1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/module.h> 66 #include <linux/sysctl.h> 67 #include <linux/kernel.h> 68 #include <net/dst.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly = 2; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly = 2; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 109 110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 115 116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 118 119 /* Adapt the MSS value used to make delayed ack decision to the 120 * real world. 121 */ 122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 123 { 124 struct inet_connection_sock *icsk = inet_csk(sk); 125 const unsigned int lss = icsk->icsk_ack.last_seg_size; 126 unsigned int len; 127 128 icsk->icsk_ack.last_seg_size = 0; 129 130 /* skb->len may jitter because of SACKs, even if peer 131 * sends good full-sized frames. 132 */ 133 len = skb_shinfo(skb)->gso_size ? : skb->len; 134 if (len >= icsk->icsk_ack.rcv_mss) { 135 icsk->icsk_ack.rcv_mss = len; 136 } else { 137 /* Otherwise, we make more careful check taking into account, 138 * that SACKs block is variable. 139 * 140 * "len" is invariant segment length, including TCP header. 141 */ 142 len += skb->data - skb_transport_header(skb); 143 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 144 /* If PSH is not set, packet should be 145 * full sized, provided peer TCP is not badly broken. 146 * This observation (if it is correct 8)) allows 147 * to handle super-low mtu links fairly. 148 */ 149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 151 /* Subtract also invariant (if peer is RFC compliant), 152 * tcp header plus fixed timestamp option length. 153 * Resulting "len" is MSS free of SACK jitter. 154 */ 155 len -= tcp_sk(sk)->tcp_header_len; 156 icsk->icsk_ack.last_seg_size = len; 157 if (len == lss) { 158 icsk->icsk_ack.rcv_mss = len; 159 return; 160 } 161 } 162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 165 } 166 } 167 168 static void tcp_incr_quickack(struct sock *sk) 169 { 170 struct inet_connection_sock *icsk = inet_csk(sk); 171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 172 173 if (quickacks == 0) 174 quickacks = 2; 175 if (quickacks > icsk->icsk_ack.quick) 176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 177 } 178 179 void tcp_enter_quickack_mode(struct sock *sk) 180 { 181 struct inet_connection_sock *icsk = inet_csk(sk); 182 tcp_incr_quickack(sk); 183 icsk->icsk_ack.pingpong = 0; 184 icsk->icsk_ack.ato = TCP_ATO_MIN; 185 } 186 187 /* Send ACKs quickly, if "quick" count is not exhausted 188 * and the session is not interactive. 189 */ 190 191 static inline int tcp_in_quickack_mode(const struct sock *sk) 192 { 193 const struct inet_connection_sock *icsk = inet_csk(sk); 194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 195 } 196 197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 198 { 199 if (tp->ecn_flags & TCP_ECN_OK) 200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 201 } 202 203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 204 { 205 if (tcp_hdr(skb)->cwr) 206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 207 } 208 209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 210 { 211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 212 } 213 214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 215 { 216 if (tp->ecn_flags & TCP_ECN_OK) { 217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 219 /* Funny extension: if ECT is not set on a segment, 220 * it is surely retransmit. It is not in ECN RFC, 221 * but Linux follows this rule. */ 222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 223 tcp_enter_quickack_mode((struct sock *)tp); 224 } 225 } 226 227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 228 { 229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 230 tp->ecn_flags &= ~TCP_ECN_OK; 231 } 232 233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 234 { 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 236 tp->ecn_flags &= ~TCP_ECN_OK; 237 } 238 239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 240 { 241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 242 return 1; 243 return 0; 244 } 245 246 /* Buffer size and advertised window tuning. 247 * 248 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 249 */ 250 251 static void tcp_fixup_sndbuf(struct sock *sk) 252 { 253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 254 sizeof(struct sk_buff); 255 256 if (sk->sk_sndbuf < 3 * sndmem) 257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 258 } 259 260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 261 * 262 * All tcp_full_space() is split to two parts: "network" buffer, allocated 263 * forward and advertised in receiver window (tp->rcv_wnd) and 264 * "application buffer", required to isolate scheduling/application 265 * latencies from network. 266 * window_clamp is maximal advertised window. It can be less than 267 * tcp_full_space(), in this case tcp_full_space() - window_clamp 268 * is reserved for "application" buffer. The less window_clamp is 269 * the smoother our behaviour from viewpoint of network, but the lower 270 * throughput and the higher sensitivity of the connection to losses. 8) 271 * 272 * rcv_ssthresh is more strict window_clamp used at "slow start" 273 * phase to predict further behaviour of this connection. 274 * It is used for two goals: 275 * - to enforce header prediction at sender, even when application 276 * requires some significant "application buffer". It is check #1. 277 * - to prevent pruning of receive queue because of misprediction 278 * of receiver window. Check #2. 279 * 280 * The scheme does not work when sender sends good segments opening 281 * window and then starts to feed us spaghetti. But it should work 282 * in common situations. Otherwise, we have to rely on queue collapsing. 283 */ 284 285 /* Slow part of check#2. */ 286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 287 { 288 struct tcp_sock *tp = tcp_sk(sk); 289 /* Optimize this! */ 290 int truesize = tcp_win_from_space(skb->truesize) >> 1; 291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 292 293 while (tp->rcv_ssthresh <= window) { 294 if (truesize <= skb->len) 295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 296 297 truesize >>= 1; 298 window >>= 1; 299 } 300 return 0; 301 } 302 303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 304 { 305 struct tcp_sock *tp = tcp_sk(sk); 306 307 /* Check #1 */ 308 if (tp->rcv_ssthresh < tp->window_clamp && 309 (int)tp->rcv_ssthresh < tcp_space(sk) && 310 !tcp_memory_pressure) { 311 int incr; 312 313 /* Check #2. Increase window, if skb with such overhead 314 * will fit to rcvbuf in future. 315 */ 316 if (tcp_win_from_space(skb->truesize) <= skb->len) 317 incr = 2 * tp->advmss; 318 else 319 incr = __tcp_grow_window(sk, skb); 320 321 if (incr) { 322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 323 tp->window_clamp); 324 inet_csk(sk)->icsk_ack.quick |= 1; 325 } 326 } 327 } 328 329 /* 3. Tuning rcvbuf, when connection enters established state. */ 330 331 static void tcp_fixup_rcvbuf(struct sock *sk) 332 { 333 struct tcp_sock *tp = tcp_sk(sk); 334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 335 336 /* Try to select rcvbuf so that 4 mss-sized segments 337 * will fit to window and corresponding skbs will fit to our rcvbuf. 338 * (was 3; 4 is minimum to allow fast retransmit to work.) 339 */ 340 while (tcp_win_from_space(rcvmem) < tp->advmss) 341 rcvmem += 128; 342 if (sk->sk_rcvbuf < 4 * rcvmem) 343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 344 } 345 346 /* 4. Try to fixup all. It is made immediately after connection enters 347 * established state. 348 */ 349 static void tcp_init_buffer_space(struct sock *sk) 350 { 351 struct tcp_sock *tp = tcp_sk(sk); 352 int maxwin; 353 354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 355 tcp_fixup_rcvbuf(sk); 356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 357 tcp_fixup_sndbuf(sk); 358 359 tp->rcvq_space.space = tp->rcv_wnd; 360 361 maxwin = tcp_full_space(sk); 362 363 if (tp->window_clamp >= maxwin) { 364 tp->window_clamp = maxwin; 365 366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 367 tp->window_clamp = max(maxwin - 368 (maxwin >> sysctl_tcp_app_win), 369 4 * tp->advmss); 370 } 371 372 /* Force reservation of one segment. */ 373 if (sysctl_tcp_app_win && 374 tp->window_clamp > 2 * tp->advmss && 375 tp->window_clamp + tp->advmss > maxwin) 376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 377 378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 379 tp->snd_cwnd_stamp = tcp_time_stamp; 380 } 381 382 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 383 static void tcp_clamp_window(struct sock *sk) 384 { 385 struct tcp_sock *tp = tcp_sk(sk); 386 struct inet_connection_sock *icsk = inet_csk(sk); 387 388 icsk->icsk_ack.quick = 0; 389 390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 392 !tcp_memory_pressure && 393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 395 sysctl_tcp_rmem[2]); 396 } 397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 399 } 400 401 /* Initialize RCV_MSS value. 402 * RCV_MSS is an our guess about MSS used by the peer. 403 * We haven't any direct information about the MSS. 404 * It's better to underestimate the RCV_MSS rather than overestimate. 405 * Overestimations make us ACKing less frequently than needed. 406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 407 */ 408 void tcp_initialize_rcv_mss(struct sock *sk) 409 { 410 struct tcp_sock *tp = tcp_sk(sk); 411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 412 413 hint = min(hint, tp->rcv_wnd / 2); 414 hint = min(hint, TCP_MSS_DEFAULT); 415 hint = max(hint, TCP_MIN_MSS); 416 417 inet_csk(sk)->icsk_ack.rcv_mss = hint; 418 } 419 420 /* Receiver "autotuning" code. 421 * 422 * The algorithm for RTT estimation w/o timestamps is based on 423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 425 * 426 * More detail on this code can be found at 427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 428 * though this reference is out of date. A new paper 429 * is pending. 430 */ 431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 432 { 433 u32 new_sample = tp->rcv_rtt_est.rtt; 434 long m = sample; 435 436 if (m == 0) 437 m = 1; 438 439 if (new_sample != 0) { 440 /* If we sample in larger samples in the non-timestamp 441 * case, we could grossly overestimate the RTT especially 442 * with chatty applications or bulk transfer apps which 443 * are stalled on filesystem I/O. 444 * 445 * Also, since we are only going for a minimum in the 446 * non-timestamp case, we do not smooth things out 447 * else with timestamps disabled convergence takes too 448 * long. 449 */ 450 if (!win_dep) { 451 m -= (new_sample >> 3); 452 new_sample += m; 453 } else if (m < new_sample) 454 new_sample = m << 3; 455 } else { 456 /* No previous measure. */ 457 new_sample = m << 3; 458 } 459 460 if (tp->rcv_rtt_est.rtt != new_sample) 461 tp->rcv_rtt_est.rtt = new_sample; 462 } 463 464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 465 { 466 if (tp->rcv_rtt_est.time == 0) 467 goto new_measure; 468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 469 return; 470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 471 472 new_measure: 473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 474 tp->rcv_rtt_est.time = tcp_time_stamp; 475 } 476 477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 478 const struct sk_buff *skb) 479 { 480 struct tcp_sock *tp = tcp_sk(sk); 481 if (tp->rx_opt.rcv_tsecr && 482 (TCP_SKB_CB(skb)->end_seq - 483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 485 } 486 487 /* 488 * This function should be called every time data is copied to user space. 489 * It calculates the appropriate TCP receive buffer space. 490 */ 491 void tcp_rcv_space_adjust(struct sock *sk) 492 { 493 struct tcp_sock *tp = tcp_sk(sk); 494 int time; 495 int space; 496 497 if (tp->rcvq_space.time == 0) 498 goto new_measure; 499 500 time = tcp_time_stamp - tp->rcvq_space.time; 501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 502 return; 503 504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 505 506 space = max(tp->rcvq_space.space, space); 507 508 if (tp->rcvq_space.space != space) { 509 int rcvmem; 510 511 tp->rcvq_space.space = space; 512 513 if (sysctl_tcp_moderate_rcvbuf && 514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 515 int new_clamp = space; 516 517 /* Receive space grows, normalize in order to 518 * take into account packet headers and sk_buff 519 * structure overhead. 520 */ 521 space /= tp->advmss; 522 if (!space) 523 space = 1; 524 rcvmem = (tp->advmss + MAX_TCP_HEADER + 525 16 + sizeof(struct sk_buff)); 526 while (tcp_win_from_space(rcvmem) < tp->advmss) 527 rcvmem += 128; 528 space *= rcvmem; 529 space = min(space, sysctl_tcp_rmem[2]); 530 if (space > sk->sk_rcvbuf) { 531 sk->sk_rcvbuf = space; 532 533 /* Make the window clamp follow along. */ 534 tp->window_clamp = new_clamp; 535 } 536 } 537 } 538 539 new_measure: 540 tp->rcvq_space.seq = tp->copied_seq; 541 tp->rcvq_space.time = tcp_time_stamp; 542 } 543 544 /* There is something which you must keep in mind when you analyze the 545 * behavior of the tp->ato delayed ack timeout interval. When a 546 * connection starts up, we want to ack as quickly as possible. The 547 * problem is that "good" TCP's do slow start at the beginning of data 548 * transmission. The means that until we send the first few ACK's the 549 * sender will sit on his end and only queue most of his data, because 550 * he can only send snd_cwnd unacked packets at any given time. For 551 * each ACK we send, he increments snd_cwnd and transmits more of his 552 * queue. -DaveM 553 */ 554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 555 { 556 struct tcp_sock *tp = tcp_sk(sk); 557 struct inet_connection_sock *icsk = inet_csk(sk); 558 u32 now; 559 560 inet_csk_schedule_ack(sk); 561 562 tcp_measure_rcv_mss(sk, skb); 563 564 tcp_rcv_rtt_measure(tp); 565 566 now = tcp_time_stamp; 567 568 if (!icsk->icsk_ack.ato) { 569 /* The _first_ data packet received, initialize 570 * delayed ACK engine. 571 */ 572 tcp_incr_quickack(sk); 573 icsk->icsk_ack.ato = TCP_ATO_MIN; 574 } else { 575 int m = now - icsk->icsk_ack.lrcvtime; 576 577 if (m <= TCP_ATO_MIN / 2) { 578 /* The fastest case is the first. */ 579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 580 } else if (m < icsk->icsk_ack.ato) { 581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 582 if (icsk->icsk_ack.ato > icsk->icsk_rto) 583 icsk->icsk_ack.ato = icsk->icsk_rto; 584 } else if (m > icsk->icsk_rto) { 585 /* Too long gap. Apparently sender failed to 586 * restart window, so that we send ACKs quickly. 587 */ 588 tcp_incr_quickack(sk); 589 sk_mem_reclaim(sk); 590 } 591 } 592 icsk->icsk_ack.lrcvtime = now; 593 594 TCP_ECN_check_ce(tp, skb); 595 596 if (skb->len >= 128) 597 tcp_grow_window(sk, skb); 598 } 599 600 /* Called to compute a smoothed rtt estimate. The data fed to this 601 * routine either comes from timestamps, or from segments that were 602 * known _not_ to have been retransmitted [see Karn/Partridge 603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 604 * piece by Van Jacobson. 605 * NOTE: the next three routines used to be one big routine. 606 * To save cycles in the RFC 1323 implementation it was better to break 607 * it up into three procedures. -- erics 608 */ 609 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 610 { 611 struct tcp_sock *tp = tcp_sk(sk); 612 long m = mrtt; /* RTT */ 613 614 /* The following amusing code comes from Jacobson's 615 * article in SIGCOMM '88. Note that rtt and mdev 616 * are scaled versions of rtt and mean deviation. 617 * This is designed to be as fast as possible 618 * m stands for "measurement". 619 * 620 * On a 1990 paper the rto value is changed to: 621 * RTO = rtt + 4 * mdev 622 * 623 * Funny. This algorithm seems to be very broken. 624 * These formulae increase RTO, when it should be decreased, increase 625 * too slowly, when it should be increased quickly, decrease too quickly 626 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 627 * does not matter how to _calculate_ it. Seems, it was trap 628 * that VJ failed to avoid. 8) 629 */ 630 if (m == 0) 631 m = 1; 632 if (tp->srtt != 0) { 633 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 634 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 635 if (m < 0) { 636 m = -m; /* m is now abs(error) */ 637 m -= (tp->mdev >> 2); /* similar update on mdev */ 638 /* This is similar to one of Eifel findings. 639 * Eifel blocks mdev updates when rtt decreases. 640 * This solution is a bit different: we use finer gain 641 * for mdev in this case (alpha*beta). 642 * Like Eifel it also prevents growth of rto, 643 * but also it limits too fast rto decreases, 644 * happening in pure Eifel. 645 */ 646 if (m > 0) 647 m >>= 3; 648 } else { 649 m -= (tp->mdev >> 2); /* similar update on mdev */ 650 } 651 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 652 if (tp->mdev > tp->mdev_max) { 653 tp->mdev_max = tp->mdev; 654 if (tp->mdev_max > tp->rttvar) 655 tp->rttvar = tp->mdev_max; 656 } 657 if (after(tp->snd_una, tp->rtt_seq)) { 658 if (tp->mdev_max < tp->rttvar) 659 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 660 tp->rtt_seq = tp->snd_nxt; 661 tp->mdev_max = tcp_rto_min(sk); 662 } 663 } else { 664 /* no previous measure. */ 665 tp->srtt = m << 3; /* take the measured time to be rtt */ 666 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 667 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 668 tp->rtt_seq = tp->snd_nxt; 669 } 670 } 671 672 /* Calculate rto without backoff. This is the second half of Van Jacobson's 673 * routine referred to above. 674 */ 675 static inline void tcp_set_rto(struct sock *sk) 676 { 677 const struct tcp_sock *tp = tcp_sk(sk); 678 /* Old crap is replaced with new one. 8) 679 * 680 * More seriously: 681 * 1. If rtt variance happened to be less 50msec, it is hallucination. 682 * It cannot be less due to utterly erratic ACK generation made 683 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 684 * to do with delayed acks, because at cwnd>2 true delack timeout 685 * is invisible. Actually, Linux-2.4 also generates erratic 686 * ACKs in some circumstances. 687 */ 688 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 689 690 /* 2. Fixups made earlier cannot be right. 691 * If we do not estimate RTO correctly without them, 692 * all the algo is pure shit and should be replaced 693 * with correct one. It is exactly, which we pretend to do. 694 */ 695 696 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 697 * guarantees that rto is higher. 698 */ 699 tcp_bound_rto(sk); 700 } 701 702 /* Save metrics learned by this TCP session. 703 This function is called only, when TCP finishes successfully 704 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 705 */ 706 void tcp_update_metrics(struct sock *sk) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct dst_entry *dst = __sk_dst_get(sk); 710 711 if (sysctl_tcp_nometrics_save) 712 return; 713 714 dst_confirm(dst); 715 716 if (dst && (dst->flags & DST_HOST)) { 717 const struct inet_connection_sock *icsk = inet_csk(sk); 718 int m; 719 unsigned long rtt; 720 721 if (icsk->icsk_backoff || !tp->srtt) { 722 /* This session failed to estimate rtt. Why? 723 * Probably, no packets returned in time. 724 * Reset our results. 725 */ 726 if (!(dst_metric_locked(dst, RTAX_RTT))) 727 dst->metrics[RTAX_RTT - 1] = 0; 728 return; 729 } 730 731 rtt = dst_metric_rtt(dst, RTAX_RTT); 732 m = rtt - tp->srtt; 733 734 /* If newly calculated rtt larger than stored one, 735 * store new one. Otherwise, use EWMA. Remember, 736 * rtt overestimation is always better than underestimation. 737 */ 738 if (!(dst_metric_locked(dst, RTAX_RTT))) { 739 if (m <= 0) 740 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 741 else 742 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 743 } 744 745 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 746 unsigned long var; 747 if (m < 0) 748 m = -m; 749 750 /* Scale deviation to rttvar fixed point */ 751 m >>= 1; 752 if (m < tp->mdev) 753 m = tp->mdev; 754 755 var = dst_metric_rtt(dst, RTAX_RTTVAR); 756 if (m >= var) 757 var = m; 758 else 759 var -= (var - m) >> 2; 760 761 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 762 } 763 764 if (tcp_in_initial_slowstart(tp)) { 765 /* Slow start still did not finish. */ 766 if (dst_metric(dst, RTAX_SSTHRESH) && 767 !dst_metric_locked(dst, RTAX_SSTHRESH) && 768 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 769 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 770 if (!dst_metric_locked(dst, RTAX_CWND) && 771 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 772 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 773 } else if (tp->snd_cwnd > tp->snd_ssthresh && 774 icsk->icsk_ca_state == TCP_CA_Open) { 775 /* Cong. avoidance phase, cwnd is reliable. */ 776 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 777 dst->metrics[RTAX_SSTHRESH-1] = 778 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 779 if (!dst_metric_locked(dst, RTAX_CWND)) 780 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1; 781 } else { 782 /* Else slow start did not finish, cwnd is non-sense, 783 ssthresh may be also invalid. 784 */ 785 if (!dst_metric_locked(dst, RTAX_CWND)) 786 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1; 787 if (dst_metric(dst, RTAX_SSTHRESH) && 788 !dst_metric_locked(dst, RTAX_SSTHRESH) && 789 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 790 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 791 } 792 793 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 794 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 795 tp->reordering != sysctl_tcp_reordering) 796 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 797 } 798 } 799 } 800 801 /* Numbers are taken from RFC3390. 802 * 803 * John Heffner states: 804 * 805 * The RFC specifies a window of no more than 4380 bytes 806 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 807 * is a bit misleading because they use a clamp at 4380 bytes 808 * rather than use a multiplier in the relevant range. 