1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/module.h> 66 #include <linux/sysctl.h> 67 #include <linux/kernel.h> 68 #include <net/dst.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly = 2; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 109 110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 115 116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 118 119 /* Adapt the MSS value used to make delayed ack decision to the 120 * real world. 121 */ 122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 123 { 124 struct inet_connection_sock *icsk = inet_csk(sk); 125 const unsigned int lss = icsk->icsk_ack.last_seg_size; 126 unsigned int len; 127 128 icsk->icsk_ack.last_seg_size = 0; 129 130 /* skb->len may jitter because of SACKs, even if peer 131 * sends good full-sized frames. 132 */ 133 len = skb_shinfo(skb)->gso_size ? : skb->len; 134 if (len >= icsk->icsk_ack.rcv_mss) { 135 icsk->icsk_ack.rcv_mss = len; 136 } else { 137 /* Otherwise, we make more careful check taking into account, 138 * that SACKs block is variable. 139 * 140 * "len" is invariant segment length, including TCP header. 141 */ 142 len += skb->data - skb_transport_header(skb); 143 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 144 /* If PSH is not set, packet should be 145 * full sized, provided peer TCP is not badly broken. 146 * This observation (if it is correct 8)) allows 147 * to handle super-low mtu links fairly. 148 */ 149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 151 /* Subtract also invariant (if peer is RFC compliant), 152 * tcp header plus fixed timestamp option length. 153 * Resulting "len" is MSS free of SACK jitter. 154 */ 155 len -= tcp_sk(sk)->tcp_header_len; 156 icsk->icsk_ack.last_seg_size = len; 157 if (len == lss) { 158 icsk->icsk_ack.rcv_mss = len; 159 return; 160 } 161 } 162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 165 } 166 } 167 168 static void tcp_incr_quickack(struct sock *sk) 169 { 170 struct inet_connection_sock *icsk = inet_csk(sk); 171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 172 173 if (quickacks == 0) 174 quickacks = 2; 175 if (quickacks > icsk->icsk_ack.quick) 176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 177 } 178 179 void tcp_enter_quickack_mode(struct sock *sk) 180 { 181 struct inet_connection_sock *icsk = inet_csk(sk); 182 tcp_incr_quickack(sk); 183 icsk->icsk_ack.pingpong = 0; 184 icsk->icsk_ack.ato = TCP_ATO_MIN; 185 } 186 187 /* Send ACKs quickly, if "quick" count is not exhausted 188 * and the session is not interactive. 189 */ 190 191 static inline int tcp_in_quickack_mode(const struct sock *sk) 192 { 193 const struct inet_connection_sock *icsk = inet_csk(sk); 194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 195 } 196 197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 198 { 199 if (tp->ecn_flags & TCP_ECN_OK) 200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 201 } 202 203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 204 { 205 if (tcp_hdr(skb)->cwr) 206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 207 } 208 209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 210 { 211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 212 } 213 214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 215 { 216 if (tp->ecn_flags & TCP_ECN_OK) { 217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 219 /* Funny extension: if ECT is not set on a segment, 220 * it is surely retransmit. It is not in ECN RFC, 221 * but Linux follows this rule. */ 222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 223 tcp_enter_quickack_mode((struct sock *)tp); 224 } 225 } 226 227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 228 { 229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 230 tp->ecn_flags &= ~TCP_ECN_OK; 231 } 232 233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 234 { 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 236 tp->ecn_flags &= ~TCP_ECN_OK; 237 } 238 239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 240 { 241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 242 return 1; 243 return 0; 244 } 245 246 /* Buffer size and advertised window tuning. 247 * 248 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 249 */ 250 251 static void tcp_fixup_sndbuf(struct sock *sk) 252 { 253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 254 sizeof(struct sk_buff); 255 256 if (sk->sk_sndbuf < 3 * sndmem) 257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 258 } 259 260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 261 * 262 * All tcp_full_space() is split to two parts: "network" buffer, allocated 263 * forward and advertised in receiver window (tp->rcv_wnd) and 264 * "application buffer", required to isolate scheduling/application 265 * latencies from network. 266 * window_clamp is maximal advertised window. It can be less than 267 * tcp_full_space(), in this case tcp_full_space() - window_clamp 268 * is reserved for "application" buffer. The less window_clamp is 269 * the smoother our behaviour from viewpoint of network, but the lower 270 * throughput and the higher sensitivity of the connection to losses. 8) 271 * 272 * rcv_ssthresh is more strict window_clamp used at "slow start" 273 * phase to predict further behaviour of this connection. 274 * It is used for two goals: 275 * - to enforce header prediction at sender, even when application 276 * requires some significant "application buffer". It is check #1. 277 * - to prevent pruning of receive queue because of misprediction 278 * of receiver window. Check #2. 279 * 280 * The scheme does not work when sender sends good segments opening 281 * window and then starts to feed us spaghetti. But it should work 282 * in common situations. Otherwise, we have to rely on queue collapsing. 283 */ 284 285 /* Slow part of check#2. */ 286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 287 { 288 struct tcp_sock *tp = tcp_sk(sk); 289 /* Optimize this! */ 290 int truesize = tcp_win_from_space(skb->truesize) >> 1; 291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 292 293 while (tp->rcv_ssthresh <= window) { 294 if (truesize <= skb->len) 295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 296 297 truesize >>= 1; 298 window >>= 1; 299 } 300 return 0; 301 } 302 303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 304 { 305 struct tcp_sock *tp = tcp_sk(sk); 306 307 /* Check #1 */ 308 if (tp->rcv_ssthresh < tp->window_clamp && 309 (int)tp->rcv_ssthresh < tcp_space(sk) && 310 !tcp_memory_pressure) { 311 int incr; 312 313 /* Check #2. Increase window, if skb with such overhead 314 * will fit to rcvbuf in future. 315 */ 316 if (tcp_win_from_space(skb->truesize) <= skb->len) 317 incr = 2 * tp->advmss; 318 else 319 incr = __tcp_grow_window(sk, skb); 320 321 if (incr) { 322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 323 tp->window_clamp); 324 inet_csk(sk)->icsk_ack.quick |= 1; 325 } 326 } 327 } 328 329 /* 3. Tuning rcvbuf, when connection enters established state. */ 330 331 static void tcp_fixup_rcvbuf(struct sock *sk) 332 { 333 struct tcp_sock *tp = tcp_sk(sk); 334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 335 336 /* Try to select rcvbuf so that 4 mss-sized segments 337 * will fit to window and corresponding skbs will fit to our rcvbuf. 338 * (was 3; 4 is minimum to allow fast retransmit to work.) 339 */ 340 while (tcp_win_from_space(rcvmem) < tp->advmss) 341 rcvmem += 128; 342 if (sk->sk_rcvbuf < 4 * rcvmem) 343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 344 } 345 346 /* 4. Try to fixup all. It is made immediately after connection enters 347 * established state. 348 */ 349 static void tcp_init_buffer_space(struct sock *sk) 350 { 351 struct tcp_sock *tp = tcp_sk(sk); 352 int maxwin; 353 354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 355 tcp_fixup_rcvbuf(sk); 356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 357 tcp_fixup_sndbuf(sk); 358 359 tp->rcvq_space.space = tp->rcv_wnd; 360 361 maxwin = tcp_full_space(sk); 362 363 if (tp->window_clamp >= maxwin) { 364 tp->window_clamp = maxwin; 365 366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 367 tp->window_clamp = max(maxwin - 368 (maxwin >> sysctl_tcp_app_win), 369 4 * tp->advmss); 370 } 371 372 /* Force reservation of one segment. */ 373 if (sysctl_tcp_app_win && 374 tp->window_clamp > 2 * tp->advmss && 375 tp->window_clamp + tp->advmss > maxwin) 376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 377 378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 379 tp->snd_cwnd_stamp = tcp_time_stamp; 380 } 381 382 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 383 static void tcp_clamp_window(struct sock *sk) 384 { 385 struct tcp_sock *tp = tcp_sk(sk); 386 struct inet_connection_sock *icsk = inet_csk(sk); 387 388 icsk->icsk_ack.quick = 0; 389 390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 392 !tcp_memory_pressure && 393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 395 sysctl_tcp_rmem[2]); 396 } 397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 399 } 400 401 /* Initialize RCV_MSS value. 402 * RCV_MSS is an our guess about MSS used by the peer. 403 * We haven't any direct information about the MSS. 404 * It's better to underestimate the RCV_MSS rather than overestimate. 405 * Overestimations make us ACKing less frequently than needed. 406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 407 */ 408 void tcp_initialize_rcv_mss(struct sock *sk) 409 { 410 struct tcp_sock *tp = tcp_sk(sk); 411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 412 413 hint = min(hint, tp->rcv_wnd / 2); 414 hint = min(hint, TCP_MIN_RCVMSS); 415 hint = max(hint, TCP_MIN_MSS); 416 417 inet_csk(sk)->icsk_ack.rcv_mss = hint; 418 } 419 420 /* Receiver "autotuning" code. 421 * 422 * The algorithm for RTT estimation w/o timestamps is based on 423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 425 * 426 * More detail on this code can be found at 427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 428 * though this reference is out of date. A new paper 429 * is pending. 430 */ 431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 432 { 433 u32 new_sample = tp->rcv_rtt_est.rtt; 434 long m = sample; 435 436 if (m == 0) 437 m = 1; 438 439 if (new_sample != 0) { 440 /* If we sample in larger samples in the non-timestamp 441 * case, we could grossly overestimate the RTT especially 442 * with chatty applications or bulk transfer apps which 443 * are stalled on filesystem I/O. 444 * 445 * Also, since we are only going for a minimum in the 446 * non-timestamp case, we do not smooth things out 447 * else with timestamps disabled convergence takes too 448 * long. 449 */ 450 if (!win_dep) { 451 m -= (new_sample >> 3); 452 new_sample += m; 453 } else if (m < new_sample) 454 new_sample = m << 3; 455 } else { 456 /* No previous measure. */ 457 new_sample = m << 3; 458 } 459 460 if (tp->rcv_rtt_est.rtt != new_sample) 461 tp->rcv_rtt_est.rtt = new_sample; 462 } 463 464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 465 { 466 if (tp->rcv_rtt_est.time == 0) 467 goto new_measure; 468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 469 return; 470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 471 472 new_measure: 473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 474 tp->rcv_rtt_est.time = tcp_time_stamp; 475 } 476 477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 478 const struct sk_buff *skb) 479 { 480 struct tcp_sock *tp = tcp_sk(sk); 481 if (tp->rx_opt.rcv_tsecr && 482 (TCP_SKB_CB(skb)->end_seq - 483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 485 } 486 487 /* 488 * This function should be called every time data is copied to user space. 489 * It calculates the appropriate TCP receive buffer space. 490 */ 491 void tcp_rcv_space_adjust(struct sock *sk) 492 { 493 struct tcp_sock *tp = tcp_sk(sk); 494 int time; 495 int space; 496 497 if (tp->rcvq_space.time == 0) 498 goto new_measure; 499 500 time = tcp_time_stamp - tp->rcvq_space.time; 501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 502 return; 503 504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 505 506 space = max(tp->rcvq_space.space, space); 507 508 if (tp->rcvq_space.space != space) { 509 int rcvmem; 510 511 tp->rcvq_space.space = space; 512 513 if (sysctl_tcp_moderate_rcvbuf && 514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 515 int new_clamp = space; 516 517 /* Receive space grows, normalize in order to 518 * take into account packet headers and sk_buff 519 * structure overhead. 520 */ 521 space /= tp->advmss; 522 if (!space) 523 space = 1; 524 rcvmem = (tp->advmss + MAX_TCP_HEADER + 525 16 + sizeof(struct sk_buff)); 526 while (tcp_win_from_space(rcvmem) < tp->advmss) 527 rcvmem += 128; 528 space *= rcvmem; 529 space = min(space, sysctl_tcp_rmem[2]); 530 if (space > sk->sk_rcvbuf) { 531 sk->sk_rcvbuf = space; 532 533 /* Make the window clamp follow along. */ 534 tp->window_clamp = new_clamp; 535 } 536 } 537 } 538 539 new_measure: 540 tp->rcvq_space.seq = tp->copied_seq; 541 tp->rcvq_space.time = tcp_time_stamp; 542 } 543 544 /* There is something which you must keep in mind when you analyze the 545 * behavior of the tp->ato delayed ack timeout interval. When a 546 * connection starts up, we want to ack as quickly as possible. The 547 * problem is that "good" TCP's do slow start at the beginning of data 548 * transmission. The means that until we send the first few ACK's the 549 * sender will sit on his end and only queue most of his data, because 550 * he can only send snd_cwnd unacked packets at any given time. For 551 * each ACK we send, he increments snd_cwnd and transmits more of his 552 * queue. -DaveM 553 */ 554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 555 { 556 struct tcp_sock *tp = tcp_sk(sk); 557 struct inet_connection_sock *icsk = inet_csk(sk); 558 u32 now; 559 560 inet_csk_schedule_ack(sk); 561 562 tcp_measure_rcv_mss(sk, skb); 563 564 tcp_rcv_rtt_measure(tp); 565 566 now = tcp_time_stamp; 567 568 if (!icsk->icsk_ack.ato) { 569 /* The _first_ data packet received, initialize 570 * delayed ACK engine. 571 */ 572 tcp_incr_quickack(sk); 573 icsk->icsk_ack.ato = TCP_ATO_MIN; 574 } else { 575 int m = now - icsk->icsk_ack.lrcvtime; 576 577 if (m <= TCP_ATO_MIN / 2) { 578 /* The fastest case is the first. */ 579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 580 } else if (m < icsk->icsk_ack.ato) { 581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 582 if (icsk->icsk_ack.ato > icsk->icsk_rto) 583 icsk->icsk_ack.ato = icsk->icsk_rto; 584 } else if (m > icsk->icsk_rto) { 585 /* Too long gap. Apparently sender failed to 586 * restart window, so that we send ACKs quickly. 587 */ 588 tcp_incr_quickack(sk); 589 sk_mem_reclaim(sk); 590 } 591 } 592 icsk->icsk_ack.lrcvtime = now; 593 594 TCP_ECN_check_ce(tp, skb); 595 596 if (skb->len >= 128) 597 tcp_grow_window(sk, skb); 598 } 599 600 /* Called to compute a smoothed rtt estimate. The data fed to this 601 * routine either comes from timestamps, or from segments that were 602 * known _not_ to have been retransmitted [see Karn/Partridge 603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 604 * piece by Van Jacobson. 605 * NOTE: the next three routines used to be one big routine. 606 * To save cycles in the RFC 1323 implementation it was better to break 607 * it up into three procedures. -- erics 608 */ 609 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 610 { 611 struct tcp_sock *tp = tcp_sk(sk); 612 long m = mrtt; /* RTT */ 613 614 /* The following amusing code comes from Jacobson's 615 * article in SIGCOMM '88. Note that rtt and mdev 616 * are scaled versions of rtt and mean deviation. 617 * This is designed to be as fast as possible 618 * m stands for "measurement". 619 * 620 * On a 1990 paper the rto value is changed to: 621 * RTO = rtt + 4 * mdev 622 * 623 * Funny. This algorithm seems to be very broken. 624 * These formulae increase RTO, when it should be decreased, increase 625 * too slowly, when it should be increased quickly, decrease too quickly 626 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 627 * does not matter how to _calculate_ it. Seems, it was trap 628 * that VJ failed to avoid. 8) 629 */ 630 if (m == 0) 631 m = 1; 632 if (tp->srtt != 0) { 633 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 634 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 635 if (m < 0) { 636 m = -m; /* m is now abs(error) */ 637 m -= (tp->mdev >> 2); /* similar update on mdev */ 638 /* This is similar to one of Eifel findings. 639 * Eifel blocks mdev updates when rtt decreases. 640 * This solution is a bit different: we use finer gain 641 * for mdev in this case (alpha*beta). 642 * Like Eifel it also prevents growth of rto, 643 * but also it limits too fast rto decreases, 644 * happening in pure Eifel. 645 */ 646 if (m > 0) 647 m >>= 3; 648 } else { 649 m -= (tp->mdev >> 2); /* similar update on mdev */ 650 } 651 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 652 if (tp->mdev > tp->mdev_max) { 653 tp->mdev_max = tp->mdev; 654 if (tp->mdev_max > tp->rttvar) 655 tp->rttvar = tp->mdev_max; 656 } 657 if (after(tp->snd_una, tp->rtt_seq)) { 658 if (tp->mdev_max < tp->rttvar) 659 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 660 tp->rtt_seq = tp->snd_nxt; 661 tp->mdev_max = tcp_rto_min(sk); 662 } 663 } else { 664 /* no previous measure. */ 665 tp->srtt = m << 3; /* take the measured time to be rtt */ 666 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 667 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 668 tp->rtt_seq = tp->snd_nxt; 669 } 670 } 671 672 /* Calculate rto without backoff. This is the second half of Van Jacobson's 673 * routine referred to above. 674 */ 675 static inline void tcp_set_rto(struct sock *sk) 676 { 677 const struct tcp_sock *tp = tcp_sk(sk); 678 /* Old crap is replaced with new one. 8) 679 * 680 * More seriously: 681 * 1. If rtt variance happened to be less 50msec, it is hallucination. 682 * It cannot be less due to utterly erratic ACK generation made 683 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 684 * to do with delayed acks, because at cwnd>2 true delack timeout 685 * is invisible. Actually, Linux-2.4 also generates erratic 686 * ACKs in some circumstances. 687 */ 688 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 689 690 /* 2. Fixups made earlier cannot be right. 691 * If we do not estimate RTO correctly without them, 692 * all the algo is pure shit and should be replaced 693 * with correct one. It is exactly, which we pretend to do. 694 */ 695 696 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 697 * guarantees that rto is higher. 698 */ 699 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 700 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 701 } 702 703 /* Save metrics learned by this TCP session. 704 This function is called only, when TCP finishes successfully 705 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 706 */ 707 void tcp_update_metrics(struct sock *sk) 708 { 709 struct tcp_sock *tp = tcp_sk(sk); 710 struct dst_entry *dst = __sk_dst_get(sk); 711 712 if (sysctl_tcp_nometrics_save) 713 return; 714 715 dst_confirm(dst); 716 717 if (dst && (dst->flags & DST_HOST)) { 718 const struct inet_connection_sock *icsk = inet_csk(sk); 719 int m; 720 unsigned long rtt; 721 722 if (icsk->icsk_backoff || !tp->srtt) { 723 /* This session failed to estimate rtt. Why? 724 * Probably, no packets returned in time. 725 * Reset our results. 726 */ 727 if (!(dst_metric_locked(dst, RTAX_RTT))) 728 dst->metrics[RTAX_RTT - 1] = 0; 729 return; 730 } 731 732 rtt = dst_metric_rtt(dst, RTAX_RTT); 733 m = rtt - tp->srtt; 734 735 /* If newly calculated rtt larger than stored one, 736 * store new one. Otherwise, use EWMA. Remember, 737 * rtt overestimation is always better than underestimation. 738 */ 739 if (!(dst_metric_locked(dst, RTAX_RTT))) { 740 if (m <= 0) 741 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 742 else 743 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 744 } 745 746 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 747 unsigned long var; 748 if (m < 0) 749 m = -m; 750 751 /* Scale deviation to rttvar fixed point */ 752 m >>= 1; 753 if (m < tp->mdev) 754 m = tp->mdev; 755 756 var = dst_metric_rtt(dst, RTAX_RTTVAR); 757 if (m >= var) 758 var = m; 759 else 760 var -= (var - m) >> 2; 761 762 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 763 } 764 765 if (tp->snd_ssthresh >= 0xFFFF) { 766 /* Slow start still did not finish. */ 767 if (dst_metric(dst, RTAX_SSTHRESH) && 768 !dst_metric_locked(dst, RTAX_SSTHRESH) && 769 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 770 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 771 if (!dst_metric_locked(dst, RTAX_CWND) && 772 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 773 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 774 } else if (tp->snd_cwnd > tp->snd_ssthresh && 775 icsk->icsk_ca_state == TCP_CA_Open) { 776 /* Cong. avoidance phase, cwnd is reliable. */ 777 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 778 dst->metrics[RTAX_SSTHRESH-1] = 779 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 780 if (!dst_metric_locked(dst, RTAX_CWND)) 781 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1; 782 } else { 783 /* Else slow start did not finish, cwnd is non-sense, 784 ssthresh may be also invalid. 785 */ 786 if (!dst_metric_locked(dst, RTAX_CWND)) 787 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1; 788 if (dst_metric(dst, RTAX_SSTHRESH) && 789 !dst_metric_locked(dst, RTAX_SSTHRESH) && 790 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 791 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 792 } 793 794 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 795 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 796 tp->reordering != sysctl_tcp_reordering) 797 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 798 } 799 } 800 } 801 802 /* Numbers are taken from RFC3390. 