xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 8684014d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93 
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 
99 int sysctl_tcp_thin_dupack __read_mostly;
100 
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
113 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
117 
118 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
122 
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 
126 /* Adapt the MSS value used to make delayed ack decision to the
127  * real world.
128  */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131 	struct inet_connection_sock *icsk = inet_csk(sk);
132 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 	unsigned int len;
134 
135 	icsk->icsk_ack.last_seg_size = 0;
136 
137 	/* skb->len may jitter because of SACKs, even if peer
138 	 * sends good full-sized frames.
139 	 */
140 	len = skb_shinfo(skb)->gso_size ? : skb->len;
141 	if (len >= icsk->icsk_ack.rcv_mss) {
142 		icsk->icsk_ack.rcv_mss = len;
143 	} else {
144 		/* Otherwise, we make more careful check taking into account,
145 		 * that SACKs block is variable.
146 		 *
147 		 * "len" is invariant segment length, including TCP header.
148 		 */
149 		len += skb->data - skb_transport_header(skb);
150 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 		    /* If PSH is not set, packet should be
152 		     * full sized, provided peer TCP is not badly broken.
153 		     * This observation (if it is correct 8)) allows
154 		     * to handle super-low mtu links fairly.
155 		     */
156 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 			/* Subtract also invariant (if peer is RFC compliant),
159 			 * tcp header plus fixed timestamp option length.
160 			 * Resulting "len" is MSS free of SACK jitter.
161 			 */
162 			len -= tcp_sk(sk)->tcp_header_len;
163 			icsk->icsk_ack.last_seg_size = len;
164 			if (len == lss) {
165 				icsk->icsk_ack.rcv_mss = len;
166 				return;
167 			}
168 		}
169 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 	}
173 }
174 
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177 	struct inet_connection_sock *icsk = inet_csk(sk);
178 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 
180 	if (quickacks == 0)
181 		quickacks = 2;
182 	if (quickacks > icsk->icsk_ack.quick)
183 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185 
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188 	struct inet_connection_sock *icsk = inet_csk(sk);
189 	tcp_incr_quickack(sk);
190 	icsk->icsk_ack.pingpong = 0;
191 	icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193 
194 /* Send ACKs quickly, if "quick" count is not exhausted
195  * and the session is not interactive.
196  */
197 
198 static inline bool tcp_in_quickack_mode(const struct sock *sk)
199 {
200 	const struct inet_connection_sock *icsk = inet_csk(sk);
201 
202 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 }
204 
205 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
206 {
207 	if (tp->ecn_flags & TCP_ECN_OK)
208 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 }
210 
211 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 {
213 	if (tcp_hdr(skb)->cwr)
214 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216 
217 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
218 {
219 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221 
222 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 {
224 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 	case INET_ECN_NOT_ECT:
226 		/* Funny extension: if ECT is not set on a segment,
227 		 * and we already seen ECT on a previous segment,
228 		 * it is probably a retransmit.
229 		 */
230 		if (tp->ecn_flags & TCP_ECN_SEEN)
231 			tcp_enter_quickack_mode((struct sock *)tp);
232 		break;
233 	case INET_ECN_CE:
234 		if (tcp_ca_needs_ecn((struct sock *)tp))
235 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
236 
237 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
238 			/* Better not delay acks, sender can have a very low cwnd */
239 			tcp_enter_quickack_mode((struct sock *)tp);
240 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 		}
242 		tp->ecn_flags |= TCP_ECN_SEEN;
243 		break;
244 	default:
245 		if (tcp_ca_needs_ecn((struct sock *)tp))
246 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
247 		tp->ecn_flags |= TCP_ECN_SEEN;
248 		break;
249 	}
250 }
251 
252 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
253 {
254 	if (tp->ecn_flags & TCP_ECN_OK)
255 		__tcp_ecn_check_ce(tp, skb);
256 }
257 
258 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
261 		tp->ecn_flags &= ~TCP_ECN_OK;
262 }
263 
264 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
265 {
266 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
267 		tp->ecn_flags &= ~TCP_ECN_OK;
268 }
269 
270 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
271 {
272 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
273 		return true;
274 	return false;
275 }
276 
277 /* Buffer size and advertised window tuning.
278  *
279  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
280  */
281 
282 static void tcp_sndbuf_expand(struct sock *sk)
283 {
284 	const struct tcp_sock *tp = tcp_sk(sk);
285 	int sndmem, per_mss;
286 	u32 nr_segs;
287 
288 	/* Worst case is non GSO/TSO : each frame consumes one skb
289 	 * and skb->head is kmalloced using power of two area of memory
290 	 */
291 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
292 		  MAX_TCP_HEADER +
293 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
294 
295 	per_mss = roundup_pow_of_two(per_mss) +
296 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
297 
298 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
299 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
300 
301 	/* Fast Recovery (RFC 5681 3.2) :
302 	 * Cubic needs 1.7 factor, rounded to 2 to include
303 	 * extra cushion (application might react slowly to POLLOUT)
304 	 */
305 	sndmem = 2 * nr_segs * per_mss;
306 
307 	if (sk->sk_sndbuf < sndmem)
308 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
309 }
310 
311 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
312  *
313  * All tcp_full_space() is split to two parts: "network" buffer, allocated
314  * forward and advertised in receiver window (tp->rcv_wnd) and
315  * "application buffer", required to isolate scheduling/application
316  * latencies from network.
317  * window_clamp is maximal advertised window. It can be less than
318  * tcp_full_space(), in this case tcp_full_space() - window_clamp
319  * is reserved for "application" buffer. The less window_clamp is
320  * the smoother our behaviour from viewpoint of network, but the lower
321  * throughput and the higher sensitivity of the connection to losses. 8)
322  *
323  * rcv_ssthresh is more strict window_clamp used at "slow start"
324  * phase to predict further behaviour of this connection.
325  * It is used for two goals:
326  * - to enforce header prediction at sender, even when application
327  *   requires some significant "application buffer". It is check #1.
328  * - to prevent pruning of receive queue because of misprediction
329  *   of receiver window. Check #2.
330  *
331  * The scheme does not work when sender sends good segments opening
332  * window and then starts to feed us spaghetti. But it should work
333  * in common situations. Otherwise, we have to rely on queue collapsing.
334  */
335 
336 /* Slow part of check#2. */
337 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 	/* Optimize this! */
341 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
342 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
343 
344 	while (tp->rcv_ssthresh <= window) {
345 		if (truesize <= skb->len)
346 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
347 
348 		truesize >>= 1;
349 		window >>= 1;
350 	}
351 	return 0;
352 }
353 
354 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
355 {
356 	struct tcp_sock *tp = tcp_sk(sk);
357 
358 	/* Check #1 */
359 	if (tp->rcv_ssthresh < tp->window_clamp &&
360 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
361 	    !sk_under_memory_pressure(sk)) {
362 		int incr;
363 
364 		/* Check #2. Increase window, if skb with such overhead
365 		 * will fit to rcvbuf in future.
366 		 */
367 		if (tcp_win_from_space(skb->truesize) <= skb->len)
368 			incr = 2 * tp->advmss;
369 		else
370 			incr = __tcp_grow_window(sk, skb);
371 
372 		if (incr) {
373 			incr = max_t(int, incr, 2 * skb->len);
374 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
375 					       tp->window_clamp);
376 			inet_csk(sk)->icsk_ack.quick |= 1;
377 		}
378 	}
379 }
380 
381 /* 3. Tuning rcvbuf, when connection enters established state. */
382 static void tcp_fixup_rcvbuf(struct sock *sk)
383 {
384 	u32 mss = tcp_sk(sk)->advmss;
385 	int rcvmem;
386 
387 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
388 		 tcp_default_init_rwnd(mss);
389 
390 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
391 	 * Allow enough cushion so that sender is not limited by our window
392 	 */
393 	if (sysctl_tcp_moderate_rcvbuf)
394 		rcvmem <<= 2;
395 
396 	if (sk->sk_rcvbuf < rcvmem)
397 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
398 }
399 
400 /* 4. Try to fixup all. It is made immediately after connection enters
401  *    established state.
402  */
403 void tcp_init_buffer_space(struct sock *sk)
404 {
405 	struct tcp_sock *tp = tcp_sk(sk);
406 	int maxwin;
407 
408 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
409 		tcp_fixup_rcvbuf(sk);
410 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
411 		tcp_sndbuf_expand(sk);
412 
413 	tp->rcvq_space.space = tp->rcv_wnd;
414 	tp->rcvq_space.time = tcp_time_stamp;
415 	tp->rcvq_space.seq = tp->copied_seq;
416 
417 	maxwin = tcp_full_space(sk);
418 
419 	if (tp->window_clamp >= maxwin) {
420 		tp->window_clamp = maxwin;
421 
422 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
423 			tp->window_clamp = max(maxwin -
424 					       (maxwin >> sysctl_tcp_app_win),
425 					       4 * tp->advmss);
426 	}
427 
428 	/* Force reservation of one segment. */
429 	if (sysctl_tcp_app_win &&
430 	    tp->window_clamp > 2 * tp->advmss &&
431 	    tp->window_clamp + tp->advmss > maxwin)
432 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
433 
434 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
435 	tp->snd_cwnd_stamp = tcp_time_stamp;
436 }
437 
438 /* 5. Recalculate window clamp after socket hit its memory bounds. */
439 static void tcp_clamp_window(struct sock *sk)
440 {
441 	struct tcp_sock *tp = tcp_sk(sk);
442 	struct inet_connection_sock *icsk = inet_csk(sk);
443 
444 	icsk->icsk_ack.quick = 0;
445 
446 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
447 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
448 	    !sk_under_memory_pressure(sk) &&
449 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
450 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
451 				    sysctl_tcp_rmem[2]);
452 	}
453 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
454 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
455 }
456 
457 /* Initialize RCV_MSS value.
458  * RCV_MSS is an our guess about MSS used by the peer.
459  * We haven't any direct information about the MSS.
460  * It's better to underestimate the RCV_MSS rather than overestimate.
461  * Overestimations make us ACKing less frequently than needed.
462  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
463  */
464 void tcp_initialize_rcv_mss(struct sock *sk)
465 {
466 	const struct tcp_sock *tp = tcp_sk(sk);
467 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
468 
469 	hint = min(hint, tp->rcv_wnd / 2);
470 	hint = min(hint, TCP_MSS_DEFAULT);
471 	hint = max(hint, TCP_MIN_MSS);
472 
473 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
474 }
475 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
476 
477 /* Receiver "autotuning" code.
478  *
479  * The algorithm for RTT estimation w/o timestamps is based on
480  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
481  * <http://public.lanl.gov/radiant/pubs.html#DRS>
482  *
483  * More detail on this code can be found at
484  * <http://staff.psc.edu/jheffner/>,
485  * though this reference is out of date.  A new paper
486  * is pending.
487  */
488 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
489 {
490 	u32 new_sample = tp->rcv_rtt_est.rtt;
491 	long m = sample;
492 
493 	if (m == 0)
494 		m = 1;
495 
496 	if (new_sample != 0) {
497 		/* If we sample in larger samples in the non-timestamp
498 		 * case, we could grossly overestimate the RTT especially
499 		 * with chatty applications or bulk transfer apps which
500 		 * are stalled on filesystem I/O.
501 		 *
502 		 * Also, since we are only going for a minimum in the
503 		 * non-timestamp case, we do not smooth things out
504 		 * else with timestamps disabled convergence takes too
505 		 * long.
506 		 */
507 		if (!win_dep) {
508 			m -= (new_sample >> 3);
509 			new_sample += m;
510 		} else {
511 			m <<= 3;
512 			if (m < new_sample)
513 				new_sample = m;
514 		}
515 	} else {
516 		/* No previous measure. */
517 		new_sample = m << 3;
518 	}
519 
520 	if (tp->rcv_rtt_est.rtt != new_sample)
521 		tp->rcv_rtt_est.rtt = new_sample;
522 }
523 
524 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
525 {
526 	if (tp->rcv_rtt_est.time == 0)
527 		goto new_measure;
528 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
529 		return;
530 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
531 
532 new_measure:
533 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
534 	tp->rcv_rtt_est.time = tcp_time_stamp;
535 }
536 
537 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
538 					  const struct sk_buff *skb)
539 {
540 	struct tcp_sock *tp = tcp_sk(sk);
541 	if (tp->rx_opt.rcv_tsecr &&
542 	    (TCP_SKB_CB(skb)->end_seq -
543 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
544 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
545 }
546 
547 /*
548  * This function should be called every time data is copied to user space.
549  * It calculates the appropriate TCP receive buffer space.
550  */
551 void tcp_rcv_space_adjust(struct sock *sk)
552 {
553 	struct tcp_sock *tp = tcp_sk(sk);
554 	int time;
555 	int copied;
556 
557 	time = tcp_time_stamp - tp->rcvq_space.time;
558 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
559 		return;
560 
561 	/* Number of bytes copied to user in last RTT */
562 	copied = tp->copied_seq - tp->rcvq_space.seq;
563 	if (copied <= tp->rcvq_space.space)
564 		goto new_measure;
565 
566 	/* A bit of theory :
567 	 * copied = bytes received in previous RTT, our base window
568 	 * To cope with packet losses, we need a 2x factor
569 	 * To cope with slow start, and sender growing its cwin by 100 %
570 	 * every RTT, we need a 4x factor, because the ACK we are sending
571 	 * now is for the next RTT, not the current one :
572 	 * <prev RTT . ><current RTT .. ><next RTT .... >
573 	 */
574 
575 	if (sysctl_tcp_moderate_rcvbuf &&
576 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
577 		int rcvwin, rcvmem, rcvbuf;
578 
579 		/* minimal window to cope with packet losses, assuming
580 		 * steady state. Add some cushion because of small variations.
581 		 */
582 		rcvwin = (copied << 1) + 16 * tp->advmss;
583 
584 		/* If rate increased by 25%,
585 		 *	assume slow start, rcvwin = 3 * copied
586 		 * If rate increased by 50%,
587 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
588 		 */
589 		if (copied >=
590 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
591 			if (copied >=
592 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
593 				rcvwin <<= 1;
594 			else
595 				rcvwin += (rcvwin >> 1);
596 		}
597 
598 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
599 		while (tcp_win_from_space(rcvmem) < tp->advmss)
600 			rcvmem += 128;
601 
602 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
603 		if (rcvbuf > sk->sk_rcvbuf) {
604 			sk->sk_rcvbuf = rcvbuf;
605 
606 			/* Make the window clamp follow along.  */
607 			tp->window_clamp = rcvwin;
608 		}
609 	}
610 	tp->rcvq_space.space = copied;
611 
612 new_measure:
613 	tp->rcvq_space.seq = tp->copied_seq;
614 	tp->rcvq_space.time = tcp_time_stamp;
615 }
616 
617 /* There is something which you must keep in mind when you analyze the
618  * behavior of the tp->ato delayed ack timeout interval.  When a
619  * connection starts up, we want to ack as quickly as possible.  The
620  * problem is that "good" TCP's do slow start at the beginning of data
621  * transmission.  The means that until we send the first few ACK's the
622  * sender will sit on his end and only queue most of his data, because
623  * he can only send snd_cwnd unacked packets at any given time.  For
624  * each ACK we send, he increments snd_cwnd and transmits more of his
625  * queue.  -DaveM
626  */
627 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
628 {
629 	struct tcp_sock *tp = tcp_sk(sk);
630 	struct inet_connection_sock *icsk = inet_csk(sk);
631 	u32 now;
632 
633 	inet_csk_schedule_ack(sk);
634 
635 	tcp_measure_rcv_mss(sk, skb);
636 
637 	tcp_rcv_rtt_measure(tp);
638 
639 	now = tcp_time_stamp;
640 
641 	if (!icsk->icsk_ack.ato) {
642 		/* The _first_ data packet received, initialize
643 		 * delayed ACK engine.
644 		 */
645 		tcp_incr_quickack(sk);
646 		icsk->icsk_ack.ato = TCP_ATO_MIN;
647 	} else {
648 		int m = now - icsk->icsk_ack.lrcvtime;
649 
650 		if (m <= TCP_ATO_MIN / 2) {
651 			/* The fastest case is the first. */
652 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
653 		} else if (m < icsk->icsk_ack.ato) {
654 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
655 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
656 				icsk->icsk_ack.ato = icsk->icsk_rto;
657 		} else if (m > icsk->icsk_rto) {
658 			/* Too long gap. Apparently sender failed to
659 			 * restart window, so that we send ACKs quickly.
660 			 */
661 			tcp_incr_quickack(sk);
662 			sk_mem_reclaim(sk);
663 		}
664 	}
665 	icsk->icsk_ack.lrcvtime = now;
666 
667 	tcp_ecn_check_ce(tp, skb);
668 
669 	if (skb->len >= 128)
670 		tcp_grow_window(sk, skb);
671 }
672 
673 /* Called to compute a smoothed rtt estimate. The data fed to this
674  * routine either comes from timestamps, or from segments that were
675  * known _not_ to have been retransmitted [see Karn/Partridge
676  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
677  * piece by Van Jacobson.
678  * NOTE: the next three routines used to be one big routine.
679  * To save cycles in the RFC 1323 implementation it was better to break
680  * it up into three procedures. -- erics
681  */
682 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
683 {
684 	struct tcp_sock *tp = tcp_sk(sk);
685 	long m = mrtt_us; /* RTT */
686 	u32 srtt = tp->srtt_us;
687 
688 	/*	The following amusing code comes from Jacobson's
689 	 *	article in SIGCOMM '88.  Note that rtt and mdev
690 	 *	are scaled versions of rtt and mean deviation.
691 	 *	This is designed to be as fast as possible
692 	 *	m stands for "measurement".
693 	 *
694 	 *	On a 1990 paper the rto value is changed to:
695 	 *	RTO = rtt + 4 * mdev
696 	 *
697 	 * Funny. This algorithm seems to be very broken.
698 	 * These formulae increase RTO, when it should be decreased, increase
699 	 * too slowly, when it should be increased quickly, decrease too quickly
700 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
701 	 * does not matter how to _calculate_ it. Seems, it was trap
702 	 * that VJ failed to avoid. 8)
703 	 */
704 	if (srtt != 0) {
705 		m -= (srtt >> 3);	/* m is now error in rtt est */
706 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
707 		if (m < 0) {
708 			m = -m;		/* m is now abs(error) */
709 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
710 			/* This is similar to one of Eifel findings.
711 			 * Eifel blocks mdev updates when rtt decreases.
712 			 * This solution is a bit different: we use finer gain
713 			 * for mdev in this case (alpha*beta).
714 			 * Like Eifel it also prevents growth of rto,
715 			 * but also it limits too fast rto decreases,
716 			 * happening in pure Eifel.
717 			 */
718 			if (m > 0)
719 				m >>= 3;
720 		} else {
721 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
722 		}
723 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
724 		if (tp->mdev_us > tp->mdev_max_us) {
725 			tp->mdev_max_us = tp->mdev_us;
726 			if (tp->mdev_max_us > tp->rttvar_us)
727 				tp->rttvar_us = tp->mdev_max_us;
728 		}
729 		if (after(tp->snd_una, tp->rtt_seq)) {
730 			if (tp->mdev_max_us < tp->rttvar_us)
731 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
732 			tp->rtt_seq = tp->snd_nxt;
733 			tp->mdev_max_us = tcp_rto_min_us(sk);
734 		}
735 	} else {
736 		/* no previous measure. */
737 		srtt = m << 3;		/* take the measured time to be rtt */
738 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
739 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
740 		tp->mdev_max_us = tp->rttvar_us;
741 		tp->rtt_seq = tp->snd_nxt;
742 	}
743 	tp->srtt_us = max(1U, srtt);
744 }
745 
746 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
747  * Note: TCP stack does not yet implement pacing.
748  * FQ packet scheduler can be used to implement cheap but effective
749  * TCP pacing, to smooth the burst on large writes when packets
750  * in flight is significantly lower than cwnd (or rwin)
751  */
752 static void tcp_update_pacing_rate(struct sock *sk)
753 {
754 	const struct tcp_sock *tp = tcp_sk(sk);
755 	u64 rate;
756 
757 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
758 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
759 
760 	rate *= max(tp->snd_cwnd, tp->packets_out);
761 
762 	if (likely(tp->srtt_us))
763 		do_div(rate, tp->srtt_us);
764 
765 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
766 	 * without any lock. We want to make sure compiler wont store
767 	 * intermediate values in this location.
768 	 */
769 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
770 						sk->sk_max_pacing_rate);
771 }
772 
773 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
774  * routine referred to above.
775  */
776 static void tcp_set_rto(struct sock *sk)
777 {
778 	const struct tcp_sock *tp = tcp_sk(sk);
779 	/* Old crap is replaced with new one. 8)
780 	 *
781 	 * More seriously:
782 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
783 	 *    It cannot be less due to utterly erratic ACK generation made
784 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
785 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
786 	 *    is invisible. Actually, Linux-2.4 also generates erratic
787 	 *    ACKs in some circumstances.
788 	 */
789 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
790 
791 	/* 2. Fixups made earlier cannot be right.
792 	 *    If we do not estimate RTO correctly without them,
793 	 *    all the algo is pure shit and should be replaced
794 	 *    with correct one. It is exactly, which we pretend to do.
795 	 */
796 
797 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
798 	 * guarantees that rto is higher.
799 	 */
800 	tcp_bound_rto(sk);
801 }
802 
803 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
804 {
805 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
806 
807 	if (!cwnd)
808 		cwnd = TCP_INIT_CWND;
809 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
810 }
811 
812 /*
813  * Packet counting of FACK is based on in-order assumptions, therefore TCP
814  * disables it when reordering is detected
815  */
816 void tcp_disable_fack(struct tcp_sock *tp)
817 {
818 	/* RFC3517 uses different metric in lost marker => reset on change */
819 	if (tcp_is_fack(tp))
820 		tp->lost_skb_hint = NULL;
821 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
822 }
823 
824 /* Take a notice that peer is sending D-SACKs */
825 static void tcp_dsack_seen(struct tcp_sock *tp)
826 {
827 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
828 }
829 
830 static void tcp_update_reordering(struct sock *sk, const int metric,
831 				  const int ts)
832 {
833 	struct tcp_sock *tp = tcp_sk(sk);
834 	if (metric > tp->reordering) {
835 		int mib_idx;
836 
837 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
838 
839 		/* This exciting event is worth to be remembered. 8) */
840 		if (ts)
841 			mib_idx = LINUX_MIB_TCPTSREORDER;
842 		else if (tcp_is_reno(tp))
843 			mib_idx = LINUX_MIB_TCPRENOREORDER;
844 		else if (tcp_is_fack(tp))
845 			mib_idx = LINUX_MIB_TCPFACKREORDER;
846 		else
847 			mib_idx = LINUX_MIB_TCPSACKREORDER;
848 
849 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
850 #if FASTRETRANS_DEBUG > 1
851 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
852 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
853 			 tp->reordering,
854 			 tp->fackets_out,
855 			 tp->sacked_out,
856 			 tp->undo_marker ? tp->undo_retrans : 0);
857 #endif
858 		tcp_disable_fack(tp);
859 	}
860 
861 	if (metric > 0)
862 		tcp_disable_early_retrans(tp);
863 }
864 
865 /* This must be called before lost_out is incremented */
866 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
867 {
868 	if ((tp->retransmit_skb_hint == NULL) ||
869 	    before(TCP_SKB_CB(skb)->seq,
870 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
871 		tp->retransmit_skb_hint = skb;
872 
873 	if (!tp->lost_out ||
874 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
875 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
876 }
877 
878 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
879 {
880 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
881 		tcp_verify_retransmit_hint(tp, skb);
882 
883 		tp->lost_out += tcp_skb_pcount(skb);
884 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
885 	}
886 }
887 
888 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
889 					    struct sk_buff *skb)
890 {
891 	tcp_verify_retransmit_hint(tp, skb);
892 
893 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
894 		tp->lost_out += tcp_skb_pcount(skb);
895 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
896 	}
897 }
898 
899 /* This procedure tags the retransmission queue when SACKs arrive.
