xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 82ced6fd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109 
110 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 {
124 	struct inet_connection_sock *icsk = inet_csk(sk);
125 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
126 	unsigned int len;
127 
128 	icsk->icsk_ack.last_seg_size = 0;
129 
130 	/* skb->len may jitter because of SACKs, even if peer
131 	 * sends good full-sized frames.
132 	 */
133 	len = skb_shinfo(skb)->gso_size ? : skb->len;
134 	if (len >= icsk->icsk_ack.rcv_mss) {
135 		icsk->icsk_ack.rcv_mss = len;
136 	} else {
137 		/* Otherwise, we make more careful check taking into account,
138 		 * that SACKs block is variable.
139 		 *
140 		 * "len" is invariant segment length, including TCP header.
141 		 */
142 		len += skb->data - skb_transport_header(skb);
143 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 		    /* If PSH is not set, packet should be
145 		     * full sized, provided peer TCP is not badly broken.
146 		     * This observation (if it is correct 8)) allows
147 		     * to handle super-low mtu links fairly.
148 		     */
149 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151 			/* Subtract also invariant (if peer is RFC compliant),
152 			 * tcp header plus fixed timestamp option length.
153 			 * Resulting "len" is MSS free of SACK jitter.
154 			 */
155 			len -= tcp_sk(sk)->tcp_header_len;
156 			icsk->icsk_ack.last_seg_size = len;
157 			if (len == lss) {
158 				icsk->icsk_ack.rcv_mss = len;
159 				return;
160 			}
161 		}
162 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
165 	}
166 }
167 
168 static void tcp_incr_quickack(struct sock *sk)
169 {
170 	struct inet_connection_sock *icsk = inet_csk(sk);
171 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 
173 	if (quickacks == 0)
174 		quickacks = 2;
175 	if (quickacks > icsk->icsk_ack.quick)
176 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
177 }
178 
179 void tcp_enter_quickack_mode(struct sock *sk)
180 {
181 	struct inet_connection_sock *icsk = inet_csk(sk);
182 	tcp_incr_quickack(sk);
183 	icsk->icsk_ack.pingpong = 0;
184 	icsk->icsk_ack.ato = TCP_ATO_MIN;
185 }
186 
187 /* Send ACKs quickly, if "quick" count is not exhausted
188  * and the session is not interactive.
189  */
190 
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 {
193 	const struct inet_connection_sock *icsk = inet_csk(sk);
194 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
195 }
196 
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 {
199 	if (tp->ecn_flags & TCP_ECN_OK)
200 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201 }
202 
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 {
205 	if (tcp_hdr(skb)->cwr)
206 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207 }
208 
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 {
211 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213 
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 {
216 	if (tp->ecn_flags & TCP_ECN_OK) {
217 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 		/* Funny extension: if ECT is not set on a segment,
220 		 * it is surely retransmit. It is not in ECN RFC,
221 		 * but Linux follows this rule. */
222 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 			tcp_enter_quickack_mode((struct sock *)tp);
224 	}
225 }
226 
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 {
229 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230 		tp->ecn_flags &= ~TCP_ECN_OK;
231 }
232 
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242 		return 1;
243 	return 0;
244 }
245 
246 /* Buffer size and advertised window tuning.
247  *
248  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249  */
250 
251 static void tcp_fixup_sndbuf(struct sock *sk)
252 {
253 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 		     sizeof(struct sk_buff);
255 
256 	if (sk->sk_sndbuf < 3 * sndmem)
257 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258 }
259 
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261  *
262  * All tcp_full_space() is split to two parts: "network" buffer, allocated
263  * forward and advertised in receiver window (tp->rcv_wnd) and
264  * "application buffer", required to isolate scheduling/application
265  * latencies from network.
266  * window_clamp is maximal advertised window. It can be less than
267  * tcp_full_space(), in this case tcp_full_space() - window_clamp
268  * is reserved for "application" buffer. The less window_clamp is
269  * the smoother our behaviour from viewpoint of network, but the lower
270  * throughput and the higher sensitivity of the connection to losses. 8)
271  *
272  * rcv_ssthresh is more strict window_clamp used at "slow start"
273  * phase to predict further behaviour of this connection.
274  * It is used for two goals:
275  * - to enforce header prediction at sender, even when application
276  *   requires some significant "application buffer". It is check #1.
277  * - to prevent pruning of receive queue because of misprediction
278  *   of receiver window. Check #2.
279  *
280  * The scheme does not work when sender sends good segments opening
281  * window and then starts to feed us spaghetti. But it should work
282  * in common situations. Otherwise, we have to rely on queue collapsing.
283  */
284 
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 {
288 	struct tcp_sock *tp = tcp_sk(sk);
289 	/* Optimize this! */
290 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 
293 	while (tp->rcv_ssthresh <= window) {
294 		if (truesize <= skb->len)
295 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 
297 		truesize >>= 1;
298 		window >>= 1;
299 	}
300 	return 0;
301 }
302 
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 {
305 	struct tcp_sock *tp = tcp_sk(sk);
306 
307 	/* Check #1 */
308 	if (tp->rcv_ssthresh < tp->window_clamp &&
309 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 	    !tcp_memory_pressure) {
311 		int incr;
312 
313 		/* Check #2. Increase window, if skb with such overhead
314 		 * will fit to rcvbuf in future.
315 		 */
316 		if (tcp_win_from_space(skb->truesize) <= skb->len)
317 			incr = 2 * tp->advmss;
318 		else
319 			incr = __tcp_grow_window(sk, skb);
320 
321 		if (incr) {
322 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 					       tp->window_clamp);
324 			inet_csk(sk)->icsk_ack.quick |= 1;
325 		}
326 	}
327 }
328 
329 /* 3. Tuning rcvbuf, when connection enters established state. */
330 
331 static void tcp_fixup_rcvbuf(struct sock *sk)
332 {
333 	struct tcp_sock *tp = tcp_sk(sk);
334 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 
336 	/* Try to select rcvbuf so that 4 mss-sized segments
337 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 	 */
340 	while (tcp_win_from_space(rcvmem) < tp->advmss)
341 		rcvmem += 128;
342 	if (sk->sk_rcvbuf < 4 * rcvmem)
343 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344 }
345 
346 /* 4. Try to fixup all. It is made immediately after connection enters
347  *    established state.
348  */
349 static void tcp_init_buffer_space(struct sock *sk)
350 {
351 	struct tcp_sock *tp = tcp_sk(sk);
352 	int maxwin;
353 
354 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 		tcp_fixup_rcvbuf(sk);
356 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 		tcp_fixup_sndbuf(sk);
358 
359 	tp->rcvq_space.space = tp->rcv_wnd;
360 
361 	maxwin = tcp_full_space(sk);
362 
363 	if (tp->window_clamp >= maxwin) {
364 		tp->window_clamp = maxwin;
365 
366 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 			tp->window_clamp = max(maxwin -
368 					       (maxwin >> sysctl_tcp_app_win),
369 					       4 * tp->advmss);
370 	}
371 
372 	/* Force reservation of one segment. */
373 	if (sysctl_tcp_app_win &&
374 	    tp->window_clamp > 2 * tp->advmss &&
375 	    tp->window_clamp + tp->advmss > maxwin)
376 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 
378 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 	tp->snd_cwnd_stamp = tcp_time_stamp;
380 }
381 
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
384 {
385 	struct tcp_sock *tp = tcp_sk(sk);
386 	struct inet_connection_sock *icsk = inet_csk(sk);
387 
388 	icsk->icsk_ack.quick = 0;
389 
390 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 	    !tcp_memory_pressure &&
393 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 				    sysctl_tcp_rmem[2]);
396 	}
397 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
399 }
400 
401 /* Initialize RCV_MSS value.
402  * RCV_MSS is an our guess about MSS used by the peer.
403  * We haven't any direct information about the MSS.
404  * It's better to underestimate the RCV_MSS rather than overestimate.
405  * Overestimations make us ACKing less frequently than needed.
406  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407  */
408 void tcp_initialize_rcv_mss(struct sock *sk)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 
413 	hint = min(hint, tp->rcv_wnd / 2);
414 	hint = min(hint, TCP_MIN_RCVMSS);
415 	hint = max(hint, TCP_MIN_MSS);
416 
417 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
418 }
419 
420 /* Receiver "autotuning" code.
421  *
422  * The algorithm for RTT estimation w/o timestamps is based on
423  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425  *
426  * More detail on this code can be found at
427  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428  * though this reference is out of date.  A new paper
429  * is pending.
430  */
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 {
433 	u32 new_sample = tp->rcv_rtt_est.rtt;
434 	long m = sample;
435 
436 	if (m == 0)
437 		m = 1;
438 
439 	if (new_sample != 0) {
440 		/* If we sample in larger samples in the non-timestamp
441 		 * case, we could grossly overestimate the RTT especially
442 		 * with chatty applications or bulk transfer apps which
443 		 * are stalled on filesystem I/O.
444 		 *
445 		 * Also, since we are only going for a minimum in the
446 		 * non-timestamp case, we do not smooth things out
447 		 * else with timestamps disabled convergence takes too
448 		 * long.
449 		 */
450 		if (!win_dep) {
451 			m -= (new_sample >> 3);
452 			new_sample += m;
453 		} else if (m < new_sample)
454 			new_sample = m << 3;
455 	} else {
456 		/* No previous measure. */
457 		new_sample = m << 3;
458 	}
459 
460 	if (tp->rcv_rtt_est.rtt != new_sample)
461 		tp->rcv_rtt_est.rtt = new_sample;
462 }
463 
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 {
466 	if (tp->rcv_rtt_est.time == 0)
467 		goto new_measure;
468 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 		return;
470 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 
472 new_measure:
473 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 	tp->rcv_rtt_est.time = tcp_time_stamp;
475 }
476 
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 					  const struct sk_buff *skb)
479 {
480 	struct tcp_sock *tp = tcp_sk(sk);
481 	if (tp->rx_opt.rcv_tsecr &&
482 	    (TCP_SKB_CB(skb)->end_seq -
483 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485 }
486 
487 /*
488  * This function should be called every time data is copied to user space.
489  * It calculates the appropriate TCP receive buffer space.
490  */
491 void tcp_rcv_space_adjust(struct sock *sk)
492 {
493 	struct tcp_sock *tp = tcp_sk(sk);
494 	int time;
495 	int space;
496 
497 	if (tp->rcvq_space.time == 0)
498 		goto new_measure;
499 
500 	time = tcp_time_stamp - tp->rcvq_space.time;
501 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502 		return;
503 
504 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 
506 	space = max(tp->rcvq_space.space, space);
507 
508 	if (tp->rcvq_space.space != space) {
509 		int rcvmem;
510 
511 		tp->rcvq_space.space = space;
512 
513 		if (sysctl_tcp_moderate_rcvbuf &&
514 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515 			int new_clamp = space;
516 
517 			/* Receive space grows, normalize in order to
518 			 * take into account packet headers and sk_buff
519 			 * structure overhead.
520 			 */
521 			space /= tp->advmss;
522 			if (!space)
523 				space = 1;
524 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 				  16 + sizeof(struct sk_buff));
526 			while (tcp_win_from_space(rcvmem) < tp->advmss)
527 				rcvmem += 128;
528 			space *= rcvmem;
529 			space = min(space, sysctl_tcp_rmem[2]);
530 			if (space > sk->sk_rcvbuf) {
531 				sk->sk_rcvbuf = space;
532 
533 				/* Make the window clamp follow along.  */
534 				tp->window_clamp = new_clamp;
535 			}
536 		}
537 	}
538 
539 new_measure:
540 	tp->rcvq_space.seq = tp->copied_seq;
541 	tp->rcvq_space.time = tcp_time_stamp;
542 }
543 
544 /* There is something which you must keep in mind when you analyze the
545  * behavior of the tp->ato delayed ack timeout interval.  When a
546  * connection starts up, we want to ack as quickly as possible.  The
547  * problem is that "good" TCP's do slow start at the beginning of data
548  * transmission.  The means that until we send the first few ACK's the
549  * sender will sit on his end and only queue most of his data, because
550  * he can only send snd_cwnd unacked packets at any given time.  For
551  * each ACK we send, he increments snd_cwnd and transmits more of his
552  * queue.  -DaveM
553  */
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 {
556 	struct tcp_sock *tp = tcp_sk(sk);
557 	struct inet_connection_sock *icsk = inet_csk(sk);
558 	u32 now;
559 
560 	inet_csk_schedule_ack(sk);
561 
562 	tcp_measure_rcv_mss(sk, skb);
563 
564 	tcp_rcv_rtt_measure(tp);
565 
566 	now = tcp_time_stamp;
567 
568 	if (!icsk->icsk_ack.ato) {
569 		/* The _first_ data packet received, initialize
570 		 * delayed ACK engine.
571 		 */
572 		tcp_incr_quickack(sk);
573 		icsk->icsk_ack.ato = TCP_ATO_MIN;
574 	} else {
575 		int m = now - icsk->icsk_ack.lrcvtime;
576 
577 		if (m <= TCP_ATO_MIN / 2) {
578 			/* The fastest case is the first. */
579 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 		} else if (m < icsk->icsk_ack.ato) {
581 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 				icsk->icsk_ack.ato = icsk->icsk_rto;
584 		} else if (m > icsk->icsk_rto) {
585 			/* Too long gap. Apparently sender failed to
586 			 * restart window, so that we send ACKs quickly.
587 			 */
588 			tcp_incr_quickack(sk);
589 			sk_mem_reclaim(sk);
590 		}
591 	}
592 	icsk->icsk_ack.lrcvtime = now;
593 
594 	TCP_ECN_check_ce(tp, skb);
595 
596 	if (skb->len >= 128)
597 		tcp_grow_window(sk, skb);
598 }
599 
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601  * routine either comes from timestamps, or from segments that were
602  * known _not_ to have been retransmitted [see Karn/Partridge
603  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604  * piece by Van Jacobson.
605  * NOTE: the next three routines used to be one big routine.
606  * To save cycles in the RFC 1323 implementation it was better to break
607  * it up into three procedures. -- erics
608  */
609 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
610 {
611 	struct tcp_sock *tp = tcp_sk(sk);
612 	long m = mrtt; /* RTT */
613 
614 	/*	The following amusing code comes from Jacobson's
615 	 *	article in SIGCOMM '88.  Note that rtt and mdev
616 	 *	are scaled versions of rtt and mean deviation.
617 	 *	This is designed to be as fast as possible
618 	 *	m stands for "measurement".
619 	 *
620 	 *	On a 1990 paper the rto value is changed to:
621 	 *	RTO = rtt + 4 * mdev
622 	 *
623 	 * Funny. This algorithm seems to be very broken.
624 	 * These formulae increase RTO, when it should be decreased, increase
625 	 * too slowly, when it should be increased quickly, decrease too quickly
626 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627 	 * does not matter how to _calculate_ it. Seems, it was trap
628 	 * that VJ failed to avoid. 8)
629 	 */
630 	if (m == 0)
631 		m = 1;
632 	if (tp->srtt != 0) {
633 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
634 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
635 		if (m < 0) {
636 			m = -m;		/* m is now abs(error) */
637 			m -= (tp->mdev >> 2);   /* similar update on mdev */
638 			/* This is similar to one of Eifel findings.
639 			 * Eifel blocks mdev updates when rtt decreases.
640 			 * This solution is a bit different: we use finer gain
641 			 * for mdev in this case (alpha*beta).
642 			 * Like Eifel it also prevents growth of rto,
643 			 * but also it limits too fast rto decreases,
644 			 * happening in pure Eifel.
645 			 */
646 			if (m > 0)
647 				m >>= 3;
648 		} else {
649 			m -= (tp->mdev >> 2);   /* similar update on mdev */
650 		}
651 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
652 		if (tp->mdev > tp->mdev_max) {
653 			tp->mdev_max = tp->mdev;
654 			if (tp->mdev_max > tp->rttvar)
655 				tp->rttvar = tp->mdev_max;
656 		}
657 		if (after(tp->snd_una, tp->rtt_seq)) {
658 			if (tp->mdev_max < tp->rttvar)
659 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
660 			tp->rtt_seq = tp->snd_nxt;
661 			tp->mdev_max = tcp_rto_min(sk);
662 		}
663 	} else {
664 		/* no previous measure. */
665 		tp->srtt = m << 3;	/* take the measured time to be rtt */
666 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
667 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
668 		tp->rtt_seq = tp->snd_nxt;
669 	}
670 }
671 
672 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
673  * routine referred to above.
674  */
675 static inline void tcp_set_rto(struct sock *sk)
676 {
677 	const struct tcp_sock *tp = tcp_sk(sk);
678 	/* Old crap is replaced with new one. 8)
679 	 *
680 	 * More seriously:
681 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682 	 *    It cannot be less due to utterly erratic ACK generation made
683 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
685 	 *    is invisible. Actually, Linux-2.4 also generates erratic
686 	 *    ACKs in some circumstances.
687 	 */
688 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
689 
690 	/* 2. Fixups made earlier cannot be right.
691 	 *    If we do not estimate RTO correctly without them,
692 	 *    all the algo is pure shit and should be replaced
693 	 *    with correct one. It is exactly, which we pretend to do.
694 	 */
695 
696 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697 	 * guarantees that rto is higher.
698 	 */
699 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
700 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
701 }
702 
703 /* Save metrics learned by this TCP session.
704    This function is called only, when TCP finishes successfully
705    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
706  */
707 void tcp_update_metrics(struct sock *sk)
708 {
709 	struct tcp_sock *tp = tcp_sk(sk);
710 	struct dst_entry *dst = __sk_dst_get(sk);
711 
712 	if (sysctl_tcp_nometrics_save)
713 		return;
714 
715 	dst_confirm(dst);
716 
717 	if (dst && (dst->flags & DST_HOST)) {
718 		const struct inet_connection_sock *icsk = inet_csk(sk);
719 		int m;
720 		unsigned long rtt;
721 
722 		if (icsk->icsk_backoff || !tp->srtt) {
723 			/* This session failed to estimate rtt. Why?
724 			 * Probably, no packets returned in time.
725 			 * Reset our results.
726 			 */
727 			if (!(dst_metric_locked(dst, RTAX_RTT)))
728 				dst->metrics[RTAX_RTT - 1] = 0;
729 			return;
730 		}
731 
732 		rtt = dst_metric_rtt(dst, RTAX_RTT);
733 		m = rtt - tp->srtt;
734 
735 		/* If newly calculated rtt larger than stored one,
736 		 * store new one. Otherwise, use EWMA. Remember,
737 		 * rtt overestimation is always better than underestimation.
738 		 */
739 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
740 			if (m <= 0)
741 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
742 			else
743 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
744 		}
745 
746 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
747 			unsigned long var;
748 			if (m < 0)
749 				m = -m;
750 
751 			/* Scale deviation to rttvar fixed point */
752 			m >>= 1;
753 			if (m < tp->mdev)
754 				m = tp->mdev;
755 
756 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
757 			if (m >= var)
758 				var = m;
759 			else
760 				var -= (var - m) >> 2;
761 
762 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
763 		}
764 
765 		if (tp->snd_ssthresh >= 0xFFFF) {
766 			/* Slow start still did not finish. */
767 			if (dst_metric(dst, RTAX_SSTHRESH) &&
768 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
769 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
770 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
771 			if (!dst_metric_locked(dst, RTAX_CWND) &&
772 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
773 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
774 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
775 			   icsk->icsk_ca_state == TCP_CA_Open) {
776 			/* Cong. avoidance phase, cwnd is reliable. */
777 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
778 				dst->metrics[RTAX_SSTHRESH-1] =
779 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
780 			if (!dst_metric_locked(dst, RTAX_CWND))
781 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
782 		} else {
783 			/* Else slow start did not finish, cwnd is non-sense,
784 			   ssthresh may be also invalid.
785 			 */
786 			if (!dst_metric_locked(dst, RTAX_CWND))
787 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
788 			if (dst_metric(dst, RTAX_SSTHRESH) &&
789 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
790 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
791 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
792 		}
793 
794 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
795 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
796 			    tp->reordering != sysctl_tcp_reordering)
797 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
798 		}
799 	}
800 }
801 
802 /* Numbers are taken from RFC3390.
803  *
804  * John Heffner states:
805  *
806  *	The RFC specifies a window of no more than 4380 bytes
807  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
808  *	is a bit misleading because they use a clamp at 4380 bytes
809  *	rather than use a multiplier in the relevant range.
810  */
811 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
812 {
813 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
814 
815 	if (!cwnd) {
816 		if (tp->mss_cache > 1460)
817 			cwnd = 2;
818 		else
819 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
820 	}
821 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822 }
823 
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826 {
827 	struct tcp_sock *tp = tcp_sk(sk);
828 	const struct inet_connection_sock *icsk = inet_csk(sk);
829 
830 	tp->prior_ssthresh = 0;
831 	tp->bytes_acked = 0;
832 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
833 		tp->undo_marker = 0;
834 		if (set_ssthresh)
835 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836 		tp->snd_cwnd = min(tp->snd_cwnd,
837 				   tcp_packets_in_flight(tp) + 1U);
838 		tp->snd_cwnd_cnt = 0;
839 		tp->high_seq = tp->snd_nxt;
840 		tp->snd_cwnd_stamp = tcp_time_stamp;
841 		TCP_ECN_queue_cwr(tp);
842 
843 		tcp_set_ca_state(sk, TCP_CA_CWR);
844 	}
845 }
846 
847 /*
848  * Packet counting of FACK is based on in-order assumptions, therefore TCP
849  * disables it when reordering is detected
850  */
851 static void tcp_disable_fack(struct tcp_sock *tp)
852 {
853 	/* RFC3517 uses different metric in lost marker => reset on change */
854 	if (tcp_is_fack(tp))
855 		tp->lost_skb_hint = NULL;
856 	tp->rx_opt.sack_ok &= ~2;
857 }
858 
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862 	tp->rx_opt.sack_ok |= 4;
863 }
864 
865 /* Initialize metrics on socket. */
866 
867 static void tcp_init_metrics(struct sock *sk)
868 {
869 	struct tcp_sock *tp = tcp_sk(sk);
870 	struct dst_entry *dst = __sk_dst_get(sk);
871 
872 	if (dst == NULL)
873 		goto reset;
874 
875 	dst_confirm(dst);
876 
877 	if (dst_metric_locked(dst, RTAX_CWND))
878 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 	if (dst_metric(dst, RTAX_SSTHRESH)) {
880 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
883 	}
884 	if (dst_metric(dst, RTAX_REORDERING) &&
885 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
886 		tcp_disable_fack(tp);
887 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
888 	}
889 
890 	if (dst_metric(dst, RTAX_RTT) == 0)
891 		goto reset;
892 
893 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
894 		goto reset;
895 
896 	/* Initial rtt is determined from SYN,SYN-ACK.
