1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 84 int sysctl_tcp_max_reordering __read_mostly = 300; 85 EXPORT_SYMBOL(sysctl_tcp_reordering); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 /* rfc5961 challenge ack rate limiting */ 92 int sysctl_tcp_challenge_ack_limit = 100; 93 94 int sysctl_tcp_stdurg __read_mostly; 95 int sysctl_tcp_rfc1337 __read_mostly; 96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 97 int sysctl_tcp_frto __read_mostly = 2; 98 99 int sysctl_tcp_thin_dupack __read_mostly; 100 101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 102 int sysctl_tcp_early_retrans __read_mostly = 3; 103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 104 105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 111 #define FLAG_ECE 0x40 /* ECE in this ACK */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 /* Adapt the MSS value used to make delayed ack decision to the 128 * real world. 129 */ 130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 131 { 132 struct inet_connection_sock *icsk = inet_csk(sk); 133 const unsigned int lss = icsk->icsk_ack.last_seg_size; 134 unsigned int len; 135 136 icsk->icsk_ack.last_seg_size = 0; 137 138 /* skb->len may jitter because of SACKs, even if peer 139 * sends good full-sized frames. 140 */ 141 len = skb_shinfo(skb)->gso_size ? : skb->len; 142 if (len >= icsk->icsk_ack.rcv_mss) { 143 icsk->icsk_ack.rcv_mss = len; 144 } else { 145 /* Otherwise, we make more careful check taking into account, 146 * that SACKs block is variable. 147 * 148 * "len" is invariant segment length, including TCP header. 149 */ 150 len += skb->data - skb_transport_header(skb); 151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 152 /* If PSH is not set, packet should be 153 * full sized, provided peer TCP is not badly broken. 154 * This observation (if it is correct 8)) allows 155 * to handle super-low mtu links fairly. 156 */ 157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 159 /* Subtract also invariant (if peer is RFC compliant), 160 * tcp header plus fixed timestamp option length. 161 * Resulting "len" is MSS free of SACK jitter. 162 */ 163 len -= tcp_sk(sk)->tcp_header_len; 164 icsk->icsk_ack.last_seg_size = len; 165 if (len == lss) { 166 icsk->icsk_ack.rcv_mss = len; 167 return; 168 } 169 } 170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 173 } 174 } 175 176 static void tcp_incr_quickack(struct sock *sk) 177 { 178 struct inet_connection_sock *icsk = inet_csk(sk); 179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 180 181 if (quickacks == 0) 182 quickacks = 2; 183 if (quickacks > icsk->icsk_ack.quick) 184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 185 } 186 187 static void tcp_enter_quickack_mode(struct sock *sk) 188 { 189 struct inet_connection_sock *icsk = inet_csk(sk); 190 tcp_incr_quickack(sk); 191 icsk->icsk_ack.pingpong = 0; 192 icsk->icsk_ack.ato = TCP_ATO_MIN; 193 } 194 195 /* Send ACKs quickly, if "quick" count is not exhausted 196 * and the session is not interactive. 197 */ 198 199 static inline bool tcp_in_quickack_mode(const struct sock *sk) 200 { 201 const struct inet_connection_sock *icsk = inet_csk(sk); 202 203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 204 } 205 206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 207 { 208 if (tp->ecn_flags & TCP_ECN_OK) 209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 210 } 211 212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 213 { 214 if (tcp_hdr(skb)->cwr) 215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 216 } 217 218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 219 { 220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 221 } 222 223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 224 { 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (tcp_ca_needs_ecn((struct sock *)tp)) 236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 237 238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 239 /* Better not delay acks, sender can have a very low cwnd */ 240 tcp_enter_quickack_mode((struct sock *)tp); 241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 242 } 243 tp->ecn_flags |= TCP_ECN_SEEN; 244 break; 245 default: 246 if (tcp_ca_needs_ecn((struct sock *)tp)) 247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 248 tp->ecn_flags |= TCP_ECN_SEEN; 249 break; 250 } 251 } 252 253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 254 { 255 if (tp->ecn_flags & TCP_ECN_OK) 256 __tcp_ecn_check_ce(tp, skb); 257 } 258 259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 260 { 261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 262 tp->ecn_flags &= ~TCP_ECN_OK; 263 } 264 265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 266 { 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 268 tp->ecn_flags &= ~TCP_ECN_OK; 269 } 270 271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 274 return true; 275 return false; 276 } 277 278 /* Buffer size and advertised window tuning. 279 * 280 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 281 */ 282 283 static void tcp_sndbuf_expand(struct sock *sk) 284 { 285 const struct tcp_sock *tp = tcp_sk(sk); 286 int sndmem, per_mss; 287 u32 nr_segs; 288 289 /* Worst case is non GSO/TSO : each frame consumes one skb 290 * and skb->head is kmalloced using power of two area of memory 291 */ 292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 293 MAX_TCP_HEADER + 294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 295 296 per_mss = roundup_pow_of_two(per_mss) + 297 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 298 299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 301 302 /* Fast Recovery (RFC 5681 3.2) : 303 * Cubic needs 1.7 factor, rounded to 2 to include 304 * extra cushion (application might react slowly to POLLOUT) 305 */ 306 sndmem = 2 * nr_segs * per_mss; 307 308 if (sk->sk_sndbuf < sndmem) 309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 310 } 311 312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 313 * 314 * All tcp_full_space() is split to two parts: "network" buffer, allocated 315 * forward and advertised in receiver window (tp->rcv_wnd) and 316 * "application buffer", required to isolate scheduling/application 317 * latencies from network. 318 * window_clamp is maximal advertised window. It can be less than 319 * tcp_full_space(), in this case tcp_full_space() - window_clamp 320 * is reserved for "application" buffer. The less window_clamp is 321 * the smoother our behaviour from viewpoint of network, but the lower 322 * throughput and the higher sensitivity of the connection to losses. 8) 323 * 324 * rcv_ssthresh is more strict window_clamp used at "slow start" 325 * phase to predict further behaviour of this connection. 326 * It is used for two goals: 327 * - to enforce header prediction at sender, even when application 328 * requires some significant "application buffer". It is check #1. 329 * - to prevent pruning of receive queue because of misprediction 330 * of receiver window. Check #2. 331 * 332 * The scheme does not work when sender sends good segments opening 333 * window and then starts to feed us spaghetti. But it should work 334 * in common situations. Otherwise, we have to rely on queue collapsing. 335 */ 336 337 /* Slow part of check#2. */ 338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 /* Optimize this! */ 342 int truesize = tcp_win_from_space(skb->truesize) >> 1; 343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 344 345 while (tp->rcv_ssthresh <= window) { 346 if (truesize <= skb->len) 347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 348 349 truesize >>= 1; 350 window >>= 1; 351 } 352 return 0; 353 } 354 355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 359 /* Check #1 */ 360 if (tp->rcv_ssthresh < tp->window_clamp && 361 (int)tp->rcv_ssthresh < tcp_space(sk) && 362 !sk_under_memory_pressure(sk)) { 363 int incr; 364 365 /* Check #2. Increase window, if skb with such overhead 366 * will fit to rcvbuf in future. 367 */ 368 if (tcp_win_from_space(skb->truesize) <= skb->len) 369 incr = 2 * tp->advmss; 370 else 371 incr = __tcp_grow_window(sk, skb); 372 373 if (incr) { 374 incr = max_t(int, incr, 2 * skb->len); 375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 376 tp->window_clamp); 377 inet_csk(sk)->icsk_ack.quick |= 1; 378 } 379 } 380 } 381 382 /* 3. Tuning rcvbuf, when connection enters established state. */ 383 static void tcp_fixup_rcvbuf(struct sock *sk) 384 { 385 u32 mss = tcp_sk(sk)->advmss; 386 int rcvmem; 387 388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 389 tcp_default_init_rwnd(mss); 390 391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 392 * Allow enough cushion so that sender is not limited by our window 393 */ 394 if (sysctl_tcp_moderate_rcvbuf) 395 rcvmem <<= 2; 396 397 if (sk->sk_rcvbuf < rcvmem) 398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 399 } 400 401 /* 4. Try to fixup all. It is made immediately after connection enters 402 * established state. 403 */ 404 void tcp_init_buffer_space(struct sock *sk) 405 { 406 struct tcp_sock *tp = tcp_sk(sk); 407 int maxwin; 408 409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 410 tcp_fixup_rcvbuf(sk); 411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 412 tcp_sndbuf_expand(sk); 413 414 tp->rcvq_space.space = tp->rcv_wnd; 415 tp->rcvq_space.time = tcp_time_stamp; 416 tp->rcvq_space.seq = tp->copied_seq; 417 418 maxwin = tcp_full_space(sk); 419 420 if (tp->window_clamp >= maxwin) { 421 tp->window_clamp = maxwin; 422 423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 424 tp->window_clamp = max(maxwin - 425 (maxwin >> sysctl_tcp_app_win), 426 4 * tp->advmss); 427 } 428 429 /* Force reservation of one segment. */ 430 if (sysctl_tcp_app_win && 431 tp->window_clamp > 2 * tp->advmss && 432 tp->window_clamp + tp->advmss > maxwin) 433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 434 435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 436 tp->snd_cwnd_stamp = tcp_time_stamp; 437 } 438 439 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 440 static void tcp_clamp_window(struct sock *sk) 441 { 442 struct tcp_sock *tp = tcp_sk(sk); 443 struct inet_connection_sock *icsk = inet_csk(sk); 444 445 icsk->icsk_ack.quick = 0; 446 447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 449 !sk_under_memory_pressure(sk) && 450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 452 sysctl_tcp_rmem[2]); 453 } 454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 456 } 457 458 /* Initialize RCV_MSS value. 459 * RCV_MSS is an our guess about MSS used by the peer. 460 * We haven't any direct information about the MSS. 461 * It's better to underestimate the RCV_MSS rather than overestimate. 462 * Overestimations make us ACKing less frequently than needed. 463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 464 */ 465 void tcp_initialize_rcv_mss(struct sock *sk) 466 { 467 const struct tcp_sock *tp = tcp_sk(sk); 468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 469 470 hint = min(hint, tp->rcv_wnd / 2); 471 hint = min(hint, TCP_MSS_DEFAULT); 472 hint = max(hint, TCP_MIN_MSS); 473 474 inet_csk(sk)->icsk_ack.rcv_mss = hint; 475 } 476 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 477 478 /* Receiver "autotuning" code. 479 * 480 * The algorithm for RTT estimation w/o timestamps is based on 481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 482 * <http://public.lanl.gov/radiant/pubs.html#DRS> 483 * 484 * More detail on this code can be found at 485 * <http://staff.psc.edu/jheffner/>, 486 * though this reference is out of date. A new paper 487 * is pending. 488 */ 489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 490 { 491 u32 new_sample = tp->rcv_rtt_est.rtt; 492 long m = sample; 493 494 if (m == 0) 495 m = 1; 496 497 if (new_sample != 0) { 498 /* If we sample in larger samples in the non-timestamp 499 * case, we could grossly overestimate the RTT especially 500 * with chatty applications or bulk transfer apps which 501 * are stalled on filesystem I/O. 502 * 503 * Also, since we are only going for a minimum in the 504 * non-timestamp case, we do not smooth things out 505 * else with timestamps disabled convergence takes too 506 * long. 507 */ 508 if (!win_dep) { 509 m -= (new_sample >> 3); 510 new_sample += m; 511 } else { 512 m <<= 3; 513 if (m < new_sample) 514 new_sample = m; 515 } 516 } else { 517 /* No previous measure. */ 518 new_sample = m << 3; 519 } 520 521 if (tp->rcv_rtt_est.rtt != new_sample) 522 tp->rcv_rtt_est.rtt = new_sample; 523 } 524 525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 526 { 527 if (tp->rcv_rtt_est.time == 0) 528 goto new_measure; 529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 530 return; 531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 532 533 new_measure: 534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 535 tp->rcv_rtt_est.time = tcp_time_stamp; 536 } 537 538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 539 const struct sk_buff *skb) 540 { 541 struct tcp_sock *tp = tcp_sk(sk); 542 if (tp->rx_opt.rcv_tsecr && 543 (TCP_SKB_CB(skb)->end_seq - 544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 546 } 547 548 /* 549 * This function should be called every time data is copied to user space. 550 * It calculates the appropriate TCP receive buffer space. 551 */ 552 void tcp_rcv_space_adjust(struct sock *sk) 553 { 554 struct tcp_sock *tp = tcp_sk(sk); 555 int time; 556 int copied; 557 558 time = tcp_time_stamp - tp->rcvq_space.time; 559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 560 return; 561 562 /* Number of bytes copied to user in last RTT */ 563 copied = tp->copied_seq - tp->rcvq_space.seq; 564 if (copied <= tp->rcvq_space.space) 565 goto new_measure; 566 567 /* A bit of theory : 568 * copied = bytes received in previous RTT, our base window 569 * To cope with packet losses, we need a 2x factor 570 * To cope with slow start, and sender growing its cwin by 100 % 571 * every RTT, we need a 4x factor, because the ACK we are sending 572 * now is for the next RTT, not the current one : 573 * <prev RTT . ><current RTT .. ><next RTT .... > 574 */ 575 576 if (sysctl_tcp_moderate_rcvbuf && 577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 578 int rcvwin, rcvmem, rcvbuf; 579 580 /* minimal window to cope with packet losses, assuming 581 * steady state. Add some cushion because of small variations. 582 */ 583 rcvwin = (copied << 1) + 16 * tp->advmss; 584 585 /* If rate increased by 25%, 586 * assume slow start, rcvwin = 3 * copied 587 * If rate increased by 50%, 588 * assume sender can use 2x growth, rcvwin = 4 * copied 589 */ 590 if (copied >= 591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 592 if (copied >= 593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 594 rcvwin <<= 1; 595 else 596 rcvwin += (rcvwin >> 1); 597 } 598 599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 600 while (tcp_win_from_space(rcvmem) < tp->advmss) 601 rcvmem += 128; 602 603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 604 if (rcvbuf > sk->sk_rcvbuf) { 605 sk->sk_rcvbuf = rcvbuf; 606 607 /* Make the window clamp follow along. */ 608 tp->window_clamp = rcvwin; 609 } 610 } 611 tp->rcvq_space.space = copied; 612 613 new_measure: 614 tp->rcvq_space.seq = tp->copied_seq; 615 tp->rcvq_space.time = tcp_time_stamp; 616 } 617 618 /* There is something which you must keep in mind when you analyze the 619 * behavior of the tp->ato delayed ack timeout interval. When a 620 * connection starts up, we want to ack as quickly as possible. The 621 * problem is that "good" TCP's do slow start at the beginning of data 622 * transmission. The means that until we send the first few ACK's the 623 * sender will sit on his end and only queue most of his data, because 624 * he can only send snd_cwnd unacked packets at any given time. For 625 * each ACK we send, he increments snd_cwnd and transmits more of his 626 * queue. -DaveM 627 */ 628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 629 { 630 struct tcp_sock *tp = tcp_sk(sk); 631 struct inet_connection_sock *icsk = inet_csk(sk); 632 u32 now; 633 634 inet_csk_schedule_ack(sk); 635 636 tcp_measure_rcv_mss(sk, skb); 637 638 tcp_rcv_rtt_measure(tp); 639 640 now = tcp_time_stamp; 641 642 if (!icsk->icsk_ack.ato) { 643 /* The _first_ data packet received, initialize 644 * delayed ACK engine. 645 */ 646 tcp_incr_quickack(sk); 647 icsk->icsk_ack.ato = TCP_ATO_MIN; 648 } else { 649 int m = now - icsk->icsk_ack.lrcvtime; 650 651 if (m <= TCP_ATO_MIN / 2) { 652 /* The fastest case is the first. */ 653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 654 } else if (m < icsk->icsk_ack.ato) { 655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 656 if (icsk->icsk_ack.ato > icsk->icsk_rto) 657 icsk->icsk_ack.ato = icsk->icsk_rto; 658 } else if (m > icsk->icsk_rto) { 659 /* Too long gap. Apparently sender failed to 660 * restart window, so that we send ACKs quickly. 661 */ 662 tcp_incr_quickack(sk); 663 sk_mem_reclaim(sk); 664 } 665 } 666 icsk->icsk_ack.lrcvtime = now; 667 668 tcp_ecn_check_ce(tp, skb); 669 670 if (skb->len >= 128) 671 tcp_grow_window(sk, skb); 672 } 673 674 /* Called to compute a smoothed rtt estimate. The data fed to this 675 * routine either comes from timestamps, or from segments that were 676 * known _not_ to have been retransmitted [see Karn/Partridge 677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 678 * piece by Van Jacobson. 679 * NOTE: the next three routines used to be one big routine. 680 * To save cycles in the RFC 1323 implementation it was better to break 681 * it up into three procedures. -- erics 682 */ 683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 684 { 685 struct tcp_sock *tp = tcp_sk(sk); 686 long m = mrtt_us; /* RTT */ 687 u32 srtt = tp->srtt_us; 688 689 /* The following amusing code comes from Jacobson's 690 * article in SIGCOMM '88. Note that rtt and mdev 691 * are scaled versions of rtt and mean deviation. 692 * This is designed to be as fast as possible 693 * m stands for "measurement". 694 * 695 * On a 1990 paper the rto value is changed to: 696 * RTO = rtt + 4 * mdev 697 * 698 * Funny. This algorithm seems to be very broken. 699 * These formulae increase RTO, when it should be decreased, increase 700 * too slowly, when it should be increased quickly, decrease too quickly 701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 702 * does not matter how to _calculate_ it. Seems, it was trap 703 * that VJ failed to avoid. 8) 704 */ 705 if (srtt != 0) { 706 m -= (srtt >> 3); /* m is now error in rtt est */ 707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 708 if (m < 0) { 709 m = -m; /* m is now abs(error) */ 710 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 711 /* This is similar to one of Eifel findings. 712 * Eifel blocks mdev updates when rtt decreases. 713 * This solution is a bit different: we use finer gain 714 * for mdev in this case (alpha*beta). 715 * Like Eifel it also prevents growth of rto, 716 * but also it limits too fast rto decreases, 717 * happening in pure Eifel. 718 */ 719 if (m > 0) 720 m >>= 3; 721 } else { 722 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 723 } 724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 725 if (tp->mdev_us > tp->mdev_max_us) { 726 tp->mdev_max_us = tp->mdev_us; 727 if (tp->mdev_max_us > tp->rttvar_us) 728 tp->rttvar_us = tp->mdev_max_us; 729 } 730 if (after(tp->snd_una, tp->rtt_seq)) { 731 if (tp->mdev_max_us < tp->rttvar_us) 732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 733 tp->rtt_seq = tp->snd_nxt; 734 tp->mdev_max_us = tcp_rto_min_us(sk); 735 } 736 } else { 737 /* no previous measure. */ 738 srtt = m << 3; /* take the measured time to be rtt */ 739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 741 tp->mdev_max_us = tp->rttvar_us; 742 tp->rtt_seq = tp->snd_nxt; 743 } 744 tp->srtt_us = max(1U, srtt); 745 } 746 747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 748 * Note: TCP stack does not yet implement pacing. 749 * FQ packet scheduler can be used to implement cheap but effective 750 * TCP pacing, to smooth the burst on large writes when packets 751 * in flight is significantly lower than cwnd (or rwin) 752 */ 753 static void tcp_update_pacing_rate(struct sock *sk) 754 { 755 const struct tcp_sock *tp = tcp_sk(sk); 756 u64 rate; 757 758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 760 761 rate *= max(tp->snd_cwnd, tp->packets_out); 762 763 if (likely(tp->srtt_us)) 764 do_div(rate, tp->srtt_us); 765 766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 767 * without any lock. We want to make sure compiler wont store 768 * intermediate values in this location. 769 */ 770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 771 sk->sk_max_pacing_rate); 772 } 773 774 /* Calculate rto without backoff. This is the second half of Van Jacobson's 775 * routine referred to above. 776 */ 777 static void tcp_set_rto(struct sock *sk) 778 { 779 const struct tcp_sock *tp = tcp_sk(sk); 780 /* Old crap is replaced with new one. 8) 781 * 782 * More seriously: 783 * 1. If rtt variance happened to be less 50msec, it is hallucination. 784 * It cannot be less due to utterly erratic ACK generation made 785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 786 * to do with delayed acks, because at cwnd>2 true delack timeout 787 * is invisible. Actually, Linux-2.4 also generates erratic 788 * ACKs in some circumstances. 789 */ 790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 791 792 /* 2. Fixups made earlier cannot be right. 793 * If we do not estimate RTO correctly without them, 794 * all the algo is pure shit and should be replaced 795 * with correct one. It is exactly, which we pretend to do. 796 */ 797 798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 799 * guarantees that rto is higher. 800 */ 801 tcp_bound_rto(sk); 802 } 803 804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 805 { 806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 807 808 if (!cwnd) 809 cwnd = TCP_INIT_CWND; 810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 811 } 812 813 /* 814 * Packet counting of FACK is based on in-order assumptions, therefore TCP 815 * disables it when reordering is detected 816 */ 817 void tcp_disable_fack(struct tcp_sock *tp) 818 { 819 /* RFC3517 uses different metric in lost marker => reset on change */ 820 if (tcp_is_fack(tp)) 821 tp->lost_skb_hint = NULL; 822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 823 } 824 825 /* Take a notice that peer is sending D-SACKs */ 826 static void tcp_dsack_seen(struct tcp_sock *tp) 827 { 828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 829 } 830 831 static void tcp_update_reordering(struct sock *sk, const int metric, 832 const int ts) 833 { 834 struct tcp_sock *tp = tcp_sk(sk); 835 if (metric > tp->reordering) { 836 int mib_idx; 837 838 tp->reordering = min(sysctl_tcp_max_reordering, metric); 839 840 /* This exciting event is worth to be remembered. 