xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 87c2ce3b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84 
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90 
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc = 1;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 
115 /* Adapt the MSS value used to make delayed ack decision to the
116  * real world.
117  */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 				const struct sk_buff *skb)
120 {
121 	struct inet_connection_sock *icsk = inet_csk(sk);
122 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 	unsigned int len;
124 
125 	icsk->icsk_ack.last_seg_size = 0;
126 
127 	/* skb->len may jitter because of SACKs, even if peer
128 	 * sends good full-sized frames.
129 	 */
130 	len = skb->len;
131 	if (len >= icsk->icsk_ack.rcv_mss) {
132 		icsk->icsk_ack.rcv_mss = len;
133 	} else {
134 		/* Otherwise, we make more careful check taking into account,
135 		 * that SACKs block is variable.
136 		 *
137 		 * "len" is invariant segment length, including TCP header.
138 		 */
139 		len += skb->data - skb->h.raw;
140 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 		    /* If PSH is not set, packet should be
142 		     * full sized, provided peer TCP is not badly broken.
143 		     * This observation (if it is correct 8)) allows
144 		     * to handle super-low mtu links fairly.
145 		     */
146 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 			/* Subtract also invariant (if peer is RFC compliant),
149 			 * tcp header plus fixed timestamp option length.
150 			 * Resulting "len" is MSS free of SACK jitter.
151 			 */
152 			len -= tcp_sk(sk)->tcp_header_len;
153 			icsk->icsk_ack.last_seg_size = len;
154 			if (len == lss) {
155 				icsk->icsk_ack.rcv_mss = len;
156 				return;
157 			}
158 		}
159 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
160 	}
161 }
162 
163 static void tcp_incr_quickack(struct sock *sk)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
167 
168 	if (quickacks==0)
169 		quickacks=2;
170 	if (quickacks > icsk->icsk_ack.quick)
171 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
172 }
173 
174 void tcp_enter_quickack_mode(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	tcp_incr_quickack(sk);
178 	icsk->icsk_ack.pingpong = 0;
179 	icsk->icsk_ack.ato = TCP_ATO_MIN;
180 }
181 
182 /* Send ACKs quickly, if "quick" count is not exhausted
183  * and the session is not interactive.
184  */
185 
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
187 {
188 	const struct inet_connection_sock *icsk = inet_csk(sk);
189 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
190 }
191 
192 /* Buffer size and advertised window tuning.
193  *
194  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
195  */
196 
197 static void tcp_fixup_sndbuf(struct sock *sk)
198 {
199 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 		     sizeof(struct sk_buff);
201 
202 	if (sk->sk_sndbuf < 3 * sndmem)
203 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
204 }
205 
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
207  *
208  * All tcp_full_space() is split to two parts: "network" buffer, allocated
209  * forward and advertised in receiver window (tp->rcv_wnd) and
210  * "application buffer", required to isolate scheduling/application
211  * latencies from network.
212  * window_clamp is maximal advertised window. It can be less than
213  * tcp_full_space(), in this case tcp_full_space() - window_clamp
214  * is reserved for "application" buffer. The less window_clamp is
215  * the smoother our behaviour from viewpoint of network, but the lower
216  * throughput and the higher sensitivity of the connection to losses. 8)
217  *
218  * rcv_ssthresh is more strict window_clamp used at "slow start"
219  * phase to predict further behaviour of this connection.
220  * It is used for two goals:
221  * - to enforce header prediction at sender, even when application
222  *   requires some significant "application buffer". It is check #1.
223  * - to prevent pruning of receive queue because of misprediction
224  *   of receiver window. Check #2.
225  *
226  * The scheme does not work when sender sends good segments opening
227  * window and then starts to feed us spaghetti. But it should work
228  * in common situations. Otherwise, we have to rely on queue collapsing.
229  */
230 
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 			     const struct sk_buff *skb)
234 {
235 	/* Optimize this! */
236 	int truesize = tcp_win_from_space(skb->truesize)/2;
237 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
238 
239 	while (tp->rcv_ssthresh <= window) {
240 		if (truesize <= skb->len)
241 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
242 
243 		truesize >>= 1;
244 		window >>= 1;
245 	}
246 	return 0;
247 }
248 
249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
250 			    struct sk_buff *skb)
251 {
252 	/* Check #1 */
253 	if (tp->rcv_ssthresh < tp->window_clamp &&
254 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 	    !tcp_memory_pressure) {
256 		int incr;
257 
258 		/* Check #2. Increase window, if skb with such overhead
259 		 * will fit to rcvbuf in future.
260 		 */
261 		if (tcp_win_from_space(skb->truesize) <= skb->len)
262 			incr = 2*tp->advmss;
263 		else
264 			incr = __tcp_grow_window(sk, tp, skb);
265 
266 		if (incr) {
267 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 			inet_csk(sk)->icsk_ack.quick |= 1;
269 		}
270 	}
271 }
272 
273 /* 3. Tuning rcvbuf, when connection enters established state. */
274 
275 static void tcp_fixup_rcvbuf(struct sock *sk)
276 {
277 	struct tcp_sock *tp = tcp_sk(sk);
278 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
279 
280 	/* Try to select rcvbuf so that 4 mss-sized segments
281 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
282 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
283 	 */
284 	while (tcp_win_from_space(rcvmem) < tp->advmss)
285 		rcvmem += 128;
286 	if (sk->sk_rcvbuf < 4 * rcvmem)
287 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
288 }
289 
290 /* 4. Try to fixup all. It is made immediately after connection enters
291  *    established state.
292  */
293 static void tcp_init_buffer_space(struct sock *sk)
294 {
295 	struct tcp_sock *tp = tcp_sk(sk);
296 	int maxwin;
297 
298 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 		tcp_fixup_rcvbuf(sk);
300 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 		tcp_fixup_sndbuf(sk);
302 
303 	tp->rcvq_space.space = tp->rcv_wnd;
304 
305 	maxwin = tcp_full_space(sk);
306 
307 	if (tp->window_clamp >= maxwin) {
308 		tp->window_clamp = maxwin;
309 
310 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 			tp->window_clamp = max(maxwin -
312 					       (maxwin >> sysctl_tcp_app_win),
313 					       4 * tp->advmss);
314 	}
315 
316 	/* Force reservation of one segment. */
317 	if (sysctl_tcp_app_win &&
318 	    tp->window_clamp > 2 * tp->advmss &&
319 	    tp->window_clamp + tp->advmss > maxwin)
320 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
321 
322 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 	tp->snd_cwnd_stamp = tcp_time_stamp;
324 }
325 
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
328 {
329 	struct inet_connection_sock *icsk = inet_csk(sk);
330 
331 	icsk->icsk_ack.quick = 0;
332 
333 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
334 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
335 	    !tcp_memory_pressure &&
336 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
337 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
338 				    sysctl_tcp_rmem[2]);
339 	}
340 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
341 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
342 }
343 
344 
345 /* Initialize RCV_MSS value.
346  * RCV_MSS is an our guess about MSS used by the peer.
347  * We haven't any direct information about the MSS.
348  * It's better to underestimate the RCV_MSS rather than overestimate.
349  * Overestimations make us ACKing less frequently than needed.
350  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
351  */
352 void tcp_initialize_rcv_mss(struct sock *sk)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
356 
357 	hint = min(hint, tp->rcv_wnd/2);
358 	hint = min(hint, TCP_MIN_RCVMSS);
359 	hint = max(hint, TCP_MIN_MSS);
360 
361 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
362 }
363 
364 /* Receiver "autotuning" code.
365  *
366  * The algorithm for RTT estimation w/o timestamps is based on
367  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
369  *
370  * More detail on this code can be found at
371  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372  * though this reference is out of date.  A new paper
373  * is pending.
374  */
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
376 {
377 	u32 new_sample = tp->rcv_rtt_est.rtt;
378 	long m = sample;
379 
380 	if (m == 0)
381 		m = 1;
382 
383 	if (new_sample != 0) {
384 		/* If we sample in larger samples in the non-timestamp
385 		 * case, we could grossly overestimate the RTT especially
386 		 * with chatty applications or bulk transfer apps which
387 		 * are stalled on filesystem I/O.
388 		 *
389 		 * Also, since we are only going for a minimum in the
390 		 * non-timestamp case, we do not smooth things out
391 		 * else with timestamps disabled convergence takes too
392 		 * long.
393 		 */
394 		if (!win_dep) {
395 			m -= (new_sample >> 3);
396 			new_sample += m;
397 		} else if (m < new_sample)
398 			new_sample = m << 3;
399 	} else {
400 		/* No previous measure. */
401 		new_sample = m << 3;
402 	}
403 
404 	if (tp->rcv_rtt_est.rtt != new_sample)
405 		tp->rcv_rtt_est.rtt = new_sample;
406 }
407 
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
409 {
410 	if (tp->rcv_rtt_est.time == 0)
411 		goto new_measure;
412 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
413 		return;
414 	tcp_rcv_rtt_update(tp,
415 			   jiffies - tp->rcv_rtt_est.time,
416 			   1);
417 
418 new_measure:
419 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 	tp->rcv_rtt_est.time = tcp_time_stamp;
421 }
422 
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
424 {
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	if (tp->rx_opt.rcv_tsecr &&
427 	    (TCP_SKB_CB(skb)->end_seq -
428 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
430 }
431 
432 /*
433  * This function should be called every time data is copied to user space.
434  * It calculates the appropriate TCP receive buffer space.
435  */
436 void tcp_rcv_space_adjust(struct sock *sk)
437 {
438 	struct tcp_sock *tp = tcp_sk(sk);
439 	int time;
440 	int space;
441 
442 	if (tp->rcvq_space.time == 0)
443 		goto new_measure;
444 
445 	time = tcp_time_stamp - tp->rcvq_space.time;
446 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 	    tp->rcv_rtt_est.rtt == 0)
448 		return;
449 
450 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
451 
452 	space = max(tp->rcvq_space.space, space);
453 
454 	if (tp->rcvq_space.space != space) {
455 		int rcvmem;
456 
457 		tp->rcvq_space.space = space;
458 
459 		if (sysctl_tcp_moderate_rcvbuf) {
460 			int new_clamp = space;
461 
462 			/* Receive space grows, normalize in order to
463 			 * take into account packet headers and sk_buff
464 			 * structure overhead.
465 			 */
466 			space /= tp->advmss;
467 			if (!space)
468 				space = 1;
469 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
470 				  16 + sizeof(struct sk_buff));
471 			while (tcp_win_from_space(rcvmem) < tp->advmss)
472 				rcvmem += 128;
473 			space *= rcvmem;
474 			space = min(space, sysctl_tcp_rmem[2]);
475 			if (space > sk->sk_rcvbuf) {
476 				sk->sk_rcvbuf = space;
477 
478 				/* Make the window clamp follow along.  */
479 				tp->window_clamp = new_clamp;
480 			}
481 		}
482 	}
483 
484 new_measure:
485 	tp->rcvq_space.seq = tp->copied_seq;
486 	tp->rcvq_space.time = tcp_time_stamp;
487 }
488 
489 /* There is something which you must keep in mind when you analyze the
490  * behavior of the tp->ato delayed ack timeout interval.  When a
491  * connection starts up, we want to ack as quickly as possible.  The
492  * problem is that "good" TCP's do slow start at the beginning of data
493  * transmission.  The means that until we send the first few ACK's the
494  * sender will sit on his end and only queue most of his data, because
495  * he can only send snd_cwnd unacked packets at any given time.  For
496  * each ACK we send, he increments snd_cwnd and transmits more of his
497  * queue.  -DaveM
498  */
499 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
500 {
501 	struct inet_connection_sock *icsk = inet_csk(sk);
502 	u32 now;
503 
504 	inet_csk_schedule_ack(sk);
505 
506 	tcp_measure_rcv_mss(sk, skb);
507 
508 	tcp_rcv_rtt_measure(tp);
509 
510 	now = tcp_time_stamp;
511 
512 	if (!icsk->icsk_ack.ato) {
513 		/* The _first_ data packet received, initialize
514 		 * delayed ACK engine.
515 		 */
516 		tcp_incr_quickack(sk);
517 		icsk->icsk_ack.ato = TCP_ATO_MIN;
518 	} else {
519 		int m = now - icsk->icsk_ack.lrcvtime;
520 
521 		if (m <= TCP_ATO_MIN/2) {
522 			/* The fastest case is the first. */
523 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
524 		} else if (m < icsk->icsk_ack.ato) {
525 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
526 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
527 				icsk->icsk_ack.ato = icsk->icsk_rto;
528 		} else if (m > icsk->icsk_rto) {
529 			/* Too long gap. Apparently sender failed to
530 			 * restart window, so that we send ACKs quickly.
531 			 */
532 			tcp_incr_quickack(sk);
533 			sk_stream_mem_reclaim(sk);
534 		}
535 	}
536 	icsk->icsk_ack.lrcvtime = now;
537 
538 	TCP_ECN_check_ce(tp, skb);
539 
540 	if (skb->len >= 128)
541 		tcp_grow_window(sk, tp, skb);
542 }
543 
544 /* Called to compute a smoothed rtt estimate. The data fed to this
545  * routine either comes from timestamps, or from segments that were
546  * known _not_ to have been retransmitted [see Karn/Partridge
547  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
548  * piece by Van Jacobson.
549  * NOTE: the next three routines used to be one big routine.
550  * To save cycles in the RFC 1323 implementation it was better to break
551  * it up into three procedures. -- erics
552  */
553 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
554 {
555 	struct tcp_sock *tp = tcp_sk(sk);
556 	long m = mrtt; /* RTT */
557 
558 	/*	The following amusing code comes from Jacobson's
559 	 *	article in SIGCOMM '88.  Note that rtt and mdev
560 	 *	are scaled versions of rtt and mean deviation.
561 	 *	This is designed to be as fast as possible
562 	 *	m stands for "measurement".
563 	 *
564 	 *	On a 1990 paper the rto value is changed to:
565 	 *	RTO = rtt + 4 * mdev
566 	 *
567 	 * Funny. This algorithm seems to be very broken.
568 	 * These formulae increase RTO, when it should be decreased, increase
569 	 * too slowly, when it should be increased quickly, decrease too quickly
570 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
571 	 * does not matter how to _calculate_ it. Seems, it was trap
572 	 * that VJ failed to avoid. 8)
573 	 */
574 	if(m == 0)
575 		m = 1;
576 	if (tp->srtt != 0) {
577 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
578 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
579 		if (m < 0) {
580 			m = -m;		/* m is now abs(error) */
581 			m -= (tp->mdev >> 2);   /* similar update on mdev */
582 			/* This is similar to one of Eifel findings.
583 			 * Eifel blocks mdev updates when rtt decreases.
584 			 * This solution is a bit different: we use finer gain
585 			 * for mdev in this case (alpha*beta).
586 			 * Like Eifel it also prevents growth of rto,
587 			 * but also it limits too fast rto decreases,
588 			 * happening in pure Eifel.
589 			 */
590 			if (m > 0)
591 				m >>= 3;
592 		} else {
593 			m -= (tp->mdev >> 2);   /* similar update on mdev */
594 		}
595 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
596 		if (tp->mdev > tp->mdev_max) {
597 			tp->mdev_max = tp->mdev;
598 			if (tp->mdev_max > tp->rttvar)
599 				tp->rttvar = tp->mdev_max;
600 		}
601 		if (after(tp->snd_una, tp->rtt_seq)) {
602 			if (tp->mdev_max < tp->rttvar)
603 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
604 			tp->rtt_seq = tp->snd_nxt;
605 			tp->mdev_max = TCP_RTO_MIN;
606 		}
607 	} else {
608 		/* no previous measure. */
609 		tp->srtt = m<<3;	/* take the measured time to be rtt */
610 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
611 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
612 		tp->rtt_seq = tp->snd_nxt;
613 	}
614 }
615 
616 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
617  * routine referred to above.
618  */
619 static inline void tcp_set_rto(struct sock *sk)
620 {
621 	const struct tcp_sock *tp = tcp_sk(sk);
622 	/* Old crap is replaced with new one. 8)
623 	 *
624 	 * More seriously:
625 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
626 	 *    It cannot be less due to utterly erratic ACK generation made
627 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
628 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
629 	 *    is invisible. Actually, Linux-2.4 also generates erratic
630 	 *    ACKs in some circumstances.
631 	 */
632 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
633 
634 	/* 2. Fixups made earlier cannot be right.
635 	 *    If we do not estimate RTO correctly without them,
636 	 *    all the algo is pure shit and should be replaced
637 	 *    with correct one. It is exactly, which we pretend to do.
638 	 */
639 }
640 
641 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
642  * guarantees that rto is higher.
643  */
644 static inline void tcp_bound_rto(struct sock *sk)
645 {
646 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
647 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
648 }
649 
650 /* Save metrics learned by this TCP session.
651    This function is called only, when TCP finishes successfully
652    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
653  */
654 void tcp_update_metrics(struct sock *sk)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 	struct dst_entry *dst = __sk_dst_get(sk);
658 
659 	if (sysctl_tcp_nometrics_save)
660 		return;
661 
662 	dst_confirm(dst);
663 
664 	if (dst && (dst->flags&DST_HOST)) {
665 		const struct inet_connection_sock *icsk = inet_csk(sk);
666 		int m;
667 
668 		if (icsk->icsk_backoff || !tp->srtt) {
669 			/* This session failed to estimate rtt. Why?
670 			 * Probably, no packets returned in time.
671 			 * Reset our results.
672 			 */
673 			if (!(dst_metric_locked(dst, RTAX_RTT)))
674 				dst->metrics[RTAX_RTT-1] = 0;
675 			return;
676 		}
677 
678 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
679 
680 		/* If newly calculated rtt larger than stored one,
681 		 * store new one. Otherwise, use EWMA. Remember,
682 		 * rtt overestimation is always better than underestimation.