897 	 * The segment is small and rtt may appear much
898 	 * less than real one. Use per-dst memory
899 	 * to make it more realistic.
900 	 *
901 	 * A bit of theory. RTT is time passed after "normal" sized packet
902 	 * is sent until it is ACKed. In normal circumstances sending small
903 	 * packets force peer to delay ACKs and calculation is correct too.
904 	 * The algorithm is adaptive and, provided we follow specs, it
905 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 	 * tricks sort of "quick acks" for time long enough to decrease RTT
907 	 * to low value, and then abruptly stops to do it and starts to delay
908 	 * ACKs, wait for troubles.
909 	 */
910 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
912 		tp->rtt_seq = tp->snd_nxt;
913 	}
914 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
916 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
917 	}
918 	tcp_set_rto(sk);
919 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
920 		goto reset;
921 
922 cwnd:
923 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
924 	tp->snd_cwnd_stamp = tcp_time_stamp;
925 	return;
926 
927 reset:
928 	/* Play conservative. If timestamps are not
929 	 * supported, TCP will fail to recalculate correct
930 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
931 	 */
932 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
933 		tp->srtt = 0;
934 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
935 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
936 	}
937 	goto cwnd;
938 }
939 
940 static void tcp_update_reordering(struct sock *sk, const int metric,
941 				  const int ts)
942 {
943 	struct tcp_sock *tp = tcp_sk(sk);
944 	if (metric > tp->reordering) {
945 		int mib_idx;
946 
947 		tp->reordering = min(TCP_MAX_REORDERING, metric);
948 
949 		/* This exciting event is worth to be remembered. 8) */
950 		if (ts)
951 			mib_idx = LINUX_MIB_TCPTSREORDER;
952 		else if (tcp_is_reno(tp))
953 			mib_idx = LINUX_MIB_TCPRENOREORDER;
954 		else if (tcp_is_fack(tp))
955 			mib_idx = LINUX_MIB_TCPFACKREORDER;
956 		else
957 			mib_idx = LINUX_MIB_TCPSACKREORDER;
958 
959 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
960 #if FASTRETRANS_DEBUG > 1
961 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
962 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
963 		       tp->reordering,
964 		       tp->fackets_out,
965 		       tp->sacked_out,
966 		       tp->undo_marker ? tp->undo_retrans : 0);
967 #endif
968 		tcp_disable_fack(tp);
969 	}
970 }
971 
972 /* This must be called before lost_out is incremented */
973 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
974 {
975 	if ((tp->retransmit_skb_hint == NULL) ||
976 	    before(TCP_SKB_CB(skb)->seq,
977 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
978 		tp->retransmit_skb_hint = skb;
979 
980 	if (!tp->lost_out ||
981 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
982 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
983 }
984 
985 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
986 {
987 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
988 		tcp_verify_retransmit_hint(tp, skb);
989 
990 		tp->lost_out += tcp_skb_pcount(skb);
991 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
992 	}
993 }
994 
995 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
996 					    struct sk_buff *skb)
997 {
998 	tcp_verify_retransmit_hint(tp, skb);
999 
1000 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1001 		tp->lost_out += tcp_skb_pcount(skb);
1002 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1003 	}
1004 }
1005 
1006 /* This procedure tags the retransmission queue when SACKs arrive.
1007  *
1008  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1009  * Packets in queue with these bits set are counted in variables
1010  * sacked_out, retrans_out and lost_out, correspondingly.
1011  *
1012  * Valid combinations are:
1013  * Tag  InFlight	Description
1014  * 0	1		- orig segment is in flight.
1015  * S	0		- nothing flies, orig reached receiver.
1016  * L	0		- nothing flies, orig lost by net.
1017  * R	2		- both orig and retransmit are in flight.
1018  * L|R	1		- orig is lost, retransmit is in flight.
1019  * S|R  1		- orig reached receiver, retrans is still in flight.
1020  * (L|S|R is logically valid, it could occur when L|R is sacked,
1021  *  but it is equivalent to plain S and code short-curcuits it to S.
1022  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1023  *
1024  * These 6 states form finite state machine, controlled by the following events:
1025  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1026  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1027  * 3. Loss detection event of one of three flavors:
1028  *	A. Scoreboard estimator decided the packet is lost.
1029  *	   A'. Reno "three dupacks" marks head of queue lost.
1030  *	   A''. Its FACK modfication, head until snd.fack is lost.
1031  *	B. SACK arrives sacking data transmitted after never retransmitted
1032  *	   hole was sent out.
1033  *	C. SACK arrives sacking SND.NXT at the moment, when the
1034  *	   segment was retransmitted.
1035  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1036  *
1037  * It is pleasant to note, that state diagram turns out to be commutative,
1038  * so that we are allowed not to be bothered by order of our actions,
1039  * when multiple events arrive simultaneously. (see the function below).
1040  *
1041  * Reordering detection.
1042  * --------------------
1043  * Reordering metric is maximal distance, which a packet can be displaced
1044  * in packet stream. With SACKs we can estimate it:
1045  *
1046  * 1. SACK fills old hole and the corresponding segment was not
1047  *    ever retransmitted -> reordering. Alas, we cannot use it
1048  *    when segment was retransmitted.
1049  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1050  *    for retransmitted and already SACKed segment -> reordering..
1051  * Both of these heuristics are not used in Loss state, when we cannot
1052  * account for retransmits accurately.
1053  *
1054  * SACK block validation.
1055  * ----------------------
1056  *
1057  * SACK block range validation checks that the received SACK block fits to
1058  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1059  * Note that SND.UNA is not included to the range though being valid because
1060  * it means that the receiver is rather inconsistent with itself reporting
1061  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1062  * perfectly valid, however, in light of RFC2018 which explicitly states
1063  * that "SACK block MUST reflect the newest segment.  Even if the newest
1064  * segment is going to be discarded ...", not that it looks very clever
1065  * in case of head skb. Due to potentional receiver driven attacks, we
1066  * choose to avoid immediate execution of a walk in write queue due to
1067  * reneging and defer head skb's loss recovery to standard loss recovery
1068  * procedure that will eventually trigger (nothing forbids us doing this).
1069  *
1070  * Implements also blockage to start_seq wrap-around. Problem lies in the
1071  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1072  * there's no guarantee that it will be before snd_nxt (n). The problem
1073  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1074  * wrap (s_w):
1075  *
1076  *         <- outs wnd ->                          <- wrapzone ->
1077  *         u     e      n                         u_w   e_w  s n_w
1078  *         |     |      |                          |     |   |  |
1079  * |<------------+------+----- TCP seqno space --------------+---------->|
1080  * ...-- <2^31 ->|                                           |<--------...
1081  * ...---- >2^31 ------>|                                    |<--------...
1082  *
1083  * Current code wouldn't be vulnerable but it's better still to discard such
1084  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1085  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1086  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1087  * equal to the ideal case (infinite seqno space without wrap caused issues).
1088  *
1089  * With D-SACK the lower bound is extended to cover sequence space below
1090  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1091  * again, D-SACK block must not to go across snd_una (for the same reason as
1092  * for the normal SACK blocks, explained above). But there all simplicity
1093  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1094  * fully below undo_marker they do not affect behavior in anyway and can
1095  * therefore be safely ignored. In rare cases (which are more or less
1096  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1097  * fragmentation and packet reordering past skb's retransmission. To consider
1098  * them correctly, the acceptable range must be extended even more though
1099  * the exact amount is rather hard to quantify. However, tp->max_window can
1100  * be used as an exaggerated estimate.
1101  */
1102 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1103 				  u32 start_seq, u32 end_seq)
1104 {
1105 	/* Too far in future, or reversed (interpretation is ambiguous) */
1106 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1107 		return 0;
1108 
1109 	/* Nasty start_seq wrap-around check (see comments above) */
1110 	if (!before(start_seq, tp->snd_nxt))
1111 		return 0;
1112 
1113 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1114 	 * start_seq == snd_una is non-sensical (see comments above)
1115 	 */
1116 	if (after(start_seq, tp->snd_una))
1117 		return 1;
1118 
1119 	if (!is_dsack || !tp->undo_marker)
1120 		return 0;
1121 
1122 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1123 	if (!after(end_seq, tp->snd_una))
1124 		return 0;
1125 
1126 	if (!before(start_seq, tp->undo_marker))
1127 		return 1;
1128 
1129 	/* Too old */
1130 	if (!after(end_seq, tp->undo_marker))
1131 		return 0;
1132 
1133 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1134 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1135 	 */
1136 	return !before(start_seq, end_seq - tp->max_window);
1137 }
1138 
1139 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1140  * Event "C". Later note: FACK people cheated me again 8), we have to account
1141  * for reordering! Ugly, but should help.
1142  *
1143  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1144  * less than what is now known to be received by the other end (derived from
1145  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1146  * retransmitted skbs to avoid some costly processing per ACKs.
1147  */
1148 static void tcp_mark_lost_retrans(struct sock *sk)
1149 {
1150 	const struct inet_connection_sock *icsk = inet_csk(sk);
1151 	struct tcp_sock *tp = tcp_sk(sk);
1152 	struct sk_buff *skb;
1153 	int cnt = 0;
1154 	u32 new_low_seq = tp->snd_nxt;
1155 	u32 received_upto = tcp_highest_sack_seq(tp);
1156 
1157 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1158 	    !after(received_upto, tp->lost_retrans_low) ||
1159 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1160 		return;
1161 
1162 	tcp_for_write_queue(skb, sk) {
1163 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1164 
1165 		if (skb == tcp_send_head(sk))
1166 			break;
1167 		if (cnt == tp->retrans_out)
1168 			break;
1169 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1170 			continue;
1171 
1172 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1173 			continue;
1174 
1175 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1176 		 * constraint here (see above) but figuring out that at
1177 		 * least tp->reordering SACK blocks reside between ack_seq
1178 		 * and received_upto is not easy task to do cheaply with
1179 		 * the available datastructures.
1180 		 *
1181 		 * Whether FACK should check here for tp->reordering segs
1182 		 * in-between one could argue for either way (it would be
1183 		 * rather simple to implement as we could count fack_count
1184 		 * during the walk and do tp->fackets_out - fack_count).
1185 		 */
1186 		if (after(received_upto, ack_seq)) {
1187 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1188 			tp->retrans_out -= tcp_skb_pcount(skb);
1189 
1190 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1191 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1192 		} else {
1193 			if (before(ack_seq, new_low_seq))
1194 				new_low_seq = ack_seq;
1195 			cnt += tcp_skb_pcount(skb);
1196 		}
1197 	}
1198 
1199 	if (tp->retrans_out)
1200 		tp->lost_retrans_low = new_low_seq;
1201 }
1202 
1203 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1204 			   struct tcp_sack_block_wire *sp, int num_sacks,
1205 			   u32 prior_snd_una)
1206 {
1207 	struct tcp_sock *tp = tcp_sk(sk);
1208 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1209 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1210 	int dup_sack = 0;
1211 
1212 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1213 		dup_sack = 1;
1214 		tcp_dsack_seen(tp);
1215 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1216 	} else if (num_sacks > 1) {
1217 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1218 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1219 
1220 		if (!after(end_seq_0, end_seq_1) &&
1221 		    !before(start_seq_0, start_seq_1)) {
1222 			dup_sack = 1;
1223 			tcp_dsack_seen(tp);
1224 			NET_INC_STATS_BH(sock_net(sk),
1225 					LINUX_MIB_TCPDSACKOFORECV);
1226 		}
1227 	}
1228 
1229 	/* D-SACK for already forgotten data... Do dumb counting. */
1230 	if (dup_sack &&
1231 	    !after(end_seq_0, prior_snd_una) &&
1232 	    after(end_seq_0, tp->undo_marker))
1233 		tp->undo_retrans--;
1234 
1235 	return dup_sack;
1236 }
1237 
1238 struct tcp_sacktag_state {
1239 	int reord;
1240 	int fack_count;
1241 	int flag;
1242 };
1243 
1244 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1245  * the incoming SACK may not exactly match but we can find smaller MSS
1246  * aligned portion of it that matches. Therefore we might need to fragment
1247  * which may fail and creates some hassle (caller must handle error case
1248  * returns).
1249  *
1250  * FIXME: this could be merged to shift decision code
1251  */
1252 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1253 				 u32 start_seq, u32 end_seq)
1254 {
1255 	int in_sack, err;
1256 	unsigned int pkt_len;
1257 	unsigned int mss;
1258 
1259 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1260 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1261 
1262 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1263 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1264 		mss = tcp_skb_mss(skb);
1265 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1266 
1267 		if (!in_sack) {
1268 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1269 			if (pkt_len < mss)
1270 				pkt_len = mss;
1271 		} else {
1272 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1273 			if (pkt_len < mss)
1274 				return -EINVAL;
1275 		}
1276 
1277 		/* Round if necessary so that SACKs cover only full MSSes
1278 		 * and/or the remaining small portion (if present)
1279 		 */
1280 		if (pkt_len > mss) {
1281 			unsigned int new_len = (pkt_len / mss) * mss;
1282 			if (!in_sack && new_len < pkt_len) {
1283 				new_len += mss;
1284 				if (new_len > skb->len)
1285 					return 0;
1286 			}
1287 			pkt_len = new_len;
1288 		}
1289 		err = tcp_fragment(sk, skb, pkt_len, mss);
1290 		if (err < 0)
1291 			return err;
1292 	}
1293 
1294 	return in_sack;
1295 }
1296 
1297 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1298 			  struct tcp_sacktag_state *state,
1299 			  int dup_sack, int pcount)
1300 {
1301 	struct tcp_sock *tp = tcp_sk(sk);
1302 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1303 	int fack_count = state->fack_count;
1304 
1305 	/* Account D-SACK for retransmitted packet. */
1306 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1307 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1308 			tp->undo_retrans--;
1309 		if (sacked & TCPCB_SACKED_ACKED)
1310 			state->reord = min(fack_count, state->reord);
1311 	}
1312 
1313 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1314 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1315 		return sacked;
1316 
1317 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1318 		if (sacked & TCPCB_SACKED_RETRANS) {
1319 			/* If the segment is not tagged as lost,
1320 			 * we do not clear RETRANS, believing
1321 			 * that retransmission is still in flight.
1322 			 */
1323 			if (sacked & TCPCB_LOST) {
1324 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1325 				tp->lost_out -= pcount;
1326 				tp->retrans_out -= pcount;
1327 			}
1328 		} else {
1329 			if (!(sacked & TCPCB_RETRANS)) {
1330 				/* New sack for not retransmitted frame,
1331 				 * which was in hole. It is reordering.
1332 				 */
1333 				if (before(TCP_SKB_CB(skb)->seq,
1334 					   tcp_highest_sack_seq(tp)))
1335 					state->reord = min(fack_count,
1336 							   state->reord);
1337 
1338 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1339 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1340 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1341 			}
1342 
1343 			if (sacked & TCPCB_LOST) {
1344 				sacked &= ~TCPCB_LOST;
1345 				tp->lost_out -= pcount;
1346 			}
1347 		}
1348 
1349 		sacked |= TCPCB_SACKED_ACKED;
1350 		state->flag |= FLAG_DATA_SACKED;
1351 		tp->sacked_out += pcount;
1352 
1353 		fack_count += pcount;
1354 
1355 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1356 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1357 		    before(TCP_SKB_CB(skb)->seq,
1358 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1359 			tp->lost_cnt_hint += pcount;
1360 
1361 		if (fack_count > tp->fackets_out)
1362 			tp->fackets_out = fack_count;
1363 	}
1364 
1365 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1366 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1367 	 * are accounted above as well.
1368 	 */
1369 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1370 		sacked &= ~TCPCB_SACKED_RETRANS;
1371 		tp->retrans_out -= pcount;
1372 	}
1373 
1374 	return sacked;
1375 }
1376 
1377 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1378 			   struct tcp_sacktag_state *state,
1379 			   unsigned int pcount, int shifted, int mss,
1380 			   int dup_sack)
1381 {
1382 	struct tcp_sock *tp = tcp_sk(sk);
1383 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1384 
1385 	BUG_ON(!pcount);
1386 
1387 	/* Tweak before seqno plays */
1388 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1389 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1390 		tp->lost_cnt_hint += pcount;
1391 
1392 	TCP_SKB_CB(prev)->end_seq += shifted;
1393 	TCP_SKB_CB(skb)->seq += shifted;
1394 
1395 	skb_shinfo(prev)->gso_segs += pcount;
1396 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1397 	skb_shinfo(skb)->gso_segs -= pcount;
1398 
1399 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1400 	 * in theory this shouldn't be necessary but as long as DSACK
1401 	 * code can come after this skb later on it's better to keep
1402 	 * setting gso_size to something.
1403 	 */
1404 	if (!skb_shinfo(prev)->gso_size) {
1405 		skb_shinfo(prev)->gso_size = mss;
1406 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1407 	}
1408 
1409 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1410 	if (skb_shinfo(skb)->gso_segs <= 1) {
1411 		skb_shinfo(skb)->gso_size = 0;
1412 		skb_shinfo(skb)->gso_type = 0;
1413 	}
1414 
1415 	/* We discard results */
1416 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1417 
1418 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1419 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1420 
1421 	if (skb->len > 0) {
1422 		BUG_ON(!tcp_skb_pcount(skb));
1423 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1424 		return 0;
1425 	}
1426 
1427 	/* Whole SKB was eaten :-) */
1428 
1429 	if (skb == tp->retransmit_skb_hint)
1430 		tp->retransmit_skb_hint = prev;
1431 	if (skb == tp->scoreboard_skb_hint)
1432 		tp->scoreboard_skb_hint = prev;
1433 	if (skb == tp->lost_skb_hint) {
1434 		tp->lost_skb_hint = prev;
1435 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1436 	}
1437 
1438 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1439 	if (skb == tcp_highest_sack(sk))
1440 		tcp_advance_highest_sack(sk, skb);
1441 
1442 	tcp_unlink_write_queue(skb, sk);
1443 	sk_wmem_free_skb(sk, skb);
1444 
1445 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1446 
1447 	return 1;
1448 }
1449 
1450 /* I wish gso_size would have a bit more sane initialization than
1451  * something-or-zero which complicates things
1452  */
1453 static int tcp_skb_seglen(struct sk_buff *skb)
1454 {
1455 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1456 }
1457 
1458 /* Shifting pages past head area doesn't work */
1459 static int skb_can_shift(struct sk_buff *skb)
1460 {
1461 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1462 }
1463 
1464 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1465  * skb.
1466  */
1467 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1468 					  struct tcp_sacktag_state *state,
1469 					  u32 start_seq, u32 end_seq,
1470 					  int dup_sack)
1471 {
1472 	struct tcp_sock *tp = tcp_sk(sk);
1473 	struct sk_buff *prev;
1474 	int mss;
1475 	int pcount = 0;
1476 	int len;
1477 	int in_sack;
1478 
1479 	if (!sk_can_gso(sk))
1480 		goto fallback;
1481 
1482 	/* Normally R but no L won't result in plain S */
1483 	if (!dup_sack &&
1484 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1485 		goto fallback;
1486 	if (!skb_can_shift(skb))
1487 		goto fallback;
1488 	/* This frame is about to be dropped (was ACKed). */
1489 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1490 		goto fallback;
1491 
1492 	/* Can only happen with delayed DSACK + discard craziness */
1493 	if (unlikely(skb == tcp_write_queue_head(sk)))
1494 		goto fallback;
1495 	prev = tcp_write_queue_prev(sk, skb);
1496 
1497 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1498 		goto fallback;
1499 
1500 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1501 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1502 
1503 	if (in_sack) {
1504 		len = skb->len;
1505 		pcount = tcp_skb_pcount(skb);
1506 		mss = tcp_skb_seglen(skb);
1507 
1508 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1509 		 * drop this restriction as unnecessary
1510 		 */
1511 		if (mss != tcp_skb_seglen(prev))
1512 			goto fallback;
1513 	} else {
1514 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1515 			goto noop;
1516 		/* CHECKME: This is non-MSS split case only?, this will
1517 		 * cause skipped skbs due to advancing loop btw, original
1518 		 * has that feature too
1519 		 */
1520 		if (tcp_skb_pcount(skb) <= 1)
1521 			goto noop;
1522 
1523 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1524 		if (!in_sack) {
1525 			/* TODO: head merge to next could be attempted here
1526 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527 			 * though it might not be worth of the additional hassle
1528 			 *
1529 			 * ...we can probably just fallback to what was done
1530 			 * previously. We could try merging non-SACKed ones
1531 			 * as well but it probably isn't going to buy off
1532 			 * because later SACKs might again split them, and
1533 			 * it would make skb timestamp tracking considerably
1534 			 * harder problem.
1535 			 */
1536 			goto fallback;
1537 		}
1538 
1539 		len = end_seq - TCP_SKB_CB(skb)->seq;
1540 		BUG_ON(len < 0);
1541 		BUG_ON(len > skb->len);
1542 
1543 		/* MSS boundaries should be honoured or else pcount will
1544 		 * severely break even though it makes things bit trickier.