8) */ 841 if (ts) 842 mib_idx = LINUX_MIB_TCPTSREORDER; 843 else if (tcp_is_reno(tp)) 844 mib_idx = LINUX_MIB_TCPRENOREORDER; 845 else if (tcp_is_fack(tp)) 846 mib_idx = LINUX_MIB_TCPFACKREORDER; 847 else 848 mib_idx = LINUX_MIB_TCPSACKREORDER; 849 850 NET_INC_STATS_BH(sock_net(sk), mib_idx); 851 #if FASTRETRANS_DEBUG > 1 852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 854 tp->reordering, 855 tp->fackets_out, 856 tp->sacked_out, 857 tp->undo_marker ? tp->undo_retrans : 0); 858 #endif 859 tcp_disable_fack(tp); 860 } 861 862 if (metric > 0) 863 tcp_disable_early_retrans(tp); 864 } 865 866 /* This must be called before lost_out is incremented */ 867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 868 { 869 if (!tp->retransmit_skb_hint || 870 before(TCP_SKB_CB(skb)->seq, 871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 872 tp->retransmit_skb_hint = skb; 873 874 if (!tp->lost_out || 875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 877 } 878 879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 880 { 881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 882 tcp_verify_retransmit_hint(tp, skb); 883 884 tp->lost_out += tcp_skb_pcount(skb); 885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 886 } 887 } 888 889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 890 struct sk_buff *skb) 891 { 892 tcp_verify_retransmit_hint(tp, skb); 893 894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 895 tp->lost_out += tcp_skb_pcount(skb); 896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 897 } 898 } 899 900 /* This procedure tags the retransmission queue when SACKs arrive. 901 * 902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 903 * Packets in queue with these bits set are counted in variables 904 * sacked_out, retrans_out and lost_out, correspondingly. 905 * 906 * Valid combinations are: 907 * Tag InFlight Description 908 * 0 1 - orig segment is in flight. 909 * S 0 - nothing flies, orig reached receiver. 910 * L 0 - nothing flies, orig lost by net. 911 * R 2 - both orig and retransmit are in flight. 912 * L|R 1 - orig is lost, retransmit is in flight. 913 * S|R 1 - orig reached receiver, retrans is still in flight. 914 * (L|S|R is logically valid, it could occur when L|R is sacked, 915 * but it is equivalent to plain S and code short-curcuits it to S. 916 * L|S is logically invalid, it would mean -1 packet in flight 8)) 917 * 918 * These 6 states form finite state machine, controlled by the following events: 919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 921 * 3. Loss detection event of two flavors: 922 * A. Scoreboard estimator decided the packet is lost. 923 * A'. Reno "three dupacks" marks head of queue lost. 924 * A''. Its FACK modification, head until snd.fack is lost. 925 * B. SACK arrives sacking SND.NXT at the moment, when the 926 * segment was retransmitted. 927 * 4. D-SACK added new rule: D-SACK changes any tag to S. 928 * 929 * It is pleasant to note, that state diagram turns out to be commutative, 930 * so that we are allowed not to be bothered by order of our actions, 931 * when multiple events arrive simultaneously. (see the function below). 932 * 933 * Reordering detection. 934 * -------------------- 935 * Reordering metric is maximal distance, which a packet can be displaced 936 * in packet stream. With SACKs we can estimate it: 937 * 938 * 1. SACK fills old hole and the corresponding segment was not 939 * ever retransmitted -> reordering. Alas, we cannot use it 940 * when segment was retransmitted. 941 * 2. The last flaw is solved with D-SACK. D-SACK arrives 942 * for retransmitted and already SACKed segment -> reordering.. 943 * Both of these heuristics are not used in Loss state, when we cannot 944 * account for retransmits accurately. 945 * 946 * SACK block validation. 947 * ---------------------- 948 * 949 * SACK block range validation checks that the received SACK block fits to 950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 951 * Note that SND.UNA is not included to the range though being valid because 952 * it means that the receiver is rather inconsistent with itself reporting 953 * SACK reneging when it should advance SND.UNA. Such SACK block this is 954 * perfectly valid, however, in light of RFC2018 which explicitly states 955 * that "SACK block MUST reflect the newest segment. Even if the newest 956 * segment is going to be discarded ...", not that it looks very clever 957 * in case of head skb. Due to potentional receiver driven attacks, we 958 * choose to avoid immediate execution of a walk in write queue due to 959 * reneging and defer head skb's loss recovery to standard loss recovery 960 * procedure that will eventually trigger (nothing forbids us doing this). 961 * 962 * Implements also blockage to start_seq wrap-around. Problem lies in the 963 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 964 * there's no guarantee that it will be before snd_nxt (n). The problem 965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 966 * wrap (s_w): 967 * 968 * <- outs wnd -> <- wrapzone -> 969 * u e n u_w e_w s n_w 970 * | | | | | | | 971 * |<------------+------+----- TCP seqno space --------------+---------->| 972 * ...-- <2^31 ->| |<--------... 973 * ...---- >2^31 ------>| |<--------... 974 * 975 * Current code wouldn't be vulnerable but it's better still to discard such 976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 979 * equal to the ideal case (infinite seqno space without wrap caused issues). 980 * 981 * With D-SACK the lower bound is extended to cover sequence space below 982 * SND.UNA down to undo_marker, which is the last point of interest. Yet 983 * again, D-SACK block must not to go across snd_una (for the same reason as 984 * for the normal SACK blocks, explained above). But there all simplicity 985 * ends, TCP might receive valid D-SACKs below that. As long as they reside 986 * fully below undo_marker they do not affect behavior in anyway and can 987 * therefore be safely ignored. In rare cases (which are more or less 988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 989 * fragmentation and packet reordering past skb's retransmission. To consider 990 * them correctly, the acceptable range must be extended even more though 991 * the exact amount is rather hard to quantify. However, tp->max_window can 992 * be used as an exaggerated estimate. 993 */ 994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 995 u32 start_seq, u32 end_seq) 996 { 997 /* Too far in future, or reversed (interpretation is ambiguous) */ 998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 999 return false; 1000 1001 /* Nasty start_seq wrap-around check (see comments above) */ 1002 if (!before(start_seq, tp->snd_nxt)) 1003 return false; 1004 1005 /* In outstanding window? ...This is valid exit for D-SACKs too. 1006 * start_seq == snd_una is non-sensical (see comments above) 1007 */ 1008 if (after(start_seq, tp->snd_una)) 1009 return true; 1010 1011 if (!is_dsack || !tp->undo_marker) 1012 return false; 1013 1014 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1015 if (after(end_seq, tp->snd_una)) 1016 return false; 1017 1018 if (!before(start_seq, tp->undo_marker)) 1019 return true; 1020 1021 /* Too old */ 1022 if (!after(end_seq, tp->undo_marker)) 1023 return false; 1024 1025 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1026 * start_seq < undo_marker and end_seq >= undo_marker. 1027 */ 1028 return !before(start_seq, end_seq - tp->max_window); 1029 } 1030 1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1032 * Event "B". Later note: FACK people cheated me again 8), we have to account 1033 * for reordering! Ugly, but should help. 1034 * 1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1036 * less than what is now known to be received by the other end (derived from 1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1038 * retransmitted skbs to avoid some costly processing per ACKs. 1039 */ 1040 static void tcp_mark_lost_retrans(struct sock *sk) 1041 { 1042 const struct inet_connection_sock *icsk = inet_csk(sk); 1043 struct tcp_sock *tp = tcp_sk(sk); 1044 struct sk_buff *skb; 1045 int cnt = 0; 1046 u32 new_low_seq = tp->snd_nxt; 1047 u32 received_upto = tcp_highest_sack_seq(tp); 1048 1049 if (!tcp_is_fack(tp) || !tp->retrans_out || 1050 !after(received_upto, tp->lost_retrans_low) || 1051 icsk->icsk_ca_state != TCP_CA_Recovery) 1052 return; 1053 1054 tcp_for_write_queue(skb, sk) { 1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1056 1057 if (skb == tcp_send_head(sk)) 1058 break; 1059 if (cnt == tp->retrans_out) 1060 break; 1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1062 continue; 1063 1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1065 continue; 1066 1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1068 * constraint here (see above) but figuring out that at 1069 * least tp->reordering SACK blocks reside between ack_seq 1070 * and received_upto is not easy task to do cheaply with 1071 * the available datastructures. 1072 * 1073 * Whether FACK should check here for tp->reordering segs 1074 * in-between one could argue for either way (it would be 1075 * rather simple to implement as we could count fack_count 1076 * during the walk and do tp->fackets_out - fack_count). 1077 */ 1078 if (after(received_upto, ack_seq)) { 1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1080 tp->retrans_out -= tcp_skb_pcount(skb); 1081 1082 tcp_skb_mark_lost_uncond_verify(tp, skb); 1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1084 } else { 1085 if (before(ack_seq, new_low_seq)) 1086 new_low_seq = ack_seq; 1087 cnt += tcp_skb_pcount(skb); 1088 } 1089 } 1090 1091 if (tp->retrans_out) 1092 tp->lost_retrans_low = new_low_seq; 1093 } 1094 1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1096 struct tcp_sack_block_wire *sp, int num_sacks, 1097 u32 prior_snd_una) 1098 { 1099 struct tcp_sock *tp = tcp_sk(sk); 1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1102 bool dup_sack = false; 1103 1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1108 } else if (num_sacks > 1) { 1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1111 1112 if (!after(end_seq_0, end_seq_1) && 1113 !before(start_seq_0, start_seq_1)) { 1114 dup_sack = true; 1115 tcp_dsack_seen(tp); 1116 NET_INC_STATS_BH(sock_net(sk), 1117 LINUX_MIB_TCPDSACKOFORECV); 1118 } 1119 } 1120 1121 /* D-SACK for already forgotten data... Do dumb counting. */ 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1123 !after(end_seq_0, prior_snd_una) && 1124 after(end_seq_0, tp->undo_marker)) 1125 tp->undo_retrans--; 1126 1127 return dup_sack; 1128 } 1129 1130 struct tcp_sacktag_state { 1131 int reord; 1132 int fack_count; 1133 long rtt_us; /* RTT measured by SACKing never-retransmitted data */ 1134 int flag; 1135 }; 1136 1137 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1138 * the incoming SACK may not exactly match but we can find smaller MSS 1139 * aligned portion of it that matches. Therefore we might need to fragment 1140 * which may fail and creates some hassle (caller must handle error case 1141 * returns). 1142 * 1143 * FIXME: this could be merged to shift decision code 1144 */ 1145 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1146 u32 start_seq, u32 end_seq) 1147 { 1148 int err; 1149 bool in_sack; 1150 unsigned int pkt_len; 1151 unsigned int mss; 1152 1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1154 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1155 1156 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1157 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1158 mss = tcp_skb_mss(skb); 1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1160 1161 if (!in_sack) { 1162 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1163 if (pkt_len < mss) 1164 pkt_len = mss; 1165 } else { 1166 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1167 if (pkt_len < mss) 1168 return -EINVAL; 1169 } 1170 1171 /* Round if necessary so that SACKs cover only full MSSes 1172 * and/or the remaining small portion (if present) 1173 */ 1174 if (pkt_len > mss) { 1175 unsigned int new_len = (pkt_len / mss) * mss; 1176 if (!in_sack && new_len < pkt_len) { 1177 new_len += mss; 1178 if (new_len >= skb->len) 1179 return 0; 1180 } 1181 pkt_len = new_len; 1182 } 1183 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1184 if (err < 0) 1185 return err; 1186 } 1187 1188 return in_sack; 1189 } 1190 1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1192 static u8 tcp_sacktag_one(struct sock *sk, 1193 struct tcp_sacktag_state *state, u8 sacked, 1194 u32 start_seq, u32 end_seq, 1195 int dup_sack, int pcount, 1196 const struct skb_mstamp *xmit_time) 1197 { 1198 struct tcp_sock *tp = tcp_sk(sk); 1199 int fack_count = state->fack_count; 1200 1201 /* Account D-SACK for retransmitted packet. */ 1202 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1203 if (tp->undo_marker && tp->undo_retrans > 0 && 1204 after(end_seq, tp->undo_marker)) 1205 tp->undo_retrans--; 1206 if (sacked & TCPCB_SACKED_ACKED) 1207 state->reord = min(fack_count, state->reord); 1208 } 1209 1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1211 if (!after(end_seq, tp->snd_una)) 1212 return sacked; 1213 1214 if (!(sacked & TCPCB_SACKED_ACKED)) { 1215 if (sacked & TCPCB_SACKED_RETRANS) { 1216 /* If the segment is not tagged as lost, 1217 * we do not clear RETRANS, believing 1218 * that retransmission is still in flight. 1219 */ 1220 if (sacked & TCPCB_LOST) { 1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1222 tp->lost_out -= pcount; 1223 tp->retrans_out -= pcount; 1224 } 1225 } else { 1226 if (!(sacked & TCPCB_RETRANS)) { 1227 /* New sack for not retransmitted frame, 1228 * which was in hole. It is reordering. 1229 */ 1230 if (before(start_seq, 1231 tcp_highest_sack_seq(tp))) 1232 state->reord = min(fack_count, 1233 state->reord); 1234 if (!after(end_seq, tp->high_seq)) 1235 state->flag |= FLAG_ORIG_SACK_ACKED; 1236 /* Pick the earliest sequence sacked for RTT */ 1237 if (state->rtt_us < 0) { 1238 struct skb_mstamp now; 1239 1240 skb_mstamp_get(&now); 1241 state->rtt_us = skb_mstamp_us_delta(&now, 1242 xmit_time); 1243 } 1244 } 1245 1246 if (sacked & TCPCB_LOST) { 1247 sacked &= ~TCPCB_LOST; 1248 tp->lost_out -= pcount; 1249 } 1250 } 1251 1252 sacked |= TCPCB_SACKED_ACKED; 1253 state->flag |= FLAG_DATA_SACKED; 1254 tp->sacked_out += pcount; 1255 1256 fack_count += pcount; 1257 1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1259 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1261 tp->lost_cnt_hint += pcount; 1262 1263 if (fack_count > tp->fackets_out) 1264 tp->fackets_out = fack_count; 1265 } 1266 1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1268 * frames and clear it. undo_retrans is decreased above, L|R frames 1269 * are accounted above as well. 1270 */ 1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1272 sacked &= ~TCPCB_SACKED_RETRANS; 1273 tp->retrans_out -= pcount; 1274 } 1275 1276 return sacked; 1277 } 1278 1279 /* Shift newly-SACKed bytes from this skb to the immediately previous 1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1281 */ 1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1283 struct tcp_sacktag_state *state, 1284 unsigned int pcount, int shifted, int mss, 1285 bool dup_sack) 1286 { 1287 struct tcp_sock *tp = tcp_sk(sk); 1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1291 1292 BUG_ON(!pcount); 1293 1294 /* Adjust counters and hints for the newly sacked sequence 1295 * range but discard the return value since prev is already 1296 * marked. We must tag the range first because the seq 1297 * advancement below implicitly advances 1298 * tcp_highest_sack_seq() when skb is highest_sack. 1299 */ 1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1301 start_seq, end_seq, dup_sack, pcount, 1302 &skb->skb_mstamp); 1303 1304 if (skb == tp->lost_skb_hint) 1305 tp->lost_cnt_hint += pcount; 1306 1307 TCP_SKB_CB(prev)->end_seq += shifted; 1308 TCP_SKB_CB(skb)->seq += shifted; 1309 1310 tcp_skb_pcount_add(prev, pcount); 1311 BUG_ON(tcp_skb_pcount(skb) < pcount); 1312 tcp_skb_pcount_add(skb, -pcount); 1313 1314 /* When we're adding to gso_segs == 1, gso_size will be zero, 1315 * in theory this shouldn't be necessary but as long as DSACK 1316 * code can come after this skb later on it's better to keep 1317 * setting gso_size to something. 1318 */ 1319 if (!skb_shinfo(prev)->gso_size) { 1320 skb_shinfo(prev)->gso_size = mss; 1321 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1322 } 1323 1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1325 if (tcp_skb_pcount(skb) <= 1) { 1326 skb_shinfo(skb)->gso_size = 0; 1327 skb_shinfo(skb)->gso_type = 0; 1328 } 1329 1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1332 1333 if (skb->len > 0) { 1334 BUG_ON(!tcp_skb_pcount(skb)); 1335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1336 return false; 1337 } 1338 1339 /* Whole SKB was eaten :-) */ 1340 1341 if (skb == tp->retransmit_skb_hint) 1342 tp->retransmit_skb_hint = prev; 1343 if (skb == tp->lost_skb_hint) { 1344 tp->lost_skb_hint = prev; 1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1346 } 1347 1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1350 TCP_SKB_CB(prev)->end_seq++; 1351 1352 if (skb == tcp_highest_sack(sk)) 1353 tcp_advance_highest_sack(sk, skb); 1354 1355 tcp_unlink_write_queue(skb, sk); 1356 sk_wmem_free_skb(sk, skb); 1357 1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1359 1360 return true; 1361 } 1362 1363 /* I wish gso_size would have a bit more sane initialization than 1364 * something-or-zero which complicates things 1365 */ 1366 static int tcp_skb_seglen(const struct sk_buff *skb) 1367 { 1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1369 } 1370 1371 /* Shifting pages past head area doesn't work */ 1372 static int skb_can_shift(const struct sk_buff *skb) 1373 { 1374 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1375 } 1376 1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1378 * skb. 1379 */ 1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1381 struct tcp_sacktag_state *state, 1382 u32 start_seq, u32 end_seq, 1383 bool dup_sack) 1384 { 1385 struct tcp_sock *tp = tcp_sk(sk); 1386 struct sk_buff *prev; 1387 int mss; 1388 int pcount = 0; 1389 int len; 1390 int in_sack; 1391 1392 if (!sk_can_gso(sk)) 1393 goto fallback; 1394 1395 /* Normally R but no L won't result in plain S */ 1396 if (!dup_sack && 1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1398 goto fallback; 1399 if (!skb_can_shift(skb)) 1400 goto fallback; 1401 /* This frame is about to be dropped (was ACKed). */ 1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1403 goto fallback; 1404 1405 /* Can only happen with delayed DSACK + discard craziness */ 1406 if (unlikely(skb == tcp_write_queue_head(sk))) 1407 goto fallback; 1408 prev = tcp_write_queue_prev(sk, skb); 1409 1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1411 goto fallback; 1412 1413 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1414 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1415 1416 if (in_sack) { 1417 len = skb->len; 1418 pcount = tcp_skb_pcount(skb); 1419 mss = tcp_skb_seglen(skb); 1420 1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1422 * drop this restriction as unnecessary 1423 */ 1424 if (mss != tcp_skb_seglen(prev)) 1425 goto fallback; 1426 } else { 1427 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1428 goto noop; 1429 /* CHECKME: This is non-MSS split case only?, this will 1430 * cause skipped skbs due to advancing loop btw, original 1431 * has that feature too 1432 */ 1433 if (tcp_skb_pcount(skb) <= 1) 1434 goto noop; 1435 1436 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1437 if (!in_sack) { 1438 /* TODO: head merge to next could be attempted here 1439 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1440 * though it might not be worth of the additional hassle 1441 * 1442 * ...we can probably just fallback to what was done 1443 * previously. We could try merging non-SACKed ones 1444 * as well but it probably isn't going to buy off 1445 * because later SACKs might again split them, and 1446 * it would make skb timestamp tracking considerably 1447 * harder problem. 1448 */ 1449 goto fallback; 1450 } 1451 1452 len = end_seq - TCP_SKB_CB(skb)->seq; 1453 BUG_ON(len < 0); 1454 BUG_ON(len > skb->len); 1455 1456 /* MSS boundaries should be honoured or else pcount will 1457 * severely break even though it makes things bit trickier. 1458 * Optimize common case to avoid most of the divides 1459 */ 1460 mss = tcp_skb_mss(skb); 1461 1462 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1463 * drop this restriction as unnecessary 1464 */ 1465 if (mss != tcp_skb_seglen(prev)) 1466 goto fallback; 1467 1468 if (len == mss) { 1469 pcount = 1; 1470 } else if (len < mss) { 1471 goto noop; 1472 } else { 1473 pcount = len / mss; 1474 len = pcount * mss; 1475 } 1476 } 1477 1478 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1479 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1480 goto fallback; 1481 1482 if (!skb_shift(prev, skb, len)) 1483 goto fallback; 1484 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1485 goto out; 1486 1487 /* Hole filled allows collapsing with the next as well, this is very 1488 * useful when hole on every nth skb pattern happens 1489 */ 1490 if (prev == tcp_write_queue_tail(sk)) 1491 goto out; 1492 skb = tcp_write_queue_next(sk, prev); 1493 1494 if (!skb_can_shift(skb) || 1495 (skb == tcp_send_head(sk)) || 1496 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1497 (mss != tcp_skb_seglen(skb))) 1498 goto out; 1499 1500 len = skb->len; 1501 if (skb_shift(prev, skb, len)) { 1502 pcount += tcp_skb_pcount(skb); 1503 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1504 } 1505 1506 out: 1507 state->fack_count += pcount; 1508 return prev; 1509 1510 noop: 1511 return skb; 1512 1513 fallback: 1514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1515 return NULL; 1516 } 1517 1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1519 struct tcp_sack_block *next_dup, 1520 struct tcp_sacktag_state *state, 1521 u32 start_seq, u32 end_seq, 1522 bool dup_sack_in) 1523 { 1524 struct tcp_sock *tp = tcp_sk(sk); 1525 struct sk_buff *tmp; 1526 1527 tcp_for_write_queue_from(skb, sk) { 1528 int in_sack = 0; 1529 bool dup_sack = dup_sack_in; 1530 1531 if (skb == tcp_send_head(sk)) 1532 break; 1533 1534 /* queue is in-order => we can short-circuit the walk early */ 1535 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1536 break; 1537 1538 if (next_dup && 1539 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1540 in_sack = tcp_match_skb_to_sack(sk, skb, 1541 next_dup->start_seq, 1542 next_dup->end_seq); 1543 if (in_sack > 0) 1544 dup_sack = true; 1545 } 1546 1547 /* skb reference here is a bit tricky to get right, since 1548 * shifting can eat and free both this skb and the next, 1549 * so not even _safe variant of the loop is enough. 