skb_queue_purge(&tp->out_of_order_queue);
4289 	if (tcp_is_sack(tp))
4290 		tcp_sack_reset(&tp->rx_opt);
4291 	sk_mem_reclaim(sk);
4292 
4293 	if (!sock_flag(sk, SOCK_DEAD)) {
4294 		sk->sk_state_change(sk);
4295 
4296 		/* Do not send POLL_HUP for half duplex close. */
4297 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4298 		    sk->sk_state == TCP_CLOSE)
4299 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4300 		else
4301 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4302 	}
4303 }
4304 
4305 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4306 				  u32 end_seq)
4307 {
4308 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4309 		if (before(seq, sp->start_seq))
4310 			sp->start_seq = seq;
4311 		if (after(end_seq, sp->end_seq))
4312 			sp->end_seq = end_seq;
4313 		return 1;
4314 	}
4315 	return 0;
4316 }
4317 
4318 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4319 {
4320 	struct tcp_sock *tp = tcp_sk(sk);
4321 
4322 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4323 		int mib_idx;
4324 
4325 		if (before(seq, tp->rcv_nxt))
4326 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4327 		else
4328 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4329 
4330 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4331 
4332 		tp->rx_opt.dsack = 1;
4333 		tp->duplicate_sack[0].start_seq = seq;
4334 		tp->duplicate_sack[0].end_seq = end_seq;
4335 	}
4336 }
4337 
4338 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4339 {
4340 	struct tcp_sock *tp = tcp_sk(sk);
4341 
4342 	if (!tp->rx_opt.dsack)
4343 		tcp_dsack_set(sk, seq, end_seq);
4344 	else
4345 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4346 }
4347 
4348 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4349 {
4350 	struct tcp_sock *tp = tcp_sk(sk);
4351 
4352 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4353 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4354 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4355 		tcp_enter_quickack_mode(sk);
4356 
4357 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4358 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4359 
4360 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4361 				end_seq = tp->rcv_nxt;
4362 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4363 		}
4364 	}
4365 
4366 	tcp_send_ack(sk);
4367 }
4368 
4369 /* These routines update the SACK block as out-of-order packets arrive or
4370  * in-order packets close up the sequence space.
4371  */
4372 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4373 {
4374 	int this_sack;
4375 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4376 	struct tcp_sack_block *swalk = sp + 1;
4377 
4378 	/* See if the recent change to the first SACK eats into
4379 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4380 	 */
4381 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4382 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4383 			int i;
4384 
4385 			/* Zap SWALK, by moving every further SACK up by one slot.
4386 			 * Decrease num_sacks.
4387 			 */
4388 			tp->rx_opt.num_sacks--;
4389 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4390 				sp[i] = sp[i + 1];
4391 			continue;
4392 		}
4393 		this_sack++, swalk++;
4394 	}
4395 }
4396 
4397 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4398 {
4399 	struct tcp_sock *tp = tcp_sk(sk);
4400 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4401 	int cur_sacks = tp->rx_opt.num_sacks;
4402 	int this_sack;
4403 
4404 	if (!cur_sacks)
4405 		goto new_sack;
4406 
4407 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4408 		if (tcp_sack_extend(sp, seq, end_seq)) {
4409 			/* Rotate this_sack to the first one. */
4410 			for (; this_sack > 0; this_sack--, sp--)
4411 				swap(*sp, *(sp - 1));
4412 			if (cur_sacks > 1)
4413 				tcp_sack_maybe_coalesce(tp);
4414 			return;
4415 		}
4416 	}
4417 
4418 	/* Could not find an adjacent existing SACK, build a new one,
4419 	 * put it at the front, and shift everyone else down.  We
4420 	 * always know there is at least one SACK present already here.
4421 	 *
4422 	 * If the sack array is full, forget about the last one.
4423 	 */
4424 	if (this_sack >= TCP_NUM_SACKS) {
4425 		this_sack--;
4426 		tp->rx_opt.num_sacks--;
4427 		sp--;
4428 	}
4429 	for (; this_sack > 0; this_sack--, sp--)
4430 		*sp = *(sp - 1);
4431 
4432 new_sack:
4433 	/* Build the new head SACK, and we're done. */
4434 	sp->start_seq = seq;
4435 	sp->end_seq = end_seq;
4436 	tp->rx_opt.num_sacks++;
4437 }
4438 
4439 /* RCV.NXT advances, some SACKs should be eaten. */
4440 
4441 static void tcp_sack_remove(struct tcp_sock *tp)
4442 {
4443 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4444 	int num_sacks = tp->rx_opt.num_sacks;
4445 	int this_sack;
4446 
4447 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4448 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4449 		tp->rx_opt.num_sacks = 0;
4450 		return;
4451 	}
4452 
4453 	for (this_sack = 0; this_sack < num_sacks;) {
4454 		/* Check if the start of the sack is covered by RCV.NXT. */
4455 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4456 			int i;
4457 
4458 			/* RCV.NXT must cover all the block! */
4459 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4460 
4461 			/* Zap this SACK, by moving forward any other SACKS. */
4462 			for (i=this_sack+1; i < num_sacks; i++)
4463 				tp->selective_acks[i-1] = tp->selective_acks[i];
4464 			num_sacks--;
4465 			continue;
4466 		}
4467 		this_sack++;
4468 		sp++;
4469 	}
4470 	tp->rx_opt.num_sacks = num_sacks;
4471 }
4472 
4473 /* This one checks to see if we can put data from the
4474  * out_of_order queue into the receive_queue.
4475  */
4476 static void tcp_ofo_queue(struct sock *sk)
4477 {
4478 	struct tcp_sock *tp = tcp_sk(sk);
4479 	__u32 dsack_high = tp->rcv_nxt;
4480 	struct sk_buff *skb;
4481 
4482 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4483 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4484 			break;
4485 
4486 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4487 			__u32 dsack = dsack_high;
4488 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4489 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4490 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4491 		}
4492 
4493 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4494 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4495 			__skb_unlink(skb, &tp->out_of_order_queue);
4496 			__kfree_skb(skb);
4497 			continue;
4498 		}
4499 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4500 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4501 			   TCP_SKB_CB(skb)->end_seq);
4502 
4503 		__skb_unlink(skb, &tp->out_of_order_queue);
4504 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4505 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4506 		if (tcp_hdr(skb)->fin)
4507 			tcp_fin(sk);
4508 	}
4509 }
4510 
4511 static int tcp_prune_ofo_queue(struct sock *sk);
4512 static int tcp_prune_queue(struct sock *sk);
4513 
4514 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4515 {
4516 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4517 	    !sk_rmem_schedule(sk, size)) {
4518 
4519 		if (tcp_prune_queue(sk) < 0)
4520 			return -1;
4521 
4522 		if (!sk_rmem_schedule(sk, size)) {
4523 			if (!tcp_prune_ofo_queue(sk))
4524 				return -1;
4525 
4526 			if (!sk_rmem_schedule(sk, size))
4527 				return -1;
4528 		}
4529 	}
4530 	return 0;
4531 }
4532 
4533 /**
4534  * tcp_try_coalesce - try to merge skb to prior one
4535  * @sk: socket
4536  * @to: prior buffer
4537  * @from: buffer to add in queue
4538  * @fragstolen: pointer to boolean
4539  *
4540  * Before queueing skb @from after @to, try to merge them
4541  * to reduce overall memory use and queue lengths, if cost is small.
4542  * Packets in ofo or receive queues can stay a long time.
4543  * Better try to coalesce them right now to avoid future collapses.