1545 		 * Optimize common case to avoid most of the divides
1546 		 */
1547 		mss = tcp_skb_mss(skb);
1548 
1549 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1550 		 * drop this restriction as unnecessary
1551 		 */
1552 		if (mss != tcp_skb_seglen(prev))
1553 			goto fallback;
1554 
1555 		if (len == mss) {
1556 			pcount = 1;
1557 		} else if (len < mss) {
1558 			goto noop;
1559 		} else {
1560 			pcount = len / mss;
1561 			len = pcount * mss;
1562 		}
1563 	}
1564 
1565 	if (!skb_shift(prev, skb, len))
1566 		goto fallback;
1567 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1568 		goto out;
1569 
1570 	/* Hole filled allows collapsing with the next as well, this is very
1571 	 * useful when hole on every nth skb pattern happens
1572 	 */
1573 	if (prev == tcp_write_queue_tail(sk))
1574 		goto out;
1575 	skb = tcp_write_queue_next(sk, prev);
1576 
1577 	if (!skb_can_shift(skb) ||
1578 	    (skb == tcp_send_head(sk)) ||
1579 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1580 	    (mss != tcp_skb_seglen(skb)))
1581 		goto out;
1582 
1583 	len = skb->len;
1584 	if (skb_shift(prev, skb, len)) {
1585 		pcount += tcp_skb_pcount(skb);
1586 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1587 	}
1588 
1589 out:
1590 	state->fack_count += pcount;
1591 	return prev;
1592 
1593 noop:
1594 	return skb;
1595 
1596 fallback:
1597 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1598 	return NULL;
1599 }
1600 
1601 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1602 					struct tcp_sack_block *next_dup,
1603 					struct tcp_sacktag_state *state,
1604 					u32 start_seq, u32 end_seq,
1605 					int dup_sack_in)
1606 {
1607 	struct tcp_sock *tp = tcp_sk(sk);
1608 	struct sk_buff *tmp;
1609 
1610 	tcp_for_write_queue_from(skb, sk) {
1611 		int in_sack = 0;
1612 		int dup_sack = dup_sack_in;
1613 
1614 		if (skb == tcp_send_head(sk))
1615 			break;
1616 
1617 		/* queue is in-order => we can short-circuit the walk early */
1618 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1619 			break;
1620 
1621 		if ((next_dup != NULL) &&
1622 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1623 			in_sack = tcp_match_skb_to_sack(sk, skb,
1624 							next_dup->start_seq,
1625 							next_dup->end_seq);
1626 			if (in_sack > 0)
1627 				dup_sack = 1;
1628 		}
1629 
1630 		/* skb reference here is a bit tricky to get right, since
1631 		 * shifting can eat and free both this skb and the next,
1632 		 * so not even _safe variant of the loop is enough.
1633 		 */
1634 		if (in_sack <= 0) {
1635 			tmp = tcp_shift_skb_data(sk, skb, state,
1636 						 start_seq, end_seq, dup_sack);
1637 			if (tmp != NULL) {
1638 				if (tmp != skb) {
1639 					skb = tmp;
1640 					continue;
1641 				}
1642 
1643 				in_sack = 0;
1644 			} else {
1645 				in_sack = tcp_match_skb_to_sack(sk, skb,
1646 								start_seq,
1647 								end_seq);
1648 			}
1649 		}
1650 
1651 		if (unlikely(in_sack < 0))
1652 			break;
1653 
1654 		if (in_sack) {
1655 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1656 								  state,
1657 								  dup_sack,
1658 								  tcp_skb_pcount(skb));
1659 
1660 			if (!before(TCP_SKB_CB(skb)->seq,
1661 				    tcp_highest_sack_seq(tp)))
1662 				tcp_advance_highest_sack(sk, skb);
1663 		}
1664 
1665 		state->fack_count += tcp_skb_pcount(skb);
1666 	}
1667 	return skb;
1668 }
1669 
1670 /* Avoid all extra work that is being done by sacktag while walking in
1671  * a normal way
1672  */
1673 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1674 					struct tcp_sacktag_state *state,
1675 					u32 skip_to_seq)
1676 {
1677 	tcp_for_write_queue_from(skb, sk) {
1678 		if (skb == tcp_send_head(sk))
1679 			break;
1680 
1681 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1682 			break;
1683 
1684 		state->fack_count += tcp_skb_pcount(skb);
1685 	}
1686 	return skb;
1687 }
1688 
1689 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1690 						struct sock *sk,
1691 						struct tcp_sack_block *next_dup,
1692 						struct tcp_sacktag_state *state,
1693 						u32 skip_to_seq)
1694 {
1695 	if (next_dup == NULL)
1696 		return skb;
1697 
1698 	if (before(next_dup->start_seq, skip_to_seq)) {
1699 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1700 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1701 				       next_dup->start_seq, next_dup->end_seq,
1702 				       1);
1703 	}
1704 
1705 	return skb;
1706 }
1707 
1708 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1709 {
1710 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1711 }
1712 
1713 static int
1714 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1715 			u32 prior_snd_una)
1716 {
1717 	const struct inet_connection_sock *icsk = inet_csk(sk);
1718 	struct tcp_sock *tp = tcp_sk(sk);
1719 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1720 			      TCP_SKB_CB(ack_skb)->sacked);
1721 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1722 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1723 	struct tcp_sack_block *cache;
1724 	struct tcp_sacktag_state state;
1725 	struct sk_buff *skb;
1726 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1727 	int used_sacks;
1728 	int found_dup_sack = 0;
1729 	int i, j;
1730 	int first_sack_index;
1731 
1732 	state.flag = 0;
1733 	state.reord = tp->packets_out;
1734 
1735 	if (!tp->sacked_out) {
1736 		if (WARN_ON(tp->fackets_out))
1737 			tp->fackets_out = 0;
1738 		tcp_highest_sack_reset(sk);
1739 	}
1740 
1741 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1742 					 num_sacks, prior_snd_una);
1743 	if (found_dup_sack)
1744 		state.flag |= FLAG_DSACKING_ACK;
1745 
1746 	/* Eliminate too old ACKs, but take into
1747 	 * account more or less fresh ones, they can
1748 	 * contain valid SACK info.
1749 	 */
1750 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1751 		return 0;
1752 
1753 	if (!tp->packets_out)
1754 		goto out;
1755 
1756 	used_sacks = 0;
1757 	first_sack_index = 0;
1758 	for (i = 0; i < num_sacks; i++) {
1759 		int dup_sack = !i && found_dup_sack;
1760 
1761 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1762 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1763 
1764 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1765 					    sp[used_sacks].start_seq,
1766 					    sp[used_sacks].end_seq)) {
1767 			int mib_idx;
1768 
1769 			if (dup_sack) {
1770 				if (!tp->undo_marker)
1771 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1772 				else
1773 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1774 			} else {
1775 				/* Don't count olds caused by ACK reordering */
1776 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1777 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1778 					continue;
1779 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1780 			}
1781 
1782 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1783 			if (i == 0)
1784 				first_sack_index = -1;
1785 			continue;
1786 		}
1787 
1788 		/* Ignore very old stuff early */
1789 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1790 			continue;
1791 
1792 		used_sacks++;
1793 	}
1794 
1795 	/* order SACK blocks to allow in order walk of the retrans queue */
1796 	for (i = used_sacks - 1; i > 0; i--) {
1797 		for (j = 0; j < i; j++) {
1798 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1799 				swap(sp[j], sp[j + 1]);
1800 
1801 				/* Track where the first SACK block goes to */
1802 				if (j == first_sack_index)
1803 					first_sack_index = j + 1;
1804 			}
1805 		}
1806 	}
1807 
1808 	skb = tcp_write_queue_head(sk);
1809 	state.fack_count = 0;
1810 	i = 0;
1811 
1812 	if (!tp->sacked_out) {
1813 		/* It's already past, so skip checking against it */
1814 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1815 	} else {
1816 		cache = tp->recv_sack_cache;
1817 		/* Skip empty blocks in at head of the cache */
1818 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1819 		       !cache->end_seq)
1820 			cache++;
1821 	}
1822 
1823 	while (i < used_sacks) {
1824 		u32 start_seq = sp[i].start_seq;
1825 		u32 end_seq = sp[i].end_seq;
1826 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1827 		struct tcp_sack_block *next_dup = NULL;
1828 
1829 		if (found_dup_sack && ((i + 1) == first_sack_index))
1830 			next_dup = &sp[i + 1];
1831 
1832 		/* Event "B" in the comment above. */
1833 		if (after(end_seq, tp->high_seq))
1834 			state.flag |= FLAG_DATA_LOST;
1835 
1836 		/* Skip too early cached blocks */
1837 		while (tcp_sack_cache_ok(tp, cache) &&
1838 		       !before(start_seq, cache->end_seq))
1839 			cache++;
1840 
1841 		/* Can skip some work by looking recv_sack_cache? */
1842 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1843 		    after(end_seq, cache->start_seq)) {
1844 
1845 			/* Head todo? */
1846 			if (before(start_seq, cache->start_seq)) {
1847 				skb = tcp_sacktag_skip(skb, sk, &state,
1848 						       start_seq);
1849 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1850 						       &state,
1851 						       start_seq,
1852 						       cache->start_seq,
1853 						       dup_sack);
1854 			}
1855 
1856 			/* Rest of the block already fully processed? */
1857 			if (!after(end_seq, cache->end_seq))
1858 				goto advance_sp;
1859 
1860 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1861 						       &state,
1862 						       cache->end_seq);
1863 
1864 			/* ...tail remains todo... */
1865 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1866 				/* ...but better entrypoint exists! */
1867 				skb = tcp_highest_sack(sk);
1868 				if (skb == NULL)
1869 					break;
1870 				state.fack_count = tp->fackets_out;
1871 				cache++;
1872 				goto walk;
1873 			}
1874 
1875 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1876 			/* Check overlap against next cached too (past this one already) */
1877 			cache++;
1878 			continue;
1879 		}
1880 
1881 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1882 			skb = tcp_highest_sack(sk);
1883 			if (skb == NULL)
1884 				break;
1885 			state.fack_count = tp->fackets_out;
1886 		}
1887 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1888 
1889 walk:
1890 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1891 				       start_seq, end_seq, dup_sack);
1892 
1893 advance_sp:
1894 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1895 		 * due to in-order walk
1896 		 */
1897 		if (after(end_seq, tp->frto_highmark))
1898 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1899 
1900 		i++;
1901 	}
1902 
1903 	/* Clear the head of the cache sack blocks so we can skip it next time */
1904 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1905 		tp->recv_sack_cache[i].start_seq = 0;
1906 		tp->recv_sack_cache[i].end_seq = 0;
1907 	}
1908 	for (j = 0; j < used_sacks; j++)
1909 		tp->recv_sack_cache[i++] = sp[j];
1910 
1911 	tcp_mark_lost_retrans(sk);
1912 
1913 	tcp_verify_left_out(tp);
1914 
1915 	if ((state.reord < tp->fackets_out) &&
1916 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1917 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1918 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1919 
1920 out:
1921 
1922 #if FASTRETRANS_DEBUG > 0
1923 	WARN_ON((int)tp->sacked_out < 0);
1924 	WARN_ON((int)tp->lost_out < 0);
1925 	WARN_ON((int)tp->retrans_out < 0);
1926 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1927 #endif
1928 	return state.flag;
1929 }
1930 
1931 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1932  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1933  */
1934 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1935 {
1936 	u32 holes;
1937 
1938 	holes = max(tp->lost_out, 1U);
1939 	holes = min(holes, tp->packets_out);
1940 
1941 	if ((tp->sacked_out + holes) > tp->packets_out) {
1942 		tp->sacked_out = tp->packets_out - holes;
1943 		return 1;
1944 	}
1945 	return 0;
1946 }
1947 
1948 /* If we receive more dupacks than we expected counting segments
1949  * in assumption of absent reordering, interpret this as reordering.
1950  * The only another reason could be bug in receiver TCP.
1951  */
1952 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1953 {
1954 	struct tcp_sock *tp = tcp_sk(sk);
1955 	if (tcp_limit_reno_sacked(tp))
1956 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1957 }
1958 
1959 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1960 
1961 static void tcp_add_reno_sack(struct sock *sk)
1962 {
1963 	struct tcp_sock *tp = tcp_sk(sk);
1964 	tp->sacked_out++;
1965 	tcp_check_reno_reordering(sk, 0);
1966 	tcp_verify_left_out(tp);
1967 }
1968 
1969 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1970 
1971 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1972 {
1973 	struct tcp_sock *tp = tcp_sk(sk);
1974 
1975 	if (acked > 0) {
1976 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1977 		if (acked - 1 >= tp->sacked_out)
1978 			tp->sacked_out = 0;
1979 		else
1980 			tp->sacked_out -= acked - 1;
1981 	}
1982 	tcp_check_reno_reordering(sk, acked);
1983 	tcp_verify_left_out(tp);
1984 }
1985 
1986 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1987 {
1988 	tp->sacked_out = 0;
1989 }
1990 
1991 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1992 {
1993 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1994 }
1995 
1996 /* F-RTO can only be used if TCP has never retransmitted anything other than
1997  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1998  */
1999 int tcp_use_frto(struct sock *sk)
2000 {
2001 	const struct tcp_sock *tp = tcp_sk(sk);
2002 	const struct inet_connection_sock *icsk = inet_csk(sk);
2003 	struct sk_buff *skb;
2004 
2005 	if (!sysctl_tcp_frto)
2006 		return 0;
2007 
2008 	/* MTU probe and F-RTO won't really play nicely along currently */
2009 	if (icsk->icsk_mtup.probe_size)
2010 		return 0;
2011 
2012 	if (tcp_is_sackfrto(tp))
2013 		return 1;
2014 
2015 	/* Avoid expensive walking of rexmit queue if possible */
2016 	if (tp->retrans_out > 1)
2017 		return 0;
2018 
2019 	skb = tcp_write_queue_head(sk);
2020 	if (tcp_skb_is_last(sk, skb))
2021 		return 1;
2022 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2023 	tcp_for_write_queue_from(skb, sk) {
2024 		if (skb == tcp_send_head(sk))
2025 			break;
2026 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2027 			return 0;
2028 		/* Short-circuit when first non-SACKed skb has been checked */
2029 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2030 			break;
2031 	}
2032 	return 1;
2033 }
2034 
2035 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2036  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2037  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2038  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2039  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2040  * bits are handled if the Loss state is really to be entered (in
2041  * tcp_enter_frto_loss).
2042  *
2043  * Do like tcp_enter_loss() would; when RTO expires the second time it
2044  * does:
2045  *  "Reduce ssthresh if it has not yet been made inside this window."
2046  */
2047 void tcp_enter_frto(struct sock *sk)
2048 {
2049 	const struct inet_connection_sock *icsk = inet_csk(sk);
2050 	struct tcp_sock *tp = tcp_sk(sk);
2051 	struct sk_buff *skb;
2052 
2053 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2054 	    tp->snd_una == tp->high_seq ||
2055 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2056 	     !icsk->icsk_retransmits)) {
2057 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2058 		/* Our state is too optimistic in ssthresh() call because cwnd
2059 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2060 		 * recovery has not yet completed. Pattern would be this: RTO,
2061 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2062 		 * up here twice).
2063 		 * RFC4138 should be more specific on what to do, even though
2064 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2065 		 * due to back-off and complexity of triggering events ...
2066 		 */
2067 		if (tp->frto_counter) {
2068 			u32 stored_cwnd;
2069 			stored_cwnd = tp->snd_cwnd;
2070 			tp->snd_cwnd = 2;
2071 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2072 			tp->snd_cwnd = stored_cwnd;
2073 		} else {
2074 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2075 		}
2076 		/* ... in theory, cong.control module could do "any tricks" in
2077 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2078 		 * counter would have to be faked before the call occurs. We
2079 		 * consider that too expensive, unlikely and hacky, so modules
2080 		 * using these in ssthresh() must deal these incompatibility
2081 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2082 		 */
2083 		tcp_ca_event(sk, CA_EVENT_FRTO);
2084 	}
2085 
2086 	tp->undo_marker = tp->snd_una;
2087 	tp->undo_retrans = 0;
2088 
2089 	skb = tcp_write_queue_head(sk);
2090 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2091 		tp->undo_marker = 0;
2092 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2093 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2094 		tp->retrans_out -= tcp_skb_pcount(skb);
2095 	}
2096 	tcp_verify_left_out(tp);
2097 
2098 	/* Too bad if TCP was application limited */
2099 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2100 
2101 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2102 	 * The last condition is necessary at least in tp->frto_counter case.
2103 	 */
2104 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2105 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2106 	    after(tp->high_seq, tp->snd_una)) {
2107 		tp->frto_highmark = tp->high_seq;
2108 	} else {
2109 		tp->frto_highmark = tp->snd_nxt;
2110 	}
2111 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2112 	tp->high_seq = tp->snd_nxt;
2113 	tp->frto_counter = 1;
2114 }
2115 
2116 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2117  * which indicates that we should follow the traditional RTO recovery,
2118  * i.e. mark everything lost and do go-back-N retransmission.
2119  */
2120 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2121 {
2122 	struct tcp_sock *tp = tcp_sk(sk);
2123 	struct sk_buff *skb;
2124 
2125 	tp->lost_out = 0;
2126 	tp->retrans_out = 0;
2127 	if (tcp_is_reno(tp))
2128 		tcp_reset_reno_sack(tp);
2129 
2130 	tcp_for_write_queue(skb, sk) {
2131 		if (skb == tcp_send_head(sk))
2132 			break;
2133 
2134 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2135 		/*
2136 		 * Count the retransmission made on RTO correctly (only when
2137 		 * waiting for the first ACK and did not get it)...
2138 		 */
2139 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2140 			/* For some reason this R-bit might get cleared? */
2141 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2142 				tp->retrans_out += tcp_skb_pcount(skb);
2143 			/* ...enter this if branch just for the first segment */
2144 			flag |= FLAG_DATA_ACKED;
2145 		} else {
2146 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2147 				tp->undo_marker = 0;
2148 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2149 		}
2150 
2151 		/* Marking forward transmissions that were made after RTO lost
2152 		 * can cause unnecessary retransmissions in some scenarios,
2153 		 * SACK blocks will mitigate that in some but not in all cases.
2154 		 * We used to not mark them but it was causing break-ups with
2155 		 * receivers that do only in-order receival.
2156 		 *
2157 		 * TODO: we could detect presence of such receiver and select
2158 		 * different behavior per flow.
2159 		 */
2160 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2161 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2162 			tp->lost_out += tcp_skb_pcount(skb);
2163 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2164 		}
2165 	}
2166 	tcp_verify_left_out(tp);
2167 
2168 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2169 	tp->snd_cwnd_cnt = 0;
2170 	tp->snd_cwnd_stamp = tcp_time_stamp;
2171 	tp->frto_counter = 0;
2172 	tp->bytes_acked = 0;
2173 
2174 	tp->reordering = min_t(unsigned int, tp->reordering,
2175 			       sysctl_tcp_reordering);
2176 	tcp_set_ca_state(sk, TCP_CA_Loss);
2177 	tp->high_seq = tp->snd_nxt;
2178 	TCP_ECN_queue_cwr(tp);
2179 
2180 	tcp_clear_all_retrans_hints(tp);
2181 }
2182 
2183 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2184 {
2185 	tp->retrans_out = 0;
2186 	tp->lost_out = 0;
2187 
2188 	tp->undo_marker = 0;
2189 	tp->undo_retrans = 0;
2190 }
2191 
2192 void tcp_clear_retrans(struct tcp_sock *tp)
2193 {
2194 	tcp_clear_retrans_partial(tp);
2195 
2196 	tp->fackets_out = 0;
2197 	tp->sacked_out = 0;
2198 }
2199 
2200 /* Enter Loss state. If "how" is not zero, forget all SACK information
2201  * and reset tags completely, otherwise preserve SACKs. If receiver
2202  * dropped its ofo queue, we will know this due to reneging detection.
2203  */
2204 void tcp_enter_loss(struct sock *sk, int how)
2205 {
2206 	const struct inet_connection_sock *icsk = inet_csk(sk);
2207 	struct tcp_sock *tp = tcp_sk(sk);
2208 	struct sk_buff *skb;
2209 
2210 	/* Reduce ssthresh if it has not yet been made inside this window. */
2211 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2212 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2213 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2214 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2215 		tcp_ca_event(sk, CA_EVENT_LOSS);
2216 	}
2217 	tp->snd_cwnd	   = 1;
2218 	tp->snd_cwnd_cnt   = 0;
2219 	tp->snd_cwnd_stamp = tcp_time_stamp;
2220 
2221 	tp->bytes_acked = 0;
2222 	tcp_clear_retrans_partial(tp);
2223 
2224 	if (tcp_is_reno(tp))
2225 		tcp_reset_reno_sack(tp);
2226 
2227 	if (!how) {
2228 		/* Push undo marker, if it was plain RTO and nothing
2229 		 * was retransmitted. */
2230 		tp->undo_marker = tp->snd_una;
2231 	} else {
2232 		tp->sacked_out = 0;
2233 		tp->fackets_out = 0;
2234 	}
2235 	tcp_clear_all_retrans_hints(tp);
2236 
2237 	tcp_for_write_queue(skb, sk) {
2238 		if (skb == tcp_send_head(sk))
2239 			break;
2240 
2241 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2242 			tp->undo_marker = 0;
2243 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2244 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2245 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2246 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2247 			tp->lost_out += tcp_skb_pcount(skb);
2248 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2249 		}
2250 	}
2251 	tcp_verify_left_out(tp);
2252 
2253 	tp->reordering = min_t(unsigned int, tp->reordering,
2254 			       sysctl_tcp_reordering);
2255 	tcp_set_ca_state(sk, TCP_CA_Loss);
2256 	tp->high_seq = tp->snd_nxt;
2257 	TCP_ECN_queue_cwr(tp);
2258 	/* Abort F-RTO algorithm if one is in progress */
2259 	tp->frto_counter = 0;
2260 }
2261 
2262 /* If ACK arrived pointing to a remembered SACK, it means that our
2263  * remembered SACKs do not reflect real state of receiver i.e.
2264  * receiver _host_ is heavily congested (or buggy).
2265  *
2266  * Do processing similar to RTO timeout.
2267  */
2268 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2269 {
2270 	if (flag & FLAG_SACK_RENEGING) {
2271 		struct inet_connection_sock *icsk = inet_csk(sk);
2272 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2273 
2274 		tcp_enter_loss(sk, 1);
2275 		icsk->icsk_retransmits++;
2276 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2277 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2278 					  icsk->icsk_rto, TCP_RTO_MAX);
2279 		return 1;
2280 	}
2281 	return 0;
2282 }
2283 
2284 static inline int tcp_fackets_out(struct tcp_sock *tp)
2285 {
2286 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2287 }
2288 
2289 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2290  * counter when SACK is enabled (without SACK, sacked_out is used for
2291  * that purpose).
2292  *
2293  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2294  * segments up to the highest received SACK block so far and holes in
2295  * between them.
2296  *
2297  * With reordering, holes may still be in flight, so RFC3517 recovery
2298  * uses pure sacked_out (total number of SACKed segments) even though
2299  * it violates the RFC that uses duplicate ACKs, often these are equal
2300  * but when e.g. out-of-window ACKs or packet duplication occurs,
2301  * they differ. Since neither occurs due to loss, TCP should really
2302  * ignore them.
