xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 842b6b16)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93 
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
99 
100 int sysctl_tcp_thin_dupack __read_mostly;
101 
102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103 int sysctl_tcp_early_retrans __read_mostly = 3;
104 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
105 
106 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
107 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
108 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
109 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
110 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
111 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
112 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
113 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
114 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
115 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
116 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
117 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
118 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
119 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
120 
121 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
124 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
125 
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128 
129 /* Adapt the MSS value used to make delayed ack decision to the
130  * real world.
131  */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134 	struct inet_connection_sock *icsk = inet_csk(sk);
135 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
136 	unsigned int len;
137 
138 	icsk->icsk_ack.last_seg_size = 0;
139 
140 	/* skb->len may jitter because of SACKs, even if peer
141 	 * sends good full-sized frames.
142 	 */
143 	len = skb_shinfo(skb)->gso_size ? : skb->len;
144 	if (len >= icsk->icsk_ack.rcv_mss) {
145 		icsk->icsk_ack.rcv_mss = len;
146 	} else {
147 		/* Otherwise, we make more careful check taking into account,
148 		 * that SACKs block is variable.
149 		 *
150 		 * "len" is invariant segment length, including TCP header.
151 		 */
152 		len += skb->data - skb_transport_header(skb);
153 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154 		    /* If PSH is not set, packet should be
155 		     * full sized, provided peer TCP is not badly broken.
156 		     * This observation (if it is correct 8)) allows
157 		     * to handle super-low mtu links fairly.
158 		     */
159 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161 			/* Subtract also invariant (if peer is RFC compliant),
162 			 * tcp header plus fixed timestamp option length.
163 			 * Resulting "len" is MSS free of SACK jitter.
164 			 */
165 			len -= tcp_sk(sk)->tcp_header_len;
166 			icsk->icsk_ack.last_seg_size = len;
167 			if (len == lss) {
168 				icsk->icsk_ack.rcv_mss = len;
169 				return;
170 			}
171 		}
172 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175 	}
176 }
177 
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180 	struct inet_connection_sock *icsk = inet_csk(sk);
181 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182 
183 	if (quickacks == 0)
184 		quickacks = 2;
185 	if (quickacks > icsk->icsk_ack.quick)
186 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188 
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191 	struct inet_connection_sock *icsk = inet_csk(sk);
192 	tcp_incr_quickack(sk);
193 	icsk->icsk_ack.pingpong = 0;
194 	icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196 
197 /* Send ACKs quickly, if "quick" count is not exhausted
198  * and the session is not interactive.
199  */
200 
201 static bool tcp_in_quickack_mode(struct sock *sk)
202 {
203 	const struct inet_connection_sock *icsk = inet_csk(sk);
204 	const struct dst_entry *dst = __sk_dst_get(sk);
205 
206 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
207 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
208 }
209 
210 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
211 {
212 	if (tp->ecn_flags & TCP_ECN_OK)
213 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
214 }
215 
216 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
217 {
218 	if (tcp_hdr(skb)->cwr)
219 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221 
222 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
223 {
224 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
225 }
226 
227 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
228 {
229 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
230 	case INET_ECN_NOT_ECT:
231 		/* Funny extension: if ECT is not set on a segment,
232 		 * and we already seen ECT on a previous segment,
233 		 * it is probably a retransmit.
234 		 */
235 		if (tp->ecn_flags & TCP_ECN_SEEN)
236 			tcp_enter_quickack_mode((struct sock *)tp);
237 		break;
238 	case INET_ECN_CE:
239 		if (tcp_ca_needs_ecn((struct sock *)tp))
240 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
241 
242 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
243 			/* Better not delay acks, sender can have a very low cwnd */
244 			tcp_enter_quickack_mode((struct sock *)tp);
245 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
246 		}
247 		tp->ecn_flags |= TCP_ECN_SEEN;
248 		break;
249 	default:
250 		if (tcp_ca_needs_ecn((struct sock *)tp))
251 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
252 		tp->ecn_flags |= TCP_ECN_SEEN;
253 		break;
254 	}
255 }
256 
257 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
258 {
259 	if (tp->ecn_flags & TCP_ECN_OK)
260 		__tcp_ecn_check_ce(tp, skb);
261 }
262 
263 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
264 {
265 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
266 		tp->ecn_flags &= ~TCP_ECN_OK;
267 }
268 
269 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
270 {
271 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
272 		tp->ecn_flags &= ~TCP_ECN_OK;
273 }
274 
275 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
276 {
277 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
278 		return true;
279 	return false;
280 }
281 
282 /* Buffer size and advertised window tuning.
283  *
284  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
285  */
286 
287 static void tcp_sndbuf_expand(struct sock *sk)
288 {
289 	const struct tcp_sock *tp = tcp_sk(sk);
290 	int sndmem, per_mss;
291 	u32 nr_segs;
292 
293 	/* Worst case is non GSO/TSO : each frame consumes one skb
294 	 * and skb->head is kmalloced using power of two area of memory
295 	 */
296 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
297 		  MAX_TCP_HEADER +
298 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
299 
300 	per_mss = roundup_pow_of_two(per_mss) +
301 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
302 
303 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
304 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
305 
306 	/* Fast Recovery (RFC 5681 3.2) :
307 	 * Cubic needs 1.7 factor, rounded to 2 to include
308 	 * extra cushion (application might react slowly to POLLOUT)
309 	 */
310 	sndmem = 2 * nr_segs * per_mss;
311 
312 	if (sk->sk_sndbuf < sndmem)
313 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
314 }
315 
316 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
317  *
318  * All tcp_full_space() is split to two parts: "network" buffer, allocated
319  * forward and advertised in receiver window (tp->rcv_wnd) and
320  * "application buffer", required to isolate scheduling/application
321  * latencies from network.
322  * window_clamp is maximal advertised window. It can be less than
323  * tcp_full_space(), in this case tcp_full_space() - window_clamp
324  * is reserved for "application" buffer. The less window_clamp is
325  * the smoother our behaviour from viewpoint of network, but the lower
326  * throughput and the higher sensitivity of the connection to losses. 8)
327  *
328  * rcv_ssthresh is more strict window_clamp used at "slow start"
329  * phase to predict further behaviour of this connection.
330  * It is used for two goals:
331  * - to enforce header prediction at sender, even when application
332  *   requires some significant "application buffer". It is check #1.
333  * - to prevent pruning of receive queue because of misprediction
334  *   of receiver window. Check #2.
335  *
336  * The scheme does not work when sender sends good segments opening
337  * window and then starts to feed us spaghetti. But it should work
338  * in common situations. Otherwise, we have to rely on queue collapsing.
339  */
340 
341 /* Slow part of check#2. */
342 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
343 {
344 	struct tcp_sock *tp = tcp_sk(sk);
345 	/* Optimize this! */
346 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
347 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
348 
349 	while (tp->rcv_ssthresh <= window) {
350 		if (truesize <= skb->len)
351 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
352 
353 		truesize >>= 1;
354 		window >>= 1;
355 	}
356 	return 0;
357 }
358 
359 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
360 {
361 	struct tcp_sock *tp = tcp_sk(sk);
362 
363 	/* Check #1 */
364 	if (tp->rcv_ssthresh < tp->window_clamp &&
365 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
366 	    !tcp_under_memory_pressure(sk)) {
367 		int incr;
368 
369 		/* Check #2. Increase window, if skb with such overhead
370 		 * will fit to rcvbuf in future.
371 		 */
372 		if (tcp_win_from_space(skb->truesize) <= skb->len)
373 			incr = 2 * tp->advmss;
374 		else
375 			incr = __tcp_grow_window(sk, skb);
376 
377 		if (incr) {
378 			incr = max_t(int, incr, 2 * skb->len);
379 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
380 					       tp->window_clamp);
381 			inet_csk(sk)->icsk_ack.quick |= 1;
382 		}
383 	}
384 }
385 
386 /* 3. Tuning rcvbuf, when connection enters established state. */
387 static void tcp_fixup_rcvbuf(struct sock *sk)
388 {
389 	u32 mss = tcp_sk(sk)->advmss;
390 	int rcvmem;
391 
392 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
393 		 tcp_default_init_rwnd(mss);
394 
395 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
396 	 * Allow enough cushion so that sender is not limited by our window
397 	 */
398 	if (sysctl_tcp_moderate_rcvbuf)
399 		rcvmem <<= 2;
400 
401 	if (sk->sk_rcvbuf < rcvmem)
402 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
403 }
404 
405 /* 4. Try to fixup all. It is made immediately after connection enters
406  *    established state.
407  */
408 void tcp_init_buffer_space(struct sock *sk)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	int maxwin;
412 
413 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
414 		tcp_fixup_rcvbuf(sk);
415 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
416 		tcp_sndbuf_expand(sk);
417 
418 	tp->rcvq_space.space = tp->rcv_wnd;
419 	tp->rcvq_space.time = tcp_time_stamp;
420 	tp->rcvq_space.seq = tp->copied_seq;
421 
422 	maxwin = tcp_full_space(sk);
423 
424 	if (tp->window_clamp >= maxwin) {
425 		tp->window_clamp = maxwin;
426 
427 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
428 			tp->window_clamp = max(maxwin -
429 					       (maxwin >> sysctl_tcp_app_win),
430 					       4 * tp->advmss);
431 	}
432 
433 	/* Force reservation of one segment. */
434 	if (sysctl_tcp_app_win &&
435 	    tp->window_clamp > 2 * tp->advmss &&
436 	    tp->window_clamp + tp->advmss > maxwin)
437 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
438 
439 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
440 	tp->snd_cwnd_stamp = tcp_time_stamp;
441 }
442 
443 /* 5. Recalculate window clamp after socket hit its memory bounds. */
444 static void tcp_clamp_window(struct sock *sk)
445 {
446 	struct tcp_sock *tp = tcp_sk(sk);
447 	struct inet_connection_sock *icsk = inet_csk(sk);
448 
449 	icsk->icsk_ack.quick = 0;
450 
451 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
452 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
453 	    !tcp_under_memory_pressure(sk) &&
454 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
455 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
456 				    sysctl_tcp_rmem[2]);
457 	}
458 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
459 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
460 }
461 
462 /* Initialize RCV_MSS value.
463  * RCV_MSS is an our guess about MSS used by the peer.
464  * We haven't any direct information about the MSS.
465  * It's better to underestimate the RCV_MSS rather than overestimate.
466  * Overestimations make us ACKing less frequently than needed.
467  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
468  */
469 void tcp_initialize_rcv_mss(struct sock *sk)
470 {
471 	const struct tcp_sock *tp = tcp_sk(sk);
472 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
473 
474 	hint = min(hint, tp->rcv_wnd / 2);
475 	hint = min(hint, TCP_MSS_DEFAULT);
476 	hint = max(hint, TCP_MIN_MSS);
477 
478 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
479 }
480 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
481 
482 /* Receiver "autotuning" code.
483  *
484  * The algorithm for RTT estimation w/o timestamps is based on
485  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
486  * <http://public.lanl.gov/radiant/pubs.html#DRS>
487  *
488  * More detail on this code can be found at
489  * <http://staff.psc.edu/jheffner/>,
490  * though this reference is out of date.  A new paper
491  * is pending.
492  */
493 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
494 {
495 	u32 new_sample = tp->rcv_rtt_est.rtt;
496 	long m = sample;
497 
498 	if (m == 0)
499 		m = 1;
500 
501 	if (new_sample != 0) {
502 		/* If we sample in larger samples in the non-timestamp
503 		 * case, we could grossly overestimate the RTT especially
504 		 * with chatty applications or bulk transfer apps which
505 		 * are stalled on filesystem I/O.
506 		 *
507 		 * Also, since we are only going for a minimum in the
508 		 * non-timestamp case, we do not smooth things out
509 		 * else with timestamps disabled convergence takes too
510 		 * long.
511 		 */
512 		if (!win_dep) {
513 			m -= (new_sample >> 3);
514 			new_sample += m;
515 		} else {
516 			m <<= 3;
517 			if (m < new_sample)
518 				new_sample = m;
519 		}
520 	} else {
521 		/* No previous measure. */
522 		new_sample = m << 3;
523 	}
524 
525 	if (tp->rcv_rtt_est.rtt != new_sample)
526 		tp->rcv_rtt_est.rtt = new_sample;
527 }
528 
529 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
530 {
531 	if (tp->rcv_rtt_est.time == 0)
532 		goto new_measure;
533 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
534 		return;
535 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
536 
537 new_measure:
538 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
539 	tp->rcv_rtt_est.time = tcp_time_stamp;
540 }
541 
542 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
543 					  const struct sk_buff *skb)
544 {
545 	struct tcp_sock *tp = tcp_sk(sk);
546 	if (tp->rx_opt.rcv_tsecr &&
547 	    (TCP_SKB_CB(skb)->end_seq -
548 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
549 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
550 }
551 
552 /*
553  * This function should be called every time data is copied to user space.
554  * It calculates the appropriate TCP receive buffer space.
555  */
556 void tcp_rcv_space_adjust(struct sock *sk)
557 {
558 	struct tcp_sock *tp = tcp_sk(sk);
559 	int time;
560 	int copied;
561 
562 	time = tcp_time_stamp - tp->rcvq_space.time;
563 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
564 		return;
565 
566 	/* Number of bytes copied to user in last RTT */
567 	copied = tp->copied_seq - tp->rcvq_space.seq;
568 	if (copied <= tp->rcvq_space.space)
569 		goto new_measure;
570 
571 	/* A bit of theory :
572 	 * copied = bytes received in previous RTT, our base window
573 	 * To cope with packet losses, we need a 2x factor
574 	 * To cope with slow start, and sender growing its cwin by 100 %
575 	 * every RTT, we need a 4x factor, because the ACK we are sending
576 	 * now is for the next RTT, not the current one :
577 	 * <prev RTT . ><current RTT .. ><next RTT .... >
578 	 */
579 
580 	if (sysctl_tcp_moderate_rcvbuf &&
581 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
582 		int rcvwin, rcvmem, rcvbuf;
583 
584 		/* minimal window to cope with packet losses, assuming
585 		 * steady state. Add some cushion because of small variations.
586 		 */
587 		rcvwin = (copied << 1) + 16 * tp->advmss;
588 
589 		/* If rate increased by 25%,
590 		 *	assume slow start, rcvwin = 3 * copied
591 		 * If rate increased by 50%,
592 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
593 		 */
594 		if (copied >=
595 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
596 			if (copied >=
597 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
598 				rcvwin <<= 1;
599 			else
600 				rcvwin += (rcvwin >> 1);
601 		}
602 
603 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
604 		while (tcp_win_from_space(rcvmem) < tp->advmss)
605 			rcvmem += 128;
606 
607 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
608 		if (rcvbuf > sk->sk_rcvbuf) {
609 			sk->sk_rcvbuf = rcvbuf;
610 
611 			/* Make the window clamp follow along.  */
612 			tp->window_clamp = rcvwin;
613 		}
614 	}
615 	tp->rcvq_space.space = copied;
616 
617 new_measure:
618 	tp->rcvq_space.seq = tp->copied_seq;
619 	tp->rcvq_space.time = tcp_time_stamp;
620 }
621 
622 /* There is something which you must keep in mind when you analyze the
623  * behavior of the tp->ato delayed ack timeout interval.  When a
624  * connection starts up, we want to ack as quickly as possible.  The
625  * problem is that "good" TCP's do slow start at the beginning of data
626  * transmission.  The means that until we send the first few ACK's the
627  * sender will sit on his end and only queue most of his data, because
628  * he can only send snd_cwnd unacked packets at any given time.  For
629  * each ACK we send, he increments snd_cwnd and transmits more of his
630  * queue.  -DaveM
631  */
632 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
633 {
634 	struct tcp_sock *tp = tcp_sk(sk);
635 	struct inet_connection_sock *icsk = inet_csk(sk);
636 	u32 now;
637 
638 	inet_csk_schedule_ack(sk);
639 
640 	tcp_measure_rcv_mss(sk, skb);
641 
642 	tcp_rcv_rtt_measure(tp);
643 
644 	now = tcp_time_stamp;
645 
646 	if (!icsk->icsk_ack.ato) {
647 		/* The _first_ data packet received, initialize
648 		 * delayed ACK engine.
649 		 */
650 		tcp_incr_quickack(sk);
651 		icsk->icsk_ack.ato = TCP_ATO_MIN;
652 	} else {
653 		int m = now - icsk->icsk_ack.lrcvtime;
654 
655 		if (m <= TCP_ATO_MIN / 2) {
656 			/* The fastest case is the first. */
657 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
658 		} else if (m < icsk->icsk_ack.ato) {
659 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
660 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
661 				icsk->icsk_ack.ato = icsk->icsk_rto;
662 		} else if (m > icsk->icsk_rto) {
663 			/* Too long gap. Apparently sender failed to
664 			 * restart window, so that we send ACKs quickly.
665 			 */
666 			tcp_incr_quickack(sk);
667 			sk_mem_reclaim(sk);
668 		}
669 	}
670 	icsk->icsk_ack.lrcvtime = now;
671 
672 	tcp_ecn_check_ce(tp, skb);
673 
674 	if (skb->len >= 128)
675 		tcp_grow_window(sk, skb);
676 }
677 
678 /* Called to compute a smoothed rtt estimate. The data fed to this
679  * routine either comes from timestamps, or from segments that were
680  * known _not_ to have been retransmitted [see Karn/Partridge
681  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
682  * piece by Van Jacobson.
683  * NOTE: the next three routines used to be one big routine.
684  * To save cycles in the RFC 1323 implementation it was better to break
685  * it up into three procedures. -- erics
686  */
687 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
688 {
689 	struct tcp_sock *tp = tcp_sk(sk);
690 	long m = mrtt_us; /* RTT */
691 	u32 srtt = tp->srtt_us;
692 
693 	/*	The following amusing code comes from Jacobson's
694 	 *	article in SIGCOMM '88.  Note that rtt and mdev
695 	 *	are scaled versions of rtt and mean deviation.
696 	 *	This is designed to be as fast as possible
697 	 *	m stands for "measurement".
698 	 *
699 	 *	On a 1990 paper the rto value is changed to:
700 	 *	RTO = rtt + 4 * mdev
701 	 *
702 	 * Funny. This algorithm seems to be very broken.
703 	 * These formulae increase RTO, when it should be decreased, increase
704 	 * too slowly, when it should be increased quickly, decrease too quickly
705 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
706 	 * does not matter how to _calculate_ it. Seems, it was trap
707 	 * that VJ failed to avoid. 8)
708 	 */
709 	if (srtt != 0) {
710 		m -= (srtt >> 3);	/* m is now error in rtt est */
711 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
712 		if (m < 0) {
713 			m = -m;		/* m is now abs(error) */
714 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
715 			/* This is similar to one of Eifel findings.
716 			 * Eifel blocks mdev updates when rtt decreases.
717 			 * This solution is a bit different: we use finer gain
718 			 * for mdev in this case (alpha*beta).
719 			 * Like Eifel it also prevents growth of rto,
720 			 * but also it limits too fast rto decreases,
721 			 * happening in pure Eifel.
722 			 */
723 			if (m > 0)
724 				m >>= 3;
725 		} else {
726 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
727 		}
728 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
729 		if (tp->mdev_us > tp->mdev_max_us) {
730 			tp->mdev_max_us = tp->mdev_us;
731 			if (tp->mdev_max_us > tp->rttvar_us)
732 				tp->rttvar_us = tp->mdev_max_us;
733 		}
734 		if (after(tp->snd_una, tp->rtt_seq)) {
735 			if (tp->mdev_max_us < tp->rttvar_us)
736 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
737 			tp->rtt_seq = tp->snd_nxt;
738 			tp->mdev_max_us = tcp_rto_min_us(sk);
739 		}
740 	} else {
741 		/* no previous measure. */
742 		srtt = m << 3;		/* take the measured time to be rtt */
743 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
744 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
745 		tp->mdev_max_us = tp->rttvar_us;
746 		tp->rtt_seq = tp->snd_nxt;
747 	}
748 	tp->srtt_us = max(1U, srtt);
749 }
750 
751 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
752  * Note: TCP stack does not yet implement pacing.
753  * FQ packet scheduler can be used to implement cheap but effective
754  * TCP pacing, to smooth the burst on large writes when packets
755  * in flight is significantly lower than cwnd (or rwin)
756  */
757 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
758 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
759 
760 static void tcp_update_pacing_rate(struct sock *sk)
761 {
762 	const struct tcp_sock *tp = tcp_sk(sk);
763 	u64 rate;
764 
765 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
766 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
767 
768 	/* current rate is (cwnd * mss) / srtt
769 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
770 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
771 	 *
772 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
773 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
774 	 *	 end of slow start and should slow down.
775 	 */
776 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
777 		rate *= sysctl_tcp_pacing_ss_ratio;
778 	else
779 		rate *= sysctl_tcp_pacing_ca_ratio;
780 
781 	rate *= max(tp->snd_cwnd, tp->packets_out);
782 
783 	if (likely(tp->srtt_us))
784 		do_div(rate, tp->srtt_us);
785 
786 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
787 	 * without any lock. We want to make sure compiler wont store
788 	 * intermediate values in this location.
789 	 */
790 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
791 						sk->sk_max_pacing_rate);
792 }
793 
794 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
795  * routine referred to above.
796  */
797 static void tcp_set_rto(struct sock *sk)
798 {
799 	const struct tcp_sock *tp = tcp_sk(sk);
800 	/* Old crap is replaced with new one. 8)
801 	 *
802 	 * More seriously:
803 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
804 	 *    It cannot be less due to utterly erratic ACK generation made
805 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
806 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
807 	 *    is invisible. Actually, Linux-2.4 also generates erratic
808 	 *    ACKs in some circumstances.
809 	 */
810 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
811 
812 	/* 2. Fixups made earlier cannot be right.
813 	 *    If we do not estimate RTO correctly without them,
814 	 *    all the algo is pure shit and should be replaced
815 	 *    with correct one. It is exactly, which we pretend to do.
816 	 */
817 
818 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
819 	 * guarantees that rto is higher.
820 	 */
821 	tcp_bound_rto(sk);
822 }
823 
824 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
825 {
826 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827 
828 	if (!cwnd)
829 		cwnd = TCP_INIT_CWND;
830 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832 
833 /*
834  * Packet counting of FACK is based on in-order assumptions, therefore TCP
835  * disables it when reordering is detected
836  */
837 void tcp_disable_fack(struct tcp_sock *tp)
838 {
839 	/* RFC3517 uses different metric in lost marker => reset on change */
840 	if (tcp_is_fack(tp))
841 		tp->lost_skb_hint = NULL;
842 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
843 }
844 
845 /* Take a notice that peer is sending D-SACKs */
846 static void tcp_dsack_seen(struct tcp_sock *tp)
847 {
848 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
849 }
850 
851 static void tcp_update_reordering(struct sock *sk, const int metric,
852 				  const int ts)
853 {
854 	struct tcp_sock *tp = tcp_sk(sk);
855 	if (metric > tp->reordering) {
856 		int mib_idx;
857 
858 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
859 
860 		/* This exciting event is worth to be remembered. 8) */
861 		if (ts)
862 			mib_idx = LINUX_MIB_TCPTSREORDER;
863 		else if (tcp_is_reno(tp))
864 			mib_idx = LINUX_MIB_TCPRENOREORDER;
865 		else if (tcp_is_fack(tp))
866 			mib_idx = LINUX_MIB_TCPFACKREORDER;
867 		else
868 			mib_idx = LINUX_MIB_TCPSACKREORDER;
869 
870 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
871 #if FASTRETRANS_DEBUG > 1
872 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
873 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 			 tp->reordering,
875 			 tp->fackets_out,
876 			 tp->sacked_out,
877 			 tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 		tcp_disable_fack(tp);
880 	}
881 
882 	if (metric > 0)
883 		tcp_disable_early_retrans(tp);
884 	tp->rack.reord = 1;
885 }
886 
887 /* This must be called before lost_out is incremented */
888 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
889 {
890 	if (!tp->retransmit_skb_hint ||
891 	    before(TCP_SKB_CB(skb)->seq,
892 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
893 		tp->retransmit_skb_hint = skb;
894 
895 	if (!tp->lost_out ||
896 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
897 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
898 }
899 
900 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
901 {
902 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
903 		tcp_verify_retransmit_hint(tp, skb);
904 
905 		tp->lost_out += tcp_skb_pcount(skb);
906 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
907 	}
908 }
909 
910 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
911 {
912 	tcp_verify_retransmit_hint(tp, skb);
913 
914 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
915 		tp->lost_out += tcp_skb_pcount(skb);
916 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 	}
918 }
919 
920 /* This procedure tags the retransmission queue when SACKs arrive.