4544  * Returns true if caller should free @from instead of queueing it
4545  */
4546 static bool tcp_try_coalesce(struct sock *sk,
4547 			     struct sk_buff *to,
4548 			     struct sk_buff *from,
4549 			     bool *fragstolen)
4550 {
4551 	int i, delta, len = from->len;
4552 
4553 	*fragstolen = false;
4554 
4555 	if (tcp_hdr(from)->fin || skb_cloned(to))
4556 		return false;
4557 
4558 	if (len <= skb_tailroom(to)) {
4559 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4560 		goto merge;
4561 	}
4562 
4563 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4564 		return false;
4565 
4566 	if (skb_headlen(from) != 0) {
4567 		struct page *page;
4568 		unsigned int offset;
4569 
4570 		if (skb_shinfo(to)->nr_frags +
4571 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4572 			return false;
4573 
4574 		if (skb_head_is_locked(from))
4575 			return false;
4576 
4577 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4578 
4579 		page = virt_to_head_page(from->head);
4580 		offset = from->data - (unsigned char *)page_address(page);
4581 
4582 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4583 				   page, offset, skb_headlen(from));
4584 		*fragstolen = true;
4585 	} else {
4586 		if (skb_shinfo(to)->nr_frags +
4587 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4588 			return false;
4589 
4590 		delta = from->truesize -
4591 			SKB_TRUESIZE(skb_end_pointer(from) - from->head);
4592 	}
4593 
4594 	WARN_ON_ONCE(delta < len);
4595 
4596 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4597 	       skb_shinfo(from)->frags,
4598 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4599 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4600 
4601 	if (!skb_cloned(from))
4602 		skb_shinfo(from)->nr_frags = 0;
4603 
4604 	/* if the skb is cloned this does nothing since we set nr_frags to 0 */
4605 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4606 		skb_frag_ref(from, i);
4607 
4608 	to->truesize += delta;
4609 	atomic_add(delta, &sk->sk_rmem_alloc);
4610 	sk_mem_charge(sk, delta);
4611 	to->len += len;
4612 	to->data_len += len;
4613 
4614 merge:
4615 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4616 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4617 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4618 	return true;
4619 }
4620 
4621 static void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4622 {
4623 	if (head_stolen)
4624 		kmem_cache_free(skbuff_head_cache, skb);
4625 	else
4626 		__kfree_skb(skb);
4627 }
4628 
4629 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4630 {
4631 	struct tcp_sock *tp = tcp_sk(sk);
4632 	struct sk_buff *skb1;
4633 	u32 seq, end_seq;
4634 
4635 	TCP_ECN_check_ce(tp, skb);
4636 
4637 	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4638 		/* TODO: should increment a counter */
4639 		__kfree_skb(skb);
4640 		return;
4641 	}
4642 
4643 	/* Disable header prediction. */
4644 	tp->pred_flags = 0;
4645 	inet_csk_schedule_ack(sk);
4646 
4647 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4648 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4649 
4650 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4651 	if (!skb1) {
4652 		/* Initial out of order segment, build 1 SACK. */
4653 		if (tcp_is_sack(tp)) {
4654 			tp->rx_opt.num_sacks = 1;
4655 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4656 			tp->selective_acks[0].end_seq =
4657 						TCP_SKB_CB(skb)->end_seq;
4658 		}
4659 		__skb_queue_head(&tp->out_of_order_queue, skb);
4660 		goto end;
4661 	}
4662 
4663 	seq = TCP_SKB_CB(skb)->seq;
4664 	end_seq = TCP_SKB_CB(skb)->end_seq;
4665 
4666 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4667 		bool fragstolen;
4668 
4669 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4670 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4671 		} else {
4672 			kfree_skb_partial(skb, fragstolen);
4673 			skb = NULL;
4674 		}
4675 
4676 		if (!tp->rx_opt.num_sacks ||
4677 		    tp->selective_acks[0].end_seq != seq)
4678 			goto add_sack;
4679 
4680 		/* Common case: data arrive in order after hole. */
4681 		tp->selective_acks[0].end_seq = end_seq;
4682 		goto end;
4683 	}
4684 
4685 	/* Find place to insert this segment. */
4686 	while (1) {
4687 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4688 			break;
4689 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4690 			skb1 = NULL;
4691 			break;
4692 		}
4693 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4694 	}
4695 
4696 	/* Do skb overlap to previous one? */
4697 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4698 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4699 			/* All the bits are present. Drop. */
4700 			__kfree_skb(skb);
4701 			skb = NULL;
4702 			tcp_dsack_set(sk, seq, end_seq);
4703 			goto add_sack;
4704 		}
4705 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4706 			/* Partial overlap. */
4707 			tcp_dsack_set(sk, seq,
4708 				      TCP_SKB_CB(skb1)->end_seq);
4709 		} else {
4710 			if (skb_queue_is_first(&tp->out_of_order_queue,
4711 					       skb1))
4712 				skb1 = NULL;
4713 			else
4714 				skb1 = skb_queue_prev(
4715 					&tp->out_of_order_queue,
4716 					skb1);
4717 		}
4718 	}
4719 	if (!skb1)
4720 		__skb_queue_head(&tp->out_of_order_queue, skb);
4721 	else
4722 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4723 
4724 	/* And clean segments covered by new one as whole. */
4725 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4726 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4727 
4728 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4729 			break;
4730 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4731 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4732 					 end_seq);
4733 			break;
4734 		}
4735 		__skb_unlink(skb1, &tp->out_of_order_queue);
4736 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4737 				 TCP_SKB_CB(skb1)->end_seq);
4738 		__kfree_skb(skb1);
4739 	}
4740 
4741 add_sack:
4742 	if (tcp_is_sack(tp))
4743 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4744 end:
4745 	if (skb)
4746 		skb_set_owner_r(skb, sk);
4747 }
4748 
4749 int tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4750 		  bool *fragstolen)
4751 {
4752 	int eaten;
4753 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4754 
4755 	__skb_pull(skb, hdrlen);
4756 	eaten = (tail &&
4757 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4758 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4759 	if (!eaten) {
4760 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4761 		skb_set_owner_r(skb, sk);
4762 	}
4763 	return eaten;
4764 }
4765 
4766 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4767 {
4768 	const struct tcphdr *th = tcp_hdr(skb);
4769 	struct tcp_sock *tp = tcp_sk(sk);
4770 	int eaten = -1;
4771 	bool fragstolen = false;
4772 
4773 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4774 		goto drop;
4775 
4776 	skb_dst_drop(skb);
4777 	__skb_pull(skb, th->doff * 4);
4778 
4779 	TCP_ECN_accept_cwr(tp, skb);
4780 
4781 	tp->rx_opt.dsack = 0;
4782 
4783 	/*  Queue data for delivery to the user.
4784 	 *  Packets in sequence go to the receive queue.
4785 	 *  Out of sequence packets to the out_of_order_queue.
4786 	 */
4787 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4788 		if (tcp_receive_window(tp) == 0)
4789 			goto out_of_window;
4790 
4791 		/* Ok. In sequence. In window. */
4792 		if (tp->ucopy.task == current &&
4793 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4794 		    sock_owned_by_user(sk) && !tp->urg_data) {
4795 			int chunk = min_t(unsigned int, skb->len,
4796 					  tp->ucopy.len);
4797 
4798 			__set_current_state(TASK_RUNNING);
4799 
4800 			local_bh_enable();
4801 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4802 				tp->ucopy.len -= chunk;
4803 				tp->copied_seq += chunk;
4804 				eaten = (chunk == skb->len);
4805 				tcp_rcv_space_adjust(sk);
4806 			}
4807 			local_bh_disable();
4808 		}
4809 
4810 		if (eaten <= 0) {
4811 queue_and_out:
4812 			if (eaten < 0 &&
4813 			    tcp_try_rmem_schedule(sk, skb->truesize))
4814 				goto drop;
4815 
4816 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4817 		}
4818 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4819 		if (skb->len)
4820 			tcp_event_data_recv(sk, skb);
4821 		if (th->fin)
4822 			tcp_fin(sk);
4823 
4824 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4825 			tcp_ofo_queue(sk);
4826 
4827 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4828 			 * gap in queue is filled.