683 		 */
684 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
685 			if (m <= 0)
686 				dst->metrics[RTAX_RTT-1] = tp->srtt;
687 			else
688 				dst->metrics[RTAX_RTT-1] -= (m>>3);
689 		}
690 
691 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
692 			if (m < 0)
693 				m = -m;
694 
695 			/* Scale deviation to rttvar fixed point */
696 			m >>= 1;
697 			if (m < tp->mdev)
698 				m = tp->mdev;
699 
700 			if (m >= dst_metric(dst, RTAX_RTTVAR))
701 				dst->metrics[RTAX_RTTVAR-1] = m;
702 			else
703 				dst->metrics[RTAX_RTTVAR-1] -=
704 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
705 		}
706 
707 		if (tp->snd_ssthresh >= 0xFFFF) {
708 			/* Slow start still did not finish. */
709 			if (dst_metric(dst, RTAX_SSTHRESH) &&
710 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
711 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
712 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
713 			if (!dst_metric_locked(dst, RTAX_CWND) &&
714 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
715 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
716 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
717 			   icsk->icsk_ca_state == TCP_CA_Open) {
718 			/* Cong. avoidance phase, cwnd is reliable. */
719 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
720 				dst->metrics[RTAX_SSTHRESH-1] =
721 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
722 			if (!dst_metric_locked(dst, RTAX_CWND))
723 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
724 		} else {
725 			/* Else slow start did not finish, cwnd is non-sense,
726 			   ssthresh may be also invalid.
727 			 */
728 			if (!dst_metric_locked(dst, RTAX_CWND))
729 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
730 			if (dst->metrics[RTAX_SSTHRESH-1] &&
731 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
732 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
733 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
734 		}
735 
736 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
737 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
738 			    tp->reordering != sysctl_tcp_reordering)
739 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
740 		}
741 	}
742 }
743 
744 /* Numbers are taken from RFC2414.  */
745 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
746 {
747 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
748 
749 	if (!cwnd) {
750 		if (tp->mss_cache > 1460)
751 			cwnd = 2;
752 		else
753 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
754 	}
755 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
756 }
757 
758 /* Set slow start threshold and cwnd not falling to slow start */
759 void tcp_enter_cwr(struct sock *sk)
760 {
761 	struct tcp_sock *tp = tcp_sk(sk);
762 
763 	tp->prior_ssthresh = 0;
764 	tp->bytes_acked = 0;
765 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
766 		tp->undo_marker = 0;
767 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
768 		tp->snd_cwnd = min(tp->snd_cwnd,
769 				   tcp_packets_in_flight(tp) + 1U);
770 		tp->snd_cwnd_cnt = 0;
771 		tp->high_seq = tp->snd_nxt;
772 		tp->snd_cwnd_stamp = tcp_time_stamp;
773 		TCP_ECN_queue_cwr(tp);
774 
775 		tcp_set_ca_state(sk, TCP_CA_CWR);
776 	}
777 }
778 
779 /* Initialize metrics on socket. */
780 
781 static void tcp_init_metrics(struct sock *sk)
782 {
783 	struct tcp_sock *tp = tcp_sk(sk);
784 	struct dst_entry *dst = __sk_dst_get(sk);
785 
786 	if (dst == NULL)
787 		goto reset;
788 
789 	dst_confirm(dst);
790 
791 	if (dst_metric_locked(dst, RTAX_CWND))
792 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
793 	if (dst_metric(dst, RTAX_SSTHRESH)) {
794 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
795 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
796 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
797 	}
798 	if (dst_metric(dst, RTAX_REORDERING) &&
799 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
800 		tp->rx_opt.sack_ok &= ~2;
801 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
802 	}
803 
804 	if (dst_metric(dst, RTAX_RTT) == 0)
805 		goto reset;
806 
807 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
808 		goto reset;
809 
810 	/* Initial rtt is determined from SYN,SYN-ACK.
811 	 * The segment is small and rtt may appear much
812 	 * less than real one. Use per-dst memory
813 	 * to make it more realistic.
814 	 *
815 	 * A bit of theory. RTT is time passed after "normal" sized packet
816 	 * is sent until it is ACKed. In normal circumstances sending small
817 	 * packets force peer to delay ACKs and calculation is correct too.
818 	 * The algorithm is adaptive and, provided we follow specs, it
819 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
820 	 * tricks sort of "quick acks" for time long enough to decrease RTT
821 	 * to low value, and then abruptly stops to do it and starts to delay
822 	 * ACKs, wait for troubles.
823 	 */
824 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
825 		tp->srtt = dst_metric(dst, RTAX_RTT);
826 		tp->rtt_seq = tp->snd_nxt;
827 	}
828 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
829 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
830 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
831 	}
832 	tcp_set_rto(sk);
833 	tcp_bound_rto(sk);
834 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
835 		goto reset;
836 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
837 	tp->snd_cwnd_stamp = tcp_time_stamp;
838 	return;
839 
840 reset:
841 	/* Play conservative. If timestamps are not
842 	 * supported, TCP will fail to recalculate correct
843 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
844 	 */
845 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
846 		tp->srtt = 0;
847 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
848 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
849 	}
850 }
851 
852 static void tcp_update_reordering(struct sock *sk, const int metric,
853 				  const int ts)
854 {
855 	struct tcp_sock *tp = tcp_sk(sk);
856 	if (metric > tp->reordering) {
857 		tp->reordering = min(TCP_MAX_REORDERING, metric);
858 
859 		/* This exciting event is worth to be remembered. 8) */
860 		if (ts)
861 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
862 		else if (IsReno(tp))
863 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
864 		else if (IsFack(tp))
865 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
866 		else
867 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
868 #if FASTRETRANS_DEBUG > 1
869 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
870 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
871 		       tp->reordering,
872 		       tp->fackets_out,
873 		       tp->sacked_out,
874 		       tp->undo_marker ? tp->undo_retrans : 0);
875 #endif
876 		/* Disable FACK yet. */
877 		tp->rx_opt.sack_ok &= ~2;
878 	}
879 }
880 
881 /* This procedure tags the retransmission queue when SACKs arrive.
882  *
883  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
884  * Packets in queue with these bits set are counted in variables
885  * sacked_out, retrans_out and lost_out, correspondingly.
886  *
887  * Valid combinations are:
888  * Tag  InFlight	Description
889  * 0	1		- orig segment is in flight.
890  * S	0		- nothing flies, orig reached receiver.
891  * L	0		- nothing flies, orig lost by net.
892  * R	2		- both orig and retransmit are in flight.
893  * L|R	1		- orig is lost, retransmit is in flight.
894  * S|R  1		- orig reached receiver, retrans is still in flight.
895  * (L|S|R is logically valid, it could occur when L|R is sacked,
896  *  but it is equivalent to plain S and code short-curcuits it to S.
897  *  L|S is logically invalid, it would mean -1 packet in flight 8))
898  *
899  * These 6 states form finite state machine, controlled by the following events:
900  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
901  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
902  * 3. Loss detection event of one of three flavors:
903  *	A. Scoreboard estimator decided the packet is lost.
904  *	   A'. Reno "three dupacks" marks head of queue lost.
905  *	   A''. Its FACK modfication, head until snd.fack is lost.
906  *	B. SACK arrives sacking data transmitted after never retransmitted
907  *	   hole was sent out.
908  *	C. SACK arrives sacking SND.NXT at the moment, when the
909  *	   segment was retransmitted.
910  * 4. D-SACK added new rule: D-SACK changes any tag to S.
911  *
912  * It is pleasant to note, that state diagram turns out to be commutative,
913  * so that we are allowed not to be bothered by order of our actions,
914  * when multiple events arrive simultaneously. (see the function below).
915  *
916  * Reordering detection.
917  * --------------------
918  * Reordering metric is maximal distance, which a packet can be displaced
919  * in packet stream. With SACKs we can estimate it:
920  *
921  * 1. SACK fills old hole and the corresponding segment was not
922  *    ever retransmitted -> reordering. Alas, we cannot use it
923  *    when segment was retransmitted.
924  * 2. The last flaw is solved with D-SACK. D-SACK arrives
925  *    for retransmitted and already SACKed segment -> reordering..
926  * Both of these heuristics are not used in Loss state, when we cannot
927  * account for retransmits accurately.
928  */
929 static int
930 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
931 {
932 	const struct inet_connection_sock *icsk = inet_csk(sk);
933 	struct tcp_sock *tp = tcp_sk(sk);
934 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
935 	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
936 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
937 	int reord = tp->packets_out;
938 	int prior_fackets;
939 	u32 lost_retrans = 0;
940 	int flag = 0;
941 	int dup_sack = 0;
942 	int i;
943 
944 	if (!tp->sacked_out)
945 		tp->fackets_out = 0;
946 	prior_fackets = tp->fackets_out;
947 
948 	/* SACK fastpath:
949 	 * if the only SACK change is the increase of the end_seq of
950 	 * the first block then only apply that SACK block
951 	 * and use retrans queue hinting otherwise slowpath */
952 	flag = 1;
953 	for (i = 0; i< num_sacks; i++) {
954 		__u32 start_seq = ntohl(sp[i].start_seq);
955 		__u32 end_seq =	 ntohl(sp[i].end_seq);
956 
957 		if (i == 0){
958 			if (tp->recv_sack_cache[i].start_seq != start_seq)
959 				flag = 0;
960 		} else {
961 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
962 			    (tp->recv_sack_cache[i].end_seq != end_seq))
963 				flag = 0;
964 		}
965 		tp->recv_sack_cache[i].start_seq = start_seq;
966 		tp->recv_sack_cache[i].end_seq = end_seq;
967 
968 		/* Check for D-SACK. */
969 		if (i == 0) {
970 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
971 
972 			if (before(start_seq, ack)) {
973 				dup_sack = 1;
974 				tp->rx_opt.sack_ok |= 4;
975 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
976 			} else if (num_sacks > 1 &&
977 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
978 				   !before(start_seq, ntohl(sp[1].start_seq))) {
979 				dup_sack = 1;
980 				tp->rx_opt.sack_ok |= 4;
981 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
982 			}
983 
984 			/* D-SACK for already forgotten data...
985 			 * Do dumb counting. */
986 			if (dup_sack &&
987 			    !after(end_seq, prior_snd_una) &&
988 			    after(end_seq, tp->undo_marker))
989 				tp->undo_retrans--;
990 
991 			/* Eliminate too old ACKs, but take into
992 			 * account more or less fresh ones, they can
993 			 * contain valid SACK info.
994 			 */
995 			if (before(ack, prior_snd_una - tp->max_window))
996 				return 0;
997 		}
998 	}
999 
1000 	if (flag)
1001 		num_sacks = 1;
1002 	else {
1003 		int j;
1004 		tp->fastpath_skb_hint = NULL;
1005 
1006 		/* order SACK blocks to allow in order walk of the retrans queue */
1007 		for (i = num_sacks-1; i > 0; i--) {
1008 			for (j = 0; j < i; j++){
1009 				if (after(ntohl(sp[j].start_seq),
1010 					  ntohl(sp[j+1].start_seq))){
1011 					sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1012 					sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1013 					sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1014 					sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1015 				}
1016 
1017 			}
1018 		}
1019 	}
1020 
1021 	/* clear flag as used for different purpose in following code */
1022 	flag = 0;
1023 
1024 	for (i=0; i<num_sacks; i++, sp++) {
1025 		struct sk_buff *skb;
1026 		__u32 start_seq = ntohl(sp->start_seq);
1027 		__u32 end_seq = ntohl(sp->end_seq);
1028 		int fack_count;
1029 
1030 		/* Use SACK fastpath hint if valid */
1031 		if (tp->fastpath_skb_hint) {
1032 			skb = tp->fastpath_skb_hint;
1033 			fack_count = tp->fastpath_cnt_hint;
1034 		} else {
1035 			skb = sk->sk_write_queue.next;
1036 			fack_count = 0;
1037 		}
1038 
1039 		/* Event "B" in the comment above. */
1040 		if (after(end_seq, tp->high_seq))
1041 			flag |= FLAG_DATA_LOST;
1042 
1043 		sk_stream_for_retrans_queue_from(skb, sk) {
1044 			int in_sack, pcount;
1045 			u8 sacked;
1046 
1047 			tp->fastpath_skb_hint = skb;
1048 			tp->fastpath_cnt_hint = fack_count;
1049 
1050 			/* The retransmission queue is always in order, so
1051 			 * we can short-circuit the walk early.
1052 			 */
1053 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1054 				break;
1055 
1056 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1057 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1058 
1059 			pcount = tcp_skb_pcount(skb);
1060 
1061 			if (pcount > 1 && !in_sack &&
1062 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1063 				unsigned int pkt_len;
1064 
1065 				in_sack = !after(start_seq,
1066 						 TCP_SKB_CB(skb)->seq);
1067 
1068 				if (!in_sack)
1069 					pkt_len = (start_seq -
1070 						   TCP_SKB_CB(skb)->seq);
1071 				else
1072 					pkt_len = (end_seq -
1073 						   TCP_SKB_CB(skb)->seq);
1074 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
1075 					break;
1076 				pcount = tcp_skb_pcount(skb);
1077 			}
1078 
1079 			fack_count += pcount;
1080 
1081 			sacked = TCP_SKB_CB(skb)->sacked;
1082 
1083 			/* Account D-SACK for retransmitted packet. */
1084 			if ((dup_sack && in_sack) &&
1085 			    (sacked & TCPCB_RETRANS) &&
1086 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1087 				tp->undo_retrans--;
1088 
1089 			/* The frame is ACKed. */
1090 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1091 				if (sacked&TCPCB_RETRANS) {
1092 					if ((dup_sack && in_sack) &&
1093 					    (sacked&TCPCB_SACKED_ACKED))
1094 						reord = min(fack_count, reord);
1095 				} else {
1096 					/* If it was in a hole, we detected reordering. */
1097 					if (fack_count < prior_fackets &&
1098 					    !(sacked&TCPCB_SACKED_ACKED))
1099 						reord = min(fack_count, reord);
1100 				}
1101 
1102 				/* Nothing to do; acked frame is about to be dropped. */
1103 				continue;
1104 			}
1105 
1106 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1107 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1108 			    (!lost_retrans || after(end_seq, lost_retrans)))
1109 				lost_retrans = end_seq;
1110 
1111 			if (!in_sack)
1112 				continue;
1113 
1114 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1115 				if (sacked & TCPCB_SACKED_RETRANS) {
1116 					/* If the segment is not tagged as lost,
1117 					 * we do not clear RETRANS, believing
1118 					 * that retransmission is still in flight.
1119 					 */
1120 					if (sacked & TCPCB_LOST) {
1121 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1122 						tp->lost_out -= tcp_skb_pcount(skb);
1123 						tp->retrans_out -= tcp_skb_pcount(skb);
1124 
1125 						/* clear lost hint */
1126 						tp->retransmit_skb_hint = NULL;
1127 					}
1128 				} else {
1129 					/* New sack for not retransmitted frame,
1130 					 * which was in hole. It is reordering.
1131 					 */
1132 					if (!(sacked & TCPCB_RETRANS) &&
1133 					    fack_count < prior_fackets)
1134 						reord = min(fack_count, reord);
1135 
1136 					if (sacked & TCPCB_LOST) {
1137 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1138 						tp->lost_out -= tcp_skb_pcount(skb);
1139 
1140 						/* clear lost hint */
1141 						tp->retransmit_skb_hint = NULL;
1142 					}
1143 				}
1144 
1145 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1146 				flag |= FLAG_DATA_SACKED;
1147 				tp->sacked_out += tcp_skb_pcount(skb);
1148 
1149 				if (fack_count > tp->fackets_out)
1150 					tp->fackets_out = fack_count;
1151 			} else {
1152 				if (dup_sack && (sacked&TCPCB_RETRANS))
1153 					reord = min(fack_count, reord);
1154 			}
1155 
1156 			/* D-SACK. We can detect redundant retransmission
1157 			 * in S|R and plain R frames and clear it.
1158 			 * undo_retrans is decreased above, L|R frames
1159 			 * are accounted above as well.
1160 			 */
1161 			if (dup_sack &&
1162 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1163 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1164 				tp->retrans_out -= tcp_skb_pcount(skb);
1165 				tp->retransmit_skb_hint = NULL;
1166 			}
1167 		}
1168 	}
1169 
1170 	/* Check for lost retransmit. This superb idea is
1171 	 * borrowed from "ratehalving". Event "C".
1172 	 * Later note: FACK people cheated me again 8),
1173 	 * we have to account for reordering! Ugly,
1174 	 * but should help.
1175 	 */
1176 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1177 		struct sk_buff *skb;
1178 
1179 		sk_stream_for_retrans_queue(skb, sk) {
1180 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1181 				break;
1182 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183 				continue;
1184 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1185 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1186 			    (IsFack(tp) ||
1187 			     !before(lost_retrans,
1188 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1189 				     tp->mss_cache))) {
1190 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1191 				tp->retrans_out -= tcp_skb_pcount(skb);
1192 
1193 				/* clear lost hint */
1194 				tp->retransmit_skb_hint = NULL;
1195 
1196 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1197 					tp->lost_out += tcp_skb_pcount(skb);
1198 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1199 					flag |= FLAG_DATA_SACKED;
1200 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1201 				}
1202 			}
1203 		}
1204 	}
1205 
1206 	tp->left_out = tp->sacked_out + tp->lost_out;
1207 
1208 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1209 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1210 
1211 #if FASTRETRANS_DEBUG > 0
1212 	BUG_TRAP((int)tp->sacked_out >= 0);
1213 	BUG_TRAP((int)tp->lost_out >= 0);
1214 	BUG_TRAP((int)tp->retrans_out >= 0);
1215 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1216 #endif
1217 	return flag;
1218 }
1219 
1220 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1221  * segments to see from the next ACKs whether any data was really missing.