809 */ 810 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 811 { 812 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 813 814 if (!cwnd) { 815 if (tp->mss_cache > 1460) 816 cwnd = 2; 817 else 818 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 819 } 820 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 821 } 822 823 /* Set slow start threshold and cwnd not falling to slow start */ 824 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 825 { 826 struct tcp_sock *tp = tcp_sk(sk); 827 const struct inet_connection_sock *icsk = inet_csk(sk); 828 829 tp->prior_ssthresh = 0; 830 tp->bytes_acked = 0; 831 if (icsk->icsk_ca_state < TCP_CA_CWR) { 832 tp->undo_marker = 0; 833 if (set_ssthresh) 834 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 835 tp->snd_cwnd = min(tp->snd_cwnd, 836 tcp_packets_in_flight(tp) + 1U); 837 tp->snd_cwnd_cnt = 0; 838 tp->high_seq = tp->snd_nxt; 839 tp->snd_cwnd_stamp = tcp_time_stamp; 840 TCP_ECN_queue_cwr(tp); 841 842 tcp_set_ca_state(sk, TCP_CA_CWR); 843 } 844 } 845 846 /* 847 * Packet counting of FACK is based on in-order assumptions, therefore TCP 848 * disables it when reordering is detected 849 */ 850 static void tcp_disable_fack(struct tcp_sock *tp) 851 { 852 /* RFC3517 uses different metric in lost marker => reset on change */ 853 if (tcp_is_fack(tp)) 854 tp->lost_skb_hint = NULL; 855 tp->rx_opt.sack_ok &= ~2; 856 } 857 858 /* Take a notice that peer is sending D-SACKs */ 859 static void tcp_dsack_seen(struct tcp_sock *tp) 860 { 861 tp->rx_opt.sack_ok |= 4; 862 } 863 864 /* Initialize metrics on socket. */ 865 866 static void tcp_init_metrics(struct sock *sk) 867 { 868 struct tcp_sock *tp = tcp_sk(sk); 869 struct dst_entry *dst = __sk_dst_get(sk); 870 871 if (dst == NULL) 872 goto reset; 873 874 dst_confirm(dst); 875 876 if (dst_metric_locked(dst, RTAX_CWND)) 877 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 878 if (dst_metric(dst, RTAX_SSTHRESH)) { 879 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 880 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 881 tp->snd_ssthresh = tp->snd_cwnd_clamp; 882 } 883 if (dst_metric(dst, RTAX_REORDERING) && 884 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 885 tcp_disable_fack(tp); 886 tp->reordering = dst_metric(dst, RTAX_REORDERING); 887 } 888 889 if (dst_metric(dst, RTAX_RTT) == 0) 890 goto reset; 891 892 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 893 goto reset; 894 895 /* Initial rtt is determined from SYN,SYN-ACK. 896 * The segment is small and rtt may appear much 897 * less than real one. Use per-dst memory 898 * to make it more realistic. 899 * 900 * A bit of theory. RTT is time passed after "normal" sized packet 901 * is sent until it is ACKed. In normal circumstances sending small 902 * packets force peer to delay ACKs and calculation is correct too. 903 * The algorithm is adaptive and, provided we follow specs, it 904 * NEVER underestimate RTT. BUT! If peer tries to make some clever 905 * tricks sort of "quick acks" for time long enough to decrease RTT 906 * to low value, and then abruptly stops to do it and starts to delay 907 * ACKs, wait for troubles. 908 */ 909 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 910 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 911 tp->rtt_seq = tp->snd_nxt; 912 } 913 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 914 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 915 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 916 } 917 tcp_set_rto(sk); 918 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 919 goto reset; 920 921 cwnd: 922 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 923 tp->snd_cwnd_stamp = tcp_time_stamp; 924 return; 925 926 reset: 927 /* Play conservative. If timestamps are not 928 * supported, TCP will fail to recalculate correct 929 * rtt, if initial rto is too small. FORGET ALL AND RESET! 930 */ 931 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 932 tp->srtt = 0; 933 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 934 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 935 } 936 goto cwnd; 937 } 938 939 static void tcp_update_reordering(struct sock *sk, const int metric, 940 const int ts) 941 { 942 struct tcp_sock *tp = tcp_sk(sk); 943 if (metric > tp->reordering) { 944 int mib_idx; 945 946 tp->reordering = min(TCP_MAX_REORDERING, metric); 947 948 /* This exciting event is worth to be remembered. 8) */ 949 if (ts) 950 mib_idx = LINUX_MIB_TCPTSREORDER; 951 else if (tcp_is_reno(tp)) 952 mib_idx = LINUX_MIB_TCPRENOREORDER; 953 else if (tcp_is_fack(tp)) 954 mib_idx = LINUX_MIB_TCPFACKREORDER; 955 else 956 mib_idx = LINUX_MIB_TCPSACKREORDER; 957 958 NET_INC_STATS_BH(sock_net(sk), mib_idx); 959 #if FASTRETRANS_DEBUG > 1 960 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 961 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 962 tp->reordering, 963 tp->fackets_out, 964 tp->sacked_out, 965 tp->undo_marker ? tp->undo_retrans : 0); 966 #endif 967 tcp_disable_fack(tp); 968 } 969 } 970 971 /* This must be called before lost_out is incremented */ 972 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 973 { 974 if ((tp->retransmit_skb_hint == NULL) || 975 before(TCP_SKB_CB(skb)->seq, 976 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 977 tp->retransmit_skb_hint = skb; 978 979 if (!tp->lost_out || 980 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 981 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 982 } 983 984 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 985 { 986 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 987 tcp_verify_retransmit_hint(tp, skb); 988 989 tp->lost_out += tcp_skb_pcount(skb); 990 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 991 } 992 } 993 994 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 995 struct sk_buff *skb) 996 { 997 tcp_verify_retransmit_hint(tp, skb); 998 999 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1000 tp->lost_out += tcp_skb_pcount(skb); 1001 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1002 } 1003 } 1004 1005 /* This procedure tags the retransmission queue when SACKs arrive. 1006 * 1007 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1008 * Packets in queue with these bits set are counted in variables 1009 * sacked_out, retrans_out and lost_out, correspondingly. 1010 * 1011 * Valid combinations are: 1012 * Tag InFlight Description 1013 * 0 1 - orig segment is in flight. 1014 * S 0 - nothing flies, orig reached receiver. 1015 * L 0 - nothing flies, orig lost by net. 1016 * R 2 - both orig and retransmit are in flight. 1017 * L|R 1 - orig is lost, retransmit is in flight. 1018 * S|R 1 - orig reached receiver, retrans is still in flight. 1019 * (L|S|R is logically valid, it could occur when L|R is sacked, 1020 * but it is equivalent to plain S and code short-curcuits it to S. 1021 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1022 * 1023 * These 6 states form finite state machine, controlled by the following events: 1024 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1025 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1026 * 3. Loss detection event of one of three flavors: 1027 * A. Scoreboard estimator decided the packet is lost. 1028 * A'. Reno "three dupacks" marks head of queue lost. 1029 * A''. Its FACK modfication, head until snd.fack is lost. 1030 * B. SACK arrives sacking data transmitted after never retransmitted 1031 * hole was sent out. 1032 * C. SACK arrives sacking SND.NXT at the moment, when the 1033 * segment was retransmitted. 1034 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1035 * 1036 * It is pleasant to note, that state diagram turns out to be commutative, 1037 * so that we are allowed not to be bothered by order of our actions, 1038 * when multiple events arrive simultaneously. (see the function below). 1039 * 1040 * Reordering detection. 1041 * -------------------- 1042 * Reordering metric is maximal distance, which a packet can be displaced 1043 * in packet stream. With SACKs we can estimate it: 1044 * 1045 * 1. SACK fills old hole and the corresponding segment was not 1046 * ever retransmitted -> reordering. Alas, we cannot use it 1047 * when segment was retransmitted. 1048 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1049 * for retransmitted and already SACKed segment -> reordering.. 1050 * Both of these heuristics are not used in Loss state, when we cannot 1051 * account for retransmits accurately. 1052 * 1053 * SACK block validation. 1054 * ---------------------- 1055 * 1056 * SACK block range validation checks that the received SACK block fits to 1057 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1058 * Note that SND.UNA is not included to the range though being valid because 1059 * it means that the receiver is rather inconsistent with itself reporting 1060 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1061 * perfectly valid, however, in light of RFC2018 which explicitly states 1062 * that "SACK block MUST reflect the newest segment. Even if the newest 1063 * segment is going to be discarded ...", not that it looks very clever 1064 * in case of head skb. Due to potentional receiver driven attacks, we 1065 * choose to avoid immediate execution of a walk in write queue due to 1066 * reneging and defer head skb's loss recovery to standard loss recovery 1067 * procedure that will eventually trigger (nothing forbids us doing this). 1068 * 1069 * Implements also blockage to start_seq wrap-around. Problem lies in the 1070 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1071 * there's no guarantee that it will be before snd_nxt (n). The problem 1072 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1073 * wrap (s_w): 1074 * 1075 * <- outs wnd -> <- wrapzone -> 1076 * u e n u_w e_w s n_w 1077 * | | | | | | | 1078 * |<------------+------+----- TCP seqno space --------------+---------->| 1079 * ...-- <2^31 ->| |<--------... 1080 * ...---- >2^31 ------>| |<--------... 1081 * 1082 * Current code wouldn't be vulnerable but it's better still to discard such 1083 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1084 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1085 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1086 * equal to the ideal case (infinite seqno space without wrap caused issues). 1087 * 1088 * With D-SACK the lower bound is extended to cover sequence space below 1089 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1090 * again, D-SACK block must not to go across snd_una (for the same reason as 1091 * for the normal SACK blocks, explained above). But there all simplicity 1092 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1093 * fully below undo_marker they do not affect behavior in anyway and can 1094 * therefore be safely ignored. In rare cases (which are more or less 1095 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1096 * fragmentation and packet reordering past skb's retransmission. To consider 1097 * them correctly, the acceptable range must be extended even more though 1098 * the exact amount is rather hard to quantify. However, tp->max_window can 1099 * be used as an exaggerated estimate. 1100 */ 1101 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1102 u32 start_seq, u32 end_seq) 1103 { 1104 /* Too far in future, or reversed (interpretation is ambiguous) */ 1105 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1106 return 0; 1107 1108 /* Nasty start_seq wrap-around check (see comments above) */ 1109 if (!before(start_seq, tp->snd_nxt)) 1110 return 0; 1111 1112 /* In outstanding window? ...This is valid exit for D-SACKs too. 1113 * start_seq == snd_una is non-sensical (see comments above) 1114 */ 1115 if (after(start_seq, tp->snd_una)) 1116 return 1; 1117 1118 if (!is_dsack || !tp->undo_marker) 1119 return 0; 1120 1121 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1122 if (!after(end_seq, tp->snd_una)) 1123 return 0; 1124 1125 if (!before(start_seq, tp->undo_marker)) 1126 return 1; 1127 1128 /* Too old */ 1129 if (!after(end_seq, tp->undo_marker)) 1130 return 0; 1131 1132 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1133 * start_seq < undo_marker and end_seq >= undo_marker. 1134 */ 1135 return !before(start_seq, end_seq - tp->max_window); 1136 } 1137 1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1139 * Event "C". Later note: FACK people cheated me again 8), we have to account 1140 * for reordering! Ugly, but should help. 1141 * 1142 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1143 * less than what is now known to be received by the other end (derived from 1144 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1145 * retransmitted skbs to avoid some costly processing per ACKs. 1146 */ 1147 static void tcp_mark_lost_retrans(struct sock *sk) 1148 { 1149 const struct inet_connection_sock *icsk = inet_csk(sk); 1150 struct tcp_sock *tp = tcp_sk(sk); 1151 struct sk_buff *skb; 1152 int cnt = 0; 1153 u32 new_low_seq = tp->snd_nxt; 1154 u32 received_upto = tcp_highest_sack_seq(tp); 1155 1156 if (!tcp_is_fack(tp) || !tp->retrans_out || 1157 !after(received_upto, tp->lost_retrans_low) || 1158 icsk->icsk_ca_state != TCP_CA_Recovery) 1159 return; 1160 1161 tcp_for_write_queue(skb, sk) { 1162 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1163 1164 if (skb == tcp_send_head(sk)) 1165 break; 1166 if (cnt == tp->retrans_out) 1167 break; 1168 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1169 continue; 1170 1171 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1172 continue; 1173 1174 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1175 * constraint here (see above) but figuring out that at 1176 * least tp->reordering SACK blocks reside between ack_seq 1177 * and received_upto is not easy task to do cheaply with 1178 * the available datastructures. 1179 * 1180 * Whether FACK should check here for tp->reordering segs 1181 * in-between one could argue for either way (it would be 1182 * rather simple to implement as we could count fack_count 1183 * during the walk and do tp->fackets_out - fack_count). 1184 */ 1185 if (after(received_upto, ack_seq)) { 1186 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1187 tp->retrans_out -= tcp_skb_pcount(skb); 1188 1189 tcp_skb_mark_lost_uncond_verify(tp, skb); 1190 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1191 } else { 1192 if (before(ack_seq, new_low_seq)) 1193 new_low_seq = ack_seq; 1194 cnt += tcp_skb_pcount(skb); 1195 } 1196 } 1197 1198 if (tp->retrans_out) 1199 tp->lost_retrans_low = new_low_seq; 1200 } 1201 1202 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1203 struct tcp_sack_block_wire *sp, int num_sacks, 1204 u32 prior_snd_una) 1205 { 1206 struct tcp_sock *tp = tcp_sk(sk); 1207 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1208 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1209 int dup_sack = 0; 1210 1211 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1212 dup_sack = 1; 1213 tcp_dsack_seen(tp); 1214 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1215 } else if (num_sacks > 1) { 1216 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1217 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1218 1219 if (!after(end_seq_0, end_seq_1) && 1220 !before(start_seq_0, start_seq_1)) { 1221 dup_sack = 1; 1222 tcp_dsack_seen(tp); 1223 NET_INC_STATS_BH(sock_net(sk), 1224 LINUX_MIB_TCPDSACKOFORECV); 1225 } 1226 } 1227 1228 /* D-SACK for already forgotten data... Do dumb counting. */ 1229 if (dup_sack && 1230 !after(end_seq_0, prior_snd_una) && 1231 after(end_seq_0, tp->undo_marker)) 1232 tp->undo_retrans--; 1233 1234 return dup_sack; 1235 } 1236 1237 struct tcp_sacktag_state { 1238 int reord; 1239 int fack_count; 1240 int flag; 1241 }; 1242 1243 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1244 * the incoming SACK may not exactly match but we can find smaller MSS 1245 * aligned portion of it that matches. Therefore we might need to fragment 1246 * which may fail and creates some hassle (caller must handle error case 1247 * returns). 1248 * 1249 * FIXME: this could be merged to shift decision code 1250 */ 1251 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1252 u32 start_seq, u32 end_seq) 1253 { 1254 int in_sack, err; 1255 unsigned int pkt_len; 1256 unsigned int mss; 1257 1258 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1259 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1260 1261 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1262 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1263 mss = tcp_skb_mss(skb); 1264 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1265 1266 if (!in_sack) { 1267 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1268 if (pkt_len < mss) 1269 pkt_len = mss; 1270 } else { 1271 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1272 if (pkt_len < mss) 1273 return -EINVAL; 1274 } 1275 1276 /* Round if necessary so that SACKs cover only full MSSes 1277 * and/or the remaining small portion (if present) 1278 */ 1279 if (pkt_len > mss) { 1280 unsigned int new_len = (pkt_len / mss) * mss; 1281 if (!in_sack && new_len < pkt_len) { 1282 new_len += mss; 1283 if (new_len > skb->len) 1284 return 0; 1285 } 1286 pkt_len = new_len; 1287 } 1288 err = tcp_fragment(sk, skb, pkt_len, mss); 1289 if (err < 0) 1290 return err; 1291 } 1292 1293 return in_sack; 1294 } 1295 1296 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1297 struct tcp_sacktag_state *state, 1298 int dup_sack, int pcount) 1299 { 1300 struct tcp_sock *tp = tcp_sk(sk); 1301 u8 sacked = TCP_SKB_CB(skb)->sacked; 1302 int fack_count = state->fack_count; 1303 1304 /* Account D-SACK for retransmitted packet. */ 1305 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1306 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1307 tp->undo_retrans--; 1308 if (sacked & TCPCB_SACKED_ACKED) 1309 state->reord = min(fack_count, state->reord); 1310 } 1311 1312 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1313 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1314 return sacked; 1315 1316 if (!(sacked & TCPCB_SACKED_ACKED)) { 1317 if (sacked & TCPCB_SACKED_RETRANS) { 1318 /* If the segment is not tagged as lost, 1319 * we do not clear RETRANS, believing 1320 * that retransmission is still in flight. 1321 */ 1322 if (sacked & TCPCB_LOST) { 1323 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1324 tp->lost_out -= pcount; 1325 tp->retrans_out -= pcount; 1326 } 1327 } else { 1328 if (!(sacked & TCPCB_RETRANS)) { 1329 /* New sack for not retransmitted frame, 1330 * which was in hole. It is reordering. 1331 */ 1332 if (before(TCP_SKB_CB(skb)->seq, 1333 tcp_highest_sack_seq(tp))) 1334 state->reord = min(fack_count, 1335 state->reord); 1336 1337 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1338 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1339 state->flag |= FLAG_ONLY_ORIG_SACKED; 1340 } 1341 1342 if (sacked & TCPCB_LOST) { 1343 sacked &= ~TCPCB_LOST; 1344 tp->lost_out -= pcount; 1345 } 1346 } 1347 1348 sacked |= TCPCB_SACKED_ACKED; 1349 state->flag |= FLAG_DATA_SACKED; 1350 tp->sacked_out += pcount; 1351 1352 fack_count += pcount; 1353 1354 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1355 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1356 before(TCP_SKB_CB(skb)->seq, 1357 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1358 tp->lost_cnt_hint += pcount; 1359 1360 if (fack_count > tp->fackets_out) 1361 tp->fackets_out = fack_count; 1362 } 1363 1364 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1365 * frames and clear it. undo_retrans is decreased above, L|R frames 1366 * are accounted above as well. 1367 */ 1368 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1369 sacked &= ~TCPCB_SACKED_RETRANS; 1370 tp->retrans_out -= pcount; 1371 } 1372 1373 return sacked; 1374 } 1375 1376 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1377 struct tcp_sacktag_state *state, 1378 unsigned int pcount, int shifted, int mss, 1379 int dup_sack) 1380 { 1381 struct tcp_sock *tp = tcp_sk(sk); 1382 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1383 1384 BUG_ON(!pcount); 1385 1386 /* Tweak before seqno plays */ 1387 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1388 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1389 tp->lost_cnt_hint += pcount; 1390 1391 TCP_SKB_CB(prev)->end_seq += shifted; 1392 TCP_SKB_CB(skb)->seq += shifted; 1393 1394 skb_shinfo(prev)->gso_segs += pcount; 1395 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1396 skb_shinfo(skb)->gso_segs -= pcount; 1397 1398 /* When we're adding to gso_segs == 1, gso_size will be zero, 1399 * in theory this shouldn't be necessary but as long as DSACK 1400 * code can come after this skb later on it's better to keep 1401 * setting gso_size to something. 