803 * 804 * John Heffner states: 805 * 806 * The RFC specifies a window of no more than 4380 bytes 807 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 808 * is a bit misleading because they use a clamp at 4380 bytes 809 * rather than use a multiplier in the relevant range. 810 */ 811 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 812 { 813 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 814 815 if (!cwnd) { 816 if (tp->mss_cache > 1460) 817 cwnd = 2; 818 else 819 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 820 } 821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 822 } 823 824 /* Set slow start threshold and cwnd not falling to slow start */ 825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 826 { 827 struct tcp_sock *tp = tcp_sk(sk); 828 const struct inet_connection_sock *icsk = inet_csk(sk); 829 830 tp->prior_ssthresh = 0; 831 tp->bytes_acked = 0; 832 if (icsk->icsk_ca_state < TCP_CA_CWR) { 833 tp->undo_marker = 0; 834 if (set_ssthresh) 835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 836 tp->snd_cwnd = min(tp->snd_cwnd, 837 tcp_packets_in_flight(tp) + 1U); 838 tp->snd_cwnd_cnt = 0; 839 tp->high_seq = tp->snd_nxt; 840 tp->snd_cwnd_stamp = tcp_time_stamp; 841 TCP_ECN_queue_cwr(tp); 842 843 tcp_set_ca_state(sk, TCP_CA_CWR); 844 } 845 } 846 847 /* 848 * Packet counting of FACK is based on in-order assumptions, therefore TCP 849 * disables it when reordering is detected 850 */ 851 static void tcp_disable_fack(struct tcp_sock *tp) 852 { 853 /* RFC3517 uses different metric in lost marker => reset on change */ 854 if (tcp_is_fack(tp)) 855 tp->lost_skb_hint = NULL; 856 tp->rx_opt.sack_ok &= ~2; 857 } 858 859 /* Take a notice that peer is sending D-SACKs */ 860 static void tcp_dsack_seen(struct tcp_sock *tp) 861 { 862 tp->rx_opt.sack_ok |= 4; 863 } 864 865 /* Initialize metrics on socket. */ 866 867 static void tcp_init_metrics(struct sock *sk) 868 { 869 struct tcp_sock *tp = tcp_sk(sk); 870 struct dst_entry *dst = __sk_dst_get(sk); 871 872 if (dst == NULL) 873 goto reset; 874 875 dst_confirm(dst); 876 877 if (dst_metric_locked(dst, RTAX_CWND)) 878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 879 if (dst_metric(dst, RTAX_SSTHRESH)) { 880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 882 tp->snd_ssthresh = tp->snd_cwnd_clamp; 883 } 884 if (dst_metric(dst, RTAX_REORDERING) && 885 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 886 tcp_disable_fack(tp); 887 tp->reordering = dst_metric(dst, RTAX_REORDERING); 888 } 889 890 if (dst_metric(dst, RTAX_RTT) == 0) 891 goto reset; 892 893 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 894 goto reset; 895 896 /* Initial rtt is determined from SYN,SYN-ACK. 897 * The segment is small and rtt may appear much 898 * less than real one. Use per-dst memory 899 * to make it more realistic. 900 * 901 * A bit of theory. RTT is time passed after "normal" sized packet 902 * is sent until it is ACKed. In normal circumstances sending small 903 * packets force peer to delay ACKs and calculation is correct too. 904 * The algorithm is adaptive and, provided we follow specs, it 905 * NEVER underestimate RTT. BUT! If peer tries to make some clever 906 * tricks sort of "quick acks" for time long enough to decrease RTT 907 * to low value, and then abruptly stops to do it and starts to delay 908 * ACKs, wait for troubles. 909 */ 910 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 911 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 912 tp->rtt_seq = tp->snd_nxt; 913 } 914 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 915 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 916 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 917 } 918 tcp_set_rto(sk); 919 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 920 goto reset; 921 922 cwnd: 923 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 924 tp->snd_cwnd_stamp = tcp_time_stamp; 925 return; 926 927 reset: 928 /* Play conservative. If timestamps are not 929 * supported, TCP will fail to recalculate correct 930 * rtt, if initial rto is too small. FORGET ALL AND RESET! 931 */ 932 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 933 tp->srtt = 0; 934 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 935 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 936 } 937 goto cwnd; 938 } 939 940 static void tcp_update_reordering(struct sock *sk, const int metric, 941 const int ts) 942 { 943 struct tcp_sock *tp = tcp_sk(sk); 944 if (metric > tp->reordering) { 945 int mib_idx; 946 947 tp->reordering = min(TCP_MAX_REORDERING, metric); 948 949 /* This exciting event is worth to be remembered. 8) */ 950 if (ts) 951 mib_idx = LINUX_MIB_TCPTSREORDER; 952 else if (tcp_is_reno(tp)) 953 mib_idx = LINUX_MIB_TCPRENOREORDER; 954 else if (tcp_is_fack(tp)) 955 mib_idx = LINUX_MIB_TCPFACKREORDER; 956 else 957 mib_idx = LINUX_MIB_TCPSACKREORDER; 958 959 NET_INC_STATS_BH(sock_net(sk), mib_idx); 960 #if FASTRETRANS_DEBUG > 1 961 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 962 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 963 tp->reordering, 964 tp->fackets_out, 965 tp->sacked_out, 966 tp->undo_marker ? tp->undo_retrans : 0); 967 #endif 968 tcp_disable_fack(tp); 969 } 970 } 971 972 /* This must be called before lost_out is incremented */ 973 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 974 { 975 if ((tp->retransmit_skb_hint == NULL) || 976 before(TCP_SKB_CB(skb)->seq, 977 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 978 tp->retransmit_skb_hint = skb; 979 980 if (!tp->lost_out || 981 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 982 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 983 } 984 985 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 986 { 987 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 988 tcp_verify_retransmit_hint(tp, skb); 989 990 tp->lost_out += tcp_skb_pcount(skb); 991 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 992 } 993 } 994 995 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 996 struct sk_buff *skb) 997 { 998 tcp_verify_retransmit_hint(tp, skb); 999 1000 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1001 tp->lost_out += tcp_skb_pcount(skb); 1002 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1003 } 1004 } 1005 1006 /* This procedure tags the retransmission queue when SACKs arrive. 1007 * 1008 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1009 * Packets in queue with these bits set are counted in variables 1010 * sacked_out, retrans_out and lost_out, correspondingly. 1011 * 1012 * Valid combinations are: 1013 * Tag InFlight Description 1014 * 0 1 - orig segment is in flight. 1015 * S 0 - nothing flies, orig reached receiver. 1016 * L 0 - nothing flies, orig lost by net. 1017 * R 2 - both orig and retransmit are in flight. 1018 * L|R 1 - orig is lost, retransmit is in flight. 1019 * S|R 1 - orig reached receiver, retrans is still in flight. 1020 * (L|S|R is logically valid, it could occur when L|R is sacked, 1021 * but it is equivalent to plain S and code short-curcuits it to S. 1022 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1023 * 1024 * These 6 states form finite state machine, controlled by the following events: 1025 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1026 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1027 * 3. Loss detection event of one of three flavors: 1028 * A. Scoreboard estimator decided the packet is lost. 1029 * A'. Reno "three dupacks" marks head of queue lost. 1030 * A''. Its FACK modfication, head until snd.fack is lost. 1031 * B. SACK arrives sacking data transmitted after never retransmitted 1032 * hole was sent out. 1033 * C. SACK arrives sacking SND.NXT at the moment, when the 1034 * segment was retransmitted. 1035 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1036 * 1037 * It is pleasant to note, that state diagram turns out to be commutative, 1038 * so that we are allowed not to be bothered by order of our actions, 1039 * when multiple events arrive simultaneously. (see the function below). 1040 * 1041 * Reordering detection. 1042 * -------------------- 1043 * Reordering metric is maximal distance, which a packet can be displaced 1044 * in packet stream. With SACKs we can estimate it: 1045 * 1046 * 1. SACK fills old hole and the corresponding segment was not 1047 * ever retransmitted -> reordering. Alas, we cannot use it 1048 * when segment was retransmitted. 1049 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1050 * for retransmitted and already SACKed segment -> reordering.. 1051 * Both of these heuristics are not used in Loss state, when we cannot 1052 * account for retransmits accurately. 1053 * 1054 * SACK block validation. 1055 * ---------------------- 1056 * 1057 * SACK block range validation checks that the received SACK block fits to 1058 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1059 * Note that SND.UNA is not included to the range though being valid because 1060 * it means that the receiver is rather inconsistent with itself reporting 1061 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1062 * perfectly valid, however, in light of RFC2018 which explicitly states 1063 * that "SACK block MUST reflect the newest segment. Even if the newest 1064 * segment is going to be discarded ...", not that it looks very clever 1065 * in case of head skb. Due to potentional receiver driven attacks, we 1066 * choose to avoid immediate execution of a walk in write queue due to 1067 * reneging and defer head skb's loss recovery to standard loss recovery 1068 * procedure that will eventually trigger (nothing forbids us doing this). 1069 * 1070 * Implements also blockage to start_seq wrap-around. Problem lies in the 1071 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1072 * there's no guarantee that it will be before snd_nxt (n). The problem 1073 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1074 * wrap (s_w): 1075 * 1076 * <- outs wnd -> <- wrapzone -> 1077 * u e n u_w e_w s n_w 1078 * | | | | | | | 1079 * |<------------+------+----- TCP seqno space --------------+---------->| 1080 * ...-- <2^31 ->| |<--------... 1081 * ...---- >2^31 ------>| |<--------... 1082 * 1083 * Current code wouldn't be vulnerable but it's better still to discard such 1084 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1085 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1086 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1087 * equal to the ideal case (infinite seqno space without wrap caused issues). 1088 * 1089 * With D-SACK the lower bound is extended to cover sequence space below 1090 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1091 * again, D-SACK block must not to go across snd_una (for the same reason as 1092 * for the normal SACK blocks, explained above). But there all simplicity 1093 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1094 * fully below undo_marker they do not affect behavior in anyway and can 1095 * therefore be safely ignored. In rare cases (which are more or less 1096 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1097 * fragmentation and packet reordering past skb's retransmission. To consider 1098 * them correctly, the acceptable range must be extended even more though 1099 * the exact amount is rather hard to quantify. However, tp->max_window can 1100 * be used as an exaggerated estimate. 1101 */ 1102 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1103 u32 start_seq, u32 end_seq) 1104 { 1105 /* Too far in future, or reversed (interpretation is ambiguous) */ 1106 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1107 return 0; 1108 1109 /* Nasty start_seq wrap-around check (see comments above) */ 1110 if (!before(start_seq, tp->snd_nxt)) 1111 return 0; 1112 1113 /* In outstanding window? ...This is valid exit for D-SACKs too. 1114 * start_seq == snd_una is non-sensical (see comments above) 1115 */ 1116 if (after(start_seq, tp->snd_una)) 1117 return 1; 1118 1119 if (!is_dsack || !tp->undo_marker) 1120 return 0; 1121 1122 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1123 if (!after(end_seq, tp->snd_una)) 1124 return 0; 1125 1126 if (!before(start_seq, tp->undo_marker)) 1127 return 1; 1128 1129 /* Too old */ 1130 if (!after(end_seq, tp->undo_marker)) 1131 return 0; 1132 1133 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1134 * start_seq < undo_marker and end_seq >= undo_marker. 1135 */ 1136 return !before(start_seq, end_seq - tp->max_window); 1137 } 1138 1139 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1140 * Event "C". Later note: FACK people cheated me again 8), we have to account 1141 * for reordering! Ugly, but should help. 1142 * 1143 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1144 * less than what is now known to be received by the other end (derived from 1145 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1146 * retransmitted skbs to avoid some costly processing per ACKs. 1147 */ 1148 static void tcp_mark_lost_retrans(struct sock *sk) 1149 { 1150 const struct inet_connection_sock *icsk = inet_csk(sk); 1151 struct tcp_sock *tp = tcp_sk(sk); 1152 struct sk_buff *skb; 1153 int cnt = 0; 1154 u32 new_low_seq = tp->snd_nxt; 1155 u32 received_upto = tcp_highest_sack_seq(tp); 1156 1157 if (!tcp_is_fack(tp) || !tp->retrans_out || 1158 !after(received_upto, tp->lost_retrans_low) || 1159 icsk->icsk_ca_state != TCP_CA_Recovery) 1160 return; 1161 1162 tcp_for_write_queue(skb, sk) { 1163 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1164 1165 if (skb == tcp_send_head(sk)) 1166 break; 1167 if (cnt == tp->retrans_out) 1168 break; 1169 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1170 continue; 1171 1172 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1173 continue; 1174 1175 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1176 * constraint here (see above) but figuring out that at 1177 * least tp->reordering SACK blocks reside between ack_seq 1178 * and received_upto is not easy task to do cheaply with 1179 * the available datastructures. 1180 * 1181 * Whether FACK should check here for tp->reordering segs 1182 * in-between one could argue for either way (it would be 1183 * rather simple to implement as we could count fack_count 1184 * during the walk and do tp->fackets_out - fack_count). 1185 */ 1186 if (after(received_upto, ack_seq)) { 1187 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1188 tp->retrans_out -= tcp_skb_pcount(skb); 1189 1190 tcp_skb_mark_lost_uncond_verify(tp, skb); 1191 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1192 } else { 1193 if (before(ack_seq, new_low_seq)) 1194 new_low_seq = ack_seq; 1195 cnt += tcp_skb_pcount(skb); 1196 } 1197 } 1198 1199 if (tp->retrans_out) 1200 tp->lost_retrans_low = new_low_seq; 1201 } 1202 1203 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1204 struct tcp_sack_block_wire *sp, int num_sacks, 1205 u32 prior_snd_una) 1206 { 1207 struct tcp_sock *tp = tcp_sk(sk); 1208 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1209 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1210 int dup_sack = 0; 1211 1212 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1213 dup_sack = 1; 1214 tcp_dsack_seen(tp); 1215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1216 } else if (num_sacks > 1) { 1217 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1218 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1219 1220 if (!after(end_seq_0, end_seq_1) && 1221 !before(start_seq_0, start_seq_1)) { 1222 dup_sack = 1; 1223 tcp_dsack_seen(tp); 1224 NET_INC_STATS_BH(sock_net(sk), 1225 LINUX_MIB_TCPDSACKOFORECV); 1226 } 1227 } 1228 1229 /* D-SACK for already forgotten data... Do dumb counting. */ 1230 if (dup_sack && 1231 !after(end_seq_0, prior_snd_una) && 1232 after(end_seq_0, tp->undo_marker)) 1233 tp->undo_retrans--; 1234 1235 return dup_sack; 1236 } 1237 1238 struct tcp_sacktag_state { 1239 int reord; 1240 int fack_count; 1241 int flag; 1242 }; 1243 1244 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1245 * the incoming SACK may not exactly match but we can find smaller MSS 1246 * aligned portion of it that matches. Therefore we might need to fragment 1247 * which may fail and creates some hassle (caller must handle error case 1248 * returns). 1249 * 1250 * FIXME: this could be merged to shift decision code 1251 */ 1252 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1253 u32 start_seq, u32 end_seq) 1254 { 1255 int in_sack, err; 1256 unsigned int pkt_len; 1257 unsigned int mss; 1258 1259 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1260 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1261 1262 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1263 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1264 mss = tcp_skb_mss(skb); 1265 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1266 1267 if (!in_sack) { 1268 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1269 if (pkt_len < mss) 1270 pkt_len = mss; 1271 } else { 1272 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1273 if (pkt_len < mss) 1274 return -EINVAL; 1275 } 1276 1277 /* Round if necessary so that SACKs cover only full MSSes 1278 * and/or the remaining small portion (if present) 1279 */ 1280 if (pkt_len > mss) { 1281 unsigned int new_len = (pkt_len / mss) * mss; 1282 if (!in_sack && new_len < pkt_len) { 1283 new_len += mss; 1284 if (new_len > skb->len) 1285 return 0; 1286 } 1287 pkt_len = new_len; 1288 } 1289 err = tcp_fragment(sk, skb, pkt_len, mss); 1290 if (err < 0) 1291 return err; 1292 } 1293 1294 return in_sack; 1295 } 1296 1297 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1298 struct tcp_sacktag_state *state, 1299 int dup_sack, int pcount) 1300 { 1301 struct tcp_sock *tp = tcp_sk(sk); 1302 u8 sacked = TCP_SKB_CB(skb)->sacked; 1303 int fack_count = state->fack_count; 1304 1305 /* Account D-SACK for retransmitted packet. */ 1306 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1307 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1308 tp->undo_retrans--; 1309 if (sacked & TCPCB_SACKED_ACKED) 1310 state->reord = min(fack_count, state->reord); 1311 } 1312 1313 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1314 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1315 return sacked; 1316 1317 if (!(sacked & TCPCB_SACKED_ACKED)) { 1318 if (sacked & TCPCB_SACKED_RETRANS) { 1319 /* If the segment is not tagged as lost, 1320 * we do not clear RETRANS, believing 1321 * that retransmission is still in flight. 1322 */ 1323 if (sacked & TCPCB_LOST) { 1324 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1325 tp->lost_out -= pcount; 1326 tp->retrans_out -= pcount; 1327 } 1328 } else { 1329 if (!(sacked & TCPCB_RETRANS)) { 1330 /* New sack for not retransmitted frame, 1331 * which was in hole. It is reordering. 1332 */ 1333 if (before(TCP_SKB_CB(skb)->seq, 1334 tcp_highest_sack_seq(tp))) 1335 state->reord = min(fack_count, 1336 state->reord); 1337 1338 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1339 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1340 state->flag |= FLAG_ONLY_ORIG_SACKED; 1341 } 1342 1343 if (sacked & TCPCB_LOST) { 1344 sacked &= ~TCPCB_LOST; 1345 tp->lost_out -= pcount; 1346 } 1347 } 1348 1349 sacked |= TCPCB_SACKED_ACKED; 1350 state->flag |= FLAG_DATA_SACKED; 1351 tp->sacked_out += pcount; 1352 1353 fack_count += pcount; 1354 1355 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1356 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1357 before(TCP_SKB_CB(skb)->seq, 1358 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1359 tp->lost_cnt_hint += pcount; 1360 1361 if (fack_count > tp->fackets_out) 1362 tp->fackets_out = fack_count; 1363 } 1364 1365 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1366 * frames and clear it. undo_retrans is decreased above, L|R frames 1367 * are accounted above as well. 1368 */ 1369 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1370 sacked &= ~TCPCB_SACKED_RETRANS; 1371 tp->retrans_out -= pcount; 1372 } 1373 1374 return sacked; 1375 } 1376 1377 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1378 struct tcp_sacktag_state *state, 1379 unsigned int pcount, int shifted, int mss, 1380 int dup_sack) 1381 { 1382 struct tcp_sock *tp = tcp_sk(sk); 1383 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1384 1385 BUG_ON(!pcount); 1386 1387 /* Tweak before seqno plays */ 1388 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1389 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1390 tp->lost_cnt_hint += pcount; 1391 1392 TCP_SKB_CB(prev)->end_seq += shifted; 1393 TCP_SKB_CB(skb)->seq += shifted; 1394 1395 skb_shinfo(prev)->gso_segs += pcount; 1396 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1397 skb_shinfo(skb)->gso_segs -= pcount; 1398 1399 /* When we're adding to gso_segs == 1, gso_size will be zero, 1400 * in theory this shouldn't be necessary but as long as DSACK 1401 * code can come after this skb later on it's better to keep 1402 * setting gso_size to something. 