1550 */ 1551 if (in_sack <= 0) { 1552 tmp = tcp_shift_skb_data(sk, skb, state, 1553 start_seq, end_seq, dup_sack); 1554 if (tmp) { 1555 if (tmp != skb) { 1556 skb = tmp; 1557 continue; 1558 } 1559 1560 in_sack = 0; 1561 } else { 1562 in_sack = tcp_match_skb_to_sack(sk, skb, 1563 start_seq, 1564 end_seq); 1565 } 1566 } 1567 1568 if (unlikely(in_sack < 0)) 1569 break; 1570 1571 if (in_sack) { 1572 TCP_SKB_CB(skb)->sacked = 1573 tcp_sacktag_one(sk, 1574 state, 1575 TCP_SKB_CB(skb)->sacked, 1576 TCP_SKB_CB(skb)->seq, 1577 TCP_SKB_CB(skb)->end_seq, 1578 dup_sack, 1579 tcp_skb_pcount(skb), 1580 &skb->skb_mstamp); 1581 1582 if (!before(TCP_SKB_CB(skb)->seq, 1583 tcp_highest_sack_seq(tp))) 1584 tcp_advance_highest_sack(sk, skb); 1585 } 1586 1587 state->fack_count += tcp_skb_pcount(skb); 1588 } 1589 return skb; 1590 } 1591 1592 /* Avoid all extra work that is being done by sacktag while walking in 1593 * a normal way 1594 */ 1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1596 struct tcp_sacktag_state *state, 1597 u32 skip_to_seq) 1598 { 1599 tcp_for_write_queue_from(skb, sk) { 1600 if (skb == tcp_send_head(sk)) 1601 break; 1602 1603 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1604 break; 1605 1606 state->fack_count += tcp_skb_pcount(skb); 1607 } 1608 return skb; 1609 } 1610 1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1612 struct sock *sk, 1613 struct tcp_sack_block *next_dup, 1614 struct tcp_sacktag_state *state, 1615 u32 skip_to_seq) 1616 { 1617 if (!next_dup) 1618 return skb; 1619 1620 if (before(next_dup->start_seq, skip_to_seq)) { 1621 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1622 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1623 next_dup->start_seq, next_dup->end_seq, 1624 1); 1625 } 1626 1627 return skb; 1628 } 1629 1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1631 { 1632 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1633 } 1634 1635 static int 1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1637 u32 prior_snd_una, long *sack_rtt_us) 1638 { 1639 struct tcp_sock *tp = tcp_sk(sk); 1640 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1641 TCP_SKB_CB(ack_skb)->sacked); 1642 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1643 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1644 struct tcp_sack_block *cache; 1645 struct tcp_sacktag_state state; 1646 struct sk_buff *skb; 1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1648 int used_sacks; 1649 bool found_dup_sack = false; 1650 int i, j; 1651 int first_sack_index; 1652 1653 state.flag = 0; 1654 state.reord = tp->packets_out; 1655 state.rtt_us = -1L; 1656 1657 if (!tp->sacked_out) { 1658 if (WARN_ON(tp->fackets_out)) 1659 tp->fackets_out = 0; 1660 tcp_highest_sack_reset(sk); 1661 } 1662 1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1664 num_sacks, prior_snd_una); 1665 if (found_dup_sack) 1666 state.flag |= FLAG_DSACKING_ACK; 1667 1668 /* Eliminate too old ACKs, but take into 1669 * account more or less fresh ones, they can 1670 * contain valid SACK info. 1671 */ 1672 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1673 return 0; 1674 1675 if (!tp->packets_out) 1676 goto out; 1677 1678 used_sacks = 0; 1679 first_sack_index = 0; 1680 for (i = 0; i < num_sacks; i++) { 1681 bool dup_sack = !i && found_dup_sack; 1682 1683 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1684 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1685 1686 if (!tcp_is_sackblock_valid(tp, dup_sack, 1687 sp[used_sacks].start_seq, 1688 sp[used_sacks].end_seq)) { 1689 int mib_idx; 1690 1691 if (dup_sack) { 1692 if (!tp->undo_marker) 1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1694 else 1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1696 } else { 1697 /* Don't count olds caused by ACK reordering */ 1698 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1699 !after(sp[used_sacks].end_seq, tp->snd_una)) 1700 continue; 1701 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1702 } 1703 1704 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1705 if (i == 0) 1706 first_sack_index = -1; 1707 continue; 1708 } 1709 1710 /* Ignore very old stuff early */ 1711 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1712 continue; 1713 1714 used_sacks++; 1715 } 1716 1717 /* order SACK blocks to allow in order walk of the retrans queue */ 1718 for (i = used_sacks - 1; i > 0; i--) { 1719 for (j = 0; j < i; j++) { 1720 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1721 swap(sp[j], sp[j + 1]); 1722 1723 /* Track where the first SACK block goes to */ 1724 if (j == first_sack_index) 1725 first_sack_index = j + 1; 1726 } 1727 } 1728 } 1729 1730 skb = tcp_write_queue_head(sk); 1731 state.fack_count = 0; 1732 i = 0; 1733 1734 if (!tp->sacked_out) { 1735 /* It's already past, so skip checking against it */ 1736 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1737 } else { 1738 cache = tp->recv_sack_cache; 1739 /* Skip empty blocks in at head of the cache */ 1740 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1741 !cache->end_seq) 1742 cache++; 1743 } 1744 1745 while (i < used_sacks) { 1746 u32 start_seq = sp[i].start_seq; 1747 u32 end_seq = sp[i].end_seq; 1748 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1749 struct tcp_sack_block *next_dup = NULL; 1750 1751 if (found_dup_sack && ((i + 1) == first_sack_index)) 1752 next_dup = &sp[i + 1]; 1753 1754 /* Skip too early cached blocks */ 1755 while (tcp_sack_cache_ok(tp, cache) && 1756 !before(start_seq, cache->end_seq)) 1757 cache++; 1758 1759 /* Can skip some work by looking recv_sack_cache? */ 1760 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1761 after(end_seq, cache->start_seq)) { 1762 1763 /* Head todo? */ 1764 if (before(start_seq, cache->start_seq)) { 1765 skb = tcp_sacktag_skip(skb, sk, &state, 1766 start_seq); 1767 skb = tcp_sacktag_walk(skb, sk, next_dup, 1768 &state, 1769 start_seq, 1770 cache->start_seq, 1771 dup_sack); 1772 } 1773 1774 /* Rest of the block already fully processed? */ 1775 if (!after(end_seq, cache->end_seq)) 1776 goto advance_sp; 1777 1778 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1779 &state, 1780 cache->end_seq); 1781 1782 /* ...tail remains todo... */ 1783 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1784 /* ...but better entrypoint exists! */ 1785 skb = tcp_highest_sack(sk); 1786 if (!skb) 1787 break; 1788 state.fack_count = tp->fackets_out; 1789 cache++; 1790 goto walk; 1791 } 1792 1793 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1794 /* Check overlap against next cached too (past this one already) */ 1795 cache++; 1796 continue; 1797 } 1798 1799 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1800 skb = tcp_highest_sack(sk); 1801 if (!skb) 1802 break; 1803 state.fack_count = tp->fackets_out; 1804 } 1805 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1806 1807 walk: 1808 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1809 start_seq, end_seq, dup_sack); 1810 1811 advance_sp: 1812 i++; 1813 } 1814 1815 /* Clear the head of the cache sack blocks so we can skip it next time */ 1816 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1817 tp->recv_sack_cache[i].start_seq = 0; 1818 tp->recv_sack_cache[i].end_seq = 0; 1819 } 1820 for (j = 0; j < used_sacks; j++) 1821 tp->recv_sack_cache[i++] = sp[j]; 1822 1823 tcp_mark_lost_retrans(sk); 1824 1825 tcp_verify_left_out(tp); 1826 1827 if ((state.reord < tp->fackets_out) && 1828 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1829 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1830 1831 out: 1832 1833 #if FASTRETRANS_DEBUG > 0 1834 WARN_ON((int)tp->sacked_out < 0); 1835 WARN_ON((int)tp->lost_out < 0); 1836 WARN_ON((int)tp->retrans_out < 0); 1837 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1838 #endif 1839 *sack_rtt_us = state.rtt_us; 1840 return state.flag; 1841 } 1842 1843 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1844 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1845 */ 1846 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1847 { 1848 u32 holes; 1849 1850 holes = max(tp->lost_out, 1U); 1851 holes = min(holes, tp->packets_out); 1852 1853 if ((tp->sacked_out + holes) > tp->packets_out) { 1854 tp->sacked_out = tp->packets_out - holes; 1855 return true; 1856 } 1857 return false; 1858 } 1859 1860 /* If we receive more dupacks than we expected counting segments 1861 * in assumption of absent reordering, interpret this as reordering. 1862 * The only another reason could be bug in receiver TCP. 1863 */ 1864 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1865 { 1866 struct tcp_sock *tp = tcp_sk(sk); 1867 if (tcp_limit_reno_sacked(tp)) 1868 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1869 } 1870 1871 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1872 1873 static void tcp_add_reno_sack(struct sock *sk) 1874 { 1875 struct tcp_sock *tp = tcp_sk(sk); 1876 tp->sacked_out++; 1877 tcp_check_reno_reordering(sk, 0); 1878 tcp_verify_left_out(tp); 1879 } 1880 1881 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1882 1883 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1884 { 1885 struct tcp_sock *tp = tcp_sk(sk); 1886 1887 if (acked > 0) { 1888 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1889 if (acked - 1 >= tp->sacked_out) 1890 tp->sacked_out = 0; 1891 else 1892 tp->sacked_out -= acked - 1; 1893 } 1894 tcp_check_reno_reordering(sk, acked); 1895 tcp_verify_left_out(tp); 1896 } 1897 1898 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1899 { 1900 tp->sacked_out = 0; 1901 } 1902 1903 void tcp_clear_retrans(struct tcp_sock *tp) 1904 { 1905 tp->retrans_out = 0; 1906 tp->lost_out = 0; 1907 tp->undo_marker = 0; 1908 tp->undo_retrans = -1; 1909 tp->fackets_out = 0; 1910 tp->sacked_out = 0; 1911 } 1912 1913 static inline void tcp_init_undo(struct tcp_sock *tp) 1914 { 1915 tp->undo_marker = tp->snd_una; 1916 /* Retransmission still in flight may cause DSACKs later. */ 1917 tp->undo_retrans = tp->retrans_out ? : -1; 1918 } 1919 1920 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1921 * and reset tags completely, otherwise preserve SACKs. If receiver 1922 * dropped its ofo queue, we will know this due to reneging detection. 1923 */ 1924 void tcp_enter_loss(struct sock *sk) 1925 { 1926 const struct inet_connection_sock *icsk = inet_csk(sk); 1927 struct tcp_sock *tp = tcp_sk(sk); 1928 struct sk_buff *skb; 1929 bool new_recovery = false; 1930 bool is_reneg; /* is receiver reneging on SACKs? */ 1931 1932 /* Reduce ssthresh if it has not yet been made inside this window. */ 1933 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1934 !after(tp->high_seq, tp->snd_una) || 1935 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1936 new_recovery = true; 1937 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1938 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1939 tcp_ca_event(sk, CA_EVENT_LOSS); 1940 tcp_init_undo(tp); 1941 } 1942 tp->snd_cwnd = 1; 1943 tp->snd_cwnd_cnt = 0; 1944 tp->snd_cwnd_stamp = tcp_time_stamp; 1945 1946 tp->retrans_out = 0; 1947 tp->lost_out = 0; 1948 1949 if (tcp_is_reno(tp)) 1950 tcp_reset_reno_sack(tp); 1951 1952 skb = tcp_write_queue_head(sk); 1953 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1954 if (is_reneg) { 1955 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1956 tp->sacked_out = 0; 1957 tp->fackets_out = 0; 1958 } 1959 tcp_clear_all_retrans_hints(tp); 1960 1961 tcp_for_write_queue(skb, sk) { 1962 if (skb == tcp_send_head(sk)) 1963 break; 1964 1965 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1966 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1967 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1968 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1969 tp->lost_out += tcp_skb_pcount(skb); 1970 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1971 } 1972 } 1973 tcp_verify_left_out(tp); 1974 1975 /* Timeout in disordered state after receiving substantial DUPACKs 1976 * suggests that the degree of reordering is over-estimated. 1977 */ 1978 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1979 tp->sacked_out >= sysctl_tcp_reordering) 1980 tp->reordering = min_t(unsigned int, tp->reordering, 1981 sysctl_tcp_reordering); 1982 tcp_set_ca_state(sk, TCP_CA_Loss); 1983 tp->high_seq = tp->snd_nxt; 1984 tcp_ecn_queue_cwr(tp); 1985 1986 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1987 * loss recovery is underway except recurring timeout(s) on 1988 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1989 */ 1990 tp->frto = sysctl_tcp_frto && 1991 (new_recovery || icsk->icsk_retransmits) && 1992 !inet_csk(sk)->icsk_mtup.probe_size; 1993 } 1994 1995 /* If ACK arrived pointing to a remembered SACK, it means that our 1996 * remembered SACKs do not reflect real state of receiver i.e. 1997 * receiver _host_ is heavily congested (or buggy). 1998 * 1999 * To avoid big spurious retransmission bursts due to transient SACK 2000 * scoreboard oddities that look like reneging, we give the receiver a 2001 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2002 * restore sanity to the SACK scoreboard. If the apparent reneging 2003 * persists until this RTO then we'll clear the SACK scoreboard. 2004 */ 2005 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2006 { 2007 if (flag & FLAG_SACK_RENEGING) { 2008 struct tcp_sock *tp = tcp_sk(sk); 2009 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2010 msecs_to_jiffies(10)); 2011 2012 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2013 delay, TCP_RTO_MAX); 2014 return true; 2015 } 2016 return false; 2017 } 2018 2019 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2020 { 2021 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2022 } 2023 2024 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2025 * counter when SACK is enabled (without SACK, sacked_out is used for 2026 * that purpose). 2027 * 2028 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2029 * segments up to the highest received SACK block so far and holes in 2030 * between them. 2031 * 2032 * With reordering, holes may still be in flight, so RFC3517 recovery 2033 * uses pure sacked_out (total number of SACKed segments) even though 2034 * it violates the RFC that uses duplicate ACKs, often these are equal 2035 * but when e.g. out-of-window ACKs or packet duplication occurs, 2036 * they differ. Since neither occurs due to loss, TCP should really 2037 * ignore them. 2038 */ 2039 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2040 { 2041 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2042 } 2043 2044 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2045 { 2046 struct tcp_sock *tp = tcp_sk(sk); 2047 unsigned long delay; 2048 2049 /* Delay early retransmit and entering fast recovery for 2050 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2051 * available, or RTO is scheduled to fire first. 2052 */ 2053 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2054 (flag & FLAG_ECE) || !tp->srtt_us) 2055 return false; 2056 2057 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2058 msecs_to_jiffies(2)); 2059 2060 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2061 return false; 2062 2063 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2064 TCP_RTO_MAX); 2065 return true; 2066 } 2067 2068 /* Linux NewReno/SACK/FACK/ECN state machine. 2069 * -------------------------------------- 2070 * 2071 * "Open" Normal state, no dubious events, fast path. 2072 * "Disorder" In all the respects it is "Open", 2073 * but requires a bit more attention. It is entered when 2074 * we see some SACKs or dupacks. It is split of "Open" 2075 * mainly to move some processing from fast path to slow one. 2076 * "CWR" CWND was reduced due to some Congestion Notification event. 2077 * It can be ECN, ICMP source quench, local device congestion. 2078 * "Recovery" CWND was reduced, we are fast-retransmitting. 2079 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2080 * 2081 * tcp_fastretrans_alert() is entered: 2082 * - each incoming ACK, if state is not "Open" 2083 * - when arrived ACK is unusual, namely: 2084 * * SACK 2085 * * Duplicate ACK. 2086 * * ECN ECE. 2087 * 2088 * Counting packets in flight is pretty simple. 2089 * 2090 * in_flight = packets_out - left_out + retrans_out 2091 * 2092 * packets_out is SND.NXT-SND.UNA counted in packets. 2093 * 2094 * retrans_out is number of retransmitted segments. 2095 * 2096 * left_out is number of segments left network, but not ACKed yet. 2097 * 2098 * left_out = sacked_out + lost_out 2099 * 2100 * sacked_out: Packets, which arrived to receiver out of order 2101 * and hence not ACKed. With SACKs this number is simply 2102 * amount of SACKed data. Even without SACKs 2103 * it is easy to give pretty reliable estimate of this number, 2104 * counting duplicate ACKs. 2105 * 2106 * lost_out: Packets lost by network. TCP has no explicit 2107 * "loss notification" feedback from network (for now). 2108 * It means that this number can be only _guessed_. 2109 * Actually, it is the heuristics to predict lossage that 2110 * distinguishes different algorithms. 2111 * 2112 * F.e. after RTO, when all the queue is considered as lost, 2113 * lost_out = packets_out and in_flight = retrans_out. 2114 * 2115 * Essentially, we have now two algorithms counting 2116 * lost packets. 2117 * 2118 * FACK: It is the simplest heuristics. As soon as we decided 2119 * that something is lost, we decide that _all_ not SACKed 2120 * packets until the most forward SACK are lost. I.e. 2121 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2122 * It is absolutely correct estimate, if network does not reorder 2123 * packets. And it loses any connection to reality when reordering 2124 * takes place. We use FACK by default until reordering 2125 * is suspected on the path to this destination. 2126 * 2127 * NewReno: when Recovery is entered, we assume that one segment 2128 * is lost (classic Reno). While we are in Recovery and 2129 * a partial ACK arrives, we assume that one more packet 2130 * is lost (NewReno). This heuristics are the same in NewReno 2131 * and SACK. 2132 * 2133 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2134 * deflation etc. CWND is real congestion window, never inflated, changes 2135 * only according to classic VJ rules. 2136 * 2137 * Really tricky (and requiring careful tuning) part of algorithm 2138 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2139 * The first determines the moment _when_ we should reduce CWND and, 2140 * hence, slow down forward transmission. In fact, it determines the moment 2141 * when we decide that hole is caused by loss, rather than by a reorder. 2142 * 2143 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2144 * holes, caused by lost packets. 2145 * 2146 * And the most logically complicated part of algorithm is undo 2147 * heuristics. We detect false retransmits due to both too early 2148 * fast retransmit (reordering) and underestimated RTO, analyzing 2149 * timestamps and D-SACKs. When we detect that some segments were 2150 * retransmitted by mistake and CWND reduction was wrong, we undo 2151 * window reduction and abort recovery phase. This logic is hidden 2152 * inside several functions named tcp_try_undo_<something>. 2153 */ 2154 2155 /* This function decides, when we should leave Disordered state 2156 * and enter Recovery phase, reducing congestion window. 2157 * 2158 * Main question: may we further continue forward transmission 2159 * with the same cwnd? 2160 */ 2161 static bool tcp_time_to_recover(struct sock *sk, int flag) 2162 { 2163 struct tcp_sock *tp = tcp_sk(sk); 2164 __u32 packets_out; 2165 2166 /* Trick#1: The loss is proven. */ 2167 if (tp->lost_out) 2168 return true; 2169 2170 /* Not-A-Trick#2 : Classic rule... */ 2171 if (tcp_dupack_heuristics(tp) > tp->reordering) 2172 return true; 2173 2174 /* Trick#4: It is still not OK... But will it be useful to delay 2175 * recovery more? 2176 */ 2177 packets_out = tp->packets_out; 2178 if (packets_out <= tp->reordering && 2179 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2180 !tcp_may_send_now(sk)) { 2181 /* We have nothing to send. This connection is limited 2182 * either by receiver window or by application. 2183 */ 2184 return true; 2185 } 2186 2187 /* If a thin stream is detected, retransmit after first 2188 * received dupack. Employ only if SACK is supported in order 2189 * to avoid possible corner-case series of spurious retransmissions 2190 * Use only if there are no unsent data. 2191 */ 2192 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2193 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2194 tcp_is_sack(tp) && !tcp_send_head(sk)) 2195 return true; 2196 2197 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2198 * retransmissions due to small network reorderings, we implement 2199 * Mitigation A.3 in the RFC and delay the retransmission for a short 2200 * interval if appropriate. 2201 */ 2202 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2203 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2204 !tcp_may_send_now(sk)) 2205 return !tcp_pause_early_retransmit(sk, flag); 2206 2207 return false; 2208 } 2209 2210 /* Detect loss in event "A" above by marking head of queue up as lost. 2211 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2212 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2213 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2214 * the maximum SACKed segments to pass before reaching this limit. 2215 */ 2216 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2217 { 2218 struct tcp_sock *tp = tcp_sk(sk); 2219 struct sk_buff *skb; 2220 int cnt, oldcnt; 2221 int err; 2222 unsigned int mss; 2223 /* Use SACK to deduce losses of new sequences sent during recovery */ 2224 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2225 2226 WARN_ON(packets > tp->packets_out); 2227 if (tp->lost_skb_hint) { 2228 skb = tp->lost_skb_hint; 2229 cnt = tp->lost_cnt_hint; 2230 /* Head already handled? */ 2231 if (mark_head && skb != tcp_write_queue_head(sk)) 2232 return; 2233 } else { 2234 skb = tcp_write_queue_head(sk); 2235 cnt = 0; 2236 } 2237 2238 tcp_for_write_queue_from(skb, sk) { 2239 if (skb == tcp_send_head(sk)) 2240 break; 2241 /* TODO: do this better */ 2242 /* this is not the most efficient way to do this... */ 2243 tp->lost_skb_hint = skb; 2244 tp->lost_cnt_hint = cnt; 2245 2246 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2247 break; 2248 2249 oldcnt = cnt; 2250 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2251 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2252 cnt += tcp_skb_pcount(skb); 2253 2254 if (cnt > packets) { 2255 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2256 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2257 (oldcnt >= packets)) 2258 break; 2259 2260 mss = skb_shinfo(skb)->gso_size; 2261 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2262 mss, GFP_ATOMIC); 2263 if (err < 0) 2264 break; 2265 cnt = packets; 2266 } 2267 2268 tcp_skb_mark_lost(tp, skb); 2269 2270 if (mark_head) 2271 break; 2272 } 2273 tcp_verify_left_out(tp); 2274 } 2275 2276 /* Account newly detected lost packet(s) */ 2277 2278 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2279 { 2280 struct tcp_sock *tp = tcp_sk(sk); 2281 2282 if (tcp_is_reno(tp)) { 2283 tcp_mark_head_lost(sk, 1, 1); 2284 } else if (tcp_is_fack(tp)) { 2285 int lost = tp->fackets_out - tp->reordering; 2286 if (lost <= 0) 2287 lost = 1; 2288 tcp_mark_head_lost(sk, lost, 0); 2289 } else { 2290 int sacked_upto = tp->sacked_out - tp->reordering; 2291 if (sacked_upto >= 0) 2292 tcp_mark_head_lost(sk, sacked_upto, 0); 2293 else if (fast_rexmit) 2294 tcp_mark_head_lost(sk, 1, 1); 2295 } 2296 } 2297 2298 /* CWND moderation, preventing bursts due to too big ACKs 2299 * in dubious situations. 2300 */ 2301 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2302 { 2303 tp->snd_cwnd = min(tp->snd_cwnd, 2304 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2305 tp->snd_cwnd_stamp = tcp_time_stamp; 2306 } 2307 2308 /* Nothing was retransmitted or returned timestamp is less 2309 * than timestamp of the first retransmission. 