1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 1000; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 97 98 int sysctl_tcp_thin_dupack __read_mostly; 99 100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101 int sysctl_tcp_early_retrans __read_mostly = 3; 102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 103 104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 110 #define FLAG_ECE 0x40 /* ECE in this ACK */ 111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 #define REXMIT_NONE 0 /* no loss recovery to do */ 128 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 130 131 /* Adapt the MSS value used to make delayed ack decision to the 132 * real world. 133 */ 134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 135 { 136 struct inet_connection_sock *icsk = inet_csk(sk); 137 const unsigned int lss = icsk->icsk_ack.last_seg_size; 138 unsigned int len; 139 140 icsk->icsk_ack.last_seg_size = 0; 141 142 /* skb->len may jitter because of SACKs, even if peer 143 * sends good full-sized frames. 144 */ 145 len = skb_shinfo(skb)->gso_size ? : skb->len; 146 if (len >= icsk->icsk_ack.rcv_mss) { 147 icsk->icsk_ack.rcv_mss = len; 148 } else { 149 /* Otherwise, we make more careful check taking into account, 150 * that SACKs block is variable. 151 * 152 * "len" is invariant segment length, including TCP header. 153 */ 154 len += skb->data - skb_transport_header(skb); 155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 156 /* If PSH is not set, packet should be 157 * full sized, provided peer TCP is not badly broken. 158 * This observation (if it is correct 8)) allows 159 * to handle super-low mtu links fairly. 160 */ 161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 163 /* Subtract also invariant (if peer is RFC compliant), 164 * tcp header plus fixed timestamp option length. 165 * Resulting "len" is MSS free of SACK jitter. 166 */ 167 len -= tcp_sk(sk)->tcp_header_len; 168 icsk->icsk_ack.last_seg_size = len; 169 if (len == lss) { 170 icsk->icsk_ack.rcv_mss = len; 171 return; 172 } 173 } 174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 177 } 178 } 179 180 static void tcp_incr_quickack(struct sock *sk) 181 { 182 struct inet_connection_sock *icsk = inet_csk(sk); 183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 184 185 if (quickacks == 0) 186 quickacks = 2; 187 if (quickacks > icsk->icsk_ack.quick) 188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 189 } 190 191 static void tcp_enter_quickack_mode(struct sock *sk) 192 { 193 struct inet_connection_sock *icsk = inet_csk(sk); 194 tcp_incr_quickack(sk); 195 icsk->icsk_ack.pingpong = 0; 196 icsk->icsk_ack.ato = TCP_ATO_MIN; 197 } 198 199 /* Send ACKs quickly, if "quick" count is not exhausted 200 * and the session is not interactive. 201 */ 202 203 static bool tcp_in_quickack_mode(struct sock *sk) 204 { 205 const struct inet_connection_sock *icsk = inet_csk(sk); 206 const struct dst_entry *dst = __sk_dst_get(sk); 207 208 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 210 } 211 212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 213 { 214 if (tp->ecn_flags & TCP_ECN_OK) 215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 216 } 217 218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 219 { 220 if (tcp_hdr(skb)->cwr) 221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 222 } 223 224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 225 { 226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 227 } 228 229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 230 { 231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 232 case INET_ECN_NOT_ECT: 233 /* Funny extension: if ECT is not set on a segment, 234 * and we already seen ECT on a previous segment, 235 * it is probably a retransmit. 236 */ 237 if (tp->ecn_flags & TCP_ECN_SEEN) 238 tcp_enter_quickack_mode((struct sock *)tp); 239 break; 240 case INET_ECN_CE: 241 if (tcp_ca_needs_ecn((struct sock *)tp)) 242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 243 244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 245 /* Better not delay acks, sender can have a very low cwnd */ 246 tcp_enter_quickack_mode((struct sock *)tp); 247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 248 } 249 tp->ecn_flags |= TCP_ECN_SEEN; 250 break; 251 default: 252 if (tcp_ca_needs_ecn((struct sock *)tp)) 253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 254 tp->ecn_flags |= TCP_ECN_SEEN; 255 break; 256 } 257 } 258 259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 260 { 261 if (tp->ecn_flags & TCP_ECN_OK) 262 __tcp_ecn_check_ce(tp, skb); 263 } 264 265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 266 { 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 268 tp->ecn_flags &= ~TCP_ECN_OK; 269 } 270 271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 274 tp->ecn_flags &= ~TCP_ECN_OK; 275 } 276 277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 278 { 279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 280 return true; 281 return false; 282 } 283 284 /* Buffer size and advertised window tuning. 285 * 286 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 287 */ 288 289 static void tcp_sndbuf_expand(struct sock *sk) 290 { 291 const struct tcp_sock *tp = tcp_sk(sk); 292 int sndmem, per_mss; 293 u32 nr_segs; 294 295 /* Worst case is non GSO/TSO : each frame consumes one skb 296 * and skb->head is kmalloced using power of two area of memory 297 */ 298 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 299 MAX_TCP_HEADER + 300 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 301 302 per_mss = roundup_pow_of_two(per_mss) + 303 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 304 305 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 306 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 307 308 /* Fast Recovery (RFC 5681 3.2) : 309 * Cubic needs 1.7 factor, rounded to 2 to include 310 * extra cushion (application might react slowly to POLLOUT) 311 */ 312 sndmem = 2 * nr_segs * per_mss; 313 314 if (sk->sk_sndbuf < sndmem) 315 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 316 } 317 318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 319 * 320 * All tcp_full_space() is split to two parts: "network" buffer, allocated 321 * forward and advertised in receiver window (tp->rcv_wnd) and 322 * "application buffer", required to isolate scheduling/application 323 * latencies from network. 324 * window_clamp is maximal advertised window. It can be less than 325 * tcp_full_space(), in this case tcp_full_space() - window_clamp 326 * is reserved for "application" buffer. The less window_clamp is 327 * the smoother our behaviour from viewpoint of network, but the lower 328 * throughput and the higher sensitivity of the connection to losses. 8) 329 * 330 * rcv_ssthresh is more strict window_clamp used at "slow start" 331 * phase to predict further behaviour of this connection. 332 * It is used for two goals: 333 * - to enforce header prediction at sender, even when application 334 * requires some significant "application buffer". It is check #1. 335 * - to prevent pruning of receive queue because of misprediction 336 * of receiver window. Check #2. 337 * 338 * The scheme does not work when sender sends good segments opening 339 * window and then starts to feed us spaghetti. But it should work 340 * in common situations. Otherwise, we have to rely on queue collapsing. 341 */ 342 343 /* Slow part of check#2. */ 344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 345 { 346 struct tcp_sock *tp = tcp_sk(sk); 347 /* Optimize this! */ 348 int truesize = tcp_win_from_space(skb->truesize) >> 1; 349 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 350 351 while (tp->rcv_ssthresh <= window) { 352 if (truesize <= skb->len) 353 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 354 355 truesize >>= 1; 356 window >>= 1; 357 } 358 return 0; 359 } 360 361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 362 { 363 struct tcp_sock *tp = tcp_sk(sk); 364 365 /* Check #1 */ 366 if (tp->rcv_ssthresh < tp->window_clamp && 367 (int)tp->rcv_ssthresh < tcp_space(sk) && 368 !tcp_under_memory_pressure(sk)) { 369 int incr; 370 371 /* Check #2. Increase window, if skb with such overhead 372 * will fit to rcvbuf in future. 373 */ 374 if (tcp_win_from_space(skb->truesize) <= skb->len) 375 incr = 2 * tp->advmss; 376 else 377 incr = __tcp_grow_window(sk, skb); 378 379 if (incr) { 380 incr = max_t(int, incr, 2 * skb->len); 381 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 382 tp->window_clamp); 383 inet_csk(sk)->icsk_ack.quick |= 1; 384 } 385 } 386 } 387 388 /* 3. Tuning rcvbuf, when connection enters established state. */ 389 static void tcp_fixup_rcvbuf(struct sock *sk) 390 { 391 u32 mss = tcp_sk(sk)->advmss; 392 int rcvmem; 393 394 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 395 tcp_default_init_rwnd(mss); 396 397 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 398 * Allow enough cushion so that sender is not limited by our window 399 */ 400 if (sysctl_tcp_moderate_rcvbuf) 401 rcvmem <<= 2; 402 403 if (sk->sk_rcvbuf < rcvmem) 404 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 405 } 406 407 /* 4. Try to fixup all. It is made immediately after connection enters 408 * established state. 409 */ 410 void tcp_init_buffer_space(struct sock *sk) 411 { 412 struct tcp_sock *tp = tcp_sk(sk); 413 int maxwin; 414 415 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 416 tcp_fixup_rcvbuf(sk); 417 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 418 tcp_sndbuf_expand(sk); 419 420 tp->rcvq_space.space = tp->rcv_wnd; 421 tp->rcvq_space.time = tcp_time_stamp; 422 tp->rcvq_space.seq = tp->copied_seq; 423 424 maxwin = tcp_full_space(sk); 425 426 if (tp->window_clamp >= maxwin) { 427 tp->window_clamp = maxwin; 428 429 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 430 tp->window_clamp = max(maxwin - 431 (maxwin >> sysctl_tcp_app_win), 432 4 * tp->advmss); 433 } 434 435 /* Force reservation of one segment. */ 436 if (sysctl_tcp_app_win && 437 tp->window_clamp > 2 * tp->advmss && 438 tp->window_clamp + tp->advmss > maxwin) 439 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 440 441 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 442 tp->snd_cwnd_stamp = tcp_time_stamp; 443 } 444 445 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 446 static void tcp_clamp_window(struct sock *sk) 447 { 448 struct tcp_sock *tp = tcp_sk(sk); 449 struct inet_connection_sock *icsk = inet_csk(sk); 450 451 icsk->icsk_ack.quick = 0; 452 453 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 454 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 455 !tcp_under_memory_pressure(sk) && 456 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 457 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 458 sysctl_tcp_rmem[2]); 459 } 460 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 461 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 462 } 463 464 /* Initialize RCV_MSS value. 465 * RCV_MSS is an our guess about MSS used by the peer. 466 * We haven't any direct information about the MSS. 467 * It's better to underestimate the RCV_MSS rather than overestimate. 468 * Overestimations make us ACKing less frequently than needed. 469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 470 */ 471 void tcp_initialize_rcv_mss(struct sock *sk) 472 { 473 const struct tcp_sock *tp = tcp_sk(sk); 474 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 475 476 hint = min(hint, tp->rcv_wnd / 2); 477 hint = min(hint, TCP_MSS_DEFAULT); 478 hint = max(hint, TCP_MIN_MSS); 479 480 inet_csk(sk)->icsk_ack.rcv_mss = hint; 481 } 482 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 483 484 /* Receiver "autotuning" code. 485 * 486 * The algorithm for RTT estimation w/o timestamps is based on 487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 488 * <http://public.lanl.gov/radiant/pubs.html#DRS> 489 * 490 * More detail on this code can be found at 491 * <http://staff.psc.edu/jheffner/>, 492 * though this reference is out of date. A new paper 493 * is pending. 494 */ 495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 496 { 497 u32 new_sample = tp->rcv_rtt_est.rtt; 498 long m = sample; 499 500 if (m == 0) 501 m = 1; 502 503 if (new_sample != 0) { 504 /* If we sample in larger samples in the non-timestamp 505 * case, we could grossly overestimate the RTT especially 506 * with chatty applications or bulk transfer apps which 507 * are stalled on filesystem I/O. 508 * 509 * Also, since we are only going for a minimum in the 510 * non-timestamp case, we do not smooth things out 511 * else with timestamps disabled convergence takes too 512 * long. 513 */ 514 if (!win_dep) { 515 m -= (new_sample >> 3); 516 new_sample += m; 517 } else { 518 m <<= 3; 519 if (m < new_sample) 520 new_sample = m; 521 } 522 } else { 523 /* No previous measure. */ 524 new_sample = m << 3; 525 } 526 527 if (tp->rcv_rtt_est.rtt != new_sample) 528 tp->rcv_rtt_est.rtt = new_sample; 529 } 530 531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 532 { 533 if (tp->rcv_rtt_est.time == 0) 534 goto new_measure; 535 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 536 return; 537 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 538 539 new_measure: 540 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 541 tp->rcv_rtt_est.time = tcp_time_stamp; 542 } 543 544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 545 const struct sk_buff *skb) 546 { 547 struct tcp_sock *tp = tcp_sk(sk); 548 if (tp->rx_opt.rcv_tsecr && 549 (TCP_SKB_CB(skb)->end_seq - 550 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 551 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 552 } 553 554 /* 555 * This function should be called every time data is copied to user space. 556 * It calculates the appropriate TCP receive buffer space. 557 */ 558 void tcp_rcv_space_adjust(struct sock *sk) 559 { 560 struct tcp_sock *tp = tcp_sk(sk); 561 int time; 562 int copied; 563 564 time = tcp_time_stamp - tp->rcvq_space.time; 565 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 566 return; 567 568 /* Number of bytes copied to user in last RTT */ 569 copied = tp->copied_seq - tp->rcvq_space.seq; 570 if (copied <= tp->rcvq_space.space) 571 goto new_measure; 572 573 /* A bit of theory : 574 * copied = bytes received in previous RTT, our base window 575 * To cope with packet losses, we need a 2x factor 576 * To cope with slow start, and sender growing its cwin by 100 % 577 * every RTT, we need a 4x factor, because the ACK we are sending 578 * now is for the next RTT, not the current one : 579 * <prev RTT . ><current RTT .. ><next RTT .... > 580 */ 581 582 if (sysctl_tcp_moderate_rcvbuf && 583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 584 int rcvwin, rcvmem, rcvbuf; 585 586 /* minimal window to cope with packet losses, assuming 587 * steady state. Add some cushion because of small variations. 588 */ 589 rcvwin = (copied << 1) + 16 * tp->advmss; 590 591 /* If rate increased by 25%, 592 * assume slow start, rcvwin = 3 * copied 593 * If rate increased by 50%, 594 * assume sender can use 2x growth, rcvwin = 4 * copied 595 */ 596 if (copied >= 597 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 598 if (copied >= 599 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 600 rcvwin <<= 1; 601 else 602 rcvwin += (rcvwin >> 1); 603 } 604 605 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 606 while (tcp_win_from_space(rcvmem) < tp->advmss) 607 rcvmem += 128; 608 609 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 610 if (rcvbuf > sk->sk_rcvbuf) { 611 sk->sk_rcvbuf = rcvbuf; 612 613 /* Make the window clamp follow along. */ 614 tp->window_clamp = rcvwin; 615 } 616 } 617 tp->rcvq_space.space = copied; 618 619 new_measure: 620 tp->rcvq_space.seq = tp->copied_seq; 621 tp->rcvq_space.time = tcp_time_stamp; 622 } 623 624 /* There is something which you must keep in mind when you analyze the 625 * behavior of the tp->ato delayed ack timeout interval. When a 626 * connection starts up, we want to ack as quickly as possible. The 627 * problem is that "good" TCP's do slow start at the beginning of data 628 * transmission. The means that until we send the first few ACK's the 629 * sender will sit on his end and only queue most of his data, because 630 * he can only send snd_cwnd unacked packets at any given time. For 631 * each ACK we send, he increments snd_cwnd and transmits more of his 632 * queue. -DaveM 633 */ 634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 635 { 636 struct tcp_sock *tp = tcp_sk(sk); 637 struct inet_connection_sock *icsk = inet_csk(sk); 638 u32 now; 639 640 inet_csk_schedule_ack(sk); 641 642 tcp_measure_rcv_mss(sk, skb); 643 644 tcp_rcv_rtt_measure(tp); 645 646 now = tcp_time_stamp; 647 648 if (!icsk->icsk_ack.ato) { 649 /* The _first_ data packet received, initialize 650 * delayed ACK engine. 651 */ 652 tcp_incr_quickack(sk); 653 icsk->icsk_ack.ato = TCP_ATO_MIN; 654 } else { 655 int m = now - icsk->icsk_ack.lrcvtime; 656 657 if (m <= TCP_ATO_MIN / 2) { 658 /* The fastest case is the first. */ 659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 660 } else if (m < icsk->icsk_ack.ato) { 661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 662 if (icsk->icsk_ack.ato > icsk->icsk_rto) 663 icsk->icsk_ack.ato = icsk->icsk_rto; 664 } else if (m > icsk->icsk_rto) { 665 /* Too long gap. Apparently sender failed to 666 * restart window, so that we send ACKs quickly. 667 */ 668 tcp_incr_quickack(sk); 669 sk_mem_reclaim(sk); 670 } 671 } 672 icsk->icsk_ack.lrcvtime = now; 673 674 tcp_ecn_check_ce(tp, skb); 675 676 if (skb->len >= 128) 677 tcp_grow_window(sk, skb); 678 } 679 680 /* Called to compute a smoothed rtt estimate. The data fed to this 681 * routine either comes from timestamps, or from segments that were 682 * known _not_ to have been retransmitted [see Karn/Partridge 683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 684 * piece by Van Jacobson. 685 * NOTE: the next three routines used to be one big routine. 686 * To save cycles in the RFC 1323 implementation it was better to break 687 * it up into three procedures. -- erics 688 */ 689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 690 { 691 struct tcp_sock *tp = tcp_sk(sk); 692 long m = mrtt_us; /* RTT */ 693 u32 srtt = tp->srtt_us; 694 695 /* The following amusing code comes from Jacobson's 696 * article in SIGCOMM '88. Note that rtt and mdev 697 * are scaled versions of rtt and mean deviation. 698 * This is designed to be as fast as possible 699 * m stands for "measurement". 700 * 701 * On a 1990 paper the rto value is changed to: 702 * RTO = rtt + 4 * mdev 703 * 704 * Funny. This algorithm seems to be very broken. 705 * These formulae increase RTO, when it should be decreased, increase 706 * too slowly, when it should be increased quickly, decrease too quickly 707 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 708 * does not matter how to _calculate_ it. Seems, it was trap 709 * that VJ failed to avoid. 8) 710 */ 711 if (srtt != 0) { 712 m -= (srtt >> 3); /* m is now error in rtt est */ 713 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 714 if (m < 0) { 715 m = -m; /* m is now abs(error) */ 716 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 717 /* This is similar to one of Eifel findings. 718 * Eifel blocks mdev updates when rtt decreases. 719 * This solution is a bit different: we use finer gain 720 * for mdev in this case (alpha*beta). 721 * Like Eifel it also prevents growth of rto, 722 * but also it limits too fast rto decreases, 723 * happening in pure Eifel. 724 */ 725 if (m > 0) 726 m >>= 3; 727 } else { 728 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 729 } 730 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 731 if (tp->mdev_us > tp->mdev_max_us) { 732 tp->mdev_max_us = tp->mdev_us; 733 if (tp->mdev_max_us > tp->rttvar_us) 734 tp->rttvar_us = tp->mdev_max_us; 735 } 736 if (after(tp->snd_una, tp->rtt_seq)) { 737 if (tp->mdev_max_us < tp->rttvar_us) 738 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 739 tp->rtt_seq = tp->snd_nxt; 740 tp->mdev_max_us = tcp_rto_min_us(sk); 741 } 742 } else { 743 /* no previous measure. */ 744 srtt = m << 3; /* take the measured time to be rtt */ 745 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 746 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 747 tp->mdev_max_us = tp->rttvar_us; 748 tp->rtt_seq = tp->snd_nxt; 749 } 750 tp->srtt_us = max(1U, srtt); 751 } 752 753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 754 * Note: TCP stack does not yet implement pacing. 755 * FQ packet scheduler can be used to implement cheap but effective 756 * TCP pacing, to smooth the burst on large writes when packets 757 * in flight is significantly lower than cwnd (or rwin) 758 */ 759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 761 762 static void tcp_update_pacing_rate(struct sock *sk) 763 { 764 const struct tcp_sock *tp = tcp_sk(sk); 765 u64 rate; 766 767 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 768 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 769 770 /* current rate is (cwnd * mss) / srtt 771 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 772 * In Congestion Avoidance phase, set it to 120 % the current rate. 773 * 774 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 775 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 776 * end of slow start and should slow down. 777 */ 778 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 779 rate *= sysctl_tcp_pacing_ss_ratio; 780 else 781 rate *= sysctl_tcp_pacing_ca_ratio; 782 783 rate *= max(tp->snd_cwnd, tp->packets_out); 784 785 if (likely(tp->srtt_us)) 786 do_div(rate, tp->srtt_us); 787 788 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 789 * without any lock. We want to make sure compiler wont store 790 * intermediate values in this location. 791 */ 792 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 793 sk->sk_max_pacing_rate); 794 } 795 796 /* Calculate rto without backoff. This is the second half of Van Jacobson's 797 * routine referred to above. 798 */ 799 static void tcp_set_rto(struct sock *sk) 800 { 801 const struct tcp_sock *tp = tcp_sk(sk); 802 /* Old crap is replaced with new one. 8) 803 * 804 * More seriously: 805 * 1. If rtt variance happened to be less 50msec, it is hallucination. 806 * It cannot be less due to utterly erratic ACK generation made 807 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 808 * to do with delayed acks, because at cwnd>2 true delack timeout 809 * is invisible. Actually, Linux-2.4 also generates erratic 810 * ACKs in some circumstances. 811 */ 812 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 813 814 /* 2. Fixups made earlier cannot be right. 815 * If we do not estimate RTO correctly without them, 816 * all the algo is pure shit and should be replaced 817 * with correct one. It is exactly, which we pretend to do. 818 */ 819 820 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 821 * guarantees that rto is higher. 822 */ 823 tcp_bound_rto(sk); 824 } 825 826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 827 { 828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 829 830 if (!cwnd) 831 cwnd = TCP_INIT_CWND; 832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 833 } 834 835 /* 836 * Packet counting of FACK is based on in-order assumptions, therefore TCP 837 * disables it when reordering is detected 838 */ 839 void tcp_disable_fack(struct tcp_sock *tp) 840 { 841 /* RFC3517 uses different metric in lost marker => reset on change */ 842 if (tcp_is_fack(tp)) 843 tp->lost_skb_hint = NULL; 844 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 845 } 846 847 /* Take a notice that peer is sending D-SACKs */ 848 static void tcp_dsack_seen(struct tcp_sock *tp) 849 { 850 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 851 } 852 853 static void tcp_update_reordering(struct sock *sk, const int metric, 854 const int ts) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 if (metric > tp->reordering) { 858 int mib_idx; 859 860 tp->reordering = min(sysctl_tcp_max_reordering, metric); 861 862 /* This exciting event is worth to be remembered. 