921  *
922  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
923  * Packets in queue with these bits set are counted in variables
924  * sacked_out, retrans_out and lost_out, correspondingly.
925  *
926  * Valid combinations are:
927  * Tag  InFlight	Description
928  * 0	1		- orig segment is in flight.
929  * S	0		- nothing flies, orig reached receiver.
930  * L	0		- nothing flies, orig lost by net.
931  * R	2		- both orig and retransmit are in flight.
932  * L|R	1		- orig is lost, retransmit is in flight.
933  * S|R  1		- orig reached receiver, retrans is still in flight.
934  * (L|S|R is logically valid, it could occur when L|R is sacked,
935  *  but it is equivalent to plain S and code short-curcuits it to S.
936  *  L|S is logically invalid, it would mean -1 packet in flight 8))
937  *
938  * These 6 states form finite state machine, controlled by the following events:
939  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
940  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
941  * 3. Loss detection event of two flavors:
942  *	A. Scoreboard estimator decided the packet is lost.
943  *	   A'. Reno "three dupacks" marks head of queue lost.
944  *	   A''. Its FACK modification, head until snd.fack is lost.
945  *	B. SACK arrives sacking SND.NXT at the moment, when the
946  *	   segment was retransmitted.
947  * 4. D-SACK added new rule: D-SACK changes any tag to S.
948  *
949  * It is pleasant to note, that state diagram turns out to be commutative,
950  * so that we are allowed not to be bothered by order of our actions,
951  * when multiple events arrive simultaneously. (see the function below).
952  *
953  * Reordering detection.
954  * --------------------
955  * Reordering metric is maximal distance, which a packet can be displaced
956  * in packet stream. With SACKs we can estimate it:
957  *
958  * 1. SACK fills old hole and the corresponding segment was not
959  *    ever retransmitted -> reordering. Alas, we cannot use it
960  *    when segment was retransmitted.
961  * 2. The last flaw is solved with D-SACK. D-SACK arrives
962  *    for retransmitted and already SACKed segment -> reordering..
963  * Both of these heuristics are not used in Loss state, when we cannot
964  * account for retransmits accurately.
965  *
966  * SACK block validation.
967  * ----------------------
968  *
969  * SACK block range validation checks that the received SACK block fits to
970  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
971  * Note that SND.UNA is not included to the range though being valid because
972  * it means that the receiver is rather inconsistent with itself reporting
973  * SACK reneging when it should advance SND.UNA. Such SACK block this is
974  * perfectly valid, however, in light of RFC2018 which explicitly states
975  * that "SACK block MUST reflect the newest segment.  Even if the newest
976  * segment is going to be discarded ...", not that it looks very clever
977  * in case of head skb. Due to potentional receiver driven attacks, we
978  * choose to avoid immediate execution of a walk in write queue due to
979  * reneging and defer head skb's loss recovery to standard loss recovery
980  * procedure that will eventually trigger (nothing forbids us doing this).
981  *
982  * Implements also blockage to start_seq wrap-around. Problem lies in the
983  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
984  * there's no guarantee that it will be before snd_nxt (n). The problem
985  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
986  * wrap (s_w):
987  *
988  *         <- outs wnd ->                          <- wrapzone ->
989  *         u     e      n                         u_w   e_w  s n_w
990  *         |     |      |                          |     |   |  |
991  * |<------------+------+----- TCP seqno space --------------+---------->|
992  * ...-- <2^31 ->|                                           |<--------...
993  * ...---- >2^31 ------>|                                    |<--------...
994  *
995  * Current code wouldn't be vulnerable but it's better still to discard such
996  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
997  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
998  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
999  * equal to the ideal case (infinite seqno space without wrap caused issues).
1000  *
1001  * With D-SACK the lower bound is extended to cover sequence space below
1002  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1003  * again, D-SACK block must not to go across snd_una (for the same reason as
1004  * for the normal SACK blocks, explained above). But there all simplicity
1005  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1006  * fully below undo_marker they do not affect behavior in anyway and can
1007  * therefore be safely ignored. In rare cases (which are more or less
1008  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1009  * fragmentation and packet reordering past skb's retransmission. To consider
1010  * them correctly, the acceptable range must be extended even more though
1011  * the exact amount is rather hard to quantify. However, tp->max_window can
1012  * be used as an exaggerated estimate.
1013  */
1014 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1015 				   u32 start_seq, u32 end_seq)
1016 {
1017 	/* Too far in future, or reversed (interpretation is ambiguous) */
1018 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1019 		return false;
1020 
1021 	/* Nasty start_seq wrap-around check (see comments above) */
1022 	if (!before(start_seq, tp->snd_nxt))
1023 		return false;
1024 
1025 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1026 	 * start_seq == snd_una is non-sensical (see comments above)
1027 	 */
1028 	if (after(start_seq, tp->snd_una))
1029 		return true;
1030 
1031 	if (!is_dsack || !tp->undo_marker)
1032 		return false;
1033 
1034 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1035 	if (after(end_seq, tp->snd_una))
1036 		return false;
1037 
1038 	if (!before(start_seq, tp->undo_marker))
1039 		return true;
1040 
1041 	/* Too old */
1042 	if (!after(end_seq, tp->undo_marker))
1043 		return false;
1044 
1045 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1046 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1047 	 */
1048 	return !before(start_seq, end_seq - tp->max_window);
1049 }
1050 
1051 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1052 			    struct tcp_sack_block_wire *sp, int num_sacks,
1053 			    u32 prior_snd_una)
1054 {
1055 	struct tcp_sock *tp = tcp_sk(sk);
1056 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1057 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1058 	bool dup_sack = false;
1059 
1060 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1061 		dup_sack = true;
1062 		tcp_dsack_seen(tp);
1063 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1064 	} else if (num_sacks > 1) {
1065 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1066 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1067 
1068 		if (!after(end_seq_0, end_seq_1) &&
1069 		    !before(start_seq_0, start_seq_1)) {
1070 			dup_sack = true;
1071 			tcp_dsack_seen(tp);
1072 			NET_INC_STATS_BH(sock_net(sk),
1073 					LINUX_MIB_TCPDSACKOFORECV);
1074 		}
1075 	}
1076 
1077 	/* D-SACK for already forgotten data... Do dumb counting. */
1078 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1079 	    !after(end_seq_0, prior_snd_una) &&
1080 	    after(end_seq_0, tp->undo_marker))
1081 		tp->undo_retrans--;
1082 
1083 	return dup_sack;
1084 }
1085 
1086 struct tcp_sacktag_state {
1087 	int	reord;
1088 	int	fack_count;
1089 	/* Timestamps for earliest and latest never-retransmitted segment
1090 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1091 	 * but congestion control should still get an accurate delay signal.
1092 	 */
1093 	struct skb_mstamp first_sackt;
1094 	struct skb_mstamp last_sackt;
1095 	int	flag;
1096 };
1097 
1098 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1099  * the incoming SACK may not exactly match but we can find smaller MSS
1100  * aligned portion of it that matches. Therefore we might need to fragment
1101  * which may fail and creates some hassle (caller must handle error case
1102  * returns).
1103  *
1104  * FIXME: this could be merged to shift decision code
1105  */
1106 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1107 				  u32 start_seq, u32 end_seq)
1108 {
1109 	int err;
1110 	bool in_sack;
1111 	unsigned int pkt_len;
1112 	unsigned int mss;
1113 
1114 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1115 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1116 
1117 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1118 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1119 		mss = tcp_skb_mss(skb);
1120 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1121 
1122 		if (!in_sack) {
1123 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1124 			if (pkt_len < mss)
1125 				pkt_len = mss;
1126 		} else {
1127 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1128 			if (pkt_len < mss)
1129 				return -EINVAL;
1130 		}
1131 
1132 		/* Round if necessary so that SACKs cover only full MSSes
1133 		 * and/or the remaining small portion (if present)
1134 		 */
1135 		if (pkt_len > mss) {
1136 			unsigned int new_len = (pkt_len / mss) * mss;
1137 			if (!in_sack && new_len < pkt_len) {
1138 				new_len += mss;
1139 				if (new_len >= skb->len)
1140 					return 0;
1141 			}
1142 			pkt_len = new_len;
1143 		}
1144 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1145 		if (err < 0)
1146 			return err;
1147 	}
1148 
1149 	return in_sack;
1150 }
1151 
1152 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1153 static u8 tcp_sacktag_one(struct sock *sk,
1154 			  struct tcp_sacktag_state *state, u8 sacked,
1155 			  u32 start_seq, u32 end_seq,
1156 			  int dup_sack, int pcount,
1157 			  const struct skb_mstamp *xmit_time)
1158 {
1159 	struct tcp_sock *tp = tcp_sk(sk);
1160 	int fack_count = state->fack_count;
1161 
1162 	/* Account D-SACK for retransmitted packet. */
1163 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1164 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1165 		    after(end_seq, tp->undo_marker))
1166 			tp->undo_retrans--;
1167 		if (sacked & TCPCB_SACKED_ACKED)
1168 			state->reord = min(fack_count, state->reord);
1169 	}
1170 
1171 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1172 	if (!after(end_seq, tp->snd_una))
1173 		return sacked;
1174 
1175 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1176 		tcp_rack_advance(tp, xmit_time, sacked);
1177 
1178 		if (sacked & TCPCB_SACKED_RETRANS) {
1179 			/* If the segment is not tagged as lost,
1180 			 * we do not clear RETRANS, believing
1181 			 * that retransmission is still in flight.
1182 			 */
1183 			if (sacked & TCPCB_LOST) {
1184 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1185 				tp->lost_out -= pcount;
1186 				tp->retrans_out -= pcount;
1187 			}
1188 		} else {
1189 			if (!(sacked & TCPCB_RETRANS)) {
1190 				/* New sack for not retransmitted frame,
1191 				 * which was in hole. It is reordering.
1192 				 */
1193 				if (before(start_seq,
1194 					   tcp_highest_sack_seq(tp)))
1195 					state->reord = min(fack_count,
1196 							   state->reord);
1197 				if (!after(end_seq, tp->high_seq))
1198 					state->flag |= FLAG_ORIG_SACK_ACKED;
1199 				if (state->first_sackt.v64 == 0)
1200 					state->first_sackt = *xmit_time;
1201 				state->last_sackt = *xmit_time;
1202 			}
1203 
1204 			if (sacked & TCPCB_LOST) {
1205 				sacked &= ~TCPCB_LOST;
1206 				tp->lost_out -= pcount;
1207 			}
1208 		}
1209 
1210 		sacked |= TCPCB_SACKED_ACKED;
1211 		state->flag |= FLAG_DATA_SACKED;
1212 		tp->sacked_out += pcount;
1213 
1214 		fack_count += pcount;
1215 
1216 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1217 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1218 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1219 			tp->lost_cnt_hint += pcount;
1220 
1221 		if (fack_count > tp->fackets_out)
1222 			tp->fackets_out = fack_count;
1223 	}
1224 
1225 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1226 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1227 	 * are accounted above as well.
1228 	 */
1229 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1230 		sacked &= ~TCPCB_SACKED_RETRANS;
1231 		tp->retrans_out -= pcount;
1232 	}
1233 
1234 	return sacked;
1235 }
1236 
1237 /* Shift newly-SACKed bytes from this skb to the immediately previous
1238  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1239  */
1240 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1241 			    struct tcp_sacktag_state *state,
1242 			    unsigned int pcount, int shifted, int mss,
1243 			    bool dup_sack)
1244 {
1245 	struct tcp_sock *tp = tcp_sk(sk);
1246 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1247 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1248 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1249 
1250 	BUG_ON(!pcount);
1251 
1252 	/* Adjust counters and hints for the newly sacked sequence
1253 	 * range but discard the return value since prev is already
1254 	 * marked. We must tag the range first because the seq
1255 	 * advancement below implicitly advances
1256 	 * tcp_highest_sack_seq() when skb is highest_sack.
1257 	 */
1258 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1259 			start_seq, end_seq, dup_sack, pcount,
1260 			&skb->skb_mstamp);
1261 
1262 	if (skb == tp->lost_skb_hint)
1263 		tp->lost_cnt_hint += pcount;
1264 
1265 	TCP_SKB_CB(prev)->end_seq += shifted;
1266 	TCP_SKB_CB(skb)->seq += shifted;
1267 
1268 	tcp_skb_pcount_add(prev, pcount);
1269 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1270 	tcp_skb_pcount_add(skb, -pcount);
1271 
1272 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1273 	 * in theory this shouldn't be necessary but as long as DSACK
1274 	 * code can come after this skb later on it's better to keep
1275 	 * setting gso_size to something.
1276 	 */
1277 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1278 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1279 
1280 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1281 	if (tcp_skb_pcount(skb) <= 1)
1282 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1283 
1284 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1285 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1286 
1287 	if (skb->len > 0) {
1288 		BUG_ON(!tcp_skb_pcount(skb));
1289 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1290 		return false;
1291 	}
1292 
1293 	/* Whole SKB was eaten :-) */
1294 
1295 	if (skb == tp->retransmit_skb_hint)
1296 		tp->retransmit_skb_hint = prev;
1297 	if (skb == tp->lost_skb_hint) {
1298 		tp->lost_skb_hint = prev;
1299 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1300 	}
1301 
1302 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1303 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1304 		TCP_SKB_CB(prev)->end_seq++;
1305 
1306 	if (skb == tcp_highest_sack(sk))
1307 		tcp_advance_highest_sack(sk, skb);
1308 
1309 	tcp_unlink_write_queue(skb, sk);
1310 	sk_wmem_free_skb(sk, skb);
1311 
1312 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1313 
1314 	return true;
1315 }
1316 
1317 /* I wish gso_size would have a bit more sane initialization than
1318  * something-or-zero which complicates things
1319  */
1320 static int tcp_skb_seglen(const struct sk_buff *skb)
1321 {
1322 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1323 }
1324 
1325 /* Shifting pages past head area doesn't work */
1326 static int skb_can_shift(const struct sk_buff *skb)
1327 {
1328 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1329 }
1330 
1331 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1332  * skb.
1333  */
1334 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1335 					  struct tcp_sacktag_state *state,
1336 					  u32 start_seq, u32 end_seq,
1337 					  bool dup_sack)
1338 {
1339 	struct tcp_sock *tp = tcp_sk(sk);
1340 	struct sk_buff *prev;
1341 	int mss;
1342 	int pcount = 0;
1343 	int len;
1344 	int in_sack;
1345 
1346 	if (!sk_can_gso(sk))
1347 		goto fallback;
1348 
1349 	/* Normally R but no L won't result in plain S */
1350 	if (!dup_sack &&
1351 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1352 		goto fallback;
1353 	if (!skb_can_shift(skb))
1354 		goto fallback;
1355 	/* This frame is about to be dropped (was ACKed). */
1356 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1357 		goto fallback;
1358 
1359 	/* Can only happen with delayed DSACK + discard craziness */
1360 	if (unlikely(skb == tcp_write_queue_head(sk)))
1361 		goto fallback;
1362 	prev = tcp_write_queue_prev(sk, skb);
1363 
1364 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1365 		goto fallback;
1366 
1367 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1368 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1369 
1370 	if (in_sack) {
1371 		len = skb->len;
1372 		pcount = tcp_skb_pcount(skb);
1373 		mss = tcp_skb_seglen(skb);
1374 
1375 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1376 		 * drop this restriction as unnecessary
1377 		 */
1378 		if (mss != tcp_skb_seglen(prev))
1379 			goto fallback;
1380 	} else {
1381 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1382 			goto noop;
1383 		/* CHECKME: This is non-MSS split case only?, this will
1384 		 * cause skipped skbs due to advancing loop btw, original
1385 		 * has that feature too
1386 		 */
1387 		if (tcp_skb_pcount(skb) <= 1)
1388 			goto noop;
1389 
1390 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1391 		if (!in_sack) {
1392 			/* TODO: head merge to next could be attempted here
1393 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1394 			 * though it might not be worth of the additional hassle
1395 			 *
1396 			 * ...we can probably just fallback to what was done
1397 			 * previously. We could try merging non-SACKed ones
1398 			 * as well but it probably isn't going to buy off
1399 			 * because later SACKs might again split them, and
1400 			 * it would make skb timestamp tracking considerably
1401 			 * harder problem.
1402 			 */
1403 			goto fallback;
1404 		}
1405 
1406 		len = end_seq - TCP_SKB_CB(skb)->seq;
1407 		BUG_ON(len < 0);
1408 		BUG_ON(len > skb->len);
1409 
1410 		/* MSS boundaries should be honoured or else pcount will
1411 		 * severely break even though it makes things bit trickier.
1412 		 * Optimize common case to avoid most of the divides
1413 		 */
1414 		mss = tcp_skb_mss(skb);
1415 
1416 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1417 		 * drop this restriction as unnecessary
1418 		 */
1419 		if (mss != tcp_skb_seglen(prev))
1420 			goto fallback;
1421 
1422 		if (len == mss) {
1423 			pcount = 1;
1424 		} else if (len < mss) {
1425 			goto noop;
1426 		} else {
1427 			pcount = len / mss;
1428 			len = pcount * mss;
1429 		}
1430 	}
1431 
1432 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1433 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1434 		goto fallback;
1435 
1436 	if (!skb_shift(prev, skb, len))
1437 		goto fallback;
1438 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1439 		goto out;
1440 
1441 	/* Hole filled allows collapsing with the next as well, this is very
1442 	 * useful when hole on every nth skb pattern happens
1443 	 */
1444 	if (prev == tcp_write_queue_tail(sk))
1445 		goto out;
1446 	skb = tcp_write_queue_next(sk, prev);
1447 
1448 	if (!skb_can_shift(skb) ||
1449 	    (skb == tcp_send_head(sk)) ||
1450 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1451 	    (mss != tcp_skb_seglen(skb)))
1452 		goto out;
1453 
1454 	len = skb->len;
1455 	if (skb_shift(prev, skb, len)) {
1456 		pcount += tcp_skb_pcount(skb);
1457 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1458 	}
1459 
1460 out:
1461 	state->fack_count += pcount;
1462 	return prev;
1463 
1464 noop:
1465 	return skb;
1466 
1467 fallback:
1468 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1469 	return NULL;
1470 }
1471 
1472 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1473 					struct tcp_sack_block *next_dup,
1474 					struct tcp_sacktag_state *state,
1475 					u32 start_seq, u32 end_seq,
1476 					bool dup_sack_in)
1477 {
1478 	struct tcp_sock *tp = tcp_sk(sk);
1479 	struct sk_buff *tmp;
1480 
1481 	tcp_for_write_queue_from(skb, sk) {
1482 		int in_sack = 0;
1483 		bool dup_sack = dup_sack_in;
1484 
1485 		if (skb == tcp_send_head(sk))
1486 			break;
1487 
1488 		/* queue is in-order => we can short-circuit the walk early */
1489 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1490 			break;
1491 
1492 		if (next_dup  &&
1493 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1494 			in_sack = tcp_match_skb_to_sack(sk, skb,
1495 							next_dup->start_seq,
1496 							next_dup->end_seq);
1497 			if (in_sack > 0)
1498 				dup_sack = true;
1499 		}
1500 
1501 		/* skb reference here is a bit tricky to get right, since
1502 		 * shifting can eat and free both this skb and the next,
1503 		 * so not even _safe variant of the loop is enough.
1504 		 */
1505 		if (in_sack <= 0) {
1506 			tmp = tcp_shift_skb_data(sk, skb, state,
1507 						 start_seq, end_seq, dup_sack);
1508 			if (tmp) {
1509 				if (tmp != skb) {
1510 					skb = tmp;
1511 					continue;
1512 				}
1513 
1514 				in_sack = 0;
1515 			} else {
1516 				in_sack = tcp_match_skb_to_sack(sk, skb,
1517 								start_seq,
1518 								end_seq);
1519 			}
1520 		}
1521 
1522 		if (unlikely(in_sack < 0))
1523 			break;
1524 
1525 		if (in_sack) {
1526 			TCP_SKB_CB(skb)->sacked =
1527 				tcp_sacktag_one(sk,
1528 						state,
1529 						TCP_SKB_CB(skb)->sacked,
1530 						TCP_SKB_CB(skb)->seq,
1531 						TCP_SKB_CB(skb)->end_seq,
1532 						dup_sack,
1533 						tcp_skb_pcount(skb),
1534 						&skb->skb_mstamp);
1535 
1536 			if (!before(TCP_SKB_CB(skb)->seq,
1537 				    tcp_highest_sack_seq(tp)))
1538 				tcp_advance_highest_sack(sk, skb);
1539 		}
1540 
1541 		state->fack_count += tcp_skb_pcount(skb);
1542 	}
1543 	return skb;
1544 }
1545 
1546 /* Avoid all extra work that is being done by sacktag while walking in
1547  * a normal way
1548  */
1549 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1550 					struct tcp_sacktag_state *state,
1551 					u32 skip_to_seq)
1552 {
1553 	tcp_for_write_queue_from(skb, sk) {
1554 		if (skb == tcp_send_head(sk))
1555 			break;
1556 
1557 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1558 			break;
1559 
1560 		state->fack_count += tcp_skb_pcount(skb);
1561 	}
1562 	return skb;
1563 }
1564 
1565 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1566 						struct sock *sk,
1567 						struct tcp_sack_block *next_dup,
1568 						struct tcp_sacktag_state *state,
1569 						u32 skip_to_seq)
1570 {
1571 	if (!next_dup)
1572 		return skb;
1573 
1574 	if (before(next_dup->start_seq, skip_to_seq)) {
1575 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1576 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1577 				       next_dup->start_seq, next_dup->end_seq,
1578 				       1);
1579 	}
1580 
1581 	return skb;
1582 }
1583 
1584 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1585 {
1586 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1587 }
1588 
1589 static int
1590 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1591 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1592 {
1593 	struct tcp_sock *tp = tcp_sk(sk);
1594 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1595 				    TCP_SKB_CB(ack_skb)->sacked);
1596 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1597 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1598 	struct tcp_sack_block *cache;
1599 	struct sk_buff *skb;
1600 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1601 	int used_sacks;
1602 	bool found_dup_sack = false;
1603 	int i, j;
1604 	int first_sack_index;
1605 
1606 	state->flag = 0;
1607 	state->reord = tp->packets_out;
1608 
1609 	if (!tp->sacked_out) {
1610 		if (WARN_ON(tp->fackets_out))
1611 			tp->fackets_out = 0;
1612 		tcp_highest_sack_reset(sk);
1613 	}
1614 
1615 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1616 					 num_sacks, prior_snd_una);
1617 	if (found_dup_sack)
1618 		state->flag |= FLAG_DSACKING_ACK;
1619 
1620 	/* Eliminate too old ACKs, but take into
1621 	 * account more or less fresh ones, they can
1622 	 * contain valid SACK info.
