1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/config.h> 67 #include <linux/mm.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 75 int sysctl_tcp_timestamps = 1; 76 int sysctl_tcp_window_scaling = 1; 77 int sysctl_tcp_sack = 1; 78 int sysctl_tcp_fack = 1; 79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn; 81 int sysctl_tcp_dsack = 1; 82 int sysctl_tcp_app_win = 31; 83 int sysctl_tcp_adv_win_scale = 2; 84 85 int sysctl_tcp_stdurg; 86 int sysctl_tcp_rfc1337; 87 int sysctl_tcp_max_orphans = NR_FILE; 88 int sysctl_tcp_frto; 89 int sysctl_tcp_nometrics_save; 90 91 int sysctl_tcp_moderate_rcvbuf = 1; 92 int sysctl_tcp_abc = 1; 93 94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 100 #define FLAG_ECE 0x40 /* ECE in this ACK */ 101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 112 113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 114 115 /* Adapt the MSS value used to make delayed ack decision to the 116 * real world. 117 */ 118 static void tcp_measure_rcv_mss(struct sock *sk, 119 const struct sk_buff *skb) 120 { 121 struct inet_connection_sock *icsk = inet_csk(sk); 122 const unsigned int lss = icsk->icsk_ack.last_seg_size; 123 unsigned int len; 124 125 icsk->icsk_ack.last_seg_size = 0; 126 127 /* skb->len may jitter because of SACKs, even if peer 128 * sends good full-sized frames. 129 */ 130 len = skb->len; 131 if (len >= icsk->icsk_ack.rcv_mss) { 132 icsk->icsk_ack.rcv_mss = len; 133 } else { 134 /* Otherwise, we make more careful check taking into account, 135 * that SACKs block is variable. 136 * 137 * "len" is invariant segment length, including TCP header. 138 */ 139 len += skb->data - skb->h.raw; 140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 141 /* If PSH is not set, packet should be 142 * full sized, provided peer TCP is not badly broken. 143 * This observation (if it is correct 8)) allows 144 * to handle super-low mtu links fairly. 145 */ 146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { 148 /* Subtract also invariant (if peer is RFC compliant), 149 * tcp header plus fixed timestamp option length. 150 * Resulting "len" is MSS free of SACK jitter. 151 */ 152 len -= tcp_sk(sk)->tcp_header_len; 153 icsk->icsk_ack.last_seg_size = len; 154 if (len == lss) { 155 icsk->icsk_ack.rcv_mss = len; 156 return; 157 } 158 } 159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 160 } 161 } 162 163 static void tcp_incr_quickack(struct sock *sk) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 167 168 if (quickacks==0) 169 quickacks=2; 170 if (quickacks > icsk->icsk_ack.quick) 171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 172 } 173 174 void tcp_enter_quickack_mode(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 tcp_incr_quickack(sk); 178 icsk->icsk_ack.pingpong = 0; 179 icsk->icsk_ack.ato = TCP_ATO_MIN; 180 } 181 182 /* Send ACKs quickly, if "quick" count is not exhausted 183 * and the session is not interactive. 184 */ 185 186 static inline int tcp_in_quickack_mode(const struct sock *sk) 187 { 188 const struct inet_connection_sock *icsk = inet_csk(sk); 189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 190 } 191 192 /* Buffer size and advertised window tuning. 193 * 194 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 195 */ 196 197 static void tcp_fixup_sndbuf(struct sock *sk) 198 { 199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 200 sizeof(struct sk_buff); 201 202 if (sk->sk_sndbuf < 3 * sndmem) 203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 204 } 205 206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 207 * 208 * All tcp_full_space() is split to two parts: "network" buffer, allocated 209 * forward and advertised in receiver window (tp->rcv_wnd) and 210 * "application buffer", required to isolate scheduling/application 211 * latencies from network. 212 * window_clamp is maximal advertised window. It can be less than 213 * tcp_full_space(), in this case tcp_full_space() - window_clamp 214 * is reserved for "application" buffer. The less window_clamp is 215 * the smoother our behaviour from viewpoint of network, but the lower 216 * throughput and the higher sensitivity of the connection to losses. 8) 217 * 218 * rcv_ssthresh is more strict window_clamp used at "slow start" 219 * phase to predict further behaviour of this connection. 220 * It is used for two goals: 221 * - to enforce header prediction at sender, even when application 222 * requires some significant "application buffer". It is check #1. 223 * - to prevent pruning of receive queue because of misprediction 224 * of receiver window. Check #2. 225 * 226 * The scheme does not work when sender sends good segments opening 227 * window and then starts to feed us spaghetti. But it should work 228 * in common situations. Otherwise, we have to rely on queue collapsing. 229 */ 230 231 /* Slow part of check#2. */ 232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp, 233 const struct sk_buff *skb) 234 { 235 /* Optimize this! */ 236 int truesize = tcp_win_from_space(skb->truesize)/2; 237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 238 239 while (tp->rcv_ssthresh <= window) { 240 if (truesize <= skb->len) 241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 242 243 truesize >>= 1; 244 window >>= 1; 245 } 246 return 0; 247 } 248 249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 250 struct sk_buff *skb) 251 { 252 /* Check #1 */ 253 if (tp->rcv_ssthresh < tp->window_clamp && 254 (int)tp->rcv_ssthresh < tcp_space(sk) && 255 !tcp_memory_pressure) { 256 int incr; 257 258 /* Check #2. Increase window, if skb with such overhead 259 * will fit to rcvbuf in future. 260 */ 261 if (tcp_win_from_space(skb->truesize) <= skb->len) 262 incr = 2*tp->advmss; 263 else 264 incr = __tcp_grow_window(sk, tp, skb); 265 266 if (incr) { 267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 268 inet_csk(sk)->icsk_ack.quick |= 1; 269 } 270 } 271 } 272 273 /* 3. Tuning rcvbuf, when connection enters established state. */ 274 275 static void tcp_fixup_rcvbuf(struct sock *sk) 276 { 277 struct tcp_sock *tp = tcp_sk(sk); 278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 279 280 /* Try to select rcvbuf so that 4 mss-sized segments 281 * will fit to window and corresponding skbs will fit to our rcvbuf. 282 * (was 3; 4 is minimum to allow fast retransmit to work.) 283 */ 284 while (tcp_win_from_space(rcvmem) < tp->advmss) 285 rcvmem += 128; 286 if (sk->sk_rcvbuf < 4 * rcvmem) 287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 288 } 289 290 /* 4. Try to fixup all. It is made immediately after connection enters 291 * established state. 292 */ 293 static void tcp_init_buffer_space(struct sock *sk) 294 { 295 struct tcp_sock *tp = tcp_sk(sk); 296 int maxwin; 297 298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 299 tcp_fixup_rcvbuf(sk); 300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 301 tcp_fixup_sndbuf(sk); 302 303 tp->rcvq_space.space = tp->rcv_wnd; 304 305 maxwin = tcp_full_space(sk); 306 307 if (tp->window_clamp >= maxwin) { 308 tp->window_clamp = maxwin; 309 310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 311 tp->window_clamp = max(maxwin - 312 (maxwin >> sysctl_tcp_app_win), 313 4 * tp->advmss); 314 } 315 316 /* Force reservation of one segment. */ 317 if (sysctl_tcp_app_win && 318 tp->window_clamp > 2 * tp->advmss && 319 tp->window_clamp + tp->advmss > maxwin) 320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 321 322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 323 tp->snd_cwnd_stamp = tcp_time_stamp; 324 } 325 326 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) 328 { 329 struct inet_connection_sock *icsk = inet_csk(sk); 330 331 icsk->icsk_ack.quick = 0; 332 333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 335 !tcp_memory_pressure && 336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 338 sysctl_tcp_rmem[2]); 339 } 340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 342 } 343 344 345 /* Initialize RCV_MSS value. 346 * RCV_MSS is an our guess about MSS used by the peer. 347 * We haven't any direct information about the MSS. 348 * It's better to underestimate the RCV_MSS rather than overestimate. 349 * Overestimations make us ACKing less frequently than needed. 350 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 351 */ 352 void tcp_initialize_rcv_mss(struct sock *sk) 353 { 354 struct tcp_sock *tp = tcp_sk(sk); 355 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 356 357 hint = min(hint, tp->rcv_wnd/2); 358 hint = min(hint, TCP_MIN_RCVMSS); 359 hint = max(hint, TCP_MIN_MSS); 360 361 inet_csk(sk)->icsk_ack.rcv_mss = hint; 362 } 363 364 /* Receiver "autotuning" code. 365 * 366 * The algorithm for RTT estimation w/o timestamps is based on 367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 369 * 370 * More detail on this code can be found at 371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 372 * though this reference is out of date. A new paper 373 * is pending. 374 */ 375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 376 { 377 u32 new_sample = tp->rcv_rtt_est.rtt; 378 long m = sample; 379 380 if (m == 0) 381 m = 1; 382 383 if (new_sample != 0) { 384 /* If we sample in larger samples in the non-timestamp 385 * case, we could grossly overestimate the RTT especially 386 * with chatty applications or bulk transfer apps which 387 * are stalled on filesystem I/O. 388 * 389 * Also, since we are only going for a minimum in the 390 * non-timestamp case, we do not smooth things out 391 * else with timestamps disabled convergence takes too 392 * long. 393 */ 394 if (!win_dep) { 395 m -= (new_sample >> 3); 396 new_sample += m; 397 } else if (m < new_sample) 398 new_sample = m << 3; 399 } else { 400 /* No previous measure. */ 401 new_sample = m << 3; 402 } 403 404 if (tp->rcv_rtt_est.rtt != new_sample) 405 tp->rcv_rtt_est.rtt = new_sample; 406 } 407 408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 409 { 410 if (tp->rcv_rtt_est.time == 0) 411 goto new_measure; 412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 413 return; 414 tcp_rcv_rtt_update(tp, 415 jiffies - tp->rcv_rtt_est.time, 416 1); 417 418 new_measure: 419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 420 tp->rcv_rtt_est.time = tcp_time_stamp; 421 } 422 423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 424 { 425 struct tcp_sock *tp = tcp_sk(sk); 426 if (tp->rx_opt.rcv_tsecr && 427 (TCP_SKB_CB(skb)->end_seq - 428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 430 } 431 432 /* 433 * This function should be called every time data is copied to user space. 434 * It calculates the appropriate TCP receive buffer space. 435 */ 436 void tcp_rcv_space_adjust(struct sock *sk) 437 { 438 struct tcp_sock *tp = tcp_sk(sk); 439 int time; 440 int space; 441 442 if (tp->rcvq_space.time == 0) 443 goto new_measure; 444 445 time = tcp_time_stamp - tp->rcvq_space.time; 446 if (time < (tp->rcv_rtt_est.rtt >> 3) || 447 tp->rcv_rtt_est.rtt == 0) 448 return; 449 450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 451 452 space = max(tp->rcvq_space.space, space); 453 454 if (tp->rcvq_space.space != space) { 455 int rcvmem; 456 457 tp->rcvq_space.space = space; 458 459 if (sysctl_tcp_moderate_rcvbuf) { 460 int new_clamp = space; 461 462 /* Receive space grows, normalize in order to 463 * take into account packet headers and sk_buff 464 * structure overhead. 465 */ 466 space /= tp->advmss; 467 if (!space) 468 space = 1; 469 rcvmem = (tp->advmss + MAX_TCP_HEADER + 470 16 + sizeof(struct sk_buff)); 471 while (tcp_win_from_space(rcvmem) < tp->advmss) 472 rcvmem += 128; 473 space *= rcvmem; 474 space = min(space, sysctl_tcp_rmem[2]); 475 if (space > sk->sk_rcvbuf) { 476 sk->sk_rcvbuf = space; 477 478 /* Make the window clamp follow along. */ 479 tp->window_clamp = new_clamp; 480 } 481 } 482 } 483 484 new_measure: 485 tp->rcvq_space.seq = tp->copied_seq; 486 tp->rcvq_space.time = tcp_time_stamp; 487 } 488 489 /* There is something which you must keep in mind when you analyze the 490 * behavior of the tp->ato delayed ack timeout interval. When a 491 * connection starts up, we want to ack as quickly as possible. The 492 * problem is that "good" TCP's do slow start at the beginning of data 493 * transmission. The means that until we send the first few ACK's the 494 * sender will sit on his end and only queue most of his data, because 495 * he can only send snd_cwnd unacked packets at any given time. For 496 * each ACK we send, he increments snd_cwnd and transmits more of his 497 * queue. -DaveM 498 */ 499 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 500 { 501 struct inet_connection_sock *icsk = inet_csk(sk); 502 u32 now; 503 504 inet_csk_schedule_ack(sk); 505 506 tcp_measure_rcv_mss(sk, skb); 507 508 tcp_rcv_rtt_measure(tp); 509 510 now = tcp_time_stamp; 511 512 if (!icsk->icsk_ack.ato) { 513 /* The _first_ data packet received, initialize 514 * delayed ACK engine. 515 */ 516 tcp_incr_quickack(sk); 517 icsk->icsk_ack.ato = TCP_ATO_MIN; 518 } else { 519 int m = now - icsk->icsk_ack.lrcvtime; 520 521 if (m <= TCP_ATO_MIN/2) { 522 /* The fastest case is the first. */ 523 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 524 } else if (m < icsk->icsk_ack.ato) { 525 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 526 if (icsk->icsk_ack.ato > icsk->icsk_rto) 527 icsk->icsk_ack.ato = icsk->icsk_rto; 528 } else if (m > icsk->icsk_rto) { 529 /* Too long gap. Apparently sender failed to 530 * restart window, so that we send ACKs quickly. 531 */ 532 tcp_incr_quickack(sk); 533 sk_stream_mem_reclaim(sk); 534 } 535 } 536 icsk->icsk_ack.lrcvtime = now; 537 538 TCP_ECN_check_ce(tp, skb); 539 540 if (skb->len >= 128) 541 tcp_grow_window(sk, tp, skb); 542 } 543 544 /* Called to compute a smoothed rtt estimate. The data fed to this 545 * routine either comes from timestamps, or from segments that were 546 * known _not_ to have been retransmitted [see Karn/Partridge 547 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 548 * piece by Van Jacobson. 549 * NOTE: the next three routines used to be one big routine. 550 * To save cycles in the RFC 1323 implementation it was better to break 551 * it up into three procedures. -- erics 552 */ 553 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 554 { 555 struct tcp_sock *tp = tcp_sk(sk); 556 long m = mrtt; /* RTT */ 557 558 /* The following amusing code comes from Jacobson's 559 * article in SIGCOMM '88. Note that rtt and mdev 560 * are scaled versions of rtt and mean deviation. 561 * This is designed to be as fast as possible 562 * m stands for "measurement". 563 * 564 * On a 1990 paper the rto value is changed to: 565 * RTO = rtt + 4 * mdev 566 * 567 * Funny. This algorithm seems to be very broken. 568 * These formulae increase RTO, when it should be decreased, increase 569 * too slowly, when it should be increased quickly, decrease too quickly 570 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 571 * does not matter how to _calculate_ it. Seems, it was trap 572 * that VJ failed to avoid. 8) 573 */ 574 if(m == 0) 575 m = 1; 576 if (tp->srtt != 0) { 577 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 578 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 579 if (m < 0) { 580 m = -m; /* m is now abs(error) */ 581 m -= (tp->mdev >> 2); /* similar update on mdev */ 582 /* This is similar to one of Eifel findings. 583 * Eifel blocks mdev updates when rtt decreases. 584 * This solution is a bit different: we use finer gain 585 * for mdev in this case (alpha*beta). 586 * Like Eifel it also prevents growth of rto, 587 * but also it limits too fast rto decreases, 588 * happening in pure Eifel. 589 */ 590 if (m > 0) 591 m >>= 3; 592 } else { 593 m -= (tp->mdev >> 2); /* similar update on mdev */ 594 } 595 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 596 if (tp->mdev > tp->mdev_max) { 597 tp->mdev_max = tp->mdev; 598 if (tp->mdev_max > tp->rttvar) 599 tp->rttvar = tp->mdev_max; 600 } 601 if (after(tp->snd_una, tp->rtt_seq)) { 602 if (tp->mdev_max < tp->rttvar) 603 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 604 tp->rtt_seq = tp->snd_nxt; 605 tp->mdev_max = TCP_RTO_MIN; 606 } 607 } else { 608 /* no previous measure. */ 609 tp->srtt = m<<3; /* take the measured time to be rtt */ 610 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 611 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 612 tp->rtt_seq = tp->snd_nxt; 613 } 614 } 615 616 /* Calculate rto without backoff. This is the second half of Van Jacobson's 617 * routine referred to above. 618 */ 619 static inline void tcp_set_rto(struct sock *sk) 620 { 621 const struct tcp_sock *tp = tcp_sk(sk); 622 /* Old crap is replaced with new one. 8) 623 * 624 * More seriously: 625 * 1. If rtt variance happened to be less 50msec, it is hallucination. 626 * It cannot be less due to utterly erratic ACK generation made 627 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 628 * to do with delayed acks, because at cwnd>2 true delack timeout 629 * is invisible. Actually, Linux-2.4 also generates erratic 630 * ACKs in some circumstances. 631 */ 632 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 633 634 /* 2. Fixups made earlier cannot be right. 