8) */ 863 if (ts) 864 mib_idx = LINUX_MIB_TCPTSREORDER; 865 else if (tcp_is_reno(tp)) 866 mib_idx = LINUX_MIB_TCPRENOREORDER; 867 else if (tcp_is_fack(tp)) 868 mib_idx = LINUX_MIB_TCPFACKREORDER; 869 else 870 mib_idx = LINUX_MIB_TCPSACKREORDER; 871 872 NET_INC_STATS(sock_net(sk), mib_idx); 873 #if FASTRETRANS_DEBUG > 1 874 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 875 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 876 tp->reordering, 877 tp->fackets_out, 878 tp->sacked_out, 879 tp->undo_marker ? tp->undo_retrans : 0); 880 #endif 881 tcp_disable_fack(tp); 882 } 883 884 if (metric > 0) 885 tcp_disable_early_retrans(tp); 886 tp->rack.reord = 1; 887 } 888 889 /* This must be called before lost_out is incremented */ 890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 891 { 892 if (!tp->retransmit_skb_hint || 893 before(TCP_SKB_CB(skb)->seq, 894 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 895 tp->retransmit_skb_hint = skb; 896 897 if (!tp->lost_out || 898 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 899 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 900 } 901 902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 903 { 904 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 905 tcp_verify_retransmit_hint(tp, skb); 906 907 tp->lost_out += tcp_skb_pcount(skb); 908 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 909 } 910 } 911 912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 913 { 914 tcp_verify_retransmit_hint(tp, skb); 915 916 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 917 tp->lost_out += tcp_skb_pcount(skb); 918 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 919 } 920 } 921 922 /* This procedure tags the retransmission queue when SACKs arrive. 923 * 924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 925 * Packets in queue with these bits set are counted in variables 926 * sacked_out, retrans_out and lost_out, correspondingly. 927 * 928 * Valid combinations are: 929 * Tag InFlight Description 930 * 0 1 - orig segment is in flight. 931 * S 0 - nothing flies, orig reached receiver. 932 * L 0 - nothing flies, orig lost by net. 933 * R 2 - both orig and retransmit are in flight. 934 * L|R 1 - orig is lost, retransmit is in flight. 935 * S|R 1 - orig reached receiver, retrans is still in flight. 936 * (L|S|R is logically valid, it could occur when L|R is sacked, 937 * but it is equivalent to plain S and code short-curcuits it to S. 938 * L|S is logically invalid, it would mean -1 packet in flight 8)) 939 * 940 * These 6 states form finite state machine, controlled by the following events: 941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 943 * 3. Loss detection event of two flavors: 944 * A. Scoreboard estimator decided the packet is lost. 945 * A'. Reno "three dupacks" marks head of queue lost. 946 * A''. Its FACK modification, head until snd.fack is lost. 947 * B. SACK arrives sacking SND.NXT at the moment, when the 948 * segment was retransmitted. 949 * 4. D-SACK added new rule: D-SACK changes any tag to S. 950 * 951 * It is pleasant to note, that state diagram turns out to be commutative, 952 * so that we are allowed not to be bothered by order of our actions, 953 * when multiple events arrive simultaneously. (see the function below). 954 * 955 * Reordering detection. 956 * -------------------- 957 * Reordering metric is maximal distance, which a packet can be displaced 958 * in packet stream. With SACKs we can estimate it: 959 * 960 * 1. SACK fills old hole and the corresponding segment was not 961 * ever retransmitted -> reordering. Alas, we cannot use it 962 * when segment was retransmitted. 963 * 2. The last flaw is solved with D-SACK. D-SACK arrives 964 * for retransmitted and already SACKed segment -> reordering.. 965 * Both of these heuristics are not used in Loss state, when we cannot 966 * account for retransmits accurately. 967 * 968 * SACK block validation. 969 * ---------------------- 970 * 971 * SACK block range validation checks that the received SACK block fits to 972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 973 * Note that SND.UNA is not included to the range though being valid because 974 * it means that the receiver is rather inconsistent with itself reporting 975 * SACK reneging when it should advance SND.UNA. Such SACK block this is 976 * perfectly valid, however, in light of RFC2018 which explicitly states 977 * that "SACK block MUST reflect the newest segment. Even if the newest 978 * segment is going to be discarded ...", not that it looks very clever 979 * in case of head skb. Due to potentional receiver driven attacks, we 980 * choose to avoid immediate execution of a walk in write queue due to 981 * reneging and defer head skb's loss recovery to standard loss recovery 982 * procedure that will eventually trigger (nothing forbids us doing this). 983 * 984 * Implements also blockage to start_seq wrap-around. Problem lies in the 985 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 986 * there's no guarantee that it will be before snd_nxt (n). The problem 987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 988 * wrap (s_w): 989 * 990 * <- outs wnd -> <- wrapzone -> 991 * u e n u_w e_w s n_w 992 * | | | | | | | 993 * |<------------+------+----- TCP seqno space --------------+---------->| 994 * ...-- <2^31 ->| |<--------... 995 * ...---- >2^31 ------>| |<--------... 996 * 997 * Current code wouldn't be vulnerable but it's better still to discard such 998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1001 * equal to the ideal case (infinite seqno space without wrap caused issues). 1002 * 1003 * With D-SACK the lower bound is extended to cover sequence space below 1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1005 * again, D-SACK block must not to go across snd_una (for the same reason as 1006 * for the normal SACK blocks, explained above). But there all simplicity 1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1008 * fully below undo_marker they do not affect behavior in anyway and can 1009 * therefore be safely ignored. In rare cases (which are more or less 1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1011 * fragmentation and packet reordering past skb's retransmission. To consider 1012 * them correctly, the acceptable range must be extended even more though 1013 * the exact amount is rather hard to quantify. However, tp->max_window can 1014 * be used as an exaggerated estimate. 1015 */ 1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1017 u32 start_seq, u32 end_seq) 1018 { 1019 /* Too far in future, or reversed (interpretation is ambiguous) */ 1020 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1021 return false; 1022 1023 /* Nasty start_seq wrap-around check (see comments above) */ 1024 if (!before(start_seq, tp->snd_nxt)) 1025 return false; 1026 1027 /* In outstanding window? ...This is valid exit for D-SACKs too. 1028 * start_seq == snd_una is non-sensical (see comments above) 1029 */ 1030 if (after(start_seq, tp->snd_una)) 1031 return true; 1032 1033 if (!is_dsack || !tp->undo_marker) 1034 return false; 1035 1036 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1037 if (after(end_seq, tp->snd_una)) 1038 return false; 1039 1040 if (!before(start_seq, tp->undo_marker)) 1041 return true; 1042 1043 /* Too old */ 1044 if (!after(end_seq, tp->undo_marker)) 1045 return false; 1046 1047 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1048 * start_seq < undo_marker and end_seq >= undo_marker. 1049 */ 1050 return !before(start_seq, end_seq - tp->max_window); 1051 } 1052 1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1054 struct tcp_sack_block_wire *sp, int num_sacks, 1055 u32 prior_snd_una) 1056 { 1057 struct tcp_sock *tp = tcp_sk(sk); 1058 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1059 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1060 bool dup_sack = false; 1061 1062 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1063 dup_sack = true; 1064 tcp_dsack_seen(tp); 1065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1066 } else if (num_sacks > 1) { 1067 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1068 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1069 1070 if (!after(end_seq_0, end_seq_1) && 1071 !before(start_seq_0, start_seq_1)) { 1072 dup_sack = true; 1073 tcp_dsack_seen(tp); 1074 NET_INC_STATS(sock_net(sk), 1075 LINUX_MIB_TCPDSACKOFORECV); 1076 } 1077 } 1078 1079 /* D-SACK for already forgotten data... Do dumb counting. */ 1080 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1081 !after(end_seq_0, prior_snd_una) && 1082 after(end_seq_0, tp->undo_marker)) 1083 tp->undo_retrans--; 1084 1085 return dup_sack; 1086 } 1087 1088 struct tcp_sacktag_state { 1089 int reord; 1090 int fack_count; 1091 /* Timestamps for earliest and latest never-retransmitted segment 1092 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1093 * but congestion control should still get an accurate delay signal. 1094 */ 1095 struct skb_mstamp first_sackt; 1096 struct skb_mstamp last_sackt; 1097 int flag; 1098 }; 1099 1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1101 * the incoming SACK may not exactly match but we can find smaller MSS 1102 * aligned portion of it that matches. Therefore we might need to fragment 1103 * which may fail and creates some hassle (caller must handle error case 1104 * returns). 1105 * 1106 * FIXME: this could be merged to shift decision code 1107 */ 1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1109 u32 start_seq, u32 end_seq) 1110 { 1111 int err; 1112 bool in_sack; 1113 unsigned int pkt_len; 1114 unsigned int mss; 1115 1116 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1117 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1118 1119 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1120 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1121 mss = tcp_skb_mss(skb); 1122 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1123 1124 if (!in_sack) { 1125 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1126 if (pkt_len < mss) 1127 pkt_len = mss; 1128 } else { 1129 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1130 if (pkt_len < mss) 1131 return -EINVAL; 1132 } 1133 1134 /* Round if necessary so that SACKs cover only full MSSes 1135 * and/or the remaining small portion (if present) 1136 */ 1137 if (pkt_len > mss) { 1138 unsigned int new_len = (pkt_len / mss) * mss; 1139 if (!in_sack && new_len < pkt_len) { 1140 new_len += mss; 1141 if (new_len >= skb->len) 1142 return 0; 1143 } 1144 pkt_len = new_len; 1145 } 1146 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1147 if (err < 0) 1148 return err; 1149 } 1150 1151 return in_sack; 1152 } 1153 1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1155 static u8 tcp_sacktag_one(struct sock *sk, 1156 struct tcp_sacktag_state *state, u8 sacked, 1157 u32 start_seq, u32 end_seq, 1158 int dup_sack, int pcount, 1159 const struct skb_mstamp *xmit_time) 1160 { 1161 struct tcp_sock *tp = tcp_sk(sk); 1162 int fack_count = state->fack_count; 1163 1164 /* Account D-SACK for retransmitted packet. */ 1165 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1166 if (tp->undo_marker && tp->undo_retrans > 0 && 1167 after(end_seq, tp->undo_marker)) 1168 tp->undo_retrans--; 1169 if (sacked & TCPCB_SACKED_ACKED) 1170 state->reord = min(fack_count, state->reord); 1171 } 1172 1173 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1174 if (!after(end_seq, tp->snd_una)) 1175 return sacked; 1176 1177 if (!(sacked & TCPCB_SACKED_ACKED)) { 1178 tcp_rack_advance(tp, xmit_time, sacked); 1179 1180 if (sacked & TCPCB_SACKED_RETRANS) { 1181 /* If the segment is not tagged as lost, 1182 * we do not clear RETRANS, believing 1183 * that retransmission is still in flight. 1184 */ 1185 if (sacked & TCPCB_LOST) { 1186 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1187 tp->lost_out -= pcount; 1188 tp->retrans_out -= pcount; 1189 } 1190 } else { 1191 if (!(sacked & TCPCB_RETRANS)) { 1192 /* New sack for not retransmitted frame, 1193 * which was in hole. It is reordering. 1194 */ 1195 if (before(start_seq, 1196 tcp_highest_sack_seq(tp))) 1197 state->reord = min(fack_count, 1198 state->reord); 1199 if (!after(end_seq, tp->high_seq)) 1200 state->flag |= FLAG_ORIG_SACK_ACKED; 1201 if (state->first_sackt.v64 == 0) 1202 state->first_sackt = *xmit_time; 1203 state->last_sackt = *xmit_time; 1204 } 1205 1206 if (sacked & TCPCB_LOST) { 1207 sacked &= ~TCPCB_LOST; 1208 tp->lost_out -= pcount; 1209 } 1210 } 1211 1212 sacked |= TCPCB_SACKED_ACKED; 1213 state->flag |= FLAG_DATA_SACKED; 1214 tp->sacked_out += pcount; 1215 tp->delivered += pcount; /* Out-of-order packets delivered */ 1216 1217 fack_count += pcount; 1218 1219 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1220 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1221 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1222 tp->lost_cnt_hint += pcount; 1223 1224 if (fack_count > tp->fackets_out) 1225 tp->fackets_out = fack_count; 1226 } 1227 1228 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1229 * frames and clear it. undo_retrans is decreased above, L|R frames 1230 * are accounted above as well. 1231 */ 1232 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1233 sacked &= ~TCPCB_SACKED_RETRANS; 1234 tp->retrans_out -= pcount; 1235 } 1236 1237 return sacked; 1238 } 1239 1240 /* Shift newly-SACKed bytes from this skb to the immediately previous 1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1242 */ 1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1244 struct tcp_sacktag_state *state, 1245 unsigned int pcount, int shifted, int mss, 1246 bool dup_sack) 1247 { 1248 struct tcp_sock *tp = tcp_sk(sk); 1249 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1250 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1251 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1252 1253 BUG_ON(!pcount); 1254 1255 /* Adjust counters and hints for the newly sacked sequence 1256 * range but discard the return value since prev is already 1257 * marked. We must tag the range first because the seq 1258 * advancement below implicitly advances 1259 * tcp_highest_sack_seq() when skb is highest_sack. 1260 */ 1261 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1262 start_seq, end_seq, dup_sack, pcount, 1263 &skb->skb_mstamp); 1264 1265 if (skb == tp->lost_skb_hint) 1266 tp->lost_cnt_hint += pcount; 1267 1268 TCP_SKB_CB(prev)->end_seq += shifted; 1269 TCP_SKB_CB(skb)->seq += shifted; 1270 1271 tcp_skb_pcount_add(prev, pcount); 1272 BUG_ON(tcp_skb_pcount(skb) < pcount); 1273 tcp_skb_pcount_add(skb, -pcount); 1274 1275 /* When we're adding to gso_segs == 1, gso_size will be zero, 1276 * in theory this shouldn't be necessary but as long as DSACK 1277 * code can come after this skb later on it's better to keep 1278 * setting gso_size to something. 1279 */ 1280 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1281 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1282 1283 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1284 if (tcp_skb_pcount(skb) <= 1) 1285 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1286 1287 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1288 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1289 1290 if (skb->len > 0) { 1291 BUG_ON(!tcp_skb_pcount(skb)); 1292 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1293 return false; 1294 } 1295 1296 /* Whole SKB was eaten :-) */ 1297 1298 if (skb == tp->retransmit_skb_hint) 1299 tp->retransmit_skb_hint = prev; 1300 if (skb == tp->lost_skb_hint) { 1301 tp->lost_skb_hint = prev; 1302 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1303 } 1304 1305 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1306 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1307 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1308 TCP_SKB_CB(prev)->end_seq++; 1309 1310 if (skb == tcp_highest_sack(sk)) 1311 tcp_advance_highest_sack(sk, skb); 1312 1313 tcp_skb_collapse_tstamp(prev, skb); 1314 tcp_unlink_write_queue(skb, sk); 1315 sk_wmem_free_skb(sk, skb); 1316 1317 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1318 1319 return true; 1320 } 1321 1322 /* I wish gso_size would have a bit more sane initialization than 1323 * something-or-zero which complicates things 1324 */ 1325 static int tcp_skb_seglen(const struct sk_buff *skb) 1326 { 1327 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1328 } 1329 1330 /* Shifting pages past head area doesn't work */ 1331 static int skb_can_shift(const struct sk_buff *skb) 1332 { 1333 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1334 } 1335 1336 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1337 * skb. 1338 */ 1339 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1340 struct tcp_sacktag_state *state, 1341 u32 start_seq, u32 end_seq, 1342 bool dup_sack) 1343 { 1344 struct tcp_sock *tp = tcp_sk(sk); 1345 struct sk_buff *prev; 1346 int mss; 1347 int pcount = 0; 1348 int len; 1349 int in_sack; 1350 1351 if (!sk_can_gso(sk)) 1352 goto fallback; 1353 1354 /* Normally R but no L won't result in plain S */ 1355 if (!dup_sack && 1356 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1357 goto fallback; 1358 if (!skb_can_shift(skb)) 1359 goto fallback; 1360 /* This frame is about to be dropped (was ACKed). */ 1361 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1362 goto fallback; 1363 1364 /* Can only happen with delayed DSACK + discard craziness */ 1365 if (unlikely(skb == tcp_write_queue_head(sk))) 1366 goto fallback; 1367 prev = tcp_write_queue_prev(sk, skb); 1368 1369 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1370 goto fallback; 1371 1372 if (!tcp_skb_can_collapse_to(prev)) 1373 goto fallback; 1374 1375 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1376 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1377 1378 if (in_sack) { 1379 len = skb->len; 1380 pcount = tcp_skb_pcount(skb); 1381 mss = tcp_skb_seglen(skb); 1382 1383 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1384 * drop this restriction as unnecessary 1385 */ 1386 if (mss != tcp_skb_seglen(prev)) 1387 goto fallback; 1388 } else { 1389 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1390 goto noop; 1391 /* CHECKME: This is non-MSS split case only?, this will 1392 * cause skipped skbs due to advancing loop btw, original 1393 * has that feature too 1394 */ 1395 if (tcp_skb_pcount(skb) <= 1) 1396 goto noop; 1397 1398 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1399 if (!in_sack) { 1400 /* TODO: head merge to next could be attempted here 1401 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1402 * though it might not be worth of the additional hassle 1403 * 1404 * ...we can probably just fallback to what was done 1405 * previously. We could try merging non-SACKed ones 1406 * as well but it probably isn't going to buy off 1407 * because later SACKs might again split them, and 1408 * it would make skb timestamp tracking considerably 1409 * harder problem. 1410 */ 1411 goto fallback; 1412 } 1413 1414 len = end_seq - TCP_SKB_CB(skb)->seq; 1415 BUG_ON(len < 0); 1416 BUG_ON(len > skb->len); 1417 1418 /* MSS boundaries should be honoured or else pcount will 1419 * severely break even though it makes things bit trickier. 1420 * Optimize common case to avoid most of the divides 1421 */ 1422 mss = tcp_skb_mss(skb); 1423 1424 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1425 * drop this restriction as unnecessary 1426 */ 1427 if (mss != tcp_skb_seglen(prev)) 1428 goto fallback; 1429 1430 if (len == mss) { 1431 pcount = 1; 1432 } else if (len < mss) { 1433 goto noop; 1434 } else { 1435 pcount = len / mss; 1436 len = pcount * mss; 1437 } 1438 } 1439 1440 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1441 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1442 goto fallback; 1443 1444 if (!skb_shift(prev, skb, len)) 1445 goto fallback; 1446 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1447 goto out; 1448 1449 /* Hole filled allows collapsing with the next as well, this is very 1450 * useful when hole on every nth skb pattern happens 1451 */ 1452 if (prev == tcp_write_queue_tail(sk)) 1453 goto out; 1454 skb = tcp_write_queue_next(sk, prev); 1455 1456 if (!skb_can_shift(skb) || 1457 (skb == tcp_send_head(sk)) || 1458 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1459 (mss != tcp_skb_seglen(skb))) 1460 goto out; 1461 1462 len = skb->len; 1463 if (skb_shift(prev, skb, len)) { 1464 pcount += tcp_skb_pcount(skb); 1465 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1466 } 1467 1468 out: 1469 state->fack_count += pcount; 1470 return prev; 1471 1472 noop: 1473 return skb; 1474 1475 fallback: 1476 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1477 return NULL; 1478 } 1479 1480 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1481 struct tcp_sack_block *next_dup, 1482 struct tcp_sacktag_state *state, 1483 u32 start_seq, u32 end_seq, 1484 bool dup_sack_in) 1485 { 1486 struct tcp_sock *tp = tcp_sk(sk); 1487 struct sk_buff *tmp; 1488 1489 tcp_for_write_queue_from(skb, sk) { 1490 int in_sack = 0; 1491 bool dup_sack = dup_sack_in; 1492 1493 if (skb == tcp_send_head(sk)) 1494 break; 1495 1496 /* queue is in-order => we can short-circuit the walk early */ 1497 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1498 break; 1499 1500 if (next_dup && 1501 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1502 in_sack = tcp_match_skb_to_sack(sk, skb, 1503 next_dup->start_seq, 1504 next_dup->end_seq); 1505 if (in_sack > 0) 1506 dup_sack = true; 1507 } 1508 1509 /* skb reference here is a bit tricky to get right, since 1510 * shifting can eat and free both this skb and the next, 1511 * so not even _safe variant of the loop is enough. 