1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 #if IS_ENABLED(CONFIG_TLS_DEVICE) 115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 116 117 void clean_acked_data_enable(struct inet_connection_sock *icsk, 118 void (*cad)(struct sock *sk, u32 ack_seq)) 119 { 120 icsk->icsk_clean_acked = cad; 121 static_branch_inc(&clean_acked_data_enabled); 122 } 123 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 124 125 void clean_acked_data_disable(struct inet_connection_sock *icsk) 126 { 127 static_branch_dec(&clean_acked_data_enabled); 128 icsk->icsk_clean_acked = NULL; 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 131 #endif 132 133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 134 unsigned int len) 135 { 136 static bool __once __read_mostly; 137 138 if (!__once) { 139 struct net_device *dev; 140 141 __once = true; 142 143 rcu_read_lock(); 144 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 145 if (!dev || len >= dev->mtu) 146 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 147 dev ? dev->name : "Unknown driver"); 148 rcu_read_unlock(); 149 } 150 } 151 152 /* Adapt the MSS value used to make delayed ack decision to the 153 * real world. 154 */ 155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 156 { 157 struct inet_connection_sock *icsk = inet_csk(sk); 158 const unsigned int lss = icsk->icsk_ack.last_seg_size; 159 unsigned int len; 160 161 icsk->icsk_ack.last_seg_size = 0; 162 163 /* skb->len may jitter because of SACKs, even if peer 164 * sends good full-sized frames. 165 */ 166 len = skb_shinfo(skb)->gso_size ? : skb->len; 167 if (len >= icsk->icsk_ack.rcv_mss) { 168 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 169 tcp_sk(sk)->advmss); 170 /* Account for possibly-removed options */ 171 if (unlikely(len > icsk->icsk_ack.rcv_mss + 172 MAX_TCP_OPTION_SPACE)) 173 tcp_gro_dev_warn(sk, skb, len); 174 } else { 175 /* Otherwise, we make more careful check taking into account, 176 * that SACKs block is variable. 177 * 178 * "len" is invariant segment length, including TCP header. 179 */ 180 len += skb->data - skb_transport_header(skb); 181 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 182 /* If PSH is not set, packet should be 183 * full sized, provided peer TCP is not badly broken. 184 * This observation (if it is correct 8)) allows 185 * to handle super-low mtu links fairly. 186 */ 187 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 188 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 189 /* Subtract also invariant (if peer is RFC compliant), 190 * tcp header plus fixed timestamp option length. 191 * Resulting "len" is MSS free of SACK jitter. 192 */ 193 len -= tcp_sk(sk)->tcp_header_len; 194 icsk->icsk_ack.last_seg_size = len; 195 if (len == lss) { 196 icsk->icsk_ack.rcv_mss = len; 197 return; 198 } 199 } 200 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 201 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 203 } 204 } 205 206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 207 { 208 struct inet_connection_sock *icsk = inet_csk(sk); 209 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 210 211 if (quickacks == 0) 212 quickacks = 2; 213 quickacks = min(quickacks, max_quickacks); 214 if (quickacks > icsk->icsk_ack.quick) 215 icsk->icsk_ack.quick = quickacks; 216 } 217 218 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 219 { 220 struct inet_connection_sock *icsk = inet_csk(sk); 221 222 tcp_incr_quickack(sk, max_quickacks); 223 icsk->icsk_ack.pingpong = 0; 224 icsk->icsk_ack.ato = TCP_ATO_MIN; 225 } 226 227 /* Send ACKs quickly, if "quick" count is not exhausted 228 * and the session is not interactive. 229 */ 230 231 static bool tcp_in_quickack_mode(struct sock *sk) 232 { 233 const struct inet_connection_sock *icsk = inet_csk(sk); 234 const struct dst_entry *dst = __sk_dst_get(sk); 235 236 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 237 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 238 } 239 240 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 241 { 242 if (tp->ecn_flags & TCP_ECN_OK) 243 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 244 } 245 246 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 247 { 248 if (tcp_hdr(skb)->cwr) 249 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 250 } 251 252 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 253 { 254 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 255 } 256 257 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 258 { 259 struct tcp_sock *tp = tcp_sk(sk); 260 261 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 262 case INET_ECN_NOT_ECT: 263 /* Funny extension: if ECT is not set on a segment, 264 * and we already seen ECT on a previous segment, 265 * it is probably a retransmit. 266 */ 267 if (tp->ecn_flags & TCP_ECN_SEEN) 268 tcp_enter_quickack_mode(sk, 2); 269 break; 270 case INET_ECN_CE: 271 if (tcp_ca_needs_ecn(sk)) 272 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 273 274 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 275 /* Better not delay acks, sender can have a very low cwnd */ 276 tcp_enter_quickack_mode(sk, 2); 277 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 278 } 279 tp->ecn_flags |= TCP_ECN_SEEN; 280 break; 281 default: 282 if (tcp_ca_needs_ecn(sk)) 283 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 284 tp->ecn_flags |= TCP_ECN_SEEN; 285 break; 286 } 287 } 288 289 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 290 { 291 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 292 __tcp_ecn_check_ce(sk, skb); 293 } 294 295 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 296 { 297 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 298 tp->ecn_flags &= ~TCP_ECN_OK; 299 } 300 301 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 302 { 303 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 304 tp->ecn_flags &= ~TCP_ECN_OK; 305 } 306 307 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 308 { 309 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 310 return true; 311 return false; 312 } 313 314 /* Buffer size and advertised window tuning. 315 * 316 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 317 */ 318 319 static void tcp_sndbuf_expand(struct sock *sk) 320 { 321 const struct tcp_sock *tp = tcp_sk(sk); 322 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 323 int sndmem, per_mss; 324 u32 nr_segs; 325 326 /* Worst case is non GSO/TSO : each frame consumes one skb 327 * and skb->head is kmalloced using power of two area of memory 328 */ 329 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 330 MAX_TCP_HEADER + 331 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 332 333 per_mss = roundup_pow_of_two(per_mss) + 334 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 335 336 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 337 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 338 339 /* Fast Recovery (RFC 5681 3.2) : 340 * Cubic needs 1.7 factor, rounded to 2 to include 341 * extra cushion (application might react slowly to EPOLLOUT) 342 */ 343 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 344 sndmem *= nr_segs * per_mss; 345 346 if (sk->sk_sndbuf < sndmem) 347 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 348 } 349 350 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 351 * 352 * All tcp_full_space() is split to two parts: "network" buffer, allocated 353 * forward and advertised in receiver window (tp->rcv_wnd) and 354 * "application buffer", required to isolate scheduling/application 355 * latencies from network. 356 * window_clamp is maximal advertised window. It can be less than 357 * tcp_full_space(), in this case tcp_full_space() - window_clamp 358 * is reserved for "application" buffer. The less window_clamp is 359 * the smoother our behaviour from viewpoint of network, but the lower 360 * throughput and the higher sensitivity of the connection to losses. 8) 361 * 362 * rcv_ssthresh is more strict window_clamp used at "slow start" 363 * phase to predict further behaviour of this connection. 364 * It is used for two goals: 365 * - to enforce header prediction at sender, even when application 366 * requires some significant "application buffer". It is check #1. 367 * - to prevent pruning of receive queue because of misprediction 368 * of receiver window. Check #2. 369 * 370 * The scheme does not work when sender sends good segments opening 371 * window and then starts to feed us spaghetti. But it should work 372 * in common situations. Otherwise, we have to rely on queue collapsing. 373 */ 374 375 /* Slow part of check#2. */ 376 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 377 { 378 struct tcp_sock *tp = tcp_sk(sk); 379 /* Optimize this! */ 380 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 381 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 382 383 while (tp->rcv_ssthresh <= window) { 384 if (truesize <= skb->len) 385 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 386 387 truesize >>= 1; 388 window >>= 1; 389 } 390 return 0; 391 } 392 393 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 394 { 395 struct tcp_sock *tp = tcp_sk(sk); 396 397 /* Check #1 */ 398 if (tp->rcv_ssthresh < tp->window_clamp && 399 (int)tp->rcv_ssthresh < tcp_space(sk) && 400 !tcp_under_memory_pressure(sk)) { 401 int incr; 402 403 /* Check #2. Increase window, if skb with such overhead 404 * will fit to rcvbuf in future. 405 */ 406 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 407 incr = 2 * tp->advmss; 408 else 409 incr = __tcp_grow_window(sk, skb); 410 411 if (incr) { 412 incr = max_t(int, incr, 2 * skb->len); 413 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 414 tp->window_clamp); 415 inet_csk(sk)->icsk_ack.quick |= 1; 416 } 417 } 418 } 419 420 /* 3. Tuning rcvbuf, when connection enters established state. */ 421 static void tcp_fixup_rcvbuf(struct sock *sk) 422 { 423 u32 mss = tcp_sk(sk)->advmss; 424 int rcvmem; 425 426 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 427 tcp_default_init_rwnd(mss); 428 429 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 430 * Allow enough cushion so that sender is not limited by our window 431 */ 432 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 433 rcvmem <<= 2; 434 435 if (sk->sk_rcvbuf < rcvmem) 436 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 437 } 438 439 /* 4. Try to fixup all. It is made immediately after connection enters 440 * established state. 441 */ 442 void tcp_init_buffer_space(struct sock *sk) 443 { 444 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 445 struct tcp_sock *tp = tcp_sk(sk); 446 int maxwin; 447 448 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 449 tcp_fixup_rcvbuf(sk); 450 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 451 tcp_sndbuf_expand(sk); 452 453 tp->rcvq_space.space = tp->rcv_wnd; 454 tcp_mstamp_refresh(tp); 455 tp->rcvq_space.time = tp->tcp_mstamp; 456 tp->rcvq_space.seq = tp->copied_seq; 457 458 maxwin = tcp_full_space(sk); 459 460 if (tp->window_clamp >= maxwin) { 461 tp->window_clamp = maxwin; 462 463 if (tcp_app_win && maxwin > 4 * tp->advmss) 464 tp->window_clamp = max(maxwin - 465 (maxwin >> tcp_app_win), 466 4 * tp->advmss); 467 } 468 469 /* Force reservation of one segment. */ 470 if (tcp_app_win && 471 tp->window_clamp > 2 * tp->advmss && 472 tp->window_clamp + tp->advmss > maxwin) 473 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 474 475 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 476 tp->snd_cwnd_stamp = tcp_jiffies32; 477 } 478 479 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 480 static void tcp_clamp_window(struct sock *sk) 481 { 482 struct tcp_sock *tp = tcp_sk(sk); 483 struct inet_connection_sock *icsk = inet_csk(sk); 484 struct net *net = sock_net(sk); 485 486 icsk->icsk_ack.quick = 0; 487 488 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 489 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 490 !tcp_under_memory_pressure(sk) && 491 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 492 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 493 net->ipv4.sysctl_tcp_rmem[2]); 494 } 495 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 496 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 497 } 498 499 /* Initialize RCV_MSS value. 500 * RCV_MSS is an our guess about MSS used by the peer. 501 * We haven't any direct information about the MSS. 502 * It's better to underestimate the RCV_MSS rather than overestimate. 503 * Overestimations make us ACKing less frequently than needed. 504 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 505 */ 506 void tcp_initialize_rcv_mss(struct sock *sk) 507 { 508 const struct tcp_sock *tp = tcp_sk(sk); 509 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 510 511 hint = min(hint, tp->rcv_wnd / 2); 512 hint = min(hint, TCP_MSS_DEFAULT); 513 hint = max(hint, TCP_MIN_MSS); 514 515 inet_csk(sk)->icsk_ack.rcv_mss = hint; 516 } 517 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 518 519 /* Receiver "autotuning" code. 520 * 521 * The algorithm for RTT estimation w/o timestamps is based on 522 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 523 * <http://public.lanl.gov/radiant/pubs.html#DRS> 524 * 525 * More detail on this code can be found at 526 * <http://staff.psc.edu/jheffner/>, 527 * though this reference is out of date. A new paper 528 * is pending. 529 */ 530 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 531 { 532 u32 new_sample = tp->rcv_rtt_est.rtt_us; 533 long m = sample; 534 535 if (new_sample != 0) { 536 /* If we sample in larger samples in the non-timestamp 537 * case, we could grossly overestimate the RTT especially 538 * with chatty applications or bulk transfer apps which 539 * are stalled on filesystem I/O. 540 * 541 * Also, since we are only going for a minimum in the 542 * non-timestamp case, we do not smooth things out 543 * else with timestamps disabled convergence takes too 544 * long. 545 */ 546 if (!win_dep) { 547 m -= (new_sample >> 3); 548 new_sample += m; 549 } else { 550 m <<= 3; 551 if (m < new_sample) 552 new_sample = m; 553 } 554 } else { 555 /* No previous measure. */ 556 new_sample = m << 3; 557 } 558 559 tp->rcv_rtt_est.rtt_us = new_sample; 560 } 561 562 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 563 { 564 u32 delta_us; 565 566 if (tp->rcv_rtt_est.time == 0) 567 goto new_measure; 568 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 569 return; 570 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 571 if (!delta_us) 572 delta_us = 1; 573 tcp_rcv_rtt_update(tp, delta_us, 1); 574 575 new_measure: 576 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 577 tp->rcv_rtt_est.time = tp->tcp_mstamp; 578 } 579 580 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 581 const struct sk_buff *skb) 582 { 583 struct tcp_sock *tp = tcp_sk(sk); 584 585 if (tp->rx_opt.rcv_tsecr && 586 (TCP_SKB_CB(skb)->end_seq - 587 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 588 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 589 u32 delta_us; 590 591 if (!delta) 592 delta = 1; 593 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 594 tcp_rcv_rtt_update(tp, delta_us, 0); 595 } 596 } 597 598 /* 599 * This function should be called every time data is copied to user space. 600 * It calculates the appropriate TCP receive buffer space. 601 */ 602 void tcp_rcv_space_adjust(struct sock *sk) 603 { 604 struct tcp_sock *tp = tcp_sk(sk); 605 u32 copied; 606 int time; 607 608 trace_tcp_rcv_space_adjust(sk); 609 610 tcp_mstamp_refresh(tp); 611 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 612 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 613 return; 614 615 /* Number of bytes copied to user in last RTT */ 616 copied = tp->copied_seq - tp->rcvq_space.seq; 617 if (copied <= tp->rcvq_space.space) 618 goto new_measure; 619 620 /* A bit of theory : 621 * copied = bytes received in previous RTT, our base window 622 * To cope with packet losses, we need a 2x factor 623 * To cope with slow start, and sender growing its cwin by 100 % 624 * every RTT, we need a 4x factor, because the ACK we are sending 625 * now is for the next RTT, not the current one : 626 * <prev RTT . ><current RTT .. ><next RTT .... > 627 */ 628 629 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 630 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 631 int rcvmem, rcvbuf; 632 u64 rcvwin, grow; 633 634 /* minimal window to cope with packet losses, assuming 635 * steady state. Add some cushion because of small variations. 636 */ 637 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 638 639 /* Accommodate for sender rate increase (eg. slow start) */ 640 grow = rcvwin * (copied - tp->rcvq_space.space); 641 do_div(grow, tp->rcvq_space.space); 642 rcvwin += (grow << 1); 643 644 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 645 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 646 rcvmem += 128; 647 648 do_div(rcvwin, tp->advmss); 649 rcvbuf = min_t(u64, rcvwin * rcvmem, 650 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 651 if (rcvbuf > sk->sk_rcvbuf) { 652 sk->sk_rcvbuf = rcvbuf; 653 654 /* Make the window clamp follow along. */ 655 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 656 } 657 } 658 tp->rcvq_space.space = copied; 659 660 new_measure: 661 tp->rcvq_space.seq = tp->copied_seq; 662 tp->rcvq_space.time = tp->tcp_mstamp; 663 } 664 665 /* There is something which you must keep in mind when you analyze the 666 * behavior of the tp->ato delayed ack timeout interval. When a 667 * connection starts up, we want to ack as quickly as possible. The 668 * problem is that "good" TCP's do slow start at the beginning of data 669 * transmission. The means that until we send the first few ACK's the 670 * sender will sit on his end and only queue most of his data, because 671 * he can only send snd_cwnd unacked packets at any given time. For 672 * each ACK we send, he increments snd_cwnd and transmits more of his 673 * queue. -DaveM 674 */ 675 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 676 { 677 struct tcp_sock *tp = tcp_sk(sk); 678 struct inet_connection_sock *icsk = inet_csk(sk); 679 u32 now; 680 681 inet_csk_schedule_ack(sk); 682 683 tcp_measure_rcv_mss(sk, skb); 684 685 tcp_rcv_rtt_measure(tp); 686 687 now = tcp_jiffies32; 688 689 if (!icsk->icsk_ack.ato) { 690 /* The _first_ data packet received, initialize 691 * delayed ACK engine. 692 */ 693 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 694 icsk->icsk_ack.ato = TCP_ATO_MIN; 695 } else { 696 int m = now - icsk->icsk_ack.lrcvtime; 697 698 if (m <= TCP_ATO_MIN / 2) { 699 /* The fastest case is the first. */ 700 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 701 } else if (m < icsk->icsk_ack.ato) { 702 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 703 if (icsk->icsk_ack.ato > icsk->icsk_rto) 704 icsk->icsk_ack.ato = icsk->icsk_rto; 705 } else if (m > icsk->icsk_rto) { 706 /* Too long gap. Apparently sender failed to 707 * restart window, so that we send ACKs quickly. 708 */ 709 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 710 sk_mem_reclaim(sk); 711 } 712 } 713 icsk->icsk_ack.lrcvtime = now; 714 715 tcp_ecn_check_ce(sk, skb); 716 717 if (skb->len >= 128) 718 tcp_grow_window(sk, skb); 719 } 720 721 /* Called to compute a smoothed rtt estimate. The data fed to this 722 * routine either comes from timestamps, or from segments that were 723 * known _not_ to have been retransmitted [see Karn/Partridge 724 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 725 * piece by Van Jacobson. 726 * NOTE: the next three routines used to be one big routine. 727 * To save cycles in the RFC 1323 implementation it was better to break 728 * it up into three procedures. -- erics 729 */ 730 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 731 { 732 struct tcp_sock *tp = tcp_sk(sk); 733 long m = mrtt_us; /* RTT */ 734 u32 srtt = tp->srtt_us; 735 736 /* The following amusing code comes from Jacobson's 737 * article in SIGCOMM '88. Note that rtt and mdev 738 * are scaled versions of rtt and mean deviation. 739 * This is designed to be as fast as possible 740 * m stands for "measurement". 741 * 742 * On a 1990 paper the rto value is changed to: 743 * RTO = rtt + 4 * mdev 744 * 745 * Funny. This algorithm seems to be very broken. 746 * These formulae increase RTO, when it should be decreased, increase 747 * too slowly, when it should be increased quickly, decrease too quickly 748 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 749 * does not matter how to _calculate_ it. Seems, it was trap 750 * that VJ failed to avoid. 8) 751 */ 752 if (srtt != 0) { 753 m -= (srtt >> 3); /* m is now error in rtt est */ 754 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 755 if (m < 0) { 756 m = -m; /* m is now abs(error) */ 757 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 758 /* This is similar to one of Eifel findings. 759 * Eifel blocks mdev updates when rtt decreases. 760 * This solution is a bit different: we use finer gain 761 * for mdev in this case (alpha*beta). 762 * Like Eifel it also prevents growth of rto, 763 * but also it limits too fast rto decreases, 764 * happening in pure Eifel. 765 */ 766 if (m > 0) 767 m >>= 3; 768 } else { 769 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 770 } 771 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 772 if (tp->mdev_us > tp->mdev_max_us) { 773 tp->mdev_max_us = tp->mdev_us; 774 if (tp->mdev_max_us > tp->rttvar_us) 775 tp->rttvar_us = tp->mdev_max_us; 776 } 777 if (after(tp->snd_una, tp->rtt_seq)) { 778 if (tp->mdev_max_us < tp->rttvar_us) 779 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 780 tp->rtt_seq = tp->snd_nxt; 781 tp->mdev_max_us = tcp_rto_min_us(sk); 782 } 783 } else { 784 /* no previous measure. */ 785 srtt = m << 3; /* take the measured time to be rtt */ 786 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 787 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 788 tp->mdev_max_us = tp->rttvar_us; 789 tp->rtt_seq = tp->snd_nxt; 790 } 791 tp->srtt_us = max(1U, srtt); 792 } 793 794 static void tcp_update_pacing_rate(struct sock *sk) 795 { 796 const struct tcp_sock *tp = tcp_sk(sk); 797 u64 rate; 798 799 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 800 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 801 802 /* current rate is (cwnd * mss) / srtt 803 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 804 * In Congestion Avoidance phase, set it to 120 % the current rate. 805 * 806 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 807 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 808 * end of slow start and should slow down. 809 */ 810 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 811 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 812 else 813 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 814 815 rate *= max(tp->snd_cwnd, tp->packets_out); 816 817 if (likely(tp->srtt_us)) 818 do_div(rate, tp->srtt_us); 819 820 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 821 * without any lock. We want to make sure compiler wont store 822 * intermediate values in this location. 823 */ 824 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 825 sk->sk_max_pacing_rate)); 826 } 827 828 /* Calculate rto without backoff. This is the second half of Van Jacobson's 829 * routine referred to above. 830 */ 831 static void tcp_set_rto(struct sock *sk) 832 { 833 const struct tcp_sock *tp = tcp_sk(sk); 834 /* Old crap is replaced with new one. 8) 835 * 836 * More seriously: 837 * 1. If rtt variance happened to be less 50msec, it is hallucination. 838 * It cannot be less due to utterly erratic ACK generation made 839 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 840 * to do with delayed acks, because at cwnd>2 true delack timeout 841 * is invisible. Actually, Linux-2.4 also generates erratic 842 * ACKs in some circumstances. 843 */ 844 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 845 846 /* 2. Fixups made earlier cannot be right. 847 * If we do not estimate RTO correctly without them, 848 * all the algo is pure shit and should be replaced 849 * with correct one. It is exactly, which we pretend to do. 850 */ 851 852 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 853 * guarantees that rto is higher. 854 */ 855 tcp_bound_rto(sk); 856 } 857 858 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 859 { 860 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 861 862 if (!cwnd) 863 cwnd = TCP_INIT_CWND; 864 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 865 } 866 867 /* Take a notice that peer is sending D-SACKs */ 868 static void tcp_dsack_seen(struct tcp_sock *tp) 869 { 870 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 871 tp->rack.dsack_seen = 1; 872 } 873 874 /* It's reordering when higher sequence was delivered (i.e. sacked) before 875 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 876 * distance is approximated in full-mss packet distance ("reordering"). 