635 * If we do not estimate RTO correctly without them, 636 * all the algo is pure shit and should be replaced 637 * with correct one. It is exactly, which we pretend to do. 638 */ 639 } 640 641 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 642 * guarantees that rto is higher. 643 */ 644 static inline void tcp_bound_rto(struct sock *sk) 645 { 646 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 647 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 648 } 649 650 /* Save metrics learned by this TCP session. 651 This function is called only, when TCP finishes successfully 652 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 653 */ 654 void tcp_update_metrics(struct sock *sk) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct dst_entry *dst = __sk_dst_get(sk); 658 659 if (sysctl_tcp_nometrics_save) 660 return; 661 662 dst_confirm(dst); 663 664 if (dst && (dst->flags&DST_HOST)) { 665 const struct inet_connection_sock *icsk = inet_csk(sk); 666 int m; 667 668 if (icsk->icsk_backoff || !tp->srtt) { 669 /* This session failed to estimate rtt. Why? 670 * Probably, no packets returned in time. 671 * Reset our results. 672 */ 673 if (!(dst_metric_locked(dst, RTAX_RTT))) 674 dst->metrics[RTAX_RTT-1] = 0; 675 return; 676 } 677 678 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 679 680 /* If newly calculated rtt larger than stored one, 681 * store new one. Otherwise, use EWMA. Remember, 682 * rtt overestimation is always better than underestimation. 683 */ 684 if (!(dst_metric_locked(dst, RTAX_RTT))) { 685 if (m <= 0) 686 dst->metrics[RTAX_RTT-1] = tp->srtt; 687 else 688 dst->metrics[RTAX_RTT-1] -= (m>>3); 689 } 690 691 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 692 if (m < 0) 693 m = -m; 694 695 /* Scale deviation to rttvar fixed point */ 696 m >>= 1; 697 if (m < tp->mdev) 698 m = tp->mdev; 699 700 if (m >= dst_metric(dst, RTAX_RTTVAR)) 701 dst->metrics[RTAX_RTTVAR-1] = m; 702 else 703 dst->metrics[RTAX_RTTVAR-1] -= 704 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 705 } 706 707 if (tp->snd_ssthresh >= 0xFFFF) { 708 /* Slow start still did not finish. */ 709 if (dst_metric(dst, RTAX_SSTHRESH) && 710 !dst_metric_locked(dst, RTAX_SSTHRESH) && 711 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 712 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 713 if (!dst_metric_locked(dst, RTAX_CWND) && 714 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 715 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 716 } else if (tp->snd_cwnd > tp->snd_ssthresh && 717 icsk->icsk_ca_state == TCP_CA_Open) { 718 /* Cong. avoidance phase, cwnd is reliable. */ 719 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 720 dst->metrics[RTAX_SSTHRESH-1] = 721 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 722 if (!dst_metric_locked(dst, RTAX_CWND)) 723 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 724 } else { 725 /* Else slow start did not finish, cwnd is non-sense, 726 ssthresh may be also invalid. 727 */ 728 if (!dst_metric_locked(dst, RTAX_CWND)) 729 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 730 if (dst->metrics[RTAX_SSTHRESH-1] && 731 !dst_metric_locked(dst, RTAX_SSTHRESH) && 732 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 733 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 734 } 735 736 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 737 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 738 tp->reordering != sysctl_tcp_reordering) 739 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 740 } 741 } 742 } 743 744 /* Numbers are taken from RFC2414. */ 745 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 746 { 747 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 748 749 if (!cwnd) { 750 if (tp->mss_cache > 1460) 751 cwnd = 2; 752 else 753 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 754 } 755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 756 } 757 758 /* Set slow start threshold and cwnd not falling to slow start */ 759 void tcp_enter_cwr(struct sock *sk) 760 { 761 struct tcp_sock *tp = tcp_sk(sk); 762 763 tp->prior_ssthresh = 0; 764 tp->bytes_acked = 0; 765 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 766 tp->undo_marker = 0; 767 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 768 tp->snd_cwnd = min(tp->snd_cwnd, 769 tcp_packets_in_flight(tp) + 1U); 770 tp->snd_cwnd_cnt = 0; 771 tp->high_seq = tp->snd_nxt; 772 tp->snd_cwnd_stamp = tcp_time_stamp; 773 TCP_ECN_queue_cwr(tp); 774 775 tcp_set_ca_state(sk, TCP_CA_CWR); 776 } 777 } 778 779 /* Initialize metrics on socket. */ 780 781 static void tcp_init_metrics(struct sock *sk) 782 { 783 struct tcp_sock *tp = tcp_sk(sk); 784 struct dst_entry *dst = __sk_dst_get(sk); 785 786 if (dst == NULL) 787 goto reset; 788 789 dst_confirm(dst); 790 791 if (dst_metric_locked(dst, RTAX_CWND)) 792 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 793 if (dst_metric(dst, RTAX_SSTHRESH)) { 794 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 795 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 796 tp->snd_ssthresh = tp->snd_cwnd_clamp; 797 } 798 if (dst_metric(dst, RTAX_REORDERING) && 799 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 800 tp->rx_opt.sack_ok &= ~2; 801 tp->reordering = dst_metric(dst, RTAX_REORDERING); 802 } 803 804 if (dst_metric(dst, RTAX_RTT) == 0) 805 goto reset; 806 807 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 808 goto reset; 809 810 /* Initial rtt is determined from SYN,SYN-ACK. 811 * The segment is small and rtt may appear much 812 * less than real one. Use per-dst memory 813 * to make it more realistic. 814 * 815 * A bit of theory. RTT is time passed after "normal" sized packet 816 * is sent until it is ACKed. In normal circumstances sending small 817 * packets force peer to delay ACKs and calculation is correct too. 818 * The algorithm is adaptive and, provided we follow specs, it 819 * NEVER underestimate RTT. BUT! If peer tries to make some clever 820 * tricks sort of "quick acks" for time long enough to decrease RTT 821 * to low value, and then abruptly stops to do it and starts to delay 822 * ACKs, wait for troubles. 823 */ 824 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 825 tp->srtt = dst_metric(dst, RTAX_RTT); 826 tp->rtt_seq = tp->snd_nxt; 827 } 828 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 829 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 830 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 831 } 832 tcp_set_rto(sk); 833 tcp_bound_rto(sk); 834 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 835 goto reset; 836 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 837 tp->snd_cwnd_stamp = tcp_time_stamp; 838 return; 839 840 reset: 841 /* Play conservative. If timestamps are not 842 * supported, TCP will fail to recalculate correct 843 * rtt, if initial rto is too small. FORGET ALL AND RESET! 844 */ 845 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 846 tp->srtt = 0; 847 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 848 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 849 } 850 } 851 852 static void tcp_update_reordering(struct sock *sk, const int metric, 853 const int ts) 854 { 855 struct tcp_sock *tp = tcp_sk(sk); 856 if (metric > tp->reordering) { 857 tp->reordering = min(TCP_MAX_REORDERING, metric); 858 859 /* This exciting event is worth to be remembered. 8) */ 860 if (ts) 861 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 862 else if (IsReno(tp)) 863 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 864 else if (IsFack(tp)) 865 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 866 else 867 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 868 #if FASTRETRANS_DEBUG > 1 869 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 870 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 871 tp->reordering, 872 tp->fackets_out, 873 tp->sacked_out, 874 tp->undo_marker ? tp->undo_retrans : 0); 875 #endif 876 /* Disable FACK yet. */ 877 tp->rx_opt.sack_ok &= ~2; 878 } 879 } 880 881 /* This procedure tags the retransmission queue when SACKs arrive. 882 * 883 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 884 * Packets in queue with these bits set are counted in variables 885 * sacked_out, retrans_out and lost_out, correspondingly. 886 * 887 * Valid combinations are: 888 * Tag InFlight Description 889 * 0 1 - orig segment is in flight. 890 * S 0 - nothing flies, orig reached receiver. 891 * L 0 - nothing flies, orig lost by net. 892 * R 2 - both orig and retransmit are in flight. 893 * L|R 1 - orig is lost, retransmit is in flight. 894 * S|R 1 - orig reached receiver, retrans is still in flight. 895 * (L|S|R is logically valid, it could occur when L|R is sacked, 896 * but it is equivalent to plain S and code short-curcuits it to S. 897 * L|S is logically invalid, it would mean -1 packet in flight 8)) 898 * 899 * These 6 states form finite state machine, controlled by the following events: 900 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 901 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 902 * 3. Loss detection event of one of three flavors: 903 * A. Scoreboard estimator decided the packet is lost. 904 * A'. Reno "three dupacks" marks head of queue lost. 905 * A''. Its FACK modfication, head until snd.fack is lost. 906 * B. SACK arrives sacking data transmitted after never retransmitted 907 * hole was sent out. 908 * C. SACK arrives sacking SND.NXT at the moment, when the 909 * segment was retransmitted. 910 * 4. D-SACK added new rule: D-SACK changes any tag to S. 911 * 912 * It is pleasant to note, that state diagram turns out to be commutative, 913 * so that we are allowed not to be bothered by order of our actions, 914 * when multiple events arrive simultaneously. (see the function below). 915 * 916 * Reordering detection. 917 * -------------------- 918 * Reordering metric is maximal distance, which a packet can be displaced 919 * in packet stream. With SACKs we can estimate it: 920 * 921 * 1. SACK fills old hole and the corresponding segment was not 922 * ever retransmitted -> reordering. Alas, we cannot use it 923 * when segment was retransmitted. 924 * 2. The last flaw is solved with D-SACK. D-SACK arrives 925 * for retransmitted and already SACKed segment -> reordering.. 926 * Both of these heuristics are not used in Loss state, when we cannot 927 * account for retransmits accurately. 928 */ 929 static int 930 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 931 { 932 const struct inet_connection_sock *icsk = inet_csk(sk); 933 struct tcp_sock *tp = tcp_sk(sk); 934 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; 935 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2); 936 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 937 int reord = tp->packets_out; 938 int prior_fackets; 939 u32 lost_retrans = 0; 940 int flag = 0; 941 int dup_sack = 0; 942 int i; 943 944 if (!tp->sacked_out) 945 tp->fackets_out = 0; 946 prior_fackets = tp->fackets_out; 947 948 /* SACK fastpath: 949 * if the only SACK change is the increase of the end_seq of 950 * the first block then only apply that SACK block 951 * and use retrans queue hinting otherwise slowpath */ 952 flag = 1; 953 for (i = 0; i< num_sacks; i++) { 954 __u32 start_seq = ntohl(sp[i].start_seq); 955 __u32 end_seq = ntohl(sp[i].end_seq); 956 957 if (i == 0){ 958 if (tp->recv_sack_cache[i].start_seq != start_seq) 959 flag = 0; 960 } else { 961 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 962 (tp->recv_sack_cache[i].end_seq != end_seq)) 963 flag = 0; 964 } 965 tp->recv_sack_cache[i].start_seq = start_seq; 966 tp->recv_sack_cache[i].end_seq = end_seq; 967 968 /* Check for D-SACK. */ 969 if (i == 0) { 970 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq; 971 972 if (before(start_seq, ack)) { 973 dup_sack = 1; 974 tp->rx_opt.sack_ok |= 4; 975 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 976 } else if (num_sacks > 1 && 977 !after(end_seq, ntohl(sp[1].end_seq)) && 978 !before(start_seq, ntohl(sp[1].start_seq))) { 979 dup_sack = 1; 980 tp->rx_opt.sack_ok |= 4; 981 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 982 } 983 984 /* D-SACK for already forgotten data... 985 * Do dumb counting. */ 986 if (dup_sack && 987 !after(end_seq, prior_snd_una) && 988 after(end_seq, tp->undo_marker)) 989 tp->undo_retrans--; 990 991 /* Eliminate too old ACKs, but take into 992 * account more or less fresh ones, they can 993 * contain valid SACK info. 994 */ 995 if (before(ack, prior_snd_una - tp->max_window)) 996 return 0; 997 } 998 } 999 1000 if (flag) 1001 num_sacks = 1; 1002 else { 1003 int j; 1004 tp->fastpath_skb_hint = NULL; 1005 1006 /* order SACK blocks to allow in order walk of the retrans queue */ 1007 for (i = num_sacks-1; i > 0; i--) { 1008 for (j = 0; j < i; j++){ 1009 if (after(ntohl(sp[j].start_seq), 1010 ntohl(sp[j+1].start_seq))){ 1011 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq); 1012 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq); 1013 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq); 1014 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq); 1015 } 1016 1017 } 1018 } 1019 } 1020 1021 /* clear flag as used for different purpose in following code */ 1022 flag = 0; 1023 1024 for (i=0; i<num_sacks; i++, sp++) { 1025 struct sk_buff *skb; 1026 __u32 start_seq = ntohl(sp->start_seq); 1027 __u32 end_seq = ntohl(sp->end_seq); 1028 int fack_count; 1029 1030 /* Use SACK fastpath hint if valid */ 1031 if (tp->fastpath_skb_hint) { 1032 skb = tp->fastpath_skb_hint; 1033 fack_count = tp->fastpath_cnt_hint; 1034 } else { 1035 skb = sk->sk_write_queue.next; 1036 fack_count = 0; 1037 } 1038 1039 /* Event "B" in the comment above. */ 1040 if (after(end_seq, tp->high_seq)) 1041 flag |= FLAG_DATA_LOST; 1042 1043 sk_stream_for_retrans_queue_from(skb, sk) { 1044 int in_sack, pcount; 1045 u8 sacked; 1046 1047 tp->fastpath_skb_hint = skb; 1048 tp->fastpath_cnt_hint = fack_count; 1049 1050 /* The retransmission queue is always in order, so 1051 * we can short-circuit the walk early. 1052 */ 1053 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1054 break; 1055 1056 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1057 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1058 1059 pcount = tcp_skb_pcount(skb); 1060 1061 if (pcount > 1 && !in_sack && 1062 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1063 unsigned int pkt_len; 1064 1065 in_sack = !after(start_seq, 1066 TCP_SKB_CB(skb)->seq); 1067 1068 if (!in_sack) 1069 pkt_len = (start_seq - 1070 TCP_SKB_CB(skb)->seq); 1071 else 1072 pkt_len = (end_seq - 1073 TCP_SKB_CB(skb)->seq); 1074 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size)) 1075 break; 1076 pcount = tcp_skb_pcount(skb); 1077 } 1078 1079 fack_count += pcount; 1080 1081 sacked = TCP_SKB_CB(skb)->sacked; 1082 1083 /* Account D-SACK for retransmitted packet. */ 1084 if ((dup_sack && in_sack) && 1085 (sacked & TCPCB_RETRANS) && 1086 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1087 tp->undo_retrans--; 1088 1089 /* The frame is ACKed. */ 1090 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1091 if (sacked&TCPCB_RETRANS) { 1092 if ((dup_sack && in_sack) && 1093 (sacked&TCPCB_SACKED_ACKED)) 1094 reord = min(fack_count, reord); 1095 } else { 1096 /* If it was in a hole, we detected reordering. */ 1097 if (fack_count < prior_fackets && 1098 !(sacked&TCPCB_SACKED_ACKED)) 1099 reord = min(fack_count, reord); 1100 } 1101 1102 /* Nothing to do; acked frame is about to be dropped. */ 1103 continue; 1104 } 1105 1106 if ((sacked&TCPCB_SACKED_RETRANS) && 1107 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1108 (!lost_retrans || after(end_seq, lost_retrans))) 1109 lost_retrans = end_seq; 1110 1111 if (!in_sack) 1112 continue; 1113 1114 if (!(sacked&TCPCB_SACKED_ACKED)) { 1115 if (sacked & TCPCB_SACKED_RETRANS) { 1116 /* If the segment is not tagged as lost, 1117 * we do not clear RETRANS, believing 1118 * that retransmission is still in flight. 1119 */ 1120 if (sacked & TCPCB_LOST) { 1121 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1122 tp->lost_out -= tcp_skb_pcount(skb); 1123 tp->retrans_out -= tcp_skb_pcount(skb); 1124 1125 /* clear lost hint */ 1126 tp->retransmit_skb_hint = NULL; 1127 } 1128 } else { 1129 /* New sack for not retransmitted frame, 1130 * which was in hole. It is reordering. 1131 */ 1132 if (!(sacked & TCPCB_RETRANS) && 1133 fack_count < prior_fackets) 1134 reord = min(fack_count, reord); 1135 1136 if (sacked & TCPCB_LOST) { 1137 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1138 tp->lost_out -= tcp_skb_pcount(skb); 1139 1140 /* clear lost hint */ 1141 tp->retransmit_skb_hint = NULL; 1142 } 1143 } 1144 1145 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1146 flag |= FLAG_DATA_SACKED; 1147 tp->sacked_out += tcp_skb_pcount(skb); 1148 1149 if (fack_count > tp->fackets_out) 1150 tp->fackets_out = fack_count; 1151 } else { 1152 if (dup_sack && (sacked&TCPCB_RETRANS)) 1153 reord = min(fack_count, reord); 1154 } 1155 1156 /* D-SACK. We can detect redundant retransmission 1157 * in S|R and plain R frames and clear it. 1158 * undo_retrans is decreased above, L|R frames 1159 * are accounted above as well. 1160 */ 1161 if (dup_sack && 1162 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1163 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1164 tp->retrans_out -= tcp_skb_pcount(skb); 1165 tp->retransmit_skb_hint = NULL; 1166 } 1167 } 1168 } 1169 1170 /* Check for lost retransmit. This superb idea is 1171 * borrowed from "ratehalving". Event "C". 