1512 */ 1513 if (in_sack <= 0) { 1514 tmp = tcp_shift_skb_data(sk, skb, state, 1515 start_seq, end_seq, dup_sack); 1516 if (tmp) { 1517 if (tmp != skb) { 1518 skb = tmp; 1519 continue; 1520 } 1521 1522 in_sack = 0; 1523 } else { 1524 in_sack = tcp_match_skb_to_sack(sk, skb, 1525 start_seq, 1526 end_seq); 1527 } 1528 } 1529 1530 if (unlikely(in_sack < 0)) 1531 break; 1532 1533 if (in_sack) { 1534 TCP_SKB_CB(skb)->sacked = 1535 tcp_sacktag_one(sk, 1536 state, 1537 TCP_SKB_CB(skb)->sacked, 1538 TCP_SKB_CB(skb)->seq, 1539 TCP_SKB_CB(skb)->end_seq, 1540 dup_sack, 1541 tcp_skb_pcount(skb), 1542 &skb->skb_mstamp); 1543 1544 if (!before(TCP_SKB_CB(skb)->seq, 1545 tcp_highest_sack_seq(tp))) 1546 tcp_advance_highest_sack(sk, skb); 1547 } 1548 1549 state->fack_count += tcp_skb_pcount(skb); 1550 } 1551 return skb; 1552 } 1553 1554 /* Avoid all extra work that is being done by sacktag while walking in 1555 * a normal way 1556 */ 1557 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1558 struct tcp_sacktag_state *state, 1559 u32 skip_to_seq) 1560 { 1561 tcp_for_write_queue_from(skb, sk) { 1562 if (skb == tcp_send_head(sk)) 1563 break; 1564 1565 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1566 break; 1567 1568 state->fack_count += tcp_skb_pcount(skb); 1569 } 1570 return skb; 1571 } 1572 1573 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1574 struct sock *sk, 1575 struct tcp_sack_block *next_dup, 1576 struct tcp_sacktag_state *state, 1577 u32 skip_to_seq) 1578 { 1579 if (!next_dup) 1580 return skb; 1581 1582 if (before(next_dup->start_seq, skip_to_seq)) { 1583 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1584 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1585 next_dup->start_seq, next_dup->end_seq, 1586 1); 1587 } 1588 1589 return skb; 1590 } 1591 1592 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1593 { 1594 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1595 } 1596 1597 static int 1598 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1599 u32 prior_snd_una, struct tcp_sacktag_state *state) 1600 { 1601 struct tcp_sock *tp = tcp_sk(sk); 1602 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1603 TCP_SKB_CB(ack_skb)->sacked); 1604 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1605 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1606 struct tcp_sack_block *cache; 1607 struct sk_buff *skb; 1608 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1609 int used_sacks; 1610 bool found_dup_sack = false; 1611 int i, j; 1612 int first_sack_index; 1613 1614 state->flag = 0; 1615 state->reord = tp->packets_out; 1616 1617 if (!tp->sacked_out) { 1618 if (WARN_ON(tp->fackets_out)) 1619 tp->fackets_out = 0; 1620 tcp_highest_sack_reset(sk); 1621 } 1622 1623 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1624 num_sacks, prior_snd_una); 1625 if (found_dup_sack) 1626 state->flag |= FLAG_DSACKING_ACK; 1627 1628 /* Eliminate too old ACKs, but take into 1629 * account more or less fresh ones, they can 1630 * contain valid SACK info. 1631 */ 1632 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1633 return 0; 1634 1635 if (!tp->packets_out) 1636 goto out; 1637 1638 used_sacks = 0; 1639 first_sack_index = 0; 1640 for (i = 0; i < num_sacks; i++) { 1641 bool dup_sack = !i && found_dup_sack; 1642 1643 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1644 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1645 1646 if (!tcp_is_sackblock_valid(tp, dup_sack, 1647 sp[used_sacks].start_seq, 1648 sp[used_sacks].end_seq)) { 1649 int mib_idx; 1650 1651 if (dup_sack) { 1652 if (!tp->undo_marker) 1653 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1654 else 1655 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1656 } else { 1657 /* Don't count olds caused by ACK reordering */ 1658 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1659 !after(sp[used_sacks].end_seq, tp->snd_una)) 1660 continue; 1661 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1662 } 1663 1664 NET_INC_STATS(sock_net(sk), mib_idx); 1665 if (i == 0) 1666 first_sack_index = -1; 1667 continue; 1668 } 1669 1670 /* Ignore very old stuff early */ 1671 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1672 continue; 1673 1674 used_sacks++; 1675 } 1676 1677 /* order SACK blocks to allow in order walk of the retrans queue */ 1678 for (i = used_sacks - 1; i > 0; i--) { 1679 for (j = 0; j < i; j++) { 1680 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1681 swap(sp[j], sp[j + 1]); 1682 1683 /* Track where the first SACK block goes to */ 1684 if (j == first_sack_index) 1685 first_sack_index = j + 1; 1686 } 1687 } 1688 } 1689 1690 skb = tcp_write_queue_head(sk); 1691 state->fack_count = 0; 1692 i = 0; 1693 1694 if (!tp->sacked_out) { 1695 /* It's already past, so skip checking against it */ 1696 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1697 } else { 1698 cache = tp->recv_sack_cache; 1699 /* Skip empty blocks in at head of the cache */ 1700 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1701 !cache->end_seq) 1702 cache++; 1703 } 1704 1705 while (i < used_sacks) { 1706 u32 start_seq = sp[i].start_seq; 1707 u32 end_seq = sp[i].end_seq; 1708 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1709 struct tcp_sack_block *next_dup = NULL; 1710 1711 if (found_dup_sack && ((i + 1) == first_sack_index)) 1712 next_dup = &sp[i + 1]; 1713 1714 /* Skip too early cached blocks */ 1715 while (tcp_sack_cache_ok(tp, cache) && 1716 !before(start_seq, cache->end_seq)) 1717 cache++; 1718 1719 /* Can skip some work by looking recv_sack_cache? */ 1720 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1721 after(end_seq, cache->start_seq)) { 1722 1723 /* Head todo? */ 1724 if (before(start_seq, cache->start_seq)) { 1725 skb = tcp_sacktag_skip(skb, sk, state, 1726 start_seq); 1727 skb = tcp_sacktag_walk(skb, sk, next_dup, 1728 state, 1729 start_seq, 1730 cache->start_seq, 1731 dup_sack); 1732 } 1733 1734 /* Rest of the block already fully processed? */ 1735 if (!after(end_seq, cache->end_seq)) 1736 goto advance_sp; 1737 1738 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1739 state, 1740 cache->end_seq); 1741 1742 /* ...tail remains todo... */ 1743 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1744 /* ...but better entrypoint exists! */ 1745 skb = tcp_highest_sack(sk); 1746 if (!skb) 1747 break; 1748 state->fack_count = tp->fackets_out; 1749 cache++; 1750 goto walk; 1751 } 1752 1753 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1754 /* Check overlap against next cached too (past this one already) */ 1755 cache++; 1756 continue; 1757 } 1758 1759 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1760 skb = tcp_highest_sack(sk); 1761 if (!skb) 1762 break; 1763 state->fack_count = tp->fackets_out; 1764 } 1765 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1766 1767 walk: 1768 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1769 start_seq, end_seq, dup_sack); 1770 1771 advance_sp: 1772 i++; 1773 } 1774 1775 /* Clear the head of the cache sack blocks so we can skip it next time */ 1776 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1777 tp->recv_sack_cache[i].start_seq = 0; 1778 tp->recv_sack_cache[i].end_seq = 0; 1779 } 1780 for (j = 0; j < used_sacks; j++) 1781 tp->recv_sack_cache[i++] = sp[j]; 1782 1783 if ((state->reord < tp->fackets_out) && 1784 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1785 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1786 1787 tcp_verify_left_out(tp); 1788 out: 1789 1790 #if FASTRETRANS_DEBUG > 0 1791 WARN_ON((int)tp->sacked_out < 0); 1792 WARN_ON((int)tp->lost_out < 0); 1793 WARN_ON((int)tp->retrans_out < 0); 1794 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1795 #endif 1796 return state->flag; 1797 } 1798 1799 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1800 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1801 */ 1802 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1803 { 1804 u32 holes; 1805 1806 holes = max(tp->lost_out, 1U); 1807 holes = min(holes, tp->packets_out); 1808 1809 if ((tp->sacked_out + holes) > tp->packets_out) { 1810 tp->sacked_out = tp->packets_out - holes; 1811 return true; 1812 } 1813 return false; 1814 } 1815 1816 /* If we receive more dupacks than we expected counting segments 1817 * in assumption of absent reordering, interpret this as reordering. 1818 * The only another reason could be bug in receiver TCP. 1819 */ 1820 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1821 { 1822 struct tcp_sock *tp = tcp_sk(sk); 1823 if (tcp_limit_reno_sacked(tp)) 1824 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1825 } 1826 1827 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1828 1829 static void tcp_add_reno_sack(struct sock *sk) 1830 { 1831 struct tcp_sock *tp = tcp_sk(sk); 1832 u32 prior_sacked = tp->sacked_out; 1833 1834 tp->sacked_out++; 1835 tcp_check_reno_reordering(sk, 0); 1836 if (tp->sacked_out > prior_sacked) 1837 tp->delivered++; /* Some out-of-order packet is delivered */ 1838 tcp_verify_left_out(tp); 1839 } 1840 1841 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1842 1843 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1844 { 1845 struct tcp_sock *tp = tcp_sk(sk); 1846 1847 if (acked > 0) { 1848 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1849 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1850 if (acked - 1 >= tp->sacked_out) 1851 tp->sacked_out = 0; 1852 else 1853 tp->sacked_out -= acked - 1; 1854 } 1855 tcp_check_reno_reordering(sk, acked); 1856 tcp_verify_left_out(tp); 1857 } 1858 1859 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1860 { 1861 tp->sacked_out = 0; 1862 } 1863 1864 void tcp_clear_retrans(struct tcp_sock *tp) 1865 { 1866 tp->retrans_out = 0; 1867 tp->lost_out = 0; 1868 tp->undo_marker = 0; 1869 tp->undo_retrans = -1; 1870 tp->fackets_out = 0; 1871 tp->sacked_out = 0; 1872 } 1873 1874 static inline void tcp_init_undo(struct tcp_sock *tp) 1875 { 1876 tp->undo_marker = tp->snd_una; 1877 /* Retransmission still in flight may cause DSACKs later. */ 1878 tp->undo_retrans = tp->retrans_out ? : -1; 1879 } 1880 1881 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1882 * and reset tags completely, otherwise preserve SACKs. If receiver 1883 * dropped its ofo queue, we will know this due to reneging detection. 1884 */ 1885 void tcp_enter_loss(struct sock *sk) 1886 { 1887 const struct inet_connection_sock *icsk = inet_csk(sk); 1888 struct tcp_sock *tp = tcp_sk(sk); 1889 struct net *net = sock_net(sk); 1890 struct sk_buff *skb; 1891 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1892 bool is_reneg; /* is receiver reneging on SACKs? */ 1893 1894 /* Reduce ssthresh if it has not yet been made inside this window. */ 1895 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1896 !after(tp->high_seq, tp->snd_una) || 1897 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1898 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1899 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1900 tcp_ca_event(sk, CA_EVENT_LOSS); 1901 tcp_init_undo(tp); 1902 } 1903 tp->snd_cwnd = 1; 1904 tp->snd_cwnd_cnt = 0; 1905 tp->snd_cwnd_stamp = tcp_time_stamp; 1906 1907 tp->retrans_out = 0; 1908 tp->lost_out = 0; 1909 1910 if (tcp_is_reno(tp)) 1911 tcp_reset_reno_sack(tp); 1912 1913 skb = tcp_write_queue_head(sk); 1914 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1915 if (is_reneg) { 1916 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1917 tp->sacked_out = 0; 1918 tp->fackets_out = 0; 1919 } 1920 tcp_clear_all_retrans_hints(tp); 1921 1922 tcp_for_write_queue(skb, sk) { 1923 if (skb == tcp_send_head(sk)) 1924 break; 1925 1926 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1927 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1928 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1929 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1930 tp->lost_out += tcp_skb_pcount(skb); 1931 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1932 } 1933 } 1934 tcp_verify_left_out(tp); 1935 1936 /* Timeout in disordered state after receiving substantial DUPACKs 1937 * suggests that the degree of reordering is over-estimated. 1938 */ 1939 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1940 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1941 tp->reordering = min_t(unsigned int, tp->reordering, 1942 net->ipv4.sysctl_tcp_reordering); 1943 tcp_set_ca_state(sk, TCP_CA_Loss); 1944 tp->high_seq = tp->snd_nxt; 1945 tcp_ecn_queue_cwr(tp); 1946 1947 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1948 * loss recovery is underway except recurring timeout(s) on 1949 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1950 */ 1951 tp->frto = sysctl_tcp_frto && 1952 (new_recovery || icsk->icsk_retransmits) && 1953 !inet_csk(sk)->icsk_mtup.probe_size; 1954 } 1955 1956 /* If ACK arrived pointing to a remembered SACK, it means that our 1957 * remembered SACKs do not reflect real state of receiver i.e. 1958 * receiver _host_ is heavily congested (or buggy). 1959 * 1960 * To avoid big spurious retransmission bursts due to transient SACK 1961 * scoreboard oddities that look like reneging, we give the receiver a 1962 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1963 * restore sanity to the SACK scoreboard. If the apparent reneging 1964 * persists until this RTO then we'll clear the SACK scoreboard. 1965 */ 1966 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1967 { 1968 if (flag & FLAG_SACK_RENEGING) { 1969 struct tcp_sock *tp = tcp_sk(sk); 1970 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 1971 msecs_to_jiffies(10)); 1972 1973 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1974 delay, TCP_RTO_MAX); 1975 return true; 1976 } 1977 return false; 1978 } 1979 1980 static inline int tcp_fackets_out(const struct tcp_sock *tp) 1981 { 1982 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 1983 } 1984 1985 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 1986 * counter when SACK is enabled (without SACK, sacked_out is used for 1987 * that purpose). 1988 * 1989 * Instead, with FACK TCP uses fackets_out that includes both SACKed 1990 * segments up to the highest received SACK block so far and holes in 1991 * between them. 1992 * 1993 * With reordering, holes may still be in flight, so RFC3517 recovery 1994 * uses pure sacked_out (total number of SACKed segments) even though 1995 * it violates the RFC that uses duplicate ACKs, often these are equal 1996 * but when e.g. out-of-window ACKs or packet duplication occurs, 1997 * they differ. Since neither occurs due to loss, TCP should really 1998 * ignore them. 1999 */ 2000 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2001 { 2002 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2003 } 2004 2005 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2006 { 2007 struct tcp_sock *tp = tcp_sk(sk); 2008 unsigned long delay; 2009 2010 /* Delay early retransmit and entering fast recovery for 2011 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2012 * available, or RTO is scheduled to fire first. 2013 */ 2014 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2015 (flag & FLAG_ECE) || !tp->srtt_us) 2016 return false; 2017 2018 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2019 msecs_to_jiffies(2)); 2020 2021 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2022 return false; 2023 2024 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2025 TCP_RTO_MAX); 2026 return true; 2027 } 2028 2029 /* Linux NewReno/SACK/FACK/ECN state machine. 2030 * -------------------------------------- 2031 * 2032 * "Open" Normal state, no dubious events, fast path. 2033 * "Disorder" In all the respects it is "Open", 2034 * but requires a bit more attention. It is entered when 2035 * we see some SACKs or dupacks. It is split of "Open" 2036 * mainly to move some processing from fast path to slow one. 2037 * "CWR" CWND was reduced due to some Congestion Notification event. 2038 * It can be ECN, ICMP source quench, local device congestion. 2039 * "Recovery" CWND was reduced, we are fast-retransmitting. 2040 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2041 * 2042 * tcp_fastretrans_alert() is entered: 2043 * - each incoming ACK, if state is not "Open" 2044 * - when arrived ACK is unusual, namely: 2045 * * SACK 2046 * * Duplicate ACK. 2047 * * ECN ECE. 2048 * 2049 * Counting packets in flight is pretty simple. 2050 * 2051 * in_flight = packets_out - left_out + retrans_out 2052 * 2053 * packets_out is SND.NXT-SND.UNA counted in packets. 2054 * 2055 * retrans_out is number of retransmitted segments. 2056 * 2057 * left_out is number of segments left network, but not ACKed yet. 2058 * 2059 * left_out = sacked_out + lost_out 2060 * 2061 * sacked_out: Packets, which arrived to receiver out of order 2062 * and hence not ACKed. With SACKs this number is simply 2063 * amount of SACKed data. Even without SACKs 2064 * it is easy to give pretty reliable estimate of this number, 2065 * counting duplicate ACKs. 2066 * 2067 * lost_out: Packets lost by network. TCP has no explicit 2068 * "loss notification" feedback from network (for now). 2069 * It means that this number can be only _guessed_. 2070 * Actually, it is the heuristics to predict lossage that 2071 * distinguishes different algorithms. 2072 * 2073 * F.e. after RTO, when all the queue is considered as lost, 2074 * lost_out = packets_out and in_flight = retrans_out. 2075 * 2076 * Essentially, we have now two algorithms counting 2077 * lost packets. 2078 * 2079 * FACK: It is the simplest heuristics. As soon as we decided 2080 * that something is lost, we decide that _all_ not SACKed 2081 * packets until the most forward SACK are lost. I.e. 2082 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2083 * It is absolutely correct estimate, if network does not reorder 2084 * packets. And it loses any connection to reality when reordering 2085 * takes place. We use FACK by default until reordering 2086 * is suspected on the path to this destination. 2087 * 2088 * NewReno: when Recovery is entered, we assume that one segment 2089 * is lost (classic Reno). While we are in Recovery and 2090 * a partial ACK arrives, we assume that one more packet 2091 * is lost (NewReno). This heuristics are the same in NewReno 2092 * and SACK. 2093 * 2094 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2095 * deflation etc. CWND is real congestion window, never inflated, changes 2096 * only according to classic VJ rules. 2097 * 2098 * Really tricky (and requiring careful tuning) part of algorithm 2099 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2100 * The first determines the moment _when_ we should reduce CWND and, 2101 * hence, slow down forward transmission. In fact, it determines the moment 2102 * when we decide that hole is caused by loss, rather than by a reorder. 2103 * 2104 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2105 * holes, caused by lost packets. 2106 * 2107 * And the most logically complicated part of algorithm is undo 2108 * heuristics. We detect false retransmits due to both too early 2109 * fast retransmit (reordering) and underestimated RTO, analyzing 2110 * timestamps and D-SACKs. When we detect that some segments were 2111 * retransmitted by mistake and CWND reduction was wrong, we undo 2112 * window reduction and abort recovery phase. This logic is hidden 2113 * inside several functions named tcp_try_undo_<something>. 2114 */ 2115 2116 /* This function decides, when we should leave Disordered state 2117 * and enter Recovery phase, reducing congestion window. 2118 * 2119 * Main question: may we further continue forward transmission 2120 * with the same cwnd? 2121 */ 2122 static bool tcp_time_to_recover(struct sock *sk, int flag) 2123 { 2124 struct tcp_sock *tp = tcp_sk(sk); 2125 __u32 packets_out; 2126 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 2127 2128 /* Trick#1: The loss is proven. */ 2129 if (tp->lost_out) 2130 return true; 2131 2132 /* Not-A-Trick#2 : Classic rule... */ 2133 if (tcp_dupack_heuristics(tp) > tp->reordering) 2134 return true; 2135 2136 /* Trick#4: It is still not OK... But will it be useful to delay 2137 * recovery more? 2138 */ 2139 packets_out = tp->packets_out; 2140 if (packets_out <= tp->reordering && 2141 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) && 2142 !tcp_may_send_now(sk)) { 2143 /* We have nothing to send. This connection is limited 2144 * either by receiver window or by application. 2145 */ 2146 return true; 2147 } 2148 2149 /* If a thin stream is detected, retransmit after first 2150 * received dupack. Employ only if SACK is supported in order 2151 * to avoid possible corner-case series of spurious retransmissions 2152 * Use only if there are no unsent data. 2153 */ 2154 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2155 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2156 tcp_is_sack(tp) && !tcp_send_head(sk)) 2157 return true; 2158 2159 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2160 * retransmissions due to small network reorderings, we implement 2161 * Mitigation A.3 in the RFC and delay the retransmission for a short 2162 * interval if appropriate. 2163 */ 2164 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2165 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2166 !tcp_may_send_now(sk)) 2167 return !tcp_pause_early_retransmit(sk, flag); 2168 2169 return false; 2170 } 2171 2172 /* Detect loss in event "A" above by marking head of queue up as lost. 2173 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2174 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2175 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2176 * the maximum SACKed segments to pass before reaching this limit. 2177 */ 2178 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2179 { 2180 struct tcp_sock *tp = tcp_sk(sk); 2181 struct sk_buff *skb; 2182 int cnt, oldcnt, lost; 2183 unsigned int mss; 2184 /* Use SACK to deduce losses of new sequences sent during recovery */ 2185 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2186 2187 WARN_ON(packets > tp->packets_out); 2188 if (tp->lost_skb_hint) { 2189 skb = tp->lost_skb_hint; 2190 cnt = tp->lost_cnt_hint; 2191 /* Head already handled? */ 2192 if (mark_head && skb != tcp_write_queue_head(sk)) 2193 return; 2194 } else { 2195 skb = tcp_write_queue_head(sk); 2196 cnt = 0; 2197 } 2198 2199 tcp_for_write_queue_from(skb, sk) { 2200 if (skb == tcp_send_head(sk)) 2201 break; 2202 /* TODO: do this better */ 2203 /* this is not the most efficient way to do this... */ 2204 tp->lost_skb_hint = skb; 2205 tp->lost_cnt_hint = cnt; 2206 2207 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2208 break; 2209 2210 oldcnt = cnt; 2211 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2212 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2213 cnt += tcp_skb_pcount(skb); 2214 2215 if (cnt > packets) { 2216 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2217 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2218 (oldcnt >= packets)) 2219 break; 2220 2221 mss = tcp_skb_mss(skb); 2222 /* If needed, chop off the prefix to mark as lost. */ 2223 lost = (packets - oldcnt) * mss; 2224 if (lost < skb->len && 2225 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2226 break; 2227 cnt = packets; 2228 } 2229 2230 tcp_skb_mark_lost(tp, skb); 2231 2232 if (mark_head) 2233 break; 2234 } 2235 tcp_verify_left_out(tp); 2236 } 2237 2238 /* Account newly detected lost packet(s) */ 2239 2240 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2241 { 2242 struct tcp_sock *tp = tcp_sk(sk); 2243 2244 if (tcp_is_reno(tp)) { 2245 tcp_mark_head_lost(sk, 1, 1); 2246 } else if (tcp_is_fack(tp)) { 2247 int lost = tp->fackets_out - tp->reordering; 2248 if (lost <= 0) 2249 lost = 1; 2250 tcp_mark_head_lost(sk, lost, 0); 2251 } else { 2252 int sacked_upto = tp->sacked_out - tp->reordering; 2253 if (sacked_upto >= 0) 2254 tcp_mark_head_lost(sk, sacked_upto, 0); 2255 else if (fast_rexmit) 2256 tcp_mark_head_lost(sk, 1, 1); 2257 } 2258 } 2259 2260 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2261 { 2262 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2263 before(tp->rx_opt.rcv_tsecr, when); 2264 } 2265 2266 /* skb is spurious retransmitted if the returned timestamp echo 2267 * reply is prior to the skb transmission time 2268 */ 2269 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2270 const struct sk_buff *skb) 2271 { 2272 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2273 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2274 } 2275 2276 /* Nothing was retransmitted or returned timestamp is less 2277 * than timestamp of the first retransmission. 2278 */ 2279 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2280 { 2281 return !tp->retrans_stamp || 2282 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2283 } 2284 2285 /* Undo procedures. */ 2286 2287 /* We can clear retrans_stamp when there are no retransmissions in the 2288 * window. It would seem that it is trivially available for us in 2289 * tp->retrans_out, however, that kind of assumptions doesn't consider 2290 * what will happen if errors occur when sending retransmission for the 2291 * second time. ...It could the that such segment has only 2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2293 * the head skb is enough except for some reneging corner cases that 2294 * are not worth the effort. 2295 * 2296 * Main reason for all this complexity is the fact that connection dying 2297 * time now depends on the validity of the retrans_stamp, in particular, 2298 * that successive retransmissions of a segment must not advance 2299 * retrans_stamp under any conditions. 2300 */ 2301 static bool tcp_any_retrans_done(const struct sock *sk) 2302 { 2303 const struct tcp_sock *tp = tcp_sk(sk); 2304 struct sk_buff *skb; 2305 2306 if (tp->retrans_out) 2307 return true; 2308 2309 skb = tcp_write_queue_head(sk); 2310 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2311 return true; 2312 2313 return false; 2314 } 2315 2316 #if FASTRETRANS_DEBUG > 1 2317 static void DBGUNDO(struct sock *sk, const char *msg) 2318 { 2319 struct tcp_sock *tp = tcp_sk(sk); 2320 struct inet_sock *inet = inet_sk(sk); 2321 2322 if (sk->sk_family == AF_INET) { 2323 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2324 msg, 2325 &inet->inet_daddr, ntohs(inet->inet_dport), 2326 tp->snd_cwnd, tcp_left_out(tp), 2327 tp->snd_ssthresh, tp->prior_ssthresh, 2328 tp->packets_out); 2329 } 2330 #if IS_ENABLED(CONFIG_IPV6) 2331 else if (sk->sk_family == AF_INET6) { 2332 struct ipv6_pinfo *np = inet6_sk(sk); 2333 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2334 msg, 2335 &np->daddr, ntohs(inet->inet_dport), 2336 tp->snd_cwnd, tcp_left_out(tp), 2337 tp->snd_ssthresh, tp->prior_ssthresh, 2338 tp->packets_out); 2339 } 2340 #endif 2341 } 2342 #else 2343 #define DBGUNDO(x...) do { } while (0) 2344 #endif 2345 2346 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2347 { 2348 struct tcp_sock *tp = tcp_sk(sk); 2349 2350 if (unmark_loss) { 2351 struct sk_buff *skb; 2352 2353 tcp_for_write_queue(skb, sk) { 2354 if (skb == tcp_send_head(sk)) 2355 break; 2356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2357 } 2358 tp->lost_out = 0; 2359 tcp_clear_all_retrans_hints(tp); 2360 } 2361 2362 if (tp->prior_ssthresh) { 2363 const struct inet_connection_sock *icsk = inet_csk(sk); 2364 2365 if (icsk->icsk_ca_ops->undo_cwnd) 2366 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2367 else 2368 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2369 2370 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2371 tp->snd_ssthresh = tp->prior_ssthresh; 2372 tcp_ecn_withdraw_cwr(tp); 2373 } 2374 } 2375 tp->snd_cwnd_stamp = tcp_time_stamp; 2376 tp->undo_marker = 0; 2377 } 2378 2379 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2380 { 2381 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2382 } 2383 2384 /* People celebrate: "We love our President!" */ 2385 static bool tcp_try_undo_recovery(struct sock *sk) 2386 { 2387 struct tcp_sock *tp = tcp_sk(sk); 2388 2389 if (tcp_may_undo(tp)) { 2390 int mib_idx; 2391 2392 /* Happy end! We did not retransmit anything 2393 * or our original transmission succeeded. 