1402 */ 1403 if (!skb_shinfo(prev)->gso_size) { 1404 skb_shinfo(prev)->gso_size = mss; 1405 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1406 } 1407 1408 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1409 if (skb_shinfo(skb)->gso_segs <= 1) { 1410 skb_shinfo(skb)->gso_size = 0; 1411 skb_shinfo(skb)->gso_type = 0; 1412 } 1413 1414 /* We discard results */ 1415 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1416 1417 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1418 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1419 1420 if (skb->len > 0) { 1421 BUG_ON(!tcp_skb_pcount(skb)); 1422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1423 return 0; 1424 } 1425 1426 /* Whole SKB was eaten :-) */ 1427 1428 if (skb == tp->retransmit_skb_hint) 1429 tp->retransmit_skb_hint = prev; 1430 if (skb == tp->scoreboard_skb_hint) 1431 tp->scoreboard_skb_hint = prev; 1432 if (skb == tp->lost_skb_hint) { 1433 tp->lost_skb_hint = prev; 1434 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1435 } 1436 1437 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1438 if (skb == tcp_highest_sack(sk)) 1439 tcp_advance_highest_sack(sk, skb); 1440 1441 tcp_unlink_write_queue(skb, sk); 1442 sk_wmem_free_skb(sk, skb); 1443 1444 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1445 1446 return 1; 1447 } 1448 1449 /* I wish gso_size would have a bit more sane initialization than 1450 * something-or-zero which complicates things 1451 */ 1452 static int tcp_skb_seglen(struct sk_buff *skb) 1453 { 1454 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1455 } 1456 1457 /* Shifting pages past head area doesn't work */ 1458 static int skb_can_shift(struct sk_buff *skb) 1459 { 1460 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1461 } 1462 1463 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1464 * skb. 1465 */ 1466 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1467 struct tcp_sacktag_state *state, 1468 u32 start_seq, u32 end_seq, 1469 int dup_sack) 1470 { 1471 struct tcp_sock *tp = tcp_sk(sk); 1472 struct sk_buff *prev; 1473 int mss; 1474 int pcount = 0; 1475 int len; 1476 int in_sack; 1477 1478 if (!sk_can_gso(sk)) 1479 goto fallback; 1480 1481 /* Normally R but no L won't result in plain S */ 1482 if (!dup_sack && 1483 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1484 goto fallback; 1485 if (!skb_can_shift(skb)) 1486 goto fallback; 1487 /* This frame is about to be dropped (was ACKed). */ 1488 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1489 goto fallback; 1490 1491 /* Can only happen with delayed DSACK + discard craziness */ 1492 if (unlikely(skb == tcp_write_queue_head(sk))) 1493 goto fallback; 1494 prev = tcp_write_queue_prev(sk, skb); 1495 1496 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1497 goto fallback; 1498 1499 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1500 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1501 1502 if (in_sack) { 1503 len = skb->len; 1504 pcount = tcp_skb_pcount(skb); 1505 mss = tcp_skb_seglen(skb); 1506 1507 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1508 * drop this restriction as unnecessary 1509 */ 1510 if (mss != tcp_skb_seglen(prev)) 1511 goto fallback; 1512 } else { 1513 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1514 goto noop; 1515 /* CHECKME: This is non-MSS split case only?, this will 1516 * cause skipped skbs due to advancing loop btw, original 1517 * has that feature too 1518 */ 1519 if (tcp_skb_pcount(skb) <= 1) 1520 goto noop; 1521 1522 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1523 if (!in_sack) { 1524 /* TODO: head merge to next could be attempted here 1525 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1526 * though it might not be worth of the additional hassle 1527 * 1528 * ...we can probably just fallback to what was done 1529 * previously. We could try merging non-SACKed ones 1530 * as well but it probably isn't going to buy off 1531 * because later SACKs might again split them, and 1532 * it would make skb timestamp tracking considerably 1533 * harder problem. 1534 */ 1535 goto fallback; 1536 } 1537 1538 len = end_seq - TCP_SKB_CB(skb)->seq; 1539 BUG_ON(len < 0); 1540 BUG_ON(len > skb->len); 1541 1542 /* MSS boundaries should be honoured or else pcount will 1543 * severely break even though it makes things bit trickier. 1544 * Optimize common case to avoid most of the divides 1545 */ 1546 mss = tcp_skb_mss(skb); 1547 1548 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1549 * drop this restriction as unnecessary 1550 */ 1551 if (mss != tcp_skb_seglen(prev)) 1552 goto fallback; 1553 1554 if (len == mss) { 1555 pcount = 1; 1556 } else if (len < mss) { 1557 goto noop; 1558 } else { 1559 pcount = len / mss; 1560 len = pcount * mss; 1561 } 1562 } 1563 1564 if (!skb_shift(prev, skb, len)) 1565 goto fallback; 1566 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1567 goto out; 1568 1569 /* Hole filled allows collapsing with the next as well, this is very 1570 * useful when hole on every nth skb pattern happens 1571 */ 1572 if (prev == tcp_write_queue_tail(sk)) 1573 goto out; 1574 skb = tcp_write_queue_next(sk, prev); 1575 1576 if (!skb_can_shift(skb) || 1577 (skb == tcp_send_head(sk)) || 1578 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1579 (mss != tcp_skb_seglen(skb))) 1580 goto out; 1581 1582 len = skb->len; 1583 if (skb_shift(prev, skb, len)) { 1584 pcount += tcp_skb_pcount(skb); 1585 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1586 } 1587 1588 out: 1589 state->fack_count += pcount; 1590 return prev; 1591 1592 noop: 1593 return skb; 1594 1595 fallback: 1596 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1597 return NULL; 1598 } 1599 1600 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1601 struct tcp_sack_block *next_dup, 1602 struct tcp_sacktag_state *state, 1603 u32 start_seq, u32 end_seq, 1604 int dup_sack_in) 1605 { 1606 struct tcp_sock *tp = tcp_sk(sk); 1607 struct sk_buff *tmp; 1608 1609 tcp_for_write_queue_from(skb, sk) { 1610 int in_sack = 0; 1611 int dup_sack = dup_sack_in; 1612 1613 if (skb == tcp_send_head(sk)) 1614 break; 1615 1616 /* queue is in-order => we can short-circuit the walk early */ 1617 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1618 break; 1619 1620 if ((next_dup != NULL) && 1621 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1622 in_sack = tcp_match_skb_to_sack(sk, skb, 1623 next_dup->start_seq, 1624 next_dup->end_seq); 1625 if (in_sack > 0) 1626 dup_sack = 1; 1627 } 1628 1629 /* skb reference here is a bit tricky to get right, since 1630 * shifting can eat and free both this skb and the next, 1631 * so not even _safe variant of the loop is enough. 1632 */ 1633 if (in_sack <= 0) { 1634 tmp = tcp_shift_skb_data(sk, skb, state, 1635 start_seq, end_seq, dup_sack); 1636 if (tmp != NULL) { 1637 if (tmp != skb) { 1638 skb = tmp; 1639 continue; 1640 } 1641 1642 in_sack = 0; 1643 } else { 1644 in_sack = tcp_match_skb_to_sack(sk, skb, 1645 start_seq, 1646 end_seq); 1647 } 1648 } 1649 1650 if (unlikely(in_sack < 0)) 1651 break; 1652 1653 if (in_sack) { 1654 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1655 state, 1656 dup_sack, 1657 tcp_skb_pcount(skb)); 1658 1659 if (!before(TCP_SKB_CB(skb)->seq, 1660 tcp_highest_sack_seq(tp))) 1661 tcp_advance_highest_sack(sk, skb); 1662 } 1663 1664 state->fack_count += tcp_skb_pcount(skb); 1665 } 1666 return skb; 1667 } 1668 1669 /* Avoid all extra work that is being done by sacktag while walking in 1670 * a normal way 1671 */ 1672 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1673 struct tcp_sacktag_state *state, 1674 u32 skip_to_seq) 1675 { 1676 tcp_for_write_queue_from(skb, sk) { 1677 if (skb == tcp_send_head(sk)) 1678 break; 1679 1680 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1681 break; 1682 1683 state->fack_count += tcp_skb_pcount(skb); 1684 } 1685 return skb; 1686 } 1687 1688 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1689 struct sock *sk, 1690 struct tcp_sack_block *next_dup, 1691 struct tcp_sacktag_state *state, 1692 u32 skip_to_seq) 1693 { 1694 if (next_dup == NULL) 1695 return skb; 1696 1697 if (before(next_dup->start_seq, skip_to_seq)) { 1698 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1699 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1700 next_dup->start_seq, next_dup->end_seq, 1701 1); 1702 } 1703 1704 return skb; 1705 } 1706 1707 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1708 { 1709 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1710 } 1711 1712 static int 1713 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1714 u32 prior_snd_una) 1715 { 1716 const struct inet_connection_sock *icsk = inet_csk(sk); 1717 struct tcp_sock *tp = tcp_sk(sk); 1718 unsigned char *ptr = (skb_transport_header(ack_skb) + 1719 TCP_SKB_CB(ack_skb)->sacked); 1720 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1721 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1722 struct tcp_sack_block *cache; 1723 struct tcp_sacktag_state state; 1724 struct sk_buff *skb; 1725 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1726 int used_sacks; 1727 int found_dup_sack = 0; 1728 int i, j; 1729 int first_sack_index; 1730 1731 state.flag = 0; 1732 state.reord = tp->packets_out; 1733 1734 if (!tp->sacked_out) { 1735 if (WARN_ON(tp->fackets_out)) 1736 tp->fackets_out = 0; 1737 tcp_highest_sack_reset(sk); 1738 } 1739 1740 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1741 num_sacks, prior_snd_una); 1742 if (found_dup_sack) 1743 state.flag |= FLAG_DSACKING_ACK; 1744 1745 /* Eliminate too old ACKs, but take into 1746 * account more or less fresh ones, they can 1747 * contain valid SACK info. 1748 */ 1749 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1750 return 0; 1751 1752 if (!tp->packets_out) 1753 goto out; 1754 1755 used_sacks = 0; 1756 first_sack_index = 0; 1757 for (i = 0; i < num_sacks; i++) { 1758 int dup_sack = !i && found_dup_sack; 1759 1760 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1761 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1762 1763 if (!tcp_is_sackblock_valid(tp, dup_sack, 1764 sp[used_sacks].start_seq, 1765 sp[used_sacks].end_seq)) { 1766 int mib_idx; 1767 1768 if (dup_sack) { 1769 if (!tp->undo_marker) 1770 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1771 else 1772 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1773 } else { 1774 /* Don't count olds caused by ACK reordering */ 1775 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1776 !after(sp[used_sacks].end_seq, tp->snd_una)) 1777 continue; 1778 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1779 } 1780 1781 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1782 if (i == 0) 1783 first_sack_index = -1; 1784 continue; 1785 } 1786 1787 /* Ignore very old stuff early */ 1788 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1789 continue; 1790 1791 used_sacks++; 1792 } 1793 1794 /* order SACK blocks to allow in order walk of the retrans queue */ 1795 for (i = used_sacks - 1; i > 0; i--) { 1796 for (j = 0; j < i; j++) { 1797 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1798 swap(sp[j], sp[j + 1]); 1799 1800 /* Track where the first SACK block goes to */ 1801 if (j == first_sack_index) 1802 first_sack_index = j + 1; 1803 } 1804 } 1805 } 1806 1807 skb = tcp_write_queue_head(sk); 1808 state.fack_count = 0; 1809 i = 0; 1810 1811 if (!tp->sacked_out) { 1812 /* It's already past, so skip checking against it */ 1813 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1814 } else { 1815 cache = tp->recv_sack_cache; 1816 /* Skip empty blocks in at head of the cache */ 1817 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1818 !cache->end_seq) 1819 cache++; 1820 } 1821 1822 while (i < used_sacks) { 1823 u32 start_seq = sp[i].start_seq; 1824 u32 end_seq = sp[i].end_seq; 1825 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1826 struct tcp_sack_block *next_dup = NULL; 1827 1828 if (found_dup_sack && ((i + 1) == first_sack_index)) 1829 next_dup = &sp[i + 1]; 1830 1831 /* Event "B" in the comment above. */ 1832 if (after(end_seq, tp->high_seq)) 1833 state.flag |= FLAG_DATA_LOST; 1834 1835 /* Skip too early cached blocks */ 1836 while (tcp_sack_cache_ok(tp, cache) && 1837 !before(start_seq, cache->end_seq)) 1838 cache++; 1839 1840 /* Can skip some work by looking recv_sack_cache? */ 1841 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1842 after(end_seq, cache->start_seq)) { 1843 1844 /* Head todo? */ 1845 if (before(start_seq, cache->start_seq)) { 1846 skb = tcp_sacktag_skip(skb, sk, &state, 1847 start_seq); 1848 skb = tcp_sacktag_walk(skb, sk, next_dup, 1849 &state, 1850 start_seq, 1851 cache->start_seq, 1852 dup_sack); 1853 } 1854 1855 /* Rest of the block already fully processed? */ 1856 if (!after(end_seq, cache->end_seq)) 1857 goto advance_sp; 1858 1859 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1860 &state, 1861 cache->end_seq); 1862 1863 /* ...tail remains todo... */ 1864 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1865 /* ...but better entrypoint exists! */ 1866 skb = tcp_highest_sack(sk); 1867 if (skb == NULL) 1868 break; 1869 state.fack_count = tp->fackets_out; 1870 cache++; 1871 goto walk; 1872 } 1873 1874 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1875 /* Check overlap against next cached too (past this one already) */ 1876 cache++; 1877 continue; 1878 } 1879 1880 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1881 skb = tcp_highest_sack(sk); 1882 if (skb == NULL) 1883 break; 1884 state.fack_count = tp->fackets_out; 1885 } 1886 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1887 1888 walk: 1889 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1890 start_seq, end_seq, dup_sack); 1891 1892 advance_sp: 1893 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1894 * due to in-order walk 1895 */ 1896 if (after(end_seq, tp->frto_highmark)) 1897 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1898 1899 i++; 1900 } 1901 1902 /* Clear the head of the cache sack blocks so we can skip it next time */ 1903 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1904 tp->recv_sack_cache[i].start_seq = 0; 1905 tp->recv_sack_cache[i].end_seq = 0; 1906 } 1907 for (j = 0; j < used_sacks; j++) 1908 tp->recv_sack_cache[i++] = sp[j]; 1909 1910 tcp_mark_lost_retrans(sk); 1911 1912 tcp_verify_left_out(tp); 1913 1914 if ((state.reord < tp->fackets_out) && 1915 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1916 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1917 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1918 1919 out: 1920 1921 #if FASTRETRANS_DEBUG > 0 1922 WARN_ON((int)tp->sacked_out < 0); 1923 WARN_ON((int)tp->lost_out < 0); 1924 WARN_ON((int)tp->retrans_out < 0); 1925 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1926 #endif 1927 return state.flag; 1928 } 1929 1930 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1931 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1932 */ 1933 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1934 { 1935 u32 holes; 1936 1937 holes = max(tp->lost_out, 1U); 1938 holes = min(holes, tp->packets_out); 1939 1940 if ((tp->sacked_out + holes) > tp->packets_out) { 1941 tp->sacked_out = tp->packets_out - holes; 1942 return 1; 1943 } 1944 return 0; 1945 } 1946 1947 /* If we receive more dupacks than we expected counting segments 1948 * in assumption of absent reordering, interpret this as reordering. 1949 * The only another reason could be bug in receiver TCP. 1950 */ 1951 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1952 { 1953 struct tcp_sock *tp = tcp_sk(sk); 1954 if (tcp_limit_reno_sacked(tp)) 1955 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1956 } 1957 1958 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1959 1960 static void tcp_add_reno_sack(struct sock *sk) 1961 { 1962 struct tcp_sock *tp = tcp_sk(sk); 1963 tp->sacked_out++; 1964 tcp_check_reno_reordering(sk, 0); 1965 tcp_verify_left_out(tp); 1966 } 1967 1968 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1969 1970 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1971 { 1972 struct tcp_sock *tp = tcp_sk(sk); 1973 1974 if (acked > 0) { 1975 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1976 if (acked - 1 >= tp->sacked_out) 1977 tp->sacked_out = 0; 1978 else 1979 tp->sacked_out -= acked - 1; 1980 } 1981 tcp_check_reno_reordering(sk, acked); 1982 tcp_verify_left_out(tp); 1983 } 1984 1985 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1986 { 1987 tp->sacked_out = 0; 1988 } 1989 1990 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1991 { 1992 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1993 } 1994 1995 /* F-RTO can only be used if TCP has never retransmitted anything other than 1996 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1997 */ 1998 int tcp_use_frto(struct sock *sk) 1999 { 2000 const struct tcp_sock *tp = tcp_sk(sk); 2001 const struct inet_connection_sock *icsk = inet_csk(sk); 2002 struct sk_buff *skb; 2003 2004 if (!sysctl_tcp_frto) 2005 return 0; 2006 2007 /* MTU probe and F-RTO won't really play nicely along currently */ 2008 if (icsk->icsk_mtup.probe_size) 2009 return 0; 2010 2011 if (tcp_is_sackfrto(tp)) 2012 return 1; 2013 2014 /* Avoid expensive walking of rexmit queue if possible */ 2015 if (tp->retrans_out > 1) 2016 return 0; 2017 2018 skb = tcp_write_queue_head(sk); 2019 if (tcp_skb_is_last(sk, skb)) 2020 return 1; 2021 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2022 tcp_for_write_queue_from(skb, sk) { 2023 if (skb == tcp_send_head(sk)) 2024 break; 2025 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2026 return 0; 2027 /* Short-circuit when first non-SACKed skb has been checked */ 2028 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2029 break; 2030 } 2031 return 1; 2032 } 2033 2034 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2035 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2036 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2037 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2038 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2039 * bits are handled if the Loss state is really to be entered (in 2040 * tcp_enter_frto_loss). 2041 * 2042 * Do like tcp_enter_loss() would; when RTO expires the second time it 2043 * does: 2044 * "Reduce ssthresh if it has not yet been made inside this window." 2045 */ 2046 void tcp_enter_frto(struct sock *sk) 2047 { 2048 const struct inet_connection_sock *icsk = inet_csk(sk); 2049 struct tcp_sock *tp = tcp_sk(sk); 2050 struct sk_buff *skb; 2051 2052 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2053 tp->snd_una == tp->high_seq || 2054 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2055 !icsk->icsk_retransmits)) { 2056 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2057 /* Our state is too optimistic in ssthresh() call because cwnd 2058 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2059 * recovery has not yet completed. Pattern would be this: RTO, 2060 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2061 * up here twice). 2062 * RFC4138 should be more specific on what to do, even though 2063 * RTO is quite unlikely to occur after the first Cumulative ACK 2064 * due to back-off and complexity of triggering events ... 2065 */ 2066 if (tp->frto_counter) { 2067 u32 stored_cwnd; 2068 stored_cwnd = tp->snd_cwnd; 2069 tp->snd_cwnd = 2; 2070 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2071 tp->snd_cwnd = stored_cwnd; 2072 } else { 2073 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2074 } 2075 /* ... in theory, cong.control module could do "any tricks" in 2076 * ssthresh(), which means that ca_state, lost bits and lost_out 2077 * counter would have to be faked before the call occurs. We 2078 * consider that too expensive, unlikely and hacky, so modules 2079 * using these in ssthresh() must deal these incompatibility 2080 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2081 */ 2082 tcp_ca_event(sk, CA_EVENT_FRTO); 2083 } 2084 2085 tp->undo_marker = tp->snd_una; 2086 tp->undo_retrans = 0; 2087 2088 skb = tcp_write_queue_head(sk); 2089 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2090 tp->undo_marker = 0; 2091 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2092 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2093 tp->retrans_out -= tcp_skb_pcount(skb); 2094 } 2095 tcp_verify_left_out(tp); 2096 2097 /* Too bad if TCP was application limited */ 2098 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2099 2100 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2101 * The last condition is necessary at least in tp->frto_counter case. 2102 */ 2103 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2104 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2105 after(tp->high_seq, tp->snd_una)) { 2106 tp->frto_highmark = tp->high_seq; 2107 } else { 2108 tp->frto_highmark = tp->snd_nxt; 2109 } 2110 tcp_set_ca_state(sk, TCP_CA_Disorder); 2111 tp->high_seq = tp->snd_nxt; 2112 tp->frto_counter = 1; 2113 } 2114 2115 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2116 * which indicates that we should follow the traditional RTO recovery, 2117 * i.e. mark everything lost and do go-back-N retransmission. 2118 */ 2119 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2120 { 2121 struct tcp_sock *tp = tcp_sk(sk); 2122 struct sk_buff *skb; 2123 2124 tp->lost_out = 0; 2125 tp->retrans_out = 0; 2126 if (tcp_is_reno(tp)) 2127 tcp_reset_reno_sack(tp); 2128 2129 tcp_for_write_queue(skb, sk) { 2130 if (skb == tcp_send_head(sk)) 2131 break; 2132 2133 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2134 /* 2135 * Count the retransmission made on RTO correctly (only when 2136 * waiting for the first ACK and did not get it)... 2137 */ 2138 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2139 /* For some reason this R-bit might get cleared? */ 2140 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2141 tp->retrans_out += tcp_skb_pcount(skb); 2142 /* ...enter this if branch just for the first segment */ 2143 flag |= FLAG_DATA_ACKED; 2144 } else { 2145 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2146 tp->undo_marker = 0; 2147 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2148 } 2149 2150 /* Marking forward transmissions that were made after RTO lost 2151 * can cause unnecessary retransmissions in some scenarios, 2152 * SACK blocks will mitigate that in some but not in all cases. 2153 * We used to not mark them but it was causing break-ups with 2154 * receivers that do only in-order receival. 2155 * 2156 * TODO: we could detect presence of such receiver and select 2157 * different behavior per flow. 2158 */ 2159 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2160 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2161 tp->lost_out += tcp_skb_pcount(skb); 2162 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2163 } 2164 } 2165 tcp_verify_left_out(tp); 2166 2167 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2168 tp->snd_cwnd_cnt = 0; 2169 tp->snd_cwnd_stamp = tcp_time_stamp; 2170 tp->frto_counter = 0; 2171 tp->bytes_acked = 0; 2172 2173 tp->reordering = min_t(unsigned int, tp->reordering, 2174 sysctl_tcp_reordering); 2175 tcp_set_ca_state(sk, TCP_CA_Loss); 2176 tp->high_seq = tp->snd_nxt; 2177 TCP_ECN_queue_cwr(tp); 2178 2179 tcp_clear_all_retrans_hints(tp); 2180 } 2181 2182 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2183 { 2184 tp->retrans_out = 0; 2185 tp->lost_out = 0; 2186 2187 tp->undo_marker = 0; 2188 tp->undo_retrans = 0; 2189 } 2190 2191 void tcp_clear_retrans(struct tcp_sock *tp) 2192 { 2193 tcp_clear_retrans_partial(tp); 2194 2195 tp->fackets_out = 0; 2196 tp->sacked_out = 0; 2197 } 2198 2199 /* Enter Loss state. If "how" is not zero, forget all SACK information 2200 * and reset tags completely, otherwise preserve SACKs. If receiver 2201 * dropped its ofo queue, we will know this due to reneging detection. 