xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 7b7090b4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 	} else {
247 		/* Otherwise, we make more careful check taking into account,
248 		 * that SACKs block is variable.
249 		 *
250 		 * "len" is invariant segment length, including TCP header.
251 		 */
252 		len += skb->data - skb_transport_header(skb);
253 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 		    /* If PSH is not set, packet should be
255 		     * full sized, provided peer TCP is not badly broken.
256 		     * This observation (if it is correct 8)) allows
257 		     * to handle super-low mtu links fairly.
258 		     */
259 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 			/* Subtract also invariant (if peer is RFC compliant),
262 			 * tcp header plus fixed timestamp option length.
263 			 * Resulting "len" is MSS free of SACK jitter.
264 			 */
265 			len -= tcp_sk(sk)->tcp_header_len;
266 			icsk->icsk_ack.last_seg_size = len;
267 			if (len == lss) {
268 				icsk->icsk_ack.rcv_mss = len;
269 				return;
270 			}
271 		}
272 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 	}
276 }
277 
278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 	struct inet_connection_sock *icsk = inet_csk(sk);
281 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282 
283 	if (quickacks == 0)
284 		quickacks = 2;
285 	quickacks = min(quickacks, max_quickacks);
286 	if (quickacks > icsk->icsk_ack.quick)
287 		icsk->icsk_ack.quick = quickacks;
288 }
289 
290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 	struct inet_connection_sock *icsk = inet_csk(sk);
293 
294 	tcp_incr_quickack(sk, max_quickacks);
295 	inet_csk_exit_pingpong_mode(sk);
296 	icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 
300 /* Send ACKs quickly, if "quick" count is not exhausted
301  * and the session is not interactive.
302  */
303 
304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 	const struct inet_connection_sock *icsk = inet_csk(sk);
307 	const struct dst_entry *dst = __sk_dst_get(sk);
308 
309 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312 
313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 	if (tp->ecn_flags & TCP_ECN_OK)
316 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318 
319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 	if (tcp_hdr(skb)->cwr) {
322 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 
324 		/* If the sender is telling us it has entered CWR, then its
325 		 * cwnd may be very low (even just 1 packet), so we should ACK
326 		 * immediately.
327 		 */
328 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 	}
331 }
332 
333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337 
338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 	case INET_ECN_NOT_ECT:
344 		/* Funny extension: if ECT is not set on a segment,
345 		 * and we already seen ECT on a previous segment,
346 		 * it is probably a retransmit.
347 		 */
348 		if (tp->ecn_flags & TCP_ECN_SEEN)
349 			tcp_enter_quickack_mode(sk, 2);
350 		break;
351 	case INET_ECN_CE:
352 		if (tcp_ca_needs_ecn(sk))
353 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 
355 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 			/* Better not delay acks, sender can have a very low cwnd */
357 			tcp_enter_quickack_mode(sk, 2);
358 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 		}
360 		tp->ecn_flags |= TCP_ECN_SEEN;
361 		break;
362 	default:
363 		if (tcp_ca_needs_ecn(sk))
364 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 		tp->ecn_flags |= TCP_ECN_SEEN;
366 		break;
367 	}
368 }
369 
370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 		__tcp_ecn_check_ce(sk, skb);
374 }
375 
376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 		tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381 
382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 		tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387 
388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 		return true;
392 	return false;
393 }
394 
395 /* Buffer size and advertised window tuning.
396  *
397  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398  */
399 
400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 	const struct tcp_sock *tp = tcp_sk(sk);
403 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 	int sndmem, per_mss;
405 	u32 nr_segs;
406 
407 	/* Worst case is non GSO/TSO : each frame consumes one skb
408 	 * and skb->head is kmalloced using power of two area of memory
409 	 */
410 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 		  MAX_TCP_HEADER +
412 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 
414 	per_mss = roundup_pow_of_two(per_mss) +
415 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 
417 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
418 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 
420 	/* Fast Recovery (RFC 5681 3.2) :
421 	 * Cubic needs 1.7 factor, rounded to 2 to include
422 	 * extra cushion (application might react slowly to EPOLLOUT)
423 	 */
424 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 	sndmem *= nr_segs * per_mss;
426 
427 	if (sk->sk_sndbuf < sndmem)
428 		WRITE_ONCE(sk->sk_sndbuf,
429 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430 }
431 
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433  *
434  * All tcp_full_space() is split to two parts: "network" buffer, allocated
435  * forward and advertised in receiver window (tp->rcv_wnd) and
436  * "application buffer", required to isolate scheduling/application
437  * latencies from network.
438  * window_clamp is maximal advertised window. It can be less than
439  * tcp_full_space(), in this case tcp_full_space() - window_clamp
440  * is reserved for "application" buffer. The less window_clamp is
441  * the smoother our behaviour from viewpoint of network, but the lower
442  * throughput and the higher sensitivity of the connection to losses. 8)
443  *
444  * rcv_ssthresh is more strict window_clamp used at "slow start"
445  * phase to predict further behaviour of this connection.
446  * It is used for two goals:
447  * - to enforce header prediction at sender, even when application
448  *   requires some significant "application buffer". It is check #1.
449  * - to prevent pruning of receive queue because of misprediction
450  *   of receiver window. Check #2.
451  *
452  * The scheme does not work when sender sends good segments opening
453  * window and then starts to feed us spaghetti. But it should work
454  * in common situations. Otherwise, we have to rely on queue collapsing.
455  */
456 
457 /* Slow part of check#2. */
458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 			     unsigned int skbtruesize)
460 {
461 	struct tcp_sock *tp = tcp_sk(sk);
462 	/* Optimize this! */
463 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465 
466 	while (tp->rcv_ssthresh <= window) {
467 		if (truesize <= skb->len)
468 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469 
470 		truesize >>= 1;
471 		window >>= 1;
472 	}
473 	return 0;
474 }
475 
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477  * can play nice with us, as sk_buff and skb->head might be either
478  * freed or shared with up to MAX_SKB_FRAGS segments.
479  * Only give a boost to drivers using page frag(s) to hold the frame(s),
480  * and if no payload was pulled in skb->head before reaching us.
481  */
482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 	u32 truesize = skb->truesize;
485 
486 	if (adjust && !skb_headlen(skb)) {
487 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 		/* paranoid check, some drivers might be buggy */
489 		if (unlikely((int)truesize < (int)skb->len))
490 			truesize = skb->truesize;
491 	}
492 	return truesize;
493 }
494 
495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 			    bool adjust)
497 {
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	int room;
500 
501 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502 
503 	if (room <= 0)
504 		return;
505 
506 	/* Check #1 */
507 	if (!tcp_under_memory_pressure(sk)) {
508 		unsigned int truesize = truesize_adjust(adjust, skb);
509 		int incr;
510 
511 		/* Check #2. Increase window, if skb with such overhead
512 		 * will fit to rcvbuf in future.
513 		 */
514 		if (tcp_win_from_space(sk, truesize) <= skb->len)
515 			incr = 2 * tp->advmss;
516 		else
517 			incr = __tcp_grow_window(sk, skb, truesize);
518 
519 		if (incr) {
520 			incr = max_t(int, incr, 2 * skb->len);
521 			tp->rcv_ssthresh += min(room, incr);
522 			inet_csk(sk)->icsk_ack.quick |= 1;
523 		}
524 	} else {
525 		/* Under pressure:
526 		 * Adjust rcv_ssthresh according to reserved mem
527 		 */
528 		tcp_adjust_rcv_ssthresh(sk);
529 	}
530 }
531 
532 /* 3. Try to fixup all. It is made immediately after connection enters
533  *    established state.
534  */
535 static void tcp_init_buffer_space(struct sock *sk)
536 {
537 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	int maxwin;
540 
541 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542 		tcp_sndbuf_expand(sk);
543 
544 	tcp_mstamp_refresh(tp);
545 	tp->rcvq_space.time = tp->tcp_mstamp;
546 	tp->rcvq_space.seq = tp->copied_seq;
547 
548 	maxwin = tcp_full_space(sk);
549 
550 	if (tp->window_clamp >= maxwin) {
551 		tp->window_clamp = maxwin;
552 
553 		if (tcp_app_win && maxwin > 4 * tp->advmss)
554 			tp->window_clamp = max(maxwin -
555 					       (maxwin >> tcp_app_win),
556 					       4 * tp->advmss);
557 	}
558 
559 	/* Force reservation of one segment. */
560 	if (tcp_app_win &&
561 	    tp->window_clamp > 2 * tp->advmss &&
562 	    tp->window_clamp + tp->advmss > maxwin)
563 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564 
565 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566 	tp->snd_cwnd_stamp = tcp_jiffies32;
567 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568 				    (u32)TCP_INIT_CWND * tp->advmss);
569 }
570 
571 /* 4. Recalculate window clamp after socket hit its memory bounds. */
572 static void tcp_clamp_window(struct sock *sk)
573 {
574 	struct tcp_sock *tp = tcp_sk(sk);
575 	struct inet_connection_sock *icsk = inet_csk(sk);
576 	struct net *net = sock_net(sk);
577 
578 	icsk->icsk_ack.quick = 0;
579 
580 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
581 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
582 	    !tcp_under_memory_pressure(sk) &&
583 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
584 		WRITE_ONCE(sk->sk_rcvbuf,
585 			   min(atomic_read(&sk->sk_rmem_alloc),
586 			       net->ipv4.sysctl_tcp_rmem[2]));
587 	}
588 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
589 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
590 }
591 
592 /* Initialize RCV_MSS value.
593  * RCV_MSS is an our guess about MSS used by the peer.
594  * We haven't any direct information about the MSS.
595  * It's better to underestimate the RCV_MSS rather than overestimate.
596  * Overestimations make us ACKing less frequently than needed.
597  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
598  */
599 void tcp_initialize_rcv_mss(struct sock *sk)
600 {
601 	const struct tcp_sock *tp = tcp_sk(sk);
602 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
603 
604 	hint = min(hint, tp->rcv_wnd / 2);
605 	hint = min(hint, TCP_MSS_DEFAULT);
606 	hint = max(hint, TCP_MIN_MSS);
607 
608 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
609 }
610 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
611 
612 /* Receiver "autotuning" code.
613  *
614  * The algorithm for RTT estimation w/o timestamps is based on
615  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
616  * <https://public.lanl.gov/radiant/pubs.html#DRS>
617  *
618  * More detail on this code can be found at
619  * <http://staff.psc.edu/jheffner/>,
620  * though this reference is out of date.  A new paper
621  * is pending.
622  */
623 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
624 {
625 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
626 	long m = sample;
627 
628 	if (new_sample != 0) {
629 		/* If we sample in larger samples in the non-timestamp
630 		 * case, we could grossly overestimate the RTT especially
631 		 * with chatty applications or bulk transfer apps which
632 		 * are stalled on filesystem I/O.
633 		 *
634 		 * Also, since we are only going for a minimum in the
635 		 * non-timestamp case, we do not smooth things out
636 		 * else with timestamps disabled convergence takes too
637 		 * long.
638 		 */
639 		if (!win_dep) {
640 			m -= (new_sample >> 3);
641 			new_sample += m;
642 		} else {
643 			m <<= 3;
644 			if (m < new_sample)
645 				new_sample = m;
646 		}
647 	} else {
648 		/* No previous measure. */
649 		new_sample = m << 3;
650 	}
651 
652 	tp->rcv_rtt_est.rtt_us = new_sample;
653 }
654 
655 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
656 {
657 	u32 delta_us;
658 
659 	if (tp->rcv_rtt_est.time == 0)
660 		goto new_measure;
661 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
662 		return;
663 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
664 	if (!delta_us)
665 		delta_us = 1;
666 	tcp_rcv_rtt_update(tp, delta_us, 1);
667 
668 new_measure:
669 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
670 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
671 }
672 
673 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
674 					  const struct sk_buff *skb)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 
678 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
679 		return;
680 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
681 
682 	if (TCP_SKB_CB(skb)->end_seq -
683 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
684 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
685 		u32 delta_us;
686 
687 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
688 			if (!delta)
689 				delta = 1;
690 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
691 			tcp_rcv_rtt_update(tp, delta_us, 0);
692 		}
693 	}
694 }
695 
696 /*
697  * This function should be called every time data is copied to user space.
698  * It calculates the appropriate TCP receive buffer space.
699  */
700 void tcp_rcv_space_adjust(struct sock *sk)
701 {
702 	struct tcp_sock *tp = tcp_sk(sk);
703 	u32 copied;
704 	int time;
705 
706 	trace_tcp_rcv_space_adjust(sk);
707 
708 	tcp_mstamp_refresh(tp);
709 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
710 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
711 		return;
712 
713 	/* Number of bytes copied to user in last RTT */
714 	copied = tp->copied_seq - tp->rcvq_space.seq;
715 	if (copied <= tp->rcvq_space.space)
716 		goto new_measure;
717 
718 	/* A bit of theory :
719 	 * copied = bytes received in previous RTT, our base window
720 	 * To cope with packet losses, we need a 2x factor
721 	 * To cope with slow start, and sender growing its cwin by 100 %
722 	 * every RTT, we need a 4x factor, because the ACK we are sending
723 	 * now is for the next RTT, not the current one :
724 	 * <prev RTT . ><current RTT .. ><next RTT .... >
725 	 */
726 
727 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
728 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
729 		int rcvmem, rcvbuf;
730 		u64 rcvwin, grow;
731 
732 		/* minimal window to cope with packet losses, assuming
733 		 * steady state. Add some cushion because of small variations.
734 		 */
735 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
736 
737 		/* Accommodate for sender rate increase (eg. slow start) */
738 		grow = rcvwin * (copied - tp->rcvq_space.space);
739 		do_div(grow, tp->rcvq_space.space);
740 		rcvwin += (grow << 1);
741 
742 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
743 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
744 			rcvmem += 128;
745 
746 		do_div(rcvwin, tp->advmss);
747 		rcvbuf = min_t(u64, rcvwin * rcvmem,
748 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
749 		if (rcvbuf > sk->sk_rcvbuf) {
750 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
751 
752 			/* Make the window clamp follow along.  */
753 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
754 		}
755 	}
756 	tp->rcvq_space.space = copied;
757 
758 new_measure:
759 	tp->rcvq_space.seq = tp->copied_seq;
760 	tp->rcvq_space.time = tp->tcp_mstamp;
761 }
762 
763 /* There is something which you must keep in mind when you analyze the
764  * behavior of the tp->ato delayed ack timeout interval.  When a
765  * connection starts up, we want to ack as quickly as possible.  The
766  * problem is that "good" TCP's do slow start at the beginning of data
767  * transmission.  The means that until we send the first few ACK's the
768  * sender will sit on his end and only queue most of his data, because
769  * he can only send snd_cwnd unacked packets at any given time.  For
770  * each ACK we send, he increments snd_cwnd and transmits more of his
771  * queue.  -DaveM
772  */
773 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
774 {
775 	struct tcp_sock *tp = tcp_sk(sk);
776 	struct inet_connection_sock *icsk = inet_csk(sk);
777 	u32 now;
778 
779 	inet_csk_schedule_ack(sk);
780 
781 	tcp_measure_rcv_mss(sk, skb);
782 
783 	tcp_rcv_rtt_measure(tp);
784 
785 	now = tcp_jiffies32;
786 
787 	if (!icsk->icsk_ack.ato) {
788 		/* The _first_ data packet received, initialize
789 		 * delayed ACK engine.
790 		 */
791 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
792 		icsk->icsk_ack.ato = TCP_ATO_MIN;
793 	} else {
794 		int m = now - icsk->icsk_ack.lrcvtime;
795 
796 		if (m <= TCP_ATO_MIN / 2) {
797 			/* The fastest case is the first. */
798 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
799 		} else if (m < icsk->icsk_ack.ato) {
800 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
801 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
802 				icsk->icsk_ack.ato = icsk->icsk_rto;
803 		} else if (m > icsk->icsk_rto) {
804 			/* Too long gap. Apparently sender failed to
805 			 * restart window, so that we send ACKs quickly.
806 			 */
807 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
808 		}
809 	}
810 	icsk->icsk_ack.lrcvtime = now;
811 
812 	tcp_ecn_check_ce(sk, skb);
813 
814 	if (skb->len >= 128)
815 		tcp_grow_window(sk, skb, true);
816 }
817 
818 /* Called to compute a smoothed rtt estimate. The data fed to this
819  * routine either comes from timestamps, or from segments that were
820  * known _not_ to have been retransmitted [see Karn/Partridge
821  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
822  * piece by Van Jacobson.
823  * NOTE: the next three routines used to be one big routine.
824  * To save cycles in the RFC 1323 implementation it was better to break
825  * it up into three procedures. -- erics
826  */
827 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
828 {
829 	struct tcp_sock *tp = tcp_sk(sk);
830 	long m = mrtt_us; /* RTT */
831 	u32 srtt = tp->srtt_us;
832 
833 	/*	The following amusing code comes from Jacobson's
834 	 *	article in SIGCOMM '88.  Note that rtt and mdev
835 	 *	are scaled versions of rtt and mean deviation.
836 	 *	This is designed to be as fast as possible
837 	 *	m stands for "measurement".
838 	 *
839 	 *	On a 1990 paper the rto value is changed to:
840 	 *	RTO = rtt + 4 * mdev
841 	 *
842 	 * Funny. This algorithm seems to be very broken.
843 	 * These formulae increase RTO, when it should be decreased, increase
844 	 * too slowly, when it should be increased quickly, decrease too quickly
845 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
846 	 * does not matter how to _calculate_ it. Seems, it was trap
847 	 * that VJ failed to avoid. 8)
848 	 */
849 	if (srtt != 0) {
850 		m -= (srtt >> 3);	/* m is now error in rtt est */
851 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
852 		if (m < 0) {
853 			m = -m;		/* m is now abs(error) */
854 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
855 			/* This is similar to one of Eifel findings.
856 			 * Eifel blocks mdev updates when rtt decreases.
857 			 * This solution is a bit different: we use finer gain
858 			 * for mdev in this case (alpha*beta).
859 			 * Like Eifel it also prevents growth of rto,
860 			 * but also it limits too fast rto decreases,
861 			 * happening in pure Eifel.
862 			 */
863 			if (m > 0)
864 				m >>= 3;
865 		} else {
866 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
867 		}
868 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
869 		if (tp->mdev_us > tp->mdev_max_us) {
870 			tp->mdev_max_us = tp->mdev_us;
871 			if (tp->mdev_max_us > tp->rttvar_us)
872 				tp->rttvar_us = tp->mdev_max_us;
873 		}
874 		if (after(tp->snd_una, tp->rtt_seq)) {
875 			if (tp->mdev_max_us < tp->rttvar_us)
876 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
877 			tp->rtt_seq = tp->snd_nxt;
878 			tp->mdev_max_us = tcp_rto_min_us(sk);
879 
880 			tcp_bpf_rtt(sk);
881 		}
882 	} else {
883 		/* no previous measure. */
884 		srtt = m << 3;		/* take the measured time to be rtt */
885 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
886 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
887 		tp->mdev_max_us = tp->rttvar_us;
888 		tp->rtt_seq = tp->snd_nxt;
889 
890 		tcp_bpf_rtt(sk);
891 	}
892 	tp->srtt_us = max(1U, srtt);
893 }
894 
895 static void tcp_update_pacing_rate(struct sock *sk)
896 {
897 	const struct tcp_sock *tp = tcp_sk(sk);
898 	u64 rate;
899 
900 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
901 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
902 
903 	/* current rate is (cwnd * mss) / srtt
904 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
905 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
906 	 *
907 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
908 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
909 	 *	 end of slow start and should slow down.
910 	 */
911 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
912 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
913 	else
914 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
915 
916 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
917 
918 	if (likely(tp->srtt_us))
919 		do_div(rate, tp->srtt_us);
920 
921 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
922 	 * without any lock. We want to make sure compiler wont store
923 	 * intermediate values in this location.
924 	 */
925 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
926 					     sk->sk_max_pacing_rate));
927 }
928 
929 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
930  * routine referred to above.
931  */
932 static void tcp_set_rto(struct sock *sk)
933 {
934 	const struct tcp_sock *tp = tcp_sk(sk);
935 	/* Old crap is replaced with new one. 8)
936 	 *
937 	 * More seriously:
938 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
939 	 *    It cannot be less due to utterly erratic ACK generation made
940 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
941 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
942 	 *    is invisible. Actually, Linux-2.4 also generates erratic
943 	 *    ACKs in some circumstances.
944 	 */
945 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
946 
947 	/* 2. Fixups made earlier cannot be right.
948 	 *    If we do not estimate RTO correctly without them,
949 	 *    all the algo is pure shit and should be replaced
950 	 *    with correct one. It is exactly, which we pretend to do.
951 	 */
952 
953 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
954 	 * guarantees that rto is higher.
955 	 */
956 	tcp_bound_rto(sk);
957 }
958 
959 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
960 {
961 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
962 
963 	if (!cwnd)
964 		cwnd = TCP_INIT_CWND;
965 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
966 }
967 
968 struct tcp_sacktag_state {
969 	/* Timestamps for earliest and latest never-retransmitted segment
970 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
971 	 * but congestion control should still get an accurate delay signal.
972 	 */
973 	u64	first_sackt;
974 	u64	last_sackt;
975 	u32	reord;
976 	u32	sack_delivered;
977 	int	flag;
978 	unsigned int mss_now;
979 	struct rate_sample *rate;
980 };
981 
982 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
983  * and spurious retransmission information if this DSACK is unlikely caused by
984  * sender's action:
985  * - DSACKed sequence range is larger than maximum receiver's window.
986  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
987  */
988 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
989 			  u32 end_seq, struct tcp_sacktag_state *state)
990 {
991 	u32 seq_len, dup_segs = 1;
992 
993 	if (!before(start_seq, end_seq))
994 		return 0;
995 
996 	seq_len = end_seq - start_seq;
997 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
998 	if (seq_len > tp->max_window)
999 		return 0;
1000 	if (seq_len > tp->mss_cache)
1001 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1002 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1003 		state->flag |= FLAG_DSACK_TLP;
1004 
1005 	tp->dsack_dups += dup_segs;
1006 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1007 	if (tp->dsack_dups > tp->total_retrans)
1008 		return 0;
1009 
1010 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1011 	/* We increase the RACK ordering window in rounds where we receive
1012 	 * DSACKs that may have been due to reordering causing RACK to trigger
1013 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1014 	 * without having seen reordering, or that match TLP probes (TLP
1015 	 * is timer-driven, not triggered by RACK).
1016 	 */
1017 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1018 		tp->rack.dsack_seen = 1;
1019 
1020 	state->flag |= FLAG_DSACKING_ACK;
1021 	/* A spurious retransmission is delivered */
1022 	state->sack_delivered += dup_segs;
1023 
1024 	return dup_segs;
1025 }
1026 
1027 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1028  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1029  * distance is approximated in full-mss packet distance ("reordering").
1030  */
1031 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1032 				      const int ts)
1033 {
1034 	struct tcp_sock *tp = tcp_sk(sk);
1035 	const u32 mss = tp->mss_cache;
1036 	u32 fack, metric;
1037 
1038 	fack = tcp_highest_sack_seq(tp);
1039 	if (!before(low_seq, fack))
1040 		return;
1041 
1042 	metric = fack - low_seq;
1043 	if ((metric > tp->reordering * mss) && mss) {
1044 #if FASTRETRANS_DEBUG > 1
1045 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1046 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1047 			 tp->reordering,
1048 			 0,
1049 			 tp->sacked_out,
1050 			 tp->undo_marker ? tp->undo_retrans : 0);
1051 #endif
1052 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1053 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1054 	}
1055 
1056 	/* This exciting event is worth to be remembered. 8) */
1057 	tp->reord_seen++;
1058 	NET_INC_STATS(sock_net(sk),
1059 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1060 }
1061 
1062  /* This must be called before lost_out or retrans_out are updated
1063   * on a new loss, because we want to know if all skbs previously
1064   * known to be lost have already been retransmitted, indicating
1065   * that this newly lost skb is our next skb to retransmit.
1066   */
1067 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1068 {
1069 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1070 	    (tp->retransmit_skb_hint &&
1071 	     before(TCP_SKB_CB(skb)->seq,
1072 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1073 		tp->retransmit_skb_hint = skb;
1074 }
1075 
1076 /* Sum the number of packets on the wire we have marked as lost, and
1077  * notify the congestion control module that the given skb was marked lost.
1078  */
1079 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1080 {
1081 	tp->lost += tcp_skb_pcount(skb);
1082 }
1083 
1084 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1085 {
1086 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1087 	struct tcp_sock *tp = tcp_sk(sk);
1088 
1089 	if (sacked & TCPCB_SACKED_ACKED)
1090 		return;
1091 
1092 	tcp_verify_retransmit_hint(tp, skb);
1093 	if (sacked & TCPCB_LOST) {
1094 		if (sacked & TCPCB_SACKED_RETRANS) {
1095 			/* Account for retransmits that are lost again */
1096 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1097 			tp->retrans_out -= tcp_skb_pcount(skb);
1098 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1099 				      tcp_skb_pcount(skb));
1100 			tcp_notify_skb_loss_event(tp, skb);
1101 		}
1102 	} else {
1103 		tp->lost_out += tcp_skb_pcount(skb);
1104 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1105 		tcp_notify_skb_loss_event(tp, skb);
1106 	}
1107 }
1108 
1109 /* Updates the delivered and delivered_ce counts */
1110 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1111 				bool ece_ack)
1112 {
1113 	tp->delivered += delivered;
1114 	if (ece_ack)
1115 		tp->delivered_ce += delivered;
1116 }
1117 
1118 /* This procedure tags the retransmission queue when SACKs arrive.
1119  *
1120  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1121  * Packets in queue with these bits set are counted in variables
1122  * sacked_out, retrans_out and lost_out, correspondingly.
1123  *
1124  * Valid combinations are:
1125  * Tag  InFlight	Description
1126  * 0	1		- orig segment is in flight.
1127  * S	0		- nothing flies, orig reached receiver.
1128  * L	0		- nothing flies, orig lost by net.
1129  * R	2		- both orig and retransmit are in flight.
1130  * L|R	1		- orig is lost, retransmit is in flight.
1131  * S|R  1		- orig reached receiver, retrans is still in flight.