2394 */ 2395 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2396 tcp_undo_cwnd_reduction(sk, false); 2397 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2398 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2399 else 2400 mib_idx = LINUX_MIB_TCPFULLUNDO; 2401 2402 NET_INC_STATS(sock_net(sk), mib_idx); 2403 } 2404 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2405 /* Hold old state until something *above* high_seq 2406 * is ACKed. For Reno it is MUST to prevent false 2407 * fast retransmits (RFC2582). SACK TCP is safe. */ 2408 if (!tcp_any_retrans_done(sk)) 2409 tp->retrans_stamp = 0; 2410 return true; 2411 } 2412 tcp_set_ca_state(sk, TCP_CA_Open); 2413 return false; 2414 } 2415 2416 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2417 static bool tcp_try_undo_dsack(struct sock *sk) 2418 { 2419 struct tcp_sock *tp = tcp_sk(sk); 2420 2421 if (tp->undo_marker && !tp->undo_retrans) { 2422 DBGUNDO(sk, "D-SACK"); 2423 tcp_undo_cwnd_reduction(sk, false); 2424 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2425 return true; 2426 } 2427 return false; 2428 } 2429 2430 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2431 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2432 { 2433 struct tcp_sock *tp = tcp_sk(sk); 2434 2435 if (frto_undo || tcp_may_undo(tp)) { 2436 tcp_undo_cwnd_reduction(sk, true); 2437 2438 DBGUNDO(sk, "partial loss"); 2439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2440 if (frto_undo) 2441 NET_INC_STATS(sock_net(sk), 2442 LINUX_MIB_TCPSPURIOUSRTOS); 2443 inet_csk(sk)->icsk_retransmits = 0; 2444 if (frto_undo || tcp_is_sack(tp)) 2445 tcp_set_ca_state(sk, TCP_CA_Open); 2446 return true; 2447 } 2448 return false; 2449 } 2450 2451 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2452 * It computes the number of packets to send (sndcnt) based on packets newly 2453 * delivered: 2454 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2455 * cwnd reductions across a full RTT. 2456 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2457 * But when the retransmits are acked without further losses, PRR 2458 * slow starts cwnd up to ssthresh to speed up the recovery. 2459 */ 2460 static void tcp_init_cwnd_reduction(struct sock *sk) 2461 { 2462 struct tcp_sock *tp = tcp_sk(sk); 2463 2464 tp->high_seq = tp->snd_nxt; 2465 tp->tlp_high_seq = 0; 2466 tp->snd_cwnd_cnt = 0; 2467 tp->prior_cwnd = tp->snd_cwnd; 2468 tp->prr_delivered = 0; 2469 tp->prr_out = 0; 2470 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2471 tcp_ecn_queue_cwr(tp); 2472 } 2473 2474 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, 2475 int flag) 2476 { 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 int sndcnt = 0; 2479 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2480 2481 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2482 return; 2483 2484 tp->prr_delivered += newly_acked_sacked; 2485 if (delta < 0) { 2486 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2487 tp->prior_cwnd - 1; 2488 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2489 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2490 !(flag & FLAG_LOST_RETRANS)) { 2491 sndcnt = min_t(int, delta, 2492 max_t(int, tp->prr_delivered - tp->prr_out, 2493 newly_acked_sacked) + 1); 2494 } else { 2495 sndcnt = min(delta, newly_acked_sacked); 2496 } 2497 /* Force a fast retransmit upon entering fast recovery */ 2498 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2499 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2500 } 2501 2502 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2503 { 2504 struct tcp_sock *tp = tcp_sk(sk); 2505 2506 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2507 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2508 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2509 tp->snd_cwnd = tp->snd_ssthresh; 2510 tp->snd_cwnd_stamp = tcp_time_stamp; 2511 } 2512 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2513 } 2514 2515 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2516 void tcp_enter_cwr(struct sock *sk) 2517 { 2518 struct tcp_sock *tp = tcp_sk(sk); 2519 2520 tp->prior_ssthresh = 0; 2521 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2522 tp->undo_marker = 0; 2523 tcp_init_cwnd_reduction(sk); 2524 tcp_set_ca_state(sk, TCP_CA_CWR); 2525 } 2526 } 2527 EXPORT_SYMBOL(tcp_enter_cwr); 2528 2529 static void tcp_try_keep_open(struct sock *sk) 2530 { 2531 struct tcp_sock *tp = tcp_sk(sk); 2532 int state = TCP_CA_Open; 2533 2534 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2535 state = TCP_CA_Disorder; 2536 2537 if (inet_csk(sk)->icsk_ca_state != state) { 2538 tcp_set_ca_state(sk, state); 2539 tp->high_seq = tp->snd_nxt; 2540 } 2541 } 2542 2543 static void tcp_try_to_open(struct sock *sk, int flag) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 2547 tcp_verify_left_out(tp); 2548 2549 if (!tcp_any_retrans_done(sk)) 2550 tp->retrans_stamp = 0; 2551 2552 if (flag & FLAG_ECE) 2553 tcp_enter_cwr(sk); 2554 2555 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2556 tcp_try_keep_open(sk); 2557 } 2558 } 2559 2560 static void tcp_mtup_probe_failed(struct sock *sk) 2561 { 2562 struct inet_connection_sock *icsk = inet_csk(sk); 2563 2564 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2565 icsk->icsk_mtup.probe_size = 0; 2566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2567 } 2568 2569 static void tcp_mtup_probe_success(struct sock *sk) 2570 { 2571 struct tcp_sock *tp = tcp_sk(sk); 2572 struct inet_connection_sock *icsk = inet_csk(sk); 2573 2574 /* FIXME: breaks with very large cwnd */ 2575 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2576 tp->snd_cwnd = tp->snd_cwnd * 2577 tcp_mss_to_mtu(sk, tp->mss_cache) / 2578 icsk->icsk_mtup.probe_size; 2579 tp->snd_cwnd_cnt = 0; 2580 tp->snd_cwnd_stamp = tcp_time_stamp; 2581 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2582 2583 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2584 icsk->icsk_mtup.probe_size = 0; 2585 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2587 } 2588 2589 /* Do a simple retransmit without using the backoff mechanisms in 2590 * tcp_timer. This is used for path mtu discovery. 2591 * The socket is already locked here. 2592 */ 2593 void tcp_simple_retransmit(struct sock *sk) 2594 { 2595 const struct inet_connection_sock *icsk = inet_csk(sk); 2596 struct tcp_sock *tp = tcp_sk(sk); 2597 struct sk_buff *skb; 2598 unsigned int mss = tcp_current_mss(sk); 2599 u32 prior_lost = tp->lost_out; 2600 2601 tcp_for_write_queue(skb, sk) { 2602 if (skb == tcp_send_head(sk)) 2603 break; 2604 if (tcp_skb_seglen(skb) > mss && 2605 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2606 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2607 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2608 tp->retrans_out -= tcp_skb_pcount(skb); 2609 } 2610 tcp_skb_mark_lost_uncond_verify(tp, skb); 2611 } 2612 } 2613 2614 tcp_clear_retrans_hints_partial(tp); 2615 2616 if (prior_lost == tp->lost_out) 2617 return; 2618 2619 if (tcp_is_reno(tp)) 2620 tcp_limit_reno_sacked(tp); 2621 2622 tcp_verify_left_out(tp); 2623 2624 /* Don't muck with the congestion window here. 2625 * Reason is that we do not increase amount of _data_ 2626 * in network, but units changed and effective 2627 * cwnd/ssthresh really reduced now. 2628 */ 2629 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2630 tp->high_seq = tp->snd_nxt; 2631 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2632 tp->prior_ssthresh = 0; 2633 tp->undo_marker = 0; 2634 tcp_set_ca_state(sk, TCP_CA_Loss); 2635 } 2636 tcp_xmit_retransmit_queue(sk); 2637 } 2638 EXPORT_SYMBOL(tcp_simple_retransmit); 2639 2640 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2641 { 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 int mib_idx; 2644 2645 if (tcp_is_reno(tp)) 2646 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2647 else 2648 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2649 2650 NET_INC_STATS(sock_net(sk), mib_idx); 2651 2652 tp->prior_ssthresh = 0; 2653 tcp_init_undo(tp); 2654 2655 if (!tcp_in_cwnd_reduction(sk)) { 2656 if (!ece_ack) 2657 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2658 tcp_init_cwnd_reduction(sk); 2659 } 2660 tcp_set_ca_state(sk, TCP_CA_Recovery); 2661 } 2662 2663 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2664 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2665 */ 2666 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2667 int *rexmit) 2668 { 2669 struct tcp_sock *tp = tcp_sk(sk); 2670 bool recovered = !before(tp->snd_una, tp->high_seq); 2671 2672 if ((flag & FLAG_SND_UNA_ADVANCED) && 2673 tcp_try_undo_loss(sk, false)) 2674 return; 2675 2676 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2677 /* Step 3.b. A timeout is spurious if not all data are 2678 * lost, i.e., never-retransmitted data are (s)acked. 2679 */ 2680 if ((flag & FLAG_ORIG_SACK_ACKED) && 2681 tcp_try_undo_loss(sk, true)) 2682 return; 2683 2684 if (after(tp->snd_nxt, tp->high_seq)) { 2685 if (flag & FLAG_DATA_SACKED || is_dupack) 2686 tp->frto = 0; /* Step 3.a. loss was real */ 2687 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2688 tp->high_seq = tp->snd_nxt; 2689 /* Step 2.b. Try send new data (but deferred until cwnd 2690 * is updated in tcp_ack()). Otherwise fall back to 2691 * the conventional recovery. 2692 */ 2693 if (tcp_send_head(sk) && 2694 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2695 *rexmit = REXMIT_NEW; 2696 return; 2697 } 2698 tp->frto = 0; 2699 } 2700 } 2701 2702 if (recovered) { 2703 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2704 tcp_try_undo_recovery(sk); 2705 return; 2706 } 2707 if (tcp_is_reno(tp)) { 2708 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2709 * delivered. Lower inflight to clock out (re)tranmissions. 2710 */ 2711 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2712 tcp_add_reno_sack(sk); 2713 else if (flag & FLAG_SND_UNA_ADVANCED) 2714 tcp_reset_reno_sack(tp); 2715 } 2716 *rexmit = REXMIT_LOST; 2717 } 2718 2719 /* Undo during fast recovery after partial ACK. */ 2720 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2721 { 2722 struct tcp_sock *tp = tcp_sk(sk); 2723 2724 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2725 /* Plain luck! Hole if filled with delayed 2726 * packet, rather than with a retransmit. 2727 */ 2728 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2729 2730 /* We are getting evidence that the reordering degree is higher 2731 * than we realized. If there are no retransmits out then we 2732 * can undo. Otherwise we clock out new packets but do not 2733 * mark more packets lost or retransmit more. 2734 */ 2735 if (tp->retrans_out) 2736 return true; 2737 2738 if (!tcp_any_retrans_done(sk)) 2739 tp->retrans_stamp = 0; 2740 2741 DBGUNDO(sk, "partial recovery"); 2742 tcp_undo_cwnd_reduction(sk, true); 2743 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2744 tcp_try_keep_open(sk); 2745 return true; 2746 } 2747 return false; 2748 } 2749 2750 /* Process an event, which can update packets-in-flight not trivially. 2751 * Main goal of this function is to calculate new estimate for left_out, 2752 * taking into account both packets sitting in receiver's buffer and 2753 * packets lost by network. 2754 * 2755 * Besides that it updates the congestion state when packet loss or ECN 2756 * is detected. But it does not reduce the cwnd, it is done by the 2757 * congestion control later. 2758 * 2759 * It does _not_ decide what to send, it is made in function 2760 * tcp_xmit_retransmit_queue(). 2761 */ 2762 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2763 bool is_dupack, int *ack_flag, int *rexmit) 2764 { 2765 struct inet_connection_sock *icsk = inet_csk(sk); 2766 struct tcp_sock *tp = tcp_sk(sk); 2767 int fast_rexmit = 0, flag = *ack_flag; 2768 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2769 (tcp_fackets_out(tp) > tp->reordering)); 2770 2771 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2772 tp->sacked_out = 0; 2773 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2774 tp->fackets_out = 0; 2775 2776 /* Now state machine starts. 2777 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2778 if (flag & FLAG_ECE) 2779 tp->prior_ssthresh = 0; 2780 2781 /* B. In all the states check for reneging SACKs. */ 2782 if (tcp_check_sack_reneging(sk, flag)) 2783 return; 2784 2785 /* C. Check consistency of the current state. */ 2786 tcp_verify_left_out(tp); 2787 2788 /* D. Check state exit conditions. State can be terminated 2789 * when high_seq is ACKed. */ 2790 if (icsk->icsk_ca_state == TCP_CA_Open) { 2791 WARN_ON(tp->retrans_out != 0); 2792 tp->retrans_stamp = 0; 2793 } else if (!before(tp->snd_una, tp->high_seq)) { 2794 switch (icsk->icsk_ca_state) { 2795 case TCP_CA_CWR: 2796 /* CWR is to be held something *above* high_seq 2797 * is ACKed for CWR bit to reach receiver. */ 2798 if (tp->snd_una != tp->high_seq) { 2799 tcp_end_cwnd_reduction(sk); 2800 tcp_set_ca_state(sk, TCP_CA_Open); 2801 } 2802 break; 2803 2804 case TCP_CA_Recovery: 2805 if (tcp_is_reno(tp)) 2806 tcp_reset_reno_sack(tp); 2807 if (tcp_try_undo_recovery(sk)) 2808 return; 2809 tcp_end_cwnd_reduction(sk); 2810 break; 2811 } 2812 } 2813 2814 /* Use RACK to detect loss */ 2815 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS && 2816 tcp_rack_mark_lost(sk)) { 2817 flag |= FLAG_LOST_RETRANS; 2818 *ack_flag |= FLAG_LOST_RETRANS; 2819 } 2820 2821 /* E. Process state. */ 2822 switch (icsk->icsk_ca_state) { 2823 case TCP_CA_Recovery: 2824 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2825 if (tcp_is_reno(tp) && is_dupack) 2826 tcp_add_reno_sack(sk); 2827 } else { 2828 if (tcp_try_undo_partial(sk, acked)) 2829 return; 2830 /* Partial ACK arrived. Force fast retransmit. */ 2831 do_lost = tcp_is_reno(tp) || 2832 tcp_fackets_out(tp) > tp->reordering; 2833 } 2834 if (tcp_try_undo_dsack(sk)) { 2835 tcp_try_keep_open(sk); 2836 return; 2837 } 2838 break; 2839 case TCP_CA_Loss: 2840 tcp_process_loss(sk, flag, is_dupack, rexmit); 2841 if (icsk->icsk_ca_state != TCP_CA_Open && 2842 !(flag & FLAG_LOST_RETRANS)) 2843 return; 2844 /* Change state if cwnd is undone or retransmits are lost */ 2845 default: 2846 if (tcp_is_reno(tp)) { 2847 if (flag & FLAG_SND_UNA_ADVANCED) 2848 tcp_reset_reno_sack(tp); 2849 if (is_dupack) 2850 tcp_add_reno_sack(sk); 2851 } 2852 2853 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2854 tcp_try_undo_dsack(sk); 2855 2856 if (!tcp_time_to_recover(sk, flag)) { 2857 tcp_try_to_open(sk, flag); 2858 return; 2859 } 2860 2861 /* MTU probe failure: don't reduce cwnd */ 2862 if (icsk->icsk_ca_state < TCP_CA_CWR && 2863 icsk->icsk_mtup.probe_size && 2864 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2865 tcp_mtup_probe_failed(sk); 2866 /* Restores the reduction we did in tcp_mtup_probe() */ 2867 tp->snd_cwnd++; 2868 tcp_simple_retransmit(sk); 2869 return; 2870 } 2871 2872 /* Otherwise enter Recovery state */ 2873 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2874 fast_rexmit = 1; 2875 } 2876 2877 if (do_lost) 2878 tcp_update_scoreboard(sk, fast_rexmit); 2879 *rexmit = REXMIT_LOST; 2880 } 2881 2882 /* Kathleen Nichols' algorithm for tracking the minimum value of 2883 * a data stream over some fixed time interval. (E.g., the minimum 2884 * RTT over the past five minutes.) It uses constant space and constant 2885 * time per update yet almost always delivers the same minimum as an 2886 * implementation that has to keep all the data in the window. 2887 * 2888 * The algorithm keeps track of the best, 2nd best & 3rd best min 2889 * values, maintaining an invariant that the measurement time of the 2890 * n'th best >= n-1'th best. It also makes sure that the three values 2891 * are widely separated in the time window since that bounds the worse 2892 * case error when that data is monotonically increasing over the window. 2893 * 2894 * Upon getting a new min, we can forget everything earlier because it 2895 * has no value - the new min is <= everything else in the window by 2896 * definition and it's the most recent. So we restart fresh on every new min 2897 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd 2898 * best. 2899 */ 2900 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2901 { 2902 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ; 2903 struct rtt_meas *m = tcp_sk(sk)->rtt_min; 2904 struct rtt_meas rttm = { 2905 .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1), 2906 .ts = now, 2907 }; 2908 u32 elapsed; 2909 2910 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */ 2911 if (unlikely(rttm.rtt <= m[0].rtt)) 2912 m[0] = m[1] = m[2] = rttm; 2913 else if (rttm.rtt <= m[1].rtt) 2914 m[1] = m[2] = rttm; 2915 else if (rttm.rtt <= m[2].rtt) 2916 m[2] = rttm; 2917 2918 elapsed = now - m[0].ts; 2919 if (unlikely(elapsed > wlen)) { 2920 /* Passed entire window without a new min so make 2nd choice 2921 * the new min & 3rd choice the new 2nd. So forth and so on. 2922 */ 2923 m[0] = m[1]; 2924 m[1] = m[2]; 2925 m[2] = rttm; 2926 if (now - m[0].ts > wlen) { 2927 m[0] = m[1]; 2928 m[1] = rttm; 2929 if (now - m[0].ts > wlen) 2930 m[0] = rttm; 2931 } 2932 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) { 2933 /* Passed a quarter of the window without a new min so 2934 * take 2nd choice from the 2nd quarter of the window. 2935 */ 2936 m[2] = m[1] = rttm; 2937 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) { 2938 /* Passed half the window without a new min so take the 3rd 2939 * choice from the last half of the window. 2940 */ 2941 m[2] = rttm; 2942 } 2943 } 2944 2945 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2946 long seq_rtt_us, long sack_rtt_us, 2947 long ca_rtt_us) 2948 { 2949 const struct tcp_sock *tp = tcp_sk(sk); 2950 2951 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2952 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2953 * Karn's algorithm forbids taking RTT if some retransmitted data 2954 * is acked (RFC6298). 2955 */ 2956 if (seq_rtt_us < 0) 2957 seq_rtt_us = sack_rtt_us; 2958 2959 /* RTTM Rule: A TSecr value received in a segment is used to 2960 * update the averaged RTT measurement only if the segment 2961 * acknowledges some new data, i.e., only if it advances the 2962 * left edge of the send window. 2963 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2964 */ 2965 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2966 flag & FLAG_ACKED) 2967 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2968 tp->rx_opt.rcv_tsecr); 2969 if (seq_rtt_us < 0) 2970 return false; 2971 2972 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2973 * always taken together with ACK, SACK, or TS-opts. Any negative 2974 * values will be skipped with the seq_rtt_us < 0 check above. 2975 */ 2976 tcp_update_rtt_min(sk, ca_rtt_us); 2977 tcp_rtt_estimator(sk, seq_rtt_us); 2978 tcp_set_rto(sk); 2979 2980 /* RFC6298: only reset backoff on valid RTT measurement. */ 2981 inet_csk(sk)->icsk_backoff = 0; 2982 return true; 2983 } 2984 2985 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2986 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2987 { 2988 long rtt_us = -1L; 2989 2990 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2991 struct skb_mstamp now; 2992 2993 skb_mstamp_get(&now); 2994 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2995 } 2996 2997 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2998 } 2999 3000 3001 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3002 { 3003 const struct inet_connection_sock *icsk = inet_csk(sk); 3004 3005 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3006 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3007 } 3008 3009 /* Restart timer after forward progress on connection. 3010 * RFC2988 recommends to restart timer to now+rto. 3011 */ 3012 void tcp_rearm_rto(struct sock *sk) 3013 { 3014 const struct inet_connection_sock *icsk = inet_csk(sk); 3015 struct tcp_sock *tp = tcp_sk(sk); 3016 3017 /* If the retrans timer is currently being used by Fast Open 3018 * for SYN-ACK retrans purpose, stay put. 3019 */ 3020 if (tp->fastopen_rsk) 3021 return; 3022 3023 if (!tp->packets_out) { 3024 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3025 } else { 3026 u32 rto = inet_csk(sk)->icsk_rto; 3027 /* Offset the time elapsed after installing regular RTO */ 3028 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3029 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3030 struct sk_buff *skb = tcp_write_queue_head(sk); 3031 const u32 rto_time_stamp = 3032 tcp_skb_timestamp(skb) + rto; 3033 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3034 /* delta may not be positive if the socket is locked 3035 * when the retrans timer fires and is rescheduled. 3036 */ 3037 if (delta > 0) 3038 rto = delta; 3039 } 3040 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3041 TCP_RTO_MAX); 3042 } 3043 } 3044 3045 /* This function is called when the delayed ER timer fires. TCP enters 3046 * fast recovery and performs fast-retransmit. 3047 */ 3048 void tcp_resume_early_retransmit(struct sock *sk) 3049 { 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 3052 tcp_rearm_rto(sk); 3053 3054 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3055 if (!tp->do_early_retrans) 3056 return; 3057 3058 tcp_enter_recovery(sk, false); 3059 tcp_update_scoreboard(sk, 1); 3060 tcp_xmit_retransmit_queue(sk); 3061 } 3062 3063 /* If we get here, the whole TSO packet has not been acked. */ 3064 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3065 { 3066 struct tcp_sock *tp = tcp_sk(sk); 3067 u32 packets_acked; 3068 3069 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3070 3071 packets_acked = tcp_skb_pcount(skb); 3072 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3073 return 0; 3074 packets_acked -= tcp_skb_pcount(skb); 3075 3076 if (packets_acked) { 3077 BUG_ON(tcp_skb_pcount(skb) == 0); 3078 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3079 } 3080 3081 return packets_acked; 3082 } 3083 3084 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3085 u32 prior_snd_una) 3086 { 3087 const struct skb_shared_info *shinfo; 3088 3089 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3090 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3091 return; 3092 3093 shinfo = skb_shinfo(skb); 3094 if (!before(shinfo->tskey, prior_snd_una) && 3095 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3096 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3097 } 3098 3099 /* Remove acknowledged frames from the retransmission queue. If our packet 3100 * is before the ack sequence we can discard it as it's confirmed to have 3101 * arrived at the other end. 3102 */ 3103 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3104 u32 prior_snd_una, int *acked, 3105 struct tcp_sacktag_state *sack) 3106 { 3107 const struct inet_connection_sock *icsk = inet_csk(sk); 3108 struct skb_mstamp first_ackt, last_ackt, now; 3109 struct tcp_sock *tp = tcp_sk(sk); 3110 u32 prior_sacked = tp->sacked_out; 3111 u32 reord = tp->packets_out; 3112 bool fully_acked = true; 3113 long sack_rtt_us = -1L; 3114 long seq_rtt_us = -1L; 3115 long ca_rtt_us = -1L; 3116 struct sk_buff *skb; 3117 u32 pkts_acked = 0; 3118 u32 last_in_flight = 0; 3119 bool rtt_update; 3120 int flag = 0; 3121 3122 first_ackt.v64 = 0; 3123 3124 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3125 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3126 u8 sacked = scb->sacked; 3127 u32 acked_pcount; 3128 3129 tcp_ack_tstamp(sk, skb, prior_snd_una); 3130 3131 /* Determine how many packets and what bytes were acked, tso and else */ 3132 if (after(scb->end_seq, tp->snd_una)) { 3133 if (tcp_skb_pcount(skb) == 1 || 3134 !after(tp->snd_una, scb->seq)) 3135 break; 3136 3137 acked_pcount = tcp_tso_acked(sk, skb); 3138 if (!acked_pcount) 3139 break; 3140 3141 fully_acked = false; 3142 } else { 3143 /* Speedup tcp_unlink_write_queue() and next loop */ 3144 prefetchw(skb->next); 3145 acked_pcount = tcp_skb_pcount(skb); 3146 } 3147 3148 if (unlikely(sacked & TCPCB_RETRANS)) { 3149 if (sacked & TCPCB_SACKED_RETRANS) 3150 tp->retrans_out -= acked_pcount; 3151 flag |= FLAG_RETRANS_DATA_ACKED; 3152 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3153 last_ackt = skb->skb_mstamp; 3154 WARN_ON_ONCE(last_ackt.v64 == 0); 3155 if (!first_ackt.v64) 3156 first_ackt = last_ackt; 3157 3158 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3159 reord = min(pkts_acked, reord); 3160 if (!after(scb->end_seq, tp->high_seq)) 3161 flag |= FLAG_ORIG_SACK_ACKED; 3162 } 3163 3164 if (sacked & TCPCB_SACKED_ACKED) { 3165 tp->sacked_out -= acked_pcount; 3166 } else if (tcp_is_sack(tp)) { 3167 tp->delivered += acked_pcount; 3168 if (!tcp_skb_spurious_retrans(tp, skb)) 3169 tcp_rack_advance(tp, &skb->skb_mstamp, sacked); 3170 } 3171 if (sacked & TCPCB_LOST) 3172 tp->lost_out -= acked_pcount; 3173 3174 tp->packets_out -= acked_pcount; 3175 pkts_acked += acked_pcount; 3176 3177 /* Initial outgoing SYN's get put onto the write_queue 3178 * just like anything else we transmit. It is not 3179 * true data, and if we misinform our callers that 3180 * this ACK acks real data, we will erroneously exit 3181 * connection startup slow start one packet too 3182 * quickly. This is severely frowned upon behavior. 