2202 */ 2203 void tcp_enter_loss(struct sock *sk, int how) 2204 { 2205 const struct inet_connection_sock *icsk = inet_csk(sk); 2206 struct tcp_sock *tp = tcp_sk(sk); 2207 struct sk_buff *skb; 2208 2209 /* Reduce ssthresh if it has not yet been made inside this window. */ 2210 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2211 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2212 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2213 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2214 tcp_ca_event(sk, CA_EVENT_LOSS); 2215 } 2216 tp->snd_cwnd = 1; 2217 tp->snd_cwnd_cnt = 0; 2218 tp->snd_cwnd_stamp = tcp_time_stamp; 2219 2220 tp->bytes_acked = 0; 2221 tcp_clear_retrans_partial(tp); 2222 2223 if (tcp_is_reno(tp)) 2224 tcp_reset_reno_sack(tp); 2225 2226 if (!how) { 2227 /* Push undo marker, if it was plain RTO and nothing 2228 * was retransmitted. */ 2229 tp->undo_marker = tp->snd_una; 2230 } else { 2231 tp->sacked_out = 0; 2232 tp->fackets_out = 0; 2233 } 2234 tcp_clear_all_retrans_hints(tp); 2235 2236 tcp_for_write_queue(skb, sk) { 2237 if (skb == tcp_send_head(sk)) 2238 break; 2239 2240 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2241 tp->undo_marker = 0; 2242 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2243 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2244 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2245 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2246 tp->lost_out += tcp_skb_pcount(skb); 2247 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2248 } 2249 } 2250 tcp_verify_left_out(tp); 2251 2252 tp->reordering = min_t(unsigned int, tp->reordering, 2253 sysctl_tcp_reordering); 2254 tcp_set_ca_state(sk, TCP_CA_Loss); 2255 tp->high_seq = tp->snd_nxt; 2256 TCP_ECN_queue_cwr(tp); 2257 /* Abort F-RTO algorithm if one is in progress */ 2258 tp->frto_counter = 0; 2259 } 2260 2261 /* If ACK arrived pointing to a remembered SACK, it means that our 2262 * remembered SACKs do not reflect real state of receiver i.e. 2263 * receiver _host_ is heavily congested (or buggy). 2264 * 2265 * Do processing similar to RTO timeout. 2266 */ 2267 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2268 { 2269 if (flag & FLAG_SACK_RENEGING) { 2270 struct inet_connection_sock *icsk = inet_csk(sk); 2271 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2272 2273 tcp_enter_loss(sk, 1); 2274 icsk->icsk_retransmits++; 2275 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2276 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2277 icsk->icsk_rto, TCP_RTO_MAX); 2278 return 1; 2279 } 2280 return 0; 2281 } 2282 2283 static inline int tcp_fackets_out(struct tcp_sock *tp) 2284 { 2285 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2286 } 2287 2288 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2289 * counter when SACK is enabled (without SACK, sacked_out is used for 2290 * that purpose). 2291 * 2292 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2293 * segments up to the highest received SACK block so far and holes in 2294 * between them. 2295 * 2296 * With reordering, holes may still be in flight, so RFC3517 recovery 2297 * uses pure sacked_out (total number of SACKed segments) even though 2298 * it violates the RFC that uses duplicate ACKs, often these are equal 2299 * but when e.g. out-of-window ACKs or packet duplication occurs, 2300 * they differ. Since neither occurs due to loss, TCP should really 2301 * ignore them. 2302 */ 2303 static inline int tcp_dupack_heuristics(struct tcp_sock *tp) 2304 { 2305 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2306 } 2307 2308 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2309 { 2310 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 2311 } 2312 2313 static inline int tcp_head_timedout(struct sock *sk) 2314 { 2315 struct tcp_sock *tp = tcp_sk(sk); 2316 2317 return tp->packets_out && 2318 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2319 } 2320 2321 /* Linux NewReno/SACK/FACK/ECN state machine. 2322 * -------------------------------------- 2323 * 2324 * "Open" Normal state, no dubious events, fast path. 2325 * "Disorder" In all the respects it is "Open", 2326 * but requires a bit more attention. It is entered when 2327 * we see some SACKs or dupacks. It is split of "Open" 2328 * mainly to move some processing from fast path to slow one. 2329 * "CWR" CWND was reduced due to some Congestion Notification event. 2330 * It can be ECN, ICMP source quench, local device congestion. 2331 * "Recovery" CWND was reduced, we are fast-retransmitting. 2332 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2333 * 2334 * tcp_fastretrans_alert() is entered: 2335 * - each incoming ACK, if state is not "Open" 2336 * - when arrived ACK is unusual, namely: 2337 * * SACK 2338 * * Duplicate ACK. 2339 * * ECN ECE. 2340 * 2341 * Counting packets in flight is pretty simple. 2342 * 2343 * in_flight = packets_out - left_out + retrans_out 2344 * 2345 * packets_out is SND.NXT-SND.UNA counted in packets. 2346 * 2347 * retrans_out is number of retransmitted segments. 2348 * 2349 * left_out is number of segments left network, but not ACKed yet. 2350 * 2351 * left_out = sacked_out + lost_out 2352 * 2353 * sacked_out: Packets, which arrived to receiver out of order 2354 * and hence not ACKed. With SACKs this number is simply 2355 * amount of SACKed data. Even without SACKs 2356 * it is easy to give pretty reliable estimate of this number, 2357 * counting duplicate ACKs. 2358 * 2359 * lost_out: Packets lost by network. TCP has no explicit 2360 * "loss notification" feedback from network (for now). 2361 * It means that this number can be only _guessed_. 2362 * Actually, it is the heuristics to predict lossage that 2363 * distinguishes different algorithms. 2364 * 2365 * F.e. after RTO, when all the queue is considered as lost, 2366 * lost_out = packets_out and in_flight = retrans_out. 2367 * 2368 * Essentially, we have now two algorithms counting 2369 * lost packets. 2370 * 2371 * FACK: It is the simplest heuristics. As soon as we decided 2372 * that something is lost, we decide that _all_ not SACKed 2373 * packets until the most forward SACK are lost. I.e. 2374 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2375 * It is absolutely correct estimate, if network does not reorder 2376 * packets. And it loses any connection to reality when reordering 2377 * takes place. We use FACK by default until reordering 2378 * is suspected on the path to this destination. 2379 * 2380 * NewReno: when Recovery is entered, we assume that one segment 2381 * is lost (classic Reno). While we are in Recovery and 2382 * a partial ACK arrives, we assume that one more packet 2383 * is lost (NewReno). This heuristics are the same in NewReno 2384 * and SACK. 2385 * 2386 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2387 * deflation etc. CWND is real congestion window, never inflated, changes 2388 * only according to classic VJ rules. 2389 * 2390 * Really tricky (and requiring careful tuning) part of algorithm 2391 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2392 * The first determines the moment _when_ we should reduce CWND and, 2393 * hence, slow down forward transmission. In fact, it determines the moment 2394 * when we decide that hole is caused by loss, rather than by a reorder. 2395 * 2396 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2397 * holes, caused by lost packets. 2398 * 2399 * And the most logically complicated part of algorithm is undo 2400 * heuristics. We detect false retransmits due to both too early 2401 * fast retransmit (reordering) and underestimated RTO, analyzing 2402 * timestamps and D-SACKs. When we detect that some segments were 2403 * retransmitted by mistake and CWND reduction was wrong, we undo 2404 * window reduction and abort recovery phase. This logic is hidden 2405 * inside several functions named tcp_try_undo_<something>. 2406 */ 2407 2408 /* This function decides, when we should leave Disordered state 2409 * and enter Recovery phase, reducing congestion window. 2410 * 2411 * Main question: may we further continue forward transmission 2412 * with the same cwnd? 2413 */ 2414 static int tcp_time_to_recover(struct sock *sk) 2415 { 2416 struct tcp_sock *tp = tcp_sk(sk); 2417 __u32 packets_out; 2418 2419 /* Do not perform any recovery during F-RTO algorithm */ 2420 if (tp->frto_counter) 2421 return 0; 2422 2423 /* Trick#1: The loss is proven. */ 2424 if (tp->lost_out) 2425 return 1; 2426 2427 /* Not-A-Trick#2 : Classic rule... */ 2428 if (tcp_dupack_heuristics(tp) > tp->reordering) 2429 return 1; 2430 2431 /* Trick#3 : when we use RFC2988 timer restart, fast 2432 * retransmit can be triggered by timeout of queue head. 2433 */ 2434 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2435 return 1; 2436 2437 /* Trick#4: It is still not OK... But will it be useful to delay 2438 * recovery more? 2439 */ 2440 packets_out = tp->packets_out; 2441 if (packets_out <= tp->reordering && 2442 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2443 !tcp_may_send_now(sk)) { 2444 /* We have nothing to send. This connection is limited 2445 * either by receiver window or by application. 2446 */ 2447 return 1; 2448 } 2449 2450 return 0; 2451 } 2452 2453 /* New heuristics: it is possible only after we switched to restart timer 2454 * each time when something is ACKed. Hence, we can detect timed out packets 2455 * during fast retransmit without falling to slow start. 2456 * 2457 * Usefulness of this as is very questionable, since we should know which of 2458 * the segments is the next to timeout which is relatively expensive to find 2459 * in general case unless we add some data structure just for that. The 2460 * current approach certainly won't find the right one too often and when it 2461 * finally does find _something_ it usually marks large part of the window 2462 * right away (because a retransmission with a larger timestamp blocks the 2463 * loop from advancing). -ij 2464 */ 2465 static void tcp_timeout_skbs(struct sock *sk) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 struct sk_buff *skb; 2469 2470 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2471 return; 2472 2473 skb = tp->scoreboard_skb_hint; 2474 if (tp->scoreboard_skb_hint == NULL) 2475 skb = tcp_write_queue_head(sk); 2476 2477 tcp_for_write_queue_from(skb, sk) { 2478 if (skb == tcp_send_head(sk)) 2479 break; 2480 if (!tcp_skb_timedout(sk, skb)) 2481 break; 2482 2483 tcp_skb_mark_lost(tp, skb); 2484 } 2485 2486 tp->scoreboard_skb_hint = skb; 2487 2488 tcp_verify_left_out(tp); 2489 } 2490 2491 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2492 * is against sacked "cnt", otherwise it's against facked "cnt" 2493 */ 2494 static void tcp_mark_head_lost(struct sock *sk, int packets) 2495 { 2496 struct tcp_sock *tp = tcp_sk(sk); 2497 struct sk_buff *skb; 2498 int cnt, oldcnt; 2499 int err; 2500 unsigned int mss; 2501 2502 WARN_ON(packets > tp->packets_out); 2503 if (tp->lost_skb_hint) { 2504 skb = tp->lost_skb_hint; 2505 cnt = tp->lost_cnt_hint; 2506 } else { 2507 skb = tcp_write_queue_head(sk); 2508 cnt = 0; 2509 } 2510 2511 tcp_for_write_queue_from(skb, sk) { 2512 if (skb == tcp_send_head(sk)) 2513 break; 2514 /* TODO: do this better */ 2515 /* this is not the most efficient way to do this... */ 2516 tp->lost_skb_hint = skb; 2517 tp->lost_cnt_hint = cnt; 2518 2519 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2520 break; 2521 2522 oldcnt = cnt; 2523 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2524 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2525 cnt += tcp_skb_pcount(skb); 2526 2527 if (cnt > packets) { 2528 if (tcp_is_sack(tp) || (oldcnt >= packets)) 2529 break; 2530 2531 mss = skb_shinfo(skb)->gso_size; 2532 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2533 if (err < 0) 2534 break; 2535 cnt = packets; 2536 } 2537 2538 tcp_skb_mark_lost(tp, skb); 2539 } 2540 tcp_verify_left_out(tp); 2541 } 2542 2543 /* Account newly detected lost packet(s) */ 2544 2545 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 2549 if (tcp_is_reno(tp)) { 2550 tcp_mark_head_lost(sk, 1); 2551 } else if (tcp_is_fack(tp)) { 2552 int lost = tp->fackets_out - tp->reordering; 2553 if (lost <= 0) 2554 lost = 1; 2555 tcp_mark_head_lost(sk, lost); 2556 } else { 2557 int sacked_upto = tp->sacked_out - tp->reordering; 2558 if (sacked_upto < fast_rexmit) 2559 sacked_upto = fast_rexmit; 2560 tcp_mark_head_lost(sk, sacked_upto); 2561 } 2562 2563 tcp_timeout_skbs(sk); 2564 } 2565 2566 /* CWND moderation, preventing bursts due to too big ACKs 2567 * in dubious situations. 2568 */ 2569 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2570 { 2571 tp->snd_cwnd = min(tp->snd_cwnd, 2572 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2573 tp->snd_cwnd_stamp = tcp_time_stamp; 2574 } 2575 2576 /* Lower bound on congestion window is slow start threshold 2577 * unless congestion avoidance choice decides to overide it. 2578 */ 2579 static inline u32 tcp_cwnd_min(const struct sock *sk) 2580 { 2581 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2582 2583 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2584 } 2585 2586 /* Decrease cwnd each second ack. */ 2587 static void tcp_cwnd_down(struct sock *sk, int flag) 2588 { 2589 struct tcp_sock *tp = tcp_sk(sk); 2590 int decr = tp->snd_cwnd_cnt + 1; 2591 2592 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2593 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2594 tp->snd_cwnd_cnt = decr & 1; 2595 decr >>= 1; 2596 2597 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2598 tp->snd_cwnd -= decr; 2599 2600 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2601 tp->snd_cwnd_stamp = tcp_time_stamp; 2602 } 2603 } 2604 2605 /* Nothing was retransmitted or returned timestamp is less 2606 * than timestamp of the first retransmission. 2607 */ 2608 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2609 { 2610 return !tp->retrans_stamp || 2611 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2612 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2613 } 2614 2615 /* Undo procedures. */ 2616 2617 #if FASTRETRANS_DEBUG > 1 2618 static void DBGUNDO(struct sock *sk, const char *msg) 2619 { 2620 struct tcp_sock *tp = tcp_sk(sk); 2621 struct inet_sock *inet = inet_sk(sk); 2622 2623 if (sk->sk_family == AF_INET) { 2624 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2625 msg, 2626 &inet->daddr, ntohs(inet->dport), 2627 tp->snd_cwnd, tcp_left_out(tp), 2628 tp->snd_ssthresh, tp->prior_ssthresh, 2629 tp->packets_out); 2630 } 2631 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2632 else if (sk->sk_family == AF_INET6) { 2633 struct ipv6_pinfo *np = inet6_sk(sk); 2634 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2635 msg, 2636 &np->daddr, ntohs(inet->dport), 2637 tp->snd_cwnd, tcp_left_out(tp), 2638 tp->snd_ssthresh, tp->prior_ssthresh, 2639 tp->packets_out); 2640 } 2641 #endif 2642 } 2643 #else 2644 #define DBGUNDO(x...) do { } while (0) 2645 #endif 2646 2647 static void tcp_undo_cwr(struct sock *sk, const int undo) 2648 { 2649 struct tcp_sock *tp = tcp_sk(sk); 2650 2651 if (tp->prior_ssthresh) { 2652 const struct inet_connection_sock *icsk = inet_csk(sk); 2653 2654 if (icsk->icsk_ca_ops->undo_cwnd) 2655 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2656 else 2657 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2658 2659 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2660 tp->snd_ssthresh = tp->prior_ssthresh; 2661 TCP_ECN_withdraw_cwr(tp); 2662 } 2663 } else { 2664 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2665 } 2666 tcp_moderate_cwnd(tp); 2667 tp->snd_cwnd_stamp = tcp_time_stamp; 2668 } 2669 2670 static inline int tcp_may_undo(struct tcp_sock *tp) 2671 { 2672 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2673 } 2674 2675 /* People celebrate: "We love our President!" */ 2676 static int tcp_try_undo_recovery(struct sock *sk) 2677 { 2678 struct tcp_sock *tp = tcp_sk(sk); 2679 2680 if (tcp_may_undo(tp)) { 2681 int mib_idx; 2682 2683 /* Happy end! We did not retransmit anything 2684 * or our original transmission succeeded. 2685 */ 2686 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2687 tcp_undo_cwr(sk, 1); 2688 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2689 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2690 else 2691 mib_idx = LINUX_MIB_TCPFULLUNDO; 2692 2693 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2694 tp->undo_marker = 0; 2695 } 2696 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2697 /* Hold old state until something *above* high_seq 2698 * is ACKed. For Reno it is MUST to prevent false 2699 * fast retransmits (RFC2582). SACK TCP is safe. */ 2700 tcp_moderate_cwnd(tp); 2701 return 1; 2702 } 2703 tcp_set_ca_state(sk, TCP_CA_Open); 2704 return 0; 2705 } 2706 2707 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2708 static void tcp_try_undo_dsack(struct sock *sk) 2709 { 2710 struct tcp_sock *tp = tcp_sk(sk); 2711 2712 if (tp->undo_marker && !tp->undo_retrans) { 2713 DBGUNDO(sk, "D-SACK"); 2714 tcp_undo_cwr(sk, 1); 2715 tp->undo_marker = 0; 2716 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2717 } 2718 } 2719 2720 /* We can clear retrans_stamp when there are no retransmissions in the 2721 * window. It would seem that it is trivially available for us in 2722 * tp->retrans_out, however, that kind of assumptions doesn't consider 2723 * what will happen if errors occur when sending retransmission for the 2724 * second time. ...It could the that such segment has only 2725 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2726 * the head skb is enough except for some reneging corner cases that 2727 * are not worth the effort. 2728 * 2729 * Main reason for all this complexity is the fact that connection dying 2730 * time now depends on the validity of the retrans_stamp, in particular, 2731 * that successive retransmissions of a segment must not advance 2732 * retrans_stamp under any conditions. 2733 */ 2734 static int tcp_any_retrans_done(struct sock *sk) 2735 { 2736 struct tcp_sock *tp = tcp_sk(sk); 2737 struct sk_buff *skb; 2738 2739 if (tp->retrans_out) 2740 return 1; 2741 2742 skb = tcp_write_queue_head(sk); 2743 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2744 return 1; 2745 2746 return 0; 2747 } 2748 2749 /* Undo during fast recovery after partial ACK. */ 2750 2751 static int tcp_try_undo_partial(struct sock *sk, int acked) 2752 { 2753 struct tcp_sock *tp = tcp_sk(sk); 2754 /* Partial ACK arrived. Force Hoe's retransmit. */ 2755 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2756 2757 if (tcp_may_undo(tp)) { 2758 /* Plain luck! Hole if filled with delayed 2759 * packet, rather than with a retransmit. 2760 */ 2761 if (!tcp_any_retrans_done(sk)) 2762 tp->retrans_stamp = 0; 2763 2764 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2765 2766 DBGUNDO(sk, "Hoe"); 2767 tcp_undo_cwr(sk, 0); 2768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2769 2770 /* So... Do not make Hoe's retransmit yet. 2771 * If the first packet was delayed, the rest 2772 * ones are most probably delayed as well. 2773 */ 2774 failed = 0; 2775 } 2776 return failed; 2777 } 2778 2779 /* Undo during loss recovery after partial ACK. */ 2780 static int tcp_try_undo_loss(struct sock *sk) 2781 { 2782 struct tcp_sock *tp = tcp_sk(sk); 2783 2784 if (tcp_may_undo(tp)) { 2785 struct sk_buff *skb; 2786 tcp_for_write_queue(skb, sk) { 2787 if (skb == tcp_send_head(sk)) 2788 break; 2789 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2790 } 2791 2792 tcp_clear_all_retrans_hints(tp); 2793 2794 DBGUNDO(sk, "partial loss"); 2795 tp->lost_out = 0; 2796 tcp_undo_cwr(sk, 1); 2797 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2798 inet_csk(sk)->icsk_retransmits = 0; 2799 tp->undo_marker = 0; 2800 if (tcp_is_sack(tp)) 2801 tcp_set_ca_state(sk, TCP_CA_Open); 2802 return 1; 2803 } 2804 return 0; 2805 } 2806 2807 static inline void tcp_complete_cwr(struct sock *sk) 2808 { 2809 struct tcp_sock *tp = tcp_sk(sk); 2810 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2811 tp->snd_cwnd_stamp = tcp_time_stamp; 2812 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2813 } 2814 2815 static void tcp_try_keep_open(struct sock *sk) 2816 { 2817 struct tcp_sock *tp = tcp_sk(sk); 2818 int state = TCP_CA_Open; 2819 2820 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker) 2821 state = TCP_CA_Disorder; 2822 2823 if (inet_csk(sk)->icsk_ca_state != state) { 2824 tcp_set_ca_state(sk, state); 2825 tp->high_seq = tp->snd_nxt; 2826 } 2827 } 2828 2829 static void tcp_try_to_open(struct sock *sk, int flag) 2830 { 2831 struct tcp_sock *tp = tcp_sk(sk); 2832 2833 tcp_verify_left_out(tp); 2834 2835 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2836 tp->retrans_stamp = 0; 2837 2838 if (flag & FLAG_ECE) 2839 tcp_enter_cwr(sk, 1); 2840 2841 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2842 tcp_try_keep_open(sk); 2843 tcp_moderate_cwnd(tp); 2844 } else { 2845 tcp_cwnd_down(sk, flag); 2846 } 2847 } 2848 2849 static void tcp_mtup_probe_failed(struct sock *sk) 2850 { 2851 struct inet_connection_sock *icsk = inet_csk(sk); 2852 2853 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2854 icsk->icsk_mtup.probe_size = 0; 2855 } 2856 2857 static void tcp_mtup_probe_success(struct sock *sk) 2858 { 2859 struct tcp_sock *tp = tcp_sk(sk); 2860 struct inet_connection_sock *icsk = inet_csk(sk); 2861 2862 /* FIXME: breaks with very large cwnd */ 2863 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2864 tp->snd_cwnd = tp->snd_cwnd * 2865 tcp_mss_to_mtu(sk, tp->mss_cache) / 2866 icsk->icsk_mtup.probe_size; 2867 tp->snd_cwnd_cnt = 0; 2868 tp->snd_cwnd_stamp = tcp_time_stamp; 2869 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2870 2871 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2872 icsk->icsk_mtup.probe_size = 0; 2873 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2874 } 2875 2876 /* Do a simple retransmit without using the backoff mechanisms in 2877 * tcp_timer. This is used for path mtu discovery. 2878 * The socket is already locked here. 2879 */ 2880 void tcp_simple_retransmit(struct sock *sk) 2881 { 2882 const struct inet_connection_sock *icsk = inet_csk(sk); 2883 struct tcp_sock *tp = tcp_sk(sk); 2884 struct sk_buff *skb; 2885 unsigned int mss = tcp_current_mss(sk); 2886 u32 prior_lost = tp->lost_out; 2887 2888 tcp_for_write_queue(skb, sk) { 2889 if (skb == tcp_send_head(sk)) 2890 break; 2891 if (tcp_skb_seglen(skb) > mss && 2892 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2893 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2894 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2895 tp->retrans_out -= tcp_skb_pcount(skb); 2896 } 2897 tcp_skb_mark_lost_uncond_verify(tp, skb); 2898 } 2899 } 2900 2901 tcp_clear_retrans_hints_partial(tp); 2902 2903 if (prior_lost == tp->lost_out) 2904 return; 2905 2906 if (tcp_is_reno(tp)) 2907 tcp_limit_reno_sacked(tp); 2908 2909 tcp_verify_left_out(tp); 2910 2911 /* Don't muck with the congestion window here. 2912 * Reason is that we do not increase amount of _data_ 2913 * in network, but units changed and effective 2914 * cwnd/ssthresh really reduced now. 2915 */ 2916 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2917 tp->high_seq = tp->snd_nxt; 2918 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2919 tp->prior_ssthresh = 0; 2920 tp->undo_marker = 0; 2921 tcp_set_ca_state(sk, TCP_CA_Loss); 2922 } 2923 tcp_xmit_retransmit_queue(sk); 2924 } 2925 2926 /* Process an event, which can update packets-in-flight not trivially. 