1132  * (L|S|R is logically valid, it could occur when L|R is sacked,
1133  *  but it is equivalent to plain S and code short-curcuits it to S.
1134  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1135  *
1136  * These 6 states form finite state machine, controlled by the following events:
1137  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1138  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1139  * 3. Loss detection event of two flavors:
1140  *	A. Scoreboard estimator decided the packet is lost.
1141  *	   A'. Reno "three dupacks" marks head of queue lost.
1142  *	B. SACK arrives sacking SND.NXT at the moment, when the
1143  *	   segment was retransmitted.
1144  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1145  *
1146  * It is pleasant to note, that state diagram turns out to be commutative,
1147  * so that we are allowed not to be bothered by order of our actions,
1148  * when multiple events arrive simultaneously. (see the function below).
1149  *
1150  * Reordering detection.
1151  * --------------------
1152  * Reordering metric is maximal distance, which a packet can be displaced
1153  * in packet stream. With SACKs we can estimate it:
1154  *
1155  * 1. SACK fills old hole and the corresponding segment was not
1156  *    ever retransmitted -> reordering. Alas, we cannot use it
1157  *    when segment was retransmitted.
1158  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1159  *    for retransmitted and already SACKed segment -> reordering..
1160  * Both of these heuristics are not used in Loss state, when we cannot
1161  * account for retransmits accurately.
1162  *
1163  * SACK block validation.
1164  * ----------------------
1165  *
1166  * SACK block range validation checks that the received SACK block fits to
1167  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1168  * Note that SND.UNA is not included to the range though being valid because
1169  * it means that the receiver is rather inconsistent with itself reporting
1170  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1171  * perfectly valid, however, in light of RFC2018 which explicitly states
1172  * that "SACK block MUST reflect the newest segment.  Even if the newest
1173  * segment is going to be discarded ...", not that it looks very clever
1174  * in case of head skb. Due to potentional receiver driven attacks, we
1175  * choose to avoid immediate execution of a walk in write queue due to
1176  * reneging and defer head skb's loss recovery to standard loss recovery
1177  * procedure that will eventually trigger (nothing forbids us doing this).
1178  *
1179  * Implements also blockage to start_seq wrap-around. Problem lies in the
1180  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1181  * there's no guarantee that it will be before snd_nxt (n). The problem
1182  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1183  * wrap (s_w):
1184  *
1185  *         <- outs wnd ->                          <- wrapzone ->
1186  *         u     e      n                         u_w   e_w  s n_w
1187  *         |     |      |                          |     |   |  |
1188  * |<------------+------+----- TCP seqno space --------------+---------->|
1189  * ...-- <2^31 ->|                                           |<--------...
1190  * ...---- >2^31 ------>|                                    |<--------...
1191  *
1192  * Current code wouldn't be vulnerable but it's better still to discard such
1193  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1194  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1195  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1196  * equal to the ideal case (infinite seqno space without wrap caused issues).
1197  *
1198  * With D-SACK the lower bound is extended to cover sequence space below
1199  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1200  * again, D-SACK block must not to go across snd_una (for the same reason as
1201  * for the normal SACK blocks, explained above). But there all simplicity
1202  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1203  * fully below undo_marker they do not affect behavior in anyway and can
1204  * therefore be safely ignored. In rare cases (which are more or less
1205  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1206  * fragmentation and packet reordering past skb's retransmission. To consider
1207  * them correctly, the acceptable range must be extended even more though
1208  * the exact amount is rather hard to quantify. However, tp->max_window can
1209  * be used as an exaggerated estimate.
1210  */
1211 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1212 				   u32 start_seq, u32 end_seq)
1213 {
1214 	/* Too far in future, or reversed (interpretation is ambiguous) */
1215 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1216 		return false;
1217 
1218 	/* Nasty start_seq wrap-around check (see comments above) */
1219 	if (!before(start_seq, tp->snd_nxt))
1220 		return false;
1221 
1222 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1223 	 * start_seq == snd_una is non-sensical (see comments above)
1224 	 */
1225 	if (after(start_seq, tp->snd_una))
1226 		return true;
1227 
1228 	if (!is_dsack || !tp->undo_marker)
1229 		return false;
1230 
1231 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1232 	if (after(end_seq, tp->snd_una))
1233 		return false;
1234 
1235 	if (!before(start_seq, tp->undo_marker))
1236 		return true;
1237 
1238 	/* Too old */
1239 	if (!after(end_seq, tp->undo_marker))
1240 		return false;
1241 
1242 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1243 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1244 	 */
1245 	return !before(start_seq, end_seq - tp->max_window);
1246 }
1247 
1248 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1249 			    struct tcp_sack_block_wire *sp, int num_sacks,
1250 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1251 {
1252 	struct tcp_sock *tp = tcp_sk(sk);
1253 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1254 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1255 	u32 dup_segs;
1256 
1257 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1258 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1259 	} else if (num_sacks > 1) {
1260 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1261 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1262 
1263 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1264 			return false;
1265 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1266 	} else {
1267 		return false;
1268 	}
1269 
1270 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1271 	if (!dup_segs) {	/* Skip dubious DSACK */
1272 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1273 		return false;
1274 	}
1275 
1276 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1277 
1278 	/* D-SACK for already forgotten data... Do dumb counting. */
1279 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1280 	    !after(end_seq_0, prior_snd_una) &&
1281 	    after(end_seq_0, tp->undo_marker))
1282 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1283 
1284 	return true;
1285 }
1286 
1287 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1288  * the incoming SACK may not exactly match but we can find smaller MSS
1289  * aligned portion of it that matches. Therefore we might need to fragment
1290  * which may fail and creates some hassle (caller must handle error case
1291  * returns).
1292  *
1293  * FIXME: this could be merged to shift decision code
1294  */
1295 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1296 				  u32 start_seq, u32 end_seq)
1297 {
1298 	int err;
1299 	bool in_sack;
1300 	unsigned int pkt_len;
1301 	unsigned int mss;
1302 
1303 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1304 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1305 
1306 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1307 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1308 		mss = tcp_skb_mss(skb);
1309 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1310 
1311 		if (!in_sack) {
1312 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1313 			if (pkt_len < mss)
1314 				pkt_len = mss;
1315 		} else {
1316 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1317 			if (pkt_len < mss)
1318 				return -EINVAL;
1319 		}
1320 
1321 		/* Round if necessary so that SACKs cover only full MSSes
1322 		 * and/or the remaining small portion (if present)
1323 		 */
1324 		if (pkt_len > mss) {
1325 			unsigned int new_len = (pkt_len / mss) * mss;
1326 			if (!in_sack && new_len < pkt_len)
1327 				new_len += mss;
1328 			pkt_len = new_len;
1329 		}
1330 
1331 		if (pkt_len >= skb->len && !in_sack)
1332 			return 0;
1333 
1334 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1335 				   pkt_len, mss, GFP_ATOMIC);
1336 		if (err < 0)
1337 			return err;
1338 	}
1339 
1340 	return in_sack;
1341 }
1342 
1343 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1344 static u8 tcp_sacktag_one(struct sock *sk,
1345 			  struct tcp_sacktag_state *state, u8 sacked,
1346 			  u32 start_seq, u32 end_seq,
1347 			  int dup_sack, int pcount,
1348 			  u64 xmit_time)
1349 {
1350 	struct tcp_sock *tp = tcp_sk(sk);
1351 
1352 	/* Account D-SACK for retransmitted packet. */
1353 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1354 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1355 		    after(end_seq, tp->undo_marker))
1356 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1357 		if ((sacked & TCPCB_SACKED_ACKED) &&
1358 		    before(start_seq, state->reord))
1359 				state->reord = start_seq;
1360 	}
1361 
1362 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1363 	if (!after(end_seq, tp->snd_una))
1364 		return sacked;
1365 
1366 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1367 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1368 
1369 		if (sacked & TCPCB_SACKED_RETRANS) {
1370 			/* If the segment is not tagged as lost,
1371 			 * we do not clear RETRANS, believing
1372 			 * that retransmission is still in flight.
1373 			 */
1374 			if (sacked & TCPCB_LOST) {
1375 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1376 				tp->lost_out -= pcount;
1377 				tp->retrans_out -= pcount;
1378 			}
1379 		} else {
1380 			if (!(sacked & TCPCB_RETRANS)) {
1381 				/* New sack for not retransmitted frame,
1382 				 * which was in hole. It is reordering.
1383 				 */
1384 				if (before(start_seq,
1385 					   tcp_highest_sack_seq(tp)) &&
1386 				    before(start_seq, state->reord))
1387 					state->reord = start_seq;
1388 
1389 				if (!after(end_seq, tp->high_seq))
1390 					state->flag |= FLAG_ORIG_SACK_ACKED;
1391 				if (state->first_sackt == 0)
1392 					state->first_sackt = xmit_time;
1393 				state->last_sackt = xmit_time;
1394 			}
1395 
1396 			if (sacked & TCPCB_LOST) {
1397 				sacked &= ~TCPCB_LOST;
1398 				tp->lost_out -= pcount;
1399 			}
1400 		}
1401 
1402 		sacked |= TCPCB_SACKED_ACKED;
1403 		state->flag |= FLAG_DATA_SACKED;
1404 		tp->sacked_out += pcount;
1405 		/* Out-of-order packets delivered */
1406 		state->sack_delivered += pcount;
1407 
1408 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1409 		if (tp->lost_skb_hint &&
1410 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1411 			tp->lost_cnt_hint += pcount;
1412 	}
1413 
1414 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1415 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1416 	 * are accounted above as well.
1417 	 */
1418 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1419 		sacked &= ~TCPCB_SACKED_RETRANS;
1420 		tp->retrans_out -= pcount;
1421 	}
1422 
1423 	return sacked;
1424 }
1425 
1426 /* Shift newly-SACKed bytes from this skb to the immediately previous
1427  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1428  */
1429 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1430 			    struct sk_buff *skb,
1431 			    struct tcp_sacktag_state *state,
1432 			    unsigned int pcount, int shifted, int mss,
1433 			    bool dup_sack)
1434 {
1435 	struct tcp_sock *tp = tcp_sk(sk);
1436 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1437 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1438 
1439 	BUG_ON(!pcount);
1440 
1441 	/* Adjust counters and hints for the newly sacked sequence
1442 	 * range but discard the return value since prev is already
1443 	 * marked. We must tag the range first because the seq
1444 	 * advancement below implicitly advances
1445 	 * tcp_highest_sack_seq() when skb is highest_sack.
1446 	 */
1447 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1448 			start_seq, end_seq, dup_sack, pcount,
1449 			tcp_skb_timestamp_us(skb));
1450 	tcp_rate_skb_delivered(sk, skb, state->rate);
1451 
1452 	if (skb == tp->lost_skb_hint)
1453 		tp->lost_cnt_hint += pcount;
1454 
1455 	TCP_SKB_CB(prev)->end_seq += shifted;
1456 	TCP_SKB_CB(skb)->seq += shifted;
1457 
1458 	tcp_skb_pcount_add(prev, pcount);
1459 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1460 	tcp_skb_pcount_add(skb, -pcount);
1461 
1462 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1463 	 * in theory this shouldn't be necessary but as long as DSACK
1464 	 * code can come after this skb later on it's better to keep
1465 	 * setting gso_size to something.
1466 	 */
1467 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1468 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1469 
1470 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1471 	if (tcp_skb_pcount(skb) <= 1)
1472 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1473 
1474 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1475 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1476 
1477 	if (skb->len > 0) {
1478 		BUG_ON(!tcp_skb_pcount(skb));
1479 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1480 		return false;
1481 	}
1482 
1483 	/* Whole SKB was eaten :-) */
1484 
1485 	if (skb == tp->retransmit_skb_hint)
1486 		tp->retransmit_skb_hint = prev;
1487 	if (skb == tp->lost_skb_hint) {
1488 		tp->lost_skb_hint = prev;
1489 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1490 	}
1491 
1492 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1493 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1494 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1495 		TCP_SKB_CB(prev)->end_seq++;
1496 
1497 	if (skb == tcp_highest_sack(sk))
1498 		tcp_advance_highest_sack(sk, skb);
1499 
1500 	tcp_skb_collapse_tstamp(prev, skb);
1501 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1502 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1503 
1504 	tcp_rtx_queue_unlink_and_free(skb, sk);
1505 
1506 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1507 
1508 	return true;
1509 }
1510 
1511 /* I wish gso_size would have a bit more sane initialization than
1512  * something-or-zero which complicates things
1513  */
1514 static int tcp_skb_seglen(const struct sk_buff *skb)
1515 {
1516 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1517 }
1518 
1519 /* Shifting pages past head area doesn't work */
1520 static int skb_can_shift(const struct sk_buff *skb)
1521 {
1522 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1523 }
1524 
1525 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1526 		  int pcount, int shiftlen)
1527 {
1528 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1529 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1530 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1531 	 * even if current MSS is bigger.
1532 	 */
1533 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1534 		return 0;
1535 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1536 		return 0;
1537 	return skb_shift(to, from, shiftlen);
1538 }
1539 
1540 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1541  * skb.
1542  */
1543 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1544 					  struct tcp_sacktag_state *state,
1545 					  u32 start_seq, u32 end_seq,
1546 					  bool dup_sack)
1547 {
1548 	struct tcp_sock *tp = tcp_sk(sk);
1549 	struct sk_buff *prev;
1550 	int mss;
1551 	int pcount = 0;
1552 	int len;
1553 	int in_sack;
1554 
1555 	/* Normally R but no L won't result in plain S */
1556 	if (!dup_sack &&
1557 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1558 		goto fallback;
1559 	if (!skb_can_shift(skb))
1560 		goto fallback;
1561 	/* This frame is about to be dropped (was ACKed). */
1562 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1563 		goto fallback;
1564 
1565 	/* Can only happen with delayed DSACK + discard craziness */
1566 	prev = skb_rb_prev(skb);
1567 	if (!prev)
1568 		goto fallback;
1569 
1570 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1571 		goto fallback;
1572 
1573 	if (!tcp_skb_can_collapse(prev, skb))
1574 		goto fallback;
1575 
1576 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1577 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1578 
1579 	if (in_sack) {
1580 		len = skb->len;
1581 		pcount = tcp_skb_pcount(skb);
1582 		mss = tcp_skb_seglen(skb);
1583 
1584 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1585 		 * drop this restriction as unnecessary
1586 		 */
1587 		if (mss != tcp_skb_seglen(prev))
1588 			goto fallback;
1589 	} else {
1590 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1591 			goto noop;
1592 		/* CHECKME: This is non-MSS split case only?, this will
1593 		 * cause skipped skbs due to advancing loop btw, original
1594 		 * has that feature too
1595 		 */
1596 		if (tcp_skb_pcount(skb) <= 1)
1597 			goto noop;
1598 
1599 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1600 		if (!in_sack) {
1601 			/* TODO: head merge to next could be attempted here
1602 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1603 			 * though it might not be worth of the additional hassle
1604 			 *
1605 			 * ...we can probably just fallback to what was done
1606 			 * previously. We could try merging non-SACKed ones
1607 			 * as well but it probably isn't going to buy off
1608 			 * because later SACKs might again split them, and
1609 			 * it would make skb timestamp tracking considerably
1610 			 * harder problem.
1611 			 */
1612 			goto fallback;
1613 		}
1614 
1615 		len = end_seq - TCP_SKB_CB(skb)->seq;
1616 		BUG_ON(len < 0);
1617 		BUG_ON(len > skb->len);
1618 
1619 		/* MSS boundaries should be honoured or else pcount will
1620 		 * severely break even though it makes things bit trickier.
1621 		 * Optimize common case to avoid most of the divides
1622 		 */
1623 		mss = tcp_skb_mss(skb);
1624 
1625 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1626 		 * drop this restriction as unnecessary
1627 		 */
1628 		if (mss != tcp_skb_seglen(prev))
1629 			goto fallback;
1630 
1631 		if (len == mss) {
1632 			pcount = 1;
1633 		} else if (len < mss) {
1634 			goto noop;
1635 		} else {
1636 			pcount = len / mss;
1637 			len = pcount * mss;
1638 		}
1639 	}
1640 
1641 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1642 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1643 		goto fallback;
1644 
1645 	if (!tcp_skb_shift(prev, skb, pcount, len))
1646 		goto fallback;
1647 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1648 		goto out;
1649 
1650 	/* Hole filled allows collapsing with the next as well, this is very
1651 	 * useful when hole on every nth skb pattern happens
1652 	 */
1653 	skb = skb_rb_next(prev);
1654 	if (!skb)
1655 		goto out;
1656 
1657 	if (!skb_can_shift(skb) ||
1658 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1659 	    (mss != tcp_skb_seglen(skb)))
1660 		goto out;
1661 
1662 	if (!tcp_skb_can_collapse(prev, skb))
1663 		goto out;
1664 	len = skb->len;
1665 	pcount = tcp_skb_pcount(skb);
1666 	if (tcp_skb_shift(prev, skb, pcount, len))
1667 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1668 				len, mss, 0);
1669 
1670 out:
1671 	return prev;
1672 
1673 noop:
1674 	return skb;
1675 
1676 fallback:
1677 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1678 	return NULL;
1679 }
1680 
1681 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1682 					struct tcp_sack_block *next_dup,
1683 					struct tcp_sacktag_state *state,
1684 					u32 start_seq, u32 end_seq,
1685 					bool dup_sack_in)
1686 {
1687 	struct tcp_sock *tp = tcp_sk(sk);
1688 	struct sk_buff *tmp;
1689 
1690 	skb_rbtree_walk_from(skb) {
1691 		int in_sack = 0;
1692 		bool dup_sack = dup_sack_in;
1693 
1694 		/* queue is in-order => we can short-circuit the walk early */
1695 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1696 			break;
1697 
1698 		if (next_dup  &&
1699 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1700 			in_sack = tcp_match_skb_to_sack(sk, skb,
1701 							next_dup->start_seq,
1702 							next_dup->end_seq);
1703 			if (in_sack > 0)
1704 				dup_sack = true;
1705 		}
1706 
1707 		/* skb reference here is a bit tricky to get right, since
1708 		 * shifting can eat and free both this skb and the next,
1709 		 * so not even _safe variant of the loop is enough.
1710 		 */
1711 		if (in_sack <= 0) {
1712 			tmp = tcp_shift_skb_data(sk, skb, state,
1713 						 start_seq, end_seq, dup_sack);
1714 			if (tmp) {
1715 				if (tmp != skb) {
1716 					skb = tmp;
1717 					continue;
1718 				}
1719 
1720 				in_sack = 0;
1721 			} else {
1722 				in_sack = tcp_match_skb_to_sack(sk, skb,
1723 								start_seq,
1724 								end_seq);
1725 			}
1726 		}
1727 
1728 		if (unlikely(in_sack < 0))
1729 			break;
1730 
1731 		if (in_sack) {
1732 			TCP_SKB_CB(skb)->sacked =
1733 				tcp_sacktag_one(sk,
1734 						state,
1735 						TCP_SKB_CB(skb)->sacked,
1736 						TCP_SKB_CB(skb)->seq,
1737 						TCP_SKB_CB(skb)->end_seq,
1738 						dup_sack,
1739 						tcp_skb_pcount(skb),
1740 						tcp_skb_timestamp_us(skb));
1741 			tcp_rate_skb_delivered(sk, skb, state->rate);
1742 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1743 				list_del_init(&skb->tcp_tsorted_anchor);
1744 
1745 			if (!before(TCP_SKB_CB(skb)->seq,
1746 				    tcp_highest_sack_seq(tp)))
1747 				tcp_advance_highest_sack(sk, skb);
1748 		}
1749 	}
1750 	return skb;
1751 }
1752 
1753 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1754 {
1755 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1756 	struct sk_buff *skb;
1757 
1758 	while (*p) {
1759 		parent = *p;
1760 		skb = rb_to_skb(parent);
1761 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1762 			p = &parent->rb_left;
1763 			continue;
1764 		}
1765 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1766 			p = &parent->rb_right;
1767 			continue;
1768 		}
1769 		return skb;
1770 	}
1771 	return NULL;
1772 }
1773 
1774 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1775 					u32 skip_to_seq)
1776 {
1777 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1778 		return skb;
1779 
1780 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1781 }
1782 
1783 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1784 						struct sock *sk,
1785 						struct tcp_sack_block *next_dup,
1786 						struct tcp_sacktag_state *state,
1787 						u32 skip_to_seq)
1788 {
1789 	if (!next_dup)
1790 		return skb;
1791 
1792 	if (before(next_dup->start_seq, skip_to_seq)) {
1793 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1794 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1795 				       next_dup->start_seq, next_dup->end_seq,
1796 				       1);
1797 	}
1798 
1799 	return skb;
1800 }
1801 
1802 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1803 {
1804 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1805 }
1806 
1807 static int
1808 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1809 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1810 {
1811 	struct tcp_sock *tp = tcp_sk(sk);
1812 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1813 				    TCP_SKB_CB(ack_skb)->sacked);
1814 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1815 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1816 	struct tcp_sack_block *cache;
1817 	struct sk_buff *skb;
1818 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1819 	int used_sacks;
1820 	bool found_dup_sack = false;
1821 	int i, j;
1822 	int first_sack_index;
1823 
1824 	state->flag = 0;
1825 	state->reord = tp->snd_nxt;
1826 
1827 	if (!tp->sacked_out)
1828 		tcp_highest_sack_reset(sk);
1829 
1830 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1831 					 num_sacks, prior_snd_una, state);
1832 
1833 	/* Eliminate too old ACKs, but take into
1834 	 * account more or less fresh ones, they can
1835 	 * contain valid SACK info.
1836 	 */
1837 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1838 		return 0;
1839 
1840 	if (!tp->packets_out)
1841 		goto out;
1842 
1843 	used_sacks = 0;
1844 	first_sack_index = 0;
1845 	for (i = 0; i < num_sacks; i++) {
1846 		bool dup_sack = !i && found_dup_sack;
1847 
1848 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1849 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1850 
1851 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1852 					    sp[used_sacks].start_seq,
1853 					    sp[used_sacks].end_seq)) {
1854 			int mib_idx;
1855 
1856 			if (dup_sack) {
1857 				if (!tp->undo_marker)
1858 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1859 				else
1860 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1861 			} else {
1862 				/* Don't count olds caused by ACK reordering */
1863 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1864 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1865 					continue;
1866 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1867 			}
1868 
1869 			NET_INC_STATS(sock_net(sk), mib_idx);
1870 			if (i == 0)
1871 				first_sack_index = -1;
1872 			continue;
1873 		}
1874 
1875 		/* Ignore very old stuff early */
1876 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1877 			if (i == 0)
1878 				first_sack_index = -1;
1879 			continue;
1880 		}
1881 
1882 		used_sacks++;
1883 	}
1884 
1885 	/* order SACK blocks to allow in order walk of the retrans queue */
1886 	for (i = used_sacks - 1; i > 0; i--) {
1887 		for (j = 0; j < i; j++) {
1888 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1889 				swap(sp[j], sp[j + 1]);
1890 
1891 				/* Track where the first SACK block goes to */
1892 				if (j == first_sack_index)
1893 					first_sack_index = j + 1;
1894 			}
1895 		}
1896 	}
1897 
1898 	state->mss_now = tcp_current_mss(sk);
1899 	skb = NULL;
1900 	i = 0;
1901 
1902 	if (!tp->sacked_out) {
1903 		/* It's already past, so skip checking against it */
1904 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1905 	} else {
1906 		cache = tp->recv_sack_cache;
1907 		/* Skip empty blocks in at head of the cache */
1908 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1909 		       !cache->end_seq)
1910 			cache++;
1911 	}
1912 
1913 	while (i < used_sacks) {
1914 		u32 start_seq = sp[i].start_seq;
1915 		u32 end_seq = sp[i].end_seq;
1916 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1917 		struct tcp_sack_block *next_dup = NULL;
1918 
1919 		if (found_dup_sack && ((i + 1) == first_sack_index))
1920 			next_dup = &sp[i + 1];
1921 
1922 		/* Skip too early cached blocks */
1923 		while (tcp_sack_cache_ok(tp, cache) &&
1924 		       !before(start_seq, cache->end_seq))
1925 			cache++;
1926 
1927 		/* Can skip some work by looking recv_sack_cache? */
1928 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1929 		    after(end_seq, cache->start_seq)) {
1930 
1931 			/* Head todo? */
1932 			if (before(start_seq, cache->start_seq)) {
1933 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1934 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1935 						       state,
1936 						       start_seq,
1937 						       cache->start_seq,
1938 						       dup_sack);
1939 			}
1940 
1941 			/* Rest of the block already fully processed? */
1942 			if (!after(end_seq, cache->end_seq))
1943 				goto advance_sp;
1944 
1945 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1946 						       state,
1947 						       cache->end_seq);
1948 
1949 			/* ...tail remains todo... */
1950 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1951 				/* ...but better entrypoint exists! */
1952 				skb = tcp_highest_sack(sk);
1953 				if (!skb)
1954 					break;
1955 				cache++;
1956 				goto walk;
1957 			}
1958 
1959 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1960 			/* Check overlap against next cached too (past this one already) */
1961 			cache++;
1962 			continue;
1963 		}
1964 
1965 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1966 			skb = tcp_highest_sack(sk);
1967 			if (!skb)
1968 				break;
1969 		}
1970 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1971 
1972 walk:
1973 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1974 				       start_seq, end_seq, dup_sack);
1975 
1976 advance_sp:
1977 		i++;
1978 	}
1979 
1980 	/* Clear the head of the cache sack blocks so we can skip it next time */
1981 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1982 		tp->recv_sack_cache[i].start_seq = 0;
1983 		tp->recv_sack_cache[i].end_seq = 0;
1984 	}
1985 	for (j = 0; j < used_sacks; j++)
1986 		tp->recv_sack_cache[i++] = sp[j];
1987 
1988 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1989 		tcp_check_sack_reordering(sk, state->reord, 0);
1990 
1991 	tcp_verify_left_out(tp);
1992 out:
1993 
1994 #if FASTRETRANS_DEBUG > 0
1995 	WARN_ON((int)tp->sacked_out < 0);
1996 	WARN_ON((int)tp->lost_out < 0);
1997 	WARN_ON((int)tp->retrans_out < 0);
1998 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1999 #endif
2000 	return state->flag;
2001 }
2002 
2003 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2004  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2005  */
2006 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2007 {
2008 	u32 holes;
2009 
2010 	holes = max(tp->lost_out, 1U);
2011 	holes = min(holes, tp->packets_out);
2012 
2013 	if ((tp->sacked_out + holes) > tp->packets_out) {
2014 		tp->sacked_out = tp->packets_out - holes;
2015 		return true;
2016 	}
2017 	return false;
2018 }
2019 
2020 /* If we receive more dupacks than we expected counting segments
2021  * in assumption of absent reordering, interpret this as reordering.