877 */ 878 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 879 const int ts) 880 { 881 struct tcp_sock *tp = tcp_sk(sk); 882 const u32 mss = tp->mss_cache; 883 u32 fack, metric; 884 885 fack = tcp_highest_sack_seq(tp); 886 if (!before(low_seq, fack)) 887 return; 888 889 metric = fack - low_seq; 890 if ((metric > tp->reordering * mss) && mss) { 891 #if FASTRETRANS_DEBUG > 1 892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 893 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 894 tp->reordering, 895 0, 896 tp->sacked_out, 897 tp->undo_marker ? tp->undo_retrans : 0); 898 #endif 899 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 900 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 901 } 902 903 tp->rack.reord = 1; 904 /* This exciting event is worth to be remembered. 8) */ 905 NET_INC_STATS(sock_net(sk), 906 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 907 } 908 909 /* This must be called before lost_out is incremented */ 910 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 911 { 912 if (!tp->retransmit_skb_hint || 913 before(TCP_SKB_CB(skb)->seq, 914 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 915 tp->retransmit_skb_hint = skb; 916 } 917 918 /* Sum the number of packets on the wire we have marked as lost. 919 * There are two cases we care about here: 920 * a) Packet hasn't been marked lost (nor retransmitted), 921 * and this is the first loss. 922 * b) Packet has been marked both lost and retransmitted, 923 * and this means we think it was lost again. 924 */ 925 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 926 { 927 __u8 sacked = TCP_SKB_CB(skb)->sacked; 928 929 if (!(sacked & TCPCB_LOST) || 930 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 931 tp->lost += tcp_skb_pcount(skb); 932 } 933 934 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 935 { 936 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 937 tcp_verify_retransmit_hint(tp, skb); 938 939 tp->lost_out += tcp_skb_pcount(skb); 940 tcp_sum_lost(tp, skb); 941 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 942 } 943 } 944 945 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 946 { 947 tcp_verify_retransmit_hint(tp, skb); 948 949 tcp_sum_lost(tp, skb); 950 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 951 tp->lost_out += tcp_skb_pcount(skb); 952 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 953 } 954 } 955 956 /* This procedure tags the retransmission queue when SACKs arrive. 957 * 958 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 959 * Packets in queue with these bits set are counted in variables 960 * sacked_out, retrans_out and lost_out, correspondingly. 961 * 962 * Valid combinations are: 963 * Tag InFlight Description 964 * 0 1 - orig segment is in flight. 965 * S 0 - nothing flies, orig reached receiver. 966 * L 0 - nothing flies, orig lost by net. 967 * R 2 - both orig and retransmit are in flight. 968 * L|R 1 - orig is lost, retransmit is in flight. 969 * S|R 1 - orig reached receiver, retrans is still in flight. 970 * (L|S|R is logically valid, it could occur when L|R is sacked, 971 * but it is equivalent to plain S and code short-curcuits it to S. 972 * L|S is logically invalid, it would mean -1 packet in flight 8)) 973 * 974 * These 6 states form finite state machine, controlled by the following events: 975 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 976 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 977 * 3. Loss detection event of two flavors: 978 * A. Scoreboard estimator decided the packet is lost. 979 * A'. Reno "three dupacks" marks head of queue lost. 980 * B. SACK arrives sacking SND.NXT at the moment, when the 981 * segment was retransmitted. 982 * 4. D-SACK added new rule: D-SACK changes any tag to S. 983 * 984 * It is pleasant to note, that state diagram turns out to be commutative, 985 * so that we are allowed not to be bothered by order of our actions, 986 * when multiple events arrive simultaneously. (see the function below). 987 * 988 * Reordering detection. 989 * -------------------- 990 * Reordering metric is maximal distance, which a packet can be displaced 991 * in packet stream. With SACKs we can estimate it: 992 * 993 * 1. SACK fills old hole and the corresponding segment was not 994 * ever retransmitted -> reordering. Alas, we cannot use it 995 * when segment was retransmitted. 996 * 2. The last flaw is solved with D-SACK. D-SACK arrives 997 * for retransmitted and already SACKed segment -> reordering.. 998 * Both of these heuristics are not used in Loss state, when we cannot 999 * account for retransmits accurately. 1000 * 1001 * SACK block validation. 1002 * ---------------------- 1003 * 1004 * SACK block range validation checks that the received SACK block fits to 1005 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1006 * Note that SND.UNA is not included to the range though being valid because 1007 * it means that the receiver is rather inconsistent with itself reporting 1008 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1009 * perfectly valid, however, in light of RFC2018 which explicitly states 1010 * that "SACK block MUST reflect the newest segment. Even if the newest 1011 * segment is going to be discarded ...", not that it looks very clever 1012 * in case of head skb. Due to potentional receiver driven attacks, we 1013 * choose to avoid immediate execution of a walk in write queue due to 1014 * reneging and defer head skb's loss recovery to standard loss recovery 1015 * procedure that will eventually trigger (nothing forbids us doing this). 1016 * 1017 * Implements also blockage to start_seq wrap-around. Problem lies in the 1018 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1019 * there's no guarantee that it will be before snd_nxt (n). The problem 1020 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1021 * wrap (s_w): 1022 * 1023 * <- outs wnd -> <- wrapzone -> 1024 * u e n u_w e_w s n_w 1025 * | | | | | | | 1026 * |<------------+------+----- TCP seqno space --------------+---------->| 1027 * ...-- <2^31 ->| |<--------... 1028 * ...---- >2^31 ------>| |<--------... 1029 * 1030 * Current code wouldn't be vulnerable but it's better still to discard such 1031 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1032 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1033 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1034 * equal to the ideal case (infinite seqno space without wrap caused issues). 1035 * 1036 * With D-SACK the lower bound is extended to cover sequence space below 1037 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1038 * again, D-SACK block must not to go across snd_una (for the same reason as 1039 * for the normal SACK blocks, explained above). But there all simplicity 1040 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1041 * fully below undo_marker they do not affect behavior in anyway and can 1042 * therefore be safely ignored. In rare cases (which are more or less 1043 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1044 * fragmentation and packet reordering past skb's retransmission. To consider 1045 * them correctly, the acceptable range must be extended even more though 1046 * the exact amount is rather hard to quantify. However, tp->max_window can 1047 * be used as an exaggerated estimate. 1048 */ 1049 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1050 u32 start_seq, u32 end_seq) 1051 { 1052 /* Too far in future, or reversed (interpretation is ambiguous) */ 1053 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1054 return false; 1055 1056 /* Nasty start_seq wrap-around check (see comments above) */ 1057 if (!before(start_seq, tp->snd_nxt)) 1058 return false; 1059 1060 /* In outstanding window? ...This is valid exit for D-SACKs too. 1061 * start_seq == snd_una is non-sensical (see comments above) 1062 */ 1063 if (after(start_seq, tp->snd_una)) 1064 return true; 1065 1066 if (!is_dsack || !tp->undo_marker) 1067 return false; 1068 1069 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1070 if (after(end_seq, tp->snd_una)) 1071 return false; 1072 1073 if (!before(start_seq, tp->undo_marker)) 1074 return true; 1075 1076 /* Too old */ 1077 if (!after(end_seq, tp->undo_marker)) 1078 return false; 1079 1080 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1081 * start_seq < undo_marker and end_seq >= undo_marker. 1082 */ 1083 return !before(start_seq, end_seq - tp->max_window); 1084 } 1085 1086 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1087 struct tcp_sack_block_wire *sp, int num_sacks, 1088 u32 prior_snd_una) 1089 { 1090 struct tcp_sock *tp = tcp_sk(sk); 1091 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1092 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1093 bool dup_sack = false; 1094 1095 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1096 dup_sack = true; 1097 tcp_dsack_seen(tp); 1098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1099 } else if (num_sacks > 1) { 1100 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1101 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1102 1103 if (!after(end_seq_0, end_seq_1) && 1104 !before(start_seq_0, start_seq_1)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS(sock_net(sk), 1108 LINUX_MIB_TCPDSACKOFORECV); 1109 } 1110 } 1111 1112 /* D-SACK for already forgotten data... Do dumb counting. */ 1113 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1114 !after(end_seq_0, prior_snd_una) && 1115 after(end_seq_0, tp->undo_marker)) 1116 tp->undo_retrans--; 1117 1118 return dup_sack; 1119 } 1120 1121 struct tcp_sacktag_state { 1122 u32 reord; 1123 /* Timestamps for earliest and latest never-retransmitted segment 1124 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1125 * but congestion control should still get an accurate delay signal. 1126 */ 1127 u64 first_sackt; 1128 u64 last_sackt; 1129 struct rate_sample *rate; 1130 int flag; 1131 unsigned int mss_now; 1132 }; 1133 1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1135 * the incoming SACK may not exactly match but we can find smaller MSS 1136 * aligned portion of it that matches. Therefore we might need to fragment 1137 * which may fail and creates some hassle (caller must handle error case 1138 * returns). 1139 * 1140 * FIXME: this could be merged to shift decision code 1141 */ 1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1143 u32 start_seq, u32 end_seq) 1144 { 1145 int err; 1146 bool in_sack; 1147 unsigned int pkt_len; 1148 unsigned int mss; 1149 1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1151 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1152 1153 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1154 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1155 mss = tcp_skb_mss(skb); 1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1157 1158 if (!in_sack) { 1159 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1160 if (pkt_len < mss) 1161 pkt_len = mss; 1162 } else { 1163 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1164 if (pkt_len < mss) 1165 return -EINVAL; 1166 } 1167 1168 /* Round if necessary so that SACKs cover only full MSSes 1169 * and/or the remaining small portion (if present) 1170 */ 1171 if (pkt_len > mss) { 1172 unsigned int new_len = (pkt_len / mss) * mss; 1173 if (!in_sack && new_len < pkt_len) 1174 new_len += mss; 1175 pkt_len = new_len; 1176 } 1177 1178 if (pkt_len >= skb->len && !in_sack) 1179 return 0; 1180 1181 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1182 pkt_len, mss, GFP_ATOMIC); 1183 if (err < 0) 1184 return err; 1185 } 1186 1187 return in_sack; 1188 } 1189 1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1191 static u8 tcp_sacktag_one(struct sock *sk, 1192 struct tcp_sacktag_state *state, u8 sacked, 1193 u32 start_seq, u32 end_seq, 1194 int dup_sack, int pcount, 1195 u64 xmit_time) 1196 { 1197 struct tcp_sock *tp = tcp_sk(sk); 1198 1199 /* Account D-SACK for retransmitted packet. */ 1200 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1201 if (tp->undo_marker && tp->undo_retrans > 0 && 1202 after(end_seq, tp->undo_marker)) 1203 tp->undo_retrans--; 1204 if ((sacked & TCPCB_SACKED_ACKED) && 1205 before(start_seq, state->reord)) 1206 state->reord = start_seq; 1207 } 1208 1209 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1210 if (!after(end_seq, tp->snd_una)) 1211 return sacked; 1212 1213 if (!(sacked & TCPCB_SACKED_ACKED)) { 1214 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1215 1216 if (sacked & TCPCB_SACKED_RETRANS) { 1217 /* If the segment is not tagged as lost, 1218 * we do not clear RETRANS, believing 1219 * that retransmission is still in flight. 1220 */ 1221 if (sacked & TCPCB_LOST) { 1222 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1223 tp->lost_out -= pcount; 1224 tp->retrans_out -= pcount; 1225 } 1226 } else { 1227 if (!(sacked & TCPCB_RETRANS)) { 1228 /* New sack for not retransmitted frame, 1229 * which was in hole. It is reordering. 1230 */ 1231 if (before(start_seq, 1232 tcp_highest_sack_seq(tp)) && 1233 before(start_seq, state->reord)) 1234 state->reord = start_seq; 1235 1236 if (!after(end_seq, tp->high_seq)) 1237 state->flag |= FLAG_ORIG_SACK_ACKED; 1238 if (state->first_sackt == 0) 1239 state->first_sackt = xmit_time; 1240 state->last_sackt = xmit_time; 1241 } 1242 1243 if (sacked & TCPCB_LOST) { 1244 sacked &= ~TCPCB_LOST; 1245 tp->lost_out -= pcount; 1246 } 1247 } 1248 1249 sacked |= TCPCB_SACKED_ACKED; 1250 state->flag |= FLAG_DATA_SACKED; 1251 tp->sacked_out += pcount; 1252 tp->delivered += pcount; /* Out-of-order packets delivered */ 1253 1254 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1255 if (tp->lost_skb_hint && 1256 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1257 tp->lost_cnt_hint += pcount; 1258 } 1259 1260 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1261 * frames and clear it. undo_retrans is decreased above, L|R frames 1262 * are accounted above as well. 1263 */ 1264 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1265 sacked &= ~TCPCB_SACKED_RETRANS; 1266 tp->retrans_out -= pcount; 1267 } 1268 1269 return sacked; 1270 } 1271 1272 /* Shift newly-SACKed bytes from this skb to the immediately previous 1273 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1274 */ 1275 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1276 struct sk_buff *skb, 1277 struct tcp_sacktag_state *state, 1278 unsigned int pcount, int shifted, int mss, 1279 bool dup_sack) 1280 { 1281 struct tcp_sock *tp = tcp_sk(sk); 1282 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1283 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1284 1285 BUG_ON(!pcount); 1286 1287 /* Adjust counters and hints for the newly sacked sequence 1288 * range but discard the return value since prev is already 1289 * marked. We must tag the range first because the seq 1290 * advancement below implicitly advances 1291 * tcp_highest_sack_seq() when skb is highest_sack. 1292 */ 1293 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1294 start_seq, end_seq, dup_sack, pcount, 1295 skb->skb_mstamp); 1296 tcp_rate_skb_delivered(sk, skb, state->rate); 1297 1298 if (skb == tp->lost_skb_hint) 1299 tp->lost_cnt_hint += pcount; 1300 1301 TCP_SKB_CB(prev)->end_seq += shifted; 1302 TCP_SKB_CB(skb)->seq += shifted; 1303 1304 tcp_skb_pcount_add(prev, pcount); 1305 BUG_ON(tcp_skb_pcount(skb) < pcount); 1306 tcp_skb_pcount_add(skb, -pcount); 1307 1308 /* When we're adding to gso_segs == 1, gso_size will be zero, 1309 * in theory this shouldn't be necessary but as long as DSACK 1310 * code can come after this skb later on it's better to keep 1311 * setting gso_size to something. 1312 */ 1313 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1314 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1315 1316 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1317 if (tcp_skb_pcount(skb) <= 1) 1318 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1319 1320 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1321 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1322 1323 if (skb->len > 0) { 1324 BUG_ON(!tcp_skb_pcount(skb)); 1325 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1326 return false; 1327 } 1328 1329 /* Whole SKB was eaten :-) */ 1330 1331 if (skb == tp->retransmit_skb_hint) 1332 tp->retransmit_skb_hint = prev; 1333 if (skb == tp->lost_skb_hint) { 1334 tp->lost_skb_hint = prev; 1335 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1336 } 1337 1338 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1339 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1340 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1341 TCP_SKB_CB(prev)->end_seq++; 1342 1343 if (skb == tcp_highest_sack(sk)) 1344 tcp_advance_highest_sack(sk, skb); 1345 1346 tcp_skb_collapse_tstamp(prev, skb); 1347 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1348 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1349 1350 tcp_rtx_queue_unlink_and_free(skb, sk); 1351 1352 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1353 1354 return true; 1355 } 1356 1357 /* I wish gso_size would have a bit more sane initialization than 1358 * something-or-zero which complicates things 1359 */ 1360 static int tcp_skb_seglen(const struct sk_buff *skb) 1361 { 1362 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1363 } 1364 1365 /* Shifting pages past head area doesn't work */ 1366 static int skb_can_shift(const struct sk_buff *skb) 1367 { 1368 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1369 } 1370 1371 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1372 * skb. 1373 */ 1374 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1375 struct tcp_sacktag_state *state, 1376 u32 start_seq, u32 end_seq, 1377 bool dup_sack) 1378 { 1379 struct tcp_sock *tp = tcp_sk(sk); 1380 struct sk_buff *prev; 1381 int mss; 1382 int pcount = 0; 1383 int len; 1384 int in_sack; 1385 1386 /* Normally R but no L won't result in plain S */ 1387 if (!dup_sack && 1388 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1389 goto fallback; 1390 if (!skb_can_shift(skb)) 1391 goto fallback; 1392 /* This frame is about to be dropped (was ACKed). */ 1393 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1394 goto fallback; 1395 1396 /* Can only happen with delayed DSACK + discard craziness */ 1397 prev = skb_rb_prev(skb); 1398 if (!prev) 1399 goto fallback; 1400 1401 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1402 goto fallback; 1403 1404 if (!tcp_skb_can_collapse_to(prev)) 1405 goto fallback; 1406 1407 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1408 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1409 1410 if (in_sack) { 1411 len = skb->len; 1412 pcount = tcp_skb_pcount(skb); 1413 mss = tcp_skb_seglen(skb); 1414 1415 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1416 * drop this restriction as unnecessary 1417 */ 1418 if (mss != tcp_skb_seglen(prev)) 1419 goto fallback; 1420 } else { 1421 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1422 goto noop; 1423 /* CHECKME: This is non-MSS split case only?, this will 1424 * cause skipped skbs due to advancing loop btw, original 1425 * has that feature too 1426 */ 1427 if (tcp_skb_pcount(skb) <= 1) 1428 goto noop; 1429 1430 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1431 if (!in_sack) { 1432 /* TODO: head merge to next could be attempted here 1433 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1434 * though it might not be worth of the additional hassle 1435 * 1436 * ...we can probably just fallback to what was done 1437 * previously. We could try merging non-SACKed ones 1438 * as well but it probably isn't going to buy off 1439 * because later SACKs might again split them, and 1440 * it would make skb timestamp tracking considerably 1441 * harder problem. 1442 */ 1443 goto fallback; 1444 } 1445 1446 len = end_seq - TCP_SKB_CB(skb)->seq; 1447 BUG_ON(len < 0); 1448 BUG_ON(len > skb->len); 1449 1450 /* MSS boundaries should be honoured or else pcount will 1451 * severely break even though it makes things bit trickier. 1452 * Optimize common case to avoid most of the divides 1453 */ 1454 mss = tcp_skb_mss(skb); 1455 1456 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1457 * drop this restriction as unnecessary 1458 */ 1459 if (mss != tcp_skb_seglen(prev)) 1460 goto fallback; 1461 1462 if (len == mss) { 1463 pcount = 1; 1464 } else if (len < mss) { 1465 goto noop; 1466 } else { 1467 pcount = len / mss; 1468 len = pcount * mss; 1469 } 1470 } 1471 1472 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1473 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1474 goto fallback; 1475 1476 if (!skb_shift(prev, skb, len)) 1477 goto fallback; 1478 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1479 goto out; 1480 1481 /* Hole filled allows collapsing with the next as well, this is very 1482 * useful when hole on every nth skb pattern happens 1483 */ 1484 skb = skb_rb_next(prev); 1485 if (!skb) 1486 goto out; 1487 1488 if (!skb_can_shift(skb) || 1489 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1490 (mss != tcp_skb_seglen(skb))) 1491 goto out; 1492 1493 len = skb->len; 1494 if (skb_shift(prev, skb, len)) { 1495 pcount += tcp_skb_pcount(skb); 1496 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1497 len, mss, 0); 1498 } 1499 1500 out: 1501 return prev; 1502 1503 noop: 1504 return skb; 1505 1506 fallback: 1507 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1508 return NULL; 1509 } 1510 1511 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1512 struct tcp_sack_block *next_dup, 1513 struct tcp_sacktag_state *state, 1514 u32 start_seq, u32 end_seq, 1515 bool dup_sack_in) 1516 { 1517 struct tcp_sock *tp = tcp_sk(sk); 1518 struct sk_buff *tmp; 1519 1520 skb_rbtree_walk_from(skb) { 1521 int in_sack = 0; 1522 bool dup_sack = dup_sack_in; 1523 1524 /* queue is in-order => we can short-circuit the walk early */ 1525 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1526 break; 1527 1528 if (next_dup && 1529 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1530 in_sack = tcp_match_skb_to_sack(sk, skb, 1531 next_dup->start_seq, 1532 next_dup->end_seq); 1533 if (in_sack > 0) 1534 dup_sack = true; 1535 } 1536 1537 /* skb reference here is a bit tricky to get right, since 1538 * shifting can eat and free both this skb and the next, 1539 * so not even _safe variant of the loop is enough. 