900  *
901  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
902  * Packets in queue with these bits set are counted in variables
903  * sacked_out, retrans_out and lost_out, correspondingly.
904  *
905  * Valid combinations are:
906  * Tag  InFlight	Description
907  * 0	1		- orig segment is in flight.
908  * S	0		- nothing flies, orig reached receiver.
909  * L	0		- nothing flies, orig lost by net.
910  * R	2		- both orig and retransmit are in flight.
911  * L|R	1		- orig is lost, retransmit is in flight.
912  * S|R  1		- orig reached receiver, retrans is still in flight.
913  * (L|S|R is logically valid, it could occur when L|R is sacked,
914  *  but it is equivalent to plain S and code short-curcuits it to S.
915  *  L|S is logically invalid, it would mean -1 packet in flight 8))
916  *
917  * These 6 states form finite state machine, controlled by the following events:
918  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
919  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
920  * 3. Loss detection event of two flavors:
921  *	A. Scoreboard estimator decided the packet is lost.
922  *	   A'. Reno "three dupacks" marks head of queue lost.
923  *	   A''. Its FACK modification, head until snd.fack is lost.
924  *	B. SACK arrives sacking SND.NXT at the moment, when the
925  *	   segment was retransmitted.
926  * 4. D-SACK added new rule: D-SACK changes any tag to S.
927  *
928  * It is pleasant to note, that state diagram turns out to be commutative,
929  * so that we are allowed not to be bothered by order of our actions,
930  * when multiple events arrive simultaneously. (see the function below).
931  *
932  * Reordering detection.
933  * --------------------
934  * Reordering metric is maximal distance, which a packet can be displaced
935  * in packet stream. With SACKs we can estimate it:
936  *
937  * 1. SACK fills old hole and the corresponding segment was not
938  *    ever retransmitted -> reordering. Alas, we cannot use it
939  *    when segment was retransmitted.
940  * 2. The last flaw is solved with D-SACK. D-SACK arrives
941  *    for retransmitted and already SACKed segment -> reordering..
942  * Both of these heuristics are not used in Loss state, when we cannot
943  * account for retransmits accurately.
944  *
945  * SACK block validation.
946  * ----------------------
947  *
948  * SACK block range validation checks that the received SACK block fits to
949  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
950  * Note that SND.UNA is not included to the range though being valid because
951  * it means that the receiver is rather inconsistent with itself reporting
952  * SACK reneging when it should advance SND.UNA. Such SACK block this is
953  * perfectly valid, however, in light of RFC2018 which explicitly states
954  * that "SACK block MUST reflect the newest segment.  Even if the newest
955  * segment is going to be discarded ...", not that it looks very clever
956  * in case of head skb. Due to potentional receiver driven attacks, we
957  * choose to avoid immediate execution of a walk in write queue due to
958  * reneging and defer head skb's loss recovery to standard loss recovery
959  * procedure that will eventually trigger (nothing forbids us doing this).
960  *
961  * Implements also blockage to start_seq wrap-around. Problem lies in the
962  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
963  * there's no guarantee that it will be before snd_nxt (n). The problem
964  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
965  * wrap (s_w):
966  *
967  *         <- outs wnd ->                          <- wrapzone ->
968  *         u     e      n                         u_w   e_w  s n_w
969  *         |     |      |                          |     |   |  |
970  * |<------------+------+----- TCP seqno space --------------+---------->|
971  * ...-- <2^31 ->|                                           |<--------...
972  * ...---- >2^31 ------>|                                    |<--------...
973  *
974  * Current code wouldn't be vulnerable but it's better still to discard such
975  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
976  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
977  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
978  * equal to the ideal case (infinite seqno space without wrap caused issues).
979  *
980  * With D-SACK the lower bound is extended to cover sequence space below
981  * SND.UNA down to undo_marker, which is the last point of interest. Yet
982  * again, D-SACK block must not to go across snd_una (for the same reason as
983  * for the normal SACK blocks, explained above). But there all simplicity
984  * ends, TCP might receive valid D-SACKs below that. As long as they reside
985  * fully below undo_marker they do not affect behavior in anyway and can
986  * therefore be safely ignored. In rare cases (which are more or less
987  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
988  * fragmentation and packet reordering past skb's retransmission. To consider
989  * them correctly, the acceptable range must be extended even more though
990  * the exact amount is rather hard to quantify. However, tp->max_window can
991  * be used as an exaggerated estimate.
992  */
993 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
994 				   u32 start_seq, u32 end_seq)
995 {
996 	/* Too far in future, or reversed (interpretation is ambiguous) */
997 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
998 		return false;
999 
1000 	/* Nasty start_seq wrap-around check (see comments above) */
1001 	if (!before(start_seq, tp->snd_nxt))
1002 		return false;
1003 
1004 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1005 	 * start_seq == snd_una is non-sensical (see comments above)
1006 	 */
1007 	if (after(start_seq, tp->snd_una))
1008 		return true;
1009 
1010 	if (!is_dsack || !tp->undo_marker)
1011 		return false;
1012 
1013 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1014 	if (after(end_seq, tp->snd_una))
1015 		return false;
1016 
1017 	if (!before(start_seq, tp->undo_marker))
1018 		return true;
1019 
1020 	/* Too old */
1021 	if (!after(end_seq, tp->undo_marker))
1022 		return false;
1023 
1024 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1025 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1026 	 */
1027 	return !before(start_seq, end_seq - tp->max_window);
1028 }
1029 
1030 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1031  * Event "B". Later note: FACK people cheated me again 8), we have to account
1032  * for reordering! Ugly, but should help.
1033  *
1034  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1035  * less than what is now known to be received by the other end (derived from
1036  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1037  * retransmitted skbs to avoid some costly processing per ACKs.
1038  */
1039 static void tcp_mark_lost_retrans(struct sock *sk)
1040 {
1041 	const struct inet_connection_sock *icsk = inet_csk(sk);
1042 	struct tcp_sock *tp = tcp_sk(sk);
1043 	struct sk_buff *skb;
1044 	int cnt = 0;
1045 	u32 new_low_seq = tp->snd_nxt;
1046 	u32 received_upto = tcp_highest_sack_seq(tp);
1047 
1048 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1049 	    !after(received_upto, tp->lost_retrans_low) ||
1050 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1051 		return;
1052 
1053 	tcp_for_write_queue(skb, sk) {
1054 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1055 
1056 		if (skb == tcp_send_head(sk))
1057 			break;
1058 		if (cnt == tp->retrans_out)
1059 			break;
1060 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1061 			continue;
1062 
1063 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1064 			continue;
1065 
1066 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1067 		 * constraint here (see above) but figuring out that at
1068 		 * least tp->reordering SACK blocks reside between ack_seq
1069 		 * and received_upto is not easy task to do cheaply with
1070 		 * the available datastructures.
1071 		 *
1072 		 * Whether FACK should check here for tp->reordering segs
1073 		 * in-between one could argue for either way (it would be
1074 		 * rather simple to implement as we could count fack_count
1075 		 * during the walk and do tp->fackets_out - fack_count).
1076 		 */
1077 		if (after(received_upto, ack_seq)) {
1078 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1079 			tp->retrans_out -= tcp_skb_pcount(skb);
1080 
1081 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1082 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1083 		} else {
1084 			if (before(ack_seq, new_low_seq))
1085 				new_low_seq = ack_seq;
1086 			cnt += tcp_skb_pcount(skb);
1087 		}
1088 	}
1089 
1090 	if (tp->retrans_out)
1091 		tp->lost_retrans_low = new_low_seq;
1092 }
1093 
1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095 			    struct tcp_sack_block_wire *sp, int num_sacks,
1096 			    u32 prior_snd_una)
1097 {
1098 	struct tcp_sock *tp = tcp_sk(sk);
1099 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1101 	bool dup_sack = false;
1102 
1103 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1104 		dup_sack = true;
1105 		tcp_dsack_seen(tp);
1106 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1107 	} else if (num_sacks > 1) {
1108 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1110 
1111 		if (!after(end_seq_0, end_seq_1) &&
1112 		    !before(start_seq_0, start_seq_1)) {
1113 			dup_sack = true;
1114 			tcp_dsack_seen(tp);
1115 			NET_INC_STATS_BH(sock_net(sk),
1116 					LINUX_MIB_TCPDSACKOFORECV);
1117 		}
1118 	}
1119 
1120 	/* D-SACK for already forgotten data... Do dumb counting. */
1121 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1122 	    !after(end_seq_0, prior_snd_una) &&
1123 	    after(end_seq_0, tp->undo_marker))
1124 		tp->undo_retrans--;
1125 
1126 	return dup_sack;
1127 }
1128 
1129 struct tcp_sacktag_state {
1130 	int	reord;
1131 	int	fack_count;
1132 	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1133 	int	flag;
1134 };
1135 
1136 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1137  * the incoming SACK may not exactly match but we can find smaller MSS
1138  * aligned portion of it that matches. Therefore we might need to fragment
1139  * which may fail and creates some hassle (caller must handle error case
1140  * returns).
1141  *
1142  * FIXME: this could be merged to shift decision code
1143  */
1144 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1145 				  u32 start_seq, u32 end_seq)
1146 {
1147 	int err;
1148 	bool in_sack;
1149 	unsigned int pkt_len;
1150 	unsigned int mss;
1151 
1152 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1153 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1154 
1155 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1156 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1157 		mss = tcp_skb_mss(skb);
1158 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1159 
1160 		if (!in_sack) {
1161 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1162 			if (pkt_len < mss)
1163 				pkt_len = mss;
1164 		} else {
1165 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1166 			if (pkt_len < mss)
1167 				return -EINVAL;
1168 		}
1169 
1170 		/* Round if necessary so that SACKs cover only full MSSes
1171 		 * and/or the remaining small portion (if present)
1172 		 */
1173 		if (pkt_len > mss) {
1174 			unsigned int new_len = (pkt_len / mss) * mss;
1175 			if (!in_sack && new_len < pkt_len) {
1176 				new_len += mss;
1177 				if (new_len >= skb->len)
1178 					return 0;
1179 			}
1180 			pkt_len = new_len;
1181 		}
1182 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1183 		if (err < 0)
1184 			return err;
1185 	}
1186 
1187 	return in_sack;
1188 }
1189 
1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1191 static u8 tcp_sacktag_one(struct sock *sk,
1192 			  struct tcp_sacktag_state *state, u8 sacked,
1193 			  u32 start_seq, u32 end_seq,
1194 			  int dup_sack, int pcount,
1195 			  const struct skb_mstamp *xmit_time)
1196 {
1197 	struct tcp_sock *tp = tcp_sk(sk);
1198 	int fack_count = state->fack_count;
1199 
1200 	/* Account D-SACK for retransmitted packet. */
1201 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1202 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1203 		    after(end_seq, tp->undo_marker))
1204 			tp->undo_retrans--;
1205 		if (sacked & TCPCB_SACKED_ACKED)
1206 			state->reord = min(fack_count, state->reord);
1207 	}
1208 
1209 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1210 	if (!after(end_seq, tp->snd_una))
1211 		return sacked;
1212 
1213 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1214 		if (sacked & TCPCB_SACKED_RETRANS) {
1215 			/* If the segment is not tagged as lost,
1216 			 * we do not clear RETRANS, believing
1217 			 * that retransmission is still in flight.
1218 			 */
1219 			if (sacked & TCPCB_LOST) {
1220 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1221 				tp->lost_out -= pcount;
1222 				tp->retrans_out -= pcount;
1223 			}
1224 		} else {
1225 			if (!(sacked & TCPCB_RETRANS)) {
1226 				/* New sack for not retransmitted frame,
1227 				 * which was in hole. It is reordering.
1228 				 */
1229 				if (before(start_seq,
1230 					   tcp_highest_sack_seq(tp)))
1231 					state->reord = min(fack_count,
1232 							   state->reord);
1233 				if (!after(end_seq, tp->high_seq))
1234 					state->flag |= FLAG_ORIG_SACK_ACKED;
1235 				/* Pick the earliest sequence sacked for RTT */
1236 				if (state->rtt_us < 0) {
1237 					struct skb_mstamp now;
1238 
1239 					skb_mstamp_get(&now);
1240 					state->rtt_us = skb_mstamp_us_delta(&now,
1241 								xmit_time);
1242 				}
1243 			}
1244 
1245 			if (sacked & TCPCB_LOST) {
1246 				sacked &= ~TCPCB_LOST;
1247 				tp->lost_out -= pcount;
1248 			}
1249 		}
1250 
1251 		sacked |= TCPCB_SACKED_ACKED;
1252 		state->flag |= FLAG_DATA_SACKED;
1253 		tp->sacked_out += pcount;
1254 
1255 		fack_count += pcount;
1256 
1257 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1258 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1259 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1260 			tp->lost_cnt_hint += pcount;
1261 
1262 		if (fack_count > tp->fackets_out)
1263 			tp->fackets_out = fack_count;
1264 	}
1265 
1266 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1267 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1268 	 * are accounted above as well.
1269 	 */
1270 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1271 		sacked &= ~TCPCB_SACKED_RETRANS;
1272 		tp->retrans_out -= pcount;
1273 	}
1274 
1275 	return sacked;
1276 }
1277 
1278 /* Shift newly-SACKed bytes from this skb to the immediately previous
1279  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1280  */
1281 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1282 			    struct tcp_sacktag_state *state,
1283 			    unsigned int pcount, int shifted, int mss,
1284 			    bool dup_sack)
1285 {
1286 	struct tcp_sock *tp = tcp_sk(sk);
1287 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1288 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1289 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1290 
1291 	BUG_ON(!pcount);
1292 
1293 	/* Adjust counters and hints for the newly sacked sequence
1294 	 * range but discard the return value since prev is already
1295 	 * marked. We must tag the range first because the seq
1296 	 * advancement below implicitly advances
1297 	 * tcp_highest_sack_seq() when skb is highest_sack.
1298 	 */
1299 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1300 			start_seq, end_seq, dup_sack, pcount,
1301 			&skb->skb_mstamp);
1302 
1303 	if (skb == tp->lost_skb_hint)
1304 		tp->lost_cnt_hint += pcount;
1305 
1306 	TCP_SKB_CB(prev)->end_seq += shifted;
1307 	TCP_SKB_CB(skb)->seq += shifted;
1308 
1309 	tcp_skb_pcount_add(prev, pcount);
1310 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1311 	tcp_skb_pcount_add(skb, -pcount);
1312 
1313 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1314 	 * in theory this shouldn't be necessary but as long as DSACK
1315 	 * code can come after this skb later on it's better to keep
1316 	 * setting gso_size to something.
1317 	 */
1318 	if (!skb_shinfo(prev)->gso_size) {
1319 		skb_shinfo(prev)->gso_size = mss;
1320 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1321 	}
1322 
1323 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1324 	if (tcp_skb_pcount(skb) <= 1) {
1325 		skb_shinfo(skb)->gso_size = 0;
1326 		skb_shinfo(skb)->gso_type = 0;
1327 	}
1328 
1329 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1330 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1331 
1332 	if (skb->len > 0) {
1333 		BUG_ON(!tcp_skb_pcount(skb));
1334 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1335 		return false;
1336 	}
1337 
1338 	/* Whole SKB was eaten :-) */
1339 
1340 	if (skb == tp->retransmit_skb_hint)
1341 		tp->retransmit_skb_hint = prev;
1342 	if (skb == tp->lost_skb_hint) {
1343 		tp->lost_skb_hint = prev;
1344 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1345 	}
1346 
1347 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1348 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 		TCP_SKB_CB(prev)->end_seq++;
1350 
1351 	if (skb == tcp_highest_sack(sk))
1352 		tcp_advance_highest_sack(sk, skb);
1353 
1354 	tcp_unlink_write_queue(skb, sk);
1355 	sk_wmem_free_skb(sk, skb);
1356 
1357 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1358 
1359 	return true;
1360 }
1361 
1362 /* I wish gso_size would have a bit more sane initialization than
1363  * something-or-zero which complicates things
1364  */
1365 static int tcp_skb_seglen(const struct sk_buff *skb)
1366 {
1367 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1368 }
1369 
1370 /* Shifting pages past head area doesn't work */
1371 static int skb_can_shift(const struct sk_buff *skb)
1372 {
1373 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1374 }
1375 
1376 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1377  * skb.
1378  */
1379 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1380 					  struct tcp_sacktag_state *state,
1381 					  u32 start_seq, u32 end_seq,
1382 					  bool dup_sack)
1383 {
1384 	struct tcp_sock *tp = tcp_sk(sk);
1385 	struct sk_buff *prev;
1386 	int mss;
1387 	int pcount = 0;
1388 	int len;
1389 	int in_sack;
1390 
1391 	if (!sk_can_gso(sk))
1392 		goto fallback;
1393 
1394 	/* Normally R but no L won't result in plain S */
1395 	if (!dup_sack &&
1396 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1397 		goto fallback;
1398 	if (!skb_can_shift(skb))
1399 		goto fallback;
1400 	/* This frame is about to be dropped (was ACKed). */
1401 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1402 		goto fallback;
1403 
1404 	/* Can only happen with delayed DSACK + discard craziness */
1405 	if (unlikely(skb == tcp_write_queue_head(sk)))
1406 		goto fallback;
1407 	prev = tcp_write_queue_prev(sk, skb);
1408 
1409 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1410 		goto fallback;
1411 
1412 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1413 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1414 
1415 	if (in_sack) {
1416 		len = skb->len;
1417 		pcount = tcp_skb_pcount(skb);
1418 		mss = tcp_skb_seglen(skb);
1419 
1420 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1421 		 * drop this restriction as unnecessary
1422 		 */
1423 		if (mss != tcp_skb_seglen(prev))
1424 			goto fallback;
1425 	} else {
1426 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1427 			goto noop;
1428 		/* CHECKME: This is non-MSS split case only?, this will
1429 		 * cause skipped skbs due to advancing loop btw, original
1430 		 * has that feature too
1431 		 */
1432 		if (tcp_skb_pcount(skb) <= 1)
1433 			goto noop;
1434 
1435 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1436 		if (!in_sack) {
1437 			/* TODO: head merge to next could be attempted here
1438 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1439 			 * though it might not be worth of the additional hassle
1440 			 *
1441 			 * ...we can probably just fallback to what was done
1442 			 * previously. We could try merging non-SACKed ones
1443 			 * as well but it probably isn't going to buy off
1444 			 * because later SACKs might again split them, and
1445 			 * it would make skb timestamp tracking considerably
1446 			 * harder problem.
1447 			 */
1448 			goto fallback;
1449 		}
1450 
1451 		len = end_seq - TCP_SKB_CB(skb)->seq;
1452 		BUG_ON(len < 0);
1453 		BUG_ON(len > skb->len);
1454 
1455 		/* MSS boundaries should be honoured or else pcount will
1456 		 * severely break even though it makes things bit trickier.
1457 		 * Optimize common case to avoid most of the divides
1458 		 */
1459 		mss = tcp_skb_mss(skb);
1460 
1461 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1462 		 * drop this restriction as unnecessary
1463 		 */
1464 		if (mss != tcp_skb_seglen(prev))
1465 			goto fallback;
1466 
1467 		if (len == mss) {
1468 			pcount = 1;
1469 		} else if (len < mss) {
1470 			goto noop;
1471 		} else {
1472 			pcount = len / mss;
1473 			len = pcount * mss;
1474 		}
1475 	}
1476 
1477 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1478 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1479 		goto fallback;
1480 
1481 	if (!skb_shift(prev, skb, len))
1482 		goto fallback;
1483 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1484 		goto out;
1485 
1486 	/* Hole filled allows collapsing with the next as well, this is very
1487 	 * useful when hole on every nth skb pattern happens
1488 	 */
1489 	if (prev == tcp_write_queue_tail(sk))
1490 		goto out;
1491 	skb = tcp_write_queue_next(sk, prev);
1492 
1493 	if (!skb_can_shift(skb) ||
1494 	    (skb == tcp_send_head(sk)) ||
1495 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1496 	    (mss != tcp_skb_seglen(skb)))
1497 		goto out;
1498 
1499 	len = skb->len;
1500 	if (skb_shift(prev, skb, len)) {
1501 		pcount += tcp_skb_pcount(skb);
1502 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1503 	}
1504 
1505 out:
1506 	state->fack_count += pcount;
1507 	return prev;
1508 
1509 noop:
1510 	return skb;
1511 
1512 fallback:
1513 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1514 	return NULL;
1515 }
1516 
1517 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1518 					struct tcp_sack_block *next_dup,
1519 					struct tcp_sacktag_state *state,
1520 					u32 start_seq, u32 end_seq,
1521 					bool dup_sack_in)
1522 {
1523 	struct tcp_sock *tp = tcp_sk(sk);
1524 	struct sk_buff *tmp;
1525 
1526 	tcp_for_write_queue_from(skb, sk) {
1527 		int in_sack = 0;
1528 		bool dup_sack = dup_sack_in;
1529 
1530 		if (skb == tcp_send_head(sk))
1531 			break;
1532 
1533 		/* queue is in-order => we can short-circuit the walk early */
1534 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1535 			break;
1536 
1537 		if ((next_dup != NULL) &&
1538 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1539 			in_sack = tcp_match_skb_to_sack(sk, skb,
1540 							next_dup->start_seq,
1541 							next_dup->end_seq);
1542 			if (in_sack > 0)
1543 				dup_sack = true;
1544 		}
1545 
1546 		/* skb reference here is a bit tricky to get right, since
1547 		 * shifting can eat and free both this skb and the next,
1548 		 * so not even _safe variant of the loop is enough.