1403 */ 1404 if (!skb_shinfo(prev)->gso_size) { 1405 skb_shinfo(prev)->gso_size = mss; 1406 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1407 } 1408 1409 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1410 if (skb_shinfo(skb)->gso_segs <= 1) { 1411 skb_shinfo(skb)->gso_size = 0; 1412 skb_shinfo(skb)->gso_type = 0; 1413 } 1414 1415 /* We discard results */ 1416 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1417 1418 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1419 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1420 1421 if (skb->len > 0) { 1422 BUG_ON(!tcp_skb_pcount(skb)); 1423 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1424 return 0; 1425 } 1426 1427 /* Whole SKB was eaten :-) */ 1428 1429 if (skb == tp->retransmit_skb_hint) 1430 tp->retransmit_skb_hint = prev; 1431 if (skb == tp->scoreboard_skb_hint) 1432 tp->scoreboard_skb_hint = prev; 1433 if (skb == tp->lost_skb_hint) { 1434 tp->lost_skb_hint = prev; 1435 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1436 } 1437 1438 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1439 if (skb == tcp_highest_sack(sk)) 1440 tcp_advance_highest_sack(sk, skb); 1441 1442 tcp_unlink_write_queue(skb, sk); 1443 sk_wmem_free_skb(sk, skb); 1444 1445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1446 1447 return 1; 1448 } 1449 1450 /* I wish gso_size would have a bit more sane initialization than 1451 * something-or-zero which complicates things 1452 */ 1453 static int tcp_skb_seglen(struct sk_buff *skb) 1454 { 1455 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1456 } 1457 1458 /* Shifting pages past head area doesn't work */ 1459 static int skb_can_shift(struct sk_buff *skb) 1460 { 1461 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1462 } 1463 1464 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1465 * skb. 1466 */ 1467 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1468 struct tcp_sacktag_state *state, 1469 u32 start_seq, u32 end_seq, 1470 int dup_sack) 1471 { 1472 struct tcp_sock *tp = tcp_sk(sk); 1473 struct sk_buff *prev; 1474 int mss; 1475 int pcount = 0; 1476 int len; 1477 int in_sack; 1478 1479 if (!sk_can_gso(sk)) 1480 goto fallback; 1481 1482 /* Normally R but no L won't result in plain S */ 1483 if (!dup_sack && 1484 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1485 goto fallback; 1486 if (!skb_can_shift(skb)) 1487 goto fallback; 1488 /* This frame is about to be dropped (was ACKed). */ 1489 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1490 goto fallback; 1491 1492 /* Can only happen with delayed DSACK + discard craziness */ 1493 if (unlikely(skb == tcp_write_queue_head(sk))) 1494 goto fallback; 1495 prev = tcp_write_queue_prev(sk, skb); 1496 1497 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1498 goto fallback; 1499 1500 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1501 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1502 1503 if (in_sack) { 1504 len = skb->len; 1505 pcount = tcp_skb_pcount(skb); 1506 mss = tcp_skb_seglen(skb); 1507 1508 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1509 * drop this restriction as unnecessary 1510 */ 1511 if (mss != tcp_skb_seglen(prev)) 1512 goto fallback; 1513 } else { 1514 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1515 goto noop; 1516 /* CHECKME: This is non-MSS split case only?, this will 1517 * cause skipped skbs due to advancing loop btw, original 1518 * has that feature too 1519 */ 1520 if (tcp_skb_pcount(skb) <= 1) 1521 goto noop; 1522 1523 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1524 if (!in_sack) { 1525 /* TODO: head merge to next could be attempted here 1526 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1527 * though it might not be worth of the additional hassle 1528 * 1529 * ...we can probably just fallback to what was done 1530 * previously. We could try merging non-SACKed ones 1531 * as well but it probably isn't going to buy off 1532 * because later SACKs might again split them, and 1533 * it would make skb timestamp tracking considerably 1534 * harder problem. 1535 */ 1536 goto fallback; 1537 } 1538 1539 len = end_seq - TCP_SKB_CB(skb)->seq; 1540 BUG_ON(len < 0); 1541 BUG_ON(len > skb->len); 1542 1543 /* MSS boundaries should be honoured or else pcount will 1544 * severely break even though it makes things bit trickier. 1545 * Optimize common case to avoid most of the divides 1546 */ 1547 mss = tcp_skb_mss(skb); 1548 1549 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1550 * drop this restriction as unnecessary 1551 */ 1552 if (mss != tcp_skb_seglen(prev)) 1553 goto fallback; 1554 1555 if (len == mss) { 1556 pcount = 1; 1557 } else if (len < mss) { 1558 goto noop; 1559 } else { 1560 pcount = len / mss; 1561 len = pcount * mss; 1562 } 1563 } 1564 1565 if (!skb_shift(prev, skb, len)) 1566 goto fallback; 1567 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1568 goto out; 1569 1570 /* Hole filled allows collapsing with the next as well, this is very 1571 * useful when hole on every nth skb pattern happens 1572 */ 1573 if (prev == tcp_write_queue_tail(sk)) 1574 goto out; 1575 skb = tcp_write_queue_next(sk, prev); 1576 1577 if (!skb_can_shift(skb) || 1578 (skb == tcp_send_head(sk)) || 1579 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1580 (mss != tcp_skb_seglen(skb))) 1581 goto out; 1582 1583 len = skb->len; 1584 if (skb_shift(prev, skb, len)) { 1585 pcount += tcp_skb_pcount(skb); 1586 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1587 } 1588 1589 out: 1590 state->fack_count += pcount; 1591 return prev; 1592 1593 noop: 1594 return skb; 1595 1596 fallback: 1597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1598 return NULL; 1599 } 1600 1601 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1602 struct tcp_sack_block *next_dup, 1603 struct tcp_sacktag_state *state, 1604 u32 start_seq, u32 end_seq, 1605 int dup_sack_in) 1606 { 1607 struct tcp_sock *tp = tcp_sk(sk); 1608 struct sk_buff *tmp; 1609 1610 tcp_for_write_queue_from(skb, sk) { 1611 int in_sack = 0; 1612 int dup_sack = dup_sack_in; 1613 1614 if (skb == tcp_send_head(sk)) 1615 break; 1616 1617 /* queue is in-order => we can short-circuit the walk early */ 1618 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1619 break; 1620 1621 if ((next_dup != NULL) && 1622 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1623 in_sack = tcp_match_skb_to_sack(sk, skb, 1624 next_dup->start_seq, 1625 next_dup->end_seq); 1626 if (in_sack > 0) 1627 dup_sack = 1; 1628 } 1629 1630 /* skb reference here is a bit tricky to get right, since 1631 * shifting can eat and free both this skb and the next, 1632 * so not even _safe variant of the loop is enough. 1633 */ 1634 if (in_sack <= 0) { 1635 tmp = tcp_shift_skb_data(sk, skb, state, 1636 start_seq, end_seq, dup_sack); 1637 if (tmp != NULL) { 1638 if (tmp != skb) { 1639 skb = tmp; 1640 continue; 1641 } 1642 1643 in_sack = 0; 1644 } else { 1645 in_sack = tcp_match_skb_to_sack(sk, skb, 1646 start_seq, 1647 end_seq); 1648 } 1649 } 1650 1651 if (unlikely(in_sack < 0)) 1652 break; 1653 1654 if (in_sack) { 1655 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1656 state, 1657 dup_sack, 1658 tcp_skb_pcount(skb)); 1659 1660 if (!before(TCP_SKB_CB(skb)->seq, 1661 tcp_highest_sack_seq(tp))) 1662 tcp_advance_highest_sack(sk, skb); 1663 } 1664 1665 state->fack_count += tcp_skb_pcount(skb); 1666 } 1667 return skb; 1668 } 1669 1670 /* Avoid all extra work that is being done by sacktag while walking in 1671 * a normal way 1672 */ 1673 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1674 struct tcp_sacktag_state *state, 1675 u32 skip_to_seq) 1676 { 1677 tcp_for_write_queue_from(skb, sk) { 1678 if (skb == tcp_send_head(sk)) 1679 break; 1680 1681 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1682 break; 1683 1684 state->fack_count += tcp_skb_pcount(skb); 1685 } 1686 return skb; 1687 } 1688 1689 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1690 struct sock *sk, 1691 struct tcp_sack_block *next_dup, 1692 struct tcp_sacktag_state *state, 1693 u32 skip_to_seq) 1694 { 1695 if (next_dup == NULL) 1696 return skb; 1697 1698 if (before(next_dup->start_seq, skip_to_seq)) { 1699 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1700 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1701 next_dup->start_seq, next_dup->end_seq, 1702 1); 1703 } 1704 1705 return skb; 1706 } 1707 1708 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1709 { 1710 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1711 } 1712 1713 static int 1714 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1715 u32 prior_snd_una) 1716 { 1717 const struct inet_connection_sock *icsk = inet_csk(sk); 1718 struct tcp_sock *tp = tcp_sk(sk); 1719 unsigned char *ptr = (skb_transport_header(ack_skb) + 1720 TCP_SKB_CB(ack_skb)->sacked); 1721 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1722 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1723 struct tcp_sack_block *cache; 1724 struct tcp_sacktag_state state; 1725 struct sk_buff *skb; 1726 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1727 int used_sacks; 1728 int found_dup_sack = 0; 1729 int i, j; 1730 int first_sack_index; 1731 1732 state.flag = 0; 1733 state.reord = tp->packets_out; 1734 1735 if (!tp->sacked_out) { 1736 if (WARN_ON(tp->fackets_out)) 1737 tp->fackets_out = 0; 1738 tcp_highest_sack_reset(sk); 1739 } 1740 1741 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1742 num_sacks, prior_snd_una); 1743 if (found_dup_sack) 1744 state.flag |= FLAG_DSACKING_ACK; 1745 1746 /* Eliminate too old ACKs, but take into 1747 * account more or less fresh ones, they can 1748 * contain valid SACK info. 1749 */ 1750 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1751 return 0; 1752 1753 if (!tp->packets_out) 1754 goto out; 1755 1756 used_sacks = 0; 1757 first_sack_index = 0; 1758 for (i = 0; i < num_sacks; i++) { 1759 int dup_sack = !i && found_dup_sack; 1760 1761 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1762 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1763 1764 if (!tcp_is_sackblock_valid(tp, dup_sack, 1765 sp[used_sacks].start_seq, 1766 sp[used_sacks].end_seq)) { 1767 int mib_idx; 1768 1769 if (dup_sack) { 1770 if (!tp->undo_marker) 1771 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1772 else 1773 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1774 } else { 1775 /* Don't count olds caused by ACK reordering */ 1776 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1777 !after(sp[used_sacks].end_seq, tp->snd_una)) 1778 continue; 1779 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1780 } 1781 1782 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1783 if (i == 0) 1784 first_sack_index = -1; 1785 continue; 1786 } 1787 1788 /* Ignore very old stuff early */ 1789 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1790 continue; 1791 1792 used_sacks++; 1793 } 1794 1795 /* order SACK blocks to allow in order walk of the retrans queue */ 1796 for (i = used_sacks - 1; i > 0; i--) { 1797 for (j = 0; j < i; j++) { 1798 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1799 swap(sp[j], sp[j + 1]); 1800 1801 /* Track where the first SACK block goes to */ 1802 if (j == first_sack_index) 1803 first_sack_index = j + 1; 1804 } 1805 } 1806 } 1807 1808 skb = tcp_write_queue_head(sk); 1809 state.fack_count = 0; 1810 i = 0; 1811 1812 if (!tp->sacked_out) { 1813 /* It's already past, so skip checking against it */ 1814 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1815 } else { 1816 cache = tp->recv_sack_cache; 1817 /* Skip empty blocks in at head of the cache */ 1818 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1819 !cache->end_seq) 1820 cache++; 1821 } 1822 1823 while (i < used_sacks) { 1824 u32 start_seq = sp[i].start_seq; 1825 u32 end_seq = sp[i].end_seq; 1826 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1827 struct tcp_sack_block *next_dup = NULL; 1828 1829 if (found_dup_sack && ((i + 1) == first_sack_index)) 1830 next_dup = &sp[i + 1]; 1831 1832 /* Event "B" in the comment above. */ 1833 if (after(end_seq, tp->high_seq)) 1834 state.flag |= FLAG_DATA_LOST; 1835 1836 /* Skip too early cached blocks */ 1837 while (tcp_sack_cache_ok(tp, cache) && 1838 !before(start_seq, cache->end_seq)) 1839 cache++; 1840 1841 /* Can skip some work by looking recv_sack_cache? */ 1842 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1843 after(end_seq, cache->start_seq)) { 1844 1845 /* Head todo? */ 1846 if (before(start_seq, cache->start_seq)) { 1847 skb = tcp_sacktag_skip(skb, sk, &state, 1848 start_seq); 1849 skb = tcp_sacktag_walk(skb, sk, next_dup, 1850 &state, 1851 start_seq, 1852 cache->start_seq, 1853 dup_sack); 1854 } 1855 1856 /* Rest of the block already fully processed? */ 1857 if (!after(end_seq, cache->end_seq)) 1858 goto advance_sp; 1859 1860 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1861 &state, 1862 cache->end_seq); 1863 1864 /* ...tail remains todo... */ 1865 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1866 /* ...but better entrypoint exists! */ 1867 skb = tcp_highest_sack(sk); 1868 if (skb == NULL) 1869 break; 1870 state.fack_count = tp->fackets_out; 1871 cache++; 1872 goto walk; 1873 } 1874 1875 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1876 /* Check overlap against next cached too (past this one already) */ 1877 cache++; 1878 continue; 1879 } 1880 1881 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1882 skb = tcp_highest_sack(sk); 1883 if (skb == NULL) 1884 break; 1885 state.fack_count = tp->fackets_out; 1886 } 1887 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1888 1889 walk: 1890 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1891 start_seq, end_seq, dup_sack); 1892 1893 advance_sp: 1894 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1895 * due to in-order walk 1896 */ 1897 if (after(end_seq, tp->frto_highmark)) 1898 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1899 1900 i++; 1901 } 1902 1903 /* Clear the head of the cache sack blocks so we can skip it next time */ 1904 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1905 tp->recv_sack_cache[i].start_seq = 0; 1906 tp->recv_sack_cache[i].end_seq = 0; 1907 } 1908 for (j = 0; j < used_sacks; j++) 1909 tp->recv_sack_cache[i++] = sp[j]; 1910 1911 tcp_mark_lost_retrans(sk); 1912 1913 tcp_verify_left_out(tp); 1914 1915 if ((state.reord < tp->fackets_out) && 1916 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1917 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1918 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1919 1920 out: 1921 1922 #if FASTRETRANS_DEBUG > 0 1923 WARN_ON((int)tp->sacked_out < 0); 1924 WARN_ON((int)tp->lost_out < 0); 1925 WARN_ON((int)tp->retrans_out < 0); 1926 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1927 #endif 1928 return state.flag; 1929 } 1930 1931 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1932 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1933 */ 1934 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1935 { 1936 u32 holes; 1937 1938 holes = max(tp->lost_out, 1U); 1939 holes = min(holes, tp->packets_out); 1940 1941 if ((tp->sacked_out + holes) > tp->packets_out) { 1942 tp->sacked_out = tp->packets_out - holes; 1943 return 1; 1944 } 1945 return 0; 1946 } 1947 1948 /* If we receive more dupacks than we expected counting segments 1949 * in assumption of absent reordering, interpret this as reordering. 1950 * The only another reason could be bug in receiver TCP. 1951 */ 1952 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1953 { 1954 struct tcp_sock *tp = tcp_sk(sk); 1955 if (tcp_limit_reno_sacked(tp)) 1956 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1957 } 1958 1959 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1960 1961 static void tcp_add_reno_sack(struct sock *sk) 1962 { 1963 struct tcp_sock *tp = tcp_sk(sk); 1964 tp->sacked_out++; 1965 tcp_check_reno_reordering(sk, 0); 1966 tcp_verify_left_out(tp); 1967 } 1968 1969 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1970 1971 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1972 { 1973 struct tcp_sock *tp = tcp_sk(sk); 1974 1975 if (acked > 0) { 1976 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1977 if (acked - 1 >= tp->sacked_out) 1978 tp->sacked_out = 0; 1979 else 1980 tp->sacked_out -= acked - 1; 1981 } 1982 tcp_check_reno_reordering(sk, acked); 1983 tcp_verify_left_out(tp); 1984 } 1985 1986 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1987 { 1988 tp->sacked_out = 0; 1989 } 1990 1991 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1992 { 1993 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1994 } 1995 1996 /* F-RTO can only be used if TCP has never retransmitted anything other than 1997 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1998 */ 1999 int tcp_use_frto(struct sock *sk) 2000 { 2001 const struct tcp_sock *tp = tcp_sk(sk); 2002 const struct inet_connection_sock *icsk = inet_csk(sk); 2003 struct sk_buff *skb; 2004 2005 if (!sysctl_tcp_frto) 2006 return 0; 2007 2008 /* MTU probe and F-RTO won't really play nicely along currently */ 2009 if (icsk->icsk_mtup.probe_size) 2010 return 0; 2011 2012 if (tcp_is_sackfrto(tp)) 2013 return 1; 2014 2015 /* Avoid expensive walking of rexmit queue if possible */ 2016 if (tp->retrans_out > 1) 2017 return 0; 2018 2019 skb = tcp_write_queue_head(sk); 2020 if (tcp_skb_is_last(sk, skb)) 2021 return 1; 2022 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2023 tcp_for_write_queue_from(skb, sk) { 2024 if (skb == tcp_send_head(sk)) 2025 break; 2026 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2027 return 0; 2028 /* Short-circuit when first non-SACKed skb has been checked */ 2029 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2030 break; 2031 } 2032 return 1; 2033 } 2034 2035 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2036 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2037 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2038 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2039 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2040 * bits are handled if the Loss state is really to be entered (in 2041 * tcp_enter_frto_loss). 2042 * 2043 * Do like tcp_enter_loss() would; when RTO expires the second time it 2044 * does: 2045 * "Reduce ssthresh if it has not yet been made inside this window." 2046 */ 2047 void tcp_enter_frto(struct sock *sk) 2048 { 2049 const struct inet_connection_sock *icsk = inet_csk(sk); 2050 struct tcp_sock *tp = tcp_sk(sk); 2051 struct sk_buff *skb; 2052 2053 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2054 tp->snd_una == tp->high_seq || 2055 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2056 !icsk->icsk_retransmits)) { 2057 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2058 /* Our state is too optimistic in ssthresh() call because cwnd 2059 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2060 * recovery has not yet completed. Pattern would be this: RTO, 2061 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2062 * up here twice). 2063 * RFC4138 should be more specific on what to do, even though 2064 * RTO is quite unlikely to occur after the first Cumulative ACK 2065 * due to back-off and complexity of triggering events ... 2066 */ 2067 if (tp->frto_counter) { 2068 u32 stored_cwnd; 2069 stored_cwnd = tp->snd_cwnd; 2070 tp->snd_cwnd = 2; 2071 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2072 tp->snd_cwnd = stored_cwnd; 2073 } else { 2074 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2075 } 2076 /* ... in theory, cong.control module could do "any tricks" in 2077 * ssthresh(), which means that ca_state, lost bits and lost_out 2078 * counter would have to be faked before the call occurs. We 2079 * consider that too expensive, unlikely and hacky, so modules 2080 * using these in ssthresh() must deal these incompatibility 2081 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2082 */ 2083 tcp_ca_event(sk, CA_EVENT_FRTO); 2084 } 2085 2086 tp->undo_marker = tp->snd_una; 2087 tp->undo_retrans = 0; 2088 2089 skb = tcp_write_queue_head(sk); 2090 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2091 tp->undo_marker = 0; 2092 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2093 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2094 tp->retrans_out -= tcp_skb_pcount(skb); 2095 } 2096 tcp_verify_left_out(tp); 2097 2098 /* Too bad if TCP was application limited */ 2099 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2100 2101 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2102 * The last condition is necessary at least in tp->frto_counter case. 2103 */ 2104 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2105 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2106 after(tp->high_seq, tp->snd_una)) { 2107 tp->frto_highmark = tp->high_seq; 2108 } else { 2109 tp->frto_highmark = tp->snd_nxt; 2110 } 2111 tcp_set_ca_state(sk, TCP_CA_Disorder); 2112 tp->high_seq = tp->snd_nxt; 2113 tp->frto_counter = 1; 2114 } 2115 2116 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2117 * which indicates that we should follow the traditional RTO recovery, 2118 * i.e. mark everything lost and do go-back-N retransmission. 2119 */ 2120 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2121 { 2122 struct tcp_sock *tp = tcp_sk(sk); 2123 struct sk_buff *skb; 2124 2125 tp->lost_out = 0; 2126 tp->retrans_out = 0; 2127 if (tcp_is_reno(tp)) 2128 tcp_reset_reno_sack(tp); 2129 2130 tcp_for_write_queue(skb, sk) { 2131 if (skb == tcp_send_head(sk)) 2132 break; 2133 2134 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2135 /* 2136 * Count the retransmission made on RTO correctly (only when 2137 * waiting for the first ACK and did not get it)... 2138 */ 2139 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2140 /* For some reason this R-bit might get cleared? */ 2141 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2142 tp->retrans_out += tcp_skb_pcount(skb); 2143 /* ...enter this if branch just for the first segment */ 2144 flag |= FLAG_DATA_ACKED; 2145 } else { 2146 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2147 tp->undo_marker = 0; 2148 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2149 } 2150 2151 /* Marking forward transmissions that were made after RTO lost 2152 * can cause unnecessary retransmissions in some scenarios, 2153 * SACK blocks will mitigate that in some but not in all cases. 2154 * We used to not mark them but it was causing break-ups with 2155 * receivers that do only in-order receival. 