2927 * Main goal of this function is to calculate new estimate for left_out, 2928 * taking into account both packets sitting in receiver's buffer and 2929 * packets lost by network. 2930 * 2931 * Besides that it does CWND reduction, when packet loss is detected 2932 * and changes state of machine. 2933 * 2934 * It does _not_ decide what to send, it is made in function 2935 * tcp_xmit_retransmit_queue(). 2936 */ 2937 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2938 { 2939 struct inet_connection_sock *icsk = inet_csk(sk); 2940 struct tcp_sock *tp = tcp_sk(sk); 2941 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2942 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2943 (tcp_fackets_out(tp) > tp->reordering)); 2944 int fast_rexmit = 0, mib_idx; 2945 2946 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2947 tp->sacked_out = 0; 2948 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2949 tp->fackets_out = 0; 2950 2951 /* Now state machine starts. 2952 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2953 if (flag & FLAG_ECE) 2954 tp->prior_ssthresh = 0; 2955 2956 /* B. In all the states check for reneging SACKs. */ 2957 if (tcp_check_sack_reneging(sk, flag)) 2958 return; 2959 2960 /* C. Process data loss notification, provided it is valid. */ 2961 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2962 before(tp->snd_una, tp->high_seq) && 2963 icsk->icsk_ca_state != TCP_CA_Open && 2964 tp->fackets_out > tp->reordering) { 2965 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2966 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2967 } 2968 2969 /* D. Check consistency of the current state. */ 2970 tcp_verify_left_out(tp); 2971 2972 /* E. Check state exit conditions. State can be terminated 2973 * when high_seq is ACKed. */ 2974 if (icsk->icsk_ca_state == TCP_CA_Open) { 2975 WARN_ON(tp->retrans_out != 0); 2976 tp->retrans_stamp = 0; 2977 } else if (!before(tp->snd_una, tp->high_seq)) { 2978 switch (icsk->icsk_ca_state) { 2979 case TCP_CA_Loss: 2980 icsk->icsk_retransmits = 0; 2981 if (tcp_try_undo_recovery(sk)) 2982 return; 2983 break; 2984 2985 case TCP_CA_CWR: 2986 /* CWR is to be held something *above* high_seq 2987 * is ACKed for CWR bit to reach receiver. */ 2988 if (tp->snd_una != tp->high_seq) { 2989 tcp_complete_cwr(sk); 2990 tcp_set_ca_state(sk, TCP_CA_Open); 2991 } 2992 break; 2993 2994 case TCP_CA_Disorder: 2995 tcp_try_undo_dsack(sk); 2996 if (!tp->undo_marker || 2997 /* For SACK case do not Open to allow to undo 2998 * catching for all duplicate ACKs. */ 2999 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 3000 tp->undo_marker = 0; 3001 tcp_set_ca_state(sk, TCP_CA_Open); 3002 } 3003 break; 3004 3005 case TCP_CA_Recovery: 3006 if (tcp_is_reno(tp)) 3007 tcp_reset_reno_sack(tp); 3008 if (tcp_try_undo_recovery(sk)) 3009 return; 3010 tcp_complete_cwr(sk); 3011 break; 3012 } 3013 } 3014 3015 /* F. Process state. */ 3016 switch (icsk->icsk_ca_state) { 3017 case TCP_CA_Recovery: 3018 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3019 if (tcp_is_reno(tp) && is_dupack) 3020 tcp_add_reno_sack(sk); 3021 } else 3022 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3023 break; 3024 case TCP_CA_Loss: 3025 if (flag & FLAG_DATA_ACKED) 3026 icsk->icsk_retransmits = 0; 3027 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3028 tcp_reset_reno_sack(tp); 3029 if (!tcp_try_undo_loss(sk)) { 3030 tcp_moderate_cwnd(tp); 3031 tcp_xmit_retransmit_queue(sk); 3032 return; 3033 } 3034 if (icsk->icsk_ca_state != TCP_CA_Open) 3035 return; 3036 /* Loss is undone; fall through to processing in Open state. */ 3037 default: 3038 if (tcp_is_reno(tp)) { 3039 if (flag & FLAG_SND_UNA_ADVANCED) 3040 tcp_reset_reno_sack(tp); 3041 if (is_dupack) 3042 tcp_add_reno_sack(sk); 3043 } 3044 3045 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3046 tcp_try_undo_dsack(sk); 3047 3048 if (!tcp_time_to_recover(sk)) { 3049 tcp_try_to_open(sk, flag); 3050 return; 3051 } 3052 3053 /* MTU probe failure: don't reduce cwnd */ 3054 if (icsk->icsk_ca_state < TCP_CA_CWR && 3055 icsk->icsk_mtup.probe_size && 3056 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3057 tcp_mtup_probe_failed(sk); 3058 /* Restores the reduction we did in tcp_mtup_probe() */ 3059 tp->snd_cwnd++; 3060 tcp_simple_retransmit(sk); 3061 return; 3062 } 3063 3064 /* Otherwise enter Recovery state */ 3065 3066 if (tcp_is_reno(tp)) 3067 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3068 else 3069 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3070 3071 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3072 3073 tp->high_seq = tp->snd_nxt; 3074 tp->prior_ssthresh = 0; 3075 tp->undo_marker = tp->snd_una; 3076 tp->undo_retrans = tp->retrans_out; 3077 3078 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3079 if (!(flag & FLAG_ECE)) 3080 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3081 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3082 TCP_ECN_queue_cwr(tp); 3083 } 3084 3085 tp->bytes_acked = 0; 3086 tp->snd_cwnd_cnt = 0; 3087 tcp_set_ca_state(sk, TCP_CA_Recovery); 3088 fast_rexmit = 1; 3089 } 3090 3091 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3092 tcp_update_scoreboard(sk, fast_rexmit); 3093 tcp_cwnd_down(sk, flag); 3094 tcp_xmit_retransmit_queue(sk); 3095 } 3096 3097 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3098 { 3099 tcp_rtt_estimator(sk, seq_rtt); 3100 tcp_set_rto(sk); 3101 inet_csk(sk)->icsk_backoff = 0; 3102 } 3103 3104 /* Read draft-ietf-tcplw-high-performance before mucking 3105 * with this code. (Supersedes RFC1323) 3106 */ 3107 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3108 { 3109 /* RTTM Rule: A TSecr value received in a segment is used to 3110 * update the averaged RTT measurement only if the segment 3111 * acknowledges some new data, i.e., only if it advances the 3112 * left edge of the send window. 3113 * 3114 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3115 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3116 * 3117 * Changed: reset backoff as soon as we see the first valid sample. 3118 * If we do not, we get strongly overestimated rto. With timestamps 3119 * samples are accepted even from very old segments: f.e., when rtt=1 3120 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3121 * answer arrives rto becomes 120 seconds! If at least one of segments 3122 * in window is lost... Voila. --ANK (010210) 3123 */ 3124 struct tcp_sock *tp = tcp_sk(sk); 3125 3126 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3127 } 3128 3129 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3130 { 3131 /* We don't have a timestamp. Can only use 3132 * packets that are not retransmitted to determine 3133 * rtt estimates. Also, we must not reset the 3134 * backoff for rto until we get a non-retransmitted 3135 * packet. This allows us to deal with a situation 3136 * where the network delay has increased suddenly. 3137 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3138 */ 3139 3140 if (flag & FLAG_RETRANS_DATA_ACKED) 3141 return; 3142 3143 tcp_valid_rtt_meas(sk, seq_rtt); 3144 } 3145 3146 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3147 const s32 seq_rtt) 3148 { 3149 const struct tcp_sock *tp = tcp_sk(sk); 3150 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3151 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3152 tcp_ack_saw_tstamp(sk, flag); 3153 else if (seq_rtt >= 0) 3154 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3155 } 3156 3157 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3158 { 3159 const struct inet_connection_sock *icsk = inet_csk(sk); 3160 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3161 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3162 } 3163 3164 /* Restart timer after forward progress on connection. 3165 * RFC2988 recommends to restart timer to now+rto. 3166 */ 3167 static void tcp_rearm_rto(struct sock *sk) 3168 { 3169 struct tcp_sock *tp = tcp_sk(sk); 3170 3171 if (!tp->packets_out) { 3172 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3173 } else { 3174 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3175 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3176 } 3177 } 3178 3179 /* If we get here, the whole TSO packet has not been acked. */ 3180 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3181 { 3182 struct tcp_sock *tp = tcp_sk(sk); 3183 u32 packets_acked; 3184 3185 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3186 3187 packets_acked = tcp_skb_pcount(skb); 3188 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3189 return 0; 3190 packets_acked -= tcp_skb_pcount(skb); 3191 3192 if (packets_acked) { 3193 BUG_ON(tcp_skb_pcount(skb) == 0); 3194 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3195 } 3196 3197 return packets_acked; 3198 } 3199 3200 /* Remove acknowledged frames from the retransmission queue. If our packet 3201 * is before the ack sequence we can discard it as it's confirmed to have 3202 * arrived at the other end. 3203 */ 3204 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3205 u32 prior_snd_una) 3206 { 3207 struct tcp_sock *tp = tcp_sk(sk); 3208 const struct inet_connection_sock *icsk = inet_csk(sk); 3209 struct sk_buff *skb; 3210 u32 now = tcp_time_stamp; 3211 int fully_acked = 1; 3212 int flag = 0; 3213 u32 pkts_acked = 0; 3214 u32 reord = tp->packets_out; 3215 u32 prior_sacked = tp->sacked_out; 3216 s32 seq_rtt = -1; 3217 s32 ca_seq_rtt = -1; 3218 ktime_t last_ackt = net_invalid_timestamp(); 3219 3220 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3221 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3222 u32 acked_pcount; 3223 u8 sacked = scb->sacked; 3224 3225 /* Determine how many packets and what bytes were acked, tso and else */ 3226 if (after(scb->end_seq, tp->snd_una)) { 3227 if (tcp_skb_pcount(skb) == 1 || 3228 !after(tp->snd_una, scb->seq)) 3229 break; 3230 3231 acked_pcount = tcp_tso_acked(sk, skb); 3232 if (!acked_pcount) 3233 break; 3234 3235 fully_acked = 0; 3236 } else { 3237 acked_pcount = tcp_skb_pcount(skb); 3238 } 3239 3240 if (sacked & TCPCB_RETRANS) { 3241 if (sacked & TCPCB_SACKED_RETRANS) 3242 tp->retrans_out -= acked_pcount; 3243 flag |= FLAG_RETRANS_DATA_ACKED; 3244 ca_seq_rtt = -1; 3245 seq_rtt = -1; 3246 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3247 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3248 } else { 3249 ca_seq_rtt = now - scb->when; 3250 last_ackt = skb->tstamp; 3251 if (seq_rtt < 0) { 3252 seq_rtt = ca_seq_rtt; 3253 } 3254 if (!(sacked & TCPCB_SACKED_ACKED)) 3255 reord = min(pkts_acked, reord); 3256 } 3257 3258 if (sacked & TCPCB_SACKED_ACKED) 3259 tp->sacked_out -= acked_pcount; 3260 if (sacked & TCPCB_LOST) 3261 tp->lost_out -= acked_pcount; 3262 3263 tp->packets_out -= acked_pcount; 3264 pkts_acked += acked_pcount; 3265 3266 /* Initial outgoing SYN's get put onto the write_queue 3267 * just like anything else we transmit. It is not 3268 * true data, and if we misinform our callers that 3269 * this ACK acks real data, we will erroneously exit 3270 * connection startup slow start one packet too 3271 * quickly. This is severely frowned upon behavior. 3272 */ 3273 if (!(scb->flags & TCPCB_FLAG_SYN)) { 3274 flag |= FLAG_DATA_ACKED; 3275 } else { 3276 flag |= FLAG_SYN_ACKED; 3277 tp->retrans_stamp = 0; 3278 } 3279 3280 if (!fully_acked) 3281 break; 3282 3283 tcp_unlink_write_queue(skb, sk); 3284 sk_wmem_free_skb(sk, skb); 3285 tp->scoreboard_skb_hint = NULL; 3286 if (skb == tp->retransmit_skb_hint) 3287 tp->retransmit_skb_hint = NULL; 3288 if (skb == tp->lost_skb_hint) 3289 tp->lost_skb_hint = NULL; 3290 } 3291 3292 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3293 tp->snd_up = tp->snd_una; 3294 3295 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3296 flag |= FLAG_SACK_RENEGING; 3297 3298 if (flag & FLAG_ACKED) { 3299 const struct tcp_congestion_ops *ca_ops 3300 = inet_csk(sk)->icsk_ca_ops; 3301 3302 if (unlikely(icsk->icsk_mtup.probe_size && 3303 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3304 tcp_mtup_probe_success(sk); 3305 } 3306 3307 tcp_ack_update_rtt(sk, flag, seq_rtt); 3308 tcp_rearm_rto(sk); 3309 3310 if (tcp_is_reno(tp)) { 3311 tcp_remove_reno_sacks(sk, pkts_acked); 3312 } else { 3313 int delta; 3314 3315 /* Non-retransmitted hole got filled? That's reordering */ 3316 if (reord < prior_fackets) 3317 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3318 3319 delta = tcp_is_fack(tp) ? pkts_acked : 3320 prior_sacked - tp->sacked_out; 3321 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3322 } 3323 3324 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3325 3326 if (ca_ops->pkts_acked) { 3327 s32 rtt_us = -1; 3328 3329 /* Is the ACK triggering packet unambiguous? */ 3330 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3331 /* High resolution needed and available? */ 3332 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3333 !ktime_equal(last_ackt, 3334 net_invalid_timestamp())) 3335 rtt_us = ktime_us_delta(ktime_get_real(), 3336 last_ackt); 3337 else if (ca_seq_rtt > 0) 3338 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3339 } 3340 3341 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3342 } 3343 } 3344 3345 #if FASTRETRANS_DEBUG > 0 3346 WARN_ON((int)tp->sacked_out < 0); 3347 WARN_ON((int)tp->lost_out < 0); 3348 WARN_ON((int)tp->retrans_out < 0); 3349 if (!tp->packets_out && tcp_is_sack(tp)) { 3350 icsk = inet_csk(sk); 3351 if (tp->lost_out) { 3352 printk(KERN_DEBUG "Leak l=%u %d\n", 3353 tp->lost_out, icsk->icsk_ca_state); 3354 tp->lost_out = 0; 3355 } 3356 if (tp->sacked_out) { 3357 printk(KERN_DEBUG "Leak s=%u %d\n", 3358 tp->sacked_out, icsk->icsk_ca_state); 3359 tp->sacked_out = 0; 3360 } 3361 if (tp->retrans_out) { 3362 printk(KERN_DEBUG "Leak r=%u %d\n", 3363 tp->retrans_out, icsk->icsk_ca_state); 3364 tp->retrans_out = 0; 3365 } 3366 } 3367 #endif 3368 return flag; 3369 } 3370 3371 static void tcp_ack_probe(struct sock *sk) 3372 { 3373 const struct tcp_sock *tp = tcp_sk(sk); 3374 struct inet_connection_sock *icsk = inet_csk(sk); 3375 3376 /* Was it a usable window open? */ 3377 3378 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3379 icsk->icsk_backoff = 0; 3380 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3381 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3382 * This function is not for random using! 3383 */ 3384 } else { 3385 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3386 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3387 TCP_RTO_MAX); 3388 } 3389 } 3390 3391 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3392 { 3393 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3394 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 3395 } 3396 3397 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3398 { 3399 const struct tcp_sock *tp = tcp_sk(sk); 3400 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3401 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3402 } 3403 3404 /* Check that window update is acceptable. 3405 * The function assumes that snd_una<=ack<=snd_next. 3406 */ 3407 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3408 const u32 ack, const u32 ack_seq, 3409 const u32 nwin) 3410 { 3411 return (after(ack, tp->snd_una) || 3412 after(ack_seq, tp->snd_wl1) || 3413 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 3414 } 3415 3416 /* Update our send window. 3417 * 3418 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3419 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3420 */ 3421 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3422 u32 ack_seq) 3423 { 3424 struct tcp_sock *tp = tcp_sk(sk); 3425 int flag = 0; 3426 u32 nwin = ntohs(tcp_hdr(skb)->window); 3427 3428 if (likely(!tcp_hdr(skb)->syn)) 3429 nwin <<= tp->rx_opt.snd_wscale; 3430 3431 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3432 flag |= FLAG_WIN_UPDATE; 3433 tcp_update_wl(tp, ack_seq); 3434 3435 if (tp->snd_wnd != nwin) { 3436 tp->snd_wnd = nwin; 3437 3438 /* Note, it is the only place, where 3439 * fast path is recovered for sending TCP. 3440 */ 3441 tp->pred_flags = 0; 3442 tcp_fast_path_check(sk); 3443 3444 if (nwin > tp->max_window) { 3445 tp->max_window = nwin; 3446 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3447 } 3448 } 3449 } 3450 3451 tp->snd_una = ack; 3452 3453 return flag; 3454 } 3455 3456 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3457 * continue in congestion avoidance. 3458 */ 3459 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3460 { 3461 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3462 tp->snd_cwnd_cnt = 0; 3463 tp->bytes_acked = 0; 3464 TCP_ECN_queue_cwr(tp); 3465 tcp_moderate_cwnd(tp); 3466 } 3467 3468 /* A conservative spurious RTO response algorithm: reduce cwnd using 3469 * rate halving and continue in congestion avoidance. 3470 */ 3471 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3472 { 3473 tcp_enter_cwr(sk, 0); 3474 } 3475 3476 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3477 { 3478 if (flag & FLAG_ECE) 3479 tcp_ratehalving_spur_to_response(sk); 3480 else 3481 tcp_undo_cwr(sk, 1); 3482 } 3483 3484 /* F-RTO spurious RTO detection algorithm (RFC4138) 3485 * 3486 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3487 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3488 * window (but not to or beyond highest sequence sent before RTO): 3489 * On First ACK, send two new segments out. 3490 * On Second ACK, RTO was likely spurious. Do spurious response (response 3491 * algorithm is not part of the F-RTO detection algorithm 3492 * given in RFC4138 but can be selected separately). 3493 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3494 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3495 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3496 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3497 * 3498 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3499 * original window even after we transmit two new data segments. 3500 * 3501 * SACK version: 3502 * on first step, wait until first cumulative ACK arrives, then move to 3503 * the second step. In second step, the next ACK decides. 3504 * 3505 * F-RTO is implemented (mainly) in four functions: 3506 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3507 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3508 * called when tcp_use_frto() showed green light 3509 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3510 * - tcp_enter_frto_loss() is called if there is not enough evidence 3511 * to prove that the RTO is indeed spurious. It transfers the control 3512 * from F-RTO to the conventional RTO recovery 3513 */ 3514 static int tcp_process_frto(struct sock *sk, int flag) 3515 { 3516 struct tcp_sock *tp = tcp_sk(sk); 3517 3518 tcp_verify_left_out(tp); 3519 3520 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3521 if (flag & FLAG_DATA_ACKED) 3522 inet_csk(sk)->icsk_retransmits = 0; 3523 3524 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3525 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3526 tp->undo_marker = 0; 3527 3528 if (!before(tp->snd_una, tp->frto_highmark)) { 3529 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3530 return 1; 3531 } 3532 3533 if (!tcp_is_sackfrto(tp)) { 3534 /* RFC4138 shortcoming in step 2; should also have case c): 3535 * ACK isn't duplicate nor advances window, e.g., opposite dir 3536 * data, winupdate 3537 */ 3538 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3539 return 1; 3540 3541 if (!(flag & FLAG_DATA_ACKED)) { 3542 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3543 flag); 3544 return 1; 3545 } 3546 } else { 3547 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3548 /* Prevent sending of new data. */ 3549 tp->snd_cwnd = min(tp->snd_cwnd, 3550 tcp_packets_in_flight(tp)); 3551 return 1; 3552 } 3553 3554 if ((tp->frto_counter >= 2) && 3555 (!(flag & FLAG_FORWARD_PROGRESS) || 3556 ((flag & FLAG_DATA_SACKED) && 3557 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3558 /* RFC4138 shortcoming (see comment above) */ 3559 if (!(flag & FLAG_FORWARD_PROGRESS) && 3560 (flag & FLAG_NOT_DUP)) 3561 return 1; 3562 3563 tcp_enter_frto_loss(sk, 3, flag); 3564 return 1; 3565 } 3566 } 3567 3568 if (tp->frto_counter == 1) { 3569 /* tcp_may_send_now needs to see updated state */ 3570 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3571 tp->frto_counter = 2; 3572 3573 if (!tcp_may_send_now(sk)) 3574 tcp_enter_frto_loss(sk, 2, flag); 3575 3576 return 1; 3577 } else { 3578 switch (sysctl_tcp_frto_response) { 3579 case 2: 3580 tcp_undo_spur_to_response(sk, flag); 3581 break; 3582 case 1: 3583 tcp_conservative_spur_to_response(tp); 3584 break; 3585 default: 3586 tcp_ratehalving_spur_to_response(sk); 3587 break; 3588 } 3589 tp->frto_counter = 0; 3590 tp->undo_marker = 0; 3591 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3592 } 3593 return 0; 3594 } 3595 3596 /* This routine deals with incoming acks, but not outgoing ones. */ 3597 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3598 { 3599 struct inet_connection_sock *icsk = inet_csk(sk); 3600 struct tcp_sock *tp = tcp_sk(sk); 3601 u32 prior_snd_una = tp->snd_una; 3602 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3603 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3604 u32 prior_in_flight; 3605 u32 prior_fackets; 3606 int prior_packets; 3607 int frto_cwnd = 0; 3608 3609 /* If the ack is older than previous acks 3610 * then we can probably ignore it. 3611 */ 3612 if (before(ack, prior_snd_una)) 3613 goto old_ack; 3614 3615 /* If the ack includes data we haven't sent yet, discard 3616 * this segment (RFC793 Section 3.9). 3617 */ 3618 if (after(ack, tp->snd_nxt)) 3619 goto invalid_ack; 3620 3621 if (after(ack, prior_snd_una)) 3622 flag |= FLAG_SND_UNA_ADVANCED; 3623 3624 if (sysctl_tcp_abc) { 3625 if (icsk->icsk_ca_state < TCP_CA_CWR) 3626 tp->bytes_acked += ack - prior_snd_una; 3627 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3628 /* we assume just one segment left network */ 3629 tp->bytes_acked += min(ack - prior_snd_una, 3630 tp->mss_cache); 3631 } 3632 3633 prior_fackets = tp->fackets_out; 3634 prior_in_flight = tcp_packets_in_flight(tp); 3635 3636 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3637 /* Window is constant, pure forward advance. 