1549 		 */
1550 		if (in_sack <= 0) {
1551 			tmp = tcp_shift_skb_data(sk, skb, state,
1552 						 start_seq, end_seq, dup_sack);
1553 			if (tmp != NULL) {
1554 				if (tmp != skb) {
1555 					skb = tmp;
1556 					continue;
1557 				}
1558 
1559 				in_sack = 0;
1560 			} else {
1561 				in_sack = tcp_match_skb_to_sack(sk, skb,
1562 								start_seq,
1563 								end_seq);
1564 			}
1565 		}
1566 
1567 		if (unlikely(in_sack < 0))
1568 			break;
1569 
1570 		if (in_sack) {
1571 			TCP_SKB_CB(skb)->sacked =
1572 				tcp_sacktag_one(sk,
1573 						state,
1574 						TCP_SKB_CB(skb)->sacked,
1575 						TCP_SKB_CB(skb)->seq,
1576 						TCP_SKB_CB(skb)->end_seq,
1577 						dup_sack,
1578 						tcp_skb_pcount(skb),
1579 						&skb->skb_mstamp);
1580 
1581 			if (!before(TCP_SKB_CB(skb)->seq,
1582 				    tcp_highest_sack_seq(tp)))
1583 				tcp_advance_highest_sack(sk, skb);
1584 		}
1585 
1586 		state->fack_count += tcp_skb_pcount(skb);
1587 	}
1588 	return skb;
1589 }
1590 
1591 /* Avoid all extra work that is being done by sacktag while walking in
1592  * a normal way
1593  */
1594 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1595 					struct tcp_sacktag_state *state,
1596 					u32 skip_to_seq)
1597 {
1598 	tcp_for_write_queue_from(skb, sk) {
1599 		if (skb == tcp_send_head(sk))
1600 			break;
1601 
1602 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1603 			break;
1604 
1605 		state->fack_count += tcp_skb_pcount(skb);
1606 	}
1607 	return skb;
1608 }
1609 
1610 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1611 						struct sock *sk,
1612 						struct tcp_sack_block *next_dup,
1613 						struct tcp_sacktag_state *state,
1614 						u32 skip_to_seq)
1615 {
1616 	if (next_dup == NULL)
1617 		return skb;
1618 
1619 	if (before(next_dup->start_seq, skip_to_seq)) {
1620 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1621 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1622 				       next_dup->start_seq, next_dup->end_seq,
1623 				       1);
1624 	}
1625 
1626 	return skb;
1627 }
1628 
1629 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1630 {
1631 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1632 }
1633 
1634 static int
1635 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1636 			u32 prior_snd_una, long *sack_rtt_us)
1637 {
1638 	struct tcp_sock *tp = tcp_sk(sk);
1639 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1640 				    TCP_SKB_CB(ack_skb)->sacked);
1641 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1642 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1643 	struct tcp_sack_block *cache;
1644 	struct tcp_sacktag_state state;
1645 	struct sk_buff *skb;
1646 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1647 	int used_sacks;
1648 	bool found_dup_sack = false;
1649 	int i, j;
1650 	int first_sack_index;
1651 
1652 	state.flag = 0;
1653 	state.reord = tp->packets_out;
1654 	state.rtt_us = -1L;
1655 
1656 	if (!tp->sacked_out) {
1657 		if (WARN_ON(tp->fackets_out))
1658 			tp->fackets_out = 0;
1659 		tcp_highest_sack_reset(sk);
1660 	}
1661 
1662 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1663 					 num_sacks, prior_snd_una);
1664 	if (found_dup_sack)
1665 		state.flag |= FLAG_DSACKING_ACK;
1666 
1667 	/* Eliminate too old ACKs, but take into
1668 	 * account more or less fresh ones, they can
1669 	 * contain valid SACK info.
1670 	 */
1671 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1672 		return 0;
1673 
1674 	if (!tp->packets_out)
1675 		goto out;
1676 
1677 	used_sacks = 0;
1678 	first_sack_index = 0;
1679 	for (i = 0; i < num_sacks; i++) {
1680 		bool dup_sack = !i && found_dup_sack;
1681 
1682 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1683 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1684 
1685 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1686 					    sp[used_sacks].start_seq,
1687 					    sp[used_sacks].end_seq)) {
1688 			int mib_idx;
1689 
1690 			if (dup_sack) {
1691 				if (!tp->undo_marker)
1692 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1693 				else
1694 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1695 			} else {
1696 				/* Don't count olds caused by ACK reordering */
1697 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1698 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1699 					continue;
1700 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1701 			}
1702 
1703 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1704 			if (i == 0)
1705 				first_sack_index = -1;
1706 			continue;
1707 		}
1708 
1709 		/* Ignore very old stuff early */
1710 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1711 			continue;
1712 
1713 		used_sacks++;
1714 	}
1715 
1716 	/* order SACK blocks to allow in order walk of the retrans queue */
1717 	for (i = used_sacks - 1; i > 0; i--) {
1718 		for (j = 0; j < i; j++) {
1719 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1720 				swap(sp[j], sp[j + 1]);
1721 
1722 				/* Track where the first SACK block goes to */
1723 				if (j == first_sack_index)
1724 					first_sack_index = j + 1;
1725 			}
1726 		}
1727 	}
1728 
1729 	skb = tcp_write_queue_head(sk);
1730 	state.fack_count = 0;
1731 	i = 0;
1732 
1733 	if (!tp->sacked_out) {
1734 		/* It's already past, so skip checking against it */
1735 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1736 	} else {
1737 		cache = tp->recv_sack_cache;
1738 		/* Skip empty blocks in at head of the cache */
1739 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1740 		       !cache->end_seq)
1741 			cache++;
1742 	}
1743 
1744 	while (i < used_sacks) {
1745 		u32 start_seq = sp[i].start_seq;
1746 		u32 end_seq = sp[i].end_seq;
1747 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1748 		struct tcp_sack_block *next_dup = NULL;
1749 
1750 		if (found_dup_sack && ((i + 1) == first_sack_index))
1751 			next_dup = &sp[i + 1];
1752 
1753 		/* Skip too early cached blocks */
1754 		while (tcp_sack_cache_ok(tp, cache) &&
1755 		       !before(start_seq, cache->end_seq))
1756 			cache++;
1757 
1758 		/* Can skip some work by looking recv_sack_cache? */
1759 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1760 		    after(end_seq, cache->start_seq)) {
1761 
1762 			/* Head todo? */
1763 			if (before(start_seq, cache->start_seq)) {
1764 				skb = tcp_sacktag_skip(skb, sk, &state,
1765 						       start_seq);
1766 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1767 						       &state,
1768 						       start_seq,
1769 						       cache->start_seq,
1770 						       dup_sack);
1771 			}
1772 
1773 			/* Rest of the block already fully processed? */
1774 			if (!after(end_seq, cache->end_seq))
1775 				goto advance_sp;
1776 
1777 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1778 						       &state,
1779 						       cache->end_seq);
1780 
1781 			/* ...tail remains todo... */
1782 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1783 				/* ...but better entrypoint exists! */
1784 				skb = tcp_highest_sack(sk);
1785 				if (skb == NULL)
1786 					break;
1787 				state.fack_count = tp->fackets_out;
1788 				cache++;
1789 				goto walk;
1790 			}
1791 
1792 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1793 			/* Check overlap against next cached too (past this one already) */
1794 			cache++;
1795 			continue;
1796 		}
1797 
1798 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1799 			skb = tcp_highest_sack(sk);
1800 			if (skb == NULL)
1801 				break;
1802 			state.fack_count = tp->fackets_out;
1803 		}
1804 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1805 
1806 walk:
1807 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1808 				       start_seq, end_seq, dup_sack);
1809 
1810 advance_sp:
1811 		i++;
1812 	}
1813 
1814 	/* Clear the head of the cache sack blocks so we can skip it next time */
1815 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1816 		tp->recv_sack_cache[i].start_seq = 0;
1817 		tp->recv_sack_cache[i].end_seq = 0;
1818 	}
1819 	for (j = 0; j < used_sacks; j++)
1820 		tp->recv_sack_cache[i++] = sp[j];
1821 
1822 	tcp_mark_lost_retrans(sk);
1823 
1824 	tcp_verify_left_out(tp);
1825 
1826 	if ((state.reord < tp->fackets_out) &&
1827 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1828 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1829 
1830 out:
1831 
1832 #if FASTRETRANS_DEBUG > 0
1833 	WARN_ON((int)tp->sacked_out < 0);
1834 	WARN_ON((int)tp->lost_out < 0);
1835 	WARN_ON((int)tp->retrans_out < 0);
1836 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1837 #endif
1838 	*sack_rtt_us = state.rtt_us;
1839 	return state.flag;
1840 }
1841 
1842 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1843  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1844  */
1845 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1846 {
1847 	u32 holes;
1848 
1849 	holes = max(tp->lost_out, 1U);
1850 	holes = min(holes, tp->packets_out);
1851 
1852 	if ((tp->sacked_out + holes) > tp->packets_out) {
1853 		tp->sacked_out = tp->packets_out - holes;
1854 		return true;
1855 	}
1856 	return false;
1857 }
1858 
1859 /* If we receive more dupacks than we expected counting segments
1860  * in assumption of absent reordering, interpret this as reordering.
1861  * The only another reason could be bug in receiver TCP.
1862  */
1863 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1864 {
1865 	struct tcp_sock *tp = tcp_sk(sk);
1866 	if (tcp_limit_reno_sacked(tp))
1867 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1868 }
1869 
1870 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1871 
1872 static void tcp_add_reno_sack(struct sock *sk)
1873 {
1874 	struct tcp_sock *tp = tcp_sk(sk);
1875 	tp->sacked_out++;
1876 	tcp_check_reno_reordering(sk, 0);
1877 	tcp_verify_left_out(tp);
1878 }
1879 
1880 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1881 
1882 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1883 {
1884 	struct tcp_sock *tp = tcp_sk(sk);
1885 
1886 	if (acked > 0) {
1887 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1888 		if (acked - 1 >= tp->sacked_out)
1889 			tp->sacked_out = 0;
1890 		else
1891 			tp->sacked_out -= acked - 1;
1892 	}
1893 	tcp_check_reno_reordering(sk, acked);
1894 	tcp_verify_left_out(tp);
1895 }
1896 
1897 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1898 {
1899 	tp->sacked_out = 0;
1900 }
1901 
1902 void tcp_clear_retrans(struct tcp_sock *tp)
1903 {
1904 	tp->retrans_out = 0;
1905 	tp->lost_out = 0;
1906 	tp->undo_marker = 0;
1907 	tp->undo_retrans = -1;
1908 	tp->fackets_out = 0;
1909 	tp->sacked_out = 0;
1910 }
1911 
1912 static inline void tcp_init_undo(struct tcp_sock *tp)
1913 {
1914 	tp->undo_marker = tp->snd_una;
1915 	/* Retransmission still in flight may cause DSACKs later. */
1916 	tp->undo_retrans = tp->retrans_out ? : -1;
1917 }
1918 
1919 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1920  * and reset tags completely, otherwise preserve SACKs. If receiver
1921  * dropped its ofo queue, we will know this due to reneging detection.
1922  */
1923 void tcp_enter_loss(struct sock *sk)
1924 {
1925 	const struct inet_connection_sock *icsk = inet_csk(sk);
1926 	struct tcp_sock *tp = tcp_sk(sk);
1927 	struct sk_buff *skb;
1928 	bool new_recovery = false;
1929 	bool is_reneg;			/* is receiver reneging on SACKs? */
1930 
1931 	/* Reduce ssthresh if it has not yet been made inside this window. */
1932 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1933 	    !after(tp->high_seq, tp->snd_una) ||
1934 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1935 		new_recovery = true;
1936 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1937 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1938 		tcp_ca_event(sk, CA_EVENT_LOSS);
1939 		tcp_init_undo(tp);
1940 	}
1941 	tp->snd_cwnd	   = 1;
1942 	tp->snd_cwnd_cnt   = 0;
1943 	tp->snd_cwnd_stamp = tcp_time_stamp;
1944 
1945 	tp->retrans_out = 0;
1946 	tp->lost_out = 0;
1947 
1948 	if (tcp_is_reno(tp))
1949 		tcp_reset_reno_sack(tp);
1950 
1951 	skb = tcp_write_queue_head(sk);
1952 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1953 	if (is_reneg) {
1954 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1955 		tp->sacked_out = 0;
1956 		tp->fackets_out = 0;
1957 	}
1958 	tcp_clear_all_retrans_hints(tp);
1959 
1960 	tcp_for_write_queue(skb, sk) {
1961 		if (skb == tcp_send_head(sk))
1962 			break;
1963 
1964 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1965 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1966 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1967 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1968 			tp->lost_out += tcp_skb_pcount(skb);
1969 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1970 		}
1971 	}
1972 	tcp_verify_left_out(tp);
1973 
1974 	/* Timeout in disordered state after receiving substantial DUPACKs
1975 	 * suggests that the degree of reordering is over-estimated.
1976 	 */
1977 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1978 	    tp->sacked_out >= sysctl_tcp_reordering)
1979 		tp->reordering = min_t(unsigned int, tp->reordering,
1980 				       sysctl_tcp_reordering);
1981 	tcp_set_ca_state(sk, TCP_CA_Loss);
1982 	tp->high_seq = tp->snd_nxt;
1983 	tcp_ecn_queue_cwr(tp);
1984 
1985 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1986 	 * loss recovery is underway except recurring timeout(s) on
1987 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1988 	 */
1989 	tp->frto = sysctl_tcp_frto &&
1990 		   (new_recovery || icsk->icsk_retransmits) &&
1991 		   !inet_csk(sk)->icsk_mtup.probe_size;
1992 }
1993 
1994 /* If ACK arrived pointing to a remembered SACK, it means that our
1995  * remembered SACKs do not reflect real state of receiver i.e.
1996  * receiver _host_ is heavily congested (or buggy).
1997  *
1998  * To avoid big spurious retransmission bursts due to transient SACK
1999  * scoreboard oddities that look like reneging, we give the receiver a
2000  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2001  * restore sanity to the SACK scoreboard. If the apparent reneging
2002  * persists until this RTO then we'll clear the SACK scoreboard.
2003  */
2004 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2005 {
2006 	if (flag & FLAG_SACK_RENEGING) {
2007 		struct tcp_sock *tp = tcp_sk(sk);
2008 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2009 					  msecs_to_jiffies(10));
2010 
2011 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2012 					  delay, TCP_RTO_MAX);
2013 		return true;
2014 	}
2015 	return false;
2016 }
2017 
2018 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2019 {
2020 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2021 }
2022 
2023 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2024  * counter when SACK is enabled (without SACK, sacked_out is used for
2025  * that purpose).
2026  *
2027  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2028  * segments up to the highest received SACK block so far and holes in
2029  * between them.
2030  *
2031  * With reordering, holes may still be in flight, so RFC3517 recovery
2032  * uses pure sacked_out (total number of SACKed segments) even though
2033  * it violates the RFC that uses duplicate ACKs, often these are equal
2034  * but when e.g. out-of-window ACKs or packet duplication occurs,
2035  * they differ. Since neither occurs due to loss, TCP should really
2036  * ignore them.
2037  */
2038 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2039 {
2040 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2041 }
2042 
2043 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2044 {
2045 	struct tcp_sock *tp = tcp_sk(sk);
2046 	unsigned long delay;
2047 
2048 	/* Delay early retransmit and entering fast recovery for
2049 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2050 	 * available, or RTO is scheduled to fire first.
2051 	 */
2052 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2053 	    (flag & FLAG_ECE) || !tp->srtt_us)
2054 		return false;
2055 
2056 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2057 		    msecs_to_jiffies(2));
2058 
2059 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2060 		return false;
2061 
2062 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2063 				  TCP_RTO_MAX);
2064 	return true;
2065 }
2066 
2067 /* Linux NewReno/SACK/FACK/ECN state machine.
2068  * --------------------------------------
2069  *
2070  * "Open"	Normal state, no dubious events, fast path.
2071  * "Disorder"   In all the respects it is "Open",
2072  *		but requires a bit more attention. It is entered when
2073  *		we see some SACKs or dupacks. It is split of "Open"
2074  *		mainly to move some processing from fast path to slow one.
2075  * "CWR"	CWND was reduced due to some Congestion Notification event.
2076  *		It can be ECN, ICMP source quench, local device congestion.
2077  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2078  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2079  *
2080  * tcp_fastretrans_alert() is entered:
2081  * - each incoming ACK, if state is not "Open"
2082  * - when arrived ACK is unusual, namely:
2083  *	* SACK
2084  *	* Duplicate ACK.
2085  *	* ECN ECE.
2086  *
2087  * Counting packets in flight is pretty simple.
2088  *
2089  *	in_flight = packets_out - left_out + retrans_out
2090  *
2091  *	packets_out is SND.NXT-SND.UNA counted in packets.
2092  *
2093  *	retrans_out is number of retransmitted segments.
2094  *
2095  *	left_out is number of segments left network, but not ACKed yet.
2096  *
2097  *		left_out = sacked_out + lost_out
2098  *
2099  *     sacked_out: Packets, which arrived to receiver out of order
2100  *		   and hence not ACKed. With SACKs this number is simply
2101  *		   amount of SACKed data. Even without SACKs
2102  *		   it is easy to give pretty reliable estimate of this number,
2103  *		   counting duplicate ACKs.
2104  *
2105  *       lost_out: Packets lost by network. TCP has no explicit
2106  *		   "loss notification" feedback from network (for now).
2107  *		   It means that this number can be only _guessed_.
2108  *		   Actually, it is the heuristics to predict lossage that
2109  *		   distinguishes different algorithms.
2110  *
2111  *	F.e. after RTO, when all the queue is considered as lost,
2112  *	lost_out = packets_out and in_flight = retrans_out.
2113  *
2114  *		Essentially, we have now two algorithms counting
2115  *		lost packets.
2116  *
2117  *		FACK: It is the simplest heuristics. As soon as we decided
2118  *		that something is lost, we decide that _all_ not SACKed
2119  *		packets until the most forward SACK are lost. I.e.
2120  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2121  *		It is absolutely correct estimate, if network does not reorder
2122  *		packets. And it loses any connection to reality when reordering
2123  *		takes place. We use FACK by default until reordering
2124  *		is suspected on the path to this destination.
2125  *
2126  *		NewReno: when Recovery is entered, we assume that one segment
2127  *		is lost (classic Reno). While we are in Recovery and
2128  *		a partial ACK arrives, we assume that one more packet
2129  *		is lost (NewReno). This heuristics are the same in NewReno
2130  *		and SACK.
2131  *
2132  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2133  *  deflation etc. CWND is real congestion window, never inflated, changes
2134  *  only according to classic VJ rules.
2135  *
2136  * Really tricky (and requiring careful tuning) part of algorithm
2137  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2138  * The first determines the moment _when_ we should reduce CWND and,
2139  * hence, slow down forward transmission. In fact, it determines the moment
2140  * when we decide that hole is caused by loss, rather than by a reorder.
2141  *
2142  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2143  * holes, caused by lost packets.
2144  *
2145  * And the most logically complicated part of algorithm is undo
2146  * heuristics. We detect false retransmits due to both too early
2147  * fast retransmit (reordering) and underestimated RTO, analyzing
2148  * timestamps and D-SACKs. When we detect that some segments were
2149  * retransmitted by mistake and CWND reduction was wrong, we undo
2150  * window reduction and abort recovery phase. This logic is hidden
2151  * inside several functions named tcp_try_undo_<something>.
2152  */
2153 
2154 /* This function decides, when we should leave Disordered state
2155  * and enter Recovery phase, reducing congestion window.
2156  *
2157  * Main question: may we further continue forward transmission
2158  * with the same cwnd?
2159  */
2160 static bool tcp_time_to_recover(struct sock *sk, int flag)
2161 {
2162 	struct tcp_sock *tp = tcp_sk(sk);
2163 	__u32 packets_out;
2164 
2165 	/* Trick#1: The loss is proven. */
2166 	if (tp->lost_out)
2167 		return true;
2168 
2169 	/* Not-A-Trick#2 : Classic rule... */
2170 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2171 		return true;
2172 
2173 	/* Trick#4: It is still not OK... But will it be useful to delay
2174 	 * recovery more?
2175 	 */
2176 	packets_out = tp->packets_out;
2177 	if (packets_out <= tp->reordering &&
2178 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2179 	    !tcp_may_send_now(sk)) {
2180 		/* We have nothing to send. This connection is limited
2181 		 * either by receiver window or by application.
2182 		 */
2183 		return true;
2184 	}
2185 
2186 	/* If a thin stream is detected, retransmit after first
2187 	 * received dupack. Employ only if SACK is supported in order
2188 	 * to avoid possible corner-case series of spurious retransmissions
2189 	 * Use only if there are no unsent data.
2190 	 */
2191 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2192 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2193 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2194 		return true;
2195 
2196 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2197 	 * retransmissions due to small network reorderings, we implement
2198 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2199 	 * interval if appropriate.
2200 	 */
2201 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2202 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2203 	    !tcp_may_send_now(sk))
2204 		return !tcp_pause_early_retransmit(sk, flag);
2205 
2206 	return false;
2207 }
2208 
2209 /* Detect loss in event "A" above by marking head of queue up as lost.
2210  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2211  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2212  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2213  * the maximum SACKed segments to pass before reaching this limit.
2214  */
2215 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2216 {
2217 	struct tcp_sock *tp = tcp_sk(sk);
2218 	struct sk_buff *skb;
2219 	int cnt, oldcnt;
2220 	int err;
2221 	unsigned int mss;
2222 	/* Use SACK to deduce losses of new sequences sent during recovery */
2223 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2224 
2225 	WARN_ON(packets > tp->packets_out);
2226 	if (tp->lost_skb_hint) {
2227 		skb = tp->lost_skb_hint;
2228 		cnt = tp->lost_cnt_hint;
2229 		/* Head already handled? */
2230 		if (mark_head && skb != tcp_write_queue_head(sk))
2231 			return;
2232 	} else {
2233 		skb = tcp_write_queue_head(sk);
2234 		cnt = 0;
2235 	}
2236 
2237 	tcp_for_write_queue_from(skb, sk) {
2238 		if (skb == tcp_send_head(sk))
2239 			break;
2240 		/* TODO: do this better */
2241 		/* this is not the most efficient way to do this... */
2242 		tp->lost_skb_hint = skb;
2243 		tp->lost_cnt_hint = cnt;
2244 
2245 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2246 			break;
2247 
2248 		oldcnt = cnt;
2249 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2250 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2251 			cnt += tcp_skb_pcount(skb);
2252 
2253 		if (cnt > packets) {
2254 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2255 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2256 			    (oldcnt >= packets))
2257 				break;
2258 
2259 			mss = skb_shinfo(skb)->gso_size;
2260 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2261 					   mss, GFP_ATOMIC);
2262 			if (err < 0)
2263 				break;
2264 			cnt = packets;
2265 		}
2266 
2267 		tcp_skb_mark_lost(tp, skb);
2268 
2269 		if (mark_head)
2270 			break;
2271 	}
2272 	tcp_verify_left_out(tp);
2273 }
2274 
2275 /* Account newly detected lost packet(s) */
2276 
2277 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2278 {
2279 	struct tcp_sock *tp = tcp_sk(sk);
2280 
2281 	if (tcp_is_reno(tp)) {
2282 		tcp_mark_head_lost(sk, 1, 1);
2283 	} else if (tcp_is_fack(tp)) {
2284 		int lost = tp->fackets_out - tp->reordering;
2285 		if (lost <= 0)
2286 			lost = 1;
2287 		tcp_mark_head_lost(sk, lost, 0);
2288 	} else {
2289 		int sacked_upto = tp->sacked_out - tp->reordering;
2290 		if (sacked_upto >= 0)
2291 			tcp_mark_head_lost(sk, sacked_upto, 0);
2292 		else if (fast_rexmit)
2293 			tcp_mark_head_lost(sk, 1, 1);
2294 	}
2295 }
2296 
2297 /* CWND moderation, preventing bursts due to too big ACKs
2298  * in dubious situations.
2299  */
2300 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2301 {
2302 	tp->snd_cwnd = min(tp->snd_cwnd,
2303 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2304 	tp->snd_cwnd_stamp = tcp_time_stamp;
2305 }
2306 
2307 /* Nothing was retransmitted or returned timestamp is less
2308  * than timestamp of the first retransmission.