1540 */ 1541 if (in_sack <= 0) { 1542 tmp = tcp_shift_skb_data(sk, skb, state, 1543 start_seq, end_seq, dup_sack); 1544 if (tmp) { 1545 if (tmp != skb) { 1546 skb = tmp; 1547 continue; 1548 } 1549 1550 in_sack = 0; 1551 } else { 1552 in_sack = tcp_match_skb_to_sack(sk, skb, 1553 start_seq, 1554 end_seq); 1555 } 1556 } 1557 1558 if (unlikely(in_sack < 0)) 1559 break; 1560 1561 if (in_sack) { 1562 TCP_SKB_CB(skb)->sacked = 1563 tcp_sacktag_one(sk, 1564 state, 1565 TCP_SKB_CB(skb)->sacked, 1566 TCP_SKB_CB(skb)->seq, 1567 TCP_SKB_CB(skb)->end_seq, 1568 dup_sack, 1569 tcp_skb_pcount(skb), 1570 skb->skb_mstamp); 1571 tcp_rate_skb_delivered(sk, skb, state->rate); 1572 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1573 list_del_init(&skb->tcp_tsorted_anchor); 1574 1575 if (!before(TCP_SKB_CB(skb)->seq, 1576 tcp_highest_sack_seq(tp))) 1577 tcp_advance_highest_sack(sk, skb); 1578 } 1579 } 1580 return skb; 1581 } 1582 1583 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1584 struct tcp_sacktag_state *state, 1585 u32 seq) 1586 { 1587 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1588 struct sk_buff *skb; 1589 1590 while (*p) { 1591 parent = *p; 1592 skb = rb_to_skb(parent); 1593 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1594 p = &parent->rb_left; 1595 continue; 1596 } 1597 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1598 p = &parent->rb_right; 1599 continue; 1600 } 1601 return skb; 1602 } 1603 return NULL; 1604 } 1605 1606 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1607 struct tcp_sacktag_state *state, 1608 u32 skip_to_seq) 1609 { 1610 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1611 return skb; 1612 1613 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1614 } 1615 1616 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1617 struct sock *sk, 1618 struct tcp_sack_block *next_dup, 1619 struct tcp_sacktag_state *state, 1620 u32 skip_to_seq) 1621 { 1622 if (!next_dup) 1623 return skb; 1624 1625 if (before(next_dup->start_seq, skip_to_seq)) { 1626 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1627 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1628 next_dup->start_seq, next_dup->end_seq, 1629 1); 1630 } 1631 1632 return skb; 1633 } 1634 1635 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1636 { 1637 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1638 } 1639 1640 static int 1641 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1642 u32 prior_snd_una, struct tcp_sacktag_state *state) 1643 { 1644 struct tcp_sock *tp = tcp_sk(sk); 1645 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1646 TCP_SKB_CB(ack_skb)->sacked); 1647 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1648 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1649 struct tcp_sack_block *cache; 1650 struct sk_buff *skb; 1651 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1652 int used_sacks; 1653 bool found_dup_sack = false; 1654 int i, j; 1655 int first_sack_index; 1656 1657 state->flag = 0; 1658 state->reord = tp->snd_nxt; 1659 1660 if (!tp->sacked_out) 1661 tcp_highest_sack_reset(sk); 1662 1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1664 num_sacks, prior_snd_una); 1665 if (found_dup_sack) { 1666 state->flag |= FLAG_DSACKING_ACK; 1667 tp->delivered++; /* A spurious retransmission is delivered */ 1668 } 1669 1670 /* Eliminate too old ACKs, but take into 1671 * account more or less fresh ones, they can 1672 * contain valid SACK info. 1673 */ 1674 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1675 return 0; 1676 1677 if (!tp->packets_out) 1678 goto out; 1679 1680 used_sacks = 0; 1681 first_sack_index = 0; 1682 for (i = 0; i < num_sacks; i++) { 1683 bool dup_sack = !i && found_dup_sack; 1684 1685 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1686 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1687 1688 if (!tcp_is_sackblock_valid(tp, dup_sack, 1689 sp[used_sacks].start_seq, 1690 sp[used_sacks].end_seq)) { 1691 int mib_idx; 1692 1693 if (dup_sack) { 1694 if (!tp->undo_marker) 1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1696 else 1697 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1698 } else { 1699 /* Don't count olds caused by ACK reordering */ 1700 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1701 !after(sp[used_sacks].end_seq, tp->snd_una)) 1702 continue; 1703 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1704 } 1705 1706 NET_INC_STATS(sock_net(sk), mib_idx); 1707 if (i == 0) 1708 first_sack_index = -1; 1709 continue; 1710 } 1711 1712 /* Ignore very old stuff early */ 1713 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1714 continue; 1715 1716 used_sacks++; 1717 } 1718 1719 /* order SACK blocks to allow in order walk of the retrans queue */ 1720 for (i = used_sacks - 1; i > 0; i--) { 1721 for (j = 0; j < i; j++) { 1722 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1723 swap(sp[j], sp[j + 1]); 1724 1725 /* Track where the first SACK block goes to */ 1726 if (j == first_sack_index) 1727 first_sack_index = j + 1; 1728 } 1729 } 1730 } 1731 1732 state->mss_now = tcp_current_mss(sk); 1733 skb = NULL; 1734 i = 0; 1735 1736 if (!tp->sacked_out) { 1737 /* It's already past, so skip checking against it */ 1738 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1739 } else { 1740 cache = tp->recv_sack_cache; 1741 /* Skip empty blocks in at head of the cache */ 1742 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1743 !cache->end_seq) 1744 cache++; 1745 } 1746 1747 while (i < used_sacks) { 1748 u32 start_seq = sp[i].start_seq; 1749 u32 end_seq = sp[i].end_seq; 1750 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1751 struct tcp_sack_block *next_dup = NULL; 1752 1753 if (found_dup_sack && ((i + 1) == first_sack_index)) 1754 next_dup = &sp[i + 1]; 1755 1756 /* Skip too early cached blocks */ 1757 while (tcp_sack_cache_ok(tp, cache) && 1758 !before(start_seq, cache->end_seq)) 1759 cache++; 1760 1761 /* Can skip some work by looking recv_sack_cache? */ 1762 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1763 after(end_seq, cache->start_seq)) { 1764 1765 /* Head todo? */ 1766 if (before(start_seq, cache->start_seq)) { 1767 skb = tcp_sacktag_skip(skb, sk, state, 1768 start_seq); 1769 skb = tcp_sacktag_walk(skb, sk, next_dup, 1770 state, 1771 start_seq, 1772 cache->start_seq, 1773 dup_sack); 1774 } 1775 1776 /* Rest of the block already fully processed? */ 1777 if (!after(end_seq, cache->end_seq)) 1778 goto advance_sp; 1779 1780 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1781 state, 1782 cache->end_seq); 1783 1784 /* ...tail remains todo... */ 1785 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1786 /* ...but better entrypoint exists! */ 1787 skb = tcp_highest_sack(sk); 1788 if (!skb) 1789 break; 1790 cache++; 1791 goto walk; 1792 } 1793 1794 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1795 /* Check overlap against next cached too (past this one already) */ 1796 cache++; 1797 continue; 1798 } 1799 1800 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1801 skb = tcp_highest_sack(sk); 1802 if (!skb) 1803 break; 1804 } 1805 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1806 1807 walk: 1808 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1809 start_seq, end_seq, dup_sack); 1810 1811 advance_sp: 1812 i++; 1813 } 1814 1815 /* Clear the head of the cache sack blocks so we can skip it next time */ 1816 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1817 tp->recv_sack_cache[i].start_seq = 0; 1818 tp->recv_sack_cache[i].end_seq = 0; 1819 } 1820 for (j = 0; j < used_sacks; j++) 1821 tp->recv_sack_cache[i++] = sp[j]; 1822 1823 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1824 tcp_check_sack_reordering(sk, state->reord, 0); 1825 1826 tcp_verify_left_out(tp); 1827 out: 1828 1829 #if FASTRETRANS_DEBUG > 0 1830 WARN_ON((int)tp->sacked_out < 0); 1831 WARN_ON((int)tp->lost_out < 0); 1832 WARN_ON((int)tp->retrans_out < 0); 1833 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1834 #endif 1835 return state->flag; 1836 } 1837 1838 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1839 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1840 */ 1841 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1842 { 1843 u32 holes; 1844 1845 holes = max(tp->lost_out, 1U); 1846 holes = min(holes, tp->packets_out); 1847 1848 if ((tp->sacked_out + holes) > tp->packets_out) { 1849 tp->sacked_out = tp->packets_out - holes; 1850 return true; 1851 } 1852 return false; 1853 } 1854 1855 /* If we receive more dupacks than we expected counting segments 1856 * in assumption of absent reordering, interpret this as reordering. 1857 * The only another reason could be bug in receiver TCP. 1858 */ 1859 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1860 { 1861 struct tcp_sock *tp = tcp_sk(sk); 1862 1863 if (!tcp_limit_reno_sacked(tp)) 1864 return; 1865 1866 tp->reordering = min_t(u32, tp->packets_out + addend, 1867 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1868 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1869 } 1870 1871 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1872 1873 static void tcp_add_reno_sack(struct sock *sk) 1874 { 1875 struct tcp_sock *tp = tcp_sk(sk); 1876 u32 prior_sacked = tp->sacked_out; 1877 1878 tp->sacked_out++; 1879 tcp_check_reno_reordering(sk, 0); 1880 if (tp->sacked_out > prior_sacked) 1881 tp->delivered++; /* Some out-of-order packet is delivered */ 1882 tcp_verify_left_out(tp); 1883 } 1884 1885 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1886 1887 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1888 { 1889 struct tcp_sock *tp = tcp_sk(sk); 1890 1891 if (acked > 0) { 1892 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1893 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1894 if (acked - 1 >= tp->sacked_out) 1895 tp->sacked_out = 0; 1896 else 1897 tp->sacked_out -= acked - 1; 1898 } 1899 tcp_check_reno_reordering(sk, acked); 1900 tcp_verify_left_out(tp); 1901 } 1902 1903 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1904 { 1905 tp->sacked_out = 0; 1906 } 1907 1908 void tcp_clear_retrans(struct tcp_sock *tp) 1909 { 1910 tp->retrans_out = 0; 1911 tp->lost_out = 0; 1912 tp->undo_marker = 0; 1913 tp->undo_retrans = -1; 1914 tp->sacked_out = 0; 1915 } 1916 1917 static inline void tcp_init_undo(struct tcp_sock *tp) 1918 { 1919 tp->undo_marker = tp->snd_una; 1920 /* Retransmission still in flight may cause DSACKs later. */ 1921 tp->undo_retrans = tp->retrans_out ? : -1; 1922 } 1923 1924 static bool tcp_is_rack(const struct sock *sk) 1925 { 1926 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1927 } 1928 1929 /* If we detect SACK reneging, forget all SACK information 1930 * and reset tags completely, otherwise preserve SACKs. If receiver 1931 * dropped its ofo queue, we will know this due to reneging detection. 1932 */ 1933 static void tcp_timeout_mark_lost(struct sock *sk) 1934 { 1935 struct tcp_sock *tp = tcp_sk(sk); 1936 struct sk_buff *skb, *head; 1937 bool is_reneg; /* is receiver reneging on SACKs? */ 1938 1939 head = tcp_rtx_queue_head(sk); 1940 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1941 if (is_reneg) { 1942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1943 tp->sacked_out = 0; 1944 /* Mark SACK reneging until we recover from this loss event. */ 1945 tp->is_sack_reneg = 1; 1946 } else if (tcp_is_reno(tp)) { 1947 tcp_reset_reno_sack(tp); 1948 } 1949 1950 skb = head; 1951 skb_rbtree_walk_from(skb) { 1952 if (is_reneg) 1953 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1954 else if (tcp_is_rack(sk) && skb != head && 1955 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1956 continue; /* Don't mark recently sent ones lost yet */ 1957 tcp_mark_skb_lost(sk, skb); 1958 } 1959 tcp_verify_left_out(tp); 1960 tcp_clear_all_retrans_hints(tp); 1961 } 1962 1963 /* Enter Loss state. */ 1964 void tcp_enter_loss(struct sock *sk) 1965 { 1966 const struct inet_connection_sock *icsk = inet_csk(sk); 1967 struct tcp_sock *tp = tcp_sk(sk); 1968 struct net *net = sock_net(sk); 1969 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1970 1971 tcp_timeout_mark_lost(sk); 1972 1973 /* Reduce ssthresh if it has not yet been made inside this window. */ 1974 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1975 !after(tp->high_seq, tp->snd_una) || 1976 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1977 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1978 tp->prior_cwnd = tp->snd_cwnd; 1979 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1980 tcp_ca_event(sk, CA_EVENT_LOSS); 1981 tcp_init_undo(tp); 1982 } 1983 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1984 tp->snd_cwnd_cnt = 0; 1985 tp->snd_cwnd_stamp = tcp_jiffies32; 1986 1987 /* Timeout in disordered state after receiving substantial DUPACKs 1988 * suggests that the degree of reordering is over-estimated. 1989 */ 1990 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1991 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1992 tp->reordering = min_t(unsigned int, tp->reordering, 1993 net->ipv4.sysctl_tcp_reordering); 1994 tcp_set_ca_state(sk, TCP_CA_Loss); 1995 tp->high_seq = tp->snd_nxt; 1996 tcp_ecn_queue_cwr(tp); 1997 1998 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1999 * loss recovery is underway except recurring timeout(s) on 2000 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2001 */ 2002 tp->frto = net->ipv4.sysctl_tcp_frto && 2003 (new_recovery || icsk->icsk_retransmits) && 2004 !inet_csk(sk)->icsk_mtup.probe_size; 2005 } 2006 2007 /* If ACK arrived pointing to a remembered SACK, it means that our 2008 * remembered SACKs do not reflect real state of receiver i.e. 2009 * receiver _host_ is heavily congested (or buggy). 2010 * 2011 * To avoid big spurious retransmission bursts due to transient SACK 2012 * scoreboard oddities that look like reneging, we give the receiver a 2013 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2014 * restore sanity to the SACK scoreboard. If the apparent reneging 2015 * persists until this RTO then we'll clear the SACK scoreboard. 2016 */ 2017 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2018 { 2019 if (flag & FLAG_SACK_RENEGING) { 2020 struct tcp_sock *tp = tcp_sk(sk); 2021 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2022 msecs_to_jiffies(10)); 2023 2024 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2025 delay, TCP_RTO_MAX); 2026 return true; 2027 } 2028 return false; 2029 } 2030 2031 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2032 * counter when SACK is enabled (without SACK, sacked_out is used for 2033 * that purpose). 2034 * 2035 * With reordering, holes may still be in flight, so RFC3517 recovery 2036 * uses pure sacked_out (total number of SACKed segments) even though 2037 * it violates the RFC that uses duplicate ACKs, often these are equal 2038 * but when e.g. out-of-window ACKs or packet duplication occurs, 2039 * they differ. Since neither occurs due to loss, TCP should really 2040 * ignore them. 2041 */ 2042 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2043 { 2044 return tp->sacked_out + 1; 2045 } 2046 2047 /* Linux NewReno/SACK/ECN state machine. 2048 * -------------------------------------- 2049 * 2050 * "Open" Normal state, no dubious events, fast path. 2051 * "Disorder" In all the respects it is "Open", 2052 * but requires a bit more attention. It is entered when 2053 * we see some SACKs or dupacks. It is split of "Open" 2054 * mainly to move some processing from fast path to slow one. 2055 * "CWR" CWND was reduced due to some Congestion Notification event. 2056 * It can be ECN, ICMP source quench, local device congestion. 2057 * "Recovery" CWND was reduced, we are fast-retransmitting. 2058 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2059 * 2060 * tcp_fastretrans_alert() is entered: 2061 * - each incoming ACK, if state is not "Open" 2062 * - when arrived ACK is unusual, namely: 2063 * * SACK 2064 * * Duplicate ACK. 2065 * * ECN ECE. 2066 * 2067 * Counting packets in flight is pretty simple. 2068 * 2069 * in_flight = packets_out - left_out + retrans_out 2070 * 2071 * packets_out is SND.NXT-SND.UNA counted in packets. 2072 * 2073 * retrans_out is number of retransmitted segments. 2074 * 2075 * left_out is number of segments left network, but not ACKed yet. 2076 * 2077 * left_out = sacked_out + lost_out 2078 * 2079 * sacked_out: Packets, which arrived to receiver out of order 2080 * and hence not ACKed. With SACKs this number is simply 2081 * amount of SACKed data. Even without SACKs 2082 * it is easy to give pretty reliable estimate of this number, 2083 * counting duplicate ACKs. 2084 * 2085 * lost_out: Packets lost by network. TCP has no explicit 2086 * "loss notification" feedback from network (for now). 2087 * It means that this number can be only _guessed_. 2088 * Actually, it is the heuristics to predict lossage that 2089 * distinguishes different algorithms. 2090 * 2091 * F.e. after RTO, when all the queue is considered as lost, 2092 * lost_out = packets_out and in_flight = retrans_out. 2093 * 2094 * Essentially, we have now a few algorithms detecting 2095 * lost packets. 2096 * 2097 * If the receiver supports SACK: 2098 * 2099 * RFC6675/3517: It is the conventional algorithm. A packet is 2100 * considered lost if the number of higher sequence packets 2101 * SACKed is greater than or equal the DUPACK thoreshold 2102 * (reordering). This is implemented in tcp_mark_head_lost and 2103 * tcp_update_scoreboard. 2104 * 2105 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2106 * (2017-) that checks timing instead of counting DUPACKs. 2107 * Essentially a packet is considered lost if it's not S/ACKed 2108 * after RTT + reordering_window, where both metrics are 2109 * dynamically measured and adjusted. This is implemented in 2110 * tcp_rack_mark_lost. 2111 * 2112 * If the receiver does not support SACK: 2113 * 2114 * NewReno (RFC6582): in Recovery we assume that one segment 2115 * is lost (classic Reno). While we are in Recovery and 2116 * a partial ACK arrives, we assume that one more packet 2117 * is lost (NewReno). This heuristics are the same in NewReno 2118 * and SACK. 2119 * 2120 * Really tricky (and requiring careful tuning) part of algorithm 2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2122 * The first determines the moment _when_ we should reduce CWND and, 2123 * hence, slow down forward transmission. In fact, it determines the moment 2124 * when we decide that hole is caused by loss, rather than by a reorder. 2125 * 2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2127 * holes, caused by lost packets. 2128 * 2129 * And the most logically complicated part of algorithm is undo 2130 * heuristics. We detect false retransmits due to both too early 2131 * fast retransmit (reordering) and underestimated RTO, analyzing 2132 * timestamps and D-SACKs. When we detect that some segments were 2133 * retransmitted by mistake and CWND reduction was wrong, we undo 2134 * window reduction and abort recovery phase. This logic is hidden 2135 * inside several functions named tcp_try_undo_<something>. 2136 */ 2137 2138 /* This function decides, when we should leave Disordered state 2139 * and enter Recovery phase, reducing congestion window. 2140 * 2141 * Main question: may we further continue forward transmission 2142 * with the same cwnd? 2143 */ 2144 static bool tcp_time_to_recover(struct sock *sk, int flag) 2145 { 2146 struct tcp_sock *tp = tcp_sk(sk); 2147 2148 /* Trick#1: The loss is proven. */ 2149 if (tp->lost_out) 2150 return true; 2151 2152 /* Not-A-Trick#2 : Classic rule... */ 2153 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2154 return true; 2155 2156 return false; 2157 } 2158 2159 /* Detect loss in event "A" above by marking head of queue up as lost. 2160 * For non-SACK(Reno) senders, the first "packets" number of segments 2161 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2162 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2163 * the maximum SACKed segments to pass before reaching this limit. 2164 */ 2165 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2166 { 2167 struct tcp_sock *tp = tcp_sk(sk); 2168 struct sk_buff *skb; 2169 int cnt, oldcnt, lost; 2170 unsigned int mss; 2171 /* Use SACK to deduce losses of new sequences sent during recovery */ 2172 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2173 2174 WARN_ON(packets > tp->packets_out); 2175 skb = tp->lost_skb_hint; 2176 if (skb) { 2177 /* Head already handled? */ 2178 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2179 return; 2180 cnt = tp->lost_cnt_hint; 2181 } else { 2182 skb = tcp_rtx_queue_head(sk); 2183 cnt = 0; 2184 } 2185 2186 skb_rbtree_walk_from(skb) { 2187 /* TODO: do this better */ 2188 /* this is not the most efficient way to do this... */ 2189 tp->lost_skb_hint = skb; 2190 tp->lost_cnt_hint = cnt; 2191 2192 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2193 break; 2194 2195 oldcnt = cnt; 2196 if (tcp_is_reno(tp) || 2197 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2198 cnt += tcp_skb_pcount(skb); 2199 2200 if (cnt > packets) { 2201 if (tcp_is_sack(tp) || 2202 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2203 (oldcnt >= packets)) 2204 break; 2205 2206 mss = tcp_skb_mss(skb); 2207 /* If needed, chop off the prefix to mark as lost. */ 2208 lost = (packets - oldcnt) * mss; 2209 if (lost < skb->len && 2210 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2211 lost, mss, GFP_ATOMIC) < 0) 2212 break; 2213 cnt = packets; 2214 } 2215 2216 tcp_skb_mark_lost(tp, skb); 2217 2218 if (mark_head) 2219 break; 2220 } 2221 tcp_verify_left_out(tp); 2222 } 2223 2224 /* Account newly detected lost packet(s) */ 2225 2226 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2227 { 2228 struct tcp_sock *tp = tcp_sk(sk); 2229 2230 if (tcp_is_sack(tp)) { 2231 int sacked_upto = tp->sacked_out - tp->reordering; 2232 if (sacked_upto >= 0) 2233 tcp_mark_head_lost(sk, sacked_upto, 0); 2234 else if (fast_rexmit) 2235 tcp_mark_head_lost(sk, 1, 1); 2236 } 2237 } 2238 2239 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2240 { 2241 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2242 before(tp->rx_opt.rcv_tsecr, when); 2243 } 2244 2245 /* skb is spurious retransmitted if the returned timestamp echo 2246 * reply is prior to the skb transmission time 2247 */ 2248 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2249 const struct sk_buff *skb) 2250 { 2251 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2252 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2253 } 2254 2255 /* Nothing was retransmitted or returned timestamp is less 2256 * than timestamp of the first retransmission. 2257 */ 2258 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2259 { 2260 return !tp->retrans_stamp || 2261 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2262 } 2263 2264 /* Undo procedures. */ 2265 2266 /* We can clear retrans_stamp when there are no retransmissions in the 2267 * window. It would seem that it is trivially available for us in 2268 * tp->retrans_out, however, that kind of assumptions doesn't consider 2269 * what will happen if errors occur when sending retransmission for the 2270 * second time. ...It could the that such segment has only 2271 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2272 * the head skb is enough except for some reneging corner cases that 2273 * are not worth the effort. 2274 * 2275 * Main reason for all this complexity is the fact that connection dying 2276 * time now depends on the validity of the retrans_stamp, in particular, 2277 * that successive retransmissions of a segment must not advance 2278 * retrans_stamp under any conditions. 2279 */ 2280 static bool tcp_any_retrans_done(const struct sock *sk) 2281 { 2282 const struct tcp_sock *tp = tcp_sk(sk); 2283 struct sk_buff *skb; 2284 2285 if (tp->retrans_out) 2286 return true; 2287 2288 skb = tcp_rtx_queue_head(sk); 2289 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2290 return true; 2291 2292 return false; 2293 } 2294 2295 static void DBGUNDO(struct sock *sk, const char *msg) 2296 { 2297 #if FASTRETRANS_DEBUG > 1 2298 struct tcp_sock *tp = tcp_sk(sk); 2299 struct inet_sock *inet = inet_sk(sk); 2300 2301 if (sk->sk_family == AF_INET) { 2302 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2303 msg, 2304 &inet->inet_daddr, ntohs(inet->inet_dport), 2305 tp->snd_cwnd, tcp_left_out(tp), 2306 tp->snd_ssthresh, tp->prior_ssthresh, 2307 tp->packets_out); 2308 } 2309 #if IS_ENABLED(CONFIG_IPV6) 2310 else if (sk->sk_family == AF_INET6) { 2311 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2312 msg, 2313 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2314 tp->snd_cwnd, tcp_left_out(tp), 2315 tp->snd_ssthresh, tp->prior_ssthresh, 2316 tp->packets_out); 2317 } 2318 #endif 2319 #endif 2320 } 2321 2322 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2323 { 2324 struct tcp_sock *tp = tcp_sk(sk); 2325 2326 if (unmark_loss) { 2327 struct sk_buff *skb; 2328 2329 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2330 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2331 } 2332 tp->lost_out = 0; 2333 tcp_clear_all_retrans_hints(tp); 2334 } 2335 2336 if (tp->prior_ssthresh) { 2337 const struct inet_connection_sock *icsk = inet_csk(sk); 2338 2339 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2340 2341 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2342 tp->snd_ssthresh = tp->prior_ssthresh; 2343 tcp_ecn_withdraw_cwr(tp); 2344 } 2345 } 2346 tp->snd_cwnd_stamp = tcp_jiffies32; 2347 tp->undo_marker = 0; 2348 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2349 } 2350 2351 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2352 { 2353 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2354 } 2355 2356 /* People celebrate: "We love our President!" */ 2357 static bool tcp_try_undo_recovery(struct sock *sk) 2358 { 2359 struct tcp_sock *tp = tcp_sk(sk); 2360 2361 if (tcp_may_undo(tp)) { 2362 int mib_idx; 2363 2364 /* Happy end! We did not retransmit anything 2365 * or our original transmission succeeded. 