2156 * 2157 * TODO: we could detect presence of such receiver and select 2158 * different behavior per flow. 2159 */ 2160 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2161 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2162 tp->lost_out += tcp_skb_pcount(skb); 2163 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2164 } 2165 } 2166 tcp_verify_left_out(tp); 2167 2168 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2169 tp->snd_cwnd_cnt = 0; 2170 tp->snd_cwnd_stamp = tcp_time_stamp; 2171 tp->frto_counter = 0; 2172 tp->bytes_acked = 0; 2173 2174 tp->reordering = min_t(unsigned int, tp->reordering, 2175 sysctl_tcp_reordering); 2176 tcp_set_ca_state(sk, TCP_CA_Loss); 2177 tp->high_seq = tp->snd_nxt; 2178 TCP_ECN_queue_cwr(tp); 2179 2180 tcp_clear_all_retrans_hints(tp); 2181 } 2182 2183 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2184 { 2185 tp->retrans_out = 0; 2186 tp->lost_out = 0; 2187 2188 tp->undo_marker = 0; 2189 tp->undo_retrans = 0; 2190 } 2191 2192 void tcp_clear_retrans(struct tcp_sock *tp) 2193 { 2194 tcp_clear_retrans_partial(tp); 2195 2196 tp->fackets_out = 0; 2197 tp->sacked_out = 0; 2198 } 2199 2200 /* Enter Loss state. If "how" is not zero, forget all SACK information 2201 * and reset tags completely, otherwise preserve SACKs. If receiver 2202 * dropped its ofo queue, we will know this due to reneging detection. 2203 */ 2204 void tcp_enter_loss(struct sock *sk, int how) 2205 { 2206 const struct inet_connection_sock *icsk = inet_csk(sk); 2207 struct tcp_sock *tp = tcp_sk(sk); 2208 struct sk_buff *skb; 2209 2210 /* Reduce ssthresh if it has not yet been made inside this window. */ 2211 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2212 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2213 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2214 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2215 tcp_ca_event(sk, CA_EVENT_LOSS); 2216 } 2217 tp->snd_cwnd = 1; 2218 tp->snd_cwnd_cnt = 0; 2219 tp->snd_cwnd_stamp = tcp_time_stamp; 2220 2221 tp->bytes_acked = 0; 2222 tcp_clear_retrans_partial(tp); 2223 2224 if (tcp_is_reno(tp)) 2225 tcp_reset_reno_sack(tp); 2226 2227 if (!how) { 2228 /* Push undo marker, if it was plain RTO and nothing 2229 * was retransmitted. */ 2230 tp->undo_marker = tp->snd_una; 2231 } else { 2232 tp->sacked_out = 0; 2233 tp->fackets_out = 0; 2234 } 2235 tcp_clear_all_retrans_hints(tp); 2236 2237 tcp_for_write_queue(skb, sk) { 2238 if (skb == tcp_send_head(sk)) 2239 break; 2240 2241 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2242 tp->undo_marker = 0; 2243 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2244 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2245 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2246 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2247 tp->lost_out += tcp_skb_pcount(skb); 2248 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2249 } 2250 } 2251 tcp_verify_left_out(tp); 2252 2253 tp->reordering = min_t(unsigned int, tp->reordering, 2254 sysctl_tcp_reordering); 2255 tcp_set_ca_state(sk, TCP_CA_Loss); 2256 tp->high_seq = tp->snd_nxt; 2257 TCP_ECN_queue_cwr(tp); 2258 /* Abort F-RTO algorithm if one is in progress */ 2259 tp->frto_counter = 0; 2260 } 2261 2262 /* If ACK arrived pointing to a remembered SACK, it means that our 2263 * remembered SACKs do not reflect real state of receiver i.e. 2264 * receiver _host_ is heavily congested (or buggy). 2265 * 2266 * Do processing similar to RTO timeout. 2267 */ 2268 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2269 { 2270 if (flag & FLAG_SACK_RENEGING) { 2271 struct inet_connection_sock *icsk = inet_csk(sk); 2272 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2273 2274 tcp_enter_loss(sk, 1); 2275 icsk->icsk_retransmits++; 2276 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2277 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2278 icsk->icsk_rto, TCP_RTO_MAX); 2279 return 1; 2280 } 2281 return 0; 2282 } 2283 2284 static inline int tcp_fackets_out(struct tcp_sock *tp) 2285 { 2286 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2287 } 2288 2289 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2290 * counter when SACK is enabled (without SACK, sacked_out is used for 2291 * that purpose). 2292 * 2293 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2294 * segments up to the highest received SACK block so far and holes in 2295 * between them. 2296 * 2297 * With reordering, holes may still be in flight, so RFC3517 recovery 2298 * uses pure sacked_out (total number of SACKed segments) even though 2299 * it violates the RFC that uses duplicate ACKs, often these are equal 2300 * but when e.g. out-of-window ACKs or packet duplication occurs, 2301 * they differ. Since neither occurs due to loss, TCP should really 2302 * ignore them. 2303 */ 2304 static inline int tcp_dupack_heurestics(struct tcp_sock *tp) 2305 { 2306 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2307 } 2308 2309 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2310 { 2311 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 2312 } 2313 2314 static inline int tcp_head_timedout(struct sock *sk) 2315 { 2316 struct tcp_sock *tp = tcp_sk(sk); 2317 2318 return tp->packets_out && 2319 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2320 } 2321 2322 /* Linux NewReno/SACK/FACK/ECN state machine. 2323 * -------------------------------------- 2324 * 2325 * "Open" Normal state, no dubious events, fast path. 2326 * "Disorder" In all the respects it is "Open", 2327 * but requires a bit more attention. It is entered when 2328 * we see some SACKs or dupacks. It is split of "Open" 2329 * mainly to move some processing from fast path to slow one. 2330 * "CWR" CWND was reduced due to some Congestion Notification event. 2331 * It can be ECN, ICMP source quench, local device congestion. 2332 * "Recovery" CWND was reduced, we are fast-retransmitting. 2333 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2334 * 2335 * tcp_fastretrans_alert() is entered: 2336 * - each incoming ACK, if state is not "Open" 2337 * - when arrived ACK is unusual, namely: 2338 * * SACK 2339 * * Duplicate ACK. 2340 * * ECN ECE. 2341 * 2342 * Counting packets in flight is pretty simple. 2343 * 2344 * in_flight = packets_out - left_out + retrans_out 2345 * 2346 * packets_out is SND.NXT-SND.UNA counted in packets. 2347 * 2348 * retrans_out is number of retransmitted segments. 2349 * 2350 * left_out is number of segments left network, but not ACKed yet. 2351 * 2352 * left_out = sacked_out + lost_out 2353 * 2354 * sacked_out: Packets, which arrived to receiver out of order 2355 * and hence not ACKed. With SACKs this number is simply 2356 * amount of SACKed data. Even without SACKs 2357 * it is easy to give pretty reliable estimate of this number, 2358 * counting duplicate ACKs. 2359 * 2360 * lost_out: Packets lost by network. TCP has no explicit 2361 * "loss notification" feedback from network (for now). 2362 * It means that this number can be only _guessed_. 2363 * Actually, it is the heuristics to predict lossage that 2364 * distinguishes different algorithms. 2365 * 2366 * F.e. after RTO, when all the queue is considered as lost, 2367 * lost_out = packets_out and in_flight = retrans_out. 2368 * 2369 * Essentially, we have now two algorithms counting 2370 * lost packets. 2371 * 2372 * FACK: It is the simplest heuristics. As soon as we decided 2373 * that something is lost, we decide that _all_ not SACKed 2374 * packets until the most forward SACK are lost. I.e. 2375 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2376 * It is absolutely correct estimate, if network does not reorder 2377 * packets. And it loses any connection to reality when reordering 2378 * takes place. We use FACK by default until reordering 2379 * is suspected on the path to this destination. 2380 * 2381 * NewReno: when Recovery is entered, we assume that one segment 2382 * is lost (classic Reno). While we are in Recovery and 2383 * a partial ACK arrives, we assume that one more packet 2384 * is lost (NewReno). This heuristics are the same in NewReno 2385 * and SACK. 2386 * 2387 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2388 * deflation etc. CWND is real congestion window, never inflated, changes 2389 * only according to classic VJ rules. 2390 * 2391 * Really tricky (and requiring careful tuning) part of algorithm 2392 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2393 * The first determines the moment _when_ we should reduce CWND and, 2394 * hence, slow down forward transmission. In fact, it determines the moment 2395 * when we decide that hole is caused by loss, rather than by a reorder. 2396 * 2397 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2398 * holes, caused by lost packets. 2399 * 2400 * And the most logically complicated part of algorithm is undo 2401 * heuristics. We detect false retransmits due to both too early 2402 * fast retransmit (reordering) and underestimated RTO, analyzing 2403 * timestamps and D-SACKs. When we detect that some segments were 2404 * retransmitted by mistake and CWND reduction was wrong, we undo 2405 * window reduction and abort recovery phase. This logic is hidden 2406 * inside several functions named tcp_try_undo_<something>. 2407 */ 2408 2409 /* This function decides, when we should leave Disordered state 2410 * and enter Recovery phase, reducing congestion window. 2411 * 2412 * Main question: may we further continue forward transmission 2413 * with the same cwnd? 2414 */ 2415 static int tcp_time_to_recover(struct sock *sk) 2416 { 2417 struct tcp_sock *tp = tcp_sk(sk); 2418 __u32 packets_out; 2419 2420 /* Do not perform any recovery during F-RTO algorithm */ 2421 if (tp->frto_counter) 2422 return 0; 2423 2424 /* Trick#1: The loss is proven. */ 2425 if (tp->lost_out) 2426 return 1; 2427 2428 /* Not-A-Trick#2 : Classic rule... */ 2429 if (tcp_dupack_heurestics(tp) > tp->reordering) 2430 return 1; 2431 2432 /* Trick#3 : when we use RFC2988 timer restart, fast 2433 * retransmit can be triggered by timeout of queue head. 2434 */ 2435 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2436 return 1; 2437 2438 /* Trick#4: It is still not OK... But will it be useful to delay 2439 * recovery more? 2440 */ 2441 packets_out = tp->packets_out; 2442 if (packets_out <= tp->reordering && 2443 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2444 !tcp_may_send_now(sk)) { 2445 /* We have nothing to send. This connection is limited 2446 * either by receiver window or by application. 2447 */ 2448 return 1; 2449 } 2450 2451 return 0; 2452 } 2453 2454 /* New heuristics: it is possible only after we switched to restart timer 2455 * each time when something is ACKed. Hence, we can detect timed out packets 2456 * during fast retransmit without falling to slow start. 2457 * 2458 * Usefulness of this as is very questionable, since we should know which of 2459 * the segments is the next to timeout which is relatively expensive to find 2460 * in general case unless we add some data structure just for that. The 2461 * current approach certainly won't find the right one too often and when it 2462 * finally does find _something_ it usually marks large part of the window 2463 * right away (because a retransmission with a larger timestamp blocks the 2464 * loop from advancing). -ij 2465 */ 2466 static void tcp_timeout_skbs(struct sock *sk) 2467 { 2468 struct tcp_sock *tp = tcp_sk(sk); 2469 struct sk_buff *skb; 2470 2471 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2472 return; 2473 2474 skb = tp->scoreboard_skb_hint; 2475 if (tp->scoreboard_skb_hint == NULL) 2476 skb = tcp_write_queue_head(sk); 2477 2478 tcp_for_write_queue_from(skb, sk) { 2479 if (skb == tcp_send_head(sk)) 2480 break; 2481 if (!tcp_skb_timedout(sk, skb)) 2482 break; 2483 2484 tcp_skb_mark_lost(tp, skb); 2485 } 2486 2487 tp->scoreboard_skb_hint = skb; 2488 2489 tcp_verify_left_out(tp); 2490 } 2491 2492 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2493 * is against sacked "cnt", otherwise it's against facked "cnt" 2494 */ 2495 static void tcp_mark_head_lost(struct sock *sk, int packets) 2496 { 2497 struct tcp_sock *tp = tcp_sk(sk); 2498 struct sk_buff *skb; 2499 int cnt, oldcnt; 2500 int err; 2501 unsigned int mss; 2502 2503 WARN_ON(packets > tp->packets_out); 2504 if (tp->lost_skb_hint) { 2505 skb = tp->lost_skb_hint; 2506 cnt = tp->lost_cnt_hint; 2507 } else { 2508 skb = tcp_write_queue_head(sk); 2509 cnt = 0; 2510 } 2511 2512 tcp_for_write_queue_from(skb, sk) { 2513 if (skb == tcp_send_head(sk)) 2514 break; 2515 /* TODO: do this better */ 2516 /* this is not the most efficient way to do this... */ 2517 tp->lost_skb_hint = skb; 2518 tp->lost_cnt_hint = cnt; 2519 2520 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2521 break; 2522 2523 oldcnt = cnt; 2524 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2525 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2526 cnt += tcp_skb_pcount(skb); 2527 2528 if (cnt > packets) { 2529 if (tcp_is_sack(tp) || (oldcnt >= packets)) 2530 break; 2531 2532 mss = skb_shinfo(skb)->gso_size; 2533 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2534 if (err < 0) 2535 break; 2536 cnt = packets; 2537 } 2538 2539 tcp_skb_mark_lost(tp, skb); 2540 } 2541 tcp_verify_left_out(tp); 2542 } 2543 2544 /* Account newly detected lost packet(s) */ 2545 2546 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2547 { 2548 struct tcp_sock *tp = tcp_sk(sk); 2549 2550 if (tcp_is_reno(tp)) { 2551 tcp_mark_head_lost(sk, 1); 2552 } else if (tcp_is_fack(tp)) { 2553 int lost = tp->fackets_out - tp->reordering; 2554 if (lost <= 0) 2555 lost = 1; 2556 tcp_mark_head_lost(sk, lost); 2557 } else { 2558 int sacked_upto = tp->sacked_out - tp->reordering; 2559 if (sacked_upto < fast_rexmit) 2560 sacked_upto = fast_rexmit; 2561 tcp_mark_head_lost(sk, sacked_upto); 2562 } 2563 2564 tcp_timeout_skbs(sk); 2565 } 2566 2567 /* CWND moderation, preventing bursts due to too big ACKs 2568 * in dubious situations. 2569 */ 2570 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2571 { 2572 tp->snd_cwnd = min(tp->snd_cwnd, 2573 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2574 tp->snd_cwnd_stamp = tcp_time_stamp; 2575 } 2576 2577 /* Lower bound on congestion window is slow start threshold 2578 * unless congestion avoidance choice decides to overide it. 2579 */ 2580 static inline u32 tcp_cwnd_min(const struct sock *sk) 2581 { 2582 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2583 2584 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2585 } 2586 2587 /* Decrease cwnd each second ack. */ 2588 static void tcp_cwnd_down(struct sock *sk, int flag) 2589 { 2590 struct tcp_sock *tp = tcp_sk(sk); 2591 int decr = tp->snd_cwnd_cnt + 1; 2592 2593 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2594 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2595 tp->snd_cwnd_cnt = decr & 1; 2596 decr >>= 1; 2597 2598 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2599 tp->snd_cwnd -= decr; 2600 2601 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2602 tp->snd_cwnd_stamp = tcp_time_stamp; 2603 } 2604 } 2605 2606 /* Nothing was retransmitted or returned timestamp is less 2607 * than timestamp of the first retransmission. 2608 */ 2609 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2610 { 2611 return !tp->retrans_stamp || 2612 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2613 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2614 } 2615 2616 /* Undo procedures. */ 2617 2618 #if FASTRETRANS_DEBUG > 1 2619 static void DBGUNDO(struct sock *sk, const char *msg) 2620 { 2621 struct tcp_sock *tp = tcp_sk(sk); 2622 struct inet_sock *inet = inet_sk(sk); 2623 2624 if (sk->sk_family == AF_INET) { 2625 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2626 msg, 2627 &inet->daddr, ntohs(inet->dport), 2628 tp->snd_cwnd, tcp_left_out(tp), 2629 tp->snd_ssthresh, tp->prior_ssthresh, 2630 tp->packets_out); 2631 } 2632 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2633 else if (sk->sk_family == AF_INET6) { 2634 struct ipv6_pinfo *np = inet6_sk(sk); 2635 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2636 msg, 2637 &np->daddr, ntohs(inet->dport), 2638 tp->snd_cwnd, tcp_left_out(tp), 2639 tp->snd_ssthresh, tp->prior_ssthresh, 2640 tp->packets_out); 2641 } 2642 #endif 2643 } 2644 #else 2645 #define DBGUNDO(x...) do { } while (0) 2646 #endif 2647 2648 static void tcp_undo_cwr(struct sock *sk, const int undo) 2649 { 2650 struct tcp_sock *tp = tcp_sk(sk); 2651 2652 if (tp->prior_ssthresh) { 2653 const struct inet_connection_sock *icsk = inet_csk(sk); 2654 2655 if (icsk->icsk_ca_ops->undo_cwnd) 2656 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2657 else 2658 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2659 2660 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2661 tp->snd_ssthresh = tp->prior_ssthresh; 2662 TCP_ECN_withdraw_cwr(tp); 2663 } 2664 } else { 2665 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2666 } 2667 tcp_moderate_cwnd(tp); 2668 tp->snd_cwnd_stamp = tcp_time_stamp; 2669 } 2670 2671 static inline int tcp_may_undo(struct tcp_sock *tp) 2672 { 2673 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2674 } 2675 2676 /* People celebrate: "We love our President!" */ 2677 static int tcp_try_undo_recovery(struct sock *sk) 2678 { 2679 struct tcp_sock *tp = tcp_sk(sk); 2680 2681 if (tcp_may_undo(tp)) { 2682 int mib_idx; 2683 2684 /* Happy end! We did not retransmit anything 2685 * or our original transmission succeeded. 2686 */ 2687 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2688 tcp_undo_cwr(sk, 1); 2689 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2690 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2691 else 2692 mib_idx = LINUX_MIB_TCPFULLUNDO; 2693 2694 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2695 tp->undo_marker = 0; 2696 } 2697 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2698 /* Hold old state until something *above* high_seq 2699 * is ACKed. For Reno it is MUST to prevent false 2700 * fast retransmits (RFC2582). SACK TCP is safe. */ 2701 tcp_moderate_cwnd(tp); 2702 return 1; 2703 } 2704 tcp_set_ca_state(sk, TCP_CA_Open); 2705 return 0; 2706 } 2707 2708 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2709 static void tcp_try_undo_dsack(struct sock *sk) 2710 { 2711 struct tcp_sock *tp = tcp_sk(sk); 2712 2713 if (tp->undo_marker && !tp->undo_retrans) { 2714 DBGUNDO(sk, "D-SACK"); 2715 tcp_undo_cwr(sk, 1); 2716 tp->undo_marker = 0; 2717 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2718 } 2719 } 2720 2721 /* Undo during fast recovery after partial ACK. */ 2722 2723 static int tcp_try_undo_partial(struct sock *sk, int acked) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 /* Partial ACK arrived. Force Hoe's retransmit. */ 2727 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2728 2729 if (tcp_may_undo(tp)) { 2730 /* Plain luck! Hole if filled with delayed 2731 * packet, rather than with a retransmit. 2732 */ 2733 if (tp->retrans_out == 0) 2734 tp->retrans_stamp = 0; 2735 2736 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2737 2738 DBGUNDO(sk, "Hoe"); 2739 tcp_undo_cwr(sk, 0); 2740 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2741 2742 /* So... Do not make Hoe's retransmit yet. 2743 * If the first packet was delayed, the rest 2744 * ones are most probably delayed as well. 2745 */ 2746 failed = 0; 2747 } 2748 return failed; 2749 } 2750 2751 /* Undo during loss recovery after partial ACK. */ 2752 static int tcp_try_undo_loss(struct sock *sk) 2753 { 2754 struct tcp_sock *tp = tcp_sk(sk); 2755 2756 if (tcp_may_undo(tp)) { 2757 struct sk_buff *skb; 2758 tcp_for_write_queue(skb, sk) { 2759 if (skb == tcp_send_head(sk)) 2760 break; 2761 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2762 } 2763 2764 tcp_clear_all_retrans_hints(tp); 2765 2766 DBGUNDO(sk, "partial loss"); 2767 tp->lost_out = 0; 2768 tcp_undo_cwr(sk, 1); 2769 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2770 inet_csk(sk)->icsk_retransmits = 0; 2771 tp->undo_marker = 0; 2772 if (tcp_is_sack(tp)) 2773 tcp_set_ca_state(sk, TCP_CA_Open); 2774 return 1; 2775 } 2776 return 0; 2777 } 2778 2779 static inline void tcp_complete_cwr(struct sock *sk) 2780 { 2781 struct tcp_sock *tp = tcp_sk(sk); 2782 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2783 tp->snd_cwnd_stamp = tcp_time_stamp; 2784 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2785 } 2786 2787 static void tcp_try_keep_open(struct sock *sk) 2788 { 2789 struct tcp_sock *tp = tcp_sk(sk); 2790 int state = TCP_CA_Open; 2791 2792 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) 2793 state = TCP_CA_Disorder; 2794 2795 if (inet_csk(sk)->icsk_ca_state != state) { 2796 tcp_set_ca_state(sk, state); 2797 tp->high_seq = tp->snd_nxt; 2798 } 2799 } 2800 2801 static void tcp_try_to_open(struct sock *sk, int flag) 2802 { 2803 struct tcp_sock *tp = tcp_sk(sk); 2804 2805 tcp_verify_left_out(tp); 2806 2807 if (!tp->frto_counter && tp->retrans_out == 0) 2808 tp->retrans_stamp = 0; 2809 2810 if (flag & FLAG_ECE) 2811 tcp_enter_cwr(sk, 1); 2812 2813 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2814 tcp_try_keep_open(sk); 2815 tcp_moderate_cwnd(tp); 2816 } else { 2817 tcp_cwnd_down(sk, flag); 2818 } 2819 } 2820 2821 static void tcp_mtup_probe_failed(struct sock *sk) 2822 { 2823 struct inet_connection_sock *icsk = inet_csk(sk); 2824 2825 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2826 icsk->icsk_mtup.probe_size = 0; 2827 } 2828 2829 static void tcp_mtup_probe_success(struct sock *sk) 2830 { 2831 struct tcp_sock *tp = tcp_sk(sk); 2832 struct inet_connection_sock *icsk = inet_csk(sk); 2833 2834 /* FIXME: breaks with very large cwnd */ 2835 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2836 tp->snd_cwnd = tp->snd_cwnd * 2837 tcp_mss_to_mtu(sk, tp->mss_cache) / 2838 icsk->icsk_mtup.probe_size; 2839 tp->snd_cwnd_cnt = 0; 2840 tp->snd_cwnd_stamp = tcp_time_stamp; 2841 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2842 2843 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2844 icsk->icsk_mtup.probe_size = 0; 2845 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2846 } 2847 2848 /* Do a simple retransmit without using the backoff mechanisms in 2849 * tcp_timer. This is used for path mtu discovery. 