2309  */
2310 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2311 {
2312 	return !tp->retrans_stamp ||
2313 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2314 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2315 }
2316 
2317 /* Undo procedures. */
2318 
2319 /* We can clear retrans_stamp when there are no retransmissions in the
2320  * window. It would seem that it is trivially available for us in
2321  * tp->retrans_out, however, that kind of assumptions doesn't consider
2322  * what will happen if errors occur when sending retransmission for the
2323  * second time. ...It could the that such segment has only
2324  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2325  * the head skb is enough except for some reneging corner cases that
2326  * are not worth the effort.
2327  *
2328  * Main reason for all this complexity is the fact that connection dying
2329  * time now depends on the validity of the retrans_stamp, in particular,
2330  * that successive retransmissions of a segment must not advance
2331  * retrans_stamp under any conditions.
2332  */
2333 static bool tcp_any_retrans_done(const struct sock *sk)
2334 {
2335 	const struct tcp_sock *tp = tcp_sk(sk);
2336 	struct sk_buff *skb;
2337 
2338 	if (tp->retrans_out)
2339 		return true;
2340 
2341 	skb = tcp_write_queue_head(sk);
2342 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2343 		return true;
2344 
2345 	return false;
2346 }
2347 
2348 #if FASTRETRANS_DEBUG > 1
2349 static void DBGUNDO(struct sock *sk, const char *msg)
2350 {
2351 	struct tcp_sock *tp = tcp_sk(sk);
2352 	struct inet_sock *inet = inet_sk(sk);
2353 
2354 	if (sk->sk_family == AF_INET) {
2355 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2356 			 msg,
2357 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2358 			 tp->snd_cwnd, tcp_left_out(tp),
2359 			 tp->snd_ssthresh, tp->prior_ssthresh,
2360 			 tp->packets_out);
2361 	}
2362 #if IS_ENABLED(CONFIG_IPV6)
2363 	else if (sk->sk_family == AF_INET6) {
2364 		struct ipv6_pinfo *np = inet6_sk(sk);
2365 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2366 			 msg,
2367 			 &np->daddr, ntohs(inet->inet_dport),
2368 			 tp->snd_cwnd, tcp_left_out(tp),
2369 			 tp->snd_ssthresh, tp->prior_ssthresh,
2370 			 tp->packets_out);
2371 	}
2372 #endif
2373 }
2374 #else
2375 #define DBGUNDO(x...) do { } while (0)
2376 #endif
2377 
2378 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2379 {
2380 	struct tcp_sock *tp = tcp_sk(sk);
2381 
2382 	if (unmark_loss) {
2383 		struct sk_buff *skb;
2384 
2385 		tcp_for_write_queue(skb, sk) {
2386 			if (skb == tcp_send_head(sk))
2387 				break;
2388 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2389 		}
2390 		tp->lost_out = 0;
2391 		tcp_clear_all_retrans_hints(tp);
2392 	}
2393 
2394 	if (tp->prior_ssthresh) {
2395 		const struct inet_connection_sock *icsk = inet_csk(sk);
2396 
2397 		if (icsk->icsk_ca_ops->undo_cwnd)
2398 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2399 		else
2400 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2401 
2402 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2403 			tp->snd_ssthresh = tp->prior_ssthresh;
2404 			tcp_ecn_withdraw_cwr(tp);
2405 		}
2406 	} else {
2407 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2408 	}
2409 	tp->snd_cwnd_stamp = tcp_time_stamp;
2410 	tp->undo_marker = 0;
2411 }
2412 
2413 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2414 {
2415 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2416 }
2417 
2418 /* People celebrate: "We love our President!" */
2419 static bool tcp_try_undo_recovery(struct sock *sk)
2420 {
2421 	struct tcp_sock *tp = tcp_sk(sk);
2422 
2423 	if (tcp_may_undo(tp)) {
2424 		int mib_idx;
2425 
2426 		/* Happy end! We did not retransmit anything
2427 		 * or our original transmission succeeded.
2428 		 */
2429 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2430 		tcp_undo_cwnd_reduction(sk, false);
2431 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2432 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2433 		else
2434 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2435 
2436 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2437 	}
2438 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2439 		/* Hold old state until something *above* high_seq
2440 		 * is ACKed. For Reno it is MUST to prevent false
2441 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2442 		tcp_moderate_cwnd(tp);
2443 		if (!tcp_any_retrans_done(sk))
2444 			tp->retrans_stamp = 0;
2445 		return true;
2446 	}
2447 	tcp_set_ca_state(sk, TCP_CA_Open);
2448 	return false;
2449 }
2450 
2451 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2452 static bool tcp_try_undo_dsack(struct sock *sk)
2453 {
2454 	struct tcp_sock *tp = tcp_sk(sk);
2455 
2456 	if (tp->undo_marker && !tp->undo_retrans) {
2457 		DBGUNDO(sk, "D-SACK");
2458 		tcp_undo_cwnd_reduction(sk, false);
2459 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2460 		return true;
2461 	}
2462 	return false;
2463 }
2464 
2465 /* Undo during loss recovery after partial ACK or using F-RTO. */
2466 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2467 {
2468 	struct tcp_sock *tp = tcp_sk(sk);
2469 
2470 	if (frto_undo || tcp_may_undo(tp)) {
2471 		tcp_undo_cwnd_reduction(sk, true);
2472 
2473 		DBGUNDO(sk, "partial loss");
2474 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2475 		if (frto_undo)
2476 			NET_INC_STATS_BH(sock_net(sk),
2477 					 LINUX_MIB_TCPSPURIOUSRTOS);
2478 		inet_csk(sk)->icsk_retransmits = 0;
2479 		if (frto_undo || tcp_is_sack(tp))
2480 			tcp_set_ca_state(sk, TCP_CA_Open);
2481 		return true;
2482 	}
2483 	return false;
2484 }
2485 
2486 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2487  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2488  * It computes the number of packets to send (sndcnt) based on packets newly
2489  * delivered:
2490  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2491  *	cwnd reductions across a full RTT.
2492  *   2) If packets in flight is lower than ssthresh (such as due to excess
2493  *	losses and/or application stalls), do not perform any further cwnd
2494  *	reductions, but instead slow start up to ssthresh.
2495  */
2496 static void tcp_init_cwnd_reduction(struct sock *sk)
2497 {
2498 	struct tcp_sock *tp = tcp_sk(sk);
2499 
2500 	tp->high_seq = tp->snd_nxt;
2501 	tp->tlp_high_seq = 0;
2502 	tp->snd_cwnd_cnt = 0;
2503 	tp->prior_cwnd = tp->snd_cwnd;
2504 	tp->prr_delivered = 0;
2505 	tp->prr_out = 0;
2506 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2507 	tcp_ecn_queue_cwr(tp);
2508 }
2509 
2510 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2511 			       int fast_rexmit)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 	int sndcnt = 0;
2515 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2516 	int newly_acked_sacked = prior_unsacked -
2517 				 (tp->packets_out - tp->sacked_out);
2518 
2519 	tp->prr_delivered += newly_acked_sacked;
2520 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2521 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2522 			       tp->prior_cwnd - 1;
2523 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2524 	} else {
2525 		sndcnt = min_t(int, delta,
2526 			       max_t(int, tp->prr_delivered - tp->prr_out,
2527 				     newly_acked_sacked) + 1);
2528 	}
2529 
2530 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2531 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2532 }
2533 
2534 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 
2538 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2539 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2540 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2541 		tp->snd_cwnd = tp->snd_ssthresh;
2542 		tp->snd_cwnd_stamp = tcp_time_stamp;
2543 	}
2544 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2545 }
2546 
2547 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2548 void tcp_enter_cwr(struct sock *sk)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 
2552 	tp->prior_ssthresh = 0;
2553 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2554 		tp->undo_marker = 0;
2555 		tcp_init_cwnd_reduction(sk);
2556 		tcp_set_ca_state(sk, TCP_CA_CWR);
2557 	}
2558 }
2559 
2560 static void tcp_try_keep_open(struct sock *sk)
2561 {
2562 	struct tcp_sock *tp = tcp_sk(sk);
2563 	int state = TCP_CA_Open;
2564 
2565 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2566 		state = TCP_CA_Disorder;
2567 
2568 	if (inet_csk(sk)->icsk_ca_state != state) {
2569 		tcp_set_ca_state(sk, state);
2570 		tp->high_seq = tp->snd_nxt;
2571 	}
2572 }
2573 
2574 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2575 {
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 
2578 	tcp_verify_left_out(tp);
2579 
2580 	if (!tcp_any_retrans_done(sk))
2581 		tp->retrans_stamp = 0;
2582 
2583 	if (flag & FLAG_ECE)
2584 		tcp_enter_cwr(sk);
2585 
2586 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2587 		tcp_try_keep_open(sk);
2588 	} else {
2589 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2590 	}
2591 }
2592 
2593 static void tcp_mtup_probe_failed(struct sock *sk)
2594 {
2595 	struct inet_connection_sock *icsk = inet_csk(sk);
2596 
2597 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2598 	icsk->icsk_mtup.probe_size = 0;
2599 }
2600 
2601 static void tcp_mtup_probe_success(struct sock *sk)
2602 {
2603 	struct tcp_sock *tp = tcp_sk(sk);
2604 	struct inet_connection_sock *icsk = inet_csk(sk);
2605 
2606 	/* FIXME: breaks with very large cwnd */
2607 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2608 	tp->snd_cwnd = tp->snd_cwnd *
2609 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2610 		       icsk->icsk_mtup.probe_size;
2611 	tp->snd_cwnd_cnt = 0;
2612 	tp->snd_cwnd_stamp = tcp_time_stamp;
2613 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2614 
2615 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2616 	icsk->icsk_mtup.probe_size = 0;
2617 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2618 }
2619 
2620 /* Do a simple retransmit without using the backoff mechanisms in
2621  * tcp_timer. This is used for path mtu discovery.
2622  * The socket is already locked here.
2623  */
2624 void tcp_simple_retransmit(struct sock *sk)
2625 {
2626 	const struct inet_connection_sock *icsk = inet_csk(sk);
2627 	struct tcp_sock *tp = tcp_sk(sk);
2628 	struct sk_buff *skb;
2629 	unsigned int mss = tcp_current_mss(sk);
2630 	u32 prior_lost = tp->lost_out;
2631 
2632 	tcp_for_write_queue(skb, sk) {
2633 		if (skb == tcp_send_head(sk))
2634 			break;
2635 		if (tcp_skb_seglen(skb) > mss &&
2636 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2637 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2638 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2639 				tp->retrans_out -= tcp_skb_pcount(skb);
2640 			}
2641 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2642 		}
2643 	}
2644 
2645 	tcp_clear_retrans_hints_partial(tp);
2646 
2647 	if (prior_lost == tp->lost_out)
2648 		return;
2649 
2650 	if (tcp_is_reno(tp))
2651 		tcp_limit_reno_sacked(tp);
2652 
2653 	tcp_verify_left_out(tp);
2654 
2655 	/* Don't muck with the congestion window here.
2656 	 * Reason is that we do not increase amount of _data_
2657 	 * in network, but units changed and effective
2658 	 * cwnd/ssthresh really reduced now.
2659 	 */
2660 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2661 		tp->high_seq = tp->snd_nxt;
2662 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2663 		tp->prior_ssthresh = 0;
2664 		tp->undo_marker = 0;
2665 		tcp_set_ca_state(sk, TCP_CA_Loss);
2666 	}
2667 	tcp_xmit_retransmit_queue(sk);
2668 }
2669 EXPORT_SYMBOL(tcp_simple_retransmit);
2670 
2671 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 	int mib_idx;
2675 
2676 	if (tcp_is_reno(tp))
2677 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2678 	else
2679 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2680 
2681 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2682 
2683 	tp->prior_ssthresh = 0;
2684 	tcp_init_undo(tp);
2685 
2686 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2687 		if (!ece_ack)
2688 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2689 		tcp_init_cwnd_reduction(sk);
2690 	}
2691 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2692 }
2693 
2694 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2695  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2696  */
2697 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2698 {
2699 	struct tcp_sock *tp = tcp_sk(sk);
2700 	bool recovered = !before(tp->snd_una, tp->high_seq);
2701 
2702 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2703 		/* Step 3.b. A timeout is spurious if not all data are
2704 		 * lost, i.e., never-retransmitted data are (s)acked.
2705 		 */
2706 		if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2707 			return;
2708 
2709 		if (after(tp->snd_nxt, tp->high_seq) &&
2710 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2711 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2712 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2713 			tp->high_seq = tp->snd_nxt;
2714 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2715 						  TCP_NAGLE_OFF);
2716 			if (after(tp->snd_nxt, tp->high_seq))
2717 				return; /* Step 2.b */
2718 			tp->frto = 0;
2719 		}
2720 	}
2721 
2722 	if (recovered) {
2723 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2724 		tcp_try_undo_recovery(sk);
2725 		return;
2726 	}
2727 	if (tcp_is_reno(tp)) {
2728 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2729 		 * delivered. Lower inflight to clock out (re)tranmissions.
2730 		 */
2731 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2732 			tcp_add_reno_sack(sk);
2733 		else if (flag & FLAG_SND_UNA_ADVANCED)
2734 			tcp_reset_reno_sack(tp);
2735 	}
2736 	if (tcp_try_undo_loss(sk, false))
2737 		return;
2738 	tcp_xmit_retransmit_queue(sk);
2739 }
2740 
2741 /* Undo during fast recovery after partial ACK. */
2742 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2743 				 const int prior_unsacked)
2744 {
2745 	struct tcp_sock *tp = tcp_sk(sk);
2746 
2747 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2748 		/* Plain luck! Hole if filled with delayed
2749 		 * packet, rather than with a retransmit.
2750 		 */
2751 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2752 
2753 		/* We are getting evidence that the reordering degree is higher
2754 		 * than we realized. If there are no retransmits out then we
2755 		 * can undo. Otherwise we clock out new packets but do not
2756 		 * mark more packets lost or retransmit more.
2757 		 */
2758 		if (tp->retrans_out) {
2759 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2760 			return true;
2761 		}
2762 
2763 		if (!tcp_any_retrans_done(sk))
2764 			tp->retrans_stamp = 0;
2765 
2766 		DBGUNDO(sk, "partial recovery");
2767 		tcp_undo_cwnd_reduction(sk, true);
2768 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2769 		tcp_try_keep_open(sk);
2770 		return true;
2771 	}
2772 	return false;
2773 }
2774 
2775 /* Process an event, which can update packets-in-flight not trivially.
2776  * Main goal of this function is to calculate new estimate for left_out,
2777  * taking into account both packets sitting in receiver's buffer and
2778  * packets lost by network.
2779  *
2780  * Besides that it does CWND reduction, when packet loss is detected
2781  * and changes state of machine.
2782  *
2783  * It does _not_ decide what to send, it is made in function
2784  * tcp_xmit_retransmit_queue().
2785  */
2786 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2787 				  const int prior_unsacked,
2788 				  bool is_dupack, int flag)
2789 {
2790 	struct inet_connection_sock *icsk = inet_csk(sk);
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2793 				    (tcp_fackets_out(tp) > tp->reordering));
2794 	int fast_rexmit = 0;
2795 
2796 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2797 		tp->sacked_out = 0;
2798 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2799 		tp->fackets_out = 0;
2800 
2801 	/* Now state machine starts.
2802 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2803 	if (flag & FLAG_ECE)
2804 		tp->prior_ssthresh = 0;
2805 
2806 	/* B. In all the states check for reneging SACKs. */
2807 	if (tcp_check_sack_reneging(sk, flag))
2808 		return;
2809 
2810 	/* C. Check consistency of the current state. */
2811 	tcp_verify_left_out(tp);
2812 
2813 	/* D. Check state exit conditions. State can be terminated
2814 	 *    when high_seq is ACKed. */
2815 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2816 		WARN_ON(tp->retrans_out != 0);
2817 		tp->retrans_stamp = 0;
2818 	} else if (!before(tp->snd_una, tp->high_seq)) {
2819 		switch (icsk->icsk_ca_state) {
2820 		case TCP_CA_CWR:
2821 			/* CWR is to be held something *above* high_seq
2822 			 * is ACKed for CWR bit to reach receiver. */
2823 			if (tp->snd_una != tp->high_seq) {
2824 				tcp_end_cwnd_reduction(sk);
2825 				tcp_set_ca_state(sk, TCP_CA_Open);
2826 			}
2827 			break;
2828 
2829 		case TCP_CA_Recovery:
2830 			if (tcp_is_reno(tp))
2831 				tcp_reset_reno_sack(tp);
2832 			if (tcp_try_undo_recovery(sk))
2833 				return;
2834 			tcp_end_cwnd_reduction(sk);
2835 			break;
2836 		}
2837 	}
2838 
2839 	/* E. Process state. */
2840 	switch (icsk->icsk_ca_state) {
2841 	case TCP_CA_Recovery:
2842 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2843 			if (tcp_is_reno(tp) && is_dupack)
2844 				tcp_add_reno_sack(sk);
2845 		} else {
2846 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2847 				return;
2848 			/* Partial ACK arrived. Force fast retransmit. */
2849 			do_lost = tcp_is_reno(tp) ||
2850 				  tcp_fackets_out(tp) > tp->reordering;
2851 		}
2852 		if (tcp_try_undo_dsack(sk)) {
2853 			tcp_try_keep_open(sk);
2854 			return;
2855 		}
2856 		break;
2857 	case TCP_CA_Loss:
2858 		tcp_process_loss(sk, flag, is_dupack);
2859 		if (icsk->icsk_ca_state != TCP_CA_Open)
2860 			return;
2861 		/* Fall through to processing in Open state. */
2862 	default:
2863 		if (tcp_is_reno(tp)) {
2864 			if (flag & FLAG_SND_UNA_ADVANCED)
2865 				tcp_reset_reno_sack(tp);
2866 			if (is_dupack)
2867 				tcp_add_reno_sack(sk);
2868 		}
2869 
2870 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2871 			tcp_try_undo_dsack(sk);
2872 
2873 		if (!tcp_time_to_recover(sk, flag)) {
2874 			tcp_try_to_open(sk, flag, prior_unsacked);
2875 			return;
2876 		}
2877 
2878 		/* MTU probe failure: don't reduce cwnd */
2879 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2880 		    icsk->icsk_mtup.probe_size &&
2881 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2882 			tcp_mtup_probe_failed(sk);
2883 			/* Restores the reduction we did in tcp_mtup_probe() */
2884 			tp->snd_cwnd++;
2885 			tcp_simple_retransmit(sk);
2886 			return;
2887 		}
2888 
2889 		/* Otherwise enter Recovery state */
2890 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2891 		fast_rexmit = 1;
2892 	}
2893 
2894 	if (do_lost)
2895 		tcp_update_scoreboard(sk, fast_rexmit);
2896 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2897 	tcp_xmit_retransmit_queue(sk);
2898 }
2899 
2900 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2901 				      long seq_rtt_us, long sack_rtt_us)
2902 {
2903 	const struct tcp_sock *tp = tcp_sk(sk);
2904 
2905 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2906 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2907 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2908 	 * is acked (RFC6298).
2909 	 */
2910 	if (flag & FLAG_RETRANS_DATA_ACKED)
2911 		seq_rtt_us = -1L;
2912 
2913 	if (seq_rtt_us < 0)
2914 		seq_rtt_us = sack_rtt_us;
2915 
2916 	/* RTTM Rule: A TSecr value received in a segment is used to
2917 	 * update the averaged RTT measurement only if the segment
2918 	 * acknowledges some new data, i.e., only if it advances the
2919 	 * left edge of the send window.
2920 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2921 	 */
2922 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2923 	    flag & FLAG_ACKED)
2924 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2925 
2926 	if (seq_rtt_us < 0)
2927 		return false;
2928 
2929 	tcp_rtt_estimator(sk, seq_rtt_us);
2930 	tcp_set_rto(sk);
2931 
2932 	/* RFC6298: only reset backoff on valid RTT measurement. */
2933 	inet_csk(sk)->icsk_backoff = 0;
2934 	return true;
2935 }
2936 
2937 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2938 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2939 {
2940 	struct tcp_sock *tp = tcp_sk(sk);
2941 	long seq_rtt_us = -1L;
2942 
2943 	if (synack_stamp && !tp->total_retrans)
2944 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2945 
2946 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2947 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2948 	 */
2949 	if (!tp->srtt_us)
2950 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2951 }
2952 
2953 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2954 {
2955 	const struct inet_connection_sock *icsk = inet_csk(sk);
2956 
2957 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2958 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2959 }
2960 
2961 /* Restart timer after forward progress on connection.
2962  * RFC2988 recommends to restart timer to now+rto.
2963  */
2964 void tcp_rearm_rto(struct sock *sk)
2965 {
2966 	const struct inet_connection_sock *icsk = inet_csk(sk);
2967 	struct tcp_sock *tp = tcp_sk(sk);
2968 
2969 	/* If the retrans timer is currently being used by Fast Open
2970 	 * for SYN-ACK retrans purpose, stay put.
2971 	 */
2972 	if (tp->fastopen_rsk)
2973 		return;
2974 
2975 	if (!tp->packets_out) {
2976 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2977 	} else {
2978 		u32 rto = inet_csk(sk)->icsk_rto;
2979 		/* Offset the time elapsed after installing regular RTO */
2980 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2981 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2982 			struct sk_buff *skb = tcp_write_queue_head(sk);
2983 			const u32 rto_time_stamp =
2984 				tcp_skb_timestamp(skb) + rto;
2985 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2986 			/* delta may not be positive if the socket is locked
2987 			 * when the retrans timer fires and is rescheduled.
2988 			 */
2989 			if (delta > 0)
2990 				rto = delta;
2991 		}
2992 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2993 					  TCP_RTO_MAX);
2994 	}
2995 }
2996 
2997 /* This function is called when the delayed ER timer fires. TCP enters
2998  * fast recovery and performs fast-retransmit.
2999  */
3000 void tcp_resume_early_retransmit(struct sock *sk)
3001 {
3002 	struct tcp_sock *tp = tcp_sk(sk);
3003 
3004 	tcp_rearm_rto(sk);
3005 
3006 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3007 	if (!tp->do_early_retrans)
3008 		return;
3009 
3010 	tcp_enter_recovery(sk, false);
3011 	tcp_update_scoreboard(sk, 1);
3012 	tcp_xmit_retransmit_queue(sk);
3013 }
3014 
3015 /* If we get here, the whole TSO packet has not been acked. */
3016 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3017 {
3018 	struct tcp_sock *tp = tcp_sk(sk);
3019 	u32 packets_acked;
3020 
3021 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3022 
3023 	packets_acked = tcp_skb_pcount(skb);
3024 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3025 		return 0;
3026 	packets_acked -= tcp_skb_pcount(skb);
3027 
3028 	if (packets_acked) {
3029 		BUG_ON(tcp_skb_pcount(skb) == 0);
3030 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3031 	}
3032 
3033 	return packets_acked;
3034 }
3035 
3036 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3037 			   u32 prior_snd_una)
3038 {
3039 	const struct skb_shared_info *shinfo;
3040 
3041 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3042 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3043 		return;
3044 
3045 	shinfo = skb_shinfo(skb);
3046 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3047 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3048 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3049 }
3050 
3051 /* Remove acknowledged frames from the retransmission queue. If our packet
3052  * is before the ack sequence we can discard it as it's confirmed to have
3053  * arrived at the other end.