2366 */ 2367 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2368 tcp_undo_cwnd_reduction(sk, false); 2369 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2370 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2371 else 2372 mib_idx = LINUX_MIB_TCPFULLUNDO; 2373 2374 NET_INC_STATS(sock_net(sk), mib_idx); 2375 } else if (tp->rack.reo_wnd_persist) { 2376 tp->rack.reo_wnd_persist--; 2377 } 2378 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2379 /* Hold old state until something *above* high_seq 2380 * is ACKed. For Reno it is MUST to prevent false 2381 * fast retransmits (RFC2582). SACK TCP is safe. */ 2382 if (!tcp_any_retrans_done(sk)) 2383 tp->retrans_stamp = 0; 2384 return true; 2385 } 2386 tcp_set_ca_state(sk, TCP_CA_Open); 2387 tp->is_sack_reneg = 0; 2388 return false; 2389 } 2390 2391 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2392 static bool tcp_try_undo_dsack(struct sock *sk) 2393 { 2394 struct tcp_sock *tp = tcp_sk(sk); 2395 2396 if (tp->undo_marker && !tp->undo_retrans) { 2397 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2398 tp->rack.reo_wnd_persist + 1); 2399 DBGUNDO(sk, "D-SACK"); 2400 tcp_undo_cwnd_reduction(sk, false); 2401 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2402 return true; 2403 } 2404 return false; 2405 } 2406 2407 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2408 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2409 { 2410 struct tcp_sock *tp = tcp_sk(sk); 2411 2412 if (frto_undo || tcp_may_undo(tp)) { 2413 tcp_undo_cwnd_reduction(sk, true); 2414 2415 DBGUNDO(sk, "partial loss"); 2416 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2417 if (frto_undo) 2418 NET_INC_STATS(sock_net(sk), 2419 LINUX_MIB_TCPSPURIOUSRTOS); 2420 inet_csk(sk)->icsk_retransmits = 0; 2421 if (frto_undo || tcp_is_sack(tp)) { 2422 tcp_set_ca_state(sk, TCP_CA_Open); 2423 tp->is_sack_reneg = 0; 2424 } 2425 return true; 2426 } 2427 return false; 2428 } 2429 2430 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2431 * It computes the number of packets to send (sndcnt) based on packets newly 2432 * delivered: 2433 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2434 * cwnd reductions across a full RTT. 2435 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2436 * But when the retransmits are acked without further losses, PRR 2437 * slow starts cwnd up to ssthresh to speed up the recovery. 2438 */ 2439 static void tcp_init_cwnd_reduction(struct sock *sk) 2440 { 2441 struct tcp_sock *tp = tcp_sk(sk); 2442 2443 tp->high_seq = tp->snd_nxt; 2444 tp->tlp_high_seq = 0; 2445 tp->snd_cwnd_cnt = 0; 2446 tp->prior_cwnd = tp->snd_cwnd; 2447 tp->prr_delivered = 0; 2448 tp->prr_out = 0; 2449 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2450 tcp_ecn_queue_cwr(tp); 2451 } 2452 2453 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2454 { 2455 struct tcp_sock *tp = tcp_sk(sk); 2456 int sndcnt = 0; 2457 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2458 2459 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2460 return; 2461 2462 tp->prr_delivered += newly_acked_sacked; 2463 if (delta < 0) { 2464 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2465 tp->prior_cwnd - 1; 2466 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2467 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2468 !(flag & FLAG_LOST_RETRANS)) { 2469 sndcnt = min_t(int, delta, 2470 max_t(int, tp->prr_delivered - tp->prr_out, 2471 newly_acked_sacked) + 1); 2472 } else { 2473 sndcnt = min(delta, newly_acked_sacked); 2474 } 2475 /* Force a fast retransmit upon entering fast recovery */ 2476 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2477 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2478 } 2479 2480 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2481 { 2482 struct tcp_sock *tp = tcp_sk(sk); 2483 2484 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2485 return; 2486 2487 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2488 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2489 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2490 tp->snd_cwnd = tp->snd_ssthresh; 2491 tp->snd_cwnd_stamp = tcp_jiffies32; 2492 } 2493 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2494 } 2495 2496 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2497 void tcp_enter_cwr(struct sock *sk) 2498 { 2499 struct tcp_sock *tp = tcp_sk(sk); 2500 2501 tp->prior_ssthresh = 0; 2502 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2503 tp->undo_marker = 0; 2504 tcp_init_cwnd_reduction(sk); 2505 tcp_set_ca_state(sk, TCP_CA_CWR); 2506 } 2507 } 2508 EXPORT_SYMBOL(tcp_enter_cwr); 2509 2510 static void tcp_try_keep_open(struct sock *sk) 2511 { 2512 struct tcp_sock *tp = tcp_sk(sk); 2513 int state = TCP_CA_Open; 2514 2515 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2516 state = TCP_CA_Disorder; 2517 2518 if (inet_csk(sk)->icsk_ca_state != state) { 2519 tcp_set_ca_state(sk, state); 2520 tp->high_seq = tp->snd_nxt; 2521 } 2522 } 2523 2524 static void tcp_try_to_open(struct sock *sk, int flag) 2525 { 2526 struct tcp_sock *tp = tcp_sk(sk); 2527 2528 tcp_verify_left_out(tp); 2529 2530 if (!tcp_any_retrans_done(sk)) 2531 tp->retrans_stamp = 0; 2532 2533 if (flag & FLAG_ECE) 2534 tcp_enter_cwr(sk); 2535 2536 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2537 tcp_try_keep_open(sk); 2538 } 2539 } 2540 2541 static void tcp_mtup_probe_failed(struct sock *sk) 2542 { 2543 struct inet_connection_sock *icsk = inet_csk(sk); 2544 2545 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2546 icsk->icsk_mtup.probe_size = 0; 2547 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2548 } 2549 2550 static void tcp_mtup_probe_success(struct sock *sk) 2551 { 2552 struct tcp_sock *tp = tcp_sk(sk); 2553 struct inet_connection_sock *icsk = inet_csk(sk); 2554 2555 /* FIXME: breaks with very large cwnd */ 2556 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2557 tp->snd_cwnd = tp->snd_cwnd * 2558 tcp_mss_to_mtu(sk, tp->mss_cache) / 2559 icsk->icsk_mtup.probe_size; 2560 tp->snd_cwnd_cnt = 0; 2561 tp->snd_cwnd_stamp = tcp_jiffies32; 2562 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2563 2564 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2565 icsk->icsk_mtup.probe_size = 0; 2566 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2567 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2568 } 2569 2570 /* Do a simple retransmit without using the backoff mechanisms in 2571 * tcp_timer. This is used for path mtu discovery. 2572 * The socket is already locked here. 2573 */ 2574 void tcp_simple_retransmit(struct sock *sk) 2575 { 2576 const struct inet_connection_sock *icsk = inet_csk(sk); 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 struct sk_buff *skb; 2579 unsigned int mss = tcp_current_mss(sk); 2580 2581 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2582 if (tcp_skb_seglen(skb) > mss && 2583 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2584 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2585 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2586 tp->retrans_out -= tcp_skb_pcount(skb); 2587 } 2588 tcp_skb_mark_lost_uncond_verify(tp, skb); 2589 } 2590 } 2591 2592 tcp_clear_retrans_hints_partial(tp); 2593 2594 if (!tp->lost_out) 2595 return; 2596 2597 if (tcp_is_reno(tp)) 2598 tcp_limit_reno_sacked(tp); 2599 2600 tcp_verify_left_out(tp); 2601 2602 /* Don't muck with the congestion window here. 2603 * Reason is that we do not increase amount of _data_ 2604 * in network, but units changed and effective 2605 * cwnd/ssthresh really reduced now. 2606 */ 2607 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2608 tp->high_seq = tp->snd_nxt; 2609 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2610 tp->prior_ssthresh = 0; 2611 tp->undo_marker = 0; 2612 tcp_set_ca_state(sk, TCP_CA_Loss); 2613 } 2614 tcp_xmit_retransmit_queue(sk); 2615 } 2616 EXPORT_SYMBOL(tcp_simple_retransmit); 2617 2618 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2619 { 2620 struct tcp_sock *tp = tcp_sk(sk); 2621 int mib_idx; 2622 2623 if (tcp_is_reno(tp)) 2624 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2625 else 2626 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2627 2628 NET_INC_STATS(sock_net(sk), mib_idx); 2629 2630 tp->prior_ssthresh = 0; 2631 tcp_init_undo(tp); 2632 2633 if (!tcp_in_cwnd_reduction(sk)) { 2634 if (!ece_ack) 2635 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2636 tcp_init_cwnd_reduction(sk); 2637 } 2638 tcp_set_ca_state(sk, TCP_CA_Recovery); 2639 } 2640 2641 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2642 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2643 */ 2644 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2645 int *rexmit) 2646 { 2647 struct tcp_sock *tp = tcp_sk(sk); 2648 bool recovered = !before(tp->snd_una, tp->high_seq); 2649 2650 if ((flag & FLAG_SND_UNA_ADVANCED) && 2651 tcp_try_undo_loss(sk, false)) 2652 return; 2653 2654 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2655 /* Step 3.b. A timeout is spurious if not all data are 2656 * lost, i.e., never-retransmitted data are (s)acked. 2657 */ 2658 if ((flag & FLAG_ORIG_SACK_ACKED) && 2659 tcp_try_undo_loss(sk, true)) 2660 return; 2661 2662 if (after(tp->snd_nxt, tp->high_seq)) { 2663 if (flag & FLAG_DATA_SACKED || is_dupack) 2664 tp->frto = 0; /* Step 3.a. loss was real */ 2665 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2666 tp->high_seq = tp->snd_nxt; 2667 /* Step 2.b. Try send new data (but deferred until cwnd 2668 * is updated in tcp_ack()). Otherwise fall back to 2669 * the conventional recovery. 2670 */ 2671 if (!tcp_write_queue_empty(sk) && 2672 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2673 *rexmit = REXMIT_NEW; 2674 return; 2675 } 2676 tp->frto = 0; 2677 } 2678 } 2679 2680 if (recovered) { 2681 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2682 tcp_try_undo_recovery(sk); 2683 return; 2684 } 2685 if (tcp_is_reno(tp)) { 2686 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2687 * delivered. Lower inflight to clock out (re)tranmissions. 2688 */ 2689 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2690 tcp_add_reno_sack(sk); 2691 else if (flag & FLAG_SND_UNA_ADVANCED) 2692 tcp_reset_reno_sack(tp); 2693 } 2694 *rexmit = REXMIT_LOST; 2695 } 2696 2697 /* Undo during fast recovery after partial ACK. */ 2698 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2699 { 2700 struct tcp_sock *tp = tcp_sk(sk); 2701 2702 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2703 /* Plain luck! Hole if filled with delayed 2704 * packet, rather than with a retransmit. Check reordering. 2705 */ 2706 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2707 2708 /* We are getting evidence that the reordering degree is higher 2709 * than we realized. If there are no retransmits out then we 2710 * can undo. Otherwise we clock out new packets but do not 2711 * mark more packets lost or retransmit more. 2712 */ 2713 if (tp->retrans_out) 2714 return true; 2715 2716 if (!tcp_any_retrans_done(sk)) 2717 tp->retrans_stamp = 0; 2718 2719 DBGUNDO(sk, "partial recovery"); 2720 tcp_undo_cwnd_reduction(sk, true); 2721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2722 tcp_try_keep_open(sk); 2723 return true; 2724 } 2725 return false; 2726 } 2727 2728 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2729 { 2730 struct tcp_sock *tp = tcp_sk(sk); 2731 2732 if (tcp_rtx_queue_empty(sk)) 2733 return; 2734 2735 if (unlikely(tcp_is_reno(tp))) { 2736 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2737 } else if (tcp_is_rack(sk)) { 2738 u32 prior_retrans = tp->retrans_out; 2739 2740 tcp_rack_mark_lost(sk); 2741 if (prior_retrans > tp->retrans_out) 2742 *ack_flag |= FLAG_LOST_RETRANS; 2743 } 2744 } 2745 2746 static bool tcp_force_fast_retransmit(struct sock *sk) 2747 { 2748 struct tcp_sock *tp = tcp_sk(sk); 2749 2750 return after(tcp_highest_sack_seq(tp), 2751 tp->snd_una + tp->reordering * tp->mss_cache); 2752 } 2753 2754 /* Process an event, which can update packets-in-flight not trivially. 2755 * Main goal of this function is to calculate new estimate for left_out, 2756 * taking into account both packets sitting in receiver's buffer and 2757 * packets lost by network. 2758 * 2759 * Besides that it updates the congestion state when packet loss or ECN 2760 * is detected. But it does not reduce the cwnd, it is done by the 2761 * congestion control later. 2762 * 2763 * It does _not_ decide what to send, it is made in function 2764 * tcp_xmit_retransmit_queue(). 2765 */ 2766 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2767 bool is_dupack, int *ack_flag, int *rexmit) 2768 { 2769 struct inet_connection_sock *icsk = inet_csk(sk); 2770 struct tcp_sock *tp = tcp_sk(sk); 2771 int fast_rexmit = 0, flag = *ack_flag; 2772 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2773 tcp_force_fast_retransmit(sk)); 2774 2775 if (!tp->packets_out && tp->sacked_out) 2776 tp->sacked_out = 0; 2777 2778 /* Now state machine starts. 2779 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2780 if (flag & FLAG_ECE) 2781 tp->prior_ssthresh = 0; 2782 2783 /* B. In all the states check for reneging SACKs. */ 2784 if (tcp_check_sack_reneging(sk, flag)) 2785 return; 2786 2787 /* C. Check consistency of the current state. */ 2788 tcp_verify_left_out(tp); 2789 2790 /* D. Check state exit conditions. State can be terminated 2791 * when high_seq is ACKed. */ 2792 if (icsk->icsk_ca_state == TCP_CA_Open) { 2793 WARN_ON(tp->retrans_out != 0); 2794 tp->retrans_stamp = 0; 2795 } else if (!before(tp->snd_una, tp->high_seq)) { 2796 switch (icsk->icsk_ca_state) { 2797 case TCP_CA_CWR: 2798 /* CWR is to be held something *above* high_seq 2799 * is ACKed for CWR bit to reach receiver. */ 2800 if (tp->snd_una != tp->high_seq) { 2801 tcp_end_cwnd_reduction(sk); 2802 tcp_set_ca_state(sk, TCP_CA_Open); 2803 } 2804 break; 2805 2806 case TCP_CA_Recovery: 2807 if (tcp_is_reno(tp)) 2808 tcp_reset_reno_sack(tp); 2809 if (tcp_try_undo_recovery(sk)) 2810 return; 2811 tcp_end_cwnd_reduction(sk); 2812 break; 2813 } 2814 } 2815 2816 /* E. Process state. */ 2817 switch (icsk->icsk_ca_state) { 2818 case TCP_CA_Recovery: 2819 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2820 if (tcp_is_reno(tp) && is_dupack) 2821 tcp_add_reno_sack(sk); 2822 } else { 2823 if (tcp_try_undo_partial(sk, prior_snd_una)) 2824 return; 2825 /* Partial ACK arrived. Force fast retransmit. */ 2826 do_lost = tcp_is_reno(tp) || 2827 tcp_force_fast_retransmit(sk); 2828 } 2829 if (tcp_try_undo_dsack(sk)) { 2830 tcp_try_keep_open(sk); 2831 return; 2832 } 2833 tcp_identify_packet_loss(sk, ack_flag); 2834 break; 2835 case TCP_CA_Loss: 2836 tcp_process_loss(sk, flag, is_dupack, rexmit); 2837 tcp_identify_packet_loss(sk, ack_flag); 2838 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2839 (*ack_flag & FLAG_LOST_RETRANS))) 2840 return; 2841 /* Change state if cwnd is undone or retransmits are lost */ 2842 /* fall through */ 2843 default: 2844 if (tcp_is_reno(tp)) { 2845 if (flag & FLAG_SND_UNA_ADVANCED) 2846 tcp_reset_reno_sack(tp); 2847 if (is_dupack) 2848 tcp_add_reno_sack(sk); 2849 } 2850 2851 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2852 tcp_try_undo_dsack(sk); 2853 2854 tcp_identify_packet_loss(sk, ack_flag); 2855 if (!tcp_time_to_recover(sk, flag)) { 2856 tcp_try_to_open(sk, flag); 2857 return; 2858 } 2859 2860 /* MTU probe failure: don't reduce cwnd */ 2861 if (icsk->icsk_ca_state < TCP_CA_CWR && 2862 icsk->icsk_mtup.probe_size && 2863 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2864 tcp_mtup_probe_failed(sk); 2865 /* Restores the reduction we did in tcp_mtup_probe() */ 2866 tp->snd_cwnd++; 2867 tcp_simple_retransmit(sk); 2868 return; 2869 } 2870 2871 /* Otherwise enter Recovery state */ 2872 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2873 fast_rexmit = 1; 2874 } 2875 2876 if (!tcp_is_rack(sk) && do_lost) 2877 tcp_update_scoreboard(sk, fast_rexmit); 2878 *rexmit = REXMIT_LOST; 2879 } 2880 2881 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2882 { 2883 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2884 struct tcp_sock *tp = tcp_sk(sk); 2885 2886 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2887 /* If the remote keeps returning delayed ACKs, eventually 2888 * the min filter would pick it up and overestimate the 2889 * prop. delay when it expires. Skip suspected delayed ACKs. 2890 */ 2891 return; 2892 } 2893 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2894 rtt_us ? : jiffies_to_usecs(1)); 2895 } 2896 2897 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2898 long seq_rtt_us, long sack_rtt_us, 2899 long ca_rtt_us, struct rate_sample *rs) 2900 { 2901 const struct tcp_sock *tp = tcp_sk(sk); 2902 2903 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2904 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2905 * Karn's algorithm forbids taking RTT if some retransmitted data 2906 * is acked (RFC6298). 2907 */ 2908 if (seq_rtt_us < 0) 2909 seq_rtt_us = sack_rtt_us; 2910 2911 /* RTTM Rule: A TSecr value received in a segment is used to 2912 * update the averaged RTT measurement only if the segment 2913 * acknowledges some new data, i.e., only if it advances the 2914 * left edge of the send window. 2915 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2916 */ 2917 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2918 flag & FLAG_ACKED) { 2919 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2920 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2921 2922 seq_rtt_us = ca_rtt_us = delta_us; 2923 } 2924 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2925 if (seq_rtt_us < 0) 2926 return false; 2927 2928 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2929 * always taken together with ACK, SACK, or TS-opts. Any negative 2930 * values will be skipped with the seq_rtt_us < 0 check above. 2931 */ 2932 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2933 tcp_rtt_estimator(sk, seq_rtt_us); 2934 tcp_set_rto(sk); 2935 2936 /* RFC6298: only reset backoff on valid RTT measurement. */ 2937 inet_csk(sk)->icsk_backoff = 0; 2938 return true; 2939 } 2940 2941 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2942 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2943 { 2944 struct rate_sample rs; 2945 long rtt_us = -1L; 2946 2947 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2948 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2949 2950 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2951 } 2952 2953 2954 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2955 { 2956 const struct inet_connection_sock *icsk = inet_csk(sk); 2957 2958 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2959 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2960 } 2961 2962 /* Restart timer after forward progress on connection. 2963 * RFC2988 recommends to restart timer to now+rto. 2964 */ 2965 void tcp_rearm_rto(struct sock *sk) 2966 { 2967 const struct inet_connection_sock *icsk = inet_csk(sk); 2968 struct tcp_sock *tp = tcp_sk(sk); 2969 2970 /* If the retrans timer is currently being used by Fast Open 2971 * for SYN-ACK retrans purpose, stay put. 2972 */ 2973 if (tp->fastopen_rsk) 2974 return; 2975 2976 if (!tp->packets_out) { 2977 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2978 } else { 2979 u32 rto = inet_csk(sk)->icsk_rto; 2980 /* Offset the time elapsed after installing regular RTO */ 2981 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2982 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2983 s64 delta_us = tcp_rto_delta_us(sk); 2984 /* delta_us may not be positive if the socket is locked 2985 * when the retrans timer fires and is rescheduled. 2986 */ 2987 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2988 } 2989 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2990 TCP_RTO_MAX); 2991 } 2992 } 2993 2994 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2995 static void tcp_set_xmit_timer(struct sock *sk) 2996 { 2997 if (!tcp_schedule_loss_probe(sk, true)) 2998 tcp_rearm_rto(sk); 2999 } 3000 3001 /* If we get here, the whole TSO packet has not been acked. */ 3002 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3003 { 3004 struct tcp_sock *tp = tcp_sk(sk); 3005 u32 packets_acked; 3006 3007 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3008 3009 packets_acked = tcp_skb_pcount(skb); 3010 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3011 return 0; 3012 packets_acked -= tcp_skb_pcount(skb); 3013 3014 if (packets_acked) { 3015 BUG_ON(tcp_skb_pcount(skb) == 0); 3016 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3017 } 3018 3019 return packets_acked; 3020 } 3021 3022 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3023 u32 prior_snd_una) 3024 { 3025 const struct skb_shared_info *shinfo; 3026 3027 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3028 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3029 return; 3030 3031 shinfo = skb_shinfo(skb); 3032 if (!before(shinfo->tskey, prior_snd_una) && 3033 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3034 tcp_skb_tsorted_save(skb) { 3035 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3036 } tcp_skb_tsorted_restore(skb); 3037 } 3038 } 3039 3040 /* Remove acknowledged frames from the retransmission queue. If our packet 3041 * is before the ack sequence we can discard it as it's confirmed to have 3042 * arrived at the other end. 3043 */ 3044 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3045 u32 prior_snd_una, 3046 struct tcp_sacktag_state *sack) 3047 { 3048 const struct inet_connection_sock *icsk = inet_csk(sk); 3049 u64 first_ackt, last_ackt; 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 u32 prior_sacked = tp->sacked_out; 3052 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3053 struct sk_buff *skb, *next; 3054 bool fully_acked = true; 3055 long sack_rtt_us = -1L; 3056 long seq_rtt_us = -1L; 3057 long ca_rtt_us = -1L; 3058 u32 pkts_acked = 0; 3059 u32 last_in_flight = 0; 3060 bool rtt_update; 3061 int flag = 0; 3062 3063 first_ackt = 0; 3064 3065 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3066 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3067 const u32 start_seq = scb->seq; 3068 u8 sacked = scb->sacked; 3069 u32 acked_pcount; 3070 3071 tcp_ack_tstamp(sk, skb, prior_snd_una); 3072 3073 /* Determine how many packets and what bytes were acked, tso and else */ 3074 if (after(scb->end_seq, tp->snd_una)) { 3075 if (tcp_skb_pcount(skb) == 1 || 3076 !after(tp->snd_una, scb->seq)) 3077 break; 3078 3079 acked_pcount = tcp_tso_acked(sk, skb); 3080 if (!acked_pcount) 3081 break; 3082 fully_acked = false; 3083 } else { 3084 acked_pcount = tcp_skb_pcount(skb); 3085 } 3086 3087 if (unlikely(sacked & TCPCB_RETRANS)) { 3088 if (sacked & TCPCB_SACKED_RETRANS) 3089 tp->retrans_out -= acked_pcount; 3090 flag |= FLAG_RETRANS_DATA_ACKED; 3091 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3092 last_ackt = skb->skb_mstamp; 3093 WARN_ON_ONCE(last_ackt == 0); 3094 if (!first_ackt) 3095 first_ackt = last_ackt; 3096 3097 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3098 if (before(start_seq, reord)) 3099 reord = start_seq; 3100 if (!after(scb->end_seq, tp->high_seq)) 3101 flag |= FLAG_ORIG_SACK_ACKED; 3102 } 3103 3104 if (sacked & TCPCB_SACKED_ACKED) { 3105 tp->sacked_out -= acked_pcount; 3106 } else if (tcp_is_sack(tp)) { 3107 tp->delivered += acked_pcount; 3108 if (!tcp_skb_spurious_retrans(tp, skb)) 3109 tcp_rack_advance(tp, sacked, scb->end_seq, 3110 skb->skb_mstamp); 3111 } 3112 if (sacked & TCPCB_LOST) 3113 tp->lost_out -= acked_pcount; 3114 3115 tp->packets_out -= acked_pcount; 3116 pkts_acked += acked_pcount; 3117 tcp_rate_skb_delivered(sk, skb, sack->rate); 3118 3119 /* Initial outgoing SYN's get put onto the write_queue 3120 * just like anything else we transmit. It is not 3121 * true data, and if we misinform our callers that 3122 * this ACK acks real data, we will erroneously exit 3123 * connection startup slow start one packet too 3124 * quickly. This is severely frowned upon behavior. 3125 */ 3126 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3127 flag |= FLAG_DATA_ACKED; 3128 } else { 3129 flag |= FLAG_SYN_ACKED; 3130 tp->retrans_stamp = 0; 3131 } 3132 3133 if (!fully_acked) 3134 break; 3135 3136 next = skb_rb_next(skb); 3137 if (unlikely(skb == tp->retransmit_skb_hint)) 3138 tp->retransmit_skb_hint = NULL; 3139 if (unlikely(skb == tp->lost_skb_hint)) 3140 tp->lost_skb_hint = NULL; 3141 tcp_rtx_queue_unlink_and_free(skb, sk); 3142 } 3143 3144 if (!skb) 3145 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3146 3147 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3148 tp->snd_up = tp->snd_una; 3149 3150 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3151 flag |= FLAG_SACK_RENEGING; 3152 3153 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3154 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3155 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3156 3157 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3158 last_in_flight && !prior_sacked && fully_acked && 3159 sack->rate->prior_delivered + 1 == tp->delivered && 3160 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3161 /* Conservatively mark a delayed ACK. It's typically 3162 * from a lone runt packet over the round trip to 3163 * a receiver w/o out-of-order or CE events. 3164 */ 3165 flag |= FLAG_ACK_MAYBE_DELAYED; 3166 } 3167 } 3168 if (sack->first_sackt) { 3169 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3170 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3171 } 3172 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3173 ca_rtt_us, sack->rate); 3174 3175 if (flag & FLAG_ACKED) { 3176 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3177 if (unlikely(icsk->icsk_mtup.probe_size && 3178 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3179 tcp_mtup_probe_success(sk); 3180 } 3181 3182 if (tcp_is_reno(tp)) { 3183 tcp_remove_reno_sacks(sk, pkts_acked); 3184 3185 /* If any of the cumulatively ACKed segments was 3186 * retransmitted, non-SACK case cannot confirm that 3187 * progress was due to original transmission due to 3188 * lack of TCPCB_SACKED_ACKED bits even if some of 3189 * the packets may have been never retransmitted. 