1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 247 248 do_div(val, skb->truesize); 249 tcp_sk(sk)->scaling_ratio = val ? val : 1; 250 251 if (old_ratio != tcp_sk(sk)->scaling_ratio) 252 WRITE_ONCE(tcp_sk(sk)->window_clamp, 253 tcp_win_from_space(sk, sk->sk_rcvbuf)); 254 } 255 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 256 tcp_sk(sk)->advmss); 257 /* Account for possibly-removed options */ 258 if (unlikely(len > icsk->icsk_ack.rcv_mss + 259 MAX_TCP_OPTION_SPACE)) 260 tcp_gro_dev_warn(sk, skb, len); 261 /* If the skb has a len of exactly 1*MSS and has the PSH bit 262 * set then it is likely the end of an application write. So 263 * more data may not be arriving soon, and yet the data sender 264 * may be waiting for an ACK if cwnd-bound or using TX zero 265 * copy. So we set ICSK_ACK_PUSHED here so that 266 * tcp_cleanup_rbuf() will send an ACK immediately if the app 267 * reads all of the data and is not ping-pong. If len > MSS 268 * then this logic does not matter (and does not hurt) because 269 * tcp_cleanup_rbuf() will always ACK immediately if the app 270 * reads data and there is more than an MSS of unACKed data. 271 */ 272 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 274 } else { 275 /* Otherwise, we make more careful check taking into account, 276 * that SACKs block is variable. 277 * 278 * "len" is invariant segment length, including TCP header. 279 */ 280 len += skb->data - skb_transport_header(skb); 281 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 282 /* If PSH is not set, packet should be 283 * full sized, provided peer TCP is not badly broken. 284 * This observation (if it is correct 8)) allows 285 * to handle super-low mtu links fairly. 286 */ 287 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 288 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 289 /* Subtract also invariant (if peer is RFC compliant), 290 * tcp header plus fixed timestamp option length. 291 * Resulting "len" is MSS free of SACK jitter. 292 */ 293 len -= tcp_sk(sk)->tcp_header_len; 294 icsk->icsk_ack.last_seg_size = len; 295 if (len == lss) { 296 icsk->icsk_ack.rcv_mss = len; 297 return; 298 } 299 } 300 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 301 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 302 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 303 } 304 } 305 306 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 307 { 308 struct inet_connection_sock *icsk = inet_csk(sk); 309 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 310 311 if (quickacks == 0) 312 quickacks = 2; 313 quickacks = min(quickacks, max_quickacks); 314 if (quickacks > icsk->icsk_ack.quick) 315 icsk->icsk_ack.quick = quickacks; 316 } 317 318 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 319 { 320 struct inet_connection_sock *icsk = inet_csk(sk); 321 322 tcp_incr_quickack(sk, max_quickacks); 323 inet_csk_exit_pingpong_mode(sk); 324 icsk->icsk_ack.ato = TCP_ATO_MIN; 325 } 326 327 /* Send ACKs quickly, if "quick" count is not exhausted 328 * and the session is not interactive. 329 */ 330 331 static bool tcp_in_quickack_mode(struct sock *sk) 332 { 333 const struct inet_connection_sock *icsk = inet_csk(sk); 334 const struct dst_entry *dst = __sk_dst_get(sk); 335 336 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 337 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 338 } 339 340 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 341 { 342 if (tp->ecn_flags & TCP_ECN_OK) 343 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 344 } 345 346 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 347 { 348 if (tcp_hdr(skb)->cwr) { 349 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 350 351 /* If the sender is telling us it has entered CWR, then its 352 * cwnd may be very low (even just 1 packet), so we should ACK 353 * immediately. 354 */ 355 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 356 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 357 } 358 } 359 360 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 361 { 362 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 363 } 364 365 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 366 { 367 struct tcp_sock *tp = tcp_sk(sk); 368 369 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 370 case INET_ECN_NOT_ECT: 371 /* Funny extension: if ECT is not set on a segment, 372 * and we already seen ECT on a previous segment, 373 * it is probably a retransmit. 374 */ 375 if (tp->ecn_flags & TCP_ECN_SEEN) 376 tcp_enter_quickack_mode(sk, 2); 377 break; 378 case INET_ECN_CE: 379 if (tcp_ca_needs_ecn(sk)) 380 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 381 382 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 383 /* Better not delay acks, sender can have a very low cwnd */ 384 tcp_enter_quickack_mode(sk, 2); 385 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 386 } 387 tp->ecn_flags |= TCP_ECN_SEEN; 388 break; 389 default: 390 if (tcp_ca_needs_ecn(sk)) 391 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 392 tp->ecn_flags |= TCP_ECN_SEEN; 393 break; 394 } 395 } 396 397 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 398 { 399 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 400 __tcp_ecn_check_ce(sk, skb); 401 } 402 403 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 404 { 405 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 406 tp->ecn_flags &= ~TCP_ECN_OK; 407 } 408 409 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 410 { 411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 412 tp->ecn_flags &= ~TCP_ECN_OK; 413 } 414 415 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 416 { 417 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 418 return true; 419 return false; 420 } 421 422 /* Buffer size and advertised window tuning. 423 * 424 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 425 */ 426 427 static void tcp_sndbuf_expand(struct sock *sk) 428 { 429 const struct tcp_sock *tp = tcp_sk(sk); 430 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 431 int sndmem, per_mss; 432 u32 nr_segs; 433 434 /* Worst case is non GSO/TSO : each frame consumes one skb 435 * and skb->head is kmalloced using power of two area of memory 436 */ 437 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 438 MAX_TCP_HEADER + 439 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 440 441 per_mss = roundup_pow_of_two(per_mss) + 442 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 443 444 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 445 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 446 447 /* Fast Recovery (RFC 5681 3.2) : 448 * Cubic needs 1.7 factor, rounded to 2 to include 449 * extra cushion (application might react slowly to EPOLLOUT) 450 */ 451 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 452 sndmem *= nr_segs * per_mss; 453 454 if (sk->sk_sndbuf < sndmem) 455 WRITE_ONCE(sk->sk_sndbuf, 456 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 457 } 458 459 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 460 * 461 * All tcp_full_space() is split to two parts: "network" buffer, allocated 462 * forward and advertised in receiver window (tp->rcv_wnd) and 463 * "application buffer", required to isolate scheduling/application 464 * latencies from network. 465 * window_clamp is maximal advertised window. It can be less than 466 * tcp_full_space(), in this case tcp_full_space() - window_clamp 467 * is reserved for "application" buffer. The less window_clamp is 468 * the smoother our behaviour from viewpoint of network, but the lower 469 * throughput and the higher sensitivity of the connection to losses. 8) 470 * 471 * rcv_ssthresh is more strict window_clamp used at "slow start" 472 * phase to predict further behaviour of this connection. 473 * It is used for two goals: 474 * - to enforce header prediction at sender, even when application 475 * requires some significant "application buffer". It is check #1. 476 * - to prevent pruning of receive queue because of misprediction 477 * of receiver window. Check #2. 478 * 479 * The scheme does not work when sender sends good segments opening 480 * window and then starts to feed us spaghetti. But it should work 481 * in common situations. Otherwise, we have to rely on queue collapsing. 482 */ 483 484 /* Slow part of check#2. */ 485 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 486 unsigned int skbtruesize) 487 { 488 const struct tcp_sock *tp = tcp_sk(sk); 489 /* Optimize this! */ 490 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 491 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 492 493 while (tp->rcv_ssthresh <= window) { 494 if (truesize <= skb->len) 495 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 496 497 truesize >>= 1; 498 window >>= 1; 499 } 500 return 0; 501 } 502 503 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 504 * can play nice with us, as sk_buff and skb->head might be either 505 * freed or shared with up to MAX_SKB_FRAGS segments. 506 * Only give a boost to drivers using page frag(s) to hold the frame(s), 507 * and if no payload was pulled in skb->head before reaching us. 508 */ 509 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 510 { 511 u32 truesize = skb->truesize; 512 513 if (adjust && !skb_headlen(skb)) { 514 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 515 /* paranoid check, some drivers might be buggy */ 516 if (unlikely((int)truesize < (int)skb->len)) 517 truesize = skb->truesize; 518 } 519 return truesize; 520 } 521 522 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 523 bool adjust) 524 { 525 struct tcp_sock *tp = tcp_sk(sk); 526 int room; 527 528 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 529 530 if (room <= 0) 531 return; 532 533 /* Check #1 */ 534 if (!tcp_under_memory_pressure(sk)) { 535 unsigned int truesize = truesize_adjust(adjust, skb); 536 int incr; 537 538 /* Check #2. Increase window, if skb with such overhead 539 * will fit to rcvbuf in future. 540 */ 541 if (tcp_win_from_space(sk, truesize) <= skb->len) 542 incr = 2 * tp->advmss; 543 else 544 incr = __tcp_grow_window(sk, skb, truesize); 545 546 if (incr) { 547 incr = max_t(int, incr, 2 * skb->len); 548 tp->rcv_ssthresh += min(room, incr); 549 inet_csk(sk)->icsk_ack.quick |= 1; 550 } 551 } else { 552 /* Under pressure: 553 * Adjust rcv_ssthresh according to reserved mem 554 */ 555 tcp_adjust_rcv_ssthresh(sk); 556 } 557 } 558 559 /* 3. Try to fixup all. It is made immediately after connection enters 560 * established state. 561 */ 562 static void tcp_init_buffer_space(struct sock *sk) 563 { 564 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 565 struct tcp_sock *tp = tcp_sk(sk); 566 int maxwin; 567 568 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 569 tcp_sndbuf_expand(sk); 570 571 tcp_mstamp_refresh(tp); 572 tp->rcvq_space.time = tp->tcp_mstamp; 573 tp->rcvq_space.seq = tp->copied_seq; 574 575 maxwin = tcp_full_space(sk); 576 577 if (tp->window_clamp >= maxwin) { 578 WRITE_ONCE(tp->window_clamp, maxwin); 579 580 if (tcp_app_win && maxwin > 4 * tp->advmss) 581 WRITE_ONCE(tp->window_clamp, 582 max(maxwin - (maxwin >> tcp_app_win), 583 4 * tp->advmss)); 584 } 585 586 /* Force reservation of one segment. */ 587 if (tcp_app_win && 588 tp->window_clamp > 2 * tp->advmss && 589 tp->window_clamp + tp->advmss > maxwin) 590 WRITE_ONCE(tp->window_clamp, 591 max(2 * tp->advmss, maxwin - tp->advmss)); 592 593 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 594 tp->snd_cwnd_stamp = tcp_jiffies32; 595 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 596 (u32)TCP_INIT_CWND * tp->advmss); 597 } 598 599 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 600 static void tcp_clamp_window(struct sock *sk) 601 { 602 struct tcp_sock *tp = tcp_sk(sk); 603 struct inet_connection_sock *icsk = inet_csk(sk); 604 struct net *net = sock_net(sk); 605 int rmem2; 606 607 icsk->icsk_ack.quick = 0; 608 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 609 610 if (sk->sk_rcvbuf < rmem2 && 611 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 612 !tcp_under_memory_pressure(sk) && 613 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 614 WRITE_ONCE(sk->sk_rcvbuf, 615 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 616 } 617 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 618 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 619 } 620 621 /* Initialize RCV_MSS value. 622 * RCV_MSS is an our guess about MSS used by the peer. 623 * We haven't any direct information about the MSS. 624 * It's better to underestimate the RCV_MSS rather than overestimate. 625 * Overestimations make us ACKing less frequently than needed. 626 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 627 */ 628 void tcp_initialize_rcv_mss(struct sock *sk) 629 { 630 const struct tcp_sock *tp = tcp_sk(sk); 631 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 632 633 hint = min(hint, tp->rcv_wnd / 2); 634 hint = min(hint, TCP_MSS_DEFAULT); 635 hint = max(hint, TCP_MIN_MSS); 636 637 inet_csk(sk)->icsk_ack.rcv_mss = hint; 638 } 639 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 640 641 /* Receiver "autotuning" code. 642 * 643 * The algorithm for RTT estimation w/o timestamps is based on 644 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 645 * <https://public.lanl.gov/radiant/pubs.html#DRS> 646 * 647 * More detail on this code can be found at 648 * <http://staff.psc.edu/jheffner/>, 649 * though this reference is out of date. A new paper 650 * is pending. 651 */ 652 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 653 { 654 u32 new_sample = tp->rcv_rtt_est.rtt_us; 655 long m = sample; 656 657 if (new_sample != 0) { 658 /* If we sample in larger samples in the non-timestamp 659 * case, we could grossly overestimate the RTT especially 660 * with chatty applications or bulk transfer apps which 661 * are stalled on filesystem I/O. 662 * 663 * Also, since we are only going for a minimum in the 664 * non-timestamp case, we do not smooth things out 665 * else with timestamps disabled convergence takes too 666 * long. 667 */ 668 if (!win_dep) { 669 m -= (new_sample >> 3); 670 new_sample += m; 671 } else { 672 m <<= 3; 673 if (m < new_sample) 674 new_sample = m; 675 } 676 } else { 677 /* No previous measure. */ 678 new_sample = m << 3; 679 } 680 681 tp->rcv_rtt_est.rtt_us = new_sample; 682 } 683 684 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 685 { 686 u32 delta_us; 687 688 if (tp->rcv_rtt_est.time == 0) 689 goto new_measure; 690 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 691 return; 692 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 693 if (!delta_us) 694 delta_us = 1; 695 tcp_rcv_rtt_update(tp, delta_us, 1); 696 697 new_measure: 698 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 699 tp->rcv_rtt_est.time = tp->tcp_mstamp; 700 } 701 702 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 703 const struct sk_buff *skb) 704 { 705 struct tcp_sock *tp = tcp_sk(sk); 706 707 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 708 return; 709 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 710 711 if (TCP_SKB_CB(skb)->end_seq - 712 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 713 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 714 u32 delta_us; 715 716 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 717 if (!delta) 718 delta = 1; 719 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 720 tcp_rcv_rtt_update(tp, delta_us, 0); 721 } 722 } 723 } 724 725 /* 726 * This function should be called every time data is copied to user space. 727 * It calculates the appropriate TCP receive buffer space. 728 */ 729 void tcp_rcv_space_adjust(struct sock *sk) 730 { 731 struct tcp_sock *tp = tcp_sk(sk); 732 u32 copied; 733 int time; 734 735 trace_tcp_rcv_space_adjust(sk); 736 737 tcp_mstamp_refresh(tp); 738 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 739 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 740 return; 741 742 /* Number of bytes copied to user in last RTT */ 743 copied = tp->copied_seq - tp->rcvq_space.seq; 744 if (copied <= tp->rcvq_space.space) 745 goto new_measure; 746 747 /* A bit of theory : 748 * copied = bytes received in previous RTT, our base window 749 * To cope with packet losses, we need a 2x factor 750 * To cope with slow start, and sender growing its cwin by 100 % 751 * every RTT, we need a 4x factor, because the ACK we are sending 752 * now is for the next RTT, not the current one : 753 * <prev RTT . ><current RTT .. ><next RTT .... > 754 */ 755 756 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 757 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 758 u64 rcvwin, grow; 759 int rcvbuf; 760 761 /* minimal window to cope with packet losses, assuming 762 * steady state. Add some cushion because of small variations. 763 */ 764 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 765 766 /* Accommodate for sender rate increase (eg. slow start) */ 767 grow = rcvwin * (copied - tp->rcvq_space.space); 768 do_div(grow, tp->rcvq_space.space); 769 rcvwin += (grow << 1); 770 771 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 772 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 773 if (rcvbuf > sk->sk_rcvbuf) { 774 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 775 776 /* Make the window clamp follow along. */ 777 WRITE_ONCE(tp->window_clamp, 778 tcp_win_from_space(sk, rcvbuf)); 779 } 780 } 781 tp->rcvq_space.space = copied; 782 783 new_measure: 784 tp->rcvq_space.seq = tp->copied_seq; 785 tp->rcvq_space.time = tp->tcp_mstamp; 786 } 787 788 /* There is something which you must keep in mind when you analyze the 789 * behavior of the tp->ato delayed ack timeout interval. When a 790 * connection starts up, we want to ack as quickly as possible. The 791 * problem is that "good" TCP's do slow start at the beginning of data 792 * transmission. The means that until we send the first few ACK's the 793 * sender will sit on his end and only queue most of his data, because 794 * he can only send snd_cwnd unacked packets at any given time. For 795 * each ACK we send, he increments snd_cwnd and transmits more of his 796 * queue. -DaveM 797 */ 798 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 799 { 800 struct tcp_sock *tp = tcp_sk(sk); 801 struct inet_connection_sock *icsk = inet_csk(sk); 802 u32 now; 803 804 inet_csk_schedule_ack(sk); 805 806 tcp_measure_rcv_mss(sk, skb); 807 808 tcp_rcv_rtt_measure(tp); 809 810 now = tcp_jiffies32; 811 812 if (!icsk->icsk_ack.ato) { 813 /* The _first_ data packet received, initialize 814 * delayed ACK engine. 815 */ 816 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 817 icsk->icsk_ack.ato = TCP_ATO_MIN; 818 } else { 819 int m = now - icsk->icsk_ack.lrcvtime; 820 821 if (m <= TCP_ATO_MIN / 2) { 822 /* The fastest case is the first. */ 823 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 824 } else if (m < icsk->icsk_ack.ato) { 825 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 826 if (icsk->icsk_ack.ato > icsk->icsk_rto) 827 icsk->icsk_ack.ato = icsk->icsk_rto; 828 } else if (m > icsk->icsk_rto) { 829 /* Too long gap. Apparently sender failed to 830 * restart window, so that we send ACKs quickly. 831 */ 832 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 833 } 834 } 835 icsk->icsk_ack.lrcvtime = now; 836 837 tcp_ecn_check_ce(sk, skb); 838 839 if (skb->len >= 128) 840 tcp_grow_window(sk, skb, true); 841 } 842 843 /* Called to compute a smoothed rtt estimate. The data fed to this 844 * routine either comes from timestamps, or from segments that were 845 * known _not_ to have been retransmitted [see Karn/Partridge 846 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 847 * piece by Van Jacobson. 848 * NOTE: the next three routines used to be one big routine. 849 * To save cycles in the RFC 1323 implementation it was better to break 850 * it up into three procedures. -- erics 851 */ 852 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 853 { 854 struct tcp_sock *tp = tcp_sk(sk); 855 long m = mrtt_us; /* RTT */ 856 u32 srtt = tp->srtt_us; 857 858 /* The following amusing code comes from Jacobson's 859 * article in SIGCOMM '88. Note that rtt and mdev 860 * are scaled versions of rtt and mean deviation. 861 * This is designed to be as fast as possible 862 * m stands for "measurement". 863 * 864 * On a 1990 paper the rto value is changed to: 865 * RTO = rtt + 4 * mdev 866 * 867 * Funny. This algorithm seems to be very broken. 868 * These formulae increase RTO, when it should be decreased, increase 869 * too slowly, when it should be increased quickly, decrease too quickly 870 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 871 * does not matter how to _calculate_ it. Seems, it was trap 872 * that VJ failed to avoid. 8) 873 */ 874 if (srtt != 0) { 875 m -= (srtt >> 3); /* m is now error in rtt est */ 876 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 877 if (m < 0) { 878 m = -m; /* m is now abs(error) */ 879 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 880 /* This is similar to one of Eifel findings. 881 * Eifel blocks mdev updates when rtt decreases. 882 * This solution is a bit different: we use finer gain 883 * for mdev in this case (alpha*beta). 884 * Like Eifel it also prevents growth of rto, 885 * but also it limits too fast rto decreases, 886 * happening in pure Eifel. 887 */ 888 if (m > 0) 889 m >>= 3; 890 } else { 891 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 892 } 893 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 894 if (tp->mdev_us > tp->mdev_max_us) { 895 tp->mdev_max_us = tp->mdev_us; 896 if (tp->mdev_max_us > tp->rttvar_us) 897 tp->rttvar_us = tp->mdev_max_us; 898 } 899 if (after(tp->snd_una, tp->rtt_seq)) { 900 if (tp->mdev_max_us < tp->rttvar_us) 901 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 902 tp->rtt_seq = tp->snd_nxt; 903 tp->mdev_max_us = tcp_rto_min_us(sk); 904 905 tcp_bpf_rtt(sk); 906 } 907 } else { 908 /* no previous measure. */ 909 srtt = m << 3; /* take the measured time to be rtt */ 910 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 911 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 912 tp->mdev_max_us = tp->rttvar_us; 913 tp->rtt_seq = tp->snd_nxt; 914 915 tcp_bpf_rtt(sk); 916 } 917 tp->srtt_us = max(1U, srtt); 918 } 919 920 static void tcp_update_pacing_rate(struct sock *sk) 921 { 922 const struct tcp_sock *tp = tcp_sk(sk); 923 u64 rate; 924 925 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 926 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 927 928 /* current rate is (cwnd * mss) / srtt 929 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 930 * In Congestion Avoidance phase, set it to 120 % the current rate. 931 * 932 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 933 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 934 * end of slow start and should slow down. 935 */ 936 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 937 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 938 else 939 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 940 941 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 942 943 if (likely(tp->srtt_us)) 944 do_div(rate, tp->srtt_us); 945 946 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 947 * without any lock. We want to make sure compiler wont store 948 * intermediate values in this location. 949 */ 950 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 951 sk->sk_max_pacing_rate)); 952 } 953 954 /* Calculate rto without backoff. This is the second half of Van Jacobson's 955 * routine referred to above. 956 */ 957 static void tcp_set_rto(struct sock *sk) 958 { 959 const struct tcp_sock *tp = tcp_sk(sk); 960 /* Old crap is replaced with new one. 8) 961 * 962 * More seriously: 963 * 1. If rtt variance happened to be less 50msec, it is hallucination. 964 * It cannot be less due to utterly erratic ACK generation made 965 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 966 * to do with delayed acks, because at cwnd>2 true delack timeout 967 * is invisible. Actually, Linux-2.4 also generates erratic 968 * ACKs in some circumstances. 969 */ 970 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 971 972 /* 2. Fixups made earlier cannot be right. 973 * If we do not estimate RTO correctly without them, 974 * all the algo is pure shit and should be replaced 975 * with correct one. It is exactly, which we pretend to do. 976 */ 977 978 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 979 * guarantees that rto is higher. 980 */ 981 tcp_bound_rto(sk); 982 } 983 984 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 985 { 986 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 987 988 if (!cwnd) 989 cwnd = TCP_INIT_CWND; 990 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 991 } 992 993 struct tcp_sacktag_state { 994 /* Timestamps for earliest and latest never-retransmitted segment 995 * that was SACKed. RTO needs the earliest RTT to stay conservative, 996 * but congestion control should still get an accurate delay signal. 997 */ 998 u64 first_sackt; 999 u64 last_sackt; 1000 u32 reord; 1001 u32 sack_delivered; 1002 int flag; 1003 unsigned int mss_now; 1004 struct rate_sample *rate; 1005 }; 1006 1007 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1008 * and spurious retransmission information if this DSACK is unlikely caused by 1009 * sender's action: 1010 * - DSACKed sequence range is larger than maximum receiver's window. 