3054  */
3055 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3056 			       u32 prior_snd_una, long sack_rtt_us)
3057 {
3058 	const struct inet_connection_sock *icsk = inet_csk(sk);
3059 	struct skb_mstamp first_ackt, last_ackt, now;
3060 	struct tcp_sock *tp = tcp_sk(sk);
3061 	u32 prior_sacked = tp->sacked_out;
3062 	u32 reord = tp->packets_out;
3063 	bool fully_acked = true;
3064 	long ca_seq_rtt_us = -1L;
3065 	long seq_rtt_us = -1L;
3066 	struct sk_buff *skb;
3067 	u32 pkts_acked = 0;
3068 	bool rtt_update;
3069 	int flag = 0;
3070 
3071 	first_ackt.v64 = 0;
3072 
3073 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3074 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3075 		u8 sacked = scb->sacked;
3076 		u32 acked_pcount;
3077 
3078 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3079 
3080 		/* Determine how many packets and what bytes were acked, tso and else */
3081 		if (after(scb->end_seq, tp->snd_una)) {
3082 			if (tcp_skb_pcount(skb) == 1 ||
3083 			    !after(tp->snd_una, scb->seq))
3084 				break;
3085 
3086 			acked_pcount = tcp_tso_acked(sk, skb);
3087 			if (!acked_pcount)
3088 				break;
3089 
3090 			fully_acked = false;
3091 		} else {
3092 			/* Speedup tcp_unlink_write_queue() and next loop */
3093 			prefetchw(skb->next);
3094 			acked_pcount = tcp_skb_pcount(skb);
3095 		}
3096 
3097 		if (unlikely(sacked & TCPCB_RETRANS)) {
3098 			if (sacked & TCPCB_SACKED_RETRANS)
3099 				tp->retrans_out -= acked_pcount;
3100 			flag |= FLAG_RETRANS_DATA_ACKED;
3101 		} else {
3102 			last_ackt = skb->skb_mstamp;
3103 			WARN_ON_ONCE(last_ackt.v64 == 0);
3104 			if (!first_ackt.v64)
3105 				first_ackt = last_ackt;
3106 
3107 			if (!(sacked & TCPCB_SACKED_ACKED))
3108 				reord = min(pkts_acked, reord);
3109 			if (!after(scb->end_seq, tp->high_seq))
3110 				flag |= FLAG_ORIG_SACK_ACKED;
3111 		}
3112 
3113 		if (sacked & TCPCB_SACKED_ACKED)
3114 			tp->sacked_out -= acked_pcount;
3115 		if (sacked & TCPCB_LOST)
3116 			tp->lost_out -= acked_pcount;
3117 
3118 		tp->packets_out -= acked_pcount;
3119 		pkts_acked += acked_pcount;
3120 
3121 		/* Initial outgoing SYN's get put onto the write_queue
3122 		 * just like anything else we transmit.  It is not
3123 		 * true data, and if we misinform our callers that
3124 		 * this ACK acks real data, we will erroneously exit
3125 		 * connection startup slow start one packet too
3126 		 * quickly.  This is severely frowned upon behavior.
3127 		 */
3128 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3129 			flag |= FLAG_DATA_ACKED;
3130 		} else {
3131 			flag |= FLAG_SYN_ACKED;
3132 			tp->retrans_stamp = 0;
3133 		}
3134 
3135 		if (!fully_acked)
3136 			break;
3137 
3138 		tcp_unlink_write_queue(skb, sk);
3139 		sk_wmem_free_skb(sk, skb);
3140 		if (unlikely(skb == tp->retransmit_skb_hint))
3141 			tp->retransmit_skb_hint = NULL;
3142 		if (unlikely(skb == tp->lost_skb_hint))
3143 			tp->lost_skb_hint = NULL;
3144 	}
3145 
3146 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3147 		tp->snd_up = tp->snd_una;
3148 
3149 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3150 		flag |= FLAG_SACK_RENEGING;
3151 
3152 	skb_mstamp_get(&now);
3153 	if (likely(first_ackt.v64)) {
3154 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3155 		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3156 	}
3157 
3158 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3159 
3160 	if (flag & FLAG_ACKED) {
3161 		const struct tcp_congestion_ops *ca_ops
3162 			= inet_csk(sk)->icsk_ca_ops;
3163 
3164 		tcp_rearm_rto(sk);
3165 		if (unlikely(icsk->icsk_mtup.probe_size &&
3166 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3167 			tcp_mtup_probe_success(sk);
3168 		}
3169 
3170 		if (tcp_is_reno(tp)) {
3171 			tcp_remove_reno_sacks(sk, pkts_acked);
3172 		} else {
3173 			int delta;
3174 
3175 			/* Non-retransmitted hole got filled? That's reordering */
3176 			if (reord < prior_fackets)
3177 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3178 
3179 			delta = tcp_is_fack(tp) ? pkts_acked :
3180 						  prior_sacked - tp->sacked_out;
3181 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3182 		}
3183 
3184 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3185 
3186 		if (ca_ops->pkts_acked)
3187 			ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3188 
3189 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3190 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3191 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3192 		 * after when the head was last (re)transmitted. Otherwise the
3193 		 * timeout may continue to extend in loss recovery.
3194 		 */
3195 		tcp_rearm_rto(sk);
3196 	}
3197 
3198 #if FASTRETRANS_DEBUG > 0
3199 	WARN_ON((int)tp->sacked_out < 0);
3200 	WARN_ON((int)tp->lost_out < 0);
3201 	WARN_ON((int)tp->retrans_out < 0);
3202 	if (!tp->packets_out && tcp_is_sack(tp)) {
3203 		icsk = inet_csk(sk);
3204 		if (tp->lost_out) {
3205 			pr_debug("Leak l=%u %d\n",
3206 				 tp->lost_out, icsk->icsk_ca_state);
3207 			tp->lost_out = 0;
3208 		}
3209 		if (tp->sacked_out) {
3210 			pr_debug("Leak s=%u %d\n",
3211 				 tp->sacked_out, icsk->icsk_ca_state);
3212 			tp->sacked_out = 0;
3213 		}
3214 		if (tp->retrans_out) {
3215 			pr_debug("Leak r=%u %d\n",
3216 				 tp->retrans_out, icsk->icsk_ca_state);
3217 			tp->retrans_out = 0;
3218 		}
3219 	}
3220 #endif
3221 	return flag;
3222 }
3223 
3224 static void tcp_ack_probe(struct sock *sk)
3225 {
3226 	const struct tcp_sock *tp = tcp_sk(sk);
3227 	struct inet_connection_sock *icsk = inet_csk(sk);
3228 
3229 	/* Was it a usable window open? */
3230 
3231 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3232 		icsk->icsk_backoff = 0;
3233 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3234 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3235 		 * This function is not for random using!
3236 		 */
3237 	} else {
3238 		unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3239 
3240 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3241 					  when, TCP_RTO_MAX);
3242 	}
3243 }
3244 
3245 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3246 {
3247 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3248 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3249 }
3250 
3251 /* Decide wheather to run the increase function of congestion control. */
3252 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3253 {
3254 	if (tcp_in_cwnd_reduction(sk))
3255 		return false;
3256 
3257 	/* If reordering is high then always grow cwnd whenever data is
3258 	 * delivered regardless of its ordering. Otherwise stay conservative
3259 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3260 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3261 	 * cwnd in tcp_fastretrans_alert() based on more states.
3262 	 */
3263 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3264 		return flag & FLAG_FORWARD_PROGRESS;
3265 
3266 	return flag & FLAG_DATA_ACKED;
3267 }
3268 
3269 /* Check that window update is acceptable.
3270  * The function assumes that snd_una<=ack<=snd_next.
3271  */
3272 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3273 					const u32 ack, const u32 ack_seq,
3274 					const u32 nwin)
3275 {
3276 	return	after(ack, tp->snd_una) ||
3277 		after(ack_seq, tp->snd_wl1) ||
3278 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3279 }
3280 
3281 /* Update our send window.
3282  *
3283  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3284  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3285  */
3286 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3287 				 u32 ack_seq)
3288 {
3289 	struct tcp_sock *tp = tcp_sk(sk);
3290 	int flag = 0;
3291 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3292 
3293 	if (likely(!tcp_hdr(skb)->syn))
3294 		nwin <<= tp->rx_opt.snd_wscale;
3295 
3296 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3297 		flag |= FLAG_WIN_UPDATE;
3298 		tcp_update_wl(tp, ack_seq);
3299 
3300 		if (tp->snd_wnd != nwin) {
3301 			tp->snd_wnd = nwin;
3302 
3303 			/* Note, it is the only place, where
3304 			 * fast path is recovered for sending TCP.
3305 			 */
3306 			tp->pred_flags = 0;
3307 			tcp_fast_path_check(sk);
3308 
3309 			if (nwin > tp->max_window) {
3310 				tp->max_window = nwin;
3311 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3312 			}
3313 		}
3314 	}
3315 
3316 	tp->snd_una = ack;
3317 
3318 	return flag;
3319 }
3320 
3321 /* RFC 5961 7 [ACK Throttling] */
3322 static void tcp_send_challenge_ack(struct sock *sk)
3323 {
3324 	/* unprotected vars, we dont care of overwrites */
3325 	static u32 challenge_timestamp;
3326 	static unsigned int challenge_count;
3327 	u32 now = jiffies / HZ;
3328 
3329 	if (now != challenge_timestamp) {
3330 		challenge_timestamp = now;
3331 		challenge_count = 0;
3332 	}
3333 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3334 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3335 		tcp_send_ack(sk);
3336 	}
3337 }
3338 
3339 static void tcp_store_ts_recent(struct tcp_sock *tp)
3340 {
3341 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3342 	tp->rx_opt.ts_recent_stamp = get_seconds();
3343 }
3344 
3345 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3346 {
3347 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3348 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3349 		 * extra check below makes sure this can only happen
3350 		 * for pure ACK frames.  -DaveM
3351 		 *
3352 		 * Not only, also it occurs for expired timestamps.
3353 		 */
3354 
3355 		if (tcp_paws_check(&tp->rx_opt, 0))
3356 			tcp_store_ts_recent(tp);
3357 	}
3358 }
3359 
3360 /* This routine deals with acks during a TLP episode.
3361  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3362  */
3363 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3364 {
3365 	struct tcp_sock *tp = tcp_sk(sk);
3366 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3367 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3368 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3369 
3370 	/* Mark the end of TLP episode on receiving TLP dupack or when
3371 	 * ack is after tlp_high_seq.
3372 	 */
3373 	if (is_tlp_dupack) {
3374 		tp->tlp_high_seq = 0;
3375 		return;
3376 	}
3377 
3378 	if (after(ack, tp->tlp_high_seq)) {
3379 		tp->tlp_high_seq = 0;
3380 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3381 		if (!(flag & FLAG_DSACKING_ACK)) {
3382 			tcp_init_cwnd_reduction(sk);
3383 			tcp_set_ca_state(sk, TCP_CA_CWR);
3384 			tcp_end_cwnd_reduction(sk);
3385 			tcp_try_keep_open(sk);
3386 			NET_INC_STATS_BH(sock_net(sk),
3387 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3388 		}
3389 	}
3390 }
3391 
3392 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3393 {
3394 	const struct inet_connection_sock *icsk = inet_csk(sk);
3395 
3396 	if (icsk->icsk_ca_ops->in_ack_event)
3397 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3398 }
3399 
3400 /* This routine deals with incoming acks, but not outgoing ones. */
3401 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3402 {
3403 	struct inet_connection_sock *icsk = inet_csk(sk);
3404 	struct tcp_sock *tp = tcp_sk(sk);
3405 	u32 prior_snd_una = tp->snd_una;
3406 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3407 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3408 	bool is_dupack = false;
3409 	u32 prior_fackets;
3410 	int prior_packets = tp->packets_out;
3411 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3412 	int acked = 0; /* Number of packets newly acked */
3413 	long sack_rtt_us = -1L;
3414 
3415 	/* We very likely will need to access write queue head. */
3416 	prefetchw(sk->sk_write_queue.next);
3417 
3418 	/* If the ack is older than previous acks
3419 	 * then we can probably ignore it.
3420 	 */
3421 	if (before(ack, prior_snd_una)) {
3422 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3423 		if (before(ack, prior_snd_una - tp->max_window)) {
3424 			tcp_send_challenge_ack(sk);
3425 			return -1;
3426 		}
3427 		goto old_ack;
3428 	}
3429 
3430 	/* If the ack includes data we haven't sent yet, discard
3431 	 * this segment (RFC793 Section 3.9).
3432 	 */
3433 	if (after(ack, tp->snd_nxt))
3434 		goto invalid_ack;
3435 
3436 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3437 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3438 		tcp_rearm_rto(sk);
3439 
3440 	if (after(ack, prior_snd_una)) {
3441 		flag |= FLAG_SND_UNA_ADVANCED;
3442 		icsk->icsk_retransmits = 0;
3443 	}
3444 
3445 	prior_fackets = tp->fackets_out;
3446 
3447 	/* ts_recent update must be made after we are sure that the packet
3448 	 * is in window.
3449 	 */
3450 	if (flag & FLAG_UPDATE_TS_RECENT)
3451 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3452 
3453 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3454 		/* Window is constant, pure forward advance.
3455 		 * No more checks are required.
3456 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3457 		 */
3458 		tcp_update_wl(tp, ack_seq);
3459 		tp->snd_una = ack;
3460 		flag |= FLAG_WIN_UPDATE;
3461 
3462 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3463 
3464 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3465 	} else {
3466 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3467 
3468 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3469 			flag |= FLAG_DATA;
3470 		else
3471 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3472 
3473 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3474 
3475 		if (TCP_SKB_CB(skb)->sacked)
3476 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3477 							&sack_rtt_us);
3478 
3479 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3480 			flag |= FLAG_ECE;
3481 			ack_ev_flags |= CA_ACK_ECE;
3482 		}
3483 
3484 		if (flag & FLAG_WIN_UPDATE)
3485 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3486 
3487 		tcp_in_ack_event(sk, ack_ev_flags);
3488 	}
3489 
3490 	/* We passed data and got it acked, remove any soft error
3491 	 * log. Something worked...
3492 	 */
3493 	sk->sk_err_soft = 0;
3494 	icsk->icsk_probes_out = 0;
3495 	tp->rcv_tstamp = tcp_time_stamp;
3496 	if (!prior_packets)
3497 		goto no_queue;
3498 
3499 	/* See if we can take anything off of the retransmit queue. */
3500 	acked = tp->packets_out;
3501 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3502 				    sack_rtt_us);
3503 	acked -= tp->packets_out;
3504 
3505 	/* Advance cwnd if state allows */
3506 	if (tcp_may_raise_cwnd(sk, flag))
3507 		tcp_cong_avoid(sk, ack, acked);
3508 
3509 	if (tcp_ack_is_dubious(sk, flag)) {
3510 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3511 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3512 				      is_dupack, flag);
3513 	}
3514 	if (tp->tlp_high_seq)
3515 		tcp_process_tlp_ack(sk, ack, flag);
3516 
3517 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3518 		struct dst_entry *dst = __sk_dst_get(sk);
3519 		if (dst)
3520 			dst_confirm(dst);
3521 	}
3522 
3523 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3524 		tcp_schedule_loss_probe(sk);
3525 	tcp_update_pacing_rate(sk);
3526 	return 1;
3527 
3528 no_queue:
3529 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3530 	if (flag & FLAG_DSACKING_ACK)
3531 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3532 				      is_dupack, flag);
3533 	/* If this ack opens up a zero window, clear backoff.  It was
3534 	 * being used to time the probes, and is probably far higher than
3535 	 * it needs to be for normal retransmission.
3536 	 */
3537 	if (tcp_send_head(sk))
3538 		tcp_ack_probe(sk);
3539 
3540 	if (tp->tlp_high_seq)
3541 		tcp_process_tlp_ack(sk, ack, flag);
3542 	return 1;
3543 
3544 invalid_ack:
3545 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3546 	return -1;
3547 
3548 old_ack:
3549 	/* If data was SACKed, tag it and see if we should send more data.
3550 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3551 	 */
3552 	if (TCP_SKB_CB(skb)->sacked) {
3553 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3554 						&sack_rtt_us);
3555 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3556 				      is_dupack, flag);
3557 	}
3558 
3559 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3560 	return 0;
3561 }
3562 
3563 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3564  * But, this can also be called on packets in the established flow when
3565  * the fast version below fails.
3566  */
3567 void tcp_parse_options(const struct sk_buff *skb,
3568 		       struct tcp_options_received *opt_rx, int estab,
3569 		       struct tcp_fastopen_cookie *foc)
3570 {
3571 	const unsigned char *ptr;
3572 	const struct tcphdr *th = tcp_hdr(skb);
3573 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3574 
3575 	ptr = (const unsigned char *)(th + 1);
3576 	opt_rx->saw_tstamp = 0;
3577 
3578 	while (length > 0) {
3579 		int opcode = *ptr++;
3580 		int opsize;
3581 
3582 		switch (opcode) {
3583 		case TCPOPT_EOL:
3584 			return;
3585 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3586 			length--;
3587 			continue;
3588 		default:
3589 			opsize = *ptr++;
3590 			if (opsize < 2) /* "silly options" */
3591 				return;
3592 			if (opsize > length)
3593 				return;	/* don't parse partial options */
3594 			switch (opcode) {
3595 			case TCPOPT_MSS:
3596 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3597 					u16 in_mss = get_unaligned_be16(ptr);
3598 					if (in_mss) {
3599 						if (opt_rx->user_mss &&
3600 						    opt_rx->user_mss < in_mss)
3601 							in_mss = opt_rx->user_mss;
3602 						opt_rx->mss_clamp = in_mss;
3603 					}
3604 				}
3605 				break;
3606 			case TCPOPT_WINDOW:
3607 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3608 				    !estab && sysctl_tcp_window_scaling) {
3609 					__u8 snd_wscale = *(__u8 *)ptr;
3610 					opt_rx->wscale_ok = 1;
3611 					if (snd_wscale > 14) {
3612 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3613 								     __func__,
3614 								     snd_wscale);
3615 						snd_wscale = 14;
3616 					}
3617 					opt_rx->snd_wscale = snd_wscale;
3618 				}
3619 				break;
3620 			case TCPOPT_TIMESTAMP:
3621 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3622 				    ((estab && opt_rx->tstamp_ok) ||
3623 				     (!estab && sysctl_tcp_timestamps))) {
3624 					opt_rx->saw_tstamp = 1;
3625 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3626 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3627 				}
3628 				break;
3629 			case TCPOPT_SACK_PERM:
3630 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3631 				    !estab && sysctl_tcp_sack) {
3632 					opt_rx->sack_ok = TCP_SACK_SEEN;
3633 					tcp_sack_reset(opt_rx);
3634 				}
3635 				break;
3636 
3637 			case TCPOPT_SACK:
3638 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3639 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3640 				   opt_rx->sack_ok) {
3641 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3642 				}
3643 				break;
3644 #ifdef CONFIG_TCP_MD5SIG
3645 			case TCPOPT_MD5SIG:
3646 				/*
3647 				 * The MD5 Hash has already been
3648 				 * checked (see tcp_v{4,6}_do_rcv()).
3649 				 */
3650 				break;
3651 #endif
3652 			case TCPOPT_EXP:
3653 				/* Fast Open option shares code 254 using a
3654 				 * 16 bits magic number. It's valid only in
3655 				 * SYN or SYN-ACK with an even size.
3656 				 */
3657 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3658 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3659 				    foc == NULL || !th->syn || (opsize & 1))
3660 					break;
3661 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3662 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3663 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3664 					memcpy(foc->val, ptr + 2, foc->len);
3665 				else if (foc->len != 0)
3666 					foc->len = -1;
3667 				break;
3668 
3669 			}
3670 			ptr += opsize-2;
3671 			length -= opsize;
3672 		}
3673 	}
3674 }
3675 EXPORT_SYMBOL(tcp_parse_options);
3676 
3677 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3678 {
3679 	const __be32 *ptr = (const __be32 *)(th + 1);
3680 
3681 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3682 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3683 		tp->rx_opt.saw_tstamp = 1;
3684 		++ptr;
3685 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3686 		++ptr;
3687 		if (*ptr)
3688 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3689 		else
3690 			tp->rx_opt.rcv_tsecr = 0;
3691 		return true;
3692 	}
3693 	return false;
3694 }
3695 
3696 /* Fast parse options. This hopes to only see timestamps.
3697  * If it is wrong it falls back on tcp_parse_options().
3698  */
3699 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3700 				   const struct tcphdr *th, struct tcp_sock *tp)
3701 {
3702 	/* In the spirit of fast parsing, compare doff directly to constant
3703 	 * values.  Because equality is used, short doff can be ignored here.
3704 	 */
3705 	if (th->doff == (sizeof(*th) / 4)) {
3706 		tp->rx_opt.saw_tstamp = 0;
3707 		return false;
3708 	} else if (tp->rx_opt.tstamp_ok &&
3709 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3710 		if (tcp_parse_aligned_timestamp(tp, th))
3711 			return true;
3712 	}
3713 
3714 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3715 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3716 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3717 
3718 	return true;
3719 }
3720 
3721 #ifdef CONFIG_TCP_MD5SIG
3722 /*
3723  * Parse MD5 Signature option
3724  */
3725 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3726 {
3727 	int length = (th->doff << 2) - sizeof(*th);
3728 	const u8 *ptr = (const u8 *)(th + 1);
3729 
3730 	/* If the TCP option is too short, we can short cut */
3731 	if (length < TCPOLEN_MD5SIG)
3732 		return NULL;
3733 
3734 	while (length > 0) {
3735 		int opcode = *ptr++;
3736 		int opsize;
3737 
3738 		switch (opcode) {
3739 		case TCPOPT_EOL:
3740 			return NULL;
3741 		case TCPOPT_NOP:
3742 			length--;
3743 			continue;
3744 		default:
3745 			opsize = *ptr++;
3746 			if (opsize < 2 || opsize > length)
3747 				return NULL;
3748 			if (opcode == TCPOPT_MD5SIG)
3749 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3750 		}
3751 		ptr += opsize - 2;
3752 		length -= opsize;
3753 	}
3754 	return NULL;
3755 }
3756 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3757 #endif
3758 
3759 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3760  *
3761  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3762  * it can pass through stack. So, the following predicate verifies that
3763  * this segment is not used for anything but congestion avoidance or
3764  * fast retransmit. Moreover, we even are able to eliminate most of such
3765  * second order effects, if we apply some small "replay" window (~RTO)
3766  * to timestamp space.
3767  *
3768  * All these measures still do not guarantee that we reject wrapped ACKs
3769  * on networks with high bandwidth, when sequence space is recycled fastly,
3770  * but it guarantees that such events will be very rare and do not affect
3771  * connection seriously. This doesn't look nice, but alas, PAWS is really
3772  * buggy extension.
3773  *
3774  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3775  * states that events when retransmit arrives after original data are rare.
3776  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3777  * the biggest problem on large power networks even with minor reordering.