2303  */
2304 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2305 {
2306 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2307 }
2308 
2309 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2310 {
2311 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2312 }
2313 
2314 static inline int tcp_head_timedout(struct sock *sk)
2315 {
2316 	struct tcp_sock *tp = tcp_sk(sk);
2317 
2318 	return tp->packets_out &&
2319 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2320 }
2321 
2322 /* Linux NewReno/SACK/FACK/ECN state machine.
2323  * --------------------------------------
2324  *
2325  * "Open"	Normal state, no dubious events, fast path.
2326  * "Disorder"   In all the respects it is "Open",
2327  *		but requires a bit more attention. It is entered when
2328  *		we see some SACKs or dupacks. It is split of "Open"
2329  *		mainly to move some processing from fast path to slow one.
2330  * "CWR"	CWND was reduced due to some Congestion Notification event.
2331  *		It can be ECN, ICMP source quench, local device congestion.
2332  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2333  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2334  *
2335  * tcp_fastretrans_alert() is entered:
2336  * - each incoming ACK, if state is not "Open"
2337  * - when arrived ACK is unusual, namely:
2338  *	* SACK
2339  *	* Duplicate ACK.
2340  *	* ECN ECE.
2341  *
2342  * Counting packets in flight is pretty simple.
2343  *
2344  *	in_flight = packets_out - left_out + retrans_out
2345  *
2346  *	packets_out is SND.NXT-SND.UNA counted in packets.
2347  *
2348  *	retrans_out is number of retransmitted segments.
2349  *
2350  *	left_out is number of segments left network, but not ACKed yet.
2351  *
2352  *		left_out = sacked_out + lost_out
2353  *
2354  *     sacked_out: Packets, which arrived to receiver out of order
2355  *		   and hence not ACKed. With SACKs this number is simply
2356  *		   amount of SACKed data. Even without SACKs
2357  *		   it is easy to give pretty reliable estimate of this number,
2358  *		   counting duplicate ACKs.
2359  *
2360  *       lost_out: Packets lost by network. TCP has no explicit
2361  *		   "loss notification" feedback from network (for now).
2362  *		   It means that this number can be only _guessed_.
2363  *		   Actually, it is the heuristics to predict lossage that
2364  *		   distinguishes different algorithms.
2365  *
2366  *	F.e. after RTO, when all the queue is considered as lost,
2367  *	lost_out = packets_out and in_flight = retrans_out.
2368  *
2369  *		Essentially, we have now two algorithms counting
2370  *		lost packets.
2371  *
2372  *		FACK: It is the simplest heuristics. As soon as we decided
2373  *		that something is lost, we decide that _all_ not SACKed
2374  *		packets until the most forward SACK are lost. I.e.
2375  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2376  *		It is absolutely correct estimate, if network does not reorder
2377  *		packets. And it loses any connection to reality when reordering
2378  *		takes place. We use FACK by default until reordering
2379  *		is suspected on the path to this destination.
2380  *
2381  *		NewReno: when Recovery is entered, we assume that one segment
2382  *		is lost (classic Reno). While we are in Recovery and
2383  *		a partial ACK arrives, we assume that one more packet
2384  *		is lost (NewReno). This heuristics are the same in NewReno
2385  *		and SACK.
2386  *
2387  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2388  *  deflation etc. CWND is real congestion window, never inflated, changes
2389  *  only according to classic VJ rules.
2390  *
2391  * Really tricky (and requiring careful tuning) part of algorithm
2392  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2393  * The first determines the moment _when_ we should reduce CWND and,
2394  * hence, slow down forward transmission. In fact, it determines the moment
2395  * when we decide that hole is caused by loss, rather than by a reorder.
2396  *
2397  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2398  * holes, caused by lost packets.
2399  *
2400  * And the most logically complicated part of algorithm is undo
2401  * heuristics. We detect false retransmits due to both too early
2402  * fast retransmit (reordering) and underestimated RTO, analyzing
2403  * timestamps and D-SACKs. When we detect that some segments were
2404  * retransmitted by mistake and CWND reduction was wrong, we undo
2405  * window reduction and abort recovery phase. This logic is hidden
2406  * inside several functions named tcp_try_undo_<something>.
2407  */
2408 
2409 /* This function decides, when we should leave Disordered state
2410  * and enter Recovery phase, reducing congestion window.
2411  *
2412  * Main question: may we further continue forward transmission
2413  * with the same cwnd?
2414  */
2415 static int tcp_time_to_recover(struct sock *sk)
2416 {
2417 	struct tcp_sock *tp = tcp_sk(sk);
2418 	__u32 packets_out;
2419 
2420 	/* Do not perform any recovery during F-RTO algorithm */
2421 	if (tp->frto_counter)
2422 		return 0;
2423 
2424 	/* Trick#1: The loss is proven. */
2425 	if (tp->lost_out)
2426 		return 1;
2427 
2428 	/* Not-A-Trick#2 : Classic rule... */
2429 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2430 		return 1;
2431 
2432 	/* Trick#3 : when we use RFC2988 timer restart, fast
2433 	 * retransmit can be triggered by timeout of queue head.
2434 	 */
2435 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2436 		return 1;
2437 
2438 	/* Trick#4: It is still not OK... But will it be useful to delay
2439 	 * recovery more?
2440 	 */
2441 	packets_out = tp->packets_out;
2442 	if (packets_out <= tp->reordering &&
2443 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2444 	    !tcp_may_send_now(sk)) {
2445 		/* We have nothing to send. This connection is limited
2446 		 * either by receiver window or by application.
2447 		 */
2448 		return 1;
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 /* New heuristics: it is possible only after we switched to restart timer
2455  * each time when something is ACKed. Hence, we can detect timed out packets
2456  * during fast retransmit without falling to slow start.
2457  *
2458  * Usefulness of this as is very questionable, since we should know which of
2459  * the segments is the next to timeout which is relatively expensive to find
2460  * in general case unless we add some data structure just for that. The
2461  * current approach certainly won't find the right one too often and when it
2462  * finally does find _something_ it usually marks large part of the window
2463  * right away (because a retransmission with a larger timestamp blocks the
2464  * loop from advancing). -ij
2465  */
2466 static void tcp_timeout_skbs(struct sock *sk)
2467 {
2468 	struct tcp_sock *tp = tcp_sk(sk);
2469 	struct sk_buff *skb;
2470 
2471 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2472 		return;
2473 
2474 	skb = tp->scoreboard_skb_hint;
2475 	if (tp->scoreboard_skb_hint == NULL)
2476 		skb = tcp_write_queue_head(sk);
2477 
2478 	tcp_for_write_queue_from(skb, sk) {
2479 		if (skb == tcp_send_head(sk))
2480 			break;
2481 		if (!tcp_skb_timedout(sk, skb))
2482 			break;
2483 
2484 		tcp_skb_mark_lost(tp, skb);
2485 	}
2486 
2487 	tp->scoreboard_skb_hint = skb;
2488 
2489 	tcp_verify_left_out(tp);
2490 }
2491 
2492 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2493  * is against sacked "cnt", otherwise it's against facked "cnt"
2494  */
2495 static void tcp_mark_head_lost(struct sock *sk, int packets)
2496 {
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 	struct sk_buff *skb;
2499 	int cnt, oldcnt;
2500 	int err;
2501 	unsigned int mss;
2502 
2503 	WARN_ON(packets > tp->packets_out);
2504 	if (tp->lost_skb_hint) {
2505 		skb = tp->lost_skb_hint;
2506 		cnt = tp->lost_cnt_hint;
2507 	} else {
2508 		skb = tcp_write_queue_head(sk);
2509 		cnt = 0;
2510 	}
2511 
2512 	tcp_for_write_queue_from(skb, sk) {
2513 		if (skb == tcp_send_head(sk))
2514 			break;
2515 		/* TODO: do this better */
2516 		/* this is not the most efficient way to do this... */
2517 		tp->lost_skb_hint = skb;
2518 		tp->lost_cnt_hint = cnt;
2519 
2520 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2521 			break;
2522 
2523 		oldcnt = cnt;
2524 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2525 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2526 			cnt += tcp_skb_pcount(skb);
2527 
2528 		if (cnt > packets) {
2529 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2530 				break;
2531 
2532 			mss = skb_shinfo(skb)->gso_size;
2533 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2534 			if (err < 0)
2535 				break;
2536 			cnt = packets;
2537 		}
2538 
2539 		tcp_skb_mark_lost(tp, skb);
2540 	}
2541 	tcp_verify_left_out(tp);
2542 }
2543 
2544 /* Account newly detected lost packet(s) */
2545 
2546 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2547 {
2548 	struct tcp_sock *tp = tcp_sk(sk);
2549 
2550 	if (tcp_is_reno(tp)) {
2551 		tcp_mark_head_lost(sk, 1);
2552 	} else if (tcp_is_fack(tp)) {
2553 		int lost = tp->fackets_out - tp->reordering;
2554 		if (lost <= 0)
2555 			lost = 1;
2556 		tcp_mark_head_lost(sk, lost);
2557 	} else {
2558 		int sacked_upto = tp->sacked_out - tp->reordering;
2559 		if (sacked_upto < fast_rexmit)
2560 			sacked_upto = fast_rexmit;
2561 		tcp_mark_head_lost(sk, sacked_upto);
2562 	}
2563 
2564 	tcp_timeout_skbs(sk);
2565 }
2566 
2567 /* CWND moderation, preventing bursts due to too big ACKs
2568  * in dubious situations.
2569  */
2570 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2571 {
2572 	tp->snd_cwnd = min(tp->snd_cwnd,
2573 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2574 	tp->snd_cwnd_stamp = tcp_time_stamp;
2575 }
2576 
2577 /* Lower bound on congestion window is slow start threshold
2578  * unless congestion avoidance choice decides to overide it.
2579  */
2580 static inline u32 tcp_cwnd_min(const struct sock *sk)
2581 {
2582 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2583 
2584 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2585 }
2586 
2587 /* Decrease cwnd each second ack. */
2588 static void tcp_cwnd_down(struct sock *sk, int flag)
2589 {
2590 	struct tcp_sock *tp = tcp_sk(sk);
2591 	int decr = tp->snd_cwnd_cnt + 1;
2592 
2593 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2594 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2595 		tp->snd_cwnd_cnt = decr & 1;
2596 		decr >>= 1;
2597 
2598 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2599 			tp->snd_cwnd -= decr;
2600 
2601 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2602 		tp->snd_cwnd_stamp = tcp_time_stamp;
2603 	}
2604 }
2605 
2606 /* Nothing was retransmitted or returned timestamp is less
2607  * than timestamp of the first retransmission.
2608  */
2609 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2610 {
2611 	return !tp->retrans_stamp ||
2612 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2613 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2614 }
2615 
2616 /* Undo procedures. */
2617 
2618 #if FASTRETRANS_DEBUG > 1
2619 static void DBGUNDO(struct sock *sk, const char *msg)
2620 {
2621 	struct tcp_sock *tp = tcp_sk(sk);
2622 	struct inet_sock *inet = inet_sk(sk);
2623 
2624 	if (sk->sk_family == AF_INET) {
2625 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2626 		       msg,
2627 		       &inet->daddr, ntohs(inet->dport),
2628 		       tp->snd_cwnd, tcp_left_out(tp),
2629 		       tp->snd_ssthresh, tp->prior_ssthresh,
2630 		       tp->packets_out);
2631 	}
2632 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2633 	else if (sk->sk_family == AF_INET6) {
2634 		struct ipv6_pinfo *np = inet6_sk(sk);
2635 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2636 		       msg,
2637 		       &np->daddr, ntohs(inet->dport),
2638 		       tp->snd_cwnd, tcp_left_out(tp),
2639 		       tp->snd_ssthresh, tp->prior_ssthresh,
2640 		       tp->packets_out);
2641 	}
2642 #endif
2643 }
2644 #else
2645 #define DBGUNDO(x...) do { } while (0)
2646 #endif
2647 
2648 static void tcp_undo_cwr(struct sock *sk, const int undo)
2649 {
2650 	struct tcp_sock *tp = tcp_sk(sk);
2651 
2652 	if (tp->prior_ssthresh) {
2653 		const struct inet_connection_sock *icsk = inet_csk(sk);
2654 
2655 		if (icsk->icsk_ca_ops->undo_cwnd)
2656 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2657 		else
2658 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2659 
2660 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2661 			tp->snd_ssthresh = tp->prior_ssthresh;
2662 			TCP_ECN_withdraw_cwr(tp);
2663 		}
2664 	} else {
2665 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2666 	}
2667 	tcp_moderate_cwnd(tp);
2668 	tp->snd_cwnd_stamp = tcp_time_stamp;
2669 }
2670 
2671 static inline int tcp_may_undo(struct tcp_sock *tp)
2672 {
2673 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2674 }
2675 
2676 /* People celebrate: "We love our President!" */
2677 static int tcp_try_undo_recovery(struct sock *sk)
2678 {
2679 	struct tcp_sock *tp = tcp_sk(sk);
2680 
2681 	if (tcp_may_undo(tp)) {
2682 		int mib_idx;
2683 
2684 		/* Happy end! We did not retransmit anything
2685 		 * or our original transmission succeeded.
2686 		 */
2687 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2688 		tcp_undo_cwr(sk, 1);
2689 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2690 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2691 		else
2692 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2693 
2694 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2695 		tp->undo_marker = 0;
2696 	}
2697 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2698 		/* Hold old state until something *above* high_seq
2699 		 * is ACKed. For Reno it is MUST to prevent false
2700 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2701 		tcp_moderate_cwnd(tp);
2702 		return 1;
2703 	}
2704 	tcp_set_ca_state(sk, TCP_CA_Open);
2705 	return 0;
2706 }
2707 
2708 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2709 static void tcp_try_undo_dsack(struct sock *sk)
2710 {
2711 	struct tcp_sock *tp = tcp_sk(sk);
2712 
2713 	if (tp->undo_marker && !tp->undo_retrans) {
2714 		DBGUNDO(sk, "D-SACK");
2715 		tcp_undo_cwr(sk, 1);
2716 		tp->undo_marker = 0;
2717 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2718 	}
2719 }
2720 
2721 /* Undo during fast recovery after partial ACK. */
2722 
2723 static int tcp_try_undo_partial(struct sock *sk, int acked)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 	/* Partial ACK arrived. Force Hoe's retransmit. */
2727 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2728 
2729 	if (tcp_may_undo(tp)) {
2730 		/* Plain luck! Hole if filled with delayed
2731 		 * packet, rather than with a retransmit.
2732 		 */
2733 		if (tp->retrans_out == 0)
2734 			tp->retrans_stamp = 0;
2735 
2736 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2737 
2738 		DBGUNDO(sk, "Hoe");
2739 		tcp_undo_cwr(sk, 0);
2740 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2741 
2742 		/* So... Do not make Hoe's retransmit yet.
2743 		 * If the first packet was delayed, the rest
2744 		 * ones are most probably delayed as well.
2745 		 */
2746 		failed = 0;
2747 	}
2748 	return failed;
2749 }
2750 
2751 /* Undo during loss recovery after partial ACK. */
2752 static int tcp_try_undo_loss(struct sock *sk)
2753 {
2754 	struct tcp_sock *tp = tcp_sk(sk);
2755 
2756 	if (tcp_may_undo(tp)) {
2757 		struct sk_buff *skb;
2758 		tcp_for_write_queue(skb, sk) {
2759 			if (skb == tcp_send_head(sk))
2760 				break;
2761 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2762 		}
2763 
2764 		tcp_clear_all_retrans_hints(tp);
2765 
2766 		DBGUNDO(sk, "partial loss");
2767 		tp->lost_out = 0;
2768 		tcp_undo_cwr(sk, 1);
2769 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2770 		inet_csk(sk)->icsk_retransmits = 0;
2771 		tp->undo_marker = 0;
2772 		if (tcp_is_sack(tp))
2773 			tcp_set_ca_state(sk, TCP_CA_Open);
2774 		return 1;
2775 	}
2776 	return 0;
2777 }
2778 
2779 static inline void tcp_complete_cwr(struct sock *sk)
2780 {
2781 	struct tcp_sock *tp = tcp_sk(sk);
2782 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2783 	tp->snd_cwnd_stamp = tcp_time_stamp;
2784 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2785 }
2786 
2787 static void tcp_try_keep_open(struct sock *sk)
2788 {
2789 	struct tcp_sock *tp = tcp_sk(sk);
2790 	int state = TCP_CA_Open;
2791 
2792 	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2793 		state = TCP_CA_Disorder;
2794 
2795 	if (inet_csk(sk)->icsk_ca_state != state) {
2796 		tcp_set_ca_state(sk, state);
2797 		tp->high_seq = tp->snd_nxt;
2798 	}
2799 }
2800 
2801 static void tcp_try_to_open(struct sock *sk, int flag)
2802 {
2803 	struct tcp_sock *tp = tcp_sk(sk);
2804 
2805 	tcp_verify_left_out(tp);
2806 
2807 	if (!tp->frto_counter && tp->retrans_out == 0)
2808 		tp->retrans_stamp = 0;
2809 
2810 	if (flag & FLAG_ECE)
2811 		tcp_enter_cwr(sk, 1);
2812 
2813 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2814 		tcp_try_keep_open(sk);
2815 		tcp_moderate_cwnd(tp);
2816 	} else {
2817 		tcp_cwnd_down(sk, flag);
2818 	}
2819 }
2820 
2821 static void tcp_mtup_probe_failed(struct sock *sk)
2822 {
2823 	struct inet_connection_sock *icsk = inet_csk(sk);
2824 
2825 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2826 	icsk->icsk_mtup.probe_size = 0;
2827 }
2828 
2829 static void tcp_mtup_probe_success(struct sock *sk)
2830 {
2831 	struct tcp_sock *tp = tcp_sk(sk);
2832 	struct inet_connection_sock *icsk = inet_csk(sk);
2833 
2834 	/* FIXME: breaks with very large cwnd */
2835 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2836 	tp->snd_cwnd = tp->snd_cwnd *
2837 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2838 		       icsk->icsk_mtup.probe_size;
2839 	tp->snd_cwnd_cnt = 0;
2840 	tp->snd_cwnd_stamp = tcp_time_stamp;
2841 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2842 
2843 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2844 	icsk->icsk_mtup.probe_size = 0;
2845 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2846 }
2847 
2848 /* Do a simple retransmit without using the backoff mechanisms in
2849  * tcp_timer. This is used for path mtu discovery.
2850  * The socket is already locked here.
2851  */
2852 void tcp_simple_retransmit(struct sock *sk)
2853 {
2854 	const struct inet_connection_sock *icsk = inet_csk(sk);
2855 	struct tcp_sock *tp = tcp_sk(sk);
2856 	struct sk_buff *skb;
2857 	unsigned int mss = tcp_current_mss(sk);
2858 	u32 prior_lost = tp->lost_out;
2859 
2860 	tcp_for_write_queue(skb, sk) {
2861 		if (skb == tcp_send_head(sk))
2862 			break;
2863 		if (tcp_skb_seglen(skb) > mss &&
2864 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2865 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2866 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2867 				tp->retrans_out -= tcp_skb_pcount(skb);
2868 			}
2869 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2870 		}
2871 	}
2872 
2873 	tcp_clear_retrans_hints_partial(tp);
2874 
2875 	if (prior_lost == tp->lost_out)
2876 		return;
2877 
2878 	if (tcp_is_reno(tp))
2879 		tcp_limit_reno_sacked(tp);
2880 
2881 	tcp_verify_left_out(tp);
2882 
2883 	/* Don't muck with the congestion window here.
2884 	 * Reason is that we do not increase amount of _data_
2885 	 * in network, but units changed and effective
2886 	 * cwnd/ssthresh really reduced now.
2887 	 */
2888 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2889 		tp->high_seq = tp->snd_nxt;
2890 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2891 		tp->prior_ssthresh = 0;
2892 		tp->undo_marker = 0;
2893 		tcp_set_ca_state(sk, TCP_CA_Loss);
2894 	}
2895 	tcp_xmit_retransmit_queue(sk);
2896 }
2897 
2898 /* Process an event, which can update packets-in-flight not trivially.
2899  * Main goal of this function is to calculate new estimate for left_out,
2900  * taking into account both packets sitting in receiver's buffer and
2901  * packets lost by network.
2902  *
2903  * Besides that it does CWND reduction, when packet loss is detected
2904  * and changes state of machine.
2905  *
2906  * It does _not_ decide what to send, it is made in function
2907  * tcp_xmit_retransmit_queue().
2908  */
2909 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2910 {
2911 	struct inet_connection_sock *icsk = inet_csk(sk);
2912 	struct tcp_sock *tp = tcp_sk(sk);
2913 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2914 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2915 				    (tcp_fackets_out(tp) > tp->reordering));
2916 	int fast_rexmit = 0, mib_idx;
2917 
2918 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2919 		tp->sacked_out = 0;
2920 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2921 		tp->fackets_out = 0;
2922 
2923 	/* Now state machine starts.