4829 			 */
4830 			if (skb_queue_empty(&tp->out_of_order_queue))
4831 				inet_csk(sk)->icsk_ack.pingpong = 0;
4832 		}
4833 
4834 		if (tp->rx_opt.num_sacks)
4835 			tcp_sack_remove(tp);
4836 
4837 		tcp_fast_path_check(sk);
4838 
4839 		if (eaten > 0)
4840 			kfree_skb_partial(skb, fragstolen);
4841 		else if (!sock_flag(sk, SOCK_DEAD))
4842 			sk->sk_data_ready(sk, 0);
4843 		return;
4844 	}
4845 
4846 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4847 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4848 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4849 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4850 
4851 out_of_window:
4852 		tcp_enter_quickack_mode(sk);
4853 		inet_csk_schedule_ack(sk);
4854 drop:
4855 		__kfree_skb(skb);
4856 		return;
4857 	}
4858 
4859 	/* Out of window. F.e. zero window probe. */
4860 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4861 		goto out_of_window;
4862 
4863 	tcp_enter_quickack_mode(sk);
4864 
4865 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4866 		/* Partial packet, seq < rcv_next < end_seq */
4867 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4868 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4869 			   TCP_SKB_CB(skb)->end_seq);
4870 
4871 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4872 
4873 		/* If window is closed, drop tail of packet. But after
4874 		 * remembering D-SACK for its head made in previous line.
4875 		 */
4876 		if (!tcp_receive_window(tp))
4877 			goto out_of_window;
4878 		goto queue_and_out;
4879 	}
4880 
4881 	tcp_data_queue_ofo(sk, skb);
4882 }
4883 
4884 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4885 					struct sk_buff_head *list)
4886 {
4887 	struct sk_buff *next = NULL;
4888 
4889 	if (!skb_queue_is_last(list, skb))
4890 		next = skb_queue_next(list, skb);
4891 
4892 	__skb_unlink(skb, list);
4893 	__kfree_skb(skb);
4894 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4895 
4896 	return next;
4897 }
4898 
4899 /* Collapse contiguous sequence of skbs head..tail with
4900  * sequence numbers start..end.
4901  *
4902  * If tail is NULL, this means until the end of the list.
4903  *
4904  * Segments with FIN/SYN are not collapsed (only because this
4905  * simplifies code)
4906  */
4907 static void
4908 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4909 	     struct sk_buff *head, struct sk_buff *tail,
4910 	     u32 start, u32 end)
4911 {
4912 	struct sk_buff *skb, *n;
4913 	bool end_of_skbs;
4914 
4915 	/* First, check that queue is collapsible and find
4916 	 * the point where collapsing can be useful. */
4917 	skb = head;
4918 restart:
4919 	end_of_skbs = true;
4920 	skb_queue_walk_from_safe(list, skb, n) {
4921 		if (skb == tail)
4922 			break;
4923 		/* No new bits? It is possible on ofo queue. */
4924 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4925 			skb = tcp_collapse_one(sk, skb, list);
4926 			if (!skb)
4927 				break;
4928 			goto restart;
4929 		}
4930 
4931 		/* The first skb to collapse is:
4932 		 * - not SYN/FIN and
4933 		 * - bloated or contains data before "start" or
4934 		 *   overlaps to the next one.
4935 		 */
4936 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4937 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4938 		     before(TCP_SKB_CB(skb)->seq, start))) {
4939 			end_of_skbs = false;
4940 			break;
4941 		}
4942 
4943 		if (!skb_queue_is_last(list, skb)) {
4944 			struct sk_buff *next = skb_queue_next(list, skb);
4945 			if (next != tail &&
4946 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4947 				end_of_skbs = false;
4948 				break;
4949 			}
4950 		}
4951 
4952 		/* Decided to skip this, advance start seq. */
4953 		start = TCP_SKB_CB(skb)->end_seq;
4954 	}
4955 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4956 		return;
4957 
4958 	while (before(start, end)) {
4959 		struct sk_buff *nskb;
4960 		unsigned int header = skb_headroom(skb);
4961 		int copy = SKB_MAX_ORDER(header, 0);
4962 
4963 		/* Too big header? This can happen with IPv6. */
4964 		if (copy < 0)
4965 			return;
4966 		if (end - start < copy)
4967 			copy = end - start;
4968 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4969 		if (!nskb)
4970 			return;
4971 
4972 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4973 		skb_set_network_header(nskb, (skb_network_header(skb) -
4974 					      skb->head));
4975 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4976 						skb->head));
4977 		skb_reserve(nskb, header);
4978 		memcpy(nskb->head, skb->head, header);
4979 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4980 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4981 		__skb_queue_before(list, skb, nskb);
4982 		skb_set_owner_r(nskb, sk);
4983 
4984 		/* Copy data, releasing collapsed skbs. */
4985 		while (copy > 0) {
4986 			int offset = start - TCP_SKB_CB(skb)->seq;
4987 			int size = TCP_SKB_CB(skb)->end_seq - start;
4988 
4989 			BUG_ON(offset < 0);
4990 			if (size > 0) {
4991 				size = min(copy, size);
4992 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4993 					BUG();
4994 				TCP_SKB_CB(nskb)->end_seq += size;
4995 				copy -= size;
4996 				start += size;
4997 			}
4998 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4999 				skb = tcp_collapse_one(sk, skb, list);
5000 				if (!skb ||
5001 				    skb == tail ||
5002 				    tcp_hdr(skb)->syn ||
5003 				    tcp_hdr(skb)->fin)
5004 					return;
5005 			}
5006 		}
5007 	}
5008 }
5009 
5010 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5011  * and tcp_collapse() them until all the queue is collapsed.
5012  */
5013 static void tcp_collapse_ofo_queue(struct sock *sk)
5014 {
5015 	struct tcp_sock *tp = tcp_sk(sk);
5016 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
5017 	struct sk_buff *head;
5018 	u32 start, end;
5019 
5020 	if (skb == NULL)
5021 		return;
5022 
5023 	start = TCP_SKB_CB(skb)->seq;
5024 	end = TCP_SKB_CB(skb)->end_seq;
5025 	head = skb;
5026 
5027 	for (;;) {
5028 		struct sk_buff *next = NULL;
5029 
5030 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5031 			next = skb_queue_next(&tp->out_of_order_queue, skb);
5032 		skb = next;
5033 
5034 		/* Segment is terminated when we see gap or when
5035 		 * we are at the end of all the queue. */
5036 		if (!skb ||
5037 		    after(TCP_SKB_CB(skb)->seq, end) ||
5038 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5039 			tcp_collapse(sk, &tp->out_of_order_queue,
5040 				     head, skb, start, end);
5041 			head = skb;
5042 			if (!skb)
5043 				break;
5044 			/* Start new segment */
5045 			start = TCP_SKB_CB(skb)->seq;
5046 			end = TCP_SKB_CB(skb)->end_seq;
5047 		} else {
5048 			if (before(TCP_SKB_CB(skb)->seq, start))
5049 				start = TCP_SKB_CB(skb)->seq;
5050 			if (after(TCP_SKB_CB(skb)->end_seq, end))
5051 				end = TCP_SKB_CB(skb)->end_seq;
5052 		}
5053 	}
5054 }
5055 
5056 /*
5057  * Purge the out-of-order queue.
5058  * Return true if queue was pruned.
5059  */
5060 static int tcp_prune_ofo_queue(struct sock *sk)
5061 {
5062 	struct tcp_sock *tp = tcp_sk(sk);
5063 	int res = 0;
5064 
5065 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
5066 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5067 		__skb_queue_purge(&tp->out_of_order_queue);
5068 
5069 		/* Reset SACK state.  A conforming SACK implementation will
5070 		 * do the same at a timeout based retransmit.  When a connection
5071 		 * is in a sad state like this, we care only about integrity
5072 		 * of the connection not performance.