3183 */ 3184 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3185 flag |= FLAG_DATA_ACKED; 3186 } else { 3187 flag |= FLAG_SYN_ACKED; 3188 tp->retrans_stamp = 0; 3189 } 3190 3191 if (!fully_acked) 3192 break; 3193 3194 tcp_unlink_write_queue(skb, sk); 3195 sk_wmem_free_skb(sk, skb); 3196 if (unlikely(skb == tp->retransmit_skb_hint)) 3197 tp->retransmit_skb_hint = NULL; 3198 if (unlikely(skb == tp->lost_skb_hint)) 3199 tp->lost_skb_hint = NULL; 3200 } 3201 3202 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3203 tp->snd_up = tp->snd_una; 3204 3205 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3206 flag |= FLAG_SACK_RENEGING; 3207 3208 skb_mstamp_get(&now); 3209 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3210 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3211 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3212 } 3213 if (sack->first_sackt.v64) { 3214 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt); 3215 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt); 3216 } 3217 3218 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3219 ca_rtt_us); 3220 3221 if (flag & FLAG_ACKED) { 3222 tcp_rearm_rto(sk); 3223 if (unlikely(icsk->icsk_mtup.probe_size && 3224 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3225 tcp_mtup_probe_success(sk); 3226 } 3227 3228 if (tcp_is_reno(tp)) { 3229 tcp_remove_reno_sacks(sk, pkts_acked); 3230 } else { 3231 int delta; 3232 3233 /* Non-retransmitted hole got filled? That's reordering */ 3234 if (reord < prior_fackets) 3235 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3236 3237 delta = tcp_is_fack(tp) ? pkts_acked : 3238 prior_sacked - tp->sacked_out; 3239 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3240 } 3241 3242 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3243 3244 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3245 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3246 /* Do not re-arm RTO if the sack RTT is measured from data sent 3247 * after when the head was last (re)transmitted. Otherwise the 3248 * timeout may continue to extend in loss recovery. 3249 */ 3250 tcp_rearm_rto(sk); 3251 } 3252 3253 if (icsk->icsk_ca_ops->pkts_acked) { 3254 struct ack_sample sample = { .pkts_acked = pkts_acked, 3255 .rtt_us = ca_rtt_us, 3256 .in_flight = last_in_flight }; 3257 3258 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3259 } 3260 3261 #if FASTRETRANS_DEBUG > 0 3262 WARN_ON((int)tp->sacked_out < 0); 3263 WARN_ON((int)tp->lost_out < 0); 3264 WARN_ON((int)tp->retrans_out < 0); 3265 if (!tp->packets_out && tcp_is_sack(tp)) { 3266 icsk = inet_csk(sk); 3267 if (tp->lost_out) { 3268 pr_debug("Leak l=%u %d\n", 3269 tp->lost_out, icsk->icsk_ca_state); 3270 tp->lost_out = 0; 3271 } 3272 if (tp->sacked_out) { 3273 pr_debug("Leak s=%u %d\n", 3274 tp->sacked_out, icsk->icsk_ca_state); 3275 tp->sacked_out = 0; 3276 } 3277 if (tp->retrans_out) { 3278 pr_debug("Leak r=%u %d\n", 3279 tp->retrans_out, icsk->icsk_ca_state); 3280 tp->retrans_out = 0; 3281 } 3282 } 3283 #endif 3284 *acked = pkts_acked; 3285 return flag; 3286 } 3287 3288 static void tcp_ack_probe(struct sock *sk) 3289 { 3290 const struct tcp_sock *tp = tcp_sk(sk); 3291 struct inet_connection_sock *icsk = inet_csk(sk); 3292 3293 /* Was it a usable window open? */ 3294 3295 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3296 icsk->icsk_backoff = 0; 3297 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3298 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3299 * This function is not for random using! 3300 */ 3301 } else { 3302 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3303 3304 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3305 when, TCP_RTO_MAX); 3306 } 3307 } 3308 3309 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3310 { 3311 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3312 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3313 } 3314 3315 /* Decide wheather to run the increase function of congestion control. */ 3316 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3317 { 3318 /* If reordering is high then always grow cwnd whenever data is 3319 * delivered regardless of its ordering. Otherwise stay conservative 3320 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3321 * new SACK or ECE mark may first advance cwnd here and later reduce 3322 * cwnd in tcp_fastretrans_alert() based on more states. 3323 */ 3324 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3325 return flag & FLAG_FORWARD_PROGRESS; 3326 3327 return flag & FLAG_DATA_ACKED; 3328 } 3329 3330 /* The "ultimate" congestion control function that aims to replace the rigid 3331 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3332 * It's called toward the end of processing an ACK with precise rate 3333 * information. All transmission or retransmission are delayed afterwards. 3334 */ 3335 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3336 int flag) 3337 { 3338 if (tcp_in_cwnd_reduction(sk)) { 3339 /* Reduce cwnd if state mandates */ 3340 tcp_cwnd_reduction(sk, acked_sacked, flag); 3341 } else if (tcp_may_raise_cwnd(sk, flag)) { 3342 /* Advance cwnd if state allows */ 3343 tcp_cong_avoid(sk, ack, acked_sacked); 3344 } 3345 tcp_update_pacing_rate(sk); 3346 } 3347 3348 /* Check that window update is acceptable. 3349 * The function assumes that snd_una<=ack<=snd_next. 3350 */ 3351 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3352 const u32 ack, const u32 ack_seq, 3353 const u32 nwin) 3354 { 3355 return after(ack, tp->snd_una) || 3356 after(ack_seq, tp->snd_wl1) || 3357 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3358 } 3359 3360 /* If we update tp->snd_una, also update tp->bytes_acked */ 3361 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3362 { 3363 u32 delta = ack - tp->snd_una; 3364 3365 sock_owned_by_me((struct sock *)tp); 3366 u64_stats_update_begin_raw(&tp->syncp); 3367 tp->bytes_acked += delta; 3368 u64_stats_update_end_raw(&tp->syncp); 3369 tp->snd_una = ack; 3370 } 3371 3372 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3373 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3374 { 3375 u32 delta = seq - tp->rcv_nxt; 3376 3377 sock_owned_by_me((struct sock *)tp); 3378 u64_stats_update_begin_raw(&tp->syncp); 3379 tp->bytes_received += delta; 3380 u64_stats_update_end_raw(&tp->syncp); 3381 tp->rcv_nxt = seq; 3382 } 3383 3384 /* Update our send window. 3385 * 3386 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3387 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3388 */ 3389 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3390 u32 ack_seq) 3391 { 3392 struct tcp_sock *tp = tcp_sk(sk); 3393 int flag = 0; 3394 u32 nwin = ntohs(tcp_hdr(skb)->window); 3395 3396 if (likely(!tcp_hdr(skb)->syn)) 3397 nwin <<= tp->rx_opt.snd_wscale; 3398 3399 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3400 flag |= FLAG_WIN_UPDATE; 3401 tcp_update_wl(tp, ack_seq); 3402 3403 if (tp->snd_wnd != nwin) { 3404 tp->snd_wnd = nwin; 3405 3406 /* Note, it is the only place, where 3407 * fast path is recovered for sending TCP. 3408 */ 3409 tp->pred_flags = 0; 3410 tcp_fast_path_check(sk); 3411 3412 if (tcp_send_head(sk)) 3413 tcp_slow_start_after_idle_check(sk); 3414 3415 if (nwin > tp->max_window) { 3416 tp->max_window = nwin; 3417 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3418 } 3419 } 3420 } 3421 3422 tcp_snd_una_update(tp, ack); 3423 3424 return flag; 3425 } 3426 3427 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3428 u32 *last_oow_ack_time) 3429 { 3430 if (*last_oow_ack_time) { 3431 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3432 3433 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3434 NET_INC_STATS(net, mib_idx); 3435 return true; /* rate-limited: don't send yet! */ 3436 } 3437 } 3438 3439 *last_oow_ack_time = tcp_time_stamp; 3440 3441 return false; /* not rate-limited: go ahead, send dupack now! */ 3442 } 3443 3444 /* Return true if we're currently rate-limiting out-of-window ACKs and 3445 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3446 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3447 * attacks that send repeated SYNs or ACKs for the same connection. To 3448 * do this, we do not send a duplicate SYNACK or ACK if the remote 3449 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3450 */ 3451 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3452 int mib_idx, u32 *last_oow_ack_time) 3453 { 3454 /* Data packets without SYNs are not likely part of an ACK loop. */ 3455 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3456 !tcp_hdr(skb)->syn) 3457 return false; 3458 3459 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3460 } 3461 3462 /* RFC 5961 7 [ACK Throttling] */ 3463 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3464 { 3465 /* unprotected vars, we dont care of overwrites */ 3466 static u32 challenge_timestamp; 3467 static unsigned int challenge_count; 3468 struct tcp_sock *tp = tcp_sk(sk); 3469 u32 count, now; 3470 3471 /* First check our per-socket dupack rate limit. */ 3472 if (__tcp_oow_rate_limited(sock_net(sk), 3473 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3474 &tp->last_oow_ack_time)) 3475 return; 3476 3477 /* Then check host-wide RFC 5961 rate limit. */ 3478 now = jiffies / HZ; 3479 if (now != challenge_timestamp) { 3480 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3481 3482 challenge_timestamp = now; 3483 WRITE_ONCE(challenge_count, half + 3484 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3485 } 3486 count = READ_ONCE(challenge_count); 3487 if (count > 0) { 3488 WRITE_ONCE(challenge_count, count - 1); 3489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3490 tcp_send_ack(sk); 3491 } 3492 } 3493 3494 static void tcp_store_ts_recent(struct tcp_sock *tp) 3495 { 3496 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3497 tp->rx_opt.ts_recent_stamp = get_seconds(); 3498 } 3499 3500 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3501 { 3502 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3503 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3504 * extra check below makes sure this can only happen 3505 * for pure ACK frames. -DaveM 3506 * 3507 * Not only, also it occurs for expired timestamps. 3508 */ 3509 3510 if (tcp_paws_check(&tp->rx_opt, 0)) 3511 tcp_store_ts_recent(tp); 3512 } 3513 } 3514 3515 /* This routine deals with acks during a TLP episode. 3516 * We mark the end of a TLP episode on receiving TLP dupack or when 3517 * ack is after tlp_high_seq. 3518 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3519 */ 3520 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3521 { 3522 struct tcp_sock *tp = tcp_sk(sk); 3523 3524 if (before(ack, tp->tlp_high_seq)) 3525 return; 3526 3527 if (flag & FLAG_DSACKING_ACK) { 3528 /* This DSACK means original and TLP probe arrived; no loss */ 3529 tp->tlp_high_seq = 0; 3530 } else if (after(ack, tp->tlp_high_seq)) { 3531 /* ACK advances: there was a loss, so reduce cwnd. Reset 3532 * tlp_high_seq in tcp_init_cwnd_reduction() 3533 */ 3534 tcp_init_cwnd_reduction(sk); 3535 tcp_set_ca_state(sk, TCP_CA_CWR); 3536 tcp_end_cwnd_reduction(sk); 3537 tcp_try_keep_open(sk); 3538 NET_INC_STATS(sock_net(sk), 3539 LINUX_MIB_TCPLOSSPROBERECOVERY); 3540 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3541 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3542 /* Pure dupack: original and TLP probe arrived; no loss */ 3543 tp->tlp_high_seq = 0; 3544 } 3545 } 3546 3547 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3548 { 3549 const struct inet_connection_sock *icsk = inet_csk(sk); 3550 3551 if (icsk->icsk_ca_ops->in_ack_event) 3552 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3553 } 3554 3555 /* Congestion control has updated the cwnd already. So if we're in 3556 * loss recovery then now we do any new sends (for FRTO) or 3557 * retransmits (for CA_Loss or CA_recovery) that make sense. 3558 */ 3559 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3560 { 3561 struct tcp_sock *tp = tcp_sk(sk); 3562 3563 if (rexmit == REXMIT_NONE) 3564 return; 3565 3566 if (unlikely(rexmit == 2)) { 3567 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3568 TCP_NAGLE_OFF); 3569 if (after(tp->snd_nxt, tp->high_seq)) 3570 return; 3571 tp->frto = 0; 3572 } 3573 tcp_xmit_retransmit_queue(sk); 3574 } 3575 3576 /* This routine deals with incoming acks, but not outgoing ones. */ 3577 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3578 { 3579 struct inet_connection_sock *icsk = inet_csk(sk); 3580 struct tcp_sock *tp = tcp_sk(sk); 3581 struct tcp_sacktag_state sack_state; 3582 u32 prior_snd_una = tp->snd_una; 3583 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3584 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3585 bool is_dupack = false; 3586 u32 prior_fackets; 3587 int prior_packets = tp->packets_out; 3588 u32 prior_delivered = tp->delivered; 3589 int acked = 0; /* Number of packets newly acked */ 3590 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3591 3592 sack_state.first_sackt.v64 = 0; 3593 3594 /* We very likely will need to access write queue head. */ 3595 prefetchw(sk->sk_write_queue.next); 3596 3597 /* If the ack is older than previous acks 3598 * then we can probably ignore it. 3599 */ 3600 if (before(ack, prior_snd_una)) { 3601 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3602 if (before(ack, prior_snd_una - tp->max_window)) { 3603 tcp_send_challenge_ack(sk, skb); 3604 return -1; 3605 } 3606 goto old_ack; 3607 } 3608 3609 /* If the ack includes data we haven't sent yet, discard 3610 * this segment (RFC793 Section 3.9). 3611 */ 3612 if (after(ack, tp->snd_nxt)) 3613 goto invalid_ack; 3614 3615 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3616 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3617 tcp_rearm_rto(sk); 3618 3619 if (after(ack, prior_snd_una)) { 3620 flag |= FLAG_SND_UNA_ADVANCED; 3621 icsk->icsk_retransmits = 0; 3622 } 3623 3624 prior_fackets = tp->fackets_out; 3625 3626 /* ts_recent update must be made after we are sure that the packet 3627 * is in window. 3628 */ 3629 if (flag & FLAG_UPDATE_TS_RECENT) 3630 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3631 3632 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3633 /* Window is constant, pure forward advance. 3634 * No more checks are required. 3635 * Note, we use the fact that SND.UNA>=SND.WL2. 3636 */ 3637 tcp_update_wl(tp, ack_seq); 3638 tcp_snd_una_update(tp, ack); 3639 flag |= FLAG_WIN_UPDATE; 3640 3641 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3642 3643 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3644 } else { 3645 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3646 3647 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3648 flag |= FLAG_DATA; 3649 else 3650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3651 3652 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3653 3654 if (TCP_SKB_CB(skb)->sacked) 3655 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3656 &sack_state); 3657 3658 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3659 flag |= FLAG_ECE; 3660 ack_ev_flags |= CA_ACK_ECE; 3661 } 3662 3663 if (flag & FLAG_WIN_UPDATE) 3664 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3665 3666 tcp_in_ack_event(sk, ack_ev_flags); 3667 } 3668 3669 /* We passed data and got it acked, remove any soft error 3670 * log. Something worked... 3671 */ 3672 sk->sk_err_soft = 0; 3673 icsk->icsk_probes_out = 0; 3674 tp->rcv_tstamp = tcp_time_stamp; 3675 if (!prior_packets) 3676 goto no_queue; 3677 3678 /* See if we can take anything off of the retransmit queue. */ 3679 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3680 &sack_state); 3681 3682 if (tcp_ack_is_dubious(sk, flag)) { 3683 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3684 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3685 } 3686 if (tp->tlp_high_seq) 3687 tcp_process_tlp_ack(sk, ack, flag); 3688 3689 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3690 struct dst_entry *dst = __sk_dst_get(sk); 3691 if (dst) 3692 dst_confirm(dst); 3693 } 3694 3695 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3696 tcp_schedule_loss_probe(sk); 3697 tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag); 3698 tcp_xmit_recovery(sk, rexmit); 3699 return 1; 3700 3701 no_queue: 3702 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3703 if (flag & FLAG_DSACKING_ACK) 3704 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3705 /* If this ack opens up a zero window, clear backoff. It was 3706 * being used to time the probes, and is probably far higher than 3707 * it needs to be for normal retransmission. 3708 */ 3709 if (tcp_send_head(sk)) 3710 tcp_ack_probe(sk); 3711 3712 if (tp->tlp_high_seq) 3713 tcp_process_tlp_ack(sk, ack, flag); 3714 return 1; 3715 3716 invalid_ack: 3717 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3718 return -1; 3719 3720 old_ack: 3721 /* If data was SACKed, tag it and see if we should send more data. 3722 * If data was DSACKed, see if we can undo a cwnd reduction. 3723 */ 3724 if (TCP_SKB_CB(skb)->sacked) { 3725 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3726 &sack_state); 3727 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3728 tcp_xmit_recovery(sk, rexmit); 3729 } 3730 3731 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3732 return 0; 3733 } 3734 3735 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3736 bool syn, struct tcp_fastopen_cookie *foc, 3737 bool exp_opt) 3738 { 3739 /* Valid only in SYN or SYN-ACK with an even length. */ 3740 if (!foc || !syn || len < 0 || (len & 1)) 3741 return; 3742 3743 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3744 len <= TCP_FASTOPEN_COOKIE_MAX) 3745 memcpy(foc->val, cookie, len); 3746 else if (len != 0) 3747 len = -1; 3748 foc->len = len; 3749 foc->exp = exp_opt; 3750 } 3751 3752 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3753 * But, this can also be called on packets in the established flow when 3754 * the fast version below fails. 3755 */ 3756 void tcp_parse_options(const struct sk_buff *skb, 3757 struct tcp_options_received *opt_rx, int estab, 3758 struct tcp_fastopen_cookie *foc) 3759 { 3760 const unsigned char *ptr; 3761 const struct tcphdr *th = tcp_hdr(skb); 3762 int length = (th->doff * 4) - sizeof(struct tcphdr); 3763 3764 ptr = (const unsigned char *)(th + 1); 3765 opt_rx->saw_tstamp = 0; 3766 3767 while (length > 0) { 3768 int opcode = *ptr++; 3769 int opsize; 3770 3771 switch (opcode) { 3772 case TCPOPT_EOL: 3773 return; 3774 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3775 length--; 3776 continue; 3777 default: 3778 opsize = *ptr++; 3779 if (opsize < 2) /* "silly options" */ 3780 return; 3781 if (opsize > length) 3782 return; /* don't parse partial options */ 3783 switch (opcode) { 3784 case TCPOPT_MSS: 3785 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3786 u16 in_mss = get_unaligned_be16(ptr); 3787 if (in_mss) { 3788 if (opt_rx->user_mss && 3789 opt_rx->user_mss < in_mss) 3790 in_mss = opt_rx->user_mss; 3791 opt_rx->mss_clamp = in_mss; 3792 } 3793 } 3794 break; 3795 case TCPOPT_WINDOW: 3796 if (opsize == TCPOLEN_WINDOW && th->syn && 3797 !estab && sysctl_tcp_window_scaling) { 3798 __u8 snd_wscale = *(__u8 *)ptr; 3799 opt_rx->wscale_ok = 1; 3800 if (snd_wscale > 14) { 3801 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3802 __func__, 3803 snd_wscale); 3804 snd_wscale = 14; 3805 } 3806 opt_rx->snd_wscale = snd_wscale; 3807 } 3808 break; 3809 case TCPOPT_TIMESTAMP: 3810 if ((opsize == TCPOLEN_TIMESTAMP) && 3811 ((estab && opt_rx->tstamp_ok) || 3812 (!estab && sysctl_tcp_timestamps))) { 3813 opt_rx->saw_tstamp = 1; 3814 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3815 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3816 } 3817 break; 3818 case TCPOPT_SACK_PERM: 3819 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3820 !estab && sysctl_tcp_sack) { 3821 opt_rx->sack_ok = TCP_SACK_SEEN; 3822 tcp_sack_reset(opt_rx); 3823 } 3824 break; 3825 3826 case TCPOPT_SACK: 3827 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3828 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3829 opt_rx->sack_ok) { 3830 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3831 } 3832 break; 3833 #ifdef CONFIG_TCP_MD5SIG 3834 case TCPOPT_MD5SIG: 3835 /* 3836 * The MD5 Hash has already been 3837 * checked (see tcp_v{4,6}_do_rcv()). 3838 */ 3839 break; 3840 #endif 3841 case TCPOPT_FASTOPEN: 3842 tcp_parse_fastopen_option( 3843 opsize - TCPOLEN_FASTOPEN_BASE, 3844 ptr, th->syn, foc, false); 3845 break; 3846 3847 case TCPOPT_EXP: 3848 /* Fast Open option shares code 254 using a 3849 * 16 bits magic number. 3850 */ 3851 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3852 get_unaligned_be16(ptr) == 3853 TCPOPT_FASTOPEN_MAGIC) 3854 tcp_parse_fastopen_option(opsize - 3855 TCPOLEN_EXP_FASTOPEN_BASE, 3856 ptr + 2, th->syn, foc, true); 3857 break; 3858 3859 } 3860 ptr += opsize-2; 3861 length -= opsize; 3862 } 3863 } 3864 } 3865 EXPORT_SYMBOL(tcp_parse_options); 3866 3867 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3868 { 3869 const __be32 *ptr = (const __be32 *)(th + 1); 3870 3871 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3872 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3873 tp->rx_opt.saw_tstamp = 1; 3874 ++ptr; 3875 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3876 ++ptr; 3877 if (*ptr) 3878 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3879 else 3880 tp->rx_opt.rcv_tsecr = 0; 3881 return true; 3882 } 3883 return false; 3884 } 3885 3886 /* Fast parse options. This hopes to only see timestamps. 3887 * If it is wrong it falls back on tcp_parse_options(). 