1623 	 */
1624 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1625 		return 0;
1626 
1627 	if (!tp->packets_out)
1628 		goto out;
1629 
1630 	used_sacks = 0;
1631 	first_sack_index = 0;
1632 	for (i = 0; i < num_sacks; i++) {
1633 		bool dup_sack = !i && found_dup_sack;
1634 
1635 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1636 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1637 
1638 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1639 					    sp[used_sacks].start_seq,
1640 					    sp[used_sacks].end_seq)) {
1641 			int mib_idx;
1642 
1643 			if (dup_sack) {
1644 				if (!tp->undo_marker)
1645 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1646 				else
1647 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1648 			} else {
1649 				/* Don't count olds caused by ACK reordering */
1650 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1651 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1652 					continue;
1653 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1654 			}
1655 
1656 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1657 			if (i == 0)
1658 				first_sack_index = -1;
1659 			continue;
1660 		}
1661 
1662 		/* Ignore very old stuff early */
1663 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1664 			continue;
1665 
1666 		used_sacks++;
1667 	}
1668 
1669 	/* order SACK blocks to allow in order walk of the retrans queue */
1670 	for (i = used_sacks - 1; i > 0; i--) {
1671 		for (j = 0; j < i; j++) {
1672 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1673 				swap(sp[j], sp[j + 1]);
1674 
1675 				/* Track where the first SACK block goes to */
1676 				if (j == first_sack_index)
1677 					first_sack_index = j + 1;
1678 			}
1679 		}
1680 	}
1681 
1682 	skb = tcp_write_queue_head(sk);
1683 	state->fack_count = 0;
1684 	i = 0;
1685 
1686 	if (!tp->sacked_out) {
1687 		/* It's already past, so skip checking against it */
1688 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1689 	} else {
1690 		cache = tp->recv_sack_cache;
1691 		/* Skip empty blocks in at head of the cache */
1692 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1693 		       !cache->end_seq)
1694 			cache++;
1695 	}
1696 
1697 	while (i < used_sacks) {
1698 		u32 start_seq = sp[i].start_seq;
1699 		u32 end_seq = sp[i].end_seq;
1700 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1701 		struct tcp_sack_block *next_dup = NULL;
1702 
1703 		if (found_dup_sack && ((i + 1) == first_sack_index))
1704 			next_dup = &sp[i + 1];
1705 
1706 		/* Skip too early cached blocks */
1707 		while (tcp_sack_cache_ok(tp, cache) &&
1708 		       !before(start_seq, cache->end_seq))
1709 			cache++;
1710 
1711 		/* Can skip some work by looking recv_sack_cache? */
1712 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1713 		    after(end_seq, cache->start_seq)) {
1714 
1715 			/* Head todo? */
1716 			if (before(start_seq, cache->start_seq)) {
1717 				skb = tcp_sacktag_skip(skb, sk, state,
1718 						       start_seq);
1719 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1720 						       state,
1721 						       start_seq,
1722 						       cache->start_seq,
1723 						       dup_sack);
1724 			}
1725 
1726 			/* Rest of the block already fully processed? */
1727 			if (!after(end_seq, cache->end_seq))
1728 				goto advance_sp;
1729 
1730 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1731 						       state,
1732 						       cache->end_seq);
1733 
1734 			/* ...tail remains todo... */
1735 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1736 				/* ...but better entrypoint exists! */
1737 				skb = tcp_highest_sack(sk);
1738 				if (!skb)
1739 					break;
1740 				state->fack_count = tp->fackets_out;
1741 				cache++;
1742 				goto walk;
1743 			}
1744 
1745 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1746 			/* Check overlap against next cached too (past this one already) */
1747 			cache++;
1748 			continue;
1749 		}
1750 
1751 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1752 			skb = tcp_highest_sack(sk);
1753 			if (!skb)
1754 				break;
1755 			state->fack_count = tp->fackets_out;
1756 		}
1757 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1758 
1759 walk:
1760 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1761 				       start_seq, end_seq, dup_sack);
1762 
1763 advance_sp:
1764 		i++;
1765 	}
1766 
1767 	/* Clear the head of the cache sack blocks so we can skip it next time */
1768 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1769 		tp->recv_sack_cache[i].start_seq = 0;
1770 		tp->recv_sack_cache[i].end_seq = 0;
1771 	}
1772 	for (j = 0; j < used_sacks; j++)
1773 		tp->recv_sack_cache[i++] = sp[j];
1774 
1775 	if ((state->reord < tp->fackets_out) &&
1776 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1777 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1778 
1779 	tcp_verify_left_out(tp);
1780 out:
1781 
1782 #if FASTRETRANS_DEBUG > 0
1783 	WARN_ON((int)tp->sacked_out < 0);
1784 	WARN_ON((int)tp->lost_out < 0);
1785 	WARN_ON((int)tp->retrans_out < 0);
1786 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1787 #endif
1788 	return state->flag;
1789 }
1790 
1791 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1792  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1793  */
1794 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1795 {
1796 	u32 holes;
1797 
1798 	holes = max(tp->lost_out, 1U);
1799 	holes = min(holes, tp->packets_out);
1800 
1801 	if ((tp->sacked_out + holes) > tp->packets_out) {
1802 		tp->sacked_out = tp->packets_out - holes;
1803 		return true;
1804 	}
1805 	return false;
1806 }
1807 
1808 /* If we receive more dupacks than we expected counting segments
1809  * in assumption of absent reordering, interpret this as reordering.
1810  * The only another reason could be bug in receiver TCP.
1811  */
1812 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1813 {
1814 	struct tcp_sock *tp = tcp_sk(sk);
1815 	if (tcp_limit_reno_sacked(tp))
1816 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1817 }
1818 
1819 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1820 
1821 static void tcp_add_reno_sack(struct sock *sk)
1822 {
1823 	struct tcp_sock *tp = tcp_sk(sk);
1824 	tp->sacked_out++;
1825 	tcp_check_reno_reordering(sk, 0);
1826 	tcp_verify_left_out(tp);
1827 }
1828 
1829 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1830 
1831 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1832 {
1833 	struct tcp_sock *tp = tcp_sk(sk);
1834 
1835 	if (acked > 0) {
1836 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1837 		if (acked - 1 >= tp->sacked_out)
1838 			tp->sacked_out = 0;
1839 		else
1840 			tp->sacked_out -= acked - 1;
1841 	}
1842 	tcp_check_reno_reordering(sk, acked);
1843 	tcp_verify_left_out(tp);
1844 }
1845 
1846 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1847 {
1848 	tp->sacked_out = 0;
1849 }
1850 
1851 void tcp_clear_retrans(struct tcp_sock *tp)
1852 {
1853 	tp->retrans_out = 0;
1854 	tp->lost_out = 0;
1855 	tp->undo_marker = 0;
1856 	tp->undo_retrans = -1;
1857 	tp->fackets_out = 0;
1858 	tp->sacked_out = 0;
1859 }
1860 
1861 static inline void tcp_init_undo(struct tcp_sock *tp)
1862 {
1863 	tp->undo_marker = tp->snd_una;
1864 	/* Retransmission still in flight may cause DSACKs later. */
1865 	tp->undo_retrans = tp->retrans_out ? : -1;
1866 }
1867 
1868 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1869  * and reset tags completely, otherwise preserve SACKs. If receiver
1870  * dropped its ofo queue, we will know this due to reneging detection.
1871  */
1872 void tcp_enter_loss(struct sock *sk)
1873 {
1874 	const struct inet_connection_sock *icsk = inet_csk(sk);
1875 	struct tcp_sock *tp = tcp_sk(sk);
1876 	struct sk_buff *skb;
1877 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1878 	bool is_reneg;			/* is receiver reneging on SACKs? */
1879 
1880 	/* Reduce ssthresh if it has not yet been made inside this window. */
1881 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1882 	    !after(tp->high_seq, tp->snd_una) ||
1883 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1884 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1885 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1886 		tcp_ca_event(sk, CA_EVENT_LOSS);
1887 		tcp_init_undo(tp);
1888 	}
1889 	tp->snd_cwnd	   = 1;
1890 	tp->snd_cwnd_cnt   = 0;
1891 	tp->snd_cwnd_stamp = tcp_time_stamp;
1892 
1893 	tp->retrans_out = 0;
1894 	tp->lost_out = 0;
1895 
1896 	if (tcp_is_reno(tp))
1897 		tcp_reset_reno_sack(tp);
1898 
1899 	skb = tcp_write_queue_head(sk);
1900 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1901 	if (is_reneg) {
1902 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1903 		tp->sacked_out = 0;
1904 		tp->fackets_out = 0;
1905 	}
1906 	tcp_clear_all_retrans_hints(tp);
1907 
1908 	tcp_for_write_queue(skb, sk) {
1909 		if (skb == tcp_send_head(sk))
1910 			break;
1911 
1912 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1913 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1914 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1915 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1916 			tp->lost_out += tcp_skb_pcount(skb);
1917 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1918 		}
1919 	}
1920 	tcp_verify_left_out(tp);
1921 
1922 	/* Timeout in disordered state after receiving substantial DUPACKs
1923 	 * suggests that the degree of reordering is over-estimated.
1924 	 */
1925 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1926 	    tp->sacked_out >= sysctl_tcp_reordering)
1927 		tp->reordering = min_t(unsigned int, tp->reordering,
1928 				       sysctl_tcp_reordering);
1929 	tcp_set_ca_state(sk, TCP_CA_Loss);
1930 	tp->high_seq = tp->snd_nxt;
1931 	tcp_ecn_queue_cwr(tp);
1932 
1933 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1934 	 * loss recovery is underway except recurring timeout(s) on
1935 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1936 	 */
1937 	tp->frto = sysctl_tcp_frto &&
1938 		   (new_recovery || icsk->icsk_retransmits) &&
1939 		   !inet_csk(sk)->icsk_mtup.probe_size;
1940 }
1941 
1942 /* If ACK arrived pointing to a remembered SACK, it means that our
1943  * remembered SACKs do not reflect real state of receiver i.e.
1944  * receiver _host_ is heavily congested (or buggy).
1945  *
1946  * To avoid big spurious retransmission bursts due to transient SACK
1947  * scoreboard oddities that look like reneging, we give the receiver a
1948  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1949  * restore sanity to the SACK scoreboard. If the apparent reneging
1950  * persists until this RTO then we'll clear the SACK scoreboard.
1951  */
1952 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1953 {
1954 	if (flag & FLAG_SACK_RENEGING) {
1955 		struct tcp_sock *tp = tcp_sk(sk);
1956 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1957 					  msecs_to_jiffies(10));
1958 
1959 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1960 					  delay, TCP_RTO_MAX);
1961 		return true;
1962 	}
1963 	return false;
1964 }
1965 
1966 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1967 {
1968 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1969 }
1970 
1971 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1972  * counter when SACK is enabled (without SACK, sacked_out is used for
1973  * that purpose).
1974  *
1975  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1976  * segments up to the highest received SACK block so far and holes in
1977  * between them.
1978  *
1979  * With reordering, holes may still be in flight, so RFC3517 recovery
1980  * uses pure sacked_out (total number of SACKed segments) even though
1981  * it violates the RFC that uses duplicate ACKs, often these are equal
1982  * but when e.g. out-of-window ACKs or packet duplication occurs,
1983  * they differ. Since neither occurs due to loss, TCP should really
1984  * ignore them.
1985  */
1986 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1987 {
1988 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1989 }
1990 
1991 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1992 {
1993 	struct tcp_sock *tp = tcp_sk(sk);
1994 	unsigned long delay;
1995 
1996 	/* Delay early retransmit and entering fast recovery for
1997 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1998 	 * available, or RTO is scheduled to fire first.
1999 	 */
2000 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2001 	    (flag & FLAG_ECE) || !tp->srtt_us)
2002 		return false;
2003 
2004 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2005 		    msecs_to_jiffies(2));
2006 
2007 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2008 		return false;
2009 
2010 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2011 				  TCP_RTO_MAX);
2012 	return true;
2013 }
2014 
2015 /* Linux NewReno/SACK/FACK/ECN state machine.
2016  * --------------------------------------
2017  *
2018  * "Open"	Normal state, no dubious events, fast path.
2019  * "Disorder"   In all the respects it is "Open",
2020  *		but requires a bit more attention. It is entered when
2021  *		we see some SACKs or dupacks. It is split of "Open"
2022  *		mainly to move some processing from fast path to slow one.
2023  * "CWR"	CWND was reduced due to some Congestion Notification event.
2024  *		It can be ECN, ICMP source quench, local device congestion.
2025  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2026  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2027  *
2028  * tcp_fastretrans_alert() is entered:
2029  * - each incoming ACK, if state is not "Open"
2030  * - when arrived ACK is unusual, namely:
2031  *	* SACK
2032  *	* Duplicate ACK.
2033  *	* ECN ECE.
2034  *
2035  * Counting packets in flight is pretty simple.
2036  *
2037  *	in_flight = packets_out - left_out + retrans_out
2038  *
2039  *	packets_out is SND.NXT-SND.UNA counted in packets.
2040  *
2041  *	retrans_out is number of retransmitted segments.
2042  *
2043  *	left_out is number of segments left network, but not ACKed yet.
2044  *
2045  *		left_out = sacked_out + lost_out
2046  *
2047  *     sacked_out: Packets, which arrived to receiver out of order
2048  *		   and hence not ACKed. With SACKs this number is simply
2049  *		   amount of SACKed data. Even without SACKs
2050  *		   it is easy to give pretty reliable estimate of this number,
2051  *		   counting duplicate ACKs.
2052  *
2053  *       lost_out: Packets lost by network. TCP has no explicit
2054  *		   "loss notification" feedback from network (for now).
2055  *		   It means that this number can be only _guessed_.
2056  *		   Actually, it is the heuristics to predict lossage that
2057  *		   distinguishes different algorithms.
2058  *
2059  *	F.e. after RTO, when all the queue is considered as lost,
2060  *	lost_out = packets_out and in_flight = retrans_out.
2061  *
2062  *		Essentially, we have now two algorithms counting
2063  *		lost packets.
2064  *
2065  *		FACK: It is the simplest heuristics. As soon as we decided
2066  *		that something is lost, we decide that _all_ not SACKed
2067  *		packets until the most forward SACK are lost. I.e.
2068  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069  *		It is absolutely correct estimate, if network does not reorder
2070  *		packets. And it loses any connection to reality when reordering
2071  *		takes place. We use FACK by default until reordering
2072  *		is suspected on the path to this destination.
2073  *
2074  *		NewReno: when Recovery is entered, we assume that one segment
2075  *		is lost (classic Reno). While we are in Recovery and
2076  *		a partial ACK arrives, we assume that one more packet
2077  *		is lost (NewReno). This heuristics are the same in NewReno
2078  *		and SACK.
2079  *
2080  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2081  *  deflation etc. CWND is real congestion window, never inflated, changes
2082  *  only according to classic VJ rules.
2083  *
2084  * Really tricky (and requiring careful tuning) part of algorithm
2085  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086  * The first determines the moment _when_ we should reduce CWND and,
2087  * hence, slow down forward transmission. In fact, it determines the moment
2088  * when we decide that hole is caused by loss, rather than by a reorder.
2089  *
2090  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091  * holes, caused by lost packets.
2092  *
2093  * And the most logically complicated part of algorithm is undo
2094  * heuristics. We detect false retransmits due to both too early
2095  * fast retransmit (reordering) and underestimated RTO, analyzing
2096  * timestamps and D-SACKs. When we detect that some segments were
2097  * retransmitted by mistake and CWND reduction was wrong, we undo
2098  * window reduction and abort recovery phase. This logic is hidden
2099  * inside several functions named tcp_try_undo_<something>.
2100  */
2101 
2102 /* This function decides, when we should leave Disordered state
2103  * and enter Recovery phase, reducing congestion window.
2104  *
2105  * Main question: may we further continue forward transmission
2106  * with the same cwnd?
2107  */
2108 static bool tcp_time_to_recover(struct sock *sk, int flag)
2109 {
2110 	struct tcp_sock *tp = tcp_sk(sk);
2111 	__u32 packets_out;
2112 
2113 	/* Trick#1: The loss is proven. */
2114 	if (tp->lost_out)
2115 		return true;
2116 
2117 	/* Not-A-Trick#2 : Classic rule... */
2118 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2119 		return true;
2120 
2121 	/* Trick#4: It is still not OK... But will it be useful to delay
2122 	 * recovery more?
2123 	 */
2124 	packets_out = tp->packets_out;
2125 	if (packets_out <= tp->reordering &&
2126 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2127 	    !tcp_may_send_now(sk)) {
2128 		/* We have nothing to send. This connection is limited
2129 		 * either by receiver window or by application.
2130 		 */
2131 		return true;
2132 	}
2133 
2134 	/* If a thin stream is detected, retransmit after first
2135 	 * received dupack. Employ only if SACK is supported in order
2136 	 * to avoid possible corner-case series of spurious retransmissions
2137 	 * Use only if there are no unsent data.
2138 	 */
2139 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2140 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2141 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2142 		return true;
2143 
2144 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2145 	 * retransmissions due to small network reorderings, we implement
2146 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2147 	 * interval if appropriate.
2148 	 */
2149 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2150 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2151 	    !tcp_may_send_now(sk))
2152 		return !tcp_pause_early_retransmit(sk, flag);
2153 
2154 	return false;
2155 }
2156 
2157 /* Detect loss in event "A" above by marking head of queue up as lost.
2158  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2159  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2160  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2161  * the maximum SACKed segments to pass before reaching this limit.
2162  */
2163 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2164 {
2165 	struct tcp_sock *tp = tcp_sk(sk);
2166 	struct sk_buff *skb;
2167 	int cnt, oldcnt;
2168 	int err;
2169 	unsigned int mss;
2170 	/* Use SACK to deduce losses of new sequences sent during recovery */
2171 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2172 
2173 	WARN_ON(packets > tp->packets_out);
2174 	if (tp->lost_skb_hint) {
2175 		skb = tp->lost_skb_hint;
2176 		cnt = tp->lost_cnt_hint;
2177 		/* Head already handled? */
2178 		if (mark_head && skb != tcp_write_queue_head(sk))
2179 			return;
2180 	} else {
2181 		skb = tcp_write_queue_head(sk);
2182 		cnt = 0;
2183 	}
2184 
2185 	tcp_for_write_queue_from(skb, sk) {
2186 		if (skb == tcp_send_head(sk))
2187 			break;
2188 		/* TODO: do this better */
2189 		/* this is not the most efficient way to do this... */
2190 		tp->lost_skb_hint = skb;
2191 		tp->lost_cnt_hint = cnt;
2192 
2193 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2194 			break;
2195 
2196 		oldcnt = cnt;
2197 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2198 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2199 			cnt += tcp_skb_pcount(skb);
2200 
2201 		if (cnt > packets) {
2202 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2203 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2204 			    (oldcnt >= packets))
2205 				break;
2206 
2207 			mss = tcp_skb_mss(skb);
2208 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2209 					   mss, GFP_ATOMIC);
2210 			if (err < 0)
2211 				break;
2212 			cnt = packets;
2213 		}
2214 
2215 		tcp_skb_mark_lost(tp, skb);
2216 
2217 		if (mark_head)
2218 			break;
2219 	}
2220 	tcp_verify_left_out(tp);
2221 }
2222 
2223 /* Account newly detected lost packet(s) */
2224 
2225 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2226 {
2227 	struct tcp_sock *tp = tcp_sk(sk);
2228 
2229 	if (tcp_is_reno(tp)) {
2230 		tcp_mark_head_lost(sk, 1, 1);
2231 	} else if (tcp_is_fack(tp)) {
2232 		int lost = tp->fackets_out - tp->reordering;
2233 		if (lost <= 0)
2234 			lost = 1;
2235 		tcp_mark_head_lost(sk, lost, 0);
2236 	} else {
2237 		int sacked_upto = tp->sacked_out - tp->reordering;
2238 		if (sacked_upto >= 0)
2239 			tcp_mark_head_lost(sk, sacked_upto, 0);
2240 		else if (fast_rexmit)
2241 			tcp_mark_head_lost(sk, 1, 1);
2242 	}
2243 }
2244 
2245 /* CWND moderation, preventing bursts due to too big ACKs
2246  * in dubious situations.
2247  */
2248 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2249 {
2250 	tp->snd_cwnd = min(tp->snd_cwnd,
2251 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2252 	tp->snd_cwnd_stamp = tcp_time_stamp;
2253 }
2254 
2255 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2256 {
2257 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2258 	       before(tp->rx_opt.rcv_tsecr, when);
2259 }
2260 
2261 /* skb is spurious retransmitted if the returned timestamp echo
2262  * reply is prior to the skb transmission time
2263  */
2264 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2265 				     const struct sk_buff *skb)
2266 {
2267 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2268 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2269 }
2270 
2271 /* Nothing was retransmitted or returned timestamp is less
2272  * than timestamp of the first retransmission.
2273  */
2274 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2275 {
2276 	return !tp->retrans_stamp ||
2277 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2278 }
2279 
2280 /* Undo procedures. */
2281 
2282 /* We can clear retrans_stamp when there are no retransmissions in the
2283  * window. It would seem that it is trivially available for us in
2284  * tp->retrans_out, however, that kind of assumptions doesn't consider
2285  * what will happen if errors occur when sending retransmission for the
2286  * second time. ...It could the that such segment has only
2287  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2288  * the head skb is enough except for some reneging corner cases that
2289  * are not worth the effort.
2290  *
2291  * Main reason for all this complexity is the fact that connection dying
2292  * time now depends on the validity of the retrans_stamp, in particular,
2293  * that successive retransmissions of a segment must not advance
2294  * retrans_stamp under any conditions.
2295  */
2296 static bool tcp_any_retrans_done(const struct sock *sk)
2297 {
2298 	const struct tcp_sock *tp = tcp_sk(sk);
2299 	struct sk_buff *skb;
2300 
2301 	if (tp->retrans_out)
2302 		return true;
2303 
2304 	skb = tcp_write_queue_head(sk);
2305 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2306 		return true;
2307 
2308 	return false;
2309 }
2310 
2311 #if FASTRETRANS_DEBUG > 1
2312 static void DBGUNDO(struct sock *sk, const char *msg)
2313 {
2314 	struct tcp_sock *tp = tcp_sk(sk);
2315 	struct inet_sock *inet = inet_sk(sk);
2316 
2317 	if (sk->sk_family == AF_INET) {
2318 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2319 			 msg,
2320 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2321 			 tp->snd_cwnd, tcp_left_out(tp),
2322 			 tp->snd_ssthresh, tp->prior_ssthresh,
2323 			 tp->packets_out);
2324 	}
2325 #if IS_ENABLED(CONFIG_IPV6)
2326 	else if (sk->sk_family == AF_INET6) {
2327 		struct ipv6_pinfo *np = inet6_sk(sk);
2328 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2329 			 msg,
2330 			 &np->daddr, ntohs(inet->inet_dport),
2331 			 tp->snd_cwnd, tcp_left_out(tp),
2332 			 tp->snd_ssthresh, tp->prior_ssthresh,
2333 			 tp->packets_out);
2334 	}
2335 #endif
2336 }
2337 #else
2338 #define DBGUNDO(x...) do { } while (0)
2339 #endif
2340 
2341 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2342 {
2343 	struct tcp_sock *tp = tcp_sk(sk);
2344 
2345 	if (unmark_loss) {
2346 		struct sk_buff *skb;
2347 
2348 		tcp_for_write_queue(skb, sk) {
2349 			if (skb == tcp_send_head(sk))
2350 				break;
2351 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352 		}
2353 		tp->lost_out = 0;
2354 		tcp_clear_all_retrans_hints(tp);
2355 	}
2356 
2357 	if (tp->prior_ssthresh) {
2358 		const struct inet_connection_sock *icsk = inet_csk(sk);
2359 
2360 		if (icsk->icsk_ca_ops->undo_cwnd)
2361 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2362 		else
2363 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2364 
2365 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2366 			tp->snd_ssthresh = tp->prior_ssthresh;
2367 			tcp_ecn_withdraw_cwr(tp);
2368 		}
2369 	} else {
2370 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2371 	}
2372 	tp->snd_cwnd_stamp = tcp_time_stamp;
2373 	tp->undo_marker = 0;
2374 }
2375 
2376 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2377 {
2378 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2379 }
2380 
2381 /* People celebrate: "We love our President!" */
2382 static bool tcp_try_undo_recovery(struct sock *sk)
2383 {
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 
2386 	if (tcp_may_undo(tp)) {
2387 		int mib_idx;
2388 
2389 		/* Happy end! We did not retransmit anything
2390 		 * or our original transmission succeeded.
2391 		 */
2392 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2393 		tcp_undo_cwnd_reduction(sk, false);
2394 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2395 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2396 		else
2397 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2398 
2399 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2400 	}
2401 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2402 		/* Hold old state until something *above* high_seq
2403 		 * is ACKed. For Reno it is MUST to prevent false
2404 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2405 		tcp_moderate_cwnd(tp);
2406 		if (!tcp_any_retrans_done(sk))
2407 			tp->retrans_stamp = 0;
2408 		return true;
2409 	}
2410 	tcp_set_ca_state(sk, TCP_CA_Open);
2411 	return false;
2412 }
2413 
2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2415 static bool tcp_try_undo_dsack(struct sock *sk)
2416 {
2417 	struct tcp_sock *tp = tcp_sk(sk);
2418 
2419 	if (tp->undo_marker && !tp->undo_retrans) {
2420 		DBGUNDO(sk, "D-SACK");
2421 		tcp_undo_cwnd_reduction(sk, false);
2422 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2423 		return true;
2424 	}
2425 	return false;
2426 }
2427 
2428 /* Undo during loss recovery after partial ACK or using F-RTO. */
2429 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2430 {
2431 	struct tcp_sock *tp = tcp_sk(sk);
2432 
2433 	if (frto_undo || tcp_may_undo(tp)) {
2434 		tcp_undo_cwnd_reduction(sk, true);
2435 
2436 		DBGUNDO(sk, "partial loss");
2437 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2438 		if (frto_undo)
2439 			NET_INC_STATS_BH(sock_net(sk),
2440 					 LINUX_MIB_TCPSPURIOUSRTOS);
2441 		inet_csk(sk)->icsk_retransmits = 0;
2442 		if (frto_undo || tcp_is_sack(tp))
2443 			tcp_set_ca_state(sk, TCP_CA_Open);
2444 		return true;
2445 	}
2446 	return false;
2447 }
2448 
2449 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2450  * It computes the number of packets to send (sndcnt) based on packets newly
2451  * delivered:
2452  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2453  *	cwnd reductions across a full RTT.