2850 * The socket is already locked here. 2851 */ 2852 void tcp_simple_retransmit(struct sock *sk) 2853 { 2854 const struct inet_connection_sock *icsk = inet_csk(sk); 2855 struct tcp_sock *tp = tcp_sk(sk); 2856 struct sk_buff *skb; 2857 unsigned int mss = tcp_current_mss(sk); 2858 u32 prior_lost = tp->lost_out; 2859 2860 tcp_for_write_queue(skb, sk) { 2861 if (skb == tcp_send_head(sk)) 2862 break; 2863 if (tcp_skb_seglen(skb) > mss && 2864 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2865 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2866 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2867 tp->retrans_out -= tcp_skb_pcount(skb); 2868 } 2869 tcp_skb_mark_lost_uncond_verify(tp, skb); 2870 } 2871 } 2872 2873 tcp_clear_retrans_hints_partial(tp); 2874 2875 if (prior_lost == tp->lost_out) 2876 return; 2877 2878 if (tcp_is_reno(tp)) 2879 tcp_limit_reno_sacked(tp); 2880 2881 tcp_verify_left_out(tp); 2882 2883 /* Don't muck with the congestion window here. 2884 * Reason is that we do not increase amount of _data_ 2885 * in network, but units changed and effective 2886 * cwnd/ssthresh really reduced now. 2887 */ 2888 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2889 tp->high_seq = tp->snd_nxt; 2890 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2891 tp->prior_ssthresh = 0; 2892 tp->undo_marker = 0; 2893 tcp_set_ca_state(sk, TCP_CA_Loss); 2894 } 2895 tcp_xmit_retransmit_queue(sk); 2896 } 2897 2898 /* Process an event, which can update packets-in-flight not trivially. 2899 * Main goal of this function is to calculate new estimate for left_out, 2900 * taking into account both packets sitting in receiver's buffer and 2901 * packets lost by network. 2902 * 2903 * Besides that it does CWND reduction, when packet loss is detected 2904 * and changes state of machine. 2905 * 2906 * It does _not_ decide what to send, it is made in function 2907 * tcp_xmit_retransmit_queue(). 2908 */ 2909 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2910 { 2911 struct inet_connection_sock *icsk = inet_csk(sk); 2912 struct tcp_sock *tp = tcp_sk(sk); 2913 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2914 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2915 (tcp_fackets_out(tp) > tp->reordering)); 2916 int fast_rexmit = 0, mib_idx; 2917 2918 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2919 tp->sacked_out = 0; 2920 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2921 tp->fackets_out = 0; 2922 2923 /* Now state machine starts. 2924 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2925 if (flag & FLAG_ECE) 2926 tp->prior_ssthresh = 0; 2927 2928 /* B. In all the states check for reneging SACKs. */ 2929 if (tcp_check_sack_reneging(sk, flag)) 2930 return; 2931 2932 /* C. Process data loss notification, provided it is valid. */ 2933 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2934 before(tp->snd_una, tp->high_seq) && 2935 icsk->icsk_ca_state != TCP_CA_Open && 2936 tp->fackets_out > tp->reordering) { 2937 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2938 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2939 } 2940 2941 /* D. Check consistency of the current state. */ 2942 tcp_verify_left_out(tp); 2943 2944 /* E. Check state exit conditions. State can be terminated 2945 * when high_seq is ACKed. */ 2946 if (icsk->icsk_ca_state == TCP_CA_Open) { 2947 WARN_ON(tp->retrans_out != 0); 2948 tp->retrans_stamp = 0; 2949 } else if (!before(tp->snd_una, tp->high_seq)) { 2950 switch (icsk->icsk_ca_state) { 2951 case TCP_CA_Loss: 2952 icsk->icsk_retransmits = 0; 2953 if (tcp_try_undo_recovery(sk)) 2954 return; 2955 break; 2956 2957 case TCP_CA_CWR: 2958 /* CWR is to be held something *above* high_seq 2959 * is ACKed for CWR bit to reach receiver. */ 2960 if (tp->snd_una != tp->high_seq) { 2961 tcp_complete_cwr(sk); 2962 tcp_set_ca_state(sk, TCP_CA_Open); 2963 } 2964 break; 2965 2966 case TCP_CA_Disorder: 2967 tcp_try_undo_dsack(sk); 2968 if (!tp->undo_marker || 2969 /* For SACK case do not Open to allow to undo 2970 * catching for all duplicate ACKs. */ 2971 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 2972 tp->undo_marker = 0; 2973 tcp_set_ca_state(sk, TCP_CA_Open); 2974 } 2975 break; 2976 2977 case TCP_CA_Recovery: 2978 if (tcp_is_reno(tp)) 2979 tcp_reset_reno_sack(tp); 2980 if (tcp_try_undo_recovery(sk)) 2981 return; 2982 tcp_complete_cwr(sk); 2983 break; 2984 } 2985 } 2986 2987 /* F. Process state. */ 2988 switch (icsk->icsk_ca_state) { 2989 case TCP_CA_Recovery: 2990 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2991 if (tcp_is_reno(tp) && is_dupack) 2992 tcp_add_reno_sack(sk); 2993 } else 2994 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2995 break; 2996 case TCP_CA_Loss: 2997 if (flag & FLAG_DATA_ACKED) 2998 icsk->icsk_retransmits = 0; 2999 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3000 tcp_reset_reno_sack(tp); 3001 if (!tcp_try_undo_loss(sk)) { 3002 tcp_moderate_cwnd(tp); 3003 tcp_xmit_retransmit_queue(sk); 3004 return; 3005 } 3006 if (icsk->icsk_ca_state != TCP_CA_Open) 3007 return; 3008 /* Loss is undone; fall through to processing in Open state. */ 3009 default: 3010 if (tcp_is_reno(tp)) { 3011 if (flag & FLAG_SND_UNA_ADVANCED) 3012 tcp_reset_reno_sack(tp); 3013 if (is_dupack) 3014 tcp_add_reno_sack(sk); 3015 } 3016 3017 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3018 tcp_try_undo_dsack(sk); 3019 3020 if (!tcp_time_to_recover(sk)) { 3021 tcp_try_to_open(sk, flag); 3022 return; 3023 } 3024 3025 /* MTU probe failure: don't reduce cwnd */ 3026 if (icsk->icsk_ca_state < TCP_CA_CWR && 3027 icsk->icsk_mtup.probe_size && 3028 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3029 tcp_mtup_probe_failed(sk); 3030 /* Restores the reduction we did in tcp_mtup_probe() */ 3031 tp->snd_cwnd++; 3032 tcp_simple_retransmit(sk); 3033 return; 3034 } 3035 3036 /* Otherwise enter Recovery state */ 3037 3038 if (tcp_is_reno(tp)) 3039 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3040 else 3041 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3042 3043 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3044 3045 tp->high_seq = tp->snd_nxt; 3046 tp->prior_ssthresh = 0; 3047 tp->undo_marker = tp->snd_una; 3048 tp->undo_retrans = tp->retrans_out; 3049 3050 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3051 if (!(flag & FLAG_ECE)) 3052 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3053 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3054 TCP_ECN_queue_cwr(tp); 3055 } 3056 3057 tp->bytes_acked = 0; 3058 tp->snd_cwnd_cnt = 0; 3059 tcp_set_ca_state(sk, TCP_CA_Recovery); 3060 fast_rexmit = 1; 3061 } 3062 3063 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3064 tcp_update_scoreboard(sk, fast_rexmit); 3065 tcp_cwnd_down(sk, flag); 3066 tcp_xmit_retransmit_queue(sk); 3067 } 3068 3069 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3070 { 3071 tcp_rtt_estimator(sk, seq_rtt); 3072 tcp_set_rto(sk); 3073 inet_csk(sk)->icsk_backoff = 0; 3074 } 3075 3076 /* Read draft-ietf-tcplw-high-performance before mucking 3077 * with this code. (Supersedes RFC1323) 3078 */ 3079 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3080 { 3081 /* RTTM Rule: A TSecr value received in a segment is used to 3082 * update the averaged RTT measurement only if the segment 3083 * acknowledges some new data, i.e., only if it advances the 3084 * left edge of the send window. 3085 * 3086 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3087 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3088 * 3089 * Changed: reset backoff as soon as we see the first valid sample. 3090 * If we do not, we get strongly overestimated rto. With timestamps 3091 * samples are accepted even from very old segments: f.e., when rtt=1 3092 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3093 * answer arrives rto becomes 120 seconds! If at least one of segments 3094 * in window is lost... Voila. --ANK (010210) 3095 */ 3096 struct tcp_sock *tp = tcp_sk(sk); 3097 3098 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3099 } 3100 3101 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3102 { 3103 /* We don't have a timestamp. Can only use 3104 * packets that are not retransmitted to determine 3105 * rtt estimates. Also, we must not reset the 3106 * backoff for rto until we get a non-retransmitted 3107 * packet. This allows us to deal with a situation 3108 * where the network delay has increased suddenly. 3109 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3110 */ 3111 3112 if (flag & FLAG_RETRANS_DATA_ACKED) 3113 return; 3114 3115 tcp_valid_rtt_meas(sk, seq_rtt); 3116 } 3117 3118 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3119 const s32 seq_rtt) 3120 { 3121 const struct tcp_sock *tp = tcp_sk(sk); 3122 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3123 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3124 tcp_ack_saw_tstamp(sk, flag); 3125 else if (seq_rtt >= 0) 3126 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3127 } 3128 3129 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3130 { 3131 const struct inet_connection_sock *icsk = inet_csk(sk); 3132 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3133 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3134 } 3135 3136 /* Restart timer after forward progress on connection. 3137 * RFC2988 recommends to restart timer to now+rto. 3138 */ 3139 static void tcp_rearm_rto(struct sock *sk) 3140 { 3141 struct tcp_sock *tp = tcp_sk(sk); 3142 3143 if (!tp->packets_out) { 3144 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3145 } else { 3146 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3147 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3148 } 3149 } 3150 3151 /* If we get here, the whole TSO packet has not been acked. */ 3152 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3153 { 3154 struct tcp_sock *tp = tcp_sk(sk); 3155 u32 packets_acked; 3156 3157 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3158 3159 packets_acked = tcp_skb_pcount(skb); 3160 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3161 return 0; 3162 packets_acked -= tcp_skb_pcount(skb); 3163 3164 if (packets_acked) { 3165 BUG_ON(tcp_skb_pcount(skb) == 0); 3166 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3167 } 3168 3169 return packets_acked; 3170 } 3171 3172 /* Remove acknowledged frames from the retransmission queue. If our packet 3173 * is before the ack sequence we can discard it as it's confirmed to have 3174 * arrived at the other end. 3175 */ 3176 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3177 u32 prior_snd_una) 3178 { 3179 struct tcp_sock *tp = tcp_sk(sk); 3180 const struct inet_connection_sock *icsk = inet_csk(sk); 3181 struct sk_buff *skb; 3182 u32 now = tcp_time_stamp; 3183 int fully_acked = 1; 3184 int flag = 0; 3185 u32 pkts_acked = 0; 3186 u32 reord = tp->packets_out; 3187 u32 prior_sacked = tp->sacked_out; 3188 s32 seq_rtt = -1; 3189 s32 ca_seq_rtt = -1; 3190 ktime_t last_ackt = net_invalid_timestamp(); 3191 3192 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3193 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3194 u32 acked_pcount; 3195 u8 sacked = scb->sacked; 3196 3197 /* Determine how many packets and what bytes were acked, tso and else */ 3198 if (after(scb->end_seq, tp->snd_una)) { 3199 if (tcp_skb_pcount(skb) == 1 || 3200 !after(tp->snd_una, scb->seq)) 3201 break; 3202 3203 acked_pcount = tcp_tso_acked(sk, skb); 3204 if (!acked_pcount) 3205 break; 3206 3207 fully_acked = 0; 3208 } else { 3209 acked_pcount = tcp_skb_pcount(skb); 3210 } 3211 3212 if (sacked & TCPCB_RETRANS) { 3213 if (sacked & TCPCB_SACKED_RETRANS) 3214 tp->retrans_out -= acked_pcount; 3215 flag |= FLAG_RETRANS_DATA_ACKED; 3216 ca_seq_rtt = -1; 3217 seq_rtt = -1; 3218 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3219 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3220 } else { 3221 ca_seq_rtt = now - scb->when; 3222 last_ackt = skb->tstamp; 3223 if (seq_rtt < 0) { 3224 seq_rtt = ca_seq_rtt; 3225 } 3226 if (!(sacked & TCPCB_SACKED_ACKED)) 3227 reord = min(pkts_acked, reord); 3228 } 3229 3230 if (sacked & TCPCB_SACKED_ACKED) 3231 tp->sacked_out -= acked_pcount; 3232 if (sacked & TCPCB_LOST) 3233 tp->lost_out -= acked_pcount; 3234 3235 tp->packets_out -= acked_pcount; 3236 pkts_acked += acked_pcount; 3237 3238 /* Initial outgoing SYN's get put onto the write_queue 3239 * just like anything else we transmit. It is not 3240 * true data, and if we misinform our callers that 3241 * this ACK acks real data, we will erroneously exit 3242 * connection startup slow start one packet too 3243 * quickly. This is severely frowned upon behavior. 3244 */ 3245 if (!(scb->flags & TCPCB_FLAG_SYN)) { 3246 flag |= FLAG_DATA_ACKED; 3247 } else { 3248 flag |= FLAG_SYN_ACKED; 3249 tp->retrans_stamp = 0; 3250 } 3251 3252 if (!fully_acked) 3253 break; 3254 3255 tcp_unlink_write_queue(skb, sk); 3256 sk_wmem_free_skb(sk, skb); 3257 tp->scoreboard_skb_hint = NULL; 3258 if (skb == tp->retransmit_skb_hint) 3259 tp->retransmit_skb_hint = NULL; 3260 if (skb == tp->lost_skb_hint) 3261 tp->lost_skb_hint = NULL; 3262 } 3263 3264 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3265 tp->snd_up = tp->snd_una; 3266 3267 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3268 flag |= FLAG_SACK_RENEGING; 3269 3270 if (flag & FLAG_ACKED) { 3271 const struct tcp_congestion_ops *ca_ops 3272 = inet_csk(sk)->icsk_ca_ops; 3273 3274 if (unlikely(icsk->icsk_mtup.probe_size && 3275 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3276 tcp_mtup_probe_success(sk); 3277 } 3278 3279 tcp_ack_update_rtt(sk, flag, seq_rtt); 3280 tcp_rearm_rto(sk); 3281 3282 if (tcp_is_reno(tp)) { 3283 tcp_remove_reno_sacks(sk, pkts_acked); 3284 } else { 3285 int delta; 3286 3287 /* Non-retransmitted hole got filled? That's reordering */ 3288 if (reord < prior_fackets) 3289 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3290 3291 delta = tcp_is_fack(tp) ? pkts_acked : 3292 prior_sacked - tp->sacked_out; 3293 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3294 } 3295 3296 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3297 3298 if (ca_ops->pkts_acked) { 3299 s32 rtt_us = -1; 3300 3301 /* Is the ACK triggering packet unambiguous? */ 3302 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3303 /* High resolution needed and available? */ 3304 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3305 !ktime_equal(last_ackt, 3306 net_invalid_timestamp())) 3307 rtt_us = ktime_us_delta(ktime_get_real(), 3308 last_ackt); 3309 else if (ca_seq_rtt > 0) 3310 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3311 } 3312 3313 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3314 } 3315 } 3316 3317 #if FASTRETRANS_DEBUG > 0 3318 WARN_ON((int)tp->sacked_out < 0); 3319 WARN_ON((int)tp->lost_out < 0); 3320 WARN_ON((int)tp->retrans_out < 0); 3321 if (!tp->packets_out && tcp_is_sack(tp)) { 3322 icsk = inet_csk(sk); 3323 if (tp->lost_out) { 3324 printk(KERN_DEBUG "Leak l=%u %d\n", 3325 tp->lost_out, icsk->icsk_ca_state); 3326 tp->lost_out = 0; 3327 } 3328 if (tp->sacked_out) { 3329 printk(KERN_DEBUG "Leak s=%u %d\n", 3330 tp->sacked_out, icsk->icsk_ca_state); 3331 tp->sacked_out = 0; 3332 } 3333 if (tp->retrans_out) { 3334 printk(KERN_DEBUG "Leak r=%u %d\n", 3335 tp->retrans_out, icsk->icsk_ca_state); 3336 tp->retrans_out = 0; 3337 } 3338 } 3339 #endif 3340 return flag; 3341 } 3342 3343 static void tcp_ack_probe(struct sock *sk) 3344 { 3345 const struct tcp_sock *tp = tcp_sk(sk); 3346 struct inet_connection_sock *icsk = inet_csk(sk); 3347 3348 /* Was it a usable window open? */ 3349 3350 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3351 icsk->icsk_backoff = 0; 3352 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3353 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3354 * This function is not for random using! 3355 */ 3356 } else { 3357 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3358 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3359 TCP_RTO_MAX); 3360 } 3361 } 3362 3363 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3364 { 3365 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3366 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 3367 } 3368 3369 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3370 { 3371 const struct tcp_sock *tp = tcp_sk(sk); 3372 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3373 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3374 } 3375 3376 /* Check that window update is acceptable. 3377 * The function assumes that snd_una<=ack<=snd_next. 3378 */ 3379 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3380 const u32 ack, const u32 ack_seq, 3381 const u32 nwin) 3382 { 3383 return (after(ack, tp->snd_una) || 3384 after(ack_seq, tp->snd_wl1) || 3385 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 3386 } 3387 3388 /* Update our send window. 3389 * 3390 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3391 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3392 */ 3393 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3394 u32 ack_seq) 3395 { 3396 struct tcp_sock *tp = tcp_sk(sk); 3397 int flag = 0; 3398 u32 nwin = ntohs(tcp_hdr(skb)->window); 3399 3400 if (likely(!tcp_hdr(skb)->syn)) 3401 nwin <<= tp->rx_opt.snd_wscale; 3402 3403 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3404 flag |= FLAG_WIN_UPDATE; 3405 tcp_update_wl(tp, ack_seq); 3406 3407 if (tp->snd_wnd != nwin) { 3408 tp->snd_wnd = nwin; 3409 3410 /* Note, it is the only place, where 3411 * fast path is recovered for sending TCP. 3412 */ 3413 tp->pred_flags = 0; 3414 tcp_fast_path_check(sk); 3415 3416 if (nwin > tp->max_window) { 3417 tp->max_window = nwin; 3418 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3419 } 3420 } 3421 } 3422 3423 tp->snd_una = ack; 3424 3425 return flag; 3426 } 3427 3428 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3429 * continue in congestion avoidance. 3430 */ 3431 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3432 { 3433 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3434 tp->snd_cwnd_cnt = 0; 3435 tp->bytes_acked = 0; 3436 TCP_ECN_queue_cwr(tp); 3437 tcp_moderate_cwnd(tp); 3438 } 3439 3440 /* A conservative spurious RTO response algorithm: reduce cwnd using 3441 * rate halving and continue in congestion avoidance. 3442 */ 3443 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3444 { 3445 tcp_enter_cwr(sk, 0); 3446 } 3447 3448 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3449 { 3450 if (flag & FLAG_ECE) 3451 tcp_ratehalving_spur_to_response(sk); 3452 else 3453 tcp_undo_cwr(sk, 1); 3454 } 3455 3456 /* F-RTO spurious RTO detection algorithm (RFC4138) 3457 * 3458 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3459 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3460 * window (but not to or beyond highest sequence sent before RTO): 3461 * On First ACK, send two new segments out. 3462 * On Second ACK, RTO was likely spurious. Do spurious response (response 3463 * algorithm is not part of the F-RTO detection algorithm 3464 * given in RFC4138 but can be selected separately). 3465 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3466 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3467 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3468 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3469 * 3470 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3471 * original window even after we transmit two new data segments. 3472 * 3473 * SACK version: 3474 * on first step, wait until first cumulative ACK arrives, then move to 3475 * the second step. In second step, the next ACK decides. 3476 * 3477 * F-RTO is implemented (mainly) in four functions: 3478 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3479 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3480 * called when tcp_use_frto() showed green light 3481 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3482 * - tcp_enter_frto_loss() is called if there is not enough evidence 3483 * to prove that the RTO is indeed spurious. It transfers the control 3484 * from F-RTO to the conventional RTO recovery 3485 */ 3486 static int tcp_process_frto(struct sock *sk, int flag) 3487 { 3488 struct tcp_sock *tp = tcp_sk(sk); 3489 3490 tcp_verify_left_out(tp); 3491 3492 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3493 if (flag & FLAG_DATA_ACKED) 3494 inet_csk(sk)->icsk_retransmits = 0; 3495 3496 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3497 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3498 tp->undo_marker = 0; 3499 3500 if (!before(tp->snd_una, tp->frto_highmark)) { 3501 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3502 return 1; 3503 } 3504 3505 if (!tcp_is_sackfrto(tp)) { 3506 /* RFC4138 shortcoming in step 2; should also have case c): 3507 * ACK isn't duplicate nor advances window, e.g., opposite dir 3508 * data, winupdate 3509 */ 3510 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3511 return 1; 3512 3513 if (!(flag & FLAG_DATA_ACKED)) { 3514 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3515 flag); 3516 return 1; 3517 } 3518 } else { 3519 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3520 /* Prevent sending of new data. */ 3521 tp->snd_cwnd = min(tp->snd_cwnd, 3522 tcp_packets_in_flight(tp)); 3523 return 1; 3524 } 3525 3526 if ((tp->frto_counter >= 2) && 3527 (!(flag & FLAG_FORWARD_PROGRESS) || 3528 ((flag & FLAG_DATA_SACKED) && 3529 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3530 /* RFC4138 shortcoming (see comment above) */ 3531 if (!(flag & FLAG_FORWARD_PROGRESS) && 3532 (flag & FLAG_NOT_DUP)) 3533 return 1; 3534 3535 tcp_enter_frto_loss(sk, 3, flag); 3536 return 1; 3537 } 3538 } 3539 3540 if (tp->frto_counter == 1) { 3541 /* tcp_may_send_now needs to see updated state */ 3542 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3543 tp->frto_counter = 2; 3544 3545 if (!tcp_may_send_now(sk)) 3546 tcp_enter_frto_loss(sk, 2, flag); 3547 3548 return 1; 3549 } else { 3550 switch (sysctl_tcp_frto_response) { 3551 case 2: 3552 tcp_undo_spur_to_response(sk, flag); 3553 break; 3554 case 1: 3555 tcp_conservative_spur_to_response(tp); 3556 break; 3557 default: 3558 tcp_ratehalving_spur_to_response(sk); 3559 break; 3560 } 3561 tp->frto_counter = 0; 3562 tp->undo_marker = 0; 3563 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3564 } 3565 return 0; 3566 } 3567 3568 /* This routine deals with incoming acks, but not outgoing ones. */ 3569 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3570 { 3571 struct inet_connection_sock *icsk = inet_csk(sk); 3572 struct tcp_sock *tp = tcp_sk(sk); 3573 u32 prior_snd_una = tp->snd_una; 3574 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3575 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3576 u32 prior_in_flight; 3577 u32 prior_fackets; 3578 int prior_packets; 3579 int frto_cwnd = 0; 3580 3581 /* If the ack is older than previous acks 3582 * then we can probably ignore it. 3583 */ 3584 if (before(ack, prior_snd_una)) 3585 goto old_ack; 3586 3587 /* If the ack includes data we haven't sent yet, discard 3588 * this segment (RFC793 Section 3.9). 