1011 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1012 */ 1013 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1014 u32 end_seq, struct tcp_sacktag_state *state) 1015 { 1016 u32 seq_len, dup_segs = 1; 1017 1018 if (!before(start_seq, end_seq)) 1019 return 0; 1020 1021 seq_len = end_seq - start_seq; 1022 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1023 if (seq_len > tp->max_window) 1024 return 0; 1025 if (seq_len > tp->mss_cache) 1026 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1027 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1028 state->flag |= FLAG_DSACK_TLP; 1029 1030 tp->dsack_dups += dup_segs; 1031 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1032 if (tp->dsack_dups > tp->total_retrans) 1033 return 0; 1034 1035 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1036 /* We increase the RACK ordering window in rounds where we receive 1037 * DSACKs that may have been due to reordering causing RACK to trigger 1038 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1039 * without having seen reordering, or that match TLP probes (TLP 1040 * is timer-driven, not triggered by RACK). 1041 */ 1042 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1043 tp->rack.dsack_seen = 1; 1044 1045 state->flag |= FLAG_DSACKING_ACK; 1046 /* A spurious retransmission is delivered */ 1047 state->sack_delivered += dup_segs; 1048 1049 return dup_segs; 1050 } 1051 1052 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1053 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1054 * distance is approximated in full-mss packet distance ("reordering"). 1055 */ 1056 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1057 const int ts) 1058 { 1059 struct tcp_sock *tp = tcp_sk(sk); 1060 const u32 mss = tp->mss_cache; 1061 u32 fack, metric; 1062 1063 fack = tcp_highest_sack_seq(tp); 1064 if (!before(low_seq, fack)) 1065 return; 1066 1067 metric = fack - low_seq; 1068 if ((metric > tp->reordering * mss) && mss) { 1069 #if FASTRETRANS_DEBUG > 1 1070 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1071 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1072 tp->reordering, 1073 0, 1074 tp->sacked_out, 1075 tp->undo_marker ? tp->undo_retrans : 0); 1076 #endif 1077 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1078 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1079 } 1080 1081 /* This exciting event is worth to be remembered. 8) */ 1082 tp->reord_seen++; 1083 NET_INC_STATS(sock_net(sk), 1084 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1085 } 1086 1087 /* This must be called before lost_out or retrans_out are updated 1088 * on a new loss, because we want to know if all skbs previously 1089 * known to be lost have already been retransmitted, indicating 1090 * that this newly lost skb is our next skb to retransmit. 1091 */ 1092 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1093 { 1094 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1095 (tp->retransmit_skb_hint && 1096 before(TCP_SKB_CB(skb)->seq, 1097 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1098 tp->retransmit_skb_hint = skb; 1099 } 1100 1101 /* Sum the number of packets on the wire we have marked as lost, and 1102 * notify the congestion control module that the given skb was marked lost. 1103 */ 1104 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1105 { 1106 tp->lost += tcp_skb_pcount(skb); 1107 } 1108 1109 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1110 { 1111 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1112 struct tcp_sock *tp = tcp_sk(sk); 1113 1114 if (sacked & TCPCB_SACKED_ACKED) 1115 return; 1116 1117 tcp_verify_retransmit_hint(tp, skb); 1118 if (sacked & TCPCB_LOST) { 1119 if (sacked & TCPCB_SACKED_RETRANS) { 1120 /* Account for retransmits that are lost again */ 1121 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1122 tp->retrans_out -= tcp_skb_pcount(skb); 1123 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1124 tcp_skb_pcount(skb)); 1125 tcp_notify_skb_loss_event(tp, skb); 1126 } 1127 } else { 1128 tp->lost_out += tcp_skb_pcount(skb); 1129 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1130 tcp_notify_skb_loss_event(tp, skb); 1131 } 1132 } 1133 1134 /* Updates the delivered and delivered_ce counts */ 1135 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1136 bool ece_ack) 1137 { 1138 tp->delivered += delivered; 1139 if (ece_ack) 1140 tp->delivered_ce += delivered; 1141 } 1142 1143 /* This procedure tags the retransmission queue when SACKs arrive. 1144 * 1145 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1146 * Packets in queue with these bits set are counted in variables 1147 * sacked_out, retrans_out and lost_out, correspondingly. 1148 * 1149 * Valid combinations are: 1150 * Tag InFlight Description 1151 * 0 1 - orig segment is in flight. 1152 * S 0 - nothing flies, orig reached receiver. 1153 * L 0 - nothing flies, orig lost by net. 1154 * R 2 - both orig and retransmit are in flight. 1155 * L|R 1 - orig is lost, retransmit is in flight. 1156 * S|R 1 - orig reached receiver, retrans is still in flight. 1157 * (L|S|R is logically valid, it could occur when L|R is sacked, 1158 * but it is equivalent to plain S and code short-curcuits it to S. 1159 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1160 * 1161 * These 6 states form finite state machine, controlled by the following events: 1162 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1163 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1164 * 3. Loss detection event of two flavors: 1165 * A. Scoreboard estimator decided the packet is lost. 1166 * A'. Reno "three dupacks" marks head of queue lost. 1167 * B. SACK arrives sacking SND.NXT at the moment, when the 1168 * segment was retransmitted. 1169 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1170 * 1171 * It is pleasant to note, that state diagram turns out to be commutative, 1172 * so that we are allowed not to be bothered by order of our actions, 1173 * when multiple events arrive simultaneously. (see the function below). 1174 * 1175 * Reordering detection. 1176 * -------------------- 1177 * Reordering metric is maximal distance, which a packet can be displaced 1178 * in packet stream. With SACKs we can estimate it: 1179 * 1180 * 1. SACK fills old hole and the corresponding segment was not 1181 * ever retransmitted -> reordering. Alas, we cannot use it 1182 * when segment was retransmitted. 1183 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1184 * for retransmitted and already SACKed segment -> reordering.. 1185 * Both of these heuristics are not used in Loss state, when we cannot 1186 * account for retransmits accurately. 1187 * 1188 * SACK block validation. 1189 * ---------------------- 1190 * 1191 * SACK block range validation checks that the received SACK block fits to 1192 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1193 * Note that SND.UNA is not included to the range though being valid because 1194 * it means that the receiver is rather inconsistent with itself reporting 1195 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1196 * perfectly valid, however, in light of RFC2018 which explicitly states 1197 * that "SACK block MUST reflect the newest segment. Even if the newest 1198 * segment is going to be discarded ...", not that it looks very clever 1199 * in case of head skb. Due to potentional receiver driven attacks, we 1200 * choose to avoid immediate execution of a walk in write queue due to 1201 * reneging and defer head skb's loss recovery to standard loss recovery 1202 * procedure that will eventually trigger (nothing forbids us doing this). 1203 * 1204 * Implements also blockage to start_seq wrap-around. Problem lies in the 1205 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1206 * there's no guarantee that it will be before snd_nxt (n). The problem 1207 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1208 * wrap (s_w): 1209 * 1210 * <- outs wnd -> <- wrapzone -> 1211 * u e n u_w e_w s n_w 1212 * | | | | | | | 1213 * |<------------+------+----- TCP seqno space --------------+---------->| 1214 * ...-- <2^31 ->| |<--------... 1215 * ...---- >2^31 ------>| |<--------... 1216 * 1217 * Current code wouldn't be vulnerable but it's better still to discard such 1218 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1219 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1220 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1221 * equal to the ideal case (infinite seqno space without wrap caused issues). 1222 * 1223 * With D-SACK the lower bound is extended to cover sequence space below 1224 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1225 * again, D-SACK block must not to go across snd_una (for the same reason as 1226 * for the normal SACK blocks, explained above). But there all simplicity 1227 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1228 * fully below undo_marker they do not affect behavior in anyway and can 1229 * therefore be safely ignored. In rare cases (which are more or less 1230 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1231 * fragmentation and packet reordering past skb's retransmission. To consider 1232 * them correctly, the acceptable range must be extended even more though 1233 * the exact amount is rather hard to quantify. However, tp->max_window can 1234 * be used as an exaggerated estimate. 1235 */ 1236 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1237 u32 start_seq, u32 end_seq) 1238 { 1239 /* Too far in future, or reversed (interpretation is ambiguous) */ 1240 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1241 return false; 1242 1243 /* Nasty start_seq wrap-around check (see comments above) */ 1244 if (!before(start_seq, tp->snd_nxt)) 1245 return false; 1246 1247 /* In outstanding window? ...This is valid exit for D-SACKs too. 1248 * start_seq == snd_una is non-sensical (see comments above) 1249 */ 1250 if (after(start_seq, tp->snd_una)) 1251 return true; 1252 1253 if (!is_dsack || !tp->undo_marker) 1254 return false; 1255 1256 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1257 if (after(end_seq, tp->snd_una)) 1258 return false; 1259 1260 if (!before(start_seq, tp->undo_marker)) 1261 return true; 1262 1263 /* Too old */ 1264 if (!after(end_seq, tp->undo_marker)) 1265 return false; 1266 1267 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1268 * start_seq < undo_marker and end_seq >= undo_marker. 1269 */ 1270 return !before(start_seq, end_seq - tp->max_window); 1271 } 1272 1273 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1274 struct tcp_sack_block_wire *sp, int num_sacks, 1275 u32 prior_snd_una, struct tcp_sacktag_state *state) 1276 { 1277 struct tcp_sock *tp = tcp_sk(sk); 1278 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1279 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1280 u32 dup_segs; 1281 1282 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1283 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1284 } else if (num_sacks > 1) { 1285 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1286 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1287 1288 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1289 return false; 1290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1291 } else { 1292 return false; 1293 } 1294 1295 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1296 if (!dup_segs) { /* Skip dubious DSACK */ 1297 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1298 return false; 1299 } 1300 1301 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1302 1303 /* D-SACK for already forgotten data... Do dumb counting. */ 1304 if (tp->undo_marker && tp->undo_retrans > 0 && 1305 !after(end_seq_0, prior_snd_una) && 1306 after(end_seq_0, tp->undo_marker)) 1307 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1308 1309 return true; 1310 } 1311 1312 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1313 * the incoming SACK may not exactly match but we can find smaller MSS 1314 * aligned portion of it that matches. Therefore we might need to fragment 1315 * which may fail and creates some hassle (caller must handle error case 1316 * returns). 1317 * 1318 * FIXME: this could be merged to shift decision code 1319 */ 1320 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1321 u32 start_seq, u32 end_seq) 1322 { 1323 int err; 1324 bool in_sack; 1325 unsigned int pkt_len; 1326 unsigned int mss; 1327 1328 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1329 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1330 1331 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1332 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1333 mss = tcp_skb_mss(skb); 1334 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1335 1336 if (!in_sack) { 1337 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1338 if (pkt_len < mss) 1339 pkt_len = mss; 1340 } else { 1341 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1342 if (pkt_len < mss) 1343 return -EINVAL; 1344 } 1345 1346 /* Round if necessary so that SACKs cover only full MSSes 1347 * and/or the remaining small portion (if present) 1348 */ 1349 if (pkt_len > mss) { 1350 unsigned int new_len = (pkt_len / mss) * mss; 1351 if (!in_sack && new_len < pkt_len) 1352 new_len += mss; 1353 pkt_len = new_len; 1354 } 1355 1356 if (pkt_len >= skb->len && !in_sack) 1357 return 0; 1358 1359 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1360 pkt_len, mss, GFP_ATOMIC); 1361 if (err < 0) 1362 return err; 1363 } 1364 1365 return in_sack; 1366 } 1367 1368 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1369 static u8 tcp_sacktag_one(struct sock *sk, 1370 struct tcp_sacktag_state *state, u8 sacked, 1371 u32 start_seq, u32 end_seq, 1372 int dup_sack, int pcount, 1373 u64 xmit_time) 1374 { 1375 struct tcp_sock *tp = tcp_sk(sk); 1376 1377 /* Account D-SACK for retransmitted packet. */ 1378 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1379 if (tp->undo_marker && tp->undo_retrans > 0 && 1380 after(end_seq, tp->undo_marker)) 1381 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1382 if ((sacked & TCPCB_SACKED_ACKED) && 1383 before(start_seq, state->reord)) 1384 state->reord = start_seq; 1385 } 1386 1387 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1388 if (!after(end_seq, tp->snd_una)) 1389 return sacked; 1390 1391 if (!(sacked & TCPCB_SACKED_ACKED)) { 1392 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1393 1394 if (sacked & TCPCB_SACKED_RETRANS) { 1395 /* If the segment is not tagged as lost, 1396 * we do not clear RETRANS, believing 1397 * that retransmission is still in flight. 1398 */ 1399 if (sacked & TCPCB_LOST) { 1400 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1401 tp->lost_out -= pcount; 1402 tp->retrans_out -= pcount; 1403 } 1404 } else { 1405 if (!(sacked & TCPCB_RETRANS)) { 1406 /* New sack for not retransmitted frame, 1407 * which was in hole. It is reordering. 1408 */ 1409 if (before(start_seq, 1410 tcp_highest_sack_seq(tp)) && 1411 before(start_seq, state->reord)) 1412 state->reord = start_seq; 1413 1414 if (!after(end_seq, tp->high_seq)) 1415 state->flag |= FLAG_ORIG_SACK_ACKED; 1416 if (state->first_sackt == 0) 1417 state->first_sackt = xmit_time; 1418 state->last_sackt = xmit_time; 1419 } 1420 1421 if (sacked & TCPCB_LOST) { 1422 sacked &= ~TCPCB_LOST; 1423 tp->lost_out -= pcount; 1424 } 1425 } 1426 1427 sacked |= TCPCB_SACKED_ACKED; 1428 state->flag |= FLAG_DATA_SACKED; 1429 tp->sacked_out += pcount; 1430 /* Out-of-order packets delivered */ 1431 state->sack_delivered += pcount; 1432 1433 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1434 if (tp->lost_skb_hint && 1435 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1436 tp->lost_cnt_hint += pcount; 1437 } 1438 1439 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1440 * frames and clear it. undo_retrans is decreased above, L|R frames 1441 * are accounted above as well. 1442 */ 1443 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1444 sacked &= ~TCPCB_SACKED_RETRANS; 1445 tp->retrans_out -= pcount; 1446 } 1447 1448 return sacked; 1449 } 1450 1451 /* Shift newly-SACKed bytes from this skb to the immediately previous 1452 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1453 */ 1454 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1455 struct sk_buff *skb, 1456 struct tcp_sacktag_state *state, 1457 unsigned int pcount, int shifted, int mss, 1458 bool dup_sack) 1459 { 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1462 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1463 1464 BUG_ON(!pcount); 1465 1466 /* Adjust counters and hints for the newly sacked sequence 1467 * range but discard the return value since prev is already 1468 * marked. We must tag the range first because the seq 1469 * advancement below implicitly advances 1470 * tcp_highest_sack_seq() when skb is highest_sack. 1471 */ 1472 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1473 start_seq, end_seq, dup_sack, pcount, 1474 tcp_skb_timestamp_us(skb)); 1475 tcp_rate_skb_delivered(sk, skb, state->rate); 1476 1477 if (skb == tp->lost_skb_hint) 1478 tp->lost_cnt_hint += pcount; 1479 1480 TCP_SKB_CB(prev)->end_seq += shifted; 1481 TCP_SKB_CB(skb)->seq += shifted; 1482 1483 tcp_skb_pcount_add(prev, pcount); 1484 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1485 tcp_skb_pcount_add(skb, -pcount); 1486 1487 /* When we're adding to gso_segs == 1, gso_size will be zero, 1488 * in theory this shouldn't be necessary but as long as DSACK 1489 * code can come after this skb later on it's better to keep 1490 * setting gso_size to something. 1491 */ 1492 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1493 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1494 1495 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1496 if (tcp_skb_pcount(skb) <= 1) 1497 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1498 1499 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1500 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1501 1502 if (skb->len > 0) { 1503 BUG_ON(!tcp_skb_pcount(skb)); 1504 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1505 return false; 1506 } 1507 1508 /* Whole SKB was eaten :-) */ 1509 1510 if (skb == tp->retransmit_skb_hint) 1511 tp->retransmit_skb_hint = prev; 1512 if (skb == tp->lost_skb_hint) { 1513 tp->lost_skb_hint = prev; 1514 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1515 } 1516 1517 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1518 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1519 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1520 TCP_SKB_CB(prev)->end_seq++; 1521 1522 if (skb == tcp_highest_sack(sk)) 1523 tcp_advance_highest_sack(sk, skb); 1524 1525 tcp_skb_collapse_tstamp(prev, skb); 1526 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1527 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1528 1529 tcp_rtx_queue_unlink_and_free(skb, sk); 1530 1531 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1532 1533 return true; 1534 } 1535 1536 /* I wish gso_size would have a bit more sane initialization than 1537 * something-or-zero which complicates things 1538 */ 1539 static int tcp_skb_seglen(const struct sk_buff *skb) 1540 { 1541 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1542 } 1543 1544 /* Shifting pages past head area doesn't work */ 1545 static int skb_can_shift(const struct sk_buff *skb) 1546 { 1547 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1548 } 1549 1550 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1551 int pcount, int shiftlen) 1552 { 1553 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1554 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1555 * to make sure not storing more than 65535 * 8 bytes per skb, 1556 * even if current MSS is bigger. 1557 */ 1558 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1559 return 0; 1560 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1561 return 0; 1562 return skb_shift(to, from, shiftlen); 1563 } 1564 1565 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1566 * skb. 1567 */ 1568 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1569 struct tcp_sacktag_state *state, 1570 u32 start_seq, u32 end_seq, 1571 bool dup_sack) 1572 { 1573 struct tcp_sock *tp = tcp_sk(sk); 1574 struct sk_buff *prev; 1575 int mss; 1576 int pcount = 0; 1577 int len; 1578 int in_sack; 1579 1580 /* Normally R but no L won't result in plain S */ 1581 if (!dup_sack && 1582 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1583 goto fallback; 1584 if (!skb_can_shift(skb)) 1585 goto fallback; 1586 /* This frame is about to be dropped (was ACKed). */ 1587 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1588 goto fallback; 1589 1590 /* Can only happen with delayed DSACK + discard craziness */ 1591 prev = skb_rb_prev(skb); 1592 if (!prev) 1593 goto fallback; 1594 1595 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1596 goto fallback; 1597 1598 if (!tcp_skb_can_collapse(prev, skb)) 1599 goto fallback; 1600 1601 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1602 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1603 1604 if (in_sack) { 1605 len = skb->len; 1606 pcount = tcp_skb_pcount(skb); 1607 mss = tcp_skb_seglen(skb); 1608 1609 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1610 * drop this restriction as unnecessary 1611 */ 1612 if (mss != tcp_skb_seglen(prev)) 1613 goto fallback; 1614 } else { 1615 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1616 goto noop; 1617 /* CHECKME: This is non-MSS split case only?, this will 1618 * cause skipped skbs due to advancing loop btw, original 1619 * has that feature too 1620 */ 1621 if (tcp_skb_pcount(skb) <= 1) 1622 goto noop; 1623 1624 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1625 if (!in_sack) { 1626 /* TODO: head merge to next could be attempted here 1627 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1628 * though it might not be worth of the additional hassle 1629 * 1630 * ...we can probably just fallback to what was done 1631 * previously. We could try merging non-SACKed ones 1632 * as well but it probably isn't going to buy off 1633 * because later SACKs might again split them, and 1634 * it would make skb timestamp tracking considerably 1635 * harder problem. 1636 */ 1637 goto fallback; 1638 } 1639 1640 len = end_seq - TCP_SKB_CB(skb)->seq; 1641 BUG_ON(len < 0); 1642 BUG_ON(len > skb->len); 1643 1644 /* MSS boundaries should be honoured or else pcount will 1645 * severely break even though it makes things bit trickier. 1646 * Optimize common case to avoid most of the divides 1647 */ 1648 mss = tcp_skb_mss(skb); 1649 1650 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1651 * drop this restriction as unnecessary 1652 */ 1653 if (mss != tcp_skb_seglen(prev)) 1654 goto fallback; 1655 1656 if (len == mss) { 1657 pcount = 1; 1658 } else if (len < mss) { 1659 goto noop; 1660 } else { 1661 pcount = len / mss; 1662 len = pcount * mss; 1663 } 1664 } 1665 1666 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1667 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1668 goto fallback; 1669 1670 if (!tcp_skb_shift(prev, skb, pcount, len)) 1671 goto fallback; 1672 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1673 goto out; 1674 1675 /* Hole filled allows collapsing with the next as well, this is very 1676 * useful when hole on every nth skb pattern happens 1677 */ 1678 skb = skb_rb_next(prev); 1679 if (!skb) 1680 goto out; 1681 1682 if (!skb_can_shift(skb) || 1683 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1684 (mss != tcp_skb_seglen(skb))) 1685 goto out; 1686 1687 if (!tcp_skb_can_collapse(prev, skb)) 1688 goto out; 1689 len = skb->len; 1690 pcount = tcp_skb_pcount(skb); 1691 if (tcp_skb_shift(prev, skb, pcount, len)) 1692 tcp_shifted_skb(sk, prev, skb, state, pcount, 1693 len, mss, 0); 1694 1695 out: 1696 return prev; 1697 1698 noop: 1699 return skb; 1700 1701 fallback: 1702 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1703 return NULL; 1704 } 1705 1706 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1707 struct tcp_sack_block *next_dup, 1708 struct tcp_sacktag_state *state, 1709 u32 start_seq, u32 end_seq, 1710 bool dup_sack_in) 1711 { 1712 struct tcp_sock *tp = tcp_sk(sk); 1713 struct sk_buff *tmp; 1714 1715 skb_rbtree_walk_from(skb) { 1716 int in_sack = 0; 1717 bool dup_sack = dup_sack_in; 1718 1719 /* queue is in-order => we can short-circuit the walk early */ 1720 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1721 break; 1722 1723 if (next_dup && 1724 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1725 in_sack = tcp_match_skb_to_sack(sk, skb, 1726 next_dup->start_seq, 1727 next_dup->end_seq); 1728 if (in_sack > 0) 1729 dup_sack = true; 1730 } 1731 1732 /* skb reference here is a bit tricky to get right, since 1733 * shifting can eat and free both this skb and the next, 1734 * so not even _safe variant of the loop is enough. 