1222  * If the RTO was spurious, new ACKs should arrive.
1223  */
1224 void tcp_enter_frto(struct sock *sk)
1225 {
1226 	const struct inet_connection_sock *icsk = inet_csk(sk);
1227 	struct tcp_sock *tp = tcp_sk(sk);
1228 	struct sk_buff *skb;
1229 
1230 	tp->frto_counter = 1;
1231 
1232 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1233             tp->snd_una == tp->high_seq ||
1234             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1235 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1236 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1237 		tcp_ca_event(sk, CA_EVENT_FRTO);
1238 	}
1239 
1240 	/* Have to clear retransmission markers here to keep the bookkeeping
1241 	 * in shape, even though we are not yet in Loss state.
1242 	 * If something was really lost, it is eventually caught up
1243 	 * in tcp_enter_frto_loss.
1244 	 */
1245 	tp->retrans_out = 0;
1246 	tp->undo_marker = tp->snd_una;
1247 	tp->undo_retrans = 0;
1248 
1249 	sk_stream_for_retrans_queue(skb, sk) {
1250 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1251 	}
1252 	tcp_sync_left_out(tp);
1253 
1254 	tcp_set_ca_state(sk, TCP_CA_Open);
1255 	tp->frto_highmark = tp->snd_nxt;
1256 }
1257 
1258 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1259  * which indicates that we should follow the traditional RTO recovery,
1260  * i.e. mark everything lost and do go-back-N retransmission.
1261  */
1262 static void tcp_enter_frto_loss(struct sock *sk)
1263 {
1264 	struct tcp_sock *tp = tcp_sk(sk);
1265 	struct sk_buff *skb;
1266 	int cnt = 0;
1267 
1268 	tp->sacked_out = 0;
1269 	tp->lost_out = 0;
1270 	tp->fackets_out = 0;
1271 
1272 	sk_stream_for_retrans_queue(skb, sk) {
1273 		cnt += tcp_skb_pcount(skb);
1274 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1275 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1276 
1277 			/* Do not mark those segments lost that were
1278 			 * forward transmitted after RTO
1279 			 */
1280 			if (!after(TCP_SKB_CB(skb)->end_seq,
1281 				   tp->frto_highmark)) {
1282 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1283 				tp->lost_out += tcp_skb_pcount(skb);
1284 			}
1285 		} else {
1286 			tp->sacked_out += tcp_skb_pcount(skb);
1287 			tp->fackets_out = cnt;
1288 		}
1289 	}
1290 	tcp_sync_left_out(tp);
1291 
1292 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1293 	tp->snd_cwnd_cnt = 0;
1294 	tp->snd_cwnd_stamp = tcp_time_stamp;
1295 	tp->undo_marker = 0;
1296 	tp->frto_counter = 0;
1297 
1298 	tp->reordering = min_t(unsigned int, tp->reordering,
1299 					     sysctl_tcp_reordering);
1300 	tcp_set_ca_state(sk, TCP_CA_Loss);
1301 	tp->high_seq = tp->frto_highmark;
1302 	TCP_ECN_queue_cwr(tp);
1303 
1304 	clear_all_retrans_hints(tp);
1305 }
1306 
1307 void tcp_clear_retrans(struct tcp_sock *tp)
1308 {
1309 	tp->left_out = 0;
1310 	tp->retrans_out = 0;
1311 
1312 	tp->fackets_out = 0;
1313 	tp->sacked_out = 0;
1314 	tp->lost_out = 0;
1315 
1316 	tp->undo_marker = 0;
1317 	tp->undo_retrans = 0;
1318 }
1319 
1320 /* Enter Loss state. If "how" is not zero, forget all SACK information
1321  * and reset tags completely, otherwise preserve SACKs. If receiver
1322  * dropped its ofo queue, we will know this due to reneging detection.
1323  */
1324 void tcp_enter_loss(struct sock *sk, int how)
1325 {
1326 	const struct inet_connection_sock *icsk = inet_csk(sk);
1327 	struct tcp_sock *tp = tcp_sk(sk);
1328 	struct sk_buff *skb;
1329 	int cnt = 0;
1330 
1331 	/* Reduce ssthresh if it has not yet been made inside this window. */
1332 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1333 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1334 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1335 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1336 		tcp_ca_event(sk, CA_EVENT_LOSS);
1337 	}
1338 	tp->snd_cwnd	   = 1;
1339 	tp->snd_cwnd_cnt   = 0;
1340 	tp->snd_cwnd_stamp = tcp_time_stamp;
1341 
1342 	tp->bytes_acked = 0;
1343 	tcp_clear_retrans(tp);
1344 
1345 	/* Push undo marker, if it was plain RTO and nothing
1346 	 * was retransmitted. */
1347 	if (!how)
1348 		tp->undo_marker = tp->snd_una;
1349 
1350 	sk_stream_for_retrans_queue(skb, sk) {
1351 		cnt += tcp_skb_pcount(skb);
1352 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1353 			tp->undo_marker = 0;
1354 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1355 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1356 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1357 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1358 			tp->lost_out += tcp_skb_pcount(skb);
1359 		} else {
1360 			tp->sacked_out += tcp_skb_pcount(skb);
1361 			tp->fackets_out = cnt;
1362 		}
1363 	}
1364 	tcp_sync_left_out(tp);
1365 
1366 	tp->reordering = min_t(unsigned int, tp->reordering,
1367 					     sysctl_tcp_reordering);
1368 	tcp_set_ca_state(sk, TCP_CA_Loss);
1369 	tp->high_seq = tp->snd_nxt;
1370 	TCP_ECN_queue_cwr(tp);
1371 
1372 	clear_all_retrans_hints(tp);
1373 }
1374 
1375 static int tcp_check_sack_reneging(struct sock *sk)
1376 {
1377 	struct sk_buff *skb;
1378 
1379 	/* If ACK arrived pointing to a remembered SACK,
1380 	 * it means that our remembered SACKs do not reflect
1381 	 * real state of receiver i.e.
1382 	 * receiver _host_ is heavily congested (or buggy).
1383 	 * Do processing similar to RTO timeout.
1384 	 */
1385 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1386 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1387 		struct inet_connection_sock *icsk = inet_csk(sk);
1388 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1389 
1390 		tcp_enter_loss(sk, 1);
1391 		icsk->icsk_retransmits++;
1392 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1393 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1394 					  icsk->icsk_rto, TCP_RTO_MAX);
1395 		return 1;
1396 	}
1397 	return 0;
1398 }
1399 
1400 static inline int tcp_fackets_out(struct tcp_sock *tp)
1401 {
1402 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1403 }
1404 
1405 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1406 {
1407 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1408 }
1409 
1410 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1411 {
1412 	return tp->packets_out &&
1413 	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1414 }
1415 
1416 /* Linux NewReno/SACK/FACK/ECN state machine.
1417  * --------------------------------------
1418  *
1419  * "Open"	Normal state, no dubious events, fast path.
1420  * "Disorder"   In all the respects it is "Open",
1421  *		but requires a bit more attention. It is entered when
1422  *		we see some SACKs or dupacks. It is split of "Open"
1423  *		mainly to move some processing from fast path to slow one.
1424  * "CWR"	CWND was reduced due to some Congestion Notification event.
1425  *		It can be ECN, ICMP source quench, local device congestion.
1426  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1427  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1428  *
1429  * tcp_fastretrans_alert() is entered:
1430  * - each incoming ACK, if state is not "Open"
1431  * - when arrived ACK is unusual, namely:
1432  *	* SACK
1433  *	* Duplicate ACK.
1434  *	* ECN ECE.
1435  *
1436  * Counting packets in flight is pretty simple.
1437  *
1438  *	in_flight = packets_out - left_out + retrans_out
1439  *
1440  *	packets_out is SND.NXT-SND.UNA counted in packets.
1441  *
1442  *	retrans_out is number of retransmitted segments.
1443  *
1444  *	left_out is number of segments left network, but not ACKed yet.
1445  *
1446  *		left_out = sacked_out + lost_out
1447  *
1448  *     sacked_out: Packets, which arrived to receiver out of order
1449  *		   and hence not ACKed. With SACKs this number is simply
1450  *		   amount of SACKed data. Even without SACKs
1451  *		   it is easy to give pretty reliable estimate of this number,
1452  *		   counting duplicate ACKs.
1453  *
1454  *       lost_out: Packets lost by network. TCP has no explicit
1455  *		   "loss notification" feedback from network (for now).
1456  *		   It means that this number can be only _guessed_.
1457  *		   Actually, it is the heuristics to predict lossage that
1458  *		   distinguishes different algorithms.
1459  *
1460  *	F.e. after RTO, when all the queue is considered as lost,
1461  *	lost_out = packets_out and in_flight = retrans_out.
1462  *
1463  *		Essentially, we have now two algorithms counting
1464  *		lost packets.
1465  *
1466  *		FACK: It is the simplest heuristics. As soon as we decided
1467  *		that something is lost, we decide that _all_ not SACKed
1468  *		packets until the most forward SACK are lost. I.e.
1469  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1470  *		It is absolutely correct estimate, if network does not reorder
1471  *		packets. And it loses any connection to reality when reordering
1472  *		takes place. We use FACK by default until reordering
1473  *		is suspected on the path to this destination.
1474  *
1475  *		NewReno: when Recovery is entered, we assume that one segment
1476  *		is lost (classic Reno). While we are in Recovery and
1477  *		a partial ACK arrives, we assume that one more packet
1478  *		is lost (NewReno). This heuristics are the same in NewReno
1479  *		and SACK.
1480  *
1481  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1482  *  deflation etc. CWND is real congestion window, never inflated, changes
1483  *  only according to classic VJ rules.
1484  *
1485  * Really tricky (and requiring careful tuning) part of algorithm
1486  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1487  * The first determines the moment _when_ we should reduce CWND and,
1488  * hence, slow down forward transmission. In fact, it determines the moment
1489  * when we decide that hole is caused by loss, rather than by a reorder.
1490  *
1491  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1492  * holes, caused by lost packets.
1493  *
1494  * And the most logically complicated part of algorithm is undo
1495  * heuristics. We detect false retransmits due to both too early
1496  * fast retransmit (reordering) and underestimated RTO, analyzing
1497  * timestamps and D-SACKs. When we detect that some segments were
1498  * retransmitted by mistake and CWND reduction was wrong, we undo
1499  * window reduction and abort recovery phase. This logic is hidden
1500  * inside several functions named tcp_try_undo_<something>.
1501  */
1502 
1503 /* This function decides, when we should leave Disordered state
1504  * and enter Recovery phase, reducing congestion window.
1505  *
1506  * Main question: may we further continue forward transmission
1507  * with the same cwnd?
1508  */
1509 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1510 {
1511 	__u32 packets_out;
1512 
1513 	/* Trick#1: The loss is proven. */
1514 	if (tp->lost_out)
1515 		return 1;
1516 
1517 	/* Not-A-Trick#2 : Classic rule... */
1518 	if (tcp_fackets_out(tp) > tp->reordering)
1519 		return 1;
1520 
1521 	/* Trick#3 : when we use RFC2988 timer restart, fast
1522 	 * retransmit can be triggered by timeout of queue head.
1523 	 */
1524 	if (tcp_head_timedout(sk, tp))
1525 		return 1;
1526 
1527 	/* Trick#4: It is still not OK... But will it be useful to delay
1528 	 * recovery more?
1529 	 */
1530 	packets_out = tp->packets_out;
1531 	if (packets_out <= tp->reordering &&
1532 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1533 	    !tcp_may_send_now(sk, tp)) {
1534 		/* We have nothing to send. This connection is limited
1535 		 * either by receiver window or by application.
1536 		 */
1537 		return 1;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /* If we receive more dupacks than we expected counting segments
1544  * in assumption of absent reordering, interpret this as reordering.
1545  * The only another reason could be bug in receiver TCP.
1546  */
1547 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1548 {
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	u32 holes;
1551 
1552 	holes = max(tp->lost_out, 1U);
1553 	holes = min(holes, tp->packets_out);
1554 
1555 	if ((tp->sacked_out + holes) > tp->packets_out) {
1556 		tp->sacked_out = tp->packets_out - holes;
1557 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1558 	}
1559 }
1560 
1561 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1562 
1563 static void tcp_add_reno_sack(struct sock *sk)
1564 {
1565 	struct tcp_sock *tp = tcp_sk(sk);
1566 	tp->sacked_out++;
1567 	tcp_check_reno_reordering(sk, 0);
1568 	tcp_sync_left_out(tp);
1569 }
1570 
1571 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1572 
1573 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1574 {
1575 	if (acked > 0) {
1576 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1577 		if (acked-1 >= tp->sacked_out)
1578 			tp->sacked_out = 0;
1579 		else
1580 			tp->sacked_out -= acked-1;
1581 	}
1582 	tcp_check_reno_reordering(sk, acked);
1583 	tcp_sync_left_out(tp);
1584 }
1585 
1586 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1587 {
1588 	tp->sacked_out = 0;
1589 	tp->left_out = tp->lost_out;
1590 }
1591 
1592 /* Mark head of queue up as lost. */
1593 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1594 			       int packets, u32 high_seq)
1595 {
1596 	struct sk_buff *skb;
1597 	int cnt;
1598 
1599 	BUG_TRAP(packets <= tp->packets_out);
1600 	if (tp->lost_skb_hint) {
1601 		skb = tp->lost_skb_hint;
1602 		cnt = tp->lost_cnt_hint;
1603 	} else {
1604 		skb = sk->sk_write_queue.next;
1605 		cnt = 0;
1606 	}
1607 
1608 	sk_stream_for_retrans_queue_from(skb, sk) {
1609 		/* TODO: do this better */
1610 		/* this is not the most efficient way to do this... */
1611 		tp->lost_skb_hint = skb;
1612 		tp->lost_cnt_hint = cnt;
1613 		cnt += tcp_skb_pcount(skb);
1614 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1615 			break;
1616 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1617 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1618 			tp->lost_out += tcp_skb_pcount(skb);
1619 
1620 			/* clear xmit_retransmit_queue hints
1621 			 *  if this is beyond hint */
1622 			if(tp->retransmit_skb_hint != NULL &&
1623 			   before(TCP_SKB_CB(skb)->seq,
1624 				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1625 
1626 				tp->retransmit_skb_hint = NULL;
1627 			}
1628 		}
1629 	}
1630 	tcp_sync_left_out(tp);
1631 }
1632 
1633 /* Account newly detected lost packet(s) */
1634 
1635 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1636 {
1637 	if (IsFack(tp)) {
1638 		int lost = tp->fackets_out - tp->reordering;
1639 		if (lost <= 0)
1640 			lost = 1;
1641 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1642 	} else {
1643 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1644 	}
1645 
1646 	/* New heuristics: it is possible only after we switched
1647 	 * to restart timer each time when something is ACKed.
1648 	 * Hence, we can detect timed out packets during fast
1649 	 * retransmit without falling to slow start.
1650 	 */
1651 	if (tcp_head_timedout(sk, tp)) {
1652 		struct sk_buff *skb;
1653 
1654 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1655 			: sk->sk_write_queue.next;
1656 
1657 		sk_stream_for_retrans_queue_from(skb, sk) {
1658 			if (!tcp_skb_timedout(sk, skb))
1659 				break;
1660 
1661 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1662 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1663 				tp->lost_out += tcp_skb_pcount(skb);
1664 
1665 				/* clear xmit_retrans hint */
1666 				if (tp->retransmit_skb_hint &&
1667 				    before(TCP_SKB_CB(skb)->seq,
1668 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1669 
1670 					tp->retransmit_skb_hint = NULL;
1671 			}
1672 		}
1673 
1674 		tp->scoreboard_skb_hint = skb;
1675 
1676 		tcp_sync_left_out(tp);
1677 	}
1678 }
1679 
1680 /* CWND moderation, preventing bursts due to too big ACKs
1681  * in dubious situations.
1682  */
1683 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1684 {
1685 	tp->snd_cwnd = min(tp->snd_cwnd,
1686 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1687 	tp->snd_cwnd_stamp = tcp_time_stamp;
1688 }
1689 
1690 /* Decrease cwnd each second ack. */
1691 static void tcp_cwnd_down(struct sock *sk)
1692 {
1693 	const struct inet_connection_sock *icsk = inet_csk(sk);
1694 	struct tcp_sock *tp = tcp_sk(sk);
1695 	int decr = tp->snd_cwnd_cnt + 1;
1696 
1697 	tp->snd_cwnd_cnt = decr&1;
1698 	decr >>= 1;
1699 
1700 	if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1701 		tp->snd_cwnd -= decr;
1702 
1703 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1704 	tp->snd_cwnd_stamp = tcp_time_stamp;
1705 }
1706 
1707 /* Nothing was retransmitted or returned timestamp is less
1708  * than timestamp of the first retransmission.