1172 * Later note: FACK people cheated me again 8), 1173 * we have to account for reordering! Ugly, 1174 * but should help. 1175 */ 1176 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1177 struct sk_buff *skb; 1178 1179 sk_stream_for_retrans_queue(skb, sk) { 1180 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1181 break; 1182 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1183 continue; 1184 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1185 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1186 (IsFack(tp) || 1187 !before(lost_retrans, 1188 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1189 tp->mss_cache))) { 1190 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1191 tp->retrans_out -= tcp_skb_pcount(skb); 1192 1193 /* clear lost hint */ 1194 tp->retransmit_skb_hint = NULL; 1195 1196 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1197 tp->lost_out += tcp_skb_pcount(skb); 1198 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1199 flag |= FLAG_DATA_SACKED; 1200 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1201 } 1202 } 1203 } 1204 } 1205 1206 tp->left_out = tp->sacked_out + tp->lost_out; 1207 1208 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss) 1209 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1210 1211 #if FASTRETRANS_DEBUG > 0 1212 BUG_TRAP((int)tp->sacked_out >= 0); 1213 BUG_TRAP((int)tp->lost_out >= 0); 1214 BUG_TRAP((int)tp->retrans_out >= 0); 1215 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1216 #endif 1217 return flag; 1218 } 1219 1220 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new 1221 * segments to see from the next ACKs whether any data was really missing. 1222 * If the RTO was spurious, new ACKs should arrive. 1223 */ 1224 void tcp_enter_frto(struct sock *sk) 1225 { 1226 const struct inet_connection_sock *icsk = inet_csk(sk); 1227 struct tcp_sock *tp = tcp_sk(sk); 1228 struct sk_buff *skb; 1229 1230 tp->frto_counter = 1; 1231 1232 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1233 tp->snd_una == tp->high_seq || 1234 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1235 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1236 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1237 tcp_ca_event(sk, CA_EVENT_FRTO); 1238 } 1239 1240 /* Have to clear retransmission markers here to keep the bookkeeping 1241 * in shape, even though we are not yet in Loss state. 1242 * If something was really lost, it is eventually caught up 1243 * in tcp_enter_frto_loss. 1244 */ 1245 tp->retrans_out = 0; 1246 tp->undo_marker = tp->snd_una; 1247 tp->undo_retrans = 0; 1248 1249 sk_stream_for_retrans_queue(skb, sk) { 1250 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; 1251 } 1252 tcp_sync_left_out(tp); 1253 1254 tcp_set_ca_state(sk, TCP_CA_Open); 1255 tp->frto_highmark = tp->snd_nxt; 1256 } 1257 1258 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1259 * which indicates that we should follow the traditional RTO recovery, 1260 * i.e. mark everything lost and do go-back-N retransmission. 1261 */ 1262 static void tcp_enter_frto_loss(struct sock *sk) 1263 { 1264 struct tcp_sock *tp = tcp_sk(sk); 1265 struct sk_buff *skb; 1266 int cnt = 0; 1267 1268 tp->sacked_out = 0; 1269 tp->lost_out = 0; 1270 tp->fackets_out = 0; 1271 1272 sk_stream_for_retrans_queue(skb, sk) { 1273 cnt += tcp_skb_pcount(skb); 1274 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1275 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1276 1277 /* Do not mark those segments lost that were 1278 * forward transmitted after RTO 1279 */ 1280 if (!after(TCP_SKB_CB(skb)->end_seq, 1281 tp->frto_highmark)) { 1282 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1283 tp->lost_out += tcp_skb_pcount(skb); 1284 } 1285 } else { 1286 tp->sacked_out += tcp_skb_pcount(skb); 1287 tp->fackets_out = cnt; 1288 } 1289 } 1290 tcp_sync_left_out(tp); 1291 1292 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; 1293 tp->snd_cwnd_cnt = 0; 1294 tp->snd_cwnd_stamp = tcp_time_stamp; 1295 tp->undo_marker = 0; 1296 tp->frto_counter = 0; 1297 1298 tp->reordering = min_t(unsigned int, tp->reordering, 1299 sysctl_tcp_reordering); 1300 tcp_set_ca_state(sk, TCP_CA_Loss); 1301 tp->high_seq = tp->frto_highmark; 1302 TCP_ECN_queue_cwr(tp); 1303 1304 clear_all_retrans_hints(tp); 1305 } 1306 1307 void tcp_clear_retrans(struct tcp_sock *tp) 1308 { 1309 tp->left_out = 0; 1310 tp->retrans_out = 0; 1311 1312 tp->fackets_out = 0; 1313 tp->sacked_out = 0; 1314 tp->lost_out = 0; 1315 1316 tp->undo_marker = 0; 1317 tp->undo_retrans = 0; 1318 } 1319 1320 /* Enter Loss state. If "how" is not zero, forget all SACK information 1321 * and reset tags completely, otherwise preserve SACKs. If receiver 1322 * dropped its ofo queue, we will know this due to reneging detection. 1323 */ 1324 void tcp_enter_loss(struct sock *sk, int how) 1325 { 1326 const struct inet_connection_sock *icsk = inet_csk(sk); 1327 struct tcp_sock *tp = tcp_sk(sk); 1328 struct sk_buff *skb; 1329 int cnt = 0; 1330 1331 /* Reduce ssthresh if it has not yet been made inside this window. */ 1332 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1333 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1334 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1335 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1336 tcp_ca_event(sk, CA_EVENT_LOSS); 1337 } 1338 tp->snd_cwnd = 1; 1339 tp->snd_cwnd_cnt = 0; 1340 tp->snd_cwnd_stamp = tcp_time_stamp; 1341 1342 tp->bytes_acked = 0; 1343 tcp_clear_retrans(tp); 1344 1345 /* Push undo marker, if it was plain RTO and nothing 1346 * was retransmitted. */ 1347 if (!how) 1348 tp->undo_marker = tp->snd_una; 1349 1350 sk_stream_for_retrans_queue(skb, sk) { 1351 cnt += tcp_skb_pcount(skb); 1352 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1353 tp->undo_marker = 0; 1354 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1355 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1357 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1358 tp->lost_out += tcp_skb_pcount(skb); 1359 } else { 1360 tp->sacked_out += tcp_skb_pcount(skb); 1361 tp->fackets_out = cnt; 1362 } 1363 } 1364 tcp_sync_left_out(tp); 1365 1366 tp->reordering = min_t(unsigned int, tp->reordering, 1367 sysctl_tcp_reordering); 1368 tcp_set_ca_state(sk, TCP_CA_Loss); 1369 tp->high_seq = tp->snd_nxt; 1370 TCP_ECN_queue_cwr(tp); 1371 1372 clear_all_retrans_hints(tp); 1373 } 1374 1375 static int tcp_check_sack_reneging(struct sock *sk) 1376 { 1377 struct sk_buff *skb; 1378 1379 /* If ACK arrived pointing to a remembered SACK, 1380 * it means that our remembered SACKs do not reflect 1381 * real state of receiver i.e. 1382 * receiver _host_ is heavily congested (or buggy). 1383 * Do processing similar to RTO timeout. 1384 */ 1385 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && 1386 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1387 struct inet_connection_sock *icsk = inet_csk(sk); 1388 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1389 1390 tcp_enter_loss(sk, 1); 1391 icsk->icsk_retransmits++; 1392 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); 1393 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1394 icsk->icsk_rto, TCP_RTO_MAX); 1395 return 1; 1396 } 1397 return 0; 1398 } 1399 1400 static inline int tcp_fackets_out(struct tcp_sock *tp) 1401 { 1402 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1403 } 1404 1405 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1406 { 1407 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1408 } 1409 1410 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) 1411 { 1412 return tp->packets_out && 1413 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue)); 1414 } 1415 1416 /* Linux NewReno/SACK/FACK/ECN state machine. 1417 * -------------------------------------- 1418 * 1419 * "Open" Normal state, no dubious events, fast path. 1420 * "Disorder" In all the respects it is "Open", 1421 * but requires a bit more attention. It is entered when 1422 * we see some SACKs or dupacks. It is split of "Open" 1423 * mainly to move some processing from fast path to slow one. 1424 * "CWR" CWND was reduced due to some Congestion Notification event. 1425 * It can be ECN, ICMP source quench, local device congestion. 1426 * "Recovery" CWND was reduced, we are fast-retransmitting. 1427 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1428 * 1429 * tcp_fastretrans_alert() is entered: 1430 * - each incoming ACK, if state is not "Open" 1431 * - when arrived ACK is unusual, namely: 1432 * * SACK 1433 * * Duplicate ACK. 1434 * * ECN ECE. 1435 * 1436 * Counting packets in flight is pretty simple. 1437 * 1438 * in_flight = packets_out - left_out + retrans_out 1439 * 1440 * packets_out is SND.NXT-SND.UNA counted in packets. 1441 * 1442 * retrans_out is number of retransmitted segments. 1443 * 1444 * left_out is number of segments left network, but not ACKed yet. 1445 * 1446 * left_out = sacked_out + lost_out 1447 * 1448 * sacked_out: Packets, which arrived to receiver out of order 1449 * and hence not ACKed. With SACKs this number is simply 1450 * amount of SACKed data. Even without SACKs 1451 * it is easy to give pretty reliable estimate of this number, 1452 * counting duplicate ACKs. 1453 * 1454 * lost_out: Packets lost by network. TCP has no explicit 1455 * "loss notification" feedback from network (for now). 1456 * It means that this number can be only _guessed_. 1457 * Actually, it is the heuristics to predict lossage that 1458 * distinguishes different algorithms. 1459 * 1460 * F.e. after RTO, when all the queue is considered as lost, 1461 * lost_out = packets_out and in_flight = retrans_out. 1462 * 1463 * Essentially, we have now two algorithms counting 1464 * lost packets. 1465 * 1466 * FACK: It is the simplest heuristics. As soon as we decided 1467 * that something is lost, we decide that _all_ not SACKed 1468 * packets until the most forward SACK are lost. I.e. 1469 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1470 * It is absolutely correct estimate, if network does not reorder 1471 * packets. And it loses any connection to reality when reordering 1472 * takes place. We use FACK by default until reordering 1473 * is suspected on the path to this destination. 1474 * 1475 * NewReno: when Recovery is entered, we assume that one segment 1476 * is lost (classic Reno). While we are in Recovery and 1477 * a partial ACK arrives, we assume that one more packet 1478 * is lost (NewReno). This heuristics are the same in NewReno 1479 * and SACK. 1480 * 1481 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1482 * deflation etc. CWND is real congestion window, never inflated, changes 1483 * only according to classic VJ rules. 1484 * 1485 * Really tricky (and requiring careful tuning) part of algorithm 1486 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1487 * The first determines the moment _when_ we should reduce CWND and, 1488 * hence, slow down forward transmission. In fact, it determines the moment 1489 * when we decide that hole is caused by loss, rather than by a reorder. 1490 * 1491 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1492 * holes, caused by lost packets. 1493 * 1494 * And the most logically complicated part of algorithm is undo 1495 * heuristics. We detect false retransmits due to both too early 1496 * fast retransmit (reordering) and underestimated RTO, analyzing 1497 * timestamps and D-SACKs. When we detect that some segments were 1498 * retransmitted by mistake and CWND reduction was wrong, we undo 1499 * window reduction and abort recovery phase. This logic is hidden 1500 * inside several functions named tcp_try_undo_<something>. 1501 */ 1502 1503 /* This function decides, when we should leave Disordered state 1504 * and enter Recovery phase, reducing congestion window. 1505 * 1506 * Main question: may we further continue forward transmission 1507 * with the same cwnd? 1508 */ 1509 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) 1510 { 1511 __u32 packets_out; 1512 1513 /* Trick#1: The loss is proven. */ 1514 if (tp->lost_out) 1515 return 1; 1516 1517 /* Not-A-Trick#2 : Classic rule... */ 1518 if (tcp_fackets_out(tp) > tp->reordering) 1519 return 1; 1520 1521 /* Trick#3 : when we use RFC2988 timer restart, fast 1522 * retransmit can be triggered by timeout of queue head. 1523 */ 1524 if (tcp_head_timedout(sk, tp)) 1525 return 1; 1526 1527 /* Trick#4: It is still not OK... But will it be useful to delay 1528 * recovery more? 1529 */ 1530 packets_out = tp->packets_out; 1531 if (packets_out <= tp->reordering && 1532 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1533 !tcp_may_send_now(sk, tp)) { 1534 /* We have nothing to send. This connection is limited 1535 * either by receiver window or by application. 1536 */ 1537 return 1; 1538 } 1539 1540 return 0; 1541 } 1542 1543 /* If we receive more dupacks than we expected counting segments 1544 * in assumption of absent reordering, interpret this as reordering. 1545 * The only another reason could be bug in receiver TCP. 1546 */ 1547 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1548 { 1549 struct tcp_sock *tp = tcp_sk(sk); 1550 u32 holes; 1551 1552 holes = max(tp->lost_out, 1U); 1553 holes = min(holes, tp->packets_out); 1554 1555 if ((tp->sacked_out + holes) > tp->packets_out) { 1556 tp->sacked_out = tp->packets_out - holes; 1557 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1558 } 1559 } 1560 1561 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1562 1563 static void tcp_add_reno_sack(struct sock *sk) 1564 { 1565 struct tcp_sock *tp = tcp_sk(sk); 1566 tp->sacked_out++; 1567 tcp_check_reno_reordering(sk, 0); 1568 tcp_sync_left_out(tp); 1569 } 1570 1571 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1572 1573 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) 1574 { 1575 if (acked > 0) { 1576 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1577 if (acked-1 >= tp->sacked_out) 1578 tp->sacked_out = 0; 1579 else 1580 tp->sacked_out -= acked-1; 1581 } 1582 tcp_check_reno_reordering(sk, acked); 1583 tcp_sync_left_out(tp); 1584 } 1585 1586 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1587 { 1588 tp->sacked_out = 0; 1589 tp->left_out = tp->lost_out; 1590 } 1591 1592 /* Mark head of queue up as lost. */ 1593 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, 1594 int packets, u32 high_seq) 1595 { 1596 struct sk_buff *skb; 1597 int cnt; 1598 1599 BUG_TRAP(packets <= tp->packets_out); 1600 if (tp->lost_skb_hint) { 1601 skb = tp->lost_skb_hint; 1602 cnt = tp->lost_cnt_hint; 1603 } else { 1604 skb = sk->sk_write_queue.next; 1605 cnt = 0; 1606 } 1607 1608 sk_stream_for_retrans_queue_from(skb, sk) { 1609 /* TODO: do this better */ 1610 /* this is not the most efficient way to do this... */ 1611 tp->lost_skb_hint = skb; 1612 tp->lost_cnt_hint = cnt; 1613 cnt += tcp_skb_pcount(skb); 1614 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1615 break; 1616 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1617 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1618 tp->lost_out += tcp_skb_pcount(skb); 1619 1620 /* clear xmit_retransmit_queue hints 1621 * if this is beyond hint */ 1622 if(tp->retransmit_skb_hint != NULL && 1623 before(TCP_SKB_CB(skb)->seq, 1624 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) { 1625 1626 tp->retransmit_skb_hint = NULL; 1627 } 1628 } 1629 } 1630 tcp_sync_left_out(tp); 1631 } 1632 1633 /* Account newly detected lost packet(s) */ 1634 1635 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) 1636 { 1637 if (IsFack(tp)) { 1638 int lost = tp->fackets_out - tp->reordering; 1639 if (lost <= 0) 1640 lost = 1; 1641 tcp_mark_head_lost(sk, tp, lost, tp->high_seq); 1642 } else { 1643 tcp_mark_head_lost(sk, tp, 1, tp->high_seq); 1644 } 1645 1646 /* New heuristics: it is possible only after we switched 1647 * to restart timer each time when something is ACKed. 1648 * Hence, we can detect timed out packets during fast 1649 * retransmit without falling to slow start. 1650 */ 1651 if (tcp_head_timedout(sk, tp)) { 1652 struct sk_buff *skb; 1653 1654 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1655 : sk->sk_write_queue.next; 1656 1657 sk_stream_for_retrans_queue_from(skb, sk) { 1658 if (!tcp_skb_timedout(sk, skb)) 1659 break; 1660 1661 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1662 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1663 tp->lost_out += tcp_skb_pcount(skb); 1664 1665 /* clear xmit_retrans hint */ 1666 if (tp->retransmit_skb_hint && 1667 before(TCP_SKB_CB(skb)->seq, 1668 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1669 1670 tp->retransmit_skb_hint = NULL; 1671 } 1672 } 1673 1674 tp->scoreboard_skb_hint = skb; 1675 1676 tcp_sync_left_out(tp); 1677 } 1678 } 1679 1680 /* CWND moderation, preventing bursts due to too big ACKs 1681 * in dubious situations. 