2310 */ 2311 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2312 { 2313 return !tp->retrans_stamp || 2314 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2315 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2316 } 2317 2318 /* Undo procedures. */ 2319 2320 /* We can clear retrans_stamp when there are no retransmissions in the 2321 * window. It would seem that it is trivially available for us in 2322 * tp->retrans_out, however, that kind of assumptions doesn't consider 2323 * what will happen if errors occur when sending retransmission for the 2324 * second time. ...It could the that such segment has only 2325 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2326 * the head skb is enough except for some reneging corner cases that 2327 * are not worth the effort. 2328 * 2329 * Main reason for all this complexity is the fact that connection dying 2330 * time now depends on the validity of the retrans_stamp, in particular, 2331 * that successive retransmissions of a segment must not advance 2332 * retrans_stamp under any conditions. 2333 */ 2334 static bool tcp_any_retrans_done(const struct sock *sk) 2335 { 2336 const struct tcp_sock *tp = tcp_sk(sk); 2337 struct sk_buff *skb; 2338 2339 if (tp->retrans_out) 2340 return true; 2341 2342 skb = tcp_write_queue_head(sk); 2343 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2344 return true; 2345 2346 return false; 2347 } 2348 2349 #if FASTRETRANS_DEBUG > 1 2350 static void DBGUNDO(struct sock *sk, const char *msg) 2351 { 2352 struct tcp_sock *tp = tcp_sk(sk); 2353 struct inet_sock *inet = inet_sk(sk); 2354 2355 if (sk->sk_family == AF_INET) { 2356 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2357 msg, 2358 &inet->inet_daddr, ntohs(inet->inet_dport), 2359 tp->snd_cwnd, tcp_left_out(tp), 2360 tp->snd_ssthresh, tp->prior_ssthresh, 2361 tp->packets_out); 2362 } 2363 #if IS_ENABLED(CONFIG_IPV6) 2364 else if (sk->sk_family == AF_INET6) { 2365 struct ipv6_pinfo *np = inet6_sk(sk); 2366 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2367 msg, 2368 &np->daddr, ntohs(inet->inet_dport), 2369 tp->snd_cwnd, tcp_left_out(tp), 2370 tp->snd_ssthresh, tp->prior_ssthresh, 2371 tp->packets_out); 2372 } 2373 #endif 2374 } 2375 #else 2376 #define DBGUNDO(x...) do { } while (0) 2377 #endif 2378 2379 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 2383 if (unmark_loss) { 2384 struct sk_buff *skb; 2385 2386 tcp_for_write_queue(skb, sk) { 2387 if (skb == tcp_send_head(sk)) 2388 break; 2389 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2390 } 2391 tp->lost_out = 0; 2392 tcp_clear_all_retrans_hints(tp); 2393 } 2394 2395 if (tp->prior_ssthresh) { 2396 const struct inet_connection_sock *icsk = inet_csk(sk); 2397 2398 if (icsk->icsk_ca_ops->undo_cwnd) 2399 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2400 else 2401 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2402 2403 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2404 tp->snd_ssthresh = tp->prior_ssthresh; 2405 tcp_ecn_withdraw_cwr(tp); 2406 } 2407 } else { 2408 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2409 } 2410 tp->snd_cwnd_stamp = tcp_time_stamp; 2411 tp->undo_marker = 0; 2412 } 2413 2414 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2415 { 2416 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2417 } 2418 2419 /* People celebrate: "We love our President!" */ 2420 static bool tcp_try_undo_recovery(struct sock *sk) 2421 { 2422 struct tcp_sock *tp = tcp_sk(sk); 2423 2424 if (tcp_may_undo(tp)) { 2425 int mib_idx; 2426 2427 /* Happy end! We did not retransmit anything 2428 * or our original transmission succeeded. 2429 */ 2430 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2431 tcp_undo_cwnd_reduction(sk, false); 2432 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2433 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2434 else 2435 mib_idx = LINUX_MIB_TCPFULLUNDO; 2436 2437 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2438 } 2439 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2440 /* Hold old state until something *above* high_seq 2441 * is ACKed. For Reno it is MUST to prevent false 2442 * fast retransmits (RFC2582). SACK TCP is safe. */ 2443 tcp_moderate_cwnd(tp); 2444 if (!tcp_any_retrans_done(sk)) 2445 tp->retrans_stamp = 0; 2446 return true; 2447 } 2448 tcp_set_ca_state(sk, TCP_CA_Open); 2449 return false; 2450 } 2451 2452 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2453 static bool tcp_try_undo_dsack(struct sock *sk) 2454 { 2455 struct tcp_sock *tp = tcp_sk(sk); 2456 2457 if (tp->undo_marker && !tp->undo_retrans) { 2458 DBGUNDO(sk, "D-SACK"); 2459 tcp_undo_cwnd_reduction(sk, false); 2460 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2461 return true; 2462 } 2463 return false; 2464 } 2465 2466 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2467 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2468 { 2469 struct tcp_sock *tp = tcp_sk(sk); 2470 2471 if (frto_undo || tcp_may_undo(tp)) { 2472 tcp_undo_cwnd_reduction(sk, true); 2473 2474 DBGUNDO(sk, "partial loss"); 2475 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2476 if (frto_undo) 2477 NET_INC_STATS_BH(sock_net(sk), 2478 LINUX_MIB_TCPSPURIOUSRTOS); 2479 inet_csk(sk)->icsk_retransmits = 0; 2480 if (frto_undo || tcp_is_sack(tp)) 2481 tcp_set_ca_state(sk, TCP_CA_Open); 2482 return true; 2483 } 2484 return false; 2485 } 2486 2487 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2488 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2489 * It computes the number of packets to send (sndcnt) based on packets newly 2490 * delivered: 2491 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2492 * cwnd reductions across a full RTT. 2493 * 2) If packets in flight is lower than ssthresh (such as due to excess 2494 * losses and/or application stalls), do not perform any further cwnd 2495 * reductions, but instead slow start up to ssthresh. 2496 */ 2497 static void tcp_init_cwnd_reduction(struct sock *sk) 2498 { 2499 struct tcp_sock *tp = tcp_sk(sk); 2500 2501 tp->high_seq = tp->snd_nxt; 2502 tp->tlp_high_seq = 0; 2503 tp->snd_cwnd_cnt = 0; 2504 tp->prior_cwnd = tp->snd_cwnd; 2505 tp->prr_delivered = 0; 2506 tp->prr_out = 0; 2507 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2508 tcp_ecn_queue_cwr(tp); 2509 } 2510 2511 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2512 int fast_rexmit) 2513 { 2514 struct tcp_sock *tp = tcp_sk(sk); 2515 int sndcnt = 0; 2516 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2517 int newly_acked_sacked = prior_unsacked - 2518 (tp->packets_out - tp->sacked_out); 2519 2520 tp->prr_delivered += newly_acked_sacked; 2521 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2522 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2523 tp->prior_cwnd - 1; 2524 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2525 } else { 2526 sndcnt = min_t(int, delta, 2527 max_t(int, tp->prr_delivered - tp->prr_out, 2528 newly_acked_sacked) + 1); 2529 } 2530 2531 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2532 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2533 } 2534 2535 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2536 { 2537 struct tcp_sock *tp = tcp_sk(sk); 2538 2539 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2540 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2541 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2542 tp->snd_cwnd = tp->snd_ssthresh; 2543 tp->snd_cwnd_stamp = tcp_time_stamp; 2544 } 2545 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2546 } 2547 2548 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2549 void tcp_enter_cwr(struct sock *sk) 2550 { 2551 struct tcp_sock *tp = tcp_sk(sk); 2552 2553 tp->prior_ssthresh = 0; 2554 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2555 tp->undo_marker = 0; 2556 tcp_init_cwnd_reduction(sk); 2557 tcp_set_ca_state(sk, TCP_CA_CWR); 2558 } 2559 } 2560 2561 static void tcp_try_keep_open(struct sock *sk) 2562 { 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 int state = TCP_CA_Open; 2565 2566 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2567 state = TCP_CA_Disorder; 2568 2569 if (inet_csk(sk)->icsk_ca_state != state) { 2570 tcp_set_ca_state(sk, state); 2571 tp->high_seq = tp->snd_nxt; 2572 } 2573 } 2574 2575 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2576 { 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 2579 tcp_verify_left_out(tp); 2580 2581 if (!tcp_any_retrans_done(sk)) 2582 tp->retrans_stamp = 0; 2583 2584 if (flag & FLAG_ECE) 2585 tcp_enter_cwr(sk); 2586 2587 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2588 tcp_try_keep_open(sk); 2589 } else { 2590 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2591 } 2592 } 2593 2594 static void tcp_mtup_probe_failed(struct sock *sk) 2595 { 2596 struct inet_connection_sock *icsk = inet_csk(sk); 2597 2598 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2599 icsk->icsk_mtup.probe_size = 0; 2600 } 2601 2602 static void tcp_mtup_probe_success(struct sock *sk) 2603 { 2604 struct tcp_sock *tp = tcp_sk(sk); 2605 struct inet_connection_sock *icsk = inet_csk(sk); 2606 2607 /* FIXME: breaks with very large cwnd */ 2608 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2609 tp->snd_cwnd = tp->snd_cwnd * 2610 tcp_mss_to_mtu(sk, tp->mss_cache) / 2611 icsk->icsk_mtup.probe_size; 2612 tp->snd_cwnd_cnt = 0; 2613 tp->snd_cwnd_stamp = tcp_time_stamp; 2614 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2615 2616 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2617 icsk->icsk_mtup.probe_size = 0; 2618 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2619 } 2620 2621 /* Do a simple retransmit without using the backoff mechanisms in 2622 * tcp_timer. This is used for path mtu discovery. 2623 * The socket is already locked here. 2624 */ 2625 void tcp_simple_retransmit(struct sock *sk) 2626 { 2627 const struct inet_connection_sock *icsk = inet_csk(sk); 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 struct sk_buff *skb; 2630 unsigned int mss = tcp_current_mss(sk); 2631 u32 prior_lost = tp->lost_out; 2632 2633 tcp_for_write_queue(skb, sk) { 2634 if (skb == tcp_send_head(sk)) 2635 break; 2636 if (tcp_skb_seglen(skb) > mss && 2637 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2638 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2639 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2640 tp->retrans_out -= tcp_skb_pcount(skb); 2641 } 2642 tcp_skb_mark_lost_uncond_verify(tp, skb); 2643 } 2644 } 2645 2646 tcp_clear_retrans_hints_partial(tp); 2647 2648 if (prior_lost == tp->lost_out) 2649 return; 2650 2651 if (tcp_is_reno(tp)) 2652 tcp_limit_reno_sacked(tp); 2653 2654 tcp_verify_left_out(tp); 2655 2656 /* Don't muck with the congestion window here. 2657 * Reason is that we do not increase amount of _data_ 2658 * in network, but units changed and effective 2659 * cwnd/ssthresh really reduced now. 2660 */ 2661 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2662 tp->high_seq = tp->snd_nxt; 2663 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2664 tp->prior_ssthresh = 0; 2665 tp->undo_marker = 0; 2666 tcp_set_ca_state(sk, TCP_CA_Loss); 2667 } 2668 tcp_xmit_retransmit_queue(sk); 2669 } 2670 EXPORT_SYMBOL(tcp_simple_retransmit); 2671 2672 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2673 { 2674 struct tcp_sock *tp = tcp_sk(sk); 2675 int mib_idx; 2676 2677 if (tcp_is_reno(tp)) 2678 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2679 else 2680 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2681 2682 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2683 2684 tp->prior_ssthresh = 0; 2685 tcp_init_undo(tp); 2686 2687 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2688 if (!ece_ack) 2689 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2690 tcp_init_cwnd_reduction(sk); 2691 } 2692 tcp_set_ca_state(sk, TCP_CA_Recovery); 2693 } 2694 2695 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2696 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2697 */ 2698 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2699 { 2700 struct tcp_sock *tp = tcp_sk(sk); 2701 bool recovered = !before(tp->snd_una, tp->high_seq); 2702 2703 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2704 /* Step 3.b. A timeout is spurious if not all data are 2705 * lost, i.e., never-retransmitted data are (s)acked. 2706 */ 2707 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED)) 2708 return; 2709 2710 if (after(tp->snd_nxt, tp->high_seq) && 2711 (flag & FLAG_DATA_SACKED || is_dupack)) { 2712 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2713 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2714 tp->high_seq = tp->snd_nxt; 2715 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2716 TCP_NAGLE_OFF); 2717 if (after(tp->snd_nxt, tp->high_seq)) 2718 return; /* Step 2.b */ 2719 tp->frto = 0; 2720 } 2721 } 2722 2723 if (recovered) { 2724 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2725 tcp_try_undo_recovery(sk); 2726 return; 2727 } 2728 if (tcp_is_reno(tp)) { 2729 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2730 * delivered. Lower inflight to clock out (re)tranmissions. 2731 */ 2732 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2733 tcp_add_reno_sack(sk); 2734 else if (flag & FLAG_SND_UNA_ADVANCED) 2735 tcp_reset_reno_sack(tp); 2736 } 2737 if (tcp_try_undo_loss(sk, false)) 2738 return; 2739 tcp_xmit_retransmit_queue(sk); 2740 } 2741 2742 /* Undo during fast recovery after partial ACK. */ 2743 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2744 const int prior_unsacked) 2745 { 2746 struct tcp_sock *tp = tcp_sk(sk); 2747 2748 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2749 /* Plain luck! Hole if filled with delayed 2750 * packet, rather than with a retransmit. 2751 */ 2752 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2753 2754 /* We are getting evidence that the reordering degree is higher 2755 * than we realized. If there are no retransmits out then we 2756 * can undo. Otherwise we clock out new packets but do not 2757 * mark more packets lost or retransmit more. 2758 */ 2759 if (tp->retrans_out) { 2760 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2761 return true; 2762 } 2763 2764 if (!tcp_any_retrans_done(sk)) 2765 tp->retrans_stamp = 0; 2766 2767 DBGUNDO(sk, "partial recovery"); 2768 tcp_undo_cwnd_reduction(sk, true); 2769 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2770 tcp_try_keep_open(sk); 2771 return true; 2772 } 2773 return false; 2774 } 2775 2776 /* Process an event, which can update packets-in-flight not trivially. 2777 * Main goal of this function is to calculate new estimate for left_out, 2778 * taking into account both packets sitting in receiver's buffer and 2779 * packets lost by network. 2780 * 2781 * Besides that it does CWND reduction, when packet loss is detected 2782 * and changes state of machine. 2783 * 2784 * It does _not_ decide what to send, it is made in function 2785 * tcp_xmit_retransmit_queue(). 2786 */ 2787 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2788 const int prior_unsacked, 2789 bool is_dupack, int flag) 2790 { 2791 struct inet_connection_sock *icsk = inet_csk(sk); 2792 struct tcp_sock *tp = tcp_sk(sk); 2793 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2794 (tcp_fackets_out(tp) > tp->reordering)); 2795 int fast_rexmit = 0; 2796 2797 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2798 tp->sacked_out = 0; 2799 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2800 tp->fackets_out = 0; 2801 2802 /* Now state machine starts. 2803 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2804 if (flag & FLAG_ECE) 2805 tp->prior_ssthresh = 0; 2806 2807 /* B. In all the states check for reneging SACKs. */ 2808 if (tcp_check_sack_reneging(sk, flag)) 2809 return; 2810 2811 /* C. Check consistency of the current state. */ 2812 tcp_verify_left_out(tp); 2813 2814 /* D. Check state exit conditions. State can be terminated 2815 * when high_seq is ACKed. */ 2816 if (icsk->icsk_ca_state == TCP_CA_Open) { 2817 WARN_ON(tp->retrans_out != 0); 2818 tp->retrans_stamp = 0; 2819 } else if (!before(tp->snd_una, tp->high_seq)) { 2820 switch (icsk->icsk_ca_state) { 2821 case TCP_CA_CWR: 2822 /* CWR is to be held something *above* high_seq 2823 * is ACKed for CWR bit to reach receiver. */ 2824 if (tp->snd_una != tp->high_seq) { 2825 tcp_end_cwnd_reduction(sk); 2826 tcp_set_ca_state(sk, TCP_CA_Open); 2827 } 2828 break; 2829 2830 case TCP_CA_Recovery: 2831 if (tcp_is_reno(tp)) 2832 tcp_reset_reno_sack(tp); 2833 if (tcp_try_undo_recovery(sk)) 2834 return; 2835 tcp_end_cwnd_reduction(sk); 2836 break; 2837 } 2838 } 2839 2840 /* E. Process state. */ 2841 switch (icsk->icsk_ca_state) { 2842 case TCP_CA_Recovery: 2843 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2844 if (tcp_is_reno(tp) && is_dupack) 2845 tcp_add_reno_sack(sk); 2846 } else { 2847 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2848 return; 2849 /* Partial ACK arrived. Force fast retransmit. */ 2850 do_lost = tcp_is_reno(tp) || 2851 tcp_fackets_out(tp) > tp->reordering; 2852 } 2853 if (tcp_try_undo_dsack(sk)) { 2854 tcp_try_keep_open(sk); 2855 return; 2856 } 2857 break; 2858 case TCP_CA_Loss: 2859 tcp_process_loss(sk, flag, is_dupack); 2860 if (icsk->icsk_ca_state != TCP_CA_Open) 2861 return; 2862 /* Fall through to processing in Open state. */ 2863 default: 2864 if (tcp_is_reno(tp)) { 2865 if (flag & FLAG_SND_UNA_ADVANCED) 2866 tcp_reset_reno_sack(tp); 2867 if (is_dupack) 2868 tcp_add_reno_sack(sk); 2869 } 2870 2871 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2872 tcp_try_undo_dsack(sk); 2873 2874 if (!tcp_time_to_recover(sk, flag)) { 2875 tcp_try_to_open(sk, flag, prior_unsacked); 2876 return; 2877 } 2878 2879 /* MTU probe failure: don't reduce cwnd */ 2880 if (icsk->icsk_ca_state < TCP_CA_CWR && 2881 icsk->icsk_mtup.probe_size && 2882 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2883 tcp_mtup_probe_failed(sk); 2884 /* Restores the reduction we did in tcp_mtup_probe() */ 2885 tp->snd_cwnd++; 2886 tcp_simple_retransmit(sk); 2887 return; 2888 } 2889 2890 /* Otherwise enter Recovery state */ 2891 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2892 fast_rexmit = 1; 2893 } 2894 2895 if (do_lost) 2896 tcp_update_scoreboard(sk, fast_rexmit); 2897 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2898 tcp_xmit_retransmit_queue(sk); 2899 } 2900 2901 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2902 long seq_rtt_us, long sack_rtt_us) 2903 { 2904 const struct tcp_sock *tp = tcp_sk(sk); 2905 2906 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2907 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2908 * Karn's algorithm forbids taking RTT if some retransmitted data 2909 * is acked (RFC6298). 2910 */ 2911 if (flag & FLAG_RETRANS_DATA_ACKED) 2912 seq_rtt_us = -1L; 2913 2914 if (seq_rtt_us < 0) 2915 seq_rtt_us = sack_rtt_us; 2916 2917 /* RTTM Rule: A TSecr value received in a segment is used to 2918 * update the averaged RTT measurement only if the segment 2919 * acknowledges some new data, i.e., only if it advances the 2920 * left edge of the send window. 2921 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2922 */ 2923 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2924 flag & FLAG_ACKED) 2925 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2926 2927 if (seq_rtt_us < 0) 2928 return false; 2929 2930 tcp_rtt_estimator(sk, seq_rtt_us); 2931 tcp_set_rto(sk); 2932 2933 /* RFC6298: only reset backoff on valid RTT measurement. */ 2934 inet_csk(sk)->icsk_backoff = 0; 2935 return true; 2936 } 2937 2938 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2939 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2940 { 2941 struct tcp_sock *tp = tcp_sk(sk); 2942 long seq_rtt_us = -1L; 2943 2944 if (synack_stamp && !tp->total_retrans) 2945 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2946 2947 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2948 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2949 */ 2950 if (!tp->srtt_us) 2951 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2952 } 2953 2954 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2955 { 2956 const struct inet_connection_sock *icsk = inet_csk(sk); 2957 2958 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2959 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2960 } 2961 2962 /* Restart timer after forward progress on connection. 2963 * RFC2988 recommends to restart timer to now+rto. 2964 */ 2965 void tcp_rearm_rto(struct sock *sk) 2966 { 2967 const struct inet_connection_sock *icsk = inet_csk(sk); 2968 struct tcp_sock *tp = tcp_sk(sk); 2969 2970 /* If the retrans timer is currently being used by Fast Open 2971 * for SYN-ACK retrans purpose, stay put. 2972 */ 2973 if (tp->fastopen_rsk) 2974 return; 2975 2976 if (!tp->packets_out) { 2977 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2978 } else { 2979 u32 rto = inet_csk(sk)->icsk_rto; 2980 /* Offset the time elapsed after installing regular RTO */ 2981 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2982 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2983 struct sk_buff *skb = tcp_write_queue_head(sk); 2984 const u32 rto_time_stamp = 2985 tcp_skb_timestamp(skb) + rto; 2986 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2987 /* delta may not be positive if the socket is locked 2988 * when the retrans timer fires and is rescheduled. 2989 */ 2990 if (delta > 0) 2991 rto = delta; 2992 } 2993 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2994 TCP_RTO_MAX); 2995 } 2996 } 2997 2998 /* This function is called when the delayed ER timer fires. TCP enters 2999 * fast recovery and performs fast-retransmit. 3000 */ 3001 void tcp_resume_early_retransmit(struct sock *sk) 3002 { 3003 struct tcp_sock *tp = tcp_sk(sk); 3004 3005 tcp_rearm_rto(sk); 3006 3007 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3008 if (!tp->do_early_retrans) 3009 return; 3010 3011 tcp_enter_recovery(sk, false); 3012 tcp_update_scoreboard(sk, 1); 3013 tcp_xmit_retransmit_queue(sk); 3014 } 3015 3016 /* If we get here, the whole TSO packet has not been acked. */ 3017 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3018 { 3019 struct tcp_sock *tp = tcp_sk(sk); 3020 u32 packets_acked; 3021 3022 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3023 3024 packets_acked = tcp_skb_pcount(skb); 3025 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3026 return 0; 3027 packets_acked -= tcp_skb_pcount(skb); 3028 3029 if (packets_acked) { 3030 BUG_ON(tcp_skb_pcount(skb) == 0); 3031 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3032 } 3033 3034 return packets_acked; 3035 } 3036 3037 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3038 u32 prior_snd_una) 3039 { 3040 const struct skb_shared_info *shinfo; 3041 3042 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3043 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) 3044 return; 3045 3046 shinfo = skb_shinfo(skb); 3047 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3048 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) 3049 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3050 } 3051 3052 /* Remove acknowledged frames from the retransmission queue. If our packet 3053 * is before the ack sequence we can discard it as it's confirmed to have 3054 * arrived at the other end. 3055 */ 3056 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3057 u32 prior_snd_una, long sack_rtt_us) 3058 { 3059 const struct inet_connection_sock *icsk = inet_csk(sk); 3060 struct skb_mstamp first_ackt, last_ackt, now; 3061 struct tcp_sock *tp = tcp_sk(sk); 3062 u32 prior_sacked = tp->sacked_out; 3063 u32 reord = tp->packets_out; 3064 bool fully_acked = true; 3065 long ca_seq_rtt_us = -1L; 3066 long seq_rtt_us = -1L; 3067 struct sk_buff *skb; 3068 u32 pkts_acked = 0; 3069 bool rtt_update; 3070 int flag = 0; 3071 3072 first_ackt.v64 = 0; 3073 3074 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3075 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3076 u8 sacked = scb->sacked; 3077 u32 acked_pcount; 3078 3079 tcp_ack_tstamp(sk, skb, prior_snd_una); 3080 3081 /* Determine how many packets and what bytes were acked, tso and else */ 3082 if (after(scb->end_seq, tp->snd_una)) { 3083 if (tcp_skb_pcount(skb) == 1 || 3084 !after(tp->snd_una, scb->seq)) 3085 break; 3086 3087 acked_pcount = tcp_tso_acked(sk, skb); 3088 if (!acked_pcount) 3089 break; 3090 3091 fully_acked = false; 3092 } else { 3093 /* Speedup tcp_unlink_write_queue() and next loop */ 3094 prefetchw(skb->next); 3095 acked_pcount = tcp_skb_pcount(skb); 3096 } 3097 3098 if (unlikely(sacked & TCPCB_RETRANS)) { 3099 if (sacked & TCPCB_SACKED_RETRANS) 3100 tp->retrans_out -= acked_pcount; 3101 flag |= FLAG_RETRANS_DATA_ACKED; 3102 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3103 last_ackt = skb->skb_mstamp; 3104 WARN_ON_ONCE(last_ackt.v64 == 0); 3105 if (!first_ackt.v64) 3106 first_ackt = last_ackt; 3107 3108 reord = min(pkts_acked, reord); 3109 if (!after(scb->end_seq, tp->high_seq)) 3110 flag |= FLAG_ORIG_SACK_ACKED; 3111 } 3112 3113 if (sacked & TCPCB_SACKED_ACKED) 3114 tp->sacked_out -= acked_pcount; 3115 if (sacked & TCPCB_LOST) 3116 tp->lost_out -= acked_pcount; 3117 3118 tp->packets_out -= acked_pcount; 3119 pkts_acked += acked_pcount; 3120 3121 /* Initial outgoing SYN's get put onto the write_queue 3122 * just like anything else we transmit. It is not 3123 * true data, and if we misinform our callers that 3124 * this ACK acks real data, we will erroneously exit 3125 * connection startup slow start one packet too 3126 * quickly. This is severely frowned upon behavior. 