3190 */ 3191 if (flag & FLAG_RETRANS_DATA_ACKED) 3192 flag &= ~FLAG_ORIG_SACK_ACKED; 3193 } else { 3194 int delta; 3195 3196 /* Non-retransmitted hole got filled? That's reordering */ 3197 if (before(reord, prior_fack)) 3198 tcp_check_sack_reordering(sk, reord, 0); 3199 3200 delta = prior_sacked - tp->sacked_out; 3201 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3202 } 3203 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3204 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3205 /* Do not re-arm RTO if the sack RTT is measured from data sent 3206 * after when the head was last (re)transmitted. Otherwise the 3207 * timeout may continue to extend in loss recovery. 3208 */ 3209 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3210 } 3211 3212 if (icsk->icsk_ca_ops->pkts_acked) { 3213 struct ack_sample sample = { .pkts_acked = pkts_acked, 3214 .rtt_us = sack->rate->rtt_us, 3215 .in_flight = last_in_flight }; 3216 3217 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3218 } 3219 3220 #if FASTRETRANS_DEBUG > 0 3221 WARN_ON((int)tp->sacked_out < 0); 3222 WARN_ON((int)tp->lost_out < 0); 3223 WARN_ON((int)tp->retrans_out < 0); 3224 if (!tp->packets_out && tcp_is_sack(tp)) { 3225 icsk = inet_csk(sk); 3226 if (tp->lost_out) { 3227 pr_debug("Leak l=%u %d\n", 3228 tp->lost_out, icsk->icsk_ca_state); 3229 tp->lost_out = 0; 3230 } 3231 if (tp->sacked_out) { 3232 pr_debug("Leak s=%u %d\n", 3233 tp->sacked_out, icsk->icsk_ca_state); 3234 tp->sacked_out = 0; 3235 } 3236 if (tp->retrans_out) { 3237 pr_debug("Leak r=%u %d\n", 3238 tp->retrans_out, icsk->icsk_ca_state); 3239 tp->retrans_out = 0; 3240 } 3241 } 3242 #endif 3243 return flag; 3244 } 3245 3246 static void tcp_ack_probe(struct sock *sk) 3247 { 3248 struct inet_connection_sock *icsk = inet_csk(sk); 3249 struct sk_buff *head = tcp_send_head(sk); 3250 const struct tcp_sock *tp = tcp_sk(sk); 3251 3252 /* Was it a usable window open? */ 3253 if (!head) 3254 return; 3255 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3256 icsk->icsk_backoff = 0; 3257 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3258 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3259 * This function is not for random using! 3260 */ 3261 } else { 3262 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3263 3264 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3265 when, TCP_RTO_MAX); 3266 } 3267 } 3268 3269 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3270 { 3271 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3272 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3273 } 3274 3275 /* Decide wheather to run the increase function of congestion control. */ 3276 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3277 { 3278 /* If reordering is high then always grow cwnd whenever data is 3279 * delivered regardless of its ordering. Otherwise stay conservative 3280 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3281 * new SACK or ECE mark may first advance cwnd here and later reduce 3282 * cwnd in tcp_fastretrans_alert() based on more states. 3283 */ 3284 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3285 return flag & FLAG_FORWARD_PROGRESS; 3286 3287 return flag & FLAG_DATA_ACKED; 3288 } 3289 3290 /* The "ultimate" congestion control function that aims to replace the rigid 3291 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3292 * It's called toward the end of processing an ACK with precise rate 3293 * information. All transmission or retransmission are delayed afterwards. 3294 */ 3295 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3296 int flag, const struct rate_sample *rs) 3297 { 3298 const struct inet_connection_sock *icsk = inet_csk(sk); 3299 3300 if (icsk->icsk_ca_ops->cong_control) { 3301 icsk->icsk_ca_ops->cong_control(sk, rs); 3302 return; 3303 } 3304 3305 if (tcp_in_cwnd_reduction(sk)) { 3306 /* Reduce cwnd if state mandates */ 3307 tcp_cwnd_reduction(sk, acked_sacked, flag); 3308 } else if (tcp_may_raise_cwnd(sk, flag)) { 3309 /* Advance cwnd if state allows */ 3310 tcp_cong_avoid(sk, ack, acked_sacked); 3311 } 3312 tcp_update_pacing_rate(sk); 3313 } 3314 3315 /* Check that window update is acceptable. 3316 * The function assumes that snd_una<=ack<=snd_next. 3317 */ 3318 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3319 const u32 ack, const u32 ack_seq, 3320 const u32 nwin) 3321 { 3322 return after(ack, tp->snd_una) || 3323 after(ack_seq, tp->snd_wl1) || 3324 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3325 } 3326 3327 /* If we update tp->snd_una, also update tp->bytes_acked */ 3328 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3329 { 3330 u32 delta = ack - tp->snd_una; 3331 3332 sock_owned_by_me((struct sock *)tp); 3333 tp->bytes_acked += delta; 3334 tp->snd_una = ack; 3335 } 3336 3337 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3338 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3339 { 3340 u32 delta = seq - tp->rcv_nxt; 3341 3342 sock_owned_by_me((struct sock *)tp); 3343 tp->bytes_received += delta; 3344 tp->rcv_nxt = seq; 3345 } 3346 3347 /* Update our send window. 3348 * 3349 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3350 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3351 */ 3352 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3353 u32 ack_seq) 3354 { 3355 struct tcp_sock *tp = tcp_sk(sk); 3356 int flag = 0; 3357 u32 nwin = ntohs(tcp_hdr(skb)->window); 3358 3359 if (likely(!tcp_hdr(skb)->syn)) 3360 nwin <<= tp->rx_opt.snd_wscale; 3361 3362 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3363 flag |= FLAG_WIN_UPDATE; 3364 tcp_update_wl(tp, ack_seq); 3365 3366 if (tp->snd_wnd != nwin) { 3367 tp->snd_wnd = nwin; 3368 3369 /* Note, it is the only place, where 3370 * fast path is recovered for sending TCP. 3371 */ 3372 tp->pred_flags = 0; 3373 tcp_fast_path_check(sk); 3374 3375 if (!tcp_write_queue_empty(sk)) 3376 tcp_slow_start_after_idle_check(sk); 3377 3378 if (nwin > tp->max_window) { 3379 tp->max_window = nwin; 3380 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3381 } 3382 } 3383 } 3384 3385 tcp_snd_una_update(tp, ack); 3386 3387 return flag; 3388 } 3389 3390 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3391 u32 *last_oow_ack_time) 3392 { 3393 if (*last_oow_ack_time) { 3394 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3395 3396 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3397 NET_INC_STATS(net, mib_idx); 3398 return true; /* rate-limited: don't send yet! */ 3399 } 3400 } 3401 3402 *last_oow_ack_time = tcp_jiffies32; 3403 3404 return false; /* not rate-limited: go ahead, send dupack now! */ 3405 } 3406 3407 /* Return true if we're currently rate-limiting out-of-window ACKs and 3408 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3409 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3410 * attacks that send repeated SYNs or ACKs for the same connection. To 3411 * do this, we do not send a duplicate SYNACK or ACK if the remote 3412 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3413 */ 3414 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3415 int mib_idx, u32 *last_oow_ack_time) 3416 { 3417 /* Data packets without SYNs are not likely part of an ACK loop. */ 3418 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3419 !tcp_hdr(skb)->syn) 3420 return false; 3421 3422 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3423 } 3424 3425 /* RFC 5961 7 [ACK Throttling] */ 3426 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3427 { 3428 /* unprotected vars, we dont care of overwrites */ 3429 static u32 challenge_timestamp; 3430 static unsigned int challenge_count; 3431 struct tcp_sock *tp = tcp_sk(sk); 3432 struct net *net = sock_net(sk); 3433 u32 count, now; 3434 3435 /* First check our per-socket dupack rate limit. */ 3436 if (__tcp_oow_rate_limited(net, 3437 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3438 &tp->last_oow_ack_time)) 3439 return; 3440 3441 /* Then check host-wide RFC 5961 rate limit. */ 3442 now = jiffies / HZ; 3443 if (now != challenge_timestamp) { 3444 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3445 u32 half = (ack_limit + 1) >> 1; 3446 3447 challenge_timestamp = now; 3448 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3449 } 3450 count = READ_ONCE(challenge_count); 3451 if (count > 0) { 3452 WRITE_ONCE(challenge_count, count - 1); 3453 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3454 tcp_send_ack(sk); 3455 } 3456 } 3457 3458 static void tcp_store_ts_recent(struct tcp_sock *tp) 3459 { 3460 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3461 tp->rx_opt.ts_recent_stamp = get_seconds(); 3462 } 3463 3464 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3465 { 3466 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3467 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3468 * extra check below makes sure this can only happen 3469 * for pure ACK frames. -DaveM 3470 * 3471 * Not only, also it occurs for expired timestamps. 3472 */ 3473 3474 if (tcp_paws_check(&tp->rx_opt, 0)) 3475 tcp_store_ts_recent(tp); 3476 } 3477 } 3478 3479 /* This routine deals with acks during a TLP episode. 3480 * We mark the end of a TLP episode on receiving TLP dupack or when 3481 * ack is after tlp_high_seq. 3482 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3483 */ 3484 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3485 { 3486 struct tcp_sock *tp = tcp_sk(sk); 3487 3488 if (before(ack, tp->tlp_high_seq)) 3489 return; 3490 3491 if (flag & FLAG_DSACKING_ACK) { 3492 /* This DSACK means original and TLP probe arrived; no loss */ 3493 tp->tlp_high_seq = 0; 3494 } else if (after(ack, tp->tlp_high_seq)) { 3495 /* ACK advances: there was a loss, so reduce cwnd. Reset 3496 * tlp_high_seq in tcp_init_cwnd_reduction() 3497 */ 3498 tcp_init_cwnd_reduction(sk); 3499 tcp_set_ca_state(sk, TCP_CA_CWR); 3500 tcp_end_cwnd_reduction(sk); 3501 tcp_try_keep_open(sk); 3502 NET_INC_STATS(sock_net(sk), 3503 LINUX_MIB_TCPLOSSPROBERECOVERY); 3504 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3505 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3506 /* Pure dupack: original and TLP probe arrived; no loss */ 3507 tp->tlp_high_seq = 0; 3508 } 3509 } 3510 3511 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3512 { 3513 const struct inet_connection_sock *icsk = inet_csk(sk); 3514 3515 if (icsk->icsk_ca_ops->in_ack_event) 3516 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3517 } 3518 3519 /* Congestion control has updated the cwnd already. So if we're in 3520 * loss recovery then now we do any new sends (for FRTO) or 3521 * retransmits (for CA_Loss or CA_recovery) that make sense. 3522 */ 3523 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3524 { 3525 struct tcp_sock *tp = tcp_sk(sk); 3526 3527 if (rexmit == REXMIT_NONE) 3528 return; 3529 3530 if (unlikely(rexmit == 2)) { 3531 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3532 TCP_NAGLE_OFF); 3533 if (after(tp->snd_nxt, tp->high_seq)) 3534 return; 3535 tp->frto = 0; 3536 } 3537 tcp_xmit_retransmit_queue(sk); 3538 } 3539 3540 /* Returns the number of packets newly acked or sacked by the current ACK */ 3541 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3542 { 3543 const struct net *net = sock_net(sk); 3544 struct tcp_sock *tp = tcp_sk(sk); 3545 u32 delivered; 3546 3547 delivered = tp->delivered - prior_delivered; 3548 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3549 if (flag & FLAG_ECE) { 3550 tp->delivered_ce += delivered; 3551 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3552 } 3553 return delivered; 3554 } 3555 3556 /* This routine deals with incoming acks, but not outgoing ones. */ 3557 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3558 { 3559 struct inet_connection_sock *icsk = inet_csk(sk); 3560 struct tcp_sock *tp = tcp_sk(sk); 3561 struct tcp_sacktag_state sack_state; 3562 struct rate_sample rs = { .prior_delivered = 0 }; 3563 u32 prior_snd_una = tp->snd_una; 3564 bool is_sack_reneg = tp->is_sack_reneg; 3565 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3566 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3567 bool is_dupack = false; 3568 int prior_packets = tp->packets_out; 3569 u32 delivered = tp->delivered; 3570 u32 lost = tp->lost; 3571 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3572 u32 prior_fack; 3573 3574 sack_state.first_sackt = 0; 3575 sack_state.rate = &rs; 3576 3577 /* We very likely will need to access rtx queue. */ 3578 prefetch(sk->tcp_rtx_queue.rb_node); 3579 3580 /* If the ack is older than previous acks 3581 * then we can probably ignore it. 3582 */ 3583 if (before(ack, prior_snd_una)) { 3584 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3585 if (before(ack, prior_snd_una - tp->max_window)) { 3586 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3587 tcp_send_challenge_ack(sk, skb); 3588 return -1; 3589 } 3590 goto old_ack; 3591 } 3592 3593 /* If the ack includes data we haven't sent yet, discard 3594 * this segment (RFC793 Section 3.9). 3595 */ 3596 if (after(ack, tp->snd_nxt)) 3597 goto invalid_ack; 3598 3599 if (after(ack, prior_snd_una)) { 3600 flag |= FLAG_SND_UNA_ADVANCED; 3601 icsk->icsk_retransmits = 0; 3602 3603 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3604 if (static_branch_unlikely(&clean_acked_data_enabled)) 3605 if (icsk->icsk_clean_acked) 3606 icsk->icsk_clean_acked(sk, ack); 3607 #endif 3608 } 3609 3610 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3611 rs.prior_in_flight = tcp_packets_in_flight(tp); 3612 3613 /* ts_recent update must be made after we are sure that the packet 3614 * is in window. 3615 */ 3616 if (flag & FLAG_UPDATE_TS_RECENT) 3617 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3618 3619 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3620 /* Window is constant, pure forward advance. 3621 * No more checks are required. 3622 * Note, we use the fact that SND.UNA>=SND.WL2. 3623 */ 3624 tcp_update_wl(tp, ack_seq); 3625 tcp_snd_una_update(tp, ack); 3626 flag |= FLAG_WIN_UPDATE; 3627 3628 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3629 3630 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3631 } else { 3632 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3633 3634 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3635 flag |= FLAG_DATA; 3636 else 3637 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3638 3639 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3640 3641 if (TCP_SKB_CB(skb)->sacked) 3642 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3643 &sack_state); 3644 3645 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3646 flag |= FLAG_ECE; 3647 ack_ev_flags |= CA_ACK_ECE; 3648 } 3649 3650 if (flag & FLAG_WIN_UPDATE) 3651 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3652 3653 tcp_in_ack_event(sk, ack_ev_flags); 3654 } 3655 3656 /* We passed data and got it acked, remove any soft error 3657 * log. Something worked... 3658 */ 3659 sk->sk_err_soft = 0; 3660 icsk->icsk_probes_out = 0; 3661 tp->rcv_tstamp = tcp_jiffies32; 3662 if (!prior_packets) 3663 goto no_queue; 3664 3665 /* See if we can take anything off of the retransmit queue. */ 3666 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3667 3668 tcp_rack_update_reo_wnd(sk, &rs); 3669 3670 if (tp->tlp_high_seq) 3671 tcp_process_tlp_ack(sk, ack, flag); 3672 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3673 if (flag & FLAG_SET_XMIT_TIMER) 3674 tcp_set_xmit_timer(sk); 3675 3676 if (tcp_ack_is_dubious(sk, flag)) { 3677 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3678 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3679 &rexmit); 3680 } 3681 3682 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3683 sk_dst_confirm(sk); 3684 3685 delivered = tcp_newly_delivered(sk, delivered, flag); 3686 lost = tp->lost - lost; /* freshly marked lost */ 3687 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3688 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3689 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3690 tcp_xmit_recovery(sk, rexmit); 3691 return 1; 3692 3693 no_queue: 3694 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3695 if (flag & FLAG_DSACKING_ACK) { 3696 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3697 &rexmit); 3698 tcp_newly_delivered(sk, delivered, flag); 3699 } 3700 /* If this ack opens up a zero window, clear backoff. It was 3701 * being used to time the probes, and is probably far higher than 3702 * it needs to be for normal retransmission. 3703 */ 3704 tcp_ack_probe(sk); 3705 3706 if (tp->tlp_high_seq) 3707 tcp_process_tlp_ack(sk, ack, flag); 3708 return 1; 3709 3710 invalid_ack: 3711 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3712 return -1; 3713 3714 old_ack: 3715 /* If data was SACKed, tag it and see if we should send more data. 3716 * If data was DSACKed, see if we can undo a cwnd reduction. 3717 */ 3718 if (TCP_SKB_CB(skb)->sacked) { 3719 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3720 &sack_state); 3721 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3722 &rexmit); 3723 tcp_newly_delivered(sk, delivered, flag); 3724 tcp_xmit_recovery(sk, rexmit); 3725 } 3726 3727 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3728 return 0; 3729 } 3730 3731 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3732 bool syn, struct tcp_fastopen_cookie *foc, 3733 bool exp_opt) 3734 { 3735 /* Valid only in SYN or SYN-ACK with an even length. */ 3736 if (!foc || !syn || len < 0 || (len & 1)) 3737 return; 3738 3739 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3740 len <= TCP_FASTOPEN_COOKIE_MAX) 3741 memcpy(foc->val, cookie, len); 3742 else if (len != 0) 3743 len = -1; 3744 foc->len = len; 3745 foc->exp = exp_opt; 3746 } 3747 3748 static void smc_parse_options(const struct tcphdr *th, 3749 struct tcp_options_received *opt_rx, 3750 const unsigned char *ptr, 3751 int opsize) 3752 { 3753 #if IS_ENABLED(CONFIG_SMC) 3754 if (static_branch_unlikely(&tcp_have_smc)) { 3755 if (th->syn && !(opsize & 1) && 3756 opsize >= TCPOLEN_EXP_SMC_BASE && 3757 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3758 opt_rx->smc_ok = 1; 3759 } 3760 #endif 3761 } 3762 3763 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3764 * But, this can also be called on packets in the established flow when 3765 * the fast version below fails. 3766 */ 3767 void tcp_parse_options(const struct net *net, 3768 const struct sk_buff *skb, 3769 struct tcp_options_received *opt_rx, int estab, 3770 struct tcp_fastopen_cookie *foc) 3771 { 3772 const unsigned char *ptr; 3773 const struct tcphdr *th = tcp_hdr(skb); 3774 int length = (th->doff * 4) - sizeof(struct tcphdr); 3775 3776 ptr = (const unsigned char *)(th + 1); 3777 opt_rx->saw_tstamp = 0; 3778 3779 while (length > 0) { 3780 int opcode = *ptr++; 3781 int opsize; 3782 3783 switch (opcode) { 3784 case TCPOPT_EOL: 3785 return; 3786 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3787 length--; 3788 continue; 3789 default: 3790 opsize = *ptr++; 3791 if (opsize < 2) /* "silly options" */ 3792 return; 3793 if (opsize > length) 3794 return; /* don't parse partial options */ 3795 switch (opcode) { 3796 case TCPOPT_MSS: 3797 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3798 u16 in_mss = get_unaligned_be16(ptr); 3799 if (in_mss) { 3800 if (opt_rx->user_mss && 3801 opt_rx->user_mss < in_mss) 3802 in_mss = opt_rx->user_mss; 3803 opt_rx->mss_clamp = in_mss; 3804 } 3805 } 3806 break; 3807 case TCPOPT_WINDOW: 3808 if (opsize == TCPOLEN_WINDOW && th->syn && 3809 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3810 __u8 snd_wscale = *(__u8 *)ptr; 3811 opt_rx->wscale_ok = 1; 3812 if (snd_wscale > TCP_MAX_WSCALE) { 3813 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3814 __func__, 3815 snd_wscale, 3816 TCP_MAX_WSCALE); 3817 snd_wscale = TCP_MAX_WSCALE; 3818 } 3819 opt_rx->snd_wscale = snd_wscale; 3820 } 3821 break; 3822 case TCPOPT_TIMESTAMP: 3823 if ((opsize == TCPOLEN_TIMESTAMP) && 3824 ((estab && opt_rx->tstamp_ok) || 3825 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3826 opt_rx->saw_tstamp = 1; 3827 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3828 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3829 } 3830 break; 3831 case TCPOPT_SACK_PERM: 3832 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3833 !estab && net->ipv4.sysctl_tcp_sack) { 3834 opt_rx->sack_ok = TCP_SACK_SEEN; 3835 tcp_sack_reset(opt_rx); 3836 } 3837 break; 3838 3839 case TCPOPT_SACK: 3840 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3841 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3842 opt_rx->sack_ok) { 3843 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3844 } 3845 break; 3846 #ifdef CONFIG_TCP_MD5SIG 3847 case TCPOPT_MD5SIG: 3848 /* 3849 * The MD5 Hash has already been 3850 * checked (see tcp_v{4,6}_do_rcv()). 3851 */ 3852 break; 3853 #endif 3854 case TCPOPT_FASTOPEN: 3855 tcp_parse_fastopen_option( 3856 opsize - TCPOLEN_FASTOPEN_BASE, 3857 ptr, th->syn, foc, false); 3858 break; 3859 3860 case TCPOPT_EXP: 3861 /* Fast Open option shares code 254 using a 3862 * 16 bits magic number. 3863 */ 3864 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3865 get_unaligned_be16(ptr) == 3866 TCPOPT_FASTOPEN_MAGIC) 3867 tcp_parse_fastopen_option(opsize - 3868 TCPOLEN_EXP_FASTOPEN_BASE, 3869 ptr + 2, th->syn, foc, true); 3870 else 3871 smc_parse_options(th, opt_rx, ptr, 3872 opsize); 3873 break; 3874 3875 } 3876 ptr += opsize-2; 3877 length -= opsize; 3878 } 3879 } 3880 } 3881 EXPORT_SYMBOL(tcp_parse_options); 3882 3883 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3884 { 3885 const __be32 *ptr = (const __be32 *)(th + 1); 3886 3887 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3888 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3889 tp->rx_opt.saw_tstamp = 1; 3890 ++ptr; 3891 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3892 ++ptr; 3893 if (*ptr) 3894 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3895 else 3896 tp->rx_opt.rcv_tsecr = 0; 3897 return true; 3898 } 3899 return false; 3900 } 3901 3902 /* Fast parse options. This hopes to only see timestamps. 3903 * If it is wrong it falls back on tcp_parse_options(). 3904 */ 3905 static bool tcp_fast_parse_options(const struct net *net, 3906 const struct sk_buff *skb, 3907 const struct tcphdr *th, struct tcp_sock *tp) 3908 { 3909 /* In the spirit of fast parsing, compare doff directly to constant 3910 * values. Because equality is used, short doff can be ignored here. 3911 */ 3912 if (th->doff == (sizeof(*th) / 4)) { 3913 tp->rx_opt.saw_tstamp = 0; 3914 return false; 3915 } else if (tp->rx_opt.tstamp_ok && 3916 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3917 if (tcp_parse_aligned_timestamp(tp, th)) 3918 return true; 3919 } 3920 3921 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3922 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3923 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3924 3925 return true; 3926 } 3927 3928 #ifdef CONFIG_TCP_MD5SIG 3929 /* 3930 * Parse MD5 Signature option 3931 */ 3932 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3933 { 3934 int length = (th->doff << 2) - sizeof(*th); 3935 const u8 *ptr = (const u8 *)(th + 1); 3936 3937 /* If not enough data remaining, we can short cut */ 3938 while (length >= TCPOLEN_MD5SIG) { 3939 int opcode = *ptr++; 3940 int opsize; 3941 3942 switch (opcode) { 3943 case TCPOPT_EOL: 3944 return NULL; 3945 case TCPOPT_NOP: 3946 length--; 3947 continue; 3948 default: 3949 opsize = *ptr++; 3950 if (opsize < 2 || opsize > length) 3951 return NULL; 3952 if (opcode == TCPOPT_MD5SIG) 3953 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3954 } 3955 ptr += opsize - 2; 3956 length -= opsize; 3957 } 3958 return NULL; 3959 } 3960 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3961 #endif 3962 3963 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3964 * 3965 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3966 * it can pass through stack. So, the following predicate verifies that 3967 * this segment is not used for anything but congestion avoidance or 3968 * fast retransmit. Moreover, we even are able to eliminate most of such 3969 * second order effects, if we apply some small "replay" window (~RTO) 3970 * to timestamp space. 3971 * 3972 * All these measures still do not guarantee that we reject wrapped ACKs 3973 * on networks with high bandwidth, when sequence space is recycled fastly, 3974 * but it guarantees that such events will be very rare and do not affect 3975 * connection seriously. This doesn't look nice, but alas, PAWS is really 3976 * buggy extension. 