3589 */ 3590 if (after(ack, tp->snd_nxt)) 3591 goto invalid_ack; 3592 3593 if (after(ack, prior_snd_una)) 3594 flag |= FLAG_SND_UNA_ADVANCED; 3595 3596 if (sysctl_tcp_abc) { 3597 if (icsk->icsk_ca_state < TCP_CA_CWR) 3598 tp->bytes_acked += ack - prior_snd_una; 3599 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3600 /* we assume just one segment left network */ 3601 tp->bytes_acked += min(ack - prior_snd_una, 3602 tp->mss_cache); 3603 } 3604 3605 prior_fackets = tp->fackets_out; 3606 prior_in_flight = tcp_packets_in_flight(tp); 3607 3608 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3609 /* Window is constant, pure forward advance. 3610 * No more checks are required. 3611 * Note, we use the fact that SND.UNA>=SND.WL2. 3612 */ 3613 tcp_update_wl(tp, ack_seq); 3614 tp->snd_una = ack; 3615 flag |= FLAG_WIN_UPDATE; 3616 3617 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3618 3619 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3620 } else { 3621 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3622 flag |= FLAG_DATA; 3623 else 3624 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3625 3626 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3627 3628 if (TCP_SKB_CB(skb)->sacked) 3629 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3630 3631 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3632 flag |= FLAG_ECE; 3633 3634 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3635 } 3636 3637 /* We passed data and got it acked, remove any soft error 3638 * log. Something worked... 3639 */ 3640 sk->sk_err_soft = 0; 3641 icsk->icsk_probes_out = 0; 3642 tp->rcv_tstamp = tcp_time_stamp; 3643 prior_packets = tp->packets_out; 3644 if (!prior_packets) 3645 goto no_queue; 3646 3647 /* See if we can take anything off of the retransmit queue. */ 3648 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3649 3650 if (tp->frto_counter) 3651 frto_cwnd = tcp_process_frto(sk, flag); 3652 /* Guarantee sacktag reordering detection against wrap-arounds */ 3653 if (before(tp->frto_highmark, tp->snd_una)) 3654 tp->frto_highmark = 0; 3655 3656 if (tcp_ack_is_dubious(sk, flag)) { 3657 /* Advance CWND, if state allows this. */ 3658 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3659 tcp_may_raise_cwnd(sk, flag)) 3660 tcp_cong_avoid(sk, ack, prior_in_flight); 3661 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3662 flag); 3663 } else { 3664 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3665 tcp_cong_avoid(sk, ack, prior_in_flight); 3666 } 3667 3668 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3669 dst_confirm(sk->sk_dst_cache); 3670 3671 return 1; 3672 3673 no_queue: 3674 /* If this ack opens up a zero window, clear backoff. It was 3675 * being used to time the probes, and is probably far higher than 3676 * it needs to be for normal retransmission. 3677 */ 3678 if (tcp_send_head(sk)) 3679 tcp_ack_probe(sk); 3680 return 1; 3681 3682 invalid_ack: 3683 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3684 return -1; 3685 3686 old_ack: 3687 if (TCP_SKB_CB(skb)->sacked) { 3688 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3689 if (icsk->icsk_ca_state == TCP_CA_Open) 3690 tcp_try_keep_open(sk); 3691 } 3692 3693 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3694 return 0; 3695 } 3696 3697 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3698 * But, this can also be called on packets in the established flow when 3699 * the fast version below fails. 3700 */ 3701 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3702 int estab) 3703 { 3704 unsigned char *ptr; 3705 struct tcphdr *th = tcp_hdr(skb); 3706 int length = (th->doff * 4) - sizeof(struct tcphdr); 3707 3708 ptr = (unsigned char *)(th + 1); 3709 opt_rx->saw_tstamp = 0; 3710 3711 while (length > 0) { 3712 int opcode = *ptr++; 3713 int opsize; 3714 3715 switch (opcode) { 3716 case TCPOPT_EOL: 3717 return; 3718 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3719 length--; 3720 continue; 3721 default: 3722 opsize = *ptr++; 3723 if (opsize < 2) /* "silly options" */ 3724 return; 3725 if (opsize > length) 3726 return; /* don't parse partial options */ 3727 switch (opcode) { 3728 case TCPOPT_MSS: 3729 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3730 u16 in_mss = get_unaligned_be16(ptr); 3731 if (in_mss) { 3732 if (opt_rx->user_mss && 3733 opt_rx->user_mss < in_mss) 3734 in_mss = opt_rx->user_mss; 3735 opt_rx->mss_clamp = in_mss; 3736 } 3737 } 3738 break; 3739 case TCPOPT_WINDOW: 3740 if (opsize == TCPOLEN_WINDOW && th->syn && 3741 !estab && sysctl_tcp_window_scaling) { 3742 __u8 snd_wscale = *(__u8 *)ptr; 3743 opt_rx->wscale_ok = 1; 3744 if (snd_wscale > 14) { 3745 if (net_ratelimit()) 3746 printk(KERN_INFO "tcp_parse_options: Illegal window " 3747 "scaling value %d >14 received.\n", 3748 snd_wscale); 3749 snd_wscale = 14; 3750 } 3751 opt_rx->snd_wscale = snd_wscale; 3752 } 3753 break; 3754 case TCPOPT_TIMESTAMP: 3755 if ((opsize == TCPOLEN_TIMESTAMP) && 3756 ((estab && opt_rx->tstamp_ok) || 3757 (!estab && sysctl_tcp_timestamps))) { 3758 opt_rx->saw_tstamp = 1; 3759 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3760 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3761 } 3762 break; 3763 case TCPOPT_SACK_PERM: 3764 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3765 !estab && sysctl_tcp_sack) { 3766 opt_rx->sack_ok = 1; 3767 tcp_sack_reset(opt_rx); 3768 } 3769 break; 3770 3771 case TCPOPT_SACK: 3772 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3773 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3774 opt_rx->sack_ok) { 3775 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3776 } 3777 break; 3778 #ifdef CONFIG_TCP_MD5SIG 3779 case TCPOPT_MD5SIG: 3780 /* 3781 * The MD5 Hash has already been 3782 * checked (see tcp_v{4,6}_do_rcv()). 3783 */ 3784 break; 3785 #endif 3786 } 3787 3788 ptr += opsize-2; 3789 length -= opsize; 3790 } 3791 } 3792 } 3793 3794 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3795 { 3796 __be32 *ptr = (__be32 *)(th + 1); 3797 3798 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3799 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3800 tp->rx_opt.saw_tstamp = 1; 3801 ++ptr; 3802 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3803 ++ptr; 3804 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3805 return 1; 3806 } 3807 return 0; 3808 } 3809 3810 /* Fast parse options. This hopes to only see timestamps. 3811 * If it is wrong it falls back on tcp_parse_options(). 3812 */ 3813 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3814 struct tcp_sock *tp) 3815 { 3816 if (th->doff == sizeof(struct tcphdr) >> 2) { 3817 tp->rx_opt.saw_tstamp = 0; 3818 return 0; 3819 } else if (tp->rx_opt.tstamp_ok && 3820 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3821 if (tcp_parse_aligned_timestamp(tp, th)) 3822 return 1; 3823 } 3824 tcp_parse_options(skb, &tp->rx_opt, 1); 3825 return 1; 3826 } 3827 3828 #ifdef CONFIG_TCP_MD5SIG 3829 /* 3830 * Parse MD5 Signature option 3831 */ 3832 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3833 { 3834 int length = (th->doff << 2) - sizeof (*th); 3835 u8 *ptr = (u8*)(th + 1); 3836 3837 /* If the TCP option is too short, we can short cut */ 3838 if (length < TCPOLEN_MD5SIG) 3839 return NULL; 3840 3841 while (length > 0) { 3842 int opcode = *ptr++; 3843 int opsize; 3844 3845 switch(opcode) { 3846 case TCPOPT_EOL: 3847 return NULL; 3848 case TCPOPT_NOP: 3849 length--; 3850 continue; 3851 default: 3852 opsize = *ptr++; 3853 if (opsize < 2 || opsize > length) 3854 return NULL; 3855 if (opcode == TCPOPT_MD5SIG) 3856 return ptr; 3857 } 3858 ptr += opsize - 2; 3859 length -= opsize; 3860 } 3861 return NULL; 3862 } 3863 #endif 3864 3865 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3866 { 3867 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3868 tp->rx_opt.ts_recent_stamp = get_seconds(); 3869 } 3870 3871 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3872 { 3873 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3874 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3875 * extra check below makes sure this can only happen 3876 * for pure ACK frames. -DaveM 3877 * 3878 * Not only, also it occurs for expired timestamps. 3879 */ 3880 3881 if (tcp_paws_check(&tp->rx_opt, 0)) 3882 tcp_store_ts_recent(tp); 3883 } 3884 } 3885 3886 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3887 * 3888 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3889 * it can pass through stack. So, the following predicate verifies that 3890 * this segment is not used for anything but congestion avoidance or 3891 * fast retransmit. Moreover, we even are able to eliminate most of such 3892 * second order effects, if we apply some small "replay" window (~RTO) 3893 * to timestamp space. 3894 * 3895 * All these measures still do not guarantee that we reject wrapped ACKs 3896 * on networks with high bandwidth, when sequence space is recycled fastly, 3897 * but it guarantees that such events will be very rare and do not affect 3898 * connection seriously. This doesn't look nice, but alas, PAWS is really 3899 * buggy extension. 3900 * 3901 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3902 * states that events when retransmit arrives after original data are rare. 3903 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3904 * the biggest problem on large power networks even with minor reordering. 3905 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3906 * up to bandwidth of 18Gigabit/sec. 8) ] 3907 */ 3908 3909 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3910 { 3911 struct tcp_sock *tp = tcp_sk(sk); 3912 struct tcphdr *th = tcp_hdr(skb); 3913 u32 seq = TCP_SKB_CB(skb)->seq; 3914 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3915 3916 return (/* 1. Pure ACK with correct sequence number. */ 3917 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3918 3919 /* 2. ... and duplicate ACK. */ 3920 ack == tp->snd_una && 3921 3922 /* 3. ... and does not update window. */ 3923 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3924 3925 /* 4. ... and sits in replay window. */ 3926 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3927 } 3928 3929 static inline int tcp_paws_discard(const struct sock *sk, 3930 const struct sk_buff *skb) 3931 { 3932 const struct tcp_sock *tp = tcp_sk(sk); 3933 3934 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3935 !tcp_disordered_ack(sk, skb); 3936 } 3937 3938 /* Check segment sequence number for validity. 3939 * 3940 * Segment controls are considered valid, if the segment 3941 * fits to the window after truncation to the window. Acceptability 3942 * of data (and SYN, FIN, of course) is checked separately. 3943 * See tcp_data_queue(), for example. 3944 * 3945 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3946 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3947 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3948 * (borrowed from freebsd) 3949 */ 3950 3951 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3952 { 3953 return !before(end_seq, tp->rcv_wup) && 3954 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3955 } 3956 3957 /* When we get a reset we do this. */ 3958 static void tcp_reset(struct sock *sk) 3959 { 3960 /* We want the right error as BSD sees it (and indeed as we do). */ 3961 switch (sk->sk_state) { 3962 case TCP_SYN_SENT: 3963 sk->sk_err = ECONNREFUSED; 3964 break; 3965 case TCP_CLOSE_WAIT: 3966 sk->sk_err = EPIPE; 3967 break; 3968 case TCP_CLOSE: 3969 return; 3970 default: 3971 sk->sk_err = ECONNRESET; 3972 } 3973 3974 if (!sock_flag(sk, SOCK_DEAD)) 3975 sk->sk_error_report(sk); 3976 3977 tcp_done(sk); 3978 } 3979 3980 /* 3981 * Process the FIN bit. This now behaves as it is supposed to work 3982 * and the FIN takes effect when it is validly part of sequence 3983 * space. Not before when we get holes. 3984 * 3985 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3986 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3987 * TIME-WAIT) 3988 * 3989 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3990 * close and we go into CLOSING (and later onto TIME-WAIT) 3991 * 3992 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3993 */ 3994 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3995 { 3996 struct tcp_sock *tp = tcp_sk(sk); 3997 3998 inet_csk_schedule_ack(sk); 3999 4000 sk->sk_shutdown |= RCV_SHUTDOWN; 4001 sock_set_flag(sk, SOCK_DONE); 4002 4003 switch (sk->sk_state) { 4004 case TCP_SYN_RECV: 4005 case TCP_ESTABLISHED: 4006 /* Move to CLOSE_WAIT */ 4007 tcp_set_state(sk, TCP_CLOSE_WAIT); 4008 inet_csk(sk)->icsk_ack.pingpong = 1; 4009 break; 4010 4011 case TCP_CLOSE_WAIT: 4012 case TCP_CLOSING: 4013 /* Received a retransmission of the FIN, do 4014 * nothing. 4015 */ 4016 break; 4017 case TCP_LAST_ACK: 4018 /* RFC793: Remain in the LAST-ACK state. */ 4019 break; 4020 4021 case TCP_FIN_WAIT1: 4022 /* This case occurs when a simultaneous close 4023 * happens, we must ack the received FIN and 4024 * enter the CLOSING state. 4025 */ 4026 tcp_send_ack(sk); 4027 tcp_set_state(sk, TCP_CLOSING); 4028 break; 4029 case TCP_FIN_WAIT2: 4030 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4031 tcp_send_ack(sk); 4032 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4033 break; 4034 default: 4035 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4036 * cases we should never reach this piece of code. 4037 */ 4038 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4039 __func__, sk->sk_state); 4040 break; 4041 } 4042 4043 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4044 * Probably, we should reset in this case. For now drop them. 4045 */ 4046 __skb_queue_purge(&tp->out_of_order_queue); 4047 if (tcp_is_sack(tp)) 4048 tcp_sack_reset(&tp->rx_opt); 4049 sk_mem_reclaim(sk); 4050 4051 if (!sock_flag(sk, SOCK_DEAD)) { 4052 sk->sk_state_change(sk); 4053 4054 /* Do not send POLL_HUP for half duplex close. */ 4055 if (sk->sk_shutdown == SHUTDOWN_MASK || 4056 sk->sk_state == TCP_CLOSE) 4057 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4058 else 4059 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4060 } 4061 } 4062 4063 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4064 u32 end_seq) 4065 { 4066 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4067 if (before(seq, sp->start_seq)) 4068 sp->start_seq = seq; 4069 if (after(end_seq, sp->end_seq)) 4070 sp->end_seq = end_seq; 4071 return 1; 4072 } 4073 return 0; 4074 } 4075 4076 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4077 { 4078 struct tcp_sock *tp = tcp_sk(sk); 4079 4080 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4081 int mib_idx; 4082 4083 if (before(seq, tp->rcv_nxt)) 4084 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4085 else 4086 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4087 4088 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4089 4090 tp->rx_opt.dsack = 1; 4091 tp->duplicate_sack[0].start_seq = seq; 4092 tp->duplicate_sack[0].end_seq = end_seq; 4093 } 4094 } 4095 4096 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4097 { 4098 struct tcp_sock *tp = tcp_sk(sk); 4099 4100 if (!tp->rx_opt.dsack) 4101 tcp_dsack_set(sk, seq, end_seq); 4102 else 4103 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4104 } 4105 4106 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4107 { 4108 struct tcp_sock *tp = tcp_sk(sk); 4109 4110 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4111 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4112 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4113 tcp_enter_quickack_mode(sk); 4114 4115 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4116 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4117 4118 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4119 end_seq = tp->rcv_nxt; 4120 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4121 } 4122 } 4123 4124 tcp_send_ack(sk); 4125 } 4126 4127 /* These routines update the SACK block as out-of-order packets arrive or 4128 * in-order packets close up the sequence space. 4129 */ 4130 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4131 { 4132 int this_sack; 4133 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4134 struct tcp_sack_block *swalk = sp + 1; 4135 4136 /* See if the recent change to the first SACK eats into 4137 * or hits the sequence space of other SACK blocks, if so coalesce. 4138 */ 4139 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4140 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4141 int i; 4142 4143 /* Zap SWALK, by moving every further SACK up by one slot. 4144 * Decrease num_sacks. 4145 */ 4146 tp->rx_opt.num_sacks--; 4147 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4148 sp[i] = sp[i + 1]; 4149 continue; 4150 } 4151 this_sack++, swalk++; 4152 } 4153 } 4154 4155 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4156 { 4157 struct tcp_sock *tp = tcp_sk(sk); 4158 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4159 int cur_sacks = tp->rx_opt.num_sacks; 4160 int this_sack; 4161 4162 if (!cur_sacks) 4163 goto new_sack; 4164 4165 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4166 if (tcp_sack_extend(sp, seq, end_seq)) { 4167 /* Rotate this_sack to the first one. */ 4168 for (; this_sack > 0; this_sack--, sp--) 4169 swap(*sp, *(sp - 1)); 4170 if (cur_sacks > 1) 4171 tcp_sack_maybe_coalesce(tp); 4172 return; 4173 } 4174 } 4175 4176 /* Could not find an adjacent existing SACK, build a new one, 4177 * put it at the front, and shift everyone else down. We 4178 * always know there is at least one SACK present already here. 4179 * 4180 * If the sack array is full, forget about the last one. 4181 */ 4182 if (this_sack >= TCP_NUM_SACKS) { 4183 this_sack--; 4184 tp->rx_opt.num_sacks--; 4185 sp--; 4186 } 4187 for (; this_sack > 0; this_sack--, sp--) 4188 *sp = *(sp - 1); 4189 4190 new_sack: 4191 /* Build the new head SACK, and we're done. */ 4192 sp->start_seq = seq; 4193 sp->end_seq = end_seq; 4194 tp->rx_opt.num_sacks++; 4195 } 4196 4197 /* RCV.NXT advances, some SACKs should be eaten. */ 4198 4199 static void tcp_sack_remove(struct tcp_sock *tp) 4200 { 4201 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4202 int num_sacks = tp->rx_opt.num_sacks; 4203 int this_sack; 4204 4205 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4206 if (skb_queue_empty(&tp->out_of_order_queue)) { 4207 tp->rx_opt.num_sacks = 0; 4208 return; 4209 } 4210 4211 for (this_sack = 0; this_sack < num_sacks;) { 4212 /* Check if the start of the sack is covered by RCV.NXT. */ 4213 if (!before(tp->rcv_nxt, sp->start_seq)) { 4214 int i; 4215 4216 /* RCV.NXT must cover all the block! */ 4217 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4218 4219 /* Zap this SACK, by moving forward any other SACKS. */ 4220 for (i=this_sack+1; i < num_sacks; i++) 4221 tp->selective_acks[i-1] = tp->selective_acks[i]; 4222 num_sacks--; 4223 continue; 4224 } 4225 this_sack++; 4226 sp++; 4227 } 4228 tp->rx_opt.num_sacks = num_sacks; 4229 } 4230 4231 /* This one checks to see if we can put data from the 4232 * out_of_order queue into the receive_queue. 4233 */ 4234 static void tcp_ofo_queue(struct sock *sk) 4235 { 4236 struct tcp_sock *tp = tcp_sk(sk); 4237 __u32 dsack_high = tp->rcv_nxt; 4238 struct sk_buff *skb; 4239 4240 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4241 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4242 break; 4243 4244 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4245 __u32 dsack = dsack_high; 4246 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4247 dsack_high = TCP_SKB_CB(skb)->end_seq; 4248 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4249 } 4250 4251 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4252 SOCK_DEBUG(sk, "ofo packet was already received \n"); 4253 __skb_unlink(skb, &tp->out_of_order_queue); 4254 __kfree_skb(skb); 4255 continue; 4256 } 4257 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4258 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4259 TCP_SKB_CB(skb)->end_seq); 4260 4261 __skb_unlink(skb, &tp->out_of_order_queue); 4262 __skb_queue_tail(&sk->sk_receive_queue, skb); 4263 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4264 if (tcp_hdr(skb)->fin) 4265 tcp_fin(skb, sk, tcp_hdr(skb)); 4266 } 4267 } 4268 4269 static int tcp_prune_ofo_queue(struct sock *sk); 4270 static int tcp_prune_queue(struct sock *sk); 4271 4272 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4273 { 4274 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4275 !sk_rmem_schedule(sk, size)) { 4276 4277 if (tcp_prune_queue(sk) < 0) 4278 return -1; 4279 4280 if (!sk_rmem_schedule(sk, size)) { 4281 if (!tcp_prune_ofo_queue(sk)) 4282 return -1; 4283 4284 if (!sk_rmem_schedule(sk, size)) 4285 return -1; 4286 } 4287 } 4288 return 0; 4289 } 4290 4291 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4292 { 4293 struct tcphdr *th = tcp_hdr(skb); 4294 struct tcp_sock *tp = tcp_sk(sk); 4295 int eaten = -1; 4296 4297 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4298 goto drop; 4299 4300 __skb_pull(skb, th->doff * 4); 4301 4302 TCP_ECN_accept_cwr(tp, skb); 4303 4304 tp->rx_opt.dsack = 0; 4305 4306 /* Queue data for delivery to the user. 4307 * Packets in sequence go to the receive queue. 4308 * Out of sequence packets to the out_of_order_queue. 