2022  * The only another reason could be bug in receiver TCP.
2023  */
2024 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2025 {
2026 	struct tcp_sock *tp = tcp_sk(sk);
2027 
2028 	if (!tcp_limit_reno_sacked(tp))
2029 		return;
2030 
2031 	tp->reordering = min_t(u32, tp->packets_out + addend,
2032 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
2033 	tp->reord_seen++;
2034 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2035 }
2036 
2037 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2038 
2039 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2040 {
2041 	if (num_dupack) {
2042 		struct tcp_sock *tp = tcp_sk(sk);
2043 		u32 prior_sacked = tp->sacked_out;
2044 		s32 delivered;
2045 
2046 		tp->sacked_out += num_dupack;
2047 		tcp_check_reno_reordering(sk, 0);
2048 		delivered = tp->sacked_out - prior_sacked;
2049 		if (delivered > 0)
2050 			tcp_count_delivered(tp, delivered, ece_ack);
2051 		tcp_verify_left_out(tp);
2052 	}
2053 }
2054 
2055 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2056 
2057 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2058 {
2059 	struct tcp_sock *tp = tcp_sk(sk);
2060 
2061 	if (acked > 0) {
2062 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2063 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2064 				    ece_ack);
2065 		if (acked - 1 >= tp->sacked_out)
2066 			tp->sacked_out = 0;
2067 		else
2068 			tp->sacked_out -= acked - 1;
2069 	}
2070 	tcp_check_reno_reordering(sk, acked);
2071 	tcp_verify_left_out(tp);
2072 }
2073 
2074 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2075 {
2076 	tp->sacked_out = 0;
2077 }
2078 
2079 void tcp_clear_retrans(struct tcp_sock *tp)
2080 {
2081 	tp->retrans_out = 0;
2082 	tp->lost_out = 0;
2083 	tp->undo_marker = 0;
2084 	tp->undo_retrans = -1;
2085 	tp->sacked_out = 0;
2086 }
2087 
2088 static inline void tcp_init_undo(struct tcp_sock *tp)
2089 {
2090 	tp->undo_marker = tp->snd_una;
2091 	/* Retransmission still in flight may cause DSACKs later. */
2092 	tp->undo_retrans = tp->retrans_out ? : -1;
2093 }
2094 
2095 static bool tcp_is_rack(const struct sock *sk)
2096 {
2097 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2098 }
2099 
2100 /* If we detect SACK reneging, forget all SACK information
2101  * and reset tags completely, otherwise preserve SACKs. If receiver
2102  * dropped its ofo queue, we will know this due to reneging detection.
2103  */
2104 static void tcp_timeout_mark_lost(struct sock *sk)
2105 {
2106 	struct tcp_sock *tp = tcp_sk(sk);
2107 	struct sk_buff *skb, *head;
2108 	bool is_reneg;			/* is receiver reneging on SACKs? */
2109 
2110 	head = tcp_rtx_queue_head(sk);
2111 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2112 	if (is_reneg) {
2113 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2114 		tp->sacked_out = 0;
2115 		/* Mark SACK reneging until we recover from this loss event. */
2116 		tp->is_sack_reneg = 1;
2117 	} else if (tcp_is_reno(tp)) {
2118 		tcp_reset_reno_sack(tp);
2119 	}
2120 
2121 	skb = head;
2122 	skb_rbtree_walk_from(skb) {
2123 		if (is_reneg)
2124 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2125 		else if (tcp_is_rack(sk) && skb != head &&
2126 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2127 			continue; /* Don't mark recently sent ones lost yet */
2128 		tcp_mark_skb_lost(sk, skb);
2129 	}
2130 	tcp_verify_left_out(tp);
2131 	tcp_clear_all_retrans_hints(tp);
2132 }
2133 
2134 /* Enter Loss state. */
2135 void tcp_enter_loss(struct sock *sk)
2136 {
2137 	const struct inet_connection_sock *icsk = inet_csk(sk);
2138 	struct tcp_sock *tp = tcp_sk(sk);
2139 	struct net *net = sock_net(sk);
2140 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2141 
2142 	tcp_timeout_mark_lost(sk);
2143 
2144 	/* Reduce ssthresh if it has not yet been made inside this window. */
2145 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2146 	    !after(tp->high_seq, tp->snd_una) ||
2147 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2148 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2149 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2150 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2151 		tcp_ca_event(sk, CA_EVENT_LOSS);
2152 		tcp_init_undo(tp);
2153 	}
2154 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2155 	tp->snd_cwnd_cnt   = 0;
2156 	tp->snd_cwnd_stamp = tcp_jiffies32;
2157 
2158 	/* Timeout in disordered state after receiving substantial DUPACKs
2159 	 * suggests that the degree of reordering is over-estimated.
2160 	 */
2161 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2162 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2163 		tp->reordering = min_t(unsigned int, tp->reordering,
2164 				       net->ipv4.sysctl_tcp_reordering);
2165 	tcp_set_ca_state(sk, TCP_CA_Loss);
2166 	tp->high_seq = tp->snd_nxt;
2167 	tcp_ecn_queue_cwr(tp);
2168 
2169 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2170 	 * loss recovery is underway except recurring timeout(s) on
2171 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2172 	 */
2173 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2174 		   (new_recovery || icsk->icsk_retransmits) &&
2175 		   !inet_csk(sk)->icsk_mtup.probe_size;
2176 }
2177 
2178 /* If ACK arrived pointing to a remembered SACK, it means that our
2179  * remembered SACKs do not reflect real state of receiver i.e.
2180  * receiver _host_ is heavily congested (or buggy).
2181  *
2182  * To avoid big spurious retransmission bursts due to transient SACK
2183  * scoreboard oddities that look like reneging, we give the receiver a
2184  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2185  * restore sanity to the SACK scoreboard. If the apparent reneging
2186  * persists until this RTO then we'll clear the SACK scoreboard.
2187  */
2188 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2189 {
2190 	if (flag & FLAG_SACK_RENEGING) {
2191 		struct tcp_sock *tp = tcp_sk(sk);
2192 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2193 					  msecs_to_jiffies(10));
2194 
2195 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2196 					  delay, TCP_RTO_MAX);
2197 		return true;
2198 	}
2199 	return false;
2200 }
2201 
2202 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2203  * counter when SACK is enabled (without SACK, sacked_out is used for
2204  * that purpose).
2205  *
2206  * With reordering, holes may still be in flight, so RFC3517 recovery
2207  * uses pure sacked_out (total number of SACKed segments) even though
2208  * it violates the RFC that uses duplicate ACKs, often these are equal
2209  * but when e.g. out-of-window ACKs or packet duplication occurs,
2210  * they differ. Since neither occurs due to loss, TCP should really
2211  * ignore them.
2212  */
2213 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2214 {
2215 	return tp->sacked_out + 1;
2216 }
2217 
2218 /* Linux NewReno/SACK/ECN state machine.
2219  * --------------------------------------
2220  *
2221  * "Open"	Normal state, no dubious events, fast path.
2222  * "Disorder"   In all the respects it is "Open",
2223  *		but requires a bit more attention. It is entered when
2224  *		we see some SACKs or dupacks. It is split of "Open"
2225  *		mainly to move some processing from fast path to slow one.
2226  * "CWR"	CWND was reduced due to some Congestion Notification event.
2227  *		It can be ECN, ICMP source quench, local device congestion.
2228  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2229  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2230  *
2231  * tcp_fastretrans_alert() is entered:
2232  * - each incoming ACK, if state is not "Open"
2233  * - when arrived ACK is unusual, namely:
2234  *	* SACK
2235  *	* Duplicate ACK.
2236  *	* ECN ECE.
2237  *
2238  * Counting packets in flight is pretty simple.
2239  *
2240  *	in_flight = packets_out - left_out + retrans_out
2241  *
2242  *	packets_out is SND.NXT-SND.UNA counted in packets.
2243  *
2244  *	retrans_out is number of retransmitted segments.
2245  *
2246  *	left_out is number of segments left network, but not ACKed yet.
2247  *
2248  *		left_out = sacked_out + lost_out
2249  *
2250  *     sacked_out: Packets, which arrived to receiver out of order
2251  *		   and hence not ACKed. With SACKs this number is simply
2252  *		   amount of SACKed data. Even without SACKs
2253  *		   it is easy to give pretty reliable estimate of this number,
2254  *		   counting duplicate ACKs.
2255  *
2256  *       lost_out: Packets lost by network. TCP has no explicit
2257  *		   "loss notification" feedback from network (for now).
2258  *		   It means that this number can be only _guessed_.
2259  *		   Actually, it is the heuristics to predict lossage that
2260  *		   distinguishes different algorithms.
2261  *
2262  *	F.e. after RTO, when all the queue is considered as lost,
2263  *	lost_out = packets_out and in_flight = retrans_out.
2264  *
2265  *		Essentially, we have now a few algorithms detecting
2266  *		lost packets.
2267  *
2268  *		If the receiver supports SACK:
2269  *
2270  *		RFC6675/3517: It is the conventional algorithm. A packet is
2271  *		considered lost if the number of higher sequence packets
2272  *		SACKed is greater than or equal the DUPACK thoreshold
2273  *		(reordering). This is implemented in tcp_mark_head_lost and
2274  *		tcp_update_scoreboard.
2275  *
2276  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2277  *		(2017-) that checks timing instead of counting DUPACKs.
2278  *		Essentially a packet is considered lost if it's not S/ACKed
2279  *		after RTT + reordering_window, where both metrics are
2280  *		dynamically measured and adjusted. This is implemented in
2281  *		tcp_rack_mark_lost.
2282  *
2283  *		If the receiver does not support SACK:
2284  *
2285  *		NewReno (RFC6582): in Recovery we assume that one segment
2286  *		is lost (classic Reno). While we are in Recovery and
2287  *		a partial ACK arrives, we assume that one more packet
2288  *		is lost (NewReno). This heuristics are the same in NewReno
2289  *		and SACK.
2290  *
2291  * Really tricky (and requiring careful tuning) part of algorithm
2292  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2293  * The first determines the moment _when_ we should reduce CWND and,
2294  * hence, slow down forward transmission. In fact, it determines the moment
2295  * when we decide that hole is caused by loss, rather than by a reorder.
2296  *
2297  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2298  * holes, caused by lost packets.
2299  *
2300  * And the most logically complicated part of algorithm is undo
2301  * heuristics. We detect false retransmits due to both too early
2302  * fast retransmit (reordering) and underestimated RTO, analyzing
2303  * timestamps and D-SACKs. When we detect that some segments were
2304  * retransmitted by mistake and CWND reduction was wrong, we undo
2305  * window reduction and abort recovery phase. This logic is hidden
2306  * inside several functions named tcp_try_undo_<something>.
2307  */
2308 
2309 /* This function decides, when we should leave Disordered state
2310  * and enter Recovery phase, reducing congestion window.
2311  *
2312  * Main question: may we further continue forward transmission
2313  * with the same cwnd?
2314  */
2315 static bool tcp_time_to_recover(struct sock *sk, int flag)
2316 {
2317 	struct tcp_sock *tp = tcp_sk(sk);
2318 
2319 	/* Trick#1: The loss is proven. */
2320 	if (tp->lost_out)
2321 		return true;
2322 
2323 	/* Not-A-Trick#2 : Classic rule... */
2324 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2325 		return true;
2326 
2327 	return false;
2328 }
2329 
2330 /* Detect loss in event "A" above by marking head of queue up as lost.
2331  * For RFC3517 SACK, a segment is considered lost if it
2332  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2333  * the maximum SACKed segments to pass before reaching this limit.
2334  */
2335 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2336 {
2337 	struct tcp_sock *tp = tcp_sk(sk);
2338 	struct sk_buff *skb;
2339 	int cnt;
2340 	/* Use SACK to deduce losses of new sequences sent during recovery */
2341 	const u32 loss_high = tp->snd_nxt;
2342 
2343 	WARN_ON(packets > tp->packets_out);
2344 	skb = tp->lost_skb_hint;
2345 	if (skb) {
2346 		/* Head already handled? */
2347 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2348 			return;
2349 		cnt = tp->lost_cnt_hint;
2350 	} else {
2351 		skb = tcp_rtx_queue_head(sk);
2352 		cnt = 0;
2353 	}
2354 
2355 	skb_rbtree_walk_from(skb) {
2356 		/* TODO: do this better */
2357 		/* this is not the most efficient way to do this... */
2358 		tp->lost_skb_hint = skb;
2359 		tp->lost_cnt_hint = cnt;
2360 
2361 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2362 			break;
2363 
2364 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2365 			cnt += tcp_skb_pcount(skb);
2366 
2367 		if (cnt > packets)
2368 			break;
2369 
2370 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2371 			tcp_mark_skb_lost(sk, skb);
2372 
2373 		if (mark_head)
2374 			break;
2375 	}
2376 	tcp_verify_left_out(tp);
2377 }
2378 
2379 /* Account newly detected lost packet(s) */
2380 
2381 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2382 {
2383 	struct tcp_sock *tp = tcp_sk(sk);
2384 
2385 	if (tcp_is_sack(tp)) {
2386 		int sacked_upto = tp->sacked_out - tp->reordering;
2387 		if (sacked_upto >= 0)
2388 			tcp_mark_head_lost(sk, sacked_upto, 0);
2389 		else if (fast_rexmit)
2390 			tcp_mark_head_lost(sk, 1, 1);
2391 	}
2392 }
2393 
2394 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2395 {
2396 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2397 	       before(tp->rx_opt.rcv_tsecr, when);
2398 }
2399 
2400 /* skb is spurious retransmitted if the returned timestamp echo
2401  * reply is prior to the skb transmission time
2402  */
2403 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2404 				     const struct sk_buff *skb)
2405 {
2406 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2407 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2408 }
2409 
2410 /* Nothing was retransmitted or returned timestamp is less
2411  * than timestamp of the first retransmission.
2412  */
2413 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2414 {
2415 	return tp->retrans_stamp &&
2416 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2417 }
2418 
2419 /* Undo procedures. */
2420 
2421 /* We can clear retrans_stamp when there are no retransmissions in the
2422  * window. It would seem that it is trivially available for us in
2423  * tp->retrans_out, however, that kind of assumptions doesn't consider
2424  * what will happen if errors occur when sending retransmission for the
2425  * second time. ...It could the that such segment has only
2426  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2427  * the head skb is enough except for some reneging corner cases that
2428  * are not worth the effort.
2429  *
2430  * Main reason for all this complexity is the fact that connection dying
2431  * time now depends on the validity of the retrans_stamp, in particular,
2432  * that successive retransmissions of a segment must not advance
2433  * retrans_stamp under any conditions.
2434  */
2435 static bool tcp_any_retrans_done(const struct sock *sk)
2436 {
2437 	const struct tcp_sock *tp = tcp_sk(sk);
2438 	struct sk_buff *skb;
2439 
2440 	if (tp->retrans_out)
2441 		return true;
2442 
2443 	skb = tcp_rtx_queue_head(sk);
2444 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2445 		return true;
2446 
2447 	return false;
2448 }
2449 
2450 static void DBGUNDO(struct sock *sk, const char *msg)
2451 {
2452 #if FASTRETRANS_DEBUG > 1
2453 	struct tcp_sock *tp = tcp_sk(sk);
2454 	struct inet_sock *inet = inet_sk(sk);
2455 
2456 	if (sk->sk_family == AF_INET) {
2457 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2458 			 msg,
2459 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2460 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2461 			 tp->snd_ssthresh, tp->prior_ssthresh,
2462 			 tp->packets_out);
2463 	}
2464 #if IS_ENABLED(CONFIG_IPV6)
2465 	else if (sk->sk_family == AF_INET6) {
2466 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2467 			 msg,
2468 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2469 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2470 			 tp->snd_ssthresh, tp->prior_ssthresh,
2471 			 tp->packets_out);
2472 	}
2473 #endif
2474 #endif
2475 }
2476 
2477 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 
2481 	if (unmark_loss) {
2482 		struct sk_buff *skb;
2483 
2484 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2485 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2486 		}
2487 		tp->lost_out = 0;
2488 		tcp_clear_all_retrans_hints(tp);
2489 	}
2490 
2491 	if (tp->prior_ssthresh) {
2492 		const struct inet_connection_sock *icsk = inet_csk(sk);
2493 
2494 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2495 
2496 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2497 			tp->snd_ssthresh = tp->prior_ssthresh;
2498 			tcp_ecn_withdraw_cwr(tp);
2499 		}
2500 	}
2501 	tp->snd_cwnd_stamp = tcp_jiffies32;
2502 	tp->undo_marker = 0;
2503 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2504 }
2505 
2506 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2507 {
2508 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2509 }
2510 
2511 /* People celebrate: "We love our President!" */
2512 static bool tcp_try_undo_recovery(struct sock *sk)
2513 {
2514 	struct tcp_sock *tp = tcp_sk(sk);
2515 
2516 	if (tcp_may_undo(tp)) {
2517 		int mib_idx;
2518 
2519 		/* Happy end! We did not retransmit anything
2520 		 * or our original transmission succeeded.
2521 		 */
2522 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2523 		tcp_undo_cwnd_reduction(sk, false);
2524 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2525 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2526 		else
2527 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2528 
2529 		NET_INC_STATS(sock_net(sk), mib_idx);
2530 	} else if (tp->rack.reo_wnd_persist) {
2531 		tp->rack.reo_wnd_persist--;
2532 	}
2533 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2534 		/* Hold old state until something *above* high_seq
2535 		 * is ACKed. For Reno it is MUST to prevent false
2536 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2537 		if (!tcp_any_retrans_done(sk))
2538 			tp->retrans_stamp = 0;
2539 		return true;
2540 	}
2541 	tcp_set_ca_state(sk, TCP_CA_Open);
2542 	tp->is_sack_reneg = 0;
2543 	return false;
2544 }
2545 
2546 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2547 static bool tcp_try_undo_dsack(struct sock *sk)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 
2551 	if (tp->undo_marker && !tp->undo_retrans) {
2552 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2553 					       tp->rack.reo_wnd_persist + 1);
2554 		DBGUNDO(sk, "D-SACK");
2555 		tcp_undo_cwnd_reduction(sk, false);
2556 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2557 		return true;
2558 	}
2559 	return false;
2560 }
2561 
2562 /* Undo during loss recovery after partial ACK or using F-RTO. */
2563 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2564 {
2565 	struct tcp_sock *tp = tcp_sk(sk);
2566 
2567 	if (frto_undo || tcp_may_undo(tp)) {
2568 		tcp_undo_cwnd_reduction(sk, true);
2569 
2570 		DBGUNDO(sk, "partial loss");
2571 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2572 		if (frto_undo)
2573 			NET_INC_STATS(sock_net(sk),
2574 					LINUX_MIB_TCPSPURIOUSRTOS);
2575 		inet_csk(sk)->icsk_retransmits = 0;
2576 		if (frto_undo || tcp_is_sack(tp)) {
2577 			tcp_set_ca_state(sk, TCP_CA_Open);
2578 			tp->is_sack_reneg = 0;
2579 		}
2580 		return true;
2581 	}
2582 	return false;
2583 }
2584 
2585 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2586  * It computes the number of packets to send (sndcnt) based on packets newly
2587  * delivered:
2588  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2589  *	cwnd reductions across a full RTT.
2590  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2591  *      But when SND_UNA is acked without further losses,
2592  *      slow starts cwnd up to ssthresh to speed up the recovery.
2593  */
2594 static void tcp_init_cwnd_reduction(struct sock *sk)
2595 {
2596 	struct tcp_sock *tp = tcp_sk(sk);
2597 
2598 	tp->high_seq = tp->snd_nxt;
2599 	tp->tlp_high_seq = 0;
2600 	tp->snd_cwnd_cnt = 0;
2601 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2602 	tp->prr_delivered = 0;
2603 	tp->prr_out = 0;
2604 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2605 	tcp_ecn_queue_cwr(tp);
2606 }
2607 
2608 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2609 {
2610 	struct tcp_sock *tp = tcp_sk(sk);
2611 	int sndcnt = 0;
2612 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2613 
2614 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2615 		return;
2616 
2617 	tp->prr_delivered += newly_acked_sacked;
2618 	if (delta < 0) {
2619 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2620 			       tp->prior_cwnd - 1;
2621 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2622 	} else {
2623 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2624 			       newly_acked_sacked);
2625 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2626 			sndcnt++;
2627 		sndcnt = min(delta, sndcnt);
2628 	}
2629 	/* Force a fast retransmit upon entering fast recovery */
2630 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2631 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2632 }
2633 
2634 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2635 {
2636 	struct tcp_sock *tp = tcp_sk(sk);
2637 
2638 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2639 		return;
2640 
2641 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2642 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2643 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2644 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2645 		tp->snd_cwnd_stamp = tcp_jiffies32;
2646 	}
2647 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2648 }
2649 
2650 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2651 void tcp_enter_cwr(struct sock *sk)
2652 {
2653 	struct tcp_sock *tp = tcp_sk(sk);
2654 
2655 	tp->prior_ssthresh = 0;
2656 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2657 		tp->undo_marker = 0;
2658 		tcp_init_cwnd_reduction(sk);
2659 		tcp_set_ca_state(sk, TCP_CA_CWR);
2660 	}
2661 }
2662 EXPORT_SYMBOL(tcp_enter_cwr);
2663 
2664 static void tcp_try_keep_open(struct sock *sk)
2665 {
2666 	struct tcp_sock *tp = tcp_sk(sk);
2667 	int state = TCP_CA_Open;
2668 
2669 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2670 		state = TCP_CA_Disorder;
2671 
2672 	if (inet_csk(sk)->icsk_ca_state != state) {
2673 		tcp_set_ca_state(sk, state);
2674 		tp->high_seq = tp->snd_nxt;
2675 	}
2676 }
2677 
2678 static void tcp_try_to_open(struct sock *sk, int flag)
2679 {
2680 	struct tcp_sock *tp = tcp_sk(sk);
2681 
2682 	tcp_verify_left_out(tp);
2683 
2684 	if (!tcp_any_retrans_done(sk))
2685 		tp->retrans_stamp = 0;
2686 
2687 	if (flag & FLAG_ECE)
2688 		tcp_enter_cwr(sk);
2689 
2690 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2691 		tcp_try_keep_open(sk);
2692 	}
2693 }
2694 
2695 static void tcp_mtup_probe_failed(struct sock *sk)
2696 {
2697 	struct inet_connection_sock *icsk = inet_csk(sk);
2698 
2699 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2700 	icsk->icsk_mtup.probe_size = 0;
2701 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2702 }
2703 
2704 static void tcp_mtup_probe_success(struct sock *sk)
2705 {
2706 	struct tcp_sock *tp = tcp_sk(sk);
2707 	struct inet_connection_sock *icsk = inet_csk(sk);
2708 	u64 val;
2709 
2710 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2711 
2712 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2713 	do_div(val, icsk->icsk_mtup.probe_size);
2714 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2715 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2716 
2717 	tp->snd_cwnd_cnt = 0;
2718 	tp->snd_cwnd_stamp = tcp_jiffies32;
2719 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2720 
2721 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2722 	icsk->icsk_mtup.probe_size = 0;
2723 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2724 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2725 }
2726 
2727 /* Do a simple retransmit without using the backoff mechanisms in
2728  * tcp_timer. This is used for path mtu discovery.
2729  * The socket is already locked here.
2730  */
2731 void tcp_simple_retransmit(struct sock *sk)
2732 {
2733 	const struct inet_connection_sock *icsk = inet_csk(sk);
2734 	struct tcp_sock *tp = tcp_sk(sk);
2735 	struct sk_buff *skb;
2736 	int mss;
2737 
2738 	/* A fastopen SYN request is stored as two separate packets within
2739 	 * the retransmit queue, this is done by tcp_send_syn_data().
2740 	 * As a result simply checking the MSS of the frames in the queue
2741 	 * will not work for the SYN packet.
2742 	 *
2743 	 * Us being here is an indication of a path MTU issue so we can
2744 	 * assume that the fastopen SYN was lost and just mark all the
2745 	 * frames in the retransmit queue as lost. We will use an MSS of
2746 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2747 	 */
2748 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2749 		mss = -1;
2750 	else
2751 		mss = tcp_current_mss(sk);
2752 
2753 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2754 		if (tcp_skb_seglen(skb) > mss)
2755 			tcp_mark_skb_lost(sk, skb);
2756 	}
2757 
2758 	tcp_clear_retrans_hints_partial(tp);
2759 
2760 	if (!tp->lost_out)
2761 		return;
2762 
2763 	if (tcp_is_reno(tp))
2764 		tcp_limit_reno_sacked(tp);
2765 
2766 	tcp_verify_left_out(tp);
2767 
2768 	/* Don't muck with the congestion window here.
2769 	 * Reason is that we do not increase amount of _data_
2770 	 * in network, but units changed and effective
2771 	 * cwnd/ssthresh really reduced now.
2772 	 */
2773 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2774 		tp->high_seq = tp->snd_nxt;
2775 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2776 		tp->prior_ssthresh = 0;
2777 		tp->undo_marker = 0;
2778 		tcp_set_ca_state(sk, TCP_CA_Loss);
2779 	}
2780 	tcp_xmit_retransmit_queue(sk);
2781 }
2782 EXPORT_SYMBOL(tcp_simple_retransmit);
2783 
2784 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2785 {
2786 	struct tcp_sock *tp = tcp_sk(sk);
2787 	int mib_idx;
2788 
2789 	if (tcp_is_reno(tp))
2790 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2791 	else
2792 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2793 
2794 	NET_INC_STATS(sock_net(sk), mib_idx);
2795 
2796 	tp->prior_ssthresh = 0;
2797 	tcp_init_undo(tp);
2798 
2799 	if (!tcp_in_cwnd_reduction(sk)) {
2800 		if (!ece_ack)
2801 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2802 		tcp_init_cwnd_reduction(sk);
2803 	}
2804 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2805 }
2806 
2807 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2808  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2809  */
2810 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2811 			     int *rexmit)
2812 {
2813 	struct tcp_sock *tp = tcp_sk(sk);
2814 	bool recovered = !before(tp->snd_una, tp->high_seq);
2815 
2816 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2817 	    tcp_try_undo_loss(sk, false))
2818 		return;
2819 
2820 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2821 		/* Step 3.b. A timeout is spurious if not all data are
2822 		 * lost, i.e., never-retransmitted data are (s)acked.