1682 */ 1683 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1684 { 1685 tp->snd_cwnd = min(tp->snd_cwnd, 1686 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1687 tp->snd_cwnd_stamp = tcp_time_stamp; 1688 } 1689 1690 /* Decrease cwnd each second ack. */ 1691 static void tcp_cwnd_down(struct sock *sk) 1692 { 1693 const struct inet_connection_sock *icsk = inet_csk(sk); 1694 struct tcp_sock *tp = tcp_sk(sk); 1695 int decr = tp->snd_cwnd_cnt + 1; 1696 1697 tp->snd_cwnd_cnt = decr&1; 1698 decr >>= 1; 1699 1700 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk)) 1701 tp->snd_cwnd -= decr; 1702 1703 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1704 tp->snd_cwnd_stamp = tcp_time_stamp; 1705 } 1706 1707 /* Nothing was retransmitted or returned timestamp is less 1708 * than timestamp of the first retransmission. 1709 */ 1710 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1711 { 1712 return !tp->retrans_stamp || 1713 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1714 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1715 } 1716 1717 /* Undo procedures. */ 1718 1719 #if FASTRETRANS_DEBUG > 1 1720 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) 1721 { 1722 struct inet_sock *inet = inet_sk(sk); 1723 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1724 msg, 1725 NIPQUAD(inet->daddr), ntohs(inet->dport), 1726 tp->snd_cwnd, tp->left_out, 1727 tp->snd_ssthresh, tp->prior_ssthresh, 1728 tp->packets_out); 1729 } 1730 #else 1731 #define DBGUNDO(x...) do { } while (0) 1732 #endif 1733 1734 static void tcp_undo_cwr(struct sock *sk, const int undo) 1735 { 1736 struct tcp_sock *tp = tcp_sk(sk); 1737 1738 if (tp->prior_ssthresh) { 1739 const struct inet_connection_sock *icsk = inet_csk(sk); 1740 1741 if (icsk->icsk_ca_ops->undo_cwnd) 1742 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1743 else 1744 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1745 1746 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1747 tp->snd_ssthresh = tp->prior_ssthresh; 1748 TCP_ECN_withdraw_cwr(tp); 1749 } 1750 } else { 1751 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1752 } 1753 tcp_moderate_cwnd(tp); 1754 tp->snd_cwnd_stamp = tcp_time_stamp; 1755 1756 /* There is something screwy going on with the retrans hints after 1757 an undo */ 1758 clear_all_retrans_hints(tp); 1759 } 1760 1761 static inline int tcp_may_undo(struct tcp_sock *tp) 1762 { 1763 return tp->undo_marker && 1764 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1765 } 1766 1767 /* People celebrate: "We love our President!" */ 1768 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) 1769 { 1770 if (tcp_may_undo(tp)) { 1771 /* Happy end! We did not retransmit anything 1772 * or our original transmission succeeded. 1773 */ 1774 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1775 tcp_undo_cwr(sk, 1); 1776 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1777 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1778 else 1779 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1780 tp->undo_marker = 0; 1781 } 1782 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1783 /* Hold old state until something *above* high_seq 1784 * is ACKed. For Reno it is MUST to prevent false 1785 * fast retransmits (RFC2582). SACK TCP is safe. */ 1786 tcp_moderate_cwnd(tp); 1787 return 1; 1788 } 1789 tcp_set_ca_state(sk, TCP_CA_Open); 1790 return 0; 1791 } 1792 1793 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1794 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) 1795 { 1796 if (tp->undo_marker && !tp->undo_retrans) { 1797 DBGUNDO(sk, tp, "D-SACK"); 1798 tcp_undo_cwr(sk, 1); 1799 tp->undo_marker = 0; 1800 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1801 } 1802 } 1803 1804 /* Undo during fast recovery after partial ACK. */ 1805 1806 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, 1807 int acked) 1808 { 1809 /* Partial ACK arrived. Force Hoe's retransmit. */ 1810 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1811 1812 if (tcp_may_undo(tp)) { 1813 /* Plain luck! Hole if filled with delayed 1814 * packet, rather than with a retransmit. 1815 */ 1816 if (tp->retrans_out == 0) 1817 tp->retrans_stamp = 0; 1818 1819 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1820 1821 DBGUNDO(sk, tp, "Hoe"); 1822 tcp_undo_cwr(sk, 0); 1823 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1824 1825 /* So... Do not make Hoe's retransmit yet. 1826 * If the first packet was delayed, the rest 1827 * ones are most probably delayed as well. 1828 */ 1829 failed = 0; 1830 } 1831 return failed; 1832 } 1833 1834 /* Undo during loss recovery after partial ACK. */ 1835 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) 1836 { 1837 if (tcp_may_undo(tp)) { 1838 struct sk_buff *skb; 1839 sk_stream_for_retrans_queue(skb, sk) { 1840 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1841 } 1842 1843 clear_all_retrans_hints(tp); 1844 1845 DBGUNDO(sk, tp, "partial loss"); 1846 tp->lost_out = 0; 1847 tp->left_out = tp->sacked_out; 1848 tcp_undo_cwr(sk, 1); 1849 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1850 inet_csk(sk)->icsk_retransmits = 0; 1851 tp->undo_marker = 0; 1852 if (!IsReno(tp)) 1853 tcp_set_ca_state(sk, TCP_CA_Open); 1854 return 1; 1855 } 1856 return 0; 1857 } 1858 1859 static inline void tcp_complete_cwr(struct sock *sk) 1860 { 1861 struct tcp_sock *tp = tcp_sk(sk); 1862 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 1863 tp->snd_cwnd_stamp = tcp_time_stamp; 1864 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 1865 } 1866 1867 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) 1868 { 1869 tp->left_out = tp->sacked_out; 1870 1871 if (tp->retrans_out == 0) 1872 tp->retrans_stamp = 0; 1873 1874 if (flag&FLAG_ECE) 1875 tcp_enter_cwr(sk); 1876 1877 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 1878 int state = TCP_CA_Open; 1879 1880 if (tp->left_out || tp->retrans_out || tp->undo_marker) 1881 state = TCP_CA_Disorder; 1882 1883 if (inet_csk(sk)->icsk_ca_state != state) { 1884 tcp_set_ca_state(sk, state); 1885 tp->high_seq = tp->snd_nxt; 1886 } 1887 tcp_moderate_cwnd(tp); 1888 } else { 1889 tcp_cwnd_down(sk); 1890 } 1891 } 1892 1893 /* Process an event, which can update packets-in-flight not trivially. 1894 * Main goal of this function is to calculate new estimate for left_out, 1895 * taking into account both packets sitting in receiver's buffer and 1896 * packets lost by network. 1897 * 1898 * Besides that it does CWND reduction, when packet loss is detected 1899 * and changes state of machine. 1900 * 1901 * It does _not_ decide what to send, it is made in function 1902 * tcp_xmit_retransmit_queue(). 1903 */ 1904 static void 1905 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 1906 int prior_packets, int flag) 1907 { 1908 struct inet_connection_sock *icsk = inet_csk(sk); 1909 struct tcp_sock *tp = tcp_sk(sk); 1910 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 1911 1912 /* Some technical things: 1913 * 1. Reno does not count dupacks (sacked_out) automatically. */ 1914 if (!tp->packets_out) 1915 tp->sacked_out = 0; 1916 /* 2. SACK counts snd_fack in packets inaccurately. */ 1917 if (tp->sacked_out == 0) 1918 tp->fackets_out = 0; 1919 1920 /* Now state machine starts. 1921 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 1922 if (flag&FLAG_ECE) 1923 tp->prior_ssthresh = 0; 1924 1925 /* B. In all the states check for reneging SACKs. */ 1926 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 1927 return; 1928 1929 /* C. Process data loss notification, provided it is valid. */ 1930 if ((flag&FLAG_DATA_LOST) && 1931 before(tp->snd_una, tp->high_seq) && 1932 icsk->icsk_ca_state != TCP_CA_Open && 1933 tp->fackets_out > tp->reordering) { 1934 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); 1935 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 1936 } 1937 1938 /* D. Synchronize left_out to current state. */ 1939 tcp_sync_left_out(tp); 1940 1941 /* E. Check state exit conditions. State can be terminated 1942 * when high_seq is ACKed. */ 1943 if (icsk->icsk_ca_state == TCP_CA_Open) { 1944 if (!sysctl_tcp_frto) 1945 BUG_TRAP(tp->retrans_out == 0); 1946 tp->retrans_stamp = 0; 1947 } else if (!before(tp->snd_una, tp->high_seq)) { 1948 switch (icsk->icsk_ca_state) { 1949 case TCP_CA_Loss: 1950 icsk->icsk_retransmits = 0; 1951 if (tcp_try_undo_recovery(sk, tp)) 1952 return; 1953 break; 1954 1955 case TCP_CA_CWR: 1956 /* CWR is to be held something *above* high_seq 1957 * is ACKed for CWR bit to reach receiver. */ 1958 if (tp->snd_una != tp->high_seq) { 1959 tcp_complete_cwr(sk); 1960 tcp_set_ca_state(sk, TCP_CA_Open); 1961 } 1962 break; 1963 1964 case TCP_CA_Disorder: 1965 tcp_try_undo_dsack(sk, tp); 1966 if (!tp->undo_marker || 1967 /* For SACK case do not Open to allow to undo 1968 * catching for all duplicate ACKs. */ 1969 IsReno(tp) || tp->snd_una != tp->high_seq) { 1970 tp->undo_marker = 0; 1971 tcp_set_ca_state(sk, TCP_CA_Open); 1972 } 1973 break; 1974 1975 case TCP_CA_Recovery: 1976 if (IsReno(tp)) 1977 tcp_reset_reno_sack(tp); 1978 if (tcp_try_undo_recovery(sk, tp)) 1979 return; 1980 tcp_complete_cwr(sk); 1981 break; 1982 } 1983 } 1984 1985 /* F. Process state. */ 1986 switch (icsk->icsk_ca_state) { 1987 case TCP_CA_Recovery: 1988 if (prior_snd_una == tp->snd_una) { 1989 if (IsReno(tp) && is_dupack) 1990 tcp_add_reno_sack(sk); 1991 } else { 1992 int acked = prior_packets - tp->packets_out; 1993 if (IsReno(tp)) 1994 tcp_remove_reno_sacks(sk, tp, acked); 1995 is_dupack = tcp_try_undo_partial(sk, tp, acked); 1996 } 1997 break; 1998 case TCP_CA_Loss: 1999 if (flag&FLAG_DATA_ACKED) 2000 icsk->icsk_retransmits = 0; 2001 if (!tcp_try_undo_loss(sk, tp)) { 2002 tcp_moderate_cwnd(tp); 2003 tcp_xmit_retransmit_queue(sk); 2004 return; 2005 } 2006 if (icsk->icsk_ca_state != TCP_CA_Open) 2007 return; 2008 /* Loss is undone; fall through to processing in Open state. */ 2009 default: 2010 if (IsReno(tp)) { 2011 if (tp->snd_una != prior_snd_una) 2012 tcp_reset_reno_sack(tp); 2013 if (is_dupack) 2014 tcp_add_reno_sack(sk); 2015 } 2016 2017 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2018 tcp_try_undo_dsack(sk, tp); 2019 2020 if (!tcp_time_to_recover(sk, tp)) { 2021 tcp_try_to_open(sk, tp, flag); 2022 return; 2023 } 2024 2025 /* Otherwise enter Recovery state */ 2026 2027 if (IsReno(tp)) 2028 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2029 else 2030 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2031 2032 tp->high_seq = tp->snd_nxt; 2033 tp->prior_ssthresh = 0; 2034 tp->undo_marker = tp->snd_una; 2035 tp->undo_retrans = tp->retrans_out; 2036 2037 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2038 if (!(flag&FLAG_ECE)) 2039 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2040 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2041 TCP_ECN_queue_cwr(tp); 2042 } 2043 2044 tp->bytes_acked = 0; 2045 tp->snd_cwnd_cnt = 0; 2046 tcp_set_ca_state(sk, TCP_CA_Recovery); 2047 } 2048 2049 if (is_dupack || tcp_head_timedout(sk, tp)) 2050 tcp_update_scoreboard(sk, tp); 2051 tcp_cwnd_down(sk); 2052 tcp_xmit_retransmit_queue(sk); 2053 } 2054 2055 /* Read draft-ietf-tcplw-high-performance before mucking 2056 * with this code. (Supersedes RFC1323) 2057 */ 2058 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2059 { 2060 /* RTTM Rule: A TSecr value received in a segment is used to 2061 * update the averaged RTT measurement only if the segment 2062 * acknowledges some new data, i.e., only if it advances the 2063 * left edge of the send window. 2064 * 2065 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2066 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2067 * 2068 * Changed: reset backoff as soon as we see the first valid sample. 2069 * If we do not, we get strongly overestimated rto. With timestamps 2070 * samples are accepted even from very old segments: f.e., when rtt=1 2071 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2072 * answer arrives rto becomes 120 seconds! If at least one of segments 2073 * in window is lost... Voila. --ANK (010210) 2074 */ 2075 struct tcp_sock *tp = tcp_sk(sk); 2076 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2077 tcp_rtt_estimator(sk, seq_rtt); 2078 tcp_set_rto(sk); 2079 inet_csk(sk)->icsk_backoff = 0; 2080 tcp_bound_rto(sk); 2081 } 2082 2083 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2084 { 2085 /* We don't have a timestamp. Can only use 2086 * packets that are not retransmitted to determine 2087 * rtt estimates. Also, we must not reset the 2088 * backoff for rto until we get a non-retransmitted 2089 * packet. This allows us to deal with a situation 2090 * where the network delay has increased suddenly. 2091 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2092 */ 2093 2094 if (flag & FLAG_RETRANS_DATA_ACKED) 2095 return; 2096 2097 tcp_rtt_estimator(sk, seq_rtt); 2098 tcp_set_rto(sk); 2099 inet_csk(sk)->icsk_backoff = 0; 2100 tcp_bound_rto(sk); 2101 } 2102 2103 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2104 const s32 seq_rtt) 2105 { 2106 const struct tcp_sock *tp = tcp_sk(sk); 2107 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2108 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2109 tcp_ack_saw_tstamp(sk, flag); 2110 else if (seq_rtt >= 0) 2111 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2112 } 2113 2114 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, 2115 u32 in_flight, int good) 2116 { 2117 const struct inet_connection_sock *icsk = inet_csk(sk); 2118 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good); 2119 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2120 } 2121 2122 /* Restart timer after forward progress on connection. 2123 * RFC2988 recommends to restart timer to now+rto. 2124 */ 2125 2126 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) 2127 { 2128 if (!tp->packets_out) { 2129 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2130 } else { 2131 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2132 } 2133 } 2134 2135 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2136 __u32 now, __s32 *seq_rtt) 2137 { 2138 struct tcp_sock *tp = tcp_sk(sk); 2139 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2140 __u32 seq = tp->snd_una; 2141 __u32 packets_acked; 2142 int acked = 0; 2143 2144 /* If we get here, the whole TSO packet has not been 2145 * acked. 2146 */ 2147 BUG_ON(!after(scb->end_seq, seq)); 2148 2149 packets_acked = tcp_skb_pcount(skb); 2150 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2151 return 0; 2152 packets_acked -= tcp_skb_pcount(skb); 2153 2154 if (packets_acked) { 2155 __u8 sacked = scb->sacked; 2156 2157 acked |= FLAG_DATA_ACKED; 2158 if (sacked) { 2159 if (sacked & TCPCB_RETRANS) { 2160 if (sacked & TCPCB_SACKED_RETRANS) 2161 tp->retrans_out -= packets_acked; 2162 acked |= FLAG_RETRANS_DATA_ACKED; 2163 *seq_rtt = -1; 2164 } else if (*seq_rtt < 0) 2165 *seq_rtt = now - scb->when; 2166 if (sacked & TCPCB_SACKED_ACKED) 2167 tp->sacked_out -= packets_acked; 2168 if (sacked & TCPCB_LOST) 2169 tp->lost_out -= packets_acked; 2170 if (sacked & TCPCB_URG) { 2171 if (tp->urg_mode && 2172 !before(seq, tp->snd_up)) 2173 tp->urg_mode = 0; 2174 } 2175 } else if (*seq_rtt < 0) 2176 *seq_rtt = now - scb->when; 2177 2178 if (tp->fackets_out) { 2179 __u32 dval = min(tp->fackets_out, packets_acked); 2180 tp->fackets_out -= dval; 2181 } 2182 tp->packets_out -= packets_acked; 2183 2184 BUG_ON(tcp_skb_pcount(skb) == 0); 2185 BUG_ON(!before(scb->seq, scb->end_seq)); 2186 } 2187 2188 return acked; 2189 } 2190 2191 static u32 tcp_usrtt(const struct sk_buff *skb) 2192 { 2193 struct timeval tv, now; 2194 2195 do_gettimeofday(&now); 2196 skb_get_timestamp(skb, &tv); 2197 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec); 2198 } 2199 2200 /* Remove acknowledged frames from the retransmission queue. */ 2201 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2202 { 2203 struct tcp_sock *tp = tcp_sk(sk); 2204 const struct inet_connection_sock *icsk = inet_csk(sk); 2205 struct sk_buff *skb; 2206 __u32 now = tcp_time_stamp; 2207 int acked = 0; 2208 __s32 seq_rtt = -1; 2209 u32 pkts_acked = 0; 2210 void (*rtt_sample)(struct sock *sk, u32 usrtt) 2211 = icsk->icsk_ca_ops->rtt_sample; 2212 2213 while ((skb = skb_peek(&sk->sk_write_queue)) && 2214 skb != sk->sk_send_head) { 2215 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2216 __u8 sacked = scb->sacked; 2217 2218 /* If our packet is before the ack sequence we can 2219 * discard it as it's confirmed to have arrived at 2220 * the other end. 2221 */ 2222 if (after(scb->end_seq, tp->snd_una)) { 2223 if (tcp_skb_pcount(skb) > 1 && 2224 after(tp->snd_una, scb->seq)) 2225 acked |= tcp_tso_acked(sk, skb, 2226 now, &seq_rtt); 2227 break; 2228 } 2229 2230 /* Initial outgoing SYN's get put onto the write_queue 2231 * just like anything else we transmit. It is not 2232 * true data, and if we misinform our callers that 2233 * this ACK acks real data, we will erroneously exit 2234 * connection startup slow start one packet too 2235 * quickly. This is severely frowned upon behavior. 