2454  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2455  *      But when the retransmits are acked without further losses, PRR
2456  *      slow starts cwnd up to ssthresh to speed up the recovery.
2457  */
2458 static void tcp_init_cwnd_reduction(struct sock *sk)
2459 {
2460 	struct tcp_sock *tp = tcp_sk(sk);
2461 
2462 	tp->high_seq = tp->snd_nxt;
2463 	tp->tlp_high_seq = 0;
2464 	tp->snd_cwnd_cnt = 0;
2465 	tp->prior_cwnd = tp->snd_cwnd;
2466 	tp->prr_delivered = 0;
2467 	tp->prr_out = 0;
2468 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2469 	tcp_ecn_queue_cwr(tp);
2470 }
2471 
2472 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2473 			       int fast_rexmit, int flag)
2474 {
2475 	struct tcp_sock *tp = tcp_sk(sk);
2476 	int sndcnt = 0;
2477 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2478 	int newly_acked_sacked = prior_unsacked -
2479 				 (tp->packets_out - tp->sacked_out);
2480 
2481 	tp->prr_delivered += newly_acked_sacked;
2482 	if (delta < 0) {
2483 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2484 			       tp->prior_cwnd - 1;
2485 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2486 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2487 		   !(flag & FLAG_LOST_RETRANS)) {
2488 		sndcnt = min_t(int, delta,
2489 			       max_t(int, tp->prr_delivered - tp->prr_out,
2490 				     newly_acked_sacked) + 1);
2491 	} else {
2492 		sndcnt = min(delta, newly_acked_sacked);
2493 	}
2494 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2495 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2496 }
2497 
2498 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2499 {
2500 	struct tcp_sock *tp = tcp_sk(sk);
2501 
2502 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2503 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2504 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2505 		tp->snd_cwnd = tp->snd_ssthresh;
2506 		tp->snd_cwnd_stamp = tcp_time_stamp;
2507 	}
2508 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2509 }
2510 
2511 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2512 void tcp_enter_cwr(struct sock *sk)
2513 {
2514 	struct tcp_sock *tp = tcp_sk(sk);
2515 
2516 	tp->prior_ssthresh = 0;
2517 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2518 		tp->undo_marker = 0;
2519 		tcp_init_cwnd_reduction(sk);
2520 		tcp_set_ca_state(sk, TCP_CA_CWR);
2521 	}
2522 }
2523 EXPORT_SYMBOL(tcp_enter_cwr);
2524 
2525 static void tcp_try_keep_open(struct sock *sk)
2526 {
2527 	struct tcp_sock *tp = tcp_sk(sk);
2528 	int state = TCP_CA_Open;
2529 
2530 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2531 		state = TCP_CA_Disorder;
2532 
2533 	if (inet_csk(sk)->icsk_ca_state != state) {
2534 		tcp_set_ca_state(sk, state);
2535 		tp->high_seq = tp->snd_nxt;
2536 	}
2537 }
2538 
2539 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2540 {
2541 	struct tcp_sock *tp = tcp_sk(sk);
2542 
2543 	tcp_verify_left_out(tp);
2544 
2545 	if (!tcp_any_retrans_done(sk))
2546 		tp->retrans_stamp = 0;
2547 
2548 	if (flag & FLAG_ECE)
2549 		tcp_enter_cwr(sk);
2550 
2551 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2552 		tcp_try_keep_open(sk);
2553 	} else {
2554 		tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2555 	}
2556 }
2557 
2558 static void tcp_mtup_probe_failed(struct sock *sk)
2559 {
2560 	struct inet_connection_sock *icsk = inet_csk(sk);
2561 
2562 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2563 	icsk->icsk_mtup.probe_size = 0;
2564 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2565 }
2566 
2567 static void tcp_mtup_probe_success(struct sock *sk)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 	struct inet_connection_sock *icsk = inet_csk(sk);
2571 
2572 	/* FIXME: breaks with very large cwnd */
2573 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2574 	tp->snd_cwnd = tp->snd_cwnd *
2575 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2576 		       icsk->icsk_mtup.probe_size;
2577 	tp->snd_cwnd_cnt = 0;
2578 	tp->snd_cwnd_stamp = tcp_time_stamp;
2579 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2580 
2581 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2582 	icsk->icsk_mtup.probe_size = 0;
2583 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2584 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2585 }
2586 
2587 /* Do a simple retransmit without using the backoff mechanisms in
2588  * tcp_timer. This is used for path mtu discovery.
2589  * The socket is already locked here.
2590  */
2591 void tcp_simple_retransmit(struct sock *sk)
2592 {
2593 	const struct inet_connection_sock *icsk = inet_csk(sk);
2594 	struct tcp_sock *tp = tcp_sk(sk);
2595 	struct sk_buff *skb;
2596 	unsigned int mss = tcp_current_mss(sk);
2597 	u32 prior_lost = tp->lost_out;
2598 
2599 	tcp_for_write_queue(skb, sk) {
2600 		if (skb == tcp_send_head(sk))
2601 			break;
2602 		if (tcp_skb_seglen(skb) > mss &&
2603 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2604 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2605 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2606 				tp->retrans_out -= tcp_skb_pcount(skb);
2607 			}
2608 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2609 		}
2610 	}
2611 
2612 	tcp_clear_retrans_hints_partial(tp);
2613 
2614 	if (prior_lost == tp->lost_out)
2615 		return;
2616 
2617 	if (tcp_is_reno(tp))
2618 		tcp_limit_reno_sacked(tp);
2619 
2620 	tcp_verify_left_out(tp);
2621 
2622 	/* Don't muck with the congestion window here.
2623 	 * Reason is that we do not increase amount of _data_
2624 	 * in network, but units changed and effective
2625 	 * cwnd/ssthresh really reduced now.
2626 	 */
2627 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2628 		tp->high_seq = tp->snd_nxt;
2629 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2630 		tp->prior_ssthresh = 0;
2631 		tp->undo_marker = 0;
2632 		tcp_set_ca_state(sk, TCP_CA_Loss);
2633 	}
2634 	tcp_xmit_retransmit_queue(sk);
2635 }
2636 EXPORT_SYMBOL(tcp_simple_retransmit);
2637 
2638 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 	int mib_idx;
2642 
2643 	if (tcp_is_reno(tp))
2644 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2645 	else
2646 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2647 
2648 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2649 
2650 	tp->prior_ssthresh = 0;
2651 	tcp_init_undo(tp);
2652 
2653 	if (!tcp_in_cwnd_reduction(sk)) {
2654 		if (!ece_ack)
2655 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2656 		tcp_init_cwnd_reduction(sk);
2657 	}
2658 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2659 }
2660 
2661 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2662  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2663  */
2664 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2665 {
2666 	struct tcp_sock *tp = tcp_sk(sk);
2667 	bool recovered = !before(tp->snd_una, tp->high_seq);
2668 
2669 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2670 	    tcp_try_undo_loss(sk, false))
2671 		return;
2672 
2673 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2674 		/* Step 3.b. A timeout is spurious if not all data are
2675 		 * lost, i.e., never-retransmitted data are (s)acked.
2676 		 */
2677 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2678 		    tcp_try_undo_loss(sk, true))
2679 			return;
2680 
2681 		if (after(tp->snd_nxt, tp->high_seq)) {
2682 			if (flag & FLAG_DATA_SACKED || is_dupack)
2683 				tp->frto = 0; /* Step 3.a. loss was real */
2684 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2685 			tp->high_seq = tp->snd_nxt;
2686 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2687 						  TCP_NAGLE_OFF);
2688 			if (after(tp->snd_nxt, tp->high_seq))
2689 				return; /* Step 2.b */
2690 			tp->frto = 0;
2691 		}
2692 	}
2693 
2694 	if (recovered) {
2695 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2696 		tcp_try_undo_recovery(sk);
2697 		return;
2698 	}
2699 	if (tcp_is_reno(tp)) {
2700 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2701 		 * delivered. Lower inflight to clock out (re)tranmissions.
2702 		 */
2703 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2704 			tcp_add_reno_sack(sk);
2705 		else if (flag & FLAG_SND_UNA_ADVANCED)
2706 			tcp_reset_reno_sack(tp);
2707 	}
2708 	tcp_xmit_retransmit_queue(sk);
2709 }
2710 
2711 /* Undo during fast recovery after partial ACK. */
2712 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2713 				 const int prior_unsacked, int flag)
2714 {
2715 	struct tcp_sock *tp = tcp_sk(sk);
2716 
2717 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2718 		/* Plain luck! Hole if filled with delayed
2719 		 * packet, rather than with a retransmit.
2720 		 */
2721 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2722 
2723 		/* We are getting evidence that the reordering degree is higher
2724 		 * than we realized. If there are no retransmits out then we
2725 		 * can undo. Otherwise we clock out new packets but do not
2726 		 * mark more packets lost or retransmit more.
2727 		 */
2728 		if (tp->retrans_out) {
2729 			tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2730 			return true;
2731 		}
2732 
2733 		if (!tcp_any_retrans_done(sk))
2734 			tp->retrans_stamp = 0;
2735 
2736 		DBGUNDO(sk, "partial recovery");
2737 		tcp_undo_cwnd_reduction(sk, true);
2738 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2739 		tcp_try_keep_open(sk);
2740 		return true;
2741 	}
2742 	return false;
2743 }
2744 
2745 /* Process an event, which can update packets-in-flight not trivially.
2746  * Main goal of this function is to calculate new estimate for left_out,
2747  * taking into account both packets sitting in receiver's buffer and
2748  * packets lost by network.
2749  *
2750  * Besides that it does CWND reduction, when packet loss is detected
2751  * and changes state of machine.
2752  *
2753  * It does _not_ decide what to send, it is made in function
2754  * tcp_xmit_retransmit_queue().
2755  */
2756 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2757 				  const int prior_unsacked,
2758 				  bool is_dupack, int flag)
2759 {
2760 	struct inet_connection_sock *icsk = inet_csk(sk);
2761 	struct tcp_sock *tp = tcp_sk(sk);
2762 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2763 				    (tcp_fackets_out(tp) > tp->reordering));
2764 	int fast_rexmit = 0;
2765 
2766 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2767 		tp->sacked_out = 0;
2768 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2769 		tp->fackets_out = 0;
2770 
2771 	/* Now state machine starts.
2772 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2773 	if (flag & FLAG_ECE)
2774 		tp->prior_ssthresh = 0;
2775 
2776 	/* B. In all the states check for reneging SACKs. */
2777 	if (tcp_check_sack_reneging(sk, flag))
2778 		return;
2779 
2780 	/* C. Check consistency of the current state. */
2781 	tcp_verify_left_out(tp);
2782 
2783 	/* D. Check state exit conditions. State can be terminated
2784 	 *    when high_seq is ACKed. */
2785 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2786 		WARN_ON(tp->retrans_out != 0);
2787 		tp->retrans_stamp = 0;
2788 	} else if (!before(tp->snd_una, tp->high_seq)) {
2789 		switch (icsk->icsk_ca_state) {
2790 		case TCP_CA_CWR:
2791 			/* CWR is to be held something *above* high_seq
2792 			 * is ACKed for CWR bit to reach receiver. */
2793 			if (tp->snd_una != tp->high_seq) {
2794 				tcp_end_cwnd_reduction(sk);
2795 				tcp_set_ca_state(sk, TCP_CA_Open);
2796 			}
2797 			break;
2798 
2799 		case TCP_CA_Recovery:
2800 			if (tcp_is_reno(tp))
2801 				tcp_reset_reno_sack(tp);
2802 			if (tcp_try_undo_recovery(sk))
2803 				return;
2804 			tcp_end_cwnd_reduction(sk);
2805 			break;
2806 		}
2807 	}
2808 
2809 	/* Use RACK to detect loss */
2810 	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2811 	    tcp_rack_mark_lost(sk))
2812 		flag |= FLAG_LOST_RETRANS;
2813 
2814 	/* E. Process state. */
2815 	switch (icsk->icsk_ca_state) {
2816 	case TCP_CA_Recovery:
2817 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2818 			if (tcp_is_reno(tp) && is_dupack)
2819 				tcp_add_reno_sack(sk);
2820 		} else {
2821 			if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
2822 				return;
2823 			/* Partial ACK arrived. Force fast retransmit. */
2824 			do_lost = tcp_is_reno(tp) ||
2825 				  tcp_fackets_out(tp) > tp->reordering;
2826 		}
2827 		if (tcp_try_undo_dsack(sk)) {
2828 			tcp_try_keep_open(sk);
2829 			return;
2830 		}
2831 		break;
2832 	case TCP_CA_Loss:
2833 		tcp_process_loss(sk, flag, is_dupack);
2834 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2835 		    !(flag & FLAG_LOST_RETRANS))
2836 			return;
2837 		/* Change state if cwnd is undone or retransmits are lost */
2838 	default:
2839 		if (tcp_is_reno(tp)) {
2840 			if (flag & FLAG_SND_UNA_ADVANCED)
2841 				tcp_reset_reno_sack(tp);
2842 			if (is_dupack)
2843 				tcp_add_reno_sack(sk);
2844 		}
2845 
2846 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2847 			tcp_try_undo_dsack(sk);
2848 
2849 		if (!tcp_time_to_recover(sk, flag)) {
2850 			tcp_try_to_open(sk, flag, prior_unsacked);
2851 			return;
2852 		}
2853 
2854 		/* MTU probe failure: don't reduce cwnd */
2855 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2856 		    icsk->icsk_mtup.probe_size &&
2857 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2858 			tcp_mtup_probe_failed(sk);
2859 			/* Restores the reduction we did in tcp_mtup_probe() */
2860 			tp->snd_cwnd++;
2861 			tcp_simple_retransmit(sk);
2862 			return;
2863 		}
2864 
2865 		/* Otherwise enter Recovery state */
2866 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2867 		fast_rexmit = 1;
2868 	}
2869 
2870 	if (do_lost)
2871 		tcp_update_scoreboard(sk, fast_rexmit);
2872 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
2873 	tcp_xmit_retransmit_queue(sk);
2874 }
2875 
2876 /* Kathleen Nichols' algorithm for tracking the minimum value of
2877  * a data stream over some fixed time interval. (E.g., the minimum
2878  * RTT over the past five minutes.) It uses constant space and constant
2879  * time per update yet almost always delivers the same minimum as an
2880  * implementation that has to keep all the data in the window.
2881  *
2882  * The algorithm keeps track of the best, 2nd best & 3rd best min
2883  * values, maintaining an invariant that the measurement time of the
2884  * n'th best >= n-1'th best. It also makes sure that the three values
2885  * are widely separated in the time window since that bounds the worse
2886  * case error when that data is monotonically increasing over the window.
2887  *
2888  * Upon getting a new min, we can forget everything earlier because it
2889  * has no value - the new min is <= everything else in the window by
2890  * definition and it's the most recent. So we restart fresh on every new min
2891  * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2892  * best.
2893  */
2894 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2895 {
2896 	const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2897 	struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2898 	struct rtt_meas rttm = { .rtt = (rtt_us ? : 1), .ts = now };
2899 	u32 elapsed;
2900 
2901 	/* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2902 	if (unlikely(rttm.rtt <= m[0].rtt))
2903 		m[0] = m[1] = m[2] = rttm;
2904 	else if (rttm.rtt <= m[1].rtt)
2905 		m[1] = m[2] = rttm;
2906 	else if (rttm.rtt <= m[2].rtt)
2907 		m[2] = rttm;
2908 
2909 	elapsed = now - m[0].ts;
2910 	if (unlikely(elapsed > wlen)) {
2911 		/* Passed entire window without a new min so make 2nd choice
2912 		 * the new min & 3rd choice the new 2nd. So forth and so on.
2913 		 */
2914 		m[0] = m[1];
2915 		m[1] = m[2];
2916 		m[2] = rttm;
2917 		if (now - m[0].ts > wlen) {
2918 			m[0] = m[1];
2919 			m[1] = rttm;
2920 			if (now - m[0].ts > wlen)
2921 				m[0] = rttm;
2922 		}
2923 	} else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2924 		/* Passed a quarter of the window without a new min so
2925 		 * take 2nd choice from the 2nd quarter of the window.
2926 		 */
2927 		m[2] = m[1] = rttm;
2928 	} else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2929 		/* Passed half the window without a new min so take the 3rd
2930 		 * choice from the last half of the window.
2931 		 */
2932 		m[2] = rttm;
2933 	}
2934 }
2935 
2936 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2937 				      long seq_rtt_us, long sack_rtt_us,
2938 				      long ca_rtt_us)
2939 {
2940 	const struct tcp_sock *tp = tcp_sk(sk);
2941 
2942 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2943 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2944 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2945 	 * is acked (RFC6298).
2946 	 */
2947 	if (seq_rtt_us < 0)
2948 		seq_rtt_us = sack_rtt_us;
2949 
2950 	/* RTTM Rule: A TSecr value received in a segment is used to
2951 	 * update the averaged RTT measurement only if the segment
2952 	 * acknowledges some new data, i.e., only if it advances the
2953 	 * left edge of the send window.
2954 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2955 	 */
2956 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2957 	    flag & FLAG_ACKED)
2958 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2959 							  tp->rx_opt.rcv_tsecr);
2960 	if (seq_rtt_us < 0)
2961 		return false;
2962 
2963 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2964 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2965 	 * values will be skipped with the seq_rtt_us < 0 check above.
2966 	 */
2967 	tcp_update_rtt_min(sk, ca_rtt_us);
2968 	tcp_rtt_estimator(sk, seq_rtt_us);
2969 	tcp_set_rto(sk);
2970 
2971 	/* RFC6298: only reset backoff on valid RTT measurement. */
2972 	inet_csk(sk)->icsk_backoff = 0;
2973 	return true;
2974 }
2975 
2976 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2977 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2978 {
2979 	long rtt_us = -1L;
2980 
2981 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2982 		struct skb_mstamp now;
2983 
2984 		skb_mstamp_get(&now);
2985 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2986 	}
2987 
2988 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2989 }
2990 
2991 
2992 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2993 {
2994 	const struct inet_connection_sock *icsk = inet_csk(sk);
2995 
2996 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2997 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2998 }
2999 
3000 /* Restart timer after forward progress on connection.
3001  * RFC2988 recommends to restart timer to now+rto.
3002  */
3003 void tcp_rearm_rto(struct sock *sk)
3004 {
3005 	const struct inet_connection_sock *icsk = inet_csk(sk);
3006 	struct tcp_sock *tp = tcp_sk(sk);
3007 
3008 	/* If the retrans timer is currently being used by Fast Open
3009 	 * for SYN-ACK retrans purpose, stay put.
3010 	 */
3011 	if (tp->fastopen_rsk)
3012 		return;
3013 
3014 	if (!tp->packets_out) {
3015 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3016 	} else {
3017 		u32 rto = inet_csk(sk)->icsk_rto;
3018 		/* Offset the time elapsed after installing regular RTO */
3019 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3020 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3021 			struct sk_buff *skb = tcp_write_queue_head(sk);
3022 			const u32 rto_time_stamp =
3023 				tcp_skb_timestamp(skb) + rto;
3024 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3025 			/* delta may not be positive if the socket is locked
3026 			 * when the retrans timer fires and is rescheduled.
3027 			 */
3028 			if (delta > 0)
3029 				rto = delta;
3030 		}
3031 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3032 					  TCP_RTO_MAX);
3033 	}
3034 }
3035 
3036 /* This function is called when the delayed ER timer fires. TCP enters
3037  * fast recovery and performs fast-retransmit.
3038  */
3039 void tcp_resume_early_retransmit(struct sock *sk)
3040 {
3041 	struct tcp_sock *tp = tcp_sk(sk);
3042 
3043 	tcp_rearm_rto(sk);
3044 
3045 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3046 	if (!tp->do_early_retrans)
3047 		return;
3048 
3049 	tcp_enter_recovery(sk, false);
3050 	tcp_update_scoreboard(sk, 1);
3051 	tcp_xmit_retransmit_queue(sk);
3052 }
3053 
3054 /* If we get here, the whole TSO packet has not been acked. */
3055 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3056 {
3057 	struct tcp_sock *tp = tcp_sk(sk);
3058 	u32 packets_acked;
3059 
3060 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3061 
3062 	packets_acked = tcp_skb_pcount(skb);
3063 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3064 		return 0;
3065 	packets_acked -= tcp_skb_pcount(skb);
3066 
3067 	if (packets_acked) {
3068 		BUG_ON(tcp_skb_pcount(skb) == 0);
3069 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3070 	}
3071 
3072 	return packets_acked;
3073 }
3074 
3075 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3076 			   u32 prior_snd_una)
3077 {
3078 	const struct skb_shared_info *shinfo;
3079 
3080 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3081 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3082 		return;
3083 
3084 	shinfo = skb_shinfo(skb);
3085 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3086 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3087 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3088 }
3089 
3090 /* Remove acknowledged frames from the retransmission queue. If our packet
3091  * is before the ack sequence we can discard it as it's confirmed to have
3092  * arrived at the other end.
3093  */
3094 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3095 			       u32 prior_snd_una,
3096 			       struct tcp_sacktag_state *sack)
3097 {
3098 	const struct inet_connection_sock *icsk = inet_csk(sk);
3099 	struct skb_mstamp first_ackt, last_ackt, now;
3100 	struct tcp_sock *tp = tcp_sk(sk);
3101 	u32 prior_sacked = tp->sacked_out;
3102 	u32 reord = tp->packets_out;
3103 	bool fully_acked = true;
3104 	long sack_rtt_us = -1L;
3105 	long seq_rtt_us = -1L;
3106 	long ca_rtt_us = -1L;
3107 	struct sk_buff *skb;
3108 	u32 pkts_acked = 0;
3109 	bool rtt_update;
3110 	int flag = 0;
3111 
3112 	first_ackt.v64 = 0;
3113 
3114 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3115 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3116 		u8 sacked = scb->sacked;
3117 		u32 acked_pcount;
3118 
3119 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3120 
3121 		/* Determine how many packets and what bytes were acked, tso and else */
3122 		if (after(scb->end_seq, tp->snd_una)) {
3123 			if (tcp_skb_pcount(skb) == 1 ||
3124 			    !after(tp->snd_una, scb->seq))
3125 				break;
3126 
3127 			acked_pcount = tcp_tso_acked(sk, skb);
3128 			if (!acked_pcount)
3129 				break;
3130 
3131 			fully_acked = false;
3132 		} else {
3133 			/* Speedup tcp_unlink_write_queue() and next loop */
3134 			prefetchw(skb->next);
3135 			acked_pcount = tcp_skb_pcount(skb);
3136 		}
3137 
3138 		if (unlikely(sacked & TCPCB_RETRANS)) {
3139 			if (sacked & TCPCB_SACKED_RETRANS)
3140 				tp->retrans_out -= acked_pcount;
3141 			flag |= FLAG_RETRANS_DATA_ACKED;
3142 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3143 			last_ackt = skb->skb_mstamp;
3144 			WARN_ON_ONCE(last_ackt.v64 == 0);
3145 			if (!first_ackt.v64)
3146 				first_ackt = last_ackt;
3147 
3148 			reord = min(pkts_acked, reord);
3149 			if (!after(scb->end_seq, tp->high_seq))
3150 				flag |= FLAG_ORIG_SACK_ACKED;
3151 		}
3152 
3153 		if (sacked & TCPCB_SACKED_ACKED)
3154 			tp->sacked_out -= acked_pcount;
3155 		else if (tcp_is_sack(tp) && !tcp_skb_spurious_retrans(tp, skb))
3156 			tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3157 		if (sacked & TCPCB_LOST)
3158 			tp->lost_out -= acked_pcount;
3159 
3160 		tp->packets_out -= acked_pcount;
3161 		pkts_acked += acked_pcount;
3162 
3163 		/* Initial outgoing SYN's get put onto the write_queue
3164 		 * just like anything else we transmit.  It is not
3165 		 * true data, and if we misinform our callers that
3166 		 * this ACK acks real data, we will erroneously exit
3167 		 * connection startup slow start one packet too
3168 		 * quickly.  This is severely frowned upon behavior.