5073 		 */
5074 		if (tp->rx_opt.sack_ok)
5075 			tcp_sack_reset(&tp->rx_opt);
5076 		sk_mem_reclaim(sk);
5077 		res = 1;
5078 	}
5079 	return res;
5080 }
5081 
5082 /* Reduce allocated memory if we can, trying to get
5083  * the socket within its memory limits again.
5084  *
5085  * Return less than zero if we should start dropping frames
5086  * until the socket owning process reads some of the data
5087  * to stabilize the situation.
5088  */
5089 static int tcp_prune_queue(struct sock *sk)
5090 {
5091 	struct tcp_sock *tp = tcp_sk(sk);
5092 
5093 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5094 
5095 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5096 
5097 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5098 		tcp_clamp_window(sk);
5099 	else if (sk_under_memory_pressure(sk))
5100 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5101 
5102 	tcp_collapse_ofo_queue(sk);
5103 	if (!skb_queue_empty(&sk->sk_receive_queue))
5104 		tcp_collapse(sk, &sk->sk_receive_queue,
5105 			     skb_peek(&sk->sk_receive_queue),
5106 			     NULL,
5107 			     tp->copied_seq, tp->rcv_nxt);
5108 	sk_mem_reclaim(sk);
5109 
5110 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5111 		return 0;
5112 
5113 	/* Collapsing did not help, destructive actions follow.
5114 	 * This must not ever occur. */
5115 
5116 	tcp_prune_ofo_queue(sk);
5117 
5118 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5119 		return 0;
5120 
5121 	/* If we are really being abused, tell the caller to silently
5122 	 * drop receive data on the floor.  It will get retransmitted
5123 	 * and hopefully then we'll have sufficient space.
5124 	 */
5125 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5126 
5127 	/* Massive buffer overcommit. */
5128 	tp->pred_flags = 0;
5129 	return -1;
5130 }
5131 
5132 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5133  * As additional protections, we do not touch cwnd in retransmission phases,
5134  * and if application hit its sndbuf limit recently.
5135  */
5136 void tcp_cwnd_application_limited(struct sock *sk)
5137 {
5138 	struct tcp_sock *tp = tcp_sk(sk);
5139 
5140 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5141 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5142 		/* Limited by application or receiver window. */
5143 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5144 		u32 win_used = max(tp->snd_cwnd_used, init_win);
5145 		if (win_used < tp->snd_cwnd) {
5146 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
5147 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5148 		}
5149 		tp->snd_cwnd_used = 0;
5150 	}
5151 	tp->snd_cwnd_stamp = tcp_time_stamp;
5152 }
5153 
5154 static int tcp_should_expand_sndbuf(const struct sock *sk)
5155 {
5156 	const struct tcp_sock *tp = tcp_sk(sk);
5157 
5158 	/* If the user specified a specific send buffer setting, do
5159 	 * not modify it.
5160 	 */
5161 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5162 		return 0;
5163 
5164 	/* If we are under global TCP memory pressure, do not expand.  */
5165 	if (sk_under_memory_pressure(sk))
5166 		return 0;
5167 
5168 	/* If we are under soft global TCP memory pressure, do not expand.  */
5169 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5170 		return 0;
5171 
5172 	/* If we filled the congestion window, do not expand.  */
5173 	if (tp->packets_out >= tp->snd_cwnd)
5174 		return 0;
5175 
5176 	return 1;
5177 }
5178 
5179 /* When incoming ACK allowed to free some skb from write_queue,
5180  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5181  * on the exit from tcp input handler.
5182  *
5183  * PROBLEM: sndbuf expansion does not work well with largesend.
5184  */
5185 static void tcp_new_space(struct sock *sk)
5186 {
5187 	struct tcp_sock *tp = tcp_sk(sk);
5188 
5189 	if (tcp_should_expand_sndbuf(sk)) {
5190 		int sndmem = SKB_TRUESIZE(max_t(u32,
5191 						tp->rx_opt.mss_clamp,
5192 						tp->mss_cache) +
5193 					  MAX_TCP_HEADER);
5194 		int demanded = max_t(unsigned int, tp->snd_cwnd,
5195 				     tp->reordering + 1);
5196 		sndmem *= 2 * demanded;
5197 		if (sndmem > sk->sk_sndbuf)
5198 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5199 		tp->snd_cwnd_stamp = tcp_time_stamp;
5200 	}
5201 
5202 	sk->sk_write_space(sk);
5203 }
5204 
5205 static void tcp_check_space(struct sock *sk)
5206 {
5207 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5208 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5209 		if (sk->sk_socket &&
5210 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5211 			tcp_new_space(sk);
5212 	}
5213 }
5214 
5215 static inline void tcp_data_snd_check(struct sock *sk)
5216 {
5217 	tcp_push_pending_frames(sk);
5218 	tcp_check_space(sk);
5219 }
5220 
5221 /*
5222  * Check if sending an ack is needed.
5223  */
5224 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5225 {
5226 	struct tcp_sock *tp = tcp_sk(sk);
5227 
5228 	    /* More than one full frame received... */
5229 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5230 	     /* ... and right edge of window advances far enough.
5231 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5232 	      */
5233 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5234 	    /* We ACK each frame or... */
5235 	    tcp_in_quickack_mode(sk) ||
5236 	    /* We have out of order data. */
5237 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5238 		/* Then ack it now */
5239 		tcp_send_ack(sk);
5240 	} else {
5241 		/* Else, send delayed ack. */
5242 		tcp_send_delayed_ack(sk);
5243 	}
5244 }
5245 
5246 static inline void tcp_ack_snd_check(struct sock *sk)
5247 {
5248 	if (!inet_csk_ack_scheduled(sk)) {
5249 		/* We sent a data segment already. */
5250 		return;
5251 	}
5252 	__tcp_ack_snd_check(sk, 1);
5253 }
5254 
5255 /*
5256  *	This routine is only called when we have urgent data
5257  *	signaled. Its the 'slow' part of tcp_urg. It could be
5258  *	moved inline now as tcp_urg is only called from one
5259  *	place. We handle URGent data wrong. We have to - as
5260  *	BSD still doesn't use the correction from RFC961.
5261  *	For 1003.1g we should support a new option TCP_STDURG to permit
5262  *	either form (or just set the sysctl tcp_stdurg).
5263  */
5264 
5265 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5266 {
5267 	struct tcp_sock *tp = tcp_sk(sk);
5268 	u32 ptr = ntohs(th->urg_ptr);
5269 
5270 	if (ptr && !sysctl_tcp_stdurg)
5271 		ptr--;
5272 	ptr += ntohl(th->seq);
5273 
5274 	/* Ignore urgent data that we've already seen and read. */
5275 	if (after(tp->copied_seq, ptr))
5276 		return;
5277 
5278 	/* Do not replay urg ptr.
5279 	 *
5280 	 * NOTE: interesting situation not covered by specs.
5281 	 * Misbehaving sender may send urg ptr, pointing to segment,
5282 	 * which we already have in ofo queue. We are not able to fetch
5283 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5284 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5285 	 * situations. But it is worth to think about possibility of some
5286 	 * DoSes using some hypothetical application level deadlock.
5287 	 */
5288 	if (before(ptr, tp->rcv_nxt))
5289 		return;
5290 
5291 	/* Do we already have a newer (or duplicate) urgent pointer? */
5292 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5293 		return;
5294 
5295 	/* Tell the world about our new urgent pointer. */
5296 	sk_send_sigurg(sk);
5297 
5298 	/* We may be adding urgent data when the last byte read was
5299 	 * urgent. To do this requires some care. We cannot just ignore
5300 	 * tp->copied_seq since we would read the last urgent byte again
5301 	 * as data, nor can we alter copied_seq until this data arrives
5302 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5303 	 *
5304 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5305 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5306 	 * and expect that both A and B disappear from stream. This is _wrong_.