3127 */ 3128 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3129 flag |= FLAG_DATA_ACKED; 3130 } else { 3131 flag |= FLAG_SYN_ACKED; 3132 tp->retrans_stamp = 0; 3133 } 3134 3135 if (!fully_acked) 3136 break; 3137 3138 tcp_unlink_write_queue(skb, sk); 3139 sk_wmem_free_skb(sk, skb); 3140 if (unlikely(skb == tp->retransmit_skb_hint)) 3141 tp->retransmit_skb_hint = NULL; 3142 if (unlikely(skb == tp->lost_skb_hint)) 3143 tp->lost_skb_hint = NULL; 3144 } 3145 3146 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3147 tp->snd_up = tp->snd_una; 3148 3149 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3150 flag |= FLAG_SACK_RENEGING; 3151 3152 skb_mstamp_get(&now); 3153 if (likely(first_ackt.v64)) { 3154 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3155 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3156 } 3157 3158 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3159 3160 if (flag & FLAG_ACKED) { 3161 const struct tcp_congestion_ops *ca_ops 3162 = inet_csk(sk)->icsk_ca_ops; 3163 3164 tcp_rearm_rto(sk); 3165 if (unlikely(icsk->icsk_mtup.probe_size && 3166 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3167 tcp_mtup_probe_success(sk); 3168 } 3169 3170 if (tcp_is_reno(tp)) { 3171 tcp_remove_reno_sacks(sk, pkts_acked); 3172 } else { 3173 int delta; 3174 3175 /* Non-retransmitted hole got filled? That's reordering */ 3176 if (reord < prior_fackets) 3177 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3178 3179 delta = tcp_is_fack(tp) ? pkts_acked : 3180 prior_sacked - tp->sacked_out; 3181 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3182 } 3183 3184 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3185 3186 if (ca_ops->pkts_acked) { 3187 long rtt_us = min_t(ulong, ca_seq_rtt_us, sack_rtt_us); 3188 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3189 } 3190 3191 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3192 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3193 /* Do not re-arm RTO if the sack RTT is measured from data sent 3194 * after when the head was last (re)transmitted. Otherwise the 3195 * timeout may continue to extend in loss recovery. 3196 */ 3197 tcp_rearm_rto(sk); 3198 } 3199 3200 #if FASTRETRANS_DEBUG > 0 3201 WARN_ON((int)tp->sacked_out < 0); 3202 WARN_ON((int)tp->lost_out < 0); 3203 WARN_ON((int)tp->retrans_out < 0); 3204 if (!tp->packets_out && tcp_is_sack(tp)) { 3205 icsk = inet_csk(sk); 3206 if (tp->lost_out) { 3207 pr_debug("Leak l=%u %d\n", 3208 tp->lost_out, icsk->icsk_ca_state); 3209 tp->lost_out = 0; 3210 } 3211 if (tp->sacked_out) { 3212 pr_debug("Leak s=%u %d\n", 3213 tp->sacked_out, icsk->icsk_ca_state); 3214 tp->sacked_out = 0; 3215 } 3216 if (tp->retrans_out) { 3217 pr_debug("Leak r=%u %d\n", 3218 tp->retrans_out, icsk->icsk_ca_state); 3219 tp->retrans_out = 0; 3220 } 3221 } 3222 #endif 3223 return flag; 3224 } 3225 3226 static void tcp_ack_probe(struct sock *sk) 3227 { 3228 const struct tcp_sock *tp = tcp_sk(sk); 3229 struct inet_connection_sock *icsk = inet_csk(sk); 3230 3231 /* Was it a usable window open? */ 3232 3233 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3234 icsk->icsk_backoff = 0; 3235 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3236 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3237 * This function is not for random using! 3238 */ 3239 } else { 3240 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 3241 3242 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3243 when, TCP_RTO_MAX); 3244 } 3245 } 3246 3247 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3248 { 3249 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3250 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3251 } 3252 3253 /* Decide wheather to run the increase function of congestion control. */ 3254 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3255 { 3256 if (tcp_in_cwnd_reduction(sk)) 3257 return false; 3258 3259 /* If reordering is high then always grow cwnd whenever data is 3260 * delivered regardless of its ordering. Otherwise stay conservative 3261 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3262 * new SACK or ECE mark may first advance cwnd here and later reduce 3263 * cwnd in tcp_fastretrans_alert() based on more states. 3264 */ 3265 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3266 return flag & FLAG_FORWARD_PROGRESS; 3267 3268 return flag & FLAG_DATA_ACKED; 3269 } 3270 3271 /* Check that window update is acceptable. 3272 * The function assumes that snd_una<=ack<=snd_next. 3273 */ 3274 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3275 const u32 ack, const u32 ack_seq, 3276 const u32 nwin) 3277 { 3278 return after(ack, tp->snd_una) || 3279 after(ack_seq, tp->snd_wl1) || 3280 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3281 } 3282 3283 /* Update our send window. 3284 * 3285 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3286 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3287 */ 3288 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3289 u32 ack_seq) 3290 { 3291 struct tcp_sock *tp = tcp_sk(sk); 3292 int flag = 0; 3293 u32 nwin = ntohs(tcp_hdr(skb)->window); 3294 3295 if (likely(!tcp_hdr(skb)->syn)) 3296 nwin <<= tp->rx_opt.snd_wscale; 3297 3298 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3299 flag |= FLAG_WIN_UPDATE; 3300 tcp_update_wl(tp, ack_seq); 3301 3302 if (tp->snd_wnd != nwin) { 3303 tp->snd_wnd = nwin; 3304 3305 /* Note, it is the only place, where 3306 * fast path is recovered for sending TCP. 3307 */ 3308 tp->pred_flags = 0; 3309 tcp_fast_path_check(sk); 3310 3311 if (nwin > tp->max_window) { 3312 tp->max_window = nwin; 3313 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3314 } 3315 } 3316 } 3317 3318 tp->snd_una = ack; 3319 3320 return flag; 3321 } 3322 3323 /* Return true if we're currently rate-limiting out-of-window ACKs and 3324 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3325 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3326 * attacks that send repeated SYNs or ACKs for the same connection. To 3327 * do this, we do not send a duplicate SYNACK or ACK if the remote 3328 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3329 */ 3330 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3331 int mib_idx, u32 *last_oow_ack_time) 3332 { 3333 /* Data packets without SYNs are not likely part of an ACK loop. */ 3334 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3335 !tcp_hdr(skb)->syn) 3336 goto not_rate_limited; 3337 3338 if (*last_oow_ack_time) { 3339 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3340 3341 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3342 NET_INC_STATS_BH(net, mib_idx); 3343 return true; /* rate-limited: don't send yet! */ 3344 } 3345 } 3346 3347 *last_oow_ack_time = tcp_time_stamp; 3348 3349 not_rate_limited: 3350 return false; /* not rate-limited: go ahead, send dupack now! */ 3351 } 3352 3353 /* RFC 5961 7 [ACK Throttling] */ 3354 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3355 { 3356 /* unprotected vars, we dont care of overwrites */ 3357 static u32 challenge_timestamp; 3358 static unsigned int challenge_count; 3359 struct tcp_sock *tp = tcp_sk(sk); 3360 u32 now; 3361 3362 /* First check our per-socket dupack rate limit. */ 3363 if (tcp_oow_rate_limited(sock_net(sk), skb, 3364 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3365 &tp->last_oow_ack_time)) 3366 return; 3367 3368 /* Then check the check host-wide RFC 5961 rate limit. */ 3369 now = jiffies / HZ; 3370 if (now != challenge_timestamp) { 3371 challenge_timestamp = now; 3372 challenge_count = 0; 3373 } 3374 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3375 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3376 tcp_send_ack(sk); 3377 } 3378 } 3379 3380 static void tcp_store_ts_recent(struct tcp_sock *tp) 3381 { 3382 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3383 tp->rx_opt.ts_recent_stamp = get_seconds(); 3384 } 3385 3386 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3387 { 3388 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3389 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3390 * extra check below makes sure this can only happen 3391 * for pure ACK frames. -DaveM 3392 * 3393 * Not only, also it occurs for expired timestamps. 3394 */ 3395 3396 if (tcp_paws_check(&tp->rx_opt, 0)) 3397 tcp_store_ts_recent(tp); 3398 } 3399 } 3400 3401 /* This routine deals with acks during a TLP episode. 3402 * We mark the end of a TLP episode on receiving TLP dupack or when 3403 * ack is after tlp_high_seq. 3404 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3405 */ 3406 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3407 { 3408 struct tcp_sock *tp = tcp_sk(sk); 3409 3410 if (before(ack, tp->tlp_high_seq)) 3411 return; 3412 3413 if (flag & FLAG_DSACKING_ACK) { 3414 /* This DSACK means original and TLP probe arrived; no loss */ 3415 tp->tlp_high_seq = 0; 3416 } else if (after(ack, tp->tlp_high_seq)) { 3417 /* ACK advances: there was a loss, so reduce cwnd. Reset 3418 * tlp_high_seq in tcp_init_cwnd_reduction() 3419 */ 3420 tcp_init_cwnd_reduction(sk); 3421 tcp_set_ca_state(sk, TCP_CA_CWR); 3422 tcp_end_cwnd_reduction(sk); 3423 tcp_try_keep_open(sk); 3424 NET_INC_STATS_BH(sock_net(sk), 3425 LINUX_MIB_TCPLOSSPROBERECOVERY); 3426 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3427 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3428 /* Pure dupack: original and TLP probe arrived; no loss */ 3429 tp->tlp_high_seq = 0; 3430 } 3431 } 3432 3433 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3434 { 3435 const struct inet_connection_sock *icsk = inet_csk(sk); 3436 3437 if (icsk->icsk_ca_ops->in_ack_event) 3438 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3439 } 3440 3441 /* This routine deals with incoming acks, but not outgoing ones. */ 3442 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3443 { 3444 struct inet_connection_sock *icsk = inet_csk(sk); 3445 struct tcp_sock *tp = tcp_sk(sk); 3446 u32 prior_snd_una = tp->snd_una; 3447 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3448 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3449 bool is_dupack = false; 3450 u32 prior_fackets; 3451 int prior_packets = tp->packets_out; 3452 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3453 int acked = 0; /* Number of packets newly acked */ 3454 long sack_rtt_us = -1L; 3455 3456 /* We very likely will need to access write queue head. */ 3457 prefetchw(sk->sk_write_queue.next); 3458 3459 /* If the ack is older than previous acks 3460 * then we can probably ignore it. 3461 */ 3462 if (before(ack, prior_snd_una)) { 3463 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3464 if (before(ack, prior_snd_una - tp->max_window)) { 3465 tcp_send_challenge_ack(sk, skb); 3466 return -1; 3467 } 3468 goto old_ack; 3469 } 3470 3471 /* If the ack includes data we haven't sent yet, discard 3472 * this segment (RFC793 Section 3.9). 3473 */ 3474 if (after(ack, tp->snd_nxt)) 3475 goto invalid_ack; 3476 3477 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3478 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3479 tcp_rearm_rto(sk); 3480 3481 if (after(ack, prior_snd_una)) { 3482 flag |= FLAG_SND_UNA_ADVANCED; 3483 icsk->icsk_retransmits = 0; 3484 } 3485 3486 prior_fackets = tp->fackets_out; 3487 3488 /* ts_recent update must be made after we are sure that the packet 3489 * is in window. 3490 */ 3491 if (flag & FLAG_UPDATE_TS_RECENT) 3492 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3493 3494 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3495 /* Window is constant, pure forward advance. 3496 * No more checks are required. 3497 * Note, we use the fact that SND.UNA>=SND.WL2. 3498 */ 3499 tcp_update_wl(tp, ack_seq); 3500 tp->snd_una = ack; 3501 flag |= FLAG_WIN_UPDATE; 3502 3503 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3504 3505 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3506 } else { 3507 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3508 3509 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3510 flag |= FLAG_DATA; 3511 else 3512 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3513 3514 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3515 3516 if (TCP_SKB_CB(skb)->sacked) 3517 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3518 &sack_rtt_us); 3519 3520 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3521 flag |= FLAG_ECE; 3522 ack_ev_flags |= CA_ACK_ECE; 3523 } 3524 3525 if (flag & FLAG_WIN_UPDATE) 3526 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3527 3528 tcp_in_ack_event(sk, ack_ev_flags); 3529 } 3530 3531 /* We passed data and got it acked, remove any soft error 3532 * log. Something worked... 3533 */ 3534 sk->sk_err_soft = 0; 3535 icsk->icsk_probes_out = 0; 3536 tp->rcv_tstamp = tcp_time_stamp; 3537 if (!prior_packets) 3538 goto no_queue; 3539 3540 /* See if we can take anything off of the retransmit queue. */ 3541 acked = tp->packets_out; 3542 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3543 sack_rtt_us); 3544 acked -= tp->packets_out; 3545 3546 /* Advance cwnd if state allows */ 3547 if (tcp_may_raise_cwnd(sk, flag)) 3548 tcp_cong_avoid(sk, ack, acked); 3549 3550 if (tcp_ack_is_dubious(sk, flag)) { 3551 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3552 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3553 is_dupack, flag); 3554 } 3555 if (tp->tlp_high_seq) 3556 tcp_process_tlp_ack(sk, ack, flag); 3557 3558 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3559 struct dst_entry *dst = __sk_dst_get(sk); 3560 if (dst) 3561 dst_confirm(dst); 3562 } 3563 3564 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3565 tcp_schedule_loss_probe(sk); 3566 tcp_update_pacing_rate(sk); 3567 return 1; 3568 3569 no_queue: 3570 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3571 if (flag & FLAG_DSACKING_ACK) 3572 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3573 is_dupack, flag); 3574 /* If this ack opens up a zero window, clear backoff. It was 3575 * being used to time the probes, and is probably far higher than 3576 * it needs to be for normal retransmission. 3577 */ 3578 if (tcp_send_head(sk)) 3579 tcp_ack_probe(sk); 3580 3581 if (tp->tlp_high_seq) 3582 tcp_process_tlp_ack(sk, ack, flag); 3583 return 1; 3584 3585 invalid_ack: 3586 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3587 return -1; 3588 3589 old_ack: 3590 /* If data was SACKed, tag it and see if we should send more data. 3591 * If data was DSACKed, see if we can undo a cwnd reduction. 3592 */ 3593 if (TCP_SKB_CB(skb)->sacked) { 3594 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3595 &sack_rtt_us); 3596 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3597 is_dupack, flag); 3598 } 3599 3600 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3601 return 0; 3602 } 3603 3604 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3605 bool syn, struct tcp_fastopen_cookie *foc, 3606 bool exp_opt) 3607 { 3608 /* Valid only in SYN or SYN-ACK with an even length. */ 3609 if (!foc || !syn || len < 0 || (len & 1)) 3610 return; 3611 3612 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3613 len <= TCP_FASTOPEN_COOKIE_MAX) 3614 memcpy(foc->val, cookie, len); 3615 else if (len != 0) 3616 len = -1; 3617 foc->len = len; 3618 foc->exp = exp_opt; 3619 } 3620 3621 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3622 * But, this can also be called on packets in the established flow when 3623 * the fast version below fails. 3624 */ 3625 void tcp_parse_options(const struct sk_buff *skb, 3626 struct tcp_options_received *opt_rx, int estab, 3627 struct tcp_fastopen_cookie *foc) 3628 { 3629 const unsigned char *ptr; 3630 const struct tcphdr *th = tcp_hdr(skb); 3631 int length = (th->doff * 4) - sizeof(struct tcphdr); 3632 3633 ptr = (const unsigned char *)(th + 1); 3634 opt_rx->saw_tstamp = 0; 3635 3636 while (length > 0) { 3637 int opcode = *ptr++; 3638 int opsize; 3639 3640 switch (opcode) { 3641 case TCPOPT_EOL: 3642 return; 3643 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3644 length--; 3645 continue; 3646 default: 3647 opsize = *ptr++; 3648 if (opsize < 2) /* "silly options" */ 3649 return; 3650 if (opsize > length) 3651 return; /* don't parse partial options */ 3652 switch (opcode) { 3653 case TCPOPT_MSS: 3654 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3655 u16 in_mss = get_unaligned_be16(ptr); 3656 if (in_mss) { 3657 if (opt_rx->user_mss && 3658 opt_rx->user_mss < in_mss) 3659 in_mss = opt_rx->user_mss; 3660 opt_rx->mss_clamp = in_mss; 3661 } 3662 } 3663 break; 3664 case TCPOPT_WINDOW: 3665 if (opsize == TCPOLEN_WINDOW && th->syn && 3666 !estab && sysctl_tcp_window_scaling) { 3667 __u8 snd_wscale = *(__u8 *)ptr; 3668 opt_rx->wscale_ok = 1; 3669 if (snd_wscale > 14) { 3670 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3671 __func__, 3672 snd_wscale); 3673 snd_wscale = 14; 3674 } 3675 opt_rx->snd_wscale = snd_wscale; 3676 } 3677 break; 3678 case TCPOPT_TIMESTAMP: 3679 if ((opsize == TCPOLEN_TIMESTAMP) && 3680 ((estab && opt_rx->tstamp_ok) || 3681 (!estab && sysctl_tcp_timestamps))) { 3682 opt_rx->saw_tstamp = 1; 3683 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3684 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3685 } 3686 break; 3687 case TCPOPT_SACK_PERM: 3688 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3689 !estab && sysctl_tcp_sack) { 3690 opt_rx->sack_ok = TCP_SACK_SEEN; 3691 tcp_sack_reset(opt_rx); 3692 } 3693 break; 3694 3695 case TCPOPT_SACK: 3696 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3697 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3698 opt_rx->sack_ok) { 3699 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3700 } 3701 break; 3702 #ifdef CONFIG_TCP_MD5SIG 3703 case TCPOPT_MD5SIG: 3704 /* 3705 * The MD5 Hash has already been 3706 * checked (see tcp_v{4,6}_do_rcv()). 3707 */ 3708 break; 3709 #endif 3710 case TCPOPT_FASTOPEN: 3711 tcp_parse_fastopen_option( 3712 opsize - TCPOLEN_FASTOPEN_BASE, 3713 ptr, th->syn, foc, false); 3714 break; 3715 3716 case TCPOPT_EXP: 3717 /* Fast Open option shares code 254 using a 3718 * 16 bits magic number. 3719 */ 3720 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3721 get_unaligned_be16(ptr) == 3722 TCPOPT_FASTOPEN_MAGIC) 3723 tcp_parse_fastopen_option(opsize - 3724 TCPOLEN_EXP_FASTOPEN_BASE, 3725 ptr + 2, th->syn, foc, true); 3726 break; 3727 3728 } 3729 ptr += opsize-2; 3730 length -= opsize; 3731 } 3732 } 3733 } 3734 EXPORT_SYMBOL(tcp_parse_options); 3735 3736 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3737 { 3738 const __be32 *ptr = (const __be32 *)(th + 1); 3739 3740 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3741 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3742 tp->rx_opt.saw_tstamp = 1; 3743 ++ptr; 3744 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3745 ++ptr; 3746 if (*ptr) 3747 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3748 else 3749 tp->rx_opt.rcv_tsecr = 0; 3750 return true; 3751 } 3752 return false; 3753 } 3754 3755 /* Fast parse options. This hopes to only see timestamps. 3756 * If it is wrong it falls back on tcp_parse_options(). 3757 */ 3758 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3759 const struct tcphdr *th, struct tcp_sock *tp) 3760 { 3761 /* In the spirit of fast parsing, compare doff directly to constant 3762 * values. Because equality is used, short doff can be ignored here. 3763 */ 3764 if (th->doff == (sizeof(*th) / 4)) { 3765 tp->rx_opt.saw_tstamp = 0; 3766 return false; 3767 } else if (tp->rx_opt.tstamp_ok && 3768 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3769 if (tcp_parse_aligned_timestamp(tp, th)) 3770 return true; 3771 } 3772 3773 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3774 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3775 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3776 3777 return true; 3778 } 3779 3780 #ifdef CONFIG_TCP_MD5SIG 3781 /* 3782 * Parse MD5 Signature option 3783 */ 3784 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3785 { 3786 int length = (th->doff << 2) - sizeof(*th); 3787 const u8 *ptr = (const u8 *)(th + 1); 3788 3789 /* If the TCP option is too short, we can short cut */ 3790 if (length < TCPOLEN_MD5SIG) 3791 return NULL; 3792 3793 while (length > 0) { 3794 int opcode = *ptr++; 3795 int opsize; 3796 3797 switch (opcode) { 3798 case TCPOPT_EOL: 3799 return NULL; 3800 case TCPOPT_NOP: 3801 length--; 3802 continue; 3803 default: 3804 opsize = *ptr++; 3805 if (opsize < 2 || opsize > length) 3806 return NULL; 3807 if (opcode == TCPOPT_MD5SIG) 3808 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3809 } 3810 ptr += opsize - 2; 3811 length -= opsize; 3812 } 3813 return NULL; 3814 } 3815 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3816 #endif 3817 3818 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3819 * 3820 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3821 * it can pass through stack. So, the following predicate verifies that 3822 * this segment is not used for anything but congestion avoidance or 3823 * fast retransmit. Moreover, we even are able to eliminate most of such 3824 * second order effects, if we apply some small "replay" window (~RTO) 3825 * to timestamp space. 3826 * 3827 * All these measures still do not guarantee that we reject wrapped ACKs 3828 * on networks with high bandwidth, when sequence space is recycled fastly, 3829 * but it guarantees that such events will be very rare and do not affect 3830 * connection seriously. This doesn't look nice, but alas, PAWS is really 3831 * buggy extension. 