1735 */ 1736 if (in_sack <= 0) { 1737 tmp = tcp_shift_skb_data(sk, skb, state, 1738 start_seq, end_seq, dup_sack); 1739 if (tmp) { 1740 if (tmp != skb) { 1741 skb = tmp; 1742 continue; 1743 } 1744 1745 in_sack = 0; 1746 } else { 1747 in_sack = tcp_match_skb_to_sack(sk, skb, 1748 start_seq, 1749 end_seq); 1750 } 1751 } 1752 1753 if (unlikely(in_sack < 0)) 1754 break; 1755 1756 if (in_sack) { 1757 TCP_SKB_CB(skb)->sacked = 1758 tcp_sacktag_one(sk, 1759 state, 1760 TCP_SKB_CB(skb)->sacked, 1761 TCP_SKB_CB(skb)->seq, 1762 TCP_SKB_CB(skb)->end_seq, 1763 dup_sack, 1764 tcp_skb_pcount(skb), 1765 tcp_skb_timestamp_us(skb)); 1766 tcp_rate_skb_delivered(sk, skb, state->rate); 1767 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1768 list_del_init(&skb->tcp_tsorted_anchor); 1769 1770 if (!before(TCP_SKB_CB(skb)->seq, 1771 tcp_highest_sack_seq(tp))) 1772 tcp_advance_highest_sack(sk, skb); 1773 } 1774 } 1775 return skb; 1776 } 1777 1778 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1779 { 1780 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1781 struct sk_buff *skb; 1782 1783 while (*p) { 1784 parent = *p; 1785 skb = rb_to_skb(parent); 1786 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1787 p = &parent->rb_left; 1788 continue; 1789 } 1790 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1791 p = &parent->rb_right; 1792 continue; 1793 } 1794 return skb; 1795 } 1796 return NULL; 1797 } 1798 1799 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1800 u32 skip_to_seq) 1801 { 1802 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1803 return skb; 1804 1805 return tcp_sacktag_bsearch(sk, skip_to_seq); 1806 } 1807 1808 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1809 struct sock *sk, 1810 struct tcp_sack_block *next_dup, 1811 struct tcp_sacktag_state *state, 1812 u32 skip_to_seq) 1813 { 1814 if (!next_dup) 1815 return skb; 1816 1817 if (before(next_dup->start_seq, skip_to_seq)) { 1818 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1819 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1820 next_dup->start_seq, next_dup->end_seq, 1821 1); 1822 } 1823 1824 return skb; 1825 } 1826 1827 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1828 { 1829 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1830 } 1831 1832 static int 1833 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1834 u32 prior_snd_una, struct tcp_sacktag_state *state) 1835 { 1836 struct tcp_sock *tp = tcp_sk(sk); 1837 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1838 TCP_SKB_CB(ack_skb)->sacked); 1839 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1840 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1841 struct tcp_sack_block *cache; 1842 struct sk_buff *skb; 1843 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1844 int used_sacks; 1845 bool found_dup_sack = false; 1846 int i, j; 1847 int first_sack_index; 1848 1849 state->flag = 0; 1850 state->reord = tp->snd_nxt; 1851 1852 if (!tp->sacked_out) 1853 tcp_highest_sack_reset(sk); 1854 1855 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1856 num_sacks, prior_snd_una, state); 1857 1858 /* Eliminate too old ACKs, but take into 1859 * account more or less fresh ones, they can 1860 * contain valid SACK info. 1861 */ 1862 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1863 return 0; 1864 1865 if (!tp->packets_out) 1866 goto out; 1867 1868 used_sacks = 0; 1869 first_sack_index = 0; 1870 for (i = 0; i < num_sacks; i++) { 1871 bool dup_sack = !i && found_dup_sack; 1872 1873 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1874 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1875 1876 if (!tcp_is_sackblock_valid(tp, dup_sack, 1877 sp[used_sacks].start_seq, 1878 sp[used_sacks].end_seq)) { 1879 int mib_idx; 1880 1881 if (dup_sack) { 1882 if (!tp->undo_marker) 1883 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1884 else 1885 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1886 } else { 1887 /* Don't count olds caused by ACK reordering */ 1888 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1889 !after(sp[used_sacks].end_seq, tp->snd_una)) 1890 continue; 1891 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1892 } 1893 1894 NET_INC_STATS(sock_net(sk), mib_idx); 1895 if (i == 0) 1896 first_sack_index = -1; 1897 continue; 1898 } 1899 1900 /* Ignore very old stuff early */ 1901 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1902 if (i == 0) 1903 first_sack_index = -1; 1904 continue; 1905 } 1906 1907 used_sacks++; 1908 } 1909 1910 /* order SACK blocks to allow in order walk of the retrans queue */ 1911 for (i = used_sacks - 1; i > 0; i--) { 1912 for (j = 0; j < i; j++) { 1913 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1914 swap(sp[j], sp[j + 1]); 1915 1916 /* Track where the first SACK block goes to */ 1917 if (j == first_sack_index) 1918 first_sack_index = j + 1; 1919 } 1920 } 1921 } 1922 1923 state->mss_now = tcp_current_mss(sk); 1924 skb = NULL; 1925 i = 0; 1926 1927 if (!tp->sacked_out) { 1928 /* It's already past, so skip checking against it */ 1929 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1930 } else { 1931 cache = tp->recv_sack_cache; 1932 /* Skip empty blocks in at head of the cache */ 1933 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1934 !cache->end_seq) 1935 cache++; 1936 } 1937 1938 while (i < used_sacks) { 1939 u32 start_seq = sp[i].start_seq; 1940 u32 end_seq = sp[i].end_seq; 1941 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1942 struct tcp_sack_block *next_dup = NULL; 1943 1944 if (found_dup_sack && ((i + 1) == first_sack_index)) 1945 next_dup = &sp[i + 1]; 1946 1947 /* Skip too early cached blocks */ 1948 while (tcp_sack_cache_ok(tp, cache) && 1949 !before(start_seq, cache->end_seq)) 1950 cache++; 1951 1952 /* Can skip some work by looking recv_sack_cache? */ 1953 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1954 after(end_seq, cache->start_seq)) { 1955 1956 /* Head todo? */ 1957 if (before(start_seq, cache->start_seq)) { 1958 skb = tcp_sacktag_skip(skb, sk, start_seq); 1959 skb = tcp_sacktag_walk(skb, sk, next_dup, 1960 state, 1961 start_seq, 1962 cache->start_seq, 1963 dup_sack); 1964 } 1965 1966 /* Rest of the block already fully processed? */ 1967 if (!after(end_seq, cache->end_seq)) 1968 goto advance_sp; 1969 1970 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1971 state, 1972 cache->end_seq); 1973 1974 /* ...tail remains todo... */ 1975 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1976 /* ...but better entrypoint exists! */ 1977 skb = tcp_highest_sack(sk); 1978 if (!skb) 1979 break; 1980 cache++; 1981 goto walk; 1982 } 1983 1984 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1985 /* Check overlap against next cached too (past this one already) */ 1986 cache++; 1987 continue; 1988 } 1989 1990 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1991 skb = tcp_highest_sack(sk); 1992 if (!skb) 1993 break; 1994 } 1995 skb = tcp_sacktag_skip(skb, sk, start_seq); 1996 1997 walk: 1998 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1999 start_seq, end_seq, dup_sack); 2000 2001 advance_sp: 2002 i++; 2003 } 2004 2005 /* Clear the head of the cache sack blocks so we can skip it next time */ 2006 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2007 tp->recv_sack_cache[i].start_seq = 0; 2008 tp->recv_sack_cache[i].end_seq = 0; 2009 } 2010 for (j = 0; j < used_sacks; j++) 2011 tp->recv_sack_cache[i++] = sp[j]; 2012 2013 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2014 tcp_check_sack_reordering(sk, state->reord, 0); 2015 2016 tcp_verify_left_out(tp); 2017 out: 2018 2019 #if FASTRETRANS_DEBUG > 0 2020 WARN_ON((int)tp->sacked_out < 0); 2021 WARN_ON((int)tp->lost_out < 0); 2022 WARN_ON((int)tp->retrans_out < 0); 2023 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2024 #endif 2025 return state->flag; 2026 } 2027 2028 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2029 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2030 */ 2031 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2032 { 2033 u32 holes; 2034 2035 holes = max(tp->lost_out, 1U); 2036 holes = min(holes, tp->packets_out); 2037 2038 if ((tp->sacked_out + holes) > tp->packets_out) { 2039 tp->sacked_out = tp->packets_out - holes; 2040 return true; 2041 } 2042 return false; 2043 } 2044 2045 /* If we receive more dupacks than we expected counting segments 2046 * in assumption of absent reordering, interpret this as reordering. 2047 * The only another reason could be bug in receiver TCP. 2048 */ 2049 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2050 { 2051 struct tcp_sock *tp = tcp_sk(sk); 2052 2053 if (!tcp_limit_reno_sacked(tp)) 2054 return; 2055 2056 tp->reordering = min_t(u32, tp->packets_out + addend, 2057 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2058 tp->reord_seen++; 2059 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2060 } 2061 2062 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2063 2064 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2065 { 2066 if (num_dupack) { 2067 struct tcp_sock *tp = tcp_sk(sk); 2068 u32 prior_sacked = tp->sacked_out; 2069 s32 delivered; 2070 2071 tp->sacked_out += num_dupack; 2072 tcp_check_reno_reordering(sk, 0); 2073 delivered = tp->sacked_out - prior_sacked; 2074 if (delivered > 0) 2075 tcp_count_delivered(tp, delivered, ece_ack); 2076 tcp_verify_left_out(tp); 2077 } 2078 } 2079 2080 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2081 2082 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2083 { 2084 struct tcp_sock *tp = tcp_sk(sk); 2085 2086 if (acked > 0) { 2087 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2088 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2089 ece_ack); 2090 if (acked - 1 >= tp->sacked_out) 2091 tp->sacked_out = 0; 2092 else 2093 tp->sacked_out -= acked - 1; 2094 } 2095 tcp_check_reno_reordering(sk, acked); 2096 tcp_verify_left_out(tp); 2097 } 2098 2099 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2100 { 2101 tp->sacked_out = 0; 2102 } 2103 2104 void tcp_clear_retrans(struct tcp_sock *tp) 2105 { 2106 tp->retrans_out = 0; 2107 tp->lost_out = 0; 2108 tp->undo_marker = 0; 2109 tp->undo_retrans = -1; 2110 tp->sacked_out = 0; 2111 tp->rto_stamp = 0; 2112 tp->total_rto = 0; 2113 tp->total_rto_recoveries = 0; 2114 tp->total_rto_time = 0; 2115 } 2116 2117 static inline void tcp_init_undo(struct tcp_sock *tp) 2118 { 2119 tp->undo_marker = tp->snd_una; 2120 2121 /* Retransmission still in flight may cause DSACKs later. */ 2122 /* First, account for regular retransmits in flight: */ 2123 tp->undo_retrans = tp->retrans_out; 2124 /* Next, account for TLP retransmits in flight: */ 2125 if (tp->tlp_high_seq && tp->tlp_retrans) 2126 tp->undo_retrans++; 2127 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2128 if (!tp->undo_retrans) 2129 tp->undo_retrans = -1; 2130 } 2131 2132 static bool tcp_is_rack(const struct sock *sk) 2133 { 2134 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2135 TCP_RACK_LOSS_DETECTION; 2136 } 2137 2138 /* If we detect SACK reneging, forget all SACK information 2139 * and reset tags completely, otherwise preserve SACKs. If receiver 2140 * dropped its ofo queue, we will know this due to reneging detection. 2141 */ 2142 static void tcp_timeout_mark_lost(struct sock *sk) 2143 { 2144 struct tcp_sock *tp = tcp_sk(sk); 2145 struct sk_buff *skb, *head; 2146 bool is_reneg; /* is receiver reneging on SACKs? */ 2147 2148 head = tcp_rtx_queue_head(sk); 2149 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2150 if (is_reneg) { 2151 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2152 tp->sacked_out = 0; 2153 /* Mark SACK reneging until we recover from this loss event. */ 2154 tp->is_sack_reneg = 1; 2155 } else if (tcp_is_reno(tp)) { 2156 tcp_reset_reno_sack(tp); 2157 } 2158 2159 skb = head; 2160 skb_rbtree_walk_from(skb) { 2161 if (is_reneg) 2162 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2163 else if (tcp_is_rack(sk) && skb != head && 2164 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2165 continue; /* Don't mark recently sent ones lost yet */ 2166 tcp_mark_skb_lost(sk, skb); 2167 } 2168 tcp_verify_left_out(tp); 2169 tcp_clear_all_retrans_hints(tp); 2170 } 2171 2172 /* Enter Loss state. */ 2173 void tcp_enter_loss(struct sock *sk) 2174 { 2175 const struct inet_connection_sock *icsk = inet_csk(sk); 2176 struct tcp_sock *tp = tcp_sk(sk); 2177 struct net *net = sock_net(sk); 2178 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2179 u8 reordering; 2180 2181 tcp_timeout_mark_lost(sk); 2182 2183 /* Reduce ssthresh if it has not yet been made inside this window. */ 2184 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2185 !after(tp->high_seq, tp->snd_una) || 2186 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2187 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2188 tp->prior_cwnd = tcp_snd_cwnd(tp); 2189 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2190 tcp_ca_event(sk, CA_EVENT_LOSS); 2191 tcp_init_undo(tp); 2192 } 2193 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2194 tp->snd_cwnd_cnt = 0; 2195 tp->snd_cwnd_stamp = tcp_jiffies32; 2196 2197 /* Timeout in disordered state after receiving substantial DUPACKs 2198 * suggests that the degree of reordering is over-estimated. 2199 */ 2200 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2201 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2202 tp->sacked_out >= reordering) 2203 tp->reordering = min_t(unsigned int, tp->reordering, 2204 reordering); 2205 2206 tcp_set_ca_state(sk, TCP_CA_Loss); 2207 tp->high_seq = tp->snd_nxt; 2208 tp->tlp_high_seq = 0; 2209 tcp_ecn_queue_cwr(tp); 2210 2211 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2212 * loss recovery is underway except recurring timeout(s) on 2213 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2214 */ 2215 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2216 (new_recovery || icsk->icsk_retransmits) && 2217 !inet_csk(sk)->icsk_mtup.probe_size; 2218 } 2219 2220 /* If ACK arrived pointing to a remembered SACK, it means that our 2221 * remembered SACKs do not reflect real state of receiver i.e. 2222 * receiver _host_ is heavily congested (or buggy). 2223 * 2224 * To avoid big spurious retransmission bursts due to transient SACK 2225 * scoreboard oddities that look like reneging, we give the receiver a 2226 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2227 * restore sanity to the SACK scoreboard. If the apparent reneging 2228 * persists until this RTO then we'll clear the SACK scoreboard. 2229 */ 2230 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2231 { 2232 if (*ack_flag & FLAG_SACK_RENEGING && 2233 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2234 struct tcp_sock *tp = tcp_sk(sk); 2235 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2236 msecs_to_jiffies(10)); 2237 2238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2239 delay, TCP_RTO_MAX); 2240 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2247 * counter when SACK is enabled (without SACK, sacked_out is used for 2248 * that purpose). 2249 * 2250 * With reordering, holes may still be in flight, so RFC3517 recovery 2251 * uses pure sacked_out (total number of SACKed segments) even though 2252 * it violates the RFC that uses duplicate ACKs, often these are equal 2253 * but when e.g. out-of-window ACKs or packet duplication occurs, 2254 * they differ. Since neither occurs due to loss, TCP should really 2255 * ignore them. 2256 */ 2257 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2258 { 2259 return tp->sacked_out + 1; 2260 } 2261 2262 /* Linux NewReno/SACK/ECN state machine. 2263 * -------------------------------------- 2264 * 2265 * "Open" Normal state, no dubious events, fast path. 2266 * "Disorder" In all the respects it is "Open", 2267 * but requires a bit more attention. It is entered when 2268 * we see some SACKs or dupacks. It is split of "Open" 2269 * mainly to move some processing from fast path to slow one. 2270 * "CWR" CWND was reduced due to some Congestion Notification event. 2271 * It can be ECN, ICMP source quench, local device congestion. 2272 * "Recovery" CWND was reduced, we are fast-retransmitting. 2273 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2274 * 2275 * tcp_fastretrans_alert() is entered: 2276 * - each incoming ACK, if state is not "Open" 2277 * - when arrived ACK is unusual, namely: 2278 * * SACK 2279 * * Duplicate ACK. 2280 * * ECN ECE. 2281 * 2282 * Counting packets in flight is pretty simple. 2283 * 2284 * in_flight = packets_out - left_out + retrans_out 2285 * 2286 * packets_out is SND.NXT-SND.UNA counted in packets. 2287 * 2288 * retrans_out is number of retransmitted segments. 2289 * 2290 * left_out is number of segments left network, but not ACKed yet. 2291 * 2292 * left_out = sacked_out + lost_out 2293 * 2294 * sacked_out: Packets, which arrived to receiver out of order 2295 * and hence not ACKed. With SACKs this number is simply 2296 * amount of SACKed data. Even without SACKs 2297 * it is easy to give pretty reliable estimate of this number, 2298 * counting duplicate ACKs. 2299 * 2300 * lost_out: Packets lost by network. TCP has no explicit 2301 * "loss notification" feedback from network (for now). 2302 * It means that this number can be only _guessed_. 2303 * Actually, it is the heuristics to predict lossage that 2304 * distinguishes different algorithms. 2305 * 2306 * F.e. after RTO, when all the queue is considered as lost, 2307 * lost_out = packets_out and in_flight = retrans_out. 2308 * 2309 * Essentially, we have now a few algorithms detecting 2310 * lost packets. 2311 * 2312 * If the receiver supports SACK: 2313 * 2314 * RFC6675/3517: It is the conventional algorithm. A packet is 2315 * considered lost if the number of higher sequence packets 2316 * SACKed is greater than or equal the DUPACK thoreshold 2317 * (reordering). This is implemented in tcp_mark_head_lost and 2318 * tcp_update_scoreboard. 2319 * 2320 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2321 * (2017-) that checks timing instead of counting DUPACKs. 2322 * Essentially a packet is considered lost if it's not S/ACKed 2323 * after RTT + reordering_window, where both metrics are 2324 * dynamically measured and adjusted. This is implemented in 2325 * tcp_rack_mark_lost. 2326 * 2327 * If the receiver does not support SACK: 2328 * 2329 * NewReno (RFC6582): in Recovery we assume that one segment 2330 * is lost (classic Reno). While we are in Recovery and 2331 * a partial ACK arrives, we assume that one more packet 2332 * is lost (NewReno). This heuristics are the same in NewReno 2333 * and SACK. 2334 * 2335 * Really tricky (and requiring careful tuning) part of algorithm 2336 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2337 * The first determines the moment _when_ we should reduce CWND and, 2338 * hence, slow down forward transmission. In fact, it determines the moment 2339 * when we decide that hole is caused by loss, rather than by a reorder. 2340 * 2341 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2342 * holes, caused by lost packets. 2343 * 2344 * And the most logically complicated part of algorithm is undo 2345 * heuristics. We detect false retransmits due to both too early 2346 * fast retransmit (reordering) and underestimated RTO, analyzing 2347 * timestamps and D-SACKs. When we detect that some segments were 2348 * retransmitted by mistake and CWND reduction was wrong, we undo 2349 * window reduction and abort recovery phase. This logic is hidden 2350 * inside several functions named tcp_try_undo_<something>. 2351 */ 2352 2353 /* This function decides, when we should leave Disordered state 2354 * and enter Recovery phase, reducing congestion window. 2355 * 2356 * Main question: may we further continue forward transmission 2357 * with the same cwnd? 2358 */ 2359 static bool tcp_time_to_recover(struct sock *sk, int flag) 2360 { 2361 struct tcp_sock *tp = tcp_sk(sk); 2362 2363 /* Trick#1: The loss is proven. */ 2364 if (tp->lost_out) 2365 return true; 2366 2367 /* Not-A-Trick#2 : Classic rule... */ 2368 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2369 return true; 2370 2371 return false; 2372 } 2373 2374 /* Detect loss in event "A" above by marking head of queue up as lost. 2375 * For RFC3517 SACK, a segment is considered lost if it 2376 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2377 * the maximum SACKed segments to pass before reaching this limit. 2378 */ 2379 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 struct sk_buff *skb; 2383 int cnt; 2384 /* Use SACK to deduce losses of new sequences sent during recovery */ 2385 const u32 loss_high = tp->snd_nxt; 2386 2387 WARN_ON(packets > tp->packets_out); 2388 skb = tp->lost_skb_hint; 2389 if (skb) { 2390 /* Head already handled? */ 2391 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2392 return; 2393 cnt = tp->lost_cnt_hint; 2394 } else { 2395 skb = tcp_rtx_queue_head(sk); 2396 cnt = 0; 2397 } 2398 2399 skb_rbtree_walk_from(skb) { 2400 /* TODO: do this better */ 2401 /* this is not the most efficient way to do this... */ 2402 tp->lost_skb_hint = skb; 2403 tp->lost_cnt_hint = cnt; 2404 2405 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2406 break; 2407 2408 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2409 cnt += tcp_skb_pcount(skb); 2410 2411 if (cnt > packets) 2412 break; 2413 2414 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2415 tcp_mark_skb_lost(sk, skb); 2416 2417 if (mark_head) 2418 break; 2419 } 2420 tcp_verify_left_out(tp); 2421 } 2422 2423 /* Account newly detected lost packet(s) */ 2424 2425 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2426 { 2427 struct tcp_sock *tp = tcp_sk(sk); 2428 2429 if (tcp_is_sack(tp)) { 2430 int sacked_upto = tp->sacked_out - tp->reordering; 2431 if (sacked_upto >= 0) 2432 tcp_mark_head_lost(sk, sacked_upto, 0); 2433 else if (fast_rexmit) 2434 tcp_mark_head_lost(sk, 1, 1); 2435 } 2436 } 2437 2438 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2439 { 2440 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2441 before(tp->rx_opt.rcv_tsecr, when); 2442 } 2443 2444 /* skb is spurious retransmitted if the returned timestamp echo 2445 * reply is prior to the skb transmission time 2446 */ 2447 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2448 const struct sk_buff *skb) 2449 { 2450 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2451 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2452 } 2453 2454 /* Nothing was retransmitted or returned timestamp is less 2455 * than timestamp of the first retransmission. 2456 */ 2457 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2458 { 2459 const struct sock *sk = (const struct sock *)tp; 2460 2461 if (tp->retrans_stamp && 2462 tcp_tsopt_ecr_before(tp, tp->retrans_stamp)) 2463 return true; /* got echoed TS before first retransmission */ 2464 2465 /* Check if nothing was retransmitted (retrans_stamp==0), which may 2466 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp 2467 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear 2468 * retrans_stamp even if we had retransmitted the SYN. 2469 */ 2470 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */ 2471 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */ 2472 return true; /* nothing was retransmitted */ 2473 2474 return false; 2475 } 2476 2477 /* Undo procedures. */ 2478 2479 /* We can clear retrans_stamp when there are no retransmissions in the 2480 * window. It would seem that it is trivially available for us in 2481 * tp->retrans_out, however, that kind of assumptions doesn't consider 2482 * what will happen if errors occur when sending retransmission for the 2483 * second time. ...It could the that such segment has only 2484 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2485 * the head skb is enough except for some reneging corner cases that 2486 * are not worth the effort. 2487 * 2488 * Main reason for all this complexity is the fact that connection dying 2489 * time now depends on the validity of the retrans_stamp, in particular, 2490 * that successive retransmissions of a segment must not advance 2491 * retrans_stamp under any conditions. 2492 */ 2493 static bool tcp_any_retrans_done(const struct sock *sk) 2494 { 2495 const struct tcp_sock *tp = tcp_sk(sk); 2496 struct sk_buff *skb; 2497 2498 if (tp->retrans_out) 2499 return true; 2500 2501 skb = tcp_rtx_queue_head(sk); 2502 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2503 return true; 2504 2505 return false; 2506 } 2507 2508 /* If loss recovery is finished and there are no retransmits out in the 2509 * network, then we clear retrans_stamp so that upon the next loss recovery 2510 * retransmits_timed_out() and timestamp-undo are using the correct value. 2511 */ 2512 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2513 { 2514 if (!tcp_any_retrans_done(sk)) 2515 tcp_sk(sk)->retrans_stamp = 0; 2516 } 2517 2518 static void DBGUNDO(struct sock *sk, const char *msg) 2519 { 2520 #if FASTRETRANS_DEBUG > 1 2521 struct tcp_sock *tp = tcp_sk(sk); 2522 struct inet_sock *inet = inet_sk(sk); 2523 2524 if (sk->sk_family == AF_INET) { 2525 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2526 msg, 2527 &inet->inet_daddr, ntohs(inet->inet_dport), 2528 tcp_snd_cwnd(tp), tcp_left_out(tp), 2529 tp->snd_ssthresh, tp->prior_ssthresh, 2530 tp->packets_out); 2531 } 2532 #if IS_ENABLED(CONFIG_IPV6) 2533 else if (sk->sk_family == AF_INET6) { 2534 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2535 msg, 2536 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2537 tcp_snd_cwnd(tp), tcp_left_out(tp), 2538 tp->snd_ssthresh, tp->prior_ssthresh, 2539 tp->packets_out); 2540 } 2541 #endif 2542 #endif 2543 } 2544 2545 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 2549 if (unmark_loss) { 2550 struct sk_buff *skb; 2551 2552 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2553 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2554 } 2555 tp->lost_out = 0; 2556 tcp_clear_all_retrans_hints(tp); 2557 } 2558 2559 if (tp->prior_ssthresh) { 2560 const struct inet_connection_sock *icsk = inet_csk(sk); 2561 2562 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2563 2564 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2565 tp->snd_ssthresh = tp->prior_ssthresh; 2566 tcp_ecn_withdraw_cwr(tp); 2567 } 2568 } 2569 tp->snd_cwnd_stamp = tcp_jiffies32; 2570 tp->undo_marker = 0; 2571 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2572 } 2573 2574 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2575 { 2576 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2577 } 2578 2579 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2580 { 2581 struct tcp_sock *tp = tcp_sk(sk); 2582 2583 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2584 /* Hold old state until something *above* high_seq 2585 * is ACKed. For Reno it is MUST to prevent false 2586 * fast retransmits (RFC2582). SACK TCP is safe. */ 2587 if (!tcp_any_retrans_done(sk)) 2588 tp->retrans_stamp = 0; 2589 return true; 2590 } 2591 return false; 2592 } 2593 2594 /* People celebrate: "We love our President!" */ 2595 static bool tcp_try_undo_recovery(struct sock *sk) 2596 { 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 2599 if (tcp_may_undo(tp)) { 2600 int mib_idx; 2601 2602 /* Happy end! We did not retransmit anything 2603 * or our original transmission succeeded. 