3888 */ 3889 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3890 const struct tcphdr *th, struct tcp_sock *tp) 3891 { 3892 /* In the spirit of fast parsing, compare doff directly to constant 3893 * values. Because equality is used, short doff can be ignored here. 3894 */ 3895 if (th->doff == (sizeof(*th) / 4)) { 3896 tp->rx_opt.saw_tstamp = 0; 3897 return false; 3898 } else if (tp->rx_opt.tstamp_ok && 3899 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3900 if (tcp_parse_aligned_timestamp(tp, th)) 3901 return true; 3902 } 3903 3904 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3905 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3906 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3907 3908 return true; 3909 } 3910 3911 #ifdef CONFIG_TCP_MD5SIG 3912 /* 3913 * Parse MD5 Signature option 3914 */ 3915 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3916 { 3917 int length = (th->doff << 2) - sizeof(*th); 3918 const u8 *ptr = (const u8 *)(th + 1); 3919 3920 /* If the TCP option is too short, we can short cut */ 3921 if (length < TCPOLEN_MD5SIG) 3922 return NULL; 3923 3924 while (length > 0) { 3925 int opcode = *ptr++; 3926 int opsize; 3927 3928 switch (opcode) { 3929 case TCPOPT_EOL: 3930 return NULL; 3931 case TCPOPT_NOP: 3932 length--; 3933 continue; 3934 default: 3935 opsize = *ptr++; 3936 if (opsize < 2 || opsize > length) 3937 return NULL; 3938 if (opcode == TCPOPT_MD5SIG) 3939 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3940 } 3941 ptr += opsize - 2; 3942 length -= opsize; 3943 } 3944 return NULL; 3945 } 3946 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3947 #endif 3948 3949 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3950 * 3951 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3952 * it can pass through stack. So, the following predicate verifies that 3953 * this segment is not used for anything but congestion avoidance or 3954 * fast retransmit. Moreover, we even are able to eliminate most of such 3955 * second order effects, if we apply some small "replay" window (~RTO) 3956 * to timestamp space. 3957 * 3958 * All these measures still do not guarantee that we reject wrapped ACKs 3959 * on networks with high bandwidth, when sequence space is recycled fastly, 3960 * but it guarantees that such events will be very rare and do not affect 3961 * connection seriously. This doesn't look nice, but alas, PAWS is really 3962 * buggy extension. 3963 * 3964 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3965 * states that events when retransmit arrives after original data are rare. 3966 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3967 * the biggest problem on large power networks even with minor reordering. 3968 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3969 * up to bandwidth of 18Gigabit/sec. 8) ] 3970 */ 3971 3972 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3973 { 3974 const struct tcp_sock *tp = tcp_sk(sk); 3975 const struct tcphdr *th = tcp_hdr(skb); 3976 u32 seq = TCP_SKB_CB(skb)->seq; 3977 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3978 3979 return (/* 1. Pure ACK with correct sequence number. */ 3980 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3981 3982 /* 2. ... and duplicate ACK. */ 3983 ack == tp->snd_una && 3984 3985 /* 3. ... and does not update window. */ 3986 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3987 3988 /* 4. ... and sits in replay window. */ 3989 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3990 } 3991 3992 static inline bool tcp_paws_discard(const struct sock *sk, 3993 const struct sk_buff *skb) 3994 { 3995 const struct tcp_sock *tp = tcp_sk(sk); 3996 3997 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3998 !tcp_disordered_ack(sk, skb); 3999 } 4000 4001 /* Check segment sequence number for validity. 4002 * 4003 * Segment controls are considered valid, if the segment 4004 * fits to the window after truncation to the window. Acceptability 4005 * of data (and SYN, FIN, of course) is checked separately. 4006 * See tcp_data_queue(), for example. 4007 * 4008 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4009 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4010 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4011 * (borrowed from freebsd) 4012 */ 4013 4014 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4015 { 4016 return !before(end_seq, tp->rcv_wup) && 4017 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4018 } 4019 4020 /* When we get a reset we do this. */ 4021 void tcp_reset(struct sock *sk) 4022 { 4023 /* We want the right error as BSD sees it (and indeed as we do). */ 4024 switch (sk->sk_state) { 4025 case TCP_SYN_SENT: 4026 sk->sk_err = ECONNREFUSED; 4027 break; 4028 case TCP_CLOSE_WAIT: 4029 sk->sk_err = EPIPE; 4030 break; 4031 case TCP_CLOSE: 4032 return; 4033 default: 4034 sk->sk_err = ECONNRESET; 4035 } 4036 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4037 smp_wmb(); 4038 4039 if (!sock_flag(sk, SOCK_DEAD)) 4040 sk->sk_error_report(sk); 4041 4042 tcp_done(sk); 4043 } 4044 4045 /* 4046 * Process the FIN bit. This now behaves as it is supposed to work 4047 * and the FIN takes effect when it is validly part of sequence 4048 * space. Not before when we get holes. 4049 * 4050 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4051 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4052 * TIME-WAIT) 4053 * 4054 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4055 * close and we go into CLOSING (and later onto TIME-WAIT) 4056 * 4057 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4058 */ 4059 void tcp_fin(struct sock *sk) 4060 { 4061 struct tcp_sock *tp = tcp_sk(sk); 4062 4063 inet_csk_schedule_ack(sk); 4064 4065 sk->sk_shutdown |= RCV_SHUTDOWN; 4066 sock_set_flag(sk, SOCK_DONE); 4067 4068 switch (sk->sk_state) { 4069 case TCP_SYN_RECV: 4070 case TCP_ESTABLISHED: 4071 /* Move to CLOSE_WAIT */ 4072 tcp_set_state(sk, TCP_CLOSE_WAIT); 4073 inet_csk(sk)->icsk_ack.pingpong = 1; 4074 break; 4075 4076 case TCP_CLOSE_WAIT: 4077 case TCP_CLOSING: 4078 /* Received a retransmission of the FIN, do 4079 * nothing. 4080 */ 4081 break; 4082 case TCP_LAST_ACK: 4083 /* RFC793: Remain in the LAST-ACK state. */ 4084 break; 4085 4086 case TCP_FIN_WAIT1: 4087 /* This case occurs when a simultaneous close 4088 * happens, we must ack the received FIN and 4089 * enter the CLOSING state. 4090 */ 4091 tcp_send_ack(sk); 4092 tcp_set_state(sk, TCP_CLOSING); 4093 break; 4094 case TCP_FIN_WAIT2: 4095 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4096 tcp_send_ack(sk); 4097 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4098 break; 4099 default: 4100 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4101 * cases we should never reach this piece of code. 4102 */ 4103 pr_err("%s: Impossible, sk->sk_state=%d\n", 4104 __func__, sk->sk_state); 4105 break; 4106 } 4107 4108 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4109 * Probably, we should reset in this case. For now drop them. 4110 */ 4111 __skb_queue_purge(&tp->out_of_order_queue); 4112 if (tcp_is_sack(tp)) 4113 tcp_sack_reset(&tp->rx_opt); 4114 sk_mem_reclaim(sk); 4115 4116 if (!sock_flag(sk, SOCK_DEAD)) { 4117 sk->sk_state_change(sk); 4118 4119 /* Do not send POLL_HUP for half duplex close. */ 4120 if (sk->sk_shutdown == SHUTDOWN_MASK || 4121 sk->sk_state == TCP_CLOSE) 4122 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4123 else 4124 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4125 } 4126 } 4127 4128 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4129 u32 end_seq) 4130 { 4131 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4132 if (before(seq, sp->start_seq)) 4133 sp->start_seq = seq; 4134 if (after(end_seq, sp->end_seq)) 4135 sp->end_seq = end_seq; 4136 return true; 4137 } 4138 return false; 4139 } 4140 4141 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4142 { 4143 struct tcp_sock *tp = tcp_sk(sk); 4144 4145 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4146 int mib_idx; 4147 4148 if (before(seq, tp->rcv_nxt)) 4149 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4150 else 4151 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4152 4153 NET_INC_STATS(sock_net(sk), mib_idx); 4154 4155 tp->rx_opt.dsack = 1; 4156 tp->duplicate_sack[0].start_seq = seq; 4157 tp->duplicate_sack[0].end_seq = end_seq; 4158 } 4159 } 4160 4161 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4162 { 4163 struct tcp_sock *tp = tcp_sk(sk); 4164 4165 if (!tp->rx_opt.dsack) 4166 tcp_dsack_set(sk, seq, end_seq); 4167 else 4168 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4169 } 4170 4171 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4172 { 4173 struct tcp_sock *tp = tcp_sk(sk); 4174 4175 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4176 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4177 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4178 tcp_enter_quickack_mode(sk); 4179 4180 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4181 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4182 4183 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4184 end_seq = tp->rcv_nxt; 4185 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4186 } 4187 } 4188 4189 tcp_send_ack(sk); 4190 } 4191 4192 /* These routines update the SACK block as out-of-order packets arrive or 4193 * in-order packets close up the sequence space. 4194 */ 4195 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4196 { 4197 int this_sack; 4198 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4199 struct tcp_sack_block *swalk = sp + 1; 4200 4201 /* See if the recent change to the first SACK eats into 4202 * or hits the sequence space of other SACK blocks, if so coalesce. 4203 */ 4204 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4205 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4206 int i; 4207 4208 /* Zap SWALK, by moving every further SACK up by one slot. 4209 * Decrease num_sacks. 4210 */ 4211 tp->rx_opt.num_sacks--; 4212 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4213 sp[i] = sp[i + 1]; 4214 continue; 4215 } 4216 this_sack++, swalk++; 4217 } 4218 } 4219 4220 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4221 { 4222 struct tcp_sock *tp = tcp_sk(sk); 4223 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4224 int cur_sacks = tp->rx_opt.num_sacks; 4225 int this_sack; 4226 4227 if (!cur_sacks) 4228 goto new_sack; 4229 4230 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4231 if (tcp_sack_extend(sp, seq, end_seq)) { 4232 /* Rotate this_sack to the first one. */ 4233 for (; this_sack > 0; this_sack--, sp--) 4234 swap(*sp, *(sp - 1)); 4235 if (cur_sacks > 1) 4236 tcp_sack_maybe_coalesce(tp); 4237 return; 4238 } 4239 } 4240 4241 /* Could not find an adjacent existing SACK, build a new one, 4242 * put it at the front, and shift everyone else down. We 4243 * always know there is at least one SACK present already here. 4244 * 4245 * If the sack array is full, forget about the last one. 4246 */ 4247 if (this_sack >= TCP_NUM_SACKS) { 4248 this_sack--; 4249 tp->rx_opt.num_sacks--; 4250 sp--; 4251 } 4252 for (; this_sack > 0; this_sack--, sp--) 4253 *sp = *(sp - 1); 4254 4255 new_sack: 4256 /* Build the new head SACK, and we're done. */ 4257 sp->start_seq = seq; 4258 sp->end_seq = end_seq; 4259 tp->rx_opt.num_sacks++; 4260 } 4261 4262 /* RCV.NXT advances, some SACKs should be eaten. */ 4263 4264 static void tcp_sack_remove(struct tcp_sock *tp) 4265 { 4266 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4267 int num_sacks = tp->rx_opt.num_sacks; 4268 int this_sack; 4269 4270 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4271 if (skb_queue_empty(&tp->out_of_order_queue)) { 4272 tp->rx_opt.num_sacks = 0; 4273 return; 4274 } 4275 4276 for (this_sack = 0; this_sack < num_sacks;) { 4277 /* Check if the start of the sack is covered by RCV.NXT. */ 4278 if (!before(tp->rcv_nxt, sp->start_seq)) { 4279 int i; 4280 4281 /* RCV.NXT must cover all the block! */ 4282 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4283 4284 /* Zap this SACK, by moving forward any other SACKS. */ 4285 for (i = this_sack+1; i < num_sacks; i++) 4286 tp->selective_acks[i-1] = tp->selective_acks[i]; 4287 num_sacks--; 4288 continue; 4289 } 4290 this_sack++; 4291 sp++; 4292 } 4293 tp->rx_opt.num_sacks = num_sacks; 4294 } 4295 4296 /** 4297 * tcp_try_coalesce - try to merge skb to prior one 4298 * @sk: socket 4299 * @to: prior buffer 4300 * @from: buffer to add in queue 4301 * @fragstolen: pointer to boolean 4302 * 4303 * Before queueing skb @from after @to, try to merge them 4304 * to reduce overall memory use and queue lengths, if cost is small. 4305 * Packets in ofo or receive queues can stay a long time. 4306 * Better try to coalesce them right now to avoid future collapses. 4307 * Returns true if caller should free @from instead of queueing it 4308 */ 4309 static bool tcp_try_coalesce(struct sock *sk, 4310 struct sk_buff *to, 4311 struct sk_buff *from, 4312 bool *fragstolen) 4313 { 4314 int delta; 4315 4316 *fragstolen = false; 4317 4318 /* Its possible this segment overlaps with prior segment in queue */ 4319 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4320 return false; 4321 4322 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4323 return false; 4324 4325 atomic_add(delta, &sk->sk_rmem_alloc); 4326 sk_mem_charge(sk, delta); 4327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4328 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4329 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4330 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4331 return true; 4332 } 4333 4334 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4335 { 4336 sk_drops_add(sk, skb); 4337 __kfree_skb(skb); 4338 } 4339 4340 /* This one checks to see if we can put data from the 4341 * out_of_order queue into the receive_queue. 4342 */ 4343 static void tcp_ofo_queue(struct sock *sk) 4344 { 4345 struct tcp_sock *tp = tcp_sk(sk); 4346 __u32 dsack_high = tp->rcv_nxt; 4347 struct sk_buff *skb, *tail; 4348 bool fragstolen, eaten; 4349 4350 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4351 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4352 break; 4353 4354 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4355 __u32 dsack = dsack_high; 4356 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4357 dsack_high = TCP_SKB_CB(skb)->end_seq; 4358 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4359 } 4360 4361 __skb_unlink(skb, &tp->out_of_order_queue); 4362 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4363 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4364 tcp_drop(sk, skb); 4365 continue; 4366 } 4367 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4368 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4369 TCP_SKB_CB(skb)->end_seq); 4370 4371 tail = skb_peek_tail(&sk->sk_receive_queue); 4372 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4373 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4374 if (!eaten) 4375 __skb_queue_tail(&sk->sk_receive_queue, skb); 4376 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4377 tcp_fin(sk); 4378 if (eaten) 4379 kfree_skb_partial(skb, fragstolen); 4380 } 4381 } 4382 4383 static bool tcp_prune_ofo_queue(struct sock *sk); 4384 static int tcp_prune_queue(struct sock *sk); 4385 4386 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4387 unsigned int size) 4388 { 4389 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4390 !sk_rmem_schedule(sk, skb, size)) { 4391 4392 if (tcp_prune_queue(sk) < 0) 4393 return -1; 4394 4395 if (!sk_rmem_schedule(sk, skb, size)) { 4396 if (!tcp_prune_ofo_queue(sk)) 4397 return -1; 4398 4399 if (!sk_rmem_schedule(sk, skb, size)) 4400 return -1; 4401 } 4402 } 4403 return 0; 4404 } 4405 4406 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4407 { 4408 struct tcp_sock *tp = tcp_sk(sk); 4409 struct sk_buff *skb1; 4410 u32 seq, end_seq; 4411 4412 tcp_ecn_check_ce(tp, skb); 4413 4414 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4415 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4416 tcp_drop(sk, skb); 4417 return; 4418 } 4419 4420 /* Disable header prediction. */ 4421 tp->pred_flags = 0; 4422 inet_csk_schedule_ack(sk); 4423 4424 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4425 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4426 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4427 4428 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4429 if (!skb1) { 4430 /* Initial out of order segment, build 1 SACK. */ 4431 if (tcp_is_sack(tp)) { 4432 tp->rx_opt.num_sacks = 1; 4433 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4434 tp->selective_acks[0].end_seq = 4435 TCP_SKB_CB(skb)->end_seq; 4436 } 4437 __skb_queue_head(&tp->out_of_order_queue, skb); 4438 goto end; 4439 } 4440 4441 seq = TCP_SKB_CB(skb)->seq; 4442 end_seq = TCP_SKB_CB(skb)->end_seq; 4443 4444 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4445 bool fragstolen; 4446 4447 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4448 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4449 } else { 4450 tcp_grow_window(sk, skb); 4451 kfree_skb_partial(skb, fragstolen); 4452 skb = NULL; 4453 } 4454 4455 if (!tp->rx_opt.num_sacks || 4456 tp->selective_acks[0].end_seq != seq) 4457 goto add_sack; 4458 4459 /* Common case: data arrive in order after hole. */ 4460 tp->selective_acks[0].end_seq = end_seq; 4461 goto end; 4462 } 4463 4464 /* Find place to insert this segment. */ 4465 while (1) { 4466 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4467 break; 4468 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4469 skb1 = NULL; 4470 break; 4471 } 4472 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4473 } 4474 4475 /* Do skb overlap to previous one? */ 4476 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4477 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4478 /* All the bits are present. Drop. */ 4479 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4480 tcp_drop(sk, skb); 4481 skb = NULL; 4482 tcp_dsack_set(sk, seq, end_seq); 4483 goto add_sack; 4484 } 4485 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4486 /* Partial overlap. */ 4487 tcp_dsack_set(sk, seq, 4488 TCP_SKB_CB(skb1)->end_seq); 4489 } else { 4490 if (skb_queue_is_first(&tp->out_of_order_queue, 4491 skb1)) 4492 skb1 = NULL; 4493 else 4494 skb1 = skb_queue_prev( 4495 &tp->out_of_order_queue, 4496 skb1); 4497 } 4498 } 4499 if (!skb1) 4500 __skb_queue_head(&tp->out_of_order_queue, skb); 4501 else 4502 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4503 4504 /* And clean segments covered by new one as whole. */ 4505 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4506 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4507 4508 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4509 break; 4510 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4511 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4512 end_seq); 4513 break; 4514 } 4515 __skb_unlink(skb1, &tp->out_of_order_queue); 4516 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4517 TCP_SKB_CB(skb1)->end_seq); 4518 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4519 tcp_drop(sk, skb1); 4520 } 4521 4522 add_sack: 4523 if (tcp_is_sack(tp)) 4524 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4525 end: 4526 if (skb) { 4527 tcp_grow_window(sk, skb); 4528 skb_set_owner_r(skb, sk); 4529 } 4530 } 4531 4532 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4533 bool *fragstolen) 4534 { 4535 int eaten; 4536 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4537 4538 __skb_pull(skb, hdrlen); 4539 eaten = (tail && 4540 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4541 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4542 if (!eaten) { 4543 __skb_queue_tail(&sk->sk_receive_queue, skb); 4544 skb_set_owner_r(skb, sk); 4545 } 4546 return eaten; 4547 } 4548 4549 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4550 { 4551 struct sk_buff *skb; 4552 int err = -ENOMEM; 4553 int data_len = 0; 4554 bool fragstolen; 4555 4556 if (size == 0) 4557 return 0; 4558 4559 if (size > PAGE_SIZE) { 4560 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4561 4562 data_len = npages << PAGE_SHIFT; 4563 size = data_len + (size & ~PAGE_MASK); 4564 } 4565 skb = alloc_skb_with_frags(size - data_len, data_len, 4566 PAGE_ALLOC_COSTLY_ORDER, 4567 &err, sk->sk_allocation); 4568 if (!skb) 4569 goto err; 4570 4571 skb_put(skb, size - data_len); 4572 skb->data_len = data_len; 4573 skb->len = size; 4574 4575 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4576 goto err_free; 4577 4578 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4579 if (err) 4580 goto err_free; 4581 4582 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4583 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4584 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4585 4586 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4587 WARN_ON_ONCE(fragstolen); /* should not happen */ 4588 __kfree_skb(skb); 4589 } 4590 return size; 4591 4592 err_free: 4593 kfree_skb(skb); 4594 err: 4595 return err; 4596 4597 } 4598 4599 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4600 { 4601 struct tcp_sock *tp = tcp_sk(sk); 4602 bool fragstolen = false; 4603 int eaten = -1; 4604 4605 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4606 __kfree_skb(skb); 4607 return; 4608 } 4609 skb_dst_drop(skb); 4610 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4611 4612 tcp_ecn_accept_cwr(tp, skb); 4613 4614 tp->rx_opt.dsack = 0; 4615 4616 /* Queue data for delivery to the user. 4617 * Packets in sequence go to the receive queue. 4618 * Out of sequence packets to the out_of_order_queue. 4619 */ 4620 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4621 if (tcp_receive_window(tp) == 0) 4622 goto out_of_window; 4623 4624 /* Ok. In sequence. In window. */ 4625 if (tp->ucopy.task == current && 4626 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4627 sock_owned_by_user(sk) && !tp->urg_data) { 4628 int chunk = min_t(unsigned int, skb->len, 4629 tp->ucopy.len); 4630 4631 __set_current_state(TASK_RUNNING); 4632 4633 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4634 tp->ucopy.len -= chunk; 4635 tp->copied_seq += chunk; 4636 eaten = (chunk == skb->len); 4637 tcp_rcv_space_adjust(sk); 4638 } 4639 } 4640 4641 if (eaten <= 0) { 4642 queue_and_out: 4643 if (eaten < 0) { 4644 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4645 sk_forced_mem_schedule(sk, skb->truesize); 4646 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4647 goto drop; 4648 } 4649 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4650 } 4651 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4652 if (skb->len) 4653 tcp_event_data_recv(sk, skb); 4654 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4655 tcp_fin(sk); 4656 4657 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4658 tcp_ofo_queue(sk); 4659 4660 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4661 * gap in queue is filled. 