4309 */ 4310 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4311 if (tcp_receive_window(tp) == 0) 4312 goto out_of_window; 4313 4314 /* Ok. In sequence. In window. */ 4315 if (tp->ucopy.task == current && 4316 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4317 sock_owned_by_user(sk) && !tp->urg_data) { 4318 int chunk = min_t(unsigned int, skb->len, 4319 tp->ucopy.len); 4320 4321 __set_current_state(TASK_RUNNING); 4322 4323 local_bh_enable(); 4324 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4325 tp->ucopy.len -= chunk; 4326 tp->copied_seq += chunk; 4327 eaten = (chunk == skb->len && !th->fin); 4328 tcp_rcv_space_adjust(sk); 4329 } 4330 local_bh_disable(); 4331 } 4332 4333 if (eaten <= 0) { 4334 queue_and_out: 4335 if (eaten < 0 && 4336 tcp_try_rmem_schedule(sk, skb->truesize)) 4337 goto drop; 4338 4339 skb_set_owner_r(skb, sk); 4340 __skb_queue_tail(&sk->sk_receive_queue, skb); 4341 } 4342 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4343 if (skb->len) 4344 tcp_event_data_recv(sk, skb); 4345 if (th->fin) 4346 tcp_fin(skb, sk, th); 4347 4348 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4349 tcp_ofo_queue(sk); 4350 4351 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4352 * gap in queue is filled. 4353 */ 4354 if (skb_queue_empty(&tp->out_of_order_queue)) 4355 inet_csk(sk)->icsk_ack.pingpong = 0; 4356 } 4357 4358 if (tp->rx_opt.num_sacks) 4359 tcp_sack_remove(tp); 4360 4361 tcp_fast_path_check(sk); 4362 4363 if (eaten > 0) 4364 __kfree_skb(skb); 4365 else if (!sock_flag(sk, SOCK_DEAD)) 4366 sk->sk_data_ready(sk, 0); 4367 return; 4368 } 4369 4370 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4371 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4372 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4373 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4374 4375 out_of_window: 4376 tcp_enter_quickack_mode(sk); 4377 inet_csk_schedule_ack(sk); 4378 drop: 4379 __kfree_skb(skb); 4380 return; 4381 } 4382 4383 /* Out of window. F.e. zero window probe. */ 4384 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4385 goto out_of_window; 4386 4387 tcp_enter_quickack_mode(sk); 4388 4389 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4390 /* Partial packet, seq < rcv_next < end_seq */ 4391 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4392 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4393 TCP_SKB_CB(skb)->end_seq); 4394 4395 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4396 4397 /* If window is closed, drop tail of packet. But after 4398 * remembering D-SACK for its head made in previous line. 4399 */ 4400 if (!tcp_receive_window(tp)) 4401 goto out_of_window; 4402 goto queue_and_out; 4403 } 4404 4405 TCP_ECN_check_ce(tp, skb); 4406 4407 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4408 goto drop; 4409 4410 /* Disable header prediction. */ 4411 tp->pred_flags = 0; 4412 inet_csk_schedule_ack(sk); 4413 4414 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4415 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4416 4417 skb_set_owner_r(skb, sk); 4418 4419 if (!skb_peek(&tp->out_of_order_queue)) { 4420 /* Initial out of order segment, build 1 SACK. */ 4421 if (tcp_is_sack(tp)) { 4422 tp->rx_opt.num_sacks = 1; 4423 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4424 tp->selective_acks[0].end_seq = 4425 TCP_SKB_CB(skb)->end_seq; 4426 } 4427 __skb_queue_head(&tp->out_of_order_queue, skb); 4428 } else { 4429 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 4430 u32 seq = TCP_SKB_CB(skb)->seq; 4431 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4432 4433 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4434 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4435 4436 if (!tp->rx_opt.num_sacks || 4437 tp->selective_acks[0].end_seq != seq) 4438 goto add_sack; 4439 4440 /* Common case: data arrive in order after hole. */ 4441 tp->selective_acks[0].end_seq = end_seq; 4442 return; 4443 } 4444 4445 /* Find place to insert this segment. */ 4446 do { 4447 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4448 break; 4449 } while ((skb1 = skb1->prev) != 4450 (struct sk_buff *)&tp->out_of_order_queue); 4451 4452 /* Do skb overlap to previous one? */ 4453 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue && 4454 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4455 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4456 /* All the bits are present. Drop. */ 4457 __kfree_skb(skb); 4458 tcp_dsack_set(sk, seq, end_seq); 4459 goto add_sack; 4460 } 4461 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4462 /* Partial overlap. */ 4463 tcp_dsack_set(sk, seq, 4464 TCP_SKB_CB(skb1)->end_seq); 4465 } else { 4466 skb1 = skb1->prev; 4467 } 4468 } 4469 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4470 4471 /* And clean segments covered by new one as whole. */ 4472 while ((skb1 = skb->next) != 4473 (struct sk_buff *)&tp->out_of_order_queue && 4474 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 4475 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4476 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4477 end_seq); 4478 break; 4479 } 4480 __skb_unlink(skb1, &tp->out_of_order_queue); 4481 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4482 TCP_SKB_CB(skb1)->end_seq); 4483 __kfree_skb(skb1); 4484 } 4485 4486 add_sack: 4487 if (tcp_is_sack(tp)) 4488 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4489 } 4490 } 4491 4492 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4493 struct sk_buff_head *list) 4494 { 4495 struct sk_buff *next = skb->next; 4496 4497 __skb_unlink(skb, list); 4498 __kfree_skb(skb); 4499 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4500 4501 return next; 4502 } 4503 4504 /* Collapse contiguous sequence of skbs head..tail with 4505 * sequence numbers start..end. 4506 * Segments with FIN/SYN are not collapsed (only because this 4507 * simplifies code) 4508 */ 4509 static void 4510 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4511 struct sk_buff *head, struct sk_buff *tail, 4512 u32 start, u32 end) 4513 { 4514 struct sk_buff *skb; 4515 4516 /* First, check that queue is collapsible and find 4517 * the point where collapsing can be useful. */ 4518 for (skb = head; skb != tail;) { 4519 /* No new bits? It is possible on ofo queue. */ 4520 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4521 skb = tcp_collapse_one(sk, skb, list); 4522 continue; 4523 } 4524 4525 /* The first skb to collapse is: 4526 * - not SYN/FIN and 4527 * - bloated or contains data before "start" or 4528 * overlaps to the next one. 4529 */ 4530 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4531 (tcp_win_from_space(skb->truesize) > skb->len || 4532 before(TCP_SKB_CB(skb)->seq, start) || 4533 (skb->next != tail && 4534 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 4535 break; 4536 4537 /* Decided to skip this, advance start seq. */ 4538 start = TCP_SKB_CB(skb)->end_seq; 4539 skb = skb->next; 4540 } 4541 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4542 return; 4543 4544 while (before(start, end)) { 4545 struct sk_buff *nskb; 4546 unsigned int header = skb_headroom(skb); 4547 int copy = SKB_MAX_ORDER(header, 0); 4548 4549 /* Too big header? This can happen with IPv6. */ 4550 if (copy < 0) 4551 return; 4552 if (end - start < copy) 4553 copy = end - start; 4554 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4555 if (!nskb) 4556 return; 4557 4558 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4559 skb_set_network_header(nskb, (skb_network_header(skb) - 4560 skb->head)); 4561 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4562 skb->head)); 4563 skb_reserve(nskb, header); 4564 memcpy(nskb->head, skb->head, header); 4565 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4566 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4567 __skb_queue_before(list, skb, nskb); 4568 skb_set_owner_r(nskb, sk); 4569 4570 /* Copy data, releasing collapsed skbs. */ 4571 while (copy > 0) { 4572 int offset = start - TCP_SKB_CB(skb)->seq; 4573 int size = TCP_SKB_CB(skb)->end_seq - start; 4574 4575 BUG_ON(offset < 0); 4576 if (size > 0) { 4577 size = min(copy, size); 4578 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4579 BUG(); 4580 TCP_SKB_CB(nskb)->end_seq += size; 4581 copy -= size; 4582 start += size; 4583 } 4584 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4585 skb = tcp_collapse_one(sk, skb, list); 4586 if (skb == tail || 4587 tcp_hdr(skb)->syn || 4588 tcp_hdr(skb)->fin) 4589 return; 4590 } 4591 } 4592 } 4593 } 4594 4595 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4596 * and tcp_collapse() them until all the queue is collapsed. 4597 */ 4598 static void tcp_collapse_ofo_queue(struct sock *sk) 4599 { 4600 struct tcp_sock *tp = tcp_sk(sk); 4601 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4602 struct sk_buff *head; 4603 u32 start, end; 4604 4605 if (skb == NULL) 4606 return; 4607 4608 start = TCP_SKB_CB(skb)->seq; 4609 end = TCP_SKB_CB(skb)->end_seq; 4610 head = skb; 4611 4612 for (;;) { 4613 skb = skb->next; 4614 4615 /* Segment is terminated when we see gap or when 4616 * we are at the end of all the queue. */ 4617 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 4618 after(TCP_SKB_CB(skb)->seq, end) || 4619 before(TCP_SKB_CB(skb)->end_seq, start)) { 4620 tcp_collapse(sk, &tp->out_of_order_queue, 4621 head, skb, start, end); 4622 head = skb; 4623 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 4624 break; 4625 /* Start new segment */ 4626 start = TCP_SKB_CB(skb)->seq; 4627 end = TCP_SKB_CB(skb)->end_seq; 4628 } else { 4629 if (before(TCP_SKB_CB(skb)->seq, start)) 4630 start = TCP_SKB_CB(skb)->seq; 4631 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4632 end = TCP_SKB_CB(skb)->end_seq; 4633 } 4634 } 4635 } 4636 4637 /* 4638 * Purge the out-of-order queue. 4639 * Return true if queue was pruned. 4640 */ 4641 static int tcp_prune_ofo_queue(struct sock *sk) 4642 { 4643 struct tcp_sock *tp = tcp_sk(sk); 4644 int res = 0; 4645 4646 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4647 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4648 __skb_queue_purge(&tp->out_of_order_queue); 4649 4650 /* Reset SACK state. A conforming SACK implementation will 4651 * do the same at a timeout based retransmit. When a connection 4652 * is in a sad state like this, we care only about integrity 4653 * of the connection not performance. 4654 */ 4655 if (tp->rx_opt.sack_ok) 4656 tcp_sack_reset(&tp->rx_opt); 4657 sk_mem_reclaim(sk); 4658 res = 1; 4659 } 4660 return res; 4661 } 4662 4663 /* Reduce allocated memory if we can, trying to get 4664 * the socket within its memory limits again. 4665 * 4666 * Return less than zero if we should start dropping frames 4667 * until the socket owning process reads some of the data 4668 * to stabilize the situation. 4669 */ 4670 static int tcp_prune_queue(struct sock *sk) 4671 { 4672 struct tcp_sock *tp = tcp_sk(sk); 4673 4674 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4675 4676 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4677 4678 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4679 tcp_clamp_window(sk); 4680 else if (tcp_memory_pressure) 4681 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4682 4683 tcp_collapse_ofo_queue(sk); 4684 tcp_collapse(sk, &sk->sk_receive_queue, 4685 sk->sk_receive_queue.next, 4686 (struct sk_buff *)&sk->sk_receive_queue, 4687 tp->copied_seq, tp->rcv_nxt); 4688 sk_mem_reclaim(sk); 4689 4690 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4691 return 0; 4692 4693 /* Collapsing did not help, destructive actions follow. 4694 * This must not ever occur. */ 4695 4696 tcp_prune_ofo_queue(sk); 4697 4698 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4699 return 0; 4700 4701 /* If we are really being abused, tell the caller to silently 4702 * drop receive data on the floor. It will get retransmitted 4703 * and hopefully then we'll have sufficient space. 4704 */ 4705 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4706 4707 /* Massive buffer overcommit. */ 4708 tp->pred_flags = 0; 4709 return -1; 4710 } 4711 4712 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4713 * As additional protections, we do not touch cwnd in retransmission phases, 4714 * and if application hit its sndbuf limit recently. 4715 */ 4716 void tcp_cwnd_application_limited(struct sock *sk) 4717 { 4718 struct tcp_sock *tp = tcp_sk(sk); 4719 4720 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4721 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4722 /* Limited by application or receiver window. */ 4723 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4724 u32 win_used = max(tp->snd_cwnd_used, init_win); 4725 if (win_used < tp->snd_cwnd) { 4726 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4727 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4728 } 4729 tp->snd_cwnd_used = 0; 4730 } 4731 tp->snd_cwnd_stamp = tcp_time_stamp; 4732 } 4733 4734 static int tcp_should_expand_sndbuf(struct sock *sk) 4735 { 4736 struct tcp_sock *tp = tcp_sk(sk); 4737 4738 /* If the user specified a specific send buffer setting, do 4739 * not modify it. 4740 */ 4741 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4742 return 0; 4743 4744 /* If we are under global TCP memory pressure, do not expand. */ 4745 if (tcp_memory_pressure) 4746 return 0; 4747 4748 /* If we are under soft global TCP memory pressure, do not expand. */ 4749 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4750 return 0; 4751 4752 /* If we filled the congestion window, do not expand. */ 4753 if (tp->packets_out >= tp->snd_cwnd) 4754 return 0; 4755 4756 return 1; 4757 } 4758 4759 /* When incoming ACK allowed to free some skb from write_queue, 4760 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4761 * on the exit from tcp input handler. 4762 * 4763 * PROBLEM: sndbuf expansion does not work well with largesend. 4764 */ 4765 static void tcp_new_space(struct sock *sk) 4766 { 4767 struct tcp_sock *tp = tcp_sk(sk); 4768 4769 if (tcp_should_expand_sndbuf(sk)) { 4770 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4771 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4772 int demanded = max_t(unsigned int, tp->snd_cwnd, 4773 tp->reordering + 1); 4774 sndmem *= 2 * demanded; 4775 if (sndmem > sk->sk_sndbuf) 4776 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4777 tp->snd_cwnd_stamp = tcp_time_stamp; 4778 } 4779 4780 sk->sk_write_space(sk); 4781 } 4782 4783 static void tcp_check_space(struct sock *sk) 4784 { 4785 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4786 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4787 if (sk->sk_socket && 4788 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4789 tcp_new_space(sk); 4790 } 4791 } 4792 4793 static inline void tcp_data_snd_check(struct sock *sk) 4794 { 4795 tcp_push_pending_frames(sk); 4796 tcp_check_space(sk); 4797 } 4798 4799 /* 4800 * Check if sending an ack is needed. 4801 */ 4802 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4803 { 4804 struct tcp_sock *tp = tcp_sk(sk); 4805 4806 /* More than one full frame received... */ 4807 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 4808 /* ... and right edge of window advances far enough. 4809 * (tcp_recvmsg() will send ACK otherwise). Or... 4810 */ 4811 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4812 /* We ACK each frame or... */ 4813 tcp_in_quickack_mode(sk) || 4814 /* We have out of order data. */ 4815 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4816 /* Then ack it now */ 4817 tcp_send_ack(sk); 4818 } else { 4819 /* Else, send delayed ack. */ 4820 tcp_send_delayed_ack(sk); 4821 } 4822 } 4823 4824 static inline void tcp_ack_snd_check(struct sock *sk) 4825 { 4826 if (!inet_csk_ack_scheduled(sk)) { 4827 /* We sent a data segment already. */ 4828 return; 4829 } 4830 __tcp_ack_snd_check(sk, 1); 4831 } 4832 4833 /* 4834 * This routine is only called when we have urgent data 4835 * signaled. Its the 'slow' part of tcp_urg. It could be 4836 * moved inline now as tcp_urg is only called from one 4837 * place. We handle URGent data wrong. We have to - as 4838 * BSD still doesn't use the correction from RFC961. 4839 * For 1003.1g we should support a new option TCP_STDURG to permit 4840 * either form (or just set the sysctl tcp_stdurg). 4841 */ 4842 4843 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4844 { 4845 struct tcp_sock *tp = tcp_sk(sk); 4846 u32 ptr = ntohs(th->urg_ptr); 4847 4848 if (ptr && !sysctl_tcp_stdurg) 4849 ptr--; 4850 ptr += ntohl(th->seq); 4851 4852 /* Ignore urgent data that we've already seen and read. */ 4853 if (after(tp->copied_seq, ptr)) 4854 return; 4855 4856 /* Do not replay urg ptr. 4857 * 4858 * NOTE: interesting situation not covered by specs. 4859 * Misbehaving sender may send urg ptr, pointing to segment, 4860 * which we already have in ofo queue. We are not able to fetch 4861 * such data and will stay in TCP_URG_NOTYET until will be eaten 4862 * by recvmsg(). Seems, we are not obliged to handle such wicked 4863 * situations. But it is worth to think about possibility of some 4864 * DoSes using some hypothetical application level deadlock. 4865 */ 4866 if (before(ptr, tp->rcv_nxt)) 4867 return; 4868 4869 /* Do we already have a newer (or duplicate) urgent pointer? */ 4870 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4871 return; 4872 4873 /* Tell the world about our new urgent pointer. */ 4874 sk_send_sigurg(sk); 4875 4876 /* We may be adding urgent data when the last byte read was 4877 * urgent. To do this requires some care. We cannot just ignore 4878 * tp->copied_seq since we would read the last urgent byte again 4879 * as data, nor can we alter copied_seq until this data arrives 4880 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4881 * 4882 * NOTE. Double Dutch. Rendering to plain English: author of comment 4883 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4884 * and expect that both A and B disappear from stream. This is _wrong_. 4885 * Though this happens in BSD with high probability, this is occasional. 4886 * Any application relying on this is buggy. Note also, that fix "works" 4887 * only in this artificial test. Insert some normal data between A and B and we will 4888 * decline of BSD again. Verdict: it is better to remove to trap 4889 * buggy users. 4890 */ 4891 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4892 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4893 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4894 tp->copied_seq++; 4895 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4896 __skb_unlink(skb, &sk->sk_receive_queue); 4897 __kfree_skb(skb); 4898 } 4899 } 4900 4901 tp->urg_data = TCP_URG_NOTYET; 4902 tp->urg_seq = ptr; 4903 4904 /* Disable header prediction. */ 4905 tp->pred_flags = 0; 4906 } 4907 4908 /* This is the 'fast' part of urgent handling. */ 4909 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4910 { 4911 struct tcp_sock *tp = tcp_sk(sk); 4912 4913 /* Check if we get a new urgent pointer - normally not. */ 4914 if (th->urg) 4915 tcp_check_urg(sk, th); 4916 4917 /* Do we wait for any urgent data? - normally not... */ 4918 if (tp->urg_data == TCP_URG_NOTYET) { 4919 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4920 th->syn; 4921 4922 /* Is the urgent pointer pointing into this packet? */ 4923 if (ptr < skb->len) { 4924 u8 tmp; 4925 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4926 BUG(); 4927 tp->urg_data = TCP_URG_VALID | tmp; 4928 if (!sock_flag(sk, SOCK_DEAD)) 4929 sk->sk_data_ready(sk, 0); 4930 } 4931 } 4932 } 4933 4934 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4935 { 4936 struct tcp_sock *tp = tcp_sk(sk); 4937 int chunk = skb->len - hlen; 4938 int err; 4939 4940 local_bh_enable(); 4941 if (skb_csum_unnecessary(skb)) 4942 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4943 else 4944 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4945 tp->ucopy.iov); 4946 4947 if (!err) { 4948 tp->ucopy.len -= chunk; 4949 tp->copied_seq += chunk; 4950 tcp_rcv_space_adjust(sk); 4951 } 4952 4953 local_bh_disable(); 4954 return err; 4955 } 4956 4957 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4958 struct sk_buff *skb) 4959 { 4960 __sum16 result; 4961 4962 if (sock_owned_by_user(sk)) { 4963 local_bh_enable(); 4964 result = __tcp_checksum_complete(skb); 4965 local_bh_disable(); 4966 } else { 4967 result = __tcp_checksum_complete(skb); 4968 } 4969 return result; 4970 } 4971 4972 static inline int tcp_checksum_complete_user(struct sock *sk, 4973 struct sk_buff *skb) 4974 { 4975 return !skb_csum_unnecessary(skb) && 4976 __tcp_checksum_complete_user(sk, skb); 4977 } 4978 4979 #ifdef CONFIG_NET_DMA 4980 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4981 int hlen) 4982 { 4983 struct tcp_sock *tp = tcp_sk(sk); 4984 int chunk = skb->len - hlen; 4985 int dma_cookie; 4986 int copied_early = 0; 4987 4988 if (tp->ucopy.wakeup) 4989 return 0; 4990 4991 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4992 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 4993 4994 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4995 4996 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4997 skb, hlen, 4998 tp->ucopy.iov, chunk, 4999 tp->ucopy.pinned_list); 5000 5001 if (dma_cookie < 0) 5002 goto out; 5003 5004 tp->ucopy.dma_cookie = dma_cookie; 5005 copied_early = 1; 5006 5007 tp->ucopy.len -= chunk; 5008 tp->copied_seq += chunk; 5009 tcp_rcv_space_adjust(sk); 5010 5011 if ((tp->ucopy.len == 0) || 5012 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5013 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5014 tp->ucopy.wakeup = 1; 5015 sk->sk_data_ready(sk, 0); 5016 } 5017 } else if (chunk > 0) { 5018 tp->ucopy.wakeup = 1; 5019 sk->sk_data_ready(sk, 0); 5020 } 5021 out: 5022 return copied_early; 5023 } 5024 #endif /* CONFIG_NET_DMA */ 5025 5026 /* Does PAWS and seqno based validation of an incoming segment, flags will 5027 * play significant role here. 5028 */ 5029 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5030 struct tcphdr *th, int syn_inerr) 5031 { 5032 struct tcp_sock *tp = tcp_sk(sk); 5033 5034 /* RFC1323: H1. Apply PAWS check first. */ 5035 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5036 tcp_paws_discard(sk, skb)) { 5037 if (!th->rst) { 5038 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5039 tcp_send_dupack(sk, skb); 5040 goto discard; 5041 } 5042 /* Reset is accepted even if it did not pass PAWS. */ 5043 } 5044 5045 /* Step 1: check sequence number */ 5046 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5047 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5048 * (RST) segments are validated by checking their SEQ-fields." 