2924 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2925 	if (flag & FLAG_ECE)
2926 		tp->prior_ssthresh = 0;
2927 
2928 	/* B. In all the states check for reneging SACKs. */
2929 	if (tcp_check_sack_reneging(sk, flag))
2930 		return;
2931 
2932 	/* C. Process data loss notification, provided it is valid. */
2933 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2934 	    before(tp->snd_una, tp->high_seq) &&
2935 	    icsk->icsk_ca_state != TCP_CA_Open &&
2936 	    tp->fackets_out > tp->reordering) {
2937 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2938 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2939 	}
2940 
2941 	/* D. Check consistency of the current state. */
2942 	tcp_verify_left_out(tp);
2943 
2944 	/* E. Check state exit conditions. State can be terminated
2945 	 *    when high_seq is ACKed. */
2946 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2947 		WARN_ON(tp->retrans_out != 0);
2948 		tp->retrans_stamp = 0;
2949 	} else if (!before(tp->snd_una, tp->high_seq)) {
2950 		switch (icsk->icsk_ca_state) {
2951 		case TCP_CA_Loss:
2952 			icsk->icsk_retransmits = 0;
2953 			if (tcp_try_undo_recovery(sk))
2954 				return;
2955 			break;
2956 
2957 		case TCP_CA_CWR:
2958 			/* CWR is to be held something *above* high_seq
2959 			 * is ACKed for CWR bit to reach receiver. */
2960 			if (tp->snd_una != tp->high_seq) {
2961 				tcp_complete_cwr(sk);
2962 				tcp_set_ca_state(sk, TCP_CA_Open);
2963 			}
2964 			break;
2965 
2966 		case TCP_CA_Disorder:
2967 			tcp_try_undo_dsack(sk);
2968 			if (!tp->undo_marker ||
2969 			    /* For SACK case do not Open to allow to undo
2970 			     * catching for all duplicate ACKs. */
2971 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2972 				tp->undo_marker = 0;
2973 				tcp_set_ca_state(sk, TCP_CA_Open);
2974 			}
2975 			break;
2976 
2977 		case TCP_CA_Recovery:
2978 			if (tcp_is_reno(tp))
2979 				tcp_reset_reno_sack(tp);
2980 			if (tcp_try_undo_recovery(sk))
2981 				return;
2982 			tcp_complete_cwr(sk);
2983 			break;
2984 		}
2985 	}
2986 
2987 	/* F. Process state. */
2988 	switch (icsk->icsk_ca_state) {
2989 	case TCP_CA_Recovery:
2990 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2991 			if (tcp_is_reno(tp) && is_dupack)
2992 				tcp_add_reno_sack(sk);
2993 		} else
2994 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2995 		break;
2996 	case TCP_CA_Loss:
2997 		if (flag & FLAG_DATA_ACKED)
2998 			icsk->icsk_retransmits = 0;
2999 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3000 			tcp_reset_reno_sack(tp);
3001 		if (!tcp_try_undo_loss(sk)) {
3002 			tcp_moderate_cwnd(tp);
3003 			tcp_xmit_retransmit_queue(sk);
3004 			return;
3005 		}
3006 		if (icsk->icsk_ca_state != TCP_CA_Open)
3007 			return;
3008 		/* Loss is undone; fall through to processing in Open state. */
3009 	default:
3010 		if (tcp_is_reno(tp)) {
3011 			if (flag & FLAG_SND_UNA_ADVANCED)
3012 				tcp_reset_reno_sack(tp);
3013 			if (is_dupack)
3014 				tcp_add_reno_sack(sk);
3015 		}
3016 
3017 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3018 			tcp_try_undo_dsack(sk);
3019 
3020 		if (!tcp_time_to_recover(sk)) {
3021 			tcp_try_to_open(sk, flag);
3022 			return;
3023 		}
3024 
3025 		/* MTU probe failure: don't reduce cwnd */
3026 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3027 		    icsk->icsk_mtup.probe_size &&
3028 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3029 			tcp_mtup_probe_failed(sk);
3030 			/* Restores the reduction we did in tcp_mtup_probe() */
3031 			tp->snd_cwnd++;
3032 			tcp_simple_retransmit(sk);
3033 			return;
3034 		}
3035 
3036 		/* Otherwise enter Recovery state */
3037 
3038 		if (tcp_is_reno(tp))
3039 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3040 		else
3041 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3042 
3043 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3044 
3045 		tp->high_seq = tp->snd_nxt;
3046 		tp->prior_ssthresh = 0;
3047 		tp->undo_marker = tp->snd_una;
3048 		tp->undo_retrans = tp->retrans_out;
3049 
3050 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3051 			if (!(flag & FLAG_ECE))
3052 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3053 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3054 			TCP_ECN_queue_cwr(tp);
3055 		}
3056 
3057 		tp->bytes_acked = 0;
3058 		tp->snd_cwnd_cnt = 0;
3059 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3060 		fast_rexmit = 1;
3061 	}
3062 
3063 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3064 		tcp_update_scoreboard(sk, fast_rexmit);
3065 	tcp_cwnd_down(sk, flag);
3066 	tcp_xmit_retransmit_queue(sk);
3067 }
3068 
3069 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3070 {
3071 	tcp_rtt_estimator(sk, seq_rtt);
3072 	tcp_set_rto(sk);
3073 	inet_csk(sk)->icsk_backoff = 0;
3074 }
3075 
3076 /* Read draft-ietf-tcplw-high-performance before mucking
3077  * with this code. (Supersedes RFC1323)
3078  */
3079 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3080 {
3081 	/* RTTM Rule: A TSecr value received in a segment is used to
3082 	 * update the averaged RTT measurement only if the segment
3083 	 * acknowledges some new data, i.e., only if it advances the
3084 	 * left edge of the send window.
3085 	 *
3086 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3087 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3088 	 *
3089 	 * Changed: reset backoff as soon as we see the first valid sample.
3090 	 * If we do not, we get strongly overestimated rto. With timestamps
3091 	 * samples are accepted even from very old segments: f.e., when rtt=1
3092 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3093 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3094 	 * in window is lost... Voila.	 			--ANK (010210)
3095 	 */
3096 	struct tcp_sock *tp = tcp_sk(sk);
3097 
3098 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3099 }
3100 
3101 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3102 {
3103 	/* We don't have a timestamp. Can only use
3104 	 * packets that are not retransmitted to determine
3105 	 * rtt estimates. Also, we must not reset the
3106 	 * backoff for rto until we get a non-retransmitted
3107 	 * packet. This allows us to deal with a situation
3108 	 * where the network delay has increased suddenly.
3109 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3110 	 */
3111 
3112 	if (flag & FLAG_RETRANS_DATA_ACKED)
3113 		return;
3114 
3115 	tcp_valid_rtt_meas(sk, seq_rtt);
3116 }
3117 
3118 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3119 				      const s32 seq_rtt)
3120 {
3121 	const struct tcp_sock *tp = tcp_sk(sk);
3122 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3123 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3124 		tcp_ack_saw_tstamp(sk, flag);
3125 	else if (seq_rtt >= 0)
3126 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3127 }
3128 
3129 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3130 {
3131 	const struct inet_connection_sock *icsk = inet_csk(sk);
3132 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3133 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3134 }
3135 
3136 /* Restart timer after forward progress on connection.
3137  * RFC2988 recommends to restart timer to now+rto.
3138  */
3139 static void tcp_rearm_rto(struct sock *sk)
3140 {
3141 	struct tcp_sock *tp = tcp_sk(sk);
3142 
3143 	if (!tp->packets_out) {
3144 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3145 	} else {
3146 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3147 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3148 	}
3149 }
3150 
3151 /* If we get here, the whole TSO packet has not been acked. */
3152 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3153 {
3154 	struct tcp_sock *tp = tcp_sk(sk);
3155 	u32 packets_acked;
3156 
3157 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3158 
3159 	packets_acked = tcp_skb_pcount(skb);
3160 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3161 		return 0;
3162 	packets_acked -= tcp_skb_pcount(skb);
3163 
3164 	if (packets_acked) {
3165 		BUG_ON(tcp_skb_pcount(skb) == 0);
3166 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3167 	}
3168 
3169 	return packets_acked;
3170 }
3171 
3172 /* Remove acknowledged frames from the retransmission queue. If our packet
3173  * is before the ack sequence we can discard it as it's confirmed to have
3174  * arrived at the other end.
3175  */
3176 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3177 			       u32 prior_snd_una)
3178 {
3179 	struct tcp_sock *tp = tcp_sk(sk);
3180 	const struct inet_connection_sock *icsk = inet_csk(sk);
3181 	struct sk_buff *skb;
3182 	u32 now = tcp_time_stamp;
3183 	int fully_acked = 1;
3184 	int flag = 0;
3185 	u32 pkts_acked = 0;
3186 	u32 reord = tp->packets_out;
3187 	u32 prior_sacked = tp->sacked_out;
3188 	s32 seq_rtt = -1;
3189 	s32 ca_seq_rtt = -1;
3190 	ktime_t last_ackt = net_invalid_timestamp();
3191 
3192 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3193 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3194 		u32 acked_pcount;
3195 		u8 sacked = scb->sacked;
3196 
3197 		/* Determine how many packets and what bytes were acked, tso and else */
3198 		if (after(scb->end_seq, tp->snd_una)) {
3199 			if (tcp_skb_pcount(skb) == 1 ||
3200 			    !after(tp->snd_una, scb->seq))
3201 				break;
3202 
3203 			acked_pcount = tcp_tso_acked(sk, skb);
3204 			if (!acked_pcount)
3205 				break;
3206 
3207 			fully_acked = 0;
3208 		} else {
3209 			acked_pcount = tcp_skb_pcount(skb);
3210 		}
3211 
3212 		if (sacked & TCPCB_RETRANS) {
3213 			if (sacked & TCPCB_SACKED_RETRANS)
3214 				tp->retrans_out -= acked_pcount;
3215 			flag |= FLAG_RETRANS_DATA_ACKED;
3216 			ca_seq_rtt = -1;
3217 			seq_rtt = -1;
3218 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3219 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3220 		} else {
3221 			ca_seq_rtt = now - scb->when;
3222 			last_ackt = skb->tstamp;
3223 			if (seq_rtt < 0) {
3224 				seq_rtt = ca_seq_rtt;
3225 			}
3226 			if (!(sacked & TCPCB_SACKED_ACKED))
3227 				reord = min(pkts_acked, reord);
3228 		}
3229 
3230 		if (sacked & TCPCB_SACKED_ACKED)
3231 			tp->sacked_out -= acked_pcount;
3232 		if (sacked & TCPCB_LOST)
3233 			tp->lost_out -= acked_pcount;
3234 
3235 		tp->packets_out -= acked_pcount;
3236 		pkts_acked += acked_pcount;
3237 
3238 		/* Initial outgoing SYN's get put onto the write_queue
3239 		 * just like anything else we transmit.  It is not
3240 		 * true data, and if we misinform our callers that
3241 		 * this ACK acks real data, we will erroneously exit
3242 		 * connection startup slow start one packet too
3243 		 * quickly.  This is severely frowned upon behavior.
3244 		 */
3245 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3246 			flag |= FLAG_DATA_ACKED;
3247 		} else {
3248 			flag |= FLAG_SYN_ACKED;
3249 			tp->retrans_stamp = 0;
3250 		}
3251 
3252 		if (!fully_acked)
3253 			break;
3254 
3255 		tcp_unlink_write_queue(skb, sk);
3256 		sk_wmem_free_skb(sk, skb);
3257 		tp->scoreboard_skb_hint = NULL;
3258 		if (skb == tp->retransmit_skb_hint)
3259 			tp->retransmit_skb_hint = NULL;
3260 		if (skb == tp->lost_skb_hint)
3261 			tp->lost_skb_hint = NULL;
3262 	}
3263 
3264 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3265 		tp->snd_up = tp->snd_una;
3266 
3267 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3268 		flag |= FLAG_SACK_RENEGING;
3269 
3270 	if (flag & FLAG_ACKED) {
3271 		const struct tcp_congestion_ops *ca_ops
3272 			= inet_csk(sk)->icsk_ca_ops;
3273 
3274 		if (unlikely(icsk->icsk_mtup.probe_size &&
3275 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3276 			tcp_mtup_probe_success(sk);
3277 		}
3278 
3279 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3280 		tcp_rearm_rto(sk);
3281 
3282 		if (tcp_is_reno(tp)) {
3283 			tcp_remove_reno_sacks(sk, pkts_acked);
3284 		} else {
3285 			int delta;
3286 
3287 			/* Non-retransmitted hole got filled? That's reordering */
3288 			if (reord < prior_fackets)
3289 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3290 
3291 			delta = tcp_is_fack(tp) ? pkts_acked :
3292 						  prior_sacked - tp->sacked_out;
3293 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3294 		}
3295 
3296 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3297 
3298 		if (ca_ops->pkts_acked) {
3299 			s32 rtt_us = -1;
3300 
3301 			/* Is the ACK triggering packet unambiguous? */
3302 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3303 				/* High resolution needed and available? */
3304 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3305 				    !ktime_equal(last_ackt,
3306 						 net_invalid_timestamp()))
3307 					rtt_us = ktime_us_delta(ktime_get_real(),
3308 								last_ackt);
3309 				else if (ca_seq_rtt > 0)
3310 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3311 			}
3312 
3313 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3314 		}
3315 	}
3316 
3317 #if FASTRETRANS_DEBUG > 0
3318 	WARN_ON((int)tp->sacked_out < 0);
3319 	WARN_ON((int)tp->lost_out < 0);
3320 	WARN_ON((int)tp->retrans_out < 0);
3321 	if (!tp->packets_out && tcp_is_sack(tp)) {
3322 		icsk = inet_csk(sk);
3323 		if (tp->lost_out) {
3324 			printk(KERN_DEBUG "Leak l=%u %d\n",
3325 			       tp->lost_out, icsk->icsk_ca_state);
3326 			tp->lost_out = 0;
3327 		}
3328 		if (tp->sacked_out) {
3329 			printk(KERN_DEBUG "Leak s=%u %d\n",
3330 			       tp->sacked_out, icsk->icsk_ca_state);
3331 			tp->sacked_out = 0;
3332 		}
3333 		if (tp->retrans_out) {
3334 			printk(KERN_DEBUG "Leak r=%u %d\n",
3335 			       tp->retrans_out, icsk->icsk_ca_state);
3336 			tp->retrans_out = 0;
3337 		}
3338 	}
3339 #endif
3340 	return flag;
3341 }
3342 
3343 static void tcp_ack_probe(struct sock *sk)
3344 {
3345 	const struct tcp_sock *tp = tcp_sk(sk);
3346 	struct inet_connection_sock *icsk = inet_csk(sk);
3347 
3348 	/* Was it a usable window open? */
3349 
3350 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3351 		icsk->icsk_backoff = 0;
3352 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3353 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3354 		 * This function is not for random using!
3355 		 */
3356 	} else {
3357 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3358 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3359 					  TCP_RTO_MAX);
3360 	}
3361 }
3362 
3363 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3364 {
3365 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3366 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3367 }
3368 
3369 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3370 {
3371 	const struct tcp_sock *tp = tcp_sk(sk);
3372 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3373 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3374 }
3375 
3376 /* Check that window update is acceptable.
3377  * The function assumes that snd_una<=ack<=snd_next.
3378  */
3379 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3380 					const u32 ack, const u32 ack_seq,
3381 					const u32 nwin)
3382 {
3383 	return (after(ack, tp->snd_una) ||
3384 		after(ack_seq, tp->snd_wl1) ||
3385 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3386 }
3387 
3388 /* Update our send window.
3389  *
3390  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3391  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3392  */
3393 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3394 				 u32 ack_seq)
3395 {
3396 	struct tcp_sock *tp = tcp_sk(sk);
3397 	int flag = 0;
3398 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3399 
3400 	if (likely(!tcp_hdr(skb)->syn))
3401 		nwin <<= tp->rx_opt.snd_wscale;
3402 
3403 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3404 		flag |= FLAG_WIN_UPDATE;
3405 		tcp_update_wl(tp, ack_seq);
3406 
3407 		if (tp->snd_wnd != nwin) {
3408 			tp->snd_wnd = nwin;
3409 
3410 			/* Note, it is the only place, where
3411 			 * fast path is recovered for sending TCP.
3412 			 */
3413 			tp->pred_flags = 0;
3414 			tcp_fast_path_check(sk);
3415 
3416 			if (nwin > tp->max_window) {
3417 				tp->max_window = nwin;
3418 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3419 			}
3420 		}
3421 	}
3422 
3423 	tp->snd_una = ack;
3424 
3425 	return flag;
3426 }
3427 
3428 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3429  * continue in congestion avoidance.
3430  */
3431 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3432 {
3433 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3434 	tp->snd_cwnd_cnt = 0;
3435 	tp->bytes_acked = 0;
3436 	TCP_ECN_queue_cwr(tp);
3437 	tcp_moderate_cwnd(tp);
3438 }
3439 
3440 /* A conservative spurious RTO response algorithm: reduce cwnd using
3441  * rate halving and continue in congestion avoidance.
3442  */
3443 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3444 {
3445 	tcp_enter_cwr(sk, 0);
3446 }
3447 
3448 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3449 {
3450 	if (flag & FLAG_ECE)
3451 		tcp_ratehalving_spur_to_response(sk);
3452 	else
3453 		tcp_undo_cwr(sk, 1);
3454 }
3455 
3456 /* F-RTO spurious RTO detection algorithm (RFC4138)
3457  *
3458  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3459  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3460  * window (but not to or beyond highest sequence sent before RTO):
3461  *   On First ACK,  send two new segments out.
3462  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3463  *                  algorithm is not part of the F-RTO detection algorithm
3464  *                  given in RFC4138 but can be selected separately).
3465  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3466  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3467  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3468  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3469  *
3470  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3471  * original window even after we transmit two new data segments.
3472  *
3473  * SACK version:
3474  *   on first step, wait until first cumulative ACK arrives, then move to
3475  *   the second step. In second step, the next ACK decides.
3476  *
3477  * F-RTO is implemented (mainly) in four functions:
3478  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3479  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3480  *     called when tcp_use_frto() showed green light
3481  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3482  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3483  *     to prove that the RTO is indeed spurious. It transfers the control
3484  *     from F-RTO to the conventional RTO recovery
3485  */
3486 static int tcp_process_frto(struct sock *sk, int flag)
3487 {
3488 	struct tcp_sock *tp = tcp_sk(sk);
3489 
3490 	tcp_verify_left_out(tp);
3491 
3492 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3493 	if (flag & FLAG_DATA_ACKED)
3494 		inet_csk(sk)->icsk_retransmits = 0;
3495 
3496 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3497 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3498 		tp->undo_marker = 0;
3499 
3500 	if (!before(tp->snd_una, tp->frto_highmark)) {
3501 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3502 		return 1;
3503 	}
3504 
3505 	if (!tcp_is_sackfrto(tp)) {
3506 		/* RFC4138 shortcoming in step 2; should also have case c):
3507 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3508 		 * data, winupdate
3509 		 */
3510 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3511 			return 1;
3512 
3513 		if (!(flag & FLAG_DATA_ACKED)) {
3514 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3515 					    flag);
3516 			return 1;
3517 		}
3518 	} else {
3519 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3520 			/* Prevent sending of new data. */
3521 			tp->snd_cwnd = min(tp->snd_cwnd,
3522 					   tcp_packets_in_flight(tp));
3523 			return 1;
3524 		}
3525 
3526 		if ((tp->frto_counter >= 2) &&
3527 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3528 		     ((flag & FLAG_DATA_SACKED) &&
3529 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3530 			/* RFC4138 shortcoming (see comment above) */
3531 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3532 			    (flag & FLAG_NOT_DUP))
3533 				return 1;
3534 
3535 			tcp_enter_frto_loss(sk, 3, flag);
3536 			return 1;
3537 		}
3538 	}
3539 
3540 	if (tp->frto_counter == 1) {
3541 		/* tcp_may_send_now needs to see updated state */
3542 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3543 		tp->frto_counter = 2;
3544 
3545 		if (!tcp_may_send_now(sk))
3546 			tcp_enter_frto_loss(sk, 2, flag);
3547 
3548 		return 1;
3549 	} else {
3550 		switch (sysctl_tcp_frto_response) {
3551 		case 2:
3552 			tcp_undo_spur_to_response(sk, flag);
3553 			break;
3554 		case 1:
3555 			tcp_conservative_spur_to_response(tp);
3556 			break;
3557 		default:
3558 			tcp_ratehalving_spur_to_response(sk);
3559 			break;
3560 		}
3561 		tp->frto_counter = 0;
3562 		tp->undo_marker = 0;
3563 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3564 	}
3565 	return 0;
3566 }
3567 
3568 /* This routine deals with incoming acks, but not outgoing ones. */
3569 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3570 {
3571 	struct inet_connection_sock *icsk = inet_csk(sk);
3572 	struct tcp_sock *tp = tcp_sk(sk);
3573 	u32 prior_snd_una = tp->snd_una;
3574 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3575 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3576 	u32 prior_in_flight;
3577 	u32 prior_fackets;
3578 	int prior_packets;
3579 	int frto_cwnd = 0;
3580 
3581 	/* If the ack is older than previous acks
3582 	 * then we can probably ignore it.
3583 	 */
3584 	if (before(ack, prior_snd_una))
3585 		goto old_ack;
3586 
3587 	/* If the ack includes data we haven't sent yet, discard
3588 	 * this segment (RFC793 Section 3.9).
3589 	 */
3590 	if (after(ack, tp->snd_nxt))
3591 		goto invalid_ack;
3592 
3593 	if (after(ack, prior_snd_una))
3594 		flag |= FLAG_SND_UNA_ADVANCED;
3595 
3596 	if (sysctl_tcp_abc) {
3597 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3598 			tp->bytes_acked += ack - prior_snd_una;
3599 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3600 			/* we assume just one segment left network */
3601 			tp->bytes_acked += min(ack - prior_snd_una,
3602 					       tp->mss_cache);
3603 	}
3604 
3605 	prior_fackets = tp->fackets_out;
3606 	prior_in_flight = tcp_packets_in_flight(tp);
3607 
3608 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3609 		/* Window is constant, pure forward advance.
3610 		 * No more checks are required.
3611 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3612 		 */
3613 		tcp_update_wl(tp, ack_seq);
3614 		tp->snd_una = ack;
3615 		flag |= FLAG_WIN_UPDATE;
3616 
3617 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3618 
3619 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3620 	} else {
3621 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3622 			flag |= FLAG_DATA;
3623 		else
3624 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3625 
3626 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3627 
3628 		if (TCP_SKB_CB(skb)->sacked)
3629 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3630 
3631 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3632 			flag |= FLAG_ECE;
3633 
3634 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3635 	}
3636 
3637 	/* We passed data and got it acked, remove any soft error
3638 	 * log. Something worked...
3639 	 */
3640 	sk->sk_err_soft = 0;
3641 	icsk->icsk_probes_out = 0;
3642 	tp->rcv_tstamp = tcp_time_stamp;
3643 	prior_packets = tp->packets_out;
3644 	if (!prior_packets)
3645 		goto no_queue;
3646 
3647 	/* See if we can take anything off of the retransmit queue. */
3648 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3649 
3650 	if (tp->frto_counter)
3651 		frto_cwnd = tcp_process_frto(sk, flag);
3652 	/* Guarantee sacktag reordering detection against wrap-arounds */
3653 	if (before(tp->frto_highmark, tp->snd_una))
3654 		tp->frto_highmark = 0;
3655 
3656 	if (tcp_ack_is_dubious(sk, flag)) {
3657 		/* Advance CWND, if state allows this. */
3658 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3659 		    tcp_may_raise_cwnd(sk, flag))
3660 			tcp_cong_avoid(sk, ack, prior_in_flight);
3661 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3662 				      flag);
3663 	} else {
3664 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3665 			tcp_cong_avoid(sk, ack, prior_in_flight);
3666 	}
3667 
3668 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3669 		dst_confirm(sk->sk_dst_cache);
3670 
3671 	return 1;
3672 
3673 no_queue:
3674 	/* If this ack opens up a zero window, clear backoff.  It was
3675 	 * being used to time the probes, and is probably far higher than
3676 	 * it needs to be for normal retransmission.