3169 		 */
3170 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3171 			flag |= FLAG_DATA_ACKED;
3172 		} else {
3173 			flag |= FLAG_SYN_ACKED;
3174 			tp->retrans_stamp = 0;
3175 		}
3176 
3177 		if (!fully_acked)
3178 			break;
3179 
3180 		tcp_unlink_write_queue(skb, sk);
3181 		sk_wmem_free_skb(sk, skb);
3182 		if (unlikely(skb == tp->retransmit_skb_hint))
3183 			tp->retransmit_skb_hint = NULL;
3184 		if (unlikely(skb == tp->lost_skb_hint))
3185 			tp->lost_skb_hint = NULL;
3186 	}
3187 
3188 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3189 		tp->snd_up = tp->snd_una;
3190 
3191 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3192 		flag |= FLAG_SACK_RENEGING;
3193 
3194 	skb_mstamp_get(&now);
3195 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3196 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3197 		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3198 	}
3199 	if (sack->first_sackt.v64) {
3200 		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3201 		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3202 	}
3203 
3204 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3205 					ca_rtt_us);
3206 
3207 	if (flag & FLAG_ACKED) {
3208 		tcp_rearm_rto(sk);
3209 		if (unlikely(icsk->icsk_mtup.probe_size &&
3210 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3211 			tcp_mtup_probe_success(sk);
3212 		}
3213 
3214 		if (tcp_is_reno(tp)) {
3215 			tcp_remove_reno_sacks(sk, pkts_acked);
3216 		} else {
3217 			int delta;
3218 
3219 			/* Non-retransmitted hole got filled? That's reordering */
3220 			if (reord < prior_fackets)
3221 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3222 
3223 			delta = tcp_is_fack(tp) ? pkts_acked :
3224 						  prior_sacked - tp->sacked_out;
3225 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3226 		}
3227 
3228 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3229 
3230 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3231 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3232 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3233 		 * after when the head was last (re)transmitted. Otherwise the
3234 		 * timeout may continue to extend in loss recovery.
3235 		 */
3236 		tcp_rearm_rto(sk);
3237 	}
3238 
3239 	if (icsk->icsk_ca_ops->pkts_acked)
3240 		icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3241 
3242 #if FASTRETRANS_DEBUG > 0
3243 	WARN_ON((int)tp->sacked_out < 0);
3244 	WARN_ON((int)tp->lost_out < 0);
3245 	WARN_ON((int)tp->retrans_out < 0);
3246 	if (!tp->packets_out && tcp_is_sack(tp)) {
3247 		icsk = inet_csk(sk);
3248 		if (tp->lost_out) {
3249 			pr_debug("Leak l=%u %d\n",
3250 				 tp->lost_out, icsk->icsk_ca_state);
3251 			tp->lost_out = 0;
3252 		}
3253 		if (tp->sacked_out) {
3254 			pr_debug("Leak s=%u %d\n",
3255 				 tp->sacked_out, icsk->icsk_ca_state);
3256 			tp->sacked_out = 0;
3257 		}
3258 		if (tp->retrans_out) {
3259 			pr_debug("Leak r=%u %d\n",
3260 				 tp->retrans_out, icsk->icsk_ca_state);
3261 			tp->retrans_out = 0;
3262 		}
3263 	}
3264 #endif
3265 	return flag;
3266 }
3267 
3268 static void tcp_ack_probe(struct sock *sk)
3269 {
3270 	const struct tcp_sock *tp = tcp_sk(sk);
3271 	struct inet_connection_sock *icsk = inet_csk(sk);
3272 
3273 	/* Was it a usable window open? */
3274 
3275 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3276 		icsk->icsk_backoff = 0;
3277 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3278 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3279 		 * This function is not for random using!
3280 		 */
3281 	} else {
3282 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3283 
3284 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3285 					  when, TCP_RTO_MAX);
3286 	}
3287 }
3288 
3289 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3290 {
3291 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3292 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3293 }
3294 
3295 /* Decide wheather to run the increase function of congestion control. */
3296 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3297 {
3298 	if (tcp_in_cwnd_reduction(sk))
3299 		return false;
3300 
3301 	/* If reordering is high then always grow cwnd whenever data is
3302 	 * delivered regardless of its ordering. Otherwise stay conservative
3303 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3304 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3305 	 * cwnd in tcp_fastretrans_alert() based on more states.
3306 	 */
3307 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3308 		return flag & FLAG_FORWARD_PROGRESS;
3309 
3310 	return flag & FLAG_DATA_ACKED;
3311 }
3312 
3313 /* Check that window update is acceptable.
3314  * The function assumes that snd_una<=ack<=snd_next.
3315  */
3316 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3317 					const u32 ack, const u32 ack_seq,
3318 					const u32 nwin)
3319 {
3320 	return	after(ack, tp->snd_una) ||
3321 		after(ack_seq, tp->snd_wl1) ||
3322 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3323 }
3324 
3325 /* If we update tp->snd_una, also update tp->bytes_acked */
3326 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3327 {
3328 	u32 delta = ack - tp->snd_una;
3329 
3330 	u64_stats_update_begin(&tp->syncp);
3331 	tp->bytes_acked += delta;
3332 	u64_stats_update_end(&tp->syncp);
3333 	tp->snd_una = ack;
3334 }
3335 
3336 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3337 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3338 {
3339 	u32 delta = seq - tp->rcv_nxt;
3340 
3341 	u64_stats_update_begin(&tp->syncp);
3342 	tp->bytes_received += delta;
3343 	u64_stats_update_end(&tp->syncp);
3344 	tp->rcv_nxt = seq;
3345 }
3346 
3347 /* Update our send window.
3348  *
3349  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3350  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3351  */
3352 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3353 				 u32 ack_seq)
3354 {
3355 	struct tcp_sock *tp = tcp_sk(sk);
3356 	int flag = 0;
3357 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3358 
3359 	if (likely(!tcp_hdr(skb)->syn))
3360 		nwin <<= tp->rx_opt.snd_wscale;
3361 
3362 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3363 		flag |= FLAG_WIN_UPDATE;
3364 		tcp_update_wl(tp, ack_seq);
3365 
3366 		if (tp->snd_wnd != nwin) {
3367 			tp->snd_wnd = nwin;
3368 
3369 			/* Note, it is the only place, where
3370 			 * fast path is recovered for sending TCP.
3371 			 */
3372 			tp->pred_flags = 0;
3373 			tcp_fast_path_check(sk);
3374 
3375 			if (tcp_send_head(sk))
3376 				tcp_slow_start_after_idle_check(sk);
3377 
3378 			if (nwin > tp->max_window) {
3379 				tp->max_window = nwin;
3380 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3381 			}
3382 		}
3383 	}
3384 
3385 	tcp_snd_una_update(tp, ack);
3386 
3387 	return flag;
3388 }
3389 
3390 /* Return true if we're currently rate-limiting out-of-window ACKs and
3391  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3392  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3393  * attacks that send repeated SYNs or ACKs for the same connection. To
3394  * do this, we do not send a duplicate SYNACK or ACK if the remote
3395  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3396  */
3397 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3398 			  int mib_idx, u32 *last_oow_ack_time)
3399 {
3400 	/* Data packets without SYNs are not likely part of an ACK loop. */
3401 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3402 	    !tcp_hdr(skb)->syn)
3403 		goto not_rate_limited;
3404 
3405 	if (*last_oow_ack_time) {
3406 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3407 
3408 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3409 			NET_INC_STATS_BH(net, mib_idx);
3410 			return true;	/* rate-limited: don't send yet! */
3411 		}
3412 	}
3413 
3414 	*last_oow_ack_time = tcp_time_stamp;
3415 
3416 not_rate_limited:
3417 	return false;	/* not rate-limited: go ahead, send dupack now! */
3418 }
3419 
3420 /* RFC 5961 7 [ACK Throttling] */
3421 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3422 {
3423 	/* unprotected vars, we dont care of overwrites */
3424 	static u32 challenge_timestamp;
3425 	static unsigned int challenge_count;
3426 	struct tcp_sock *tp = tcp_sk(sk);
3427 	u32 now;
3428 
3429 	/* First check our per-socket dupack rate limit. */
3430 	if (tcp_oow_rate_limited(sock_net(sk), skb,
3431 				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3432 				 &tp->last_oow_ack_time))
3433 		return;
3434 
3435 	/* Then check the check host-wide RFC 5961 rate limit. */
3436 	now = jiffies / HZ;
3437 	if (now != challenge_timestamp) {
3438 		challenge_timestamp = now;
3439 		challenge_count = 0;
3440 	}
3441 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3442 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3443 		tcp_send_ack(sk);
3444 	}
3445 }
3446 
3447 static void tcp_store_ts_recent(struct tcp_sock *tp)
3448 {
3449 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3450 	tp->rx_opt.ts_recent_stamp = get_seconds();
3451 }
3452 
3453 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3454 {
3455 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3456 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3457 		 * extra check below makes sure this can only happen
3458 		 * for pure ACK frames.  -DaveM
3459 		 *
3460 		 * Not only, also it occurs for expired timestamps.
3461 		 */
3462 
3463 		if (tcp_paws_check(&tp->rx_opt, 0))
3464 			tcp_store_ts_recent(tp);
3465 	}
3466 }
3467 
3468 /* This routine deals with acks during a TLP episode.
3469  * We mark the end of a TLP episode on receiving TLP dupack or when
3470  * ack is after tlp_high_seq.
3471  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3472  */
3473 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3474 {
3475 	struct tcp_sock *tp = tcp_sk(sk);
3476 
3477 	if (before(ack, tp->tlp_high_seq))
3478 		return;
3479 
3480 	if (flag & FLAG_DSACKING_ACK) {
3481 		/* This DSACK means original and TLP probe arrived; no loss */
3482 		tp->tlp_high_seq = 0;
3483 	} else if (after(ack, tp->tlp_high_seq)) {
3484 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3485 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3486 		 */
3487 		tcp_init_cwnd_reduction(sk);
3488 		tcp_set_ca_state(sk, TCP_CA_CWR);
3489 		tcp_end_cwnd_reduction(sk);
3490 		tcp_try_keep_open(sk);
3491 		NET_INC_STATS_BH(sock_net(sk),
3492 				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3493 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3494 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3495 		/* Pure dupack: original and TLP probe arrived; no loss */
3496 		tp->tlp_high_seq = 0;
3497 	}
3498 }
3499 
3500 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3501 {
3502 	const struct inet_connection_sock *icsk = inet_csk(sk);
3503 
3504 	if (icsk->icsk_ca_ops->in_ack_event)
3505 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3506 }
3507 
3508 /* This routine deals with incoming acks, but not outgoing ones. */
3509 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3510 {
3511 	struct inet_connection_sock *icsk = inet_csk(sk);
3512 	struct tcp_sock *tp = tcp_sk(sk);
3513 	struct tcp_sacktag_state sack_state;
3514 	u32 prior_snd_una = tp->snd_una;
3515 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3516 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3517 	bool is_dupack = false;
3518 	u32 prior_fackets;
3519 	int prior_packets = tp->packets_out;
3520 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3521 	int acked = 0; /* Number of packets newly acked */
3522 
3523 	sack_state.first_sackt.v64 = 0;
3524 
3525 	/* We very likely will need to access write queue head. */
3526 	prefetchw(sk->sk_write_queue.next);
3527 
3528 	/* If the ack is older than previous acks
3529 	 * then we can probably ignore it.
3530 	 */
3531 	if (before(ack, prior_snd_una)) {
3532 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3533 		if (before(ack, prior_snd_una - tp->max_window)) {
3534 			tcp_send_challenge_ack(sk, skb);
3535 			return -1;
3536 		}
3537 		goto old_ack;
3538 	}
3539 
3540 	/* If the ack includes data we haven't sent yet, discard
3541 	 * this segment (RFC793 Section 3.9).
3542 	 */
3543 	if (after(ack, tp->snd_nxt))
3544 		goto invalid_ack;
3545 
3546 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3547 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3548 		tcp_rearm_rto(sk);
3549 
3550 	if (after(ack, prior_snd_una)) {
3551 		flag |= FLAG_SND_UNA_ADVANCED;
3552 		icsk->icsk_retransmits = 0;
3553 	}
3554 
3555 	prior_fackets = tp->fackets_out;
3556 
3557 	/* ts_recent update must be made after we are sure that the packet
3558 	 * is in window.
3559 	 */
3560 	if (flag & FLAG_UPDATE_TS_RECENT)
3561 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3562 
3563 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3564 		/* Window is constant, pure forward advance.
3565 		 * No more checks are required.
3566 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3567 		 */
3568 		tcp_update_wl(tp, ack_seq);
3569 		tcp_snd_una_update(tp, ack);
3570 		flag |= FLAG_WIN_UPDATE;
3571 
3572 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3573 
3574 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3575 	} else {
3576 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3577 
3578 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3579 			flag |= FLAG_DATA;
3580 		else
3581 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3582 
3583 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3584 
3585 		if (TCP_SKB_CB(skb)->sacked)
3586 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3587 							&sack_state);
3588 
3589 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3590 			flag |= FLAG_ECE;
3591 			ack_ev_flags |= CA_ACK_ECE;
3592 		}
3593 
3594 		if (flag & FLAG_WIN_UPDATE)
3595 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3596 
3597 		tcp_in_ack_event(sk, ack_ev_flags);
3598 	}
3599 
3600 	/* We passed data and got it acked, remove any soft error
3601 	 * log. Something worked...
3602 	 */
3603 	sk->sk_err_soft = 0;
3604 	icsk->icsk_probes_out = 0;
3605 	tp->rcv_tstamp = tcp_time_stamp;
3606 	if (!prior_packets)
3607 		goto no_queue;
3608 
3609 	/* See if we can take anything off of the retransmit queue. */
3610 	acked = tp->packets_out;
3611 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3612 				    &sack_state);
3613 	acked -= tp->packets_out;
3614 
3615 	if (tcp_ack_is_dubious(sk, flag)) {
3616 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3617 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3618 				      is_dupack, flag);
3619 	}
3620 	if (tp->tlp_high_seq)
3621 		tcp_process_tlp_ack(sk, ack, flag);
3622 
3623 	/* Advance cwnd if state allows */
3624 	if (tcp_may_raise_cwnd(sk, flag))
3625 		tcp_cong_avoid(sk, ack, acked);
3626 
3627 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3628 		struct dst_entry *dst = __sk_dst_get(sk);
3629 		if (dst)
3630 			dst_confirm(dst);
3631 	}
3632 
3633 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3634 		tcp_schedule_loss_probe(sk);
3635 	tcp_update_pacing_rate(sk);
3636 	return 1;
3637 
3638 no_queue:
3639 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3640 	if (flag & FLAG_DSACKING_ACK)
3641 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3642 				      is_dupack, flag);
3643 	/* If this ack opens up a zero window, clear backoff.  It was
3644 	 * being used to time the probes, and is probably far higher than
3645 	 * it needs to be for normal retransmission.
3646 	 */
3647 	if (tcp_send_head(sk))
3648 		tcp_ack_probe(sk);
3649 
3650 	if (tp->tlp_high_seq)
3651 		tcp_process_tlp_ack(sk, ack, flag);
3652 	return 1;
3653 
3654 invalid_ack:
3655 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3656 	return -1;
3657 
3658 old_ack:
3659 	/* If data was SACKed, tag it and see if we should send more data.
3660 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3661 	 */
3662 	if (TCP_SKB_CB(skb)->sacked) {
3663 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3664 						&sack_state);
3665 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3666 				      is_dupack, flag);
3667 	}
3668 
3669 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3670 	return 0;
3671 }
3672 
3673 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3674 				      bool syn, struct tcp_fastopen_cookie *foc,
3675 				      bool exp_opt)
3676 {
3677 	/* Valid only in SYN or SYN-ACK with an even length.  */
3678 	if (!foc || !syn || len < 0 || (len & 1))
3679 		return;
3680 
3681 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3682 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3683 		memcpy(foc->val, cookie, len);
3684 	else if (len != 0)
3685 		len = -1;
3686 	foc->len = len;
3687 	foc->exp = exp_opt;
3688 }
3689 
3690 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3691  * But, this can also be called on packets in the established flow when
3692  * the fast version below fails.
3693  */
3694 void tcp_parse_options(const struct sk_buff *skb,
3695 		       struct tcp_options_received *opt_rx, int estab,
3696 		       struct tcp_fastopen_cookie *foc)
3697 {
3698 	const unsigned char *ptr;
3699 	const struct tcphdr *th = tcp_hdr(skb);
3700 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3701 
3702 	ptr = (const unsigned char *)(th + 1);
3703 	opt_rx->saw_tstamp = 0;
3704 
3705 	while (length > 0) {
3706 		int opcode = *ptr++;
3707 		int opsize;
3708 
3709 		switch (opcode) {
3710 		case TCPOPT_EOL:
3711 			return;
3712 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3713 			length--;
3714 			continue;
3715 		default:
3716 			opsize = *ptr++;
3717 			if (opsize < 2) /* "silly options" */
3718 				return;
3719 			if (opsize > length)
3720 				return;	/* don't parse partial options */
3721 			switch (opcode) {
3722 			case TCPOPT_MSS:
3723 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3724 					u16 in_mss = get_unaligned_be16(ptr);
3725 					if (in_mss) {
3726 						if (opt_rx->user_mss &&
3727 						    opt_rx->user_mss < in_mss)
3728 							in_mss = opt_rx->user_mss;
3729 						opt_rx->mss_clamp = in_mss;
3730 					}
3731 				}
3732 				break;
3733 			case TCPOPT_WINDOW:
3734 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3735 				    !estab && sysctl_tcp_window_scaling) {
3736 					__u8 snd_wscale = *(__u8 *)ptr;
3737 					opt_rx->wscale_ok = 1;
3738 					if (snd_wscale > 14) {
3739 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3740 								     __func__,
3741 								     snd_wscale);
3742 						snd_wscale = 14;
3743 					}
3744 					opt_rx->snd_wscale = snd_wscale;
3745 				}
3746 				break;
3747 			case TCPOPT_TIMESTAMP:
3748 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3749 				    ((estab && opt_rx->tstamp_ok) ||
3750 				     (!estab && sysctl_tcp_timestamps))) {
3751 					opt_rx->saw_tstamp = 1;
3752 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3753 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3754 				}
3755 				break;
3756 			case TCPOPT_SACK_PERM:
3757 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3758 				    !estab && sysctl_tcp_sack) {
3759 					opt_rx->sack_ok = TCP_SACK_SEEN;
3760 					tcp_sack_reset(opt_rx);
3761 				}
3762 				break;
3763 
3764 			case TCPOPT_SACK:
3765 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3766 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3767 				   opt_rx->sack_ok) {
3768 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3769 				}
3770 				break;
3771 #ifdef CONFIG_TCP_MD5SIG
3772 			case TCPOPT_MD5SIG:
3773 				/*
3774 				 * The MD5 Hash has already been
3775 				 * checked (see tcp_v{4,6}_do_rcv()).
3776 				 */
3777 				break;
3778 #endif
3779 			case TCPOPT_FASTOPEN:
3780 				tcp_parse_fastopen_option(
3781 					opsize - TCPOLEN_FASTOPEN_BASE,
3782 					ptr, th->syn, foc, false);
3783 				break;
3784 
3785 			case TCPOPT_EXP:
3786 				/* Fast Open option shares code 254 using a
3787 				 * 16 bits magic number.
3788 				 */
3789 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3790 				    get_unaligned_be16(ptr) ==
3791 				    TCPOPT_FASTOPEN_MAGIC)
3792 					tcp_parse_fastopen_option(opsize -
3793 						TCPOLEN_EXP_FASTOPEN_BASE,
3794 						ptr + 2, th->syn, foc, true);
3795 				break;
3796 
3797 			}
3798 			ptr += opsize-2;
3799 			length -= opsize;
3800 		}
3801 	}
3802 }
3803 EXPORT_SYMBOL(tcp_parse_options);
3804 
3805 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3806 {
3807 	const __be32 *ptr = (const __be32 *)(th + 1);
3808 
3809 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3810 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3811 		tp->rx_opt.saw_tstamp = 1;
3812 		++ptr;
3813 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3814 		++ptr;
3815 		if (*ptr)
3816 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3817 		else
3818 			tp->rx_opt.rcv_tsecr = 0;
3819 		return true;
3820 	}
3821 	return false;
3822 }
3823 
3824 /* Fast parse options. This hopes to only see timestamps.
3825  * If it is wrong it falls back on tcp_parse_options().
3826  */
3827 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3828 				   const struct tcphdr *th, struct tcp_sock *tp)
3829 {
3830 	/* In the spirit of fast parsing, compare doff directly to constant
3831 	 * values.  Because equality is used, short doff can be ignored here.
3832 	 */
3833 	if (th->doff == (sizeof(*th) / 4)) {
3834 		tp->rx_opt.saw_tstamp = 0;
3835 		return false;
3836 	} else if (tp->rx_opt.tstamp_ok &&
3837 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3838 		if (tcp_parse_aligned_timestamp(tp, th))
3839 			return true;
3840 	}
3841 
3842 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3843 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3844 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3845 
3846 	return true;
3847 }
3848 
3849 #ifdef CONFIG_TCP_MD5SIG
3850 /*
3851  * Parse MD5 Signature option
3852  */
3853 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3854 {
3855 	int length = (th->doff << 2) - sizeof(*th);
3856 	const u8 *ptr = (const u8 *)(th + 1);
3857 
3858 	/* If the TCP option is too short, we can short cut */
3859 	if (length < TCPOLEN_MD5SIG)
3860 		return NULL;
3861 
3862 	while (length > 0) {
3863 		int opcode = *ptr++;
3864 		int opsize;
3865 
3866 		switch (opcode) {
3867 		case TCPOPT_EOL:
3868 			return NULL;
3869 		case TCPOPT_NOP:
3870 			length--;
3871 			continue;
3872 		default:
3873 			opsize = *ptr++;
3874 			if (opsize < 2 || opsize > length)
3875 				return NULL;
3876 			if (opcode == TCPOPT_MD5SIG)
3877 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3878 		}
3879 		ptr += opsize - 2;
3880 		length -= opsize;
3881 	}
3882 	return NULL;
3883 }
3884 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3885 #endif
3886 
3887 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3888  *
3889  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3890  * it can pass through stack. So, the following predicate verifies that
3891  * this segment is not used for anything but congestion avoidance or
3892  * fast retransmit. Moreover, we even are able to eliminate most of such
3893  * second order effects, if we apply some small "replay" window (~RTO)
3894  * to timestamp space.
3895  *
3896  * All these measures still do not guarantee that we reject wrapped ACKs
3897  * on networks with high bandwidth, when sequence space is recycled fastly,
3898  * but it guarantees that such events will be very rare and do not affect
3899  * connection seriously. This doesn't look nice, but alas, PAWS is really
3900  * buggy extension.
3901  *
3902  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3903  * states that events when retransmit arrives after original data are rare.
3904  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3905  * the biggest problem on large power networks even with minor reordering.
3906  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3907  * up to bandwidth of 18Gigabit/sec. 8) ]
3908  */
3909 
3910 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3911 {
3912 	const struct tcp_sock *tp = tcp_sk(sk);
3913 	const struct tcphdr *th = tcp_hdr(skb);
3914 	u32 seq = TCP_SKB_CB(skb)->seq;
3915 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3916 
3917 	return (/* 1. Pure ACK with correct sequence number. */
3918 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3919 
3920 		/* 2. ... and duplicate ACK. */
3921 		ack == tp->snd_una &&
3922 
3923 		/* 3. ... and does not update window. */
3924 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3925 
3926 		/* 4. ... and sits in replay window. */
3927 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3928 }
3929 
3930 static inline bool tcp_paws_discard(const struct sock *sk,
3931 				   const struct sk_buff *skb)
3932 {
3933 	const struct tcp_sock *tp = tcp_sk(sk);
3934 
3935 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3936 	       !tcp_disordered_ack(sk, skb);
3937 }
3938 
3939 /* Check segment sequence number for validity.