3778  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3779  * up to bandwidth of 18Gigabit/sec. 8) ]
3780  */
3781 
3782 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3783 {
3784 	const struct tcp_sock *tp = tcp_sk(sk);
3785 	const struct tcphdr *th = tcp_hdr(skb);
3786 	u32 seq = TCP_SKB_CB(skb)->seq;
3787 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3788 
3789 	return (/* 1. Pure ACK with correct sequence number. */
3790 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3791 
3792 		/* 2. ... and duplicate ACK. */
3793 		ack == tp->snd_una &&
3794 
3795 		/* 3. ... and does not update window. */
3796 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3797 
3798 		/* 4. ... and sits in replay window. */
3799 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3800 }
3801 
3802 static inline bool tcp_paws_discard(const struct sock *sk,
3803 				   const struct sk_buff *skb)
3804 {
3805 	const struct tcp_sock *tp = tcp_sk(sk);
3806 
3807 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3808 	       !tcp_disordered_ack(sk, skb);
3809 }
3810 
3811 /* Check segment sequence number for validity.
3812  *
3813  * Segment controls are considered valid, if the segment
3814  * fits to the window after truncation to the window. Acceptability
3815  * of data (and SYN, FIN, of course) is checked separately.
3816  * See tcp_data_queue(), for example.
3817  *
3818  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3819  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3820  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3821  * (borrowed from freebsd)
3822  */
3823 
3824 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3825 {
3826 	return	!before(end_seq, tp->rcv_wup) &&
3827 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3828 }
3829 
3830 /* When we get a reset we do this. */
3831 void tcp_reset(struct sock *sk)
3832 {
3833 	/* We want the right error as BSD sees it (and indeed as we do). */
3834 	switch (sk->sk_state) {
3835 	case TCP_SYN_SENT:
3836 		sk->sk_err = ECONNREFUSED;
3837 		break;
3838 	case TCP_CLOSE_WAIT:
3839 		sk->sk_err = EPIPE;
3840 		break;
3841 	case TCP_CLOSE:
3842 		return;
3843 	default:
3844 		sk->sk_err = ECONNRESET;
3845 	}
3846 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3847 	smp_wmb();
3848 
3849 	if (!sock_flag(sk, SOCK_DEAD))
3850 		sk->sk_error_report(sk);
3851 
3852 	tcp_done(sk);
3853 }
3854 
3855 /*
3856  * 	Process the FIN bit. This now behaves as it is supposed to work
3857  *	and the FIN takes effect when it is validly part of sequence
3858  *	space. Not before when we get holes.
3859  *
3860  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3861  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3862  *	TIME-WAIT)
3863  *
3864  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3865  *	close and we go into CLOSING (and later onto TIME-WAIT)
3866  *
3867  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3868  */
3869 static void tcp_fin(struct sock *sk)
3870 {
3871 	struct tcp_sock *tp = tcp_sk(sk);
3872 	const struct dst_entry *dst;
3873 
3874 	inet_csk_schedule_ack(sk);
3875 
3876 	sk->sk_shutdown |= RCV_SHUTDOWN;
3877 	sock_set_flag(sk, SOCK_DONE);
3878 
3879 	switch (sk->sk_state) {
3880 	case TCP_SYN_RECV:
3881 	case TCP_ESTABLISHED:
3882 		/* Move to CLOSE_WAIT */
3883 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3884 		dst = __sk_dst_get(sk);
3885 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3886 			inet_csk(sk)->icsk_ack.pingpong = 1;
3887 		break;
3888 
3889 	case TCP_CLOSE_WAIT:
3890 	case TCP_CLOSING:
3891 		/* Received a retransmission of the FIN, do
3892 		 * nothing.
3893 		 */
3894 		break;
3895 	case TCP_LAST_ACK:
3896 		/* RFC793: Remain in the LAST-ACK state. */
3897 		break;
3898 
3899 	case TCP_FIN_WAIT1:
3900 		/* This case occurs when a simultaneous close
3901 		 * happens, we must ack the received FIN and
3902 		 * enter the CLOSING state.
3903 		 */
3904 		tcp_send_ack(sk);
3905 		tcp_set_state(sk, TCP_CLOSING);
3906 		break;
3907 	case TCP_FIN_WAIT2:
3908 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3909 		tcp_send_ack(sk);
3910 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3911 		break;
3912 	default:
3913 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3914 		 * cases we should never reach this piece of code.
3915 		 */
3916 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3917 		       __func__, sk->sk_state);
3918 		break;
3919 	}
3920 
3921 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3922 	 * Probably, we should reset in this case. For now drop them.
3923 	 */
3924 	__skb_queue_purge(&tp->out_of_order_queue);
3925 	if (tcp_is_sack(tp))
3926 		tcp_sack_reset(&tp->rx_opt);
3927 	sk_mem_reclaim(sk);
3928 
3929 	if (!sock_flag(sk, SOCK_DEAD)) {
3930 		sk->sk_state_change(sk);
3931 
3932 		/* Do not send POLL_HUP for half duplex close. */
3933 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3934 		    sk->sk_state == TCP_CLOSE)
3935 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3936 		else
3937 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3938 	}
3939 }
3940 
3941 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3942 				  u32 end_seq)
3943 {
3944 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3945 		if (before(seq, sp->start_seq))
3946 			sp->start_seq = seq;
3947 		if (after(end_seq, sp->end_seq))
3948 			sp->end_seq = end_seq;
3949 		return true;
3950 	}
3951 	return false;
3952 }
3953 
3954 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3955 {
3956 	struct tcp_sock *tp = tcp_sk(sk);
3957 
3958 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3959 		int mib_idx;
3960 
3961 		if (before(seq, tp->rcv_nxt))
3962 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3963 		else
3964 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3965 
3966 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3967 
3968 		tp->rx_opt.dsack = 1;
3969 		tp->duplicate_sack[0].start_seq = seq;
3970 		tp->duplicate_sack[0].end_seq = end_seq;
3971 	}
3972 }
3973 
3974 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3975 {
3976 	struct tcp_sock *tp = tcp_sk(sk);
3977 
3978 	if (!tp->rx_opt.dsack)
3979 		tcp_dsack_set(sk, seq, end_seq);
3980 	else
3981 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3982 }
3983 
3984 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3985 {
3986 	struct tcp_sock *tp = tcp_sk(sk);
3987 
3988 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3989 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3990 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3991 		tcp_enter_quickack_mode(sk);
3992 
3993 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3994 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3995 
3996 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3997 				end_seq = tp->rcv_nxt;
3998 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3999 		}
4000 	}
4001 
4002 	tcp_send_ack(sk);
4003 }
4004 
4005 /* These routines update the SACK block as out-of-order packets arrive or
4006  * in-order packets close up the sequence space.
4007  */
4008 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4009 {
4010 	int this_sack;
4011 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4012 	struct tcp_sack_block *swalk = sp + 1;
4013 
4014 	/* See if the recent change to the first SACK eats into
4015 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4016 	 */
4017 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4018 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4019 			int i;
4020 
4021 			/* Zap SWALK, by moving every further SACK up by one slot.
4022 			 * Decrease num_sacks.
4023 			 */
4024 			tp->rx_opt.num_sacks--;
4025 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4026 				sp[i] = sp[i + 1];
4027 			continue;
4028 		}
4029 		this_sack++, swalk++;
4030 	}
4031 }
4032 
4033 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4034 {
4035 	struct tcp_sock *tp = tcp_sk(sk);
4036 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4037 	int cur_sacks = tp->rx_opt.num_sacks;
4038 	int this_sack;
4039 
4040 	if (!cur_sacks)
4041 		goto new_sack;
4042 
4043 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4044 		if (tcp_sack_extend(sp, seq, end_seq)) {
4045 			/* Rotate this_sack to the first one. */
4046 			for (; this_sack > 0; this_sack--, sp--)
4047 				swap(*sp, *(sp - 1));
4048 			if (cur_sacks > 1)
4049 				tcp_sack_maybe_coalesce(tp);
4050 			return;
4051 		}
4052 	}
4053 
4054 	/* Could not find an adjacent existing SACK, build a new one,
4055 	 * put it at the front, and shift everyone else down.  We
4056 	 * always know there is at least one SACK present already here.
4057 	 *
4058 	 * If the sack array is full, forget about the last one.
4059 	 */
4060 	if (this_sack >= TCP_NUM_SACKS) {
4061 		this_sack--;
4062 		tp->rx_opt.num_sacks--;
4063 		sp--;
4064 	}
4065 	for (; this_sack > 0; this_sack--, sp--)
4066 		*sp = *(sp - 1);
4067 
4068 new_sack:
4069 	/* Build the new head SACK, and we're done. */
4070 	sp->start_seq = seq;
4071 	sp->end_seq = end_seq;
4072 	tp->rx_opt.num_sacks++;
4073 }
4074 
4075 /* RCV.NXT advances, some SACKs should be eaten. */
4076 
4077 static void tcp_sack_remove(struct tcp_sock *tp)
4078 {
4079 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4080 	int num_sacks = tp->rx_opt.num_sacks;
4081 	int this_sack;
4082 
4083 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4084 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4085 		tp->rx_opt.num_sacks = 0;
4086 		return;
4087 	}
4088 
4089 	for (this_sack = 0; this_sack < num_sacks;) {
4090 		/* Check if the start of the sack is covered by RCV.NXT. */
4091 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4092 			int i;
4093 
4094 			/* RCV.NXT must cover all the block! */
4095 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4096 
4097 			/* Zap this SACK, by moving forward any other SACKS. */
4098 			for (i = this_sack+1; i < num_sacks; i++)
4099 				tp->selective_acks[i-1] = tp->selective_acks[i];
4100 			num_sacks--;
4101 			continue;
4102 		}
4103 		this_sack++;
4104 		sp++;
4105 	}
4106 	tp->rx_opt.num_sacks = num_sacks;
4107 }
4108 
4109 /**
4110  * tcp_try_coalesce - try to merge skb to prior one
4111  * @sk: socket
4112  * @to: prior buffer
4113  * @from: buffer to add in queue
4114  * @fragstolen: pointer to boolean
4115  *
4116  * Before queueing skb @from after @to, try to merge them
4117  * to reduce overall memory use and queue lengths, if cost is small.
4118  * Packets in ofo or receive queues can stay a long time.
4119  * Better try to coalesce them right now to avoid future collapses.
4120  * Returns true if caller should free @from instead of queueing it
4121  */
4122 static bool tcp_try_coalesce(struct sock *sk,
4123 			     struct sk_buff *to,
4124 			     struct sk_buff *from,
4125 			     bool *fragstolen)
4126 {
4127 	int delta;
4128 
4129 	*fragstolen = false;
4130 
4131 	/* Its possible this segment overlaps with prior segment in queue */
4132 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4133 		return false;
4134 
4135 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4136 		return false;
4137 
4138 	atomic_add(delta, &sk->sk_rmem_alloc);
4139 	sk_mem_charge(sk, delta);
4140 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4141 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4142 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4143 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4144 	return true;
4145 }
4146 
4147 /* This one checks to see if we can put data from the
4148  * out_of_order queue into the receive_queue.
4149  */
4150 static void tcp_ofo_queue(struct sock *sk)
4151 {
4152 	struct tcp_sock *tp = tcp_sk(sk);
4153 	__u32 dsack_high = tp->rcv_nxt;
4154 	struct sk_buff *skb, *tail;
4155 	bool fragstolen, eaten;
4156 
4157 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4158 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4159 			break;
4160 
4161 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4162 			__u32 dsack = dsack_high;
4163 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4164 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4165 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4166 		}
4167 
4168 		__skb_unlink(skb, &tp->out_of_order_queue);
4169 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4170 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4171 			__kfree_skb(skb);
4172 			continue;
4173 		}
4174 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4175 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4176 			   TCP_SKB_CB(skb)->end_seq);
4177 
4178 		tail = skb_peek_tail(&sk->sk_receive_queue);
4179 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4180 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4181 		if (!eaten)
4182 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4183 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4184 			tcp_fin(sk);
4185 		if (eaten)
4186 			kfree_skb_partial(skb, fragstolen);
4187 	}
4188 }
4189 
4190 static bool tcp_prune_ofo_queue(struct sock *sk);
4191 static int tcp_prune_queue(struct sock *sk);
4192 
4193 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4194 				 unsigned int size)
4195 {
4196 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4197 	    !sk_rmem_schedule(sk, skb, size)) {
4198 
4199 		if (tcp_prune_queue(sk) < 0)
4200 			return -1;
4201 
4202 		if (!sk_rmem_schedule(sk, skb, size)) {
4203 			if (!tcp_prune_ofo_queue(sk))
4204 				return -1;
4205 
4206 			if (!sk_rmem_schedule(sk, skb, size))
4207 				return -1;
4208 		}
4209 	}
4210 	return 0;
4211 }
4212 
4213 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4214 {
4215 	struct tcp_sock *tp = tcp_sk(sk);
4216 	struct sk_buff *skb1;
4217 	u32 seq, end_seq;
4218 
4219 	tcp_ecn_check_ce(tp, skb);
4220 
4221 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4222 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4223 		__kfree_skb(skb);
4224 		return;
4225 	}
4226 
4227 	/* Disable header prediction. */
4228 	tp->pred_flags = 0;
4229 	inet_csk_schedule_ack(sk);
4230 
4231 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4232 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4233 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4234 
4235 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4236 	if (!skb1) {
4237 		/* Initial out of order segment, build 1 SACK. */
4238 		if (tcp_is_sack(tp)) {
4239 			tp->rx_opt.num_sacks = 1;
4240 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4241 			tp->selective_acks[0].end_seq =
4242 						TCP_SKB_CB(skb)->end_seq;
4243 		}
4244 		__skb_queue_head(&tp->out_of_order_queue, skb);
4245 		goto end;
4246 	}
4247 
4248 	seq = TCP_SKB_CB(skb)->seq;
4249 	end_seq = TCP_SKB_CB(skb)->end_seq;
4250 
4251 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4252 		bool fragstolen;
4253 
4254 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4255 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4256 		} else {
4257 			tcp_grow_window(sk, skb);
4258 			kfree_skb_partial(skb, fragstolen);
4259 			skb = NULL;
4260 		}
4261 
4262 		if (!tp->rx_opt.num_sacks ||
4263 		    tp->selective_acks[0].end_seq != seq)
4264 			goto add_sack;
4265 
4266 		/* Common case: data arrive in order after hole. */
4267 		tp->selective_acks[0].end_seq = end_seq;
4268 		goto end;
4269 	}
4270 
4271 	/* Find place to insert this segment. */
4272 	while (1) {
4273 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4274 			break;
4275 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4276 			skb1 = NULL;
4277 			break;
4278 		}
4279 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4280 	}
4281 
4282 	/* Do skb overlap to previous one? */
4283 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4284 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4285 			/* All the bits are present. Drop. */
4286 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4287 			__kfree_skb(skb);
4288 			skb = NULL;
4289 			tcp_dsack_set(sk, seq, end_seq);
4290 			goto add_sack;
4291 		}
4292 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4293 			/* Partial overlap. */
4294 			tcp_dsack_set(sk, seq,
4295 				      TCP_SKB_CB(skb1)->end_seq);
4296 		} else {
4297 			if (skb_queue_is_first(&tp->out_of_order_queue,
4298 					       skb1))
4299 				skb1 = NULL;
4300 			else
4301 				skb1 = skb_queue_prev(
4302 					&tp->out_of_order_queue,
4303 					skb1);
4304 		}
4305 	}
4306 	if (!skb1)
4307 		__skb_queue_head(&tp->out_of_order_queue, skb);
4308 	else
4309 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4310 
4311 	/* And clean segments covered by new one as whole. */
4312 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4313 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4314 
4315 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4316 			break;
4317 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4318 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4319 					 end_seq);
4320 			break;
4321 		}
4322 		__skb_unlink(skb1, &tp->out_of_order_queue);
4323 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4324 				 TCP_SKB_CB(skb1)->end_seq);
4325 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4326 		__kfree_skb(skb1);
4327 	}
4328 
4329 add_sack:
4330 	if (tcp_is_sack(tp))
4331 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4332 end:
4333 	if (skb) {
4334 		tcp_grow_window(sk, skb);
4335 		skb_set_owner_r(skb, sk);
4336 	}
4337 }
4338 
4339 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4340 		  bool *fragstolen)
4341 {
4342 	int eaten;
4343 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4344 
4345 	__skb_pull(skb, hdrlen);
4346 	eaten = (tail &&
4347 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4348 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4349 	if (!eaten) {
4350 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4351 		skb_set_owner_r(skb, sk);
4352 	}
4353 	return eaten;
4354 }
4355 
4356 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4357 {
4358 	struct sk_buff *skb;
4359 	bool fragstolen;
4360 
4361 	if (size == 0)
4362 		return 0;
4363 
4364 	skb = alloc_skb(size, sk->sk_allocation);
4365 	if (!skb)
4366 		goto err;
4367 
4368 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4369 		goto err_free;
4370 
4371 	if (memcpy_from_msg(skb_put(skb, size), msg, size))
4372 		goto err_free;
4373 
4374 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4375 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4376 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4377 
4378 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4379 		WARN_ON_ONCE(fragstolen); /* should not happen */
4380 		__kfree_skb(skb);
4381 	}
4382 	return size;
4383 
4384 err_free:
4385 	kfree_skb(skb);
4386 err:
4387 	return -ENOMEM;
4388 }
4389 
4390 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4391 {
4392 	struct tcp_sock *tp = tcp_sk(sk);
4393 	int eaten = -1;
4394 	bool fragstolen = false;
4395 
4396 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4397 		goto drop;
4398 
4399 	skb_dst_drop(skb);
4400 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4401 
4402 	tcp_ecn_accept_cwr(tp, skb);
4403 
4404 	tp->rx_opt.dsack = 0;
4405 
4406 	/*  Queue data for delivery to the user.
4407 	 *  Packets in sequence go to the receive queue.
4408 	 *  Out of sequence packets to the out_of_order_queue.
4409 	 */
4410 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4411 		if (tcp_receive_window(tp) == 0)
4412 			goto out_of_window;
4413 
4414 		/* Ok. In sequence. In window. */
4415 		if (tp->ucopy.task == current &&
4416 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4417 		    sock_owned_by_user(sk) && !tp->urg_data) {
4418 			int chunk = min_t(unsigned int, skb->len,
4419 					  tp->ucopy.len);
4420 
4421 			__set_current_state(TASK_RUNNING);
4422 
4423 			local_bh_enable();
4424 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4425 				tp->ucopy.len -= chunk;
4426 				tp->copied_seq += chunk;
4427 				eaten = (chunk == skb->len);
4428 				tcp_rcv_space_adjust(sk);
4429 			}
4430 			local_bh_disable();
4431 		}
4432 
4433 		if (eaten <= 0) {
4434 queue_and_out:
4435 			if (eaten < 0 &&
4436 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4437 				goto drop;
4438 
4439 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4440 		}
4441 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4442 		if (skb->len)
4443 			tcp_event_data_recv(sk, skb);
4444 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4445 			tcp_fin(sk);
4446 
4447 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4448 			tcp_ofo_queue(sk);
4449 
4450 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4451 			 * gap in queue is filled.
4452 			 */
4453 			if (skb_queue_empty(&tp->out_of_order_queue))
4454 				inet_csk(sk)->icsk_ack.pingpong = 0;
4455 		}
4456 
4457 		if (tp->rx_opt.num_sacks)
4458 			tcp_sack_remove(tp);
4459 
4460 		tcp_fast_path_check(sk);
4461 
4462 		if (eaten > 0)
4463 			kfree_skb_partial(skb, fragstolen);
4464 		if (!sock_flag(sk, SOCK_DEAD))
4465 			sk->sk_data_ready(sk);
4466 		return;
4467 	}
4468 
4469 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4470 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4471 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4472 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4473 
4474 out_of_window:
4475 		tcp_enter_quickack_mode(sk);
4476 		inet_csk_schedule_ack(sk);
4477 drop:
4478 		__kfree_skb(skb);
4479 		return;
4480 	}
4481 
4482 	/* Out of window. F.e. zero window probe. */
4483 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4484 		goto out_of_window;
4485 
4486 	tcp_enter_quickack_mode(sk);
4487 
4488 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4489 		/* Partial packet, seq < rcv_next < end_seq */
4490 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4491 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4492 			   TCP_SKB_CB(skb)->end_seq);
4493 
4494 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4495 
4496 		/* If window is closed, drop tail of packet. But after
4497 		 * remembering D-SACK for its head made in previous line.
4498 		 */
4499 		if (!tcp_receive_window(tp))
4500 			goto out_of_window;
4501 		goto queue_and_out;
4502 	}
4503 
4504 	tcp_data_queue_ofo(sk, skb);
4505 }
4506 
4507 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4508 					struct sk_buff_head *list)
4509 {
4510 	struct sk_buff *next = NULL;
4511 
4512 	if (!skb_queue_is_last(list, skb))
4513 		next = skb_queue_next(list, skb);
4514 
4515 	__skb_unlink(skb, list);
4516 	__kfree_skb(skb);
4517 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4518 
4519 	return next;
4520 }
4521 
4522 /* Collapse contiguous sequence of skbs head..tail with
4523  * sequence numbers start..end.
4524  *
4525  * If tail is NULL, this means until the end of the list.
4526  *
4527  * Segments with FIN/SYN are not collapsed (only because this
4528  * simplifies code)
4529  */
4530 static void
4531 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4532 	     struct sk_buff *head, struct sk_buff *tail,
4533 	     u32 start, u32 end)
4534 {
4535 	struct sk_buff *skb, *n;
4536 	bool end_of_skbs;
4537 
4538 	/* First, check that queue is collapsible and find
4539 	 * the point where collapsing can be useful. */
4540 	skb = head;
4541 restart:
4542 	end_of_skbs = true;
4543 	skb_queue_walk_from_safe(list, skb, n) {
4544 		if (skb == tail)
4545 			break;
4546 		/* No new bits? It is possible on ofo queue. */
4547 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4548 			skb = tcp_collapse_one(sk, skb, list);
4549 			if (!skb)
4550 				break;
4551 			goto restart;
4552 		}
4553 
4554 		/* The first skb to collapse is:
4555 		 * - not SYN/FIN and
4556 		 * - bloated or contains data before "start" or
4557 		 *   overlaps to the next one.
4558 		 */
4559 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4560 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4561 		     before(TCP_SKB_CB(skb)->seq, start))) {
4562 			end_of_skbs = false;
4563 			break;
4564 		}
4565 
4566 		if (!skb_queue_is_last(list, skb)) {
4567 			struct sk_buff *next = skb_queue_next(list, skb);
4568 			if (next != tail &&
4569 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4570 				end_of_skbs = false;
4571 				break;
4572 			}
4573 		}
4574 
4575 		/* Decided to skip this, advance start seq. */
4576 		start = TCP_SKB_CB(skb)->end_seq;
4577 	}
4578 	if (end_of_skbs ||
4579 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4580 		return;
4581 
4582 	while (before(start, end)) {
4583 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4584 		struct sk_buff *nskb;
4585 
4586 		nskb = alloc_skb(copy, GFP_ATOMIC);
4587 		if (!nskb)
4588 			return;
4589 
4590 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4591 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4592 		__skb_queue_before(list, skb, nskb);
4593 		skb_set_owner_r(nskb, sk);
4594 
4595 		/* Copy data, releasing collapsed skbs. */
4596 		while (copy > 0) {
4597 			int offset = start - TCP_SKB_CB(skb)->seq;
4598 			int size = TCP_SKB_CB(skb)->end_seq - start;
4599 
4600 			BUG_ON(offset < 0);
4601 			if (size > 0) {
4602 				size = min(copy, size);
4603 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4604 					BUG();
4605 				TCP_SKB_CB(nskb)->end_seq += size;
4606 				copy -= size;
4607 				start += size;
4608 			}
4609 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4610 				skb = tcp_collapse_one(sk, skb, list);
4611 				if (!skb ||
4612 				    skb == tail ||
4613 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4614 					return;
4615 			}
4616 		}
4617 	}
4618 }
4619 
4620 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4621  * and tcp_collapse() them until all the queue is collapsed.