1709  */
1710 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1711 {
1712 	return !tp->retrans_stamp ||
1713 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1714 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1715 }
1716 
1717 /* Undo procedures. */
1718 
1719 #if FASTRETRANS_DEBUG > 1
1720 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1721 {
1722 	struct inet_sock *inet = inet_sk(sk);
1723 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1724 	       msg,
1725 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1726 	       tp->snd_cwnd, tp->left_out,
1727 	       tp->snd_ssthresh, tp->prior_ssthresh,
1728 	       tp->packets_out);
1729 }
1730 #else
1731 #define DBGUNDO(x...) do { } while (0)
1732 #endif
1733 
1734 static void tcp_undo_cwr(struct sock *sk, const int undo)
1735 {
1736 	struct tcp_sock *tp = tcp_sk(sk);
1737 
1738 	if (tp->prior_ssthresh) {
1739 		const struct inet_connection_sock *icsk = inet_csk(sk);
1740 
1741 		if (icsk->icsk_ca_ops->undo_cwnd)
1742 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1743 		else
1744 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1745 
1746 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1747 			tp->snd_ssthresh = tp->prior_ssthresh;
1748 			TCP_ECN_withdraw_cwr(tp);
1749 		}
1750 	} else {
1751 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1752 	}
1753 	tcp_moderate_cwnd(tp);
1754 	tp->snd_cwnd_stamp = tcp_time_stamp;
1755 
1756 	/* There is something screwy going on with the retrans hints after
1757 	   an undo */
1758 	clear_all_retrans_hints(tp);
1759 }
1760 
1761 static inline int tcp_may_undo(struct tcp_sock *tp)
1762 {
1763 	return tp->undo_marker &&
1764 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1765 }
1766 
1767 /* People celebrate: "We love our President!" */
1768 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1769 {
1770 	if (tcp_may_undo(tp)) {
1771 		/* Happy end! We did not retransmit anything
1772 		 * or our original transmission succeeded.
1773 		 */
1774 		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1775 		tcp_undo_cwr(sk, 1);
1776 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1777 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1778 		else
1779 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1780 		tp->undo_marker = 0;
1781 	}
1782 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1783 		/* Hold old state until something *above* high_seq
1784 		 * is ACKed. For Reno it is MUST to prevent false
1785 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1786 		tcp_moderate_cwnd(tp);
1787 		return 1;
1788 	}
1789 	tcp_set_ca_state(sk, TCP_CA_Open);
1790 	return 0;
1791 }
1792 
1793 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1794 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1795 {
1796 	if (tp->undo_marker && !tp->undo_retrans) {
1797 		DBGUNDO(sk, tp, "D-SACK");
1798 		tcp_undo_cwr(sk, 1);
1799 		tp->undo_marker = 0;
1800 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1801 	}
1802 }
1803 
1804 /* Undo during fast recovery after partial ACK. */
1805 
1806 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1807 				int acked)
1808 {
1809 	/* Partial ACK arrived. Force Hoe's retransmit. */
1810 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1811 
1812 	if (tcp_may_undo(tp)) {
1813 		/* Plain luck! Hole if filled with delayed
1814 		 * packet, rather than with a retransmit.
1815 		 */
1816 		if (tp->retrans_out == 0)
1817 			tp->retrans_stamp = 0;
1818 
1819 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1820 
1821 		DBGUNDO(sk, tp, "Hoe");
1822 		tcp_undo_cwr(sk, 0);
1823 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1824 
1825 		/* So... Do not make Hoe's retransmit yet.
1826 		 * If the first packet was delayed, the rest
1827 		 * ones are most probably delayed as well.
1828 		 */
1829 		failed = 0;
1830 	}
1831 	return failed;
1832 }
1833 
1834 /* Undo during loss recovery after partial ACK. */
1835 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1836 {
1837 	if (tcp_may_undo(tp)) {
1838 		struct sk_buff *skb;
1839 		sk_stream_for_retrans_queue(skb, sk) {
1840 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1841 		}
1842 
1843 		clear_all_retrans_hints(tp);
1844 
1845 		DBGUNDO(sk, tp, "partial loss");
1846 		tp->lost_out = 0;
1847 		tp->left_out = tp->sacked_out;
1848 		tcp_undo_cwr(sk, 1);
1849 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1850 		inet_csk(sk)->icsk_retransmits = 0;
1851 		tp->undo_marker = 0;
1852 		if (!IsReno(tp))
1853 			tcp_set_ca_state(sk, TCP_CA_Open);
1854 		return 1;
1855 	}
1856 	return 0;
1857 }
1858 
1859 static inline void tcp_complete_cwr(struct sock *sk)
1860 {
1861 	struct tcp_sock *tp = tcp_sk(sk);
1862 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1863 	tp->snd_cwnd_stamp = tcp_time_stamp;
1864 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1865 }
1866 
1867 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1868 {
1869 	tp->left_out = tp->sacked_out;
1870 
1871 	if (tp->retrans_out == 0)
1872 		tp->retrans_stamp = 0;
1873 
1874 	if (flag&FLAG_ECE)
1875 		tcp_enter_cwr(sk);
1876 
1877 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1878 		int state = TCP_CA_Open;
1879 
1880 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1881 			state = TCP_CA_Disorder;
1882 
1883 		if (inet_csk(sk)->icsk_ca_state != state) {
1884 			tcp_set_ca_state(sk, state);
1885 			tp->high_seq = tp->snd_nxt;
1886 		}
1887 		tcp_moderate_cwnd(tp);
1888 	} else {
1889 		tcp_cwnd_down(sk);
1890 	}
1891 }
1892 
1893 /* Process an event, which can update packets-in-flight not trivially.
1894  * Main goal of this function is to calculate new estimate for left_out,
1895  * taking into account both packets sitting in receiver's buffer and
1896  * packets lost by network.
1897  *
1898  * Besides that it does CWND reduction, when packet loss is detected
1899  * and changes state of machine.
1900  *
1901  * It does _not_ decide what to send, it is made in function
1902  * tcp_xmit_retransmit_queue().
1903  */
1904 static void
1905 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1906 		      int prior_packets, int flag)
1907 {
1908 	struct inet_connection_sock *icsk = inet_csk(sk);
1909 	struct tcp_sock *tp = tcp_sk(sk);
1910 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1911 
1912 	/* Some technical things:
1913 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1914 	if (!tp->packets_out)
1915 		tp->sacked_out = 0;
1916         /* 2. SACK counts snd_fack in packets inaccurately. */
1917 	if (tp->sacked_out == 0)
1918 		tp->fackets_out = 0;
1919 
1920         /* Now state machine starts.
1921 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1922 	if (flag&FLAG_ECE)
1923 		tp->prior_ssthresh = 0;
1924 
1925 	/* B. In all the states check for reneging SACKs. */
1926 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1927 		return;
1928 
1929 	/* C. Process data loss notification, provided it is valid. */
1930 	if ((flag&FLAG_DATA_LOST) &&
1931 	    before(tp->snd_una, tp->high_seq) &&
1932 	    icsk->icsk_ca_state != TCP_CA_Open &&
1933 	    tp->fackets_out > tp->reordering) {
1934 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1935 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1936 	}
1937 
1938 	/* D. Synchronize left_out to current state. */
1939 	tcp_sync_left_out(tp);
1940 
1941 	/* E. Check state exit conditions. State can be terminated
1942 	 *    when high_seq is ACKed. */
1943 	if (icsk->icsk_ca_state == TCP_CA_Open) {
1944 		if (!sysctl_tcp_frto)
1945 			BUG_TRAP(tp->retrans_out == 0);
1946 		tp->retrans_stamp = 0;
1947 	} else if (!before(tp->snd_una, tp->high_seq)) {
1948 		switch (icsk->icsk_ca_state) {
1949 		case TCP_CA_Loss:
1950 			icsk->icsk_retransmits = 0;
1951 			if (tcp_try_undo_recovery(sk, tp))
1952 				return;
1953 			break;
1954 
1955 		case TCP_CA_CWR:
1956 			/* CWR is to be held something *above* high_seq
1957 			 * is ACKed for CWR bit to reach receiver. */
1958 			if (tp->snd_una != tp->high_seq) {
1959 				tcp_complete_cwr(sk);
1960 				tcp_set_ca_state(sk, TCP_CA_Open);
1961 			}
1962 			break;
1963 
1964 		case TCP_CA_Disorder:
1965 			tcp_try_undo_dsack(sk, tp);
1966 			if (!tp->undo_marker ||
1967 			    /* For SACK case do not Open to allow to undo
1968 			     * catching for all duplicate ACKs. */
1969 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
1970 				tp->undo_marker = 0;
1971 				tcp_set_ca_state(sk, TCP_CA_Open);
1972 			}
1973 			break;
1974 
1975 		case TCP_CA_Recovery:
1976 			if (IsReno(tp))
1977 				tcp_reset_reno_sack(tp);
1978 			if (tcp_try_undo_recovery(sk, tp))
1979 				return;
1980 			tcp_complete_cwr(sk);
1981 			break;
1982 		}
1983 	}
1984 
1985 	/* F. Process state. */
1986 	switch (icsk->icsk_ca_state) {
1987 	case TCP_CA_Recovery:
1988 		if (prior_snd_una == tp->snd_una) {
1989 			if (IsReno(tp) && is_dupack)
1990 				tcp_add_reno_sack(sk);
1991 		} else {
1992 			int acked = prior_packets - tp->packets_out;
1993 			if (IsReno(tp))
1994 				tcp_remove_reno_sacks(sk, tp, acked);
1995 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
1996 		}
1997 		break;
1998 	case TCP_CA_Loss:
1999 		if (flag&FLAG_DATA_ACKED)
2000 			icsk->icsk_retransmits = 0;
2001 		if (!tcp_try_undo_loss(sk, tp)) {
2002 			tcp_moderate_cwnd(tp);
2003 			tcp_xmit_retransmit_queue(sk);
2004 			return;
2005 		}
2006 		if (icsk->icsk_ca_state != TCP_CA_Open)
2007 			return;
2008 		/* Loss is undone; fall through to processing in Open state. */
2009 	default:
2010 		if (IsReno(tp)) {
2011 			if (tp->snd_una != prior_snd_una)
2012 				tcp_reset_reno_sack(tp);
2013 			if (is_dupack)
2014 				tcp_add_reno_sack(sk);
2015 		}
2016 
2017 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2018 			tcp_try_undo_dsack(sk, tp);
2019 
2020 		if (!tcp_time_to_recover(sk, tp)) {
2021 			tcp_try_to_open(sk, tp, flag);
2022 			return;
2023 		}
2024 
2025 		/* Otherwise enter Recovery state */
2026 
2027 		if (IsReno(tp))
2028 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2029 		else
2030 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2031 
2032 		tp->high_seq = tp->snd_nxt;
2033 		tp->prior_ssthresh = 0;
2034 		tp->undo_marker = tp->snd_una;
2035 		tp->undo_retrans = tp->retrans_out;
2036 
2037 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2038 			if (!(flag&FLAG_ECE))
2039 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2040 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2041 			TCP_ECN_queue_cwr(tp);
2042 		}
2043 
2044 		tp->bytes_acked = 0;
2045 		tp->snd_cwnd_cnt = 0;
2046 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2047 	}
2048 
2049 	if (is_dupack || tcp_head_timedout(sk, tp))
2050 		tcp_update_scoreboard(sk, tp);
2051 	tcp_cwnd_down(sk);
2052 	tcp_xmit_retransmit_queue(sk);
2053 }
2054 
2055 /* Read draft-ietf-tcplw-high-performance before mucking
2056  * with this code. (Supersedes RFC1323)
2057  */
2058 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2059 {
2060 	/* RTTM Rule: A TSecr value received in a segment is used to
2061 	 * update the averaged RTT measurement only if the segment
2062 	 * acknowledges some new data, i.e., only if it advances the
2063 	 * left edge of the send window.
2064 	 *
2065 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2066 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2067 	 *
2068 	 * Changed: reset backoff as soon as we see the first valid sample.
2069 	 * If we do not, we get strongly overestimated rto. With timestamps
2070 	 * samples are accepted even from very old segments: f.e., when rtt=1
2071 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2072 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2073 	 * in window is lost... Voila.	 			--ANK (010210)
2074 	 */
2075 	struct tcp_sock *tp = tcp_sk(sk);
2076 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2077 	tcp_rtt_estimator(sk, seq_rtt);
2078 	tcp_set_rto(sk);
2079 	inet_csk(sk)->icsk_backoff = 0;
2080 	tcp_bound_rto(sk);
2081 }
2082 
2083 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2084 {
2085 	/* We don't have a timestamp. Can only use
2086 	 * packets that are not retransmitted to determine
2087 	 * rtt estimates. Also, we must not reset the
2088 	 * backoff for rto until we get a non-retransmitted
2089 	 * packet. This allows us to deal with a situation
2090 	 * where the network delay has increased suddenly.
2091 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2092 	 */
2093 
2094 	if (flag & FLAG_RETRANS_DATA_ACKED)
2095 		return;
2096 
2097 	tcp_rtt_estimator(sk, seq_rtt);
2098 	tcp_set_rto(sk);
2099 	inet_csk(sk)->icsk_backoff = 0;
2100 	tcp_bound_rto(sk);
2101 }
2102 
2103 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2104 				      const s32 seq_rtt)
2105 {
2106 	const struct tcp_sock *tp = tcp_sk(sk);
2107 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2108 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2109 		tcp_ack_saw_tstamp(sk, flag);
2110 	else if (seq_rtt >= 0)
2111 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2112 }
2113 
2114 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2115 			   u32 in_flight, int good)
2116 {
2117 	const struct inet_connection_sock *icsk = inet_csk(sk);
2118 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2119 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2120 }
2121 
2122 /* Restart timer after forward progress on connection.
2123  * RFC2988 recommends to restart timer to now+rto.
2124  */
2125 
2126 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2127 {
2128 	if (!tp->packets_out) {
2129 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2130 	} else {
2131 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2132 	}
2133 }
2134 
2135 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2136 			 __u32 now, __s32 *seq_rtt)
2137 {
2138 	struct tcp_sock *tp = tcp_sk(sk);
2139 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2140 	__u32 seq = tp->snd_una;
2141 	__u32 packets_acked;
2142 	int acked = 0;
2143 
2144 	/* If we get here, the whole TSO packet has not been
2145 	 * acked.
2146 	 */
2147 	BUG_ON(!after(scb->end_seq, seq));
2148 
2149 	packets_acked = tcp_skb_pcount(skb);
2150 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2151 		return 0;
2152 	packets_acked -= tcp_skb_pcount(skb);
2153 
2154 	if (packets_acked) {
2155 		__u8 sacked = scb->sacked;
2156 
2157 		acked |= FLAG_DATA_ACKED;
2158 		if (sacked) {
2159 			if (sacked & TCPCB_RETRANS) {
2160 				if (sacked & TCPCB_SACKED_RETRANS)
2161 					tp->retrans_out -= packets_acked;
2162 				acked |= FLAG_RETRANS_DATA_ACKED;
2163 				*seq_rtt = -1;
2164 			} else if (*seq_rtt < 0)
2165 				*seq_rtt = now - scb->when;
2166 			if (sacked & TCPCB_SACKED_ACKED)
2167 				tp->sacked_out -= packets_acked;
2168 			if (sacked & TCPCB_LOST)
2169 				tp->lost_out -= packets_acked;
2170 			if (sacked & TCPCB_URG) {
2171 				if (tp->urg_mode &&
2172 				    !before(seq, tp->snd_up))
2173 					tp->urg_mode = 0;
2174 			}
2175 		} else if (*seq_rtt < 0)
2176 			*seq_rtt = now - scb->when;
2177 
2178 		if (tp->fackets_out) {
2179 			__u32 dval = min(tp->fackets_out, packets_acked);
2180 			tp->fackets_out -= dval;
2181 		}
2182 		tp->packets_out -= packets_acked;
2183 
2184 		BUG_ON(tcp_skb_pcount(skb) == 0);
2185 		BUG_ON(!before(scb->seq, scb->end_seq));
2186 	}
2187 
2188 	return acked;
2189 }
2190 
2191 static u32 tcp_usrtt(const struct sk_buff *skb)
2192 {
2193 	struct timeval tv, now;
2194 
2195 	do_gettimeofday(&now);
2196 	skb_get_timestamp(skb, &tv);
2197 	return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2198 }
2199 
2200 /* Remove acknowledged frames from the retransmission queue. */
2201 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2202 {
2203 	struct tcp_sock *tp = tcp_sk(sk);
2204 	const struct inet_connection_sock *icsk = inet_csk(sk);
2205 	struct sk_buff *skb;
2206 	__u32 now = tcp_time_stamp;
2207 	int acked = 0;
2208 	__s32 seq_rtt = -1;
2209 	u32 pkts_acked = 0;
2210 	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2211 		= icsk->icsk_ca_ops->rtt_sample;
2212 
2213 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2214 	       skb != sk->sk_send_head) {
2215 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2216 		__u8 sacked = scb->sacked;
2217 
2218 		/* If our packet is before the ack sequence we can
2219 		 * discard it as it's confirmed to have arrived at
2220 		 * the other end.
2221 		 */
2222 		if (after(scb->end_seq, tp->snd_una)) {
2223 			if (tcp_skb_pcount(skb) > 1 &&
2224 			    after(tp->snd_una, scb->seq))
2225 				acked |= tcp_tso_acked(sk, skb,
2226 						       now, &seq_rtt);
2227 			break;
2228 		}
2229 
2230 		/* Initial outgoing SYN's get put onto the write_queue
2231 		 * just like anything else we transmit.  It is not
2232 		 * true data, and if we misinform our callers that
2233 		 * this ACK acks real data, we will erroneously exit
2234 		 * connection startup slow start one packet too
2235 		 * quickly.  This is severely frowned upon behavior.