2236 */ 2237 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2238 acked |= FLAG_DATA_ACKED; 2239 ++pkts_acked; 2240 } else { 2241 acked |= FLAG_SYN_ACKED; 2242 tp->retrans_stamp = 0; 2243 } 2244 2245 if (sacked) { 2246 if (sacked & TCPCB_RETRANS) { 2247 if(sacked & TCPCB_SACKED_RETRANS) 2248 tp->retrans_out -= tcp_skb_pcount(skb); 2249 acked |= FLAG_RETRANS_DATA_ACKED; 2250 seq_rtt = -1; 2251 } else if (seq_rtt < 0) { 2252 seq_rtt = now - scb->when; 2253 if (rtt_sample) 2254 (*rtt_sample)(sk, tcp_usrtt(skb)); 2255 } 2256 if (sacked & TCPCB_SACKED_ACKED) 2257 tp->sacked_out -= tcp_skb_pcount(skb); 2258 if (sacked & TCPCB_LOST) 2259 tp->lost_out -= tcp_skb_pcount(skb); 2260 if (sacked & TCPCB_URG) { 2261 if (tp->urg_mode && 2262 !before(scb->end_seq, tp->snd_up)) 2263 tp->urg_mode = 0; 2264 } 2265 } else if (seq_rtt < 0) { 2266 seq_rtt = now - scb->when; 2267 if (rtt_sample) 2268 (*rtt_sample)(sk, tcp_usrtt(skb)); 2269 } 2270 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2271 tcp_packets_out_dec(tp, skb); 2272 __skb_unlink(skb, &sk->sk_write_queue); 2273 sk_stream_free_skb(sk, skb); 2274 clear_all_retrans_hints(tp); 2275 } 2276 2277 if (acked&FLAG_ACKED) { 2278 tcp_ack_update_rtt(sk, acked, seq_rtt); 2279 tcp_ack_packets_out(sk, tp); 2280 2281 if (icsk->icsk_ca_ops->pkts_acked) 2282 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked); 2283 } 2284 2285 #if FASTRETRANS_DEBUG > 0 2286 BUG_TRAP((int)tp->sacked_out >= 0); 2287 BUG_TRAP((int)tp->lost_out >= 0); 2288 BUG_TRAP((int)tp->retrans_out >= 0); 2289 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2290 const struct inet_connection_sock *icsk = inet_csk(sk); 2291 if (tp->lost_out) { 2292 printk(KERN_DEBUG "Leak l=%u %d\n", 2293 tp->lost_out, icsk->icsk_ca_state); 2294 tp->lost_out = 0; 2295 } 2296 if (tp->sacked_out) { 2297 printk(KERN_DEBUG "Leak s=%u %d\n", 2298 tp->sacked_out, icsk->icsk_ca_state); 2299 tp->sacked_out = 0; 2300 } 2301 if (tp->retrans_out) { 2302 printk(KERN_DEBUG "Leak r=%u %d\n", 2303 tp->retrans_out, icsk->icsk_ca_state); 2304 tp->retrans_out = 0; 2305 } 2306 } 2307 #endif 2308 *seq_rtt_p = seq_rtt; 2309 return acked; 2310 } 2311 2312 static void tcp_ack_probe(struct sock *sk) 2313 { 2314 const struct tcp_sock *tp = tcp_sk(sk); 2315 struct inet_connection_sock *icsk = inet_csk(sk); 2316 2317 /* Was it a usable window open? */ 2318 2319 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, 2320 tp->snd_una + tp->snd_wnd)) { 2321 icsk->icsk_backoff = 0; 2322 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2323 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2324 * This function is not for random using! 2325 */ 2326 } else { 2327 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2328 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2329 TCP_RTO_MAX); 2330 } 2331 } 2332 2333 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2334 { 2335 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2336 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2337 } 2338 2339 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2340 { 2341 const struct tcp_sock *tp = tcp_sk(sk); 2342 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2343 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2344 } 2345 2346 /* Check that window update is acceptable. 2347 * The function assumes that snd_una<=ack<=snd_next. 2348 */ 2349 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2350 const u32 ack_seq, const u32 nwin) 2351 { 2352 return (after(ack, tp->snd_una) || 2353 after(ack_seq, tp->snd_wl1) || 2354 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2355 } 2356 2357 /* Update our send window. 2358 * 2359 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2360 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2361 */ 2362 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, 2363 struct sk_buff *skb, u32 ack, u32 ack_seq) 2364 { 2365 int flag = 0; 2366 u32 nwin = ntohs(skb->h.th->window); 2367 2368 if (likely(!skb->h.th->syn)) 2369 nwin <<= tp->rx_opt.snd_wscale; 2370 2371 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2372 flag |= FLAG_WIN_UPDATE; 2373 tcp_update_wl(tp, ack, ack_seq); 2374 2375 if (tp->snd_wnd != nwin) { 2376 tp->snd_wnd = nwin; 2377 2378 /* Note, it is the only place, where 2379 * fast path is recovered for sending TCP. 2380 */ 2381 tp->pred_flags = 0; 2382 tcp_fast_path_check(sk, tp); 2383 2384 if (nwin > tp->max_window) { 2385 tp->max_window = nwin; 2386 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2387 } 2388 } 2389 } 2390 2391 tp->snd_una = ack; 2392 2393 return flag; 2394 } 2395 2396 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) 2397 { 2398 struct tcp_sock *tp = tcp_sk(sk); 2399 2400 tcp_sync_left_out(tp); 2401 2402 if (tp->snd_una == prior_snd_una || 2403 !before(tp->snd_una, tp->frto_highmark)) { 2404 /* RTO was caused by loss, start retransmitting in 2405 * go-back-N slow start 2406 */ 2407 tcp_enter_frto_loss(sk); 2408 return; 2409 } 2410 2411 if (tp->frto_counter == 1) { 2412 /* First ACK after RTO advances the window: allow two new 2413 * segments out. 2414 */ 2415 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2416 } else { 2417 /* Also the second ACK after RTO advances the window. 2418 * The RTO was likely spurious. Reduce cwnd and continue 2419 * in congestion avoidance 2420 */ 2421 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2422 tcp_moderate_cwnd(tp); 2423 } 2424 2425 /* F-RTO affects on two new ACKs following RTO. 2426 * At latest on third ACK the TCP behavior is back to normal. 2427 */ 2428 tp->frto_counter = (tp->frto_counter + 1) % 3; 2429 } 2430 2431 /* This routine deals with incoming acks, but not outgoing ones. */ 2432 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2433 { 2434 struct inet_connection_sock *icsk = inet_csk(sk); 2435 struct tcp_sock *tp = tcp_sk(sk); 2436 u32 prior_snd_una = tp->snd_una; 2437 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2438 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2439 u32 prior_in_flight; 2440 s32 seq_rtt; 2441 int prior_packets; 2442 2443 /* If the ack is newer than sent or older than previous acks 2444 * then we can probably ignore it. 2445 */ 2446 if (after(ack, tp->snd_nxt)) 2447 goto uninteresting_ack; 2448 2449 if (before(ack, prior_snd_una)) 2450 goto old_ack; 2451 2452 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR) 2453 tp->bytes_acked += ack - prior_snd_una; 2454 2455 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2456 /* Window is constant, pure forward advance. 2457 * No more checks are required. 2458 * Note, we use the fact that SND.UNA>=SND.WL2. 2459 */ 2460 tcp_update_wl(tp, ack, ack_seq); 2461 tp->snd_una = ack; 2462 flag |= FLAG_WIN_UPDATE; 2463 2464 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2465 2466 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2467 } else { 2468 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2469 flag |= FLAG_DATA; 2470 else 2471 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2472 2473 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); 2474 2475 if (TCP_SKB_CB(skb)->sacked) 2476 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2477 2478 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) 2479 flag |= FLAG_ECE; 2480 2481 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2482 } 2483 2484 /* We passed data and got it acked, remove any soft error 2485 * log. Something worked... 2486 */ 2487 sk->sk_err_soft = 0; 2488 tp->rcv_tstamp = tcp_time_stamp; 2489 prior_packets = tp->packets_out; 2490 if (!prior_packets) 2491 goto no_queue; 2492 2493 prior_in_flight = tcp_packets_in_flight(tp); 2494 2495 /* See if we can take anything off of the retransmit queue. */ 2496 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2497 2498 if (tp->frto_counter) 2499 tcp_process_frto(sk, prior_snd_una); 2500 2501 if (tcp_ack_is_dubious(sk, flag)) { 2502 /* Advance CWND, if state allows this. */ 2503 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag)) 2504 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0); 2505 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2506 } else { 2507 if ((flag & FLAG_DATA_ACKED)) 2508 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1); 2509 } 2510 2511 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2512 dst_confirm(sk->sk_dst_cache); 2513 2514 return 1; 2515 2516 no_queue: 2517 icsk->icsk_probes_out = 0; 2518 2519 /* If this ack opens up a zero window, clear backoff. It was 2520 * being used to time the probes, and is probably far higher than 2521 * it needs to be for normal retransmission. 2522 */ 2523 if (sk->sk_send_head) 2524 tcp_ack_probe(sk); 2525 return 1; 2526 2527 old_ack: 2528 if (TCP_SKB_CB(skb)->sacked) 2529 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2530 2531 uninteresting_ack: 2532 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2533 return 0; 2534 } 2535 2536 2537 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2538 * But, this can also be called on packets in the established flow when 2539 * the fast version below fails. 2540 */ 2541 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2542 { 2543 unsigned char *ptr; 2544 struct tcphdr *th = skb->h.th; 2545 int length=(th->doff*4)-sizeof(struct tcphdr); 2546 2547 ptr = (unsigned char *)(th + 1); 2548 opt_rx->saw_tstamp = 0; 2549 2550 while(length>0) { 2551 int opcode=*ptr++; 2552 int opsize; 2553 2554 switch (opcode) { 2555 case TCPOPT_EOL: 2556 return; 2557 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2558 length--; 2559 continue; 2560 default: 2561 opsize=*ptr++; 2562 if (opsize < 2) /* "silly options" */ 2563 return; 2564 if (opsize > length) 2565 return; /* don't parse partial options */ 2566 switch(opcode) { 2567 case TCPOPT_MSS: 2568 if(opsize==TCPOLEN_MSS && th->syn && !estab) { 2569 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr)); 2570 if (in_mss) { 2571 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2572 in_mss = opt_rx->user_mss; 2573 opt_rx->mss_clamp = in_mss; 2574 } 2575 } 2576 break; 2577 case TCPOPT_WINDOW: 2578 if(opsize==TCPOLEN_WINDOW && th->syn && !estab) 2579 if (sysctl_tcp_window_scaling) { 2580 __u8 snd_wscale = *(__u8 *) ptr; 2581 opt_rx->wscale_ok = 1; 2582 if (snd_wscale > 14) { 2583 if(net_ratelimit()) 2584 printk(KERN_INFO "tcp_parse_options: Illegal window " 2585 "scaling value %d >14 received.\n", 2586 snd_wscale); 2587 snd_wscale = 14; 2588 } 2589 opt_rx->snd_wscale = snd_wscale; 2590 } 2591 break; 2592 case TCPOPT_TIMESTAMP: 2593 if(opsize==TCPOLEN_TIMESTAMP) { 2594 if ((estab && opt_rx->tstamp_ok) || 2595 (!estab && sysctl_tcp_timestamps)) { 2596 opt_rx->saw_tstamp = 1; 2597 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr)); 2598 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4))); 2599 } 2600 } 2601 break; 2602 case TCPOPT_SACK_PERM: 2603 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2604 if (sysctl_tcp_sack) { 2605 opt_rx->sack_ok = 1; 2606 tcp_sack_reset(opt_rx); 2607 } 2608 } 2609 break; 2610 2611 case TCPOPT_SACK: 2612 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2613 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2614 opt_rx->sack_ok) { 2615 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2616 } 2617 }; 2618 ptr+=opsize-2; 2619 length-=opsize; 2620 }; 2621 } 2622 } 2623 2624 /* Fast parse options. This hopes to only see timestamps. 2625 * If it is wrong it falls back on tcp_parse_options(). 2626 */ 2627 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2628 struct tcp_sock *tp) 2629 { 2630 if (th->doff == sizeof(struct tcphdr)>>2) { 2631 tp->rx_opt.saw_tstamp = 0; 2632 return 0; 2633 } else if (tp->rx_opt.tstamp_ok && 2634 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2635 __u32 *ptr = (__u32 *)(th + 1); 2636 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2637 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2638 tp->rx_opt.saw_tstamp = 1; 2639 ++ptr; 2640 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2641 ++ptr; 2642 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2643 return 1; 2644 } 2645 } 2646 tcp_parse_options(skb, &tp->rx_opt, 1); 2647 return 1; 2648 } 2649 2650 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2651 { 2652 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2653 tp->rx_opt.ts_recent_stamp = xtime.tv_sec; 2654 } 2655 2656 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2657 { 2658 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2659 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2660 * extra check below makes sure this can only happen 2661 * for pure ACK frames. -DaveM 2662 * 2663 * Not only, also it occurs for expired timestamps. 2664 */ 2665 2666 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2667 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2668 tcp_store_ts_recent(tp); 2669 } 2670 } 2671 2672 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 2673 * 2674 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 2675 * it can pass through stack. So, the following predicate verifies that 2676 * this segment is not used for anything but congestion avoidance or 2677 * fast retransmit. Moreover, we even are able to eliminate most of such 2678 * second order effects, if we apply some small "replay" window (~RTO) 2679 * to timestamp space. 2680 * 2681 * All these measures still do not guarantee that we reject wrapped ACKs 2682 * on networks with high bandwidth, when sequence space is recycled fastly, 2683 * but it guarantees that such events will be very rare and do not affect 2684 * connection seriously. This doesn't look nice, but alas, PAWS is really 2685 * buggy extension. 2686 * 2687 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 2688 * states that events when retransmit arrives after original data are rare. 2689 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 2690 * the biggest problem on large power networks even with minor reordering. 2691 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 2692 * up to bandwidth of 18Gigabit/sec. 8) ] 2693 */ 2694 2695 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 struct tcphdr *th = skb->h.th; 2699 u32 seq = TCP_SKB_CB(skb)->seq; 2700 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2701 2702 return (/* 1. Pure ACK with correct sequence number. */ 2703 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 2704 2705 /* 2. ... and duplicate ACK. */ 2706 ack == tp->snd_una && 2707 2708 /* 3. ... and does not update window. */ 2709 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 2710 2711 /* 4. ... and sits in replay window. */ 2712 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 2713 } 2714 2715 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 2716 { 2717 const struct tcp_sock *tp = tcp_sk(sk); 2718 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 2719 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 2720 !tcp_disordered_ack(sk, skb)); 2721 } 2722 2723 /* Check segment sequence number for validity. 2724 * 2725 * Segment controls are considered valid, if the segment 2726 * fits to the window after truncation to the window. Acceptability 2727 * of data (and SYN, FIN, of course) is checked separately. 2728 * See tcp_data_queue(), for example. 2729 * 2730 * Also, controls (RST is main one) are accepted using RCV.WUP instead 2731 * of RCV.NXT. Peer still did not advance his SND.UNA when we 2732 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 2733 * (borrowed from freebsd) 2734 */ 2735 2736 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 2737 { 2738 return !before(end_seq, tp->rcv_wup) && 2739 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 2740 } 2741 2742 /* When we get a reset we do this. */ 2743 static void tcp_reset(struct sock *sk) 2744 { 2745 /* We want the right error as BSD sees it (and indeed as we do). */ 2746 switch (sk->sk_state) { 2747 case TCP_SYN_SENT: 2748 sk->sk_err = ECONNREFUSED; 2749 break; 2750 case TCP_CLOSE_WAIT: 2751 sk->sk_err = EPIPE; 2752 break; 2753 case TCP_CLOSE: 2754 return; 2755 default: 2756 sk->sk_err = ECONNRESET; 2757 } 2758 2759 if (!sock_flag(sk, SOCK_DEAD)) 2760 sk->sk_error_report(sk); 2761 2762 tcp_done(sk); 2763 } 2764 2765 /* 2766 * Process the FIN bit. This now behaves as it is supposed to work 2767 * and the FIN takes effect when it is validly part of sequence 2768 * space. Not before when we get holes. 2769 * 2770 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 2771 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 2772 * TIME-WAIT) 2773 * 2774 * If we are in FINWAIT-1, a received FIN indicates simultaneous 2775 * close and we go into CLOSING (and later onto TIME-WAIT) 2776 * 2777 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 2778 */ 2779 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 2780 { 2781 struct tcp_sock *tp = tcp_sk(sk); 2782 2783 inet_csk_schedule_ack(sk); 2784 2785 sk->sk_shutdown |= RCV_SHUTDOWN; 2786 sock_set_flag(sk, SOCK_DONE); 2787 2788 switch (sk->sk_state) { 2789 case TCP_SYN_RECV: 2790 case TCP_ESTABLISHED: 2791 /* Move to CLOSE_WAIT */ 2792 tcp_set_state(sk, TCP_CLOSE_WAIT); 2793 inet_csk(sk)->icsk_ack.pingpong = 1; 2794 break; 2795 2796 case TCP_CLOSE_WAIT: 2797 case TCP_CLOSING: 2798 /* Received a retransmission of the FIN, do 2799 * nothing. 