2604 */ 2605 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2606 tcp_undo_cwnd_reduction(sk, false); 2607 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2608 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2609 else 2610 mib_idx = LINUX_MIB_TCPFULLUNDO; 2611 2612 NET_INC_STATS(sock_net(sk), mib_idx); 2613 } else if (tp->rack.reo_wnd_persist) { 2614 tp->rack.reo_wnd_persist--; 2615 } 2616 if (tcp_is_non_sack_preventing_reopen(sk)) 2617 return true; 2618 tcp_set_ca_state(sk, TCP_CA_Open); 2619 tp->is_sack_reneg = 0; 2620 return false; 2621 } 2622 2623 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2624 static bool tcp_try_undo_dsack(struct sock *sk) 2625 { 2626 struct tcp_sock *tp = tcp_sk(sk); 2627 2628 if (tp->undo_marker && !tp->undo_retrans) { 2629 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2630 tp->rack.reo_wnd_persist + 1); 2631 DBGUNDO(sk, "D-SACK"); 2632 tcp_undo_cwnd_reduction(sk, false); 2633 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2634 return true; 2635 } 2636 return false; 2637 } 2638 2639 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2640 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2641 { 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 2644 if (frto_undo || tcp_may_undo(tp)) { 2645 tcp_undo_cwnd_reduction(sk, true); 2646 2647 DBGUNDO(sk, "partial loss"); 2648 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2649 if (frto_undo) 2650 NET_INC_STATS(sock_net(sk), 2651 LINUX_MIB_TCPSPURIOUSRTOS); 2652 inet_csk(sk)->icsk_retransmits = 0; 2653 if (tcp_is_non_sack_preventing_reopen(sk)) 2654 return true; 2655 if (frto_undo || tcp_is_sack(tp)) { 2656 tcp_set_ca_state(sk, TCP_CA_Open); 2657 tp->is_sack_reneg = 0; 2658 } 2659 return true; 2660 } 2661 return false; 2662 } 2663 2664 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2665 * It computes the number of packets to send (sndcnt) based on packets newly 2666 * delivered: 2667 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2668 * cwnd reductions across a full RTT. 2669 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2670 * But when SND_UNA is acked without further losses, 2671 * slow starts cwnd up to ssthresh to speed up the recovery. 2672 */ 2673 static void tcp_init_cwnd_reduction(struct sock *sk) 2674 { 2675 struct tcp_sock *tp = tcp_sk(sk); 2676 2677 tp->high_seq = tp->snd_nxt; 2678 tp->tlp_high_seq = 0; 2679 tp->snd_cwnd_cnt = 0; 2680 tp->prior_cwnd = tcp_snd_cwnd(tp); 2681 tp->prr_delivered = 0; 2682 tp->prr_out = 0; 2683 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2684 tcp_ecn_queue_cwr(tp); 2685 } 2686 2687 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2688 { 2689 struct tcp_sock *tp = tcp_sk(sk); 2690 int sndcnt = 0; 2691 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2692 2693 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2694 return; 2695 2696 tp->prr_delivered += newly_acked_sacked; 2697 if (delta < 0) { 2698 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2699 tp->prior_cwnd - 1; 2700 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2701 } else { 2702 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2703 newly_acked_sacked); 2704 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2705 sndcnt++; 2706 sndcnt = min(delta, sndcnt); 2707 } 2708 /* Force a fast retransmit upon entering fast recovery */ 2709 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2710 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2711 } 2712 2713 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2714 { 2715 struct tcp_sock *tp = tcp_sk(sk); 2716 2717 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2718 return; 2719 2720 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2721 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2722 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2723 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2724 tp->snd_cwnd_stamp = tcp_jiffies32; 2725 } 2726 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2727 } 2728 2729 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2730 void tcp_enter_cwr(struct sock *sk) 2731 { 2732 struct tcp_sock *tp = tcp_sk(sk); 2733 2734 tp->prior_ssthresh = 0; 2735 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2736 tp->undo_marker = 0; 2737 tcp_init_cwnd_reduction(sk); 2738 tcp_set_ca_state(sk, TCP_CA_CWR); 2739 } 2740 } 2741 EXPORT_SYMBOL(tcp_enter_cwr); 2742 2743 static void tcp_try_keep_open(struct sock *sk) 2744 { 2745 struct tcp_sock *tp = tcp_sk(sk); 2746 int state = TCP_CA_Open; 2747 2748 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2749 state = TCP_CA_Disorder; 2750 2751 if (inet_csk(sk)->icsk_ca_state != state) { 2752 tcp_set_ca_state(sk, state); 2753 tp->high_seq = tp->snd_nxt; 2754 } 2755 } 2756 2757 static void tcp_try_to_open(struct sock *sk, int flag) 2758 { 2759 struct tcp_sock *tp = tcp_sk(sk); 2760 2761 tcp_verify_left_out(tp); 2762 2763 if (!tcp_any_retrans_done(sk)) 2764 tp->retrans_stamp = 0; 2765 2766 if (flag & FLAG_ECE) 2767 tcp_enter_cwr(sk); 2768 2769 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2770 tcp_try_keep_open(sk); 2771 } 2772 } 2773 2774 static void tcp_mtup_probe_failed(struct sock *sk) 2775 { 2776 struct inet_connection_sock *icsk = inet_csk(sk); 2777 2778 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2779 icsk->icsk_mtup.probe_size = 0; 2780 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2781 } 2782 2783 static void tcp_mtup_probe_success(struct sock *sk) 2784 { 2785 struct tcp_sock *tp = tcp_sk(sk); 2786 struct inet_connection_sock *icsk = inet_csk(sk); 2787 u64 val; 2788 2789 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2790 2791 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2792 do_div(val, icsk->icsk_mtup.probe_size); 2793 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2794 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2795 2796 tp->snd_cwnd_cnt = 0; 2797 tp->snd_cwnd_stamp = tcp_jiffies32; 2798 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2799 2800 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2801 icsk->icsk_mtup.probe_size = 0; 2802 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2804 } 2805 2806 /* Sometimes we deduce that packets have been dropped due to reasons other than 2807 * congestion, like path MTU reductions or failed client TFO attempts. In these 2808 * cases we call this function to retransmit as many packets as cwnd allows, 2809 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2810 * non-zero value (and may do so in a later calling context due to TSQ), we 2811 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2812 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2813 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2814 * prematurely). 2815 */ 2816 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2817 { 2818 const struct inet_connection_sock *icsk = inet_csk(sk); 2819 struct tcp_sock *tp = tcp_sk(sk); 2820 2821 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2822 tp->high_seq = tp->snd_nxt; 2823 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2824 tp->prior_ssthresh = 0; 2825 tp->undo_marker = 0; 2826 tcp_set_ca_state(sk, TCP_CA_Loss); 2827 } 2828 tcp_xmit_retransmit_queue(sk); 2829 } 2830 2831 /* Do a simple retransmit without using the backoff mechanisms in 2832 * tcp_timer. This is used for path mtu discovery. 2833 * The socket is already locked here. 2834 */ 2835 void tcp_simple_retransmit(struct sock *sk) 2836 { 2837 struct tcp_sock *tp = tcp_sk(sk); 2838 struct sk_buff *skb; 2839 int mss; 2840 2841 /* A fastopen SYN request is stored as two separate packets within 2842 * the retransmit queue, this is done by tcp_send_syn_data(). 2843 * As a result simply checking the MSS of the frames in the queue 2844 * will not work for the SYN packet. 2845 * 2846 * Us being here is an indication of a path MTU issue so we can 2847 * assume that the fastopen SYN was lost and just mark all the 2848 * frames in the retransmit queue as lost. We will use an MSS of 2849 * -1 to mark all frames as lost, otherwise compute the current MSS. 2850 */ 2851 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2852 mss = -1; 2853 else 2854 mss = tcp_current_mss(sk); 2855 2856 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2857 if (tcp_skb_seglen(skb) > mss) 2858 tcp_mark_skb_lost(sk, skb); 2859 } 2860 2861 tcp_clear_retrans_hints_partial(tp); 2862 2863 if (!tp->lost_out) 2864 return; 2865 2866 if (tcp_is_reno(tp)) 2867 tcp_limit_reno_sacked(tp); 2868 2869 tcp_verify_left_out(tp); 2870 2871 /* Don't muck with the congestion window here. 2872 * Reason is that we do not increase amount of _data_ 2873 * in network, but units changed and effective 2874 * cwnd/ssthresh really reduced now. 2875 */ 2876 tcp_non_congestion_loss_retransmit(sk); 2877 } 2878 EXPORT_SYMBOL(tcp_simple_retransmit); 2879 2880 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2881 { 2882 struct tcp_sock *tp = tcp_sk(sk); 2883 int mib_idx; 2884 2885 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2886 tcp_retrans_stamp_cleanup(sk); 2887 2888 if (tcp_is_reno(tp)) 2889 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2890 else 2891 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2892 2893 NET_INC_STATS(sock_net(sk), mib_idx); 2894 2895 tp->prior_ssthresh = 0; 2896 tcp_init_undo(tp); 2897 2898 if (!tcp_in_cwnd_reduction(sk)) { 2899 if (!ece_ack) 2900 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2901 tcp_init_cwnd_reduction(sk); 2902 } 2903 tcp_set_ca_state(sk, TCP_CA_Recovery); 2904 } 2905 2906 static void tcp_update_rto_time(struct tcp_sock *tp) 2907 { 2908 if (tp->rto_stamp) { 2909 tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp; 2910 tp->rto_stamp = 0; 2911 } 2912 } 2913 2914 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2915 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2916 */ 2917 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2918 int *rexmit) 2919 { 2920 struct tcp_sock *tp = tcp_sk(sk); 2921 bool recovered = !before(tp->snd_una, tp->high_seq); 2922 2923 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2924 tcp_try_undo_loss(sk, false)) 2925 return; 2926 2927 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2928 /* Step 3.b. A timeout is spurious if not all data are 2929 * lost, i.e., never-retransmitted data are (s)acked. 2930 */ 2931 if ((flag & FLAG_ORIG_SACK_ACKED) && 2932 tcp_try_undo_loss(sk, true)) 2933 return; 2934 2935 if (after(tp->snd_nxt, tp->high_seq)) { 2936 if (flag & FLAG_DATA_SACKED || num_dupack) 2937 tp->frto = 0; /* Step 3.a. loss was real */ 2938 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2939 tp->high_seq = tp->snd_nxt; 2940 /* Step 2.b. Try send new data (but deferred until cwnd 2941 * is updated in tcp_ack()). Otherwise fall back to 2942 * the conventional recovery. 2943 */ 2944 if (!tcp_write_queue_empty(sk) && 2945 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2946 *rexmit = REXMIT_NEW; 2947 return; 2948 } 2949 tp->frto = 0; 2950 } 2951 } 2952 2953 if (recovered) { 2954 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2955 tcp_try_undo_recovery(sk); 2956 return; 2957 } 2958 if (tcp_is_reno(tp)) { 2959 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2960 * delivered. Lower inflight to clock out (re)transmissions. 2961 */ 2962 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2963 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2964 else if (flag & FLAG_SND_UNA_ADVANCED) 2965 tcp_reset_reno_sack(tp); 2966 } 2967 *rexmit = REXMIT_LOST; 2968 } 2969 2970 static bool tcp_force_fast_retransmit(struct sock *sk) 2971 { 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 2974 return after(tcp_highest_sack_seq(tp), 2975 tp->snd_una + tp->reordering * tp->mss_cache); 2976 } 2977 2978 /* Undo during fast recovery after partial ACK. */ 2979 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2980 bool *do_lost) 2981 { 2982 struct tcp_sock *tp = tcp_sk(sk); 2983 2984 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2985 /* Plain luck! Hole if filled with delayed 2986 * packet, rather than with a retransmit. Check reordering. 2987 */ 2988 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2989 2990 /* We are getting evidence that the reordering degree is higher 2991 * than we realized. If there are no retransmits out then we 2992 * can undo. Otherwise we clock out new packets but do not 2993 * mark more packets lost or retransmit more. 2994 */ 2995 if (tp->retrans_out) 2996 return true; 2997 2998 if (!tcp_any_retrans_done(sk)) 2999 tp->retrans_stamp = 0; 3000 3001 DBGUNDO(sk, "partial recovery"); 3002 tcp_undo_cwnd_reduction(sk, true); 3003 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3004 tcp_try_keep_open(sk); 3005 } else { 3006 /* Partial ACK arrived. Force fast retransmit. */ 3007 *do_lost = tcp_force_fast_retransmit(sk); 3008 } 3009 return false; 3010 } 3011 3012 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3013 { 3014 struct tcp_sock *tp = tcp_sk(sk); 3015 3016 if (tcp_rtx_queue_empty(sk)) 3017 return; 3018 3019 if (unlikely(tcp_is_reno(tp))) { 3020 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3021 } else if (tcp_is_rack(sk)) { 3022 u32 prior_retrans = tp->retrans_out; 3023 3024 if (tcp_rack_mark_lost(sk)) 3025 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3026 if (prior_retrans > tp->retrans_out) 3027 *ack_flag |= FLAG_LOST_RETRANS; 3028 } 3029 } 3030 3031 /* Process an event, which can update packets-in-flight not trivially. 3032 * Main goal of this function is to calculate new estimate for left_out, 3033 * taking into account both packets sitting in receiver's buffer and 3034 * packets lost by network. 3035 * 3036 * Besides that it updates the congestion state when packet loss or ECN 3037 * is detected. But it does not reduce the cwnd, it is done by the 3038 * congestion control later. 3039 * 3040 * It does _not_ decide what to send, it is made in function 3041 * tcp_xmit_retransmit_queue(). 3042 */ 3043 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3044 int num_dupack, int *ack_flag, int *rexmit) 3045 { 3046 struct inet_connection_sock *icsk = inet_csk(sk); 3047 struct tcp_sock *tp = tcp_sk(sk); 3048 int fast_rexmit = 0, flag = *ack_flag; 3049 bool ece_ack = flag & FLAG_ECE; 3050 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3051 tcp_force_fast_retransmit(sk)); 3052 3053 if (!tp->packets_out && tp->sacked_out) 3054 tp->sacked_out = 0; 3055 3056 /* Now state machine starts. 3057 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3058 if (ece_ack) 3059 tp->prior_ssthresh = 0; 3060 3061 /* B. In all the states check for reneging SACKs. */ 3062 if (tcp_check_sack_reneging(sk, ack_flag)) 3063 return; 3064 3065 /* C. Check consistency of the current state. */ 3066 tcp_verify_left_out(tp); 3067 3068 /* D. Check state exit conditions. State can be terminated 3069 * when high_seq is ACKed. */ 3070 if (icsk->icsk_ca_state == TCP_CA_Open) { 3071 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3072 tp->retrans_stamp = 0; 3073 } else if (!before(tp->snd_una, tp->high_seq)) { 3074 switch (icsk->icsk_ca_state) { 3075 case TCP_CA_CWR: 3076 /* CWR is to be held something *above* high_seq 3077 * is ACKed for CWR bit to reach receiver. */ 3078 if (tp->snd_una != tp->high_seq) { 3079 tcp_end_cwnd_reduction(sk); 3080 tcp_set_ca_state(sk, TCP_CA_Open); 3081 } 3082 break; 3083 3084 case TCP_CA_Recovery: 3085 if (tcp_is_reno(tp)) 3086 tcp_reset_reno_sack(tp); 3087 if (tcp_try_undo_recovery(sk)) 3088 return; 3089 tcp_end_cwnd_reduction(sk); 3090 break; 3091 } 3092 } 3093 3094 /* E. Process state. */ 3095 switch (icsk->icsk_ca_state) { 3096 case TCP_CA_Recovery: 3097 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3098 if (tcp_is_reno(tp)) 3099 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3100 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3101 return; 3102 3103 if (tcp_try_undo_dsack(sk)) 3104 tcp_try_to_open(sk, flag); 3105 3106 tcp_identify_packet_loss(sk, ack_flag); 3107 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3108 if (!tcp_time_to_recover(sk, flag)) 3109 return; 3110 /* Undo reverts the recovery state. If loss is evident, 3111 * starts a new recovery (e.g. reordering then loss); 3112 */ 3113 tcp_enter_recovery(sk, ece_ack); 3114 } 3115 break; 3116 case TCP_CA_Loss: 3117 tcp_process_loss(sk, flag, num_dupack, rexmit); 3118 if (icsk->icsk_ca_state != TCP_CA_Loss) 3119 tcp_update_rto_time(tp); 3120 tcp_identify_packet_loss(sk, ack_flag); 3121 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3122 (*ack_flag & FLAG_LOST_RETRANS))) 3123 return; 3124 /* Change state if cwnd is undone or retransmits are lost */ 3125 fallthrough; 3126 default: 3127 if (tcp_is_reno(tp)) { 3128 if (flag & FLAG_SND_UNA_ADVANCED) 3129 tcp_reset_reno_sack(tp); 3130 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3131 } 3132 3133 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3134 tcp_try_undo_dsack(sk); 3135 3136 tcp_identify_packet_loss(sk, ack_flag); 3137 if (!tcp_time_to_recover(sk, flag)) { 3138 tcp_try_to_open(sk, flag); 3139 return; 3140 } 3141 3142 /* MTU probe failure: don't reduce cwnd */ 3143 if (icsk->icsk_ca_state < TCP_CA_CWR && 3144 icsk->icsk_mtup.probe_size && 3145 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3146 tcp_mtup_probe_failed(sk); 3147 /* Restores the reduction we did in tcp_mtup_probe() */ 3148 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3149 tcp_simple_retransmit(sk); 3150 return; 3151 } 3152 3153 /* Otherwise enter Recovery state */ 3154 tcp_enter_recovery(sk, ece_ack); 3155 fast_rexmit = 1; 3156 } 3157 3158 if (!tcp_is_rack(sk) && do_lost) 3159 tcp_update_scoreboard(sk, fast_rexmit); 3160 *rexmit = REXMIT_LOST; 3161 } 3162 3163 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3164 { 3165 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3166 struct tcp_sock *tp = tcp_sk(sk); 3167 3168 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3169 /* If the remote keeps returning delayed ACKs, eventually 3170 * the min filter would pick it up and overestimate the 3171 * prop. delay when it expires. Skip suspected delayed ACKs. 3172 */ 3173 return; 3174 } 3175 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3176 rtt_us ? : jiffies_to_usecs(1)); 3177 } 3178 3179 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3180 long seq_rtt_us, long sack_rtt_us, 3181 long ca_rtt_us, struct rate_sample *rs) 3182 { 3183 const struct tcp_sock *tp = tcp_sk(sk); 3184 3185 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3186 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3187 * Karn's algorithm forbids taking RTT if some retransmitted data 3188 * is acked (RFC6298). 3189 */ 3190 if (seq_rtt_us < 0) 3191 seq_rtt_us = sack_rtt_us; 3192 3193 /* RTTM Rule: A TSecr value received in a segment is used to 3194 * update the averaged RTT measurement only if the segment 3195 * acknowledges some new data, i.e., only if it advances the 3196 * left edge of the send window. 3197 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3198 */ 3199 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3200 flag & FLAG_ACKED) { 3201 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3202 3203 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3204 if (!delta) 3205 delta = 1; 3206 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3207 ca_rtt_us = seq_rtt_us; 3208 } 3209 } 3210 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3211 if (seq_rtt_us < 0) 3212 return false; 3213 3214 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3215 * always taken together with ACK, SACK, or TS-opts. Any negative 3216 * values will be skipped with the seq_rtt_us < 0 check above. 3217 */ 3218 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3219 tcp_rtt_estimator(sk, seq_rtt_us); 3220 tcp_set_rto(sk); 3221 3222 /* RFC6298: only reset backoff on valid RTT measurement. */ 3223 inet_csk(sk)->icsk_backoff = 0; 3224 return true; 3225 } 3226 3227 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3228 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3229 { 3230 struct rate_sample rs; 3231 long rtt_us = -1L; 3232 3233 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3234 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3235 3236 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3237 } 3238 3239 3240 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3241 { 3242 const struct inet_connection_sock *icsk = inet_csk(sk); 3243 3244 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3245 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3246 } 3247 3248 /* Restart timer after forward progress on connection. 3249 * RFC2988 recommends to restart timer to now+rto. 3250 */ 3251 void tcp_rearm_rto(struct sock *sk) 3252 { 3253 const struct inet_connection_sock *icsk = inet_csk(sk); 3254 struct tcp_sock *tp = tcp_sk(sk); 3255 3256 /* If the retrans timer is currently being used by Fast Open 3257 * for SYN-ACK retrans purpose, stay put. 3258 */ 3259 if (rcu_access_pointer(tp->fastopen_rsk)) 3260 return; 3261 3262 if (!tp->packets_out) { 3263 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3264 } else { 3265 u32 rto = inet_csk(sk)->icsk_rto; 3266 /* Offset the time elapsed after installing regular RTO */ 3267 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3268 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3269 s64 delta_us = tcp_rto_delta_us(sk); 3270 /* delta_us may not be positive if the socket is locked 3271 * when the retrans timer fires and is rescheduled. 3272 */ 3273 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3274 } 3275 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3276 TCP_RTO_MAX); 3277 } 3278 } 3279 3280 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3281 static void tcp_set_xmit_timer(struct sock *sk) 3282 { 3283 if (!tcp_schedule_loss_probe(sk, true)) 3284 tcp_rearm_rto(sk); 3285 } 3286 3287 /* If we get here, the whole TSO packet has not been acked. */ 3288 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3289 { 3290 struct tcp_sock *tp = tcp_sk(sk); 3291 u32 packets_acked; 3292 3293 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3294 3295 packets_acked = tcp_skb_pcount(skb); 3296 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3297 return 0; 3298 packets_acked -= tcp_skb_pcount(skb); 3299 3300 if (packets_acked) { 3301 BUG_ON(tcp_skb_pcount(skb) == 0); 3302 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3303 } 3304 3305 return packets_acked; 3306 } 3307 3308 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3309 const struct sk_buff *ack_skb, u32 prior_snd_una) 3310 { 3311 const struct skb_shared_info *shinfo; 3312 3313 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3314 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3315 return; 3316 3317 shinfo = skb_shinfo(skb); 3318 if (!before(shinfo->tskey, prior_snd_una) && 3319 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3320 tcp_skb_tsorted_save(skb) { 3321 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3322 } tcp_skb_tsorted_restore(skb); 3323 } 3324 } 3325 3326 /* Remove acknowledged frames from the retransmission queue. If our packet 3327 * is before the ack sequence we can discard it as it's confirmed to have 3328 * arrived at the other end. 3329 */ 3330 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3331 u32 prior_fack, u32 prior_snd_una, 3332 struct tcp_sacktag_state *sack, bool ece_ack) 3333 { 3334 const struct inet_connection_sock *icsk = inet_csk(sk); 3335 u64 first_ackt, last_ackt; 3336 struct tcp_sock *tp = tcp_sk(sk); 3337 u32 prior_sacked = tp->sacked_out; 3338 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3339 struct sk_buff *skb, *next; 3340 bool fully_acked = true; 3341 long sack_rtt_us = -1L; 3342 long seq_rtt_us = -1L; 3343 long ca_rtt_us = -1L; 3344 u32 pkts_acked = 0; 3345 bool rtt_update; 3346 int flag = 0; 3347 3348 first_ackt = 0; 3349 3350 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3351 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3352 const u32 start_seq = scb->seq; 3353 u8 sacked = scb->sacked; 3354 u32 acked_pcount; 3355 3356 /* Determine how many packets and what bytes were acked, tso and else */ 3357 if (after(scb->end_seq, tp->snd_una)) { 3358 if (tcp_skb_pcount(skb) == 1 || 3359 !after(tp->snd_una, scb->seq)) 3360 break; 3361 3362 acked_pcount = tcp_tso_acked(sk, skb); 3363 if (!acked_pcount) 3364 break; 3365 fully_acked = false; 3366 } else { 3367 acked_pcount = tcp_skb_pcount(skb); 3368 } 3369 3370 if (unlikely(sacked & TCPCB_RETRANS)) { 3371 if (sacked & TCPCB_SACKED_RETRANS) 3372 tp->retrans_out -= acked_pcount; 3373 flag |= FLAG_RETRANS_DATA_ACKED; 3374 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3375 last_ackt = tcp_skb_timestamp_us(skb); 3376 WARN_ON_ONCE(last_ackt == 0); 3377 if (!first_ackt) 3378 first_ackt = last_ackt; 3379 3380 if (before(start_seq, reord)) 3381 reord = start_seq; 3382 if (!after(scb->end_seq, tp->high_seq)) 3383 flag |= FLAG_ORIG_SACK_ACKED; 3384 } 3385 3386 if (sacked & TCPCB_SACKED_ACKED) { 3387 tp->sacked_out -= acked_pcount; 3388 } else if (tcp_is_sack(tp)) { 3389 tcp_count_delivered(tp, acked_pcount, ece_ack); 3390 if (!tcp_skb_spurious_retrans(tp, skb)) 3391 tcp_rack_advance(tp, sacked, scb->end_seq, 3392 tcp_skb_timestamp_us(skb)); 3393 } 3394 if (sacked & TCPCB_LOST) 3395 tp->lost_out -= acked_pcount; 3396 3397 tp->packets_out -= acked_pcount; 3398 pkts_acked += acked_pcount; 3399 tcp_rate_skb_delivered(sk, skb, sack->rate); 3400 3401 /* Initial outgoing SYN's get put onto the write_queue 3402 * just like anything else we transmit. It is not 3403 * true data, and if we misinform our callers that 3404 * this ACK acks real data, we will erroneously exit 3405 * connection startup slow start one packet too 3406 * quickly. This is severely frowned upon behavior. 