3832 * 3833 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3834 * states that events when retransmit arrives after original data are rare. 3835 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3836 * the biggest problem on large power networks even with minor reordering. 3837 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3838 * up to bandwidth of 18Gigabit/sec. 8) ] 3839 */ 3840 3841 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3842 { 3843 const struct tcp_sock *tp = tcp_sk(sk); 3844 const struct tcphdr *th = tcp_hdr(skb); 3845 u32 seq = TCP_SKB_CB(skb)->seq; 3846 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3847 3848 return (/* 1. Pure ACK with correct sequence number. */ 3849 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3850 3851 /* 2. ... and duplicate ACK. */ 3852 ack == tp->snd_una && 3853 3854 /* 3. ... and does not update window. */ 3855 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3856 3857 /* 4. ... and sits in replay window. */ 3858 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3859 } 3860 3861 static inline bool tcp_paws_discard(const struct sock *sk, 3862 const struct sk_buff *skb) 3863 { 3864 const struct tcp_sock *tp = tcp_sk(sk); 3865 3866 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3867 !tcp_disordered_ack(sk, skb); 3868 } 3869 3870 /* Check segment sequence number for validity. 3871 * 3872 * Segment controls are considered valid, if the segment 3873 * fits to the window after truncation to the window. Acceptability 3874 * of data (and SYN, FIN, of course) is checked separately. 3875 * See tcp_data_queue(), for example. 3876 * 3877 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3878 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3879 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3880 * (borrowed from freebsd) 3881 */ 3882 3883 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3884 { 3885 return !before(end_seq, tp->rcv_wup) && 3886 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3887 } 3888 3889 /* When we get a reset we do this. */ 3890 void tcp_reset(struct sock *sk) 3891 { 3892 /* We want the right error as BSD sees it (and indeed as we do). */ 3893 switch (sk->sk_state) { 3894 case TCP_SYN_SENT: 3895 sk->sk_err = ECONNREFUSED; 3896 break; 3897 case TCP_CLOSE_WAIT: 3898 sk->sk_err = EPIPE; 3899 break; 3900 case TCP_CLOSE: 3901 return; 3902 default: 3903 sk->sk_err = ECONNRESET; 3904 } 3905 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3906 smp_wmb(); 3907 3908 if (!sock_flag(sk, SOCK_DEAD)) 3909 sk->sk_error_report(sk); 3910 3911 tcp_done(sk); 3912 } 3913 3914 /* 3915 * Process the FIN bit. This now behaves as it is supposed to work 3916 * and the FIN takes effect when it is validly part of sequence 3917 * space. Not before when we get holes. 3918 * 3919 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3920 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3921 * TIME-WAIT) 3922 * 3923 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3924 * close and we go into CLOSING (and later onto TIME-WAIT) 3925 * 3926 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3927 */ 3928 static void tcp_fin(struct sock *sk) 3929 { 3930 struct tcp_sock *tp = tcp_sk(sk); 3931 const struct dst_entry *dst; 3932 3933 inet_csk_schedule_ack(sk); 3934 3935 sk->sk_shutdown |= RCV_SHUTDOWN; 3936 sock_set_flag(sk, SOCK_DONE); 3937 3938 switch (sk->sk_state) { 3939 case TCP_SYN_RECV: 3940 case TCP_ESTABLISHED: 3941 /* Move to CLOSE_WAIT */ 3942 tcp_set_state(sk, TCP_CLOSE_WAIT); 3943 dst = __sk_dst_get(sk); 3944 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3945 inet_csk(sk)->icsk_ack.pingpong = 1; 3946 break; 3947 3948 case TCP_CLOSE_WAIT: 3949 case TCP_CLOSING: 3950 /* Received a retransmission of the FIN, do 3951 * nothing. 3952 */ 3953 break; 3954 case TCP_LAST_ACK: 3955 /* RFC793: Remain in the LAST-ACK state. */ 3956 break; 3957 3958 case TCP_FIN_WAIT1: 3959 /* This case occurs when a simultaneous close 3960 * happens, we must ack the received FIN and 3961 * enter the CLOSING state. 3962 */ 3963 tcp_send_ack(sk); 3964 tcp_set_state(sk, TCP_CLOSING); 3965 break; 3966 case TCP_FIN_WAIT2: 3967 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3968 tcp_send_ack(sk); 3969 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3970 break; 3971 default: 3972 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3973 * cases we should never reach this piece of code. 3974 */ 3975 pr_err("%s: Impossible, sk->sk_state=%d\n", 3976 __func__, sk->sk_state); 3977 break; 3978 } 3979 3980 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3981 * Probably, we should reset in this case. For now drop them. 3982 */ 3983 __skb_queue_purge(&tp->out_of_order_queue); 3984 if (tcp_is_sack(tp)) 3985 tcp_sack_reset(&tp->rx_opt); 3986 sk_mem_reclaim(sk); 3987 3988 if (!sock_flag(sk, SOCK_DEAD)) { 3989 sk->sk_state_change(sk); 3990 3991 /* Do not send POLL_HUP for half duplex close. */ 3992 if (sk->sk_shutdown == SHUTDOWN_MASK || 3993 sk->sk_state == TCP_CLOSE) 3994 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3995 else 3996 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3997 } 3998 } 3999 4000 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4001 u32 end_seq) 4002 { 4003 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4004 if (before(seq, sp->start_seq)) 4005 sp->start_seq = seq; 4006 if (after(end_seq, sp->end_seq)) 4007 sp->end_seq = end_seq; 4008 return true; 4009 } 4010 return false; 4011 } 4012 4013 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4014 { 4015 struct tcp_sock *tp = tcp_sk(sk); 4016 4017 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4018 int mib_idx; 4019 4020 if (before(seq, tp->rcv_nxt)) 4021 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4022 else 4023 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4024 4025 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4026 4027 tp->rx_opt.dsack = 1; 4028 tp->duplicate_sack[0].start_seq = seq; 4029 tp->duplicate_sack[0].end_seq = end_seq; 4030 } 4031 } 4032 4033 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4034 { 4035 struct tcp_sock *tp = tcp_sk(sk); 4036 4037 if (!tp->rx_opt.dsack) 4038 tcp_dsack_set(sk, seq, end_seq); 4039 else 4040 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4041 } 4042 4043 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4044 { 4045 struct tcp_sock *tp = tcp_sk(sk); 4046 4047 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4048 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4049 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4050 tcp_enter_quickack_mode(sk); 4051 4052 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4053 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4054 4055 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4056 end_seq = tp->rcv_nxt; 4057 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4058 } 4059 } 4060 4061 tcp_send_ack(sk); 4062 } 4063 4064 /* These routines update the SACK block as out-of-order packets arrive or 4065 * in-order packets close up the sequence space. 4066 */ 4067 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4068 { 4069 int this_sack; 4070 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4071 struct tcp_sack_block *swalk = sp + 1; 4072 4073 /* See if the recent change to the first SACK eats into 4074 * or hits the sequence space of other SACK blocks, if so coalesce. 4075 */ 4076 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4077 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4078 int i; 4079 4080 /* Zap SWALK, by moving every further SACK up by one slot. 4081 * Decrease num_sacks. 4082 */ 4083 tp->rx_opt.num_sacks--; 4084 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4085 sp[i] = sp[i + 1]; 4086 continue; 4087 } 4088 this_sack++, swalk++; 4089 } 4090 } 4091 4092 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4093 { 4094 struct tcp_sock *tp = tcp_sk(sk); 4095 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4096 int cur_sacks = tp->rx_opt.num_sacks; 4097 int this_sack; 4098 4099 if (!cur_sacks) 4100 goto new_sack; 4101 4102 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4103 if (tcp_sack_extend(sp, seq, end_seq)) { 4104 /* Rotate this_sack to the first one. */ 4105 for (; this_sack > 0; this_sack--, sp--) 4106 swap(*sp, *(sp - 1)); 4107 if (cur_sacks > 1) 4108 tcp_sack_maybe_coalesce(tp); 4109 return; 4110 } 4111 } 4112 4113 /* Could not find an adjacent existing SACK, build a new one, 4114 * put it at the front, and shift everyone else down. We 4115 * always know there is at least one SACK present already here. 4116 * 4117 * If the sack array is full, forget about the last one. 4118 */ 4119 if (this_sack >= TCP_NUM_SACKS) { 4120 this_sack--; 4121 tp->rx_opt.num_sacks--; 4122 sp--; 4123 } 4124 for (; this_sack > 0; this_sack--, sp--) 4125 *sp = *(sp - 1); 4126 4127 new_sack: 4128 /* Build the new head SACK, and we're done. */ 4129 sp->start_seq = seq; 4130 sp->end_seq = end_seq; 4131 tp->rx_opt.num_sacks++; 4132 } 4133 4134 /* RCV.NXT advances, some SACKs should be eaten. */ 4135 4136 static void tcp_sack_remove(struct tcp_sock *tp) 4137 { 4138 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4139 int num_sacks = tp->rx_opt.num_sacks; 4140 int this_sack; 4141 4142 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4143 if (skb_queue_empty(&tp->out_of_order_queue)) { 4144 tp->rx_opt.num_sacks = 0; 4145 return; 4146 } 4147 4148 for (this_sack = 0; this_sack < num_sacks;) { 4149 /* Check if the start of the sack is covered by RCV.NXT. */ 4150 if (!before(tp->rcv_nxt, sp->start_seq)) { 4151 int i; 4152 4153 /* RCV.NXT must cover all the block! */ 4154 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4155 4156 /* Zap this SACK, by moving forward any other SACKS. */ 4157 for (i = this_sack+1; i < num_sacks; i++) 4158 tp->selective_acks[i-1] = tp->selective_acks[i]; 4159 num_sacks--; 4160 continue; 4161 } 4162 this_sack++; 4163 sp++; 4164 } 4165 tp->rx_opt.num_sacks = num_sacks; 4166 } 4167 4168 /** 4169 * tcp_try_coalesce - try to merge skb to prior one 4170 * @sk: socket 4171 * @to: prior buffer 4172 * @from: buffer to add in queue 4173 * @fragstolen: pointer to boolean 4174 * 4175 * Before queueing skb @from after @to, try to merge them 4176 * to reduce overall memory use and queue lengths, if cost is small. 4177 * Packets in ofo or receive queues can stay a long time. 4178 * Better try to coalesce them right now to avoid future collapses. 4179 * Returns true if caller should free @from instead of queueing it 4180 */ 4181 static bool tcp_try_coalesce(struct sock *sk, 4182 struct sk_buff *to, 4183 struct sk_buff *from, 4184 bool *fragstolen) 4185 { 4186 int delta; 4187 4188 *fragstolen = false; 4189 4190 /* Its possible this segment overlaps with prior segment in queue */ 4191 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4192 return false; 4193 4194 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4195 return false; 4196 4197 atomic_add(delta, &sk->sk_rmem_alloc); 4198 sk_mem_charge(sk, delta); 4199 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4200 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4201 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4202 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4203 return true; 4204 } 4205 4206 /* This one checks to see if we can put data from the 4207 * out_of_order queue into the receive_queue. 4208 */ 4209 static void tcp_ofo_queue(struct sock *sk) 4210 { 4211 struct tcp_sock *tp = tcp_sk(sk); 4212 __u32 dsack_high = tp->rcv_nxt; 4213 struct sk_buff *skb, *tail; 4214 bool fragstolen, eaten; 4215 4216 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4217 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4218 break; 4219 4220 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4221 __u32 dsack = dsack_high; 4222 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4223 dsack_high = TCP_SKB_CB(skb)->end_seq; 4224 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4225 } 4226 4227 __skb_unlink(skb, &tp->out_of_order_queue); 4228 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4229 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4230 __kfree_skb(skb); 4231 continue; 4232 } 4233 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4234 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4235 TCP_SKB_CB(skb)->end_seq); 4236 4237 tail = skb_peek_tail(&sk->sk_receive_queue); 4238 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4239 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4240 if (!eaten) 4241 __skb_queue_tail(&sk->sk_receive_queue, skb); 4242 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4243 tcp_fin(sk); 4244 if (eaten) 4245 kfree_skb_partial(skb, fragstolen); 4246 } 4247 } 4248 4249 static bool tcp_prune_ofo_queue(struct sock *sk); 4250 static int tcp_prune_queue(struct sock *sk); 4251 4252 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4253 unsigned int size) 4254 { 4255 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4256 !sk_rmem_schedule(sk, skb, size)) { 4257 4258 if (tcp_prune_queue(sk) < 0) 4259 return -1; 4260 4261 if (!sk_rmem_schedule(sk, skb, size)) { 4262 if (!tcp_prune_ofo_queue(sk)) 4263 return -1; 4264 4265 if (!sk_rmem_schedule(sk, skb, size)) 4266 return -1; 4267 } 4268 } 4269 return 0; 4270 } 4271 4272 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4273 { 4274 struct tcp_sock *tp = tcp_sk(sk); 4275 struct sk_buff *skb1; 4276 u32 seq, end_seq; 4277 4278 tcp_ecn_check_ce(tp, skb); 4279 4280 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4281 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4282 __kfree_skb(skb); 4283 return; 4284 } 4285 4286 /* Disable header prediction. */ 4287 tp->pred_flags = 0; 4288 inet_csk_schedule_ack(sk); 4289 4290 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4291 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4292 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4293 4294 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4295 if (!skb1) { 4296 /* Initial out of order segment, build 1 SACK. */ 4297 if (tcp_is_sack(tp)) { 4298 tp->rx_opt.num_sacks = 1; 4299 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4300 tp->selective_acks[0].end_seq = 4301 TCP_SKB_CB(skb)->end_seq; 4302 } 4303 __skb_queue_head(&tp->out_of_order_queue, skb); 4304 goto end; 4305 } 4306 4307 seq = TCP_SKB_CB(skb)->seq; 4308 end_seq = TCP_SKB_CB(skb)->end_seq; 4309 4310 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4311 bool fragstolen; 4312 4313 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4314 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4315 } else { 4316 tcp_grow_window(sk, skb); 4317 kfree_skb_partial(skb, fragstolen); 4318 skb = NULL; 4319 } 4320 4321 if (!tp->rx_opt.num_sacks || 4322 tp->selective_acks[0].end_seq != seq) 4323 goto add_sack; 4324 4325 /* Common case: data arrive in order after hole. */ 4326 tp->selective_acks[0].end_seq = end_seq; 4327 goto end; 4328 } 4329 4330 /* Find place to insert this segment. */ 4331 while (1) { 4332 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4333 break; 4334 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4335 skb1 = NULL; 4336 break; 4337 } 4338 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4339 } 4340 4341 /* Do skb overlap to previous one? */ 4342 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4343 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4344 /* All the bits are present. Drop. */ 4345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4346 __kfree_skb(skb); 4347 skb = NULL; 4348 tcp_dsack_set(sk, seq, end_seq); 4349 goto add_sack; 4350 } 4351 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4352 /* Partial overlap. */ 4353 tcp_dsack_set(sk, seq, 4354 TCP_SKB_CB(skb1)->end_seq); 4355 } else { 4356 if (skb_queue_is_first(&tp->out_of_order_queue, 4357 skb1)) 4358 skb1 = NULL; 4359 else 4360 skb1 = skb_queue_prev( 4361 &tp->out_of_order_queue, 4362 skb1); 4363 } 4364 } 4365 if (!skb1) 4366 __skb_queue_head(&tp->out_of_order_queue, skb); 4367 else 4368 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4369 4370 /* And clean segments covered by new one as whole. */ 4371 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4372 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4373 4374 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4375 break; 4376 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4377 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4378 end_seq); 4379 break; 4380 } 4381 __skb_unlink(skb1, &tp->out_of_order_queue); 4382 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4383 TCP_SKB_CB(skb1)->end_seq); 4384 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4385 __kfree_skb(skb1); 4386 } 4387 4388 add_sack: 4389 if (tcp_is_sack(tp)) 4390 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4391 end: 4392 if (skb) { 4393 tcp_grow_window(sk, skb); 4394 skb_set_owner_r(skb, sk); 4395 } 4396 } 4397 4398 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4399 bool *fragstolen) 4400 { 4401 int eaten; 4402 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4403 4404 __skb_pull(skb, hdrlen); 4405 eaten = (tail && 4406 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4407 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4408 if (!eaten) { 4409 __skb_queue_tail(&sk->sk_receive_queue, skb); 4410 skb_set_owner_r(skb, sk); 4411 } 4412 return eaten; 4413 } 4414 4415 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4416 { 4417 struct sk_buff *skb; 4418 bool fragstolen; 4419 4420 if (size == 0) 4421 return 0; 4422 4423 skb = alloc_skb(size, sk->sk_allocation); 4424 if (!skb) 4425 goto err; 4426 4427 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4428 goto err_free; 4429 4430 if (memcpy_from_msg(skb_put(skb, size), msg, size)) 4431 goto err_free; 4432 4433 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4434 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4435 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4436 4437 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4438 WARN_ON_ONCE(fragstolen); /* should not happen */ 4439 __kfree_skb(skb); 4440 } 4441 return size; 4442 4443 err_free: 4444 kfree_skb(skb); 4445 err: 4446 return -ENOMEM; 4447 } 4448 4449 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4450 { 4451 struct tcp_sock *tp = tcp_sk(sk); 4452 int eaten = -1; 4453 bool fragstolen = false; 4454 4455 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4456 goto drop; 4457 4458 skb_dst_drop(skb); 4459 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4460 4461 tcp_ecn_accept_cwr(tp, skb); 4462 4463 tp->rx_opt.dsack = 0; 4464 4465 /* Queue data for delivery to the user. 4466 * Packets in sequence go to the receive queue. 4467 * Out of sequence packets to the out_of_order_queue. 4468 */ 4469 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4470 if (tcp_receive_window(tp) == 0) 4471 goto out_of_window; 4472 4473 /* Ok. In sequence. In window. */ 4474 if (tp->ucopy.task == current && 4475 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4476 sock_owned_by_user(sk) && !tp->urg_data) { 4477 int chunk = min_t(unsigned int, skb->len, 4478 tp->ucopy.len); 4479 4480 __set_current_state(TASK_RUNNING); 4481 4482 local_bh_enable(); 4483 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4484 tp->ucopy.len -= chunk; 4485 tp->copied_seq += chunk; 4486 eaten = (chunk == skb->len); 4487 tcp_rcv_space_adjust(sk); 4488 } 4489 local_bh_disable(); 4490 } 4491 4492 if (eaten <= 0) { 4493 queue_and_out: 4494 if (eaten < 0 && 4495 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4496 goto drop; 4497 4498 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4499 } 4500 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4501 if (skb->len) 4502 tcp_event_data_recv(sk, skb); 4503 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4504 tcp_fin(sk); 4505 4506 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4507 tcp_ofo_queue(sk); 4508 4509 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4510 * gap in queue is filled. 4511 */ 4512 if (skb_queue_empty(&tp->out_of_order_queue)) 4513 inet_csk(sk)->icsk_ack.pingpong = 0; 4514 } 4515 4516 if (tp->rx_opt.num_sacks) 4517 tcp_sack_remove(tp); 4518 4519 tcp_fast_path_check(sk); 4520 4521 if (eaten > 0) 4522 kfree_skb_partial(skb, fragstolen); 4523 if (!sock_flag(sk, SOCK_DEAD)) 4524 sk->sk_data_ready(sk); 4525 return; 4526 } 4527 4528 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4529 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4530 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4531 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4532 4533 out_of_window: 4534 tcp_enter_quickack_mode(sk); 4535 inet_csk_schedule_ack(sk); 4536 drop: 4537 __kfree_skb(skb); 4538 return; 4539 } 4540 4541 /* Out of window. F.e. zero window probe. */ 4542 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4543 goto out_of_window; 4544 4545 tcp_enter_quickack_mode(sk); 4546 4547 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4548 /* Partial packet, seq < rcv_next < end_seq */ 4549 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4550 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4551 TCP_SKB_CB(skb)->end_seq); 4552 4553 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4554 4555 /* If window is closed, drop tail of packet. But after 4556 * remembering D-SACK for its head made in previous line. 4557 */ 4558 if (!tcp_receive_window(tp)) 4559 goto out_of_window; 4560 goto queue_and_out; 4561 } 4562 4563 tcp_data_queue_ofo(sk, skb); 4564 } 4565 4566 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4567 struct sk_buff_head *list) 4568 { 4569 struct sk_buff *next = NULL; 4570 4571 if (!skb_queue_is_last(list, skb)) 4572 next = skb_queue_next(list, skb); 4573 4574 __skb_unlink(skb, list); 4575 __kfree_skb(skb); 4576 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4577 4578 return next; 4579 } 4580 4581 /* Collapse contiguous sequence of skbs head..tail with 4582 * sequence numbers start..end. 4583 * 4584 * If tail is NULL, this means until the end of the list. 4585 * 4586 * Segments with FIN/SYN are not collapsed (only because this 4587 * simplifies code) 4588 */ 4589 static void 4590 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4591 struct sk_buff *head, struct sk_buff *tail, 4592 u32 start, u32 end) 4593 { 4594 struct sk_buff *skb, *n; 4595 bool end_of_skbs; 4596 4597 /* First, check that queue is collapsible and find 4598 * the point where collapsing can be useful. */ 4599 skb = head; 4600 restart: 4601 end_of_skbs = true; 4602 skb_queue_walk_from_safe(list, skb, n) { 4603 if (skb == tail) 4604 break; 4605 /* No new bits? It is possible on ofo queue. */ 4606 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4607 skb = tcp_collapse_one(sk, skb, list); 4608 if (!skb) 4609 break; 4610 goto restart; 4611 } 4612 4613 /* The first skb to collapse is: 4614 * - not SYN/FIN and 4615 * - bloated or contains data before "start" or 4616 * overlaps to the next one. 4617 */ 4618 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4619 (tcp_win_from_space(skb->truesize) > skb->len || 4620 before(TCP_SKB_CB(skb)->seq, start))) { 4621 end_of_skbs = false; 4622 break; 4623 } 4624 4625 if (!skb_queue_is_last(list, skb)) { 4626 struct sk_buff *next = skb_queue_next(list, skb); 4627 if (next != tail && 4628 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4629 end_of_skbs = false; 4630 break; 4631 } 4632 } 4633 4634 /* Decided to skip this, advance start seq. */ 4635 start = TCP_SKB_CB(skb)->end_seq; 4636 } 4637 if (end_of_skbs || 4638 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4639 return; 4640 4641 while (before(start, end)) { 4642 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4643 struct sk_buff *nskb; 4644 4645 nskb = alloc_skb(copy, GFP_ATOMIC); 4646 if (!nskb) 4647 return; 4648 4649 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4650 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4651 __skb_queue_before(list, skb, nskb); 4652 skb_set_owner_r(nskb, sk); 4653 4654 /* Copy data, releasing collapsed skbs. */ 4655 while (copy > 0) { 4656 int offset = start - TCP_SKB_CB(skb)->seq; 4657 int size = TCP_SKB_CB(skb)->end_seq - start; 4658 4659 BUG_ON(offset < 0); 4660 if (size > 0) { 4661 size = min(copy, size); 4662 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4663 BUG(); 4664 TCP_SKB_CB(nskb)->end_seq += size; 4665 copy -= size; 4666 start += size; 4667 } 4668 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4669 skb = tcp_collapse_one(sk, skb, list); 4670 if (!skb || 4671 skb == tail || 4672 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4673 return; 4674 } 4675 } 4676 } 4677 } 4678 4679 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4680 * and tcp_collapse() them until all the queue is collapsed. 