2800 */ 2801 break; 2802 case TCP_LAST_ACK: 2803 /* RFC793: Remain in the LAST-ACK state. */ 2804 break; 2805 2806 case TCP_FIN_WAIT1: 2807 /* This case occurs when a simultaneous close 2808 * happens, we must ack the received FIN and 2809 * enter the CLOSING state. 2810 */ 2811 tcp_send_ack(sk); 2812 tcp_set_state(sk, TCP_CLOSING); 2813 break; 2814 case TCP_FIN_WAIT2: 2815 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 2816 tcp_send_ack(sk); 2817 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 2818 break; 2819 default: 2820 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 2821 * cases we should never reach this piece of code. 2822 */ 2823 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 2824 __FUNCTION__, sk->sk_state); 2825 break; 2826 }; 2827 2828 /* It _is_ possible, that we have something out-of-order _after_ FIN. 2829 * Probably, we should reset in this case. For now drop them. 2830 */ 2831 __skb_queue_purge(&tp->out_of_order_queue); 2832 if (tp->rx_opt.sack_ok) 2833 tcp_sack_reset(&tp->rx_opt); 2834 sk_stream_mem_reclaim(sk); 2835 2836 if (!sock_flag(sk, SOCK_DEAD)) { 2837 sk->sk_state_change(sk); 2838 2839 /* Do not send POLL_HUP for half duplex close. */ 2840 if (sk->sk_shutdown == SHUTDOWN_MASK || 2841 sk->sk_state == TCP_CLOSE) 2842 sk_wake_async(sk, 1, POLL_HUP); 2843 else 2844 sk_wake_async(sk, 1, POLL_IN); 2845 } 2846 } 2847 2848 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 2849 { 2850 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 2851 if (before(seq, sp->start_seq)) 2852 sp->start_seq = seq; 2853 if (after(end_seq, sp->end_seq)) 2854 sp->end_seq = end_seq; 2855 return 1; 2856 } 2857 return 0; 2858 } 2859 2860 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 2861 { 2862 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2863 if (before(seq, tp->rcv_nxt)) 2864 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 2865 else 2866 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 2867 2868 tp->rx_opt.dsack = 1; 2869 tp->duplicate_sack[0].start_seq = seq; 2870 tp->duplicate_sack[0].end_seq = end_seq; 2871 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 2872 } 2873 } 2874 2875 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 2876 { 2877 if (!tp->rx_opt.dsack) 2878 tcp_dsack_set(tp, seq, end_seq); 2879 else 2880 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 2881 } 2882 2883 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 2884 { 2885 struct tcp_sock *tp = tcp_sk(sk); 2886 2887 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 2888 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 2889 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 2890 tcp_enter_quickack_mode(sk); 2891 2892 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2893 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2894 2895 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 2896 end_seq = tp->rcv_nxt; 2897 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 2898 } 2899 } 2900 2901 tcp_send_ack(sk); 2902 } 2903 2904 /* These routines update the SACK block as out-of-order packets arrive or 2905 * in-order packets close up the sequence space. 2906 */ 2907 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 2908 { 2909 int this_sack; 2910 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2911 struct tcp_sack_block *swalk = sp+1; 2912 2913 /* See if the recent change to the first SACK eats into 2914 * or hits the sequence space of other SACK blocks, if so coalesce. 2915 */ 2916 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 2917 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 2918 int i; 2919 2920 /* Zap SWALK, by moving every further SACK up by one slot. 2921 * Decrease num_sacks. 2922 */ 2923 tp->rx_opt.num_sacks--; 2924 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2925 for(i=this_sack; i < tp->rx_opt.num_sacks; i++) 2926 sp[i] = sp[i+1]; 2927 continue; 2928 } 2929 this_sack++, swalk++; 2930 } 2931 } 2932 2933 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 2934 { 2935 __u32 tmp; 2936 2937 tmp = sack1->start_seq; 2938 sack1->start_seq = sack2->start_seq; 2939 sack2->start_seq = tmp; 2940 2941 tmp = sack1->end_seq; 2942 sack1->end_seq = sack2->end_seq; 2943 sack2->end_seq = tmp; 2944 } 2945 2946 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 2947 { 2948 struct tcp_sock *tp = tcp_sk(sk); 2949 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2950 int cur_sacks = tp->rx_opt.num_sacks; 2951 int this_sack; 2952 2953 if (!cur_sacks) 2954 goto new_sack; 2955 2956 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 2957 if (tcp_sack_extend(sp, seq, end_seq)) { 2958 /* Rotate this_sack to the first one. */ 2959 for (; this_sack>0; this_sack--, sp--) 2960 tcp_sack_swap(sp, sp-1); 2961 if (cur_sacks > 1) 2962 tcp_sack_maybe_coalesce(tp); 2963 return; 2964 } 2965 } 2966 2967 /* Could not find an adjacent existing SACK, build a new one, 2968 * put it at the front, and shift everyone else down. We 2969 * always know there is at least one SACK present already here. 2970 * 2971 * If the sack array is full, forget about the last one. 2972 */ 2973 if (this_sack >= 4) { 2974 this_sack--; 2975 tp->rx_opt.num_sacks--; 2976 sp--; 2977 } 2978 for(; this_sack > 0; this_sack--, sp--) 2979 *sp = *(sp-1); 2980 2981 new_sack: 2982 /* Build the new head SACK, and we're done. */ 2983 sp->start_seq = seq; 2984 sp->end_seq = end_seq; 2985 tp->rx_opt.num_sacks++; 2986 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2987 } 2988 2989 /* RCV.NXT advances, some SACKs should be eaten. */ 2990 2991 static void tcp_sack_remove(struct tcp_sock *tp) 2992 { 2993 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2994 int num_sacks = tp->rx_opt.num_sacks; 2995 int this_sack; 2996 2997 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 2998 if (skb_queue_empty(&tp->out_of_order_queue)) { 2999 tp->rx_opt.num_sacks = 0; 3000 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3001 return; 3002 } 3003 3004 for(this_sack = 0; this_sack < num_sacks; ) { 3005 /* Check if the start of the sack is covered by RCV.NXT. */ 3006 if (!before(tp->rcv_nxt, sp->start_seq)) { 3007 int i; 3008 3009 /* RCV.NXT must cover all the block! */ 3010 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3011 3012 /* Zap this SACK, by moving forward any other SACKS. */ 3013 for (i=this_sack+1; i < num_sacks; i++) 3014 tp->selective_acks[i-1] = tp->selective_acks[i]; 3015 num_sacks--; 3016 continue; 3017 } 3018 this_sack++; 3019 sp++; 3020 } 3021 if (num_sacks != tp->rx_opt.num_sacks) { 3022 tp->rx_opt.num_sacks = num_sacks; 3023 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3024 } 3025 } 3026 3027 /* This one checks to see if we can put data from the 3028 * out_of_order queue into the receive_queue. 3029 */ 3030 static void tcp_ofo_queue(struct sock *sk) 3031 { 3032 struct tcp_sock *tp = tcp_sk(sk); 3033 __u32 dsack_high = tp->rcv_nxt; 3034 struct sk_buff *skb; 3035 3036 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3037 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3038 break; 3039 3040 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3041 __u32 dsack = dsack_high; 3042 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3043 dsack_high = TCP_SKB_CB(skb)->end_seq; 3044 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3045 } 3046 3047 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3048 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3049 __skb_unlink(skb, &tp->out_of_order_queue); 3050 __kfree_skb(skb); 3051 continue; 3052 } 3053 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3054 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3055 TCP_SKB_CB(skb)->end_seq); 3056 3057 __skb_unlink(skb, &tp->out_of_order_queue); 3058 __skb_queue_tail(&sk->sk_receive_queue, skb); 3059 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3060 if(skb->h.th->fin) 3061 tcp_fin(skb, sk, skb->h.th); 3062 } 3063 } 3064 3065 static int tcp_prune_queue(struct sock *sk); 3066 3067 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3068 { 3069 struct tcphdr *th = skb->h.th; 3070 struct tcp_sock *tp = tcp_sk(sk); 3071 int eaten = -1; 3072 3073 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3074 goto drop; 3075 3076 __skb_pull(skb, th->doff*4); 3077 3078 TCP_ECN_accept_cwr(tp, skb); 3079 3080 if (tp->rx_opt.dsack) { 3081 tp->rx_opt.dsack = 0; 3082 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3083 4 - tp->rx_opt.tstamp_ok); 3084 } 3085 3086 /* Queue data for delivery to the user. 3087 * Packets in sequence go to the receive queue. 3088 * Out of sequence packets to the out_of_order_queue. 3089 */ 3090 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3091 if (tcp_receive_window(tp) == 0) 3092 goto out_of_window; 3093 3094 /* Ok. In sequence. In window. */ 3095 if (tp->ucopy.task == current && 3096 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3097 sock_owned_by_user(sk) && !tp->urg_data) { 3098 int chunk = min_t(unsigned int, skb->len, 3099 tp->ucopy.len); 3100 3101 __set_current_state(TASK_RUNNING); 3102 3103 local_bh_enable(); 3104 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3105 tp->ucopy.len -= chunk; 3106 tp->copied_seq += chunk; 3107 eaten = (chunk == skb->len && !th->fin); 3108 tcp_rcv_space_adjust(sk); 3109 } 3110 local_bh_disable(); 3111 } 3112 3113 if (eaten <= 0) { 3114 queue_and_out: 3115 if (eaten < 0 && 3116 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3117 !sk_stream_rmem_schedule(sk, skb))) { 3118 if (tcp_prune_queue(sk) < 0 || 3119 !sk_stream_rmem_schedule(sk, skb)) 3120 goto drop; 3121 } 3122 sk_stream_set_owner_r(skb, sk); 3123 __skb_queue_tail(&sk->sk_receive_queue, skb); 3124 } 3125 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3126 if(skb->len) 3127 tcp_event_data_recv(sk, tp, skb); 3128 if(th->fin) 3129 tcp_fin(skb, sk, th); 3130 3131 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3132 tcp_ofo_queue(sk); 3133 3134 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3135 * gap in queue is filled. 3136 */ 3137 if (skb_queue_empty(&tp->out_of_order_queue)) 3138 inet_csk(sk)->icsk_ack.pingpong = 0; 3139 } 3140 3141 if (tp->rx_opt.num_sacks) 3142 tcp_sack_remove(tp); 3143 3144 tcp_fast_path_check(sk, tp); 3145 3146 if (eaten > 0) 3147 __kfree_skb(skb); 3148 else if (!sock_flag(sk, SOCK_DEAD)) 3149 sk->sk_data_ready(sk, 0); 3150 return; 3151 } 3152 3153 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3154 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3155 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3156 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3157 3158 out_of_window: 3159 tcp_enter_quickack_mode(sk); 3160 inet_csk_schedule_ack(sk); 3161 drop: 3162 __kfree_skb(skb); 3163 return; 3164 } 3165 3166 /* Out of window. F.e. zero window probe. */ 3167 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3168 goto out_of_window; 3169 3170 tcp_enter_quickack_mode(sk); 3171 3172 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3173 /* Partial packet, seq < rcv_next < end_seq */ 3174 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3175 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3176 TCP_SKB_CB(skb)->end_seq); 3177 3178 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3179 3180 /* If window is closed, drop tail of packet. But after 3181 * remembering D-SACK for its head made in previous line. 3182 */ 3183 if (!tcp_receive_window(tp)) 3184 goto out_of_window; 3185 goto queue_and_out; 3186 } 3187 3188 TCP_ECN_check_ce(tp, skb); 3189 3190 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3191 !sk_stream_rmem_schedule(sk, skb)) { 3192 if (tcp_prune_queue(sk) < 0 || 3193 !sk_stream_rmem_schedule(sk, skb)) 3194 goto drop; 3195 } 3196 3197 /* Disable header prediction. */ 3198 tp->pred_flags = 0; 3199 inet_csk_schedule_ack(sk); 3200 3201 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3202 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3203 3204 sk_stream_set_owner_r(skb, sk); 3205 3206 if (!skb_peek(&tp->out_of_order_queue)) { 3207 /* Initial out of order segment, build 1 SACK. */ 3208 if (tp->rx_opt.sack_ok) { 3209 tp->rx_opt.num_sacks = 1; 3210 tp->rx_opt.dsack = 0; 3211 tp->rx_opt.eff_sacks = 1; 3212 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3213 tp->selective_acks[0].end_seq = 3214 TCP_SKB_CB(skb)->end_seq; 3215 } 3216 __skb_queue_head(&tp->out_of_order_queue,skb); 3217 } else { 3218 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3219 u32 seq = TCP_SKB_CB(skb)->seq; 3220 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3221 3222 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3223 __skb_append(skb1, skb, &tp->out_of_order_queue); 3224 3225 if (!tp->rx_opt.num_sacks || 3226 tp->selective_acks[0].end_seq != seq) 3227 goto add_sack; 3228 3229 /* Common case: data arrive in order after hole. */ 3230 tp->selective_acks[0].end_seq = end_seq; 3231 return; 3232 } 3233 3234 /* Find place to insert this segment. */ 3235 do { 3236 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3237 break; 3238 } while ((skb1 = skb1->prev) != 3239 (struct sk_buff*)&tp->out_of_order_queue); 3240 3241 /* Do skb overlap to previous one? */ 3242 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3243 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3244 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3245 /* All the bits are present. Drop. */ 3246 __kfree_skb(skb); 3247 tcp_dsack_set(tp, seq, end_seq); 3248 goto add_sack; 3249 } 3250 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3251 /* Partial overlap. */ 3252 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3253 } else { 3254 skb1 = skb1->prev; 3255 } 3256 } 3257 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3258 3259 /* And clean segments covered by new one as whole. */ 3260 while ((skb1 = skb->next) != 3261 (struct sk_buff*)&tp->out_of_order_queue && 3262 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3263 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3264 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3265 break; 3266 } 3267 __skb_unlink(skb1, &tp->out_of_order_queue); 3268 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3269 __kfree_skb(skb1); 3270 } 3271 3272 add_sack: 3273 if (tp->rx_opt.sack_ok) 3274 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3275 } 3276 } 3277 3278 /* Collapse contiguous sequence of skbs head..tail with 3279 * sequence numbers start..end. 3280 * Segments with FIN/SYN are not collapsed (only because this 3281 * simplifies code) 3282 */ 3283 static void 3284 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3285 struct sk_buff *head, struct sk_buff *tail, 3286 u32 start, u32 end) 3287 { 3288 struct sk_buff *skb; 3289 3290 /* First, check that queue is collapsible and find 3291 * the point where collapsing can be useful. */ 3292 for (skb = head; skb != tail; ) { 3293 /* No new bits? It is possible on ofo queue. */ 3294 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3295 struct sk_buff *next = skb->next; 3296 __skb_unlink(skb, list); 3297 __kfree_skb(skb); 3298 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3299 skb = next; 3300 continue; 3301 } 3302 3303 /* The first skb to collapse is: 3304 * - not SYN/FIN and 3305 * - bloated or contains data before "start" or 3306 * overlaps to the next one. 3307 */ 3308 if (!skb->h.th->syn && !skb->h.th->fin && 3309 (tcp_win_from_space(skb->truesize) > skb->len || 3310 before(TCP_SKB_CB(skb)->seq, start) || 3311 (skb->next != tail && 3312 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3313 break; 3314 3315 /* Decided to skip this, advance start seq. */ 3316 start = TCP_SKB_CB(skb)->end_seq; 3317 skb = skb->next; 3318 } 3319 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3320 return; 3321 3322 while (before(start, end)) { 3323 struct sk_buff *nskb; 3324 int header = skb_headroom(skb); 3325 int copy = SKB_MAX_ORDER(header, 0); 3326 3327 /* Too big header? This can happen with IPv6. */ 3328 if (copy < 0) 3329 return; 3330 if (end-start < copy) 3331 copy = end-start; 3332 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3333 if (!nskb) 3334 return; 3335 skb_reserve(nskb, header); 3336 memcpy(nskb->head, skb->head, header); 3337 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); 3338 nskb->h.raw = nskb->head + (skb->h.raw-skb->head); 3339 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); 3340 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3341 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3342 __skb_insert(nskb, skb->prev, skb, list); 3343 sk_stream_set_owner_r(nskb, sk); 3344 3345 /* Copy data, releasing collapsed skbs. */ 3346 while (copy > 0) { 3347 int offset = start - TCP_SKB_CB(skb)->seq; 3348 int size = TCP_SKB_CB(skb)->end_seq - start; 3349 3350 BUG_ON(offset < 0); 3351 if (size > 0) { 3352 size = min(copy, size); 3353 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3354 BUG(); 3355 TCP_SKB_CB(nskb)->end_seq += size; 3356 copy -= size; 3357 start += size; 3358 } 3359 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3360 struct sk_buff *next = skb->next; 3361 __skb_unlink(skb, list); 3362 __kfree_skb(skb); 3363 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3364 skb = next; 3365 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3366 return; 3367 } 3368 } 3369 } 3370 } 3371 3372 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3373 * and tcp_collapse() them until all the queue is collapsed. 