3977 * 3978 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3979 * states that events when retransmit arrives after original data are rare. 3980 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3981 * the biggest problem on large power networks even with minor reordering. 3982 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3983 * up to bandwidth of 18Gigabit/sec. 8) ] 3984 */ 3985 3986 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3987 { 3988 const struct tcp_sock *tp = tcp_sk(sk); 3989 const struct tcphdr *th = tcp_hdr(skb); 3990 u32 seq = TCP_SKB_CB(skb)->seq; 3991 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3992 3993 return (/* 1. Pure ACK with correct sequence number. */ 3994 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3995 3996 /* 2. ... and duplicate ACK. */ 3997 ack == tp->snd_una && 3998 3999 /* 3. ... and does not update window. */ 4000 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4001 4002 /* 4. ... and sits in replay window. */ 4003 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4004 } 4005 4006 static inline bool tcp_paws_discard(const struct sock *sk, 4007 const struct sk_buff *skb) 4008 { 4009 const struct tcp_sock *tp = tcp_sk(sk); 4010 4011 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4012 !tcp_disordered_ack(sk, skb); 4013 } 4014 4015 /* Check segment sequence number for validity. 4016 * 4017 * Segment controls are considered valid, if the segment 4018 * fits to the window after truncation to the window. Acceptability 4019 * of data (and SYN, FIN, of course) is checked separately. 4020 * See tcp_data_queue(), for example. 4021 * 4022 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4023 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4024 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4025 * (borrowed from freebsd) 4026 */ 4027 4028 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4029 { 4030 return !before(end_seq, tp->rcv_wup) && 4031 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4032 } 4033 4034 /* When we get a reset we do this. */ 4035 void tcp_reset(struct sock *sk) 4036 { 4037 trace_tcp_receive_reset(sk); 4038 4039 /* We want the right error as BSD sees it (and indeed as we do). */ 4040 switch (sk->sk_state) { 4041 case TCP_SYN_SENT: 4042 sk->sk_err = ECONNREFUSED; 4043 break; 4044 case TCP_CLOSE_WAIT: 4045 sk->sk_err = EPIPE; 4046 break; 4047 case TCP_CLOSE: 4048 return; 4049 default: 4050 sk->sk_err = ECONNRESET; 4051 } 4052 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4053 smp_wmb(); 4054 4055 tcp_write_queue_purge(sk); 4056 tcp_done(sk); 4057 4058 if (!sock_flag(sk, SOCK_DEAD)) 4059 sk->sk_error_report(sk); 4060 } 4061 4062 /* 4063 * Process the FIN bit. This now behaves as it is supposed to work 4064 * and the FIN takes effect when it is validly part of sequence 4065 * space. Not before when we get holes. 4066 * 4067 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4068 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4069 * TIME-WAIT) 4070 * 4071 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4072 * close and we go into CLOSING (and later onto TIME-WAIT) 4073 * 4074 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4075 */ 4076 void tcp_fin(struct sock *sk) 4077 { 4078 struct tcp_sock *tp = tcp_sk(sk); 4079 4080 inet_csk_schedule_ack(sk); 4081 4082 sk->sk_shutdown |= RCV_SHUTDOWN; 4083 sock_set_flag(sk, SOCK_DONE); 4084 4085 switch (sk->sk_state) { 4086 case TCP_SYN_RECV: 4087 case TCP_ESTABLISHED: 4088 /* Move to CLOSE_WAIT */ 4089 tcp_set_state(sk, TCP_CLOSE_WAIT); 4090 inet_csk(sk)->icsk_ack.pingpong = 1; 4091 break; 4092 4093 case TCP_CLOSE_WAIT: 4094 case TCP_CLOSING: 4095 /* Received a retransmission of the FIN, do 4096 * nothing. 4097 */ 4098 break; 4099 case TCP_LAST_ACK: 4100 /* RFC793: Remain in the LAST-ACK state. */ 4101 break; 4102 4103 case TCP_FIN_WAIT1: 4104 /* This case occurs when a simultaneous close 4105 * happens, we must ack the received FIN and 4106 * enter the CLOSING state. 4107 */ 4108 tcp_send_ack(sk); 4109 tcp_set_state(sk, TCP_CLOSING); 4110 break; 4111 case TCP_FIN_WAIT2: 4112 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4113 tcp_send_ack(sk); 4114 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4115 break; 4116 default: 4117 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4118 * cases we should never reach this piece of code. 4119 */ 4120 pr_err("%s: Impossible, sk->sk_state=%d\n", 4121 __func__, sk->sk_state); 4122 break; 4123 } 4124 4125 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4126 * Probably, we should reset in this case. For now drop them. 4127 */ 4128 skb_rbtree_purge(&tp->out_of_order_queue); 4129 if (tcp_is_sack(tp)) 4130 tcp_sack_reset(&tp->rx_opt); 4131 sk_mem_reclaim(sk); 4132 4133 if (!sock_flag(sk, SOCK_DEAD)) { 4134 sk->sk_state_change(sk); 4135 4136 /* Do not send POLL_HUP for half duplex close. */ 4137 if (sk->sk_shutdown == SHUTDOWN_MASK || 4138 sk->sk_state == TCP_CLOSE) 4139 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4140 else 4141 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4142 } 4143 } 4144 4145 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4146 u32 end_seq) 4147 { 4148 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4149 if (before(seq, sp->start_seq)) 4150 sp->start_seq = seq; 4151 if (after(end_seq, sp->end_seq)) 4152 sp->end_seq = end_seq; 4153 return true; 4154 } 4155 return false; 4156 } 4157 4158 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4159 { 4160 struct tcp_sock *tp = tcp_sk(sk); 4161 4162 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4163 int mib_idx; 4164 4165 if (before(seq, tp->rcv_nxt)) 4166 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4167 else 4168 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4169 4170 NET_INC_STATS(sock_net(sk), mib_idx); 4171 4172 tp->rx_opt.dsack = 1; 4173 tp->duplicate_sack[0].start_seq = seq; 4174 tp->duplicate_sack[0].end_seq = end_seq; 4175 } 4176 } 4177 4178 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4179 { 4180 struct tcp_sock *tp = tcp_sk(sk); 4181 4182 if (!tp->rx_opt.dsack) 4183 tcp_dsack_set(sk, seq, end_seq); 4184 else 4185 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4186 } 4187 4188 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4189 { 4190 struct tcp_sock *tp = tcp_sk(sk); 4191 4192 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4193 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4194 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4195 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4196 4197 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4198 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4199 4200 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4201 end_seq = tp->rcv_nxt; 4202 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4203 } 4204 } 4205 4206 tcp_send_ack(sk); 4207 } 4208 4209 /* These routines update the SACK block as out-of-order packets arrive or 4210 * in-order packets close up the sequence space. 4211 */ 4212 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4213 { 4214 int this_sack; 4215 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4216 struct tcp_sack_block *swalk = sp + 1; 4217 4218 /* See if the recent change to the first SACK eats into 4219 * or hits the sequence space of other SACK blocks, if so coalesce. 4220 */ 4221 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4222 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4223 int i; 4224 4225 /* Zap SWALK, by moving every further SACK up by one slot. 4226 * Decrease num_sacks. 4227 */ 4228 tp->rx_opt.num_sacks--; 4229 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4230 sp[i] = sp[i + 1]; 4231 continue; 4232 } 4233 this_sack++, swalk++; 4234 } 4235 } 4236 4237 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4238 { 4239 struct tcp_sock *tp = tcp_sk(sk); 4240 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4241 int cur_sacks = tp->rx_opt.num_sacks; 4242 int this_sack; 4243 4244 if (!cur_sacks) 4245 goto new_sack; 4246 4247 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4248 if (tcp_sack_extend(sp, seq, end_seq)) { 4249 /* Rotate this_sack to the first one. */ 4250 for (; this_sack > 0; this_sack--, sp--) 4251 swap(*sp, *(sp - 1)); 4252 if (cur_sacks > 1) 4253 tcp_sack_maybe_coalesce(tp); 4254 return; 4255 } 4256 } 4257 4258 /* Could not find an adjacent existing SACK, build a new one, 4259 * put it at the front, and shift everyone else down. We 4260 * always know there is at least one SACK present already here. 4261 * 4262 * If the sack array is full, forget about the last one. 4263 */ 4264 if (this_sack >= TCP_NUM_SACKS) { 4265 if (tp->compressed_ack) 4266 tcp_send_ack(sk); 4267 this_sack--; 4268 tp->rx_opt.num_sacks--; 4269 sp--; 4270 } 4271 for (; this_sack > 0; this_sack--, sp--) 4272 *sp = *(sp - 1); 4273 4274 new_sack: 4275 /* Build the new head SACK, and we're done. */ 4276 sp->start_seq = seq; 4277 sp->end_seq = end_seq; 4278 tp->rx_opt.num_sacks++; 4279 } 4280 4281 /* RCV.NXT advances, some SACKs should be eaten. */ 4282 4283 static void tcp_sack_remove(struct tcp_sock *tp) 4284 { 4285 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4286 int num_sacks = tp->rx_opt.num_sacks; 4287 int this_sack; 4288 4289 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4290 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4291 tp->rx_opt.num_sacks = 0; 4292 return; 4293 } 4294 4295 for (this_sack = 0; this_sack < num_sacks;) { 4296 /* Check if the start of the sack is covered by RCV.NXT. */ 4297 if (!before(tp->rcv_nxt, sp->start_seq)) { 4298 int i; 4299 4300 /* RCV.NXT must cover all the block! */ 4301 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4302 4303 /* Zap this SACK, by moving forward any other SACKS. */ 4304 for (i = this_sack+1; i < num_sacks; i++) 4305 tp->selective_acks[i-1] = tp->selective_acks[i]; 4306 num_sacks--; 4307 continue; 4308 } 4309 this_sack++; 4310 sp++; 4311 } 4312 tp->rx_opt.num_sacks = num_sacks; 4313 } 4314 4315 /** 4316 * tcp_try_coalesce - try to merge skb to prior one 4317 * @sk: socket 4318 * @dest: destination queue 4319 * @to: prior buffer 4320 * @from: buffer to add in queue 4321 * @fragstolen: pointer to boolean 4322 * 4323 * Before queueing skb @from after @to, try to merge them 4324 * to reduce overall memory use and queue lengths, if cost is small. 4325 * Packets in ofo or receive queues can stay a long time. 4326 * Better try to coalesce them right now to avoid future collapses. 4327 * Returns true if caller should free @from instead of queueing it 4328 */ 4329 static bool tcp_try_coalesce(struct sock *sk, 4330 struct sk_buff *to, 4331 struct sk_buff *from, 4332 bool *fragstolen) 4333 { 4334 int delta; 4335 4336 *fragstolen = false; 4337 4338 /* Its possible this segment overlaps with prior segment in queue */ 4339 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4340 return false; 4341 4342 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4343 return false; 4344 4345 atomic_add(delta, &sk->sk_rmem_alloc); 4346 sk_mem_charge(sk, delta); 4347 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4348 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4349 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4350 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4351 4352 if (TCP_SKB_CB(from)->has_rxtstamp) { 4353 TCP_SKB_CB(to)->has_rxtstamp = true; 4354 to->tstamp = from->tstamp; 4355 } 4356 4357 return true; 4358 } 4359 4360 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4361 { 4362 sk_drops_add(sk, skb); 4363 __kfree_skb(skb); 4364 } 4365 4366 /* This one checks to see if we can put data from the 4367 * out_of_order queue into the receive_queue. 4368 */ 4369 static void tcp_ofo_queue(struct sock *sk) 4370 { 4371 struct tcp_sock *tp = tcp_sk(sk); 4372 __u32 dsack_high = tp->rcv_nxt; 4373 bool fin, fragstolen, eaten; 4374 struct sk_buff *skb, *tail; 4375 struct rb_node *p; 4376 4377 p = rb_first(&tp->out_of_order_queue); 4378 while (p) { 4379 skb = rb_to_skb(p); 4380 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4381 break; 4382 4383 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4384 __u32 dsack = dsack_high; 4385 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4386 dsack_high = TCP_SKB_CB(skb)->end_seq; 4387 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4388 } 4389 p = rb_next(p); 4390 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4391 4392 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4393 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4394 tcp_drop(sk, skb); 4395 continue; 4396 } 4397 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4398 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4399 TCP_SKB_CB(skb)->end_seq); 4400 4401 tail = skb_peek_tail(&sk->sk_receive_queue); 4402 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4403 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4404 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4405 if (!eaten) 4406 __skb_queue_tail(&sk->sk_receive_queue, skb); 4407 else 4408 kfree_skb_partial(skb, fragstolen); 4409 4410 if (unlikely(fin)) { 4411 tcp_fin(sk); 4412 /* tcp_fin() purges tp->out_of_order_queue, 4413 * so we must end this loop right now. 4414 */ 4415 break; 4416 } 4417 } 4418 } 4419 4420 static bool tcp_prune_ofo_queue(struct sock *sk); 4421 static int tcp_prune_queue(struct sock *sk); 4422 4423 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4424 unsigned int size) 4425 { 4426 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4427 !sk_rmem_schedule(sk, skb, size)) { 4428 4429 if (tcp_prune_queue(sk) < 0) 4430 return -1; 4431 4432 while (!sk_rmem_schedule(sk, skb, size)) { 4433 if (!tcp_prune_ofo_queue(sk)) 4434 return -1; 4435 } 4436 } 4437 return 0; 4438 } 4439 4440 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4441 { 4442 struct tcp_sock *tp = tcp_sk(sk); 4443 struct rb_node **p, *parent; 4444 struct sk_buff *skb1; 4445 u32 seq, end_seq; 4446 bool fragstolen; 4447 4448 tcp_ecn_check_ce(sk, skb); 4449 4450 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4451 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4452 tcp_drop(sk, skb); 4453 return; 4454 } 4455 4456 /* Disable header prediction. */ 4457 tp->pred_flags = 0; 4458 inet_csk_schedule_ack(sk); 4459 4460 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4461 seq = TCP_SKB_CB(skb)->seq; 4462 end_seq = TCP_SKB_CB(skb)->end_seq; 4463 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4464 tp->rcv_nxt, seq, end_seq); 4465 4466 p = &tp->out_of_order_queue.rb_node; 4467 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4468 /* Initial out of order segment, build 1 SACK. */ 4469 if (tcp_is_sack(tp)) { 4470 tp->rx_opt.num_sacks = 1; 4471 tp->selective_acks[0].start_seq = seq; 4472 tp->selective_acks[0].end_seq = end_seq; 4473 } 4474 rb_link_node(&skb->rbnode, NULL, p); 4475 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4476 tp->ooo_last_skb = skb; 4477 goto end; 4478 } 4479 4480 /* In the typical case, we are adding an skb to the end of the list. 4481 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4482 */ 4483 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4484 skb, &fragstolen)) { 4485 coalesce_done: 4486 tcp_grow_window(sk, skb); 4487 kfree_skb_partial(skb, fragstolen); 4488 skb = NULL; 4489 goto add_sack; 4490 } 4491 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4492 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4493 parent = &tp->ooo_last_skb->rbnode; 4494 p = &parent->rb_right; 4495 goto insert; 4496 } 4497 4498 /* Find place to insert this segment. Handle overlaps on the way. */ 4499 parent = NULL; 4500 while (*p) { 4501 parent = *p; 4502 skb1 = rb_to_skb(parent); 4503 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4504 p = &parent->rb_left; 4505 continue; 4506 } 4507 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4508 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4509 /* All the bits are present. Drop. */ 4510 NET_INC_STATS(sock_net(sk), 4511 LINUX_MIB_TCPOFOMERGE); 4512 __kfree_skb(skb); 4513 skb = NULL; 4514 tcp_dsack_set(sk, seq, end_seq); 4515 goto add_sack; 4516 } 4517 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4518 /* Partial overlap. */ 4519 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4520 } else { 4521 /* skb's seq == skb1's seq and skb covers skb1. 4522 * Replace skb1 with skb. 4523 */ 4524 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4525 &tp->out_of_order_queue); 4526 tcp_dsack_extend(sk, 4527 TCP_SKB_CB(skb1)->seq, 4528 TCP_SKB_CB(skb1)->end_seq); 4529 NET_INC_STATS(sock_net(sk), 4530 LINUX_MIB_TCPOFOMERGE); 4531 __kfree_skb(skb1); 4532 goto merge_right; 4533 } 4534 } else if (tcp_try_coalesce(sk, skb1, 4535 skb, &fragstolen)) { 4536 goto coalesce_done; 4537 } 4538 p = &parent->rb_right; 4539 } 4540 insert: 4541 /* Insert segment into RB tree. */ 4542 rb_link_node(&skb->rbnode, parent, p); 4543 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4544 4545 merge_right: 4546 /* Remove other segments covered by skb. */ 4547 while ((skb1 = skb_rb_next(skb)) != NULL) { 4548 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4549 break; 4550 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4551 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4552 end_seq); 4553 break; 4554 } 4555 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4556 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4557 TCP_SKB_CB(skb1)->end_seq); 4558 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4559 tcp_drop(sk, skb1); 4560 } 4561 /* If there is no skb after us, we are the last_skb ! */ 4562 if (!skb1) 4563 tp->ooo_last_skb = skb; 4564 4565 add_sack: 4566 if (tcp_is_sack(tp)) 4567 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4568 end: 4569 if (skb) { 4570 tcp_grow_window(sk, skb); 4571 skb_condense(skb); 4572 skb_set_owner_r(skb, sk); 4573 } 4574 } 4575 4576 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4577 bool *fragstolen) 4578 { 4579 int eaten; 4580 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4581 4582 __skb_pull(skb, hdrlen); 4583 eaten = (tail && 4584 tcp_try_coalesce(sk, tail, 4585 skb, fragstolen)) ? 1 : 0; 4586 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4587 if (!eaten) { 4588 __skb_queue_tail(&sk->sk_receive_queue, skb); 4589 skb_set_owner_r(skb, sk); 4590 } 4591 return eaten; 4592 } 4593 4594 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4595 { 4596 struct sk_buff *skb; 4597 int err = -ENOMEM; 4598 int data_len = 0; 4599 bool fragstolen; 4600 4601 if (size == 0) 4602 return 0; 4603 4604 if (size > PAGE_SIZE) { 4605 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4606 4607 data_len = npages << PAGE_SHIFT; 4608 size = data_len + (size & ~PAGE_MASK); 4609 } 4610 skb = alloc_skb_with_frags(size - data_len, data_len, 4611 PAGE_ALLOC_COSTLY_ORDER, 4612 &err, sk->sk_allocation); 4613 if (!skb) 4614 goto err; 4615 4616 skb_put(skb, size - data_len); 4617 skb->data_len = data_len; 4618 skb->len = size; 4619 4620 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4621 goto err_free; 4622 4623 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4624 if (err) 4625 goto err_free; 4626 4627 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4628 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4629 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4630 4631 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4632 WARN_ON_ONCE(fragstolen); /* should not happen */ 4633 __kfree_skb(skb); 4634 } 4635 return size; 4636 4637 err_free: 4638 kfree_skb(skb); 4639 err: 4640 return err; 4641 4642 } 4643 4644 void tcp_data_ready(struct sock *sk) 4645 { 4646 const struct tcp_sock *tp = tcp_sk(sk); 4647 int avail = tp->rcv_nxt - tp->copied_seq; 4648 4649 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4650 return; 4651 4652 sk->sk_data_ready(sk); 4653 } 4654 4655 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4656 { 4657 struct tcp_sock *tp = tcp_sk(sk); 4658 bool fragstolen; 4659 int eaten; 4660 4661 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4662 __kfree_skb(skb); 4663 return; 4664 } 4665 skb_dst_drop(skb); 4666 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4667 4668 tcp_ecn_accept_cwr(tp, skb); 4669 4670 tp->rx_opt.dsack = 0; 4671 4672 /* Queue data for delivery to the user. 4673 * Packets in sequence go to the receive queue. 4674 * Out of sequence packets to the out_of_order_queue. 4675 */ 4676 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4677 if (tcp_receive_window(tp) == 0) 4678 goto out_of_window; 4679 4680 /* Ok. In sequence. In window. */ 4681 queue_and_out: 4682 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4683 sk_forced_mem_schedule(sk, skb->truesize); 4684 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4685 goto drop; 4686 4687 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4688 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4689 if (skb->len) 4690 tcp_event_data_recv(sk, skb); 4691 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4692 tcp_fin(sk); 4693 4694 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4695 tcp_ofo_queue(sk); 4696 4697 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4698 * gap in queue is filled. 4699 */ 4700 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4701 inet_csk(sk)->icsk_ack.pingpong = 0; 4702 } 4703 4704 if (tp->rx_opt.num_sacks) 4705 tcp_sack_remove(tp); 4706 4707 tcp_fast_path_check(sk); 4708 4709 if (eaten > 0) 4710 kfree_skb_partial(skb, fragstolen); 4711 if (!sock_flag(sk, SOCK_DEAD)) 4712 tcp_data_ready(sk); 4713 return; 4714 } 4715 4716 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4717 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4718 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4719 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4720 4721 out_of_window: 4722 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4723 inet_csk_schedule_ack(sk); 4724 drop: 4725 tcp_drop(sk, skb); 4726 return; 4727 } 4728 4729 /* Out of window. F.e. zero window probe. */ 4730 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4731 goto out_of_window; 4732 4733 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4734 /* Partial packet, seq < rcv_next < end_seq */ 4735 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4736 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4737 TCP_SKB_CB(skb)->end_seq); 4738 4739 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4740 4741 /* If window is closed, drop tail of packet. But after 4742 * remembering D-SACK for its head made in previous line. 4743 */ 4744 if (!tcp_receive_window(tp)) 4745 goto out_of_window; 4746 goto queue_and_out; 4747 } 4748 4749 tcp_data_queue_ofo(sk, skb); 4750 } 4751 4752 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4753 { 4754 if (list) 4755 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4756 4757 return skb_rb_next(skb); 4758 } 4759 4760 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4761 struct sk_buff_head *list, 4762 struct rb_root *root) 4763 { 4764 struct sk_buff *next = tcp_skb_next(skb, list); 4765 4766 if (list) 4767 __skb_unlink(skb, list); 4768 else 4769 rb_erase(&skb->rbnode, root); 4770 4771 __kfree_skb(skb); 4772 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4773 4774 return next; 4775 } 4776 4777 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4778 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4779 { 4780 struct rb_node **p = &root->rb_node; 4781 struct rb_node *parent = NULL; 4782 struct sk_buff *skb1; 4783 4784 while (*p) { 4785 parent = *p; 4786 skb1 = rb_to_skb(parent); 4787 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4788 p = &parent->rb_left; 4789 else 4790 p = &parent->rb_right; 4791 } 4792 rb_link_node(&skb->rbnode, parent, p); 4793 rb_insert_color(&skb->rbnode, root); 4794 } 4795 4796 /* Collapse contiguous sequence of skbs head..tail with 4797 * sequence numbers start..end. 4798 * 4799 * If tail is NULL, this means until the end of the queue. 4800 * 4801 * Segments with FIN/SYN are not collapsed (only because this 4802 * simplifies code) 4803 */ 4804 static void 4805 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4806 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4807 { 4808 struct sk_buff *skb = head, *n; 4809 struct sk_buff_head tmp; 4810 bool end_of_skbs; 4811 4812 /* First, check that queue is collapsible and find 4813 * the point where collapsing can be useful. 