3638 * No more checks are required. 3639 * Note, we use the fact that SND.UNA>=SND.WL2. 3640 */ 3641 tcp_update_wl(tp, ack_seq); 3642 tp->snd_una = ack; 3643 flag |= FLAG_WIN_UPDATE; 3644 3645 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3646 3647 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3648 } else { 3649 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3650 flag |= FLAG_DATA; 3651 else 3652 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3653 3654 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3655 3656 if (TCP_SKB_CB(skb)->sacked) 3657 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3658 3659 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3660 flag |= FLAG_ECE; 3661 3662 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3663 } 3664 3665 /* We passed data and got it acked, remove any soft error 3666 * log. Something worked... 3667 */ 3668 sk->sk_err_soft = 0; 3669 icsk->icsk_probes_out = 0; 3670 tp->rcv_tstamp = tcp_time_stamp; 3671 prior_packets = tp->packets_out; 3672 if (!prior_packets) 3673 goto no_queue; 3674 3675 /* See if we can take anything off of the retransmit queue. */ 3676 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3677 3678 if (tp->frto_counter) 3679 frto_cwnd = tcp_process_frto(sk, flag); 3680 /* Guarantee sacktag reordering detection against wrap-arounds */ 3681 if (before(tp->frto_highmark, tp->snd_una)) 3682 tp->frto_highmark = 0; 3683 3684 if (tcp_ack_is_dubious(sk, flag)) { 3685 /* Advance CWND, if state allows this. */ 3686 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3687 tcp_may_raise_cwnd(sk, flag)) 3688 tcp_cong_avoid(sk, ack, prior_in_flight); 3689 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3690 flag); 3691 } else { 3692 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3693 tcp_cong_avoid(sk, ack, prior_in_flight); 3694 } 3695 3696 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3697 dst_confirm(sk->sk_dst_cache); 3698 3699 return 1; 3700 3701 no_queue: 3702 /* If this ack opens up a zero window, clear backoff. It was 3703 * being used to time the probes, and is probably far higher than 3704 * it needs to be for normal retransmission. 3705 */ 3706 if (tcp_send_head(sk)) 3707 tcp_ack_probe(sk); 3708 return 1; 3709 3710 invalid_ack: 3711 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3712 return -1; 3713 3714 old_ack: 3715 if (TCP_SKB_CB(skb)->sacked) { 3716 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3717 if (icsk->icsk_ca_state == TCP_CA_Open) 3718 tcp_try_keep_open(sk); 3719 } 3720 3721 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3722 return 0; 3723 } 3724 3725 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3726 * But, this can also be called on packets in the established flow when 3727 * the fast version below fails. 3728 */ 3729 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3730 u8 **hvpp, int estab) 3731 { 3732 unsigned char *ptr; 3733 struct tcphdr *th = tcp_hdr(skb); 3734 int length = (th->doff * 4) - sizeof(struct tcphdr); 3735 3736 ptr = (unsigned char *)(th + 1); 3737 opt_rx->saw_tstamp = 0; 3738 3739 while (length > 0) { 3740 int opcode = *ptr++; 3741 int opsize; 3742 3743 switch (opcode) { 3744 case TCPOPT_EOL: 3745 return; 3746 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3747 length--; 3748 continue; 3749 default: 3750 opsize = *ptr++; 3751 if (opsize < 2) /* "silly options" */ 3752 return; 3753 if (opsize > length) 3754 return; /* don't parse partial options */ 3755 switch (opcode) { 3756 case TCPOPT_MSS: 3757 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3758 u16 in_mss = get_unaligned_be16(ptr); 3759 if (in_mss) { 3760 if (opt_rx->user_mss && 3761 opt_rx->user_mss < in_mss) 3762 in_mss = opt_rx->user_mss; 3763 opt_rx->mss_clamp = in_mss; 3764 } 3765 } 3766 break; 3767 case TCPOPT_WINDOW: 3768 if (opsize == TCPOLEN_WINDOW && th->syn && 3769 !estab && sysctl_tcp_window_scaling) { 3770 __u8 snd_wscale = *(__u8 *)ptr; 3771 opt_rx->wscale_ok = 1; 3772 if (snd_wscale > 14) { 3773 if (net_ratelimit()) 3774 printk(KERN_INFO "tcp_parse_options: Illegal window " 3775 "scaling value %d >14 received.\n", 3776 snd_wscale); 3777 snd_wscale = 14; 3778 } 3779 opt_rx->snd_wscale = snd_wscale; 3780 } 3781 break; 3782 case TCPOPT_TIMESTAMP: 3783 if ((opsize == TCPOLEN_TIMESTAMP) && 3784 ((estab && opt_rx->tstamp_ok) || 3785 (!estab && sysctl_tcp_timestamps))) { 3786 opt_rx->saw_tstamp = 1; 3787 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3788 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3789 } 3790 break; 3791 case TCPOPT_SACK_PERM: 3792 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3793 !estab && sysctl_tcp_sack) { 3794 opt_rx->sack_ok = 1; 3795 tcp_sack_reset(opt_rx); 3796 } 3797 break; 3798 3799 case TCPOPT_SACK: 3800 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3801 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3802 opt_rx->sack_ok) { 3803 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3804 } 3805 break; 3806 #ifdef CONFIG_TCP_MD5SIG 3807 case TCPOPT_MD5SIG: 3808 /* 3809 * The MD5 Hash has already been 3810 * checked (see tcp_v{4,6}_do_rcv()). 3811 */ 3812 break; 3813 #endif 3814 case TCPOPT_COOKIE: 3815 /* This option is variable length. 3816 */ 3817 switch (opsize) { 3818 case TCPOLEN_COOKIE_BASE: 3819 /* not yet implemented */ 3820 break; 3821 case TCPOLEN_COOKIE_PAIR: 3822 /* not yet implemented */ 3823 break; 3824 case TCPOLEN_COOKIE_MIN+0: 3825 case TCPOLEN_COOKIE_MIN+2: 3826 case TCPOLEN_COOKIE_MIN+4: 3827 case TCPOLEN_COOKIE_MIN+6: 3828 case TCPOLEN_COOKIE_MAX: 3829 /* 16-bit multiple */ 3830 opt_rx->cookie_plus = opsize; 3831 *hvpp = ptr; 3832 default: 3833 /* ignore option */ 3834 break; 3835 }; 3836 break; 3837 }; 3838 3839 ptr += opsize-2; 3840 length -= opsize; 3841 } 3842 } 3843 } 3844 3845 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3846 { 3847 __be32 *ptr = (__be32 *)(th + 1); 3848 3849 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3850 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3851 tp->rx_opt.saw_tstamp = 1; 3852 ++ptr; 3853 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3854 ++ptr; 3855 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3856 return 1; 3857 } 3858 return 0; 3859 } 3860 3861 /* Fast parse options. This hopes to only see timestamps. 3862 * If it is wrong it falls back on tcp_parse_options(). 3863 */ 3864 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3865 struct tcp_sock *tp, u8 **hvpp) 3866 { 3867 /* In the spirit of fast parsing, compare doff directly to constant 3868 * values. Because equality is used, short doff can be ignored here. 3869 */ 3870 if (th->doff == (sizeof(*th) / 4)) { 3871 tp->rx_opt.saw_tstamp = 0; 3872 return 0; 3873 } else if (tp->rx_opt.tstamp_ok && 3874 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3875 if (tcp_parse_aligned_timestamp(tp, th)) 3876 return 1; 3877 } 3878 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); 3879 return 1; 3880 } 3881 3882 #ifdef CONFIG_TCP_MD5SIG 3883 /* 3884 * Parse MD5 Signature option 3885 */ 3886 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3887 { 3888 int length = (th->doff << 2) - sizeof (*th); 3889 u8 *ptr = (u8*)(th + 1); 3890 3891 /* If the TCP option is too short, we can short cut */ 3892 if (length < TCPOLEN_MD5SIG) 3893 return NULL; 3894 3895 while (length > 0) { 3896 int opcode = *ptr++; 3897 int opsize; 3898 3899 switch(opcode) { 3900 case TCPOPT_EOL: 3901 return NULL; 3902 case TCPOPT_NOP: 3903 length--; 3904 continue; 3905 default: 3906 opsize = *ptr++; 3907 if (opsize < 2 || opsize > length) 3908 return NULL; 3909 if (opcode == TCPOPT_MD5SIG) 3910 return ptr; 3911 } 3912 ptr += opsize - 2; 3913 length -= opsize; 3914 } 3915 return NULL; 3916 } 3917 #endif 3918 3919 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3920 { 3921 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3922 tp->rx_opt.ts_recent_stamp = get_seconds(); 3923 } 3924 3925 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3926 { 3927 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3928 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3929 * extra check below makes sure this can only happen 3930 * for pure ACK frames. -DaveM 3931 * 3932 * Not only, also it occurs for expired timestamps. 3933 */ 3934 3935 if (tcp_paws_check(&tp->rx_opt, 0)) 3936 tcp_store_ts_recent(tp); 3937 } 3938 } 3939 3940 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3941 * 3942 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3943 * it can pass through stack. So, the following predicate verifies that 3944 * this segment is not used for anything but congestion avoidance or 3945 * fast retransmit. Moreover, we even are able to eliminate most of such 3946 * second order effects, if we apply some small "replay" window (~RTO) 3947 * to timestamp space. 3948 * 3949 * All these measures still do not guarantee that we reject wrapped ACKs 3950 * on networks with high bandwidth, when sequence space is recycled fastly, 3951 * but it guarantees that such events will be very rare and do not affect 3952 * connection seriously. This doesn't look nice, but alas, PAWS is really 3953 * buggy extension. 3954 * 3955 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3956 * states that events when retransmit arrives after original data are rare. 3957 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3958 * the biggest problem on large power networks even with minor reordering. 3959 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3960 * up to bandwidth of 18Gigabit/sec. 8) ] 3961 */ 3962 3963 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3964 { 3965 struct tcp_sock *tp = tcp_sk(sk); 3966 struct tcphdr *th = tcp_hdr(skb); 3967 u32 seq = TCP_SKB_CB(skb)->seq; 3968 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3969 3970 return (/* 1. Pure ACK with correct sequence number. */ 3971 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3972 3973 /* 2. ... and duplicate ACK. */ 3974 ack == tp->snd_una && 3975 3976 /* 3. ... and does not update window. */ 3977 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3978 3979 /* 4. ... and sits in replay window. */ 3980 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3981 } 3982 3983 static inline int tcp_paws_discard(const struct sock *sk, 3984 const struct sk_buff *skb) 3985 { 3986 const struct tcp_sock *tp = tcp_sk(sk); 3987 3988 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3989 !tcp_disordered_ack(sk, skb); 3990 } 3991 3992 /* Check segment sequence number for validity. 3993 * 3994 * Segment controls are considered valid, if the segment 3995 * fits to the window after truncation to the window. Acceptability 3996 * of data (and SYN, FIN, of course) is checked separately. 3997 * See tcp_data_queue(), for example. 3998 * 3999 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4000 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4001 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4002 * (borrowed from freebsd) 4003 */ 4004 4005 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 4006 { 4007 return !before(end_seq, tp->rcv_wup) && 4008 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4009 } 4010 4011 /* When we get a reset we do this. */ 4012 static void tcp_reset(struct sock *sk) 4013 { 4014 /* We want the right error as BSD sees it (and indeed as we do). */ 4015 switch (sk->sk_state) { 4016 case TCP_SYN_SENT: 4017 sk->sk_err = ECONNREFUSED; 4018 break; 4019 case TCP_CLOSE_WAIT: 4020 sk->sk_err = EPIPE; 4021 break; 4022 case TCP_CLOSE: 4023 return; 4024 default: 4025 sk->sk_err = ECONNRESET; 4026 } 4027 4028 if (!sock_flag(sk, SOCK_DEAD)) 4029 sk->sk_error_report(sk); 4030 4031 tcp_done(sk); 4032 } 4033 4034 /* 4035 * Process the FIN bit. This now behaves as it is supposed to work 4036 * and the FIN takes effect when it is validly part of sequence 4037 * space. Not before when we get holes. 4038 * 4039 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4040 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4041 * TIME-WAIT) 4042 * 4043 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4044 * close and we go into CLOSING (and later onto TIME-WAIT) 4045 * 4046 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4047 */ 4048 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 4049 { 4050 struct tcp_sock *tp = tcp_sk(sk); 4051 4052 inet_csk_schedule_ack(sk); 4053 4054 sk->sk_shutdown |= RCV_SHUTDOWN; 4055 sock_set_flag(sk, SOCK_DONE); 4056 4057 switch (sk->sk_state) { 4058 case TCP_SYN_RECV: 4059 case TCP_ESTABLISHED: 4060 /* Move to CLOSE_WAIT */ 4061 tcp_set_state(sk, TCP_CLOSE_WAIT); 4062 inet_csk(sk)->icsk_ack.pingpong = 1; 4063 break; 4064 4065 case TCP_CLOSE_WAIT: 4066 case TCP_CLOSING: 4067 /* Received a retransmission of the FIN, do 4068 * nothing. 4069 */ 4070 break; 4071 case TCP_LAST_ACK: 4072 /* RFC793: Remain in the LAST-ACK state. */ 4073 break; 4074 4075 case TCP_FIN_WAIT1: 4076 /* This case occurs when a simultaneous close 4077 * happens, we must ack the received FIN and 4078 * enter the CLOSING state. 4079 */ 4080 tcp_send_ack(sk); 4081 tcp_set_state(sk, TCP_CLOSING); 4082 break; 4083 case TCP_FIN_WAIT2: 4084 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4085 tcp_send_ack(sk); 4086 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4087 break; 4088 default: 4089 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4090 * cases we should never reach this piece of code. 4091 */ 4092 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4093 __func__, sk->sk_state); 4094 break; 4095 } 4096 4097 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4098 * Probably, we should reset in this case. For now drop them. 4099 */ 4100 __skb_queue_purge(&tp->out_of_order_queue); 4101 if (tcp_is_sack(tp)) 4102 tcp_sack_reset(&tp->rx_opt); 4103 sk_mem_reclaim(sk); 4104 4105 if (!sock_flag(sk, SOCK_DEAD)) { 4106 sk->sk_state_change(sk); 4107 4108 /* Do not send POLL_HUP for half duplex close. */ 4109 if (sk->sk_shutdown == SHUTDOWN_MASK || 4110 sk->sk_state == TCP_CLOSE) 4111 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4112 else 4113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4114 } 4115 } 4116 4117 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4118 u32 end_seq) 4119 { 4120 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4121 if (before(seq, sp->start_seq)) 4122 sp->start_seq = seq; 4123 if (after(end_seq, sp->end_seq)) 4124 sp->end_seq = end_seq; 4125 return 1; 4126 } 4127 return 0; 4128 } 4129 4130 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4131 { 4132 struct tcp_sock *tp = tcp_sk(sk); 4133 4134 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4135 int mib_idx; 4136 4137 if (before(seq, tp->rcv_nxt)) 4138 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4139 else 4140 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4141 4142 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4143 4144 tp->rx_opt.dsack = 1; 4145 tp->duplicate_sack[0].start_seq = seq; 4146 tp->duplicate_sack[0].end_seq = end_seq; 4147 } 4148 } 4149 4150 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4151 { 4152 struct tcp_sock *tp = tcp_sk(sk); 4153 4154 if (!tp->rx_opt.dsack) 4155 tcp_dsack_set(sk, seq, end_seq); 4156 else 4157 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4158 } 4159 4160 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4161 { 4162 struct tcp_sock *tp = tcp_sk(sk); 4163 4164 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4165 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4167 tcp_enter_quickack_mode(sk); 4168 4169 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4170 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4171 4172 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4173 end_seq = tp->rcv_nxt; 4174 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4175 } 4176 } 4177 4178 tcp_send_ack(sk); 4179 } 4180 4181 /* These routines update the SACK block as out-of-order packets arrive or 4182 * in-order packets close up the sequence space. 4183 */ 4184 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4185 { 4186 int this_sack; 4187 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4188 struct tcp_sack_block *swalk = sp + 1; 4189 4190 /* See if the recent change to the first SACK eats into 4191 * or hits the sequence space of other SACK blocks, if so coalesce. 4192 */ 4193 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4194 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4195 int i; 4196 4197 /* Zap SWALK, by moving every further SACK up by one slot. 4198 * Decrease num_sacks. 4199 */ 4200 tp->rx_opt.num_sacks--; 4201 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4202 sp[i] = sp[i + 1]; 4203 continue; 4204 } 4205 this_sack++, swalk++; 4206 } 4207 } 4208 4209 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4210 { 4211 struct tcp_sock *tp = tcp_sk(sk); 4212 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4213 int cur_sacks = tp->rx_opt.num_sacks; 4214 int this_sack; 4215 4216 if (!cur_sacks) 4217 goto new_sack; 4218 4219 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4220 if (tcp_sack_extend(sp, seq, end_seq)) { 4221 /* Rotate this_sack to the first one. */ 4222 for (; this_sack > 0; this_sack--, sp--) 4223 swap(*sp, *(sp - 1)); 4224 if (cur_sacks > 1) 4225 tcp_sack_maybe_coalesce(tp); 4226 return; 4227 } 4228 } 4229 4230 /* Could not find an adjacent existing SACK, build a new one, 4231 * put it at the front, and shift everyone else down. We 4232 * always know there is at least one SACK present already here. 4233 * 4234 * If the sack array is full, forget about the last one. 4235 */ 4236 if (this_sack >= TCP_NUM_SACKS) { 4237 this_sack--; 4238 tp->rx_opt.num_sacks--; 4239 sp--; 4240 } 4241 for (; this_sack > 0; this_sack--, sp--) 4242 *sp = *(sp - 1); 4243 4244 new_sack: 4245 /* Build the new head SACK, and we're done. */ 4246 sp->start_seq = seq; 4247 sp->end_seq = end_seq; 4248 tp->rx_opt.num_sacks++; 4249 } 4250 4251 /* RCV.NXT advances, some SACKs should be eaten. */ 4252 4253 static void tcp_sack_remove(struct tcp_sock *tp) 4254 { 4255 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4256 int num_sacks = tp->rx_opt.num_sacks; 4257 int this_sack; 4258 4259 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4260 if (skb_queue_empty(&tp->out_of_order_queue)) { 4261 tp->rx_opt.num_sacks = 0; 4262 return; 4263 } 4264 4265 for (this_sack = 0; this_sack < num_sacks;) { 4266 /* Check if the start of the sack is covered by RCV.NXT. */ 4267 if (!before(tp->rcv_nxt, sp->start_seq)) { 4268 int i; 4269 4270 /* RCV.NXT must cover all the block! */ 4271 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4272 4273 /* Zap this SACK, by moving forward any other SACKS. */ 4274 for (i=this_sack+1; i < num_sacks; i++) 4275 tp->selective_acks[i-1] = tp->selective_acks[i]; 4276 num_sacks--; 4277 continue; 4278 } 4279 this_sack++; 4280 sp++; 4281 } 4282 tp->rx_opt.num_sacks = num_sacks; 4283 } 4284 4285 /* This one checks to see if we can put data from the 4286 * out_of_order queue into the receive_queue. 4287 */ 4288 static void tcp_ofo_queue(struct sock *sk) 4289 { 4290 struct tcp_sock *tp = tcp_sk(sk); 4291 __u32 dsack_high = tp->rcv_nxt; 4292 struct sk_buff *skb; 4293 4294 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4295 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4296 break; 4297 4298 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4299 __u32 dsack = dsack_high; 4300 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4301 dsack_high = TCP_SKB_CB(skb)->end_seq; 4302 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4303 } 4304 4305 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4306 SOCK_DEBUG(sk, "ofo packet was already received \n"); 4307 __skb_unlink(skb, &tp->out_of_order_queue); 4308 __kfree_skb(skb); 4309 continue; 4310 } 4311 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4312 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4313 TCP_SKB_CB(skb)->end_seq); 4314 4315 __skb_unlink(skb, &tp->out_of_order_queue); 4316 __skb_queue_tail(&sk->sk_receive_queue, skb); 4317 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4318 if (tcp_hdr(skb)->fin) 4319 tcp_fin(skb, sk, tcp_hdr(skb)); 4320 } 4321 } 4322 4323 static int tcp_prune_ofo_queue(struct sock *sk); 4324 static int tcp_prune_queue(struct sock *sk); 4325 4326 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4327 { 4328 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4329 !sk_rmem_schedule(sk, size)) { 4330 4331 if (tcp_prune_queue(sk) < 0) 4332 return -1; 4333 4334 if (!sk_rmem_schedule(sk, size)) { 4335 if (!tcp_prune_ofo_queue(sk)) 4336 return -1; 4337 4338 if (!sk_rmem_schedule(sk, size)) 4339 return -1; 4340 } 4341 } 4342 return 0; 4343 } 4344 4345 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4346 { 4347 struct tcphdr *th = tcp_hdr(skb); 4348 struct tcp_sock *tp = tcp_sk(sk); 4349 int eaten = -1; 4350 4351 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4352 goto drop; 4353 4354 __skb_pull(skb, th->doff * 4); 4355 4356 TCP_ECN_accept_cwr(tp, skb); 4357 4358 tp->rx_opt.dsack = 0; 4359 4360 /* Queue data for delivery to the user. 4361 * Packets in sequence go to the receive queue. 4362 * Out of sequence packets to the out_of_order_queue. 4363 */ 4364 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4365 if (tcp_receive_window(tp) == 0) 4366 goto out_of_window; 4367 4368 /* Ok. In sequence. In window. */ 4369 if (tp->ucopy.task == current && 4370 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4371 sock_owned_by_user(sk) && !tp->urg_data) { 4372 int chunk = min_t(unsigned int, skb->len, 4373 tp->ucopy.len); 4374 4375 __set_current_state(TASK_RUNNING); 4376 4377 local_bh_enable(); 4378 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4379 tp->ucopy.len -= chunk; 4380 tp->copied_seq += chunk; 4381 eaten = (chunk == skb->len && !th->fin); 4382 tcp_rcv_space_adjust(sk); 4383 } 4384 local_bh_disable(); 4385 } 4386 4387 if (eaten <= 0) { 4388 queue_and_out: 4389 if (eaten < 0 && 4390 tcp_try_rmem_schedule(sk, skb->truesize)) 4391 goto drop; 4392 4393 skb_set_owner_r(skb, sk); 4394 __skb_queue_tail(&sk->sk_receive_queue, skb); 4395 } 4396 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4397 if (skb->len) 4398 tcp_event_data_recv(sk, skb); 4399 if (th->fin) 4400 tcp_fin(skb, sk, th); 4401 4402 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4403 tcp_ofo_queue(sk); 4404 4405 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4406 * gap in queue is filled. 