5307 	 * Though this happens in BSD with high probability, this is occasional.
5308 	 * Any application relying on this is buggy. Note also, that fix "works"
5309 	 * only in this artificial test. Insert some normal data between A and B and we will
5310 	 * decline of BSD again. Verdict: it is better to remove to trap
5311 	 * buggy users.
5312 	 */
5313 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5314 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5315 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5316 		tp->copied_seq++;
5317 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5318 			__skb_unlink(skb, &sk->sk_receive_queue);
5319 			__kfree_skb(skb);
5320 		}
5321 	}
5322 
5323 	tp->urg_data = TCP_URG_NOTYET;
5324 	tp->urg_seq = ptr;
5325 
5326 	/* Disable header prediction. */
5327 	tp->pred_flags = 0;
5328 }
5329 
5330 /* This is the 'fast' part of urgent handling. */
5331 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5332 {
5333 	struct tcp_sock *tp = tcp_sk(sk);
5334 
5335 	/* Check if we get a new urgent pointer - normally not. */
5336 	if (th->urg)
5337 		tcp_check_urg(sk, th);
5338 
5339 	/* Do we wait for any urgent data? - normally not... */
5340 	if (tp->urg_data == TCP_URG_NOTYET) {
5341 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5342 			  th->syn;
5343 
5344 		/* Is the urgent pointer pointing into this packet? */
5345 		if (ptr < skb->len) {
5346 			u8 tmp;
5347 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5348 				BUG();
5349 			tp->urg_data = TCP_URG_VALID | tmp;
5350 			if (!sock_flag(sk, SOCK_DEAD))
5351 				sk->sk_data_ready(sk, 0);
5352 		}
5353 	}
5354 }
5355 
5356 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5357 {
5358 	struct tcp_sock *tp = tcp_sk(sk);
5359 	int chunk = skb->len - hlen;
5360 	int err;
5361 
5362 	local_bh_enable();
5363 	if (skb_csum_unnecessary(skb))
5364 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5365 	else
5366 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5367 						       tp->ucopy.iov);
5368 
5369 	if (!err) {
5370 		tp->ucopy.len -= chunk;
5371 		tp->copied_seq += chunk;
5372 		tcp_rcv_space_adjust(sk);
5373 	}
5374 
5375 	local_bh_disable();
5376 	return err;
5377 }
5378 
5379 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5380 					    struct sk_buff *skb)
5381 {
5382 	__sum16 result;
5383 
5384 	if (sock_owned_by_user(sk)) {
5385 		local_bh_enable();
5386 		result = __tcp_checksum_complete(skb);
5387 		local_bh_disable();
5388 	} else {
5389 		result = __tcp_checksum_complete(skb);
5390 	}
5391 	return result;
5392 }
5393 
5394 static inline int tcp_checksum_complete_user(struct sock *sk,
5395 					     struct sk_buff *skb)
5396 {
5397 	return !skb_csum_unnecessary(skb) &&
5398 	       __tcp_checksum_complete_user(sk, skb);
5399 }
5400 
5401 #ifdef CONFIG_NET_DMA
5402 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5403 				  int hlen)
5404 {
5405 	struct tcp_sock *tp = tcp_sk(sk);
5406 	int chunk = skb->len - hlen;
5407 	int dma_cookie;
5408 	int copied_early = 0;
5409 
5410 	if (tp->ucopy.wakeup)
5411 		return 0;
5412 
5413 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5414 		tp->ucopy.dma_chan = net_dma_find_channel();
5415 
5416 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5417 
5418 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5419 							 skb, hlen,
5420 							 tp->ucopy.iov, chunk,
5421 							 tp->ucopy.pinned_list);
5422 
5423 		if (dma_cookie < 0)
5424 			goto out;
5425 
5426 		tp->ucopy.dma_cookie = dma_cookie;
5427 		copied_early = 1;
5428 
5429 		tp->ucopy.len -= chunk;
5430 		tp->copied_seq += chunk;
5431 		tcp_rcv_space_adjust(sk);
5432 
5433 		if ((tp->ucopy.len == 0) ||
5434 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5435 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5436 			tp->ucopy.wakeup = 1;
5437 			sk->sk_data_ready(sk, 0);
5438 		}
5439 	} else if (chunk > 0) {
5440 		tp->ucopy.wakeup = 1;
5441 		sk->sk_data_ready(sk, 0);
5442 	}
5443 out:
5444 	return copied_early;
5445 }
5446 #endif /* CONFIG_NET_DMA */
5447 
5448 /* Does PAWS and seqno based validation of an incoming segment, flags will
5449  * play significant role here.
5450  */
5451 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5452 			      const struct tcphdr *th, int syn_inerr)
5453 {
5454 	const u8 *hash_location;
5455 	struct tcp_sock *tp = tcp_sk(sk);
5456 
5457 	/* RFC1323: H1. Apply PAWS check first. */
5458 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5459 	    tp->rx_opt.saw_tstamp &&
5460 	    tcp_paws_discard(sk, skb)) {
5461 		if (!th->rst) {
5462 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5463 			tcp_send_dupack(sk, skb);
5464 			goto discard;
5465 		}
5466 		/* Reset is accepted even if it did not pass PAWS. */
5467 	}
5468 
5469 	/* Step 1: check sequence number */
5470 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5471 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5472 		 * (RST) segments are validated by checking their SEQ-fields."
5473 		 * And page 69: "If an incoming segment is not acceptable,
5474 		 * an acknowledgment should be sent in reply (unless the RST
5475 		 * bit is set, if so drop the segment and return)".
5476 		 */
5477 		if (!th->rst)
5478 			tcp_send_dupack(sk, skb);
5479 		goto discard;
5480 	}
5481 
5482 	/* Step 2: check RST bit */
5483 	if (th->rst) {
5484 		tcp_reset(sk);
5485 		goto discard;
5486 	}
5487 
5488 	/* ts_recent update must be made after we are sure that the packet
5489 	 * is in window.
5490 	 */
5491 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5492 
5493 	/* step 3: check security and precedence [ignored] */
5494 
5495 	/* step 4: Check for a SYN in window. */
5496 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5497 		if (syn_inerr)
5498 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5499 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5500 		tcp_reset(sk);
5501 		return -1;
5502 	}
5503 
5504 	return 1;
5505 
5506 discard:
5507 	__kfree_skb(skb);
5508 	return 0;
5509 }
5510 
5511 /*
5512  *	TCP receive function for the ESTABLISHED state.
5513  *
5514  *	It is split into a fast path and a slow path. The fast path is
5515  * 	disabled when:
5516  *	- A zero window was announced from us - zero window probing
5517  *        is only handled properly in the slow path.
5518  *	- Out of order segments arrived.
5519  *	- Urgent data is expected.
5520  *	- There is no buffer space left
5521  *	- Unexpected TCP flags/window values/header lengths are received
5522  *	  (detected by checking the TCP header against pred_flags)
5523  *	- Data is sent in both directions. Fast path only supports pure senders
5524  *	  or pure receivers (this means either the sequence number or the ack
5525  *	  value must stay constant)
5526  *	- Unexpected TCP option.
5527  *
5528  *	When these conditions are not satisfied it drops into a standard
5529  *	receive procedure patterned after RFC793 to handle all cases.
5530  *	The first three cases are guaranteed by proper pred_flags setting,
5531  *	the rest is checked inline. Fast processing is turned on in
5532  *	tcp_data_queue when everything is OK.
5533  */
5534 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5535 			const struct tcphdr *th, unsigned int len)
5536 {
5537 	struct tcp_sock *tp = tcp_sk(sk);
5538 	int res;
5539 
5540 	/*
5541 	 *	Header prediction.