2236 		 */
2237 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2238 			acked |= FLAG_DATA_ACKED;
2239 			++pkts_acked;
2240 		} else {
2241 			acked |= FLAG_SYN_ACKED;
2242 			tp->retrans_stamp = 0;
2243 		}
2244 
2245 		if (sacked) {
2246 			if (sacked & TCPCB_RETRANS) {
2247 				if(sacked & TCPCB_SACKED_RETRANS)
2248 					tp->retrans_out -= tcp_skb_pcount(skb);
2249 				acked |= FLAG_RETRANS_DATA_ACKED;
2250 				seq_rtt = -1;
2251 			} else if (seq_rtt < 0) {
2252 				seq_rtt = now - scb->when;
2253 				if (rtt_sample)
2254 					(*rtt_sample)(sk, tcp_usrtt(skb));
2255 			}
2256 			if (sacked & TCPCB_SACKED_ACKED)
2257 				tp->sacked_out -= tcp_skb_pcount(skb);
2258 			if (sacked & TCPCB_LOST)
2259 				tp->lost_out -= tcp_skb_pcount(skb);
2260 			if (sacked & TCPCB_URG) {
2261 				if (tp->urg_mode &&
2262 				    !before(scb->end_seq, tp->snd_up))
2263 					tp->urg_mode = 0;
2264 			}
2265 		} else if (seq_rtt < 0) {
2266 			seq_rtt = now - scb->when;
2267 			if (rtt_sample)
2268 				(*rtt_sample)(sk, tcp_usrtt(skb));
2269 		}
2270 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2271 		tcp_packets_out_dec(tp, skb);
2272 		__skb_unlink(skb, &sk->sk_write_queue);
2273 		sk_stream_free_skb(sk, skb);
2274 		clear_all_retrans_hints(tp);
2275 	}
2276 
2277 	if (acked&FLAG_ACKED) {
2278 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2279 		tcp_ack_packets_out(sk, tp);
2280 
2281 		if (icsk->icsk_ca_ops->pkts_acked)
2282 			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2283 	}
2284 
2285 #if FASTRETRANS_DEBUG > 0
2286 	BUG_TRAP((int)tp->sacked_out >= 0);
2287 	BUG_TRAP((int)tp->lost_out >= 0);
2288 	BUG_TRAP((int)tp->retrans_out >= 0);
2289 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2290 		const struct inet_connection_sock *icsk = inet_csk(sk);
2291 		if (tp->lost_out) {
2292 			printk(KERN_DEBUG "Leak l=%u %d\n",
2293 			       tp->lost_out, icsk->icsk_ca_state);
2294 			tp->lost_out = 0;
2295 		}
2296 		if (tp->sacked_out) {
2297 			printk(KERN_DEBUG "Leak s=%u %d\n",
2298 			       tp->sacked_out, icsk->icsk_ca_state);
2299 			tp->sacked_out = 0;
2300 		}
2301 		if (tp->retrans_out) {
2302 			printk(KERN_DEBUG "Leak r=%u %d\n",
2303 			       tp->retrans_out, icsk->icsk_ca_state);
2304 			tp->retrans_out = 0;
2305 		}
2306 	}
2307 #endif
2308 	*seq_rtt_p = seq_rtt;
2309 	return acked;
2310 }
2311 
2312 static void tcp_ack_probe(struct sock *sk)
2313 {
2314 	const struct tcp_sock *tp = tcp_sk(sk);
2315 	struct inet_connection_sock *icsk = inet_csk(sk);
2316 
2317 	/* Was it a usable window open? */
2318 
2319 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2320 		   tp->snd_una + tp->snd_wnd)) {
2321 		icsk->icsk_backoff = 0;
2322 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2323 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2324 		 * This function is not for random using!
2325 		 */
2326 	} else {
2327 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2328 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2329 					  TCP_RTO_MAX);
2330 	}
2331 }
2332 
2333 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2334 {
2335 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2336 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2337 }
2338 
2339 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2340 {
2341 	const struct tcp_sock *tp = tcp_sk(sk);
2342 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2343 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2344 }
2345 
2346 /* Check that window update is acceptable.
2347  * The function assumes that snd_una<=ack<=snd_next.
2348  */
2349 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2350 					const u32 ack_seq, const u32 nwin)
2351 {
2352 	return (after(ack, tp->snd_una) ||
2353 		after(ack_seq, tp->snd_wl1) ||
2354 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2355 }
2356 
2357 /* Update our send window.
2358  *
2359  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2360  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2361  */
2362 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2363 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2364 {
2365 	int flag = 0;
2366 	u32 nwin = ntohs(skb->h.th->window);
2367 
2368 	if (likely(!skb->h.th->syn))
2369 		nwin <<= tp->rx_opt.snd_wscale;
2370 
2371 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2372 		flag |= FLAG_WIN_UPDATE;
2373 		tcp_update_wl(tp, ack, ack_seq);
2374 
2375 		if (tp->snd_wnd != nwin) {
2376 			tp->snd_wnd = nwin;
2377 
2378 			/* Note, it is the only place, where
2379 			 * fast path is recovered for sending TCP.
2380 			 */
2381 			tp->pred_flags = 0;
2382 			tcp_fast_path_check(sk, tp);
2383 
2384 			if (nwin > tp->max_window) {
2385 				tp->max_window = nwin;
2386 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2387 			}
2388 		}
2389 	}
2390 
2391 	tp->snd_una = ack;
2392 
2393 	return flag;
2394 }
2395 
2396 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2397 {
2398 	struct tcp_sock *tp = tcp_sk(sk);
2399 
2400 	tcp_sync_left_out(tp);
2401 
2402 	if (tp->snd_una == prior_snd_una ||
2403 	    !before(tp->snd_una, tp->frto_highmark)) {
2404 		/* RTO was caused by loss, start retransmitting in
2405 		 * go-back-N slow start
2406 		 */
2407 		tcp_enter_frto_loss(sk);
2408 		return;
2409 	}
2410 
2411 	if (tp->frto_counter == 1) {
2412 		/* First ACK after RTO advances the window: allow two new
2413 		 * segments out.
2414 		 */
2415 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2416 	} else {
2417 		/* Also the second ACK after RTO advances the window.
2418 		 * The RTO was likely spurious. Reduce cwnd and continue
2419 		 * in congestion avoidance
2420 		 */
2421 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2422 		tcp_moderate_cwnd(tp);
2423 	}
2424 
2425 	/* F-RTO affects on two new ACKs following RTO.
2426 	 * At latest on third ACK the TCP behavior is back to normal.
2427 	 */
2428 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2429 }
2430 
2431 /* This routine deals with incoming acks, but not outgoing ones. */
2432 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2433 {
2434 	struct inet_connection_sock *icsk = inet_csk(sk);
2435 	struct tcp_sock *tp = tcp_sk(sk);
2436 	u32 prior_snd_una = tp->snd_una;
2437 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2438 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2439 	u32 prior_in_flight;
2440 	s32 seq_rtt;
2441 	int prior_packets;
2442 
2443 	/* If the ack is newer than sent or older than previous acks
2444 	 * then we can probably ignore it.
2445 	 */
2446 	if (after(ack, tp->snd_nxt))
2447 		goto uninteresting_ack;
2448 
2449 	if (before(ack, prior_snd_una))
2450 		goto old_ack;
2451 
2452 	if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2453 		tp->bytes_acked += ack - prior_snd_una;
2454 
2455 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2456 		/* Window is constant, pure forward advance.
2457 		 * No more checks are required.
2458 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2459 		 */
2460 		tcp_update_wl(tp, ack, ack_seq);
2461 		tp->snd_una = ack;
2462 		flag |= FLAG_WIN_UPDATE;
2463 
2464 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2465 
2466 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2467 	} else {
2468 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2469 			flag |= FLAG_DATA;
2470 		else
2471 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2472 
2473 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2474 
2475 		if (TCP_SKB_CB(skb)->sacked)
2476 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2477 
2478 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2479 			flag |= FLAG_ECE;
2480 
2481 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2482 	}
2483 
2484 	/* We passed data and got it acked, remove any soft error
2485 	 * log. Something worked...
2486 	 */
2487 	sk->sk_err_soft = 0;
2488 	tp->rcv_tstamp = tcp_time_stamp;
2489 	prior_packets = tp->packets_out;
2490 	if (!prior_packets)
2491 		goto no_queue;
2492 
2493 	prior_in_flight = tcp_packets_in_flight(tp);
2494 
2495 	/* See if we can take anything off of the retransmit queue. */
2496 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2497 
2498 	if (tp->frto_counter)
2499 		tcp_process_frto(sk, prior_snd_una);
2500 
2501 	if (tcp_ack_is_dubious(sk, flag)) {
2502 		/* Advance CWND, if state allows this. */
2503 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2504 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2505 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2506 	} else {
2507 		if ((flag & FLAG_DATA_ACKED))
2508 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2509 	}
2510 
2511 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2512 		dst_confirm(sk->sk_dst_cache);
2513 
2514 	return 1;
2515 
2516 no_queue:
2517 	icsk->icsk_probes_out = 0;
2518 
2519 	/* If this ack opens up a zero window, clear backoff.  It was
2520 	 * being used to time the probes, and is probably far higher than
2521 	 * it needs to be for normal retransmission.
2522 	 */
2523 	if (sk->sk_send_head)
2524 		tcp_ack_probe(sk);
2525 	return 1;
2526 
2527 old_ack:
2528 	if (TCP_SKB_CB(skb)->sacked)
2529 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2530 
2531 uninteresting_ack:
2532 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2533 	return 0;
2534 }
2535 
2536 
2537 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2538  * But, this can also be called on packets in the established flow when
2539  * the fast version below fails.
2540  */
2541 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2542 {
2543 	unsigned char *ptr;
2544 	struct tcphdr *th = skb->h.th;
2545 	int length=(th->doff*4)-sizeof(struct tcphdr);
2546 
2547 	ptr = (unsigned char *)(th + 1);
2548 	opt_rx->saw_tstamp = 0;
2549 
2550 	while(length>0) {
2551 	  	int opcode=*ptr++;
2552 		int opsize;
2553 
2554 		switch (opcode) {
2555 			case TCPOPT_EOL:
2556 				return;
2557 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2558 				length--;
2559 				continue;
2560 			default:
2561 				opsize=*ptr++;
2562 				if (opsize < 2) /* "silly options" */
2563 					return;
2564 				if (opsize > length)
2565 					return;	/* don't parse partial options */
2566 	  			switch(opcode) {
2567 				case TCPOPT_MSS:
2568 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2569 						u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2570 						if (in_mss) {
2571 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2572 								in_mss = opt_rx->user_mss;
2573 							opt_rx->mss_clamp = in_mss;
2574 						}
2575 					}
2576 					break;
2577 				case TCPOPT_WINDOW:
2578 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2579 						if (sysctl_tcp_window_scaling) {
2580 							__u8 snd_wscale = *(__u8 *) ptr;
2581 							opt_rx->wscale_ok = 1;
2582 							if (snd_wscale > 14) {
2583 								if(net_ratelimit())
2584 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2585 									       "scaling value %d >14 received.\n",
2586 									       snd_wscale);
2587 								snd_wscale = 14;
2588 							}
2589 							opt_rx->snd_wscale = snd_wscale;
2590 						}
2591 					break;
2592 				case TCPOPT_TIMESTAMP:
2593 					if(opsize==TCPOLEN_TIMESTAMP) {
2594 						if ((estab && opt_rx->tstamp_ok) ||
2595 						    (!estab && sysctl_tcp_timestamps)) {
2596 							opt_rx->saw_tstamp = 1;
2597 							opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2598 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2599 						}
2600 					}
2601 					break;
2602 				case TCPOPT_SACK_PERM:
2603 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2604 						if (sysctl_tcp_sack) {
2605 							opt_rx->sack_ok = 1;
2606 							tcp_sack_reset(opt_rx);
2607 						}
2608 					}
2609 					break;
2610 
2611 				case TCPOPT_SACK:
2612 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2613 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2614 					   opt_rx->sack_ok) {
2615 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2616 					}
2617 	  			};
2618 	  			ptr+=opsize-2;
2619 	  			length-=opsize;
2620 	  	};
2621 	}
2622 }
2623 
2624 /* Fast parse options. This hopes to only see timestamps.
2625  * If it is wrong it falls back on tcp_parse_options().
2626  */
2627 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2628 				  struct tcp_sock *tp)
2629 {
2630 	if (th->doff == sizeof(struct tcphdr)>>2) {
2631 		tp->rx_opt.saw_tstamp = 0;
2632 		return 0;
2633 	} else if (tp->rx_opt.tstamp_ok &&
2634 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2635 		__u32 *ptr = (__u32 *)(th + 1);
2636 		if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2637 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2638 			tp->rx_opt.saw_tstamp = 1;
2639 			++ptr;
2640 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2641 			++ptr;
2642 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2643 			return 1;
2644 		}
2645 	}
2646 	tcp_parse_options(skb, &tp->rx_opt, 1);
2647 	return 1;
2648 }
2649 
2650 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2651 {
2652 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2653 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2654 }
2655 
2656 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2657 {
2658 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2659 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2660 		 * extra check below makes sure this can only happen
2661 		 * for pure ACK frames.  -DaveM
2662 		 *
2663 		 * Not only, also it occurs for expired timestamps.
2664 		 */
2665 
2666 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2667 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2668 			tcp_store_ts_recent(tp);
2669 	}
2670 }
2671 
2672 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2673  *
2674  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2675  * it can pass through stack. So, the following predicate verifies that
2676  * this segment is not used for anything but congestion avoidance or
2677  * fast retransmit. Moreover, we even are able to eliminate most of such
2678  * second order effects, if we apply some small "replay" window (~RTO)
2679  * to timestamp space.
2680  *
2681  * All these measures still do not guarantee that we reject wrapped ACKs
2682  * on networks with high bandwidth, when sequence space is recycled fastly,
2683  * but it guarantees that such events will be very rare and do not affect
2684  * connection seriously. This doesn't look nice, but alas, PAWS is really
2685  * buggy extension.
2686  *
2687  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2688  * states that events when retransmit arrives after original data are rare.
2689  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2690  * the biggest problem on large power networks even with minor reordering.
2691  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2692  * up to bandwidth of 18Gigabit/sec. 8) ]
2693  */
2694 
2695 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2696 {
2697 	struct tcp_sock *tp = tcp_sk(sk);
2698 	struct tcphdr *th = skb->h.th;
2699 	u32 seq = TCP_SKB_CB(skb)->seq;
2700 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2701 
2702 	return (/* 1. Pure ACK with correct sequence number. */
2703 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2704 
2705 		/* 2. ... and duplicate ACK. */
2706 		ack == tp->snd_una &&
2707 
2708 		/* 3. ... and does not update window. */
2709 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2710 
2711 		/* 4. ... and sits in replay window. */
2712 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2713 }
2714 
2715 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2716 {
2717 	const struct tcp_sock *tp = tcp_sk(sk);
2718 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2719 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2720 		!tcp_disordered_ack(sk, skb));
2721 }
2722 
2723 /* Check segment sequence number for validity.
2724  *
2725  * Segment controls are considered valid, if the segment
2726  * fits to the window after truncation to the window. Acceptability
2727  * of data (and SYN, FIN, of course) is checked separately.
2728  * See tcp_data_queue(), for example.
2729  *
2730  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2731  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2732  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2733  * (borrowed from freebsd)
2734  */
2735 
2736 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2737 {
2738 	return	!before(end_seq, tp->rcv_wup) &&
2739 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2740 }
2741 
2742 /* When we get a reset we do this. */
2743 static void tcp_reset(struct sock *sk)
2744 {
2745 	/* We want the right error as BSD sees it (and indeed as we do). */
2746 	switch (sk->sk_state) {
2747 		case TCP_SYN_SENT:
2748 			sk->sk_err = ECONNREFUSED;
2749 			break;
2750 		case TCP_CLOSE_WAIT:
2751 			sk->sk_err = EPIPE;
2752 			break;
2753 		case TCP_CLOSE:
2754 			return;
2755 		default:
2756 			sk->sk_err = ECONNRESET;
2757 	}
2758 
2759 	if (!sock_flag(sk, SOCK_DEAD))
2760 		sk->sk_error_report(sk);
2761 
2762 	tcp_done(sk);
2763 }
2764 
2765 /*
2766  * 	Process the FIN bit. This now behaves as it is supposed to work
2767  *	and the FIN takes effect when it is validly part of sequence
2768  *	space. Not before when we get holes.
2769  *
2770  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2771  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2772  *	TIME-WAIT)
2773  *
2774  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2775  *	close and we go into CLOSING (and later onto TIME-WAIT)
2776  *
2777  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2778  */
2779 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2780 {
2781 	struct tcp_sock *tp = tcp_sk(sk);
2782 
2783 	inet_csk_schedule_ack(sk);
2784 
2785 	sk->sk_shutdown |= RCV_SHUTDOWN;
2786 	sock_set_flag(sk, SOCK_DONE);
2787 
2788 	switch (sk->sk_state) {
2789 		case TCP_SYN_RECV:
2790 		case TCP_ESTABLISHED:
2791 			/* Move to CLOSE_WAIT */
2792 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2793 			inet_csk(sk)->icsk_ack.pingpong = 1;
2794 			break;
2795 
2796 		case TCP_CLOSE_WAIT:
2797 		case TCP_CLOSING:
2798 			/* Received a retransmission of the FIN, do
2799 			 * nothing.
2800 			 */
2801 			break;
2802 		case TCP_LAST_ACK:
2803 			/* RFC793: Remain in the LAST-ACK state. */
2804 			break;
2805 
2806 		case TCP_FIN_WAIT1:
2807 			/* This case occurs when a simultaneous close
2808 			 * happens, we must ack the received FIN and
2809 			 * enter the CLOSING state.
2810 			 */
2811 			tcp_send_ack(sk);
2812 			tcp_set_state(sk, TCP_CLOSING);
2813 			break;
2814 		case TCP_FIN_WAIT2:
2815 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2816 			tcp_send_ack(sk);
2817 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2818 			break;
2819 		default:
2820 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2821 			 * cases we should never reach this piece of code.
2822 			 */
2823 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2824 			       __FUNCTION__, sk->sk_state);
2825 			break;
2826 	};
2827 
2828 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2829 	 * Probably, we should reset in this case. For now drop them.