3940  *
3941  * Segment controls are considered valid, if the segment
3942  * fits to the window after truncation to the window. Acceptability
3943  * of data (and SYN, FIN, of course) is checked separately.
3944  * See tcp_data_queue(), for example.
3945  *
3946  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3947  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3948  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3949  * (borrowed from freebsd)
3950  */
3951 
3952 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3953 {
3954 	return	!before(end_seq, tp->rcv_wup) &&
3955 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3956 }
3957 
3958 /* When we get a reset we do this. */
3959 void tcp_reset(struct sock *sk)
3960 {
3961 	/* We want the right error as BSD sees it (and indeed as we do). */
3962 	switch (sk->sk_state) {
3963 	case TCP_SYN_SENT:
3964 		sk->sk_err = ECONNREFUSED;
3965 		break;
3966 	case TCP_CLOSE_WAIT:
3967 		sk->sk_err = EPIPE;
3968 		break;
3969 	case TCP_CLOSE:
3970 		return;
3971 	default:
3972 		sk->sk_err = ECONNRESET;
3973 	}
3974 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3975 	smp_wmb();
3976 
3977 	if (!sock_flag(sk, SOCK_DEAD))
3978 		sk->sk_error_report(sk);
3979 
3980 	tcp_done(sk);
3981 }
3982 
3983 /*
3984  * 	Process the FIN bit. This now behaves as it is supposed to work
3985  *	and the FIN takes effect when it is validly part of sequence
3986  *	space. Not before when we get holes.
3987  *
3988  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3989  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3990  *	TIME-WAIT)
3991  *
3992  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3993  *	close and we go into CLOSING (and later onto TIME-WAIT)
3994  *
3995  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3996  */
3997 static void tcp_fin(struct sock *sk)
3998 {
3999 	struct tcp_sock *tp = tcp_sk(sk);
4000 
4001 	inet_csk_schedule_ack(sk);
4002 
4003 	sk->sk_shutdown |= RCV_SHUTDOWN;
4004 	sock_set_flag(sk, SOCK_DONE);
4005 
4006 	switch (sk->sk_state) {
4007 	case TCP_SYN_RECV:
4008 	case TCP_ESTABLISHED:
4009 		/* Move to CLOSE_WAIT */
4010 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4011 		inet_csk(sk)->icsk_ack.pingpong = 1;
4012 		break;
4013 
4014 	case TCP_CLOSE_WAIT:
4015 	case TCP_CLOSING:
4016 		/* Received a retransmission of the FIN, do
4017 		 * nothing.
4018 		 */
4019 		break;
4020 	case TCP_LAST_ACK:
4021 		/* RFC793: Remain in the LAST-ACK state. */
4022 		break;
4023 
4024 	case TCP_FIN_WAIT1:
4025 		/* This case occurs when a simultaneous close
4026 		 * happens, we must ack the received FIN and
4027 		 * enter the CLOSING state.
4028 		 */
4029 		tcp_send_ack(sk);
4030 		tcp_set_state(sk, TCP_CLOSING);
4031 		break;
4032 	case TCP_FIN_WAIT2:
4033 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4034 		tcp_send_ack(sk);
4035 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4036 		break;
4037 	default:
4038 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4039 		 * cases we should never reach this piece of code.
4040 		 */
4041 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4042 		       __func__, sk->sk_state);
4043 		break;
4044 	}
4045 
4046 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4047 	 * Probably, we should reset in this case. For now drop them.
4048 	 */
4049 	__skb_queue_purge(&tp->out_of_order_queue);
4050 	if (tcp_is_sack(tp))
4051 		tcp_sack_reset(&tp->rx_opt);
4052 	sk_mem_reclaim(sk);
4053 
4054 	if (!sock_flag(sk, SOCK_DEAD)) {
4055 		sk->sk_state_change(sk);
4056 
4057 		/* Do not send POLL_HUP for half duplex close. */
4058 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4059 		    sk->sk_state == TCP_CLOSE)
4060 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4061 		else
4062 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4063 	}
4064 }
4065 
4066 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4067 				  u32 end_seq)
4068 {
4069 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4070 		if (before(seq, sp->start_seq))
4071 			sp->start_seq = seq;
4072 		if (after(end_seq, sp->end_seq))
4073 			sp->end_seq = end_seq;
4074 		return true;
4075 	}
4076 	return false;
4077 }
4078 
4079 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4080 {
4081 	struct tcp_sock *tp = tcp_sk(sk);
4082 
4083 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4084 		int mib_idx;
4085 
4086 		if (before(seq, tp->rcv_nxt))
4087 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4088 		else
4089 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4090 
4091 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4092 
4093 		tp->rx_opt.dsack = 1;
4094 		tp->duplicate_sack[0].start_seq = seq;
4095 		tp->duplicate_sack[0].end_seq = end_seq;
4096 	}
4097 }
4098 
4099 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4100 {
4101 	struct tcp_sock *tp = tcp_sk(sk);
4102 
4103 	if (!tp->rx_opt.dsack)
4104 		tcp_dsack_set(sk, seq, end_seq);
4105 	else
4106 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4107 }
4108 
4109 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4110 {
4111 	struct tcp_sock *tp = tcp_sk(sk);
4112 
4113 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4114 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4115 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4116 		tcp_enter_quickack_mode(sk);
4117 
4118 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4119 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4120 
4121 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4122 				end_seq = tp->rcv_nxt;
4123 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4124 		}
4125 	}
4126 
4127 	tcp_send_ack(sk);
4128 }
4129 
4130 /* These routines update the SACK block as out-of-order packets arrive or
4131  * in-order packets close up the sequence space.
4132  */
4133 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4134 {
4135 	int this_sack;
4136 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4137 	struct tcp_sack_block *swalk = sp + 1;
4138 
4139 	/* See if the recent change to the first SACK eats into
4140 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4141 	 */
4142 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4143 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4144 			int i;
4145 
4146 			/* Zap SWALK, by moving every further SACK up by one slot.
4147 			 * Decrease num_sacks.
4148 			 */
4149 			tp->rx_opt.num_sacks--;
4150 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4151 				sp[i] = sp[i + 1];
4152 			continue;
4153 		}
4154 		this_sack++, swalk++;
4155 	}
4156 }
4157 
4158 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4159 {
4160 	struct tcp_sock *tp = tcp_sk(sk);
4161 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4162 	int cur_sacks = tp->rx_opt.num_sacks;
4163 	int this_sack;
4164 
4165 	if (!cur_sacks)
4166 		goto new_sack;
4167 
4168 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4169 		if (tcp_sack_extend(sp, seq, end_seq)) {
4170 			/* Rotate this_sack to the first one. */
4171 			for (; this_sack > 0; this_sack--, sp--)
4172 				swap(*sp, *(sp - 1));
4173 			if (cur_sacks > 1)
4174 				tcp_sack_maybe_coalesce(tp);
4175 			return;
4176 		}
4177 	}
4178 
4179 	/* Could not find an adjacent existing SACK, build a new one,
4180 	 * put it at the front, and shift everyone else down.  We
4181 	 * always know there is at least one SACK present already here.
4182 	 *
4183 	 * If the sack array is full, forget about the last one.
4184 	 */
4185 	if (this_sack >= TCP_NUM_SACKS) {
4186 		this_sack--;
4187 		tp->rx_opt.num_sacks--;
4188 		sp--;
4189 	}
4190 	for (; this_sack > 0; this_sack--, sp--)
4191 		*sp = *(sp - 1);
4192 
4193 new_sack:
4194 	/* Build the new head SACK, and we're done. */
4195 	sp->start_seq = seq;
4196 	sp->end_seq = end_seq;
4197 	tp->rx_opt.num_sacks++;
4198 }
4199 
4200 /* RCV.NXT advances, some SACKs should be eaten. */
4201 
4202 static void tcp_sack_remove(struct tcp_sock *tp)
4203 {
4204 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4205 	int num_sacks = tp->rx_opt.num_sacks;
4206 	int this_sack;
4207 
4208 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4209 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4210 		tp->rx_opt.num_sacks = 0;
4211 		return;
4212 	}
4213 
4214 	for (this_sack = 0; this_sack < num_sacks;) {
4215 		/* Check if the start of the sack is covered by RCV.NXT. */
4216 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4217 			int i;
4218 
4219 			/* RCV.NXT must cover all the block! */
4220 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4221 
4222 			/* Zap this SACK, by moving forward any other SACKS. */
4223 			for (i = this_sack+1; i < num_sacks; i++)
4224 				tp->selective_acks[i-1] = tp->selective_acks[i];
4225 			num_sacks--;
4226 			continue;
4227 		}
4228 		this_sack++;
4229 		sp++;
4230 	}
4231 	tp->rx_opt.num_sacks = num_sacks;
4232 }
4233 
4234 /**
4235  * tcp_try_coalesce - try to merge skb to prior one
4236  * @sk: socket
4237  * @to: prior buffer
4238  * @from: buffer to add in queue
4239  * @fragstolen: pointer to boolean
4240  *
4241  * Before queueing skb @from after @to, try to merge them
4242  * to reduce overall memory use and queue lengths, if cost is small.
4243  * Packets in ofo or receive queues can stay a long time.
4244  * Better try to coalesce them right now to avoid future collapses.
4245  * Returns true if caller should free @from instead of queueing it
4246  */
4247 static bool tcp_try_coalesce(struct sock *sk,
4248 			     struct sk_buff *to,
4249 			     struct sk_buff *from,
4250 			     bool *fragstolen)
4251 {
4252 	int delta;
4253 
4254 	*fragstolen = false;
4255 
4256 	/* Its possible this segment overlaps with prior segment in queue */
4257 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4258 		return false;
4259 
4260 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4261 		return false;
4262 
4263 	atomic_add(delta, &sk->sk_rmem_alloc);
4264 	sk_mem_charge(sk, delta);
4265 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4266 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4267 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4268 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4269 	return true;
4270 }
4271 
4272 /* This one checks to see if we can put data from the
4273  * out_of_order queue into the receive_queue.
4274  */
4275 static void tcp_ofo_queue(struct sock *sk)
4276 {
4277 	struct tcp_sock *tp = tcp_sk(sk);
4278 	__u32 dsack_high = tp->rcv_nxt;
4279 	struct sk_buff *skb, *tail;
4280 	bool fragstolen, eaten;
4281 
4282 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4283 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4284 			break;
4285 
4286 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4287 			__u32 dsack = dsack_high;
4288 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4289 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4290 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4291 		}
4292 
4293 		__skb_unlink(skb, &tp->out_of_order_queue);
4294 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4295 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4296 			__kfree_skb(skb);
4297 			continue;
4298 		}
4299 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4300 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4301 			   TCP_SKB_CB(skb)->end_seq);
4302 
4303 		tail = skb_peek_tail(&sk->sk_receive_queue);
4304 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4305 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4306 		if (!eaten)
4307 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4308 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4309 			tcp_fin(sk);
4310 		if (eaten)
4311 			kfree_skb_partial(skb, fragstolen);
4312 	}
4313 }
4314 
4315 static bool tcp_prune_ofo_queue(struct sock *sk);
4316 static int tcp_prune_queue(struct sock *sk);
4317 
4318 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4319 				 unsigned int size)
4320 {
4321 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4322 	    !sk_rmem_schedule(sk, skb, size)) {
4323 
4324 		if (tcp_prune_queue(sk) < 0)
4325 			return -1;
4326 
4327 		if (!sk_rmem_schedule(sk, skb, size)) {
4328 			if (!tcp_prune_ofo_queue(sk))
4329 				return -1;
4330 
4331 			if (!sk_rmem_schedule(sk, skb, size))
4332 				return -1;
4333 		}
4334 	}
4335 	return 0;
4336 }
4337 
4338 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4339 {
4340 	struct tcp_sock *tp = tcp_sk(sk);
4341 	struct sk_buff *skb1;
4342 	u32 seq, end_seq;
4343 
4344 	tcp_ecn_check_ce(tp, skb);
4345 
4346 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4347 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4348 		__kfree_skb(skb);
4349 		return;
4350 	}
4351 
4352 	/* Disable header prediction. */
4353 	tp->pred_flags = 0;
4354 	inet_csk_schedule_ack(sk);
4355 
4356 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4357 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4358 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4359 
4360 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4361 	if (!skb1) {
4362 		/* Initial out of order segment, build 1 SACK. */
4363 		if (tcp_is_sack(tp)) {
4364 			tp->rx_opt.num_sacks = 1;
4365 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4366 			tp->selective_acks[0].end_seq =
4367 						TCP_SKB_CB(skb)->end_seq;
4368 		}
4369 		__skb_queue_head(&tp->out_of_order_queue, skb);
4370 		goto end;
4371 	}
4372 
4373 	seq = TCP_SKB_CB(skb)->seq;
4374 	end_seq = TCP_SKB_CB(skb)->end_seq;
4375 
4376 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4377 		bool fragstolen;
4378 
4379 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4380 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4381 		} else {
4382 			tcp_grow_window(sk, skb);
4383 			kfree_skb_partial(skb, fragstolen);
4384 			skb = NULL;
4385 		}
4386 
4387 		if (!tp->rx_opt.num_sacks ||
4388 		    tp->selective_acks[0].end_seq != seq)
4389 			goto add_sack;
4390 
4391 		/* Common case: data arrive in order after hole. */
4392 		tp->selective_acks[0].end_seq = end_seq;
4393 		goto end;
4394 	}
4395 
4396 	/* Find place to insert this segment. */
4397 	while (1) {
4398 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4399 			break;
4400 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4401 			skb1 = NULL;
4402 			break;
4403 		}
4404 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4405 	}
4406 
4407 	/* Do skb overlap to previous one? */
4408 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4409 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4410 			/* All the bits are present. Drop. */
4411 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4412 			__kfree_skb(skb);
4413 			skb = NULL;
4414 			tcp_dsack_set(sk, seq, end_seq);
4415 			goto add_sack;
4416 		}
4417 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4418 			/* Partial overlap. */
4419 			tcp_dsack_set(sk, seq,
4420 				      TCP_SKB_CB(skb1)->end_seq);
4421 		} else {
4422 			if (skb_queue_is_first(&tp->out_of_order_queue,
4423 					       skb1))
4424 				skb1 = NULL;
4425 			else
4426 				skb1 = skb_queue_prev(
4427 					&tp->out_of_order_queue,
4428 					skb1);
4429 		}
4430 	}
4431 	if (!skb1)
4432 		__skb_queue_head(&tp->out_of_order_queue, skb);
4433 	else
4434 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4435 
4436 	/* And clean segments covered by new one as whole. */
4437 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4438 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4439 
4440 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4441 			break;
4442 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4443 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4444 					 end_seq);
4445 			break;
4446 		}
4447 		__skb_unlink(skb1, &tp->out_of_order_queue);
4448 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4449 				 TCP_SKB_CB(skb1)->end_seq);
4450 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4451 		__kfree_skb(skb1);
4452 	}
4453 
4454 add_sack:
4455 	if (tcp_is_sack(tp))
4456 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4457 end:
4458 	if (skb) {
4459 		tcp_grow_window(sk, skb);
4460 		skb_set_owner_r(skb, sk);
4461 	}
4462 }
4463 
4464 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4465 		  bool *fragstolen)
4466 {
4467 	int eaten;
4468 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4469 
4470 	__skb_pull(skb, hdrlen);
4471 	eaten = (tail &&
4472 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4473 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4474 	if (!eaten) {
4475 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4476 		skb_set_owner_r(skb, sk);
4477 	}
4478 	return eaten;
4479 }
4480 
4481 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4482 {
4483 	struct sk_buff *skb;
4484 	int err = -ENOMEM;
4485 	int data_len = 0;
4486 	bool fragstolen;
4487 
4488 	if (size == 0)
4489 		return 0;
4490 
4491 	if (size > PAGE_SIZE) {
4492 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4493 
4494 		data_len = npages << PAGE_SHIFT;
4495 		size = data_len + (size & ~PAGE_MASK);
4496 	}
4497 	skb = alloc_skb_with_frags(size - data_len, data_len,
4498 				   PAGE_ALLOC_COSTLY_ORDER,
4499 				   &err, sk->sk_allocation);
4500 	if (!skb)
4501 		goto err;
4502 
4503 	skb_put(skb, size - data_len);
4504 	skb->data_len = data_len;
4505 	skb->len = size;
4506 
4507 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4508 		goto err_free;
4509 
4510 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4511 	if (err)
4512 		goto err_free;
4513 
4514 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4515 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4516 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4517 
4518 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4519 		WARN_ON_ONCE(fragstolen); /* should not happen */
4520 		__kfree_skb(skb);
4521 	}
4522 	return size;
4523 
4524 err_free:
4525 	kfree_skb(skb);
4526 err:
4527 	return err;
4528 
4529 }
4530 
4531 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4532 {
4533 	struct tcp_sock *tp = tcp_sk(sk);
4534 	int eaten = -1;
4535 	bool fragstolen = false;
4536 
4537 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4538 		goto drop;
4539 
4540 	skb_dst_drop(skb);
4541 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4542 
4543 	tcp_ecn_accept_cwr(tp, skb);
4544 
4545 	tp->rx_opt.dsack = 0;
4546 
4547 	/*  Queue data for delivery to the user.
4548 	 *  Packets in sequence go to the receive queue.
4549 	 *  Out of sequence packets to the out_of_order_queue.
4550 	 */
4551 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4552 		if (tcp_receive_window(tp) == 0)
4553 			goto out_of_window;
4554 
4555 		/* Ok. In sequence. In window. */
4556 		if (tp->ucopy.task == current &&
4557 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4558 		    sock_owned_by_user(sk) && !tp->urg_data) {
4559 			int chunk = min_t(unsigned int, skb->len,
4560 					  tp->ucopy.len);
4561 
4562 			__set_current_state(TASK_RUNNING);
4563 
4564 			local_bh_enable();
4565 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4566 				tp->ucopy.len -= chunk;
4567 				tp->copied_seq += chunk;
4568 				eaten = (chunk == skb->len);
4569 				tcp_rcv_space_adjust(sk);
4570 			}
4571 			local_bh_disable();
4572 		}
4573 
4574 		if (eaten <= 0) {
4575 queue_and_out:
4576 			if (eaten < 0) {
4577 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4578 					sk_forced_mem_schedule(sk, skb->truesize);
4579 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4580 					goto drop;
4581 			}
4582 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4583 		}
4584 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4585 		if (skb->len)
4586 			tcp_event_data_recv(sk, skb);
4587 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4588 			tcp_fin(sk);
4589 
4590 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4591 			tcp_ofo_queue(sk);
4592 
4593 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4594 			 * gap in queue is filled.
4595 			 */
4596 			if (skb_queue_empty(&tp->out_of_order_queue))
4597 				inet_csk(sk)->icsk_ack.pingpong = 0;
4598 		}
4599 
4600 		if (tp->rx_opt.num_sacks)
4601 			tcp_sack_remove(tp);
4602 
4603 		tcp_fast_path_check(sk);
4604 
4605 		if (eaten > 0)
4606 			kfree_skb_partial(skb, fragstolen);
4607 		if (!sock_flag(sk, SOCK_DEAD))
4608 			sk->sk_data_ready(sk);
4609 		return;
4610 	}
4611 
4612 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4613 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4614 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4615 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4616 
4617 out_of_window:
4618 		tcp_enter_quickack_mode(sk);
4619 		inet_csk_schedule_ack(sk);
4620 drop:
4621 		__kfree_skb(skb);
4622 		return;
4623 	}
4624 
4625 	/* Out of window. F.e. zero window probe. */
4626 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4627 		goto out_of_window;
4628 
4629 	tcp_enter_quickack_mode(sk);
4630 
4631 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4632 		/* Partial packet, seq < rcv_next < end_seq */
4633 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4634 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4635 			   TCP_SKB_CB(skb)->end_seq);
4636 
4637 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4638 
4639 		/* If window is closed, drop tail of packet. But after
4640 		 * remembering D-SACK for its head made in previous line.
4641 		 */
4642 		if (!tcp_receive_window(tp))
4643 			goto out_of_window;
4644 		goto queue_and_out;
4645 	}
4646 
4647 	tcp_data_queue_ofo(sk, skb);
4648 }
4649 
4650 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4651 					struct sk_buff_head *list)
4652 {
4653 	struct sk_buff *next = NULL;
4654 
4655 	if (!skb_queue_is_last(list, skb))
4656 		next = skb_queue_next(list, skb);
4657 
4658 	__skb_unlink(skb, list);
4659 	__kfree_skb(skb);
4660 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4661 
4662 	return next;
4663 }
4664 
4665 /* Collapse contiguous sequence of skbs head..tail with
4666  * sequence numbers start..end.
4667  *
4668  * If tail is NULL, this means until the end of the list.
4669  *
4670  * Segments with FIN/SYN are not collapsed (only because this
4671  * simplifies code)
4672  */
4673 static void
4674 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4675 	     struct sk_buff *head, struct sk_buff *tail,
4676 	     u32 start, u32 end)
4677 {
4678 	struct sk_buff *skb, *n;
4679 	bool end_of_skbs;
4680 
4681 	/* First, check that queue is collapsible and find
4682 	 * the point where collapsing can be useful. */
4683 	skb = head;
4684 restart:
4685 	end_of_skbs = true;
4686 	skb_queue_walk_from_safe(list, skb, n) {
4687 		if (skb == tail)
4688 			break;
4689 		/* No new bits? It is possible on ofo queue. */
4690 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4691 			skb = tcp_collapse_one(sk, skb, list);
4692 			if (!skb)
4693 				break;
4694 			goto restart;
4695 		}
4696 
4697 		/* The first skb to collapse is:
4698 		 * - not SYN/FIN and
4699 		 * - bloated or contains data before "start" or
4700 		 *   overlaps to the next one.
4701 		 */
4702 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4703 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4704 		     before(TCP_SKB_CB(skb)->seq, start))) {
4705 			end_of_skbs = false;
4706 			break;
4707 		}
4708 
4709 		if (!skb_queue_is_last(list, skb)) {
4710 			struct sk_buff *next = skb_queue_next(list, skb);
4711 			if (next != tail &&
4712 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4713 				end_of_skbs = false;
4714 				break;
4715 			}
4716 		}
4717 
4718 		/* Decided to skip this, advance start seq. */
4719 		start = TCP_SKB_CB(skb)->end_seq;
4720 	}
4721 	if (end_of_skbs ||
4722 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4723 		return;
4724 
4725 	while (before(start, end)) {
4726 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4727 		struct sk_buff *nskb;
4728 
4729 		nskb = alloc_skb(copy, GFP_ATOMIC);
4730 		if (!nskb)
4731 			return;
4732 
4733 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4734 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4735 		__skb_queue_before(list, skb, nskb);
4736 		skb_set_owner_r(nskb, sk);
4737 
4738 		/* Copy data, releasing collapsed skbs. */
4739 		while (copy > 0) {
4740 			int offset = start - TCP_SKB_CB(skb)->seq;
4741 			int size = TCP_SKB_CB(skb)->end_seq - start;
4742 
4743 			BUG_ON(offset < 0);
4744 			if (size > 0) {
4745 				size = min(copy, size);
4746 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4747 					BUG();
4748 				TCP_SKB_CB(nskb)->end_seq += size;
4749 				copy -= size;
4750 				start += size;
4751 			}
4752 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4753 				skb = tcp_collapse_one(sk, skb, list);
4754 				if (!skb ||
4755 				    skb == tail ||
4756 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4757 					return;
4758 			}
4759 		}
4760 	}
4761 }
4762 
4763 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4764  * and tcp_collapse() them until all the queue is collapsed.
4765  */
4766 static void tcp_collapse_ofo_queue(struct sock *sk)
4767 {
4768 	struct tcp_sock *tp = tcp_sk(sk);
4769 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4770 	struct sk_buff *head;
4771 	u32 start, end;
4772 
4773 	if (!skb)
4774 		return;
4775 
4776 	start = TCP_SKB_CB(skb)->seq;
4777 	end = TCP_SKB_CB(skb)->end_seq;
4778 	head = skb;
4779 
4780 	for (;;) {
4781 		struct sk_buff *next = NULL;
4782 
4783 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4784 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4785 		skb = next;
4786 
4787 		/* Segment is terminated when we see gap or when
4788 		 * we are at the end of all the queue. */
4789 		if (!skb ||
4790 		    after(TCP_SKB_CB(skb)->seq, end) ||
4791 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4792 			tcp_collapse(sk, &tp->out_of_order_queue,
4793 				     head, skb, start, end);
4794 			head = skb;
4795 			if (!skb)
4796 				break;
4797 			/* Start new segment */
4798 			start = TCP_SKB_CB(skb)->seq;
4799 			end = TCP_SKB_CB(skb)->end_seq;
4800 		} else {
4801 			if (before(TCP_SKB_CB(skb)->seq, start))
4802 				start = TCP_SKB_CB(skb)->seq;
4803 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4804 				end = TCP_SKB_CB(skb)->end_seq;
4805 		}
4806 	}
4807 }
4808 
4809 /*
4810  * Purge the out-of-order queue.