2823 		 */
2824 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2825 		    tcp_try_undo_loss(sk, true))
2826 			return;
2827 
2828 		if (after(tp->snd_nxt, tp->high_seq)) {
2829 			if (flag & FLAG_DATA_SACKED || num_dupack)
2830 				tp->frto = 0; /* Step 3.a. loss was real */
2831 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2832 			tp->high_seq = tp->snd_nxt;
2833 			/* Step 2.b. Try send new data (but deferred until cwnd
2834 			 * is updated in tcp_ack()). Otherwise fall back to
2835 			 * the conventional recovery.
2836 			 */
2837 			if (!tcp_write_queue_empty(sk) &&
2838 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2839 				*rexmit = REXMIT_NEW;
2840 				return;
2841 			}
2842 			tp->frto = 0;
2843 		}
2844 	}
2845 
2846 	if (recovered) {
2847 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2848 		tcp_try_undo_recovery(sk);
2849 		return;
2850 	}
2851 	if (tcp_is_reno(tp)) {
2852 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2853 		 * delivered. Lower inflight to clock out (re)tranmissions.
2854 		 */
2855 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2856 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2857 		else if (flag & FLAG_SND_UNA_ADVANCED)
2858 			tcp_reset_reno_sack(tp);
2859 	}
2860 	*rexmit = REXMIT_LOST;
2861 }
2862 
2863 static bool tcp_force_fast_retransmit(struct sock *sk)
2864 {
2865 	struct tcp_sock *tp = tcp_sk(sk);
2866 
2867 	return after(tcp_highest_sack_seq(tp),
2868 		     tp->snd_una + tp->reordering * tp->mss_cache);
2869 }
2870 
2871 /* Undo during fast recovery after partial ACK. */
2872 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2873 				 bool *do_lost)
2874 {
2875 	struct tcp_sock *tp = tcp_sk(sk);
2876 
2877 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2878 		/* Plain luck! Hole if filled with delayed
2879 		 * packet, rather than with a retransmit. Check reordering.
2880 		 */
2881 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2882 
2883 		/* We are getting evidence that the reordering degree is higher
2884 		 * than we realized. If there are no retransmits out then we
2885 		 * can undo. Otherwise we clock out new packets but do not
2886 		 * mark more packets lost or retransmit more.
2887 		 */
2888 		if (tp->retrans_out)
2889 			return true;
2890 
2891 		if (!tcp_any_retrans_done(sk))
2892 			tp->retrans_stamp = 0;
2893 
2894 		DBGUNDO(sk, "partial recovery");
2895 		tcp_undo_cwnd_reduction(sk, true);
2896 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2897 		tcp_try_keep_open(sk);
2898 	} else {
2899 		/* Partial ACK arrived. Force fast retransmit. */
2900 		*do_lost = tcp_force_fast_retransmit(sk);
2901 	}
2902 	return false;
2903 }
2904 
2905 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2906 {
2907 	struct tcp_sock *tp = tcp_sk(sk);
2908 
2909 	if (tcp_rtx_queue_empty(sk))
2910 		return;
2911 
2912 	if (unlikely(tcp_is_reno(tp))) {
2913 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2914 	} else if (tcp_is_rack(sk)) {
2915 		u32 prior_retrans = tp->retrans_out;
2916 
2917 		if (tcp_rack_mark_lost(sk))
2918 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2919 		if (prior_retrans > tp->retrans_out)
2920 			*ack_flag |= FLAG_LOST_RETRANS;
2921 	}
2922 }
2923 
2924 /* Process an event, which can update packets-in-flight not trivially.
2925  * Main goal of this function is to calculate new estimate for left_out,
2926  * taking into account both packets sitting in receiver's buffer and
2927  * packets lost by network.
2928  *
2929  * Besides that it updates the congestion state when packet loss or ECN
2930  * is detected. But it does not reduce the cwnd, it is done by the
2931  * congestion control later.
2932  *
2933  * It does _not_ decide what to send, it is made in function
2934  * tcp_xmit_retransmit_queue().
2935  */
2936 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2937 				  int num_dupack, int *ack_flag, int *rexmit)
2938 {
2939 	struct inet_connection_sock *icsk = inet_csk(sk);
2940 	struct tcp_sock *tp = tcp_sk(sk);
2941 	int fast_rexmit = 0, flag = *ack_flag;
2942 	bool ece_ack = flag & FLAG_ECE;
2943 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2944 				      tcp_force_fast_retransmit(sk));
2945 
2946 	if (!tp->packets_out && tp->sacked_out)
2947 		tp->sacked_out = 0;
2948 
2949 	/* Now state machine starts.
2950 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2951 	if (ece_ack)
2952 		tp->prior_ssthresh = 0;
2953 
2954 	/* B. In all the states check for reneging SACKs. */
2955 	if (tcp_check_sack_reneging(sk, flag))
2956 		return;
2957 
2958 	/* C. Check consistency of the current state. */
2959 	tcp_verify_left_out(tp);
2960 
2961 	/* D. Check state exit conditions. State can be terminated
2962 	 *    when high_seq is ACKed. */
2963 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2964 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2965 		tp->retrans_stamp = 0;
2966 	} else if (!before(tp->snd_una, tp->high_seq)) {
2967 		switch (icsk->icsk_ca_state) {
2968 		case TCP_CA_CWR:
2969 			/* CWR is to be held something *above* high_seq
2970 			 * is ACKed for CWR bit to reach receiver. */
2971 			if (tp->snd_una != tp->high_seq) {
2972 				tcp_end_cwnd_reduction(sk);
2973 				tcp_set_ca_state(sk, TCP_CA_Open);
2974 			}
2975 			break;
2976 
2977 		case TCP_CA_Recovery:
2978 			if (tcp_is_reno(tp))
2979 				tcp_reset_reno_sack(tp);
2980 			if (tcp_try_undo_recovery(sk))
2981 				return;
2982 			tcp_end_cwnd_reduction(sk);
2983 			break;
2984 		}
2985 	}
2986 
2987 	/* E. Process state. */
2988 	switch (icsk->icsk_ca_state) {
2989 	case TCP_CA_Recovery:
2990 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2991 			if (tcp_is_reno(tp))
2992 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2993 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2994 			return;
2995 
2996 		if (tcp_try_undo_dsack(sk))
2997 			tcp_try_keep_open(sk);
2998 
2999 		tcp_identify_packet_loss(sk, ack_flag);
3000 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3001 			if (!tcp_time_to_recover(sk, flag))
3002 				return;
3003 			/* Undo reverts the recovery state. If loss is evident,
3004 			 * starts a new recovery (e.g. reordering then loss);
3005 			 */
3006 			tcp_enter_recovery(sk, ece_ack);
3007 		}
3008 		break;
3009 	case TCP_CA_Loss:
3010 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3011 		tcp_identify_packet_loss(sk, ack_flag);
3012 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3013 		      (*ack_flag & FLAG_LOST_RETRANS)))
3014 			return;
3015 		/* Change state if cwnd is undone or retransmits are lost */
3016 		fallthrough;
3017 	default:
3018 		if (tcp_is_reno(tp)) {
3019 			if (flag & FLAG_SND_UNA_ADVANCED)
3020 				tcp_reset_reno_sack(tp);
3021 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3022 		}
3023 
3024 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3025 			tcp_try_undo_dsack(sk);
3026 
3027 		tcp_identify_packet_loss(sk, ack_flag);
3028 		if (!tcp_time_to_recover(sk, flag)) {
3029 			tcp_try_to_open(sk, flag);
3030 			return;
3031 		}
3032 
3033 		/* MTU probe failure: don't reduce cwnd */
3034 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3035 		    icsk->icsk_mtup.probe_size &&
3036 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3037 			tcp_mtup_probe_failed(sk);
3038 			/* Restores the reduction we did in tcp_mtup_probe() */
3039 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3040 			tcp_simple_retransmit(sk);
3041 			return;
3042 		}
3043 
3044 		/* Otherwise enter Recovery state */
3045 		tcp_enter_recovery(sk, ece_ack);
3046 		fast_rexmit = 1;
3047 	}
3048 
3049 	if (!tcp_is_rack(sk) && do_lost)
3050 		tcp_update_scoreboard(sk, fast_rexmit);
3051 	*rexmit = REXMIT_LOST;
3052 }
3053 
3054 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3055 {
3056 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3057 	struct tcp_sock *tp = tcp_sk(sk);
3058 
3059 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3060 		/* If the remote keeps returning delayed ACKs, eventually
3061 		 * the min filter would pick it up and overestimate the
3062 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3063 		 */
3064 		return;
3065 	}
3066 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3067 			   rtt_us ? : jiffies_to_usecs(1));
3068 }
3069 
3070 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3071 			       long seq_rtt_us, long sack_rtt_us,
3072 			       long ca_rtt_us, struct rate_sample *rs)
3073 {
3074 	const struct tcp_sock *tp = tcp_sk(sk);
3075 
3076 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3077 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3078 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3079 	 * is acked (RFC6298).
3080 	 */
3081 	if (seq_rtt_us < 0)
3082 		seq_rtt_us = sack_rtt_us;
3083 
3084 	/* RTTM Rule: A TSecr value received in a segment is used to
3085 	 * update the averaged RTT measurement only if the segment
3086 	 * acknowledges some new data, i.e., only if it advances the
3087 	 * left edge of the send window.
3088 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3089 	 */
3090 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3091 	    flag & FLAG_ACKED) {
3092 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3093 
3094 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3095 			if (!delta)
3096 				delta = 1;
3097 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3098 			ca_rtt_us = seq_rtt_us;
3099 		}
3100 	}
3101 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3102 	if (seq_rtt_us < 0)
3103 		return false;
3104 
3105 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3106 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3107 	 * values will be skipped with the seq_rtt_us < 0 check above.
3108 	 */
3109 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3110 	tcp_rtt_estimator(sk, seq_rtt_us);
3111 	tcp_set_rto(sk);
3112 
3113 	/* RFC6298: only reset backoff on valid RTT measurement. */
3114 	inet_csk(sk)->icsk_backoff = 0;
3115 	return true;
3116 }
3117 
3118 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3119 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3120 {
3121 	struct rate_sample rs;
3122 	long rtt_us = -1L;
3123 
3124 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3125 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3126 
3127 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3128 }
3129 
3130 
3131 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3132 {
3133 	const struct inet_connection_sock *icsk = inet_csk(sk);
3134 
3135 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3136 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3137 }
3138 
3139 /* Restart timer after forward progress on connection.
3140  * RFC2988 recommends to restart timer to now+rto.
3141  */
3142 void tcp_rearm_rto(struct sock *sk)
3143 {
3144 	const struct inet_connection_sock *icsk = inet_csk(sk);
3145 	struct tcp_sock *tp = tcp_sk(sk);
3146 
3147 	/* If the retrans timer is currently being used by Fast Open
3148 	 * for SYN-ACK retrans purpose, stay put.
3149 	 */
3150 	if (rcu_access_pointer(tp->fastopen_rsk))
3151 		return;
3152 
3153 	if (!tp->packets_out) {
3154 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3155 	} else {
3156 		u32 rto = inet_csk(sk)->icsk_rto;
3157 		/* Offset the time elapsed after installing regular RTO */
3158 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3159 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3160 			s64 delta_us = tcp_rto_delta_us(sk);
3161 			/* delta_us may not be positive if the socket is locked
3162 			 * when the retrans timer fires and is rescheduled.
3163 			 */
3164 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3165 		}
3166 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3167 				     TCP_RTO_MAX);
3168 	}
3169 }
3170 
3171 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3172 static void tcp_set_xmit_timer(struct sock *sk)
3173 {
3174 	if (!tcp_schedule_loss_probe(sk, true))
3175 		tcp_rearm_rto(sk);
3176 }
3177 
3178 /* If we get here, the whole TSO packet has not been acked. */
3179 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3180 {
3181 	struct tcp_sock *tp = tcp_sk(sk);
3182 	u32 packets_acked;
3183 
3184 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3185 
3186 	packets_acked = tcp_skb_pcount(skb);
3187 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3188 		return 0;
3189 	packets_acked -= tcp_skb_pcount(skb);
3190 
3191 	if (packets_acked) {
3192 		BUG_ON(tcp_skb_pcount(skb) == 0);
3193 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3194 	}
3195 
3196 	return packets_acked;
3197 }
3198 
3199 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3200 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3201 {
3202 	const struct skb_shared_info *shinfo;
3203 
3204 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3205 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3206 		return;
3207 
3208 	shinfo = skb_shinfo(skb);
3209 	if (!before(shinfo->tskey, prior_snd_una) &&
3210 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3211 		tcp_skb_tsorted_save(skb) {
3212 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3213 		} tcp_skb_tsorted_restore(skb);
3214 	}
3215 }
3216 
3217 /* Remove acknowledged frames from the retransmission queue. If our packet
3218  * is before the ack sequence we can discard it as it's confirmed to have
3219  * arrived at the other end.
3220  */
3221 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3222 			       u32 prior_fack, u32 prior_snd_una,
3223 			       struct tcp_sacktag_state *sack, bool ece_ack)
3224 {
3225 	const struct inet_connection_sock *icsk = inet_csk(sk);
3226 	u64 first_ackt, last_ackt;
3227 	struct tcp_sock *tp = tcp_sk(sk);
3228 	u32 prior_sacked = tp->sacked_out;
3229 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3230 	struct sk_buff *skb, *next;
3231 	bool fully_acked = true;
3232 	long sack_rtt_us = -1L;
3233 	long seq_rtt_us = -1L;
3234 	long ca_rtt_us = -1L;
3235 	u32 pkts_acked = 0;
3236 	bool rtt_update;
3237 	int flag = 0;
3238 
3239 	first_ackt = 0;
3240 
3241 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3242 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3243 		const u32 start_seq = scb->seq;
3244 		u8 sacked = scb->sacked;
3245 		u32 acked_pcount;
3246 
3247 		/* Determine how many packets and what bytes were acked, tso and else */
3248 		if (after(scb->end_seq, tp->snd_una)) {
3249 			if (tcp_skb_pcount(skb) == 1 ||
3250 			    !after(tp->snd_una, scb->seq))
3251 				break;
3252 
3253 			acked_pcount = tcp_tso_acked(sk, skb);
3254 			if (!acked_pcount)
3255 				break;
3256 			fully_acked = false;
3257 		} else {
3258 			acked_pcount = tcp_skb_pcount(skb);
3259 		}
3260 
3261 		if (unlikely(sacked & TCPCB_RETRANS)) {
3262 			if (sacked & TCPCB_SACKED_RETRANS)
3263 				tp->retrans_out -= acked_pcount;
3264 			flag |= FLAG_RETRANS_DATA_ACKED;
3265 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3266 			last_ackt = tcp_skb_timestamp_us(skb);
3267 			WARN_ON_ONCE(last_ackt == 0);
3268 			if (!first_ackt)
3269 				first_ackt = last_ackt;
3270 
3271 			if (before(start_seq, reord))
3272 				reord = start_seq;
3273 			if (!after(scb->end_seq, tp->high_seq))
3274 				flag |= FLAG_ORIG_SACK_ACKED;
3275 		}
3276 
3277 		if (sacked & TCPCB_SACKED_ACKED) {
3278 			tp->sacked_out -= acked_pcount;
3279 		} else if (tcp_is_sack(tp)) {
3280 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3281 			if (!tcp_skb_spurious_retrans(tp, skb))
3282 				tcp_rack_advance(tp, sacked, scb->end_seq,
3283 						 tcp_skb_timestamp_us(skb));
3284 		}
3285 		if (sacked & TCPCB_LOST)
3286 			tp->lost_out -= acked_pcount;
3287 
3288 		tp->packets_out -= acked_pcount;
3289 		pkts_acked += acked_pcount;
3290 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3291 
3292 		/* Initial outgoing SYN's get put onto the write_queue
3293 		 * just like anything else we transmit.  It is not
3294 		 * true data, and if we misinform our callers that
3295 		 * this ACK acks real data, we will erroneously exit
3296 		 * connection startup slow start one packet too
3297 		 * quickly.  This is severely frowned upon behavior.
3298 		 */
3299 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3300 			flag |= FLAG_DATA_ACKED;
3301 		} else {
3302 			flag |= FLAG_SYN_ACKED;
3303 			tp->retrans_stamp = 0;
3304 		}
3305 
3306 		if (!fully_acked)
3307 			break;
3308 
3309 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3310 
3311 		next = skb_rb_next(skb);
3312 		if (unlikely(skb == tp->retransmit_skb_hint))
3313 			tp->retransmit_skb_hint = NULL;
3314 		if (unlikely(skb == tp->lost_skb_hint))
3315 			tp->lost_skb_hint = NULL;
3316 		tcp_highest_sack_replace(sk, skb, next);
3317 		tcp_rtx_queue_unlink_and_free(skb, sk);
3318 	}
3319 
3320 	if (!skb)
3321 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3322 
3323 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3324 		tp->snd_up = tp->snd_una;
3325 
3326 	if (skb) {
3327 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3328 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3329 			flag |= FLAG_SACK_RENEGING;
3330 	}
3331 
3332 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3333 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3334 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3335 
3336 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3337 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3338 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3339 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3340 			/* Conservatively mark a delayed ACK. It's typically
3341 			 * from a lone runt packet over the round trip to
3342 			 * a receiver w/o out-of-order or CE events.
3343 			 */
3344 			flag |= FLAG_ACK_MAYBE_DELAYED;
3345 		}
3346 	}
3347 	if (sack->first_sackt) {
3348 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3349 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3350 	}
3351 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3352 					ca_rtt_us, sack->rate);
3353 
3354 	if (flag & FLAG_ACKED) {
3355 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3356 		if (unlikely(icsk->icsk_mtup.probe_size &&
3357 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3358 			tcp_mtup_probe_success(sk);
3359 		}
3360 
3361 		if (tcp_is_reno(tp)) {
3362 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3363 
3364 			/* If any of the cumulatively ACKed segments was
3365 			 * retransmitted, non-SACK case cannot confirm that
3366 			 * progress was due to original transmission due to
3367 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3368 			 * the packets may have been never retransmitted.
3369 			 */
3370 			if (flag & FLAG_RETRANS_DATA_ACKED)
3371 				flag &= ~FLAG_ORIG_SACK_ACKED;
3372 		} else {
3373 			int delta;
3374 
3375 			/* Non-retransmitted hole got filled? That's reordering */
3376 			if (before(reord, prior_fack))
3377 				tcp_check_sack_reordering(sk, reord, 0);
3378 
3379 			delta = prior_sacked - tp->sacked_out;
3380 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3381 		}
3382 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3383 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3384 						    tcp_skb_timestamp_us(skb))) {
3385 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3386 		 * after when the head was last (re)transmitted. Otherwise the
3387 		 * timeout may continue to extend in loss recovery.
3388 		 */
3389 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3390 	}
3391 
3392 	if (icsk->icsk_ca_ops->pkts_acked) {
3393 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3394 					     .rtt_us = sack->rate->rtt_us };
3395 
3396 		sample.in_flight = tp->mss_cache *
3397 			(tp->delivered - sack->rate->prior_delivered);
3398 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3399 	}
3400 
3401 #if FASTRETRANS_DEBUG > 0
3402 	WARN_ON((int)tp->sacked_out < 0);
3403 	WARN_ON((int)tp->lost_out < 0);
3404 	WARN_ON((int)tp->retrans_out < 0);
3405 	if (!tp->packets_out && tcp_is_sack(tp)) {
3406 		icsk = inet_csk(sk);
3407 		if (tp->lost_out) {
3408 			pr_debug("Leak l=%u %d\n",
3409 				 tp->lost_out, icsk->icsk_ca_state);
3410 			tp->lost_out = 0;
3411 		}
3412 		if (tp->sacked_out) {
3413 			pr_debug("Leak s=%u %d\n",
3414 				 tp->sacked_out, icsk->icsk_ca_state);
3415 			tp->sacked_out = 0;
3416 		}
3417 		if (tp->retrans_out) {
3418 			pr_debug("Leak r=%u %d\n",
3419 				 tp->retrans_out, icsk->icsk_ca_state);
3420 			tp->retrans_out = 0;
3421 		}
3422 	}
3423 #endif
3424 	return flag;
3425 }
3426 
3427 static void tcp_ack_probe(struct sock *sk)
3428 {
3429 	struct inet_connection_sock *icsk = inet_csk(sk);
3430 	struct sk_buff *head = tcp_send_head(sk);
3431 	const struct tcp_sock *tp = tcp_sk(sk);
3432 
3433 	/* Was it a usable window open? */
3434 	if (!head)
3435 		return;
3436 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3437 		icsk->icsk_backoff = 0;
3438 		icsk->icsk_probes_tstamp = 0;
3439 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3440 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3441 		 * This function is not for random using!
3442 		 */
3443 	} else {
3444 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3445 
3446 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3447 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3448 	}
3449 }
3450 
3451 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3452 {
3453 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3454 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3455 }
3456 
3457 /* Decide wheather to run the increase function of congestion control. */
3458 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3459 {
3460 	/* If reordering is high then always grow cwnd whenever data is
3461 	 * delivered regardless of its ordering. Otherwise stay conservative
3462 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3463 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3464 	 * cwnd in tcp_fastretrans_alert() based on more states.
3465 	 */
3466 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3467 		return flag & FLAG_FORWARD_PROGRESS;
3468 
3469 	return flag & FLAG_DATA_ACKED;
3470 }
3471 
3472 /* The "ultimate" congestion control function that aims to replace the rigid
3473  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3474  * It's called toward the end of processing an ACK with precise rate
3475  * information. All transmission or retransmission are delayed afterwards.
3476  */
3477 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3478 			     int flag, const struct rate_sample *rs)
3479 {
3480 	const struct inet_connection_sock *icsk = inet_csk(sk);
3481 
3482 	if (icsk->icsk_ca_ops->cong_control) {
3483 		icsk->icsk_ca_ops->cong_control(sk, rs);
3484 		return;
3485 	}
3486 
3487 	if (tcp_in_cwnd_reduction(sk)) {
3488 		/* Reduce cwnd if state mandates */
3489 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3490 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3491 		/* Advance cwnd if state allows */
3492 		tcp_cong_avoid(sk, ack, acked_sacked);
3493 	}
3494 	tcp_update_pacing_rate(sk);
3495 }
3496 
3497 /* Check that window update is acceptable.
3498  * The function assumes that snd_una<=ack<=snd_next.
3499  */
3500 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3501 					const u32 ack, const u32 ack_seq,
3502 					const u32 nwin)
3503 {
3504 	return	after(ack, tp->snd_una) ||
3505 		after(ack_seq, tp->snd_wl1) ||
3506 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3507 }
3508 
3509 /* If we update tp->snd_una, also update tp->bytes_acked */
3510 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3511 {
3512 	u32 delta = ack - tp->snd_una;
3513 
3514 	sock_owned_by_me((struct sock *)tp);
3515 	tp->bytes_acked += delta;
3516 	tp->snd_una = ack;
3517 }
3518 
3519 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3520 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3521 {
3522 	u32 delta = seq - tp->rcv_nxt;
3523 
3524 	sock_owned_by_me((struct sock *)tp);
3525 	tp->bytes_received += delta;
3526 	WRITE_ONCE(tp->rcv_nxt, seq);
3527 }
3528 
3529 /* Update our send window.
3530  *
3531  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3532  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3533  */
3534 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3535 				 u32 ack_seq)
3536 {
3537 	struct tcp_sock *tp = tcp_sk(sk);
3538 	int flag = 0;
3539 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3540 
3541 	if (likely(!tcp_hdr(skb)->syn))
3542 		nwin <<= tp->rx_opt.snd_wscale;
3543 
3544 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3545 		flag |= FLAG_WIN_UPDATE;
3546 		tcp_update_wl(tp, ack_seq);
3547 
3548 		if (tp->snd_wnd != nwin) {
3549 			tp->snd_wnd = nwin;
3550 
3551 			/* Note, it is the only place, where
3552 			 * fast path is recovered for sending TCP.
3553 			 */
3554 			tp->pred_flags = 0;
3555 			tcp_fast_path_check(sk);
3556 
3557 			if (!tcp_write_queue_empty(sk))
3558 				tcp_slow_start_after_idle_check(sk);
3559 
3560 			if (nwin > tp->max_window) {
3561 				tp->max_window = nwin;
3562 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3563 			}
3564 		}
3565 	}
3566 
3567 	tcp_snd_una_update(tp, ack);
3568 
3569 	return flag;
3570 }
3571 
3572 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3573 				   u32 *last_oow_ack_time)
3574 {
3575 	if (*last_oow_ack_time) {
3576 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3577 
3578 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3579 			NET_INC_STATS(net, mib_idx);
3580 			return true;	/* rate-limited: don't send yet! */
3581 		}
3582 	}
3583 
3584 	*last_oow_ack_time = tcp_jiffies32;
3585 
3586 	return false;	/* not rate-limited: go ahead, send dupack now! */
3587 }
3588 
3589 /* Return true if we're currently rate-limiting out-of-window ACKs and
3590  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3591  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3592  * attacks that send repeated SYNs or ACKs for the same connection. To
3593  * do this, we do not send a duplicate SYNACK or ACK if the remote
3594  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3595  */
3596 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3597 			  int mib_idx, u32 *last_oow_ack_time)
3598 {
3599 	/* Data packets without SYNs are not likely part of an ACK loop. */
3600 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3601 	    !tcp_hdr(skb)->syn)
3602 		return false;
3603 
3604 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3605 }
3606 
3607 /* RFC 5961 7 [ACK Throttling] */
3608 static void tcp_send_challenge_ack(struct sock *sk)
3609 {
3610 	/* unprotected vars, we dont care of overwrites */
3611 	static u32 challenge_timestamp;
3612 	static unsigned int challenge_count;
3613 	struct tcp_sock *tp = tcp_sk(sk);
3614 	struct net *net = sock_net(sk);
3615 	u32 count, now;
3616 
3617 	/* First check our per-socket dupack rate limit. */
3618 	if (__tcp_oow_rate_limited(net,
3619 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3620 				   &tp->last_oow_ack_time))
3621 		return;
3622 
3623 	/* Then check host-wide RFC 5961 rate limit. */
3624 	now = jiffies / HZ;
3625 	if (now != challenge_timestamp) {
3626 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3627 		u32 half = (ack_limit + 1) >> 1;
3628 
3629 		challenge_timestamp = now;
3630 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3631 	}
3632 	count = READ_ONCE(challenge_count);
3633 	if (count > 0) {
3634 		WRITE_ONCE(challenge_count, count - 1);
3635 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3636 		tcp_send_ack(sk);
3637 	}
3638 }
3639 
3640 static void tcp_store_ts_recent(struct tcp_sock *tp)
3641 {
3642 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3643 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3644 }
3645 
3646 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3647 {
3648 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3649 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3650 		 * extra check below makes sure this can only happen
3651 		 * for pure ACK frames.  -DaveM
3652 		 *
3653 		 * Not only, also it occurs for expired timestamps.