4681 */ 4682 static void tcp_collapse_ofo_queue(struct sock *sk) 4683 { 4684 struct tcp_sock *tp = tcp_sk(sk); 4685 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4686 struct sk_buff *head; 4687 u32 start, end; 4688 4689 if (!skb) 4690 return; 4691 4692 start = TCP_SKB_CB(skb)->seq; 4693 end = TCP_SKB_CB(skb)->end_seq; 4694 head = skb; 4695 4696 for (;;) { 4697 struct sk_buff *next = NULL; 4698 4699 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4700 next = skb_queue_next(&tp->out_of_order_queue, skb); 4701 skb = next; 4702 4703 /* Segment is terminated when we see gap or when 4704 * we are at the end of all the queue. */ 4705 if (!skb || 4706 after(TCP_SKB_CB(skb)->seq, end) || 4707 before(TCP_SKB_CB(skb)->end_seq, start)) { 4708 tcp_collapse(sk, &tp->out_of_order_queue, 4709 head, skb, start, end); 4710 head = skb; 4711 if (!skb) 4712 break; 4713 /* Start new segment */ 4714 start = TCP_SKB_CB(skb)->seq; 4715 end = TCP_SKB_CB(skb)->end_seq; 4716 } else { 4717 if (before(TCP_SKB_CB(skb)->seq, start)) 4718 start = TCP_SKB_CB(skb)->seq; 4719 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4720 end = TCP_SKB_CB(skb)->end_seq; 4721 } 4722 } 4723 } 4724 4725 /* 4726 * Purge the out-of-order queue. 4727 * Return true if queue was pruned. 4728 */ 4729 static bool tcp_prune_ofo_queue(struct sock *sk) 4730 { 4731 struct tcp_sock *tp = tcp_sk(sk); 4732 bool res = false; 4733 4734 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4735 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4736 __skb_queue_purge(&tp->out_of_order_queue); 4737 4738 /* Reset SACK state. A conforming SACK implementation will 4739 * do the same at a timeout based retransmit. When a connection 4740 * is in a sad state like this, we care only about integrity 4741 * of the connection not performance. 4742 */ 4743 if (tp->rx_opt.sack_ok) 4744 tcp_sack_reset(&tp->rx_opt); 4745 sk_mem_reclaim(sk); 4746 res = true; 4747 } 4748 return res; 4749 } 4750 4751 /* Reduce allocated memory if we can, trying to get 4752 * the socket within its memory limits again. 4753 * 4754 * Return less than zero if we should start dropping frames 4755 * until the socket owning process reads some of the data 4756 * to stabilize the situation. 4757 */ 4758 static int tcp_prune_queue(struct sock *sk) 4759 { 4760 struct tcp_sock *tp = tcp_sk(sk); 4761 4762 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4763 4764 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4765 4766 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4767 tcp_clamp_window(sk); 4768 else if (sk_under_memory_pressure(sk)) 4769 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4770 4771 tcp_collapse_ofo_queue(sk); 4772 if (!skb_queue_empty(&sk->sk_receive_queue)) 4773 tcp_collapse(sk, &sk->sk_receive_queue, 4774 skb_peek(&sk->sk_receive_queue), 4775 NULL, 4776 tp->copied_seq, tp->rcv_nxt); 4777 sk_mem_reclaim(sk); 4778 4779 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4780 return 0; 4781 4782 /* Collapsing did not help, destructive actions follow. 4783 * This must not ever occur. */ 4784 4785 tcp_prune_ofo_queue(sk); 4786 4787 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4788 return 0; 4789 4790 /* If we are really being abused, tell the caller to silently 4791 * drop receive data on the floor. It will get retransmitted 4792 * and hopefully then we'll have sufficient space. 4793 */ 4794 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4795 4796 /* Massive buffer overcommit. */ 4797 tp->pred_flags = 0; 4798 return -1; 4799 } 4800 4801 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4802 { 4803 const struct tcp_sock *tp = tcp_sk(sk); 4804 4805 /* If the user specified a specific send buffer setting, do 4806 * not modify it. 4807 */ 4808 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4809 return false; 4810 4811 /* If we are under global TCP memory pressure, do not expand. */ 4812 if (sk_under_memory_pressure(sk)) 4813 return false; 4814 4815 /* If we are under soft global TCP memory pressure, do not expand. */ 4816 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4817 return false; 4818 4819 /* If we filled the congestion window, do not expand. */ 4820 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4821 return false; 4822 4823 return true; 4824 } 4825 4826 /* When incoming ACK allowed to free some skb from write_queue, 4827 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4828 * on the exit from tcp input handler. 4829 * 4830 * PROBLEM: sndbuf expansion does not work well with largesend. 4831 */ 4832 static void tcp_new_space(struct sock *sk) 4833 { 4834 struct tcp_sock *tp = tcp_sk(sk); 4835 4836 if (tcp_should_expand_sndbuf(sk)) { 4837 tcp_sndbuf_expand(sk); 4838 tp->snd_cwnd_stamp = tcp_time_stamp; 4839 } 4840 4841 sk->sk_write_space(sk); 4842 } 4843 4844 static void tcp_check_space(struct sock *sk) 4845 { 4846 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4847 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4848 /* pairs with tcp_poll() */ 4849 smp_mb__after_atomic(); 4850 if (sk->sk_socket && 4851 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4852 tcp_new_space(sk); 4853 } 4854 } 4855 4856 static inline void tcp_data_snd_check(struct sock *sk) 4857 { 4858 tcp_push_pending_frames(sk); 4859 tcp_check_space(sk); 4860 } 4861 4862 /* 4863 * Check if sending an ack is needed. 4864 */ 4865 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4866 { 4867 struct tcp_sock *tp = tcp_sk(sk); 4868 4869 /* More than one full frame received... */ 4870 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4871 /* ... and right edge of window advances far enough. 4872 * (tcp_recvmsg() will send ACK otherwise). Or... 4873 */ 4874 __tcp_select_window(sk) >= tp->rcv_wnd) || 4875 /* We ACK each frame or... */ 4876 tcp_in_quickack_mode(sk) || 4877 /* We have out of order data. */ 4878 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4879 /* Then ack it now */ 4880 tcp_send_ack(sk); 4881 } else { 4882 /* Else, send delayed ack. */ 4883 tcp_send_delayed_ack(sk); 4884 } 4885 } 4886 4887 static inline void tcp_ack_snd_check(struct sock *sk) 4888 { 4889 if (!inet_csk_ack_scheduled(sk)) { 4890 /* We sent a data segment already. */ 4891 return; 4892 } 4893 __tcp_ack_snd_check(sk, 1); 4894 } 4895 4896 /* 4897 * This routine is only called when we have urgent data 4898 * signaled. Its the 'slow' part of tcp_urg. It could be 4899 * moved inline now as tcp_urg is only called from one 4900 * place. We handle URGent data wrong. We have to - as 4901 * BSD still doesn't use the correction from RFC961. 4902 * For 1003.1g we should support a new option TCP_STDURG to permit 4903 * either form (or just set the sysctl tcp_stdurg). 4904 */ 4905 4906 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4907 { 4908 struct tcp_sock *tp = tcp_sk(sk); 4909 u32 ptr = ntohs(th->urg_ptr); 4910 4911 if (ptr && !sysctl_tcp_stdurg) 4912 ptr--; 4913 ptr += ntohl(th->seq); 4914 4915 /* Ignore urgent data that we've already seen and read. */ 4916 if (after(tp->copied_seq, ptr)) 4917 return; 4918 4919 /* Do not replay urg ptr. 4920 * 4921 * NOTE: interesting situation not covered by specs. 4922 * Misbehaving sender may send urg ptr, pointing to segment, 4923 * which we already have in ofo queue. We are not able to fetch 4924 * such data and will stay in TCP_URG_NOTYET until will be eaten 4925 * by recvmsg(). Seems, we are not obliged to handle such wicked 4926 * situations. But it is worth to think about possibility of some 4927 * DoSes using some hypothetical application level deadlock. 4928 */ 4929 if (before(ptr, tp->rcv_nxt)) 4930 return; 4931 4932 /* Do we already have a newer (or duplicate) urgent pointer? */ 4933 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4934 return; 4935 4936 /* Tell the world about our new urgent pointer. */ 4937 sk_send_sigurg(sk); 4938 4939 /* We may be adding urgent data when the last byte read was 4940 * urgent. To do this requires some care. We cannot just ignore 4941 * tp->copied_seq since we would read the last urgent byte again 4942 * as data, nor can we alter copied_seq until this data arrives 4943 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4944 * 4945 * NOTE. Double Dutch. Rendering to plain English: author of comment 4946 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4947 * and expect that both A and B disappear from stream. This is _wrong_. 4948 * Though this happens in BSD with high probability, this is occasional. 4949 * Any application relying on this is buggy. Note also, that fix "works" 4950 * only in this artificial test. Insert some normal data between A and B and we will 4951 * decline of BSD again. Verdict: it is better to remove to trap 4952 * buggy users. 4953 */ 4954 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4955 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4956 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4957 tp->copied_seq++; 4958 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4959 __skb_unlink(skb, &sk->sk_receive_queue); 4960 __kfree_skb(skb); 4961 } 4962 } 4963 4964 tp->urg_data = TCP_URG_NOTYET; 4965 tp->urg_seq = ptr; 4966 4967 /* Disable header prediction. */ 4968 tp->pred_flags = 0; 4969 } 4970 4971 /* This is the 'fast' part of urgent handling. */ 4972 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4973 { 4974 struct tcp_sock *tp = tcp_sk(sk); 4975 4976 /* Check if we get a new urgent pointer - normally not. */ 4977 if (th->urg) 4978 tcp_check_urg(sk, th); 4979 4980 /* Do we wait for any urgent data? - normally not... */ 4981 if (tp->urg_data == TCP_URG_NOTYET) { 4982 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4983 th->syn; 4984 4985 /* Is the urgent pointer pointing into this packet? */ 4986 if (ptr < skb->len) { 4987 u8 tmp; 4988 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4989 BUG(); 4990 tp->urg_data = TCP_URG_VALID | tmp; 4991 if (!sock_flag(sk, SOCK_DEAD)) 4992 sk->sk_data_ready(sk); 4993 } 4994 } 4995 } 4996 4997 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4998 { 4999 struct tcp_sock *tp = tcp_sk(sk); 5000 int chunk = skb->len - hlen; 5001 int err; 5002 5003 local_bh_enable(); 5004 if (skb_csum_unnecessary(skb)) 5005 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5006 else 5007 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5008 5009 if (!err) { 5010 tp->ucopy.len -= chunk; 5011 tp->copied_seq += chunk; 5012 tcp_rcv_space_adjust(sk); 5013 } 5014 5015 local_bh_disable(); 5016 return err; 5017 } 5018 5019 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5020 struct sk_buff *skb) 5021 { 5022 __sum16 result; 5023 5024 if (sock_owned_by_user(sk)) { 5025 local_bh_enable(); 5026 result = __tcp_checksum_complete(skb); 5027 local_bh_disable(); 5028 } else { 5029 result = __tcp_checksum_complete(skb); 5030 } 5031 return result; 5032 } 5033 5034 static inline bool tcp_checksum_complete_user(struct sock *sk, 5035 struct sk_buff *skb) 5036 { 5037 return !skb_csum_unnecessary(skb) && 5038 __tcp_checksum_complete_user(sk, skb); 5039 } 5040 5041 /* Does PAWS and seqno based validation of an incoming segment, flags will 5042 * play significant role here. 5043 */ 5044 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5045 const struct tcphdr *th, int syn_inerr) 5046 { 5047 struct tcp_sock *tp = tcp_sk(sk); 5048 5049 /* RFC1323: H1. Apply PAWS check first. */ 5050 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5051 tcp_paws_discard(sk, skb)) { 5052 if (!th->rst) { 5053 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5054 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5055 LINUX_MIB_TCPACKSKIPPEDPAWS, 5056 &tp->last_oow_ack_time)) 5057 tcp_send_dupack(sk, skb); 5058 goto discard; 5059 } 5060 /* Reset is accepted even if it did not pass PAWS. */ 5061 } 5062 5063 /* Step 1: check sequence number */ 5064 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5065 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5066 * (RST) segments are validated by checking their SEQ-fields." 5067 * And page 69: "If an incoming segment is not acceptable, 5068 * an acknowledgment should be sent in reply (unless the RST 5069 * bit is set, if so drop the segment and return)". 5070 */ 5071 if (!th->rst) { 5072 if (th->syn) 5073 goto syn_challenge; 5074 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5075 LINUX_MIB_TCPACKSKIPPEDSEQ, 5076 &tp->last_oow_ack_time)) 5077 tcp_send_dupack(sk, skb); 5078 } 5079 goto discard; 5080 } 5081 5082 /* Step 2: check RST bit */ 5083 if (th->rst) { 5084 /* RFC 5961 3.2 : 5085 * If sequence number exactly matches RCV.NXT, then 5086 * RESET the connection 5087 * else 5088 * Send a challenge ACK 5089 */ 5090 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5091 tcp_reset(sk); 5092 else 5093 tcp_send_challenge_ack(sk, skb); 5094 goto discard; 5095 } 5096 5097 /* step 3: check security and precedence [ignored] */ 5098 5099 /* step 4: Check for a SYN 5100 * RFC 5961 4.2 : Send a challenge ack 5101 */ 5102 if (th->syn) { 5103 syn_challenge: 5104 if (syn_inerr) 5105 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5106 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5107 tcp_send_challenge_ack(sk, skb); 5108 goto discard; 5109 } 5110 5111 return true; 5112 5113 discard: 5114 __kfree_skb(skb); 5115 return false; 5116 } 5117 5118 /* 5119 * TCP receive function for the ESTABLISHED state. 5120 * 5121 * It is split into a fast path and a slow path. The fast path is 5122 * disabled when: 5123 * - A zero window was announced from us - zero window probing 5124 * is only handled properly in the slow path. 5125 * - Out of order segments arrived. 5126 * - Urgent data is expected. 5127 * - There is no buffer space left 5128 * - Unexpected TCP flags/window values/header lengths are received 5129 * (detected by checking the TCP header against pred_flags) 5130 * - Data is sent in both directions. Fast path only supports pure senders 5131 * or pure receivers (this means either the sequence number or the ack 5132 * value must stay constant) 5133 * - Unexpected TCP option. 5134 * 5135 * When these conditions are not satisfied it drops into a standard 5136 * receive procedure patterned after RFC793 to handle all cases. 5137 * The first three cases are guaranteed by proper pred_flags setting, 5138 * the rest is checked inline. Fast processing is turned on in 5139 * tcp_data_queue when everything is OK. 5140 */ 5141 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5142 const struct tcphdr *th, unsigned int len) 5143 { 5144 struct tcp_sock *tp = tcp_sk(sk); 5145 5146 if (unlikely(!sk->sk_rx_dst)) 5147 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5148 /* 5149 * Header prediction. 5150 * The code loosely follows the one in the famous 5151 * "30 instruction TCP receive" Van Jacobson mail. 5152 * 5153 * Van's trick is to deposit buffers into socket queue 5154 * on a device interrupt, to call tcp_recv function 5155 * on the receive process context and checksum and copy 5156 * the buffer to user space. smart... 5157 * 5158 * Our current scheme is not silly either but we take the 5159 * extra cost of the net_bh soft interrupt processing... 5160 * We do checksum and copy also but from device to kernel. 5161 */ 5162 5163 tp->rx_opt.saw_tstamp = 0; 5164 5165 /* pred_flags is 0xS?10 << 16 + snd_wnd 5166 * if header_prediction is to be made 5167 * 'S' will always be tp->tcp_header_len >> 2 5168 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5169 * turn it off (when there are holes in the receive 5170 * space for instance) 5171 * PSH flag is ignored. 5172 */ 5173 5174 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5175 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5176 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5177 int tcp_header_len = tp->tcp_header_len; 5178 5179 /* Timestamp header prediction: tcp_header_len 5180 * is automatically equal to th->doff*4 due to pred_flags 5181 * match. 5182 */ 5183 5184 /* Check timestamp */ 5185 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5186 /* No? Slow path! */ 5187 if (!tcp_parse_aligned_timestamp(tp, th)) 5188 goto slow_path; 5189 5190 /* If PAWS failed, check it more carefully in slow path */ 5191 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5192 goto slow_path; 5193 5194 /* DO NOT update ts_recent here, if checksum fails 5195 * and timestamp was corrupted part, it will result 5196 * in a hung connection since we will drop all 5197 * future packets due to the PAWS test. 5198 */ 5199 } 5200 5201 if (len <= tcp_header_len) { 5202 /* Bulk data transfer: sender */ 5203 if (len == tcp_header_len) { 5204 /* Predicted packet is in window by definition. 5205 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5206 * Hence, check seq<=rcv_wup reduces to: 5207 */ 5208 if (tcp_header_len == 5209 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5210 tp->rcv_nxt == tp->rcv_wup) 5211 tcp_store_ts_recent(tp); 5212 5213 /* We know that such packets are checksummed 5214 * on entry. 5215 */ 5216 tcp_ack(sk, skb, 0); 5217 __kfree_skb(skb); 5218 tcp_data_snd_check(sk); 5219 return; 5220 } else { /* Header too small */ 5221 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5222 goto discard; 5223 } 5224 } else { 5225 int eaten = 0; 5226 bool fragstolen = false; 5227 5228 if (tp->ucopy.task == current && 5229 tp->copied_seq == tp->rcv_nxt && 5230 len - tcp_header_len <= tp->ucopy.len && 5231 sock_owned_by_user(sk)) { 5232 __set_current_state(TASK_RUNNING); 5233 5234 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5235 /* Predicted packet is in window by definition. 5236 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5237 * Hence, check seq<=rcv_wup reduces to: 5238 */ 5239 if (tcp_header_len == 5240 (sizeof(struct tcphdr) + 5241 TCPOLEN_TSTAMP_ALIGNED) && 5242 tp->rcv_nxt == tp->rcv_wup) 5243 tcp_store_ts_recent(tp); 5244 5245 tcp_rcv_rtt_measure_ts(sk, skb); 5246 5247 __skb_pull(skb, tcp_header_len); 5248 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5249 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5250 eaten = 1; 5251 } 5252 } 5253 if (!eaten) { 5254 if (tcp_checksum_complete_user(sk, skb)) 5255 goto csum_error; 5256 5257 if ((int)skb->truesize > sk->sk_forward_alloc) 5258 goto step5; 5259 5260 /* Predicted packet is in window by definition. 5261 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5262 * Hence, check seq<=rcv_wup reduces to: 5263 */ 5264 if (tcp_header_len == 5265 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5266 tp->rcv_nxt == tp->rcv_wup) 5267 tcp_store_ts_recent(tp); 5268 5269 tcp_rcv_rtt_measure_ts(sk, skb); 5270 5271 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5272 5273 /* Bulk data transfer: receiver */ 5274 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5275 &fragstolen); 5276 } 5277 5278 tcp_event_data_recv(sk, skb); 5279 5280 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5281 /* Well, only one small jumplet in fast path... */ 5282 tcp_ack(sk, skb, FLAG_DATA); 5283 tcp_data_snd_check(sk); 5284 if (!inet_csk_ack_scheduled(sk)) 5285 goto no_ack; 5286 } 5287 5288 __tcp_ack_snd_check(sk, 0); 5289 no_ack: 5290 if (eaten) 5291 kfree_skb_partial(skb, fragstolen); 5292 sk->sk_data_ready(sk); 5293 return; 5294 } 5295 } 5296 5297 slow_path: 5298 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5299 goto csum_error; 5300 5301 if (!th->ack && !th->rst && !th->syn) 5302 goto discard; 5303 5304 /* 5305 * Standard slow path. 5306 */ 5307 5308 if (!tcp_validate_incoming(sk, skb, th, 1)) 5309 return; 5310 5311 step5: 5312 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5313 goto discard; 5314 5315 tcp_rcv_rtt_measure_ts(sk, skb); 5316 5317 /* Process urgent data. */ 5318 tcp_urg(sk, skb, th); 5319 5320 /* step 7: process the segment text */ 5321 tcp_data_queue(sk, skb); 5322 5323 tcp_data_snd_check(sk); 5324 tcp_ack_snd_check(sk); 5325 return; 5326 5327 csum_error: 5328 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5329 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5330 5331 discard: 5332 __kfree_skb(skb); 5333 } 5334 EXPORT_SYMBOL(tcp_rcv_established); 5335 5336 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5337 { 5338 struct tcp_sock *tp = tcp_sk(sk); 5339 struct inet_connection_sock *icsk = inet_csk(sk); 5340 5341 tcp_set_state(sk, TCP_ESTABLISHED); 5342 5343 if (skb) { 5344 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5345 security_inet_conn_established(sk, skb); 5346 } 5347 5348 /* Make sure socket is routed, for correct metrics. */ 5349 icsk->icsk_af_ops->rebuild_header(sk); 5350 5351 tcp_init_metrics(sk); 5352 5353 tcp_init_congestion_control(sk); 5354 5355 /* Prevent spurious tcp_cwnd_restart() on first data 5356 * packet. 5357 */ 5358 tp->lsndtime = tcp_time_stamp; 5359 5360 tcp_init_buffer_space(sk); 5361 5362 if (sock_flag(sk, SOCK_KEEPOPEN)) 5363 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5364 5365 if (!tp->rx_opt.snd_wscale) 5366 __tcp_fast_path_on(tp, tp->snd_wnd); 5367 else 5368 tp->pred_flags = 0; 5369 5370 if (!sock_flag(sk, SOCK_DEAD)) { 5371 sk->sk_state_change(sk); 5372 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5373 } 5374 } 5375 5376 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5377 struct tcp_fastopen_cookie *cookie) 5378 { 5379 struct tcp_sock *tp = tcp_sk(sk); 5380 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5381 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5382 bool syn_drop = false; 5383 5384 if (mss == tp->rx_opt.user_mss) { 5385 struct tcp_options_received opt; 5386 5387 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5388 tcp_clear_options(&opt); 5389 opt.user_mss = opt.mss_clamp = 0; 5390 tcp_parse_options(synack, &opt, 0, NULL); 5391 mss = opt.mss_clamp; 5392 } 5393 5394 if (!tp->syn_fastopen) { 5395 /* Ignore an unsolicited cookie */ 5396 cookie->len = -1; 5397 } else if (tp->total_retrans) { 5398 /* SYN timed out and the SYN-ACK neither has a cookie nor 5399 * acknowledges data. Presumably the remote received only 5400 * the retransmitted (regular) SYNs: either the original 5401 * SYN-data or the corresponding SYN-ACK was dropped. 