3374 */ 3375 static void tcp_collapse_ofo_queue(struct sock *sk) 3376 { 3377 struct tcp_sock *tp = tcp_sk(sk); 3378 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3379 struct sk_buff *head; 3380 u32 start, end; 3381 3382 if (skb == NULL) 3383 return; 3384 3385 start = TCP_SKB_CB(skb)->seq; 3386 end = TCP_SKB_CB(skb)->end_seq; 3387 head = skb; 3388 3389 for (;;) { 3390 skb = skb->next; 3391 3392 /* Segment is terminated when we see gap or when 3393 * we are at the end of all the queue. */ 3394 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3395 after(TCP_SKB_CB(skb)->seq, end) || 3396 before(TCP_SKB_CB(skb)->end_seq, start)) { 3397 tcp_collapse(sk, &tp->out_of_order_queue, 3398 head, skb, start, end); 3399 head = skb; 3400 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3401 break; 3402 /* Start new segment */ 3403 start = TCP_SKB_CB(skb)->seq; 3404 end = TCP_SKB_CB(skb)->end_seq; 3405 } else { 3406 if (before(TCP_SKB_CB(skb)->seq, start)) 3407 start = TCP_SKB_CB(skb)->seq; 3408 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3409 end = TCP_SKB_CB(skb)->end_seq; 3410 } 3411 } 3412 } 3413 3414 /* Reduce allocated memory if we can, trying to get 3415 * the socket within its memory limits again. 3416 * 3417 * Return less than zero if we should start dropping frames 3418 * until the socket owning process reads some of the data 3419 * to stabilize the situation. 3420 */ 3421 static int tcp_prune_queue(struct sock *sk) 3422 { 3423 struct tcp_sock *tp = tcp_sk(sk); 3424 3425 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3426 3427 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3428 3429 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3430 tcp_clamp_window(sk, tp); 3431 else if (tcp_memory_pressure) 3432 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3433 3434 tcp_collapse_ofo_queue(sk); 3435 tcp_collapse(sk, &sk->sk_receive_queue, 3436 sk->sk_receive_queue.next, 3437 (struct sk_buff*)&sk->sk_receive_queue, 3438 tp->copied_seq, tp->rcv_nxt); 3439 sk_stream_mem_reclaim(sk); 3440 3441 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3442 return 0; 3443 3444 /* Collapsing did not help, destructive actions follow. 3445 * This must not ever occur. */ 3446 3447 /* First, purge the out_of_order queue. */ 3448 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3449 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3450 __skb_queue_purge(&tp->out_of_order_queue); 3451 3452 /* Reset SACK state. A conforming SACK implementation will 3453 * do the same at a timeout based retransmit. When a connection 3454 * is in a sad state like this, we care only about integrity 3455 * of the connection not performance. 3456 */ 3457 if (tp->rx_opt.sack_ok) 3458 tcp_sack_reset(&tp->rx_opt); 3459 sk_stream_mem_reclaim(sk); 3460 } 3461 3462 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3463 return 0; 3464 3465 /* If we are really being abused, tell the caller to silently 3466 * drop receive data on the floor. It will get retransmitted 3467 * and hopefully then we'll have sufficient space. 3468 */ 3469 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3470 3471 /* Massive buffer overcommit. */ 3472 tp->pred_flags = 0; 3473 return -1; 3474 } 3475 3476 3477 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3478 * As additional protections, we do not touch cwnd in retransmission phases, 3479 * and if application hit its sndbuf limit recently. 3480 */ 3481 void tcp_cwnd_application_limited(struct sock *sk) 3482 { 3483 struct tcp_sock *tp = tcp_sk(sk); 3484 3485 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3486 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3487 /* Limited by application or receiver window. */ 3488 u32 win_used = max(tp->snd_cwnd_used, 2U); 3489 if (win_used < tp->snd_cwnd) { 3490 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3491 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3492 } 3493 tp->snd_cwnd_used = 0; 3494 } 3495 tp->snd_cwnd_stamp = tcp_time_stamp; 3496 } 3497 3498 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp) 3499 { 3500 /* If the user specified a specific send buffer setting, do 3501 * not modify it. 3502 */ 3503 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3504 return 0; 3505 3506 /* If we are under global TCP memory pressure, do not expand. */ 3507 if (tcp_memory_pressure) 3508 return 0; 3509 3510 /* If we are under soft global TCP memory pressure, do not expand. */ 3511 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3512 return 0; 3513 3514 /* If we filled the congestion window, do not expand. */ 3515 if (tp->packets_out >= tp->snd_cwnd) 3516 return 0; 3517 3518 return 1; 3519 } 3520 3521 /* When incoming ACK allowed to free some skb from write_queue, 3522 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3523 * on the exit from tcp input handler. 3524 * 3525 * PROBLEM: sndbuf expansion does not work well with largesend. 3526 */ 3527 static void tcp_new_space(struct sock *sk) 3528 { 3529 struct tcp_sock *tp = tcp_sk(sk); 3530 3531 if (tcp_should_expand_sndbuf(sk, tp)) { 3532 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3533 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3534 demanded = max_t(unsigned int, tp->snd_cwnd, 3535 tp->reordering + 1); 3536 sndmem *= 2*demanded; 3537 if (sndmem > sk->sk_sndbuf) 3538 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3539 tp->snd_cwnd_stamp = tcp_time_stamp; 3540 } 3541 3542 sk->sk_write_space(sk); 3543 } 3544 3545 static void tcp_check_space(struct sock *sk) 3546 { 3547 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3548 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3549 if (sk->sk_socket && 3550 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3551 tcp_new_space(sk); 3552 } 3553 } 3554 3555 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp) 3556 { 3557 tcp_push_pending_frames(sk, tp); 3558 tcp_check_space(sk); 3559 } 3560 3561 /* 3562 * Check if sending an ack is needed. 3563 */ 3564 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3565 { 3566 struct tcp_sock *tp = tcp_sk(sk); 3567 3568 /* More than one full frame received... */ 3569 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3570 /* ... and right edge of window advances far enough. 3571 * (tcp_recvmsg() will send ACK otherwise). Or... 3572 */ 3573 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3574 /* We ACK each frame or... */ 3575 tcp_in_quickack_mode(sk) || 3576 /* We have out of order data. */ 3577 (ofo_possible && 3578 skb_peek(&tp->out_of_order_queue))) { 3579 /* Then ack it now */ 3580 tcp_send_ack(sk); 3581 } else { 3582 /* Else, send delayed ack. */ 3583 tcp_send_delayed_ack(sk); 3584 } 3585 } 3586 3587 static inline void tcp_ack_snd_check(struct sock *sk) 3588 { 3589 if (!inet_csk_ack_scheduled(sk)) { 3590 /* We sent a data segment already. */ 3591 return; 3592 } 3593 __tcp_ack_snd_check(sk, 1); 3594 } 3595 3596 /* 3597 * This routine is only called when we have urgent data 3598 * signaled. Its the 'slow' part of tcp_urg. It could be 3599 * moved inline now as tcp_urg is only called from one 3600 * place. We handle URGent data wrong. We have to - as 3601 * BSD still doesn't use the correction from RFC961. 3602 * For 1003.1g we should support a new option TCP_STDURG to permit 3603 * either form (or just set the sysctl tcp_stdurg). 3604 */ 3605 3606 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3607 { 3608 struct tcp_sock *tp = tcp_sk(sk); 3609 u32 ptr = ntohs(th->urg_ptr); 3610 3611 if (ptr && !sysctl_tcp_stdurg) 3612 ptr--; 3613 ptr += ntohl(th->seq); 3614 3615 /* Ignore urgent data that we've already seen and read. */ 3616 if (after(tp->copied_seq, ptr)) 3617 return; 3618 3619 /* Do not replay urg ptr. 3620 * 3621 * NOTE: interesting situation not covered by specs. 3622 * Misbehaving sender may send urg ptr, pointing to segment, 3623 * which we already have in ofo queue. We are not able to fetch 3624 * such data and will stay in TCP_URG_NOTYET until will be eaten 3625 * by recvmsg(). Seems, we are not obliged to handle such wicked 3626 * situations. But it is worth to think about possibility of some 3627 * DoSes using some hypothetical application level deadlock. 3628 */ 3629 if (before(ptr, tp->rcv_nxt)) 3630 return; 3631 3632 /* Do we already have a newer (or duplicate) urgent pointer? */ 3633 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3634 return; 3635 3636 /* Tell the world about our new urgent pointer. */ 3637 sk_send_sigurg(sk); 3638 3639 /* We may be adding urgent data when the last byte read was 3640 * urgent. To do this requires some care. We cannot just ignore 3641 * tp->copied_seq since we would read the last urgent byte again 3642 * as data, nor can we alter copied_seq until this data arrives 3643 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3644 * 3645 * NOTE. Double Dutch. Rendering to plain English: author of comment 3646 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3647 * and expect that both A and B disappear from stream. This is _wrong_. 3648 * Though this happens in BSD with high probability, this is occasional. 3649 * Any application relying on this is buggy. Note also, that fix "works" 3650 * only in this artificial test. Insert some normal data between A and B and we will 3651 * decline of BSD again. Verdict: it is better to remove to trap 3652 * buggy users. 3653 */ 3654 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3655 !sock_flag(sk, SOCK_URGINLINE) && 3656 tp->copied_seq != tp->rcv_nxt) { 3657 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3658 tp->copied_seq++; 3659 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3660 __skb_unlink(skb, &sk->sk_receive_queue); 3661 __kfree_skb(skb); 3662 } 3663 } 3664 3665 tp->urg_data = TCP_URG_NOTYET; 3666 tp->urg_seq = ptr; 3667 3668 /* Disable header prediction. */ 3669 tp->pred_flags = 0; 3670 } 3671 3672 /* This is the 'fast' part of urgent handling. */ 3673 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 3674 { 3675 struct tcp_sock *tp = tcp_sk(sk); 3676 3677 /* Check if we get a new urgent pointer - normally not. */ 3678 if (th->urg) 3679 tcp_check_urg(sk,th); 3680 3681 /* Do we wait for any urgent data? - normally not... */ 3682 if (tp->urg_data == TCP_URG_NOTYET) { 3683 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 3684 th->syn; 3685 3686 /* Is the urgent pointer pointing into this packet? */ 3687 if (ptr < skb->len) { 3688 u8 tmp; 3689 if (skb_copy_bits(skb, ptr, &tmp, 1)) 3690 BUG(); 3691 tp->urg_data = TCP_URG_VALID | tmp; 3692 if (!sock_flag(sk, SOCK_DEAD)) 3693 sk->sk_data_ready(sk, 0); 3694 } 3695 } 3696 } 3697 3698 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 3699 { 3700 struct tcp_sock *tp = tcp_sk(sk); 3701 int chunk = skb->len - hlen; 3702 int err; 3703 3704 local_bh_enable(); 3705 if (skb->ip_summed==CHECKSUM_UNNECESSARY) 3706 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 3707 else 3708 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 3709 tp->ucopy.iov); 3710 3711 if (!err) { 3712 tp->ucopy.len -= chunk; 3713 tp->copied_seq += chunk; 3714 tcp_rcv_space_adjust(sk); 3715 } 3716 3717 local_bh_disable(); 3718 return err; 3719 } 3720 3721 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3722 { 3723 int result; 3724 3725 if (sock_owned_by_user(sk)) { 3726 local_bh_enable(); 3727 result = __tcp_checksum_complete(skb); 3728 local_bh_disable(); 3729 } else { 3730 result = __tcp_checksum_complete(skb); 3731 } 3732 return result; 3733 } 3734 3735 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3736 { 3737 return skb->ip_summed != CHECKSUM_UNNECESSARY && 3738 __tcp_checksum_complete_user(sk, skb); 3739 } 3740 3741 /* 3742 * TCP receive function for the ESTABLISHED state. 3743 * 3744 * It is split into a fast path and a slow path. The fast path is 3745 * disabled when: 3746 * - A zero window was announced from us - zero window probing 3747 * is only handled properly in the slow path. 3748 * - Out of order segments arrived. 3749 * - Urgent data is expected. 3750 * - There is no buffer space left 3751 * - Unexpected TCP flags/window values/header lengths are received 3752 * (detected by checking the TCP header against pred_flags) 3753 * - Data is sent in both directions. Fast path only supports pure senders 3754 * or pure receivers (this means either the sequence number or the ack 3755 * value must stay constant) 3756 * - Unexpected TCP option. 3757 * 3758 * When these conditions are not satisfied it drops into a standard 3759 * receive procedure patterned after RFC793 to handle all cases. 3760 * The first three cases are guaranteed by proper pred_flags setting, 3761 * the rest is checked inline. Fast processing is turned on in 3762 * tcp_data_queue when everything is OK. 3763 */ 3764 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 3765 struct tcphdr *th, unsigned len) 3766 { 3767 struct tcp_sock *tp = tcp_sk(sk); 3768 3769 /* 3770 * Header prediction. 3771 * The code loosely follows the one in the famous 3772 * "30 instruction TCP receive" Van Jacobson mail. 3773 * 3774 * Van's trick is to deposit buffers into socket queue 3775 * on a device interrupt, to call tcp_recv function 3776 * on the receive process context and checksum and copy 3777 * the buffer to user space. smart... 3778 * 3779 * Our current scheme is not silly either but we take the 3780 * extra cost of the net_bh soft interrupt processing... 3781 * We do checksum and copy also but from device to kernel. 3782 */ 3783 3784 tp->rx_opt.saw_tstamp = 0; 3785 3786 /* pred_flags is 0xS?10 << 16 + snd_wnd 3787 * if header_prediction is to be made 3788 * 'S' will always be tp->tcp_header_len >> 2 3789 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 3790 * turn it off (when there are holes in the receive 3791 * space for instance) 3792 * PSH flag is ignored. 3793 */ 3794 3795 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 3796 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3797 int tcp_header_len = tp->tcp_header_len; 3798 3799 /* Timestamp header prediction: tcp_header_len 3800 * is automatically equal to th->doff*4 due to pred_flags 3801 * match. 3802 */ 3803 3804 /* Check timestamp */ 3805 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 3806 __u32 *ptr = (__u32 *)(th + 1); 3807 3808 /* No? Slow path! */ 3809 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3810 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 3811 goto slow_path; 3812 3813 tp->rx_opt.saw_tstamp = 1; 3814 ++ptr; 3815 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3816 ++ptr; 3817 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3818 3819 /* If PAWS failed, check it more carefully in slow path */ 3820 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 3821 goto slow_path; 3822 3823 /* DO NOT update ts_recent here, if checksum fails 3824 * and timestamp was corrupted part, it will result 3825 * in a hung connection since we will drop all 3826 * future packets due to the PAWS test. 3827 */ 3828 } 3829 3830 if (len <= tcp_header_len) { 3831 /* Bulk data transfer: sender */ 3832 if (len == tcp_header_len) { 3833 /* Predicted packet is in window by definition. 3834 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3835 * Hence, check seq<=rcv_wup reduces to: 3836 */ 3837 if (tcp_header_len == 3838 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3839 tp->rcv_nxt == tp->rcv_wup) 3840 tcp_store_ts_recent(tp); 3841 3842 tcp_rcv_rtt_measure_ts(sk, skb); 3843 3844 /* We know that such packets are checksummed 3845 * on entry. 3846 */ 3847 tcp_ack(sk, skb, 0); 3848 __kfree_skb(skb); 3849 tcp_data_snd_check(sk, tp); 3850 return 0; 3851 } else { /* Header too small */ 3852 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3853 goto discard; 3854 } 3855 } else { 3856 int eaten = 0; 3857 3858 if (tp->ucopy.task == current && 3859 tp->copied_seq == tp->rcv_nxt && 3860 len - tcp_header_len <= tp->ucopy.len && 3861 sock_owned_by_user(sk)) { 3862 __set_current_state(TASK_RUNNING); 3863 3864 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 3865 /* Predicted packet is in window by definition. 3866 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3867 * Hence, check seq<=rcv_wup reduces to: 3868 */ 3869 if (tcp_header_len == 3870 (sizeof(struct tcphdr) + 3871 TCPOLEN_TSTAMP_ALIGNED) && 3872 tp->rcv_nxt == tp->rcv_wup) 3873 tcp_store_ts_recent(tp); 3874 3875 tcp_rcv_rtt_measure_ts(sk, skb); 3876 3877 __skb_pull(skb, tcp_header_len); 3878 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3879 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 3880 eaten = 1; 3881 } 3882 } 3883 if (!eaten) { 3884 if (tcp_checksum_complete_user(sk, skb)) 3885 goto csum_error; 3886 3887 /* Predicted packet is in window by definition. 