4407 */ 4408 if (skb_queue_empty(&tp->out_of_order_queue)) 4409 inet_csk(sk)->icsk_ack.pingpong = 0; 4410 } 4411 4412 if (tp->rx_opt.num_sacks) 4413 tcp_sack_remove(tp); 4414 4415 tcp_fast_path_check(sk); 4416 4417 if (eaten > 0) 4418 __kfree_skb(skb); 4419 else if (!sock_flag(sk, SOCK_DEAD)) 4420 sk->sk_data_ready(sk, 0); 4421 return; 4422 } 4423 4424 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4425 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4427 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4428 4429 out_of_window: 4430 tcp_enter_quickack_mode(sk); 4431 inet_csk_schedule_ack(sk); 4432 drop: 4433 __kfree_skb(skb); 4434 return; 4435 } 4436 4437 /* Out of window. F.e. zero window probe. */ 4438 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4439 goto out_of_window; 4440 4441 tcp_enter_quickack_mode(sk); 4442 4443 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4444 /* Partial packet, seq < rcv_next < end_seq */ 4445 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4446 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4447 TCP_SKB_CB(skb)->end_seq); 4448 4449 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4450 4451 /* If window is closed, drop tail of packet. But after 4452 * remembering D-SACK for its head made in previous line. 4453 */ 4454 if (!tcp_receive_window(tp)) 4455 goto out_of_window; 4456 goto queue_and_out; 4457 } 4458 4459 TCP_ECN_check_ce(tp, skb); 4460 4461 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4462 goto drop; 4463 4464 /* Disable header prediction. */ 4465 tp->pred_flags = 0; 4466 inet_csk_schedule_ack(sk); 4467 4468 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4469 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4470 4471 skb_set_owner_r(skb, sk); 4472 4473 if (!skb_peek(&tp->out_of_order_queue)) { 4474 /* Initial out of order segment, build 1 SACK. */ 4475 if (tcp_is_sack(tp)) { 4476 tp->rx_opt.num_sacks = 1; 4477 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4478 tp->selective_acks[0].end_seq = 4479 TCP_SKB_CB(skb)->end_seq; 4480 } 4481 __skb_queue_head(&tp->out_of_order_queue, skb); 4482 } else { 4483 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue); 4484 u32 seq = TCP_SKB_CB(skb)->seq; 4485 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4486 4487 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4488 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4489 4490 if (!tp->rx_opt.num_sacks || 4491 tp->selective_acks[0].end_seq != seq) 4492 goto add_sack; 4493 4494 /* Common case: data arrive in order after hole. */ 4495 tp->selective_acks[0].end_seq = end_seq; 4496 return; 4497 } 4498 4499 /* Find place to insert this segment. */ 4500 while (1) { 4501 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4502 break; 4503 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4504 skb1 = NULL; 4505 break; 4506 } 4507 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4508 } 4509 4510 /* Do skb overlap to previous one? */ 4511 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4512 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4513 /* All the bits are present. Drop. */ 4514 __kfree_skb(skb); 4515 tcp_dsack_set(sk, seq, end_seq); 4516 goto add_sack; 4517 } 4518 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4519 /* Partial overlap. */ 4520 tcp_dsack_set(sk, seq, 4521 TCP_SKB_CB(skb1)->end_seq); 4522 } else { 4523 if (skb_queue_is_first(&tp->out_of_order_queue, 4524 skb1)) 4525 skb1 = NULL; 4526 else 4527 skb1 = skb_queue_prev( 4528 &tp->out_of_order_queue, 4529 skb1); 4530 } 4531 } 4532 if (!skb1) 4533 __skb_queue_head(&tp->out_of_order_queue, skb); 4534 else 4535 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4536 4537 /* And clean segments covered by new one as whole. */ 4538 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4539 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4540 4541 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4542 break; 4543 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4544 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4545 end_seq); 4546 break; 4547 } 4548 __skb_unlink(skb1, &tp->out_of_order_queue); 4549 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4550 TCP_SKB_CB(skb1)->end_seq); 4551 __kfree_skb(skb1); 4552 } 4553 4554 add_sack: 4555 if (tcp_is_sack(tp)) 4556 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4557 } 4558 } 4559 4560 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4561 struct sk_buff_head *list) 4562 { 4563 struct sk_buff *next = NULL; 4564 4565 if (!skb_queue_is_last(list, skb)) 4566 next = skb_queue_next(list, skb); 4567 4568 __skb_unlink(skb, list); 4569 __kfree_skb(skb); 4570 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4571 4572 return next; 4573 } 4574 4575 /* Collapse contiguous sequence of skbs head..tail with 4576 * sequence numbers start..end. 4577 * 4578 * If tail is NULL, this means until the end of the list. 4579 * 4580 * Segments with FIN/SYN are not collapsed (only because this 4581 * simplifies code) 4582 */ 4583 static void 4584 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4585 struct sk_buff *head, struct sk_buff *tail, 4586 u32 start, u32 end) 4587 { 4588 struct sk_buff *skb, *n; 4589 bool end_of_skbs; 4590 4591 /* First, check that queue is collapsible and find 4592 * the point where collapsing can be useful. */ 4593 skb = head; 4594 restart: 4595 end_of_skbs = true; 4596 skb_queue_walk_from_safe(list, skb, n) { 4597 if (skb == tail) 4598 break; 4599 /* No new bits? It is possible on ofo queue. */ 4600 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4601 skb = tcp_collapse_one(sk, skb, list); 4602 if (!skb) 4603 break; 4604 goto restart; 4605 } 4606 4607 /* The first skb to collapse is: 4608 * - not SYN/FIN and 4609 * - bloated or contains data before "start" or 4610 * overlaps to the next one. 4611 */ 4612 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4613 (tcp_win_from_space(skb->truesize) > skb->len || 4614 before(TCP_SKB_CB(skb)->seq, start))) { 4615 end_of_skbs = false; 4616 break; 4617 } 4618 4619 if (!skb_queue_is_last(list, skb)) { 4620 struct sk_buff *next = skb_queue_next(list, skb); 4621 if (next != tail && 4622 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4623 end_of_skbs = false; 4624 break; 4625 } 4626 } 4627 4628 /* Decided to skip this, advance start seq. */ 4629 start = TCP_SKB_CB(skb)->end_seq; 4630 } 4631 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4632 return; 4633 4634 while (before(start, end)) { 4635 struct sk_buff *nskb; 4636 unsigned int header = skb_headroom(skb); 4637 int copy = SKB_MAX_ORDER(header, 0); 4638 4639 /* Too big header? This can happen with IPv6. */ 4640 if (copy < 0) 4641 return; 4642 if (end - start < copy) 4643 copy = end - start; 4644 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4645 if (!nskb) 4646 return; 4647 4648 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4649 skb_set_network_header(nskb, (skb_network_header(skb) - 4650 skb->head)); 4651 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4652 skb->head)); 4653 skb_reserve(nskb, header); 4654 memcpy(nskb->head, skb->head, header); 4655 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4656 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4657 __skb_queue_before(list, skb, nskb); 4658 skb_set_owner_r(nskb, sk); 4659 4660 /* Copy data, releasing collapsed skbs. */ 4661 while (copy > 0) { 4662 int offset = start - TCP_SKB_CB(skb)->seq; 4663 int size = TCP_SKB_CB(skb)->end_seq - start; 4664 4665 BUG_ON(offset < 0); 4666 if (size > 0) { 4667 size = min(copy, size); 4668 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4669 BUG(); 4670 TCP_SKB_CB(nskb)->end_seq += size; 4671 copy -= size; 4672 start += size; 4673 } 4674 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4675 skb = tcp_collapse_one(sk, skb, list); 4676 if (!skb || 4677 skb == tail || 4678 tcp_hdr(skb)->syn || 4679 tcp_hdr(skb)->fin) 4680 return; 4681 } 4682 } 4683 } 4684 } 4685 4686 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4687 * and tcp_collapse() them until all the queue is collapsed. 4688 */ 4689 static void tcp_collapse_ofo_queue(struct sock *sk) 4690 { 4691 struct tcp_sock *tp = tcp_sk(sk); 4692 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4693 struct sk_buff *head; 4694 u32 start, end; 4695 4696 if (skb == NULL) 4697 return; 4698 4699 start = TCP_SKB_CB(skb)->seq; 4700 end = TCP_SKB_CB(skb)->end_seq; 4701 head = skb; 4702 4703 for (;;) { 4704 struct sk_buff *next = NULL; 4705 4706 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4707 next = skb_queue_next(&tp->out_of_order_queue, skb); 4708 skb = next; 4709 4710 /* Segment is terminated when we see gap or when 4711 * we are at the end of all the queue. */ 4712 if (!skb || 4713 after(TCP_SKB_CB(skb)->seq, end) || 4714 before(TCP_SKB_CB(skb)->end_seq, start)) { 4715 tcp_collapse(sk, &tp->out_of_order_queue, 4716 head, skb, start, end); 4717 head = skb; 4718 if (!skb) 4719 break; 4720 /* Start new segment */ 4721 start = TCP_SKB_CB(skb)->seq; 4722 end = TCP_SKB_CB(skb)->end_seq; 4723 } else { 4724 if (before(TCP_SKB_CB(skb)->seq, start)) 4725 start = TCP_SKB_CB(skb)->seq; 4726 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4727 end = TCP_SKB_CB(skb)->end_seq; 4728 } 4729 } 4730 } 4731 4732 /* 4733 * Purge the out-of-order queue. 4734 * Return true if queue was pruned. 4735 */ 4736 static int tcp_prune_ofo_queue(struct sock *sk) 4737 { 4738 struct tcp_sock *tp = tcp_sk(sk); 4739 int res = 0; 4740 4741 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4742 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4743 __skb_queue_purge(&tp->out_of_order_queue); 4744 4745 /* Reset SACK state. A conforming SACK implementation will 4746 * do the same at a timeout based retransmit. When a connection 4747 * is in a sad state like this, we care only about integrity 4748 * of the connection not performance. 4749 */ 4750 if (tp->rx_opt.sack_ok) 4751 tcp_sack_reset(&tp->rx_opt); 4752 sk_mem_reclaim(sk); 4753 res = 1; 4754 } 4755 return res; 4756 } 4757 4758 /* Reduce allocated memory if we can, trying to get 4759 * the socket within its memory limits again. 4760 * 4761 * Return less than zero if we should start dropping frames 4762 * until the socket owning process reads some of the data 4763 * to stabilize the situation. 4764 */ 4765 static int tcp_prune_queue(struct sock *sk) 4766 { 4767 struct tcp_sock *tp = tcp_sk(sk); 4768 4769 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4770 4771 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4772 4773 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4774 tcp_clamp_window(sk); 4775 else if (tcp_memory_pressure) 4776 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4777 4778 tcp_collapse_ofo_queue(sk); 4779 if (!skb_queue_empty(&sk->sk_receive_queue)) 4780 tcp_collapse(sk, &sk->sk_receive_queue, 4781 skb_peek(&sk->sk_receive_queue), 4782 NULL, 4783 tp->copied_seq, tp->rcv_nxt); 4784 sk_mem_reclaim(sk); 4785 4786 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4787 return 0; 4788 4789 /* Collapsing did not help, destructive actions follow. 4790 * This must not ever occur. */ 4791 4792 tcp_prune_ofo_queue(sk); 4793 4794 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4795 return 0; 4796 4797 /* If we are really being abused, tell the caller to silently 4798 * drop receive data on the floor. It will get retransmitted 4799 * and hopefully then we'll have sufficient space. 4800 */ 4801 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4802 4803 /* Massive buffer overcommit. */ 4804 tp->pred_flags = 0; 4805 return -1; 4806 } 4807 4808 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4809 * As additional protections, we do not touch cwnd in retransmission phases, 4810 * and if application hit its sndbuf limit recently. 4811 */ 4812 void tcp_cwnd_application_limited(struct sock *sk) 4813 { 4814 struct tcp_sock *tp = tcp_sk(sk); 4815 4816 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4817 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4818 /* Limited by application or receiver window. */ 4819 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4820 u32 win_used = max(tp->snd_cwnd_used, init_win); 4821 if (win_used < tp->snd_cwnd) { 4822 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4823 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4824 } 4825 tp->snd_cwnd_used = 0; 4826 } 4827 tp->snd_cwnd_stamp = tcp_time_stamp; 4828 } 4829 4830 static int tcp_should_expand_sndbuf(struct sock *sk) 4831 { 4832 struct tcp_sock *tp = tcp_sk(sk); 4833 4834 /* If the user specified a specific send buffer setting, do 4835 * not modify it. 4836 */ 4837 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4838 return 0; 4839 4840 /* If we are under global TCP memory pressure, do not expand. */ 4841 if (tcp_memory_pressure) 4842 return 0; 4843 4844 /* If we are under soft global TCP memory pressure, do not expand. */ 4845 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4846 return 0; 4847 4848 /* If we filled the congestion window, do not expand. */ 4849 if (tp->packets_out >= tp->snd_cwnd) 4850 return 0; 4851 4852 return 1; 4853 } 4854 4855 /* When incoming ACK allowed to free some skb from write_queue, 4856 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4857 * on the exit from tcp input handler. 4858 * 4859 * PROBLEM: sndbuf expansion does not work well with largesend. 4860 */ 4861 static void tcp_new_space(struct sock *sk) 4862 { 4863 struct tcp_sock *tp = tcp_sk(sk); 4864 4865 if (tcp_should_expand_sndbuf(sk)) { 4866 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4867 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4868 int demanded = max_t(unsigned int, tp->snd_cwnd, 4869 tp->reordering + 1); 4870 sndmem *= 2 * demanded; 4871 if (sndmem > sk->sk_sndbuf) 4872 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4873 tp->snd_cwnd_stamp = tcp_time_stamp; 4874 } 4875 4876 sk->sk_write_space(sk); 4877 } 4878 4879 static void tcp_check_space(struct sock *sk) 4880 { 4881 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4882 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4883 if (sk->sk_socket && 4884 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4885 tcp_new_space(sk); 4886 } 4887 } 4888 4889 static inline void tcp_data_snd_check(struct sock *sk) 4890 { 4891 tcp_push_pending_frames(sk); 4892 tcp_check_space(sk); 4893 } 4894 4895 /* 4896 * Check if sending an ack is needed. 4897 */ 4898 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4899 { 4900 struct tcp_sock *tp = tcp_sk(sk); 4901 4902 /* More than one full frame received... */ 4903 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4904 /* ... and right edge of window advances far enough. 4905 * (tcp_recvmsg() will send ACK otherwise). Or... 4906 */ 4907 __tcp_select_window(sk) >= tp->rcv_wnd) || 4908 /* We ACK each frame or... */ 4909 tcp_in_quickack_mode(sk) || 4910 /* We have out of order data. */ 4911 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4912 /* Then ack it now */ 4913 tcp_send_ack(sk); 4914 } else { 4915 /* Else, send delayed ack. */ 4916 tcp_send_delayed_ack(sk); 4917 } 4918 } 4919 4920 static inline void tcp_ack_snd_check(struct sock *sk) 4921 { 4922 if (!inet_csk_ack_scheduled(sk)) { 4923 /* We sent a data segment already. */ 4924 return; 4925 } 4926 __tcp_ack_snd_check(sk, 1); 4927 } 4928 4929 /* 4930 * This routine is only called when we have urgent data 4931 * signaled. Its the 'slow' part of tcp_urg. It could be 4932 * moved inline now as tcp_urg is only called from one 4933 * place. We handle URGent data wrong. We have to - as 4934 * BSD still doesn't use the correction from RFC961. 4935 * For 1003.1g we should support a new option TCP_STDURG to permit 4936 * either form (or just set the sysctl tcp_stdurg). 4937 */ 4938 4939 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4940 { 4941 struct tcp_sock *tp = tcp_sk(sk); 4942 u32 ptr = ntohs(th->urg_ptr); 4943 4944 if (ptr && !sysctl_tcp_stdurg) 4945 ptr--; 4946 ptr += ntohl(th->seq); 4947 4948 /* Ignore urgent data that we've already seen and read. */ 4949 if (after(tp->copied_seq, ptr)) 4950 return; 4951 4952 /* Do not replay urg ptr. 4953 * 4954 * NOTE: interesting situation not covered by specs. 4955 * Misbehaving sender may send urg ptr, pointing to segment, 4956 * which we already have in ofo queue. We are not able to fetch 4957 * such data and will stay in TCP_URG_NOTYET until will be eaten 4958 * by recvmsg(). Seems, we are not obliged to handle such wicked 4959 * situations. But it is worth to think about possibility of some 4960 * DoSes using some hypothetical application level deadlock. 4961 */ 4962 if (before(ptr, tp->rcv_nxt)) 4963 return; 4964 4965 /* Do we already have a newer (or duplicate) urgent pointer? */ 4966 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4967 return; 4968 4969 /* Tell the world about our new urgent pointer. */ 4970 sk_send_sigurg(sk); 4971 4972 /* We may be adding urgent data when the last byte read was 4973 * urgent. To do this requires some care. We cannot just ignore 4974 * tp->copied_seq since we would read the last urgent byte again 4975 * as data, nor can we alter copied_seq until this data arrives 4976 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4977 * 4978 * NOTE. Double Dutch. Rendering to plain English: author of comment 4979 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4980 * and expect that both A and B disappear from stream. This is _wrong_. 4981 * Though this happens in BSD with high probability, this is occasional. 4982 * Any application relying on this is buggy. Note also, that fix "works" 4983 * only in this artificial test. Insert some normal data between A and B and we will 4984 * decline of BSD again. Verdict: it is better to remove to trap 4985 * buggy users. 4986 */ 4987 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4988 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4989 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4990 tp->copied_seq++; 4991 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4992 __skb_unlink(skb, &sk->sk_receive_queue); 4993 __kfree_skb(skb); 4994 } 4995 } 4996 4997 tp->urg_data = TCP_URG_NOTYET; 4998 tp->urg_seq = ptr; 4999 5000 /* Disable header prediction. */ 5001 tp->pred_flags = 0; 5002 } 5003 5004 /* This is the 'fast' part of urgent handling. */ 5005 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 5006 { 5007 struct tcp_sock *tp = tcp_sk(sk); 5008 5009 /* Check if we get a new urgent pointer - normally not. */ 5010 if (th->urg) 5011 tcp_check_urg(sk, th); 5012 5013 /* Do we wait for any urgent data? - normally not... */ 5014 if (tp->urg_data == TCP_URG_NOTYET) { 5015 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5016 th->syn; 5017 5018 /* Is the urgent pointer pointing into this packet? */ 5019 if (ptr < skb->len) { 5020 u8 tmp; 5021 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5022 BUG(); 5023 tp->urg_data = TCP_URG_VALID | tmp; 5024 if (!sock_flag(sk, SOCK_DEAD)) 5025 sk->sk_data_ready(sk, 0); 5026 } 5027 } 5028 } 5029 5030 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5031 { 5032 struct tcp_sock *tp = tcp_sk(sk); 5033 int chunk = skb->len - hlen; 5034 int err; 5035 5036 local_bh_enable(); 5037 if (skb_csum_unnecessary(skb)) 5038 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5039 else 5040 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5041 tp->ucopy.iov); 5042 5043 if (!err) { 5044 tp->ucopy.len -= chunk; 5045 tp->copied_seq += chunk; 5046 tcp_rcv_space_adjust(sk); 5047 } 5048 5049 local_bh_disable(); 5050 return err; 5051 } 5052 5053 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5054 struct sk_buff *skb) 5055 { 5056 __sum16 result; 5057 5058 if (sock_owned_by_user(sk)) { 5059 local_bh_enable(); 5060 result = __tcp_checksum_complete(skb); 5061 local_bh_disable(); 5062 } else { 5063 result = __tcp_checksum_complete(skb); 5064 } 5065 return result; 5066 } 5067 5068 static inline int tcp_checksum_complete_user(struct sock *sk, 5069 struct sk_buff *skb) 5070 { 5071 return !skb_csum_unnecessary(skb) && 5072 __tcp_checksum_complete_user(sk, skb); 5073 } 5074 5075 #ifdef CONFIG_NET_DMA 5076 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5077 int hlen) 5078 { 5079 struct tcp_sock *tp = tcp_sk(sk); 5080 int chunk = skb->len - hlen; 5081 int dma_cookie; 5082 int copied_early = 0; 5083 5084 if (tp->ucopy.wakeup) 5085 return 0; 5086 5087 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5088 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5089 5090 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5091 5092 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5093 skb, hlen, 5094 tp->ucopy.iov, chunk, 5095 tp->ucopy.pinned_list); 5096 5097 if (dma_cookie < 0) 5098 goto out; 5099 5100 tp->ucopy.dma_cookie = dma_cookie; 5101 copied_early = 1; 5102 5103 tp->ucopy.len -= chunk; 5104 tp->copied_seq += chunk; 5105 tcp_rcv_space_adjust(sk); 5106 5107 if ((tp->ucopy.len == 0) || 5108 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5109 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5110 tp->ucopy.wakeup = 1; 5111 sk->sk_data_ready(sk, 0); 5112 } 5113 } else if (chunk > 0) { 5114 tp->ucopy.wakeup = 1; 5115 sk->sk_data_ready(sk, 0); 5116 } 5117 out: 5118 return copied_early; 5119 } 5120 #endif /* CONFIG_NET_DMA */ 5121 5122 /* Does PAWS and seqno based validation of an incoming segment, flags will 5123 * play significant role here. 5124 */ 5125 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5126 struct tcphdr *th, int syn_inerr) 5127 { 5128 u8 *hash_location; 5129 struct tcp_sock *tp = tcp_sk(sk); 5130 5131 /* RFC1323: H1. Apply PAWS check first. */ 5132 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5133 tp->rx_opt.saw_tstamp && 5134 tcp_paws_discard(sk, skb)) { 5135 if (!th->rst) { 5136 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5137 tcp_send_dupack(sk, skb); 5138 goto discard; 5139 } 5140 /* Reset is accepted even if it did not pass PAWS. */ 5141 } 5142 5143 /* Step 1: check sequence number */ 5144 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5145 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5146 * (RST) segments are validated by checking their SEQ-fields." 5147 * And page 69: "If an incoming segment is not acceptable, 5148 * an acknowledgment should be sent in reply (unless the RST 5149 * bit is set, if so drop the segment and return)". 