2830 	 */
2831 	__skb_queue_purge(&tp->out_of_order_queue);
2832 	if (tp->rx_opt.sack_ok)
2833 		tcp_sack_reset(&tp->rx_opt);
2834 	sk_stream_mem_reclaim(sk);
2835 
2836 	if (!sock_flag(sk, SOCK_DEAD)) {
2837 		sk->sk_state_change(sk);
2838 
2839 		/* Do not send POLL_HUP for half duplex close. */
2840 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2841 		    sk->sk_state == TCP_CLOSE)
2842 			sk_wake_async(sk, 1, POLL_HUP);
2843 		else
2844 			sk_wake_async(sk, 1, POLL_IN);
2845 	}
2846 }
2847 
2848 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2849 {
2850 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2851 		if (before(seq, sp->start_seq))
2852 			sp->start_seq = seq;
2853 		if (after(end_seq, sp->end_seq))
2854 			sp->end_seq = end_seq;
2855 		return 1;
2856 	}
2857 	return 0;
2858 }
2859 
2860 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2861 {
2862 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2863 		if (before(seq, tp->rcv_nxt))
2864 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2865 		else
2866 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2867 
2868 		tp->rx_opt.dsack = 1;
2869 		tp->duplicate_sack[0].start_seq = seq;
2870 		tp->duplicate_sack[0].end_seq = end_seq;
2871 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2872 	}
2873 }
2874 
2875 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2876 {
2877 	if (!tp->rx_opt.dsack)
2878 		tcp_dsack_set(tp, seq, end_seq);
2879 	else
2880 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2881 }
2882 
2883 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2884 {
2885 	struct tcp_sock *tp = tcp_sk(sk);
2886 
2887 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2888 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2889 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2890 		tcp_enter_quickack_mode(sk);
2891 
2892 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2893 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2894 
2895 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2896 				end_seq = tp->rcv_nxt;
2897 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2898 		}
2899 	}
2900 
2901 	tcp_send_ack(sk);
2902 }
2903 
2904 /* These routines update the SACK block as out-of-order packets arrive or
2905  * in-order packets close up the sequence space.
2906  */
2907 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2908 {
2909 	int this_sack;
2910 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2911 	struct tcp_sack_block *swalk = sp+1;
2912 
2913 	/* See if the recent change to the first SACK eats into
2914 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2915 	 */
2916 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2917 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2918 			int i;
2919 
2920 			/* Zap SWALK, by moving every further SACK up by one slot.
2921 			 * Decrease num_sacks.
2922 			 */
2923 			tp->rx_opt.num_sacks--;
2924 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2925 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2926 				sp[i] = sp[i+1];
2927 			continue;
2928 		}
2929 		this_sack++, swalk++;
2930 	}
2931 }
2932 
2933 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2934 {
2935 	__u32 tmp;
2936 
2937 	tmp = sack1->start_seq;
2938 	sack1->start_seq = sack2->start_seq;
2939 	sack2->start_seq = tmp;
2940 
2941 	tmp = sack1->end_seq;
2942 	sack1->end_seq = sack2->end_seq;
2943 	sack2->end_seq = tmp;
2944 }
2945 
2946 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2947 {
2948 	struct tcp_sock *tp = tcp_sk(sk);
2949 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2950 	int cur_sacks = tp->rx_opt.num_sacks;
2951 	int this_sack;
2952 
2953 	if (!cur_sacks)
2954 		goto new_sack;
2955 
2956 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2957 		if (tcp_sack_extend(sp, seq, end_seq)) {
2958 			/* Rotate this_sack to the first one. */
2959 			for (; this_sack>0; this_sack--, sp--)
2960 				tcp_sack_swap(sp, sp-1);
2961 			if (cur_sacks > 1)
2962 				tcp_sack_maybe_coalesce(tp);
2963 			return;
2964 		}
2965 	}
2966 
2967 	/* Could not find an adjacent existing SACK, build a new one,
2968 	 * put it at the front, and shift everyone else down.  We
2969 	 * always know there is at least one SACK present already here.
2970 	 *
2971 	 * If the sack array is full, forget about the last one.
2972 	 */
2973 	if (this_sack >= 4) {
2974 		this_sack--;
2975 		tp->rx_opt.num_sacks--;
2976 		sp--;
2977 	}
2978 	for(; this_sack > 0; this_sack--, sp--)
2979 		*sp = *(sp-1);
2980 
2981 new_sack:
2982 	/* Build the new head SACK, and we're done. */
2983 	sp->start_seq = seq;
2984 	sp->end_seq = end_seq;
2985 	tp->rx_opt.num_sacks++;
2986 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2987 }
2988 
2989 /* RCV.NXT advances, some SACKs should be eaten. */
2990 
2991 static void tcp_sack_remove(struct tcp_sock *tp)
2992 {
2993 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2994 	int num_sacks = tp->rx_opt.num_sacks;
2995 	int this_sack;
2996 
2997 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2998 	if (skb_queue_empty(&tp->out_of_order_queue)) {
2999 		tp->rx_opt.num_sacks = 0;
3000 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3001 		return;
3002 	}
3003 
3004 	for(this_sack = 0; this_sack < num_sacks; ) {
3005 		/* Check if the start of the sack is covered by RCV.NXT. */
3006 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3007 			int i;
3008 
3009 			/* RCV.NXT must cover all the block! */
3010 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3011 
3012 			/* Zap this SACK, by moving forward any other SACKS. */
3013 			for (i=this_sack+1; i < num_sacks; i++)
3014 				tp->selective_acks[i-1] = tp->selective_acks[i];
3015 			num_sacks--;
3016 			continue;
3017 		}
3018 		this_sack++;
3019 		sp++;
3020 	}
3021 	if (num_sacks != tp->rx_opt.num_sacks) {
3022 		tp->rx_opt.num_sacks = num_sacks;
3023 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3024 	}
3025 }
3026 
3027 /* This one checks to see if we can put data from the
3028  * out_of_order queue into the receive_queue.
3029  */
3030 static void tcp_ofo_queue(struct sock *sk)
3031 {
3032 	struct tcp_sock *tp = tcp_sk(sk);
3033 	__u32 dsack_high = tp->rcv_nxt;
3034 	struct sk_buff *skb;
3035 
3036 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3037 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3038 			break;
3039 
3040 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3041 			__u32 dsack = dsack_high;
3042 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3043 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3044 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3045 		}
3046 
3047 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3048 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3049 			__skb_unlink(skb, &tp->out_of_order_queue);
3050 			__kfree_skb(skb);
3051 			continue;
3052 		}
3053 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3054 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3055 			   TCP_SKB_CB(skb)->end_seq);
3056 
3057 		__skb_unlink(skb, &tp->out_of_order_queue);
3058 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3059 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3060 		if(skb->h.th->fin)
3061 			tcp_fin(skb, sk, skb->h.th);
3062 	}
3063 }
3064 
3065 static int tcp_prune_queue(struct sock *sk);
3066 
3067 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3068 {
3069 	struct tcphdr *th = skb->h.th;
3070 	struct tcp_sock *tp = tcp_sk(sk);
3071 	int eaten = -1;
3072 
3073 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3074 		goto drop;
3075 
3076 	__skb_pull(skb, th->doff*4);
3077 
3078 	TCP_ECN_accept_cwr(tp, skb);
3079 
3080 	if (tp->rx_opt.dsack) {
3081 		tp->rx_opt.dsack = 0;
3082 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3083 						    4 - tp->rx_opt.tstamp_ok);
3084 	}
3085 
3086 	/*  Queue data for delivery to the user.
3087 	 *  Packets in sequence go to the receive queue.
3088 	 *  Out of sequence packets to the out_of_order_queue.
3089 	 */
3090 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3091 		if (tcp_receive_window(tp) == 0)
3092 			goto out_of_window;
3093 
3094 		/* Ok. In sequence. In window. */
3095 		if (tp->ucopy.task == current &&
3096 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3097 		    sock_owned_by_user(sk) && !tp->urg_data) {
3098 			int chunk = min_t(unsigned int, skb->len,
3099 							tp->ucopy.len);
3100 
3101 			__set_current_state(TASK_RUNNING);
3102 
3103 			local_bh_enable();
3104 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3105 				tp->ucopy.len -= chunk;
3106 				tp->copied_seq += chunk;
3107 				eaten = (chunk == skb->len && !th->fin);
3108 				tcp_rcv_space_adjust(sk);
3109 			}
3110 			local_bh_disable();
3111 		}
3112 
3113 		if (eaten <= 0) {
3114 queue_and_out:
3115 			if (eaten < 0 &&
3116 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3117 			     !sk_stream_rmem_schedule(sk, skb))) {
3118 				if (tcp_prune_queue(sk) < 0 ||
3119 				    !sk_stream_rmem_schedule(sk, skb))
3120 					goto drop;
3121 			}
3122 			sk_stream_set_owner_r(skb, sk);
3123 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3124 		}
3125 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3126 		if(skb->len)
3127 			tcp_event_data_recv(sk, tp, skb);
3128 		if(th->fin)
3129 			tcp_fin(skb, sk, th);
3130 
3131 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3132 			tcp_ofo_queue(sk);
3133 
3134 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3135 			 * gap in queue is filled.
3136 			 */
3137 			if (skb_queue_empty(&tp->out_of_order_queue))
3138 				inet_csk(sk)->icsk_ack.pingpong = 0;
3139 		}
3140 
3141 		if (tp->rx_opt.num_sacks)
3142 			tcp_sack_remove(tp);
3143 
3144 		tcp_fast_path_check(sk, tp);
3145 
3146 		if (eaten > 0)
3147 			__kfree_skb(skb);
3148 		else if (!sock_flag(sk, SOCK_DEAD))
3149 			sk->sk_data_ready(sk, 0);
3150 		return;
3151 	}
3152 
3153 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3154 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3155 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3156 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3157 
3158 out_of_window:
3159 		tcp_enter_quickack_mode(sk);
3160 		inet_csk_schedule_ack(sk);
3161 drop:
3162 		__kfree_skb(skb);
3163 		return;
3164 	}
3165 
3166 	/* Out of window. F.e. zero window probe. */
3167 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3168 		goto out_of_window;
3169 
3170 	tcp_enter_quickack_mode(sk);
3171 
3172 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3173 		/* Partial packet, seq < rcv_next < end_seq */
3174 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3175 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3176 			   TCP_SKB_CB(skb)->end_seq);
3177 
3178 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3179 
3180 		/* If window is closed, drop tail of packet. But after
3181 		 * remembering D-SACK for its head made in previous line.
3182 		 */
3183 		if (!tcp_receive_window(tp))
3184 			goto out_of_window;
3185 		goto queue_and_out;
3186 	}
3187 
3188 	TCP_ECN_check_ce(tp, skb);
3189 
3190 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3191 	    !sk_stream_rmem_schedule(sk, skb)) {
3192 		if (tcp_prune_queue(sk) < 0 ||
3193 		    !sk_stream_rmem_schedule(sk, skb))
3194 			goto drop;
3195 	}
3196 
3197 	/* Disable header prediction. */
3198 	tp->pred_flags = 0;
3199 	inet_csk_schedule_ack(sk);
3200 
3201 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3202 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3203 
3204 	sk_stream_set_owner_r(skb, sk);
3205 
3206 	if (!skb_peek(&tp->out_of_order_queue)) {
3207 		/* Initial out of order segment, build 1 SACK. */
3208 		if (tp->rx_opt.sack_ok) {
3209 			tp->rx_opt.num_sacks = 1;
3210 			tp->rx_opt.dsack     = 0;
3211 			tp->rx_opt.eff_sacks = 1;
3212 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3213 			tp->selective_acks[0].end_seq =
3214 						TCP_SKB_CB(skb)->end_seq;
3215 		}
3216 		__skb_queue_head(&tp->out_of_order_queue,skb);
3217 	} else {
3218 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3219 		u32 seq = TCP_SKB_CB(skb)->seq;
3220 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3221 
3222 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3223 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3224 
3225 			if (!tp->rx_opt.num_sacks ||
3226 			    tp->selective_acks[0].end_seq != seq)
3227 				goto add_sack;
3228 
3229 			/* Common case: data arrive in order after hole. */
3230 			tp->selective_acks[0].end_seq = end_seq;
3231 			return;
3232 		}
3233 
3234 		/* Find place to insert this segment. */
3235 		do {
3236 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3237 				break;
3238 		} while ((skb1 = skb1->prev) !=
3239 			 (struct sk_buff*)&tp->out_of_order_queue);
3240 
3241 		/* Do skb overlap to previous one? */
3242 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3243 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3244 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3245 				/* All the bits are present. Drop. */
3246 				__kfree_skb(skb);
3247 				tcp_dsack_set(tp, seq, end_seq);
3248 				goto add_sack;
3249 			}
3250 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3251 				/* Partial overlap. */
3252 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3253 			} else {
3254 				skb1 = skb1->prev;
3255 			}
3256 		}
3257 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3258 
3259 		/* And clean segments covered by new one as whole. */
3260 		while ((skb1 = skb->next) !=
3261 		       (struct sk_buff*)&tp->out_of_order_queue &&
3262 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3263 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3264 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3265 			       break;
3266 		       }
3267 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3268 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3269 		       __kfree_skb(skb1);
3270 		}
3271 
3272 add_sack:
3273 		if (tp->rx_opt.sack_ok)
3274 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3275 	}
3276 }
3277 
3278 /* Collapse contiguous sequence of skbs head..tail with
3279  * sequence numbers start..end.
3280  * Segments with FIN/SYN are not collapsed (only because this
3281  * simplifies code)
3282  */
3283 static void
3284 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3285 	     struct sk_buff *head, struct sk_buff *tail,
3286 	     u32 start, u32 end)
3287 {
3288 	struct sk_buff *skb;
3289 
3290 	/* First, check that queue is collapsible and find
3291 	 * the point where collapsing can be useful. */
3292 	for (skb = head; skb != tail; ) {
3293 		/* No new bits? It is possible on ofo queue. */
3294 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3295 			struct sk_buff *next = skb->next;
3296 			__skb_unlink(skb, list);
3297 			__kfree_skb(skb);
3298 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3299 			skb = next;
3300 			continue;
3301 		}
3302 
3303 		/* The first skb to collapse is:
3304 		 * - not SYN/FIN and
3305 		 * - bloated or contains data before "start" or
3306 		 *   overlaps to the next one.
3307 		 */
3308 		if (!skb->h.th->syn && !skb->h.th->fin &&
3309 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3310 		     before(TCP_SKB_CB(skb)->seq, start) ||
3311 		     (skb->next != tail &&
3312 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3313 			break;
3314 
3315 		/* Decided to skip this, advance start seq. */
3316 		start = TCP_SKB_CB(skb)->end_seq;
3317 		skb = skb->next;
3318 	}
3319 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3320 		return;
3321 
3322 	while (before(start, end)) {
3323 		struct sk_buff *nskb;
3324 		int header = skb_headroom(skb);
3325 		int copy = SKB_MAX_ORDER(header, 0);
3326 
3327 		/* Too big header? This can happen with IPv6. */
3328 		if (copy < 0)
3329 			return;
3330 		if (end-start < copy)
3331 			copy = end-start;
3332 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3333 		if (!nskb)
3334 			return;
3335 		skb_reserve(nskb, header);
3336 		memcpy(nskb->head, skb->head, header);
3337 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3338 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3339 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3340 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3341 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3342 		__skb_insert(nskb, skb->prev, skb, list);
3343 		sk_stream_set_owner_r(nskb, sk);
3344 
3345 		/* Copy data, releasing collapsed skbs. */
3346 		while (copy > 0) {
3347 			int offset = start - TCP_SKB_CB(skb)->seq;
3348 			int size = TCP_SKB_CB(skb)->end_seq - start;
3349 
3350 			BUG_ON(offset < 0);
3351 			if (size > 0) {
3352 				size = min(copy, size);
3353 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3354 					BUG();
3355 				TCP_SKB_CB(nskb)->end_seq += size;
3356 				copy -= size;
3357 				start += size;
3358 			}
3359 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3360 				struct sk_buff *next = skb->next;
3361 				__skb_unlink(skb, list);
3362 				__kfree_skb(skb);
3363 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3364 				skb = next;
3365 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3366 					return;
3367 			}
3368 		}
3369 	}
3370 }
3371 
3372 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3373  * and tcp_collapse() them until all the queue is collapsed.
3374  */
3375 static void tcp_collapse_ofo_queue(struct sock *sk)
3376 {
3377 	struct tcp_sock *tp = tcp_sk(sk);
3378 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3379 	struct sk_buff *head;
3380 	u32 start, end;
3381 
3382 	if (skb == NULL)
3383 		return;
3384 
3385 	start = TCP_SKB_CB(skb)->seq;
3386 	end = TCP_SKB_CB(skb)->end_seq;
3387 	head = skb;
3388 
3389 	for (;;) {
3390 		skb = skb->next;
3391 
3392 		/* Segment is terminated when we see gap or when
3393 		 * we are at the end of all the queue. */
3394 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3395 		    after(TCP_SKB_CB(skb)->seq, end) ||
3396 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3397 			tcp_collapse(sk, &tp->out_of_order_queue,
3398 				     head, skb, start, end);
3399 			head = skb;
3400 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3401 				break;
3402 			/* Start new segment */
3403 			start = TCP_SKB_CB(skb)->seq;
3404 			end = TCP_SKB_CB(skb)->end_seq;
3405 		} else {
3406 			if (before(TCP_SKB_CB(skb)->seq, start))
3407 				start = TCP_SKB_CB(skb)->seq;
3408 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3409 				end = TCP_SKB_CB(skb)->end_seq;
3410 		}
3411 	}
3412 }
3413 
3414 /* Reduce allocated memory if we can, trying to get
3415  * the socket within its memory limits again.
3416  *
3417  * Return less than zero if we should start dropping frames
3418  * until the socket owning process reads some of the data
3419  * to stabilize the situation.