3654 		 */
3655 
3656 		if (tcp_paws_check(&tp->rx_opt, 0))
3657 			tcp_store_ts_recent(tp);
3658 	}
3659 }
3660 
3661 /* This routine deals with acks during a TLP episode and ends an episode by
3662  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3663  */
3664 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3665 {
3666 	struct tcp_sock *tp = tcp_sk(sk);
3667 
3668 	if (before(ack, tp->tlp_high_seq))
3669 		return;
3670 
3671 	if (!tp->tlp_retrans) {
3672 		/* TLP of new data has been acknowledged */
3673 		tp->tlp_high_seq = 0;
3674 	} else if (flag & FLAG_DSACK_TLP) {
3675 		/* This DSACK means original and TLP probe arrived; no loss */
3676 		tp->tlp_high_seq = 0;
3677 	} else if (after(ack, tp->tlp_high_seq)) {
3678 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3679 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3680 		 */
3681 		tcp_init_cwnd_reduction(sk);
3682 		tcp_set_ca_state(sk, TCP_CA_CWR);
3683 		tcp_end_cwnd_reduction(sk);
3684 		tcp_try_keep_open(sk);
3685 		NET_INC_STATS(sock_net(sk),
3686 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3687 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3688 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3689 		/* Pure dupack: original and TLP probe arrived; no loss */
3690 		tp->tlp_high_seq = 0;
3691 	}
3692 }
3693 
3694 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3695 {
3696 	const struct inet_connection_sock *icsk = inet_csk(sk);
3697 
3698 	if (icsk->icsk_ca_ops->in_ack_event)
3699 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3700 }
3701 
3702 /* Congestion control has updated the cwnd already. So if we're in
3703  * loss recovery then now we do any new sends (for FRTO) or
3704  * retransmits (for CA_Loss or CA_recovery) that make sense.
3705  */
3706 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3707 {
3708 	struct tcp_sock *tp = tcp_sk(sk);
3709 
3710 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3711 		return;
3712 
3713 	if (unlikely(rexmit == REXMIT_NEW)) {
3714 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3715 					  TCP_NAGLE_OFF);
3716 		if (after(tp->snd_nxt, tp->high_seq))
3717 			return;
3718 		tp->frto = 0;
3719 	}
3720 	tcp_xmit_retransmit_queue(sk);
3721 }
3722 
3723 /* Returns the number of packets newly acked or sacked by the current ACK */
3724 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3725 {
3726 	const struct net *net = sock_net(sk);
3727 	struct tcp_sock *tp = tcp_sk(sk);
3728 	u32 delivered;
3729 
3730 	delivered = tp->delivered - prior_delivered;
3731 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3732 	if (flag & FLAG_ECE)
3733 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3734 
3735 	return delivered;
3736 }
3737 
3738 /* This routine deals with incoming acks, but not outgoing ones. */
3739 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3740 {
3741 	struct inet_connection_sock *icsk = inet_csk(sk);
3742 	struct tcp_sock *tp = tcp_sk(sk);
3743 	struct tcp_sacktag_state sack_state;
3744 	struct rate_sample rs = { .prior_delivered = 0 };
3745 	u32 prior_snd_una = tp->snd_una;
3746 	bool is_sack_reneg = tp->is_sack_reneg;
3747 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3748 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3749 	int num_dupack = 0;
3750 	int prior_packets = tp->packets_out;
3751 	u32 delivered = tp->delivered;
3752 	u32 lost = tp->lost;
3753 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3754 	u32 prior_fack;
3755 
3756 	sack_state.first_sackt = 0;
3757 	sack_state.rate = &rs;
3758 	sack_state.sack_delivered = 0;
3759 
3760 	/* We very likely will need to access rtx queue. */
3761 	prefetch(sk->tcp_rtx_queue.rb_node);
3762 
3763 	/* If the ack is older than previous acks
3764 	 * then we can probably ignore it.
3765 	 */
3766 	if (before(ack, prior_snd_una)) {
3767 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3768 		if (before(ack, prior_snd_una - tp->max_window)) {
3769 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3770 				tcp_send_challenge_ack(sk);
3771 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3772 		}
3773 		goto old_ack;
3774 	}
3775 
3776 	/* If the ack includes data we haven't sent yet, discard
3777 	 * this segment (RFC793 Section 3.9).
3778 	 */
3779 	if (after(ack, tp->snd_nxt))
3780 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3781 
3782 	if (after(ack, prior_snd_una)) {
3783 		flag |= FLAG_SND_UNA_ADVANCED;
3784 		icsk->icsk_retransmits = 0;
3785 
3786 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3787 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3788 			if (icsk->icsk_clean_acked)
3789 				icsk->icsk_clean_acked(sk, ack);
3790 #endif
3791 	}
3792 
3793 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3794 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3795 
3796 	/* ts_recent update must be made after we are sure that the packet
3797 	 * is in window.
3798 	 */
3799 	if (flag & FLAG_UPDATE_TS_RECENT)
3800 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3801 
3802 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3803 	    FLAG_SND_UNA_ADVANCED) {
3804 		/* Window is constant, pure forward advance.
3805 		 * No more checks are required.
3806 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3807 		 */
3808 		tcp_update_wl(tp, ack_seq);
3809 		tcp_snd_una_update(tp, ack);
3810 		flag |= FLAG_WIN_UPDATE;
3811 
3812 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3813 
3814 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3815 	} else {
3816 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3817 
3818 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3819 			flag |= FLAG_DATA;
3820 		else
3821 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3822 
3823 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3824 
3825 		if (TCP_SKB_CB(skb)->sacked)
3826 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3827 							&sack_state);
3828 
3829 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3830 			flag |= FLAG_ECE;
3831 			ack_ev_flags |= CA_ACK_ECE;
3832 		}
3833 
3834 		if (sack_state.sack_delivered)
3835 			tcp_count_delivered(tp, sack_state.sack_delivered,
3836 					    flag & FLAG_ECE);
3837 
3838 		if (flag & FLAG_WIN_UPDATE)
3839 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3840 
3841 		tcp_in_ack_event(sk, ack_ev_flags);
3842 	}
3843 
3844 	/* This is a deviation from RFC3168 since it states that:
3845 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3846 	 * the congestion window, it SHOULD set the CWR bit only on the first
3847 	 * new data packet that it transmits."
3848 	 * We accept CWR on pure ACKs to be more robust
3849 	 * with widely-deployed TCP implementations that do this.
3850 	 */
3851 	tcp_ecn_accept_cwr(sk, skb);
3852 
3853 	/* We passed data and got it acked, remove any soft error
3854 	 * log. Something worked...
3855 	 */
3856 	sk->sk_err_soft = 0;
3857 	icsk->icsk_probes_out = 0;
3858 	tp->rcv_tstamp = tcp_jiffies32;
3859 	if (!prior_packets)
3860 		goto no_queue;
3861 
3862 	/* See if we can take anything off of the retransmit queue. */
3863 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3864 				    &sack_state, flag & FLAG_ECE);
3865 
3866 	tcp_rack_update_reo_wnd(sk, &rs);
3867 
3868 	if (tp->tlp_high_seq)
3869 		tcp_process_tlp_ack(sk, ack, flag);
3870 
3871 	if (tcp_ack_is_dubious(sk, flag)) {
3872 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3873 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3874 			num_dupack = 1;
3875 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3876 			if (!(flag & FLAG_DATA))
3877 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3878 		}
3879 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3880 				      &rexmit);
3881 	}
3882 
3883 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3884 	if (flag & FLAG_SET_XMIT_TIMER)
3885 		tcp_set_xmit_timer(sk);
3886 
3887 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3888 		sk_dst_confirm(sk);
3889 
3890 	delivered = tcp_newly_delivered(sk, delivered, flag);
3891 	lost = tp->lost - lost;			/* freshly marked lost */
3892 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3893 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3894 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3895 	tcp_xmit_recovery(sk, rexmit);
3896 	return 1;
3897 
3898 no_queue:
3899 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3900 	if (flag & FLAG_DSACKING_ACK) {
3901 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3902 				      &rexmit);
3903 		tcp_newly_delivered(sk, delivered, flag);
3904 	}
3905 	/* If this ack opens up a zero window, clear backoff.  It was
3906 	 * being used to time the probes, and is probably far higher than
3907 	 * it needs to be for normal retransmission.
3908 	 */
3909 	tcp_ack_probe(sk);
3910 
3911 	if (tp->tlp_high_seq)
3912 		tcp_process_tlp_ack(sk, ack, flag);
3913 	return 1;
3914 
3915 old_ack:
3916 	/* If data was SACKed, tag it and see if we should send more data.
3917 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3918 	 */
3919 	if (TCP_SKB_CB(skb)->sacked) {
3920 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3921 						&sack_state);
3922 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3923 				      &rexmit);
3924 		tcp_newly_delivered(sk, delivered, flag);
3925 		tcp_xmit_recovery(sk, rexmit);
3926 	}
3927 
3928 	return 0;
3929 }
3930 
3931 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3932 				      bool syn, struct tcp_fastopen_cookie *foc,
3933 				      bool exp_opt)
3934 {
3935 	/* Valid only in SYN or SYN-ACK with an even length.  */
3936 	if (!foc || !syn || len < 0 || (len & 1))
3937 		return;
3938 
3939 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3940 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3941 		memcpy(foc->val, cookie, len);
3942 	else if (len != 0)
3943 		len = -1;
3944 	foc->len = len;
3945 	foc->exp = exp_opt;
3946 }
3947 
3948 static bool smc_parse_options(const struct tcphdr *th,
3949 			      struct tcp_options_received *opt_rx,
3950 			      const unsigned char *ptr,
3951 			      int opsize)
3952 {
3953 #if IS_ENABLED(CONFIG_SMC)
3954 	if (static_branch_unlikely(&tcp_have_smc)) {
3955 		if (th->syn && !(opsize & 1) &&
3956 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3957 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3958 			opt_rx->smc_ok = 1;
3959 			return true;
3960 		}
3961 	}
3962 #endif
3963 	return false;
3964 }
3965 
3966 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3967  * value on success.
3968  */
3969 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3970 {
3971 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3972 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3973 	u16 mss = 0;
3974 
3975 	while (length > 0) {
3976 		int opcode = *ptr++;
3977 		int opsize;
3978 
3979 		switch (opcode) {
3980 		case TCPOPT_EOL:
3981 			return mss;
3982 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3983 			length--;
3984 			continue;
3985 		default:
3986 			if (length < 2)
3987 				return mss;
3988 			opsize = *ptr++;
3989 			if (opsize < 2) /* "silly options" */
3990 				return mss;
3991 			if (opsize > length)
3992 				return mss;	/* fail on partial options */
3993 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3994 				u16 in_mss = get_unaligned_be16(ptr);
3995 
3996 				if (in_mss) {
3997 					if (user_mss && user_mss < in_mss)
3998 						in_mss = user_mss;
3999 					mss = in_mss;
4000 				}
4001 			}
4002 			ptr += opsize - 2;
4003 			length -= opsize;
4004 		}
4005 	}
4006 	return mss;
4007 }
4008 
4009 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4010  * But, this can also be called on packets in the established flow when
4011  * the fast version below fails.
4012  */
4013 void tcp_parse_options(const struct net *net,
4014 		       const struct sk_buff *skb,
4015 		       struct tcp_options_received *opt_rx, int estab,
4016 		       struct tcp_fastopen_cookie *foc)
4017 {
4018 	const unsigned char *ptr;
4019 	const struct tcphdr *th = tcp_hdr(skb);
4020 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4021 
4022 	ptr = (const unsigned char *)(th + 1);
4023 	opt_rx->saw_tstamp = 0;
4024 	opt_rx->saw_unknown = 0;
4025 
4026 	while (length > 0) {
4027 		int opcode = *ptr++;
4028 		int opsize;
4029 
4030 		switch (opcode) {
4031 		case TCPOPT_EOL:
4032 			return;
4033 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4034 			length--;
4035 			continue;
4036 		default:
4037 			if (length < 2)
4038 				return;
4039 			opsize = *ptr++;
4040 			if (opsize < 2) /* "silly options" */
4041 				return;
4042 			if (opsize > length)
4043 				return;	/* don't parse partial options */
4044 			switch (opcode) {
4045 			case TCPOPT_MSS:
4046 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4047 					u16 in_mss = get_unaligned_be16(ptr);
4048 					if (in_mss) {
4049 						if (opt_rx->user_mss &&
4050 						    opt_rx->user_mss < in_mss)
4051 							in_mss = opt_rx->user_mss;
4052 						opt_rx->mss_clamp = in_mss;
4053 					}
4054 				}
4055 				break;
4056 			case TCPOPT_WINDOW:
4057 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4058 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4059 					__u8 snd_wscale = *(__u8 *)ptr;
4060 					opt_rx->wscale_ok = 1;
4061 					if (snd_wscale > TCP_MAX_WSCALE) {
4062 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4063 								     __func__,
4064 								     snd_wscale,
4065 								     TCP_MAX_WSCALE);
4066 						snd_wscale = TCP_MAX_WSCALE;
4067 					}
4068 					opt_rx->snd_wscale = snd_wscale;
4069 				}
4070 				break;
4071 			case TCPOPT_TIMESTAMP:
4072 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4073 				    ((estab && opt_rx->tstamp_ok) ||
4074 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4075 					opt_rx->saw_tstamp = 1;
4076 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4077 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4078 				}
4079 				break;
4080 			case TCPOPT_SACK_PERM:
4081 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4082 				    !estab && net->ipv4.sysctl_tcp_sack) {
4083 					opt_rx->sack_ok = TCP_SACK_SEEN;
4084 					tcp_sack_reset(opt_rx);
4085 				}
4086 				break;
4087 
4088 			case TCPOPT_SACK:
4089 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4090 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4091 				   opt_rx->sack_ok) {
4092 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4093 				}
4094 				break;
4095 #ifdef CONFIG_TCP_MD5SIG
4096 			case TCPOPT_MD5SIG:
4097 				/*
4098 				 * The MD5 Hash has already been
4099 				 * checked (see tcp_v{4,6}_do_rcv()).
4100 				 */
4101 				break;
4102 #endif
4103 			case TCPOPT_FASTOPEN:
4104 				tcp_parse_fastopen_option(
4105 					opsize - TCPOLEN_FASTOPEN_BASE,
4106 					ptr, th->syn, foc, false);
4107 				break;
4108 
4109 			case TCPOPT_EXP:
4110 				/* Fast Open option shares code 254 using a
4111 				 * 16 bits magic number.
4112 				 */
4113 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4114 				    get_unaligned_be16(ptr) ==
4115 				    TCPOPT_FASTOPEN_MAGIC) {
4116 					tcp_parse_fastopen_option(opsize -
4117 						TCPOLEN_EXP_FASTOPEN_BASE,
4118 						ptr + 2, th->syn, foc, true);
4119 					break;
4120 				}
4121 
4122 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4123 					break;
4124 
4125 				opt_rx->saw_unknown = 1;
4126 				break;
4127 
4128 			default:
4129 				opt_rx->saw_unknown = 1;
4130 			}
4131 			ptr += opsize-2;
4132 			length -= opsize;
4133 		}
4134 	}
4135 }
4136 EXPORT_SYMBOL(tcp_parse_options);
4137 
4138 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4139 {
4140 	const __be32 *ptr = (const __be32 *)(th + 1);
4141 
4142 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4143 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4144 		tp->rx_opt.saw_tstamp = 1;
4145 		++ptr;
4146 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4147 		++ptr;
4148 		if (*ptr)
4149 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4150 		else
4151 			tp->rx_opt.rcv_tsecr = 0;
4152 		return true;
4153 	}
4154 	return false;
4155 }
4156 
4157 /* Fast parse options. This hopes to only see timestamps.
4158  * If it is wrong it falls back on tcp_parse_options().
4159  */
4160 static bool tcp_fast_parse_options(const struct net *net,
4161 				   const struct sk_buff *skb,
4162 				   const struct tcphdr *th, struct tcp_sock *tp)
4163 {
4164 	/* In the spirit of fast parsing, compare doff directly to constant
4165 	 * values.  Because equality is used, short doff can be ignored here.
4166 	 */
4167 	if (th->doff == (sizeof(*th) / 4)) {
4168 		tp->rx_opt.saw_tstamp = 0;
4169 		return false;
4170 	} else if (tp->rx_opt.tstamp_ok &&
4171 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4172 		if (tcp_parse_aligned_timestamp(tp, th))
4173 			return true;
4174 	}
4175 
4176 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4177 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4178 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4179 
4180 	return true;
4181 }
4182 
4183 #ifdef CONFIG_TCP_MD5SIG
4184 /*
4185  * Parse MD5 Signature option
4186  */
4187 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4188 {
4189 	int length = (th->doff << 2) - sizeof(*th);
4190 	const u8 *ptr = (const u8 *)(th + 1);
4191 
4192 	/* If not enough data remaining, we can short cut */
4193 	while (length >= TCPOLEN_MD5SIG) {
4194 		int opcode = *ptr++;
4195 		int opsize;
4196 
4197 		switch (opcode) {
4198 		case TCPOPT_EOL:
4199 			return NULL;
4200 		case TCPOPT_NOP:
4201 			length--;
4202 			continue;
4203 		default:
4204 			opsize = *ptr++;
4205 			if (opsize < 2 || opsize > length)
4206 				return NULL;
4207 			if (opcode == TCPOPT_MD5SIG)
4208 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4209 		}
4210 		ptr += opsize - 2;
4211 		length -= opsize;
4212 	}
4213 	return NULL;
4214 }
4215 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4216 #endif
4217 
4218 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4219  *
4220  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4221  * it can pass through stack. So, the following predicate verifies that
4222  * this segment is not used for anything but congestion avoidance or
4223  * fast retransmit. Moreover, we even are able to eliminate most of such
4224  * second order effects, if we apply some small "replay" window (~RTO)
4225  * to timestamp space.
4226  *
4227  * All these measures still do not guarantee that we reject wrapped ACKs
4228  * on networks with high bandwidth, when sequence space is recycled fastly,
4229  * but it guarantees that such events will be very rare and do not affect
4230  * connection seriously. This doesn't look nice, but alas, PAWS is really
4231  * buggy extension.
4232  *
4233  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4234  * states that events when retransmit arrives after original data are rare.
4235  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4236  * the biggest problem on large power networks even with minor reordering.
4237  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4238  * up to bandwidth of 18Gigabit/sec. 8) ]
4239  */
4240 
4241 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4242 {
4243 	const struct tcp_sock *tp = tcp_sk(sk);
4244 	const struct tcphdr *th = tcp_hdr(skb);
4245 	u32 seq = TCP_SKB_CB(skb)->seq;
4246 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4247 
4248 	return (/* 1. Pure ACK with correct sequence number. */
4249 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4250 
4251 		/* 2. ... and duplicate ACK. */
4252 		ack == tp->snd_una &&
4253 
4254 		/* 3. ... and does not update window. */
4255 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4256 
4257 		/* 4. ... and sits in replay window. */
4258 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4259 }
4260 
4261 static inline bool tcp_paws_discard(const struct sock *sk,
4262 				   const struct sk_buff *skb)
4263 {
4264 	const struct tcp_sock *tp = tcp_sk(sk);
4265 
4266 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4267 	       !tcp_disordered_ack(sk, skb);
4268 }
4269 
4270 /* Check segment sequence number for validity.
4271  *
4272  * Segment controls are considered valid, if the segment
4273  * fits to the window after truncation to the window. Acceptability
4274  * of data (and SYN, FIN, of course) is checked separately.
4275  * See tcp_data_queue(), for example.
4276  *
4277  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4278  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4279  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4280  * (borrowed from freebsd)
4281  */
4282 
4283 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4284 {
4285 	return	!before(end_seq, tp->rcv_wup) &&
4286 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4287 }
4288 
4289 /* When we get a reset we do this. */
4290 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4291 {
4292 	trace_tcp_receive_reset(sk);
4293 
4294 	/* mptcp can't tell us to ignore reset pkts,
4295 	 * so just ignore the return value of mptcp_incoming_options().
4296 	 */
4297 	if (sk_is_mptcp(sk))
4298 		mptcp_incoming_options(sk, skb);
4299 
4300 	/* We want the right error as BSD sees it (and indeed as we do). */
4301 	switch (sk->sk_state) {
4302 	case TCP_SYN_SENT:
4303 		sk->sk_err = ECONNREFUSED;
4304 		break;
4305 	case TCP_CLOSE_WAIT:
4306 		sk->sk_err = EPIPE;
4307 		break;
4308 	case TCP_CLOSE:
4309 		return;
4310 	default:
4311 		sk->sk_err = ECONNRESET;
4312 	}
4313 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4314 	smp_wmb();
4315 
4316 	tcp_write_queue_purge(sk);
4317 	tcp_done(sk);
4318 
4319 	if (!sock_flag(sk, SOCK_DEAD))
4320 		sk_error_report(sk);
4321 }
4322 
4323 /*
4324  * 	Process the FIN bit. This now behaves as it is supposed to work
4325  *	and the FIN takes effect when it is validly part of sequence
4326  *	space. Not before when we get holes.
4327  *
4328  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4329  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4330  *	TIME-WAIT)
4331  *
4332  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4333  *	close and we go into CLOSING (and later onto TIME-WAIT)
4334  *
4335  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4336  */
4337 void tcp_fin(struct sock *sk)
4338 {
4339 	struct tcp_sock *tp = tcp_sk(sk);
4340 
4341 	inet_csk_schedule_ack(sk);
4342 
4343 	sk->sk_shutdown |= RCV_SHUTDOWN;
4344 	sock_set_flag(sk, SOCK_DONE);
4345 
4346 	switch (sk->sk_state) {
4347 	case TCP_SYN_RECV:
4348 	case TCP_ESTABLISHED:
4349 		/* Move to CLOSE_WAIT */
4350 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4351 		inet_csk_enter_pingpong_mode(sk);
4352 		break;
4353 
4354 	case TCP_CLOSE_WAIT:
4355 	case TCP_CLOSING:
4356 		/* Received a retransmission of the FIN, do
4357 		 * nothing.
4358 		 */
4359 		break;
4360 	case TCP_LAST_ACK:
4361 		/* RFC793: Remain in the LAST-ACK state. */
4362 		break;
4363 
4364 	case TCP_FIN_WAIT1:
4365 		/* This case occurs when a simultaneous close
4366 		 * happens, we must ack the received FIN and
4367 		 * enter the CLOSING state.
4368 		 */
4369 		tcp_send_ack(sk);
4370 		tcp_set_state(sk, TCP_CLOSING);
4371 		break;
4372 	case TCP_FIN_WAIT2:
4373 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4374 		tcp_send_ack(sk);
4375 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4376 		break;
4377 	default:
4378 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4379 		 * cases we should never reach this piece of code.
4380 		 */
4381 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4382 		       __func__, sk->sk_state);
4383 		break;
4384 	}
4385 
4386 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4387 	 * Probably, we should reset in this case. For now drop them.
4388 	 */
4389 	skb_rbtree_purge(&tp->out_of_order_queue);
4390 	if (tcp_is_sack(tp))
4391 		tcp_sack_reset(&tp->rx_opt);
4392 
4393 	if (!sock_flag(sk, SOCK_DEAD)) {
4394 		sk->sk_state_change(sk);
4395 
4396 		/* Do not send POLL_HUP for half duplex close. */
4397 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4398 		    sk->sk_state == TCP_CLOSE)
4399 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4400 		else
4401 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4402 	}
4403 }
4404 
4405 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4406 				  u32 end_seq)
4407 {
4408 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4409 		if (before(seq, sp->start_seq))
4410 			sp->start_seq = seq;
4411 		if (after(end_seq, sp->end_seq))
4412 			sp->end_seq = end_seq;
4413 		return true;
4414 	}
4415 	return false;
4416 }
4417 
4418 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4419 {
4420 	struct tcp_sock *tp = tcp_sk(sk);
4421 
4422 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4423 		int mib_idx;
4424 
4425 		if (before(seq, tp->rcv_nxt))
4426 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4427 		else
4428 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4429 
4430 		NET_INC_STATS(sock_net(sk), mib_idx);
4431 
4432 		tp->rx_opt.dsack = 1;
4433 		tp->duplicate_sack[0].start_seq = seq;
4434 		tp->duplicate_sack[0].end_seq = end_seq;
4435 	}
4436 }
4437 
4438 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4439 {
4440 	struct tcp_sock *tp = tcp_sk(sk);
4441 
4442 	if (!tp->rx_opt.dsack)
4443 		tcp_dsack_set(sk, seq, end_seq);
4444 	else
4445 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4446 }
4447 
4448 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4449 {
4450 	/* When the ACK path fails or drops most ACKs, the sender would
4451 	 * timeout and spuriously retransmit the same segment repeatedly.
4452 	 * The receiver remembers and reflects via DSACKs. Leverage the
4453 	 * DSACK state and change the txhash to re-route speculatively.