3677 	 */
3678 	if (tcp_send_head(sk))
3679 		tcp_ack_probe(sk);
3680 	return 1;
3681 
3682 invalid_ack:
3683 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3684 	return -1;
3685 
3686 old_ack:
3687 	if (TCP_SKB_CB(skb)->sacked) {
3688 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3689 		if (icsk->icsk_ca_state == TCP_CA_Open)
3690 			tcp_try_keep_open(sk);
3691 	}
3692 
3693 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3694 	return 0;
3695 }
3696 
3697 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3698  * But, this can also be called on packets in the established flow when
3699  * the fast version below fails.
3700  */
3701 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3702 		       int estab)
3703 {
3704 	unsigned char *ptr;
3705 	struct tcphdr *th = tcp_hdr(skb);
3706 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3707 
3708 	ptr = (unsigned char *)(th + 1);
3709 	opt_rx->saw_tstamp = 0;
3710 
3711 	while (length > 0) {
3712 		int opcode = *ptr++;
3713 		int opsize;
3714 
3715 		switch (opcode) {
3716 		case TCPOPT_EOL:
3717 			return;
3718 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3719 			length--;
3720 			continue;
3721 		default:
3722 			opsize = *ptr++;
3723 			if (opsize < 2) /* "silly options" */
3724 				return;
3725 			if (opsize > length)
3726 				return;	/* don't parse partial options */
3727 			switch (opcode) {
3728 			case TCPOPT_MSS:
3729 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3730 					u16 in_mss = get_unaligned_be16(ptr);
3731 					if (in_mss) {
3732 						if (opt_rx->user_mss &&
3733 						    opt_rx->user_mss < in_mss)
3734 							in_mss = opt_rx->user_mss;
3735 						opt_rx->mss_clamp = in_mss;
3736 					}
3737 				}
3738 				break;
3739 			case TCPOPT_WINDOW:
3740 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3741 				    !estab && sysctl_tcp_window_scaling) {
3742 					__u8 snd_wscale = *(__u8 *)ptr;
3743 					opt_rx->wscale_ok = 1;
3744 					if (snd_wscale > 14) {
3745 						if (net_ratelimit())
3746 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3747 							       "scaling value %d >14 received.\n",
3748 							       snd_wscale);
3749 						snd_wscale = 14;
3750 					}
3751 					opt_rx->snd_wscale = snd_wscale;
3752 				}
3753 				break;
3754 			case TCPOPT_TIMESTAMP:
3755 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3756 				    ((estab && opt_rx->tstamp_ok) ||
3757 				     (!estab && sysctl_tcp_timestamps))) {
3758 					opt_rx->saw_tstamp = 1;
3759 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3760 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3761 				}
3762 				break;
3763 			case TCPOPT_SACK_PERM:
3764 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3765 				    !estab && sysctl_tcp_sack) {
3766 					opt_rx->sack_ok = 1;
3767 					tcp_sack_reset(opt_rx);
3768 				}
3769 				break;
3770 
3771 			case TCPOPT_SACK:
3772 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3773 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3774 				   opt_rx->sack_ok) {
3775 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3776 				}
3777 				break;
3778 #ifdef CONFIG_TCP_MD5SIG
3779 			case TCPOPT_MD5SIG:
3780 				/*
3781 				 * The MD5 Hash has already been
3782 				 * checked (see tcp_v{4,6}_do_rcv()).
3783 				 */
3784 				break;
3785 #endif
3786 			}
3787 
3788 			ptr += opsize-2;
3789 			length -= opsize;
3790 		}
3791 	}
3792 }
3793 
3794 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3795 {
3796 	__be32 *ptr = (__be32 *)(th + 1);
3797 
3798 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3799 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3800 		tp->rx_opt.saw_tstamp = 1;
3801 		++ptr;
3802 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3803 		++ptr;
3804 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3805 		return 1;
3806 	}
3807 	return 0;
3808 }
3809 
3810 /* Fast parse options. This hopes to only see timestamps.
3811  * If it is wrong it falls back on tcp_parse_options().
3812  */
3813 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3814 				  struct tcp_sock *tp)
3815 {
3816 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3817 		tp->rx_opt.saw_tstamp = 0;
3818 		return 0;
3819 	} else if (tp->rx_opt.tstamp_ok &&
3820 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3821 		if (tcp_parse_aligned_timestamp(tp, th))
3822 			return 1;
3823 	}
3824 	tcp_parse_options(skb, &tp->rx_opt, 1);
3825 	return 1;
3826 }
3827 
3828 #ifdef CONFIG_TCP_MD5SIG
3829 /*
3830  * Parse MD5 Signature option
3831  */
3832 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3833 {
3834 	int length = (th->doff << 2) - sizeof (*th);
3835 	u8 *ptr = (u8*)(th + 1);
3836 
3837 	/* If the TCP option is too short, we can short cut */
3838 	if (length < TCPOLEN_MD5SIG)
3839 		return NULL;
3840 
3841 	while (length > 0) {
3842 		int opcode = *ptr++;
3843 		int opsize;
3844 
3845 		switch(opcode) {
3846 		case TCPOPT_EOL:
3847 			return NULL;
3848 		case TCPOPT_NOP:
3849 			length--;
3850 			continue;
3851 		default:
3852 			opsize = *ptr++;
3853 			if (opsize < 2 || opsize > length)
3854 				return NULL;
3855 			if (opcode == TCPOPT_MD5SIG)
3856 				return ptr;
3857 		}
3858 		ptr += opsize - 2;
3859 		length -= opsize;
3860 	}
3861 	return NULL;
3862 }
3863 #endif
3864 
3865 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3866 {
3867 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3868 	tp->rx_opt.ts_recent_stamp = get_seconds();
3869 }
3870 
3871 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3872 {
3873 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3874 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3875 		 * extra check below makes sure this can only happen
3876 		 * for pure ACK frames.  -DaveM
3877 		 *
3878 		 * Not only, also it occurs for expired timestamps.
3879 		 */
3880 
3881 		if (tcp_paws_check(&tp->rx_opt, 0))
3882 			tcp_store_ts_recent(tp);
3883 	}
3884 }
3885 
3886 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3887  *
3888  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3889  * it can pass through stack. So, the following predicate verifies that
3890  * this segment is not used for anything but congestion avoidance or
3891  * fast retransmit. Moreover, we even are able to eliminate most of such
3892  * second order effects, if we apply some small "replay" window (~RTO)
3893  * to timestamp space.
3894  *
3895  * All these measures still do not guarantee that we reject wrapped ACKs
3896  * on networks with high bandwidth, when sequence space is recycled fastly,
3897  * but it guarantees that such events will be very rare and do not affect
3898  * connection seriously. This doesn't look nice, but alas, PAWS is really
3899  * buggy extension.
3900  *
3901  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3902  * states that events when retransmit arrives after original data are rare.
3903  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3904  * the biggest problem on large power networks even with minor reordering.
3905  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3906  * up to bandwidth of 18Gigabit/sec. 8) ]
3907  */
3908 
3909 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3910 {
3911 	struct tcp_sock *tp = tcp_sk(sk);
3912 	struct tcphdr *th = tcp_hdr(skb);
3913 	u32 seq = TCP_SKB_CB(skb)->seq;
3914 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3915 
3916 	return (/* 1. Pure ACK with correct sequence number. */
3917 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3918 
3919 		/* 2. ... and duplicate ACK. */
3920 		ack == tp->snd_una &&
3921 
3922 		/* 3. ... and does not update window. */
3923 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3924 
3925 		/* 4. ... and sits in replay window. */
3926 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3927 }
3928 
3929 static inline int tcp_paws_discard(const struct sock *sk,
3930 				   const struct sk_buff *skb)
3931 {
3932 	const struct tcp_sock *tp = tcp_sk(sk);
3933 
3934 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3935 	       !tcp_disordered_ack(sk, skb);
3936 }
3937 
3938 /* Check segment sequence number for validity.
3939  *
3940  * Segment controls are considered valid, if the segment
3941  * fits to the window after truncation to the window. Acceptability
3942  * of data (and SYN, FIN, of course) is checked separately.
3943  * See tcp_data_queue(), for example.
3944  *
3945  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3946  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3947  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3948  * (borrowed from freebsd)
3949  */
3950 
3951 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3952 {
3953 	return	!before(end_seq, tp->rcv_wup) &&
3954 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3955 }
3956 
3957 /* When we get a reset we do this. */
3958 static void tcp_reset(struct sock *sk)
3959 {
3960 	/* We want the right error as BSD sees it (and indeed as we do). */
3961 	switch (sk->sk_state) {
3962 	case TCP_SYN_SENT:
3963 		sk->sk_err = ECONNREFUSED;
3964 		break;
3965 	case TCP_CLOSE_WAIT:
3966 		sk->sk_err = EPIPE;
3967 		break;
3968 	case TCP_CLOSE:
3969 		return;
3970 	default:
3971 		sk->sk_err = ECONNRESET;
3972 	}
3973 
3974 	if (!sock_flag(sk, SOCK_DEAD))
3975 		sk->sk_error_report(sk);
3976 
3977 	tcp_done(sk);
3978 }
3979 
3980 /*
3981  * 	Process the FIN bit. This now behaves as it is supposed to work
3982  *	and the FIN takes effect when it is validly part of sequence
3983  *	space. Not before when we get holes.
3984  *
3985  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3986  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3987  *	TIME-WAIT)
3988  *
3989  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3990  *	close and we go into CLOSING (and later onto TIME-WAIT)
3991  *
3992  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3993  */
3994 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3995 {
3996 	struct tcp_sock *tp = tcp_sk(sk);
3997 
3998 	inet_csk_schedule_ack(sk);
3999 
4000 	sk->sk_shutdown |= RCV_SHUTDOWN;
4001 	sock_set_flag(sk, SOCK_DONE);
4002 
4003 	switch (sk->sk_state) {
4004 	case TCP_SYN_RECV:
4005 	case TCP_ESTABLISHED:
4006 		/* Move to CLOSE_WAIT */
4007 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4008 		inet_csk(sk)->icsk_ack.pingpong = 1;
4009 		break;
4010 
4011 	case TCP_CLOSE_WAIT:
4012 	case TCP_CLOSING:
4013 		/* Received a retransmission of the FIN, do
4014 		 * nothing.
4015 		 */
4016 		break;
4017 	case TCP_LAST_ACK:
4018 		/* RFC793: Remain in the LAST-ACK state. */
4019 		break;
4020 
4021 	case TCP_FIN_WAIT1:
4022 		/* This case occurs when a simultaneous close
4023 		 * happens, we must ack the received FIN and
4024 		 * enter the CLOSING state.
4025 		 */
4026 		tcp_send_ack(sk);
4027 		tcp_set_state(sk, TCP_CLOSING);
4028 		break;
4029 	case TCP_FIN_WAIT2:
4030 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4031 		tcp_send_ack(sk);
4032 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4033 		break;
4034 	default:
4035 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4036 		 * cases we should never reach this piece of code.
4037 		 */
4038 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4039 		       __func__, sk->sk_state);
4040 		break;
4041 	}
4042 
4043 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4044 	 * Probably, we should reset in this case. For now drop them.
4045 	 */
4046 	__skb_queue_purge(&tp->out_of_order_queue);
4047 	if (tcp_is_sack(tp))
4048 		tcp_sack_reset(&tp->rx_opt);
4049 	sk_mem_reclaim(sk);
4050 
4051 	if (!sock_flag(sk, SOCK_DEAD)) {
4052 		sk->sk_state_change(sk);
4053 
4054 		/* Do not send POLL_HUP for half duplex close. */
4055 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4056 		    sk->sk_state == TCP_CLOSE)
4057 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4058 		else
4059 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4060 	}
4061 }
4062 
4063 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4064 				  u32 end_seq)
4065 {
4066 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4067 		if (before(seq, sp->start_seq))
4068 			sp->start_seq = seq;
4069 		if (after(end_seq, sp->end_seq))
4070 			sp->end_seq = end_seq;
4071 		return 1;
4072 	}
4073 	return 0;
4074 }
4075 
4076 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4077 {
4078 	struct tcp_sock *tp = tcp_sk(sk);
4079 
4080 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4081 		int mib_idx;
4082 
4083 		if (before(seq, tp->rcv_nxt))
4084 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4085 		else
4086 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4087 
4088 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4089 
4090 		tp->rx_opt.dsack = 1;
4091 		tp->duplicate_sack[0].start_seq = seq;
4092 		tp->duplicate_sack[0].end_seq = end_seq;
4093 	}
4094 }
4095 
4096 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4097 {
4098 	struct tcp_sock *tp = tcp_sk(sk);
4099 
4100 	if (!tp->rx_opt.dsack)
4101 		tcp_dsack_set(sk, seq, end_seq);
4102 	else
4103 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4104 }
4105 
4106 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4107 {
4108 	struct tcp_sock *tp = tcp_sk(sk);
4109 
4110 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4111 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4112 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4113 		tcp_enter_quickack_mode(sk);
4114 
4115 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4116 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4117 
4118 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4119 				end_seq = tp->rcv_nxt;
4120 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4121 		}
4122 	}
4123 
4124 	tcp_send_ack(sk);
4125 }
4126 
4127 /* These routines update the SACK block as out-of-order packets arrive or
4128  * in-order packets close up the sequence space.
4129  */
4130 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4131 {
4132 	int this_sack;
4133 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4134 	struct tcp_sack_block *swalk = sp + 1;
4135 
4136 	/* See if the recent change to the first SACK eats into
4137 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4138 	 */
4139 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4140 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4141 			int i;
4142 
4143 			/* Zap SWALK, by moving every further SACK up by one slot.
4144 			 * Decrease num_sacks.
4145 			 */
4146 			tp->rx_opt.num_sacks--;
4147 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4148 				sp[i] = sp[i + 1];
4149 			continue;
4150 		}
4151 		this_sack++, swalk++;
4152 	}
4153 }
4154 
4155 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4156 {
4157 	struct tcp_sock *tp = tcp_sk(sk);
4158 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4159 	int cur_sacks = tp->rx_opt.num_sacks;
4160 	int this_sack;
4161 
4162 	if (!cur_sacks)
4163 		goto new_sack;
4164 
4165 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4166 		if (tcp_sack_extend(sp, seq, end_seq)) {
4167 			/* Rotate this_sack to the first one. */
4168 			for (; this_sack > 0; this_sack--, sp--)
4169 				swap(*sp, *(sp - 1));
4170 			if (cur_sacks > 1)
4171 				tcp_sack_maybe_coalesce(tp);
4172 			return;
4173 		}
4174 	}
4175 
4176 	/* Could not find an adjacent existing SACK, build a new one,
4177 	 * put it at the front, and shift everyone else down.  We
4178 	 * always know there is at least one SACK present already here.
4179 	 *
4180 	 * If the sack array is full, forget about the last one.
4181 	 */
4182 	if (this_sack >= TCP_NUM_SACKS) {
4183 		this_sack--;
4184 		tp->rx_opt.num_sacks--;
4185 		sp--;
4186 	}
4187 	for (; this_sack > 0; this_sack--, sp--)
4188 		*sp = *(sp - 1);
4189 
4190 new_sack:
4191 	/* Build the new head SACK, and we're done. */
4192 	sp->start_seq = seq;
4193 	sp->end_seq = end_seq;
4194 	tp->rx_opt.num_sacks++;
4195 }
4196 
4197 /* RCV.NXT advances, some SACKs should be eaten. */
4198 
4199 static void tcp_sack_remove(struct tcp_sock *tp)
4200 {
4201 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4202 	int num_sacks = tp->rx_opt.num_sacks;
4203 	int this_sack;
4204 
4205 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4206 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4207 		tp->rx_opt.num_sacks = 0;
4208 		return;
4209 	}
4210 
4211 	for (this_sack = 0; this_sack < num_sacks;) {
4212 		/* Check if the start of the sack is covered by RCV.NXT. */
4213 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4214 			int i;
4215 
4216 			/* RCV.NXT must cover all the block! */
4217 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4218 
4219 			/* Zap this SACK, by moving forward any other SACKS. */
4220 			for (i=this_sack+1; i < num_sacks; i++)
4221 				tp->selective_acks[i-1] = tp->selective_acks[i];
4222 			num_sacks--;
4223 			continue;
4224 		}
4225 		this_sack++;
4226 		sp++;
4227 	}
4228 	tp->rx_opt.num_sacks = num_sacks;
4229 }
4230 
4231 /* This one checks to see if we can put data from the
4232  * out_of_order queue into the receive_queue.
4233  */
4234 static void tcp_ofo_queue(struct sock *sk)
4235 {
4236 	struct tcp_sock *tp = tcp_sk(sk);
4237 	__u32 dsack_high = tp->rcv_nxt;
4238 	struct sk_buff *skb;
4239 
4240 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4241 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4242 			break;
4243 
4244 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4245 			__u32 dsack = dsack_high;
4246 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4247 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4248 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4249 		}
4250 
4251 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4252 			SOCK_DEBUG(sk, "ofo packet was already received \n");
4253 			__skb_unlink(skb, &tp->out_of_order_queue);
4254 			__kfree_skb(skb);
4255 			continue;
4256 		}
4257 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4258 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4259 			   TCP_SKB_CB(skb)->end_seq);
4260 
4261 		__skb_unlink(skb, &tp->out_of_order_queue);
4262 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4263 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4264 		if (tcp_hdr(skb)->fin)
4265 			tcp_fin(skb, sk, tcp_hdr(skb));
4266 	}
4267 }
4268 
4269 static int tcp_prune_ofo_queue(struct sock *sk);
4270 static int tcp_prune_queue(struct sock *sk);
4271 
4272 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4273 {
4274 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4275 	    !sk_rmem_schedule(sk, size)) {
4276 
4277 		if (tcp_prune_queue(sk) < 0)
4278 			return -1;
4279 
4280 		if (!sk_rmem_schedule(sk, size)) {
4281 			if (!tcp_prune_ofo_queue(sk))
4282 				return -1;
4283 
4284 			if (!sk_rmem_schedule(sk, size))
4285 				return -1;
4286 		}
4287 	}
4288 	return 0;
4289 }
4290 
4291 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4292 {
4293 	struct tcphdr *th = tcp_hdr(skb);
4294 	struct tcp_sock *tp = tcp_sk(sk);
4295 	int eaten = -1;
4296 
4297 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4298 		goto drop;
4299 
4300 	__skb_pull(skb, th->doff * 4);
4301 
4302 	TCP_ECN_accept_cwr(tp, skb);
4303 
4304 	tp->rx_opt.dsack = 0;
4305 
4306 	/*  Queue data for delivery to the user.
4307 	 *  Packets in sequence go to the receive queue.
4308 	 *  Out of sequence packets to the out_of_order_queue.
4309 	 */
4310 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4311 		if (tcp_receive_window(tp) == 0)
4312 			goto out_of_window;
4313 
4314 		/* Ok. In sequence. In window. */
4315 		if (tp->ucopy.task == current &&
4316 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4317 		    sock_owned_by_user(sk) && !tp->urg_data) {
4318 			int chunk = min_t(unsigned int, skb->len,
4319 					  tp->ucopy.len);
4320 
4321 			__set_current_state(TASK_RUNNING);
4322 
4323 			local_bh_enable();
4324 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4325 				tp->ucopy.len -= chunk;
4326 				tp->copied_seq += chunk;
4327 				eaten = (chunk == skb->len && !th->fin);
4328 				tcp_rcv_space_adjust(sk);
4329 			}
4330 			local_bh_disable();
4331 		}
4332 
4333 		if (eaten <= 0) {
4334 queue_and_out:
4335 			if (eaten < 0 &&
4336 			    tcp_try_rmem_schedule(sk, skb->truesize))
4337 				goto drop;
4338 
4339 			skb_set_owner_r(skb, sk);
4340 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4341 		}
4342 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4343 		if (skb->len)
4344 			tcp_event_data_recv(sk, skb);
4345 		if (th->fin)
4346 			tcp_fin(skb, sk, th);
4347 
4348 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4349 			tcp_ofo_queue(sk);
4350 
4351 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4352 			 * gap in queue is filled.
4353 			 */
4354 			if (skb_queue_empty(&tp->out_of_order_queue))
4355 				inet_csk(sk)->icsk_ack.pingpong = 0;
4356 		}
4357 
4358 		if (tp->rx_opt.num_sacks)
4359 			tcp_sack_remove(tp);
4360 
4361 		tcp_fast_path_check(sk);
4362 
4363 		if (eaten > 0)
4364 			__kfree_skb(skb);
4365 		else if (!sock_flag(sk, SOCK_DEAD))
4366 			sk->sk_data_ready(sk, 0);
4367 		return;
4368 	}
4369 
4370 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4371 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4372 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4373 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4374 
4375 out_of_window:
4376 		tcp_enter_quickack_mode(sk);
4377 		inet_csk_schedule_ack(sk);
4378 drop:
4379 		__kfree_skb(skb);
4380 		return;
4381 	}
4382 
4383 	/* Out of window. F.e. zero window probe. */
4384 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4385 		goto out_of_window;
4386 
4387 	tcp_enter_quickack_mode(sk);
4388 
4389 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4390 		/* Partial packet, seq < rcv_next < end_seq */
4391 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4392 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4393 			   TCP_SKB_CB(skb)->end_seq);
4394 
4395 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4396 
4397 		/* If window is closed, drop tail of packet. But after
4398 		 * remembering D-SACK for its head made in previous line.