3420  */
3421 static int tcp_prune_queue(struct sock *sk)
3422 {
3423 	struct tcp_sock *tp = tcp_sk(sk);
3424 
3425 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3426 
3427 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3428 
3429 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3430 		tcp_clamp_window(sk, tp);
3431 	else if (tcp_memory_pressure)
3432 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3433 
3434 	tcp_collapse_ofo_queue(sk);
3435 	tcp_collapse(sk, &sk->sk_receive_queue,
3436 		     sk->sk_receive_queue.next,
3437 		     (struct sk_buff*)&sk->sk_receive_queue,
3438 		     tp->copied_seq, tp->rcv_nxt);
3439 	sk_stream_mem_reclaim(sk);
3440 
3441 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3442 		return 0;
3443 
3444 	/* Collapsing did not help, destructive actions follow.
3445 	 * This must not ever occur. */
3446 
3447 	/* First, purge the out_of_order queue. */
3448 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3449 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3450 		__skb_queue_purge(&tp->out_of_order_queue);
3451 
3452 		/* Reset SACK state.  A conforming SACK implementation will
3453 		 * do the same at a timeout based retransmit.  When a connection
3454 		 * is in a sad state like this, we care only about integrity
3455 		 * of the connection not performance.
3456 		 */
3457 		if (tp->rx_opt.sack_ok)
3458 			tcp_sack_reset(&tp->rx_opt);
3459 		sk_stream_mem_reclaim(sk);
3460 	}
3461 
3462 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3463 		return 0;
3464 
3465 	/* If we are really being abused, tell the caller to silently
3466 	 * drop receive data on the floor.  It will get retransmitted
3467 	 * and hopefully then we'll have sufficient space.
3468 	 */
3469 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3470 
3471 	/* Massive buffer overcommit. */
3472 	tp->pred_flags = 0;
3473 	return -1;
3474 }
3475 
3476 
3477 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3478  * As additional protections, we do not touch cwnd in retransmission phases,
3479  * and if application hit its sndbuf limit recently.
3480  */
3481 void tcp_cwnd_application_limited(struct sock *sk)
3482 {
3483 	struct tcp_sock *tp = tcp_sk(sk);
3484 
3485 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3486 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3487 		/* Limited by application or receiver window. */
3488 		u32 win_used = max(tp->snd_cwnd_used, 2U);
3489 		if (win_used < tp->snd_cwnd) {
3490 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3491 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3492 		}
3493 		tp->snd_cwnd_used = 0;
3494 	}
3495 	tp->snd_cwnd_stamp = tcp_time_stamp;
3496 }
3497 
3498 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3499 {
3500 	/* If the user specified a specific send buffer setting, do
3501 	 * not modify it.
3502 	 */
3503 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3504 		return 0;
3505 
3506 	/* If we are under global TCP memory pressure, do not expand.  */
3507 	if (tcp_memory_pressure)
3508 		return 0;
3509 
3510 	/* If we are under soft global TCP memory pressure, do not expand.  */
3511 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3512 		return 0;
3513 
3514 	/* If we filled the congestion window, do not expand.  */
3515 	if (tp->packets_out >= tp->snd_cwnd)
3516 		return 0;
3517 
3518 	return 1;
3519 }
3520 
3521 /* When incoming ACK allowed to free some skb from write_queue,
3522  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3523  * on the exit from tcp input handler.
3524  *
3525  * PROBLEM: sndbuf expansion does not work well with largesend.
3526  */
3527 static void tcp_new_space(struct sock *sk)
3528 {
3529 	struct tcp_sock *tp = tcp_sk(sk);
3530 
3531 	if (tcp_should_expand_sndbuf(sk, tp)) {
3532  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3533 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3534 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3535 						   tp->reordering + 1);
3536 		sndmem *= 2*demanded;
3537 		if (sndmem > sk->sk_sndbuf)
3538 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3539 		tp->snd_cwnd_stamp = tcp_time_stamp;
3540 	}
3541 
3542 	sk->sk_write_space(sk);
3543 }
3544 
3545 static void tcp_check_space(struct sock *sk)
3546 {
3547 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3548 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3549 		if (sk->sk_socket &&
3550 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3551 			tcp_new_space(sk);
3552 	}
3553 }
3554 
3555 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3556 {
3557 	tcp_push_pending_frames(sk, tp);
3558 	tcp_check_space(sk);
3559 }
3560 
3561 /*
3562  * Check if sending an ack is needed.
3563  */
3564 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3565 {
3566 	struct tcp_sock *tp = tcp_sk(sk);
3567 
3568 	    /* More than one full frame received... */
3569 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3570 	     /* ... and right edge of window advances far enough.
3571 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3572 	      */
3573 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3574 	    /* We ACK each frame or... */
3575 	    tcp_in_quickack_mode(sk) ||
3576 	    /* We have out of order data. */
3577 	    (ofo_possible &&
3578 	     skb_peek(&tp->out_of_order_queue))) {
3579 		/* Then ack it now */
3580 		tcp_send_ack(sk);
3581 	} else {
3582 		/* Else, send delayed ack. */
3583 		tcp_send_delayed_ack(sk);
3584 	}
3585 }
3586 
3587 static inline void tcp_ack_snd_check(struct sock *sk)
3588 {
3589 	if (!inet_csk_ack_scheduled(sk)) {
3590 		/* We sent a data segment already. */
3591 		return;
3592 	}
3593 	__tcp_ack_snd_check(sk, 1);
3594 }
3595 
3596 /*
3597  *	This routine is only called when we have urgent data
3598  *	signaled. Its the 'slow' part of tcp_urg. It could be
3599  *	moved inline now as tcp_urg is only called from one
3600  *	place. We handle URGent data wrong. We have to - as
3601  *	BSD still doesn't use the correction from RFC961.
3602  *	For 1003.1g we should support a new option TCP_STDURG to permit
3603  *	either form (or just set the sysctl tcp_stdurg).
3604  */
3605 
3606 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3607 {
3608 	struct tcp_sock *tp = tcp_sk(sk);
3609 	u32 ptr = ntohs(th->urg_ptr);
3610 
3611 	if (ptr && !sysctl_tcp_stdurg)
3612 		ptr--;
3613 	ptr += ntohl(th->seq);
3614 
3615 	/* Ignore urgent data that we've already seen and read. */
3616 	if (after(tp->copied_seq, ptr))
3617 		return;
3618 
3619 	/* Do not replay urg ptr.
3620 	 *
3621 	 * NOTE: interesting situation not covered by specs.
3622 	 * Misbehaving sender may send urg ptr, pointing to segment,
3623 	 * which we already have in ofo queue. We are not able to fetch
3624 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3625 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3626 	 * situations. But it is worth to think about possibility of some
3627 	 * DoSes using some hypothetical application level deadlock.
3628 	 */
3629 	if (before(ptr, tp->rcv_nxt))
3630 		return;
3631 
3632 	/* Do we already have a newer (or duplicate) urgent pointer? */
3633 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3634 		return;
3635 
3636 	/* Tell the world about our new urgent pointer. */
3637 	sk_send_sigurg(sk);
3638 
3639 	/* We may be adding urgent data when the last byte read was
3640 	 * urgent. To do this requires some care. We cannot just ignore
3641 	 * tp->copied_seq since we would read the last urgent byte again
3642 	 * as data, nor can we alter copied_seq until this data arrives
3643 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3644 	 *
3645 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3646 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3647 	 * and expect that both A and B disappear from stream. This is _wrong_.
3648 	 * Though this happens in BSD with high probability, this is occasional.
3649 	 * Any application relying on this is buggy. Note also, that fix "works"
3650 	 * only in this artificial test. Insert some normal data between A and B and we will
3651 	 * decline of BSD again. Verdict: it is better to remove to trap
3652 	 * buggy users.
3653 	 */
3654 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3655 	    !sock_flag(sk, SOCK_URGINLINE) &&
3656 	    tp->copied_seq != tp->rcv_nxt) {
3657 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3658 		tp->copied_seq++;
3659 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3660 			__skb_unlink(skb, &sk->sk_receive_queue);
3661 			__kfree_skb(skb);
3662 		}
3663 	}
3664 
3665 	tp->urg_data   = TCP_URG_NOTYET;
3666 	tp->urg_seq    = ptr;
3667 
3668 	/* Disable header prediction. */
3669 	tp->pred_flags = 0;
3670 }
3671 
3672 /* This is the 'fast' part of urgent handling. */
3673 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3674 {
3675 	struct tcp_sock *tp = tcp_sk(sk);
3676 
3677 	/* Check if we get a new urgent pointer - normally not. */
3678 	if (th->urg)
3679 		tcp_check_urg(sk,th);
3680 
3681 	/* Do we wait for any urgent data? - normally not... */
3682 	if (tp->urg_data == TCP_URG_NOTYET) {
3683 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3684 			  th->syn;
3685 
3686 		/* Is the urgent pointer pointing into this packet? */
3687 		if (ptr < skb->len) {
3688 			u8 tmp;
3689 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3690 				BUG();
3691 			tp->urg_data = TCP_URG_VALID | tmp;
3692 			if (!sock_flag(sk, SOCK_DEAD))
3693 				sk->sk_data_ready(sk, 0);
3694 		}
3695 	}
3696 }
3697 
3698 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3699 {
3700 	struct tcp_sock *tp = tcp_sk(sk);
3701 	int chunk = skb->len - hlen;
3702 	int err;
3703 
3704 	local_bh_enable();
3705 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3706 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3707 	else
3708 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3709 						       tp->ucopy.iov);
3710 
3711 	if (!err) {
3712 		tp->ucopy.len -= chunk;
3713 		tp->copied_seq += chunk;
3714 		tcp_rcv_space_adjust(sk);
3715 	}
3716 
3717 	local_bh_disable();
3718 	return err;
3719 }
3720 
3721 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3722 {
3723 	int result;
3724 
3725 	if (sock_owned_by_user(sk)) {
3726 		local_bh_enable();
3727 		result = __tcp_checksum_complete(skb);
3728 		local_bh_disable();
3729 	} else {
3730 		result = __tcp_checksum_complete(skb);
3731 	}
3732 	return result;
3733 }
3734 
3735 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3736 {
3737 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3738 		__tcp_checksum_complete_user(sk, skb);
3739 }
3740 
3741 /*
3742  *	TCP receive function for the ESTABLISHED state.
3743  *
3744  *	It is split into a fast path and a slow path. The fast path is
3745  * 	disabled when:
3746  *	- A zero window was announced from us - zero window probing
3747  *        is only handled properly in the slow path.
3748  *	- Out of order segments arrived.
3749  *	- Urgent data is expected.
3750  *	- There is no buffer space left
3751  *	- Unexpected TCP flags/window values/header lengths are received
3752  *	  (detected by checking the TCP header against pred_flags)
3753  *	- Data is sent in both directions. Fast path only supports pure senders
3754  *	  or pure receivers (this means either the sequence number or the ack
3755  *	  value must stay constant)
3756  *	- Unexpected TCP option.
3757  *
3758  *	When these conditions are not satisfied it drops into a standard
3759  *	receive procedure patterned after RFC793 to handle all cases.
3760  *	The first three cases are guaranteed by proper pred_flags setting,
3761  *	the rest is checked inline. Fast processing is turned on in
3762  *	tcp_data_queue when everything is OK.
3763  */
3764 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3765 			struct tcphdr *th, unsigned len)
3766 {
3767 	struct tcp_sock *tp = tcp_sk(sk);
3768 
3769 	/*
3770 	 *	Header prediction.
3771 	 *	The code loosely follows the one in the famous
3772 	 *	"30 instruction TCP receive" Van Jacobson mail.
3773 	 *
3774 	 *	Van's trick is to deposit buffers into socket queue
3775 	 *	on a device interrupt, to call tcp_recv function
3776 	 *	on the receive process context and checksum and copy
3777 	 *	the buffer to user space. smart...
3778 	 *
3779 	 *	Our current scheme is not silly either but we take the
3780 	 *	extra cost of the net_bh soft interrupt processing...
3781 	 *	We do checksum and copy also but from device to kernel.
3782 	 */
3783 
3784 	tp->rx_opt.saw_tstamp = 0;
3785 
3786 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3787 	 *	if header_prediction is to be made
3788 	 *	'S' will always be tp->tcp_header_len >> 2
3789 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3790 	 *  turn it off	(when there are holes in the receive
3791 	 *	 space for instance)
3792 	 *	PSH flag is ignored.
3793 	 */
3794 
3795 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3796 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3797 		int tcp_header_len = tp->tcp_header_len;
3798 
3799 		/* Timestamp header prediction: tcp_header_len
3800 		 * is automatically equal to th->doff*4 due to pred_flags
3801 		 * match.
3802 		 */
3803 
3804 		/* Check timestamp */
3805 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3806 			__u32 *ptr = (__u32 *)(th + 1);
3807 
3808 			/* No? Slow path! */
3809 			if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3810 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3811 				goto slow_path;
3812 
3813 			tp->rx_opt.saw_tstamp = 1;
3814 			++ptr;
3815 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3816 			++ptr;
3817 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3818 
3819 			/* If PAWS failed, check it more carefully in slow path */
3820 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3821 				goto slow_path;
3822 
3823 			/* DO NOT update ts_recent here, if checksum fails
3824 			 * and timestamp was corrupted part, it will result
3825 			 * in a hung connection since we will drop all
3826 			 * future packets due to the PAWS test.
3827 			 */
3828 		}
3829 
3830 		if (len <= tcp_header_len) {
3831 			/* Bulk data transfer: sender */
3832 			if (len == tcp_header_len) {
3833 				/* Predicted packet is in window by definition.
3834 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3835 				 * Hence, check seq<=rcv_wup reduces to:
3836 				 */
3837 				if (tcp_header_len ==
3838 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3839 				    tp->rcv_nxt == tp->rcv_wup)
3840 					tcp_store_ts_recent(tp);
3841 
3842 				tcp_rcv_rtt_measure_ts(sk, skb);
3843 
3844 				/* We know that such packets are checksummed
3845 				 * on entry.
3846 				 */
3847 				tcp_ack(sk, skb, 0);
3848 				__kfree_skb(skb);
3849 				tcp_data_snd_check(sk, tp);
3850 				return 0;
3851 			} else { /* Header too small */
3852 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3853 				goto discard;
3854 			}
3855 		} else {
3856 			int eaten = 0;
3857 
3858 			if (tp->ucopy.task == current &&
3859 			    tp->copied_seq == tp->rcv_nxt &&
3860 			    len - tcp_header_len <= tp->ucopy.len &&
3861 			    sock_owned_by_user(sk)) {
3862 				__set_current_state(TASK_RUNNING);
3863 
3864 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3865 					/* Predicted packet is in window by definition.
3866 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3867 					 * Hence, check seq<=rcv_wup reduces to:
3868 					 */
3869 					if (tcp_header_len ==
3870 					    (sizeof(struct tcphdr) +
3871 					     TCPOLEN_TSTAMP_ALIGNED) &&
3872 					    tp->rcv_nxt == tp->rcv_wup)
3873 						tcp_store_ts_recent(tp);
3874 
3875 					tcp_rcv_rtt_measure_ts(sk, skb);
3876 
3877 					__skb_pull(skb, tcp_header_len);
3878 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3879 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3880 					eaten = 1;
3881 				}
3882 			}
3883 			if (!eaten) {
3884 				if (tcp_checksum_complete_user(sk, skb))
3885 					goto csum_error;
3886 
3887 				/* Predicted packet is in window by definition.
3888 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3889 				 * Hence, check seq<=rcv_wup reduces to:
3890 				 */
3891 				if (tcp_header_len ==
3892 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3893 				    tp->rcv_nxt == tp->rcv_wup)
3894 					tcp_store_ts_recent(tp);
3895 
3896 				tcp_rcv_rtt_measure_ts(sk, skb);
3897 
3898 				if ((int)skb->truesize > sk->sk_forward_alloc)
3899 					goto step5;
3900 
3901 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3902 
3903 				/* Bulk data transfer: receiver */
3904 				__skb_pull(skb,tcp_header_len);
3905 				__skb_queue_tail(&sk->sk_receive_queue, skb);
3906 				sk_stream_set_owner_r(skb, sk);
3907 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3908 			}
3909 
3910 			tcp_event_data_recv(sk, tp, skb);
3911 
3912 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3913 				/* Well, only one small jumplet in fast path... */
3914 				tcp_ack(sk, skb, FLAG_DATA);
3915 				tcp_data_snd_check(sk, tp);
3916 				if (!inet_csk_ack_scheduled(sk))
3917 					goto no_ack;
3918 			}
3919 
3920 			__tcp_ack_snd_check(sk, 0);
3921 no_ack:
3922 			if (eaten)
3923 				__kfree_skb(skb);
3924 			else
3925 				sk->sk_data_ready(sk, 0);
3926 			return 0;
3927 		}
3928 	}
3929 
3930 slow_path:
3931 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3932 		goto csum_error;
3933 
3934 	/*
3935 	 * RFC1323: H1. Apply PAWS check first.
3936 	 */
3937 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3938 	    tcp_paws_discard(sk, skb)) {
3939 		if (!th->rst) {
3940 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3941 			tcp_send_dupack(sk, skb);
3942 			goto discard;
3943 		}
3944 		/* Resets are accepted even if PAWS failed.
3945 
3946 		   ts_recent update must be made after we are sure
3947 		   that the packet is in window.
3948 		 */
3949 	}
3950 
3951 	/*
3952 	 *	Standard slow path.
3953 	 */
3954 
3955 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3956 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
3957 		 * (RST) segments are validated by checking their SEQ-fields."
3958 		 * And page 69: "If an incoming segment is not acceptable,
3959 		 * an acknowledgment should be sent in reply (unless the RST bit
3960 		 * is set, if so drop the segment and return)".