5542 	 *	The code loosely follows the one in the famous
5543 	 *	"30 instruction TCP receive" Van Jacobson mail.
5544 	 *
5545 	 *	Van's trick is to deposit buffers into socket queue
5546 	 *	on a device interrupt, to call tcp_recv function
5547 	 *	on the receive process context and checksum and copy
5548 	 *	the buffer to user space. smart...
5549 	 *
5550 	 *	Our current scheme is not silly either but we take the
5551 	 *	extra cost of the net_bh soft interrupt processing...
5552 	 *	We do checksum and copy also but from device to kernel.
5553 	 */
5554 
5555 	tp->rx_opt.saw_tstamp = 0;
5556 
5557 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5558 	 *	if header_prediction is to be made
5559 	 *	'S' will always be tp->tcp_header_len >> 2
5560 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5561 	 *  turn it off	(when there are holes in the receive
5562 	 *	 space for instance)
5563 	 *	PSH flag is ignored.
5564 	 */
5565 
5566 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5567 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5568 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5569 		int tcp_header_len = tp->tcp_header_len;
5570 
5571 		/* Timestamp header prediction: tcp_header_len
5572 		 * is automatically equal to th->doff*4 due to pred_flags
5573 		 * match.
5574 		 */
5575 
5576 		/* Check timestamp */
5577 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5578 			/* No? Slow path! */
5579 			if (!tcp_parse_aligned_timestamp(tp, th))
5580 				goto slow_path;
5581 
5582 			/* If PAWS failed, check it more carefully in slow path */
5583 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5584 				goto slow_path;
5585 
5586 			/* DO NOT update ts_recent here, if checksum fails
5587 			 * and timestamp was corrupted part, it will result
5588 			 * in a hung connection since we will drop all
5589 			 * future packets due to the PAWS test.
5590 			 */
5591 		}
5592 
5593 		if (len <= tcp_header_len) {
5594 			/* Bulk data transfer: sender */
5595 			if (len == tcp_header_len) {
5596 				/* Predicted packet is in window by definition.
5597 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5598 				 * Hence, check seq<=rcv_wup reduces to:
5599 				 */
5600 				if (tcp_header_len ==
5601 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5602 				    tp->rcv_nxt == tp->rcv_wup)
5603 					tcp_store_ts_recent(tp);
5604 
5605 				/* We know that such packets are checksummed
5606 				 * on entry.
5607 				 */
5608 				tcp_ack(sk, skb, 0);
5609 				__kfree_skb(skb);
5610 				tcp_data_snd_check(sk);
5611 				return 0;
5612 			} else { /* Header too small */
5613 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5614 				goto discard;
5615 			}
5616 		} else {
5617 			int eaten = 0;
5618 			int copied_early = 0;
5619 			bool fragstolen = false;
5620 
5621 			if (tp->copied_seq == tp->rcv_nxt &&
5622 			    len - tcp_header_len <= tp->ucopy.len) {
5623 #ifdef CONFIG_NET_DMA
5624 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5625 					copied_early = 1;
5626 					eaten = 1;
5627 				}
5628 #endif
5629 				if (tp->ucopy.task == current &&
5630 				    sock_owned_by_user(sk) && !copied_early) {
5631 					__set_current_state(TASK_RUNNING);
5632 
5633 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5634 						eaten = 1;
5635 				}
5636 				if (eaten) {
5637 					/* Predicted packet is in window by definition.
5638 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5639 					 * Hence, check seq<=rcv_wup reduces to:
5640 					 */
5641 					if (tcp_header_len ==
5642 					    (sizeof(struct tcphdr) +
5643 					     TCPOLEN_TSTAMP_ALIGNED) &&
5644 					    tp->rcv_nxt == tp->rcv_wup)
5645 						tcp_store_ts_recent(tp);
5646 
5647 					tcp_rcv_rtt_measure_ts(sk, skb);
5648 
5649 					__skb_pull(skb, tcp_header_len);
5650 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5651 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5652 				}
5653 				if (copied_early)
5654 					tcp_cleanup_rbuf(sk, skb->len);
5655 			}
5656 			if (!eaten) {
5657 				if (tcp_checksum_complete_user(sk, skb))
5658 					goto csum_error;
5659 
5660 				/* Predicted packet is in window by definition.
5661 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5662 				 * Hence, check seq<=rcv_wup reduces to:
5663 				 */
5664 				if (tcp_header_len ==
5665 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5666 				    tp->rcv_nxt == tp->rcv_wup)
5667 					tcp_store_ts_recent(tp);
5668 
5669 				tcp_rcv_rtt_measure_ts(sk, skb);
5670 
5671 				if ((int)skb->truesize > sk->sk_forward_alloc)
5672 					goto step5;
5673 
5674 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5675 
5676 				/* Bulk data transfer: receiver */
5677 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5678 						      &fragstolen);
5679 			}
5680 
5681 			tcp_event_data_recv(sk, skb);
5682 
5683 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5684 				/* Well, only one small jumplet in fast path... */
5685 				tcp_ack(sk, skb, FLAG_DATA);
5686 				tcp_data_snd_check(sk);
5687 				if (!inet_csk_ack_scheduled(sk))
5688 					goto no_ack;
5689 			}
5690 
5691 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5692 				__tcp_ack_snd_check(sk, 0);
5693 no_ack:
5694 #ifdef CONFIG_NET_DMA
5695 			if (copied_early)
5696 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5697 			else
5698 #endif
5699 			if (eaten)
5700 				kfree_skb_partial(skb, fragstolen);
5701 			else
5702 				sk->sk_data_ready(sk, 0);
5703 			return 0;
5704 		}
5705 	}
5706 
5707 slow_path:
5708 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5709 		goto csum_error;
5710 
5711 	/*
5712 	 *	Standard slow path.
5713 	 */
5714 
5715 	res = tcp_validate_incoming(sk, skb, th, 1);
5716 	if (res <= 0)
5717 		return -res;
5718 
5719 step5:
5720 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5721 		goto discard;
5722 
5723 	tcp_rcv_rtt_measure_ts(sk, skb);
5724 
5725 	/* Process urgent data. */
5726 	tcp_urg(sk, skb, th);
5727 
5728 	/* step 7: process the segment text */
5729 	tcp_data_queue(sk, skb);
5730 
5731 	tcp_data_snd_check(sk);
5732 	tcp_ack_snd_check(sk);
5733 	return 0;
5734 
5735 csum_error:
5736 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5737 
5738 discard:
5739 	__kfree_skb(skb);
5740 	return 0;
5741 }
5742 EXPORT_SYMBOL(tcp_rcv_established);
5743 
5744 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5745 {
5746 	struct tcp_sock *tp = tcp_sk(sk);
5747 	struct inet_connection_sock *icsk = inet_csk(sk);
5748 
5749 	tcp_set_state(sk, TCP_ESTABLISHED);
5750 
5751 	if (skb != NULL)
5752 		security_inet_conn_established(sk, skb);
5753 
5754 	/* Make sure socket is routed, for correct metrics.  */
5755 	icsk->icsk_af_ops->rebuild_header(sk);
5756 
5757 	tcp_init_metrics(sk);
5758 
5759 	tcp_init_congestion_control(sk);
5760 
5761 	/* Prevent spurious tcp_cwnd_restart() on first data
5762 	 * packet.