4399 		 */
4400 		if (!tcp_receive_window(tp))
4401 			goto out_of_window;
4402 		goto queue_and_out;
4403 	}
4404 
4405 	TCP_ECN_check_ce(tp, skb);
4406 
4407 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4408 		goto drop;
4409 
4410 	/* Disable header prediction. */
4411 	tp->pred_flags = 0;
4412 	inet_csk_schedule_ack(sk);
4413 
4414 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4415 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4416 
4417 	skb_set_owner_r(skb, sk);
4418 
4419 	if (!skb_peek(&tp->out_of_order_queue)) {
4420 		/* Initial out of order segment, build 1 SACK. */
4421 		if (tcp_is_sack(tp)) {
4422 			tp->rx_opt.num_sacks = 1;
4423 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4424 			tp->selective_acks[0].end_seq =
4425 						TCP_SKB_CB(skb)->end_seq;
4426 		}
4427 		__skb_queue_head(&tp->out_of_order_queue, skb);
4428 	} else {
4429 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4430 		u32 seq = TCP_SKB_CB(skb)->seq;
4431 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4432 
4433 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4434 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4435 
4436 			if (!tp->rx_opt.num_sacks ||
4437 			    tp->selective_acks[0].end_seq != seq)
4438 				goto add_sack;
4439 
4440 			/* Common case: data arrive in order after hole. */
4441 			tp->selective_acks[0].end_seq = end_seq;
4442 			return;
4443 		}
4444 
4445 		/* Find place to insert this segment. */
4446 		do {
4447 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4448 				break;
4449 		} while ((skb1 = skb1->prev) !=
4450 			 (struct sk_buff *)&tp->out_of_order_queue);
4451 
4452 		/* Do skb overlap to previous one? */
4453 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4454 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4455 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4456 				/* All the bits are present. Drop. */
4457 				__kfree_skb(skb);
4458 				tcp_dsack_set(sk, seq, end_seq);
4459 				goto add_sack;
4460 			}
4461 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4462 				/* Partial overlap. */
4463 				tcp_dsack_set(sk, seq,
4464 					      TCP_SKB_CB(skb1)->end_seq);
4465 			} else {
4466 				skb1 = skb1->prev;
4467 			}
4468 		}
4469 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4470 
4471 		/* And clean segments covered by new one as whole. */
4472 		while ((skb1 = skb->next) !=
4473 		       (struct sk_buff *)&tp->out_of_order_queue &&
4474 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4475 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4476 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4477 						 end_seq);
4478 				break;
4479 			}
4480 			__skb_unlink(skb1, &tp->out_of_order_queue);
4481 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4482 					 TCP_SKB_CB(skb1)->end_seq);
4483 			__kfree_skb(skb1);
4484 		}
4485 
4486 add_sack:
4487 		if (tcp_is_sack(tp))
4488 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4489 	}
4490 }
4491 
4492 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4493 					struct sk_buff_head *list)
4494 {
4495 	struct sk_buff *next = skb->next;
4496 
4497 	__skb_unlink(skb, list);
4498 	__kfree_skb(skb);
4499 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4500 
4501 	return next;
4502 }
4503 
4504 /* Collapse contiguous sequence of skbs head..tail with
4505  * sequence numbers start..end.
4506  * Segments with FIN/SYN are not collapsed (only because this
4507  * simplifies code)
4508  */
4509 static void
4510 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4511 	     struct sk_buff *head, struct sk_buff *tail,
4512 	     u32 start, u32 end)
4513 {
4514 	struct sk_buff *skb;
4515 
4516 	/* First, check that queue is collapsible and find
4517 	 * the point where collapsing can be useful. */
4518 	for (skb = head; skb != tail;) {
4519 		/* No new bits? It is possible on ofo queue. */
4520 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4521 			skb = tcp_collapse_one(sk, skb, list);
4522 			continue;
4523 		}
4524 
4525 		/* The first skb to collapse is:
4526 		 * - not SYN/FIN and
4527 		 * - bloated or contains data before "start" or
4528 		 *   overlaps to the next one.
4529 		 */
4530 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4531 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4532 		     before(TCP_SKB_CB(skb)->seq, start) ||
4533 		     (skb->next != tail &&
4534 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4535 			break;
4536 
4537 		/* Decided to skip this, advance start seq. */
4538 		start = TCP_SKB_CB(skb)->end_seq;
4539 		skb = skb->next;
4540 	}
4541 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4542 		return;
4543 
4544 	while (before(start, end)) {
4545 		struct sk_buff *nskb;
4546 		unsigned int header = skb_headroom(skb);
4547 		int copy = SKB_MAX_ORDER(header, 0);
4548 
4549 		/* Too big header? This can happen with IPv6. */
4550 		if (copy < 0)
4551 			return;
4552 		if (end - start < copy)
4553 			copy = end - start;
4554 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4555 		if (!nskb)
4556 			return;
4557 
4558 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4559 		skb_set_network_header(nskb, (skb_network_header(skb) -
4560 					      skb->head));
4561 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4562 						skb->head));
4563 		skb_reserve(nskb, header);
4564 		memcpy(nskb->head, skb->head, header);
4565 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4566 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4567 		__skb_queue_before(list, skb, nskb);
4568 		skb_set_owner_r(nskb, sk);
4569 
4570 		/* Copy data, releasing collapsed skbs. */
4571 		while (copy > 0) {
4572 			int offset = start - TCP_SKB_CB(skb)->seq;
4573 			int size = TCP_SKB_CB(skb)->end_seq - start;
4574 
4575 			BUG_ON(offset < 0);
4576 			if (size > 0) {
4577 				size = min(copy, size);
4578 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4579 					BUG();
4580 				TCP_SKB_CB(nskb)->end_seq += size;
4581 				copy -= size;
4582 				start += size;
4583 			}
4584 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4585 				skb = tcp_collapse_one(sk, skb, list);
4586 				if (skb == tail ||
4587 				    tcp_hdr(skb)->syn ||
4588 				    tcp_hdr(skb)->fin)
4589 					return;
4590 			}
4591 		}
4592 	}
4593 }
4594 
4595 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4596  * and tcp_collapse() them until all the queue is collapsed.
4597  */
4598 static void tcp_collapse_ofo_queue(struct sock *sk)
4599 {
4600 	struct tcp_sock *tp = tcp_sk(sk);
4601 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4602 	struct sk_buff *head;
4603 	u32 start, end;
4604 
4605 	if (skb == NULL)
4606 		return;
4607 
4608 	start = TCP_SKB_CB(skb)->seq;
4609 	end = TCP_SKB_CB(skb)->end_seq;
4610 	head = skb;
4611 
4612 	for (;;) {
4613 		skb = skb->next;
4614 
4615 		/* Segment is terminated when we see gap or when
4616 		 * we are at the end of all the queue. */
4617 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4618 		    after(TCP_SKB_CB(skb)->seq, end) ||
4619 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4620 			tcp_collapse(sk, &tp->out_of_order_queue,
4621 				     head, skb, start, end);
4622 			head = skb;
4623 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4624 				break;
4625 			/* Start new segment */
4626 			start = TCP_SKB_CB(skb)->seq;
4627 			end = TCP_SKB_CB(skb)->end_seq;
4628 		} else {
4629 			if (before(TCP_SKB_CB(skb)->seq, start))
4630 				start = TCP_SKB_CB(skb)->seq;
4631 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4632 				end = TCP_SKB_CB(skb)->end_seq;
4633 		}
4634 	}
4635 }
4636 
4637 /*
4638  * Purge the out-of-order queue.
4639  * Return true if queue was pruned.
4640  */
4641 static int tcp_prune_ofo_queue(struct sock *sk)
4642 {
4643 	struct tcp_sock *tp = tcp_sk(sk);
4644 	int res = 0;
4645 
4646 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4647 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4648 		__skb_queue_purge(&tp->out_of_order_queue);
4649 
4650 		/* Reset SACK state.  A conforming SACK implementation will
4651 		 * do the same at a timeout based retransmit.  When a connection
4652 		 * is in a sad state like this, we care only about integrity
4653 		 * of the connection not performance.
4654 		 */
4655 		if (tp->rx_opt.sack_ok)
4656 			tcp_sack_reset(&tp->rx_opt);
4657 		sk_mem_reclaim(sk);
4658 		res = 1;
4659 	}
4660 	return res;
4661 }
4662 
4663 /* Reduce allocated memory if we can, trying to get
4664  * the socket within its memory limits again.
4665  *
4666  * Return less than zero if we should start dropping frames
4667  * until the socket owning process reads some of the data
4668  * to stabilize the situation.
4669  */
4670 static int tcp_prune_queue(struct sock *sk)
4671 {
4672 	struct tcp_sock *tp = tcp_sk(sk);
4673 
4674 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4675 
4676 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4677 
4678 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4679 		tcp_clamp_window(sk);
4680 	else if (tcp_memory_pressure)
4681 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4682 
4683 	tcp_collapse_ofo_queue(sk);
4684 	tcp_collapse(sk, &sk->sk_receive_queue,
4685 		     sk->sk_receive_queue.next,
4686 		     (struct sk_buff *)&sk->sk_receive_queue,
4687 		     tp->copied_seq, tp->rcv_nxt);
4688 	sk_mem_reclaim(sk);
4689 
4690 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4691 		return 0;
4692 
4693 	/* Collapsing did not help, destructive actions follow.
4694 	 * This must not ever occur. */
4695 
4696 	tcp_prune_ofo_queue(sk);
4697 
4698 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4699 		return 0;
4700 
4701 	/* If we are really being abused, tell the caller to silently
4702 	 * drop receive data on the floor.  It will get retransmitted
4703 	 * and hopefully then we'll have sufficient space.
4704 	 */
4705 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4706 
4707 	/* Massive buffer overcommit. */
4708 	tp->pred_flags = 0;
4709 	return -1;
4710 }
4711 
4712 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4713  * As additional protections, we do not touch cwnd in retransmission phases,
4714  * and if application hit its sndbuf limit recently.
4715  */
4716 void tcp_cwnd_application_limited(struct sock *sk)
4717 {
4718 	struct tcp_sock *tp = tcp_sk(sk);
4719 
4720 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4721 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4722 		/* Limited by application or receiver window. */
4723 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4724 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4725 		if (win_used < tp->snd_cwnd) {
4726 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4727 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4728 		}
4729 		tp->snd_cwnd_used = 0;
4730 	}
4731 	tp->snd_cwnd_stamp = tcp_time_stamp;
4732 }
4733 
4734 static int tcp_should_expand_sndbuf(struct sock *sk)
4735 {
4736 	struct tcp_sock *tp = tcp_sk(sk);
4737 
4738 	/* If the user specified a specific send buffer setting, do
4739 	 * not modify it.
4740 	 */
4741 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4742 		return 0;
4743 
4744 	/* If we are under global TCP memory pressure, do not expand.  */
4745 	if (tcp_memory_pressure)
4746 		return 0;
4747 
4748 	/* If we are under soft global TCP memory pressure, do not expand.  */
4749 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4750 		return 0;
4751 
4752 	/* If we filled the congestion window, do not expand.  */
4753 	if (tp->packets_out >= tp->snd_cwnd)
4754 		return 0;
4755 
4756 	return 1;
4757 }
4758 
4759 /* When incoming ACK allowed to free some skb from write_queue,
4760  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4761  * on the exit from tcp input handler.
4762  *
4763  * PROBLEM: sndbuf expansion does not work well with largesend.
4764  */
4765 static void tcp_new_space(struct sock *sk)
4766 {
4767 	struct tcp_sock *tp = tcp_sk(sk);
4768 
4769 	if (tcp_should_expand_sndbuf(sk)) {
4770 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4771 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4772 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4773 				     tp->reordering + 1);
4774 		sndmem *= 2 * demanded;
4775 		if (sndmem > sk->sk_sndbuf)
4776 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4777 		tp->snd_cwnd_stamp = tcp_time_stamp;
4778 	}
4779 
4780 	sk->sk_write_space(sk);
4781 }
4782 
4783 static void tcp_check_space(struct sock *sk)
4784 {
4785 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4786 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4787 		if (sk->sk_socket &&
4788 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4789 			tcp_new_space(sk);
4790 	}
4791 }
4792 
4793 static inline void tcp_data_snd_check(struct sock *sk)
4794 {
4795 	tcp_push_pending_frames(sk);
4796 	tcp_check_space(sk);
4797 }
4798 
4799 /*
4800  * Check if sending an ack is needed.
4801  */
4802 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4803 {
4804 	struct tcp_sock *tp = tcp_sk(sk);
4805 
4806 	    /* More than one full frame received... */
4807 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4808 	     /* ... and right edge of window advances far enough.
4809 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4810 	      */
4811 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4812 	    /* We ACK each frame or... */
4813 	    tcp_in_quickack_mode(sk) ||
4814 	    /* We have out of order data. */
4815 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4816 		/* Then ack it now */
4817 		tcp_send_ack(sk);
4818 	} else {
4819 		/* Else, send delayed ack. */
4820 		tcp_send_delayed_ack(sk);
4821 	}
4822 }
4823 
4824 static inline void tcp_ack_snd_check(struct sock *sk)
4825 {
4826 	if (!inet_csk_ack_scheduled(sk)) {
4827 		/* We sent a data segment already. */
4828 		return;
4829 	}
4830 	__tcp_ack_snd_check(sk, 1);
4831 }
4832 
4833 /*
4834  *	This routine is only called when we have urgent data
4835  *	signaled. Its the 'slow' part of tcp_urg. It could be
4836  *	moved inline now as tcp_urg is only called from one
4837  *	place. We handle URGent data wrong. We have to - as
4838  *	BSD still doesn't use the correction from RFC961.
4839  *	For 1003.1g we should support a new option TCP_STDURG to permit
4840  *	either form (or just set the sysctl tcp_stdurg).
4841  */
4842 
4843 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4844 {
4845 	struct tcp_sock *tp = tcp_sk(sk);
4846 	u32 ptr = ntohs(th->urg_ptr);
4847 
4848 	if (ptr && !sysctl_tcp_stdurg)
4849 		ptr--;
4850 	ptr += ntohl(th->seq);
4851 
4852 	/* Ignore urgent data that we've already seen and read. */
4853 	if (after(tp->copied_seq, ptr))
4854 		return;
4855 
4856 	/* Do not replay urg ptr.
4857 	 *
4858 	 * NOTE: interesting situation not covered by specs.
4859 	 * Misbehaving sender may send urg ptr, pointing to segment,
4860 	 * which we already have in ofo queue. We are not able to fetch
4861 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4862 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4863 	 * situations. But it is worth to think about possibility of some
4864 	 * DoSes using some hypothetical application level deadlock.
4865 	 */
4866 	if (before(ptr, tp->rcv_nxt))
4867 		return;
4868 
4869 	/* Do we already have a newer (or duplicate) urgent pointer? */
4870 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4871 		return;
4872 
4873 	/* Tell the world about our new urgent pointer. */
4874 	sk_send_sigurg(sk);
4875 
4876 	/* We may be adding urgent data when the last byte read was
4877 	 * urgent. To do this requires some care. We cannot just ignore
4878 	 * tp->copied_seq since we would read the last urgent byte again
4879 	 * as data, nor can we alter copied_seq until this data arrives
4880 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4881 	 *
4882 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4883 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4884 	 * and expect that both A and B disappear from stream. This is _wrong_.
4885 	 * Though this happens in BSD with high probability, this is occasional.
4886 	 * Any application relying on this is buggy. Note also, that fix "works"
4887 	 * only in this artificial test. Insert some normal data between A and B and we will
4888 	 * decline of BSD again. Verdict: it is better to remove to trap
4889 	 * buggy users.
4890 	 */
4891 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4892 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4893 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4894 		tp->copied_seq++;
4895 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4896 			__skb_unlink(skb, &sk->sk_receive_queue);
4897 			__kfree_skb(skb);
4898 		}
4899 	}
4900 
4901 	tp->urg_data = TCP_URG_NOTYET;
4902 	tp->urg_seq = ptr;
4903 
4904 	/* Disable header prediction. */
4905 	tp->pred_flags = 0;
4906 }
4907 
4908 /* This is the 'fast' part of urgent handling. */
4909 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4910 {
4911 	struct tcp_sock *tp = tcp_sk(sk);
4912 
4913 	/* Check if we get a new urgent pointer - normally not. */
4914 	if (th->urg)
4915 		tcp_check_urg(sk, th);
4916 
4917 	/* Do we wait for any urgent data? - normally not... */
4918 	if (tp->urg_data == TCP_URG_NOTYET) {
4919 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4920 			  th->syn;
4921 
4922 		/* Is the urgent pointer pointing into this packet? */
4923 		if (ptr < skb->len) {
4924 			u8 tmp;
4925 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4926 				BUG();
4927 			tp->urg_data = TCP_URG_VALID | tmp;
4928 			if (!sock_flag(sk, SOCK_DEAD))
4929 				sk->sk_data_ready(sk, 0);
4930 		}
4931 	}
4932 }
4933 
4934 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4935 {
4936 	struct tcp_sock *tp = tcp_sk(sk);
4937 	int chunk = skb->len - hlen;
4938 	int err;
4939 
4940 	local_bh_enable();
4941 	if (skb_csum_unnecessary(skb))
4942 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4943 	else
4944 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4945 						       tp->ucopy.iov);
4946 
4947 	if (!err) {
4948 		tp->ucopy.len -= chunk;
4949 		tp->copied_seq += chunk;
4950 		tcp_rcv_space_adjust(sk);
4951 	}
4952 
4953 	local_bh_disable();
4954 	return err;
4955 }
4956 
4957 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4958 					    struct sk_buff *skb)
4959 {
4960 	__sum16 result;
4961 
4962 	if (sock_owned_by_user(sk)) {
4963 		local_bh_enable();
4964 		result = __tcp_checksum_complete(skb);
4965 		local_bh_disable();
4966 	} else {
4967 		result = __tcp_checksum_complete(skb);
4968 	}
4969 	return result;
4970 }
4971 
4972 static inline int tcp_checksum_complete_user(struct sock *sk,
4973 					     struct sk_buff *skb)
4974 {
4975 	return !skb_csum_unnecessary(skb) &&
4976 	       __tcp_checksum_complete_user(sk, skb);
4977 }
4978 
4979 #ifdef CONFIG_NET_DMA
4980 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4981 				  int hlen)
4982 {
4983 	struct tcp_sock *tp = tcp_sk(sk);
4984 	int chunk = skb->len - hlen;
4985 	int dma_cookie;
4986 	int copied_early = 0;
4987 
4988 	if (tp->ucopy.wakeup)
4989 		return 0;
4990 
4991 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4992 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
4993 
4994 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4995 
4996 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4997 							 skb, hlen,
4998 							 tp->ucopy.iov, chunk,
4999 							 tp->ucopy.pinned_list);
5000 
5001 		if (dma_cookie < 0)
5002 			goto out;
5003 
5004 		tp->ucopy.dma_cookie = dma_cookie;
5005 		copied_early = 1;
5006 
5007 		tp->ucopy.len -= chunk;
5008 		tp->copied_seq += chunk;
5009 		tcp_rcv_space_adjust(sk);
5010 
5011 		if ((tp->ucopy.len == 0) ||
5012 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5013 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5014 			tp->ucopy.wakeup = 1;
5015 			sk->sk_data_ready(sk, 0);
5016 		}
5017 	} else if (chunk > 0) {
5018 		tp->ucopy.wakeup = 1;
5019 		sk->sk_data_ready(sk, 0);
5020 	}
5021 out:
5022 	return copied_early;
5023 }
5024 #endif /* CONFIG_NET_DMA */
5025 
5026 /* Does PAWS and seqno based validation of an incoming segment, flags will
5027  * play significant role here.
5028  */
5029 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5030 			      struct tcphdr *th, int syn_inerr)
5031 {
5032 	struct tcp_sock *tp = tcp_sk(sk);
5033 
5034 	/* RFC1323: H1. Apply PAWS check first. */
5035 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5036 	    tcp_paws_discard(sk, skb)) {
5037 		if (!th->rst) {
5038 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5039 			tcp_send_dupack(sk, skb);
5040 			goto discard;
5041 		}
5042 		/* Reset is accepted even if it did not pass PAWS. */
5043 	}
5044 
5045 	/* Step 1: check sequence number */
5046 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5047 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5048 		 * (RST) segments are validated by checking their SEQ-fields."
5049 		 * And page 69: "If an incoming segment is not acceptable,
5050 		 * an acknowledgment should be sent in reply (unless the RST
5051 		 * bit is set, if so drop the segment and return)".
5052 		 */
5053 		if (!th->rst)
5054 			tcp_send_dupack(sk, skb);
5055 		goto discard;
5056 	}
5057 
5058 	/* Step 2: check RST bit */
5059 	if (th->rst) {
5060 		tcp_reset(sk);
5061 		goto discard;
5062 	}
5063 
5064 	/* ts_recent update must be made after we are sure that the packet
5065 	 * is in window.
5066 	 */
5067 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5068 
5069 	/* step 3: check security and precedence [ignored] */
5070 
5071 	/* step 4: Check for a SYN in window. */
5072 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5073 		if (syn_inerr)
5074 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5075 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5076 		tcp_reset(sk);
5077 		return -1;
5078 	}
5079 
5080 	return 1;
5081 
5082 discard:
5083 	__kfree_skb(skb);
5084 	return 0;
5085 }
5086 
5087 /*
5088  *	TCP receive function for the ESTABLISHED state.
5089  *
5090  *	It is split into a fast path and a slow path. The fast path is
5091  * 	disabled when:
5092  *	- A zero window was announced from us - zero window probing
5093  *        is only handled properly in the slow path.
5094  *	- Out of order segments arrived.
5095  *	- Urgent data is expected.
5096  *	- There is no buffer space left
5097  *	- Unexpected TCP flags/window values/header lengths are received
5098  *	  (detected by checking the TCP header against pred_flags)
5099  *	- Data is sent in both directions. Fast path only supports pure senders
5100  *	  or pure receivers (this means either the sequence number or the ack
5101  *	  value must stay constant)
5102  *	- Unexpected TCP option.
5103  *
5104  *	When these conditions are not satisfied it drops into a standard
5105  *	receive procedure patterned after RFC793 to handle all cases.
5106  *	The first three cases are guaranteed by proper pred_flags setting,
5107  *	the rest is checked inline. Fast processing is turned on in
5108  *	tcp_data_queue when everything is OK.
5109  */
5110 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5111 			struct tcphdr *th, unsigned len)
5112 {
5113 	struct tcp_sock *tp = tcp_sk(sk);
5114 	int res;
5115 
5116 	/*
5117 	 *	Header prediction.