3888 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3889 * Hence, check seq<=rcv_wup reduces to: 3890 */ 3891 if (tcp_header_len == 3892 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3893 tp->rcv_nxt == tp->rcv_wup) 3894 tcp_store_ts_recent(tp); 3895 3896 tcp_rcv_rtt_measure_ts(sk, skb); 3897 3898 if ((int)skb->truesize > sk->sk_forward_alloc) 3899 goto step5; 3900 3901 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 3902 3903 /* Bulk data transfer: receiver */ 3904 __skb_pull(skb,tcp_header_len); 3905 __skb_queue_tail(&sk->sk_receive_queue, skb); 3906 sk_stream_set_owner_r(skb, sk); 3907 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3908 } 3909 3910 tcp_event_data_recv(sk, tp, skb); 3911 3912 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 3913 /* Well, only one small jumplet in fast path... */ 3914 tcp_ack(sk, skb, FLAG_DATA); 3915 tcp_data_snd_check(sk, tp); 3916 if (!inet_csk_ack_scheduled(sk)) 3917 goto no_ack; 3918 } 3919 3920 __tcp_ack_snd_check(sk, 0); 3921 no_ack: 3922 if (eaten) 3923 __kfree_skb(skb); 3924 else 3925 sk->sk_data_ready(sk, 0); 3926 return 0; 3927 } 3928 } 3929 3930 slow_path: 3931 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 3932 goto csum_error; 3933 3934 /* 3935 * RFC1323: H1. Apply PAWS check first. 3936 */ 3937 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 3938 tcp_paws_discard(sk, skb)) { 3939 if (!th->rst) { 3940 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 3941 tcp_send_dupack(sk, skb); 3942 goto discard; 3943 } 3944 /* Resets are accepted even if PAWS failed. 3945 3946 ts_recent update must be made after we are sure 3947 that the packet is in window. 3948 */ 3949 } 3950 3951 /* 3952 * Standard slow path. 3953 */ 3954 3955 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 3956 /* RFC793, page 37: "In all states except SYN-SENT, all reset 3957 * (RST) segments are validated by checking their SEQ-fields." 3958 * And page 69: "If an incoming segment is not acceptable, 3959 * an acknowledgment should be sent in reply (unless the RST bit 3960 * is set, if so drop the segment and return)". 3961 */ 3962 if (!th->rst) 3963 tcp_send_dupack(sk, skb); 3964 goto discard; 3965 } 3966 3967 if(th->rst) { 3968 tcp_reset(sk); 3969 goto discard; 3970 } 3971 3972 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3973 3974 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3975 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3976 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 3977 tcp_reset(sk); 3978 return 1; 3979 } 3980 3981 step5: 3982 if(th->ack) 3983 tcp_ack(sk, skb, FLAG_SLOWPATH); 3984 3985 tcp_rcv_rtt_measure_ts(sk, skb); 3986 3987 /* Process urgent data. */ 3988 tcp_urg(sk, skb, th); 3989 3990 /* step 7: process the segment text */ 3991 tcp_data_queue(sk, skb); 3992 3993 tcp_data_snd_check(sk, tp); 3994 tcp_ack_snd_check(sk); 3995 return 0; 3996 3997 csum_error: 3998 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3999 4000 discard: 4001 __kfree_skb(skb); 4002 return 0; 4003 } 4004 4005 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4006 struct tcphdr *th, unsigned len) 4007 { 4008 struct tcp_sock *tp = tcp_sk(sk); 4009 struct inet_connection_sock *icsk = inet_csk(sk); 4010 int saved_clamp = tp->rx_opt.mss_clamp; 4011 4012 tcp_parse_options(skb, &tp->rx_opt, 0); 4013 4014 if (th->ack) { 4015 /* rfc793: 4016 * "If the state is SYN-SENT then 4017 * first check the ACK bit 4018 * If the ACK bit is set 4019 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4020 * a reset (unless the RST bit is set, if so drop 4021 * the segment and return)" 4022 * 4023 * We do not send data with SYN, so that RFC-correct 4024 * test reduces to: 4025 */ 4026 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4027 goto reset_and_undo; 4028 4029 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4030 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4031 tcp_time_stamp)) { 4032 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4033 goto reset_and_undo; 4034 } 4035 4036 /* Now ACK is acceptable. 4037 * 4038 * "If the RST bit is set 4039 * If the ACK was acceptable then signal the user "error: 4040 * connection reset", drop the segment, enter CLOSED state, 4041 * delete TCB, and return." 4042 */ 4043 4044 if (th->rst) { 4045 tcp_reset(sk); 4046 goto discard; 4047 } 4048 4049 /* rfc793: 4050 * "fifth, if neither of the SYN or RST bits is set then 4051 * drop the segment and return." 4052 * 4053 * See note below! 4054 * --ANK(990513) 4055 */ 4056 if (!th->syn) 4057 goto discard_and_undo; 4058 4059 /* rfc793: 4060 * "If the SYN bit is on ... 4061 * are acceptable then ... 4062 * (our SYN has been ACKed), change the connection 4063 * state to ESTABLISHED..." 4064 */ 4065 4066 TCP_ECN_rcv_synack(tp, th); 4067 if (tp->ecn_flags&TCP_ECN_OK) 4068 sock_set_flag(sk, SOCK_NO_LARGESEND); 4069 4070 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4071 tcp_ack(sk, skb, FLAG_SLOWPATH); 4072 4073 /* Ok.. it's good. Set up sequence numbers and 4074 * move to established. 4075 */ 4076 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4077 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4078 4079 /* RFC1323: The window in SYN & SYN/ACK segments is 4080 * never scaled. 4081 */ 4082 tp->snd_wnd = ntohs(th->window); 4083 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4084 4085 if (!tp->rx_opt.wscale_ok) { 4086 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4087 tp->window_clamp = min(tp->window_clamp, 65535U); 4088 } 4089 4090 if (tp->rx_opt.saw_tstamp) { 4091 tp->rx_opt.tstamp_ok = 1; 4092 tp->tcp_header_len = 4093 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4094 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4095 tcp_store_ts_recent(tp); 4096 } else { 4097 tp->tcp_header_len = sizeof(struct tcphdr); 4098 } 4099 4100 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4101 tp->rx_opt.sack_ok |= 2; 4102 4103 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4104 tcp_initialize_rcv_mss(sk); 4105 4106 /* Remember, tcp_poll() does not lock socket! 4107 * Change state from SYN-SENT only after copied_seq 4108 * is initialized. */ 4109 tp->copied_seq = tp->rcv_nxt; 4110 mb(); 4111 tcp_set_state(sk, TCP_ESTABLISHED); 4112 4113 /* Make sure socket is routed, for correct metrics. */ 4114 icsk->icsk_af_ops->rebuild_header(sk); 4115 4116 tcp_init_metrics(sk); 4117 4118 tcp_init_congestion_control(sk); 4119 4120 /* Prevent spurious tcp_cwnd_restart() on first data 4121 * packet. 4122 */ 4123 tp->lsndtime = tcp_time_stamp; 4124 4125 tcp_init_buffer_space(sk); 4126 4127 if (sock_flag(sk, SOCK_KEEPOPEN)) 4128 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4129 4130 if (!tp->rx_opt.snd_wscale) 4131 __tcp_fast_path_on(tp, tp->snd_wnd); 4132 else 4133 tp->pred_flags = 0; 4134 4135 if (!sock_flag(sk, SOCK_DEAD)) { 4136 sk->sk_state_change(sk); 4137 sk_wake_async(sk, 0, POLL_OUT); 4138 } 4139 4140 if (sk->sk_write_pending || 4141 icsk->icsk_accept_queue.rskq_defer_accept || 4142 icsk->icsk_ack.pingpong) { 4143 /* Save one ACK. Data will be ready after 4144 * several ticks, if write_pending is set. 4145 * 4146 * It may be deleted, but with this feature tcpdumps 4147 * look so _wonderfully_ clever, that I was not able 4148 * to stand against the temptation 8) --ANK 4149 */ 4150 inet_csk_schedule_ack(sk); 4151 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4152 icsk->icsk_ack.ato = TCP_ATO_MIN; 4153 tcp_incr_quickack(sk); 4154 tcp_enter_quickack_mode(sk); 4155 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4156 TCP_DELACK_MAX, TCP_RTO_MAX); 4157 4158 discard: 4159 __kfree_skb(skb); 4160 return 0; 4161 } else { 4162 tcp_send_ack(sk); 4163 } 4164 return -1; 4165 } 4166 4167 /* No ACK in the segment */ 4168 4169 if (th->rst) { 4170 /* rfc793: 4171 * "If the RST bit is set 4172 * 4173 * Otherwise (no ACK) drop the segment and return." 4174 */ 4175 4176 goto discard_and_undo; 4177 } 4178 4179 /* PAWS check. */ 4180 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4181 goto discard_and_undo; 4182 4183 if (th->syn) { 4184 /* We see SYN without ACK. It is attempt of 4185 * simultaneous connect with crossed SYNs. 4186 * Particularly, it can be connect to self. 4187 */ 4188 tcp_set_state(sk, TCP_SYN_RECV); 4189 4190 if (tp->rx_opt.saw_tstamp) { 4191 tp->rx_opt.tstamp_ok = 1; 4192 tcp_store_ts_recent(tp); 4193 tp->tcp_header_len = 4194 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4195 } else { 4196 tp->tcp_header_len = sizeof(struct tcphdr); 4197 } 4198 4199 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4200 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4201 4202 /* RFC1323: The window in SYN & SYN/ACK segments is 4203 * never scaled. 4204 */ 4205 tp->snd_wnd = ntohs(th->window); 4206 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4207 tp->max_window = tp->snd_wnd; 4208 4209 TCP_ECN_rcv_syn(tp, th); 4210 if (tp->ecn_flags&TCP_ECN_OK) 4211 sock_set_flag(sk, SOCK_NO_LARGESEND); 4212 4213 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4214 tcp_initialize_rcv_mss(sk); 4215 4216 4217 tcp_send_synack(sk); 4218 #if 0 4219 /* Note, we could accept data and URG from this segment. 4220 * There are no obstacles to make this. 4221 * 4222 * However, if we ignore data in ACKless segments sometimes, 4223 * we have no reasons to accept it sometimes. 4224 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4225 * is not flawless. So, discard packet for sanity. 4226 * Uncomment this return to process the data. 4227 */ 4228 return -1; 4229 #else 4230 goto discard; 4231 #endif 4232 } 4233 /* "fifth, if neither of the SYN or RST bits is set then 4234 * drop the segment and return." 4235 */ 4236 4237 discard_and_undo: 4238 tcp_clear_options(&tp->rx_opt); 4239 tp->rx_opt.mss_clamp = saved_clamp; 4240 goto discard; 4241 4242 reset_and_undo: 4243 tcp_clear_options(&tp->rx_opt); 4244 tp->rx_opt.mss_clamp = saved_clamp; 4245 return 1; 4246 } 4247 4248 4249 /* 4250 * This function implements the receiving procedure of RFC 793 for 4251 * all states except ESTABLISHED and TIME_WAIT. 4252 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4253 * address independent. 4254 */ 4255 4256 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4257 struct tcphdr *th, unsigned len) 4258 { 4259 struct tcp_sock *tp = tcp_sk(sk); 4260 struct inet_connection_sock *icsk = inet_csk(sk); 4261 int queued = 0; 4262 4263 tp->rx_opt.saw_tstamp = 0; 4264 4265 switch (sk->sk_state) { 4266 case TCP_CLOSE: 4267 goto discard; 4268 4269 case TCP_LISTEN: 4270 if(th->ack) 4271 return 1; 4272 4273 if(th->rst) 4274 goto discard; 4275 4276 if(th->syn) { 4277 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4278 return 1; 4279 4280 /* Now we have several options: In theory there is 4281 * nothing else in the frame. KA9Q has an option to 4282 * send data with the syn, BSD accepts data with the 4283 * syn up to the [to be] advertised window and 4284 * Solaris 2.1 gives you a protocol error. For now 4285 * we just ignore it, that fits the spec precisely 4286 * and avoids incompatibilities. It would be nice in 4287 * future to drop through and process the data. 4288 * 4289 * Now that TTCP is starting to be used we ought to 4290 * queue this data. 4291 * But, this leaves one open to an easy denial of 4292 * service attack, and SYN cookies can't defend 4293 * against this problem. So, we drop the data 4294 * in the interest of security over speed. 4295 */ 4296 goto discard; 4297 } 4298 goto discard; 4299 4300 case TCP_SYN_SENT: 4301 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4302 if (queued >= 0) 4303 return queued; 4304 4305 /* Do step6 onward by hand. */ 4306 tcp_urg(sk, skb, th); 4307 __kfree_skb(skb); 4308 tcp_data_snd_check(sk, tp); 4309 return 0; 4310 } 4311 4312 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4313 tcp_paws_discard(sk, skb)) { 4314 if (!th->rst) { 4315 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4316 tcp_send_dupack(sk, skb); 4317 goto discard; 4318 } 4319 /* Reset is accepted even if it did not pass PAWS. */ 4320 } 4321 4322 /* step 1: check sequence number */ 4323 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4324 if (!th->rst) 4325 tcp_send_dupack(sk, skb); 4326 goto discard; 4327 } 4328 4329 /* step 2: check RST bit */ 4330 if(th->rst) { 4331 tcp_reset(sk); 4332 goto discard; 4333 } 4334 4335 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4336 4337 /* step 3: check security and precedence [ignored] */ 4338 4339 /* step 4: 4340 * 4341 * Check for a SYN in window. 4342 */ 4343 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4344 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4345 tcp_reset(sk); 4346 return 1; 4347 } 4348 4349 /* step 5: check the ACK field */ 4350 if (th->ack) { 4351 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4352 4353 switch(sk->sk_state) { 4354 case TCP_SYN_RECV: 4355 if (acceptable) { 4356 tp->copied_seq = tp->rcv_nxt; 4357 mb(); 4358 tcp_set_state(sk, TCP_ESTABLISHED); 4359 sk->sk_state_change(sk); 4360 4361 /* Note, that this wakeup is only for marginal 4362 * crossed SYN case. Passively open sockets 4363 * are not waked up, because sk->sk_sleep == 4364 * NULL and sk->sk_socket == NULL. 4365 */ 4366 if (sk->sk_socket) { 4367 sk_wake_async(sk,0,POLL_OUT); 4368 } 4369 4370 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4371 tp->snd_wnd = ntohs(th->window) << 4372 tp->rx_opt.snd_wscale; 4373 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4374 TCP_SKB_CB(skb)->seq); 4375 4376 /* tcp_ack considers this ACK as duplicate 4377 * and does not calculate rtt. 4378 * Fix it at least with timestamps. 4379 */ 4380 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4381 !tp->srtt) 4382 tcp_ack_saw_tstamp(sk, 0); 4383 4384 if (tp->rx_opt.tstamp_ok) 4385 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4386 4387 /* Make sure socket is routed, for 4388 * correct metrics. 4389 */ 4390 icsk->icsk_af_ops->rebuild_header(sk); 4391 4392 tcp_init_metrics(sk); 4393 4394 tcp_init_congestion_control(sk); 4395 4396 /* Prevent spurious tcp_cwnd_restart() on 4397 * first data packet. 4398 */ 4399 tp->lsndtime = tcp_time_stamp; 4400 4401 tcp_initialize_rcv_mss(sk); 4402 tcp_init_buffer_space(sk); 4403 tcp_fast_path_on(tp); 4404 } else { 4405 return 1; 4406 } 4407 break; 4408 4409 case TCP_FIN_WAIT1: 4410 if (tp->snd_una == tp->write_seq) { 4411 tcp_set_state(sk, TCP_FIN_WAIT2); 4412 sk->sk_shutdown |= SEND_SHUTDOWN; 4413 dst_confirm(sk->sk_dst_cache); 4414 4415 if (!sock_flag(sk, SOCK_DEAD)) 4416 /* Wake up lingering close() */ 4417 sk->sk_state_change(sk); 4418 else { 4419 int tmo; 4420 4421 if (tp->linger2 < 0 || 4422 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4423 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4424 tcp_done(sk); 4425 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4426 return 1; 4427 } 4428 4429 tmo = tcp_fin_time(sk); 4430 if (tmo > TCP_TIMEWAIT_LEN) { 4431 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4432 } else if (th->fin || sock_owned_by_user(sk)) { 4433 /* Bad case. We could lose such FIN otherwise. 4434 * It is not a big problem, but it looks confusing 4435 * and not so rare event. We still can lose it now, 4436 * if it spins in bh_lock_sock(), but it is really 4437 * marginal case. 4438 */ 4439 inet_csk_reset_keepalive_timer(sk, tmo); 4440 } else { 4441 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4442 goto discard; 4443 } 4444 } 4445 } 4446 break; 4447 4448 case TCP_CLOSING: 4449 if (tp->snd_una == tp->write_seq) { 4450 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4451 goto discard; 4452 } 4453 break; 4454 4455 case TCP_LAST_ACK: 4456 if (tp->snd_una == tp->write_seq) { 4457 tcp_update_metrics(sk); 4458 tcp_done(sk); 4459 goto discard; 4460 } 4461 break; 4462 } 4463 } else 4464 goto discard; 4465 4466 /* step 6: check the URG bit */ 4467 tcp_urg(sk, skb, th); 4468 4469 /* step 7: process the segment text */ 4470 switch (sk->sk_state) { 4471 case TCP_CLOSE_WAIT: 4472 case TCP_CLOSING: 4473 case TCP_LAST_ACK: 4474 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4475 break; 4476 case TCP_FIN_WAIT1: 4477 case TCP_FIN_WAIT2: 4478 /* RFC 793 says to queue data in these states, 4479 * RFC 1122 says we MUST send a reset. 4480 * BSD 4.4 also does reset. 4481 */ 4482 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4483 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4484 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4485 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4486 tcp_reset(sk); 4487 return 1; 4488 } 4489 } 4490 /* Fall through */ 4491 case TCP_ESTABLISHED: 4492 tcp_data_queue(sk, skb); 4493 queued = 1; 4494 break; 4495 } 4496 4497 /* tcp_data could move socket to TIME-WAIT */ 4498 if (sk->sk_state != TCP_CLOSE) { 4499 tcp_data_snd_check(sk, tp); 4500 tcp_ack_snd_check(sk); 4501 } 4502 4503 if (!queued) { 4504 discard: 4505 __kfree_skb(skb); 4506 } 4507 return 0; 4508 } 4509 4510 EXPORT_SYMBOL(sysctl_tcp_ecn); 4511 EXPORT_SYMBOL(sysctl_tcp_reordering); 4512 EXPORT_SYMBOL(sysctl_tcp_abc); 4513 EXPORT_SYMBOL(tcp_parse_options); 4514 EXPORT_SYMBOL(tcp_rcv_established); 4515 EXPORT_SYMBOL(tcp_rcv_state_process); 4516 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 4517