5402 */ 5403 syn_drop = (cookie->len < 0 && data); 5404 } else if (cookie->len < 0 && !tp->syn_data) { 5405 /* We requested a cookie but didn't get it. If we did not use 5406 * the (old) exp opt format then try so next time (try_exp=1). 5407 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5408 */ 5409 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5410 } 5411 5412 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5413 5414 if (data) { /* Retransmit unacked data in SYN */ 5415 tcp_for_write_queue_from(data, sk) { 5416 if (data == tcp_send_head(sk) || 5417 __tcp_retransmit_skb(sk, data)) 5418 break; 5419 } 5420 tcp_rearm_rto(sk); 5421 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5422 return true; 5423 } 5424 tp->syn_data_acked = tp->syn_data; 5425 if (tp->syn_data_acked) 5426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5427 return false; 5428 } 5429 5430 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5431 const struct tcphdr *th, unsigned int len) 5432 { 5433 struct inet_connection_sock *icsk = inet_csk(sk); 5434 struct tcp_sock *tp = tcp_sk(sk); 5435 struct tcp_fastopen_cookie foc = { .len = -1 }; 5436 int saved_clamp = tp->rx_opt.mss_clamp; 5437 5438 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5439 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5440 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5441 5442 if (th->ack) { 5443 /* rfc793: 5444 * "If the state is SYN-SENT then 5445 * first check the ACK bit 5446 * If the ACK bit is set 5447 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5448 * a reset (unless the RST bit is set, if so drop 5449 * the segment and return)" 5450 */ 5451 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5452 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5453 goto reset_and_undo; 5454 5455 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5456 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5457 tcp_time_stamp)) { 5458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5459 goto reset_and_undo; 5460 } 5461 5462 /* Now ACK is acceptable. 5463 * 5464 * "If the RST bit is set 5465 * If the ACK was acceptable then signal the user "error: 5466 * connection reset", drop the segment, enter CLOSED state, 5467 * delete TCB, and return." 5468 */ 5469 5470 if (th->rst) { 5471 tcp_reset(sk); 5472 goto discard; 5473 } 5474 5475 /* rfc793: 5476 * "fifth, if neither of the SYN or RST bits is set then 5477 * drop the segment and return." 5478 * 5479 * See note below! 5480 * --ANK(990513) 5481 */ 5482 if (!th->syn) 5483 goto discard_and_undo; 5484 5485 /* rfc793: 5486 * "If the SYN bit is on ... 5487 * are acceptable then ... 5488 * (our SYN has been ACKed), change the connection 5489 * state to ESTABLISHED..." 5490 */ 5491 5492 tcp_ecn_rcv_synack(tp, th); 5493 5494 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5495 tcp_ack(sk, skb, FLAG_SLOWPATH); 5496 5497 /* Ok.. it's good. Set up sequence numbers and 5498 * move to established. 5499 */ 5500 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5501 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5502 5503 /* RFC1323: The window in SYN & SYN/ACK segments is 5504 * never scaled. 5505 */ 5506 tp->snd_wnd = ntohs(th->window); 5507 5508 if (!tp->rx_opt.wscale_ok) { 5509 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5510 tp->window_clamp = min(tp->window_clamp, 65535U); 5511 } 5512 5513 if (tp->rx_opt.saw_tstamp) { 5514 tp->rx_opt.tstamp_ok = 1; 5515 tp->tcp_header_len = 5516 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5517 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5518 tcp_store_ts_recent(tp); 5519 } else { 5520 tp->tcp_header_len = sizeof(struct tcphdr); 5521 } 5522 5523 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5524 tcp_enable_fack(tp); 5525 5526 tcp_mtup_init(sk); 5527 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5528 tcp_initialize_rcv_mss(sk); 5529 5530 /* Remember, tcp_poll() does not lock socket! 5531 * Change state from SYN-SENT only after copied_seq 5532 * is initialized. */ 5533 tp->copied_seq = tp->rcv_nxt; 5534 5535 smp_mb(); 5536 5537 tcp_finish_connect(sk, skb); 5538 5539 if ((tp->syn_fastopen || tp->syn_data) && 5540 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5541 return -1; 5542 5543 if (sk->sk_write_pending || 5544 icsk->icsk_accept_queue.rskq_defer_accept || 5545 icsk->icsk_ack.pingpong) { 5546 /* Save one ACK. Data will be ready after 5547 * several ticks, if write_pending is set. 5548 * 5549 * It may be deleted, but with this feature tcpdumps 5550 * look so _wonderfully_ clever, that I was not able 5551 * to stand against the temptation 8) --ANK 5552 */ 5553 inet_csk_schedule_ack(sk); 5554 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5555 tcp_enter_quickack_mode(sk); 5556 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5557 TCP_DELACK_MAX, TCP_RTO_MAX); 5558 5559 discard: 5560 __kfree_skb(skb); 5561 return 0; 5562 } else { 5563 tcp_send_ack(sk); 5564 } 5565 return -1; 5566 } 5567 5568 /* No ACK in the segment */ 5569 5570 if (th->rst) { 5571 /* rfc793: 5572 * "If the RST bit is set 5573 * 5574 * Otherwise (no ACK) drop the segment and return." 5575 */ 5576 5577 goto discard_and_undo; 5578 } 5579 5580 /* PAWS check. */ 5581 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5582 tcp_paws_reject(&tp->rx_opt, 0)) 5583 goto discard_and_undo; 5584 5585 if (th->syn) { 5586 /* We see SYN without ACK. It is attempt of 5587 * simultaneous connect with crossed SYNs. 5588 * Particularly, it can be connect to self. 5589 */ 5590 tcp_set_state(sk, TCP_SYN_RECV); 5591 5592 if (tp->rx_opt.saw_tstamp) { 5593 tp->rx_opt.tstamp_ok = 1; 5594 tcp_store_ts_recent(tp); 5595 tp->tcp_header_len = 5596 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5597 } else { 5598 tp->tcp_header_len = sizeof(struct tcphdr); 5599 } 5600 5601 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5602 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5603 5604 /* RFC1323: The window in SYN & SYN/ACK segments is 5605 * never scaled. 5606 */ 5607 tp->snd_wnd = ntohs(th->window); 5608 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5609 tp->max_window = tp->snd_wnd; 5610 5611 tcp_ecn_rcv_syn(tp, th); 5612 5613 tcp_mtup_init(sk); 5614 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5615 tcp_initialize_rcv_mss(sk); 5616 5617 tcp_send_synack(sk); 5618 #if 0 5619 /* Note, we could accept data and URG from this segment. 5620 * There are no obstacles to make this (except that we must 5621 * either change tcp_recvmsg() to prevent it from returning data 5622 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5623 * 5624 * However, if we ignore data in ACKless segments sometimes, 5625 * we have no reasons to accept it sometimes. 5626 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5627 * is not flawless. So, discard packet for sanity. 5628 * Uncomment this return to process the data. 5629 */ 5630 return -1; 5631 #else 5632 goto discard; 5633 #endif 5634 } 5635 /* "fifth, if neither of the SYN or RST bits is set then 5636 * drop the segment and return." 5637 */ 5638 5639 discard_and_undo: 5640 tcp_clear_options(&tp->rx_opt); 5641 tp->rx_opt.mss_clamp = saved_clamp; 5642 goto discard; 5643 5644 reset_and_undo: 5645 tcp_clear_options(&tp->rx_opt); 5646 tp->rx_opt.mss_clamp = saved_clamp; 5647 return 1; 5648 } 5649 5650 /* 5651 * This function implements the receiving procedure of RFC 793 for 5652 * all states except ESTABLISHED and TIME_WAIT. 5653 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5654 * address independent. 5655 */ 5656 5657 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5658 const struct tcphdr *th, unsigned int len) 5659 { 5660 struct tcp_sock *tp = tcp_sk(sk); 5661 struct inet_connection_sock *icsk = inet_csk(sk); 5662 struct request_sock *req; 5663 int queued = 0; 5664 bool acceptable; 5665 u32 synack_stamp; 5666 5667 tp->rx_opt.saw_tstamp = 0; 5668 5669 switch (sk->sk_state) { 5670 case TCP_CLOSE: 5671 goto discard; 5672 5673 case TCP_LISTEN: 5674 if (th->ack) 5675 return 1; 5676 5677 if (th->rst) 5678 goto discard; 5679 5680 if (th->syn) { 5681 if (th->fin) 5682 goto discard; 5683 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5684 return 1; 5685 5686 /* Now we have several options: In theory there is 5687 * nothing else in the frame. KA9Q has an option to 5688 * send data with the syn, BSD accepts data with the 5689 * syn up to the [to be] advertised window and 5690 * Solaris 2.1 gives you a protocol error. For now 5691 * we just ignore it, that fits the spec precisely 5692 * and avoids incompatibilities. It would be nice in 5693 * future to drop through and process the data. 5694 * 5695 * Now that TTCP is starting to be used we ought to 5696 * queue this data. 5697 * But, this leaves one open to an easy denial of 5698 * service attack, and SYN cookies can't defend 5699 * against this problem. So, we drop the data 5700 * in the interest of security over speed unless 5701 * it's still in use. 5702 */ 5703 kfree_skb(skb); 5704 return 0; 5705 } 5706 goto discard; 5707 5708 case TCP_SYN_SENT: 5709 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5710 if (queued >= 0) 5711 return queued; 5712 5713 /* Do step6 onward by hand. */ 5714 tcp_urg(sk, skb, th); 5715 __kfree_skb(skb); 5716 tcp_data_snd_check(sk); 5717 return 0; 5718 } 5719 5720 req = tp->fastopen_rsk; 5721 if (req) { 5722 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5723 sk->sk_state != TCP_FIN_WAIT1); 5724 5725 if (!tcp_check_req(sk, skb, req, true)) 5726 goto discard; 5727 } 5728 5729 if (!th->ack && !th->rst && !th->syn) 5730 goto discard; 5731 5732 if (!tcp_validate_incoming(sk, skb, th, 0)) 5733 return 0; 5734 5735 /* step 5: check the ACK field */ 5736 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5737 FLAG_UPDATE_TS_RECENT) > 0; 5738 5739 switch (sk->sk_state) { 5740 case TCP_SYN_RECV: 5741 if (!acceptable) 5742 return 1; 5743 5744 /* Once we leave TCP_SYN_RECV, we no longer need req 5745 * so release it. 5746 */ 5747 if (req) { 5748 synack_stamp = tcp_rsk(req)->snt_synack; 5749 tp->total_retrans = req->num_retrans; 5750 reqsk_fastopen_remove(sk, req, false); 5751 } else { 5752 synack_stamp = tp->lsndtime; 5753 /* Make sure socket is routed, for correct metrics. */ 5754 icsk->icsk_af_ops->rebuild_header(sk); 5755 tcp_init_congestion_control(sk); 5756 5757 tcp_mtup_init(sk); 5758 tp->copied_seq = tp->rcv_nxt; 5759 tcp_init_buffer_space(sk); 5760 } 5761 smp_mb(); 5762 tcp_set_state(sk, TCP_ESTABLISHED); 5763 sk->sk_state_change(sk); 5764 5765 /* Note, that this wakeup is only for marginal crossed SYN case. 5766 * Passively open sockets are not waked up, because 5767 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5768 */ 5769 if (sk->sk_socket) 5770 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5771 5772 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5773 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5774 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5775 tcp_synack_rtt_meas(sk, synack_stamp); 5776 5777 if (tp->rx_opt.tstamp_ok) 5778 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5779 5780 if (req) { 5781 /* Re-arm the timer because data may have been sent out. 5782 * This is similar to the regular data transmission case 5783 * when new data has just been ack'ed. 5784 * 5785 * (TFO) - we could try to be more aggressive and 5786 * retransmitting any data sooner based on when they 5787 * are sent out. 5788 */ 5789 tcp_rearm_rto(sk); 5790 } else 5791 tcp_init_metrics(sk); 5792 5793 tcp_update_pacing_rate(sk); 5794 5795 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5796 tp->lsndtime = tcp_time_stamp; 5797 5798 tcp_initialize_rcv_mss(sk); 5799 tcp_fast_path_on(tp); 5800 break; 5801 5802 case TCP_FIN_WAIT1: { 5803 struct dst_entry *dst; 5804 int tmo; 5805 5806 /* If we enter the TCP_FIN_WAIT1 state and we are a 5807 * Fast Open socket and this is the first acceptable 5808 * ACK we have received, this would have acknowledged 5809 * our SYNACK so stop the SYNACK timer. 5810 */ 5811 if (req) { 5812 /* Return RST if ack_seq is invalid. 5813 * Note that RFC793 only says to generate a 5814 * DUPACK for it but for TCP Fast Open it seems 5815 * better to treat this case like TCP_SYN_RECV 5816 * above. 5817 */ 5818 if (!acceptable) 5819 return 1; 5820 /* We no longer need the request sock. */ 5821 reqsk_fastopen_remove(sk, req, false); 5822 tcp_rearm_rto(sk); 5823 } 5824 if (tp->snd_una != tp->write_seq) 5825 break; 5826 5827 tcp_set_state(sk, TCP_FIN_WAIT2); 5828 sk->sk_shutdown |= SEND_SHUTDOWN; 5829 5830 dst = __sk_dst_get(sk); 5831 if (dst) 5832 dst_confirm(dst); 5833 5834 if (!sock_flag(sk, SOCK_DEAD)) { 5835 /* Wake up lingering close() */ 5836 sk->sk_state_change(sk); 5837 break; 5838 } 5839 5840 if (tp->linger2 < 0 || 5841 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5842 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5843 tcp_done(sk); 5844 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5845 return 1; 5846 } 5847 5848 tmo = tcp_fin_time(sk); 5849 if (tmo > TCP_TIMEWAIT_LEN) { 5850 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5851 } else if (th->fin || sock_owned_by_user(sk)) { 5852 /* Bad case. We could lose such FIN otherwise. 5853 * It is not a big problem, but it looks confusing 5854 * and not so rare event. We still can lose it now, 5855 * if it spins in bh_lock_sock(), but it is really 5856 * marginal case. 5857 */ 5858 inet_csk_reset_keepalive_timer(sk, tmo); 5859 } else { 5860 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5861 goto discard; 5862 } 5863 break; 5864 } 5865 5866 case TCP_CLOSING: 5867 if (tp->snd_una == tp->write_seq) { 5868 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5869 goto discard; 5870 } 5871 break; 5872 5873 case TCP_LAST_ACK: 5874 if (tp->snd_una == tp->write_seq) { 5875 tcp_update_metrics(sk); 5876 tcp_done(sk); 5877 goto discard; 5878 } 5879 break; 5880 } 5881 5882 /* step 6: check the URG bit */ 5883 tcp_urg(sk, skb, th); 5884 5885 /* step 7: process the segment text */ 5886 switch (sk->sk_state) { 5887 case TCP_CLOSE_WAIT: 5888 case TCP_CLOSING: 5889 case TCP_LAST_ACK: 5890 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5891 break; 5892 case TCP_FIN_WAIT1: 5893 case TCP_FIN_WAIT2: 5894 /* RFC 793 says to queue data in these states, 5895 * RFC 1122 says we MUST send a reset. 5896 * BSD 4.4 also does reset. 5897 */ 5898 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5899 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5900 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5901 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5902 tcp_reset(sk); 5903 return 1; 5904 } 5905 } 5906 /* Fall through */ 5907 case TCP_ESTABLISHED: 5908 tcp_data_queue(sk, skb); 5909 queued = 1; 5910 break; 5911 } 5912 5913 /* tcp_data could move socket to TIME-WAIT */ 5914 if (sk->sk_state != TCP_CLOSE) { 5915 tcp_data_snd_check(sk); 5916 tcp_ack_snd_check(sk); 5917 } 5918 5919 if (!queued) { 5920 discard: 5921 __kfree_skb(skb); 5922 } 5923 return 0; 5924 } 5925 EXPORT_SYMBOL(tcp_rcv_state_process); 5926 5927 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5928 { 5929 struct inet_request_sock *ireq = inet_rsk(req); 5930 5931 if (family == AF_INET) 5932 net_dbg_ratelimited("drop open request from %pI4/%u\n", 5933 &ireq->ir_rmt_addr, port); 5934 #if IS_ENABLED(CONFIG_IPV6) 5935 else if (family == AF_INET6) 5936 net_dbg_ratelimited("drop open request from %pI6/%u\n", 5937 &ireq->ir_v6_rmt_addr, port); 5938 #endif 5939 } 5940 5941 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5942 * 5943 * If we receive a SYN packet with these bits set, it means a 5944 * network is playing bad games with TOS bits. In order to 5945 * avoid possible false congestion notifications, we disable 5946 * TCP ECN negotiation. 5947 * 5948 * Exception: tcp_ca wants ECN. This is required for DCTCP 5949 * congestion control: Linux DCTCP asserts ECT on all packets, 5950 * including SYN, which is most optimal solution; however, 5951 * others, such as FreeBSD do not. 5952 */ 5953 static void tcp_ecn_create_request(struct request_sock *req, 5954 const struct sk_buff *skb, 5955 const struct sock *listen_sk, 5956 const struct dst_entry *dst) 5957 { 5958 const struct tcphdr *th = tcp_hdr(skb); 5959 const struct net *net = sock_net(listen_sk); 5960 bool th_ecn = th->ece && th->cwr; 5961 bool ect, ecn_ok; 5962 5963 if (!th_ecn) 5964 return; 5965 5966 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5967 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN); 5968 5969 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk)) 5970 inet_rsk(req)->ecn_ok = 1; 5971 } 5972 5973 static void tcp_openreq_init(struct request_sock *req, 5974 const struct tcp_options_received *rx_opt, 5975 struct sk_buff *skb, const struct sock *sk) 5976 { 5977 struct inet_request_sock *ireq = inet_rsk(req); 5978 5979 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 5980 req->cookie_ts = 0; 5981 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 5982 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5983 tcp_rsk(req)->snt_synack = tcp_time_stamp; 5984 tcp_rsk(req)->last_oow_ack_time = 0; 5985 req->mss = rx_opt->mss_clamp; 5986 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 5987 ireq->tstamp_ok = rx_opt->tstamp_ok; 5988 ireq->sack_ok = rx_opt->sack_ok; 5989 ireq->snd_wscale = rx_opt->snd_wscale; 5990 ireq->wscale_ok = rx_opt->wscale_ok; 5991 ireq->acked = 0; 5992 ireq->ecn_ok = 0; 5993 ireq->ir_rmt_port = tcp_hdr(skb)->source; 5994 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 5995 ireq->ir_mark = inet_request_mark(sk, skb); 5996 } 5997 5998 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 5999 struct sock *sk_listener) 6000 { 6001 struct request_sock *req = reqsk_alloc(ops, sk_listener); 6002 6003 if (req) { 6004 struct inet_request_sock *ireq = inet_rsk(req); 6005 6006 kmemcheck_annotate_bitfield(ireq, flags); 6007 ireq->opt = NULL; 6008 atomic64_set(&ireq->ir_cookie, 0); 6009 ireq->ireq_state = TCP_NEW_SYN_RECV; 6010 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6011 ireq->ireq_family = sk_listener->sk_family; 6012 } 6013 6014 return req; 6015 } 6016 EXPORT_SYMBOL(inet_reqsk_alloc); 6017 6018 /* 6019 * Return true if a syncookie should be sent 6020 */ 6021 static bool tcp_syn_flood_action(struct sock *sk, 6022 const struct sk_buff *skb, 6023 const char *proto) 6024 { 6025 const char *msg = "Dropping request"; 6026 bool want_cookie = false; 6027 struct listen_sock *lopt; 6028 6029 #ifdef CONFIG_SYN_COOKIES 6030 if (sysctl_tcp_syncookies) { 6031 msg = "Sending cookies"; 6032 want_cookie = true; 6033 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6034 } else 6035 #endif 6036 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6037 6038 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 6039 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) { 6040 lopt->synflood_warned = 1; 6041 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6042 proto, ntohs(tcp_hdr(skb)->dest), msg); 6043 } 6044 return want_cookie; 6045 } 6046 6047 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6048 const struct tcp_request_sock_ops *af_ops, 6049 struct sock *sk, struct sk_buff *skb) 6050 { 6051 struct tcp_options_received tmp_opt; 6052 struct request_sock *req; 6053 struct tcp_sock *tp = tcp_sk(sk); 6054 struct dst_entry *dst = NULL; 6055 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6056 bool want_cookie = false, fastopen; 6057 struct flowi fl; 6058 struct tcp_fastopen_cookie foc = { .len = -1 }; 6059 int err; 6060 6061 6062 /* TW buckets are converted to open requests without 6063 * limitations, they conserve resources and peer is 6064 * evidently real one. 6065 */ 6066 if ((sysctl_tcp_syncookies == 2 || 6067 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6068 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6069 if (!want_cookie) 6070 goto drop; 6071 } 6072 6073 6074 /* Accept backlog is full. If we have already queued enough 6075 * of warm entries in syn queue, drop request. It is better than 6076 * clogging syn queue with openreqs with exponentially increasing 6077 * timeout. 6078 */ 6079 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 6080 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6081 goto drop; 6082 } 6083 6084 req = inet_reqsk_alloc(rsk_ops, sk); 6085 if (!req) 6086 goto drop; 6087 6088 tcp_rsk(req)->af_specific = af_ops; 6089 6090 tcp_clear_options(&tmp_opt); 6091 tmp_opt.mss_clamp = af_ops->mss_clamp; 6092 tmp_opt.user_mss = tp->rx_opt.user_mss; 6093 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6094 6095 if (want_cookie && !tmp_opt.saw_tstamp) 6096 tcp_clear_options(&tmp_opt); 6097 6098 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6099 tcp_openreq_init(req, &tmp_opt, skb, sk); 6100 6101 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6102 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if; 6103 6104 af_ops->init_req(req, sk, skb); 6105 6106 if (security_inet_conn_request(sk, skb, req)) 6107 goto drop_and_free; 6108 6109 if (!want_cookie && !isn) { 6110 /* VJ's idea. We save last timestamp seen 6111 * from the destination in peer table, when entering 6112 * state TIME-WAIT, and check against it before 6113 * accepting new connection request. 6114 * 6115 * If "isn" is not zero, this request hit alive 6116 * timewait bucket, so that all the necessary checks 6117 * are made in the function processing timewait state. 6118 */ 6119 if (tcp_death_row.sysctl_tw_recycle) { 6120 bool strict; 6121 6122 dst = af_ops->route_req(sk, &fl, req, &strict); 6123 6124 if (dst && strict && 6125 !tcp_peer_is_proven(req, dst, true, 6126 tmp_opt.saw_tstamp)) { 6127 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6128 goto drop_and_release; 6129 } 6130 } 6131 /* Kill the following clause, if you dislike this way. */ 6132 else if (!sysctl_tcp_syncookies && 6133 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6134 (sysctl_max_syn_backlog >> 2)) && 6135 !tcp_peer_is_proven(req, dst, false, 6136 tmp_opt.saw_tstamp)) { 6137 /* Without syncookies last quarter of 6138 * backlog is filled with destinations, 6139 * proven to be alive. 6140 * It means that we continue to communicate 6141 * to destinations, already remembered 6142 * to the moment of synflood. 6143 */ 6144 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6145 rsk_ops->family); 6146 goto drop_and_release; 6147 } 6148 6149 isn = af_ops->init_seq(skb); 6150 } 6151 if (!dst) { 6152 dst = af_ops->route_req(sk, &fl, req, NULL); 6153 if (!dst) 6154 goto drop_and_free; 6155 } 6156 6157 tcp_ecn_create_request(req, skb, sk, dst); 6158 6159 if (want_cookie) { 6160 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6161 req->cookie_ts = tmp_opt.tstamp_ok; 6162 if (!tmp_opt.tstamp_ok) 6163 inet_rsk(req)->ecn_ok = 0; 6164 } 6165 6166 tcp_rsk(req)->snt_isn = isn; 6167 tcp_openreq_init_rwin(req, sk, dst); 6168 fastopen = !want_cookie && 6169 tcp_try_fastopen(sk, skb, req, &foc, dst); 6170 err = af_ops->send_synack(sk, dst, &fl, req, 6171 skb_get_queue_mapping(skb), &foc); 6172 if (!fastopen) { 6173 if (err || want_cookie) 6174 goto drop_and_free; 6175 6176 tcp_rsk(req)->tfo_listener = false; 6177 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6178 } 6179 6180 return 0; 6181 6182 drop_and_release: 6183 dst_release(dst); 6184 drop_and_free: 6185 reqsk_free(req); 6186 drop: 6187 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6188 return 0; 6189 } 6190 EXPORT_SYMBOL(tcp_conn_request); 6191