4811  * Return true if queue was pruned.
4812  */
4813 static bool tcp_prune_ofo_queue(struct sock *sk)
4814 {
4815 	struct tcp_sock *tp = tcp_sk(sk);
4816 	bool res = false;
4817 
4818 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4819 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4820 		__skb_queue_purge(&tp->out_of_order_queue);
4821 
4822 		/* Reset SACK state.  A conforming SACK implementation will
4823 		 * do the same at a timeout based retransmit.  When a connection
4824 		 * is in a sad state like this, we care only about integrity
4825 		 * of the connection not performance.
4826 		 */
4827 		if (tp->rx_opt.sack_ok)
4828 			tcp_sack_reset(&tp->rx_opt);
4829 		sk_mem_reclaim(sk);
4830 		res = true;
4831 	}
4832 	return res;
4833 }
4834 
4835 /* Reduce allocated memory if we can, trying to get
4836  * the socket within its memory limits again.
4837  *
4838  * Return less than zero if we should start dropping frames
4839  * until the socket owning process reads some of the data
4840  * to stabilize the situation.
4841  */
4842 static int tcp_prune_queue(struct sock *sk)
4843 {
4844 	struct tcp_sock *tp = tcp_sk(sk);
4845 
4846 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4847 
4848 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4849 
4850 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4851 		tcp_clamp_window(sk);
4852 	else if (tcp_under_memory_pressure(sk))
4853 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4854 
4855 	tcp_collapse_ofo_queue(sk);
4856 	if (!skb_queue_empty(&sk->sk_receive_queue))
4857 		tcp_collapse(sk, &sk->sk_receive_queue,
4858 			     skb_peek(&sk->sk_receive_queue),
4859 			     NULL,
4860 			     tp->copied_seq, tp->rcv_nxt);
4861 	sk_mem_reclaim(sk);
4862 
4863 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4864 		return 0;
4865 
4866 	/* Collapsing did not help, destructive actions follow.
4867 	 * This must not ever occur. */
4868 
4869 	tcp_prune_ofo_queue(sk);
4870 
4871 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4872 		return 0;
4873 
4874 	/* If we are really being abused, tell the caller to silently
4875 	 * drop receive data on the floor.  It will get retransmitted
4876 	 * and hopefully then we'll have sufficient space.
4877 	 */
4878 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4879 
4880 	/* Massive buffer overcommit. */
4881 	tp->pred_flags = 0;
4882 	return -1;
4883 }
4884 
4885 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4886 {
4887 	const struct tcp_sock *tp = tcp_sk(sk);
4888 
4889 	/* If the user specified a specific send buffer setting, do
4890 	 * not modify it.
4891 	 */
4892 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4893 		return false;
4894 
4895 	/* If we are under global TCP memory pressure, do not expand.  */
4896 	if (tcp_under_memory_pressure(sk))
4897 		return false;
4898 
4899 	/* If we are under soft global TCP memory pressure, do not expand.  */
4900 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4901 		return false;
4902 
4903 	/* If we filled the congestion window, do not expand.  */
4904 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4905 		return false;
4906 
4907 	return true;
4908 }
4909 
4910 /* When incoming ACK allowed to free some skb from write_queue,
4911  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4912  * on the exit from tcp input handler.
4913  *
4914  * PROBLEM: sndbuf expansion does not work well with largesend.
4915  */
4916 static void tcp_new_space(struct sock *sk)
4917 {
4918 	struct tcp_sock *tp = tcp_sk(sk);
4919 
4920 	if (tcp_should_expand_sndbuf(sk)) {
4921 		tcp_sndbuf_expand(sk);
4922 		tp->snd_cwnd_stamp = tcp_time_stamp;
4923 	}
4924 
4925 	sk->sk_write_space(sk);
4926 }
4927 
4928 static void tcp_check_space(struct sock *sk)
4929 {
4930 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4931 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4932 		/* pairs with tcp_poll() */
4933 		smp_mb__after_atomic();
4934 		if (sk->sk_socket &&
4935 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4936 			tcp_new_space(sk);
4937 	}
4938 }
4939 
4940 static inline void tcp_data_snd_check(struct sock *sk)
4941 {
4942 	tcp_push_pending_frames(sk);
4943 	tcp_check_space(sk);
4944 }
4945 
4946 /*
4947  * Check if sending an ack is needed.
4948  */
4949 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4950 {
4951 	struct tcp_sock *tp = tcp_sk(sk);
4952 
4953 	    /* More than one full frame received... */
4954 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4955 	     /* ... and right edge of window advances far enough.
4956 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4957 	      */
4958 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4959 	    /* We ACK each frame or... */
4960 	    tcp_in_quickack_mode(sk) ||
4961 	    /* We have out of order data. */
4962 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4963 		/* Then ack it now */
4964 		tcp_send_ack(sk);
4965 	} else {
4966 		/* Else, send delayed ack. */
4967 		tcp_send_delayed_ack(sk);
4968 	}
4969 }
4970 
4971 static inline void tcp_ack_snd_check(struct sock *sk)
4972 {
4973 	if (!inet_csk_ack_scheduled(sk)) {
4974 		/* We sent a data segment already. */
4975 		return;
4976 	}
4977 	__tcp_ack_snd_check(sk, 1);
4978 }
4979 
4980 /*
4981  *	This routine is only called when we have urgent data
4982  *	signaled. Its the 'slow' part of tcp_urg. It could be
4983  *	moved inline now as tcp_urg is only called from one
4984  *	place. We handle URGent data wrong. We have to - as
4985  *	BSD still doesn't use the correction from RFC961.
4986  *	For 1003.1g we should support a new option TCP_STDURG to permit
4987  *	either form (or just set the sysctl tcp_stdurg).
4988  */
4989 
4990 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4991 {
4992 	struct tcp_sock *tp = tcp_sk(sk);
4993 	u32 ptr = ntohs(th->urg_ptr);
4994 
4995 	if (ptr && !sysctl_tcp_stdurg)
4996 		ptr--;
4997 	ptr += ntohl(th->seq);
4998 
4999 	/* Ignore urgent data that we've already seen and read. */
5000 	if (after(tp->copied_seq, ptr))
5001 		return;
5002 
5003 	/* Do not replay urg ptr.
5004 	 *
5005 	 * NOTE: interesting situation not covered by specs.
5006 	 * Misbehaving sender may send urg ptr, pointing to segment,
5007 	 * which we already have in ofo queue. We are not able to fetch
5008 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5009 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5010 	 * situations. But it is worth to think about possibility of some
5011 	 * DoSes using some hypothetical application level deadlock.
5012 	 */
5013 	if (before(ptr, tp->rcv_nxt))
5014 		return;
5015 
5016 	/* Do we already have a newer (or duplicate) urgent pointer? */
5017 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5018 		return;
5019 
5020 	/* Tell the world about our new urgent pointer. */
5021 	sk_send_sigurg(sk);
5022 
5023 	/* We may be adding urgent data when the last byte read was
5024 	 * urgent. To do this requires some care. We cannot just ignore
5025 	 * tp->copied_seq since we would read the last urgent byte again
5026 	 * as data, nor can we alter copied_seq until this data arrives
5027 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5028 	 *
5029 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5030 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5031 	 * and expect that both A and B disappear from stream. This is _wrong_.
5032 	 * Though this happens in BSD with high probability, this is occasional.
5033 	 * Any application relying on this is buggy. Note also, that fix "works"
5034 	 * only in this artificial test. Insert some normal data between A and B and we will
5035 	 * decline of BSD again. Verdict: it is better to remove to trap
5036 	 * buggy users.
5037 	 */
5038 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5039 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5040 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5041 		tp->copied_seq++;
5042 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5043 			__skb_unlink(skb, &sk->sk_receive_queue);
5044 			__kfree_skb(skb);
5045 		}
5046 	}
5047 
5048 	tp->urg_data = TCP_URG_NOTYET;
5049 	tp->urg_seq = ptr;
5050 
5051 	/* Disable header prediction. */
5052 	tp->pred_flags = 0;
5053 }
5054 
5055 /* This is the 'fast' part of urgent handling. */
5056 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5057 {
5058 	struct tcp_sock *tp = tcp_sk(sk);
5059 
5060 	/* Check if we get a new urgent pointer - normally not. */
5061 	if (th->urg)
5062 		tcp_check_urg(sk, th);
5063 
5064 	/* Do we wait for any urgent data? - normally not... */
5065 	if (tp->urg_data == TCP_URG_NOTYET) {
5066 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5067 			  th->syn;
5068 
5069 		/* Is the urgent pointer pointing into this packet? */
5070 		if (ptr < skb->len) {
5071 			u8 tmp;
5072 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5073 				BUG();
5074 			tp->urg_data = TCP_URG_VALID | tmp;
5075 			if (!sock_flag(sk, SOCK_DEAD))
5076 				sk->sk_data_ready(sk);
5077 		}
5078 	}
5079 }
5080 
5081 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5082 {
5083 	struct tcp_sock *tp = tcp_sk(sk);
5084 	int chunk = skb->len - hlen;
5085 	int err;
5086 
5087 	local_bh_enable();
5088 	if (skb_csum_unnecessary(skb))
5089 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5090 	else
5091 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5092 
5093 	if (!err) {
5094 		tp->ucopy.len -= chunk;
5095 		tp->copied_seq += chunk;
5096 		tcp_rcv_space_adjust(sk);
5097 	}
5098 
5099 	local_bh_disable();
5100 	return err;
5101 }
5102 
5103 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5104 					    struct sk_buff *skb)
5105 {
5106 	__sum16 result;
5107 
5108 	if (sock_owned_by_user(sk)) {
5109 		local_bh_enable();
5110 		result = __tcp_checksum_complete(skb);
5111 		local_bh_disable();
5112 	} else {
5113 		result = __tcp_checksum_complete(skb);
5114 	}
5115 	return result;
5116 }
5117 
5118 static inline bool tcp_checksum_complete_user(struct sock *sk,
5119 					     struct sk_buff *skb)
5120 {
5121 	return !skb_csum_unnecessary(skb) &&
5122 	       __tcp_checksum_complete_user(sk, skb);
5123 }
5124 
5125 /* Does PAWS and seqno based validation of an incoming segment, flags will
5126  * play significant role here.
5127  */
5128 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5129 				  const struct tcphdr *th, int syn_inerr)
5130 {
5131 	struct tcp_sock *tp = tcp_sk(sk);
5132 
5133 	/* RFC1323: H1. Apply PAWS check first. */
5134 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5135 	    tcp_paws_discard(sk, skb)) {
5136 		if (!th->rst) {
5137 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5138 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5139 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5140 						  &tp->last_oow_ack_time))
5141 				tcp_send_dupack(sk, skb);
5142 			goto discard;
5143 		}
5144 		/* Reset is accepted even if it did not pass PAWS. */
5145 	}
5146 
5147 	/* Step 1: check sequence number */
5148 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5149 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5150 		 * (RST) segments are validated by checking their SEQ-fields."
5151 		 * And page 69: "If an incoming segment is not acceptable,
5152 		 * an acknowledgment should be sent in reply (unless the RST
5153 		 * bit is set, if so drop the segment and return)".
5154 		 */
5155 		if (!th->rst) {
5156 			if (th->syn)
5157 				goto syn_challenge;
5158 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5159 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5160 						  &tp->last_oow_ack_time))
5161 				tcp_send_dupack(sk, skb);
5162 		}
5163 		goto discard;
5164 	}
5165 
5166 	/* Step 2: check RST bit */
5167 	if (th->rst) {
5168 		/* RFC 5961 3.2 :
5169 		 * If sequence number exactly matches RCV.NXT, then
5170 		 *     RESET the connection
5171 		 * else
5172 		 *     Send a challenge ACK
5173 		 */
5174 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5175 			tcp_reset(sk);
5176 		else
5177 			tcp_send_challenge_ack(sk, skb);
5178 		goto discard;
5179 	}
5180 
5181 	/* step 3: check security and precedence [ignored] */
5182 
5183 	/* step 4: Check for a SYN
5184 	 * RFC 5961 4.2 : Send a challenge ack
5185 	 */
5186 	if (th->syn) {
5187 syn_challenge:
5188 		if (syn_inerr)
5189 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5190 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5191 		tcp_send_challenge_ack(sk, skb);
5192 		goto discard;
5193 	}
5194 
5195 	return true;
5196 
5197 discard:
5198 	__kfree_skb(skb);
5199 	return false;
5200 }
5201 
5202 /*
5203  *	TCP receive function for the ESTABLISHED state.
5204  *
5205  *	It is split into a fast path and a slow path. The fast path is
5206  * 	disabled when:
5207  *	- A zero window was announced from us - zero window probing
5208  *        is only handled properly in the slow path.
5209  *	- Out of order segments arrived.
5210  *	- Urgent data is expected.
5211  *	- There is no buffer space left
5212  *	- Unexpected TCP flags/window values/header lengths are received
5213  *	  (detected by checking the TCP header against pred_flags)
5214  *	- Data is sent in both directions. Fast path only supports pure senders
5215  *	  or pure receivers (this means either the sequence number or the ack
5216  *	  value must stay constant)
5217  *	- Unexpected TCP option.
5218  *
5219  *	When these conditions are not satisfied it drops into a standard
5220  *	receive procedure patterned after RFC793 to handle all cases.
5221  *	The first three cases are guaranteed by proper pred_flags setting,
5222  *	the rest is checked inline. Fast processing is turned on in
5223  *	tcp_data_queue when everything is OK.
5224  */
5225 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5226 			 const struct tcphdr *th, unsigned int len)
5227 {
5228 	struct tcp_sock *tp = tcp_sk(sk);
5229 
5230 	if (unlikely(!sk->sk_rx_dst))
5231 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5232 	/*
5233 	 *	Header prediction.
5234 	 *	The code loosely follows the one in the famous
5235 	 *	"30 instruction TCP receive" Van Jacobson mail.
5236 	 *
5237 	 *	Van's trick is to deposit buffers into socket queue
5238 	 *	on a device interrupt, to call tcp_recv function
5239 	 *	on the receive process context and checksum and copy
5240 	 *	the buffer to user space. smart...
5241 	 *
5242 	 *	Our current scheme is not silly either but we take the
5243 	 *	extra cost of the net_bh soft interrupt processing...
5244 	 *	We do checksum and copy also but from device to kernel.
5245 	 */
5246 
5247 	tp->rx_opt.saw_tstamp = 0;
5248 
5249 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5250 	 *	if header_prediction is to be made
5251 	 *	'S' will always be tp->tcp_header_len >> 2
5252 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5253 	 *  turn it off	(when there are holes in the receive
5254 	 *	 space for instance)
5255 	 *	PSH flag is ignored.
5256 	 */
5257 
5258 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5259 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5260 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5261 		int tcp_header_len = tp->tcp_header_len;
5262 
5263 		/* Timestamp header prediction: tcp_header_len
5264 		 * is automatically equal to th->doff*4 due to pred_flags
5265 		 * match.
5266 		 */
5267 
5268 		/* Check timestamp */
5269 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5270 			/* No? Slow path! */
5271 			if (!tcp_parse_aligned_timestamp(tp, th))
5272 				goto slow_path;
5273 
5274 			/* If PAWS failed, check it more carefully in slow path */
5275 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5276 				goto slow_path;
5277 
5278 			/* DO NOT update ts_recent here, if checksum fails
5279 			 * and timestamp was corrupted part, it will result
5280 			 * in a hung connection since we will drop all
5281 			 * future packets due to the PAWS test.
5282 			 */
5283 		}
5284 
5285 		if (len <= tcp_header_len) {
5286 			/* Bulk data transfer: sender */
5287 			if (len == tcp_header_len) {
5288 				/* Predicted packet is in window by definition.
5289 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5290 				 * Hence, check seq<=rcv_wup reduces to:
5291 				 */
5292 				if (tcp_header_len ==
5293 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5294 				    tp->rcv_nxt == tp->rcv_wup)
5295 					tcp_store_ts_recent(tp);
5296 
5297 				/* We know that such packets are checksummed
5298 				 * on entry.
5299 				 */
5300 				tcp_ack(sk, skb, 0);
5301 				__kfree_skb(skb);
5302 				tcp_data_snd_check(sk);
5303 				return;
5304 			} else { /* Header too small */
5305 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5306 				goto discard;
5307 			}
5308 		} else {
5309 			int eaten = 0;
5310 			bool fragstolen = false;
5311 
5312 			if (tp->ucopy.task == current &&
5313 			    tp->copied_seq == tp->rcv_nxt &&
5314 			    len - tcp_header_len <= tp->ucopy.len &&
5315 			    sock_owned_by_user(sk)) {
5316 				__set_current_state(TASK_RUNNING);
5317 
5318 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5319 					/* Predicted packet is in window by definition.
5320 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5321 					 * Hence, check seq<=rcv_wup reduces to:
5322 					 */
5323 					if (tcp_header_len ==
5324 					    (sizeof(struct tcphdr) +
5325 					     TCPOLEN_TSTAMP_ALIGNED) &&
5326 					    tp->rcv_nxt == tp->rcv_wup)
5327 						tcp_store_ts_recent(tp);
5328 
5329 					tcp_rcv_rtt_measure_ts(sk, skb);
5330 
5331 					__skb_pull(skb, tcp_header_len);
5332 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5333 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5334 					eaten = 1;
5335 				}
5336 			}
5337 			if (!eaten) {
5338 				if (tcp_checksum_complete_user(sk, skb))
5339 					goto csum_error;
5340 
5341 				if ((int)skb->truesize > sk->sk_forward_alloc)
5342 					goto step5;
5343 
5344 				/* Predicted packet is in window by definition.
5345 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5346 				 * Hence, check seq<=rcv_wup reduces to:
5347 				 */
5348 				if (tcp_header_len ==
5349 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5350 				    tp->rcv_nxt == tp->rcv_wup)
5351 					tcp_store_ts_recent(tp);
5352 
5353 				tcp_rcv_rtt_measure_ts(sk, skb);
5354 
5355 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5356 
5357 				/* Bulk data transfer: receiver */
5358 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5359 						      &fragstolen);
5360 			}
5361 
5362 			tcp_event_data_recv(sk, skb);
5363 
5364 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5365 				/* Well, only one small jumplet in fast path... */
5366 				tcp_ack(sk, skb, FLAG_DATA);
5367 				tcp_data_snd_check(sk);
5368 				if (!inet_csk_ack_scheduled(sk))
5369 					goto no_ack;
5370 			}
5371 
5372 			__tcp_ack_snd_check(sk, 0);
5373 no_ack:
5374 			if (eaten)
5375 				kfree_skb_partial(skb, fragstolen);
5376 			sk->sk_data_ready(sk);
5377 			return;
5378 		}
5379 	}
5380 
5381 slow_path:
5382 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5383 		goto csum_error;
5384 
5385 	if (!th->ack && !th->rst && !th->syn)
5386 		goto discard;
5387 
5388 	/*
5389 	 *	Standard slow path.
5390 	 */
5391 
5392 	if (!tcp_validate_incoming(sk, skb, th, 1))
5393 		return;
5394 
5395 step5:
5396 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5397 		goto discard;
5398 
5399 	tcp_rcv_rtt_measure_ts(sk, skb);
5400 
5401 	/* Process urgent data. */
5402 	tcp_urg(sk, skb, th);
5403 
5404 	/* step 7: process the segment text */
5405 	tcp_data_queue(sk, skb);
5406 
5407 	tcp_data_snd_check(sk);
5408 	tcp_ack_snd_check(sk);
5409 	return;
5410 
5411 csum_error:
5412 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5413 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5414 
5415 discard:
5416 	__kfree_skb(skb);
5417 }
5418 EXPORT_SYMBOL(tcp_rcv_established);
5419 
5420 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5421 {
5422 	struct tcp_sock *tp = tcp_sk(sk);
5423 	struct inet_connection_sock *icsk = inet_csk(sk);
5424 
5425 	tcp_set_state(sk, TCP_ESTABLISHED);
5426 
5427 	if (skb) {
5428 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5429 		security_inet_conn_established(sk, skb);
5430 	}
5431 
5432 	/* Make sure socket is routed, for correct metrics.  */
5433 	icsk->icsk_af_ops->rebuild_header(sk);
5434 
5435 	tcp_init_metrics(sk);
5436 
5437 	tcp_init_congestion_control(sk);
5438 
5439 	/* Prevent spurious tcp_cwnd_restart() on first data
5440 	 * packet.
5441 	 */
5442 	tp->lsndtime = tcp_time_stamp;
5443 
5444 	tcp_init_buffer_space(sk);
5445 
5446 	if (sock_flag(sk, SOCK_KEEPOPEN))
5447 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5448 
5449 	if (!tp->rx_opt.snd_wscale)
5450 		__tcp_fast_path_on(tp, tp->snd_wnd);
5451 	else
5452 		tp->pred_flags = 0;
5453 
5454 	if (!sock_flag(sk, SOCK_DEAD)) {
5455 		sk->sk_state_change(sk);
5456 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5457 	}
5458 }
5459 
5460 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5461 				    struct tcp_fastopen_cookie *cookie)
5462 {
5463 	struct tcp_sock *tp = tcp_sk(sk);
5464 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5465 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5466 	bool syn_drop = false;
5467 
5468 	if (mss == tp->rx_opt.user_mss) {
5469 		struct tcp_options_received opt;
5470 
5471 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5472 		tcp_clear_options(&opt);
5473 		opt.user_mss = opt.mss_clamp = 0;
5474 		tcp_parse_options(synack, &opt, 0, NULL);
5475 		mss = opt.mss_clamp;
5476 	}
5477 
5478 	if (!tp->syn_fastopen) {
5479 		/* Ignore an unsolicited cookie */
5480 		cookie->len = -1;
5481 	} else if (tp->total_retrans) {
5482 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5483 		 * acknowledges data. Presumably the remote received only
5484 		 * the retransmitted (regular) SYNs: either the original
5485 		 * SYN-data or the corresponding SYN-ACK was dropped.
5486 		 */
5487 		syn_drop = (cookie->len < 0 && data);
5488 	} else if (cookie->len < 0 && !tp->syn_data) {
5489 		/* We requested a cookie but didn't get it. If we did not use
5490 		 * the (old) exp opt format then try so next time (try_exp=1).
5491 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5492 		 */
5493 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5494 	}
5495 
5496 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5497 
5498 	if (data) { /* Retransmit unacked data in SYN */
5499 		tcp_for_write_queue_from(data, sk) {
5500 			if (data == tcp_send_head(sk) ||
5501 			    __tcp_retransmit_skb(sk, data))
5502 				break;
5503 		}
5504 		tcp_rearm_rto(sk);
5505 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5506 		return true;
5507 	}
5508 	tp->syn_data_acked = tp->syn_data;
5509 	if (tp->syn_data_acked)
5510 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5511 	return false;
5512 }
5513 
5514 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5515 					 const struct tcphdr *th)
5516 {
5517 	struct inet_connection_sock *icsk = inet_csk(sk);
5518 	struct tcp_sock *tp = tcp_sk(sk);
5519 	struct tcp_fastopen_cookie foc = { .len = -1 };
5520 	int saved_clamp = tp->rx_opt.mss_clamp;
5521 
5522 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5523 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5524 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5525 
5526 	if (th->ack) {
5527 		/* rfc793:
5528 		 * "If the state is SYN-SENT then
5529 		 *    first check the ACK bit
5530 		 *      If the ACK bit is set
5531 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5532 		 *        a reset (unless the RST bit is set, if so drop
5533 		 *        the segment and return)"
5534 		 */
5535 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5536 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5537 			goto reset_and_undo;
5538 
5539 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5540 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5541 			     tcp_time_stamp)) {
5542 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5543 			goto reset_and_undo;
5544 		}
5545 
5546 		/* Now ACK is acceptable.
5547 		 *
5548 		 * "If the RST bit is set
5549 		 *    If the ACK was acceptable then signal the user "error:
5550 		 *    connection reset", drop the segment, enter CLOSED state,
5551 		 *    delete TCB, and return."