5118 	 *	The code loosely follows the one in the famous
5119 	 *	"30 instruction TCP receive" Van Jacobson mail.
5120 	 *
5121 	 *	Van's trick is to deposit buffers into socket queue
5122 	 *	on a device interrupt, to call tcp_recv function
5123 	 *	on the receive process context and checksum and copy
5124 	 *	the buffer to user space. smart...
5125 	 *
5126 	 *	Our current scheme is not silly either but we take the
5127 	 *	extra cost of the net_bh soft interrupt processing...
5128 	 *	We do checksum and copy also but from device to kernel.
5129 	 */
5130 
5131 	tp->rx_opt.saw_tstamp = 0;
5132 
5133 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5134 	 *	if header_prediction is to be made
5135 	 *	'S' will always be tp->tcp_header_len >> 2
5136 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5137 	 *  turn it off	(when there are holes in the receive
5138 	 *	 space for instance)
5139 	 *	PSH flag is ignored.
5140 	 */
5141 
5142 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5143 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5144 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5145 		int tcp_header_len = tp->tcp_header_len;
5146 
5147 		/* Timestamp header prediction: tcp_header_len
5148 		 * is automatically equal to th->doff*4 due to pred_flags
5149 		 * match.
5150 		 */
5151 
5152 		/* Check timestamp */
5153 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5154 			/* No? Slow path! */
5155 			if (!tcp_parse_aligned_timestamp(tp, th))
5156 				goto slow_path;
5157 
5158 			/* If PAWS failed, check it more carefully in slow path */
5159 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5160 				goto slow_path;
5161 
5162 			/* DO NOT update ts_recent here, if checksum fails
5163 			 * and timestamp was corrupted part, it will result
5164 			 * in a hung connection since we will drop all
5165 			 * future packets due to the PAWS test.
5166 			 */
5167 		}
5168 
5169 		if (len <= tcp_header_len) {
5170 			/* Bulk data transfer: sender */
5171 			if (len == tcp_header_len) {
5172 				/* Predicted packet is in window by definition.
5173 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5174 				 * Hence, check seq<=rcv_wup reduces to:
5175 				 */
5176 				if (tcp_header_len ==
5177 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5178 				    tp->rcv_nxt == tp->rcv_wup)
5179 					tcp_store_ts_recent(tp);
5180 
5181 				/* We know that such packets are checksummed
5182 				 * on entry.
5183 				 */
5184 				tcp_ack(sk, skb, 0);
5185 				__kfree_skb(skb);
5186 				tcp_data_snd_check(sk);
5187 				return 0;
5188 			} else { /* Header too small */
5189 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5190 				goto discard;
5191 			}
5192 		} else {
5193 			int eaten = 0;
5194 			int copied_early = 0;
5195 
5196 			if (tp->copied_seq == tp->rcv_nxt &&
5197 			    len - tcp_header_len <= tp->ucopy.len) {
5198 #ifdef CONFIG_NET_DMA
5199 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5200 					copied_early = 1;
5201 					eaten = 1;
5202 				}
5203 #endif
5204 				if (tp->ucopy.task == current &&
5205 				    sock_owned_by_user(sk) && !copied_early) {
5206 					__set_current_state(TASK_RUNNING);
5207 
5208 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5209 						eaten = 1;
5210 				}
5211 				if (eaten) {
5212 					/* Predicted packet is in window by definition.
5213 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5214 					 * Hence, check seq<=rcv_wup reduces to:
5215 					 */
5216 					if (tcp_header_len ==
5217 					    (sizeof(struct tcphdr) +
5218 					     TCPOLEN_TSTAMP_ALIGNED) &&
5219 					    tp->rcv_nxt == tp->rcv_wup)
5220 						tcp_store_ts_recent(tp);
5221 
5222 					tcp_rcv_rtt_measure_ts(sk, skb);
5223 
5224 					__skb_pull(skb, tcp_header_len);
5225 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5226 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5227 				}
5228 				if (copied_early)
5229 					tcp_cleanup_rbuf(sk, skb->len);
5230 			}
5231 			if (!eaten) {
5232 				if (tcp_checksum_complete_user(sk, skb))
5233 					goto csum_error;
5234 
5235 				/* Predicted packet is in window by definition.
5236 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5237 				 * Hence, check seq<=rcv_wup reduces to:
5238 				 */
5239 				if (tcp_header_len ==
5240 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5241 				    tp->rcv_nxt == tp->rcv_wup)
5242 					tcp_store_ts_recent(tp);
5243 
5244 				tcp_rcv_rtt_measure_ts(sk, skb);
5245 
5246 				if ((int)skb->truesize > sk->sk_forward_alloc)
5247 					goto step5;
5248 
5249 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5250 
5251 				/* Bulk data transfer: receiver */
5252 				__skb_pull(skb, tcp_header_len);
5253 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5254 				skb_set_owner_r(skb, sk);
5255 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5256 			}
5257 
5258 			tcp_event_data_recv(sk, skb);
5259 
5260 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5261 				/* Well, only one small jumplet in fast path... */
5262 				tcp_ack(sk, skb, FLAG_DATA);
5263 				tcp_data_snd_check(sk);
5264 				if (!inet_csk_ack_scheduled(sk))
5265 					goto no_ack;
5266 			}
5267 
5268 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5269 				__tcp_ack_snd_check(sk, 0);
5270 no_ack:
5271 #ifdef CONFIG_NET_DMA
5272 			if (copied_early)
5273 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5274 			else
5275 #endif
5276 			if (eaten)
5277 				__kfree_skb(skb);
5278 			else
5279 				sk->sk_data_ready(sk, 0);
5280 			return 0;
5281 		}
5282 	}
5283 
5284 slow_path:
5285 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5286 		goto csum_error;
5287 
5288 	/*
5289 	 *	Standard slow path.
5290 	 */
5291 
5292 	res = tcp_validate_incoming(sk, skb, th, 1);
5293 	if (res <= 0)
5294 		return -res;
5295 
5296 step5:
5297 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5298 		goto discard;
5299 
5300 	tcp_rcv_rtt_measure_ts(sk, skb);
5301 
5302 	/* Process urgent data. */
5303 	tcp_urg(sk, skb, th);
5304 
5305 	/* step 7: process the segment text */
5306 	tcp_data_queue(sk, skb);
5307 
5308 	tcp_data_snd_check(sk);
5309 	tcp_ack_snd_check(sk);
5310 	return 0;
5311 
5312 csum_error:
5313 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5314 
5315 discard:
5316 	__kfree_skb(skb);
5317 	return 0;
5318 }
5319 
5320 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5321 					 struct tcphdr *th, unsigned len)
5322 {
5323 	struct tcp_sock *tp = tcp_sk(sk);
5324 	struct inet_connection_sock *icsk = inet_csk(sk);
5325 	int saved_clamp = tp->rx_opt.mss_clamp;
5326 
5327 	tcp_parse_options(skb, &tp->rx_opt, 0);
5328 
5329 	if (th->ack) {
5330 		/* rfc793:
5331 		 * "If the state is SYN-SENT then
5332 		 *    first check the ACK bit
5333 		 *      If the ACK bit is set
5334 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5335 		 *        a reset (unless the RST bit is set, if so drop
5336 		 *        the segment and return)"
5337 		 *
5338 		 *  We do not send data with SYN, so that RFC-correct
5339 		 *  test reduces to:
5340 		 */
5341 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5342 			goto reset_and_undo;
5343 
5344 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5345 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5346 			     tcp_time_stamp)) {
5347 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5348 			goto reset_and_undo;
5349 		}
5350 
5351 		/* Now ACK is acceptable.
5352 		 *
5353 		 * "If the RST bit is set
5354 		 *    If the ACK was acceptable then signal the user "error:
5355 		 *    connection reset", drop the segment, enter CLOSED state,
5356 		 *    delete TCB, and return."
5357 		 */
5358 
5359 		if (th->rst) {
5360 			tcp_reset(sk);
5361 			goto discard;
5362 		}
5363 
5364 		/* rfc793:
5365 		 *   "fifth, if neither of the SYN or RST bits is set then
5366 		 *    drop the segment and return."
5367 		 *
5368 		 *    See note below!
5369 		 *                                        --ANK(990513)
5370 		 */
5371 		if (!th->syn)
5372 			goto discard_and_undo;
5373 
5374 		/* rfc793:
5375 		 *   "If the SYN bit is on ...
5376 		 *    are acceptable then ...
5377 		 *    (our SYN has been ACKed), change the connection
5378 		 *    state to ESTABLISHED..."
5379 		 */
5380 
5381 		TCP_ECN_rcv_synack(tp, th);
5382 
5383 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5384 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5385 
5386 		/* Ok.. it's good. Set up sequence numbers and
5387 		 * move to established.
5388 		 */
5389 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5390 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5391 
5392 		/* RFC1323: The window in SYN & SYN/ACK segments is
5393 		 * never scaled.
5394 		 */
5395 		tp->snd_wnd = ntohs(th->window);
5396 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5397 
5398 		if (!tp->rx_opt.wscale_ok) {
5399 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5400 			tp->window_clamp = min(tp->window_clamp, 65535U);
5401 		}
5402 
5403 		if (tp->rx_opt.saw_tstamp) {
5404 			tp->rx_opt.tstamp_ok	   = 1;
5405 			tp->tcp_header_len =
5406 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5407 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5408 			tcp_store_ts_recent(tp);
5409 		} else {
5410 			tp->tcp_header_len = sizeof(struct tcphdr);
5411 		}
5412 
5413 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5414 			tcp_enable_fack(tp);
5415 
5416 		tcp_mtup_init(sk);
5417 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5418 		tcp_initialize_rcv_mss(sk);
5419 
5420 		/* Remember, tcp_poll() does not lock socket!
5421 		 * Change state from SYN-SENT only after copied_seq
5422 		 * is initialized. */
5423 		tp->copied_seq = tp->rcv_nxt;
5424 		smp_mb();
5425 		tcp_set_state(sk, TCP_ESTABLISHED);
5426 
5427 		security_inet_conn_established(sk, skb);
5428 
5429 		/* Make sure socket is routed, for correct metrics.  */
5430 		icsk->icsk_af_ops->rebuild_header(sk);
5431 
5432 		tcp_init_metrics(sk);
5433 
5434 		tcp_init_congestion_control(sk);
5435 
5436 		/* Prevent spurious tcp_cwnd_restart() on first data
5437 		 * packet.
5438 		 */
5439 		tp->lsndtime = tcp_time_stamp;
5440 
5441 		tcp_init_buffer_space(sk);
5442 
5443 		if (sock_flag(sk, SOCK_KEEPOPEN))
5444 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5445 
5446 		if (!tp->rx_opt.snd_wscale)
5447 			__tcp_fast_path_on(tp, tp->snd_wnd);
5448 		else
5449 			tp->pred_flags = 0;
5450 
5451 		if (!sock_flag(sk, SOCK_DEAD)) {
5452 			sk->sk_state_change(sk);
5453 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5454 		}
5455 
5456 		if (sk->sk_write_pending ||
5457 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5458 		    icsk->icsk_ack.pingpong) {
5459 			/* Save one ACK. Data will be ready after
5460 			 * several ticks, if write_pending is set.
5461 			 *
5462 			 * It may be deleted, but with this feature tcpdumps
5463 			 * look so _wonderfully_ clever, that I was not able
5464 			 * to stand against the temptation 8)     --ANK
5465 			 */
5466 			inet_csk_schedule_ack(sk);
5467 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5468 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5469 			tcp_incr_quickack(sk);
5470 			tcp_enter_quickack_mode(sk);
5471 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5472 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5473 
5474 discard:
5475 			__kfree_skb(skb);
5476 			return 0;
5477 		} else {
5478 			tcp_send_ack(sk);
5479 		}
5480 		return -1;
5481 	}
5482 
5483 	/* No ACK in the segment */
5484 
5485 	if (th->rst) {
5486 		/* rfc793:
5487 		 * "If the RST bit is set
5488 		 *
5489 		 *      Otherwise (no ACK) drop the segment and return."
5490 		 */
5491 
5492 		goto discard_and_undo;
5493 	}
5494 
5495 	/* PAWS check. */
5496 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5497 	    tcp_paws_reject(&tp->rx_opt, 0))
5498 		goto discard_and_undo;
5499 
5500 	if (th->syn) {
5501 		/* We see SYN without ACK. It is attempt of
5502 		 * simultaneous connect with crossed SYNs.
5503 		 * Particularly, it can be connect to self.
5504 		 */
5505 		tcp_set_state(sk, TCP_SYN_RECV);
5506 
5507 		if (tp->rx_opt.saw_tstamp) {
5508 			tp->rx_opt.tstamp_ok = 1;
5509 			tcp_store_ts_recent(tp);
5510 			tp->tcp_header_len =
5511 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5512 		} else {
5513 			tp->tcp_header_len = sizeof(struct tcphdr);
5514 		}
5515 
5516 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5517 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5518 
5519 		/* RFC1323: The window in SYN & SYN/ACK segments is
5520 		 * never scaled.
5521 		 */
5522 		tp->snd_wnd    = ntohs(th->window);
5523 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5524 		tp->max_window = tp->snd_wnd;
5525 
5526 		TCP_ECN_rcv_syn(tp, th);
5527 
5528 		tcp_mtup_init(sk);
5529 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5530 		tcp_initialize_rcv_mss(sk);
5531 
5532 		tcp_send_synack(sk);
5533 #if 0
5534 		/* Note, we could accept data and URG from this segment.
5535 		 * There are no obstacles to make this.
5536 		 *
5537 		 * However, if we ignore data in ACKless segments sometimes,
5538 		 * we have no reasons to accept it sometimes.
5539 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5540 		 * is not flawless. So, discard packet for sanity.
5541 		 * Uncomment this return to process the data.
5542 		 */
5543 		return -1;
5544 #else
5545 		goto discard;
5546 #endif
5547 	}
5548 	/* "fifth, if neither of the SYN or RST bits is set then
5549 	 * drop the segment and return."
5550 	 */
5551 
5552 discard_and_undo:
5553 	tcp_clear_options(&tp->rx_opt);
5554 	tp->rx_opt.mss_clamp = saved_clamp;
5555 	goto discard;
5556 
5557 reset_and_undo:
5558 	tcp_clear_options(&tp->rx_opt);
5559 	tp->rx_opt.mss_clamp = saved_clamp;
5560 	return 1;
5561 }
5562 
5563 /*
5564  *	This function implements the receiving procedure of RFC 793 for
5565  *	all states except ESTABLISHED and TIME_WAIT.
5566  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5567  *	address independent.
5568  */
5569 
5570 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5571 			  struct tcphdr *th, unsigned len)
5572 {
5573 	struct tcp_sock *tp = tcp_sk(sk);
5574 	struct inet_connection_sock *icsk = inet_csk(sk);
5575 	int queued = 0;
5576 	int res;
5577 
5578 	tp->rx_opt.saw_tstamp = 0;
5579 
5580 	switch (sk->sk_state) {
5581 	case TCP_CLOSE:
5582 		goto discard;
5583 
5584 	case TCP_LISTEN:
5585 		if (th->ack)
5586 			return 1;
5587 
5588 		if (th->rst)
5589 			goto discard;
5590 
5591 		if (th->syn) {
5592 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5593 				return 1;
5594 
5595 			/* Now we have several options: In theory there is
5596 			 * nothing else in the frame. KA9Q has an option to
5597 			 * send data with the syn, BSD accepts data with the
5598 			 * syn up to the [to be] advertised window and
5599 			 * Solaris 2.1 gives you a protocol error. For now
5600 			 * we just ignore it, that fits the spec precisely
5601 			 * and avoids incompatibilities. It would be nice in
5602 			 * future to drop through and process the data.
5603 			 *
5604 			 * Now that TTCP is starting to be used we ought to
5605 			 * queue this data.
5606 			 * But, this leaves one open to an easy denial of
5607 			 * service attack, and SYN cookies can't defend
5608 			 * against this problem. So, we drop the data
5609 			 * in the interest of security over speed unless
5610 			 * it's still in use.
5611 			 */
5612 			kfree_skb(skb);
5613 			return 0;
5614 		}
5615 		goto discard;
5616 
5617 	case TCP_SYN_SENT:
5618 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5619 		if (queued >= 0)
5620 			return queued;
5621 
5622 		/* Do step6 onward by hand. */
5623 		tcp_urg(sk, skb, th);
5624 		__kfree_skb(skb);
5625 		tcp_data_snd_check(sk);
5626 		return 0;
5627 	}
5628 
5629 	res = tcp_validate_incoming(sk, skb, th, 0);
5630 	if (res <= 0)
5631 		return -res;
5632 
5633 	/* step 5: check the ACK field */
5634 	if (th->ack) {
5635 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5636 
5637 		switch (sk->sk_state) {
5638 		case TCP_SYN_RECV:
5639 			if (acceptable) {
5640 				tp->copied_seq = tp->rcv_nxt;
5641 				smp_mb();
5642 				tcp_set_state(sk, TCP_ESTABLISHED);
5643 				sk->sk_state_change(sk);
5644 
5645 				/* Note, that this wakeup is only for marginal
5646 				 * crossed SYN case. Passively open sockets
5647 				 * are not waked up, because sk->sk_sleep ==
5648 				 * NULL and sk->sk_socket == NULL.
5649 				 */
5650 				if (sk->sk_socket)
5651 					sk_wake_async(sk,
5652 						      SOCK_WAKE_IO, POLL_OUT);
5653 
5654 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5655 				tp->snd_wnd = ntohs(th->window) <<
5656 					      tp->rx_opt.snd_wscale;
5657 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5658 
5659 				/* tcp_ack considers this ACK as duplicate
5660 				 * and does not calculate rtt.
5661 				 * Fix it at least with timestamps.
5662 				 */
5663 				if (tp->rx_opt.saw_tstamp &&
5664 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5665 					tcp_ack_saw_tstamp(sk, 0);
5666 
5667 				if (tp->rx_opt.tstamp_ok)
5668 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5669 
5670 				/* Make sure socket is routed, for
5671 				 * correct metrics.
5672 				 */
5673 				icsk->icsk_af_ops->rebuild_header(sk);
5674 
5675 				tcp_init_metrics(sk);
5676 
5677 				tcp_init_congestion_control(sk);
5678 
5679 				/* Prevent spurious tcp_cwnd_restart() on
5680 				 * first data packet.
5681 				 */
5682 				tp->lsndtime = tcp_time_stamp;
5683 
5684 				tcp_mtup_init(sk);
5685 				tcp_initialize_rcv_mss(sk);
5686 				tcp_init_buffer_space(sk);
5687 				tcp_fast_path_on(tp);
5688 			} else {
5689 				return 1;
5690 			}
5691 			break;
5692 
5693 		case TCP_FIN_WAIT1:
5694 			if (tp->snd_una == tp->write_seq) {
5695 				tcp_set_state(sk, TCP_FIN_WAIT2);
5696 				sk->sk_shutdown |= SEND_SHUTDOWN;
5697 				dst_confirm(sk->sk_dst_cache);
5698 
5699 				if (!sock_flag(sk, SOCK_DEAD))
5700 					/* Wake up lingering close() */
5701 					sk->sk_state_change(sk);
5702 				else {
5703 					int tmo;
5704 
5705 					if (tp->linger2 < 0 ||
5706 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5707 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5708 						tcp_done(sk);
5709 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5710 						return 1;
5711 					}
5712 
5713 					tmo = tcp_fin_time(sk);
5714 					if (tmo > TCP_TIMEWAIT_LEN) {
5715 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5716 					} else if (th->fin || sock_owned_by_user(sk)) {
5717 						/* Bad case. We could lose such FIN otherwise.
5718 						 * It is not a big problem, but it looks confusing
5719 						 * and not so rare event. We still can lose it now,
5720 						 * if it spins in bh_lock_sock(), but it is really
5721 						 * marginal case.
5722 						 */
5723 						inet_csk_reset_keepalive_timer(sk, tmo);
5724 					} else {
5725 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5726 						goto discard;
5727 					}
5728 				}
5729 			}
5730 			break;
5731 
5732 		case TCP_CLOSING:
5733 			if (tp->snd_una == tp->write_seq) {
5734 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5735 				goto discard;
5736 			}
5737 			break;
5738 
5739 		case TCP_LAST_ACK:
5740 			if (tp->snd_una == tp->write_seq) {
5741 				tcp_update_metrics(sk);
5742 				tcp_done(sk);
5743 				goto discard;
5744 			}
5745 			break;
5746 		}
5747 	} else
5748 		goto discard;
5749 
5750 	/* step 6: check the URG bit */
5751 	tcp_urg(sk, skb, th);
5752 
5753 	/* step 7: process the segment text */
5754 	switch (sk->sk_state) {
5755 	case TCP_CLOSE_WAIT:
5756 	case TCP_CLOSING:
5757 	case TCP_LAST_ACK:
5758 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5759 			break;
5760 	case TCP_FIN_WAIT1:
5761 	case TCP_FIN_WAIT2:
5762 		/* RFC 793 says to queue data in these states,
5763 		 * RFC 1122 says we MUST send a reset.
5764 		 * BSD 4.4 also does reset.
5765 		 */
5766 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5767 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5768 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5769 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5770 				tcp_reset(sk);
5771 				return 1;
5772 			}
5773 		}
5774 		/* Fall through */
5775 	case TCP_ESTABLISHED:
5776 		tcp_data_queue(sk, skb);
5777 		queued = 1;
5778 		break;
5779 	}
5780 
5781 	/* tcp_data could move socket to TIME-WAIT */
5782 	if (sk->sk_state != TCP_CLOSE) {
5783 		tcp_data_snd_check(sk);
5784 		tcp_ack_snd_check(sk);
5785 	}
5786 
5787 	if (!queued) {
5788 discard:
5789 		__kfree_skb(skb);
5790 	}
5791 	return 0;
5792 }
5793 
5794 EXPORT_SYMBOL(sysctl_tcp_ecn);
5795 EXPORT_SYMBOL(sysctl_tcp_reordering);
5796 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5797 EXPORT_SYMBOL(tcp_parse_options);
5798 #ifdef CONFIG_TCP_MD5SIG
5799 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5800 #endif
5801 EXPORT_SYMBOL(tcp_rcv_established);
5802 EXPORT_SYMBOL(tcp_rcv_state_process);
5803 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5804