5150 */ 5151 if (!th->rst) 5152 tcp_send_dupack(sk, skb); 5153 goto discard; 5154 } 5155 5156 /* Step 2: check RST bit */ 5157 if (th->rst) { 5158 tcp_reset(sk); 5159 goto discard; 5160 } 5161 5162 /* ts_recent update must be made after we are sure that the packet 5163 * is in window. 5164 */ 5165 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5166 5167 /* step 3: check security and precedence [ignored] */ 5168 5169 /* step 4: Check for a SYN in window. */ 5170 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5171 if (syn_inerr) 5172 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5173 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5174 tcp_reset(sk); 5175 return -1; 5176 } 5177 5178 return 1; 5179 5180 discard: 5181 __kfree_skb(skb); 5182 return 0; 5183 } 5184 5185 /* 5186 * TCP receive function for the ESTABLISHED state. 5187 * 5188 * It is split into a fast path and a slow path. The fast path is 5189 * disabled when: 5190 * - A zero window was announced from us - zero window probing 5191 * is only handled properly in the slow path. 5192 * - Out of order segments arrived. 5193 * - Urgent data is expected. 5194 * - There is no buffer space left 5195 * - Unexpected TCP flags/window values/header lengths are received 5196 * (detected by checking the TCP header against pred_flags) 5197 * - Data is sent in both directions. Fast path only supports pure senders 5198 * or pure receivers (this means either the sequence number or the ack 5199 * value must stay constant) 5200 * - Unexpected TCP option. 5201 * 5202 * When these conditions are not satisfied it drops into a standard 5203 * receive procedure patterned after RFC793 to handle all cases. 5204 * The first three cases are guaranteed by proper pred_flags setting, 5205 * the rest is checked inline. Fast processing is turned on in 5206 * tcp_data_queue when everything is OK. 5207 */ 5208 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5209 struct tcphdr *th, unsigned len) 5210 { 5211 struct tcp_sock *tp = tcp_sk(sk); 5212 int res; 5213 5214 /* 5215 * Header prediction. 5216 * The code loosely follows the one in the famous 5217 * "30 instruction TCP receive" Van Jacobson mail. 5218 * 5219 * Van's trick is to deposit buffers into socket queue 5220 * on a device interrupt, to call tcp_recv function 5221 * on the receive process context and checksum and copy 5222 * the buffer to user space. smart... 5223 * 5224 * Our current scheme is not silly either but we take the 5225 * extra cost of the net_bh soft interrupt processing... 5226 * We do checksum and copy also but from device to kernel. 5227 */ 5228 5229 tp->rx_opt.saw_tstamp = 0; 5230 5231 /* pred_flags is 0xS?10 << 16 + snd_wnd 5232 * if header_prediction is to be made 5233 * 'S' will always be tp->tcp_header_len >> 2 5234 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5235 * turn it off (when there are holes in the receive 5236 * space for instance) 5237 * PSH flag is ignored. 5238 */ 5239 5240 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5241 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5242 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5243 int tcp_header_len = tp->tcp_header_len; 5244 5245 /* Timestamp header prediction: tcp_header_len 5246 * is automatically equal to th->doff*4 due to pred_flags 5247 * match. 5248 */ 5249 5250 /* Check timestamp */ 5251 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5252 /* No? Slow path! */ 5253 if (!tcp_parse_aligned_timestamp(tp, th)) 5254 goto slow_path; 5255 5256 /* If PAWS failed, check it more carefully in slow path */ 5257 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5258 goto slow_path; 5259 5260 /* DO NOT update ts_recent here, if checksum fails 5261 * and timestamp was corrupted part, it will result 5262 * in a hung connection since we will drop all 5263 * future packets due to the PAWS test. 5264 */ 5265 } 5266 5267 if (len <= tcp_header_len) { 5268 /* Bulk data transfer: sender */ 5269 if (len == tcp_header_len) { 5270 /* Predicted packet is in window by definition. 5271 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5272 * Hence, check seq<=rcv_wup reduces to: 5273 */ 5274 if (tcp_header_len == 5275 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5276 tp->rcv_nxt == tp->rcv_wup) 5277 tcp_store_ts_recent(tp); 5278 5279 /* We know that such packets are checksummed 5280 * on entry. 5281 */ 5282 tcp_ack(sk, skb, 0); 5283 __kfree_skb(skb); 5284 tcp_data_snd_check(sk); 5285 return 0; 5286 } else { /* Header too small */ 5287 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5288 goto discard; 5289 } 5290 } else { 5291 int eaten = 0; 5292 int copied_early = 0; 5293 5294 if (tp->copied_seq == tp->rcv_nxt && 5295 len - tcp_header_len <= tp->ucopy.len) { 5296 #ifdef CONFIG_NET_DMA 5297 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5298 copied_early = 1; 5299 eaten = 1; 5300 } 5301 #endif 5302 if (tp->ucopy.task == current && 5303 sock_owned_by_user(sk) && !copied_early) { 5304 __set_current_state(TASK_RUNNING); 5305 5306 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5307 eaten = 1; 5308 } 5309 if (eaten) { 5310 /* Predicted packet is in window by definition. 5311 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5312 * Hence, check seq<=rcv_wup reduces to: 5313 */ 5314 if (tcp_header_len == 5315 (sizeof(struct tcphdr) + 5316 TCPOLEN_TSTAMP_ALIGNED) && 5317 tp->rcv_nxt == tp->rcv_wup) 5318 tcp_store_ts_recent(tp); 5319 5320 tcp_rcv_rtt_measure_ts(sk, skb); 5321 5322 __skb_pull(skb, tcp_header_len); 5323 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5324 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5325 } 5326 if (copied_early) 5327 tcp_cleanup_rbuf(sk, skb->len); 5328 } 5329 if (!eaten) { 5330 if (tcp_checksum_complete_user(sk, skb)) 5331 goto csum_error; 5332 5333 /* Predicted packet is in window by definition. 5334 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5335 * Hence, check seq<=rcv_wup reduces to: 5336 */ 5337 if (tcp_header_len == 5338 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5339 tp->rcv_nxt == tp->rcv_wup) 5340 tcp_store_ts_recent(tp); 5341 5342 tcp_rcv_rtt_measure_ts(sk, skb); 5343 5344 if ((int)skb->truesize > sk->sk_forward_alloc) 5345 goto step5; 5346 5347 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5348 5349 /* Bulk data transfer: receiver */ 5350 __skb_pull(skb, tcp_header_len); 5351 __skb_queue_tail(&sk->sk_receive_queue, skb); 5352 skb_set_owner_r(skb, sk); 5353 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5354 } 5355 5356 tcp_event_data_recv(sk, skb); 5357 5358 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5359 /* Well, only one small jumplet in fast path... */ 5360 tcp_ack(sk, skb, FLAG_DATA); 5361 tcp_data_snd_check(sk); 5362 if (!inet_csk_ack_scheduled(sk)) 5363 goto no_ack; 5364 } 5365 5366 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5367 __tcp_ack_snd_check(sk, 0); 5368 no_ack: 5369 #ifdef CONFIG_NET_DMA 5370 if (copied_early) 5371 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5372 else 5373 #endif 5374 if (eaten) 5375 __kfree_skb(skb); 5376 else 5377 sk->sk_data_ready(sk, 0); 5378 return 0; 5379 } 5380 } 5381 5382 slow_path: 5383 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5384 goto csum_error; 5385 5386 /* 5387 * Standard slow path. 5388 */ 5389 5390 res = tcp_validate_incoming(sk, skb, th, 1); 5391 if (res <= 0) 5392 return -res; 5393 5394 step5: 5395 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5396 goto discard; 5397 5398 tcp_rcv_rtt_measure_ts(sk, skb); 5399 5400 /* Process urgent data. */ 5401 tcp_urg(sk, skb, th); 5402 5403 /* step 7: process the segment text */ 5404 tcp_data_queue(sk, skb); 5405 5406 tcp_data_snd_check(sk); 5407 tcp_ack_snd_check(sk); 5408 return 0; 5409 5410 csum_error: 5411 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5412 5413 discard: 5414 __kfree_skb(skb); 5415 return 0; 5416 } 5417 5418 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5419 struct tcphdr *th, unsigned len) 5420 { 5421 u8 *hash_location; 5422 struct inet_connection_sock *icsk = inet_csk(sk); 5423 struct tcp_sock *tp = tcp_sk(sk); 5424 struct tcp_cookie_values *cvp = tp->cookie_values; 5425 int saved_clamp = tp->rx_opt.mss_clamp; 5426 5427 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0); 5428 5429 if (th->ack) { 5430 /* rfc793: 5431 * "If the state is SYN-SENT then 5432 * first check the ACK bit 5433 * If the ACK bit is set 5434 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5435 * a reset (unless the RST bit is set, if so drop 5436 * the segment and return)" 5437 * 5438 * We do not send data with SYN, so that RFC-correct 5439 * test reduces to: 5440 */ 5441 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5442 goto reset_and_undo; 5443 5444 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5445 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5446 tcp_time_stamp)) { 5447 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5448 goto reset_and_undo; 5449 } 5450 5451 /* Now ACK is acceptable. 5452 * 5453 * "If the RST bit is set 5454 * If the ACK was acceptable then signal the user "error: 5455 * connection reset", drop the segment, enter CLOSED state, 5456 * delete TCB, and return." 5457 */ 5458 5459 if (th->rst) { 5460 tcp_reset(sk); 5461 goto discard; 5462 } 5463 5464 /* rfc793: 5465 * "fifth, if neither of the SYN or RST bits is set then 5466 * drop the segment and return." 5467 * 5468 * See note below! 5469 * --ANK(990513) 5470 */ 5471 if (!th->syn) 5472 goto discard_and_undo; 5473 5474 /* rfc793: 5475 * "If the SYN bit is on ... 5476 * are acceptable then ... 5477 * (our SYN has been ACKed), change the connection 5478 * state to ESTABLISHED..." 5479 */ 5480 5481 TCP_ECN_rcv_synack(tp, th); 5482 5483 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5484 tcp_ack(sk, skb, FLAG_SLOWPATH); 5485 5486 /* Ok.. it's good. Set up sequence numbers and 5487 * move to established. 5488 */ 5489 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5490 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5491 5492 /* RFC1323: The window in SYN & SYN/ACK segments is 5493 * never scaled. 5494 */ 5495 tp->snd_wnd = ntohs(th->window); 5496 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5497 5498 if (!tp->rx_opt.wscale_ok) { 5499 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5500 tp->window_clamp = min(tp->window_clamp, 65535U); 5501 } 5502 5503 if (tp->rx_opt.saw_tstamp) { 5504 tp->rx_opt.tstamp_ok = 1; 5505 tp->tcp_header_len = 5506 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5507 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5508 tcp_store_ts_recent(tp); 5509 } else { 5510 tp->tcp_header_len = sizeof(struct tcphdr); 5511 } 5512 5513 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5514 tcp_enable_fack(tp); 5515 5516 tcp_mtup_init(sk); 5517 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5518 tcp_initialize_rcv_mss(sk); 5519 5520 /* Remember, tcp_poll() does not lock socket! 5521 * Change state from SYN-SENT only after copied_seq 5522 * is initialized. */ 5523 tp->copied_seq = tp->rcv_nxt; 5524 5525 if (cvp != NULL && 5526 cvp->cookie_pair_size > 0 && 5527 tp->rx_opt.cookie_plus > 0) { 5528 int cookie_size = tp->rx_opt.cookie_plus 5529 - TCPOLEN_COOKIE_BASE; 5530 int cookie_pair_size = cookie_size 5531 + cvp->cookie_desired; 5532 5533 /* A cookie extension option was sent and returned. 5534 * Note that each incoming SYNACK replaces the 5535 * Responder cookie. The initial exchange is most 5536 * fragile, as protection against spoofing relies 5537 * entirely upon the sequence and timestamp (above). 5538 * This replacement strategy allows the correct pair to 5539 * pass through, while any others will be filtered via 5540 * Responder verification later. 5541 */ 5542 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5543 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5544 hash_location, cookie_size); 5545 cvp->cookie_pair_size = cookie_pair_size; 5546 } 5547 } 5548 5549 smp_mb(); 5550 tcp_set_state(sk, TCP_ESTABLISHED); 5551 5552 security_inet_conn_established(sk, skb); 5553 5554 /* Make sure socket is routed, for correct metrics. */ 5555 icsk->icsk_af_ops->rebuild_header(sk); 5556 5557 tcp_init_metrics(sk); 5558 5559 tcp_init_congestion_control(sk); 5560 5561 /* Prevent spurious tcp_cwnd_restart() on first data 5562 * packet. 5563 */ 5564 tp->lsndtime = tcp_time_stamp; 5565 5566 tcp_init_buffer_space(sk); 5567 5568 if (sock_flag(sk, SOCK_KEEPOPEN)) 5569 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5570 5571 if (!tp->rx_opt.snd_wscale) 5572 __tcp_fast_path_on(tp, tp->snd_wnd); 5573 else 5574 tp->pred_flags = 0; 5575 5576 if (!sock_flag(sk, SOCK_DEAD)) { 5577 sk->sk_state_change(sk); 5578 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5579 } 5580 5581 if (sk->sk_write_pending || 5582 icsk->icsk_accept_queue.rskq_defer_accept || 5583 icsk->icsk_ack.pingpong) { 5584 /* Save one ACK. Data will be ready after 5585 * several ticks, if write_pending is set. 5586 * 5587 * It may be deleted, but with this feature tcpdumps 5588 * look so _wonderfully_ clever, that I was not able 5589 * to stand against the temptation 8) --ANK 5590 */ 5591 inet_csk_schedule_ack(sk); 5592 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5593 icsk->icsk_ack.ato = TCP_ATO_MIN; 5594 tcp_incr_quickack(sk); 5595 tcp_enter_quickack_mode(sk); 5596 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5597 TCP_DELACK_MAX, TCP_RTO_MAX); 5598 5599 discard: 5600 __kfree_skb(skb); 5601 return 0; 5602 } else { 5603 tcp_send_ack(sk); 5604 } 5605 return -1; 5606 } 5607 5608 /* No ACK in the segment */ 5609 5610 if (th->rst) { 5611 /* rfc793: 5612 * "If the RST bit is set 5613 * 5614 * Otherwise (no ACK) drop the segment and return." 5615 */ 5616 5617 goto discard_and_undo; 5618 } 5619 5620 /* PAWS check. */ 5621 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5622 tcp_paws_reject(&tp->rx_opt, 0)) 5623 goto discard_and_undo; 5624 5625 if (th->syn) { 5626 /* We see SYN without ACK. It is attempt of 5627 * simultaneous connect with crossed SYNs. 5628 * Particularly, it can be connect to self. 5629 */ 5630 tcp_set_state(sk, TCP_SYN_RECV); 5631 5632 if (tp->rx_opt.saw_tstamp) { 5633 tp->rx_opt.tstamp_ok = 1; 5634 tcp_store_ts_recent(tp); 5635 tp->tcp_header_len = 5636 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5637 } else { 5638 tp->tcp_header_len = sizeof(struct tcphdr); 5639 } 5640 5641 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5642 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5643 5644 /* RFC1323: The window in SYN & SYN/ACK segments is 5645 * never scaled. 5646 */ 5647 tp->snd_wnd = ntohs(th->window); 5648 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5649 tp->max_window = tp->snd_wnd; 5650 5651 TCP_ECN_rcv_syn(tp, th); 5652 5653 tcp_mtup_init(sk); 5654 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5655 tcp_initialize_rcv_mss(sk); 5656 5657 tcp_send_synack(sk); 5658 #if 0 5659 /* Note, we could accept data and URG from this segment. 5660 * There are no obstacles to make this. 5661 * 5662 * However, if we ignore data in ACKless segments sometimes, 5663 * we have no reasons to accept it sometimes. 5664 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5665 * is not flawless. So, discard packet for sanity. 5666 * Uncomment this return to process the data. 5667 */ 5668 return -1; 5669 #else 5670 goto discard; 5671 #endif 5672 } 5673 /* "fifth, if neither of the SYN or RST bits is set then 5674 * drop the segment and return." 5675 */ 5676 5677 discard_and_undo: 5678 tcp_clear_options(&tp->rx_opt); 5679 tp->rx_opt.mss_clamp = saved_clamp; 5680 goto discard; 5681 5682 reset_and_undo: 5683 tcp_clear_options(&tp->rx_opt); 5684 tp->rx_opt.mss_clamp = saved_clamp; 5685 return 1; 5686 } 5687 5688 /* 5689 * This function implements the receiving procedure of RFC 793 for 5690 * all states except ESTABLISHED and TIME_WAIT. 5691 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5692 * address independent. 5693 */ 5694 5695 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5696 struct tcphdr *th, unsigned len) 5697 { 5698 struct tcp_sock *tp = tcp_sk(sk); 5699 struct inet_connection_sock *icsk = inet_csk(sk); 5700 int queued = 0; 5701 int res; 5702 5703 tp->rx_opt.saw_tstamp = 0; 5704 5705 switch (sk->sk_state) { 5706 case TCP_CLOSE: 5707 goto discard; 5708 5709 case TCP_LISTEN: 5710 if (th->ack) 5711 return 1; 5712 5713 if (th->rst) 5714 goto discard; 5715 5716 if (th->syn) { 5717 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5718 return 1; 5719 5720 /* Now we have several options: In theory there is 5721 * nothing else in the frame. KA9Q has an option to 5722 * send data with the syn, BSD accepts data with the 5723 * syn up to the [to be] advertised window and 5724 * Solaris 2.1 gives you a protocol error. For now 5725 * we just ignore it, that fits the spec precisely 5726 * and avoids incompatibilities. It would be nice in 5727 * future to drop through and process the data. 5728 * 5729 * Now that TTCP is starting to be used we ought to 5730 * queue this data. 5731 * But, this leaves one open to an easy denial of 5732 * service attack, and SYN cookies can't defend 5733 * against this problem. So, we drop the data 5734 * in the interest of security over speed unless 5735 * it's still in use. 5736 */ 5737 kfree_skb(skb); 5738 return 0; 5739 } 5740 goto discard; 5741 5742 case TCP_SYN_SENT: 5743 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5744 if (queued >= 0) 5745 return queued; 5746 5747 /* Do step6 onward by hand. */ 5748 tcp_urg(sk, skb, th); 5749 __kfree_skb(skb); 5750 tcp_data_snd_check(sk); 5751 return 0; 5752 } 5753 5754 res = tcp_validate_incoming(sk, skb, th, 0); 5755 if (res <= 0) 5756 return -res; 5757 5758 /* step 5: check the ACK field */ 5759 if (th->ack) { 5760 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5761 5762 switch (sk->sk_state) { 5763 case TCP_SYN_RECV: 5764 if (acceptable) { 5765 tp->copied_seq = tp->rcv_nxt; 5766 smp_mb(); 5767 tcp_set_state(sk, TCP_ESTABLISHED); 5768 sk->sk_state_change(sk); 5769 5770 /* Note, that this wakeup is only for marginal 5771 * crossed SYN case. Passively open sockets 5772 * are not waked up, because sk->sk_sleep == 5773 * NULL and sk->sk_socket == NULL. 5774 */ 5775 if (sk->sk_socket) 5776 sk_wake_async(sk, 5777 SOCK_WAKE_IO, POLL_OUT); 5778 5779 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5780 tp->snd_wnd = ntohs(th->window) << 5781 tp->rx_opt.snd_wscale; 5782 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5783 5784 /* tcp_ack considers this ACK as duplicate 5785 * and does not calculate rtt. 5786 * Fix it at least with timestamps. 5787 */ 5788 if (tp->rx_opt.saw_tstamp && 5789 tp->rx_opt.rcv_tsecr && !tp->srtt) 5790 tcp_ack_saw_tstamp(sk, 0); 5791 5792 if (tp->rx_opt.tstamp_ok) 5793 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5794 5795 /* Make sure socket is routed, for 5796 * correct metrics. 5797 */ 5798 icsk->icsk_af_ops->rebuild_header(sk); 5799 5800 tcp_init_metrics(sk); 5801 5802 tcp_init_congestion_control(sk); 5803 5804 /* Prevent spurious tcp_cwnd_restart() on 5805 * first data packet. 5806 */ 5807 tp->lsndtime = tcp_time_stamp; 5808 5809 tcp_mtup_init(sk); 5810 tcp_initialize_rcv_mss(sk); 5811 tcp_init_buffer_space(sk); 5812 tcp_fast_path_on(tp); 5813 } else { 5814 return 1; 5815 } 5816 break; 5817 5818 case TCP_FIN_WAIT1: 5819 if (tp->snd_una == tp->write_seq) { 5820 tcp_set_state(sk, TCP_FIN_WAIT2); 5821 sk->sk_shutdown |= SEND_SHUTDOWN; 5822 dst_confirm(sk->sk_dst_cache); 5823 5824 if (!sock_flag(sk, SOCK_DEAD)) 5825 /* Wake up lingering close() */ 5826 sk->sk_state_change(sk); 5827 else { 5828 int tmo; 5829 5830 if (tp->linger2 < 0 || 5831 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5832 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5833 tcp_done(sk); 5834 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5835 return 1; 5836 } 5837 5838 tmo = tcp_fin_time(sk); 5839 if (tmo > TCP_TIMEWAIT_LEN) { 5840 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5841 } else if (th->fin || sock_owned_by_user(sk)) { 5842 /* Bad case. We could lose such FIN otherwise. 5843 * It is not a big problem, but it looks confusing 5844 * and not so rare event. We still can lose it now, 5845 * if it spins in bh_lock_sock(), but it is really 5846 * marginal case. 5847 */ 5848 inet_csk_reset_keepalive_timer(sk, tmo); 5849 } else { 5850 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5851 goto discard; 5852 } 5853 } 5854 } 5855 break; 5856 5857 case TCP_CLOSING: 5858 if (tp->snd_una == tp->write_seq) { 5859 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5860 goto discard; 5861 } 5862 break; 5863 5864 case TCP_LAST_ACK: 5865 if (tp->snd_una == tp->write_seq) { 5866 tcp_update_metrics(sk); 5867 tcp_done(sk); 5868 goto discard; 5869 } 5870 break; 5871 } 5872 } else 5873 goto discard; 5874 5875 /* step 6: check the URG bit */ 5876 tcp_urg(sk, skb, th); 5877 5878 /* step 7: process the segment text */ 5879 switch (sk->sk_state) { 5880 case TCP_CLOSE_WAIT: 5881 case TCP_CLOSING: 5882 case TCP_LAST_ACK: 5883 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5884 break; 5885 case TCP_FIN_WAIT1: 5886 case TCP_FIN_WAIT2: 5887 /* RFC 793 says to queue data in these states, 5888 * RFC 1122 says we MUST send a reset. 5889 * BSD 4.4 also does reset. 5890 */ 5891 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5892 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5893 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5894 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5895 tcp_reset(sk); 5896 return 1; 5897 } 5898 } 5899 /* Fall through */ 5900 case TCP_ESTABLISHED: 5901 tcp_data_queue(sk, skb); 5902 queued = 1; 5903 break; 5904 } 5905 5906 /* tcp_data could move socket to TIME-WAIT */ 5907 if (sk->sk_state != TCP_CLOSE) { 5908 tcp_data_snd_check(sk); 5909 tcp_ack_snd_check(sk); 5910 } 5911 5912 if (!queued) { 5913 discard: 5914 __kfree_skb(skb); 5915 } 5916 return 0; 5917 } 5918 5919 EXPORT_SYMBOL(sysctl_tcp_ecn); 5920 EXPORT_SYMBOL(sysctl_tcp_reordering); 5921 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 5922 EXPORT_SYMBOL(tcp_parse_options); 5923 #ifdef CONFIG_TCP_MD5SIG 5924 EXPORT_SYMBOL(tcp_parse_md5sig_option); 5925 #endif 5926 EXPORT_SYMBOL(tcp_rcv_established); 5927 EXPORT_SYMBOL(tcp_rcv_state_process); 5928 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5929