4814 */ 4815 restart: 4816 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4817 n = tcp_skb_next(skb, list); 4818 4819 /* No new bits? It is possible on ofo queue. */ 4820 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4821 skb = tcp_collapse_one(sk, skb, list, root); 4822 if (!skb) 4823 break; 4824 goto restart; 4825 } 4826 4827 /* The first skb to collapse is: 4828 * - not SYN/FIN and 4829 * - bloated or contains data before "start" or 4830 * overlaps to the next one. 4831 */ 4832 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4833 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4834 before(TCP_SKB_CB(skb)->seq, start))) { 4835 end_of_skbs = false; 4836 break; 4837 } 4838 4839 if (n && n != tail && 4840 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4841 end_of_skbs = false; 4842 break; 4843 } 4844 4845 /* Decided to skip this, advance start seq. */ 4846 start = TCP_SKB_CB(skb)->end_seq; 4847 } 4848 if (end_of_skbs || 4849 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4850 return; 4851 4852 __skb_queue_head_init(&tmp); 4853 4854 while (before(start, end)) { 4855 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4856 struct sk_buff *nskb; 4857 4858 nskb = alloc_skb(copy, GFP_ATOMIC); 4859 if (!nskb) 4860 break; 4861 4862 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4863 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4864 if (list) 4865 __skb_queue_before(list, skb, nskb); 4866 else 4867 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4868 skb_set_owner_r(nskb, sk); 4869 4870 /* Copy data, releasing collapsed skbs. */ 4871 while (copy > 0) { 4872 int offset = start - TCP_SKB_CB(skb)->seq; 4873 int size = TCP_SKB_CB(skb)->end_seq - start; 4874 4875 BUG_ON(offset < 0); 4876 if (size > 0) { 4877 size = min(copy, size); 4878 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4879 BUG(); 4880 TCP_SKB_CB(nskb)->end_seq += size; 4881 copy -= size; 4882 start += size; 4883 } 4884 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4885 skb = tcp_collapse_one(sk, skb, list, root); 4886 if (!skb || 4887 skb == tail || 4888 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4889 goto end; 4890 } 4891 } 4892 } 4893 end: 4894 skb_queue_walk_safe(&tmp, skb, n) 4895 tcp_rbtree_insert(root, skb); 4896 } 4897 4898 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4899 * and tcp_collapse() them until all the queue is collapsed. 4900 */ 4901 static void tcp_collapse_ofo_queue(struct sock *sk) 4902 { 4903 struct tcp_sock *tp = tcp_sk(sk); 4904 struct sk_buff *skb, *head; 4905 u32 start, end; 4906 4907 skb = skb_rb_first(&tp->out_of_order_queue); 4908 new_range: 4909 if (!skb) { 4910 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4911 return; 4912 } 4913 start = TCP_SKB_CB(skb)->seq; 4914 end = TCP_SKB_CB(skb)->end_seq; 4915 4916 for (head = skb;;) { 4917 skb = skb_rb_next(skb); 4918 4919 /* Range is terminated when we see a gap or when 4920 * we are at the queue end. 4921 */ 4922 if (!skb || 4923 after(TCP_SKB_CB(skb)->seq, end) || 4924 before(TCP_SKB_CB(skb)->end_seq, start)) { 4925 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4926 head, skb, start, end); 4927 goto new_range; 4928 } 4929 4930 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4931 start = TCP_SKB_CB(skb)->seq; 4932 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4933 end = TCP_SKB_CB(skb)->end_seq; 4934 } 4935 } 4936 4937 /* 4938 * Clean the out-of-order queue to make room. 4939 * We drop high sequences packets to : 4940 * 1) Let a chance for holes to be filled. 4941 * 2) not add too big latencies if thousands of packets sit there. 4942 * (But if application shrinks SO_RCVBUF, we could still end up 4943 * freeing whole queue here) 4944 * 4945 * Return true if queue has shrunk. 4946 */ 4947 static bool tcp_prune_ofo_queue(struct sock *sk) 4948 { 4949 struct tcp_sock *tp = tcp_sk(sk); 4950 struct rb_node *node, *prev; 4951 4952 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4953 return false; 4954 4955 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4956 node = &tp->ooo_last_skb->rbnode; 4957 do { 4958 prev = rb_prev(node); 4959 rb_erase(node, &tp->out_of_order_queue); 4960 tcp_drop(sk, rb_to_skb(node)); 4961 sk_mem_reclaim(sk); 4962 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4963 !tcp_under_memory_pressure(sk)) 4964 break; 4965 node = prev; 4966 } while (node); 4967 tp->ooo_last_skb = rb_to_skb(prev); 4968 4969 /* Reset SACK state. A conforming SACK implementation will 4970 * do the same at a timeout based retransmit. When a connection 4971 * is in a sad state like this, we care only about integrity 4972 * of the connection not performance. 4973 */ 4974 if (tp->rx_opt.sack_ok) 4975 tcp_sack_reset(&tp->rx_opt); 4976 return true; 4977 } 4978 4979 /* Reduce allocated memory if we can, trying to get 4980 * the socket within its memory limits again. 4981 * 4982 * Return less than zero if we should start dropping frames 4983 * until the socket owning process reads some of the data 4984 * to stabilize the situation. 4985 */ 4986 static int tcp_prune_queue(struct sock *sk) 4987 { 4988 struct tcp_sock *tp = tcp_sk(sk); 4989 4990 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4991 4992 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4993 4994 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4995 tcp_clamp_window(sk); 4996 else if (tcp_under_memory_pressure(sk)) 4997 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4998 4999 tcp_collapse_ofo_queue(sk); 5000 if (!skb_queue_empty(&sk->sk_receive_queue)) 5001 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5002 skb_peek(&sk->sk_receive_queue), 5003 NULL, 5004 tp->copied_seq, tp->rcv_nxt); 5005 sk_mem_reclaim(sk); 5006 5007 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5008 return 0; 5009 5010 /* Collapsing did not help, destructive actions follow. 5011 * This must not ever occur. */ 5012 5013 tcp_prune_ofo_queue(sk); 5014 5015 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5016 return 0; 5017 5018 /* If we are really being abused, tell the caller to silently 5019 * drop receive data on the floor. It will get retransmitted 5020 * and hopefully then we'll have sufficient space. 5021 */ 5022 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5023 5024 /* Massive buffer overcommit. */ 5025 tp->pred_flags = 0; 5026 return -1; 5027 } 5028 5029 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5030 { 5031 const struct tcp_sock *tp = tcp_sk(sk); 5032 5033 /* If the user specified a specific send buffer setting, do 5034 * not modify it. 5035 */ 5036 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5037 return false; 5038 5039 /* If we are under global TCP memory pressure, do not expand. */ 5040 if (tcp_under_memory_pressure(sk)) 5041 return false; 5042 5043 /* If we are under soft global TCP memory pressure, do not expand. */ 5044 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5045 return false; 5046 5047 /* If we filled the congestion window, do not expand. */ 5048 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5049 return false; 5050 5051 return true; 5052 } 5053 5054 /* When incoming ACK allowed to free some skb from write_queue, 5055 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5056 * on the exit from tcp input handler. 5057 * 5058 * PROBLEM: sndbuf expansion does not work well with largesend. 5059 */ 5060 static void tcp_new_space(struct sock *sk) 5061 { 5062 struct tcp_sock *tp = tcp_sk(sk); 5063 5064 if (tcp_should_expand_sndbuf(sk)) { 5065 tcp_sndbuf_expand(sk); 5066 tp->snd_cwnd_stamp = tcp_jiffies32; 5067 } 5068 5069 sk->sk_write_space(sk); 5070 } 5071 5072 static void tcp_check_space(struct sock *sk) 5073 { 5074 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5075 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5076 /* pairs with tcp_poll() */ 5077 smp_mb(); 5078 if (sk->sk_socket && 5079 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5080 tcp_new_space(sk); 5081 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5082 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5083 } 5084 } 5085 } 5086 5087 static inline void tcp_data_snd_check(struct sock *sk) 5088 { 5089 tcp_push_pending_frames(sk); 5090 tcp_check_space(sk); 5091 } 5092 5093 /* 5094 * Check if sending an ack is needed. 5095 */ 5096 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5097 { 5098 struct tcp_sock *tp = tcp_sk(sk); 5099 unsigned long rtt, delay; 5100 5101 /* More than one full frame received... */ 5102 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5103 /* ... and right edge of window advances far enough. 5104 * (tcp_recvmsg() will send ACK otherwise). 5105 * If application uses SO_RCVLOWAT, we want send ack now if 5106 * we have not received enough bytes to satisfy the condition. 5107 */ 5108 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5109 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5110 /* We ACK each frame or... */ 5111 tcp_in_quickack_mode(sk)) { 5112 send_now: 5113 tcp_send_ack(sk); 5114 return; 5115 } 5116 5117 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5118 tcp_send_delayed_ack(sk); 5119 return; 5120 } 5121 5122 if (!tcp_is_sack(tp) || 5123 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5124 goto send_now; 5125 tp->compressed_ack++; 5126 5127 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5128 return; 5129 5130 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5131 5132 rtt = tp->rcv_rtt_est.rtt_us; 5133 if (tp->srtt_us && tp->srtt_us < rtt) 5134 rtt = tp->srtt_us; 5135 5136 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5137 rtt * (NSEC_PER_USEC >> 3)/20); 5138 sock_hold(sk); 5139 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5140 HRTIMER_MODE_REL_PINNED_SOFT); 5141 } 5142 5143 static inline void tcp_ack_snd_check(struct sock *sk) 5144 { 5145 if (!inet_csk_ack_scheduled(sk)) { 5146 /* We sent a data segment already. */ 5147 return; 5148 } 5149 __tcp_ack_snd_check(sk, 1); 5150 } 5151 5152 /* 5153 * This routine is only called when we have urgent data 5154 * signaled. Its the 'slow' part of tcp_urg. It could be 5155 * moved inline now as tcp_urg is only called from one 5156 * place. We handle URGent data wrong. We have to - as 5157 * BSD still doesn't use the correction from RFC961. 5158 * For 1003.1g we should support a new option TCP_STDURG to permit 5159 * either form (or just set the sysctl tcp_stdurg). 5160 */ 5161 5162 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5163 { 5164 struct tcp_sock *tp = tcp_sk(sk); 5165 u32 ptr = ntohs(th->urg_ptr); 5166 5167 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5168 ptr--; 5169 ptr += ntohl(th->seq); 5170 5171 /* Ignore urgent data that we've already seen and read. */ 5172 if (after(tp->copied_seq, ptr)) 5173 return; 5174 5175 /* Do not replay urg ptr. 5176 * 5177 * NOTE: interesting situation not covered by specs. 5178 * Misbehaving sender may send urg ptr, pointing to segment, 5179 * which we already have in ofo queue. We are not able to fetch 5180 * such data and will stay in TCP_URG_NOTYET until will be eaten 5181 * by recvmsg(). Seems, we are not obliged to handle such wicked 5182 * situations. But it is worth to think about possibility of some 5183 * DoSes using some hypothetical application level deadlock. 5184 */ 5185 if (before(ptr, tp->rcv_nxt)) 5186 return; 5187 5188 /* Do we already have a newer (or duplicate) urgent pointer? */ 5189 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5190 return; 5191 5192 /* Tell the world about our new urgent pointer. */ 5193 sk_send_sigurg(sk); 5194 5195 /* We may be adding urgent data when the last byte read was 5196 * urgent. To do this requires some care. We cannot just ignore 5197 * tp->copied_seq since we would read the last urgent byte again 5198 * as data, nor can we alter copied_seq until this data arrives 5199 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5200 * 5201 * NOTE. Double Dutch. Rendering to plain English: author of comment 5202 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5203 * and expect that both A and B disappear from stream. This is _wrong_. 5204 * Though this happens in BSD with high probability, this is occasional. 5205 * Any application relying on this is buggy. Note also, that fix "works" 5206 * only in this artificial test. Insert some normal data between A and B and we will 5207 * decline of BSD again. Verdict: it is better to remove to trap 5208 * buggy users. 5209 */ 5210 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5211 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5212 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5213 tp->copied_seq++; 5214 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5215 __skb_unlink(skb, &sk->sk_receive_queue); 5216 __kfree_skb(skb); 5217 } 5218 } 5219 5220 tp->urg_data = TCP_URG_NOTYET; 5221 tp->urg_seq = ptr; 5222 5223 /* Disable header prediction. */ 5224 tp->pred_flags = 0; 5225 } 5226 5227 /* This is the 'fast' part of urgent handling. */ 5228 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5229 { 5230 struct tcp_sock *tp = tcp_sk(sk); 5231 5232 /* Check if we get a new urgent pointer - normally not. */ 5233 if (th->urg) 5234 tcp_check_urg(sk, th); 5235 5236 /* Do we wait for any urgent data? - normally not... */ 5237 if (tp->urg_data == TCP_URG_NOTYET) { 5238 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5239 th->syn; 5240 5241 /* Is the urgent pointer pointing into this packet? */ 5242 if (ptr < skb->len) { 5243 u8 tmp; 5244 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5245 BUG(); 5246 tp->urg_data = TCP_URG_VALID | tmp; 5247 if (!sock_flag(sk, SOCK_DEAD)) 5248 sk->sk_data_ready(sk); 5249 } 5250 } 5251 } 5252 5253 /* Accept RST for rcv_nxt - 1 after a FIN. 5254 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5255 * FIN is sent followed by a RST packet. The RST is sent with the same 5256 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5257 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5258 * ACKs on the closed socket. In addition middleboxes can drop either the 5259 * challenge ACK or a subsequent RST. 5260 */ 5261 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5262 { 5263 struct tcp_sock *tp = tcp_sk(sk); 5264 5265 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5266 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5267 TCPF_CLOSING)); 5268 } 5269 5270 /* Does PAWS and seqno based validation of an incoming segment, flags will 5271 * play significant role here. 5272 */ 5273 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5274 const struct tcphdr *th, int syn_inerr) 5275 { 5276 struct tcp_sock *tp = tcp_sk(sk); 5277 bool rst_seq_match = false; 5278 5279 /* RFC1323: H1. Apply PAWS check first. */ 5280 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5281 tp->rx_opt.saw_tstamp && 5282 tcp_paws_discard(sk, skb)) { 5283 if (!th->rst) { 5284 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5285 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5286 LINUX_MIB_TCPACKSKIPPEDPAWS, 5287 &tp->last_oow_ack_time)) 5288 tcp_send_dupack(sk, skb); 5289 goto discard; 5290 } 5291 /* Reset is accepted even if it did not pass PAWS. */ 5292 } 5293 5294 /* Step 1: check sequence number */ 5295 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5296 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5297 * (RST) segments are validated by checking their SEQ-fields." 5298 * And page 69: "If an incoming segment is not acceptable, 5299 * an acknowledgment should be sent in reply (unless the RST 5300 * bit is set, if so drop the segment and return)". 5301 */ 5302 if (!th->rst) { 5303 if (th->syn) 5304 goto syn_challenge; 5305 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5306 LINUX_MIB_TCPACKSKIPPEDSEQ, 5307 &tp->last_oow_ack_time)) 5308 tcp_send_dupack(sk, skb); 5309 } else if (tcp_reset_check(sk, skb)) { 5310 tcp_reset(sk); 5311 } 5312 goto discard; 5313 } 5314 5315 /* Step 2: check RST bit */ 5316 if (th->rst) { 5317 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5318 * FIN and SACK too if available): 5319 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5320 * the right-most SACK block, 5321 * then 5322 * RESET the connection 5323 * else 5324 * Send a challenge ACK 5325 */ 5326 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5327 tcp_reset_check(sk, skb)) { 5328 rst_seq_match = true; 5329 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5330 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5331 int max_sack = sp[0].end_seq; 5332 int this_sack; 5333 5334 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5335 ++this_sack) { 5336 max_sack = after(sp[this_sack].end_seq, 5337 max_sack) ? 5338 sp[this_sack].end_seq : max_sack; 5339 } 5340 5341 if (TCP_SKB_CB(skb)->seq == max_sack) 5342 rst_seq_match = true; 5343 } 5344 5345 if (rst_seq_match) 5346 tcp_reset(sk); 5347 else { 5348 /* Disable TFO if RST is out-of-order 5349 * and no data has been received 5350 * for current active TFO socket 5351 */ 5352 if (tp->syn_fastopen && !tp->data_segs_in && 5353 sk->sk_state == TCP_ESTABLISHED) 5354 tcp_fastopen_active_disable(sk); 5355 tcp_send_challenge_ack(sk, skb); 5356 } 5357 goto discard; 5358 } 5359 5360 /* step 3: check security and precedence [ignored] */ 5361 5362 /* step 4: Check for a SYN 5363 * RFC 5961 4.2 : Send a challenge ack 5364 */ 5365 if (th->syn) { 5366 syn_challenge: 5367 if (syn_inerr) 5368 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5369 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5370 tcp_send_challenge_ack(sk, skb); 5371 goto discard; 5372 } 5373 5374 return true; 5375 5376 discard: 5377 tcp_drop(sk, skb); 5378 return false; 5379 } 5380 5381 /* 5382 * TCP receive function for the ESTABLISHED state. 5383 * 5384 * It is split into a fast path and a slow path. The fast path is 5385 * disabled when: 5386 * - A zero window was announced from us - zero window probing 5387 * is only handled properly in the slow path. 5388 * - Out of order segments arrived. 5389 * - Urgent data is expected. 5390 * - There is no buffer space left 5391 * - Unexpected TCP flags/window values/header lengths are received 5392 * (detected by checking the TCP header against pred_flags) 5393 * - Data is sent in both directions. Fast path only supports pure senders 5394 * or pure receivers (this means either the sequence number or the ack 5395 * value must stay constant) 5396 * - Unexpected TCP option. 5397 * 5398 * When these conditions are not satisfied it drops into a standard 5399 * receive procedure patterned after RFC793 to handle all cases. 5400 * The first three cases are guaranteed by proper pred_flags setting, 5401 * the rest is checked inline. Fast processing is turned on in 5402 * tcp_data_queue when everything is OK. 5403 */ 5404 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5405 { 5406 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5407 struct tcp_sock *tp = tcp_sk(sk); 5408 unsigned int len = skb->len; 5409 5410 /* TCP congestion window tracking */ 5411 trace_tcp_probe(sk, skb); 5412 5413 tcp_mstamp_refresh(tp); 5414 if (unlikely(!sk->sk_rx_dst)) 5415 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5416 /* 5417 * Header prediction. 5418 * The code loosely follows the one in the famous 5419 * "30 instruction TCP receive" Van Jacobson mail. 5420 * 5421 * Van's trick is to deposit buffers into socket queue 5422 * on a device interrupt, to call tcp_recv function 5423 * on the receive process context and checksum and copy 5424 * the buffer to user space. smart... 5425 * 5426 * Our current scheme is not silly either but we take the 5427 * extra cost of the net_bh soft interrupt processing... 5428 * We do checksum and copy also but from device to kernel. 5429 */ 5430 5431 tp->rx_opt.saw_tstamp = 0; 5432 5433 /* pred_flags is 0xS?10 << 16 + snd_wnd 5434 * if header_prediction is to be made 5435 * 'S' will always be tp->tcp_header_len >> 2 5436 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5437 * turn it off (when there are holes in the receive 5438 * space for instance) 5439 * PSH flag is ignored. 5440 */ 5441 5442 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5443 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5444 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5445 int tcp_header_len = tp->tcp_header_len; 5446 5447 /* Timestamp header prediction: tcp_header_len 5448 * is automatically equal to th->doff*4 due to pred_flags 5449 * match. 5450 */ 5451 5452 /* Check timestamp */ 5453 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5454 /* No? Slow path! */ 5455 if (!tcp_parse_aligned_timestamp(tp, th)) 5456 goto slow_path; 5457 5458 /* If PAWS failed, check it more carefully in slow path */ 5459 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5460 goto slow_path; 5461 5462 /* DO NOT update ts_recent here, if checksum fails 5463 * and timestamp was corrupted part, it will result 5464 * in a hung connection since we will drop all 5465 * future packets due to the PAWS test. 5466 */ 5467 } 5468 5469 if (len <= tcp_header_len) { 5470 /* Bulk data transfer: sender */ 5471 if (len == tcp_header_len) { 5472 /* Predicted packet is in window by definition. 5473 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5474 * Hence, check seq<=rcv_wup reduces to: 5475 */ 5476 if (tcp_header_len == 5477 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5478 tp->rcv_nxt == tp->rcv_wup) 5479 tcp_store_ts_recent(tp); 5480 5481 /* We know that such packets are checksummed 5482 * on entry. 5483 */ 5484 tcp_ack(sk, skb, 0); 5485 __kfree_skb(skb); 5486 tcp_data_snd_check(sk); 5487 return; 5488 } else { /* Header too small */ 5489 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5490 goto discard; 5491 } 5492 } else { 5493 int eaten = 0; 5494 bool fragstolen = false; 5495 5496 if (tcp_checksum_complete(skb)) 5497 goto csum_error; 5498 5499 if ((int)skb->truesize > sk->sk_forward_alloc) 5500 goto step5; 5501 5502 /* Predicted packet is in window by definition. 5503 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5504 * Hence, check seq<=rcv_wup reduces to: 5505 */ 5506 if (tcp_header_len == 5507 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5508 tp->rcv_nxt == tp->rcv_wup) 5509 tcp_store_ts_recent(tp); 5510 5511 tcp_rcv_rtt_measure_ts(sk, skb); 5512 5513 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5514 5515 /* Bulk data transfer: receiver */ 5516 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5517 &fragstolen); 5518 5519 tcp_event_data_recv(sk, skb); 5520 5521 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5522 /* Well, only one small jumplet in fast path... */ 5523 tcp_ack(sk, skb, FLAG_DATA); 5524 tcp_data_snd_check(sk); 5525 if (!inet_csk_ack_scheduled(sk)) 5526 goto no_ack; 5527 } 5528 5529 __tcp_ack_snd_check(sk, 0); 5530 no_ack: 5531 if (eaten) 5532 kfree_skb_partial(skb, fragstolen); 5533 tcp_data_ready(sk); 5534 return; 5535 } 5536 } 5537 5538 slow_path: 5539 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5540 goto csum_error; 5541 5542 if (!th->ack && !th->rst && !th->syn) 5543 goto discard; 5544 5545 /* 5546 * Standard slow path. 5547 */ 5548 5549 if (!tcp_validate_incoming(sk, skb, th, 1)) 5550 return; 5551 5552 step5: 5553 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5554 goto discard; 5555 5556 tcp_rcv_rtt_measure_ts(sk, skb); 5557 5558 /* Process urgent data. */ 5559 tcp_urg(sk, skb, th); 5560 5561 /* step 7: process the segment text */ 5562 tcp_data_queue(sk, skb); 5563 5564 tcp_data_snd_check(sk); 5565 tcp_ack_snd_check(sk); 5566 return; 5567 5568 csum_error: 5569 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5570 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5571 5572 discard: 5573 tcp_drop(sk, skb); 5574 } 5575 EXPORT_SYMBOL(tcp_rcv_established); 5576 5577 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5578 { 5579 struct tcp_sock *tp = tcp_sk(sk); 5580 struct inet_connection_sock *icsk = inet_csk(sk); 5581 5582 tcp_set_state(sk, TCP_ESTABLISHED); 5583 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5584 5585 if (skb) { 5586 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5587 security_inet_conn_established(sk, skb); 5588 } 5589 5590 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5591 5592 /* Prevent spurious tcp_cwnd_restart() on first data 5593 * packet. 5594 */ 5595 tp->lsndtime = tcp_jiffies32; 5596 5597 if (sock_flag(sk, SOCK_KEEPOPEN)) 5598 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5599 5600 if (!tp->rx_opt.snd_wscale) 5601 __tcp_fast_path_on(tp, tp->snd_wnd); 5602 else 5603 tp->pred_flags = 0; 5604 } 5605 5606 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5607 struct tcp_fastopen_cookie *cookie) 5608 { 5609 struct tcp_sock *tp = tcp_sk(sk); 5610 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5611 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5612 bool syn_drop = false; 5613 5614 if (mss == tp->rx_opt.user_mss) { 5615 struct tcp_options_received opt; 5616 5617 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5618 tcp_clear_options(&opt); 5619 opt.user_mss = opt.mss_clamp = 0; 5620 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5621 mss = opt.mss_clamp; 5622 } 5623 5624 if (!tp->syn_fastopen) { 5625 /* Ignore an unsolicited cookie */ 5626 cookie->len = -1; 5627 } else if (tp->total_retrans) { 5628 /* SYN timed out and the SYN-ACK neither has a cookie nor 5629 * acknowledges data. Presumably the remote received only 5630 * the retransmitted (regular) SYNs: either the original 5631 * SYN-data or the corresponding SYN-ACK was dropped. 