4454 	 */
4455 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4456 	    sk_rethink_txhash(sk))
4457 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4458 }
4459 
4460 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4461 {
4462 	struct tcp_sock *tp = tcp_sk(sk);
4463 
4464 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4465 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4466 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4467 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4468 
4469 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4470 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4471 
4472 			tcp_rcv_spurious_retrans(sk, skb);
4473 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4474 				end_seq = tp->rcv_nxt;
4475 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4476 		}
4477 	}
4478 
4479 	tcp_send_ack(sk);
4480 }
4481 
4482 /* These routines update the SACK block as out-of-order packets arrive or
4483  * in-order packets close up the sequence space.
4484  */
4485 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4486 {
4487 	int this_sack;
4488 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4489 	struct tcp_sack_block *swalk = sp + 1;
4490 
4491 	/* See if the recent change to the first SACK eats into
4492 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4493 	 */
4494 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4495 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4496 			int i;
4497 
4498 			/* Zap SWALK, by moving every further SACK up by one slot.
4499 			 * Decrease num_sacks.
4500 			 */
4501 			tp->rx_opt.num_sacks--;
4502 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4503 				sp[i] = sp[i + 1];
4504 			continue;
4505 		}
4506 		this_sack++;
4507 		swalk++;
4508 	}
4509 }
4510 
4511 static void tcp_sack_compress_send_ack(struct sock *sk)
4512 {
4513 	struct tcp_sock *tp = tcp_sk(sk);
4514 
4515 	if (!tp->compressed_ack)
4516 		return;
4517 
4518 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4519 		__sock_put(sk);
4520 
4521 	/* Since we have to send one ack finally,
4522 	 * substract one from tp->compressed_ack to keep
4523 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4524 	 */
4525 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4526 		      tp->compressed_ack - 1);
4527 
4528 	tp->compressed_ack = 0;
4529 	tcp_send_ack(sk);
4530 }
4531 
4532 /* Reasonable amount of sack blocks included in TCP SACK option
4533  * The max is 4, but this becomes 3 if TCP timestamps are there.
4534  * Given that SACK packets might be lost, be conservative and use 2.
4535  */
4536 #define TCP_SACK_BLOCKS_EXPECTED 2
4537 
4538 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4539 {
4540 	struct tcp_sock *tp = tcp_sk(sk);
4541 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4542 	int cur_sacks = tp->rx_opt.num_sacks;
4543 	int this_sack;
4544 
4545 	if (!cur_sacks)
4546 		goto new_sack;
4547 
4548 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4549 		if (tcp_sack_extend(sp, seq, end_seq)) {
4550 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4551 				tcp_sack_compress_send_ack(sk);
4552 			/* Rotate this_sack to the first one. */
4553 			for (; this_sack > 0; this_sack--, sp--)
4554 				swap(*sp, *(sp - 1));
4555 			if (cur_sacks > 1)
4556 				tcp_sack_maybe_coalesce(tp);
4557 			return;
4558 		}
4559 	}
4560 
4561 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4562 		tcp_sack_compress_send_ack(sk);
4563 
4564 	/* Could not find an adjacent existing SACK, build a new one,
4565 	 * put it at the front, and shift everyone else down.  We
4566 	 * always know there is at least one SACK present already here.
4567 	 *
4568 	 * If the sack array is full, forget about the last one.
4569 	 */
4570 	if (this_sack >= TCP_NUM_SACKS) {
4571 		this_sack--;
4572 		tp->rx_opt.num_sacks--;
4573 		sp--;
4574 	}
4575 	for (; this_sack > 0; this_sack--, sp--)
4576 		*sp = *(sp - 1);
4577 
4578 new_sack:
4579 	/* Build the new head SACK, and we're done. */
4580 	sp->start_seq = seq;
4581 	sp->end_seq = end_seq;
4582 	tp->rx_opt.num_sacks++;
4583 }
4584 
4585 /* RCV.NXT advances, some SACKs should be eaten. */
4586 
4587 static void tcp_sack_remove(struct tcp_sock *tp)
4588 {
4589 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4590 	int num_sacks = tp->rx_opt.num_sacks;
4591 	int this_sack;
4592 
4593 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4594 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4595 		tp->rx_opt.num_sacks = 0;
4596 		return;
4597 	}
4598 
4599 	for (this_sack = 0; this_sack < num_sacks;) {
4600 		/* Check if the start of the sack is covered by RCV.NXT. */
4601 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4602 			int i;
4603 
4604 			/* RCV.NXT must cover all the block! */
4605 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4606 
4607 			/* Zap this SACK, by moving forward any other SACKS. */
4608 			for (i = this_sack+1; i < num_sacks; i++)
4609 				tp->selective_acks[i-1] = tp->selective_acks[i];
4610 			num_sacks--;
4611 			continue;
4612 		}
4613 		this_sack++;
4614 		sp++;
4615 	}
4616 	tp->rx_opt.num_sacks = num_sacks;
4617 }
4618 
4619 /**
4620  * tcp_try_coalesce - try to merge skb to prior one
4621  * @sk: socket
4622  * @to: prior buffer
4623  * @from: buffer to add in queue
4624  * @fragstolen: pointer to boolean
4625  *
4626  * Before queueing skb @from after @to, try to merge them
4627  * to reduce overall memory use and queue lengths, if cost is small.
4628  * Packets in ofo or receive queues can stay a long time.
4629  * Better try to coalesce them right now to avoid future collapses.
4630  * Returns true if caller should free @from instead of queueing it
4631  */
4632 static bool tcp_try_coalesce(struct sock *sk,
4633 			     struct sk_buff *to,
4634 			     struct sk_buff *from,
4635 			     bool *fragstolen)
4636 {
4637 	int delta;
4638 
4639 	*fragstolen = false;
4640 
4641 	/* Its possible this segment overlaps with prior segment in queue */
4642 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4643 		return false;
4644 
4645 	if (!mptcp_skb_can_collapse(to, from))
4646 		return false;
4647 
4648 #ifdef CONFIG_TLS_DEVICE
4649 	if (from->decrypted != to->decrypted)
4650 		return false;
4651 #endif
4652 
4653 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4654 		return false;
4655 
4656 	atomic_add(delta, &sk->sk_rmem_alloc);
4657 	sk_mem_charge(sk, delta);
4658 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4659 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4660 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4661 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4662 
4663 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4664 		TCP_SKB_CB(to)->has_rxtstamp = true;
4665 		to->tstamp = from->tstamp;
4666 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4667 	}
4668 
4669 	return true;
4670 }
4671 
4672 static bool tcp_ooo_try_coalesce(struct sock *sk,
4673 			     struct sk_buff *to,
4674 			     struct sk_buff *from,
4675 			     bool *fragstolen)
4676 {
4677 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4678 
4679 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4680 	if (res) {
4681 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4682 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4683 
4684 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4685 	}
4686 	return res;
4687 }
4688 
4689 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4690 			    enum skb_drop_reason reason)
4691 {
4692 	sk_drops_add(sk, skb);
4693 	kfree_skb_reason(skb, reason);
4694 }
4695 
4696 /* This one checks to see if we can put data from the
4697  * out_of_order queue into the receive_queue.
4698  */
4699 static void tcp_ofo_queue(struct sock *sk)
4700 {
4701 	struct tcp_sock *tp = tcp_sk(sk);
4702 	__u32 dsack_high = tp->rcv_nxt;
4703 	bool fin, fragstolen, eaten;
4704 	struct sk_buff *skb, *tail;
4705 	struct rb_node *p;
4706 
4707 	p = rb_first(&tp->out_of_order_queue);
4708 	while (p) {
4709 		skb = rb_to_skb(p);
4710 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4711 			break;
4712 
4713 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4714 			__u32 dsack = dsack_high;
4715 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4716 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4717 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4718 		}
4719 		p = rb_next(p);
4720 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4721 
4722 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4723 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4724 			continue;
4725 		}
4726 
4727 		tail = skb_peek_tail(&sk->sk_receive_queue);
4728 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4729 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4730 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4731 		if (!eaten)
4732 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4733 		else
4734 			kfree_skb_partial(skb, fragstolen);
4735 
4736 		if (unlikely(fin)) {
4737 			tcp_fin(sk);
4738 			/* tcp_fin() purges tp->out_of_order_queue,
4739 			 * so we must end this loop right now.
4740 			 */
4741 			break;
4742 		}
4743 	}
4744 }
4745 
4746 static bool tcp_prune_ofo_queue(struct sock *sk);
4747 static int tcp_prune_queue(struct sock *sk);
4748 
4749 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4750 				 unsigned int size)
4751 {
4752 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4753 	    !sk_rmem_schedule(sk, skb, size)) {
4754 
4755 		if (tcp_prune_queue(sk) < 0)
4756 			return -1;
4757 
4758 		while (!sk_rmem_schedule(sk, skb, size)) {
4759 			if (!tcp_prune_ofo_queue(sk))
4760 				return -1;
4761 		}
4762 	}
4763 	return 0;
4764 }
4765 
4766 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4767 {
4768 	struct tcp_sock *tp = tcp_sk(sk);
4769 	struct rb_node **p, *parent;
4770 	struct sk_buff *skb1;
4771 	u32 seq, end_seq;
4772 	bool fragstolen;
4773 
4774 	tcp_ecn_check_ce(sk, skb);
4775 
4776 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4777 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4778 		sk->sk_data_ready(sk);
4779 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4780 		return;
4781 	}
4782 
4783 	/* Disable header prediction. */
4784 	tp->pred_flags = 0;
4785 	inet_csk_schedule_ack(sk);
4786 
4787 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4788 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4789 	seq = TCP_SKB_CB(skb)->seq;
4790 	end_seq = TCP_SKB_CB(skb)->end_seq;
4791 
4792 	p = &tp->out_of_order_queue.rb_node;
4793 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4794 		/* Initial out of order segment, build 1 SACK. */
4795 		if (tcp_is_sack(tp)) {
4796 			tp->rx_opt.num_sacks = 1;
4797 			tp->selective_acks[0].start_seq = seq;
4798 			tp->selective_acks[0].end_seq = end_seq;
4799 		}
4800 		rb_link_node(&skb->rbnode, NULL, p);
4801 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4802 		tp->ooo_last_skb = skb;
4803 		goto end;
4804 	}
4805 
4806 	/* In the typical case, we are adding an skb to the end of the list.
4807 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4808 	 */
4809 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4810 				 skb, &fragstolen)) {
4811 coalesce_done:
4812 		/* For non sack flows, do not grow window to force DUPACK
4813 		 * and trigger fast retransmit.
4814 		 */
4815 		if (tcp_is_sack(tp))
4816 			tcp_grow_window(sk, skb, true);
4817 		kfree_skb_partial(skb, fragstolen);
4818 		skb = NULL;
4819 		goto add_sack;
4820 	}
4821 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4822 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4823 		parent = &tp->ooo_last_skb->rbnode;
4824 		p = &parent->rb_right;
4825 		goto insert;
4826 	}
4827 
4828 	/* Find place to insert this segment. Handle overlaps on the way. */
4829 	parent = NULL;
4830 	while (*p) {
4831 		parent = *p;
4832 		skb1 = rb_to_skb(parent);
4833 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4834 			p = &parent->rb_left;
4835 			continue;
4836 		}
4837 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4838 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4839 				/* All the bits are present. Drop. */
4840 				NET_INC_STATS(sock_net(sk),
4841 					      LINUX_MIB_TCPOFOMERGE);
4842 				tcp_drop_reason(sk, skb,
4843 						SKB_DROP_REASON_TCP_OFOMERGE);
4844 				skb = NULL;
4845 				tcp_dsack_set(sk, seq, end_seq);
4846 				goto add_sack;
4847 			}
4848 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4849 				/* Partial overlap. */
4850 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4851 			} else {
4852 				/* skb's seq == skb1's seq and skb covers skb1.
4853 				 * Replace skb1 with skb.
4854 				 */
4855 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4856 						&tp->out_of_order_queue);
4857 				tcp_dsack_extend(sk,
4858 						 TCP_SKB_CB(skb1)->seq,
4859 						 TCP_SKB_CB(skb1)->end_seq);
4860 				NET_INC_STATS(sock_net(sk),
4861 					      LINUX_MIB_TCPOFOMERGE);
4862 				tcp_drop_reason(sk, skb1,
4863 						SKB_DROP_REASON_TCP_OFOMERGE);
4864 				goto merge_right;
4865 			}
4866 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4867 						skb, &fragstolen)) {
4868 			goto coalesce_done;
4869 		}
4870 		p = &parent->rb_right;
4871 	}
4872 insert:
4873 	/* Insert segment into RB tree. */
4874 	rb_link_node(&skb->rbnode, parent, p);
4875 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4876 
4877 merge_right:
4878 	/* Remove other segments covered by skb. */
4879 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4880 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4881 			break;
4882 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4883 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4884 					 end_seq);
4885 			break;
4886 		}
4887 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4888 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4889 				 TCP_SKB_CB(skb1)->end_seq);
4890 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4891 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4892 	}
4893 	/* If there is no skb after us, we are the last_skb ! */
4894 	if (!skb1)
4895 		tp->ooo_last_skb = skb;
4896 
4897 add_sack:
4898 	if (tcp_is_sack(tp))
4899 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4900 end:
4901 	if (skb) {
4902 		/* For non sack flows, do not grow window to force DUPACK
4903 		 * and trigger fast retransmit.
4904 		 */
4905 		if (tcp_is_sack(tp))
4906 			tcp_grow_window(sk, skb, false);
4907 		skb_condense(skb);
4908 		skb_set_owner_r(skb, sk);
4909 	}
4910 }
4911 
4912 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4913 				      bool *fragstolen)
4914 {
4915 	int eaten;
4916 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4917 
4918 	eaten = (tail &&
4919 		 tcp_try_coalesce(sk, tail,
4920 				  skb, fragstolen)) ? 1 : 0;
4921 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4922 	if (!eaten) {
4923 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4924 		skb_set_owner_r(skb, sk);
4925 	}
4926 	return eaten;
4927 }
4928 
4929 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4930 {
4931 	struct sk_buff *skb;
4932 	int err = -ENOMEM;
4933 	int data_len = 0;
4934 	bool fragstolen;
4935 
4936 	if (size == 0)
4937 		return 0;
4938 
4939 	if (size > PAGE_SIZE) {
4940 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4941 
4942 		data_len = npages << PAGE_SHIFT;
4943 		size = data_len + (size & ~PAGE_MASK);
4944 	}
4945 	skb = alloc_skb_with_frags(size - data_len, data_len,
4946 				   PAGE_ALLOC_COSTLY_ORDER,
4947 				   &err, sk->sk_allocation);
4948 	if (!skb)
4949 		goto err;
4950 
4951 	skb_put(skb, size - data_len);
4952 	skb->data_len = data_len;
4953 	skb->len = size;
4954 
4955 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4956 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4957 		goto err_free;
4958 	}
4959 
4960 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4961 	if (err)
4962 		goto err_free;
4963 
4964 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4965 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4966 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4967 
4968 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4969 		WARN_ON_ONCE(fragstolen); /* should not happen */
4970 		__kfree_skb(skb);
4971 	}
4972 	return size;
4973 
4974 err_free:
4975 	kfree_skb(skb);
4976 err:
4977 	return err;
4978 
4979 }
4980 
4981 void tcp_data_ready(struct sock *sk)
4982 {
4983 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4984 		sk->sk_data_ready(sk);
4985 }
4986 
4987 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4988 {
4989 	struct tcp_sock *tp = tcp_sk(sk);
4990 	enum skb_drop_reason reason;
4991 	bool fragstolen;
4992 	int eaten;
4993 
4994 	/* If a subflow has been reset, the packet should not continue
4995 	 * to be processed, drop the packet.
4996 	 */
4997 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
4998 		__kfree_skb(skb);
4999 		return;
5000 	}
5001 
5002 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5003 		__kfree_skb(skb);
5004 		return;
5005 	}
5006 	skb_dst_drop(skb);
5007 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5008 
5009 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5010 	tp->rx_opt.dsack = 0;
5011 
5012 	/*  Queue data for delivery to the user.
5013 	 *  Packets in sequence go to the receive queue.
5014 	 *  Out of sequence packets to the out_of_order_queue.
5015 	 */
5016 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5017 		if (tcp_receive_window(tp) == 0) {
5018 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5019 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5020 			goto out_of_window;
5021 		}
5022 
5023 		/* Ok. In sequence. In window. */
5024 queue_and_out:
5025 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5026 			sk_forced_mem_schedule(sk, skb->truesize);
5027 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5028 			reason = SKB_DROP_REASON_PROTO_MEM;
5029 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5030 			sk->sk_data_ready(sk);
5031 			goto drop;
5032 		}
5033 
5034 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5035 		if (skb->len)
5036 			tcp_event_data_recv(sk, skb);
5037 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5038 			tcp_fin(sk);
5039 
5040 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5041 			tcp_ofo_queue(sk);
5042 
5043 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5044 			 * gap in queue is filled.
5045 			 */
5046 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5047 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5048 		}
5049 
5050 		if (tp->rx_opt.num_sacks)
5051 			tcp_sack_remove(tp);
5052 
5053 		tcp_fast_path_check(sk);
5054 
5055 		if (eaten > 0)
5056 			kfree_skb_partial(skb, fragstolen);
5057 		if (!sock_flag(sk, SOCK_DEAD))
5058 			tcp_data_ready(sk);
5059 		return;
5060 	}
5061 
5062 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5063 		tcp_rcv_spurious_retrans(sk, skb);
5064 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5065 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5066 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5067 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5068 
5069 out_of_window:
5070 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5071 		inet_csk_schedule_ack(sk);
5072 drop:
5073 		tcp_drop_reason(sk, skb, reason);
5074 		return;
5075 	}
5076 
5077 	/* Out of window. F.e. zero window probe. */
5078 	if (!before(TCP_SKB_CB(skb)->seq,
5079 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5080 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5081 		goto out_of_window;
5082 	}
5083 
5084 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5085 		/* Partial packet, seq < rcv_next < end_seq */
5086 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5087 
5088 		/* If window is closed, drop tail of packet. But after
5089 		 * remembering D-SACK for its head made in previous line.
5090 		 */
5091 		if (!tcp_receive_window(tp)) {
5092 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5093 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5094 			goto out_of_window;
5095 		}
5096 		goto queue_and_out;
5097 	}
5098 
5099 	tcp_data_queue_ofo(sk, skb);
5100 }
5101 
5102 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5103 {
5104 	if (list)
5105 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5106 
5107 	return skb_rb_next(skb);
5108 }
5109 
5110 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5111 					struct sk_buff_head *list,
5112 					struct rb_root *root)
5113 {
5114 	struct sk_buff *next = tcp_skb_next(skb, list);
5115 
5116 	if (list)
5117 		__skb_unlink(skb, list);
5118 	else
5119 		rb_erase(&skb->rbnode, root);
5120 
5121 	__kfree_skb(skb);
5122 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5123 
5124 	return next;
5125 }
5126 
5127 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5128 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5129 {
5130 	struct rb_node **p = &root->rb_node;
5131 	struct rb_node *parent = NULL;
5132 	struct sk_buff *skb1;
5133 
5134 	while (*p) {
5135 		parent = *p;
5136 		skb1 = rb_to_skb(parent);
5137 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5138 			p = &parent->rb_left;
5139 		else
5140 			p = &parent->rb_right;
5141 	}
5142 	rb_link_node(&skb->rbnode, parent, p);
5143 	rb_insert_color(&skb->rbnode, root);
5144 }
5145 
5146 /* Collapse contiguous sequence of skbs head..tail with
5147  * sequence numbers start..end.
5148  *
5149  * If tail is NULL, this means until the end of the queue.
5150  *
5151  * Segments with FIN/SYN are not collapsed (only because this
5152  * simplifies code)
5153  */
5154 static void
5155 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5156 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5157 {
5158 	struct sk_buff *skb = head, *n;
5159 	struct sk_buff_head tmp;
5160 	bool end_of_skbs;
5161 
5162 	/* First, check that queue is collapsible and find
5163 	 * the point where collapsing can be useful.
5164 	 */
5165 restart:
5166 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5167 		n = tcp_skb_next(skb, list);
5168 
5169 		/* No new bits? It is possible on ofo queue. */
5170 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5171 			skb = tcp_collapse_one(sk, skb, list, root);
5172 			if (!skb)
5173 				break;
5174 			goto restart;
5175 		}
5176 
5177 		/* The first skb to collapse is:
5178 		 * - not SYN/FIN and
5179 		 * - bloated or contains data before "start" or
5180 		 *   overlaps to the next one and mptcp allow collapsing.
5181 		 */
5182 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5183 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5184 		     before(TCP_SKB_CB(skb)->seq, start))) {
5185 			end_of_skbs = false;
5186 			break;
5187 		}
5188 
5189 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5190 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5191 			end_of_skbs = false;
5192 			break;
5193 		}
5194 
5195 		/* Decided to skip this, advance start seq. */
5196 		start = TCP_SKB_CB(skb)->end_seq;
5197 	}
5198 	if (end_of_skbs ||
5199 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5200 		return;
5201 
5202 	__skb_queue_head_init(&tmp);
5203 
5204 	while (before(start, end)) {
5205 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5206 		struct sk_buff *nskb;
5207 
5208 		nskb = alloc_skb(copy, GFP_ATOMIC);
5209 		if (!nskb)
5210 			break;
5211 
5212 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5213 #ifdef CONFIG_TLS_DEVICE
5214 		nskb->decrypted = skb->decrypted;
5215 #endif
5216 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5217 		if (list)
5218 			__skb_queue_before(list, skb, nskb);
5219 		else
5220 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5221 		skb_set_owner_r(nskb, sk);
5222 		mptcp_skb_ext_move(nskb, skb);
5223 
5224 		/* Copy data, releasing collapsed skbs. */
5225 		while (copy > 0) {
5226 			int offset = start - TCP_SKB_CB(skb)->seq;
5227 			int size = TCP_SKB_CB(skb)->end_seq - start;
5228 
5229 			BUG_ON(offset < 0);
5230 			if (size > 0) {
5231 				size = min(copy, size);
5232 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5233 					BUG();
5234 				TCP_SKB_CB(nskb)->end_seq += size;
5235 				copy -= size;
5236 				start += size;
5237 			}
5238 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5239 				skb = tcp_collapse_one(sk, skb, list, root);
5240 				if (!skb ||
5241 				    skb == tail ||
5242 				    !mptcp_skb_can_collapse(nskb, skb) ||
5243 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5244 					goto end;
5245 #ifdef CONFIG_TLS_DEVICE
5246 				if (skb->decrypted != nskb->decrypted)
5247 					goto end;
5248 #endif
5249 			}
5250 		}
5251 	}
5252 end:
5253 	skb_queue_walk_safe(&tmp, skb, n)
5254 		tcp_rbtree_insert(root, skb);
5255 }
5256 
5257 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5258  * and tcp_collapse() them until all the queue is collapsed.
5259  */
5260 static void tcp_collapse_ofo_queue(struct sock *sk)
5261 {
5262 	struct tcp_sock *tp = tcp_sk(sk);
5263 	u32 range_truesize, sum_tiny = 0;
5264 	struct sk_buff *skb, *head;
5265 	u32 start, end;
5266 
5267 	skb = skb_rb_first(&tp->out_of_order_queue);
5268 new_range:
5269 	if (!skb) {
5270 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5271 		return;
5272 	}
5273 	start = TCP_SKB_CB(skb)->seq;
5274 	end = TCP_SKB_CB(skb)->end_seq;
5275 	range_truesize = skb->truesize;
5276 
5277 	for (head = skb;;) {
5278 		skb = skb_rb_next(skb);
5279 
5280 		/* Range is terminated when we see a gap or when
5281 		 * we are at the queue end.
5282 		 */
5283 		if (!skb ||
5284 		    after(TCP_SKB_CB(skb)->seq, end) ||
5285 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5286 			/* Do not attempt collapsing tiny skbs */
5287 			if (range_truesize != head->truesize ||
5288 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5289 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5290 					     head, skb, start, end);
5291 			} else {
5292 				sum_tiny += range_truesize;
5293 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5294 					return;
5295 			}
5296 			goto new_range;
5297 		}
5298 
5299 		range_truesize += skb->truesize;
5300 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5301 			start = TCP_SKB_CB(skb)->seq;
5302 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5303 			end = TCP_SKB_CB(skb)->end_seq;
5304 	}
5305 }
5306 
5307 /*
5308  * Clean the out-of-order queue to make room.
5309  * We drop high sequences packets to :
5310  * 1) Let a chance for holes to be filled.
5311  * 2) not add too big latencies if thousands of packets sit there.
5312  *    (But if application shrinks SO_RCVBUF, we could still end up
5313  *     freeing whole queue here)
5314  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5315  *
5316  * Return true if queue has shrunk.
5317  */
5318 static bool tcp_prune_ofo_queue(struct sock *sk)
5319 {
5320 	struct tcp_sock *tp = tcp_sk(sk);
5321 	struct rb_node *node, *prev;
5322 	int goal;
5323 
5324 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5325 		return false;
5326 
5327 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5328 	goal = sk->sk_rcvbuf >> 3;
5329 	node = &tp->ooo_last_skb->rbnode;
5330 	do {
5331 		prev = rb_prev(node);
5332 		rb_erase(node, &tp->out_of_order_queue);
5333 		goal -= rb_to_skb(node)->truesize;
5334 		tcp_drop_reason(sk, rb_to_skb(node),
5335 				SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5336 		if (!prev || goal <= 0) {
5337 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5338 			    !tcp_under_memory_pressure(sk))
5339 				break;
5340 			goal = sk->sk_rcvbuf >> 3;
5341 		}
5342 		node = prev;
5343 	} while (node);
5344 	tp->ooo_last_skb = rb_to_skb(prev);
5345 
5346 	/* Reset SACK state.  A conforming SACK implementation will
5347 	 * do the same at a timeout based retransmit.  When a connection
5348 	 * is in a sad state like this, we care only about integrity
5349 	 * of the connection not performance.
5350 	 */
5351 	if (tp->rx_opt.sack_ok)
5352 		tcp_sack_reset(&tp->rx_opt);
5353 	return true;
5354 }
5355 
5356 /* Reduce allocated memory if we can, trying to get
5357  * the socket within its memory limits again.
5358  *
5359  * Return less than zero if we should start dropping frames
5360  * until the socket owning process reads some of the data
5361  * to stabilize the situation.