5552 		 */
5553 
5554 		if (th->rst) {
5555 			tcp_reset(sk);
5556 			goto discard;
5557 		}
5558 
5559 		/* rfc793:
5560 		 *   "fifth, if neither of the SYN or RST bits is set then
5561 		 *    drop the segment and return."
5562 		 *
5563 		 *    See note below!
5564 		 *                                        --ANK(990513)
5565 		 */
5566 		if (!th->syn)
5567 			goto discard_and_undo;
5568 
5569 		/* rfc793:
5570 		 *   "If the SYN bit is on ...
5571 		 *    are acceptable then ...
5572 		 *    (our SYN has been ACKed), change the connection
5573 		 *    state to ESTABLISHED..."
5574 		 */
5575 
5576 		tcp_ecn_rcv_synack(tp, th);
5577 
5578 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5579 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5580 
5581 		/* Ok.. it's good. Set up sequence numbers and
5582 		 * move to established.
5583 		 */
5584 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5585 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5586 
5587 		/* RFC1323: The window in SYN & SYN/ACK segments is
5588 		 * never scaled.
5589 		 */
5590 		tp->snd_wnd = ntohs(th->window);
5591 
5592 		if (!tp->rx_opt.wscale_ok) {
5593 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5594 			tp->window_clamp = min(tp->window_clamp, 65535U);
5595 		}
5596 
5597 		if (tp->rx_opt.saw_tstamp) {
5598 			tp->rx_opt.tstamp_ok	   = 1;
5599 			tp->tcp_header_len =
5600 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5601 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5602 			tcp_store_ts_recent(tp);
5603 		} else {
5604 			tp->tcp_header_len = sizeof(struct tcphdr);
5605 		}
5606 
5607 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5608 			tcp_enable_fack(tp);
5609 
5610 		tcp_mtup_init(sk);
5611 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5612 		tcp_initialize_rcv_mss(sk);
5613 
5614 		/* Remember, tcp_poll() does not lock socket!
5615 		 * Change state from SYN-SENT only after copied_seq
5616 		 * is initialized. */
5617 		tp->copied_seq = tp->rcv_nxt;
5618 
5619 		smp_mb();
5620 
5621 		tcp_finish_connect(sk, skb);
5622 
5623 		if ((tp->syn_fastopen || tp->syn_data) &&
5624 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5625 			return -1;
5626 
5627 		if (sk->sk_write_pending ||
5628 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5629 		    icsk->icsk_ack.pingpong) {
5630 			/* Save one ACK. Data will be ready after
5631 			 * several ticks, if write_pending is set.
5632 			 *
5633 			 * It may be deleted, but with this feature tcpdumps
5634 			 * look so _wonderfully_ clever, that I was not able
5635 			 * to stand against the temptation 8)     --ANK
5636 			 */
5637 			inet_csk_schedule_ack(sk);
5638 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5639 			tcp_enter_quickack_mode(sk);
5640 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5641 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5642 
5643 discard:
5644 			__kfree_skb(skb);
5645 			return 0;
5646 		} else {
5647 			tcp_send_ack(sk);
5648 		}
5649 		return -1;
5650 	}
5651 
5652 	/* No ACK in the segment */
5653 
5654 	if (th->rst) {
5655 		/* rfc793:
5656 		 * "If the RST bit is set
5657 		 *
5658 		 *      Otherwise (no ACK) drop the segment and return."
5659 		 */
5660 
5661 		goto discard_and_undo;
5662 	}
5663 
5664 	/* PAWS check. */
5665 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5666 	    tcp_paws_reject(&tp->rx_opt, 0))
5667 		goto discard_and_undo;
5668 
5669 	if (th->syn) {
5670 		/* We see SYN without ACK. It is attempt of
5671 		 * simultaneous connect with crossed SYNs.
5672 		 * Particularly, it can be connect to self.
5673 		 */
5674 		tcp_set_state(sk, TCP_SYN_RECV);
5675 
5676 		if (tp->rx_opt.saw_tstamp) {
5677 			tp->rx_opt.tstamp_ok = 1;
5678 			tcp_store_ts_recent(tp);
5679 			tp->tcp_header_len =
5680 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5681 		} else {
5682 			tp->tcp_header_len = sizeof(struct tcphdr);
5683 		}
5684 
5685 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5686 		tp->copied_seq = tp->rcv_nxt;
5687 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5688 
5689 		/* RFC1323: The window in SYN & SYN/ACK segments is
5690 		 * never scaled.
5691 		 */
5692 		tp->snd_wnd    = ntohs(th->window);
5693 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5694 		tp->max_window = tp->snd_wnd;
5695 
5696 		tcp_ecn_rcv_syn(tp, th);
5697 
5698 		tcp_mtup_init(sk);
5699 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5700 		tcp_initialize_rcv_mss(sk);
5701 
5702 		tcp_send_synack(sk);
5703 #if 0
5704 		/* Note, we could accept data and URG from this segment.
5705 		 * There are no obstacles to make this (except that we must
5706 		 * either change tcp_recvmsg() to prevent it from returning data
5707 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5708 		 *
5709 		 * However, if we ignore data in ACKless segments sometimes,
5710 		 * we have no reasons to accept it sometimes.
5711 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5712 		 * is not flawless. So, discard packet for sanity.
5713 		 * Uncomment this return to process the data.
5714 		 */
5715 		return -1;
5716 #else
5717 		goto discard;
5718 #endif
5719 	}
5720 	/* "fifth, if neither of the SYN or RST bits is set then
5721 	 * drop the segment and return."
5722 	 */
5723 
5724 discard_and_undo:
5725 	tcp_clear_options(&tp->rx_opt);
5726 	tp->rx_opt.mss_clamp = saved_clamp;
5727 	goto discard;
5728 
5729 reset_and_undo:
5730 	tcp_clear_options(&tp->rx_opt);
5731 	tp->rx_opt.mss_clamp = saved_clamp;
5732 	return 1;
5733 }
5734 
5735 /*
5736  *	This function implements the receiving procedure of RFC 793 for
5737  *	all states except ESTABLISHED and TIME_WAIT.
5738  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5739  *	address independent.
5740  */
5741 
5742 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5743 {
5744 	struct tcp_sock *tp = tcp_sk(sk);
5745 	struct inet_connection_sock *icsk = inet_csk(sk);
5746 	const struct tcphdr *th = tcp_hdr(skb);
5747 	struct request_sock *req;
5748 	int queued = 0;
5749 	bool acceptable;
5750 
5751 	tp->rx_opt.saw_tstamp = 0;
5752 
5753 	switch (sk->sk_state) {
5754 	case TCP_CLOSE:
5755 		goto discard;
5756 
5757 	case TCP_LISTEN:
5758 		if (th->ack)
5759 			return 1;
5760 
5761 		if (th->rst)
5762 			goto discard;
5763 
5764 		if (th->syn) {
5765 			if (th->fin)
5766 				goto discard;
5767 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5768 				return 1;
5769 
5770 			/* Now we have several options: In theory there is
5771 			 * nothing else in the frame. KA9Q has an option to
5772 			 * send data with the syn, BSD accepts data with the
5773 			 * syn up to the [to be] advertised window and
5774 			 * Solaris 2.1 gives you a protocol error. For now
5775 			 * we just ignore it, that fits the spec precisely
5776 			 * and avoids incompatibilities. It would be nice in
5777 			 * future to drop through and process the data.
5778 			 *
5779 			 * Now that TTCP is starting to be used we ought to
5780 			 * queue this data.
5781 			 * But, this leaves one open to an easy denial of
5782 			 * service attack, and SYN cookies can't defend
5783 			 * against this problem. So, we drop the data
5784 			 * in the interest of security over speed unless
5785 			 * it's still in use.
5786 			 */
5787 			kfree_skb(skb);
5788 			return 0;
5789 		}
5790 		goto discard;
5791 
5792 	case TCP_SYN_SENT:
5793 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5794 		if (queued >= 0)
5795 			return queued;
5796 
5797 		/* Do step6 onward by hand. */
5798 		tcp_urg(sk, skb, th);
5799 		__kfree_skb(skb);
5800 		tcp_data_snd_check(sk);
5801 		return 0;
5802 	}
5803 
5804 	req = tp->fastopen_rsk;
5805 	if (req) {
5806 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5807 		    sk->sk_state != TCP_FIN_WAIT1);
5808 
5809 		if (!tcp_check_req(sk, skb, req, true))
5810 			goto discard;
5811 	}
5812 
5813 	if (!th->ack && !th->rst && !th->syn)
5814 		goto discard;
5815 
5816 	if (!tcp_validate_incoming(sk, skb, th, 0))
5817 		return 0;
5818 
5819 	/* step 5: check the ACK field */
5820 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5821 				      FLAG_UPDATE_TS_RECENT) > 0;
5822 
5823 	switch (sk->sk_state) {
5824 	case TCP_SYN_RECV:
5825 		if (!acceptable)
5826 			return 1;
5827 
5828 		if (!tp->srtt_us)
5829 			tcp_synack_rtt_meas(sk, req);
5830 
5831 		/* Once we leave TCP_SYN_RECV, we no longer need req
5832 		 * so release it.
5833 		 */
5834 		if (req) {
5835 			tp->total_retrans = req->num_retrans;
5836 			reqsk_fastopen_remove(sk, req, false);
5837 		} else {
5838 			/* Make sure socket is routed, for correct metrics. */
5839 			icsk->icsk_af_ops->rebuild_header(sk);
5840 			tcp_init_congestion_control(sk);
5841 
5842 			tcp_mtup_init(sk);
5843 			tp->copied_seq = tp->rcv_nxt;
5844 			tcp_init_buffer_space(sk);
5845 		}
5846 		smp_mb();
5847 		tcp_set_state(sk, TCP_ESTABLISHED);
5848 		sk->sk_state_change(sk);
5849 
5850 		/* Note, that this wakeup is only for marginal crossed SYN case.
5851 		 * Passively open sockets are not waked up, because
5852 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5853 		 */
5854 		if (sk->sk_socket)
5855 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5856 
5857 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5858 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5859 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5860 
5861 		if (tp->rx_opt.tstamp_ok)
5862 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5863 
5864 		if (req) {
5865 			/* Re-arm the timer because data may have been sent out.
5866 			 * This is similar to the regular data transmission case
5867 			 * when new data has just been ack'ed.
5868 			 *
5869 			 * (TFO) - we could try to be more aggressive and
5870 			 * retransmitting any data sooner based on when they
5871 			 * are sent out.
5872 			 */
5873 			tcp_rearm_rto(sk);
5874 		} else
5875 			tcp_init_metrics(sk);
5876 
5877 		tcp_update_pacing_rate(sk);
5878 
5879 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5880 		tp->lsndtime = tcp_time_stamp;
5881 
5882 		tcp_initialize_rcv_mss(sk);
5883 		tcp_fast_path_on(tp);
5884 		break;
5885 
5886 	case TCP_FIN_WAIT1: {
5887 		struct dst_entry *dst;
5888 		int tmo;
5889 
5890 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5891 		 * Fast Open socket and this is the first acceptable
5892 		 * ACK we have received, this would have acknowledged
5893 		 * our SYNACK so stop the SYNACK timer.
5894 		 */
5895 		if (req) {
5896 			/* Return RST if ack_seq is invalid.
5897 			 * Note that RFC793 only says to generate a
5898 			 * DUPACK for it but for TCP Fast Open it seems
5899 			 * better to treat this case like TCP_SYN_RECV
5900 			 * above.
5901 			 */
5902 			if (!acceptable)
5903 				return 1;
5904 			/* We no longer need the request sock. */
5905 			reqsk_fastopen_remove(sk, req, false);
5906 			tcp_rearm_rto(sk);
5907 		}
5908 		if (tp->snd_una != tp->write_seq)
5909 			break;
5910 
5911 		tcp_set_state(sk, TCP_FIN_WAIT2);
5912 		sk->sk_shutdown |= SEND_SHUTDOWN;
5913 
5914 		dst = __sk_dst_get(sk);
5915 		if (dst)
5916 			dst_confirm(dst);
5917 
5918 		if (!sock_flag(sk, SOCK_DEAD)) {
5919 			/* Wake up lingering close() */
5920 			sk->sk_state_change(sk);
5921 			break;
5922 		}
5923 
5924 		if (tp->linger2 < 0 ||
5925 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5926 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5927 			tcp_done(sk);
5928 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5929 			return 1;
5930 		}
5931 
5932 		tmo = tcp_fin_time(sk);
5933 		if (tmo > TCP_TIMEWAIT_LEN) {
5934 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5935 		} else if (th->fin || sock_owned_by_user(sk)) {
5936 			/* Bad case. We could lose such FIN otherwise.
5937 			 * It is not a big problem, but it looks confusing
5938 			 * and not so rare event. We still can lose it now,
5939 			 * if it spins in bh_lock_sock(), but it is really
5940 			 * marginal case.
5941 			 */
5942 			inet_csk_reset_keepalive_timer(sk, tmo);
5943 		} else {
5944 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5945 			goto discard;
5946 		}
5947 		break;
5948 	}
5949 
5950 	case TCP_CLOSING:
5951 		if (tp->snd_una == tp->write_seq) {
5952 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5953 			goto discard;
5954 		}
5955 		break;
5956 
5957 	case TCP_LAST_ACK:
5958 		if (tp->snd_una == tp->write_seq) {
5959 			tcp_update_metrics(sk);
5960 			tcp_done(sk);
5961 			goto discard;
5962 		}
5963 		break;
5964 	}
5965 
5966 	/* step 6: check the URG bit */
5967 	tcp_urg(sk, skb, th);
5968 
5969 	/* step 7: process the segment text */
5970 	switch (sk->sk_state) {
5971 	case TCP_CLOSE_WAIT:
5972 	case TCP_CLOSING:
5973 	case TCP_LAST_ACK:
5974 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5975 			break;
5976 	case TCP_FIN_WAIT1:
5977 	case TCP_FIN_WAIT2:
5978 		/* RFC 793 says to queue data in these states,
5979 		 * RFC 1122 says we MUST send a reset.
5980 		 * BSD 4.4 also does reset.
5981 		 */
5982 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5983 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5984 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5985 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5986 				tcp_reset(sk);
5987 				return 1;
5988 			}
5989 		}
5990 		/* Fall through */
5991 	case TCP_ESTABLISHED:
5992 		tcp_data_queue(sk, skb);
5993 		queued = 1;
5994 		break;
5995 	}
5996 
5997 	/* tcp_data could move socket to TIME-WAIT */
5998 	if (sk->sk_state != TCP_CLOSE) {
5999 		tcp_data_snd_check(sk);
6000 		tcp_ack_snd_check(sk);
6001 	}
6002 
6003 	if (!queued) {
6004 discard:
6005 		__kfree_skb(skb);
6006 	}
6007 	return 0;
6008 }
6009 EXPORT_SYMBOL(tcp_rcv_state_process);
6010 
6011 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6012 {
6013 	struct inet_request_sock *ireq = inet_rsk(req);
6014 
6015 	if (family == AF_INET)
6016 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6017 				    &ireq->ir_rmt_addr, port);
6018 #if IS_ENABLED(CONFIG_IPV6)
6019 	else if (family == AF_INET6)
6020 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6021 				    &ireq->ir_v6_rmt_addr, port);
6022 #endif
6023 }
6024 
6025 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6026  *
6027  * If we receive a SYN packet with these bits set, it means a
6028  * network is playing bad games with TOS bits. In order to
6029  * avoid possible false congestion notifications, we disable
6030  * TCP ECN negotiation.
6031  *
6032  * Exception: tcp_ca wants ECN. This is required for DCTCP
6033  * congestion control: Linux DCTCP asserts ECT on all packets,
6034  * including SYN, which is most optimal solution; however,
6035  * others, such as FreeBSD do not.
6036  */
6037 static void tcp_ecn_create_request(struct request_sock *req,
6038 				   const struct sk_buff *skb,
6039 				   const struct sock *listen_sk,
6040 				   const struct dst_entry *dst)
6041 {
6042 	const struct tcphdr *th = tcp_hdr(skb);
6043 	const struct net *net = sock_net(listen_sk);
6044 	bool th_ecn = th->ece && th->cwr;
6045 	bool ect, ecn_ok;
6046 	u32 ecn_ok_dst;
6047 
6048 	if (!th_ecn)
6049 		return;
6050 
6051 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6052 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6053 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6054 
6055 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6056 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6057 		inet_rsk(req)->ecn_ok = 1;
6058 }
6059 
6060 static void tcp_openreq_init(struct request_sock *req,
6061 			     const struct tcp_options_received *rx_opt,
6062 			     struct sk_buff *skb, const struct sock *sk)
6063 {
6064 	struct inet_request_sock *ireq = inet_rsk(req);
6065 
6066 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6067 	req->cookie_ts = 0;
6068 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6069 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6070 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6071 	tcp_rsk(req)->last_oow_ack_time = 0;
6072 	req->mss = rx_opt->mss_clamp;
6073 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6074 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6075 	ireq->sack_ok = rx_opt->sack_ok;
6076 	ireq->snd_wscale = rx_opt->snd_wscale;
6077 	ireq->wscale_ok = rx_opt->wscale_ok;
6078 	ireq->acked = 0;
6079 	ireq->ecn_ok = 0;
6080 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6081 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6082 	ireq->ir_mark = inet_request_mark(sk, skb);
6083 }
6084 
6085 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6086 				      struct sock *sk_listener,
6087 				      bool attach_listener)
6088 {
6089 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6090 					       attach_listener);
6091 
6092 	if (req) {
6093 		struct inet_request_sock *ireq = inet_rsk(req);
6094 
6095 		kmemcheck_annotate_bitfield(ireq, flags);
6096 		ireq->opt = NULL;
6097 		atomic64_set(&ireq->ir_cookie, 0);
6098 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6099 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6100 		ireq->ireq_family = sk_listener->sk_family;
6101 	}
6102 
6103 	return req;
6104 }
6105 EXPORT_SYMBOL(inet_reqsk_alloc);
6106 
6107 /*
6108  * Return true if a syncookie should be sent
6109  */
6110 static bool tcp_syn_flood_action(const struct sock *sk,
6111 				 const struct sk_buff *skb,
6112 				 const char *proto)
6113 {
6114 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6115 	const char *msg = "Dropping request";
6116 	bool want_cookie = false;
6117 
6118 #ifdef CONFIG_SYN_COOKIES
6119 	if (sysctl_tcp_syncookies) {
6120 		msg = "Sending cookies";
6121 		want_cookie = true;
6122 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6123 	} else
6124 #endif
6125 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6126 
6127 	if (!queue->synflood_warned &&
6128 	    sysctl_tcp_syncookies != 2 &&
6129 	    xchg(&queue->synflood_warned, 1) == 0)
6130 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6131 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6132 
6133 	return want_cookie;
6134 }
6135 
6136 static void tcp_reqsk_record_syn(const struct sock *sk,
6137 				 struct request_sock *req,
6138 				 const struct sk_buff *skb)
6139 {
6140 	if (tcp_sk(sk)->save_syn) {
6141 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6142 		u32 *copy;
6143 
6144 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6145 		if (copy) {
6146 			copy[0] = len;
6147 			memcpy(&copy[1], skb_network_header(skb), len);
6148 			req->saved_syn = copy;
6149 		}
6150 	}
6151 }
6152 
6153 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6154 		     const struct tcp_request_sock_ops *af_ops,
6155 		     struct sock *sk, struct sk_buff *skb)
6156 {
6157 	struct tcp_fastopen_cookie foc = { .len = -1 };
6158 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6159 	struct tcp_options_received tmp_opt;
6160 	struct tcp_sock *tp = tcp_sk(sk);
6161 	struct sock *fastopen_sk = NULL;
6162 	struct dst_entry *dst = NULL;
6163 	struct request_sock *req;
6164 	bool want_cookie = false;
6165 	struct flowi fl;
6166 
6167 	/* TW buckets are converted to open requests without
6168 	 * limitations, they conserve resources and peer is
6169 	 * evidently real one.
6170 	 */
6171 	if ((sysctl_tcp_syncookies == 2 ||
6172 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6173 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6174 		if (!want_cookie)
6175 			goto drop;
6176 	}
6177 
6178 
6179 	/* Accept backlog is full. If we have already queued enough
6180 	 * of warm entries in syn queue, drop request. It is better than
6181 	 * clogging syn queue with openreqs with exponentially increasing
6182 	 * timeout.
6183 	 */
6184 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6185 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6186 		goto drop;
6187 	}
6188 
6189 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6190 	if (!req)
6191 		goto drop;
6192 
6193 	tcp_rsk(req)->af_specific = af_ops;
6194 
6195 	tcp_clear_options(&tmp_opt);
6196 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6197 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6198 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6199 
6200 	if (want_cookie && !tmp_opt.saw_tstamp)
6201 		tcp_clear_options(&tmp_opt);
6202 
6203 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6204 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6205 
6206 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6207 	inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6208 
6209 	af_ops->init_req(req, sk, skb);
6210 
6211 	if (security_inet_conn_request(sk, skb, req))
6212 		goto drop_and_free;
6213 
6214 	if (!want_cookie && !isn) {
6215 		/* VJ's idea. We save last timestamp seen
6216 		 * from the destination in peer table, when entering
6217 		 * state TIME-WAIT, and check against it before
6218 		 * accepting new connection request.
6219 		 *
6220 		 * If "isn" is not zero, this request hit alive
6221 		 * timewait bucket, so that all the necessary checks
6222 		 * are made in the function processing timewait state.
6223 		 */
6224 		if (tcp_death_row.sysctl_tw_recycle) {
6225 			bool strict;
6226 
6227 			dst = af_ops->route_req(sk, &fl, req, &strict);
6228 
6229 			if (dst && strict &&
6230 			    !tcp_peer_is_proven(req, dst, true,
6231 						tmp_opt.saw_tstamp)) {
6232 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6233 				goto drop_and_release;
6234 			}
6235 		}
6236 		/* Kill the following clause, if you dislike this way. */
6237 		else if (!sysctl_tcp_syncookies &&
6238 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6239 			  (sysctl_max_syn_backlog >> 2)) &&
6240 			 !tcp_peer_is_proven(req, dst, false,
6241 					     tmp_opt.saw_tstamp)) {
6242 			/* Without syncookies last quarter of
6243 			 * backlog is filled with destinations,
6244 			 * proven to be alive.
6245 			 * It means that we continue to communicate
6246 			 * to destinations, already remembered
6247 			 * to the moment of synflood.
6248 			 */
6249 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6250 				    rsk_ops->family);
6251 			goto drop_and_release;
6252 		}
6253 
6254 		isn = af_ops->init_seq(skb);
6255 	}
6256 	if (!dst) {
6257 		dst = af_ops->route_req(sk, &fl, req, NULL);
6258 		if (!dst)
6259 			goto drop_and_free;
6260 	}
6261 
6262 	tcp_ecn_create_request(req, skb, sk, dst);
6263 
6264 	if (want_cookie) {
6265 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6266 		req->cookie_ts = tmp_opt.tstamp_ok;
6267 		if (!tmp_opt.tstamp_ok)
6268 			inet_rsk(req)->ecn_ok = 0;
6269 	}
6270 
6271 	tcp_rsk(req)->snt_isn = isn;
6272 	tcp_rsk(req)->txhash = net_tx_rndhash();
6273 	tcp_openreq_init_rwin(req, sk, dst);
6274 	if (!want_cookie) {
6275 		tcp_reqsk_record_syn(sk, req, skb);
6276 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6277 	}
6278 	if (fastopen_sk) {
6279 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6280 				    &foc, false);
6281 		/* Add the child socket directly into the accept queue */
6282 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6283 		sk->sk_data_ready(sk);
6284 		bh_unlock_sock(fastopen_sk);
6285 		sock_put(fastopen_sk);
6286 	} else {
6287 		tcp_rsk(req)->tfo_listener = false;
6288 		if (!want_cookie)
6289 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6290 		af_ops->send_synack(sk, dst, &fl, req,
6291 				    &foc, !want_cookie);
6292 		if (want_cookie)
6293 			goto drop_and_free;
6294 	}
6295 	reqsk_put(req);
6296 	return 0;
6297 
6298 drop_and_release:
6299 	dst_release(dst);
6300 drop_and_free:
6301 	reqsk_free(req);
6302 drop:
6303 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6304 	return 0;
6305 }
6306 EXPORT_SYMBOL(tcp_conn_request);
6307