4622  */
4623 static void tcp_collapse_ofo_queue(struct sock *sk)
4624 {
4625 	struct tcp_sock *tp = tcp_sk(sk);
4626 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4627 	struct sk_buff *head;
4628 	u32 start, end;
4629 
4630 	if (skb == NULL)
4631 		return;
4632 
4633 	start = TCP_SKB_CB(skb)->seq;
4634 	end = TCP_SKB_CB(skb)->end_seq;
4635 	head = skb;
4636 
4637 	for (;;) {
4638 		struct sk_buff *next = NULL;
4639 
4640 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4641 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4642 		skb = next;
4643 
4644 		/* Segment is terminated when we see gap or when
4645 		 * we are at the end of all the queue. */
4646 		if (!skb ||
4647 		    after(TCP_SKB_CB(skb)->seq, end) ||
4648 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4649 			tcp_collapse(sk, &tp->out_of_order_queue,
4650 				     head, skb, start, end);
4651 			head = skb;
4652 			if (!skb)
4653 				break;
4654 			/* Start new segment */
4655 			start = TCP_SKB_CB(skb)->seq;
4656 			end = TCP_SKB_CB(skb)->end_seq;
4657 		} else {
4658 			if (before(TCP_SKB_CB(skb)->seq, start))
4659 				start = TCP_SKB_CB(skb)->seq;
4660 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4661 				end = TCP_SKB_CB(skb)->end_seq;
4662 		}
4663 	}
4664 }
4665 
4666 /*
4667  * Purge the out-of-order queue.
4668  * Return true if queue was pruned.
4669  */
4670 static bool tcp_prune_ofo_queue(struct sock *sk)
4671 {
4672 	struct tcp_sock *tp = tcp_sk(sk);
4673 	bool res = false;
4674 
4675 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4676 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4677 		__skb_queue_purge(&tp->out_of_order_queue);
4678 
4679 		/* Reset SACK state.  A conforming SACK implementation will
4680 		 * do the same at a timeout based retransmit.  When a connection
4681 		 * is in a sad state like this, we care only about integrity
4682 		 * of the connection not performance.
4683 		 */
4684 		if (tp->rx_opt.sack_ok)
4685 			tcp_sack_reset(&tp->rx_opt);
4686 		sk_mem_reclaim(sk);
4687 		res = true;
4688 	}
4689 	return res;
4690 }
4691 
4692 /* Reduce allocated memory if we can, trying to get
4693  * the socket within its memory limits again.
4694  *
4695  * Return less than zero if we should start dropping frames
4696  * until the socket owning process reads some of the data
4697  * to stabilize the situation.
4698  */
4699 static int tcp_prune_queue(struct sock *sk)
4700 {
4701 	struct tcp_sock *tp = tcp_sk(sk);
4702 
4703 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4704 
4705 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4706 
4707 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4708 		tcp_clamp_window(sk);
4709 	else if (sk_under_memory_pressure(sk))
4710 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4711 
4712 	tcp_collapse_ofo_queue(sk);
4713 	if (!skb_queue_empty(&sk->sk_receive_queue))
4714 		tcp_collapse(sk, &sk->sk_receive_queue,
4715 			     skb_peek(&sk->sk_receive_queue),
4716 			     NULL,
4717 			     tp->copied_seq, tp->rcv_nxt);
4718 	sk_mem_reclaim(sk);
4719 
4720 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4721 		return 0;
4722 
4723 	/* Collapsing did not help, destructive actions follow.
4724 	 * This must not ever occur. */
4725 
4726 	tcp_prune_ofo_queue(sk);
4727 
4728 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4729 		return 0;
4730 
4731 	/* If we are really being abused, tell the caller to silently
4732 	 * drop receive data on the floor.  It will get retransmitted
4733 	 * and hopefully then we'll have sufficient space.
4734 	 */
4735 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4736 
4737 	/* Massive buffer overcommit. */
4738 	tp->pred_flags = 0;
4739 	return -1;
4740 }
4741 
4742 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4743 {
4744 	const struct tcp_sock *tp = tcp_sk(sk);
4745 
4746 	/* If the user specified a specific send buffer setting, do
4747 	 * not modify it.
4748 	 */
4749 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4750 		return false;
4751 
4752 	/* If we are under global TCP memory pressure, do not expand.  */
4753 	if (sk_under_memory_pressure(sk))
4754 		return false;
4755 
4756 	/* If we are under soft global TCP memory pressure, do not expand.  */
4757 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4758 		return false;
4759 
4760 	/* If we filled the congestion window, do not expand.  */
4761 	if (tp->packets_out >= tp->snd_cwnd)
4762 		return false;
4763 
4764 	return true;
4765 }
4766 
4767 /* When incoming ACK allowed to free some skb from write_queue,
4768  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4769  * on the exit from tcp input handler.
4770  *
4771  * PROBLEM: sndbuf expansion does not work well with largesend.
4772  */
4773 static void tcp_new_space(struct sock *sk)
4774 {
4775 	struct tcp_sock *tp = tcp_sk(sk);
4776 
4777 	if (tcp_should_expand_sndbuf(sk)) {
4778 		tcp_sndbuf_expand(sk);
4779 		tp->snd_cwnd_stamp = tcp_time_stamp;
4780 	}
4781 
4782 	sk->sk_write_space(sk);
4783 }
4784 
4785 static void tcp_check_space(struct sock *sk)
4786 {
4787 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4788 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4789 		if (sk->sk_socket &&
4790 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4791 			tcp_new_space(sk);
4792 	}
4793 }
4794 
4795 static inline void tcp_data_snd_check(struct sock *sk)
4796 {
4797 	tcp_push_pending_frames(sk);
4798 	tcp_check_space(sk);
4799 }
4800 
4801 /*
4802  * Check if sending an ack is needed.
4803  */
4804 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4805 {
4806 	struct tcp_sock *tp = tcp_sk(sk);
4807 
4808 	    /* More than one full frame received... */
4809 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4810 	     /* ... and right edge of window advances far enough.
4811 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4812 	      */
4813 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4814 	    /* We ACK each frame or... */
4815 	    tcp_in_quickack_mode(sk) ||
4816 	    /* We have out of order data. */
4817 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4818 		/* Then ack it now */
4819 		tcp_send_ack(sk);
4820 	} else {
4821 		/* Else, send delayed ack. */
4822 		tcp_send_delayed_ack(sk);
4823 	}
4824 }
4825 
4826 static inline void tcp_ack_snd_check(struct sock *sk)
4827 {
4828 	if (!inet_csk_ack_scheduled(sk)) {
4829 		/* We sent a data segment already. */
4830 		return;
4831 	}
4832 	__tcp_ack_snd_check(sk, 1);
4833 }
4834 
4835 /*
4836  *	This routine is only called when we have urgent data
4837  *	signaled. Its the 'slow' part of tcp_urg. It could be
4838  *	moved inline now as tcp_urg is only called from one
4839  *	place. We handle URGent data wrong. We have to - as
4840  *	BSD still doesn't use the correction from RFC961.
4841  *	For 1003.1g we should support a new option TCP_STDURG to permit
4842  *	either form (or just set the sysctl tcp_stdurg).
4843  */
4844 
4845 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4846 {
4847 	struct tcp_sock *tp = tcp_sk(sk);
4848 	u32 ptr = ntohs(th->urg_ptr);
4849 
4850 	if (ptr && !sysctl_tcp_stdurg)
4851 		ptr--;
4852 	ptr += ntohl(th->seq);
4853 
4854 	/* Ignore urgent data that we've already seen and read. */
4855 	if (after(tp->copied_seq, ptr))
4856 		return;
4857 
4858 	/* Do not replay urg ptr.
4859 	 *
4860 	 * NOTE: interesting situation not covered by specs.
4861 	 * Misbehaving sender may send urg ptr, pointing to segment,
4862 	 * which we already have in ofo queue. We are not able to fetch
4863 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4864 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4865 	 * situations. But it is worth to think about possibility of some
4866 	 * DoSes using some hypothetical application level deadlock.
4867 	 */
4868 	if (before(ptr, tp->rcv_nxt))
4869 		return;
4870 
4871 	/* Do we already have a newer (or duplicate) urgent pointer? */
4872 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4873 		return;
4874 
4875 	/* Tell the world about our new urgent pointer. */
4876 	sk_send_sigurg(sk);
4877 
4878 	/* We may be adding urgent data when the last byte read was
4879 	 * urgent. To do this requires some care. We cannot just ignore
4880 	 * tp->copied_seq since we would read the last urgent byte again
4881 	 * as data, nor can we alter copied_seq until this data arrives
4882 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4883 	 *
4884 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4885 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4886 	 * and expect that both A and B disappear from stream. This is _wrong_.
4887 	 * Though this happens in BSD with high probability, this is occasional.
4888 	 * Any application relying on this is buggy. Note also, that fix "works"
4889 	 * only in this artificial test. Insert some normal data between A and B and we will
4890 	 * decline of BSD again. Verdict: it is better to remove to trap
4891 	 * buggy users.
4892 	 */
4893 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4894 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4895 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4896 		tp->copied_seq++;
4897 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4898 			__skb_unlink(skb, &sk->sk_receive_queue);
4899 			__kfree_skb(skb);
4900 		}
4901 	}
4902 
4903 	tp->urg_data = TCP_URG_NOTYET;
4904 	tp->urg_seq = ptr;
4905 
4906 	/* Disable header prediction. */
4907 	tp->pred_flags = 0;
4908 }
4909 
4910 /* This is the 'fast' part of urgent handling. */
4911 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4912 {
4913 	struct tcp_sock *tp = tcp_sk(sk);
4914 
4915 	/* Check if we get a new urgent pointer - normally not. */
4916 	if (th->urg)
4917 		tcp_check_urg(sk, th);
4918 
4919 	/* Do we wait for any urgent data? - normally not... */
4920 	if (tp->urg_data == TCP_URG_NOTYET) {
4921 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4922 			  th->syn;
4923 
4924 		/* Is the urgent pointer pointing into this packet? */
4925 		if (ptr < skb->len) {
4926 			u8 tmp;
4927 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4928 				BUG();
4929 			tp->urg_data = TCP_URG_VALID | tmp;
4930 			if (!sock_flag(sk, SOCK_DEAD))
4931 				sk->sk_data_ready(sk);
4932 		}
4933 	}
4934 }
4935 
4936 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4937 {
4938 	struct tcp_sock *tp = tcp_sk(sk);
4939 	int chunk = skb->len - hlen;
4940 	int err;
4941 
4942 	local_bh_enable();
4943 	if (skb_csum_unnecessary(skb))
4944 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
4945 	else
4946 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
4947 
4948 	if (!err) {
4949 		tp->ucopy.len -= chunk;
4950 		tp->copied_seq += chunk;
4951 		tcp_rcv_space_adjust(sk);
4952 	}
4953 
4954 	local_bh_disable();
4955 	return err;
4956 }
4957 
4958 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4959 					    struct sk_buff *skb)
4960 {
4961 	__sum16 result;
4962 
4963 	if (sock_owned_by_user(sk)) {
4964 		local_bh_enable();
4965 		result = __tcp_checksum_complete(skb);
4966 		local_bh_disable();
4967 	} else {
4968 		result = __tcp_checksum_complete(skb);
4969 	}
4970 	return result;
4971 }
4972 
4973 static inline bool tcp_checksum_complete_user(struct sock *sk,
4974 					     struct sk_buff *skb)
4975 {
4976 	return !skb_csum_unnecessary(skb) &&
4977 	       __tcp_checksum_complete_user(sk, skb);
4978 }
4979 
4980 /* Does PAWS and seqno based validation of an incoming segment, flags will
4981  * play significant role here.
4982  */
4983 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4984 				  const struct tcphdr *th, int syn_inerr)
4985 {
4986 	struct tcp_sock *tp = tcp_sk(sk);
4987 
4988 	/* RFC1323: H1. Apply PAWS check first. */
4989 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4990 	    tcp_paws_discard(sk, skb)) {
4991 		if (!th->rst) {
4992 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4993 			tcp_send_dupack(sk, skb);
4994 			goto discard;
4995 		}
4996 		/* Reset is accepted even if it did not pass PAWS. */
4997 	}
4998 
4999 	/* Step 1: check sequence number */
5000 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5001 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5002 		 * (RST) segments are validated by checking their SEQ-fields."
5003 		 * And page 69: "If an incoming segment is not acceptable,
5004 		 * an acknowledgment should be sent in reply (unless the RST
5005 		 * bit is set, if so drop the segment and return)".
5006 		 */
5007 		if (!th->rst) {
5008 			if (th->syn)
5009 				goto syn_challenge;
5010 			tcp_send_dupack(sk, skb);
5011 		}
5012 		goto discard;
5013 	}
5014 
5015 	/* Step 2: check RST bit */
5016 	if (th->rst) {
5017 		/* RFC 5961 3.2 :
5018 		 * If sequence number exactly matches RCV.NXT, then
5019 		 *     RESET the connection
5020 		 * else
5021 		 *     Send a challenge ACK
5022 		 */
5023 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5024 			tcp_reset(sk);
5025 		else
5026 			tcp_send_challenge_ack(sk);
5027 		goto discard;
5028 	}
5029 
5030 	/* step 3: check security and precedence [ignored] */
5031 
5032 	/* step 4: Check for a SYN
5033 	 * RFC 5961 4.2 : Send a challenge ack
5034 	 */
5035 	if (th->syn) {
5036 syn_challenge:
5037 		if (syn_inerr)
5038 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5039 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5040 		tcp_send_challenge_ack(sk);
5041 		goto discard;
5042 	}
5043 
5044 	return true;
5045 
5046 discard:
5047 	__kfree_skb(skb);
5048 	return false;
5049 }
5050 
5051 /*
5052  *	TCP receive function for the ESTABLISHED state.
5053  *
5054  *	It is split into a fast path and a slow path. The fast path is
5055  * 	disabled when:
5056  *	- A zero window was announced from us - zero window probing
5057  *        is only handled properly in the slow path.
5058  *	- Out of order segments arrived.
5059  *	- Urgent data is expected.
5060  *	- There is no buffer space left
5061  *	- Unexpected TCP flags/window values/header lengths are received
5062  *	  (detected by checking the TCP header against pred_flags)
5063  *	- Data is sent in both directions. Fast path only supports pure senders
5064  *	  or pure receivers (this means either the sequence number or the ack
5065  *	  value must stay constant)
5066  *	- Unexpected TCP option.
5067  *
5068  *	When these conditions are not satisfied it drops into a standard
5069  *	receive procedure patterned after RFC793 to handle all cases.
5070  *	The first three cases are guaranteed by proper pred_flags setting,
5071  *	the rest is checked inline. Fast processing is turned on in
5072  *	tcp_data_queue when everything is OK.
5073  */
5074 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5075 			 const struct tcphdr *th, unsigned int len)
5076 {
5077 	struct tcp_sock *tp = tcp_sk(sk);
5078 
5079 	if (unlikely(sk->sk_rx_dst == NULL))
5080 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5081 	/*
5082 	 *	Header prediction.
5083 	 *	The code loosely follows the one in the famous
5084 	 *	"30 instruction TCP receive" Van Jacobson mail.
5085 	 *
5086 	 *	Van's trick is to deposit buffers into socket queue
5087 	 *	on a device interrupt, to call tcp_recv function
5088 	 *	on the receive process context and checksum and copy
5089 	 *	the buffer to user space. smart...
5090 	 *
5091 	 *	Our current scheme is not silly either but we take the
5092 	 *	extra cost of the net_bh soft interrupt processing...
5093 	 *	We do checksum and copy also but from device to kernel.
5094 	 */
5095 
5096 	tp->rx_opt.saw_tstamp = 0;
5097 
5098 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5099 	 *	if header_prediction is to be made
5100 	 *	'S' will always be tp->tcp_header_len >> 2
5101 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5102 	 *  turn it off	(when there are holes in the receive
5103 	 *	 space for instance)
5104 	 *	PSH flag is ignored.
5105 	 */
5106 
5107 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5108 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5109 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5110 		int tcp_header_len = tp->tcp_header_len;
5111 
5112 		/* Timestamp header prediction: tcp_header_len
5113 		 * is automatically equal to th->doff*4 due to pred_flags
5114 		 * match.
5115 		 */
5116 
5117 		/* Check timestamp */
5118 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5119 			/* No? Slow path! */
5120 			if (!tcp_parse_aligned_timestamp(tp, th))
5121 				goto slow_path;
5122 
5123 			/* If PAWS failed, check it more carefully in slow path */
5124 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5125 				goto slow_path;
5126 
5127 			/* DO NOT update ts_recent here, if checksum fails
5128 			 * and timestamp was corrupted part, it will result
5129 			 * in a hung connection since we will drop all
5130 			 * future packets due to the PAWS test.
5131 			 */
5132 		}
5133 
5134 		if (len <= tcp_header_len) {
5135 			/* Bulk data transfer: sender */
5136 			if (len == tcp_header_len) {
5137 				/* Predicted packet is in window by definition.
5138 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5139 				 * Hence, check seq<=rcv_wup reduces to:
5140 				 */
5141 				if (tcp_header_len ==
5142 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5143 				    tp->rcv_nxt == tp->rcv_wup)
5144 					tcp_store_ts_recent(tp);
5145 
5146 				/* We know that such packets are checksummed
5147 				 * on entry.
5148 				 */
5149 				tcp_ack(sk, skb, 0);
5150 				__kfree_skb(skb);
5151 				tcp_data_snd_check(sk);
5152 				return;
5153 			} else { /* Header too small */
5154 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5155 				goto discard;
5156 			}
5157 		} else {
5158 			int eaten = 0;
5159 			bool fragstolen = false;
5160 
5161 			if (tp->ucopy.task == current &&
5162 			    tp->copied_seq == tp->rcv_nxt &&
5163 			    len - tcp_header_len <= tp->ucopy.len &&
5164 			    sock_owned_by_user(sk)) {
5165 				__set_current_state(TASK_RUNNING);
5166 
5167 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5168 					/* Predicted packet is in window by definition.
5169 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5170 					 * Hence, check seq<=rcv_wup reduces to:
5171 					 */
5172 					if (tcp_header_len ==
5173 					    (sizeof(struct tcphdr) +
5174 					     TCPOLEN_TSTAMP_ALIGNED) &&
5175 					    tp->rcv_nxt == tp->rcv_wup)
5176 						tcp_store_ts_recent(tp);
5177 
5178 					tcp_rcv_rtt_measure_ts(sk, skb);
5179 
5180 					__skb_pull(skb, tcp_header_len);
5181 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5182 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5183 					eaten = 1;
5184 				}
5185 			}
5186 			if (!eaten) {
5187 				if (tcp_checksum_complete_user(sk, skb))
5188 					goto csum_error;
5189 
5190 				if ((int)skb->truesize > sk->sk_forward_alloc)
5191 					goto step5;
5192 
5193 				/* Predicted packet is in window by definition.
5194 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5195 				 * Hence, check seq<=rcv_wup reduces to:
5196 				 */
5197 				if (tcp_header_len ==
5198 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5199 				    tp->rcv_nxt == tp->rcv_wup)
5200 					tcp_store_ts_recent(tp);
5201 
5202 				tcp_rcv_rtt_measure_ts(sk, skb);
5203 
5204 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5205 
5206 				/* Bulk data transfer: receiver */
5207 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5208 						      &fragstolen);
5209 			}
5210 
5211 			tcp_event_data_recv(sk, skb);
5212 
5213 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5214 				/* Well, only one small jumplet in fast path... */
5215 				tcp_ack(sk, skb, FLAG_DATA);
5216 				tcp_data_snd_check(sk);
5217 				if (!inet_csk_ack_scheduled(sk))
5218 					goto no_ack;
5219 			}
5220 
5221 			__tcp_ack_snd_check(sk, 0);
5222 no_ack:
5223 			if (eaten)
5224 				kfree_skb_partial(skb, fragstolen);
5225 			sk->sk_data_ready(sk);
5226 			return;
5227 		}
5228 	}
5229 
5230 slow_path:
5231 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5232 		goto csum_error;
5233 
5234 	if (!th->ack && !th->rst && !th->syn)
5235 		goto discard;
5236 
5237 	/*
5238 	 *	Standard slow path.
5239 	 */
5240 
5241 	if (!tcp_validate_incoming(sk, skb, th, 1))
5242 		return;
5243 
5244 step5:
5245 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5246 		goto discard;
5247 
5248 	tcp_rcv_rtt_measure_ts(sk, skb);
5249 
5250 	/* Process urgent data. */
5251 	tcp_urg(sk, skb, th);
5252 
5253 	/* step 7: process the segment text */
5254 	tcp_data_queue(sk, skb);
5255 
5256 	tcp_data_snd_check(sk);
5257 	tcp_ack_snd_check(sk);
5258 	return;
5259 
5260 csum_error:
5261 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5262 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5263 
5264 discard:
5265 	__kfree_skb(skb);
5266 }
5267 EXPORT_SYMBOL(tcp_rcv_established);
5268 
5269 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5270 {
5271 	struct tcp_sock *tp = tcp_sk(sk);
5272 	struct inet_connection_sock *icsk = inet_csk(sk);
5273 
5274 	tcp_set_state(sk, TCP_ESTABLISHED);
5275 
5276 	if (skb != NULL) {
5277 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5278 		security_inet_conn_established(sk, skb);
5279 	}
5280 
5281 	/* Make sure socket is routed, for correct metrics.  */
5282 	icsk->icsk_af_ops->rebuild_header(sk);
5283 
5284 	tcp_init_metrics(sk);
5285 
5286 	tcp_init_congestion_control(sk);
5287 
5288 	/* Prevent spurious tcp_cwnd_restart() on first data
5289 	 * packet.