5362  */
5363 static int tcp_prune_queue(struct sock *sk)
5364 {
5365 	struct tcp_sock *tp = tcp_sk(sk);
5366 
5367 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5368 
5369 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5370 		tcp_clamp_window(sk);
5371 	else if (tcp_under_memory_pressure(sk))
5372 		tcp_adjust_rcv_ssthresh(sk);
5373 
5374 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5375 		return 0;
5376 
5377 	tcp_collapse_ofo_queue(sk);
5378 	if (!skb_queue_empty(&sk->sk_receive_queue))
5379 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5380 			     skb_peek(&sk->sk_receive_queue),
5381 			     NULL,
5382 			     tp->copied_seq, tp->rcv_nxt);
5383 
5384 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5385 		return 0;
5386 
5387 	/* Collapsing did not help, destructive actions follow.
5388 	 * This must not ever occur. */
5389 
5390 	tcp_prune_ofo_queue(sk);
5391 
5392 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5393 		return 0;
5394 
5395 	/* If we are really being abused, tell the caller to silently
5396 	 * drop receive data on the floor.  It will get retransmitted
5397 	 * and hopefully then we'll have sufficient space.
5398 	 */
5399 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5400 
5401 	/* Massive buffer overcommit. */
5402 	tp->pred_flags = 0;
5403 	return -1;
5404 }
5405 
5406 static bool tcp_should_expand_sndbuf(struct sock *sk)
5407 {
5408 	const struct tcp_sock *tp = tcp_sk(sk);
5409 
5410 	/* If the user specified a specific send buffer setting, do
5411 	 * not modify it.
5412 	 */
5413 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5414 		return false;
5415 
5416 	/* If we are under global TCP memory pressure, do not expand.  */
5417 	if (tcp_under_memory_pressure(sk)) {
5418 		int unused_mem = sk_unused_reserved_mem(sk);
5419 
5420 		/* Adjust sndbuf according to reserved mem. But make sure
5421 		 * it never goes below SOCK_MIN_SNDBUF.
5422 		 * See sk_stream_moderate_sndbuf() for more details.
5423 		 */
5424 		if (unused_mem > SOCK_MIN_SNDBUF)
5425 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5426 
5427 		return false;
5428 	}
5429 
5430 	/* If we are under soft global TCP memory pressure, do not expand.  */
5431 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5432 		return false;
5433 
5434 	/* If we filled the congestion window, do not expand.  */
5435 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5436 		return false;
5437 
5438 	return true;
5439 }
5440 
5441 static void tcp_new_space(struct sock *sk)
5442 {
5443 	struct tcp_sock *tp = tcp_sk(sk);
5444 
5445 	if (tcp_should_expand_sndbuf(sk)) {
5446 		tcp_sndbuf_expand(sk);
5447 		tp->snd_cwnd_stamp = tcp_jiffies32;
5448 	}
5449 
5450 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5451 }
5452 
5453 /* Caller made space either from:
5454  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5455  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5456  *
5457  * We might be able to generate EPOLLOUT to the application if:
5458  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5459  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5460  *    small enough that tcp_stream_memory_free() decides it
5461  *    is time to generate EPOLLOUT.
5462  */
5463 void tcp_check_space(struct sock *sk)
5464 {
5465 	/* pairs with tcp_poll() */
5466 	smp_mb();
5467 	if (sk->sk_socket &&
5468 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5469 		tcp_new_space(sk);
5470 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5471 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5472 	}
5473 }
5474 
5475 static inline void tcp_data_snd_check(struct sock *sk)
5476 {
5477 	tcp_push_pending_frames(sk);
5478 	tcp_check_space(sk);
5479 }
5480 
5481 /*
5482  * Check if sending an ack is needed.
5483  */
5484 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5485 {
5486 	struct tcp_sock *tp = tcp_sk(sk);
5487 	unsigned long rtt, delay;
5488 
5489 	    /* More than one full frame received... */
5490 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5491 	     /* ... and right edge of window advances far enough.
5492 	      * (tcp_recvmsg() will send ACK otherwise).
5493 	      * If application uses SO_RCVLOWAT, we want send ack now if
5494 	      * we have not received enough bytes to satisfy the condition.
5495 	      */
5496 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5497 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5498 	    /* We ACK each frame or... */
5499 	    tcp_in_quickack_mode(sk) ||
5500 	    /* Protocol state mandates a one-time immediate ACK */
5501 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5502 send_now:
5503 		tcp_send_ack(sk);
5504 		return;
5505 	}
5506 
5507 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5508 		tcp_send_delayed_ack(sk);
5509 		return;
5510 	}
5511 
5512 	if (!tcp_is_sack(tp) ||
5513 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5514 		goto send_now;
5515 
5516 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5517 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5518 		tp->dup_ack_counter = 0;
5519 	}
5520 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5521 		tp->dup_ack_counter++;
5522 		goto send_now;
5523 	}
5524 	tp->compressed_ack++;
5525 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5526 		return;
5527 
5528 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5529 
5530 	rtt = tp->rcv_rtt_est.rtt_us;
5531 	if (tp->srtt_us && tp->srtt_us < rtt)
5532 		rtt = tp->srtt_us;
5533 
5534 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5535 		      rtt * (NSEC_PER_USEC >> 3)/20);
5536 	sock_hold(sk);
5537 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5538 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5539 			       HRTIMER_MODE_REL_PINNED_SOFT);
5540 }
5541 
5542 static inline void tcp_ack_snd_check(struct sock *sk)
5543 {
5544 	if (!inet_csk_ack_scheduled(sk)) {
5545 		/* We sent a data segment already. */
5546 		return;
5547 	}
5548 	__tcp_ack_snd_check(sk, 1);
5549 }
5550 
5551 /*
5552  *	This routine is only called when we have urgent data
5553  *	signaled. Its the 'slow' part of tcp_urg. It could be
5554  *	moved inline now as tcp_urg is only called from one
5555  *	place. We handle URGent data wrong. We have to - as
5556  *	BSD still doesn't use the correction from RFC961.
5557  *	For 1003.1g we should support a new option TCP_STDURG to permit
5558  *	either form (or just set the sysctl tcp_stdurg).
5559  */
5560 
5561 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5562 {
5563 	struct tcp_sock *tp = tcp_sk(sk);
5564 	u32 ptr = ntohs(th->urg_ptr);
5565 
5566 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5567 		ptr--;
5568 	ptr += ntohl(th->seq);
5569 
5570 	/* Ignore urgent data that we've already seen and read. */
5571 	if (after(tp->copied_seq, ptr))
5572 		return;
5573 
5574 	/* Do not replay urg ptr.
5575 	 *
5576 	 * NOTE: interesting situation not covered by specs.
5577 	 * Misbehaving sender may send urg ptr, pointing to segment,
5578 	 * which we already have in ofo queue. We are not able to fetch
5579 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5580 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5581 	 * situations. But it is worth to think about possibility of some
5582 	 * DoSes using some hypothetical application level deadlock.
5583 	 */
5584 	if (before(ptr, tp->rcv_nxt))
5585 		return;
5586 
5587 	/* Do we already have a newer (or duplicate) urgent pointer? */
5588 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5589 		return;
5590 
5591 	/* Tell the world about our new urgent pointer. */
5592 	sk_send_sigurg(sk);
5593 
5594 	/* We may be adding urgent data when the last byte read was
5595 	 * urgent. To do this requires some care. We cannot just ignore
5596 	 * tp->copied_seq since we would read the last urgent byte again
5597 	 * as data, nor can we alter copied_seq until this data arrives
5598 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5599 	 *
5600 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5601 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5602 	 * and expect that both A and B disappear from stream. This is _wrong_.
5603 	 * Though this happens in BSD with high probability, this is occasional.
5604 	 * Any application relying on this is buggy. Note also, that fix "works"
5605 	 * only in this artificial test. Insert some normal data between A and B and we will
5606 	 * decline of BSD again. Verdict: it is better to remove to trap
5607 	 * buggy users.
5608 	 */
5609 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5610 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5611 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5612 		tp->copied_seq++;
5613 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5614 			__skb_unlink(skb, &sk->sk_receive_queue);
5615 			__kfree_skb(skb);
5616 		}
5617 	}
5618 
5619 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5620 	WRITE_ONCE(tp->urg_seq, ptr);
5621 
5622 	/* Disable header prediction. */
5623 	tp->pred_flags = 0;
5624 }
5625 
5626 /* This is the 'fast' part of urgent handling. */
5627 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5628 {
5629 	struct tcp_sock *tp = tcp_sk(sk);
5630 
5631 	/* Check if we get a new urgent pointer - normally not. */
5632 	if (unlikely(th->urg))
5633 		tcp_check_urg(sk, th);
5634 
5635 	/* Do we wait for any urgent data? - normally not... */
5636 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5637 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5638 			  th->syn;
5639 
5640 		/* Is the urgent pointer pointing into this packet? */
5641 		if (ptr < skb->len) {
5642 			u8 tmp;
5643 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5644 				BUG();
5645 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5646 			if (!sock_flag(sk, SOCK_DEAD))
5647 				sk->sk_data_ready(sk);
5648 		}
5649 	}
5650 }
5651 
5652 /* Accept RST for rcv_nxt - 1 after a FIN.
5653  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5654  * FIN is sent followed by a RST packet. The RST is sent with the same
5655  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5656  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5657  * ACKs on the closed socket. In addition middleboxes can drop either the
5658  * challenge ACK or a subsequent RST.
5659  */
5660 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5661 {
5662 	struct tcp_sock *tp = tcp_sk(sk);
5663 
5664 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5665 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5666 					       TCPF_CLOSING));
5667 }
5668 
5669 /* Does PAWS and seqno based validation of an incoming segment, flags will
5670  * play significant role here.
5671  */
5672 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5673 				  const struct tcphdr *th, int syn_inerr)
5674 {
5675 	struct tcp_sock *tp = tcp_sk(sk);
5676 	SKB_DR(reason);
5677 
5678 	/* RFC1323: H1. Apply PAWS check first. */
5679 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5680 	    tp->rx_opt.saw_tstamp &&
5681 	    tcp_paws_discard(sk, skb)) {
5682 		if (!th->rst) {
5683 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5684 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5685 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5686 						  &tp->last_oow_ack_time))
5687 				tcp_send_dupack(sk, skb);
5688 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5689 			goto discard;
5690 		}
5691 		/* Reset is accepted even if it did not pass PAWS. */
5692 	}
5693 
5694 	/* Step 1: check sequence number */
5695 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5696 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5697 		 * (RST) segments are validated by checking their SEQ-fields."
5698 		 * And page 69: "If an incoming segment is not acceptable,
5699 		 * an acknowledgment should be sent in reply (unless the RST
5700 		 * bit is set, if so drop the segment and return)".
5701 		 */
5702 		if (!th->rst) {
5703 			if (th->syn)
5704 				goto syn_challenge;
5705 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5706 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5707 						  &tp->last_oow_ack_time))
5708 				tcp_send_dupack(sk, skb);
5709 		} else if (tcp_reset_check(sk, skb)) {
5710 			goto reset;
5711 		}
5712 		SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5713 		goto discard;
5714 	}
5715 
5716 	/* Step 2: check RST bit */
5717 	if (th->rst) {
5718 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5719 		 * FIN and SACK too if available):
5720 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5721 		 * the right-most SACK block,
5722 		 * then
5723 		 *     RESET the connection
5724 		 * else
5725 		 *     Send a challenge ACK
5726 		 */
5727 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5728 		    tcp_reset_check(sk, skb))
5729 			goto reset;
5730 
5731 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5732 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5733 			int max_sack = sp[0].end_seq;
5734 			int this_sack;
5735 
5736 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5737 			     ++this_sack) {
5738 				max_sack = after(sp[this_sack].end_seq,
5739 						 max_sack) ?
5740 					sp[this_sack].end_seq : max_sack;
5741 			}
5742 
5743 			if (TCP_SKB_CB(skb)->seq == max_sack)
5744 				goto reset;
5745 		}
5746 
5747 		/* Disable TFO if RST is out-of-order
5748 		 * and no data has been received
5749 		 * for current active TFO socket
5750 		 */
5751 		if (tp->syn_fastopen && !tp->data_segs_in &&
5752 		    sk->sk_state == TCP_ESTABLISHED)
5753 			tcp_fastopen_active_disable(sk);
5754 		tcp_send_challenge_ack(sk);
5755 		SKB_DR_SET(reason, TCP_RESET);
5756 		goto discard;
5757 	}
5758 
5759 	/* step 3: check security and precedence [ignored] */
5760 
5761 	/* step 4: Check for a SYN
5762 	 * RFC 5961 4.2 : Send a challenge ack
5763 	 */
5764 	if (th->syn) {
5765 syn_challenge:
5766 		if (syn_inerr)
5767 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5768 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5769 		tcp_send_challenge_ack(sk);
5770 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5771 		goto discard;
5772 	}
5773 
5774 	bpf_skops_parse_hdr(sk, skb);
5775 
5776 	return true;
5777 
5778 discard:
5779 	tcp_drop_reason(sk, skb, reason);
5780 	return false;
5781 
5782 reset:
5783 	tcp_reset(sk, skb);
5784 	__kfree_skb(skb);
5785 	return false;
5786 }
5787 
5788 /*
5789  *	TCP receive function for the ESTABLISHED state.
5790  *
5791  *	It is split into a fast path and a slow path. The fast path is
5792  * 	disabled when:
5793  *	- A zero window was announced from us - zero window probing
5794  *        is only handled properly in the slow path.
5795  *	- Out of order segments arrived.
5796  *	- Urgent data is expected.
5797  *	- There is no buffer space left
5798  *	- Unexpected TCP flags/window values/header lengths are received
5799  *	  (detected by checking the TCP header against pred_flags)
5800  *	- Data is sent in both directions. Fast path only supports pure senders
5801  *	  or pure receivers (this means either the sequence number or the ack
5802  *	  value must stay constant)
5803  *	- Unexpected TCP option.
5804  *
5805  *	When these conditions are not satisfied it drops into a standard
5806  *	receive procedure patterned after RFC793 to handle all cases.
5807  *	The first three cases are guaranteed by proper pred_flags setting,
5808  *	the rest is checked inline. Fast processing is turned on in
5809  *	tcp_data_queue when everything is OK.
5810  */
5811 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5812 {
5813 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5814 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5815 	struct tcp_sock *tp = tcp_sk(sk);
5816 	unsigned int len = skb->len;
5817 
5818 	/* TCP congestion window tracking */
5819 	trace_tcp_probe(sk, skb);
5820 
5821 	tcp_mstamp_refresh(tp);
5822 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5823 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5824 	/*
5825 	 *	Header prediction.
5826 	 *	The code loosely follows the one in the famous
5827 	 *	"30 instruction TCP receive" Van Jacobson mail.
5828 	 *
5829 	 *	Van's trick is to deposit buffers into socket queue
5830 	 *	on a device interrupt, to call tcp_recv function
5831 	 *	on the receive process context and checksum and copy
5832 	 *	the buffer to user space. smart...
5833 	 *
5834 	 *	Our current scheme is not silly either but we take the
5835 	 *	extra cost of the net_bh soft interrupt processing...
5836 	 *	We do checksum and copy also but from device to kernel.
5837 	 */
5838 
5839 	tp->rx_opt.saw_tstamp = 0;
5840 
5841 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5842 	 *	if header_prediction is to be made
5843 	 *	'S' will always be tp->tcp_header_len >> 2
5844 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5845 	 *  turn it off	(when there are holes in the receive
5846 	 *	 space for instance)
5847 	 *	PSH flag is ignored.
5848 	 */
5849 
5850 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5851 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5852 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5853 		int tcp_header_len = tp->tcp_header_len;
5854 
5855 		/* Timestamp header prediction: tcp_header_len
5856 		 * is automatically equal to th->doff*4 due to pred_flags
5857 		 * match.
5858 		 */
5859 
5860 		/* Check timestamp */
5861 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5862 			/* No? Slow path! */
5863 			if (!tcp_parse_aligned_timestamp(tp, th))
5864 				goto slow_path;
5865 
5866 			/* If PAWS failed, check it more carefully in slow path */
5867 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5868 				goto slow_path;
5869 
5870 			/* DO NOT update ts_recent here, if checksum fails
5871 			 * and timestamp was corrupted part, it will result
5872 			 * in a hung connection since we will drop all
5873 			 * future packets due to the PAWS test.
5874 			 */
5875 		}
5876 
5877 		if (len <= tcp_header_len) {
5878 			/* Bulk data transfer: sender */
5879 			if (len == tcp_header_len) {
5880 				/* Predicted packet is in window by definition.
5881 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5882 				 * Hence, check seq<=rcv_wup reduces to:
5883 				 */
5884 				if (tcp_header_len ==
5885 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5886 				    tp->rcv_nxt == tp->rcv_wup)
5887 					tcp_store_ts_recent(tp);
5888 
5889 				/* We know that such packets are checksummed
5890 				 * on entry.
5891 				 */
5892 				tcp_ack(sk, skb, 0);
5893 				__kfree_skb(skb);
5894 				tcp_data_snd_check(sk);
5895 				/* When receiving pure ack in fast path, update
5896 				 * last ts ecr directly instead of calling
5897 				 * tcp_rcv_rtt_measure_ts()
5898 				 */
5899 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5900 				return;
5901 			} else { /* Header too small */
5902 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5903 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5904 				goto discard;
5905 			}
5906 		} else {
5907 			int eaten = 0;
5908 			bool fragstolen = false;
5909 
5910 			if (tcp_checksum_complete(skb))
5911 				goto csum_error;
5912 
5913 			if ((int)skb->truesize > sk->sk_forward_alloc)
5914 				goto step5;
5915 
5916 			/* Predicted packet is in window by definition.
5917 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5918 			 * Hence, check seq<=rcv_wup reduces to:
5919 			 */
5920 			if (tcp_header_len ==
5921 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5922 			    tp->rcv_nxt == tp->rcv_wup)
5923 				tcp_store_ts_recent(tp);
5924 
5925 			tcp_rcv_rtt_measure_ts(sk, skb);
5926 
5927 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5928 
5929 			/* Bulk data transfer: receiver */
5930 			skb_dst_drop(skb);
5931 			__skb_pull(skb, tcp_header_len);
5932 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5933 
5934 			tcp_event_data_recv(sk, skb);
5935 
5936 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5937 				/* Well, only one small jumplet in fast path... */
5938 				tcp_ack(sk, skb, FLAG_DATA);
5939 				tcp_data_snd_check(sk);
5940 				if (!inet_csk_ack_scheduled(sk))
5941 					goto no_ack;
5942 			} else {
5943 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5944 			}
5945 
5946 			__tcp_ack_snd_check(sk, 0);
5947 no_ack:
5948 			if (eaten)
5949 				kfree_skb_partial(skb, fragstolen);
5950 			tcp_data_ready(sk);
5951 			return;
5952 		}
5953 	}
5954 
5955 slow_path:
5956 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5957 		goto csum_error;
5958 
5959 	if (!th->ack && !th->rst && !th->syn) {
5960 		reason = SKB_DROP_REASON_TCP_FLAGS;
5961 		goto discard;
5962 	}
5963 
5964 	/*
5965 	 *	Standard slow path.
5966 	 */
5967 
5968 	if (!tcp_validate_incoming(sk, skb, th, 1))
5969 		return;
5970 
5971 step5:
5972 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
5973 	if ((int)reason < 0) {
5974 		reason = -reason;
5975 		goto discard;
5976 	}
5977 	tcp_rcv_rtt_measure_ts(sk, skb);
5978 
5979 	/* Process urgent data. */
5980 	tcp_urg(sk, skb, th);
5981 
5982 	/* step 7: process the segment text */
5983 	tcp_data_queue(sk, skb);
5984 
5985 	tcp_data_snd_check(sk);
5986 	tcp_ack_snd_check(sk);
5987 	return;
5988 
5989 csum_error:
5990 	reason = SKB_DROP_REASON_TCP_CSUM;
5991 	trace_tcp_bad_csum(skb);
5992 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5993 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5994 
5995 discard:
5996 	tcp_drop_reason(sk, skb, reason);
5997 }
5998 EXPORT_SYMBOL(tcp_rcv_established);
5999 
6000 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6001 {
6002 	struct inet_connection_sock *icsk = inet_csk(sk);
6003 	struct tcp_sock *tp = tcp_sk(sk);
6004 
6005 	tcp_mtup_init(sk);
6006 	icsk->icsk_af_ops->rebuild_header(sk);
6007 	tcp_init_metrics(sk);
6008 
6009 	/* Initialize the congestion window to start the transfer.
6010 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6011 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6012 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6013 	 * retransmission has occurred.
6014 	 */
6015 	if (tp->total_retrans > 1 && tp->undo_marker)
6016 		tcp_snd_cwnd_set(tp, 1);
6017 	else
6018 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6019 	tp->snd_cwnd_stamp = tcp_jiffies32;
6020 
6021 	bpf_skops_established(sk, bpf_op, skb);
6022 	/* Initialize congestion control unless BPF initialized it already: */
6023 	if (!icsk->icsk_ca_initialized)
6024 		tcp_init_congestion_control(sk);
6025 	tcp_init_buffer_space(sk);
6026 }
6027 
6028 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6029 {
6030 	struct tcp_sock *tp = tcp_sk(sk);
6031 	struct inet_connection_sock *icsk = inet_csk(sk);
6032 
6033 	tcp_set_state(sk, TCP_ESTABLISHED);
6034 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6035 
6036 	if (skb) {
6037 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6038 		security_inet_conn_established(sk, skb);
6039 		sk_mark_napi_id(sk, skb);
6040 	}
6041 
6042 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6043 
6044 	/* Prevent spurious tcp_cwnd_restart() on first data
6045 	 * packet.
6046 	 */
6047 	tp->lsndtime = tcp_jiffies32;
6048 
6049 	if (sock_flag(sk, SOCK_KEEPOPEN))
6050 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6051 
6052 	if (!tp->rx_opt.snd_wscale)
6053 		__tcp_fast_path_on(tp, tp->snd_wnd);
6054 	else
6055 		tp->pred_flags = 0;
6056 }
6057 
6058 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6059 				    struct tcp_fastopen_cookie *cookie)
6060 {
6061 	struct tcp_sock *tp = tcp_sk(sk);
6062 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6063 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6064 	bool syn_drop = false;
6065 
6066 	if (mss == tp->rx_opt.user_mss) {
6067 		struct tcp_options_received opt;
6068 
6069 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6070 		tcp_clear_options(&opt);
6071 		opt.user_mss = opt.mss_clamp = 0;
6072 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6073 		mss = opt.mss_clamp;
6074 	}
6075 
6076 	if (!tp->syn_fastopen) {
6077 		/* Ignore an unsolicited cookie */
6078 		cookie->len = -1;
6079 	} else if (tp->total_retrans) {
6080 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6081 		 * acknowledges data. Presumably the remote received only
6082 		 * the retransmitted (regular) SYNs: either the original
6083 		 * SYN-data or the corresponding SYN-ACK was dropped.
6084 		 */
6085 		syn_drop = (cookie->len < 0 && data);
6086 	} else if (cookie->len < 0 && !tp->syn_data) {
6087 		/* We requested a cookie but didn't get it. If we did not use
6088 		 * the (old) exp opt format then try so next time (try_exp=1).
6089 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6090 		 */
6091 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6092 	}
6093 
6094 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6095 
6096 	if (data) { /* Retransmit unacked data in SYN */
6097 		if (tp->total_retrans)
6098 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6099 		else
6100 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6101 		skb_rbtree_walk_from(data)
6102 			 tcp_mark_skb_lost(sk, data);
6103 		tcp_xmit_retransmit_queue(sk);
6104 		NET_INC_STATS(sock_net(sk),
6105 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6106 		return true;
6107 	}
6108 	tp->syn_data_acked = tp->syn_data;
6109 	if (tp->syn_data_acked) {
6110 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6111 		/* SYN-data is counted as two separate packets in tcp_ack() */
6112 		if (tp->delivered > 1)
6113 			--tp->delivered;
6114 	}
6115 
6116 	tcp_fastopen_add_skb(sk, synack);
6117 
6118 	return false;
6119 }
6120 
6121 static void smc_check_reset_syn(struct tcp_sock *tp)
6122 {
6123 #if IS_ENABLED(CONFIG_SMC)
6124 	if (static_branch_unlikely(&tcp_have_smc)) {
6125 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6126 			tp->syn_smc = 0;
6127 	}
6128 #endif
6129 }
6130 
6131 static void tcp_try_undo_spurious_syn(struct sock *sk)
6132 {
6133 	struct tcp_sock *tp = tcp_sk(sk);
6134 	u32 syn_stamp;
6135 
6136 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6137 	 * spurious if the ACK's timestamp option echo value matches the
6138 	 * original SYN timestamp.
6139 	 */
6140 	syn_stamp = tp->retrans_stamp;
6141 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6142 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6143 		tp->undo_marker = 0;
6144 }
6145 
6146 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6147 					 const struct tcphdr *th)
6148 {
6149 	struct inet_connection_sock *icsk = inet_csk(sk);
6150 	struct tcp_sock *tp = tcp_sk(sk);
6151 	struct tcp_fastopen_cookie foc = { .len = -1 };
6152 	int saved_clamp = tp->rx_opt.mss_clamp;
6153 	bool fastopen_fail;
6154 	SKB_DR(reason);
6155 
6156 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6157 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6158 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6159 
6160 	if (th->ack) {
6161 		/* rfc793:
6162 		 * "If the state is SYN-SENT then
6163 		 *    first check the ACK bit
6164 		 *      If the ACK bit is set
6165 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6166 		 *        a reset (unless the RST bit is set, if so drop
6167 		 *        the segment and return)"
6168 		 */
6169 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6170 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6171 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6172 			if (icsk->icsk_retransmits == 0)
6173 				inet_csk_reset_xmit_timer(sk,
6174 						ICSK_TIME_RETRANS,
6175 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6176 			goto reset_and_undo;
6177 		}
6178 
6179 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6180 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6181 			     tcp_time_stamp(tp))) {
6182 			NET_INC_STATS(sock_net(sk),
6183 					LINUX_MIB_PAWSACTIVEREJECTED);
6184 			goto reset_and_undo;
6185 		}
6186 
6187 		/* Now ACK is acceptable.