4662 */ 4663 if (skb_queue_empty(&tp->out_of_order_queue)) 4664 inet_csk(sk)->icsk_ack.pingpong = 0; 4665 } 4666 4667 if (tp->rx_opt.num_sacks) 4668 tcp_sack_remove(tp); 4669 4670 tcp_fast_path_check(sk); 4671 4672 if (eaten > 0) 4673 kfree_skb_partial(skb, fragstolen); 4674 if (!sock_flag(sk, SOCK_DEAD)) 4675 sk->sk_data_ready(sk); 4676 return; 4677 } 4678 4679 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4680 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4681 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4682 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4683 4684 out_of_window: 4685 tcp_enter_quickack_mode(sk); 4686 inet_csk_schedule_ack(sk); 4687 drop: 4688 tcp_drop(sk, skb); 4689 return; 4690 } 4691 4692 /* Out of window. F.e. zero window probe. */ 4693 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4694 goto out_of_window; 4695 4696 tcp_enter_quickack_mode(sk); 4697 4698 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4699 /* Partial packet, seq < rcv_next < end_seq */ 4700 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4701 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4702 TCP_SKB_CB(skb)->end_seq); 4703 4704 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4705 4706 /* If window is closed, drop tail of packet. But after 4707 * remembering D-SACK for its head made in previous line. 4708 */ 4709 if (!tcp_receive_window(tp)) 4710 goto out_of_window; 4711 goto queue_and_out; 4712 } 4713 4714 tcp_data_queue_ofo(sk, skb); 4715 } 4716 4717 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4718 struct sk_buff_head *list) 4719 { 4720 struct sk_buff *next = NULL; 4721 4722 if (!skb_queue_is_last(list, skb)) 4723 next = skb_queue_next(list, skb); 4724 4725 __skb_unlink(skb, list); 4726 __kfree_skb(skb); 4727 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4728 4729 return next; 4730 } 4731 4732 /* Collapse contiguous sequence of skbs head..tail with 4733 * sequence numbers start..end. 4734 * 4735 * If tail is NULL, this means until the end of the list. 4736 * 4737 * Segments with FIN/SYN are not collapsed (only because this 4738 * simplifies code) 4739 */ 4740 static void 4741 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4742 struct sk_buff *head, struct sk_buff *tail, 4743 u32 start, u32 end) 4744 { 4745 struct sk_buff *skb, *n; 4746 bool end_of_skbs; 4747 4748 /* First, check that queue is collapsible and find 4749 * the point where collapsing can be useful. */ 4750 skb = head; 4751 restart: 4752 end_of_skbs = true; 4753 skb_queue_walk_from_safe(list, skb, n) { 4754 if (skb == tail) 4755 break; 4756 /* No new bits? It is possible on ofo queue. */ 4757 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4758 skb = tcp_collapse_one(sk, skb, list); 4759 if (!skb) 4760 break; 4761 goto restart; 4762 } 4763 4764 /* The first skb to collapse is: 4765 * - not SYN/FIN and 4766 * - bloated or contains data before "start" or 4767 * overlaps to the next one. 4768 */ 4769 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4770 (tcp_win_from_space(skb->truesize) > skb->len || 4771 before(TCP_SKB_CB(skb)->seq, start))) { 4772 end_of_skbs = false; 4773 break; 4774 } 4775 4776 if (!skb_queue_is_last(list, skb)) { 4777 struct sk_buff *next = skb_queue_next(list, skb); 4778 if (next != tail && 4779 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4780 end_of_skbs = false; 4781 break; 4782 } 4783 } 4784 4785 /* Decided to skip this, advance start seq. */ 4786 start = TCP_SKB_CB(skb)->end_seq; 4787 } 4788 if (end_of_skbs || 4789 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4790 return; 4791 4792 while (before(start, end)) { 4793 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4794 struct sk_buff *nskb; 4795 4796 nskb = alloc_skb(copy, GFP_ATOMIC); 4797 if (!nskb) 4798 return; 4799 4800 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4801 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4802 __skb_queue_before(list, skb, nskb); 4803 skb_set_owner_r(nskb, sk); 4804 4805 /* Copy data, releasing collapsed skbs. */ 4806 while (copy > 0) { 4807 int offset = start - TCP_SKB_CB(skb)->seq; 4808 int size = TCP_SKB_CB(skb)->end_seq - start; 4809 4810 BUG_ON(offset < 0); 4811 if (size > 0) { 4812 size = min(copy, size); 4813 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4814 BUG(); 4815 TCP_SKB_CB(nskb)->end_seq += size; 4816 copy -= size; 4817 start += size; 4818 } 4819 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4820 skb = tcp_collapse_one(sk, skb, list); 4821 if (!skb || 4822 skb == tail || 4823 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4824 return; 4825 } 4826 } 4827 } 4828 } 4829 4830 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4831 * and tcp_collapse() them until all the queue is collapsed. 4832 */ 4833 static void tcp_collapse_ofo_queue(struct sock *sk) 4834 { 4835 struct tcp_sock *tp = tcp_sk(sk); 4836 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4837 struct sk_buff *head; 4838 u32 start, end; 4839 4840 if (!skb) 4841 return; 4842 4843 start = TCP_SKB_CB(skb)->seq; 4844 end = TCP_SKB_CB(skb)->end_seq; 4845 head = skb; 4846 4847 for (;;) { 4848 struct sk_buff *next = NULL; 4849 4850 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4851 next = skb_queue_next(&tp->out_of_order_queue, skb); 4852 skb = next; 4853 4854 /* Segment is terminated when we see gap or when 4855 * we are at the end of all the queue. */ 4856 if (!skb || 4857 after(TCP_SKB_CB(skb)->seq, end) || 4858 before(TCP_SKB_CB(skb)->end_seq, start)) { 4859 tcp_collapse(sk, &tp->out_of_order_queue, 4860 head, skb, start, end); 4861 head = skb; 4862 if (!skb) 4863 break; 4864 /* Start new segment */ 4865 start = TCP_SKB_CB(skb)->seq; 4866 end = TCP_SKB_CB(skb)->end_seq; 4867 } else { 4868 if (before(TCP_SKB_CB(skb)->seq, start)) 4869 start = TCP_SKB_CB(skb)->seq; 4870 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4871 end = TCP_SKB_CB(skb)->end_seq; 4872 } 4873 } 4874 } 4875 4876 /* 4877 * Purge the out-of-order queue. 4878 * Return true if queue was pruned. 4879 */ 4880 static bool tcp_prune_ofo_queue(struct sock *sk) 4881 { 4882 struct tcp_sock *tp = tcp_sk(sk); 4883 bool res = false; 4884 4885 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4886 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4887 __skb_queue_purge(&tp->out_of_order_queue); 4888 4889 /* Reset SACK state. A conforming SACK implementation will 4890 * do the same at a timeout based retransmit. When a connection 4891 * is in a sad state like this, we care only about integrity 4892 * of the connection not performance. 4893 */ 4894 if (tp->rx_opt.sack_ok) 4895 tcp_sack_reset(&tp->rx_opt); 4896 sk_mem_reclaim(sk); 4897 res = true; 4898 } 4899 return res; 4900 } 4901 4902 /* Reduce allocated memory if we can, trying to get 4903 * the socket within its memory limits again. 4904 * 4905 * Return less than zero if we should start dropping frames 4906 * until the socket owning process reads some of the data 4907 * to stabilize the situation. 4908 */ 4909 static int tcp_prune_queue(struct sock *sk) 4910 { 4911 struct tcp_sock *tp = tcp_sk(sk); 4912 4913 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4914 4915 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4916 4917 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4918 tcp_clamp_window(sk); 4919 else if (tcp_under_memory_pressure(sk)) 4920 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4921 4922 tcp_collapse_ofo_queue(sk); 4923 if (!skb_queue_empty(&sk->sk_receive_queue)) 4924 tcp_collapse(sk, &sk->sk_receive_queue, 4925 skb_peek(&sk->sk_receive_queue), 4926 NULL, 4927 tp->copied_seq, tp->rcv_nxt); 4928 sk_mem_reclaim(sk); 4929 4930 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4931 return 0; 4932 4933 /* Collapsing did not help, destructive actions follow. 4934 * This must not ever occur. */ 4935 4936 tcp_prune_ofo_queue(sk); 4937 4938 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4939 return 0; 4940 4941 /* If we are really being abused, tell the caller to silently 4942 * drop receive data on the floor. It will get retransmitted 4943 * and hopefully then we'll have sufficient space. 4944 */ 4945 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4946 4947 /* Massive buffer overcommit. */ 4948 tp->pred_flags = 0; 4949 return -1; 4950 } 4951 4952 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4953 { 4954 const struct tcp_sock *tp = tcp_sk(sk); 4955 4956 /* If the user specified a specific send buffer setting, do 4957 * not modify it. 4958 */ 4959 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4960 return false; 4961 4962 /* If we are under global TCP memory pressure, do not expand. */ 4963 if (tcp_under_memory_pressure(sk)) 4964 return false; 4965 4966 /* If we are under soft global TCP memory pressure, do not expand. */ 4967 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4968 return false; 4969 4970 /* If we filled the congestion window, do not expand. */ 4971 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4972 return false; 4973 4974 return true; 4975 } 4976 4977 /* When incoming ACK allowed to free some skb from write_queue, 4978 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4979 * on the exit from tcp input handler. 4980 * 4981 * PROBLEM: sndbuf expansion does not work well with largesend. 4982 */ 4983 static void tcp_new_space(struct sock *sk) 4984 { 4985 struct tcp_sock *tp = tcp_sk(sk); 4986 4987 if (tcp_should_expand_sndbuf(sk)) { 4988 tcp_sndbuf_expand(sk); 4989 tp->snd_cwnd_stamp = tcp_time_stamp; 4990 } 4991 4992 sk->sk_write_space(sk); 4993 } 4994 4995 static void tcp_check_space(struct sock *sk) 4996 { 4997 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4998 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4999 /* pairs with tcp_poll() */ 5000 smp_mb__after_atomic(); 5001 if (sk->sk_socket && 5002 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5003 tcp_new_space(sk); 5004 } 5005 } 5006 5007 static inline void tcp_data_snd_check(struct sock *sk) 5008 { 5009 tcp_push_pending_frames(sk); 5010 tcp_check_space(sk); 5011 } 5012 5013 /* 5014 * Check if sending an ack is needed. 5015 */ 5016 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5017 { 5018 struct tcp_sock *tp = tcp_sk(sk); 5019 5020 /* More than one full frame received... */ 5021 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5022 /* ... and right edge of window advances far enough. 5023 * (tcp_recvmsg() will send ACK otherwise). Or... 5024 */ 5025 __tcp_select_window(sk) >= tp->rcv_wnd) || 5026 /* We ACK each frame or... */ 5027 tcp_in_quickack_mode(sk) || 5028 /* We have out of order data. */ 5029 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 5030 /* Then ack it now */ 5031 tcp_send_ack(sk); 5032 } else { 5033 /* Else, send delayed ack. */ 5034 tcp_send_delayed_ack(sk); 5035 } 5036 } 5037 5038 static inline void tcp_ack_snd_check(struct sock *sk) 5039 { 5040 if (!inet_csk_ack_scheduled(sk)) { 5041 /* We sent a data segment already. */ 5042 return; 5043 } 5044 __tcp_ack_snd_check(sk, 1); 5045 } 5046 5047 /* 5048 * This routine is only called when we have urgent data 5049 * signaled. Its the 'slow' part of tcp_urg. It could be 5050 * moved inline now as tcp_urg is only called from one 5051 * place. We handle URGent data wrong. We have to - as 5052 * BSD still doesn't use the correction from RFC961. 5053 * For 1003.1g we should support a new option TCP_STDURG to permit 5054 * either form (or just set the sysctl tcp_stdurg). 5055 */ 5056 5057 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5058 { 5059 struct tcp_sock *tp = tcp_sk(sk); 5060 u32 ptr = ntohs(th->urg_ptr); 5061 5062 if (ptr && !sysctl_tcp_stdurg) 5063 ptr--; 5064 ptr += ntohl(th->seq); 5065 5066 /* Ignore urgent data that we've already seen and read. */ 5067 if (after(tp->copied_seq, ptr)) 5068 return; 5069 5070 /* Do not replay urg ptr. 5071 * 5072 * NOTE: interesting situation not covered by specs. 5073 * Misbehaving sender may send urg ptr, pointing to segment, 5074 * which we already have in ofo queue. We are not able to fetch 5075 * such data and will stay in TCP_URG_NOTYET until will be eaten 5076 * by recvmsg(). Seems, we are not obliged to handle such wicked 5077 * situations. But it is worth to think about possibility of some 5078 * DoSes using some hypothetical application level deadlock. 5079 */ 5080 if (before(ptr, tp->rcv_nxt)) 5081 return; 5082 5083 /* Do we already have a newer (or duplicate) urgent pointer? */ 5084 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5085 return; 5086 5087 /* Tell the world about our new urgent pointer. */ 5088 sk_send_sigurg(sk); 5089 5090 /* We may be adding urgent data when the last byte read was 5091 * urgent. To do this requires some care. We cannot just ignore 5092 * tp->copied_seq since we would read the last urgent byte again 5093 * as data, nor can we alter copied_seq until this data arrives 5094 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5095 * 5096 * NOTE. Double Dutch. Rendering to plain English: author of comment 5097 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5098 * and expect that both A and B disappear from stream. This is _wrong_. 5099 * Though this happens in BSD with high probability, this is occasional. 5100 * Any application relying on this is buggy. Note also, that fix "works" 5101 * only in this artificial test. Insert some normal data between A and B and we will 5102 * decline of BSD again. Verdict: it is better to remove to trap 5103 * buggy users. 5104 */ 5105 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5106 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5107 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5108 tp->copied_seq++; 5109 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5110 __skb_unlink(skb, &sk->sk_receive_queue); 5111 __kfree_skb(skb); 5112 } 5113 } 5114 5115 tp->urg_data = TCP_URG_NOTYET; 5116 tp->urg_seq = ptr; 5117 5118 /* Disable header prediction. */ 5119 tp->pred_flags = 0; 5120 } 5121 5122 /* This is the 'fast' part of urgent handling. */ 5123 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5124 { 5125 struct tcp_sock *tp = tcp_sk(sk); 5126 5127 /* Check if we get a new urgent pointer - normally not. */ 5128 if (th->urg) 5129 tcp_check_urg(sk, th); 5130 5131 /* Do we wait for any urgent data? - normally not... */ 5132 if (tp->urg_data == TCP_URG_NOTYET) { 5133 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5134 th->syn; 5135 5136 /* Is the urgent pointer pointing into this packet? */ 5137 if (ptr < skb->len) { 5138 u8 tmp; 5139 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5140 BUG(); 5141 tp->urg_data = TCP_URG_VALID | tmp; 5142 if (!sock_flag(sk, SOCK_DEAD)) 5143 sk->sk_data_ready(sk); 5144 } 5145 } 5146 } 5147 5148 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5149 { 5150 struct tcp_sock *tp = tcp_sk(sk); 5151 int chunk = skb->len - hlen; 5152 int err; 5153 5154 if (skb_csum_unnecessary(skb)) 5155 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5156 else 5157 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5158 5159 if (!err) { 5160 tp->ucopy.len -= chunk; 5161 tp->copied_seq += chunk; 5162 tcp_rcv_space_adjust(sk); 5163 } 5164 5165 return err; 5166 } 5167 5168 /* Does PAWS and seqno based validation of an incoming segment, flags will 5169 * play significant role here. 5170 */ 5171 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5172 const struct tcphdr *th, int syn_inerr) 5173 { 5174 struct tcp_sock *tp = tcp_sk(sk); 5175 bool rst_seq_match = false; 5176 5177 /* RFC1323: H1. Apply PAWS check first. */ 5178 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5179 tcp_paws_discard(sk, skb)) { 5180 if (!th->rst) { 5181 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5182 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5183 LINUX_MIB_TCPACKSKIPPEDPAWS, 5184 &tp->last_oow_ack_time)) 5185 tcp_send_dupack(sk, skb); 5186 goto discard; 5187 } 5188 /* Reset is accepted even if it did not pass PAWS. */ 5189 } 5190 5191 /* Step 1: check sequence number */ 5192 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5193 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5194 * (RST) segments are validated by checking their SEQ-fields." 5195 * And page 69: "If an incoming segment is not acceptable, 5196 * an acknowledgment should be sent in reply (unless the RST 5197 * bit is set, if so drop the segment and return)". 5198 */ 5199 if (!th->rst) { 5200 if (th->syn) 5201 goto syn_challenge; 5202 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5203 LINUX_MIB_TCPACKSKIPPEDSEQ, 5204 &tp->last_oow_ack_time)) 5205 tcp_send_dupack(sk, skb); 5206 } 5207 goto discard; 5208 } 5209 5210 /* Step 2: check RST bit */ 5211 if (th->rst) { 5212 /* RFC 5961 3.2 (extend to match against SACK too if available): 5213 * If seq num matches RCV.NXT or the right-most SACK block, 5214 * then 5215 * RESET the connection 5216 * else 5217 * Send a challenge ACK 5218 */ 5219 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5220 rst_seq_match = true; 5221 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5222 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5223 int max_sack = sp[0].end_seq; 5224 int this_sack; 5225 5226 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5227 ++this_sack) { 5228 max_sack = after(sp[this_sack].end_seq, 5229 max_sack) ? 5230 sp[this_sack].end_seq : max_sack; 5231 } 5232 5233 if (TCP_SKB_CB(skb)->seq == max_sack) 5234 rst_seq_match = true; 5235 } 5236 5237 if (rst_seq_match) 5238 tcp_reset(sk); 5239 else 5240 tcp_send_challenge_ack(sk, skb); 5241 goto discard; 5242 } 5243 5244 /* step 3: check security and precedence [ignored] */ 5245 5246 /* step 4: Check for a SYN 5247 * RFC 5961 4.2 : Send a challenge ack 5248 */ 5249 if (th->syn) { 5250 syn_challenge: 5251 if (syn_inerr) 5252 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5253 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5254 tcp_send_challenge_ack(sk, skb); 5255 goto discard; 5256 } 5257 5258 return true; 5259 5260 discard: 5261 tcp_drop(sk, skb); 5262 return false; 5263 } 5264 5265 /* 5266 * TCP receive function for the ESTABLISHED state. 5267 * 5268 * It is split into a fast path and a slow path. The fast path is 5269 * disabled when: 5270 * - A zero window was announced from us - zero window probing 5271 * is only handled properly in the slow path. 5272 * - Out of order segments arrived. 5273 * - Urgent data is expected. 5274 * - There is no buffer space left 5275 * - Unexpected TCP flags/window values/header lengths are received 5276 * (detected by checking the TCP header against pred_flags) 5277 * - Data is sent in both directions. Fast path only supports pure senders 5278 * or pure receivers (this means either the sequence number or the ack 5279 * value must stay constant) 5280 * - Unexpected TCP option. 5281 * 5282 * When these conditions are not satisfied it drops into a standard 5283 * receive procedure patterned after RFC793 to handle all cases. 5284 * The first three cases are guaranteed by proper pred_flags setting, 5285 * the rest is checked inline. Fast processing is turned on in 5286 * tcp_data_queue when everything is OK. 5287 */ 5288 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5289 const struct tcphdr *th, unsigned int len) 5290 { 5291 struct tcp_sock *tp = tcp_sk(sk); 5292 5293 if (unlikely(!sk->sk_rx_dst)) 5294 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5295 /* 5296 * Header prediction. 5297 * The code loosely follows the one in the famous 5298 * "30 instruction TCP receive" Van Jacobson mail. 5299 * 5300 * Van's trick is to deposit buffers into socket queue 5301 * on a device interrupt, to call tcp_recv function 5302 * on the receive process context and checksum and copy 5303 * the buffer to user space. smart... 5304 * 5305 * Our current scheme is not silly either but we take the 5306 * extra cost of the net_bh soft interrupt processing... 5307 * We do checksum and copy also but from device to kernel. 5308 */ 5309 5310 tp->rx_opt.saw_tstamp = 0; 5311 5312 /* pred_flags is 0xS?10 << 16 + snd_wnd 5313 * if header_prediction is to be made 5314 * 'S' will always be tp->tcp_header_len >> 2 5315 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5316 * turn it off (when there are holes in the receive 5317 * space for instance) 5318 * PSH flag is ignored. 5319 */ 5320 5321 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5322 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5323 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5324 int tcp_header_len = tp->tcp_header_len; 5325 5326 /* Timestamp header prediction: tcp_header_len 5327 * is automatically equal to th->doff*4 due to pred_flags 5328 * match. 5329 */ 5330 5331 /* Check timestamp */ 5332 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5333 /* No? Slow path! */ 5334 if (!tcp_parse_aligned_timestamp(tp, th)) 5335 goto slow_path; 5336 5337 /* If PAWS failed, check it more carefully in slow path */ 5338 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5339 goto slow_path; 5340 5341 /* DO NOT update ts_recent here, if checksum fails 5342 * and timestamp was corrupted part, it will result 5343 * in a hung connection since we will drop all 5344 * future packets due to the PAWS test. 5345 */ 5346 } 5347 5348 if (len <= tcp_header_len) { 5349 /* Bulk data transfer: sender */ 5350 if (len == tcp_header_len) { 5351 /* Predicted packet is in window by definition. 5352 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5353 * Hence, check seq<=rcv_wup reduces to: 5354 */ 5355 if (tcp_header_len == 5356 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5357 tp->rcv_nxt == tp->rcv_wup) 5358 tcp_store_ts_recent(tp); 5359 5360 /* We know that such packets are checksummed 5361 * on entry. 5362 */ 5363 tcp_ack(sk, skb, 0); 5364 __kfree_skb(skb); 5365 tcp_data_snd_check(sk); 5366 return; 5367 } else { /* Header too small */ 5368 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5369 goto discard; 5370 } 5371 } else { 5372 int eaten = 0; 5373 bool fragstolen = false; 5374 5375 if (tp->ucopy.task == current && 5376 tp->copied_seq == tp->rcv_nxt && 5377 len - tcp_header_len <= tp->ucopy.len && 5378 sock_owned_by_user(sk)) { 5379 __set_current_state(TASK_RUNNING); 5380 5381 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5382 /* Predicted packet is in window by definition. 5383 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5384 * Hence, check seq<=rcv_wup reduces to: 5385 */ 5386 if (tcp_header_len == 5387 (sizeof(struct tcphdr) + 5388 TCPOLEN_TSTAMP_ALIGNED) && 5389 tp->rcv_nxt == tp->rcv_wup) 5390 tcp_store_ts_recent(tp); 5391 5392 tcp_rcv_rtt_measure_ts(sk, skb); 5393 5394 __skb_pull(skb, tcp_header_len); 5395 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5396 NET_INC_STATS(sock_net(sk), 5397 LINUX_MIB_TCPHPHITSTOUSER); 5398 eaten = 1; 5399 } 5400 } 5401 if (!eaten) { 5402 if (tcp_checksum_complete(skb)) 5403 goto csum_error; 5404 5405 if ((int)skb->truesize > sk->sk_forward_alloc) 5406 goto step5; 5407 5408 /* Predicted packet is in window by definition. 5409 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5410 * Hence, check seq<=rcv_wup reduces to: 5411 */ 5412 if (tcp_header_len == 5413 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5414 tp->rcv_nxt == tp->rcv_wup) 5415 tcp_store_ts_recent(tp); 5416 5417 tcp_rcv_rtt_measure_ts(sk, skb); 5418 5419 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5420 5421 /* Bulk data transfer: receiver */ 5422 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5423 &fragstolen); 5424 } 5425 5426 tcp_event_data_recv(sk, skb); 5427 5428 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5429 /* Well, only one small jumplet in fast path... */ 5430 tcp_ack(sk, skb, FLAG_DATA); 5431 tcp_data_snd_check(sk); 5432 if (!inet_csk_ack_scheduled(sk)) 5433 goto no_ack; 5434 } 5435 5436 __tcp_ack_snd_check(sk, 0); 5437 no_ack: 5438 if (eaten) 5439 kfree_skb_partial(skb, fragstolen); 5440 sk->sk_data_ready(sk); 5441 return; 5442 } 5443 } 5444 5445 slow_path: 5446 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5447 goto csum_error; 5448 5449 if (!th->ack && !th->rst && !th->syn) 5450 goto discard; 5451 5452 /* 5453 * Standard slow path. 5454 */ 5455 5456 if (!tcp_validate_incoming(sk, skb, th, 1)) 5457 return; 5458 5459 step5: 5460 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5461 goto discard; 5462 5463 tcp_rcv_rtt_measure_ts(sk, skb); 5464 5465 /* Process urgent data. */ 5466 tcp_urg(sk, skb, th); 5467 5468 /* step 7: process the segment text */ 5469 tcp_data_queue(sk, skb); 5470 5471 tcp_data_snd_check(sk); 5472 tcp_ack_snd_check(sk); 5473 return; 5474 5475 csum_error: 5476 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5477 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5478 5479 discard: 5480 tcp_drop(sk, skb); 5481 } 5482 EXPORT_SYMBOL(tcp_rcv_established); 5483 5484 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5485 { 5486 struct tcp_sock *tp = tcp_sk(sk); 5487 struct inet_connection_sock *icsk = inet_csk(sk); 5488 5489 tcp_set_state(sk, TCP_ESTABLISHED); 5490 5491 if (skb) { 5492 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5493 security_inet_conn_established(sk, skb); 5494 } 5495 5496 /* Make sure socket is routed, for correct metrics. */ 5497 icsk->icsk_af_ops->rebuild_header(sk); 5498 5499 tcp_init_metrics(sk); 5500 5501 tcp_init_congestion_control(sk); 5502 5503 /* Prevent spurious tcp_cwnd_restart() on first data 5504 * packet. 5505 */ 5506 tp->lsndtime = tcp_time_stamp; 5507 5508 tcp_init_buffer_space(sk); 5509 5510 if (sock_flag(sk, SOCK_KEEPOPEN)) 5511 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5512 5513 if (!tp->rx_opt.snd_wscale) 5514 __tcp_fast_path_on(tp, tp->snd_wnd); 5515 else 5516 tp->pred_flags = 0; 5517 5518 if (!sock_flag(sk, SOCK_DEAD)) { 5519 sk->sk_state_change(sk); 5520 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5521 } 5522 } 5523 5524 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5525 struct tcp_fastopen_cookie *cookie) 5526 { 5527 struct tcp_sock *tp = tcp_sk(sk); 5528 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5529 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5530 bool syn_drop = false; 5531 5532 if (mss == tp->rx_opt.user_mss) { 5533 struct tcp_options_received opt; 5534 5535 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5536 tcp_clear_options(&opt); 5537 opt.user_mss = opt.mss_clamp = 0; 5538 tcp_parse_options(synack, &opt, 0, NULL); 5539 mss = opt.mss_clamp; 5540 } 5541 5542 if (!tp->syn_fastopen) { 5543 /* Ignore an unsolicited cookie */ 5544 cookie->len = -1; 5545 } else if (tp->total_retrans) { 5546 /* SYN timed out and the SYN-ACK neither has a cookie nor 5547 * acknowledges data. Presumably the remote received only 5548 * the retransmitted (regular) SYNs: either the original 5549 * SYN-data or the corresponding SYN-ACK was dropped. 