3407 */ 3408 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3409 flag |= FLAG_DATA_ACKED; 3410 } else { 3411 flag |= FLAG_SYN_ACKED; 3412 tp->retrans_stamp = 0; 3413 } 3414 3415 if (!fully_acked) 3416 break; 3417 3418 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3419 3420 next = skb_rb_next(skb); 3421 if (unlikely(skb == tp->retransmit_skb_hint)) 3422 tp->retransmit_skb_hint = NULL; 3423 if (unlikely(skb == tp->lost_skb_hint)) 3424 tp->lost_skb_hint = NULL; 3425 tcp_highest_sack_replace(sk, skb, next); 3426 tcp_rtx_queue_unlink_and_free(skb, sk); 3427 } 3428 3429 if (!skb) 3430 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3431 3432 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3433 tp->snd_up = tp->snd_una; 3434 3435 if (skb) { 3436 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3437 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3438 flag |= FLAG_SACK_RENEGING; 3439 } 3440 3441 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3442 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3443 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3444 3445 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3446 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3447 sack->rate->prior_delivered + 1 == tp->delivered && 3448 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3449 /* Conservatively mark a delayed ACK. It's typically 3450 * from a lone runt packet over the round trip to 3451 * a receiver w/o out-of-order or CE events. 3452 */ 3453 flag |= FLAG_ACK_MAYBE_DELAYED; 3454 } 3455 } 3456 if (sack->first_sackt) { 3457 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3458 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3459 } 3460 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3461 ca_rtt_us, sack->rate); 3462 3463 if (flag & FLAG_ACKED) { 3464 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3465 if (unlikely(icsk->icsk_mtup.probe_size && 3466 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3467 tcp_mtup_probe_success(sk); 3468 } 3469 3470 if (tcp_is_reno(tp)) { 3471 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3472 3473 /* If any of the cumulatively ACKed segments was 3474 * retransmitted, non-SACK case cannot confirm that 3475 * progress was due to original transmission due to 3476 * lack of TCPCB_SACKED_ACKED bits even if some of 3477 * the packets may have been never retransmitted. 3478 */ 3479 if (flag & FLAG_RETRANS_DATA_ACKED) 3480 flag &= ~FLAG_ORIG_SACK_ACKED; 3481 } else { 3482 int delta; 3483 3484 /* Non-retransmitted hole got filled? That's reordering */ 3485 if (before(reord, prior_fack)) 3486 tcp_check_sack_reordering(sk, reord, 0); 3487 3488 delta = prior_sacked - tp->sacked_out; 3489 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3490 } 3491 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3492 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3493 tcp_skb_timestamp_us(skb))) { 3494 /* Do not re-arm RTO if the sack RTT is measured from data sent 3495 * after when the head was last (re)transmitted. Otherwise the 3496 * timeout may continue to extend in loss recovery. 3497 */ 3498 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3499 } 3500 3501 if (icsk->icsk_ca_ops->pkts_acked) { 3502 struct ack_sample sample = { .pkts_acked = pkts_acked, 3503 .rtt_us = sack->rate->rtt_us }; 3504 3505 sample.in_flight = tp->mss_cache * 3506 (tp->delivered - sack->rate->prior_delivered); 3507 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3508 } 3509 3510 #if FASTRETRANS_DEBUG > 0 3511 WARN_ON((int)tp->sacked_out < 0); 3512 WARN_ON((int)tp->lost_out < 0); 3513 WARN_ON((int)tp->retrans_out < 0); 3514 if (!tp->packets_out && tcp_is_sack(tp)) { 3515 icsk = inet_csk(sk); 3516 if (tp->lost_out) { 3517 pr_debug("Leak l=%u %d\n", 3518 tp->lost_out, icsk->icsk_ca_state); 3519 tp->lost_out = 0; 3520 } 3521 if (tp->sacked_out) { 3522 pr_debug("Leak s=%u %d\n", 3523 tp->sacked_out, icsk->icsk_ca_state); 3524 tp->sacked_out = 0; 3525 } 3526 if (tp->retrans_out) { 3527 pr_debug("Leak r=%u %d\n", 3528 tp->retrans_out, icsk->icsk_ca_state); 3529 tp->retrans_out = 0; 3530 } 3531 } 3532 #endif 3533 return flag; 3534 } 3535 3536 static void tcp_ack_probe(struct sock *sk) 3537 { 3538 struct inet_connection_sock *icsk = inet_csk(sk); 3539 struct sk_buff *head = tcp_send_head(sk); 3540 const struct tcp_sock *tp = tcp_sk(sk); 3541 3542 /* Was it a usable window open? */ 3543 if (!head) 3544 return; 3545 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3546 icsk->icsk_backoff = 0; 3547 icsk->icsk_probes_tstamp = 0; 3548 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3549 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3550 * This function is not for random using! 3551 */ 3552 } else { 3553 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3554 3555 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3556 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3557 } 3558 } 3559 3560 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3561 { 3562 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3563 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3564 } 3565 3566 /* Decide wheather to run the increase function of congestion control. */ 3567 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3568 { 3569 /* If reordering is high then always grow cwnd whenever data is 3570 * delivered regardless of its ordering. Otherwise stay conservative 3571 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3572 * new SACK or ECE mark may first advance cwnd here and later reduce 3573 * cwnd in tcp_fastretrans_alert() based on more states. 3574 */ 3575 if (tcp_sk(sk)->reordering > 3576 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3577 return flag & FLAG_FORWARD_PROGRESS; 3578 3579 return flag & FLAG_DATA_ACKED; 3580 } 3581 3582 /* The "ultimate" congestion control function that aims to replace the rigid 3583 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3584 * It's called toward the end of processing an ACK with precise rate 3585 * information. All transmission or retransmission are delayed afterwards. 3586 */ 3587 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3588 int flag, const struct rate_sample *rs) 3589 { 3590 const struct inet_connection_sock *icsk = inet_csk(sk); 3591 3592 if (icsk->icsk_ca_ops->cong_control) { 3593 icsk->icsk_ca_ops->cong_control(sk, rs); 3594 return; 3595 } 3596 3597 if (tcp_in_cwnd_reduction(sk)) { 3598 /* Reduce cwnd if state mandates */ 3599 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3600 } else if (tcp_may_raise_cwnd(sk, flag)) { 3601 /* Advance cwnd if state allows */ 3602 tcp_cong_avoid(sk, ack, acked_sacked); 3603 } 3604 tcp_update_pacing_rate(sk); 3605 } 3606 3607 /* Check that window update is acceptable. 3608 * The function assumes that snd_una<=ack<=snd_next. 3609 */ 3610 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3611 const u32 ack, const u32 ack_seq, 3612 const u32 nwin) 3613 { 3614 return after(ack, tp->snd_una) || 3615 after(ack_seq, tp->snd_wl1) || 3616 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3617 } 3618 3619 /* If we update tp->snd_una, also update tp->bytes_acked */ 3620 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3621 { 3622 u32 delta = ack - tp->snd_una; 3623 3624 sock_owned_by_me((struct sock *)tp); 3625 tp->bytes_acked += delta; 3626 tp->snd_una = ack; 3627 } 3628 3629 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3630 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3631 { 3632 u32 delta = seq - tp->rcv_nxt; 3633 3634 sock_owned_by_me((struct sock *)tp); 3635 tp->bytes_received += delta; 3636 WRITE_ONCE(tp->rcv_nxt, seq); 3637 } 3638 3639 /* Update our send window. 3640 * 3641 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3642 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3643 */ 3644 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3645 u32 ack_seq) 3646 { 3647 struct tcp_sock *tp = tcp_sk(sk); 3648 int flag = 0; 3649 u32 nwin = ntohs(tcp_hdr(skb)->window); 3650 3651 if (likely(!tcp_hdr(skb)->syn)) 3652 nwin <<= tp->rx_opt.snd_wscale; 3653 3654 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3655 flag |= FLAG_WIN_UPDATE; 3656 tcp_update_wl(tp, ack_seq); 3657 3658 if (tp->snd_wnd != nwin) { 3659 tp->snd_wnd = nwin; 3660 3661 /* Note, it is the only place, where 3662 * fast path is recovered for sending TCP. 3663 */ 3664 tp->pred_flags = 0; 3665 tcp_fast_path_check(sk); 3666 3667 if (!tcp_write_queue_empty(sk)) 3668 tcp_slow_start_after_idle_check(sk); 3669 3670 if (nwin > tp->max_window) { 3671 tp->max_window = nwin; 3672 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3673 } 3674 } 3675 } 3676 3677 tcp_snd_una_update(tp, ack); 3678 3679 return flag; 3680 } 3681 3682 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3683 u32 *last_oow_ack_time) 3684 { 3685 /* Paired with the WRITE_ONCE() in this function. */ 3686 u32 val = READ_ONCE(*last_oow_ack_time); 3687 3688 if (val) { 3689 s32 elapsed = (s32)(tcp_jiffies32 - val); 3690 3691 if (0 <= elapsed && 3692 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3693 NET_INC_STATS(net, mib_idx); 3694 return true; /* rate-limited: don't send yet! */ 3695 } 3696 } 3697 3698 /* Paired with the prior READ_ONCE() and with itself, 3699 * as we might be lockless. 3700 */ 3701 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3702 3703 return false; /* not rate-limited: go ahead, send dupack now! */ 3704 } 3705 3706 /* Return true if we're currently rate-limiting out-of-window ACKs and 3707 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3708 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3709 * attacks that send repeated SYNs or ACKs for the same connection. To 3710 * do this, we do not send a duplicate SYNACK or ACK if the remote 3711 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3712 */ 3713 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3714 int mib_idx, u32 *last_oow_ack_time) 3715 { 3716 /* Data packets without SYNs are not likely part of an ACK loop. */ 3717 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3718 !tcp_hdr(skb)->syn) 3719 return false; 3720 3721 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3722 } 3723 3724 /* RFC 5961 7 [ACK Throttling] */ 3725 static void tcp_send_challenge_ack(struct sock *sk) 3726 { 3727 struct tcp_sock *tp = tcp_sk(sk); 3728 struct net *net = sock_net(sk); 3729 u32 count, now, ack_limit; 3730 3731 /* First check our per-socket dupack rate limit. */ 3732 if (__tcp_oow_rate_limited(net, 3733 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3734 &tp->last_oow_ack_time)) 3735 return; 3736 3737 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3738 if (ack_limit == INT_MAX) 3739 goto send_ack; 3740 3741 /* Then check host-wide RFC 5961 rate limit. */ 3742 now = jiffies / HZ; 3743 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3744 u32 half = (ack_limit + 1) >> 1; 3745 3746 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3747 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3748 get_random_u32_inclusive(half, ack_limit + half - 1)); 3749 } 3750 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3751 if (count > 0) { 3752 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3753 send_ack: 3754 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3755 tcp_send_ack(sk); 3756 } 3757 } 3758 3759 static void tcp_store_ts_recent(struct tcp_sock *tp) 3760 { 3761 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3762 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3763 } 3764 3765 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3766 { 3767 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3768 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3769 * extra check below makes sure this can only happen 3770 * for pure ACK frames. -DaveM 3771 * 3772 * Not only, also it occurs for expired timestamps. 3773 */ 3774 3775 if (tcp_paws_check(&tp->rx_opt, 0)) 3776 tcp_store_ts_recent(tp); 3777 } 3778 } 3779 3780 /* This routine deals with acks during a TLP episode and ends an episode by 3781 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3782 */ 3783 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3784 { 3785 struct tcp_sock *tp = tcp_sk(sk); 3786 3787 if (before(ack, tp->tlp_high_seq)) 3788 return; 3789 3790 if (!tp->tlp_retrans) { 3791 /* TLP of new data has been acknowledged */ 3792 tp->tlp_high_seq = 0; 3793 } else if (flag & FLAG_DSACK_TLP) { 3794 /* This DSACK means original and TLP probe arrived; no loss */ 3795 tp->tlp_high_seq = 0; 3796 } else if (after(ack, tp->tlp_high_seq)) { 3797 /* ACK advances: there was a loss, so reduce cwnd. Reset 3798 * tlp_high_seq in tcp_init_cwnd_reduction() 3799 */ 3800 tcp_init_cwnd_reduction(sk); 3801 tcp_set_ca_state(sk, TCP_CA_CWR); 3802 tcp_end_cwnd_reduction(sk); 3803 tcp_try_keep_open(sk); 3804 NET_INC_STATS(sock_net(sk), 3805 LINUX_MIB_TCPLOSSPROBERECOVERY); 3806 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3807 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3808 /* Pure dupack: original and TLP probe arrived; no loss */ 3809 tp->tlp_high_seq = 0; 3810 } 3811 } 3812 3813 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3814 { 3815 const struct inet_connection_sock *icsk = inet_csk(sk); 3816 3817 if (icsk->icsk_ca_ops->in_ack_event) 3818 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3819 } 3820 3821 /* Congestion control has updated the cwnd already. So if we're in 3822 * loss recovery then now we do any new sends (for FRTO) or 3823 * retransmits (for CA_Loss or CA_recovery) that make sense. 3824 */ 3825 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3826 { 3827 struct tcp_sock *tp = tcp_sk(sk); 3828 3829 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3830 return; 3831 3832 if (unlikely(rexmit == REXMIT_NEW)) { 3833 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3834 TCP_NAGLE_OFF); 3835 if (after(tp->snd_nxt, tp->high_seq)) 3836 return; 3837 tp->frto = 0; 3838 } 3839 tcp_xmit_retransmit_queue(sk); 3840 } 3841 3842 /* Returns the number of packets newly acked or sacked by the current ACK */ 3843 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3844 { 3845 const struct net *net = sock_net(sk); 3846 struct tcp_sock *tp = tcp_sk(sk); 3847 u32 delivered; 3848 3849 delivered = tp->delivered - prior_delivered; 3850 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3851 if (flag & FLAG_ECE) 3852 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3853 3854 return delivered; 3855 } 3856 3857 /* This routine deals with incoming acks, but not outgoing ones. */ 3858 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3859 { 3860 struct inet_connection_sock *icsk = inet_csk(sk); 3861 struct tcp_sock *tp = tcp_sk(sk); 3862 struct tcp_sacktag_state sack_state; 3863 struct rate_sample rs = { .prior_delivered = 0 }; 3864 u32 prior_snd_una = tp->snd_una; 3865 bool is_sack_reneg = tp->is_sack_reneg; 3866 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3867 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3868 int num_dupack = 0; 3869 int prior_packets = tp->packets_out; 3870 u32 delivered = tp->delivered; 3871 u32 lost = tp->lost; 3872 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3873 u32 prior_fack; 3874 3875 sack_state.first_sackt = 0; 3876 sack_state.rate = &rs; 3877 sack_state.sack_delivered = 0; 3878 3879 /* We very likely will need to access rtx queue. */ 3880 prefetch(sk->tcp_rtx_queue.rb_node); 3881 3882 /* If the ack is older than previous acks 3883 * then we can probably ignore it. 3884 */ 3885 if (before(ack, prior_snd_una)) { 3886 u32 max_window; 3887 3888 /* do not accept ACK for bytes we never sent. */ 3889 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3890 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3891 if (before(ack, prior_snd_una - max_window)) { 3892 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3893 tcp_send_challenge_ack(sk); 3894 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3895 } 3896 goto old_ack; 3897 } 3898 3899 /* If the ack includes data we haven't sent yet, discard 3900 * this segment (RFC793 Section 3.9). 3901 */ 3902 if (after(ack, tp->snd_nxt)) 3903 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3904 3905 if (after(ack, prior_snd_una)) { 3906 flag |= FLAG_SND_UNA_ADVANCED; 3907 icsk->icsk_retransmits = 0; 3908 3909 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3910 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3911 if (icsk->icsk_clean_acked) 3912 icsk->icsk_clean_acked(sk, ack); 3913 #endif 3914 } 3915 3916 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3917 rs.prior_in_flight = tcp_packets_in_flight(tp); 3918 3919 /* ts_recent update must be made after we are sure that the packet 3920 * is in window. 3921 */ 3922 if (flag & FLAG_UPDATE_TS_RECENT) 3923 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3924 3925 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3926 FLAG_SND_UNA_ADVANCED) { 3927 /* Window is constant, pure forward advance. 3928 * No more checks are required. 3929 * Note, we use the fact that SND.UNA>=SND.WL2. 3930 */ 3931 tcp_update_wl(tp, ack_seq); 3932 tcp_snd_una_update(tp, ack); 3933 flag |= FLAG_WIN_UPDATE; 3934 3935 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3936 3937 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3938 } else { 3939 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3940 3941 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3942 flag |= FLAG_DATA; 3943 else 3944 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3945 3946 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3947 3948 if (TCP_SKB_CB(skb)->sacked) 3949 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3950 &sack_state); 3951 3952 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3953 flag |= FLAG_ECE; 3954 ack_ev_flags |= CA_ACK_ECE; 3955 } 3956 3957 if (sack_state.sack_delivered) 3958 tcp_count_delivered(tp, sack_state.sack_delivered, 3959 flag & FLAG_ECE); 3960 3961 if (flag & FLAG_WIN_UPDATE) 3962 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3963 3964 tcp_in_ack_event(sk, ack_ev_flags); 3965 } 3966 3967 /* This is a deviation from RFC3168 since it states that: 3968 * "When the TCP data sender is ready to set the CWR bit after reducing 3969 * the congestion window, it SHOULD set the CWR bit only on the first 3970 * new data packet that it transmits." 3971 * We accept CWR on pure ACKs to be more robust 3972 * with widely-deployed TCP implementations that do this. 3973 */ 3974 tcp_ecn_accept_cwr(sk, skb); 3975 3976 /* We passed data and got it acked, remove any soft error 3977 * log. Something worked... 3978 */ 3979 WRITE_ONCE(sk->sk_err_soft, 0); 3980 icsk->icsk_probes_out = 0; 3981 tp->rcv_tstamp = tcp_jiffies32; 3982 if (!prior_packets) 3983 goto no_queue; 3984 3985 /* See if we can take anything off of the retransmit queue. */ 3986 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3987 &sack_state, flag & FLAG_ECE); 3988 3989 tcp_rack_update_reo_wnd(sk, &rs); 3990 3991 if (tp->tlp_high_seq) 3992 tcp_process_tlp_ack(sk, ack, flag); 3993 3994 if (tcp_ack_is_dubious(sk, flag)) { 3995 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3996 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3997 num_dupack = 1; 3998 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3999 if (!(flag & FLAG_DATA)) 4000 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4001 } 4002 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4003 &rexmit); 4004 } 4005 4006 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4007 if (flag & FLAG_SET_XMIT_TIMER) 4008 tcp_set_xmit_timer(sk); 4009 4010 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4011 sk_dst_confirm(sk); 4012 4013 delivered = tcp_newly_delivered(sk, delivered, flag); 4014 lost = tp->lost - lost; /* freshly marked lost */ 4015 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4016 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4017 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4018 tcp_xmit_recovery(sk, rexmit); 4019 return 1; 4020 4021 no_queue: 4022 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4023 if (flag & FLAG_DSACKING_ACK) { 4024 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4025 &rexmit); 4026 tcp_newly_delivered(sk, delivered, flag); 4027 } 4028 /* If this ack opens up a zero window, clear backoff. It was 4029 * being used to time the probes, and is probably far higher than 4030 * it needs to be for normal retransmission. 4031 */ 4032 tcp_ack_probe(sk); 4033 4034 if (tp->tlp_high_seq) 4035 tcp_process_tlp_ack(sk, ack, flag); 4036 return 1; 4037 4038 old_ack: 4039 /* If data was SACKed, tag it and see if we should send more data. 4040 * If data was DSACKed, see if we can undo a cwnd reduction. 4041 */ 4042 if (TCP_SKB_CB(skb)->sacked) { 4043 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4044 &sack_state); 4045 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4046 &rexmit); 4047 tcp_newly_delivered(sk, delivered, flag); 4048 tcp_xmit_recovery(sk, rexmit); 4049 } 4050 4051 return 0; 4052 } 4053 4054 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4055 bool syn, struct tcp_fastopen_cookie *foc, 4056 bool exp_opt) 4057 { 4058 /* Valid only in SYN or SYN-ACK with an even length. */ 4059 if (!foc || !syn || len < 0 || (len & 1)) 4060 return; 4061 4062 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4063 len <= TCP_FASTOPEN_COOKIE_MAX) 4064 memcpy(foc->val, cookie, len); 4065 else if (len != 0) 4066 len = -1; 4067 foc->len = len; 4068 foc->exp = exp_opt; 4069 } 4070 4071 static bool smc_parse_options(const struct tcphdr *th, 4072 struct tcp_options_received *opt_rx, 4073 const unsigned char *ptr, 4074 int opsize) 4075 { 4076 #if IS_ENABLED(CONFIG_SMC) 4077 if (static_branch_unlikely(&tcp_have_smc)) { 4078 if (th->syn && !(opsize & 1) && 4079 opsize >= TCPOLEN_EXP_SMC_BASE && 4080 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4081 opt_rx->smc_ok = 1; 4082 return true; 4083 } 4084 } 4085 #endif 4086 return false; 4087 } 4088 4089 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4090 * value on success. 4091 */ 4092 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4093 { 4094 const unsigned char *ptr = (const unsigned char *)(th + 1); 4095 int length = (th->doff * 4) - sizeof(struct tcphdr); 4096 u16 mss = 0; 4097 4098 while (length > 0) { 4099 int opcode = *ptr++; 4100 int opsize; 4101 4102 switch (opcode) { 4103 case TCPOPT_EOL: 4104 return mss; 4105 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4106 length--; 4107 continue; 4108 default: 4109 if (length < 2) 4110 return mss; 4111 opsize = *ptr++; 4112 if (opsize < 2) /* "silly options" */ 4113 return mss; 4114 if (opsize > length) 4115 return mss; /* fail on partial options */ 4116 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4117 u16 in_mss = get_unaligned_be16(ptr); 4118 4119 if (in_mss) { 4120 if (user_mss && user_mss < in_mss) 4121 in_mss = user_mss; 4122 mss = in_mss; 4123 } 4124 } 4125 ptr += opsize - 2; 4126 length -= opsize; 4127 } 4128 } 4129 return mss; 4130 } 4131 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4132 4133 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4134 * But, this can also be called on packets in the established flow when 4135 * the fast version below fails. 