5049 * And page 69: "If an incoming segment is not acceptable, 5050 * an acknowledgment should be sent in reply (unless the RST 5051 * bit is set, if so drop the segment and return)". 5052 */ 5053 if (!th->rst) 5054 tcp_send_dupack(sk, skb); 5055 goto discard; 5056 } 5057 5058 /* Step 2: check RST bit */ 5059 if (th->rst) { 5060 tcp_reset(sk); 5061 goto discard; 5062 } 5063 5064 /* ts_recent update must be made after we are sure that the packet 5065 * is in window. 5066 */ 5067 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5068 5069 /* step 3: check security and precedence [ignored] */ 5070 5071 /* step 4: Check for a SYN in window. */ 5072 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5073 if (syn_inerr) 5074 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5075 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5076 tcp_reset(sk); 5077 return -1; 5078 } 5079 5080 return 1; 5081 5082 discard: 5083 __kfree_skb(skb); 5084 return 0; 5085 } 5086 5087 /* 5088 * TCP receive function for the ESTABLISHED state. 5089 * 5090 * It is split into a fast path and a slow path. The fast path is 5091 * disabled when: 5092 * - A zero window was announced from us - zero window probing 5093 * is only handled properly in the slow path. 5094 * - Out of order segments arrived. 5095 * - Urgent data is expected. 5096 * - There is no buffer space left 5097 * - Unexpected TCP flags/window values/header lengths are received 5098 * (detected by checking the TCP header against pred_flags) 5099 * - Data is sent in both directions. Fast path only supports pure senders 5100 * or pure receivers (this means either the sequence number or the ack 5101 * value must stay constant) 5102 * - Unexpected TCP option. 5103 * 5104 * When these conditions are not satisfied it drops into a standard 5105 * receive procedure patterned after RFC793 to handle all cases. 5106 * The first three cases are guaranteed by proper pred_flags setting, 5107 * the rest is checked inline. Fast processing is turned on in 5108 * tcp_data_queue when everything is OK. 5109 */ 5110 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5111 struct tcphdr *th, unsigned len) 5112 { 5113 struct tcp_sock *tp = tcp_sk(sk); 5114 int res; 5115 5116 /* 5117 * Header prediction. 5118 * The code loosely follows the one in the famous 5119 * "30 instruction TCP receive" Van Jacobson mail. 5120 * 5121 * Van's trick is to deposit buffers into socket queue 5122 * on a device interrupt, to call tcp_recv function 5123 * on the receive process context and checksum and copy 5124 * the buffer to user space. smart... 5125 * 5126 * Our current scheme is not silly either but we take the 5127 * extra cost of the net_bh soft interrupt processing... 5128 * We do checksum and copy also but from device to kernel. 5129 */ 5130 5131 tp->rx_opt.saw_tstamp = 0; 5132 5133 /* pred_flags is 0xS?10 << 16 + snd_wnd 5134 * if header_prediction is to be made 5135 * 'S' will always be tp->tcp_header_len >> 2 5136 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5137 * turn it off (when there are holes in the receive 5138 * space for instance) 5139 * PSH flag is ignored. 5140 */ 5141 5142 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5143 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5144 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5145 int tcp_header_len = tp->tcp_header_len; 5146 5147 /* Timestamp header prediction: tcp_header_len 5148 * is automatically equal to th->doff*4 due to pred_flags 5149 * match. 5150 */ 5151 5152 /* Check timestamp */ 5153 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5154 /* No? Slow path! */ 5155 if (!tcp_parse_aligned_timestamp(tp, th)) 5156 goto slow_path; 5157 5158 /* If PAWS failed, check it more carefully in slow path */ 5159 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5160 goto slow_path; 5161 5162 /* DO NOT update ts_recent here, if checksum fails 5163 * and timestamp was corrupted part, it will result 5164 * in a hung connection since we will drop all 5165 * future packets due to the PAWS test. 5166 */ 5167 } 5168 5169 if (len <= tcp_header_len) { 5170 /* Bulk data transfer: sender */ 5171 if (len == tcp_header_len) { 5172 /* Predicted packet is in window by definition. 5173 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5174 * Hence, check seq<=rcv_wup reduces to: 5175 */ 5176 if (tcp_header_len == 5177 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5178 tp->rcv_nxt == tp->rcv_wup) 5179 tcp_store_ts_recent(tp); 5180 5181 /* We know that such packets are checksummed 5182 * on entry. 5183 */ 5184 tcp_ack(sk, skb, 0); 5185 __kfree_skb(skb); 5186 tcp_data_snd_check(sk); 5187 return 0; 5188 } else { /* Header too small */ 5189 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5190 goto discard; 5191 } 5192 } else { 5193 int eaten = 0; 5194 int copied_early = 0; 5195 5196 if (tp->copied_seq == tp->rcv_nxt && 5197 len - tcp_header_len <= tp->ucopy.len) { 5198 #ifdef CONFIG_NET_DMA 5199 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5200 copied_early = 1; 5201 eaten = 1; 5202 } 5203 #endif 5204 if (tp->ucopy.task == current && 5205 sock_owned_by_user(sk) && !copied_early) { 5206 __set_current_state(TASK_RUNNING); 5207 5208 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5209 eaten = 1; 5210 } 5211 if (eaten) { 5212 /* Predicted packet is in window by definition. 5213 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5214 * Hence, check seq<=rcv_wup reduces to: 5215 */ 5216 if (tcp_header_len == 5217 (sizeof(struct tcphdr) + 5218 TCPOLEN_TSTAMP_ALIGNED) && 5219 tp->rcv_nxt == tp->rcv_wup) 5220 tcp_store_ts_recent(tp); 5221 5222 tcp_rcv_rtt_measure_ts(sk, skb); 5223 5224 __skb_pull(skb, tcp_header_len); 5225 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5226 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5227 } 5228 if (copied_early) 5229 tcp_cleanup_rbuf(sk, skb->len); 5230 } 5231 if (!eaten) { 5232 if (tcp_checksum_complete_user(sk, skb)) 5233 goto csum_error; 5234 5235 /* Predicted packet is in window by definition. 5236 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5237 * Hence, check seq<=rcv_wup reduces to: 5238 */ 5239 if (tcp_header_len == 5240 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5241 tp->rcv_nxt == tp->rcv_wup) 5242 tcp_store_ts_recent(tp); 5243 5244 tcp_rcv_rtt_measure_ts(sk, skb); 5245 5246 if ((int)skb->truesize > sk->sk_forward_alloc) 5247 goto step5; 5248 5249 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5250 5251 /* Bulk data transfer: receiver */ 5252 __skb_pull(skb, tcp_header_len); 5253 __skb_queue_tail(&sk->sk_receive_queue, skb); 5254 skb_set_owner_r(skb, sk); 5255 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5256 } 5257 5258 tcp_event_data_recv(sk, skb); 5259 5260 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5261 /* Well, only one small jumplet in fast path... */ 5262 tcp_ack(sk, skb, FLAG_DATA); 5263 tcp_data_snd_check(sk); 5264 if (!inet_csk_ack_scheduled(sk)) 5265 goto no_ack; 5266 } 5267 5268 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5269 __tcp_ack_snd_check(sk, 0); 5270 no_ack: 5271 #ifdef CONFIG_NET_DMA 5272 if (copied_early) 5273 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5274 else 5275 #endif 5276 if (eaten) 5277 __kfree_skb(skb); 5278 else 5279 sk->sk_data_ready(sk, 0); 5280 return 0; 5281 } 5282 } 5283 5284 slow_path: 5285 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5286 goto csum_error; 5287 5288 /* 5289 * Standard slow path. 5290 */ 5291 5292 res = tcp_validate_incoming(sk, skb, th, 1); 5293 if (res <= 0) 5294 return -res; 5295 5296 step5: 5297 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5298 goto discard; 5299 5300 tcp_rcv_rtt_measure_ts(sk, skb); 5301 5302 /* Process urgent data. */ 5303 tcp_urg(sk, skb, th); 5304 5305 /* step 7: process the segment text */ 5306 tcp_data_queue(sk, skb); 5307 5308 tcp_data_snd_check(sk); 5309 tcp_ack_snd_check(sk); 5310 return 0; 5311 5312 csum_error: 5313 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5314 5315 discard: 5316 __kfree_skb(skb); 5317 return 0; 5318 } 5319 5320 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5321 struct tcphdr *th, unsigned len) 5322 { 5323 struct tcp_sock *tp = tcp_sk(sk); 5324 struct inet_connection_sock *icsk = inet_csk(sk); 5325 int saved_clamp = tp->rx_opt.mss_clamp; 5326 5327 tcp_parse_options(skb, &tp->rx_opt, 0); 5328 5329 if (th->ack) { 5330 /* rfc793: 5331 * "If the state is SYN-SENT then 5332 * first check the ACK bit 5333 * If the ACK bit is set 5334 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5335 * a reset (unless the RST bit is set, if so drop 5336 * the segment and return)" 5337 * 5338 * We do not send data with SYN, so that RFC-correct 5339 * test reduces to: 5340 */ 5341 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5342 goto reset_and_undo; 5343 5344 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5345 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5346 tcp_time_stamp)) { 5347 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5348 goto reset_and_undo; 5349 } 5350 5351 /* Now ACK is acceptable. 5352 * 5353 * "If the RST bit is set 5354 * If the ACK was acceptable then signal the user "error: 5355 * connection reset", drop the segment, enter CLOSED state, 5356 * delete TCB, and return." 5357 */ 5358 5359 if (th->rst) { 5360 tcp_reset(sk); 5361 goto discard; 5362 } 5363 5364 /* rfc793: 5365 * "fifth, if neither of the SYN or RST bits is set then 5366 * drop the segment and return." 5367 * 5368 * See note below! 5369 * --ANK(990513) 5370 */ 5371 if (!th->syn) 5372 goto discard_and_undo; 5373 5374 /* rfc793: 5375 * "If the SYN bit is on ... 5376 * are acceptable then ... 5377 * (our SYN has been ACKed), change the connection 5378 * state to ESTABLISHED..." 5379 */ 5380 5381 TCP_ECN_rcv_synack(tp, th); 5382 5383 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5384 tcp_ack(sk, skb, FLAG_SLOWPATH); 5385 5386 /* Ok.. it's good. Set up sequence numbers and 5387 * move to established. 5388 */ 5389 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5390 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5391 5392 /* RFC1323: The window in SYN & SYN/ACK segments is 5393 * never scaled. 5394 */ 5395 tp->snd_wnd = ntohs(th->window); 5396 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5397 5398 if (!tp->rx_opt.wscale_ok) { 5399 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5400 tp->window_clamp = min(tp->window_clamp, 65535U); 5401 } 5402 5403 if (tp->rx_opt.saw_tstamp) { 5404 tp->rx_opt.tstamp_ok = 1; 5405 tp->tcp_header_len = 5406 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5407 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5408 tcp_store_ts_recent(tp); 5409 } else { 5410 tp->tcp_header_len = sizeof(struct tcphdr); 5411 } 5412 5413 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5414 tcp_enable_fack(tp); 5415 5416 tcp_mtup_init(sk); 5417 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5418 tcp_initialize_rcv_mss(sk); 5419 5420 /* Remember, tcp_poll() does not lock socket! 5421 * Change state from SYN-SENT only after copied_seq 5422 * is initialized. */ 5423 tp->copied_seq = tp->rcv_nxt; 5424 smp_mb(); 5425 tcp_set_state(sk, TCP_ESTABLISHED); 5426 5427 security_inet_conn_established(sk, skb); 5428 5429 /* Make sure socket is routed, for correct metrics. */ 5430 icsk->icsk_af_ops->rebuild_header(sk); 5431 5432 tcp_init_metrics(sk); 5433 5434 tcp_init_congestion_control(sk); 5435 5436 /* Prevent spurious tcp_cwnd_restart() on first data 5437 * packet. 5438 */ 5439 tp->lsndtime = tcp_time_stamp; 5440 5441 tcp_init_buffer_space(sk); 5442 5443 if (sock_flag(sk, SOCK_KEEPOPEN)) 5444 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5445 5446 if (!tp->rx_opt.snd_wscale) 5447 __tcp_fast_path_on(tp, tp->snd_wnd); 5448 else 5449 tp->pred_flags = 0; 5450 5451 if (!sock_flag(sk, SOCK_DEAD)) { 5452 sk->sk_state_change(sk); 5453 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5454 } 5455 5456 if (sk->sk_write_pending || 5457 icsk->icsk_accept_queue.rskq_defer_accept || 5458 icsk->icsk_ack.pingpong) { 5459 /* Save one ACK. Data will be ready after 5460 * several ticks, if write_pending is set. 5461 * 5462 * It may be deleted, but with this feature tcpdumps 5463 * look so _wonderfully_ clever, that I was not able 5464 * to stand against the temptation 8) --ANK 5465 */ 5466 inet_csk_schedule_ack(sk); 5467 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5468 icsk->icsk_ack.ato = TCP_ATO_MIN; 5469 tcp_incr_quickack(sk); 5470 tcp_enter_quickack_mode(sk); 5471 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5472 TCP_DELACK_MAX, TCP_RTO_MAX); 5473 5474 discard: 5475 __kfree_skb(skb); 5476 return 0; 5477 } else { 5478 tcp_send_ack(sk); 5479 } 5480 return -1; 5481 } 5482 5483 /* No ACK in the segment */ 5484 5485 if (th->rst) { 5486 /* rfc793: 5487 * "If the RST bit is set 5488 * 5489 * Otherwise (no ACK) drop the segment and return." 5490 */ 5491 5492 goto discard_and_undo; 5493 } 5494 5495 /* PAWS check. */ 5496 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5497 tcp_paws_reject(&tp->rx_opt, 0)) 5498 goto discard_and_undo; 5499 5500 if (th->syn) { 5501 /* We see SYN without ACK. It is attempt of 5502 * simultaneous connect with crossed SYNs. 5503 * Particularly, it can be connect to self. 5504 */ 5505 tcp_set_state(sk, TCP_SYN_RECV); 5506 5507 if (tp->rx_opt.saw_tstamp) { 5508 tp->rx_opt.tstamp_ok = 1; 5509 tcp_store_ts_recent(tp); 5510 tp->tcp_header_len = 5511 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5512 } else { 5513 tp->tcp_header_len = sizeof(struct tcphdr); 5514 } 5515 5516 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5517 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5518 5519 /* RFC1323: The window in SYN & SYN/ACK segments is 5520 * never scaled. 5521 */ 5522 tp->snd_wnd = ntohs(th->window); 5523 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5524 tp->max_window = tp->snd_wnd; 5525 5526 TCP_ECN_rcv_syn(tp, th); 5527 5528 tcp_mtup_init(sk); 5529 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5530 tcp_initialize_rcv_mss(sk); 5531 5532 tcp_send_synack(sk); 5533 #if 0 5534 /* Note, we could accept data and URG from this segment. 5535 * There are no obstacles to make this. 5536 * 5537 * However, if we ignore data in ACKless segments sometimes, 5538 * we have no reasons to accept it sometimes. 5539 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5540 * is not flawless. So, discard packet for sanity. 5541 * Uncomment this return to process the data. 5542 */ 5543 return -1; 5544 #else 5545 goto discard; 5546 #endif 5547 } 5548 /* "fifth, if neither of the SYN or RST bits is set then 5549 * drop the segment and return." 5550 */ 5551 5552 discard_and_undo: 5553 tcp_clear_options(&tp->rx_opt); 5554 tp->rx_opt.mss_clamp = saved_clamp; 5555 goto discard; 5556 5557 reset_and_undo: 5558 tcp_clear_options(&tp->rx_opt); 5559 tp->rx_opt.mss_clamp = saved_clamp; 5560 return 1; 5561 } 5562 5563 /* 5564 * This function implements the receiving procedure of RFC 793 for 5565 * all states except ESTABLISHED and TIME_WAIT. 5566 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5567 * address independent. 5568 */ 5569 5570 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5571 struct tcphdr *th, unsigned len) 5572 { 5573 struct tcp_sock *tp = tcp_sk(sk); 5574 struct inet_connection_sock *icsk = inet_csk(sk); 5575 int queued = 0; 5576 int res; 5577 5578 tp->rx_opt.saw_tstamp = 0; 5579 5580 switch (sk->sk_state) { 5581 case TCP_CLOSE: 5582 goto discard; 5583 5584 case TCP_LISTEN: 5585 if (th->ack) 5586 return 1; 5587 5588 if (th->rst) 5589 goto discard; 5590 5591 if (th->syn) { 5592 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5593 return 1; 5594 5595 /* Now we have several options: In theory there is 5596 * nothing else in the frame. KA9Q has an option to 5597 * send data with the syn, BSD accepts data with the 5598 * syn up to the [to be] advertised window and 5599 * Solaris 2.1 gives you a protocol error. For now 5600 * we just ignore it, that fits the spec precisely 5601 * and avoids incompatibilities. It would be nice in 5602 * future to drop through and process the data. 5603 * 5604 * Now that TTCP is starting to be used we ought to 5605 * queue this data. 5606 * But, this leaves one open to an easy denial of 5607 * service attack, and SYN cookies can't defend 5608 * against this problem. So, we drop the data 5609 * in the interest of security over speed unless 5610 * it's still in use. 5611 */ 5612 kfree_skb(skb); 5613 return 0; 5614 } 5615 goto discard; 5616 5617 case TCP_SYN_SENT: 5618 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5619 if (queued >= 0) 5620 return queued; 5621 5622 /* Do step6 onward by hand. */ 5623 tcp_urg(sk, skb, th); 5624 __kfree_skb(skb); 5625 tcp_data_snd_check(sk); 5626 return 0; 5627 } 5628 5629 res = tcp_validate_incoming(sk, skb, th, 0); 5630 if (res <= 0) 5631 return -res; 5632 5633 /* step 5: check the ACK field */ 5634 if (th->ack) { 5635 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5636 5637 switch (sk->sk_state) { 5638 case TCP_SYN_RECV: 5639 if (acceptable) { 5640 tp->copied_seq = tp->rcv_nxt; 5641 smp_mb(); 5642 tcp_set_state(sk, TCP_ESTABLISHED); 5643 sk->sk_state_change(sk); 5644 5645 /* Note, that this wakeup is only for marginal 5646 * crossed SYN case. Passively open sockets 5647 * are not waked up, because sk->sk_sleep == 5648 * NULL and sk->sk_socket == NULL. 5649 */ 5650 if (sk->sk_socket) 5651 sk_wake_async(sk, 5652 SOCK_WAKE_IO, POLL_OUT); 5653 5654 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5655 tp->snd_wnd = ntohs(th->window) << 5656 tp->rx_opt.snd_wscale; 5657 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5658 5659 /* tcp_ack considers this ACK as duplicate 5660 * and does not calculate rtt. 5661 * Fix it at least with timestamps. 5662 */ 5663 if (tp->rx_opt.saw_tstamp && 5664 tp->rx_opt.rcv_tsecr && !tp->srtt) 5665 tcp_ack_saw_tstamp(sk, 0); 5666 5667 if (tp->rx_opt.tstamp_ok) 5668 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5669 5670 /* Make sure socket is routed, for 5671 * correct metrics. 5672 */ 5673 icsk->icsk_af_ops->rebuild_header(sk); 5674 5675 tcp_init_metrics(sk); 5676 5677 tcp_init_congestion_control(sk); 5678 5679 /* Prevent spurious tcp_cwnd_restart() on 5680 * first data packet. 5681 */ 5682 tp->lsndtime = tcp_time_stamp; 5683 5684 tcp_mtup_init(sk); 5685 tcp_initialize_rcv_mss(sk); 5686 tcp_init_buffer_space(sk); 5687 tcp_fast_path_on(tp); 5688 } else { 5689 return 1; 5690 } 5691 break; 5692 5693 case TCP_FIN_WAIT1: 5694 if (tp->snd_una == tp->write_seq) { 5695 tcp_set_state(sk, TCP_FIN_WAIT2); 5696 sk->sk_shutdown |= SEND_SHUTDOWN; 5697 dst_confirm(sk->sk_dst_cache); 5698 5699 if (!sock_flag(sk, SOCK_DEAD)) 5700 /* Wake up lingering close() */ 5701 sk->sk_state_change(sk); 5702 else { 5703 int tmo; 5704 5705 if (tp->linger2 < 0 || 5706 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5707 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5708 tcp_done(sk); 5709 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5710 return 1; 5711 } 5712 5713 tmo = tcp_fin_time(sk); 5714 if (tmo > TCP_TIMEWAIT_LEN) { 5715 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5716 } else if (th->fin || sock_owned_by_user(sk)) { 5717 /* Bad case. We could lose such FIN otherwise. 5718 * It is not a big problem, but it looks confusing 5719 * and not so rare event. We still can lose it now, 5720 * if it spins in bh_lock_sock(), but it is really 5721 * marginal case. 5722 */ 5723 inet_csk_reset_keepalive_timer(sk, tmo); 5724 } else { 5725 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5726 goto discard; 5727 } 5728 } 5729 } 5730 break; 5731 5732 case TCP_CLOSING: 5733 if (tp->snd_una == tp->write_seq) { 5734 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5735 goto discard; 5736 } 5737 break; 5738 5739 case TCP_LAST_ACK: 5740 if (tp->snd_una == tp->write_seq) { 5741 tcp_update_metrics(sk); 5742 tcp_done(sk); 5743 goto discard; 5744 } 5745 break; 5746 } 5747 } else 5748 goto discard; 5749 5750 /* step 6: check the URG bit */ 5751 tcp_urg(sk, skb, th); 5752 5753 /* step 7: process the segment text */ 5754 switch (sk->sk_state) { 5755 case TCP_CLOSE_WAIT: 5756 case TCP_CLOSING: 5757 case TCP_LAST_ACK: 5758 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5759 break; 5760 case TCP_FIN_WAIT1: 5761 case TCP_FIN_WAIT2: 5762 /* RFC 793 says to queue data in these states, 5763 * RFC 1122 says we MUST send a reset. 5764 * BSD 4.4 also does reset. 5765 */ 5766 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5767 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5768 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5769 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5770 tcp_reset(sk); 5771 return 1; 5772 } 5773 } 5774 /* Fall through */ 5775 case TCP_ESTABLISHED: 5776 tcp_data_queue(sk, skb); 5777 queued = 1; 5778 break; 5779 } 5780 5781 /* tcp_data could move socket to TIME-WAIT */ 5782 if (sk->sk_state != TCP_CLOSE) { 5783 tcp_data_snd_check(sk); 5784 tcp_ack_snd_check(sk); 5785 } 5786 5787 if (!queued) { 5788 discard: 5789 __kfree_skb(skb); 5790 } 5791 return 0; 5792 } 5793 5794 EXPORT_SYMBOL(sysctl_tcp_ecn); 5795 EXPORT_SYMBOL(sysctl_tcp_reordering); 5796 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 5797 EXPORT_SYMBOL(tcp_parse_options); 5798 #ifdef CONFIG_TCP_MD5SIG 5799 EXPORT_SYMBOL(tcp_parse_md5sig_option); 5800 #endif 5801 EXPORT_SYMBOL(tcp_rcv_established); 5802 EXPORT_SYMBOL(tcp_rcv_state_process); 5803 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5804