5550 */ 5551 syn_drop = (cookie->len < 0 && data); 5552 } else if (cookie->len < 0 && !tp->syn_data) { 5553 /* We requested a cookie but didn't get it. If we did not use 5554 * the (old) exp opt format then try so next time (try_exp=1). 5555 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5556 */ 5557 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5558 } 5559 5560 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5561 5562 if (data) { /* Retransmit unacked data in SYN */ 5563 tcp_for_write_queue_from(data, sk) { 5564 if (data == tcp_send_head(sk) || 5565 __tcp_retransmit_skb(sk, data, 1)) 5566 break; 5567 } 5568 tcp_rearm_rto(sk); 5569 NET_INC_STATS(sock_net(sk), 5570 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5571 return true; 5572 } 5573 tp->syn_data_acked = tp->syn_data; 5574 if (tp->syn_data_acked) 5575 NET_INC_STATS(sock_net(sk), 5576 LINUX_MIB_TCPFASTOPENACTIVE); 5577 5578 tcp_fastopen_add_skb(sk, synack); 5579 5580 return false; 5581 } 5582 5583 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5584 const struct tcphdr *th) 5585 { 5586 struct inet_connection_sock *icsk = inet_csk(sk); 5587 struct tcp_sock *tp = tcp_sk(sk); 5588 struct tcp_fastopen_cookie foc = { .len = -1 }; 5589 int saved_clamp = tp->rx_opt.mss_clamp; 5590 5591 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5592 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5593 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5594 5595 if (th->ack) { 5596 /* rfc793: 5597 * "If the state is SYN-SENT then 5598 * first check the ACK bit 5599 * If the ACK bit is set 5600 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5601 * a reset (unless the RST bit is set, if so drop 5602 * the segment and return)" 5603 */ 5604 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5605 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5606 goto reset_and_undo; 5607 5608 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5609 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5610 tcp_time_stamp)) { 5611 NET_INC_STATS(sock_net(sk), 5612 LINUX_MIB_PAWSACTIVEREJECTED); 5613 goto reset_and_undo; 5614 } 5615 5616 /* Now ACK is acceptable. 5617 * 5618 * "If the RST bit is set 5619 * If the ACK was acceptable then signal the user "error: 5620 * connection reset", drop the segment, enter CLOSED state, 5621 * delete TCB, and return." 5622 */ 5623 5624 if (th->rst) { 5625 tcp_reset(sk); 5626 goto discard; 5627 } 5628 5629 /* rfc793: 5630 * "fifth, if neither of the SYN or RST bits is set then 5631 * drop the segment and return." 5632 * 5633 * See note below! 5634 * --ANK(990513) 5635 */ 5636 if (!th->syn) 5637 goto discard_and_undo; 5638 5639 /* rfc793: 5640 * "If the SYN bit is on ... 5641 * are acceptable then ... 5642 * (our SYN has been ACKed), change the connection 5643 * state to ESTABLISHED..." 5644 */ 5645 5646 tcp_ecn_rcv_synack(tp, th); 5647 5648 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5649 tcp_ack(sk, skb, FLAG_SLOWPATH); 5650 5651 /* Ok.. it's good. Set up sequence numbers and 5652 * move to established. 5653 */ 5654 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5655 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5656 5657 /* RFC1323: The window in SYN & SYN/ACK segments is 5658 * never scaled. 5659 */ 5660 tp->snd_wnd = ntohs(th->window); 5661 5662 if (!tp->rx_opt.wscale_ok) { 5663 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5664 tp->window_clamp = min(tp->window_clamp, 65535U); 5665 } 5666 5667 if (tp->rx_opt.saw_tstamp) { 5668 tp->rx_opt.tstamp_ok = 1; 5669 tp->tcp_header_len = 5670 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5671 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5672 tcp_store_ts_recent(tp); 5673 } else { 5674 tp->tcp_header_len = sizeof(struct tcphdr); 5675 } 5676 5677 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5678 tcp_enable_fack(tp); 5679 5680 tcp_mtup_init(sk); 5681 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5682 tcp_initialize_rcv_mss(sk); 5683 5684 /* Remember, tcp_poll() does not lock socket! 5685 * Change state from SYN-SENT only after copied_seq 5686 * is initialized. */ 5687 tp->copied_seq = tp->rcv_nxt; 5688 5689 smp_mb(); 5690 5691 tcp_finish_connect(sk, skb); 5692 5693 if ((tp->syn_fastopen || tp->syn_data) && 5694 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5695 return -1; 5696 5697 if (sk->sk_write_pending || 5698 icsk->icsk_accept_queue.rskq_defer_accept || 5699 icsk->icsk_ack.pingpong) { 5700 /* Save one ACK. Data will be ready after 5701 * several ticks, if write_pending is set. 5702 * 5703 * It may be deleted, but with this feature tcpdumps 5704 * look so _wonderfully_ clever, that I was not able 5705 * to stand against the temptation 8) --ANK 5706 */ 5707 inet_csk_schedule_ack(sk); 5708 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5709 tcp_enter_quickack_mode(sk); 5710 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5711 TCP_DELACK_MAX, TCP_RTO_MAX); 5712 5713 discard: 5714 tcp_drop(sk, skb); 5715 return 0; 5716 } else { 5717 tcp_send_ack(sk); 5718 } 5719 return -1; 5720 } 5721 5722 /* No ACK in the segment */ 5723 5724 if (th->rst) { 5725 /* rfc793: 5726 * "If the RST bit is set 5727 * 5728 * Otherwise (no ACK) drop the segment and return." 5729 */ 5730 5731 goto discard_and_undo; 5732 } 5733 5734 /* PAWS check. */ 5735 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5736 tcp_paws_reject(&tp->rx_opt, 0)) 5737 goto discard_and_undo; 5738 5739 if (th->syn) { 5740 /* We see SYN without ACK. It is attempt of 5741 * simultaneous connect with crossed SYNs. 5742 * Particularly, it can be connect to self. 5743 */ 5744 tcp_set_state(sk, TCP_SYN_RECV); 5745 5746 if (tp->rx_opt.saw_tstamp) { 5747 tp->rx_opt.tstamp_ok = 1; 5748 tcp_store_ts_recent(tp); 5749 tp->tcp_header_len = 5750 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5751 } else { 5752 tp->tcp_header_len = sizeof(struct tcphdr); 5753 } 5754 5755 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5756 tp->copied_seq = tp->rcv_nxt; 5757 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5758 5759 /* RFC1323: The window in SYN & SYN/ACK segments is 5760 * never scaled. 5761 */ 5762 tp->snd_wnd = ntohs(th->window); 5763 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5764 tp->max_window = tp->snd_wnd; 5765 5766 tcp_ecn_rcv_syn(tp, th); 5767 5768 tcp_mtup_init(sk); 5769 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5770 tcp_initialize_rcv_mss(sk); 5771 5772 tcp_send_synack(sk); 5773 #if 0 5774 /* Note, we could accept data and URG from this segment. 5775 * There are no obstacles to make this (except that we must 5776 * either change tcp_recvmsg() to prevent it from returning data 5777 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5778 * 5779 * However, if we ignore data in ACKless segments sometimes, 5780 * we have no reasons to accept it sometimes. 5781 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5782 * is not flawless. So, discard packet for sanity. 5783 * Uncomment this return to process the data. 5784 */ 5785 return -1; 5786 #else 5787 goto discard; 5788 #endif 5789 } 5790 /* "fifth, if neither of the SYN or RST bits is set then 5791 * drop the segment and return." 5792 */ 5793 5794 discard_and_undo: 5795 tcp_clear_options(&tp->rx_opt); 5796 tp->rx_opt.mss_clamp = saved_clamp; 5797 goto discard; 5798 5799 reset_and_undo: 5800 tcp_clear_options(&tp->rx_opt); 5801 tp->rx_opt.mss_clamp = saved_clamp; 5802 return 1; 5803 } 5804 5805 /* 5806 * This function implements the receiving procedure of RFC 793 for 5807 * all states except ESTABLISHED and TIME_WAIT. 5808 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5809 * address independent. 5810 */ 5811 5812 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5813 { 5814 struct tcp_sock *tp = tcp_sk(sk); 5815 struct inet_connection_sock *icsk = inet_csk(sk); 5816 const struct tcphdr *th = tcp_hdr(skb); 5817 struct request_sock *req; 5818 int queued = 0; 5819 bool acceptable; 5820 5821 switch (sk->sk_state) { 5822 case TCP_CLOSE: 5823 goto discard; 5824 5825 case TCP_LISTEN: 5826 if (th->ack) 5827 return 1; 5828 5829 if (th->rst) 5830 goto discard; 5831 5832 if (th->syn) { 5833 if (th->fin) 5834 goto discard; 5835 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5836 return 1; 5837 5838 consume_skb(skb); 5839 return 0; 5840 } 5841 goto discard; 5842 5843 case TCP_SYN_SENT: 5844 tp->rx_opt.saw_tstamp = 0; 5845 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5846 if (queued >= 0) 5847 return queued; 5848 5849 /* Do step6 onward by hand. */ 5850 tcp_urg(sk, skb, th); 5851 __kfree_skb(skb); 5852 tcp_data_snd_check(sk); 5853 return 0; 5854 } 5855 5856 tp->rx_opt.saw_tstamp = 0; 5857 req = tp->fastopen_rsk; 5858 if (req) { 5859 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5860 sk->sk_state != TCP_FIN_WAIT1); 5861 5862 if (!tcp_check_req(sk, skb, req, true)) 5863 goto discard; 5864 } 5865 5866 if (!th->ack && !th->rst && !th->syn) 5867 goto discard; 5868 5869 if (!tcp_validate_incoming(sk, skb, th, 0)) 5870 return 0; 5871 5872 /* step 5: check the ACK field */ 5873 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5874 FLAG_UPDATE_TS_RECENT) > 0; 5875 5876 switch (sk->sk_state) { 5877 case TCP_SYN_RECV: 5878 if (!acceptable) 5879 return 1; 5880 5881 if (!tp->srtt_us) 5882 tcp_synack_rtt_meas(sk, req); 5883 5884 /* Once we leave TCP_SYN_RECV, we no longer need req 5885 * so release it. 5886 */ 5887 if (req) { 5888 tp->total_retrans = req->num_retrans; 5889 reqsk_fastopen_remove(sk, req, false); 5890 } else { 5891 /* Make sure socket is routed, for correct metrics. */ 5892 icsk->icsk_af_ops->rebuild_header(sk); 5893 tcp_init_congestion_control(sk); 5894 5895 tcp_mtup_init(sk); 5896 tp->copied_seq = tp->rcv_nxt; 5897 tcp_init_buffer_space(sk); 5898 } 5899 smp_mb(); 5900 tcp_set_state(sk, TCP_ESTABLISHED); 5901 sk->sk_state_change(sk); 5902 5903 /* Note, that this wakeup is only for marginal crossed SYN case. 5904 * Passively open sockets are not waked up, because 5905 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5906 */ 5907 if (sk->sk_socket) 5908 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5909 5910 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5911 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5912 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5913 5914 if (tp->rx_opt.tstamp_ok) 5915 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5916 5917 if (req) { 5918 /* Re-arm the timer because data may have been sent out. 5919 * This is similar to the regular data transmission case 5920 * when new data has just been ack'ed. 5921 * 5922 * (TFO) - we could try to be more aggressive and 5923 * retransmitting any data sooner based on when they 5924 * are sent out. 5925 */ 5926 tcp_rearm_rto(sk); 5927 } else 5928 tcp_init_metrics(sk); 5929 5930 tcp_update_pacing_rate(sk); 5931 5932 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5933 tp->lsndtime = tcp_time_stamp; 5934 5935 tcp_initialize_rcv_mss(sk); 5936 tcp_fast_path_on(tp); 5937 break; 5938 5939 case TCP_FIN_WAIT1: { 5940 struct dst_entry *dst; 5941 int tmo; 5942 5943 /* If we enter the TCP_FIN_WAIT1 state and we are a 5944 * Fast Open socket and this is the first acceptable 5945 * ACK we have received, this would have acknowledged 5946 * our SYNACK so stop the SYNACK timer. 5947 */ 5948 if (req) { 5949 /* Return RST if ack_seq is invalid. 5950 * Note that RFC793 only says to generate a 5951 * DUPACK for it but for TCP Fast Open it seems 5952 * better to treat this case like TCP_SYN_RECV 5953 * above. 5954 */ 5955 if (!acceptable) 5956 return 1; 5957 /* We no longer need the request sock. */ 5958 reqsk_fastopen_remove(sk, req, false); 5959 tcp_rearm_rto(sk); 5960 } 5961 if (tp->snd_una != tp->write_seq) 5962 break; 5963 5964 tcp_set_state(sk, TCP_FIN_WAIT2); 5965 sk->sk_shutdown |= SEND_SHUTDOWN; 5966 5967 dst = __sk_dst_get(sk); 5968 if (dst) 5969 dst_confirm(dst); 5970 5971 if (!sock_flag(sk, SOCK_DEAD)) { 5972 /* Wake up lingering close() */ 5973 sk->sk_state_change(sk); 5974 break; 5975 } 5976 5977 if (tp->linger2 < 0 || 5978 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5979 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5980 tcp_done(sk); 5981 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5982 return 1; 5983 } 5984 5985 tmo = tcp_fin_time(sk); 5986 if (tmo > TCP_TIMEWAIT_LEN) { 5987 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5988 } else if (th->fin || sock_owned_by_user(sk)) { 5989 /* Bad case. We could lose such FIN otherwise. 5990 * It is not a big problem, but it looks confusing 5991 * and not so rare event. We still can lose it now, 5992 * if it spins in bh_lock_sock(), but it is really 5993 * marginal case. 5994 */ 5995 inet_csk_reset_keepalive_timer(sk, tmo); 5996 } else { 5997 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5998 goto discard; 5999 } 6000 break; 6001 } 6002 6003 case TCP_CLOSING: 6004 if (tp->snd_una == tp->write_seq) { 6005 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6006 goto discard; 6007 } 6008 break; 6009 6010 case TCP_LAST_ACK: 6011 if (tp->snd_una == tp->write_seq) { 6012 tcp_update_metrics(sk); 6013 tcp_done(sk); 6014 goto discard; 6015 } 6016 break; 6017 } 6018 6019 /* step 6: check the URG bit */ 6020 tcp_urg(sk, skb, th); 6021 6022 /* step 7: process the segment text */ 6023 switch (sk->sk_state) { 6024 case TCP_CLOSE_WAIT: 6025 case TCP_CLOSING: 6026 case TCP_LAST_ACK: 6027 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6028 break; 6029 case TCP_FIN_WAIT1: 6030 case TCP_FIN_WAIT2: 6031 /* RFC 793 says to queue data in these states, 6032 * RFC 1122 says we MUST send a reset. 6033 * BSD 4.4 also does reset. 6034 */ 6035 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6036 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6037 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6038 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6039 tcp_reset(sk); 6040 return 1; 6041 } 6042 } 6043 /* Fall through */ 6044 case TCP_ESTABLISHED: 6045 tcp_data_queue(sk, skb); 6046 queued = 1; 6047 break; 6048 } 6049 6050 /* tcp_data could move socket to TIME-WAIT */ 6051 if (sk->sk_state != TCP_CLOSE) { 6052 tcp_data_snd_check(sk); 6053 tcp_ack_snd_check(sk); 6054 } 6055 6056 if (!queued) { 6057 discard: 6058 tcp_drop(sk, skb); 6059 } 6060 return 0; 6061 } 6062 EXPORT_SYMBOL(tcp_rcv_state_process); 6063 6064 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6065 { 6066 struct inet_request_sock *ireq = inet_rsk(req); 6067 6068 if (family == AF_INET) 6069 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6070 &ireq->ir_rmt_addr, port); 6071 #if IS_ENABLED(CONFIG_IPV6) 6072 else if (family == AF_INET6) 6073 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6074 &ireq->ir_v6_rmt_addr, port); 6075 #endif 6076 } 6077 6078 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6079 * 6080 * If we receive a SYN packet with these bits set, it means a 6081 * network is playing bad games with TOS bits. In order to 6082 * avoid possible false congestion notifications, we disable 6083 * TCP ECN negotiation. 6084 * 6085 * Exception: tcp_ca wants ECN. This is required for DCTCP 6086 * congestion control: Linux DCTCP asserts ECT on all packets, 6087 * including SYN, which is most optimal solution; however, 6088 * others, such as FreeBSD do not. 6089 */ 6090 static void tcp_ecn_create_request(struct request_sock *req, 6091 const struct sk_buff *skb, 6092 const struct sock *listen_sk, 6093 const struct dst_entry *dst) 6094 { 6095 const struct tcphdr *th = tcp_hdr(skb); 6096 const struct net *net = sock_net(listen_sk); 6097 bool th_ecn = th->ece && th->cwr; 6098 bool ect, ecn_ok; 6099 u32 ecn_ok_dst; 6100 6101 if (!th_ecn) 6102 return; 6103 6104 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6105 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6106 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6107 6108 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6109 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6110 inet_rsk(req)->ecn_ok = 1; 6111 } 6112 6113 static void tcp_openreq_init(struct request_sock *req, 6114 const struct tcp_options_received *rx_opt, 6115 struct sk_buff *skb, const struct sock *sk) 6116 { 6117 struct inet_request_sock *ireq = inet_rsk(req); 6118 6119 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6120 req->cookie_ts = 0; 6121 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6122 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6123 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6124 tcp_rsk(req)->last_oow_ack_time = 0; 6125 req->mss = rx_opt->mss_clamp; 6126 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6127 ireq->tstamp_ok = rx_opt->tstamp_ok; 6128 ireq->sack_ok = rx_opt->sack_ok; 6129 ireq->snd_wscale = rx_opt->snd_wscale; 6130 ireq->wscale_ok = rx_opt->wscale_ok; 6131 ireq->acked = 0; 6132 ireq->ecn_ok = 0; 6133 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6134 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6135 ireq->ir_mark = inet_request_mark(sk, skb); 6136 } 6137 6138 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6139 struct sock *sk_listener, 6140 bool attach_listener) 6141 { 6142 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6143 attach_listener); 6144 6145 if (req) { 6146 struct inet_request_sock *ireq = inet_rsk(req); 6147 6148 kmemcheck_annotate_bitfield(ireq, flags); 6149 ireq->opt = NULL; 6150 #if IS_ENABLED(CONFIG_IPV6) 6151 ireq->pktopts = NULL; 6152 #endif 6153 atomic64_set(&ireq->ir_cookie, 0); 6154 ireq->ireq_state = TCP_NEW_SYN_RECV; 6155 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6156 ireq->ireq_family = sk_listener->sk_family; 6157 } 6158 6159 return req; 6160 } 6161 EXPORT_SYMBOL(inet_reqsk_alloc); 6162 6163 /* 6164 * Return true if a syncookie should be sent 6165 */ 6166 static bool tcp_syn_flood_action(const struct sock *sk, 6167 const struct sk_buff *skb, 6168 const char *proto) 6169 { 6170 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6171 const char *msg = "Dropping request"; 6172 bool want_cookie = false; 6173 struct net *net = sock_net(sk); 6174 6175 #ifdef CONFIG_SYN_COOKIES 6176 if (net->ipv4.sysctl_tcp_syncookies) { 6177 msg = "Sending cookies"; 6178 want_cookie = true; 6179 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6180 } else 6181 #endif 6182 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6183 6184 if (!queue->synflood_warned && 6185 net->ipv4.sysctl_tcp_syncookies != 2 && 6186 xchg(&queue->synflood_warned, 1) == 0) 6187 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6188 proto, ntohs(tcp_hdr(skb)->dest), msg); 6189 6190 return want_cookie; 6191 } 6192 6193 static void tcp_reqsk_record_syn(const struct sock *sk, 6194 struct request_sock *req, 6195 const struct sk_buff *skb) 6196 { 6197 if (tcp_sk(sk)->save_syn) { 6198 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6199 u32 *copy; 6200 6201 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6202 if (copy) { 6203 copy[0] = len; 6204 memcpy(©[1], skb_network_header(skb), len); 6205 req->saved_syn = copy; 6206 } 6207 } 6208 } 6209 6210 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6211 const struct tcp_request_sock_ops *af_ops, 6212 struct sock *sk, struct sk_buff *skb) 6213 { 6214 struct tcp_fastopen_cookie foc = { .len = -1 }; 6215 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6216 struct tcp_options_received tmp_opt; 6217 struct tcp_sock *tp = tcp_sk(sk); 6218 struct net *net = sock_net(sk); 6219 struct sock *fastopen_sk = NULL; 6220 struct dst_entry *dst = NULL; 6221 struct request_sock *req; 6222 bool want_cookie = false; 6223 struct flowi fl; 6224 6225 /* TW buckets are converted to open requests without 6226 * limitations, they conserve resources and peer is 6227 * evidently real one. 6228 */ 6229 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6230 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6231 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6232 if (!want_cookie) 6233 goto drop; 6234 } 6235 6236 6237 /* Accept backlog is full. If we have already queued enough 6238 * of warm entries in syn queue, drop request. It is better than 6239 * clogging syn queue with openreqs with exponentially increasing 6240 * timeout. 6241 */ 6242 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 6243 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6244 goto drop; 6245 } 6246 6247 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6248 if (!req) 6249 goto drop; 6250 6251 tcp_rsk(req)->af_specific = af_ops; 6252 6253 tcp_clear_options(&tmp_opt); 6254 tmp_opt.mss_clamp = af_ops->mss_clamp; 6255 tmp_opt.user_mss = tp->rx_opt.user_mss; 6256 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6257 6258 if (want_cookie && !tmp_opt.saw_tstamp) 6259 tcp_clear_options(&tmp_opt); 6260 6261 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6262 tcp_openreq_init(req, &tmp_opt, skb, sk); 6263 6264 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6265 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6266 6267 af_ops->init_req(req, sk, skb); 6268 6269 if (security_inet_conn_request(sk, skb, req)) 6270 goto drop_and_free; 6271 6272 if (!want_cookie && !isn) { 6273 /* VJ's idea. We save last timestamp seen 6274 * from the destination in peer table, when entering 6275 * state TIME-WAIT, and check against it before 6276 * accepting new connection request. 6277 * 6278 * If "isn" is not zero, this request hit alive 6279 * timewait bucket, so that all the necessary checks 6280 * are made in the function processing timewait state. 6281 */ 6282 if (tcp_death_row.sysctl_tw_recycle) { 6283 bool strict; 6284 6285 dst = af_ops->route_req(sk, &fl, req, &strict); 6286 6287 if (dst && strict && 6288 !tcp_peer_is_proven(req, dst, true, 6289 tmp_opt.saw_tstamp)) { 6290 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6291 goto drop_and_release; 6292 } 6293 } 6294 /* Kill the following clause, if you dislike this way. */ 6295 else if (!net->ipv4.sysctl_tcp_syncookies && 6296 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6297 (sysctl_max_syn_backlog >> 2)) && 6298 !tcp_peer_is_proven(req, dst, false, 6299 tmp_opt.saw_tstamp)) { 6300 /* Without syncookies last quarter of 6301 * backlog is filled with destinations, 6302 * proven to be alive. 6303 * It means that we continue to communicate 6304 * to destinations, already remembered 6305 * to the moment of synflood. 6306 */ 6307 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6308 rsk_ops->family); 6309 goto drop_and_release; 6310 } 6311 6312 isn = af_ops->init_seq(skb); 6313 } 6314 if (!dst) { 6315 dst = af_ops->route_req(sk, &fl, req, NULL); 6316 if (!dst) 6317 goto drop_and_free; 6318 } 6319 6320 tcp_ecn_create_request(req, skb, sk, dst); 6321 6322 if (want_cookie) { 6323 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6324 req->cookie_ts = tmp_opt.tstamp_ok; 6325 if (!tmp_opt.tstamp_ok) 6326 inet_rsk(req)->ecn_ok = 0; 6327 } 6328 6329 tcp_rsk(req)->snt_isn = isn; 6330 tcp_rsk(req)->txhash = net_tx_rndhash(); 6331 tcp_openreq_init_rwin(req, sk, dst); 6332 if (!want_cookie) { 6333 tcp_reqsk_record_syn(sk, req, skb); 6334 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6335 } 6336 if (fastopen_sk) { 6337 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6338 &foc, TCP_SYNACK_FASTOPEN); 6339 /* Add the child socket directly into the accept queue */ 6340 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6341 sk->sk_data_ready(sk); 6342 bh_unlock_sock(fastopen_sk); 6343 sock_put(fastopen_sk); 6344 } else { 6345 tcp_rsk(req)->tfo_listener = false; 6346 if (!want_cookie) 6347 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6348 af_ops->send_synack(sk, dst, &fl, req, &foc, 6349 !want_cookie ? TCP_SYNACK_NORMAL : 6350 TCP_SYNACK_COOKIE); 6351 if (want_cookie) { 6352 reqsk_free(req); 6353 return 0; 6354 } 6355 } 6356 reqsk_put(req); 6357 return 0; 6358 6359 drop_and_release: 6360 dst_release(dst); 6361 drop_and_free: 6362 reqsk_free(req); 6363 drop: 6364 tcp_listendrop(sk); 6365 return 0; 6366 } 6367 EXPORT_SYMBOL(tcp_conn_request); 6368