4136 */ 4137 void tcp_parse_options(const struct net *net, 4138 const struct sk_buff *skb, 4139 struct tcp_options_received *opt_rx, int estab, 4140 struct tcp_fastopen_cookie *foc) 4141 { 4142 const unsigned char *ptr; 4143 const struct tcphdr *th = tcp_hdr(skb); 4144 int length = (th->doff * 4) - sizeof(struct tcphdr); 4145 4146 ptr = (const unsigned char *)(th + 1); 4147 opt_rx->saw_tstamp = 0; 4148 opt_rx->saw_unknown = 0; 4149 4150 while (length > 0) { 4151 int opcode = *ptr++; 4152 int opsize; 4153 4154 switch (opcode) { 4155 case TCPOPT_EOL: 4156 return; 4157 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4158 length--; 4159 continue; 4160 default: 4161 if (length < 2) 4162 return; 4163 opsize = *ptr++; 4164 if (opsize < 2) /* "silly options" */ 4165 return; 4166 if (opsize > length) 4167 return; /* don't parse partial options */ 4168 switch (opcode) { 4169 case TCPOPT_MSS: 4170 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4171 u16 in_mss = get_unaligned_be16(ptr); 4172 if (in_mss) { 4173 if (opt_rx->user_mss && 4174 opt_rx->user_mss < in_mss) 4175 in_mss = opt_rx->user_mss; 4176 opt_rx->mss_clamp = in_mss; 4177 } 4178 } 4179 break; 4180 case TCPOPT_WINDOW: 4181 if (opsize == TCPOLEN_WINDOW && th->syn && 4182 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4183 __u8 snd_wscale = *(__u8 *)ptr; 4184 opt_rx->wscale_ok = 1; 4185 if (snd_wscale > TCP_MAX_WSCALE) { 4186 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4187 __func__, 4188 snd_wscale, 4189 TCP_MAX_WSCALE); 4190 snd_wscale = TCP_MAX_WSCALE; 4191 } 4192 opt_rx->snd_wscale = snd_wscale; 4193 } 4194 break; 4195 case TCPOPT_TIMESTAMP: 4196 if ((opsize == TCPOLEN_TIMESTAMP) && 4197 ((estab && opt_rx->tstamp_ok) || 4198 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4199 opt_rx->saw_tstamp = 1; 4200 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4201 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4202 } 4203 break; 4204 case TCPOPT_SACK_PERM: 4205 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4206 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4207 opt_rx->sack_ok = TCP_SACK_SEEN; 4208 tcp_sack_reset(opt_rx); 4209 } 4210 break; 4211 4212 case TCPOPT_SACK: 4213 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4214 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4215 opt_rx->sack_ok) { 4216 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4217 } 4218 break; 4219 #ifdef CONFIG_TCP_MD5SIG 4220 case TCPOPT_MD5SIG: 4221 /* The MD5 Hash has already been 4222 * checked (see tcp_v{4,6}_rcv()). 4223 */ 4224 break; 4225 #endif 4226 case TCPOPT_FASTOPEN: 4227 tcp_parse_fastopen_option( 4228 opsize - TCPOLEN_FASTOPEN_BASE, 4229 ptr, th->syn, foc, false); 4230 break; 4231 4232 case TCPOPT_EXP: 4233 /* Fast Open option shares code 254 using a 4234 * 16 bits magic number. 4235 */ 4236 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4237 get_unaligned_be16(ptr) == 4238 TCPOPT_FASTOPEN_MAGIC) { 4239 tcp_parse_fastopen_option(opsize - 4240 TCPOLEN_EXP_FASTOPEN_BASE, 4241 ptr + 2, th->syn, foc, true); 4242 break; 4243 } 4244 4245 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4246 break; 4247 4248 opt_rx->saw_unknown = 1; 4249 break; 4250 4251 default: 4252 opt_rx->saw_unknown = 1; 4253 } 4254 ptr += opsize-2; 4255 length -= opsize; 4256 } 4257 } 4258 } 4259 EXPORT_SYMBOL(tcp_parse_options); 4260 4261 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4262 { 4263 const __be32 *ptr = (const __be32 *)(th + 1); 4264 4265 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4266 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4267 tp->rx_opt.saw_tstamp = 1; 4268 ++ptr; 4269 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4270 ++ptr; 4271 if (*ptr) 4272 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4273 else 4274 tp->rx_opt.rcv_tsecr = 0; 4275 return true; 4276 } 4277 return false; 4278 } 4279 4280 /* Fast parse options. This hopes to only see timestamps. 4281 * If it is wrong it falls back on tcp_parse_options(). 4282 */ 4283 static bool tcp_fast_parse_options(const struct net *net, 4284 const struct sk_buff *skb, 4285 const struct tcphdr *th, struct tcp_sock *tp) 4286 { 4287 /* In the spirit of fast parsing, compare doff directly to constant 4288 * values. Because equality is used, short doff can be ignored here. 4289 */ 4290 if (th->doff == (sizeof(*th) / 4)) { 4291 tp->rx_opt.saw_tstamp = 0; 4292 return false; 4293 } else if (tp->rx_opt.tstamp_ok && 4294 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4295 if (tcp_parse_aligned_timestamp(tp, th)) 4296 return true; 4297 } 4298 4299 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4300 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4301 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4302 4303 return true; 4304 } 4305 4306 #ifdef CONFIG_TCP_MD5SIG 4307 /* 4308 * Parse MD5 Signature option 4309 */ 4310 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4311 { 4312 int length = (th->doff << 2) - sizeof(*th); 4313 const u8 *ptr = (const u8 *)(th + 1); 4314 4315 /* If not enough data remaining, we can short cut */ 4316 while (length >= TCPOLEN_MD5SIG) { 4317 int opcode = *ptr++; 4318 int opsize; 4319 4320 switch (opcode) { 4321 case TCPOPT_EOL: 4322 return NULL; 4323 case TCPOPT_NOP: 4324 length--; 4325 continue; 4326 default: 4327 opsize = *ptr++; 4328 if (opsize < 2 || opsize > length) 4329 return NULL; 4330 if (opcode == TCPOPT_MD5SIG) 4331 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4332 } 4333 ptr += opsize - 2; 4334 length -= opsize; 4335 } 4336 return NULL; 4337 } 4338 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4339 #endif 4340 4341 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4342 * 4343 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4344 * it can pass through stack. So, the following predicate verifies that 4345 * this segment is not used for anything but congestion avoidance or 4346 * fast retransmit. Moreover, we even are able to eliminate most of such 4347 * second order effects, if we apply some small "replay" window (~RTO) 4348 * to timestamp space. 4349 * 4350 * All these measures still do not guarantee that we reject wrapped ACKs 4351 * on networks with high bandwidth, when sequence space is recycled fastly, 4352 * but it guarantees that such events will be very rare and do not affect 4353 * connection seriously. This doesn't look nice, but alas, PAWS is really 4354 * buggy extension. 4355 * 4356 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4357 * states that events when retransmit arrives after original data are rare. 4358 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4359 * the biggest problem on large power networks even with minor reordering. 4360 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4361 * up to bandwidth of 18Gigabit/sec. 8) ] 4362 */ 4363 4364 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4365 { 4366 const struct tcp_sock *tp = tcp_sk(sk); 4367 const struct tcphdr *th = tcp_hdr(skb); 4368 u32 seq = TCP_SKB_CB(skb)->seq; 4369 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4370 4371 return (/* 1. Pure ACK with correct sequence number. */ 4372 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4373 4374 /* 2. ... and duplicate ACK. */ 4375 ack == tp->snd_una && 4376 4377 /* 3. ... and does not update window. */ 4378 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4379 4380 /* 4. ... and sits in replay window. */ 4381 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4382 } 4383 4384 static inline bool tcp_paws_discard(const struct sock *sk, 4385 const struct sk_buff *skb) 4386 { 4387 const struct tcp_sock *tp = tcp_sk(sk); 4388 4389 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4390 !tcp_disordered_ack(sk, skb); 4391 } 4392 4393 /* Check segment sequence number for validity. 4394 * 4395 * Segment controls are considered valid, if the segment 4396 * fits to the window after truncation to the window. Acceptability 4397 * of data (and SYN, FIN, of course) is checked separately. 4398 * See tcp_data_queue(), for example. 4399 * 4400 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4401 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4402 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4403 * (borrowed from freebsd) 4404 */ 4405 4406 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4407 u32 seq, u32 end_seq) 4408 { 4409 if (before(end_seq, tp->rcv_wup)) 4410 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4411 4412 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4413 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4414 4415 return SKB_NOT_DROPPED_YET; 4416 } 4417 4418 4419 void tcp_done_with_error(struct sock *sk, int err) 4420 { 4421 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4422 WRITE_ONCE(sk->sk_err, err); 4423 smp_wmb(); 4424 4425 tcp_write_queue_purge(sk); 4426 tcp_done(sk); 4427 4428 if (!sock_flag(sk, SOCK_DEAD)) 4429 sk_error_report(sk); 4430 } 4431 EXPORT_SYMBOL(tcp_done_with_error); 4432 4433 /* When we get a reset we do this. */ 4434 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4435 { 4436 int err; 4437 4438 trace_tcp_receive_reset(sk); 4439 4440 /* mptcp can't tell us to ignore reset pkts, 4441 * so just ignore the return value of mptcp_incoming_options(). 4442 */ 4443 if (sk_is_mptcp(sk)) 4444 mptcp_incoming_options(sk, skb); 4445 4446 /* We want the right error as BSD sees it (and indeed as we do). */ 4447 switch (sk->sk_state) { 4448 case TCP_SYN_SENT: 4449 err = ECONNREFUSED; 4450 break; 4451 case TCP_CLOSE_WAIT: 4452 err = EPIPE; 4453 break; 4454 case TCP_CLOSE: 4455 return; 4456 default: 4457 err = ECONNRESET; 4458 } 4459 tcp_done_with_error(sk, err); 4460 } 4461 4462 /* 4463 * Process the FIN bit. This now behaves as it is supposed to work 4464 * and the FIN takes effect when it is validly part of sequence 4465 * space. Not before when we get holes. 4466 * 4467 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4468 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4469 * TIME-WAIT) 4470 * 4471 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4472 * close and we go into CLOSING (and later onto TIME-WAIT) 4473 * 4474 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4475 */ 4476 void tcp_fin(struct sock *sk) 4477 { 4478 struct tcp_sock *tp = tcp_sk(sk); 4479 4480 inet_csk_schedule_ack(sk); 4481 4482 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4483 sock_set_flag(sk, SOCK_DONE); 4484 4485 switch (sk->sk_state) { 4486 case TCP_SYN_RECV: 4487 case TCP_ESTABLISHED: 4488 /* Move to CLOSE_WAIT */ 4489 tcp_set_state(sk, TCP_CLOSE_WAIT); 4490 inet_csk_enter_pingpong_mode(sk); 4491 break; 4492 4493 case TCP_CLOSE_WAIT: 4494 case TCP_CLOSING: 4495 /* Received a retransmission of the FIN, do 4496 * nothing. 4497 */ 4498 break; 4499 case TCP_LAST_ACK: 4500 /* RFC793: Remain in the LAST-ACK state. */ 4501 break; 4502 4503 case TCP_FIN_WAIT1: 4504 /* This case occurs when a simultaneous close 4505 * happens, we must ack the received FIN and 4506 * enter the CLOSING state. 4507 */ 4508 tcp_send_ack(sk); 4509 tcp_set_state(sk, TCP_CLOSING); 4510 break; 4511 case TCP_FIN_WAIT2: 4512 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4513 tcp_send_ack(sk); 4514 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4515 break; 4516 default: 4517 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4518 * cases we should never reach this piece of code. 4519 */ 4520 pr_err("%s: Impossible, sk->sk_state=%d\n", 4521 __func__, sk->sk_state); 4522 break; 4523 } 4524 4525 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4526 * Probably, we should reset in this case. For now drop them. 4527 */ 4528 skb_rbtree_purge(&tp->out_of_order_queue); 4529 if (tcp_is_sack(tp)) 4530 tcp_sack_reset(&tp->rx_opt); 4531 4532 if (!sock_flag(sk, SOCK_DEAD)) { 4533 sk->sk_state_change(sk); 4534 4535 /* Do not send POLL_HUP for half duplex close. */ 4536 if (sk->sk_shutdown == SHUTDOWN_MASK || 4537 sk->sk_state == TCP_CLOSE) 4538 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4539 else 4540 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4541 } 4542 } 4543 4544 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4545 u32 end_seq) 4546 { 4547 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4548 if (before(seq, sp->start_seq)) 4549 sp->start_seq = seq; 4550 if (after(end_seq, sp->end_seq)) 4551 sp->end_seq = end_seq; 4552 return true; 4553 } 4554 return false; 4555 } 4556 4557 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4558 { 4559 struct tcp_sock *tp = tcp_sk(sk); 4560 4561 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4562 int mib_idx; 4563 4564 if (before(seq, tp->rcv_nxt)) 4565 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4566 else 4567 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4568 4569 NET_INC_STATS(sock_net(sk), mib_idx); 4570 4571 tp->rx_opt.dsack = 1; 4572 tp->duplicate_sack[0].start_seq = seq; 4573 tp->duplicate_sack[0].end_seq = end_seq; 4574 } 4575 } 4576 4577 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4578 { 4579 struct tcp_sock *tp = tcp_sk(sk); 4580 4581 if (!tp->rx_opt.dsack) 4582 tcp_dsack_set(sk, seq, end_seq); 4583 else 4584 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4585 } 4586 4587 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4588 { 4589 /* When the ACK path fails or drops most ACKs, the sender would 4590 * timeout and spuriously retransmit the same segment repeatedly. 4591 * The receiver remembers and reflects via DSACKs. Leverage the 4592 * DSACK state and change the txhash to re-route speculatively. 4593 */ 4594 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4595 sk_rethink_txhash(sk)) 4596 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4597 } 4598 4599 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4600 { 4601 struct tcp_sock *tp = tcp_sk(sk); 4602 4603 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4604 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4605 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4606 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4607 4608 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4609 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4610 4611 tcp_rcv_spurious_retrans(sk, skb); 4612 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4613 end_seq = tp->rcv_nxt; 4614 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4615 } 4616 } 4617 4618 tcp_send_ack(sk); 4619 } 4620 4621 /* These routines update the SACK block as out-of-order packets arrive or 4622 * in-order packets close up the sequence space. 4623 */ 4624 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4625 { 4626 int this_sack; 4627 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4628 struct tcp_sack_block *swalk = sp + 1; 4629 4630 /* See if the recent change to the first SACK eats into 4631 * or hits the sequence space of other SACK blocks, if so coalesce. 4632 */ 4633 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4634 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4635 int i; 4636 4637 /* Zap SWALK, by moving every further SACK up by one slot. 4638 * Decrease num_sacks. 4639 */ 4640 tp->rx_opt.num_sacks--; 4641 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4642 sp[i] = sp[i + 1]; 4643 continue; 4644 } 4645 this_sack++; 4646 swalk++; 4647 } 4648 } 4649 4650 void tcp_sack_compress_send_ack(struct sock *sk) 4651 { 4652 struct tcp_sock *tp = tcp_sk(sk); 4653 4654 if (!tp->compressed_ack) 4655 return; 4656 4657 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4658 __sock_put(sk); 4659 4660 /* Since we have to send one ack finally, 4661 * substract one from tp->compressed_ack to keep 4662 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4663 */ 4664 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4665 tp->compressed_ack - 1); 4666 4667 tp->compressed_ack = 0; 4668 tcp_send_ack(sk); 4669 } 4670 4671 /* Reasonable amount of sack blocks included in TCP SACK option 4672 * The max is 4, but this becomes 3 if TCP timestamps are there. 4673 * Given that SACK packets might be lost, be conservative and use 2. 4674 */ 4675 #define TCP_SACK_BLOCKS_EXPECTED 2 4676 4677 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4678 { 4679 struct tcp_sock *tp = tcp_sk(sk); 4680 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4681 int cur_sacks = tp->rx_opt.num_sacks; 4682 int this_sack; 4683 4684 if (!cur_sacks) 4685 goto new_sack; 4686 4687 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4688 if (tcp_sack_extend(sp, seq, end_seq)) { 4689 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4690 tcp_sack_compress_send_ack(sk); 4691 /* Rotate this_sack to the first one. */ 4692 for (; this_sack > 0; this_sack--, sp--) 4693 swap(*sp, *(sp - 1)); 4694 if (cur_sacks > 1) 4695 tcp_sack_maybe_coalesce(tp); 4696 return; 4697 } 4698 } 4699 4700 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4701 tcp_sack_compress_send_ack(sk); 4702 4703 /* Could not find an adjacent existing SACK, build a new one, 4704 * put it at the front, and shift everyone else down. We 4705 * always know there is at least one SACK present already here. 4706 * 4707 * If the sack array is full, forget about the last one. 4708 */ 4709 if (this_sack >= TCP_NUM_SACKS) { 4710 this_sack--; 4711 tp->rx_opt.num_sacks--; 4712 sp--; 4713 } 4714 for (; this_sack > 0; this_sack--, sp--) 4715 *sp = *(sp - 1); 4716 4717 new_sack: 4718 /* Build the new head SACK, and we're done. */ 4719 sp->start_seq = seq; 4720 sp->end_seq = end_seq; 4721 tp->rx_opt.num_sacks++; 4722 } 4723 4724 /* RCV.NXT advances, some SACKs should be eaten. */ 4725 4726 static void tcp_sack_remove(struct tcp_sock *tp) 4727 { 4728 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4729 int num_sacks = tp->rx_opt.num_sacks; 4730 int this_sack; 4731 4732 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4733 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4734 tp->rx_opt.num_sacks = 0; 4735 return; 4736 } 4737 4738 for (this_sack = 0; this_sack < num_sacks;) { 4739 /* Check if the start of the sack is covered by RCV.NXT. */ 4740 if (!before(tp->rcv_nxt, sp->start_seq)) { 4741 int i; 4742 4743 /* RCV.NXT must cover all the block! */ 4744 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4745 4746 /* Zap this SACK, by moving forward any other SACKS. */ 4747 for (i = this_sack+1; i < num_sacks; i++) 4748 tp->selective_acks[i-1] = tp->selective_acks[i]; 4749 num_sacks--; 4750 continue; 4751 } 4752 this_sack++; 4753 sp++; 4754 } 4755 tp->rx_opt.num_sacks = num_sacks; 4756 } 4757 4758 /** 4759 * tcp_try_coalesce - try to merge skb to prior one 4760 * @sk: socket 4761 * @to: prior buffer 4762 * @from: buffer to add in queue 4763 * @fragstolen: pointer to boolean 4764 * 4765 * Before queueing skb @from after @to, try to merge them 4766 * to reduce overall memory use and queue lengths, if cost is small. 4767 * Packets in ofo or receive queues can stay a long time. 4768 * Better try to coalesce them right now to avoid future collapses. 4769 * Returns true if caller should free @from instead of queueing it 4770 */ 4771 static bool tcp_try_coalesce(struct sock *sk, 4772 struct sk_buff *to, 4773 struct sk_buff *from, 4774 bool *fragstolen) 4775 { 4776 int delta; 4777 4778 *fragstolen = false; 4779 4780 /* Its possible this segment overlaps with prior segment in queue */ 4781 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4782 return false; 4783 4784 if (!mptcp_skb_can_collapse(to, from)) 4785 return false; 4786 4787 #ifdef CONFIG_TLS_DEVICE 4788 if (from->decrypted != to->decrypted) 4789 return false; 4790 #endif 4791 4792 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4793 return false; 4794 4795 atomic_add(delta, &sk->sk_rmem_alloc); 4796 sk_mem_charge(sk, delta); 4797 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4798 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4799 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4800 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4801 4802 if (TCP_SKB_CB(from)->has_rxtstamp) { 4803 TCP_SKB_CB(to)->has_rxtstamp = true; 4804 to->tstamp = from->tstamp; 4805 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4806 } 4807 4808 return true; 4809 } 4810 4811 static bool tcp_ooo_try_coalesce(struct sock *sk, 4812 struct sk_buff *to, 4813 struct sk_buff *from, 4814 bool *fragstolen) 4815 { 4816 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4817 4818 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4819 if (res) { 4820 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4821 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4822 4823 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4824 } 4825 return res; 4826 } 4827 4828 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4829 enum skb_drop_reason reason) 4830 { 4831 sk_drops_add(sk, skb); 4832 kfree_skb_reason(skb, reason); 4833 } 4834 4835 /* This one checks to see if we can put data from the 4836 * out_of_order queue into the receive_queue. 4837 */ 4838 static void tcp_ofo_queue(struct sock *sk) 4839 { 4840 struct tcp_sock *tp = tcp_sk(sk); 4841 __u32 dsack_high = tp->rcv_nxt; 4842 bool fin, fragstolen, eaten; 4843 struct sk_buff *skb, *tail; 4844 struct rb_node *p; 4845 4846 p = rb_first(&tp->out_of_order_queue); 4847 while (p) { 4848 skb = rb_to_skb(p); 4849 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4850 break; 4851 4852 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4853 __u32 dsack = dsack_high; 4854 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4855 dsack_high = TCP_SKB_CB(skb)->end_seq; 4856 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4857 } 4858 p = rb_next(p); 4859 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4860 4861 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4862 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4863 continue; 4864 } 4865 4866 tail = skb_peek_tail(&sk->sk_receive_queue); 4867 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4868 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4869 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4870 if (!eaten) 4871 __skb_queue_tail(&sk->sk_receive_queue, skb); 4872 else 4873 kfree_skb_partial(skb, fragstolen); 4874 4875 if (unlikely(fin)) { 4876 tcp_fin(sk); 4877 /* tcp_fin() purges tp->out_of_order_queue, 4878 * so we must end this loop right now. 4879 */ 4880 break; 4881 } 4882 } 4883 } 4884 4885 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4886 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4887 4888 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4889 unsigned int size) 4890 { 4891 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4892 !sk_rmem_schedule(sk, skb, size)) { 4893 4894 if (tcp_prune_queue(sk, skb) < 0) 4895 return -1; 4896 4897 while (!sk_rmem_schedule(sk, skb, size)) { 4898 if (!tcp_prune_ofo_queue(sk, skb)) 4899 return -1; 4900 } 4901 } 4902 return 0; 4903 } 4904 4905 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4906 { 4907 struct tcp_sock *tp = tcp_sk(sk); 4908 struct rb_node **p, *parent; 4909 struct sk_buff *skb1; 4910 u32 seq, end_seq; 4911 bool fragstolen; 4912 4913 tcp_ecn_check_ce(sk, skb); 4914 4915 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4916 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4917 sk->sk_data_ready(sk); 4918 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4919 return; 4920 } 4921 4922 /* Disable header prediction. */ 4923 tp->pred_flags = 0; 4924 inet_csk_schedule_ack(sk); 4925 4926 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4927 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4928 seq = TCP_SKB_CB(skb)->seq; 4929 end_seq = TCP_SKB_CB(skb)->end_seq; 4930 4931 p = &tp->out_of_order_queue.rb_node; 4932 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4933 /* Initial out of order segment, build 1 SACK. */ 4934 if (tcp_is_sack(tp)) { 4935 tp->rx_opt.num_sacks = 1; 4936 tp->selective_acks[0].start_seq = seq; 4937 tp->selective_acks[0].end_seq = end_seq; 4938 } 4939 rb_link_node(&skb->rbnode, NULL, p); 4940 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4941 tp->ooo_last_skb = skb; 4942 goto end; 4943 } 4944 4945 /* In the typical case, we are adding an skb to the end of the list. 4946 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4947 */ 4948 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4949 skb, &fragstolen)) { 4950 coalesce_done: 4951 /* For non sack flows, do not grow window to force DUPACK 4952 * and trigger fast retransmit. 4953 */ 4954 if (tcp_is_sack(tp)) 4955 tcp_grow_window(sk, skb, true); 4956 kfree_skb_partial(skb, fragstolen); 4957 skb = NULL; 4958 goto add_sack; 4959 } 4960 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4961 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4962 parent = &tp->ooo_last_skb->rbnode; 4963 p = &parent->rb_right; 4964 goto insert; 4965 } 4966 4967 /* Find place to insert this segment. Handle overlaps on the way. */ 4968 parent = NULL; 4969 while (*p) { 4970 parent = *p; 4971 skb1 = rb_to_skb(parent); 4972 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4973 p = &parent->rb_left; 4974 continue; 4975 } 4976 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4977 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4978 /* All the bits are present. Drop. */ 4979 NET_INC_STATS(sock_net(sk), 4980 LINUX_MIB_TCPOFOMERGE); 4981 tcp_drop_reason(sk, skb, 4982 SKB_DROP_REASON_TCP_OFOMERGE); 4983 skb = NULL; 4984 tcp_dsack_set(sk, seq, end_seq); 4985 goto add_sack; 4986 } 4987 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4988 /* Partial overlap. */ 4989 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4990 } else { 4991 /* skb's seq == skb1's seq and skb covers skb1. 4992 * Replace skb1 with skb. 4993 */ 4994 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4995 &tp->out_of_order_queue); 4996 tcp_dsack_extend(sk, 4997 TCP_SKB_CB(skb1)->seq, 4998 TCP_SKB_CB(skb1)->end_seq); 4999 NET_INC_STATS(sock_net(sk), 5000 LINUX_MIB_TCPOFOMERGE); 5001 tcp_drop_reason(sk, skb1, 5002 SKB_DROP_REASON_TCP_OFOMERGE); 5003 goto merge_right; 5004 } 5005 } else if (tcp_ooo_try_coalesce(sk, skb1, 5006 skb, &fragstolen)) { 5007 goto coalesce_done; 5008 } 5009 p = &parent->rb_right; 5010 } 5011 insert: 5012 /* Insert segment into RB tree. */ 5013 rb_link_node(&skb->rbnode, parent, p); 5014 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5015 5016 merge_right: 5017 /* Remove other segments covered by skb. */ 5018 while ((skb1 = skb_rb_next(skb)) != NULL) { 5019 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5020 break; 5021 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5022 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5023 end_seq); 5024 break; 5025 } 5026 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5027 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5028 TCP_SKB_CB(skb1)->end_seq); 5029 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5030 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5031 } 5032 /* If there is no skb after us, we are the last_skb ! */ 5033 if (!skb1) 5034 tp->ooo_last_skb = skb; 5035 5036 add_sack: 5037 if (tcp_is_sack(tp)) 5038 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5039 end: 5040 if (skb) { 5041 /* For non sack flows, do not grow window to force DUPACK 5042 * and trigger fast retransmit. 