5290 	 */
5291 	tp->lsndtime = tcp_time_stamp;
5292 
5293 	tcp_init_buffer_space(sk);
5294 
5295 	if (sock_flag(sk, SOCK_KEEPOPEN))
5296 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5297 
5298 	if (!tp->rx_opt.snd_wscale)
5299 		__tcp_fast_path_on(tp, tp->snd_wnd);
5300 	else
5301 		tp->pred_flags = 0;
5302 
5303 	if (!sock_flag(sk, SOCK_DEAD)) {
5304 		sk->sk_state_change(sk);
5305 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5306 	}
5307 }
5308 
5309 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5310 				    struct tcp_fastopen_cookie *cookie)
5311 {
5312 	struct tcp_sock *tp = tcp_sk(sk);
5313 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5314 	u16 mss = tp->rx_opt.mss_clamp;
5315 	bool syn_drop;
5316 
5317 	if (mss == tp->rx_opt.user_mss) {
5318 		struct tcp_options_received opt;
5319 
5320 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5321 		tcp_clear_options(&opt);
5322 		opt.user_mss = opt.mss_clamp = 0;
5323 		tcp_parse_options(synack, &opt, 0, NULL);
5324 		mss = opt.mss_clamp;
5325 	}
5326 
5327 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5328 		cookie->len = -1;
5329 
5330 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5331 	 * the remote receives only the retransmitted (regular) SYNs: either
5332 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5333 	 */
5334 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5335 
5336 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5337 
5338 	if (data) { /* Retransmit unacked data in SYN */
5339 		tcp_for_write_queue_from(data, sk) {
5340 			if (data == tcp_send_head(sk) ||
5341 			    __tcp_retransmit_skb(sk, data))
5342 				break;
5343 		}
5344 		tcp_rearm_rto(sk);
5345 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5346 		return true;
5347 	}
5348 	tp->syn_data_acked = tp->syn_data;
5349 	if (tp->syn_data_acked)
5350 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5351 	return false;
5352 }
5353 
5354 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5355 					 const struct tcphdr *th, unsigned int len)
5356 {
5357 	struct inet_connection_sock *icsk = inet_csk(sk);
5358 	struct tcp_sock *tp = tcp_sk(sk);
5359 	struct tcp_fastopen_cookie foc = { .len = -1 };
5360 	int saved_clamp = tp->rx_opt.mss_clamp;
5361 
5362 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5363 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5364 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5365 
5366 	if (th->ack) {
5367 		/* rfc793:
5368 		 * "If the state is SYN-SENT then
5369 		 *    first check the ACK bit
5370 		 *      If the ACK bit is set
5371 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5372 		 *        a reset (unless the RST bit is set, if so drop
5373 		 *        the segment and return)"
5374 		 */
5375 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5376 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5377 			goto reset_and_undo;
5378 
5379 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5380 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5381 			     tcp_time_stamp)) {
5382 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5383 			goto reset_and_undo;
5384 		}
5385 
5386 		/* Now ACK is acceptable.
5387 		 *
5388 		 * "If the RST bit is set
5389 		 *    If the ACK was acceptable then signal the user "error:
5390 		 *    connection reset", drop the segment, enter CLOSED state,
5391 		 *    delete TCB, and return."
5392 		 */
5393 
5394 		if (th->rst) {
5395 			tcp_reset(sk);
5396 			goto discard;
5397 		}
5398 
5399 		/* rfc793:
5400 		 *   "fifth, if neither of the SYN or RST bits is set then
5401 		 *    drop the segment and return."
5402 		 *
5403 		 *    See note below!
5404 		 *                                        --ANK(990513)
5405 		 */
5406 		if (!th->syn)
5407 			goto discard_and_undo;
5408 
5409 		/* rfc793:
5410 		 *   "If the SYN bit is on ...
5411 		 *    are acceptable then ...
5412 		 *    (our SYN has been ACKed), change the connection
5413 		 *    state to ESTABLISHED..."
5414 		 */
5415 
5416 		tcp_ecn_rcv_synack(tp, th);
5417 
5418 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5419 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5420 
5421 		/* Ok.. it's good. Set up sequence numbers and
5422 		 * move to established.
5423 		 */
5424 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5425 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5426 
5427 		/* RFC1323: The window in SYN & SYN/ACK segments is
5428 		 * never scaled.
5429 		 */
5430 		tp->snd_wnd = ntohs(th->window);
5431 
5432 		if (!tp->rx_opt.wscale_ok) {
5433 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5434 			tp->window_clamp = min(tp->window_clamp, 65535U);
5435 		}
5436 
5437 		if (tp->rx_opt.saw_tstamp) {
5438 			tp->rx_opt.tstamp_ok	   = 1;
5439 			tp->tcp_header_len =
5440 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5441 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5442 			tcp_store_ts_recent(tp);
5443 		} else {
5444 			tp->tcp_header_len = sizeof(struct tcphdr);
5445 		}
5446 
5447 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5448 			tcp_enable_fack(tp);
5449 
5450 		tcp_mtup_init(sk);
5451 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5452 		tcp_initialize_rcv_mss(sk);
5453 
5454 		/* Remember, tcp_poll() does not lock socket!
5455 		 * Change state from SYN-SENT only after copied_seq
5456 		 * is initialized. */
5457 		tp->copied_seq = tp->rcv_nxt;
5458 
5459 		smp_mb();
5460 
5461 		tcp_finish_connect(sk, skb);
5462 
5463 		if ((tp->syn_fastopen || tp->syn_data) &&
5464 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5465 			return -1;
5466 
5467 		if (sk->sk_write_pending ||
5468 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5469 		    icsk->icsk_ack.pingpong) {
5470 			/* Save one ACK. Data will be ready after
5471 			 * several ticks, if write_pending is set.
5472 			 *
5473 			 * It may be deleted, but with this feature tcpdumps
5474 			 * look so _wonderfully_ clever, that I was not able
5475 			 * to stand against the temptation 8)     --ANK
5476 			 */
5477 			inet_csk_schedule_ack(sk);
5478 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5479 			tcp_enter_quickack_mode(sk);
5480 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5481 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5482 
5483 discard:
5484 			__kfree_skb(skb);
5485 			return 0;
5486 		} else {
5487 			tcp_send_ack(sk);
5488 		}
5489 		return -1;
5490 	}
5491 
5492 	/* No ACK in the segment */
5493 
5494 	if (th->rst) {
5495 		/* rfc793:
5496 		 * "If the RST bit is set
5497 		 *
5498 		 *      Otherwise (no ACK) drop the segment and return."
5499 		 */
5500 
5501 		goto discard_and_undo;
5502 	}
5503 
5504 	/* PAWS check. */
5505 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5506 	    tcp_paws_reject(&tp->rx_opt, 0))
5507 		goto discard_and_undo;
5508 
5509 	if (th->syn) {
5510 		/* We see SYN without ACK. It is attempt of
5511 		 * simultaneous connect with crossed SYNs.
5512 		 * Particularly, it can be connect to self.
5513 		 */
5514 		tcp_set_state(sk, TCP_SYN_RECV);
5515 
5516 		if (tp->rx_opt.saw_tstamp) {
5517 			tp->rx_opt.tstamp_ok = 1;
5518 			tcp_store_ts_recent(tp);
5519 			tp->tcp_header_len =
5520 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5521 		} else {
5522 			tp->tcp_header_len = sizeof(struct tcphdr);
5523 		}
5524 
5525 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5526 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5527 
5528 		/* RFC1323: The window in SYN & SYN/ACK segments is
5529 		 * never scaled.
5530 		 */
5531 		tp->snd_wnd    = ntohs(th->window);
5532 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5533 		tp->max_window = tp->snd_wnd;
5534 
5535 		tcp_ecn_rcv_syn(tp, th);
5536 
5537 		tcp_mtup_init(sk);
5538 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5539 		tcp_initialize_rcv_mss(sk);
5540 
5541 		tcp_send_synack(sk);
5542 #if 0
5543 		/* Note, we could accept data and URG from this segment.
5544 		 * There are no obstacles to make this (except that we must
5545 		 * either change tcp_recvmsg() to prevent it from returning data
5546 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5547 		 *
5548 		 * However, if we ignore data in ACKless segments sometimes,
5549 		 * we have no reasons to accept it sometimes.
5550 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5551 		 * is not flawless. So, discard packet for sanity.
5552 		 * Uncomment this return to process the data.
5553 		 */
5554 		return -1;
5555 #else
5556 		goto discard;
5557 #endif
5558 	}
5559 	/* "fifth, if neither of the SYN or RST bits is set then
5560 	 * drop the segment and return."
5561 	 */
5562 
5563 discard_and_undo:
5564 	tcp_clear_options(&tp->rx_opt);
5565 	tp->rx_opt.mss_clamp = saved_clamp;
5566 	goto discard;
5567 
5568 reset_and_undo:
5569 	tcp_clear_options(&tp->rx_opt);
5570 	tp->rx_opt.mss_clamp = saved_clamp;
5571 	return 1;
5572 }
5573 
5574 /*
5575  *	This function implements the receiving procedure of RFC 793 for
5576  *	all states except ESTABLISHED and TIME_WAIT.
5577  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5578  *	address independent.
5579  */
5580 
5581 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5582 			  const struct tcphdr *th, unsigned int len)
5583 {
5584 	struct tcp_sock *tp = tcp_sk(sk);
5585 	struct inet_connection_sock *icsk = inet_csk(sk);
5586 	struct request_sock *req;
5587 	int queued = 0;
5588 	bool acceptable;
5589 	u32 synack_stamp;
5590 
5591 	tp->rx_opt.saw_tstamp = 0;
5592 
5593 	switch (sk->sk_state) {
5594 	case TCP_CLOSE:
5595 		goto discard;
5596 
5597 	case TCP_LISTEN:
5598 		if (th->ack)
5599 			return 1;
5600 
5601 		if (th->rst)
5602 			goto discard;
5603 
5604 		if (th->syn) {
5605 			if (th->fin)
5606 				goto discard;
5607 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5608 				return 1;
5609 
5610 			/* Now we have several options: In theory there is
5611 			 * nothing else in the frame. KA9Q has an option to
5612 			 * send data with the syn, BSD accepts data with the
5613 			 * syn up to the [to be] advertised window and
5614 			 * Solaris 2.1 gives you a protocol error. For now
5615 			 * we just ignore it, that fits the spec precisely
5616 			 * and avoids incompatibilities. It would be nice in
5617 			 * future to drop through and process the data.
5618 			 *
5619 			 * Now that TTCP is starting to be used we ought to
5620 			 * queue this data.
5621 			 * But, this leaves one open to an easy denial of
5622 			 * service attack, and SYN cookies can't defend
5623 			 * against this problem. So, we drop the data
5624 			 * in the interest of security over speed unless
5625 			 * it's still in use.
5626 			 */
5627 			kfree_skb(skb);
5628 			return 0;
5629 		}
5630 		goto discard;
5631 
5632 	case TCP_SYN_SENT:
5633 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5634 		if (queued >= 0)
5635 			return queued;
5636 
5637 		/* Do step6 onward by hand. */
5638 		tcp_urg(sk, skb, th);
5639 		__kfree_skb(skb);
5640 		tcp_data_snd_check(sk);
5641 		return 0;
5642 	}
5643 
5644 	req = tp->fastopen_rsk;
5645 	if (req != NULL) {
5646 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5647 		    sk->sk_state != TCP_FIN_WAIT1);
5648 
5649 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5650 			goto discard;
5651 	}
5652 
5653 	if (!th->ack && !th->rst && !th->syn)
5654 		goto discard;
5655 
5656 	if (!tcp_validate_incoming(sk, skb, th, 0))
5657 		return 0;
5658 
5659 	/* step 5: check the ACK field */
5660 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5661 				      FLAG_UPDATE_TS_RECENT) > 0;
5662 
5663 	switch (sk->sk_state) {
5664 	case TCP_SYN_RECV:
5665 		if (!acceptable)
5666 			return 1;
5667 
5668 		/* Once we leave TCP_SYN_RECV, we no longer need req
5669 		 * so release it.
5670 		 */
5671 		if (req) {
5672 			synack_stamp = tcp_rsk(req)->snt_synack;
5673 			tp->total_retrans = req->num_retrans;
5674 			reqsk_fastopen_remove(sk, req, false);
5675 		} else {
5676 			synack_stamp = tp->lsndtime;
5677 			/* Make sure socket is routed, for correct metrics. */
5678 			icsk->icsk_af_ops->rebuild_header(sk);
5679 			tcp_init_congestion_control(sk);
5680 
5681 			tcp_mtup_init(sk);
5682 			tp->copied_seq = tp->rcv_nxt;
5683 			tcp_init_buffer_space(sk);
5684 		}
5685 		smp_mb();
5686 		tcp_set_state(sk, TCP_ESTABLISHED);
5687 		sk->sk_state_change(sk);
5688 
5689 		/* Note, that this wakeup is only for marginal crossed SYN case.
5690 		 * Passively open sockets are not waked up, because
5691 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5692 		 */
5693 		if (sk->sk_socket)
5694 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5695 
5696 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5697 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5698 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5699 		tcp_synack_rtt_meas(sk, synack_stamp);
5700 
5701 		if (tp->rx_opt.tstamp_ok)
5702 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5703 
5704 		if (req) {
5705 			/* Re-arm the timer because data may have been sent out.
5706 			 * This is similar to the regular data transmission case
5707 			 * when new data has just been ack'ed.
5708 			 *
5709 			 * (TFO) - we could try to be more aggressive and
5710 			 * retransmitting any data sooner based on when they
5711 			 * are sent out.
5712 			 */
5713 			tcp_rearm_rto(sk);
5714 		} else
5715 			tcp_init_metrics(sk);
5716 
5717 		tcp_update_pacing_rate(sk);
5718 
5719 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5720 		tp->lsndtime = tcp_time_stamp;
5721 
5722 		tcp_initialize_rcv_mss(sk);
5723 		tcp_fast_path_on(tp);
5724 		break;
5725 
5726 	case TCP_FIN_WAIT1: {
5727 		struct dst_entry *dst;
5728 		int tmo;
5729 
5730 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5731 		 * Fast Open socket and this is the first acceptable
5732 		 * ACK we have received, this would have acknowledged
5733 		 * our SYNACK so stop the SYNACK timer.
5734 		 */
5735 		if (req != NULL) {
5736 			/* Return RST if ack_seq is invalid.
5737 			 * Note that RFC793 only says to generate a
5738 			 * DUPACK for it but for TCP Fast Open it seems
5739 			 * better to treat this case like TCP_SYN_RECV
5740 			 * above.
5741 			 */
5742 			if (!acceptable)
5743 				return 1;
5744 			/* We no longer need the request sock. */
5745 			reqsk_fastopen_remove(sk, req, false);
5746 			tcp_rearm_rto(sk);
5747 		}
5748 		if (tp->snd_una != tp->write_seq)
5749 			break;
5750 
5751 		tcp_set_state(sk, TCP_FIN_WAIT2);
5752 		sk->sk_shutdown |= SEND_SHUTDOWN;
5753 
5754 		dst = __sk_dst_get(sk);
5755 		if (dst)
5756 			dst_confirm(dst);
5757 
5758 		if (!sock_flag(sk, SOCK_DEAD)) {
5759 			/* Wake up lingering close() */
5760 			sk->sk_state_change(sk);
5761 			break;
5762 		}
5763 
5764 		if (tp->linger2 < 0 ||
5765 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5766 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5767 			tcp_done(sk);
5768 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5769 			return 1;
5770 		}
5771 
5772 		tmo = tcp_fin_time(sk);
5773 		if (tmo > TCP_TIMEWAIT_LEN) {
5774 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5775 		} else if (th->fin || sock_owned_by_user(sk)) {
5776 			/* Bad case. We could lose such FIN otherwise.
5777 			 * It is not a big problem, but it looks confusing
5778 			 * and not so rare event. We still can lose it now,
5779 			 * if it spins in bh_lock_sock(), but it is really
5780 			 * marginal case.
5781 			 */
5782 			inet_csk_reset_keepalive_timer(sk, tmo);
5783 		} else {
5784 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5785 			goto discard;
5786 		}
5787 		break;
5788 	}
5789 
5790 	case TCP_CLOSING:
5791 		if (tp->snd_una == tp->write_seq) {
5792 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5793 			goto discard;
5794 		}
5795 		break;
5796 
5797 	case TCP_LAST_ACK:
5798 		if (tp->snd_una == tp->write_seq) {
5799 			tcp_update_metrics(sk);
5800 			tcp_done(sk);
5801 			goto discard;
5802 		}
5803 		break;
5804 	}
5805 
5806 	/* step 6: check the URG bit */
5807 	tcp_urg(sk, skb, th);
5808 
5809 	/* step 7: process the segment text */
5810 	switch (sk->sk_state) {
5811 	case TCP_CLOSE_WAIT:
5812 	case TCP_CLOSING:
5813 	case TCP_LAST_ACK:
5814 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5815 			break;
5816 	case TCP_FIN_WAIT1:
5817 	case TCP_FIN_WAIT2:
5818 		/* RFC 793 says to queue data in these states,
5819 		 * RFC 1122 says we MUST send a reset.
5820 		 * BSD 4.4 also does reset.
5821 		 */
5822 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5823 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5824 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5825 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5826 				tcp_reset(sk);
5827 				return 1;
5828 			}
5829 		}
5830 		/* Fall through */
5831 	case TCP_ESTABLISHED:
5832 		tcp_data_queue(sk, skb);
5833 		queued = 1;
5834 		break;
5835 	}
5836 
5837 	/* tcp_data could move socket to TIME-WAIT */
5838 	if (sk->sk_state != TCP_CLOSE) {
5839 		tcp_data_snd_check(sk);
5840 		tcp_ack_snd_check(sk);
5841 	}
5842 
5843 	if (!queued) {
5844 discard:
5845 		__kfree_skb(skb);
5846 	}
5847 	return 0;
5848 }
5849 EXPORT_SYMBOL(tcp_rcv_state_process);
5850 
5851 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5852 {
5853 	struct inet_request_sock *ireq = inet_rsk(req);
5854 
5855 	if (family == AF_INET)
5856 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
5857 				    &ireq->ir_rmt_addr, port);
5858 #if IS_ENABLED(CONFIG_IPV6)
5859 	else if (family == AF_INET6)
5860 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
5861 				    &ireq->ir_v6_rmt_addr, port);
5862 #endif
5863 }
5864 
5865 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5866  *
5867  * If we receive a SYN packet with these bits set, it means a
5868  * network is playing bad games with TOS bits. In order to
5869  * avoid possible false congestion notifications, we disable
5870  * TCP ECN negotiation.
5871  *
5872  * Exception: tcp_ca wants ECN. This is required for DCTCP
5873  * congestion control; it requires setting ECT on all packets,
5874  * including SYN. We inverse the test in this case: If our
5875  * local socket wants ECN, but peer only set ece/cwr (but not
5876  * ECT in IP header) its probably a non-DCTCP aware sender.
5877  */
5878 static void tcp_ecn_create_request(struct request_sock *req,
5879 				   const struct sk_buff *skb,
5880 				   const struct sock *listen_sk,
5881 				   const struct dst_entry *dst)
5882 {
5883 	const struct tcphdr *th = tcp_hdr(skb);
5884 	const struct net *net = sock_net(listen_sk);
5885 	bool th_ecn = th->ece && th->cwr;
5886 	bool ect, need_ecn, ecn_ok;
5887 
5888 	if (!th_ecn)
5889 		return;
5890 
5891 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5892 	need_ecn = tcp_ca_needs_ecn(listen_sk);
5893 	ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
5894 
5895 	if (!ect && !need_ecn && ecn_ok)
5896 		inet_rsk(req)->ecn_ok = 1;
5897 	else if (ect && need_ecn)
5898 		inet_rsk(req)->ecn_ok = 1;
5899 }
5900 
5901 int tcp_conn_request(struct request_sock_ops *rsk_ops,
5902 		     const struct tcp_request_sock_ops *af_ops,
5903 		     struct sock *sk, struct sk_buff *skb)
5904 {
5905 	struct tcp_options_received tmp_opt;
5906 	struct request_sock *req;
5907 	struct tcp_sock *tp = tcp_sk(sk);
5908 	struct dst_entry *dst = NULL;
5909 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
5910 	bool want_cookie = false, fastopen;
5911 	struct flowi fl;
5912 	struct tcp_fastopen_cookie foc = { .len = -1 };
5913 	int err;
5914 
5915 
5916 	/* TW buckets are converted to open requests without
5917 	 * limitations, they conserve resources and peer is
5918 	 * evidently real one.
5919 	 */
5920 	if ((sysctl_tcp_syncookies == 2 ||
5921 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5922 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5923 		if (!want_cookie)
5924 			goto drop;
5925 	}
5926 
5927 
5928 	/* Accept backlog is full. If we have already queued enough
5929 	 * of warm entries in syn queue, drop request. It is better than
5930 	 * clogging syn queue with openreqs with exponentially increasing
5931 	 * timeout.
5932 	 */
5933 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5934 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5935 		goto drop;
5936 	}
5937 
5938 	req = inet_reqsk_alloc(rsk_ops);
5939 	if (!req)
5940 		goto drop;
5941 
5942 	tcp_rsk(req)->af_specific = af_ops;
5943 
5944 	tcp_clear_options(&tmp_opt);
5945 	tmp_opt.mss_clamp = af_ops->mss_clamp;
5946 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
5947 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5948 
5949 	if (want_cookie && !tmp_opt.saw_tstamp)
5950 		tcp_clear_options(&tmp_opt);
5951 
5952 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5953 	tcp_openreq_init(req, &tmp_opt, skb, sk);
5954 
5955 	af_ops->init_req(req, sk, skb);
5956 
5957 	if (security_inet_conn_request(sk, skb, req))
5958 		goto drop_and_free;
5959 
5960 	if (!want_cookie && !isn) {
5961 		/* VJ's idea. We save last timestamp seen
5962 		 * from the destination in peer table, when entering
5963 		 * state TIME-WAIT, and check against it before
5964 		 * accepting new connection request.
5965 		 *
5966 		 * If "isn" is not zero, this request hit alive
5967 		 * timewait bucket, so that all the necessary checks
5968 		 * are made in the function processing timewait state.
5969 		 */
5970 		if (tcp_death_row.sysctl_tw_recycle) {
5971 			bool strict;
5972 
5973 			dst = af_ops->route_req(sk, &fl, req, &strict);
5974 
5975 			if (dst && strict &&
5976 			    !tcp_peer_is_proven(req, dst, true,
5977 						tmp_opt.saw_tstamp)) {
5978 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
5979 				goto drop_and_release;
5980 			}
5981 		}
5982 		/* Kill the following clause, if you dislike this way. */
5983 		else if (!sysctl_tcp_syncookies &&
5984 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
5985 			  (sysctl_max_syn_backlog >> 2)) &&
5986 			 !tcp_peer_is_proven(req, dst, false,
5987 					     tmp_opt.saw_tstamp)) {
5988 			/* Without syncookies last quarter of
5989 			 * backlog is filled with destinations,
5990 			 * proven to be alive.
5991 			 * It means that we continue to communicate
5992 			 * to destinations, already remembered
5993 			 * to the moment of synflood.
5994 			 */
5995 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
5996 				    rsk_ops->family);
5997 			goto drop_and_release;
5998 		}
5999 
6000 		isn = af_ops->init_seq(skb);
6001 	}
6002 	if (!dst) {
6003 		dst = af_ops->route_req(sk, &fl, req, NULL);
6004 		if (!dst)
6005 			goto drop_and_free;
6006 	}
6007 
6008 	tcp_ecn_create_request(req, skb, sk, dst);
6009 
6010 	if (want_cookie) {
6011 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6012 		req->cookie_ts = tmp_opt.tstamp_ok;
6013 		if (!tmp_opt.tstamp_ok)
6014 			inet_rsk(req)->ecn_ok = 0;
6015 	}
6016 
6017 	tcp_rsk(req)->snt_isn = isn;
6018 	tcp_openreq_init_rwin(req, sk, dst);
6019 	fastopen = !want_cookie &&
6020 		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6021 	err = af_ops->send_synack(sk, dst, &fl, req,
6022 				  skb_get_queue_mapping(skb), &foc);
6023 	if (!fastopen) {
6024 		if (err || want_cookie)
6025 			goto drop_and_free;
6026 
6027 		tcp_rsk(req)->listener = NULL;
6028 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6029 	}
6030 
6031 	return 0;
6032 
6033 drop_and_release:
6034 	dst_release(dst);
6035 drop_and_free:
6036 	reqsk_free(req);
6037 drop:
6038 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6039 	return 0;
6040 }
6041 EXPORT_SYMBOL(tcp_conn_request);
6042