3961 		 */
3962 		if (!th->rst)
3963 			tcp_send_dupack(sk, skb);
3964 		goto discard;
3965 	}
3966 
3967 	if(th->rst) {
3968 		tcp_reset(sk);
3969 		goto discard;
3970 	}
3971 
3972 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3973 
3974 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3975 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
3976 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3977 		tcp_reset(sk);
3978 		return 1;
3979 	}
3980 
3981 step5:
3982 	if(th->ack)
3983 		tcp_ack(sk, skb, FLAG_SLOWPATH);
3984 
3985 	tcp_rcv_rtt_measure_ts(sk, skb);
3986 
3987 	/* Process urgent data. */
3988 	tcp_urg(sk, skb, th);
3989 
3990 	/* step 7: process the segment text */
3991 	tcp_data_queue(sk, skb);
3992 
3993 	tcp_data_snd_check(sk, tp);
3994 	tcp_ack_snd_check(sk);
3995 	return 0;
3996 
3997 csum_error:
3998 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
3999 
4000 discard:
4001 	__kfree_skb(skb);
4002 	return 0;
4003 }
4004 
4005 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4006 					 struct tcphdr *th, unsigned len)
4007 {
4008 	struct tcp_sock *tp = tcp_sk(sk);
4009 	struct inet_connection_sock *icsk = inet_csk(sk);
4010 	int saved_clamp = tp->rx_opt.mss_clamp;
4011 
4012 	tcp_parse_options(skb, &tp->rx_opt, 0);
4013 
4014 	if (th->ack) {
4015 		/* rfc793:
4016 		 * "If the state is SYN-SENT then
4017 		 *    first check the ACK bit
4018 		 *      If the ACK bit is set
4019 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4020 		 *        a reset (unless the RST bit is set, if so drop
4021 		 *        the segment and return)"
4022 		 *
4023 		 *  We do not send data with SYN, so that RFC-correct
4024 		 *  test reduces to:
4025 		 */
4026 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4027 			goto reset_and_undo;
4028 
4029 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4030 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4031 			     tcp_time_stamp)) {
4032 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4033 			goto reset_and_undo;
4034 		}
4035 
4036 		/* Now ACK is acceptable.
4037 		 *
4038 		 * "If the RST bit is set
4039 		 *    If the ACK was acceptable then signal the user "error:
4040 		 *    connection reset", drop the segment, enter CLOSED state,
4041 		 *    delete TCB, and return."
4042 		 */
4043 
4044 		if (th->rst) {
4045 			tcp_reset(sk);
4046 			goto discard;
4047 		}
4048 
4049 		/* rfc793:
4050 		 *   "fifth, if neither of the SYN or RST bits is set then
4051 		 *    drop the segment and return."
4052 		 *
4053 		 *    See note below!
4054 		 *                                        --ANK(990513)
4055 		 */
4056 		if (!th->syn)
4057 			goto discard_and_undo;
4058 
4059 		/* rfc793:
4060 		 *   "If the SYN bit is on ...
4061 		 *    are acceptable then ...
4062 		 *    (our SYN has been ACKed), change the connection
4063 		 *    state to ESTABLISHED..."
4064 		 */
4065 
4066 		TCP_ECN_rcv_synack(tp, th);
4067 		if (tp->ecn_flags&TCP_ECN_OK)
4068 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4069 
4070 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4071 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4072 
4073 		/* Ok.. it's good. Set up sequence numbers and
4074 		 * move to established.
4075 		 */
4076 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4077 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4078 
4079 		/* RFC1323: The window in SYN & SYN/ACK segments is
4080 		 * never scaled.
4081 		 */
4082 		tp->snd_wnd = ntohs(th->window);
4083 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4084 
4085 		if (!tp->rx_opt.wscale_ok) {
4086 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4087 			tp->window_clamp = min(tp->window_clamp, 65535U);
4088 		}
4089 
4090 		if (tp->rx_opt.saw_tstamp) {
4091 			tp->rx_opt.tstamp_ok	   = 1;
4092 			tp->tcp_header_len =
4093 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4094 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4095 			tcp_store_ts_recent(tp);
4096 		} else {
4097 			tp->tcp_header_len = sizeof(struct tcphdr);
4098 		}
4099 
4100 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4101 			tp->rx_opt.sack_ok |= 2;
4102 
4103 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4104 		tcp_initialize_rcv_mss(sk);
4105 
4106 		/* Remember, tcp_poll() does not lock socket!
4107 		 * Change state from SYN-SENT only after copied_seq
4108 		 * is initialized. */
4109 		tp->copied_seq = tp->rcv_nxt;
4110 		mb();
4111 		tcp_set_state(sk, TCP_ESTABLISHED);
4112 
4113 		/* Make sure socket is routed, for correct metrics.  */
4114 		icsk->icsk_af_ops->rebuild_header(sk);
4115 
4116 		tcp_init_metrics(sk);
4117 
4118 		tcp_init_congestion_control(sk);
4119 
4120 		/* Prevent spurious tcp_cwnd_restart() on first data
4121 		 * packet.
4122 		 */
4123 		tp->lsndtime = tcp_time_stamp;
4124 
4125 		tcp_init_buffer_space(sk);
4126 
4127 		if (sock_flag(sk, SOCK_KEEPOPEN))
4128 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4129 
4130 		if (!tp->rx_opt.snd_wscale)
4131 			__tcp_fast_path_on(tp, tp->snd_wnd);
4132 		else
4133 			tp->pred_flags = 0;
4134 
4135 		if (!sock_flag(sk, SOCK_DEAD)) {
4136 			sk->sk_state_change(sk);
4137 			sk_wake_async(sk, 0, POLL_OUT);
4138 		}
4139 
4140 		if (sk->sk_write_pending ||
4141 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4142 		    icsk->icsk_ack.pingpong) {
4143 			/* Save one ACK. Data will be ready after
4144 			 * several ticks, if write_pending is set.
4145 			 *
4146 			 * It may be deleted, but with this feature tcpdumps
4147 			 * look so _wonderfully_ clever, that I was not able
4148 			 * to stand against the temptation 8)     --ANK
4149 			 */
4150 			inet_csk_schedule_ack(sk);
4151 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4152 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4153 			tcp_incr_quickack(sk);
4154 			tcp_enter_quickack_mode(sk);
4155 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4156 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4157 
4158 discard:
4159 			__kfree_skb(skb);
4160 			return 0;
4161 		} else {
4162 			tcp_send_ack(sk);
4163 		}
4164 		return -1;
4165 	}
4166 
4167 	/* No ACK in the segment */
4168 
4169 	if (th->rst) {
4170 		/* rfc793:
4171 		 * "If the RST bit is set
4172 		 *
4173 		 *      Otherwise (no ACK) drop the segment and return."
4174 		 */
4175 
4176 		goto discard_and_undo;
4177 	}
4178 
4179 	/* PAWS check. */
4180 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4181 		goto discard_and_undo;
4182 
4183 	if (th->syn) {
4184 		/* We see SYN without ACK. It is attempt of
4185 		 * simultaneous connect with crossed SYNs.
4186 		 * Particularly, it can be connect to self.
4187 		 */
4188 		tcp_set_state(sk, TCP_SYN_RECV);
4189 
4190 		if (tp->rx_opt.saw_tstamp) {
4191 			tp->rx_opt.tstamp_ok = 1;
4192 			tcp_store_ts_recent(tp);
4193 			tp->tcp_header_len =
4194 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4195 		} else {
4196 			tp->tcp_header_len = sizeof(struct tcphdr);
4197 		}
4198 
4199 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4200 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4201 
4202 		/* RFC1323: The window in SYN & SYN/ACK segments is
4203 		 * never scaled.
4204 		 */
4205 		tp->snd_wnd    = ntohs(th->window);
4206 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4207 		tp->max_window = tp->snd_wnd;
4208 
4209 		TCP_ECN_rcv_syn(tp, th);
4210 		if (tp->ecn_flags&TCP_ECN_OK)
4211 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4212 
4213 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4214 		tcp_initialize_rcv_mss(sk);
4215 
4216 
4217 		tcp_send_synack(sk);
4218 #if 0
4219 		/* Note, we could accept data and URG from this segment.
4220 		 * There are no obstacles to make this.
4221 		 *
4222 		 * However, if we ignore data in ACKless segments sometimes,
4223 		 * we have no reasons to accept it sometimes.
4224 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4225 		 * is not flawless. So, discard packet for sanity.
4226 		 * Uncomment this return to process the data.
4227 		 */
4228 		return -1;
4229 #else
4230 		goto discard;
4231 #endif
4232 	}
4233 	/* "fifth, if neither of the SYN or RST bits is set then
4234 	 * drop the segment and return."
4235 	 */
4236 
4237 discard_and_undo:
4238 	tcp_clear_options(&tp->rx_opt);
4239 	tp->rx_opt.mss_clamp = saved_clamp;
4240 	goto discard;
4241 
4242 reset_and_undo:
4243 	tcp_clear_options(&tp->rx_opt);
4244 	tp->rx_opt.mss_clamp = saved_clamp;
4245 	return 1;
4246 }
4247 
4248 
4249 /*
4250  *	This function implements the receiving procedure of RFC 793 for
4251  *	all states except ESTABLISHED and TIME_WAIT.
4252  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4253  *	address independent.
4254  */
4255 
4256 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4257 			  struct tcphdr *th, unsigned len)
4258 {
4259 	struct tcp_sock *tp = tcp_sk(sk);
4260 	struct inet_connection_sock *icsk = inet_csk(sk);
4261 	int queued = 0;
4262 
4263 	tp->rx_opt.saw_tstamp = 0;
4264 
4265 	switch (sk->sk_state) {
4266 	case TCP_CLOSE:
4267 		goto discard;
4268 
4269 	case TCP_LISTEN:
4270 		if(th->ack)
4271 			return 1;
4272 
4273 		if(th->rst)
4274 			goto discard;
4275 
4276 		if(th->syn) {
4277 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4278 				return 1;
4279 
4280 			/* Now we have several options: In theory there is
4281 			 * nothing else in the frame. KA9Q has an option to
4282 			 * send data with the syn, BSD accepts data with the
4283 			 * syn up to the [to be] advertised window and
4284 			 * Solaris 2.1 gives you a protocol error. For now
4285 			 * we just ignore it, that fits the spec precisely
4286 			 * and avoids incompatibilities. It would be nice in
4287 			 * future to drop through and process the data.
4288 			 *
4289 			 * Now that TTCP is starting to be used we ought to
4290 			 * queue this data.
4291 			 * But, this leaves one open to an easy denial of
4292 		 	 * service attack, and SYN cookies can't defend
4293 			 * against this problem. So, we drop the data
4294 			 * in the interest of security over speed.
4295 			 */
4296 			goto discard;
4297 		}
4298 		goto discard;
4299 
4300 	case TCP_SYN_SENT:
4301 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4302 		if (queued >= 0)
4303 			return queued;
4304 
4305 		/* Do step6 onward by hand. */
4306 		tcp_urg(sk, skb, th);
4307 		__kfree_skb(skb);
4308 		tcp_data_snd_check(sk, tp);
4309 		return 0;
4310 	}
4311 
4312 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4313 	    tcp_paws_discard(sk, skb)) {
4314 		if (!th->rst) {
4315 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4316 			tcp_send_dupack(sk, skb);
4317 			goto discard;
4318 		}
4319 		/* Reset is accepted even if it did not pass PAWS. */
4320 	}
4321 
4322 	/* step 1: check sequence number */
4323 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4324 		if (!th->rst)
4325 			tcp_send_dupack(sk, skb);
4326 		goto discard;
4327 	}
4328 
4329 	/* step 2: check RST bit */
4330 	if(th->rst) {
4331 		tcp_reset(sk);
4332 		goto discard;
4333 	}
4334 
4335 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4336 
4337 	/* step 3: check security and precedence [ignored] */
4338 
4339 	/*	step 4:
4340 	 *
4341 	 *	Check for a SYN in window.
4342 	 */
4343 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4344 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4345 		tcp_reset(sk);
4346 		return 1;
4347 	}
4348 
4349 	/* step 5: check the ACK field */
4350 	if (th->ack) {
4351 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4352 
4353 		switch(sk->sk_state) {
4354 		case TCP_SYN_RECV:
4355 			if (acceptable) {
4356 				tp->copied_seq = tp->rcv_nxt;
4357 				mb();
4358 				tcp_set_state(sk, TCP_ESTABLISHED);
4359 				sk->sk_state_change(sk);
4360 
4361 				/* Note, that this wakeup is only for marginal
4362 				 * crossed SYN case. Passively open sockets
4363 				 * are not waked up, because sk->sk_sleep ==
4364 				 * NULL and sk->sk_socket == NULL.
4365 				 */
4366 				if (sk->sk_socket) {
4367 					sk_wake_async(sk,0,POLL_OUT);
4368 				}
4369 
4370 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4371 				tp->snd_wnd = ntohs(th->window) <<
4372 					      tp->rx_opt.snd_wscale;
4373 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4374 					    TCP_SKB_CB(skb)->seq);
4375 
4376 				/* tcp_ack considers this ACK as duplicate
4377 				 * and does not calculate rtt.
4378 				 * Fix it at least with timestamps.
4379 				 */
4380 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4381 				    !tp->srtt)
4382 					tcp_ack_saw_tstamp(sk, 0);
4383 
4384 				if (tp->rx_opt.tstamp_ok)
4385 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4386 
4387 				/* Make sure socket is routed, for
4388 				 * correct metrics.
4389 				 */
4390 				icsk->icsk_af_ops->rebuild_header(sk);
4391 
4392 				tcp_init_metrics(sk);
4393 
4394 				tcp_init_congestion_control(sk);
4395 
4396 				/* Prevent spurious tcp_cwnd_restart() on
4397 				 * first data packet.
4398 				 */
4399 				tp->lsndtime = tcp_time_stamp;
4400 
4401 				tcp_initialize_rcv_mss(sk);
4402 				tcp_init_buffer_space(sk);
4403 				tcp_fast_path_on(tp);
4404 			} else {
4405 				return 1;
4406 			}
4407 			break;
4408 
4409 		case TCP_FIN_WAIT1:
4410 			if (tp->snd_una == tp->write_seq) {
4411 				tcp_set_state(sk, TCP_FIN_WAIT2);
4412 				sk->sk_shutdown |= SEND_SHUTDOWN;
4413 				dst_confirm(sk->sk_dst_cache);
4414 
4415 				if (!sock_flag(sk, SOCK_DEAD))
4416 					/* Wake up lingering close() */
4417 					sk->sk_state_change(sk);
4418 				else {
4419 					int tmo;
4420 
4421 					if (tp->linger2 < 0 ||
4422 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4423 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4424 						tcp_done(sk);
4425 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4426 						return 1;
4427 					}
4428 
4429 					tmo = tcp_fin_time(sk);
4430 					if (tmo > TCP_TIMEWAIT_LEN) {
4431 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4432 					} else if (th->fin || sock_owned_by_user(sk)) {
4433 						/* Bad case. We could lose such FIN otherwise.
4434 						 * It is not a big problem, but it looks confusing
4435 						 * and not so rare event. We still can lose it now,
4436 						 * if it spins in bh_lock_sock(), but it is really
4437 						 * marginal case.
4438 						 */
4439 						inet_csk_reset_keepalive_timer(sk, tmo);
4440 					} else {
4441 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4442 						goto discard;
4443 					}
4444 				}
4445 			}
4446 			break;
4447 
4448 		case TCP_CLOSING:
4449 			if (tp->snd_una == tp->write_seq) {
4450 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4451 				goto discard;
4452 			}
4453 			break;
4454 
4455 		case TCP_LAST_ACK:
4456 			if (tp->snd_una == tp->write_seq) {
4457 				tcp_update_metrics(sk);
4458 				tcp_done(sk);
4459 				goto discard;
4460 			}
4461 			break;
4462 		}
4463 	} else
4464 		goto discard;
4465 
4466 	/* step 6: check the URG bit */
4467 	tcp_urg(sk, skb, th);
4468 
4469 	/* step 7: process the segment text */
4470 	switch (sk->sk_state) {
4471 	case TCP_CLOSE_WAIT:
4472 	case TCP_CLOSING:
4473 	case TCP_LAST_ACK:
4474 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4475 			break;
4476 	case TCP_FIN_WAIT1:
4477 	case TCP_FIN_WAIT2:
4478 		/* RFC 793 says to queue data in these states,
4479 		 * RFC 1122 says we MUST send a reset.
4480 		 * BSD 4.4 also does reset.
4481 		 */
4482 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4483 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4484 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4485 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4486 				tcp_reset(sk);
4487 				return 1;
4488 			}
4489 		}
4490 		/* Fall through */
4491 	case TCP_ESTABLISHED:
4492 		tcp_data_queue(sk, skb);
4493 		queued = 1;
4494 		break;
4495 	}
4496 
4497 	/* tcp_data could move socket to TIME-WAIT */
4498 	if (sk->sk_state != TCP_CLOSE) {
4499 		tcp_data_snd_check(sk, tp);
4500 		tcp_ack_snd_check(sk);
4501 	}
4502 
4503 	if (!queued) {
4504 discard:
4505 		__kfree_skb(skb);
4506 	}
4507 	return 0;
4508 }
4509 
4510 EXPORT_SYMBOL(sysctl_tcp_ecn);
4511 EXPORT_SYMBOL(sysctl_tcp_reordering);
4512 EXPORT_SYMBOL(sysctl_tcp_abc);
4513 EXPORT_SYMBOL(tcp_parse_options);
4514 EXPORT_SYMBOL(tcp_rcv_established);
4515 EXPORT_SYMBOL(tcp_rcv_state_process);
4516 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4517