5043 */ 5044 if (tcp_is_sack(tp)) 5045 tcp_grow_window(sk, skb, false); 5046 skb_condense(skb); 5047 skb_set_owner_r(skb, sk); 5048 } 5049 } 5050 5051 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5052 bool *fragstolen) 5053 { 5054 int eaten; 5055 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5056 5057 eaten = (tail && 5058 tcp_try_coalesce(sk, tail, 5059 skb, fragstolen)) ? 1 : 0; 5060 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5061 if (!eaten) { 5062 __skb_queue_tail(&sk->sk_receive_queue, skb); 5063 skb_set_owner_r(skb, sk); 5064 } 5065 return eaten; 5066 } 5067 5068 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5069 { 5070 struct sk_buff *skb; 5071 int err = -ENOMEM; 5072 int data_len = 0; 5073 bool fragstolen; 5074 5075 if (size == 0) 5076 return 0; 5077 5078 if (size > PAGE_SIZE) { 5079 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5080 5081 data_len = npages << PAGE_SHIFT; 5082 size = data_len + (size & ~PAGE_MASK); 5083 } 5084 skb = alloc_skb_with_frags(size - data_len, data_len, 5085 PAGE_ALLOC_COSTLY_ORDER, 5086 &err, sk->sk_allocation); 5087 if (!skb) 5088 goto err; 5089 5090 skb_put(skb, size - data_len); 5091 skb->data_len = data_len; 5092 skb->len = size; 5093 5094 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5095 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5096 goto err_free; 5097 } 5098 5099 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5100 if (err) 5101 goto err_free; 5102 5103 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5104 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5105 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5106 5107 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5108 WARN_ON_ONCE(fragstolen); /* should not happen */ 5109 __kfree_skb(skb); 5110 } 5111 return size; 5112 5113 err_free: 5114 kfree_skb(skb); 5115 err: 5116 return err; 5117 5118 } 5119 5120 void tcp_data_ready(struct sock *sk) 5121 { 5122 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5123 sk->sk_data_ready(sk); 5124 } 5125 5126 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5127 { 5128 struct tcp_sock *tp = tcp_sk(sk); 5129 enum skb_drop_reason reason; 5130 bool fragstolen; 5131 int eaten; 5132 5133 /* If a subflow has been reset, the packet should not continue 5134 * to be processed, drop the packet. 5135 */ 5136 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5137 __kfree_skb(skb); 5138 return; 5139 } 5140 5141 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5142 __kfree_skb(skb); 5143 return; 5144 } 5145 skb_dst_drop(skb); 5146 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5147 5148 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5149 tp->rx_opt.dsack = 0; 5150 5151 /* Queue data for delivery to the user. 5152 * Packets in sequence go to the receive queue. 5153 * Out of sequence packets to the out_of_order_queue. 5154 */ 5155 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5156 if (tcp_receive_window(tp) == 0) { 5157 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5158 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5159 goto out_of_window; 5160 } 5161 5162 /* Ok. In sequence. In window. */ 5163 queue_and_out: 5164 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5165 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5166 inet_csk(sk)->icsk_ack.pending |= 5167 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5168 inet_csk_schedule_ack(sk); 5169 sk->sk_data_ready(sk); 5170 5171 if (skb_queue_len(&sk->sk_receive_queue)) { 5172 reason = SKB_DROP_REASON_PROTO_MEM; 5173 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5174 goto drop; 5175 } 5176 sk_forced_mem_schedule(sk, skb->truesize); 5177 } 5178 5179 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5180 if (skb->len) 5181 tcp_event_data_recv(sk, skb); 5182 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5183 tcp_fin(sk); 5184 5185 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5186 tcp_ofo_queue(sk); 5187 5188 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5189 * gap in queue is filled. 5190 */ 5191 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5192 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5193 } 5194 5195 if (tp->rx_opt.num_sacks) 5196 tcp_sack_remove(tp); 5197 5198 tcp_fast_path_check(sk); 5199 5200 if (eaten > 0) 5201 kfree_skb_partial(skb, fragstolen); 5202 if (!sock_flag(sk, SOCK_DEAD)) 5203 tcp_data_ready(sk); 5204 return; 5205 } 5206 5207 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5208 tcp_rcv_spurious_retrans(sk, skb); 5209 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5210 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5211 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5212 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5213 5214 out_of_window: 5215 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5216 inet_csk_schedule_ack(sk); 5217 drop: 5218 tcp_drop_reason(sk, skb, reason); 5219 return; 5220 } 5221 5222 /* Out of window. F.e. zero window probe. */ 5223 if (!before(TCP_SKB_CB(skb)->seq, 5224 tp->rcv_nxt + tcp_receive_window(tp))) { 5225 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5226 goto out_of_window; 5227 } 5228 5229 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5230 /* Partial packet, seq < rcv_next < end_seq */ 5231 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5232 5233 /* If window is closed, drop tail of packet. But after 5234 * remembering D-SACK for its head made in previous line. 5235 */ 5236 if (!tcp_receive_window(tp)) { 5237 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5238 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5239 goto out_of_window; 5240 } 5241 goto queue_and_out; 5242 } 5243 5244 tcp_data_queue_ofo(sk, skb); 5245 } 5246 5247 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5248 { 5249 if (list) 5250 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5251 5252 return skb_rb_next(skb); 5253 } 5254 5255 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5256 struct sk_buff_head *list, 5257 struct rb_root *root) 5258 { 5259 struct sk_buff *next = tcp_skb_next(skb, list); 5260 5261 if (list) 5262 __skb_unlink(skb, list); 5263 else 5264 rb_erase(&skb->rbnode, root); 5265 5266 __kfree_skb(skb); 5267 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5268 5269 return next; 5270 } 5271 5272 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5273 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5274 { 5275 struct rb_node **p = &root->rb_node; 5276 struct rb_node *parent = NULL; 5277 struct sk_buff *skb1; 5278 5279 while (*p) { 5280 parent = *p; 5281 skb1 = rb_to_skb(parent); 5282 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5283 p = &parent->rb_left; 5284 else 5285 p = &parent->rb_right; 5286 } 5287 rb_link_node(&skb->rbnode, parent, p); 5288 rb_insert_color(&skb->rbnode, root); 5289 } 5290 5291 /* Collapse contiguous sequence of skbs head..tail with 5292 * sequence numbers start..end. 5293 * 5294 * If tail is NULL, this means until the end of the queue. 5295 * 5296 * Segments with FIN/SYN are not collapsed (only because this 5297 * simplifies code) 5298 */ 5299 static void 5300 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5301 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5302 { 5303 struct sk_buff *skb = head, *n; 5304 struct sk_buff_head tmp; 5305 bool end_of_skbs; 5306 5307 /* First, check that queue is collapsible and find 5308 * the point where collapsing can be useful. 5309 */ 5310 restart: 5311 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5312 n = tcp_skb_next(skb, list); 5313 5314 /* No new bits? It is possible on ofo queue. */ 5315 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5316 skb = tcp_collapse_one(sk, skb, list, root); 5317 if (!skb) 5318 break; 5319 goto restart; 5320 } 5321 5322 /* The first skb to collapse is: 5323 * - not SYN/FIN and 5324 * - bloated or contains data before "start" or 5325 * overlaps to the next one and mptcp allow collapsing. 5326 */ 5327 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5328 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5329 before(TCP_SKB_CB(skb)->seq, start))) { 5330 end_of_skbs = false; 5331 break; 5332 } 5333 5334 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5335 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5336 end_of_skbs = false; 5337 break; 5338 } 5339 5340 /* Decided to skip this, advance start seq. */ 5341 start = TCP_SKB_CB(skb)->end_seq; 5342 } 5343 if (end_of_skbs || 5344 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5345 return; 5346 5347 __skb_queue_head_init(&tmp); 5348 5349 while (before(start, end)) { 5350 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5351 struct sk_buff *nskb; 5352 5353 nskb = alloc_skb(copy, GFP_ATOMIC); 5354 if (!nskb) 5355 break; 5356 5357 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5358 #ifdef CONFIG_TLS_DEVICE 5359 nskb->decrypted = skb->decrypted; 5360 #endif 5361 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5362 if (list) 5363 __skb_queue_before(list, skb, nskb); 5364 else 5365 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5366 skb_set_owner_r(nskb, sk); 5367 mptcp_skb_ext_move(nskb, skb); 5368 5369 /* Copy data, releasing collapsed skbs. */ 5370 while (copy > 0) { 5371 int offset = start - TCP_SKB_CB(skb)->seq; 5372 int size = TCP_SKB_CB(skb)->end_seq - start; 5373 5374 BUG_ON(offset < 0); 5375 if (size > 0) { 5376 size = min(copy, size); 5377 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5378 BUG(); 5379 TCP_SKB_CB(nskb)->end_seq += size; 5380 copy -= size; 5381 start += size; 5382 } 5383 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5384 skb = tcp_collapse_one(sk, skb, list, root); 5385 if (!skb || 5386 skb == tail || 5387 !mptcp_skb_can_collapse(nskb, skb) || 5388 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5389 goto end; 5390 #ifdef CONFIG_TLS_DEVICE 5391 if (skb->decrypted != nskb->decrypted) 5392 goto end; 5393 #endif 5394 } 5395 } 5396 } 5397 end: 5398 skb_queue_walk_safe(&tmp, skb, n) 5399 tcp_rbtree_insert(root, skb); 5400 } 5401 5402 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5403 * and tcp_collapse() them until all the queue is collapsed. 5404 */ 5405 static void tcp_collapse_ofo_queue(struct sock *sk) 5406 { 5407 struct tcp_sock *tp = tcp_sk(sk); 5408 u32 range_truesize, sum_tiny = 0; 5409 struct sk_buff *skb, *head; 5410 u32 start, end; 5411 5412 skb = skb_rb_first(&tp->out_of_order_queue); 5413 new_range: 5414 if (!skb) { 5415 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5416 return; 5417 } 5418 start = TCP_SKB_CB(skb)->seq; 5419 end = TCP_SKB_CB(skb)->end_seq; 5420 range_truesize = skb->truesize; 5421 5422 for (head = skb;;) { 5423 skb = skb_rb_next(skb); 5424 5425 /* Range is terminated when we see a gap or when 5426 * we are at the queue end. 5427 */ 5428 if (!skb || 5429 after(TCP_SKB_CB(skb)->seq, end) || 5430 before(TCP_SKB_CB(skb)->end_seq, start)) { 5431 /* Do not attempt collapsing tiny skbs */ 5432 if (range_truesize != head->truesize || 5433 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5434 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5435 head, skb, start, end); 5436 } else { 5437 sum_tiny += range_truesize; 5438 if (sum_tiny > sk->sk_rcvbuf >> 3) 5439 return; 5440 } 5441 goto new_range; 5442 } 5443 5444 range_truesize += skb->truesize; 5445 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5446 start = TCP_SKB_CB(skb)->seq; 5447 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5448 end = TCP_SKB_CB(skb)->end_seq; 5449 } 5450 } 5451 5452 /* 5453 * Clean the out-of-order queue to make room. 5454 * We drop high sequences packets to : 5455 * 1) Let a chance for holes to be filled. 5456 * This means we do not drop packets from ooo queue if their sequence 5457 * is before incoming packet sequence. 5458 * 2) not add too big latencies if thousands of packets sit there. 5459 * (But if application shrinks SO_RCVBUF, we could still end up 5460 * freeing whole queue here) 5461 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5462 * 5463 * Return true if queue has shrunk. 5464 */ 5465 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5466 { 5467 struct tcp_sock *tp = tcp_sk(sk); 5468 struct rb_node *node, *prev; 5469 bool pruned = false; 5470 int goal; 5471 5472 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5473 return false; 5474 5475 goal = sk->sk_rcvbuf >> 3; 5476 node = &tp->ooo_last_skb->rbnode; 5477 5478 do { 5479 struct sk_buff *skb = rb_to_skb(node); 5480 5481 /* If incoming skb would land last in ofo queue, stop pruning. */ 5482 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5483 break; 5484 pruned = true; 5485 prev = rb_prev(node); 5486 rb_erase(node, &tp->out_of_order_queue); 5487 goal -= skb->truesize; 5488 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5489 tp->ooo_last_skb = rb_to_skb(prev); 5490 if (!prev || goal <= 0) { 5491 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5492 !tcp_under_memory_pressure(sk)) 5493 break; 5494 goal = sk->sk_rcvbuf >> 3; 5495 } 5496 node = prev; 5497 } while (node); 5498 5499 if (pruned) { 5500 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5501 /* Reset SACK state. A conforming SACK implementation will 5502 * do the same at a timeout based retransmit. When a connection 5503 * is in a sad state like this, we care only about integrity 5504 * of the connection not performance. 5505 */ 5506 if (tp->rx_opt.sack_ok) 5507 tcp_sack_reset(&tp->rx_opt); 5508 } 5509 return pruned; 5510 } 5511 5512 /* Reduce allocated memory if we can, trying to get 5513 * the socket within its memory limits again. 5514 * 5515 * Return less than zero if we should start dropping frames 5516 * until the socket owning process reads some of the data 5517 * to stabilize the situation. 5518 */ 5519 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5520 { 5521 struct tcp_sock *tp = tcp_sk(sk); 5522 5523 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5524 5525 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5526 tcp_clamp_window(sk); 5527 else if (tcp_under_memory_pressure(sk)) 5528 tcp_adjust_rcv_ssthresh(sk); 5529 5530 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5531 return 0; 5532 5533 tcp_collapse_ofo_queue(sk); 5534 if (!skb_queue_empty(&sk->sk_receive_queue)) 5535 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5536 skb_peek(&sk->sk_receive_queue), 5537 NULL, 5538 tp->copied_seq, tp->rcv_nxt); 5539 5540 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5541 return 0; 5542 5543 /* Collapsing did not help, destructive actions follow. 5544 * This must not ever occur. */ 5545 5546 tcp_prune_ofo_queue(sk, in_skb); 5547 5548 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5549 return 0; 5550 5551 /* If we are really being abused, tell the caller to silently 5552 * drop receive data on the floor. It will get retransmitted 5553 * and hopefully then we'll have sufficient space. 5554 */ 5555 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5556 5557 /* Massive buffer overcommit. */ 5558 tp->pred_flags = 0; 5559 return -1; 5560 } 5561 5562 static bool tcp_should_expand_sndbuf(struct sock *sk) 5563 { 5564 const struct tcp_sock *tp = tcp_sk(sk); 5565 5566 /* If the user specified a specific send buffer setting, do 5567 * not modify it. 5568 */ 5569 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5570 return false; 5571 5572 /* If we are under global TCP memory pressure, do not expand. */ 5573 if (tcp_under_memory_pressure(sk)) { 5574 int unused_mem = sk_unused_reserved_mem(sk); 5575 5576 /* Adjust sndbuf according to reserved mem. But make sure 5577 * it never goes below SOCK_MIN_SNDBUF. 5578 * See sk_stream_moderate_sndbuf() for more details. 5579 */ 5580 if (unused_mem > SOCK_MIN_SNDBUF) 5581 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5582 5583 return false; 5584 } 5585 5586 /* If we are under soft global TCP memory pressure, do not expand. */ 5587 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5588 return false; 5589 5590 /* If we filled the congestion window, do not expand. */ 5591 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5592 return false; 5593 5594 return true; 5595 } 5596 5597 static void tcp_new_space(struct sock *sk) 5598 { 5599 struct tcp_sock *tp = tcp_sk(sk); 5600 5601 if (tcp_should_expand_sndbuf(sk)) { 5602 tcp_sndbuf_expand(sk); 5603 tp->snd_cwnd_stamp = tcp_jiffies32; 5604 } 5605 5606 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5607 } 5608 5609 /* Caller made space either from: 5610 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5611 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5612 * 5613 * We might be able to generate EPOLLOUT to the application if: 5614 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5615 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5616 * small enough that tcp_stream_memory_free() decides it 5617 * is time to generate EPOLLOUT. 5618 */ 5619 void tcp_check_space(struct sock *sk) 5620 { 5621 /* pairs with tcp_poll() */ 5622 smp_mb(); 5623 if (sk->sk_socket && 5624 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5625 tcp_new_space(sk); 5626 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5627 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5628 } 5629 } 5630 5631 static inline void tcp_data_snd_check(struct sock *sk) 5632 { 5633 tcp_push_pending_frames(sk); 5634 tcp_check_space(sk); 5635 } 5636 5637 /* 5638 * Check if sending an ack is needed. 5639 */ 5640 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5641 { 5642 struct tcp_sock *tp = tcp_sk(sk); 5643 unsigned long rtt, delay; 5644 5645 /* More than one full frame received... */ 5646 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5647 /* ... and right edge of window advances far enough. 5648 * (tcp_recvmsg() will send ACK otherwise). 5649 * If application uses SO_RCVLOWAT, we want send ack now if 5650 * we have not received enough bytes to satisfy the condition. 5651 */ 5652 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5653 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5654 /* We ACK each frame or... */ 5655 tcp_in_quickack_mode(sk) || 5656 /* Protocol state mandates a one-time immediate ACK */ 5657 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5658 send_now: 5659 tcp_send_ack(sk); 5660 return; 5661 } 5662 5663 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5664 tcp_send_delayed_ack(sk); 5665 return; 5666 } 5667 5668 if (!tcp_is_sack(tp) || 5669 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5670 goto send_now; 5671 5672 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5673 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5674 tp->dup_ack_counter = 0; 5675 } 5676 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5677 tp->dup_ack_counter++; 5678 goto send_now; 5679 } 5680 tp->compressed_ack++; 5681 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5682 return; 5683 5684 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5685 5686 rtt = tp->rcv_rtt_est.rtt_us; 5687 if (tp->srtt_us && tp->srtt_us < rtt) 5688 rtt = tp->srtt_us; 5689 5690 delay = min_t(unsigned long, 5691 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5692 rtt * (NSEC_PER_USEC >> 3)/20); 5693 sock_hold(sk); 5694 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5695 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5696 HRTIMER_MODE_REL_PINNED_SOFT); 5697 } 5698 5699 static inline void tcp_ack_snd_check(struct sock *sk) 5700 { 5701 if (!inet_csk_ack_scheduled(sk)) { 5702 /* We sent a data segment already. */ 5703 return; 5704 } 5705 __tcp_ack_snd_check(sk, 1); 5706 } 5707 5708 /* 5709 * This routine is only called when we have urgent data 5710 * signaled. Its the 'slow' part of tcp_urg. It could be 5711 * moved inline now as tcp_urg is only called from one 5712 * place. We handle URGent data wrong. We have to - as 5713 * BSD still doesn't use the correction from RFC961. 5714 * For 1003.1g we should support a new option TCP_STDURG to permit 5715 * either form (or just set the sysctl tcp_stdurg). 5716 */ 5717 5718 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5719 { 5720 struct tcp_sock *tp = tcp_sk(sk); 5721 u32 ptr = ntohs(th->urg_ptr); 5722 5723 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5724 ptr--; 5725 ptr += ntohl(th->seq); 5726 5727 /* Ignore urgent data that we've already seen and read. */ 5728 if (after(tp->copied_seq, ptr)) 5729 return; 5730 5731 /* Do not replay urg ptr. 5732 * 5733 * NOTE: interesting situation not covered by specs. 5734 * Misbehaving sender may send urg ptr, pointing to segment, 5735 * which we already have in ofo queue. We are not able to fetch 5736 * such data and will stay in TCP_URG_NOTYET until will be eaten 5737 * by recvmsg(). Seems, we are not obliged to handle such wicked 5738 * situations. But it is worth to think about possibility of some 5739 * DoSes using some hypothetical application level deadlock. 5740 */ 5741 if (before(ptr, tp->rcv_nxt)) 5742 return; 5743 5744 /* Do we already have a newer (or duplicate) urgent pointer? */ 5745 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5746 return; 5747 5748 /* Tell the world about our new urgent pointer. */ 5749 sk_send_sigurg(sk); 5750 5751 /* We may be adding urgent data when the last byte read was 5752 * urgent. To do this requires some care. We cannot just ignore 5753 * tp->copied_seq since we would read the last urgent byte again 5754 * as data, nor can we alter copied_seq until this data arrives 5755 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5756 * 5757 * NOTE. Double Dutch. Rendering to plain English: author of comment 5758 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5759 * and expect that both A and B disappear from stream. This is _wrong_. 5760 * Though this happens in BSD with high probability, this is occasional. 5761 * Any application relying on this is buggy. Note also, that fix "works" 5762 * only in this artificial test. Insert some normal data between A and B and we will 5763 * decline of BSD again. Verdict: it is better to remove to trap 5764 * buggy users. 5765 */ 5766 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5767 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5768 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5769 tp->copied_seq++; 5770 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5771 __skb_unlink(skb, &sk->sk_receive_queue); 5772 __kfree_skb(skb); 5773 } 5774 } 5775 5776 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5777 WRITE_ONCE(tp->urg_seq, ptr); 5778 5779 /* Disable header prediction. */ 5780 tp->pred_flags = 0; 5781 } 5782 5783 /* This is the 'fast' part of urgent handling. */ 5784 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5785 { 5786 struct tcp_sock *tp = tcp_sk(sk); 5787 5788 /* Check if we get a new urgent pointer - normally not. */ 5789 if (unlikely(th->urg)) 5790 tcp_check_urg(sk, th); 5791 5792 /* Do we wait for any urgent data? - normally not... */ 5793 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5794 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5795 th->syn; 5796 5797 /* Is the urgent pointer pointing into this packet? */ 5798 if (ptr < skb->len) { 5799 u8 tmp; 5800 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5801 BUG(); 5802 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5803 if (!sock_flag(sk, SOCK_DEAD)) 5804 sk->sk_data_ready(sk); 5805 } 5806 } 5807 } 5808 5809 /* Accept RST for rcv_nxt - 1 after a FIN. 5810 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5811 * FIN is sent followed by a RST packet. The RST is sent with the same 5812 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5813 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5814 * ACKs on the closed socket. In addition middleboxes can drop either the 5815 * challenge ACK or a subsequent RST. 5816 */ 5817 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5818 { 5819 const struct tcp_sock *tp = tcp_sk(sk); 5820 5821 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5822 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5823 TCPF_CLOSING)); 5824 } 5825 5826 /* Does PAWS and seqno based validation of an incoming segment, flags will 5827 * play significant role here. 5828 */ 5829 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5830 const struct tcphdr *th, int syn_inerr) 5831 { 5832 struct tcp_sock *tp = tcp_sk(sk); 5833 SKB_DR(reason); 5834 5835 /* RFC1323: H1. Apply PAWS check first. */ 5836 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5837 tp->rx_opt.saw_tstamp && 5838 tcp_paws_discard(sk, skb)) { 5839 if (!th->rst) { 5840 if (unlikely(th->syn)) 5841 goto syn_challenge; 5842 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5843 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5844 LINUX_MIB_TCPACKSKIPPEDPAWS, 5845 &tp->last_oow_ack_time)) 5846 tcp_send_dupack(sk, skb); 5847 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5848 goto discard; 5849 } 5850 /* Reset is accepted even if it did not pass PAWS. */ 5851 } 5852 5853 /* Step 1: check sequence number */ 5854 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5855 if (reason) { 5856 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5857 * (RST) segments are validated by checking their SEQ-fields." 