5763 	 */
5764 	tp->lsndtime = tcp_time_stamp;
5765 
5766 	tcp_init_buffer_space(sk);
5767 
5768 	if (sock_flag(sk, SOCK_KEEPOPEN))
5769 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5770 
5771 	if (!tp->rx_opt.snd_wscale)
5772 		__tcp_fast_path_on(tp, tp->snd_wnd);
5773 	else
5774 		tp->pred_flags = 0;
5775 
5776 	if (!sock_flag(sk, SOCK_DEAD)) {
5777 		sk->sk_state_change(sk);
5778 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5779 	}
5780 }
5781 
5782 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5783 					 const struct tcphdr *th, unsigned int len)
5784 {
5785 	const u8 *hash_location;
5786 	struct inet_connection_sock *icsk = inet_csk(sk);
5787 	struct tcp_sock *tp = tcp_sk(sk);
5788 	struct tcp_cookie_values *cvp = tp->cookie_values;
5789 	int saved_clamp = tp->rx_opt.mss_clamp;
5790 
5791 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5792 
5793 	if (th->ack) {
5794 		/* rfc793:
5795 		 * "If the state is SYN-SENT then
5796 		 *    first check the ACK bit
5797 		 *      If the ACK bit is set
5798 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5799 		 *        a reset (unless the RST bit is set, if so drop
5800 		 *        the segment and return)"
5801 		 *
5802 		 *  We do not send data with SYN, so that RFC-correct
5803 		 *  test reduces to:
5804 		 */
5805 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5806 			goto reset_and_undo;
5807 
5808 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5809 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5810 			     tcp_time_stamp)) {
5811 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5812 			goto reset_and_undo;
5813 		}
5814 
5815 		/* Now ACK is acceptable.
5816 		 *
5817 		 * "If the RST bit is set
5818 		 *    If the ACK was acceptable then signal the user "error:
5819 		 *    connection reset", drop the segment, enter CLOSED state,
5820 		 *    delete TCB, and return."
5821 		 */
5822 
5823 		if (th->rst) {
5824 			tcp_reset(sk);
5825 			goto discard;
5826 		}
5827 
5828 		/* rfc793:
5829 		 *   "fifth, if neither of the SYN or RST bits is set then
5830 		 *    drop the segment and return."
5831 		 *
5832 		 *    See note below!
5833 		 *                                        --ANK(990513)
5834 		 */
5835 		if (!th->syn)
5836 			goto discard_and_undo;
5837 
5838 		/* rfc793:
5839 		 *   "If the SYN bit is on ...
5840 		 *    are acceptable then ...
5841 		 *    (our SYN has been ACKed), change the connection
5842 		 *    state to ESTABLISHED..."
5843 		 */
5844 
5845 		TCP_ECN_rcv_synack(tp, th);
5846 
5847 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5848 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5849 
5850 		/* Ok.. it's good. Set up sequence numbers and
5851 		 * move to established.
5852 		 */
5853 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5854 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5855 
5856 		/* RFC1323: The window in SYN & SYN/ACK segments is
5857 		 * never scaled.
5858 		 */
5859 		tp->snd_wnd = ntohs(th->window);
5860 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5861 
5862 		if (!tp->rx_opt.wscale_ok) {
5863 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5864 			tp->window_clamp = min(tp->window_clamp, 65535U);
5865 		}
5866 
5867 		if (tp->rx_opt.saw_tstamp) {
5868 			tp->rx_opt.tstamp_ok	   = 1;
5869 			tp->tcp_header_len =
5870 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5871 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5872 			tcp_store_ts_recent(tp);
5873 		} else {
5874 			tp->tcp_header_len = sizeof(struct tcphdr);
5875 		}
5876 
5877 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5878 			tcp_enable_fack(tp);
5879 
5880 		tcp_mtup_init(sk);
5881 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5882 		tcp_initialize_rcv_mss(sk);
5883 
5884 		/* Remember, tcp_poll() does not lock socket!
5885 		 * Change state from SYN-SENT only after copied_seq
5886 		 * is initialized. */
5887 		tp->copied_seq = tp->rcv_nxt;
5888 
5889 		if (cvp != NULL &&
5890 		    cvp->cookie_pair_size > 0 &&
5891 		    tp->rx_opt.cookie_plus > 0) {
5892 			int cookie_size = tp->rx_opt.cookie_plus
5893 					- TCPOLEN_COOKIE_BASE;
5894 			int cookie_pair_size = cookie_size
5895 					     + cvp->cookie_desired;
5896 
5897 			/* A cookie extension option was sent and returned.
5898 			 * Note that each incoming SYNACK replaces the
5899 			 * Responder cookie.  The initial exchange is most
5900 			 * fragile, as protection against spoofing relies
5901 			 * entirely upon the sequence and timestamp (above).
5902 			 * This replacement strategy allows the correct pair to
5903 			 * pass through, while any others will be filtered via
5904 			 * Responder verification later.
5905 			 */
5906 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5907 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5908 				       hash_location, cookie_size);
5909 				cvp->cookie_pair_size = cookie_pair_size;
5910 			}
5911 		}
5912 
5913 		smp_mb();
5914 
5915 		tcp_finish_connect(sk, skb);
5916 
5917 		if (sk->sk_write_pending ||
5918 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5919 		    icsk->icsk_ack.pingpong) {
5920 			/* Save one ACK. Data will be ready after
5921 			 * several ticks, if write_pending is set.
5922 			 *
5923 			 * It may be deleted, but with this feature tcpdumps
5924 			 * look so _wonderfully_ clever, that I was not able
5925 			 * to stand against the temptation 8)     --ANK
5926 			 */
5927 			inet_csk_schedule_ack(sk);
5928 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5929 			tcp_enter_quickack_mode(sk);
5930 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5931 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5932 
5933 discard:
5934 			__kfree_skb(skb);
5935 			return 0;
5936 		} else {
5937 			tcp_send_ack(sk);
5938 		}
5939 		return -1;
5940 	}
5941 
5942 	/* No ACK in the segment */
5943 
5944 	if (th->rst) {
5945 		/* rfc793:
5946 		 * "If the RST bit is set
5947 		 *
5948 		 *      Otherwise (no ACK) drop the segment and return."
5949 		 */
5950 
5951 		goto discard_and_undo;
5952 	}
5953 
5954 	/* PAWS check. */
5955 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5956 	    tcp_paws_reject(&tp->rx_opt, 0))
5957 		goto discard_and_undo;
5958 
5959 	if (th->syn) {
5960 		/* We see SYN without ACK. It is attempt of
5961 		 * simultaneous connect with crossed SYNs.
5962 		 * Particularly, it can be connect to self.
5963 		 */
5964 		tcp_set_state(sk, TCP_SYN_RECV);
5965 
5966 		if (tp->rx_opt.saw_tstamp) {
5967 			tp->rx_opt.tstamp_ok = 1;
5968 			tcp_store_ts_recent(tp);
5969 			tp->tcp_header_len =
5970 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5971 		} else {
5972 			tp->tcp_header_len = sizeof(struct tcphdr);
5973 		}
5974 
5975 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5976 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5977 
5978 		/* RFC1323: The window in SYN & SYN/ACK segments is
5979 		 * never scaled.
5980 		 */
5981 		tp->snd_wnd    = ntohs(th->window);
5982 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5983 		tp->max_window = tp->snd_wnd;
5984 
5985 		TCP_ECN_rcv_syn(tp, th);
5986 
5987 		tcp_mtup_init(sk);
5988 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5989 		tcp_initialize_rcv_mss(sk);
5990 
5991 		tcp_send_synack(sk);
5992 #if 0
5993 		/* Note, we could accept data and URG from this segment.
5994 		 * There are no obstacles to make this.
5995 		 *
5996 		 * However, if we ignore data in ACKless segments sometimes,
5997 		 * we have no reasons to accept it sometimes.
5998 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5999 		 * is not flawless. So, discard packet for sanity.
6000 		 * Uncomment this return to process the data.
6001 		 */
6002 		return -1;
6003 #else
6004 		goto discard;
6005 #endif
6006 	}
6007 	/* "fifth, if neither of the SYN or RST bits is set then
6008 	 * drop the segment and return."