5632 */ 5633 syn_drop = (cookie->len < 0 && data); 5634 } else if (cookie->len < 0 && !tp->syn_data) { 5635 /* We requested a cookie but didn't get it. If we did not use 5636 * the (old) exp opt format then try so next time (try_exp=1). 5637 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5638 */ 5639 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5640 } 5641 5642 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5643 5644 if (data) { /* Retransmit unacked data in SYN */ 5645 skb_rbtree_walk_from(data) { 5646 if (__tcp_retransmit_skb(sk, data, 1)) 5647 break; 5648 } 5649 tcp_rearm_rto(sk); 5650 NET_INC_STATS(sock_net(sk), 5651 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5652 return true; 5653 } 5654 tp->syn_data_acked = tp->syn_data; 5655 if (tp->syn_data_acked) { 5656 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5657 /* SYN-data is counted as two separate packets in tcp_ack() */ 5658 if (tp->delivered > 1) 5659 --tp->delivered; 5660 } 5661 5662 tcp_fastopen_add_skb(sk, synack); 5663 5664 return false; 5665 } 5666 5667 static void smc_check_reset_syn(struct tcp_sock *tp) 5668 { 5669 #if IS_ENABLED(CONFIG_SMC) 5670 if (static_branch_unlikely(&tcp_have_smc)) { 5671 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5672 tp->syn_smc = 0; 5673 } 5674 #endif 5675 } 5676 5677 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5678 const struct tcphdr *th) 5679 { 5680 struct inet_connection_sock *icsk = inet_csk(sk); 5681 struct tcp_sock *tp = tcp_sk(sk); 5682 struct tcp_fastopen_cookie foc = { .len = -1 }; 5683 int saved_clamp = tp->rx_opt.mss_clamp; 5684 bool fastopen_fail; 5685 5686 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5687 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5688 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5689 5690 if (th->ack) { 5691 /* rfc793: 5692 * "If the state is SYN-SENT then 5693 * first check the ACK bit 5694 * If the ACK bit is set 5695 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5696 * a reset (unless the RST bit is set, if so drop 5697 * the segment and return)" 5698 */ 5699 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5700 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5701 goto reset_and_undo; 5702 5703 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5704 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5705 tcp_time_stamp(tp))) { 5706 NET_INC_STATS(sock_net(sk), 5707 LINUX_MIB_PAWSACTIVEREJECTED); 5708 goto reset_and_undo; 5709 } 5710 5711 /* Now ACK is acceptable. 5712 * 5713 * "If the RST bit is set 5714 * If the ACK was acceptable then signal the user "error: 5715 * connection reset", drop the segment, enter CLOSED state, 5716 * delete TCB, and return." 5717 */ 5718 5719 if (th->rst) { 5720 tcp_reset(sk); 5721 goto discard; 5722 } 5723 5724 /* rfc793: 5725 * "fifth, if neither of the SYN or RST bits is set then 5726 * drop the segment and return." 5727 * 5728 * See note below! 5729 * --ANK(990513) 5730 */ 5731 if (!th->syn) 5732 goto discard_and_undo; 5733 5734 /* rfc793: 5735 * "If the SYN bit is on ... 5736 * are acceptable then ... 5737 * (our SYN has been ACKed), change the connection 5738 * state to ESTABLISHED..." 5739 */ 5740 5741 tcp_ecn_rcv_synack(tp, th); 5742 5743 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5744 tcp_ack(sk, skb, FLAG_SLOWPATH); 5745 5746 /* Ok.. it's good. Set up sequence numbers and 5747 * move to established. 5748 */ 5749 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5750 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5751 5752 /* RFC1323: The window in SYN & SYN/ACK segments is 5753 * never scaled. 5754 */ 5755 tp->snd_wnd = ntohs(th->window); 5756 5757 if (!tp->rx_opt.wscale_ok) { 5758 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5759 tp->window_clamp = min(tp->window_clamp, 65535U); 5760 } 5761 5762 if (tp->rx_opt.saw_tstamp) { 5763 tp->rx_opt.tstamp_ok = 1; 5764 tp->tcp_header_len = 5765 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5766 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5767 tcp_store_ts_recent(tp); 5768 } else { 5769 tp->tcp_header_len = sizeof(struct tcphdr); 5770 } 5771 5772 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5773 tcp_initialize_rcv_mss(sk); 5774 5775 /* Remember, tcp_poll() does not lock socket! 5776 * Change state from SYN-SENT only after copied_seq 5777 * is initialized. */ 5778 tp->copied_seq = tp->rcv_nxt; 5779 5780 smc_check_reset_syn(tp); 5781 5782 smp_mb(); 5783 5784 tcp_finish_connect(sk, skb); 5785 5786 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5787 tcp_rcv_fastopen_synack(sk, skb, &foc); 5788 5789 if (!sock_flag(sk, SOCK_DEAD)) { 5790 sk->sk_state_change(sk); 5791 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5792 } 5793 if (fastopen_fail) 5794 return -1; 5795 if (sk->sk_write_pending || 5796 icsk->icsk_accept_queue.rskq_defer_accept || 5797 icsk->icsk_ack.pingpong) { 5798 /* Save one ACK. Data will be ready after 5799 * several ticks, if write_pending is set. 5800 * 5801 * It may be deleted, but with this feature tcpdumps 5802 * look so _wonderfully_ clever, that I was not able 5803 * to stand against the temptation 8) --ANK 5804 */ 5805 inet_csk_schedule_ack(sk); 5806 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5807 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5808 TCP_DELACK_MAX, TCP_RTO_MAX); 5809 5810 discard: 5811 tcp_drop(sk, skb); 5812 return 0; 5813 } else { 5814 tcp_send_ack(sk); 5815 } 5816 return -1; 5817 } 5818 5819 /* No ACK in the segment */ 5820 5821 if (th->rst) { 5822 /* rfc793: 5823 * "If the RST bit is set 5824 * 5825 * Otherwise (no ACK) drop the segment and return." 5826 */ 5827 5828 goto discard_and_undo; 5829 } 5830 5831 /* PAWS check. */ 5832 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5833 tcp_paws_reject(&tp->rx_opt, 0)) 5834 goto discard_and_undo; 5835 5836 if (th->syn) { 5837 /* We see SYN without ACK. It is attempt of 5838 * simultaneous connect with crossed SYNs. 5839 * Particularly, it can be connect to self. 5840 */ 5841 tcp_set_state(sk, TCP_SYN_RECV); 5842 5843 if (tp->rx_opt.saw_tstamp) { 5844 tp->rx_opt.tstamp_ok = 1; 5845 tcp_store_ts_recent(tp); 5846 tp->tcp_header_len = 5847 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5848 } else { 5849 tp->tcp_header_len = sizeof(struct tcphdr); 5850 } 5851 5852 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5853 tp->copied_seq = tp->rcv_nxt; 5854 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5855 5856 /* RFC1323: The window in SYN & SYN/ACK segments is 5857 * never scaled. 5858 */ 5859 tp->snd_wnd = ntohs(th->window); 5860 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5861 tp->max_window = tp->snd_wnd; 5862 5863 tcp_ecn_rcv_syn(tp, th); 5864 5865 tcp_mtup_init(sk); 5866 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5867 tcp_initialize_rcv_mss(sk); 5868 5869 tcp_send_synack(sk); 5870 #if 0 5871 /* Note, we could accept data and URG from this segment. 5872 * There are no obstacles to make this (except that we must 5873 * either change tcp_recvmsg() to prevent it from returning data 5874 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5875 * 5876 * However, if we ignore data in ACKless segments sometimes, 5877 * we have no reasons to accept it sometimes. 5878 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5879 * is not flawless. So, discard packet for sanity. 5880 * Uncomment this return to process the data. 5881 */ 5882 return -1; 5883 #else 5884 goto discard; 5885 #endif 5886 } 5887 /* "fifth, if neither of the SYN or RST bits is set then 5888 * drop the segment and return." 5889 */ 5890 5891 discard_and_undo: 5892 tcp_clear_options(&tp->rx_opt); 5893 tp->rx_opt.mss_clamp = saved_clamp; 5894 goto discard; 5895 5896 reset_and_undo: 5897 tcp_clear_options(&tp->rx_opt); 5898 tp->rx_opt.mss_clamp = saved_clamp; 5899 return 1; 5900 } 5901 5902 /* 5903 * This function implements the receiving procedure of RFC 793 for 5904 * all states except ESTABLISHED and TIME_WAIT. 5905 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5906 * address independent. 5907 */ 5908 5909 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5910 { 5911 struct tcp_sock *tp = tcp_sk(sk); 5912 struct inet_connection_sock *icsk = inet_csk(sk); 5913 const struct tcphdr *th = tcp_hdr(skb); 5914 struct request_sock *req; 5915 int queued = 0; 5916 bool acceptable; 5917 5918 switch (sk->sk_state) { 5919 case TCP_CLOSE: 5920 goto discard; 5921 5922 case TCP_LISTEN: 5923 if (th->ack) 5924 return 1; 5925 5926 if (th->rst) 5927 goto discard; 5928 5929 if (th->syn) { 5930 if (th->fin) 5931 goto discard; 5932 /* It is possible that we process SYN packets from backlog, 5933 * so we need to make sure to disable BH right there. 5934 */ 5935 local_bh_disable(); 5936 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5937 local_bh_enable(); 5938 5939 if (!acceptable) 5940 return 1; 5941 consume_skb(skb); 5942 return 0; 5943 } 5944 goto discard; 5945 5946 case TCP_SYN_SENT: 5947 tp->rx_opt.saw_tstamp = 0; 5948 tcp_mstamp_refresh(tp); 5949 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5950 if (queued >= 0) 5951 return queued; 5952 5953 /* Do step6 onward by hand. */ 5954 tcp_urg(sk, skb, th); 5955 __kfree_skb(skb); 5956 tcp_data_snd_check(sk); 5957 return 0; 5958 } 5959 5960 tcp_mstamp_refresh(tp); 5961 tp->rx_opt.saw_tstamp = 0; 5962 req = tp->fastopen_rsk; 5963 if (req) { 5964 bool req_stolen; 5965 5966 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5967 sk->sk_state != TCP_FIN_WAIT1); 5968 5969 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 5970 goto discard; 5971 } 5972 5973 if (!th->ack && !th->rst && !th->syn) 5974 goto discard; 5975 5976 if (!tcp_validate_incoming(sk, skb, th, 0)) 5977 return 0; 5978 5979 /* step 5: check the ACK field */ 5980 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5981 FLAG_UPDATE_TS_RECENT | 5982 FLAG_NO_CHALLENGE_ACK) > 0; 5983 5984 if (!acceptable) { 5985 if (sk->sk_state == TCP_SYN_RECV) 5986 return 1; /* send one RST */ 5987 tcp_send_challenge_ack(sk, skb); 5988 goto discard; 5989 } 5990 switch (sk->sk_state) { 5991 case TCP_SYN_RECV: 5992 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 5993 if (!tp->srtt_us) 5994 tcp_synack_rtt_meas(sk, req); 5995 5996 /* Once we leave TCP_SYN_RECV, we no longer need req 5997 * so release it. 5998 */ 5999 if (req) { 6000 inet_csk(sk)->icsk_retransmits = 0; 6001 reqsk_fastopen_remove(sk, req, false); 6002 /* Re-arm the timer because data may have been sent out. 6003 * This is similar to the regular data transmission case 6004 * when new data has just been ack'ed. 6005 * 6006 * (TFO) - we could try to be more aggressive and 6007 * retransmitting any data sooner based on when they 6008 * are sent out. 6009 */ 6010 tcp_rearm_rto(sk); 6011 } else { 6012 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6013 tp->copied_seq = tp->rcv_nxt; 6014 } 6015 smp_mb(); 6016 tcp_set_state(sk, TCP_ESTABLISHED); 6017 sk->sk_state_change(sk); 6018 6019 /* Note, that this wakeup is only for marginal crossed SYN case. 6020 * Passively open sockets are not waked up, because 6021 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6022 */ 6023 if (sk->sk_socket) 6024 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6025 6026 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6027 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6028 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6029 6030 if (tp->rx_opt.tstamp_ok) 6031 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6032 6033 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6034 tcp_update_pacing_rate(sk); 6035 6036 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6037 tp->lsndtime = tcp_jiffies32; 6038 6039 tcp_initialize_rcv_mss(sk); 6040 tcp_fast_path_on(tp); 6041 break; 6042 6043 case TCP_FIN_WAIT1: { 6044 int tmo; 6045 6046 /* If we enter the TCP_FIN_WAIT1 state and we are a 6047 * Fast Open socket and this is the first acceptable 6048 * ACK we have received, this would have acknowledged 6049 * our SYNACK so stop the SYNACK timer. 6050 */ 6051 if (req) { 6052 /* We no longer need the request sock. */ 6053 reqsk_fastopen_remove(sk, req, false); 6054 tcp_rearm_rto(sk); 6055 } 6056 if (tp->snd_una != tp->write_seq) 6057 break; 6058 6059 tcp_set_state(sk, TCP_FIN_WAIT2); 6060 sk->sk_shutdown |= SEND_SHUTDOWN; 6061 6062 sk_dst_confirm(sk); 6063 6064 if (!sock_flag(sk, SOCK_DEAD)) { 6065 /* Wake up lingering close() */ 6066 sk->sk_state_change(sk); 6067 break; 6068 } 6069 6070 if (tp->linger2 < 0) { 6071 tcp_done(sk); 6072 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6073 return 1; 6074 } 6075 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6076 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6077 /* Receive out of order FIN after close() */ 6078 if (tp->syn_fastopen && th->fin) 6079 tcp_fastopen_active_disable(sk); 6080 tcp_done(sk); 6081 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6082 return 1; 6083 } 6084 6085 tmo = tcp_fin_time(sk); 6086 if (tmo > TCP_TIMEWAIT_LEN) { 6087 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6088 } else if (th->fin || sock_owned_by_user(sk)) { 6089 /* Bad case. We could lose such FIN otherwise. 6090 * It is not a big problem, but it looks confusing 6091 * and not so rare event. We still can lose it now, 6092 * if it spins in bh_lock_sock(), but it is really 6093 * marginal case. 6094 */ 6095 inet_csk_reset_keepalive_timer(sk, tmo); 6096 } else { 6097 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6098 goto discard; 6099 } 6100 break; 6101 } 6102 6103 case TCP_CLOSING: 6104 if (tp->snd_una == tp->write_seq) { 6105 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6106 goto discard; 6107 } 6108 break; 6109 6110 case TCP_LAST_ACK: 6111 if (tp->snd_una == tp->write_seq) { 6112 tcp_update_metrics(sk); 6113 tcp_done(sk); 6114 goto discard; 6115 } 6116 break; 6117 } 6118 6119 /* step 6: check the URG bit */ 6120 tcp_urg(sk, skb, th); 6121 6122 /* step 7: process the segment text */ 6123 switch (sk->sk_state) { 6124 case TCP_CLOSE_WAIT: 6125 case TCP_CLOSING: 6126 case TCP_LAST_ACK: 6127 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6128 break; 6129 /* fall through */ 6130 case TCP_FIN_WAIT1: 6131 case TCP_FIN_WAIT2: 6132 /* RFC 793 says to queue data in these states, 6133 * RFC 1122 says we MUST send a reset. 6134 * BSD 4.4 also does reset. 6135 */ 6136 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6137 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6138 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6139 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6140 tcp_reset(sk); 6141 return 1; 6142 } 6143 } 6144 /* Fall through */ 6145 case TCP_ESTABLISHED: 6146 tcp_data_queue(sk, skb); 6147 queued = 1; 6148 break; 6149 } 6150 6151 /* tcp_data could move socket to TIME-WAIT */ 6152 if (sk->sk_state != TCP_CLOSE) { 6153 tcp_data_snd_check(sk); 6154 tcp_ack_snd_check(sk); 6155 } 6156 6157 if (!queued) { 6158 discard: 6159 tcp_drop(sk, skb); 6160 } 6161 return 0; 6162 } 6163 EXPORT_SYMBOL(tcp_rcv_state_process); 6164 6165 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6166 { 6167 struct inet_request_sock *ireq = inet_rsk(req); 6168 6169 if (family == AF_INET) 6170 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6171 &ireq->ir_rmt_addr, port); 6172 #if IS_ENABLED(CONFIG_IPV6) 6173 else if (family == AF_INET6) 6174 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6175 &ireq->ir_v6_rmt_addr, port); 6176 #endif 6177 } 6178 6179 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6180 * 6181 * If we receive a SYN packet with these bits set, it means a 6182 * network is playing bad games with TOS bits. In order to 6183 * avoid possible false congestion notifications, we disable 6184 * TCP ECN negotiation. 6185 * 6186 * Exception: tcp_ca wants ECN. This is required for DCTCP 6187 * congestion control: Linux DCTCP asserts ECT on all packets, 6188 * including SYN, which is most optimal solution; however, 6189 * others, such as FreeBSD do not. 6190 */ 6191 static void tcp_ecn_create_request(struct request_sock *req, 6192 const struct sk_buff *skb, 6193 const struct sock *listen_sk, 6194 const struct dst_entry *dst) 6195 { 6196 const struct tcphdr *th = tcp_hdr(skb); 6197 const struct net *net = sock_net(listen_sk); 6198 bool th_ecn = th->ece && th->cwr; 6199 bool ect, ecn_ok; 6200 u32 ecn_ok_dst; 6201 6202 if (!th_ecn) 6203 return; 6204 6205 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6206 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6207 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6208 6209 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6210 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6211 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6212 inet_rsk(req)->ecn_ok = 1; 6213 } 6214 6215 static void tcp_openreq_init(struct request_sock *req, 6216 const struct tcp_options_received *rx_opt, 6217 struct sk_buff *skb, const struct sock *sk) 6218 { 6219 struct inet_request_sock *ireq = inet_rsk(req); 6220 6221 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6222 req->cookie_ts = 0; 6223 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6224 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6225 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6226 tcp_rsk(req)->last_oow_ack_time = 0; 6227 req->mss = rx_opt->mss_clamp; 6228 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6229 ireq->tstamp_ok = rx_opt->tstamp_ok; 6230 ireq->sack_ok = rx_opt->sack_ok; 6231 ireq->snd_wscale = rx_opt->snd_wscale; 6232 ireq->wscale_ok = rx_opt->wscale_ok; 6233 ireq->acked = 0; 6234 ireq->ecn_ok = 0; 6235 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6236 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6237 ireq->ir_mark = inet_request_mark(sk, skb); 6238 #if IS_ENABLED(CONFIG_SMC) 6239 ireq->smc_ok = rx_opt->smc_ok; 6240 #endif 6241 } 6242 6243 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6244 struct sock *sk_listener, 6245 bool attach_listener) 6246 { 6247 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6248 attach_listener); 6249 6250 if (req) { 6251 struct inet_request_sock *ireq = inet_rsk(req); 6252 6253 ireq->ireq_opt = NULL; 6254 #if IS_ENABLED(CONFIG_IPV6) 6255 ireq->pktopts = NULL; 6256 #endif 6257 atomic64_set(&ireq->ir_cookie, 0); 6258 ireq->ireq_state = TCP_NEW_SYN_RECV; 6259 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6260 ireq->ireq_family = sk_listener->sk_family; 6261 } 6262 6263 return req; 6264 } 6265 EXPORT_SYMBOL(inet_reqsk_alloc); 6266 6267 /* 6268 * Return true if a syncookie should be sent 6269 */ 6270 static bool tcp_syn_flood_action(const struct sock *sk, 6271 const struct sk_buff *skb, 6272 const char *proto) 6273 { 6274 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6275 const char *msg = "Dropping request"; 6276 bool want_cookie = false; 6277 struct net *net = sock_net(sk); 6278 6279 #ifdef CONFIG_SYN_COOKIES 6280 if (net->ipv4.sysctl_tcp_syncookies) { 6281 msg = "Sending cookies"; 6282 want_cookie = true; 6283 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6284 } else 6285 #endif 6286 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6287 6288 if (!queue->synflood_warned && 6289 net->ipv4.sysctl_tcp_syncookies != 2 && 6290 xchg(&queue->synflood_warned, 1) == 0) 6291 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6292 proto, ntohs(tcp_hdr(skb)->dest), msg); 6293 6294 return want_cookie; 6295 } 6296 6297 static void tcp_reqsk_record_syn(const struct sock *sk, 6298 struct request_sock *req, 6299 const struct sk_buff *skb) 6300 { 6301 if (tcp_sk(sk)->save_syn) { 6302 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6303 u32 *copy; 6304 6305 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6306 if (copy) { 6307 copy[0] = len; 6308 memcpy(©[1], skb_network_header(skb), len); 6309 req->saved_syn = copy; 6310 } 6311 } 6312 } 6313 6314 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6315 const struct tcp_request_sock_ops *af_ops, 6316 struct sock *sk, struct sk_buff *skb) 6317 { 6318 struct tcp_fastopen_cookie foc = { .len = -1 }; 6319 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6320 struct tcp_options_received tmp_opt; 6321 struct tcp_sock *tp = tcp_sk(sk); 6322 struct net *net = sock_net(sk); 6323 struct sock *fastopen_sk = NULL; 6324 struct request_sock *req; 6325 bool want_cookie = false; 6326 struct dst_entry *dst; 6327 struct flowi fl; 6328 6329 /* TW buckets are converted to open requests without 6330 * limitations, they conserve resources and peer is 6331 * evidently real one. 6332 */ 6333 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6334 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6335 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6336 if (!want_cookie) 6337 goto drop; 6338 } 6339 6340 if (sk_acceptq_is_full(sk)) { 6341 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6342 goto drop; 6343 } 6344 6345 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6346 if (!req) 6347 goto drop; 6348 6349 tcp_rsk(req)->af_specific = af_ops; 6350 tcp_rsk(req)->ts_off = 0; 6351 6352 tcp_clear_options(&tmp_opt); 6353 tmp_opt.mss_clamp = af_ops->mss_clamp; 6354 tmp_opt.user_mss = tp->rx_opt.user_mss; 6355 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6356 want_cookie ? NULL : &foc); 6357 6358 if (want_cookie && !tmp_opt.saw_tstamp) 6359 tcp_clear_options(&tmp_opt); 6360 6361 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6362 tmp_opt.smc_ok = 0; 6363 6364 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6365 tcp_openreq_init(req, &tmp_opt, skb, sk); 6366 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6367 6368 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6369 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6370 6371 af_ops->init_req(req, sk, skb); 6372 6373 if (security_inet_conn_request(sk, skb, req)) 6374 goto drop_and_free; 6375 6376 if (tmp_opt.tstamp_ok) 6377 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6378 6379 dst = af_ops->route_req(sk, &fl, req); 6380 if (!dst) 6381 goto drop_and_free; 6382 6383 if (!want_cookie && !isn) { 6384 /* Kill the following clause, if you dislike this way. */ 6385 if (!net->ipv4.sysctl_tcp_syncookies && 6386 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6387 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6388 !tcp_peer_is_proven(req, dst)) { 6389 /* Without syncookies last quarter of 6390 * backlog is filled with destinations, 6391 * proven to be alive. 6392 * It means that we continue to communicate 6393 * to destinations, already remembered 6394 * to the moment of synflood. 6395 */ 6396 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6397 rsk_ops->family); 6398 goto drop_and_release; 6399 } 6400 6401 isn = af_ops->init_seq(skb); 6402 } 6403 6404 tcp_ecn_create_request(req, skb, sk, dst); 6405 6406 if (want_cookie) { 6407 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6408 req->cookie_ts = tmp_opt.tstamp_ok; 6409 if (!tmp_opt.tstamp_ok) 6410 inet_rsk(req)->ecn_ok = 0; 6411 } 6412 6413 tcp_rsk(req)->snt_isn = isn; 6414 tcp_rsk(req)->txhash = net_tx_rndhash(); 6415 tcp_openreq_init_rwin(req, sk, dst); 6416 if (!want_cookie) { 6417 tcp_reqsk_record_syn(sk, req, skb); 6418 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6419 } 6420 if (fastopen_sk) { 6421 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6422 &foc, TCP_SYNACK_FASTOPEN); 6423 /* Add the child socket directly into the accept queue */ 6424 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6425 sk->sk_data_ready(sk); 6426 bh_unlock_sock(fastopen_sk); 6427 sock_put(fastopen_sk); 6428 } else { 6429 tcp_rsk(req)->tfo_listener = false; 6430 if (!want_cookie) 6431 inet_csk_reqsk_queue_hash_add(sk, req, 6432 tcp_timeout_init((struct sock *)req)); 6433 af_ops->send_synack(sk, dst, &fl, req, &foc, 6434 !want_cookie ? TCP_SYNACK_NORMAL : 6435 TCP_SYNACK_COOKIE); 6436 if (want_cookie) { 6437 reqsk_free(req); 6438 return 0; 6439 } 6440 } 6441 reqsk_put(req); 6442 return 0; 6443 6444 drop_and_release: 6445 dst_release(dst); 6446 drop_and_free: 6447 reqsk_free(req); 6448 drop: 6449 tcp_listendrop(sk); 6450 return 0; 6451 } 6452 EXPORT_SYMBOL(tcp_conn_request); 6453