6188 		 *
6189 		 * "If the RST bit is set
6190 		 *    If the ACK was acceptable then signal the user "error:
6191 		 *    connection reset", drop the segment, enter CLOSED state,
6192 		 *    delete TCB, and return."
6193 		 */
6194 
6195 		if (th->rst) {
6196 			tcp_reset(sk, skb);
6197 consume:
6198 			__kfree_skb(skb);
6199 			return 0;
6200 		}
6201 
6202 		/* rfc793:
6203 		 *   "fifth, if neither of the SYN or RST bits is set then
6204 		 *    drop the segment and return."
6205 		 *
6206 		 *    See note below!
6207 		 *                                        --ANK(990513)
6208 		 */
6209 		if (!th->syn) {
6210 			SKB_DR_SET(reason, TCP_FLAGS);
6211 			goto discard_and_undo;
6212 		}
6213 		/* rfc793:
6214 		 *   "If the SYN bit is on ...
6215 		 *    are acceptable then ...
6216 		 *    (our SYN has been ACKed), change the connection
6217 		 *    state to ESTABLISHED..."
6218 		 */
6219 
6220 		tcp_ecn_rcv_synack(tp, th);
6221 
6222 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6223 		tcp_try_undo_spurious_syn(sk);
6224 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6225 
6226 		/* Ok.. it's good. Set up sequence numbers and
6227 		 * move to established.
6228 		 */
6229 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6230 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6231 
6232 		/* RFC1323: The window in SYN & SYN/ACK segments is
6233 		 * never scaled.
6234 		 */
6235 		tp->snd_wnd = ntohs(th->window);
6236 
6237 		if (!tp->rx_opt.wscale_ok) {
6238 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6239 			tp->window_clamp = min(tp->window_clamp, 65535U);
6240 		}
6241 
6242 		if (tp->rx_opt.saw_tstamp) {
6243 			tp->rx_opt.tstamp_ok	   = 1;
6244 			tp->tcp_header_len =
6245 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6246 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6247 			tcp_store_ts_recent(tp);
6248 		} else {
6249 			tp->tcp_header_len = sizeof(struct tcphdr);
6250 		}
6251 
6252 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6253 		tcp_initialize_rcv_mss(sk);
6254 
6255 		/* Remember, tcp_poll() does not lock socket!
6256 		 * Change state from SYN-SENT only after copied_seq
6257 		 * is initialized. */
6258 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6259 
6260 		smc_check_reset_syn(tp);
6261 
6262 		smp_mb();
6263 
6264 		tcp_finish_connect(sk, skb);
6265 
6266 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6267 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6268 
6269 		if (!sock_flag(sk, SOCK_DEAD)) {
6270 			sk->sk_state_change(sk);
6271 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6272 		}
6273 		if (fastopen_fail)
6274 			return -1;
6275 		if (sk->sk_write_pending ||
6276 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6277 		    inet_csk_in_pingpong_mode(sk)) {
6278 			/* Save one ACK. Data will be ready after
6279 			 * several ticks, if write_pending is set.
6280 			 *
6281 			 * It may be deleted, but with this feature tcpdumps
6282 			 * look so _wonderfully_ clever, that I was not able
6283 			 * to stand against the temptation 8)     --ANK
6284 			 */
6285 			inet_csk_schedule_ack(sk);
6286 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6287 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6288 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6289 			goto consume;
6290 		}
6291 		tcp_send_ack(sk);
6292 		return -1;
6293 	}
6294 
6295 	/* No ACK in the segment */
6296 
6297 	if (th->rst) {
6298 		/* rfc793:
6299 		 * "If the RST bit is set
6300 		 *
6301 		 *      Otherwise (no ACK) drop the segment and return."
6302 		 */
6303 		SKB_DR_SET(reason, TCP_RESET);
6304 		goto discard_and_undo;
6305 	}
6306 
6307 	/* PAWS check. */
6308 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6309 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6310 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6311 		goto discard_and_undo;
6312 	}
6313 	if (th->syn) {
6314 		/* We see SYN without ACK. It is attempt of
6315 		 * simultaneous connect with crossed SYNs.
6316 		 * Particularly, it can be connect to self.
6317 		 */
6318 		tcp_set_state(sk, TCP_SYN_RECV);
6319 
6320 		if (tp->rx_opt.saw_tstamp) {
6321 			tp->rx_opt.tstamp_ok = 1;
6322 			tcp_store_ts_recent(tp);
6323 			tp->tcp_header_len =
6324 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6325 		} else {
6326 			tp->tcp_header_len = sizeof(struct tcphdr);
6327 		}
6328 
6329 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6330 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6331 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6332 
6333 		/* RFC1323: The window in SYN & SYN/ACK segments is
6334 		 * never scaled.
6335 		 */
6336 		tp->snd_wnd    = ntohs(th->window);
6337 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6338 		tp->max_window = tp->snd_wnd;
6339 
6340 		tcp_ecn_rcv_syn(tp, th);
6341 
6342 		tcp_mtup_init(sk);
6343 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6344 		tcp_initialize_rcv_mss(sk);
6345 
6346 		tcp_send_synack(sk);
6347 #if 0
6348 		/* Note, we could accept data and URG from this segment.
6349 		 * There are no obstacles to make this (except that we must
6350 		 * either change tcp_recvmsg() to prevent it from returning data
6351 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6352 		 *
6353 		 * However, if we ignore data in ACKless segments sometimes,
6354 		 * we have no reasons to accept it sometimes.
6355 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6356 		 * is not flawless. So, discard packet for sanity.
6357 		 * Uncomment this return to process the data.
6358 		 */
6359 		return -1;
6360 #else
6361 		goto consume;
6362 #endif
6363 	}
6364 	/* "fifth, if neither of the SYN or RST bits is set then
6365 	 * drop the segment and return."
6366 	 */
6367 
6368 discard_and_undo:
6369 	tcp_clear_options(&tp->rx_opt);
6370 	tp->rx_opt.mss_clamp = saved_clamp;
6371 	tcp_drop_reason(sk, skb, reason);
6372 	return 0;
6373 
6374 reset_and_undo:
6375 	tcp_clear_options(&tp->rx_opt);
6376 	tp->rx_opt.mss_clamp = saved_clamp;
6377 	return 1;
6378 }
6379 
6380 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6381 {
6382 	struct request_sock *req;
6383 
6384 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6385 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6386 	 */
6387 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6388 		tcp_try_undo_loss(sk, false);
6389 
6390 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6391 	tcp_sk(sk)->retrans_stamp = 0;
6392 	inet_csk(sk)->icsk_retransmits = 0;
6393 
6394 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6395 	 * we no longer need req so release it.
6396 	 */
6397 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6398 					lockdep_sock_is_held(sk));
6399 	reqsk_fastopen_remove(sk, req, false);
6400 
6401 	/* Re-arm the timer because data may have been sent out.
6402 	 * This is similar to the regular data transmission case
6403 	 * when new data has just been ack'ed.
6404 	 *
6405 	 * (TFO) - we could try to be more aggressive and
6406 	 * retransmitting any data sooner based on when they
6407 	 * are sent out.
6408 	 */
6409 	tcp_rearm_rto(sk);
6410 }
6411 
6412 /*
6413  *	This function implements the receiving procedure of RFC 793 for
6414  *	all states except ESTABLISHED and TIME_WAIT.
6415  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6416  *	address independent.
6417  */
6418 
6419 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6420 {
6421 	struct tcp_sock *tp = tcp_sk(sk);
6422 	struct inet_connection_sock *icsk = inet_csk(sk);
6423 	const struct tcphdr *th = tcp_hdr(skb);
6424 	struct request_sock *req;
6425 	int queued = 0;
6426 	bool acceptable;
6427 	SKB_DR(reason);
6428 
6429 	switch (sk->sk_state) {
6430 	case TCP_CLOSE:
6431 		SKB_DR_SET(reason, TCP_CLOSE);
6432 		goto discard;
6433 
6434 	case TCP_LISTEN:
6435 		if (th->ack)
6436 			return 1;
6437 
6438 		if (th->rst) {
6439 			SKB_DR_SET(reason, TCP_RESET);
6440 			goto discard;
6441 		}
6442 		if (th->syn) {
6443 			if (th->fin) {
6444 				SKB_DR_SET(reason, TCP_FLAGS);
6445 				goto discard;
6446 			}
6447 			/* It is possible that we process SYN packets from backlog,
6448 			 * so we need to make sure to disable BH and RCU right there.
6449 			 */
6450 			rcu_read_lock();
6451 			local_bh_disable();
6452 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6453 			local_bh_enable();
6454 			rcu_read_unlock();
6455 
6456 			if (!acceptable)
6457 				return 1;
6458 			consume_skb(skb);
6459 			return 0;
6460 		}
6461 		SKB_DR_SET(reason, TCP_FLAGS);
6462 		goto discard;
6463 
6464 	case TCP_SYN_SENT:
6465 		tp->rx_opt.saw_tstamp = 0;
6466 		tcp_mstamp_refresh(tp);
6467 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6468 		if (queued >= 0)
6469 			return queued;
6470 
6471 		/* Do step6 onward by hand. */
6472 		tcp_urg(sk, skb, th);
6473 		__kfree_skb(skb);
6474 		tcp_data_snd_check(sk);
6475 		return 0;
6476 	}
6477 
6478 	tcp_mstamp_refresh(tp);
6479 	tp->rx_opt.saw_tstamp = 0;
6480 	req = rcu_dereference_protected(tp->fastopen_rsk,
6481 					lockdep_sock_is_held(sk));
6482 	if (req) {
6483 		bool req_stolen;
6484 
6485 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6486 		    sk->sk_state != TCP_FIN_WAIT1);
6487 
6488 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6489 			SKB_DR_SET(reason, TCP_FASTOPEN);
6490 			goto discard;
6491 		}
6492 	}
6493 
6494 	if (!th->ack && !th->rst && !th->syn) {
6495 		SKB_DR_SET(reason, TCP_FLAGS);
6496 		goto discard;
6497 	}
6498 	if (!tcp_validate_incoming(sk, skb, th, 0))
6499 		return 0;
6500 
6501 	/* step 5: check the ACK field */
6502 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6503 				      FLAG_UPDATE_TS_RECENT |
6504 				      FLAG_NO_CHALLENGE_ACK) > 0;
6505 
6506 	if (!acceptable) {
6507 		if (sk->sk_state == TCP_SYN_RECV)
6508 			return 1;	/* send one RST */
6509 		tcp_send_challenge_ack(sk);
6510 		SKB_DR_SET(reason, TCP_OLD_ACK);
6511 		goto discard;
6512 	}
6513 	switch (sk->sk_state) {
6514 	case TCP_SYN_RECV:
6515 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6516 		if (!tp->srtt_us)
6517 			tcp_synack_rtt_meas(sk, req);
6518 
6519 		if (req) {
6520 			tcp_rcv_synrecv_state_fastopen(sk);
6521 		} else {
6522 			tcp_try_undo_spurious_syn(sk);
6523 			tp->retrans_stamp = 0;
6524 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6525 					  skb);
6526 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6527 		}
6528 		smp_mb();
6529 		tcp_set_state(sk, TCP_ESTABLISHED);
6530 		sk->sk_state_change(sk);
6531 
6532 		/* Note, that this wakeup is only for marginal crossed SYN case.
6533 		 * Passively open sockets are not waked up, because
6534 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6535 		 */
6536 		if (sk->sk_socket)
6537 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6538 
6539 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6540 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6541 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6542 
6543 		if (tp->rx_opt.tstamp_ok)
6544 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6545 
6546 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6547 			tcp_update_pacing_rate(sk);
6548 
6549 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6550 		tp->lsndtime = tcp_jiffies32;
6551 
6552 		tcp_initialize_rcv_mss(sk);
6553 		tcp_fast_path_on(tp);
6554 		break;
6555 
6556 	case TCP_FIN_WAIT1: {
6557 		int tmo;
6558 
6559 		if (req)
6560 			tcp_rcv_synrecv_state_fastopen(sk);
6561 
6562 		if (tp->snd_una != tp->write_seq)
6563 			break;
6564 
6565 		tcp_set_state(sk, TCP_FIN_WAIT2);
6566 		sk->sk_shutdown |= SEND_SHUTDOWN;
6567 
6568 		sk_dst_confirm(sk);
6569 
6570 		if (!sock_flag(sk, SOCK_DEAD)) {
6571 			/* Wake up lingering close() */
6572 			sk->sk_state_change(sk);
6573 			break;
6574 		}
6575 
6576 		if (tp->linger2 < 0) {
6577 			tcp_done(sk);
6578 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6579 			return 1;
6580 		}
6581 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6582 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6583 			/* Receive out of order FIN after close() */
6584 			if (tp->syn_fastopen && th->fin)
6585 				tcp_fastopen_active_disable(sk);
6586 			tcp_done(sk);
6587 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6588 			return 1;
6589 		}
6590 
6591 		tmo = tcp_fin_time(sk);
6592 		if (tmo > TCP_TIMEWAIT_LEN) {
6593 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6594 		} else if (th->fin || sock_owned_by_user(sk)) {
6595 			/* Bad case. We could lose such FIN otherwise.
6596 			 * It is not a big problem, but it looks confusing
6597 			 * and not so rare event. We still can lose it now,
6598 			 * if it spins in bh_lock_sock(), but it is really
6599 			 * marginal case.
6600 			 */
6601 			inet_csk_reset_keepalive_timer(sk, tmo);
6602 		} else {
6603 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6604 			goto consume;
6605 		}
6606 		break;
6607 	}
6608 
6609 	case TCP_CLOSING:
6610 		if (tp->snd_una == tp->write_seq) {
6611 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6612 			goto consume;
6613 		}
6614 		break;
6615 
6616 	case TCP_LAST_ACK:
6617 		if (tp->snd_una == tp->write_seq) {
6618 			tcp_update_metrics(sk);
6619 			tcp_done(sk);
6620 			goto consume;
6621 		}
6622 		break;
6623 	}
6624 
6625 	/* step 6: check the URG bit */
6626 	tcp_urg(sk, skb, th);
6627 
6628 	/* step 7: process the segment text */
6629 	switch (sk->sk_state) {
6630 	case TCP_CLOSE_WAIT:
6631 	case TCP_CLOSING:
6632 	case TCP_LAST_ACK:
6633 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6634 			/* If a subflow has been reset, the packet should not
6635 			 * continue to be processed, drop the packet.
6636 			 */
6637 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6638 				goto discard;
6639 			break;
6640 		}
6641 		fallthrough;
6642 	case TCP_FIN_WAIT1:
6643 	case TCP_FIN_WAIT2:
6644 		/* RFC 793 says to queue data in these states,
6645 		 * RFC 1122 says we MUST send a reset.
6646 		 * BSD 4.4 also does reset.
6647 		 */
6648 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6649 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6650 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6651 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6652 				tcp_reset(sk, skb);
6653 				return 1;
6654 			}
6655 		}
6656 		fallthrough;
6657 	case TCP_ESTABLISHED:
6658 		tcp_data_queue(sk, skb);
6659 		queued = 1;
6660 		break;
6661 	}
6662 
6663 	/* tcp_data could move socket to TIME-WAIT */
6664 	if (sk->sk_state != TCP_CLOSE) {
6665 		tcp_data_snd_check(sk);
6666 		tcp_ack_snd_check(sk);
6667 	}
6668 
6669 	if (!queued) {
6670 discard:
6671 		tcp_drop_reason(sk, skb, reason);
6672 	}
6673 	return 0;
6674 
6675 consume:
6676 	__kfree_skb(skb);
6677 	return 0;
6678 }
6679 EXPORT_SYMBOL(tcp_rcv_state_process);
6680 
6681 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6682 {
6683 	struct inet_request_sock *ireq = inet_rsk(req);
6684 
6685 	if (family == AF_INET)
6686 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6687 				    &ireq->ir_rmt_addr, port);
6688 #if IS_ENABLED(CONFIG_IPV6)
6689 	else if (family == AF_INET6)
6690 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6691 				    &ireq->ir_v6_rmt_addr, port);
6692 #endif
6693 }
6694 
6695 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6696  *
6697  * If we receive a SYN packet with these bits set, it means a
6698  * network is playing bad games with TOS bits. In order to
6699  * avoid possible false congestion notifications, we disable
6700  * TCP ECN negotiation.
6701  *
6702  * Exception: tcp_ca wants ECN. This is required for DCTCP
6703  * congestion control: Linux DCTCP asserts ECT on all packets,
6704  * including SYN, which is most optimal solution; however,
6705  * others, such as FreeBSD do not.
6706  *
6707  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6708  * set, indicating the use of a future TCP extension (such as AccECN). See
6709  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6710  * extensions.
6711  */
6712 static void tcp_ecn_create_request(struct request_sock *req,
6713 				   const struct sk_buff *skb,
6714 				   const struct sock *listen_sk,
6715 				   const struct dst_entry *dst)
6716 {
6717 	const struct tcphdr *th = tcp_hdr(skb);
6718 	const struct net *net = sock_net(listen_sk);
6719 	bool th_ecn = th->ece && th->cwr;
6720 	bool ect, ecn_ok;
6721 	u32 ecn_ok_dst;
6722 
6723 	if (!th_ecn)
6724 		return;
6725 
6726 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6727 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6728 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6729 
6730 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6731 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6732 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6733 		inet_rsk(req)->ecn_ok = 1;
6734 }
6735 
6736 static void tcp_openreq_init(struct request_sock *req,
6737 			     const struct tcp_options_received *rx_opt,
6738 			     struct sk_buff *skb, const struct sock *sk)
6739 {
6740 	struct inet_request_sock *ireq = inet_rsk(req);
6741 
6742 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6743 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6744 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6745 	tcp_rsk(req)->snt_synack = 0;
6746 	tcp_rsk(req)->last_oow_ack_time = 0;
6747 	req->mss = rx_opt->mss_clamp;
6748 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6749 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6750 	ireq->sack_ok = rx_opt->sack_ok;
6751 	ireq->snd_wscale = rx_opt->snd_wscale;
6752 	ireq->wscale_ok = rx_opt->wscale_ok;
6753 	ireq->acked = 0;
6754 	ireq->ecn_ok = 0;
6755 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6756 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6757 	ireq->ir_mark = inet_request_mark(sk, skb);
6758 #if IS_ENABLED(CONFIG_SMC)
6759 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6760 			tcp_sk(sk)->smc_hs_congested(sk));
6761 #endif
6762 }
6763 
6764 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6765 				      struct sock *sk_listener,
6766 				      bool attach_listener)
6767 {
6768 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6769 					       attach_listener);
6770 
6771 	if (req) {
6772 		struct inet_request_sock *ireq = inet_rsk(req);
6773 
6774 		ireq->ireq_opt = NULL;
6775 #if IS_ENABLED(CONFIG_IPV6)
6776 		ireq->pktopts = NULL;
6777 #endif
6778 		atomic64_set(&ireq->ir_cookie, 0);
6779 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6780 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6781 		ireq->ireq_family = sk_listener->sk_family;
6782 		req->timeout = TCP_TIMEOUT_INIT;
6783 	}
6784 
6785 	return req;
6786 }
6787 EXPORT_SYMBOL(inet_reqsk_alloc);
6788 
6789 /*
6790  * Return true if a syncookie should be sent
6791  */
6792 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6793 {
6794 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6795 	const char *msg = "Dropping request";
6796 	bool want_cookie = false;
6797 	struct net *net = sock_net(sk);
6798 
6799 #ifdef CONFIG_SYN_COOKIES
6800 	if (net->ipv4.sysctl_tcp_syncookies) {
6801 		msg = "Sending cookies";
6802 		want_cookie = true;
6803 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6804 	} else
6805 #endif
6806 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6807 
6808 	if (!queue->synflood_warned &&
6809 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6810 	    xchg(&queue->synflood_warned, 1) == 0)
6811 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6812 				     proto, sk->sk_num, msg);
6813 
6814 	return want_cookie;
6815 }
6816 
6817 static void tcp_reqsk_record_syn(const struct sock *sk,
6818 				 struct request_sock *req,
6819 				 const struct sk_buff *skb)
6820 {
6821 	if (tcp_sk(sk)->save_syn) {
6822 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6823 		struct saved_syn *saved_syn;
6824 		u32 mac_hdrlen;
6825 		void *base;
6826 
6827 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6828 			base = skb_mac_header(skb);
6829 			mac_hdrlen = skb_mac_header_len(skb);
6830 			len += mac_hdrlen;
6831 		} else {
6832 			base = skb_network_header(skb);
6833 			mac_hdrlen = 0;
6834 		}
6835 
6836 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6837 				    GFP_ATOMIC);
6838 		if (saved_syn) {
6839 			saved_syn->mac_hdrlen = mac_hdrlen;
6840 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6841 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6842 			memcpy(saved_syn->data, base, len);
6843 			req->saved_syn = saved_syn;
6844 		}
6845 	}
6846 }
6847 
6848 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6849  * used for SYN cookie generation.
6850  */
6851 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6852 			  const struct tcp_request_sock_ops *af_ops,
6853 			  struct sock *sk, struct tcphdr *th)
6854 {
6855 	struct tcp_sock *tp = tcp_sk(sk);
6856 	u16 mss;
6857 
6858 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6859 	    !inet_csk_reqsk_queue_is_full(sk))
6860 		return 0;
6861 
6862 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6863 		return 0;
6864 
6865 	if (sk_acceptq_is_full(sk)) {
6866 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6867 		return 0;
6868 	}
6869 
6870 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6871 	if (!mss)
6872 		mss = af_ops->mss_clamp;
6873 
6874 	return mss;
6875 }
6876 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6877 
6878 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6879 		     const struct tcp_request_sock_ops *af_ops,
6880 		     struct sock *sk, struct sk_buff *skb)
6881 {
6882 	struct tcp_fastopen_cookie foc = { .len = -1 };
6883 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6884 	struct tcp_options_received tmp_opt;
6885 	struct tcp_sock *tp = tcp_sk(sk);
6886 	struct net *net = sock_net(sk);
6887 	struct sock *fastopen_sk = NULL;
6888 	struct request_sock *req;
6889 	bool want_cookie = false;
6890 	struct dst_entry *dst;
6891 	struct flowi fl;
6892 
6893 	/* TW buckets are converted to open requests without
6894 	 * limitations, they conserve resources and peer is
6895 	 * evidently real one.
6896 	 */
6897 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6898 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6899 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6900 		if (!want_cookie)
6901 			goto drop;
6902 	}
6903 
6904 	if (sk_acceptq_is_full(sk)) {
6905 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6906 		goto drop;
6907 	}
6908 
6909 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6910 	if (!req)
6911 		goto drop;
6912 
6913 	req->syncookie = want_cookie;
6914 	tcp_rsk(req)->af_specific = af_ops;
6915 	tcp_rsk(req)->ts_off = 0;
6916 #if IS_ENABLED(CONFIG_MPTCP)
6917 	tcp_rsk(req)->is_mptcp = 0;
6918 #endif
6919 
6920 	tcp_clear_options(&tmp_opt);
6921 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6922 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6923 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6924 			  want_cookie ? NULL : &foc);
6925 
6926 	if (want_cookie && !tmp_opt.saw_tstamp)
6927 		tcp_clear_options(&tmp_opt);
6928 
6929 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6930 		tmp_opt.smc_ok = 0;
6931 
6932 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6933 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6934 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6935 
6936 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6937 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6938 
6939 	dst = af_ops->route_req(sk, skb, &fl, req);
6940 	if (!dst)
6941 		goto drop_and_free;
6942 
6943 	if (tmp_opt.tstamp_ok)
6944 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6945 
6946 	if (!want_cookie && !isn) {
6947 		/* Kill the following clause, if you dislike this way. */
6948 		if (!net->ipv4.sysctl_tcp_syncookies &&
6949 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6950 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6951 		    !tcp_peer_is_proven(req, dst)) {
6952 			/* Without syncookies last quarter of
6953 			 * backlog is filled with destinations,
6954 			 * proven to be alive.
6955 			 * It means that we continue to communicate
6956 			 * to destinations, already remembered
6957 			 * to the moment of synflood.
6958 			 */
6959 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6960 				    rsk_ops->family);
6961 			goto drop_and_release;
6962 		}
6963 
6964 		isn = af_ops->init_seq(skb);
6965 	}
6966 
6967 	tcp_ecn_create_request(req, skb, sk, dst);
6968 
6969 	if (want_cookie) {
6970 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6971 		if (!tmp_opt.tstamp_ok)
6972 			inet_rsk(req)->ecn_ok = 0;
6973 	}
6974 
6975 	tcp_rsk(req)->snt_isn = isn;
6976 	tcp_rsk(req)->txhash = net_tx_rndhash();
6977 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6978 	tcp_openreq_init_rwin(req, sk, dst);
6979 	sk_rx_queue_set(req_to_sk(req), skb);
6980 	if (!want_cookie) {
6981 		tcp_reqsk_record_syn(sk, req, skb);
6982 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6983 	}
6984 	if (fastopen_sk) {
6985 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6986 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6987 		/* Add the child socket directly into the accept queue */
6988 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6989 			reqsk_fastopen_remove(fastopen_sk, req, false);
6990 			bh_unlock_sock(fastopen_sk);
6991 			sock_put(fastopen_sk);
6992 			goto drop_and_free;
6993 		}
6994 		sk->sk_data_ready(sk);
6995 		bh_unlock_sock(fastopen_sk);
6996 		sock_put(fastopen_sk);
6997 	} else {
6998 		tcp_rsk(req)->tfo_listener = false;
6999 		if (!want_cookie) {
7000 			req->timeout = tcp_timeout_init((struct sock *)req);
7001 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7002 		}
7003 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7004 				    !want_cookie ? TCP_SYNACK_NORMAL :
7005 						   TCP_SYNACK_COOKIE,
7006 				    skb);
7007 		if (want_cookie) {
7008 			reqsk_free(req);
7009 			return 0;
7010 		}
7011 	}
7012 	reqsk_put(req);
7013 	return 0;
7014 
7015 drop_and_release:
7016 	dst_release(dst);
7017 drop_and_free:
7018 	__reqsk_free(req);
7019 drop:
7020 	tcp_listendrop(sk);
7021 	return 0;
7022 }
7023 EXPORT_SYMBOL(tcp_conn_request);
7024