6009 	 */
6010 
6011 discard_and_undo:
6012 	tcp_clear_options(&tp->rx_opt);
6013 	tp->rx_opt.mss_clamp = saved_clamp;
6014 	goto discard;
6015 
6016 reset_and_undo:
6017 	tcp_clear_options(&tp->rx_opt);
6018 	tp->rx_opt.mss_clamp = saved_clamp;
6019 	return 1;
6020 }
6021 
6022 /*
6023  *	This function implements the receiving procedure of RFC 793 for
6024  *	all states except ESTABLISHED and TIME_WAIT.
6025  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6026  *	address independent.
6027  */
6028 
6029 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6030 			  const struct tcphdr *th, unsigned int len)
6031 {
6032 	struct tcp_sock *tp = tcp_sk(sk);
6033 	struct inet_connection_sock *icsk = inet_csk(sk);
6034 	int queued = 0;
6035 	int res;
6036 
6037 	tp->rx_opt.saw_tstamp = 0;
6038 
6039 	switch (sk->sk_state) {
6040 	case TCP_CLOSE:
6041 		goto discard;
6042 
6043 	case TCP_LISTEN:
6044 		if (th->ack)
6045 			return 1;
6046 
6047 		if (th->rst)
6048 			goto discard;
6049 
6050 		if (th->syn) {
6051 			if (th->fin)
6052 				goto discard;
6053 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
6054 				return 1;
6055 
6056 			/* Now we have several options: In theory there is
6057 			 * nothing else in the frame. KA9Q has an option to
6058 			 * send data with the syn, BSD accepts data with the
6059 			 * syn up to the [to be] advertised window and
6060 			 * Solaris 2.1 gives you a protocol error. For now
6061 			 * we just ignore it, that fits the spec precisely
6062 			 * and avoids incompatibilities. It would be nice in
6063 			 * future to drop through and process the data.
6064 			 *
6065 			 * Now that TTCP is starting to be used we ought to
6066 			 * queue this data.
6067 			 * But, this leaves one open to an easy denial of
6068 			 * service attack, and SYN cookies can't defend
6069 			 * against this problem. So, we drop the data
6070 			 * in the interest of security over speed unless
6071 			 * it's still in use.
6072 			 */
6073 			kfree_skb(skb);
6074 			return 0;
6075 		}
6076 		goto discard;
6077 
6078 	case TCP_SYN_SENT:
6079 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6080 		if (queued >= 0)
6081 			return queued;
6082 
6083 		/* Do step6 onward by hand. */
6084 		tcp_urg(sk, skb, th);
6085 		__kfree_skb(skb);
6086 		tcp_data_snd_check(sk);
6087 		return 0;
6088 	}
6089 
6090 	res = tcp_validate_incoming(sk, skb, th, 0);
6091 	if (res <= 0)
6092 		return -res;
6093 
6094 	/* step 5: check the ACK field */
6095 	if (th->ack) {
6096 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
6097 
6098 		switch (sk->sk_state) {
6099 		case TCP_SYN_RECV:
6100 			if (acceptable) {
6101 				tp->copied_seq = tp->rcv_nxt;
6102 				smp_mb();
6103 				tcp_set_state(sk, TCP_ESTABLISHED);
6104 				sk->sk_state_change(sk);
6105 
6106 				/* Note, that this wakeup is only for marginal
6107 				 * crossed SYN case. Passively open sockets
6108 				 * are not waked up, because sk->sk_sleep ==
6109 				 * NULL and sk->sk_socket == NULL.
6110 				 */
6111 				if (sk->sk_socket)
6112 					sk_wake_async(sk,
6113 						      SOCK_WAKE_IO, POLL_OUT);
6114 
6115 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6116 				tp->snd_wnd = ntohs(th->window) <<
6117 					      tp->rx_opt.snd_wscale;
6118 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6119 
6120 				if (tp->rx_opt.tstamp_ok)
6121 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6122 
6123 				/* Make sure socket is routed, for
6124 				 * correct metrics.
6125 				 */
6126 				icsk->icsk_af_ops->rebuild_header(sk);
6127 
6128 				tcp_init_metrics(sk);
6129 
6130 				tcp_init_congestion_control(sk);
6131 
6132 				/* Prevent spurious tcp_cwnd_restart() on
6133 				 * first data packet.
6134 				 */
6135 				tp->lsndtime = tcp_time_stamp;
6136 
6137 				tcp_mtup_init(sk);
6138 				tcp_initialize_rcv_mss(sk);
6139 				tcp_init_buffer_space(sk);
6140 				tcp_fast_path_on(tp);
6141 			} else {
6142 				return 1;
6143 			}
6144 			break;
6145 
6146 		case TCP_FIN_WAIT1:
6147 			if (tp->snd_una == tp->write_seq) {
6148 				tcp_set_state(sk, TCP_FIN_WAIT2);
6149 				sk->sk_shutdown |= SEND_SHUTDOWN;
6150 				dst_confirm(__sk_dst_get(sk));
6151 
6152 				if (!sock_flag(sk, SOCK_DEAD))
6153 					/* Wake up lingering close() */
6154 					sk->sk_state_change(sk);
6155 				else {
6156 					int tmo;
6157 
6158 					if (tp->linger2 < 0 ||
6159 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6160 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6161 						tcp_done(sk);
6162 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6163 						return 1;
6164 					}
6165 
6166 					tmo = tcp_fin_time(sk);
6167 					if (tmo > TCP_TIMEWAIT_LEN) {
6168 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6169 					} else if (th->fin || sock_owned_by_user(sk)) {
6170 						/* Bad case. We could lose such FIN otherwise.
6171 						 * It is not a big problem, but it looks confusing
6172 						 * and not so rare event. We still can lose it now,
6173 						 * if it spins in bh_lock_sock(), but it is really
6174 						 * marginal case.
6175 						 */
6176 						inet_csk_reset_keepalive_timer(sk, tmo);
6177 					} else {
6178 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6179 						goto discard;
6180 					}
6181 				}
6182 			}
6183 			break;
6184 
6185 		case TCP_CLOSING:
6186 			if (tp->snd_una == tp->write_seq) {
6187 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6188 				goto discard;
6189 			}
6190 			break;
6191 
6192 		case TCP_LAST_ACK:
6193 			if (tp->snd_una == tp->write_seq) {
6194 				tcp_update_metrics(sk);
6195 				tcp_done(sk);
6196 				goto discard;
6197 			}
6198 			break;
6199 		}
6200 	} else
6201 		goto discard;
6202 
6203 	/* step 6: check the URG bit */
6204 	tcp_urg(sk, skb, th);
6205 
6206 	/* step 7: process the segment text */
6207 	switch (sk->sk_state) {
6208 	case TCP_CLOSE_WAIT:
6209 	case TCP_CLOSING:
6210 	case TCP_LAST_ACK:
6211 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6212 			break;
6213 	case TCP_FIN_WAIT1:
6214 	case TCP_FIN_WAIT2:
6215 		/* RFC 793 says to queue data in these states,
6216 		 * RFC 1122 says we MUST send a reset.
6217 		 * BSD 4.4 also does reset.
6218 		 */
6219 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6220 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6221 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6222 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6223 				tcp_reset(sk);
6224 				return 1;
6225 			}
6226 		}
6227 		/* Fall through */
6228 	case TCP_ESTABLISHED:
6229 		tcp_data_queue(sk, skb);
6230 		queued = 1;
6231 		break;
6232 	}
6233 
6234 	/* tcp_data could move socket to TIME-WAIT */
6235 	if (sk->sk_state != TCP_CLOSE) {
6236 		tcp_data_snd_check(sk);
6237 		tcp_ack_snd_check(sk);
6238 	}
6239 
6240 	if (!queued) {
6241 discard:
6242 		__kfree_skb(skb);
6243 	}
6244 	return 0;
6245 }
6246 EXPORT_SYMBOL(tcp_rcv_state_process);
6247