5858 * And page 69: "If an incoming segment is not acceptable, 5859 * an acknowledgment should be sent in reply (unless the RST 5860 * bit is set, if so drop the segment and return)". 5861 */ 5862 if (!th->rst) { 5863 if (th->syn) 5864 goto syn_challenge; 5865 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5866 LINUX_MIB_TCPACKSKIPPEDSEQ, 5867 &tp->last_oow_ack_time)) 5868 tcp_send_dupack(sk, skb); 5869 } else if (tcp_reset_check(sk, skb)) { 5870 goto reset; 5871 } 5872 goto discard; 5873 } 5874 5875 /* Step 2: check RST bit */ 5876 if (th->rst) { 5877 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5878 * FIN and SACK too if available): 5879 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5880 * the right-most SACK block, 5881 * then 5882 * RESET the connection 5883 * else 5884 * Send a challenge ACK 5885 */ 5886 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5887 tcp_reset_check(sk, skb)) 5888 goto reset; 5889 5890 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5891 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5892 int max_sack = sp[0].end_seq; 5893 int this_sack; 5894 5895 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5896 ++this_sack) { 5897 max_sack = after(sp[this_sack].end_seq, 5898 max_sack) ? 5899 sp[this_sack].end_seq : max_sack; 5900 } 5901 5902 if (TCP_SKB_CB(skb)->seq == max_sack) 5903 goto reset; 5904 } 5905 5906 /* Disable TFO if RST is out-of-order 5907 * and no data has been received 5908 * for current active TFO socket 5909 */ 5910 if (tp->syn_fastopen && !tp->data_segs_in && 5911 sk->sk_state == TCP_ESTABLISHED) 5912 tcp_fastopen_active_disable(sk); 5913 tcp_send_challenge_ack(sk); 5914 SKB_DR_SET(reason, TCP_RESET); 5915 goto discard; 5916 } 5917 5918 /* step 3: check security and precedence [ignored] */ 5919 5920 /* step 4: Check for a SYN 5921 * RFC 5961 4.2 : Send a challenge ack 5922 */ 5923 if (th->syn) { 5924 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 5925 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 5926 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 5927 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 5928 goto pass; 5929 syn_challenge: 5930 if (syn_inerr) 5931 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5932 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5933 tcp_send_challenge_ack(sk); 5934 SKB_DR_SET(reason, TCP_INVALID_SYN); 5935 goto discard; 5936 } 5937 5938 pass: 5939 bpf_skops_parse_hdr(sk, skb); 5940 5941 return true; 5942 5943 discard: 5944 tcp_drop_reason(sk, skb, reason); 5945 return false; 5946 5947 reset: 5948 tcp_reset(sk, skb); 5949 __kfree_skb(skb); 5950 return false; 5951 } 5952 5953 /* 5954 * TCP receive function for the ESTABLISHED state. 5955 * 5956 * It is split into a fast path and a slow path. The fast path is 5957 * disabled when: 5958 * - A zero window was announced from us - zero window probing 5959 * is only handled properly in the slow path. 5960 * - Out of order segments arrived. 5961 * - Urgent data is expected. 5962 * - There is no buffer space left 5963 * - Unexpected TCP flags/window values/header lengths are received 5964 * (detected by checking the TCP header against pred_flags) 5965 * - Data is sent in both directions. Fast path only supports pure senders 5966 * or pure receivers (this means either the sequence number or the ack 5967 * value must stay constant) 5968 * - Unexpected TCP option. 5969 * 5970 * When these conditions are not satisfied it drops into a standard 5971 * receive procedure patterned after RFC793 to handle all cases. 5972 * The first three cases are guaranteed by proper pred_flags setting, 5973 * the rest is checked inline. Fast processing is turned on in 5974 * tcp_data_queue when everything is OK. 5975 */ 5976 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5977 { 5978 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5979 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5980 struct tcp_sock *tp = tcp_sk(sk); 5981 unsigned int len = skb->len; 5982 5983 /* TCP congestion window tracking */ 5984 trace_tcp_probe(sk, skb); 5985 5986 tcp_mstamp_refresh(tp); 5987 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5988 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5989 /* 5990 * Header prediction. 5991 * The code loosely follows the one in the famous 5992 * "30 instruction TCP receive" Van Jacobson mail. 5993 * 5994 * Van's trick is to deposit buffers into socket queue 5995 * on a device interrupt, to call tcp_recv function 5996 * on the receive process context and checksum and copy 5997 * the buffer to user space. smart... 5998 * 5999 * Our current scheme is not silly either but we take the 6000 * extra cost of the net_bh soft interrupt processing... 6001 * We do checksum and copy also but from device to kernel. 6002 */ 6003 6004 tp->rx_opt.saw_tstamp = 0; 6005 6006 /* pred_flags is 0xS?10 << 16 + snd_wnd 6007 * if header_prediction is to be made 6008 * 'S' will always be tp->tcp_header_len >> 2 6009 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6010 * turn it off (when there are holes in the receive 6011 * space for instance) 6012 * PSH flag is ignored. 6013 */ 6014 6015 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6016 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6017 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6018 int tcp_header_len = tp->tcp_header_len; 6019 6020 /* Timestamp header prediction: tcp_header_len 6021 * is automatically equal to th->doff*4 due to pred_flags 6022 * match. 6023 */ 6024 6025 /* Check timestamp */ 6026 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6027 /* No? Slow path! */ 6028 if (!tcp_parse_aligned_timestamp(tp, th)) 6029 goto slow_path; 6030 6031 /* If PAWS failed, check it more carefully in slow path */ 6032 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6033 goto slow_path; 6034 6035 /* DO NOT update ts_recent here, if checksum fails 6036 * and timestamp was corrupted part, it will result 6037 * in a hung connection since we will drop all 6038 * future packets due to the PAWS test. 6039 */ 6040 } 6041 6042 if (len <= tcp_header_len) { 6043 /* Bulk data transfer: sender */ 6044 if (len == tcp_header_len) { 6045 /* Predicted packet is in window by definition. 6046 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6047 * Hence, check seq<=rcv_wup reduces to: 6048 */ 6049 if (tcp_header_len == 6050 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6051 tp->rcv_nxt == tp->rcv_wup) 6052 tcp_store_ts_recent(tp); 6053 6054 /* We know that such packets are checksummed 6055 * on entry. 6056 */ 6057 tcp_ack(sk, skb, 0); 6058 __kfree_skb(skb); 6059 tcp_data_snd_check(sk); 6060 /* When receiving pure ack in fast path, update 6061 * last ts ecr directly instead of calling 6062 * tcp_rcv_rtt_measure_ts() 6063 */ 6064 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6065 return; 6066 } else { /* Header too small */ 6067 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6068 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6069 goto discard; 6070 } 6071 } else { 6072 int eaten = 0; 6073 bool fragstolen = false; 6074 6075 if (tcp_checksum_complete(skb)) 6076 goto csum_error; 6077 6078 if ((int)skb->truesize > sk->sk_forward_alloc) 6079 goto step5; 6080 6081 /* Predicted packet is in window by definition. 6082 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6083 * Hence, check seq<=rcv_wup reduces to: 6084 */ 6085 if (tcp_header_len == 6086 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6087 tp->rcv_nxt == tp->rcv_wup) 6088 tcp_store_ts_recent(tp); 6089 6090 tcp_rcv_rtt_measure_ts(sk, skb); 6091 6092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6093 6094 /* Bulk data transfer: receiver */ 6095 skb_dst_drop(skb); 6096 __skb_pull(skb, tcp_header_len); 6097 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6098 6099 tcp_event_data_recv(sk, skb); 6100 6101 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6102 /* Well, only one small jumplet in fast path... */ 6103 tcp_ack(sk, skb, FLAG_DATA); 6104 tcp_data_snd_check(sk); 6105 if (!inet_csk_ack_scheduled(sk)) 6106 goto no_ack; 6107 } else { 6108 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6109 } 6110 6111 __tcp_ack_snd_check(sk, 0); 6112 no_ack: 6113 if (eaten) 6114 kfree_skb_partial(skb, fragstolen); 6115 tcp_data_ready(sk); 6116 return; 6117 } 6118 } 6119 6120 slow_path: 6121 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6122 goto csum_error; 6123 6124 if (!th->ack && !th->rst && !th->syn) { 6125 reason = SKB_DROP_REASON_TCP_FLAGS; 6126 goto discard; 6127 } 6128 6129 /* 6130 * Standard slow path. 6131 */ 6132 6133 if (!tcp_validate_incoming(sk, skb, th, 1)) 6134 return; 6135 6136 step5: 6137 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6138 if ((int)reason < 0) { 6139 reason = -reason; 6140 goto discard; 6141 } 6142 tcp_rcv_rtt_measure_ts(sk, skb); 6143 6144 /* Process urgent data. */ 6145 tcp_urg(sk, skb, th); 6146 6147 /* step 7: process the segment text */ 6148 tcp_data_queue(sk, skb); 6149 6150 tcp_data_snd_check(sk); 6151 tcp_ack_snd_check(sk); 6152 return; 6153 6154 csum_error: 6155 reason = SKB_DROP_REASON_TCP_CSUM; 6156 trace_tcp_bad_csum(skb); 6157 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6158 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6159 6160 discard: 6161 tcp_drop_reason(sk, skb, reason); 6162 } 6163 EXPORT_SYMBOL(tcp_rcv_established); 6164 6165 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6166 { 6167 struct inet_connection_sock *icsk = inet_csk(sk); 6168 struct tcp_sock *tp = tcp_sk(sk); 6169 6170 tcp_mtup_init(sk); 6171 icsk->icsk_af_ops->rebuild_header(sk); 6172 tcp_init_metrics(sk); 6173 6174 /* Initialize the congestion window to start the transfer. 6175 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6176 * retransmitted. In light of RFC6298 more aggressive 1sec 6177 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6178 * retransmission has occurred. 6179 */ 6180 if (tp->total_retrans > 1 && tp->undo_marker) 6181 tcp_snd_cwnd_set(tp, 1); 6182 else 6183 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6184 tp->snd_cwnd_stamp = tcp_jiffies32; 6185 6186 bpf_skops_established(sk, bpf_op, skb); 6187 /* Initialize congestion control unless BPF initialized it already: */ 6188 if (!icsk->icsk_ca_initialized) 6189 tcp_init_congestion_control(sk); 6190 tcp_init_buffer_space(sk); 6191 } 6192 6193 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6194 { 6195 struct tcp_sock *tp = tcp_sk(sk); 6196 struct inet_connection_sock *icsk = inet_csk(sk); 6197 6198 tcp_set_state(sk, TCP_ESTABLISHED); 6199 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6200 6201 if (skb) { 6202 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6203 security_inet_conn_established(sk, skb); 6204 sk_mark_napi_id(sk, skb); 6205 } 6206 6207 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6208 6209 /* Prevent spurious tcp_cwnd_restart() on first data 6210 * packet. 6211 */ 6212 tp->lsndtime = tcp_jiffies32; 6213 6214 if (sock_flag(sk, SOCK_KEEPOPEN)) 6215 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6216 6217 if (!tp->rx_opt.snd_wscale) 6218 __tcp_fast_path_on(tp, tp->snd_wnd); 6219 else 6220 tp->pred_flags = 0; 6221 } 6222 6223 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6224 struct tcp_fastopen_cookie *cookie) 6225 { 6226 struct tcp_sock *tp = tcp_sk(sk); 6227 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6228 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6229 bool syn_drop = false; 6230 6231 if (mss == tp->rx_opt.user_mss) { 6232 struct tcp_options_received opt; 6233 6234 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6235 tcp_clear_options(&opt); 6236 opt.user_mss = opt.mss_clamp = 0; 6237 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6238 mss = opt.mss_clamp; 6239 } 6240 6241 if (!tp->syn_fastopen) { 6242 /* Ignore an unsolicited cookie */ 6243 cookie->len = -1; 6244 } else if (tp->total_retrans) { 6245 /* SYN timed out and the SYN-ACK neither has a cookie nor 6246 * acknowledges data. Presumably the remote received only 6247 * the retransmitted (regular) SYNs: either the original 6248 * SYN-data or the corresponding SYN-ACK was dropped. 6249 */ 6250 syn_drop = (cookie->len < 0 && data); 6251 } else if (cookie->len < 0 && !tp->syn_data) { 6252 /* We requested a cookie but didn't get it. If we did not use 6253 * the (old) exp opt format then try so next time (try_exp=1). 6254 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6255 */ 6256 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6257 } 6258 6259 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6260 6261 if (data) { /* Retransmit unacked data in SYN */ 6262 if (tp->total_retrans) 6263 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6264 else 6265 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6266 skb_rbtree_walk_from(data) 6267 tcp_mark_skb_lost(sk, data); 6268 tcp_non_congestion_loss_retransmit(sk); 6269 NET_INC_STATS(sock_net(sk), 6270 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6271 return true; 6272 } 6273 tp->syn_data_acked = tp->syn_data; 6274 if (tp->syn_data_acked) { 6275 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6276 /* SYN-data is counted as two separate packets in tcp_ack() */ 6277 if (tp->delivered > 1) 6278 --tp->delivered; 6279 } 6280 6281 tcp_fastopen_add_skb(sk, synack); 6282 6283 return false; 6284 } 6285 6286 static void smc_check_reset_syn(struct tcp_sock *tp) 6287 { 6288 #if IS_ENABLED(CONFIG_SMC) 6289 if (static_branch_unlikely(&tcp_have_smc)) { 6290 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6291 tp->syn_smc = 0; 6292 } 6293 #endif 6294 } 6295 6296 static void tcp_try_undo_spurious_syn(struct sock *sk) 6297 { 6298 struct tcp_sock *tp = tcp_sk(sk); 6299 u32 syn_stamp; 6300 6301 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6302 * spurious if the ACK's timestamp option echo value matches the 6303 * original SYN timestamp. 6304 */ 6305 syn_stamp = tp->retrans_stamp; 6306 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6307 syn_stamp == tp->rx_opt.rcv_tsecr) 6308 tp->undo_marker = 0; 6309 } 6310 6311 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6312 const struct tcphdr *th) 6313 { 6314 struct inet_connection_sock *icsk = inet_csk(sk); 6315 struct tcp_sock *tp = tcp_sk(sk); 6316 struct tcp_fastopen_cookie foc = { .len = -1 }; 6317 int saved_clamp = tp->rx_opt.mss_clamp; 6318 bool fastopen_fail; 6319 SKB_DR(reason); 6320 6321 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6322 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6323 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6324 6325 if (th->ack) { 6326 /* rfc793: 6327 * "If the state is SYN-SENT then 6328 * first check the ACK bit 6329 * If the ACK bit is set 6330 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6331 * a reset (unless the RST bit is set, if so drop 6332 * the segment and return)" 6333 */ 6334 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6335 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6336 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6337 if (icsk->icsk_retransmits == 0) 6338 inet_csk_reset_xmit_timer(sk, 6339 ICSK_TIME_RETRANS, 6340 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6341 goto reset_and_undo; 6342 } 6343 6344 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6345 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6346 tcp_time_stamp(tp))) { 6347 NET_INC_STATS(sock_net(sk), 6348 LINUX_MIB_PAWSACTIVEREJECTED); 6349 goto reset_and_undo; 6350 } 6351 6352 /* Now ACK is acceptable. 6353 * 6354 * "If the RST bit is set 6355 * If the ACK was acceptable then signal the user "error: 6356 * connection reset", drop the segment, enter CLOSED state, 6357 * delete TCB, and return." 6358 */ 6359 6360 if (th->rst) { 6361 tcp_reset(sk, skb); 6362 consume: 6363 __kfree_skb(skb); 6364 return 0; 6365 } 6366 6367 /* rfc793: 6368 * "fifth, if neither of the SYN or RST bits is set then 6369 * drop the segment and return." 6370 * 6371 * See note below! 6372 * --ANK(990513) 6373 */ 6374 if (!th->syn) { 6375 SKB_DR_SET(reason, TCP_FLAGS); 6376 goto discard_and_undo; 6377 } 6378 /* rfc793: 6379 * "If the SYN bit is on ... 6380 * are acceptable then ... 6381 * (our SYN has been ACKed), change the connection 6382 * state to ESTABLISHED..." 6383 */ 6384 6385 tcp_ecn_rcv_synack(tp, th); 6386 6387 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6388 tcp_try_undo_spurious_syn(sk); 6389 tcp_ack(sk, skb, FLAG_SLOWPATH); 6390 6391 /* Ok.. it's good. Set up sequence numbers and 6392 * move to established. 6393 */ 6394 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6395 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6396 6397 /* RFC1323: The window in SYN & SYN/ACK segments is 6398 * never scaled. 6399 */ 6400 tp->snd_wnd = ntohs(th->window); 6401 6402 if (!tp->rx_opt.wscale_ok) { 6403 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6404 WRITE_ONCE(tp->window_clamp, 6405 min(tp->window_clamp, 65535U)); 6406 } 6407 6408 if (tp->rx_opt.saw_tstamp) { 6409 tp->rx_opt.tstamp_ok = 1; 6410 tp->tcp_header_len = 6411 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6412 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6413 tcp_store_ts_recent(tp); 6414 } else { 6415 tp->tcp_header_len = sizeof(struct tcphdr); 6416 } 6417 6418 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6419 tcp_initialize_rcv_mss(sk); 6420 6421 /* Remember, tcp_poll() does not lock socket! 6422 * Change state from SYN-SENT only after copied_seq 6423 * is initialized. */ 6424 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6425 6426 smc_check_reset_syn(tp); 6427 6428 smp_mb(); 6429 6430 tcp_finish_connect(sk, skb); 6431 6432 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6433 tcp_rcv_fastopen_synack(sk, skb, &foc); 6434 6435 if (!sock_flag(sk, SOCK_DEAD)) { 6436 sk->sk_state_change(sk); 6437 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6438 } 6439 if (fastopen_fail) 6440 return -1; 6441 if (sk->sk_write_pending || 6442 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6443 inet_csk_in_pingpong_mode(sk)) { 6444 /* Save one ACK. Data will be ready after 6445 * several ticks, if write_pending is set. 6446 * 6447 * It may be deleted, but with this feature tcpdumps 6448 * look so _wonderfully_ clever, that I was not able 6449 * to stand against the temptation 8) --ANK 6450 */ 6451 inet_csk_schedule_ack(sk); 6452 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6453 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6454 TCP_DELACK_MAX, TCP_RTO_MAX); 6455 goto consume; 6456 } 6457 tcp_send_ack(sk); 6458 return -1; 6459 } 6460 6461 /* No ACK in the segment */ 6462 6463 if (th->rst) { 6464 /* rfc793: 6465 * "If the RST bit is set 6466 * 6467 * Otherwise (no ACK) drop the segment and return." 6468 */ 6469 SKB_DR_SET(reason, TCP_RESET); 6470 goto discard_and_undo; 6471 } 6472 6473 /* PAWS check. */ 6474 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6475 tcp_paws_reject(&tp->rx_opt, 0)) { 6476 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6477 goto discard_and_undo; 6478 } 6479 if (th->syn) { 6480 /* We see SYN without ACK. It is attempt of 6481 * simultaneous connect with crossed SYNs. 6482 * Particularly, it can be connect to self. 6483 */ 6484 tcp_set_state(sk, TCP_SYN_RECV); 6485 6486 if (tp->rx_opt.saw_tstamp) { 6487 tp->rx_opt.tstamp_ok = 1; 6488 tcp_store_ts_recent(tp); 6489 tp->tcp_header_len = 6490 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6491 } else { 6492 tp->tcp_header_len = sizeof(struct tcphdr); 6493 } 6494 6495 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6496 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6497 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6498 6499 /* RFC1323: The window in SYN & SYN/ACK segments is 6500 * never scaled. 6501 */ 6502 tp->snd_wnd = ntohs(th->window); 6503 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6504 tp->max_window = tp->snd_wnd; 6505 6506 tcp_ecn_rcv_syn(tp, th); 6507 6508 tcp_mtup_init(sk); 6509 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6510 tcp_initialize_rcv_mss(sk); 6511 6512 tcp_send_synack(sk); 6513 #if 0 6514 /* Note, we could accept data and URG from this segment. 6515 * There are no obstacles to make this (except that we must 6516 * either change tcp_recvmsg() to prevent it from returning data 6517 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6518 * 6519 * However, if we ignore data in ACKless segments sometimes, 6520 * we have no reasons to accept it sometimes. 6521 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6522 * is not flawless. So, discard packet for sanity. 6523 * Uncomment this return to process the data. 6524 */ 6525 return -1; 6526 #else 6527 goto consume; 6528 #endif 6529 } 6530 /* "fifth, if neither of the SYN or RST bits is set then 6531 * drop the segment and return." 6532 */ 6533 6534 discard_and_undo: 6535 tcp_clear_options(&tp->rx_opt); 6536 tp->rx_opt.mss_clamp = saved_clamp; 6537 tcp_drop_reason(sk, skb, reason); 6538 return 0; 6539 6540 reset_and_undo: 6541 tcp_clear_options(&tp->rx_opt); 6542 tp->rx_opt.mss_clamp = saved_clamp; 6543 return 1; 6544 } 6545 6546 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6547 { 6548 struct tcp_sock *tp = tcp_sk(sk); 6549 struct request_sock *req; 6550 6551 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6552 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6553 */ 6554 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6555 tcp_try_undo_recovery(sk); 6556 6557 tcp_update_rto_time(tp); 6558 inet_csk(sk)->icsk_retransmits = 0; 6559 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6560 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6561 * need to zero retrans_stamp here to prevent spurious 6562 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6563 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6564 * set entering CA_Recovery, for correct retransmits_timed_out() and 6565 * undo behavior. 6566 */ 6567 tcp_retrans_stamp_cleanup(sk); 6568 6569 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6570 * we no longer need req so release it. 6571 */ 6572 req = rcu_dereference_protected(tp->fastopen_rsk, 6573 lockdep_sock_is_held(sk)); 6574 reqsk_fastopen_remove(sk, req, false); 6575 6576 /* Re-arm the timer because data may have been sent out. 6577 * This is similar to the regular data transmission case 6578 * when new data has just been ack'ed. 6579 * 6580 * (TFO) - we could try to be more aggressive and 6581 * retransmitting any data sooner based on when they 6582 * are sent out. 6583 */ 6584 tcp_rearm_rto(sk); 6585 } 6586 6587 /* 6588 * This function implements the receiving procedure of RFC 793 for 6589 * all states except ESTABLISHED and TIME_WAIT. 6590 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6591 * address independent. 6592 */ 6593 6594 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6595 { 6596 struct tcp_sock *tp = tcp_sk(sk); 6597 struct inet_connection_sock *icsk = inet_csk(sk); 6598 const struct tcphdr *th = tcp_hdr(skb); 6599 struct request_sock *req; 6600 int queued = 0; 6601 bool acceptable; 6602 SKB_DR(reason); 6603 6604 switch (sk->sk_state) { 6605 case TCP_CLOSE: 6606 SKB_DR_SET(reason, TCP_CLOSE); 6607 goto discard; 6608 6609 case TCP_LISTEN: 6610 if (th->ack) 6611 return 1; 6612 6613 if (th->rst) { 6614 SKB_DR_SET(reason, TCP_RESET); 6615 goto discard; 6616 } 6617 if (th->syn) { 6618 if (th->fin) { 6619 SKB_DR_SET(reason, TCP_FLAGS); 6620 goto discard; 6621 } 6622 /* It is possible that we process SYN packets from backlog, 6623 * so we need to make sure to disable BH and RCU right there. 6624 */ 6625 rcu_read_lock(); 6626 local_bh_disable(); 6627 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6628 local_bh_enable(); 6629 rcu_read_unlock(); 6630 6631 if (!acceptable) 6632 return 1; 6633 consume_skb(skb); 6634 return 0; 6635 } 6636 SKB_DR_SET(reason, TCP_FLAGS); 6637 goto discard; 6638 6639 case TCP_SYN_SENT: 6640 tp->rx_opt.saw_tstamp = 0; 6641 tcp_mstamp_refresh(tp); 6642 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6643 if (queued >= 0) 6644 return queued; 6645 6646 /* Do step6 onward by hand. */ 6647 tcp_urg(sk, skb, th); 6648 __kfree_skb(skb); 6649 tcp_data_snd_check(sk); 6650 return 0; 6651 } 6652 6653 tcp_mstamp_refresh(tp); 6654 tp->rx_opt.saw_tstamp = 0; 6655 req = rcu_dereference_protected(tp->fastopen_rsk, 6656 lockdep_sock_is_held(sk)); 6657 if (req) { 6658 bool req_stolen; 6659 6660 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6661 sk->sk_state != TCP_FIN_WAIT1); 6662 6663 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6664 SKB_DR_SET(reason, TCP_FASTOPEN); 6665 goto discard; 6666 } 6667 } 6668 6669 if (!th->ack && !th->rst && !th->syn) { 6670 SKB_DR_SET(reason, TCP_FLAGS); 6671 goto discard; 6672 } 6673 if (!tcp_validate_incoming(sk, skb, th, 0)) 6674 return 0; 6675 6676 /* step 5: check the ACK field */ 6677 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6678 FLAG_UPDATE_TS_RECENT | 6679 FLAG_NO_CHALLENGE_ACK) > 0; 6680 6681 if (!acceptable) { 6682 if (sk->sk_state == TCP_SYN_RECV) 6683 return 1; /* send one RST */ 6684 tcp_send_challenge_ack(sk); 6685 SKB_DR_SET(reason, TCP_OLD_ACK); 6686 goto discard; 6687 } 6688 switch (sk->sk_state) { 6689 case TCP_SYN_RECV: 6690 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6691 if (!tp->srtt_us) 6692 tcp_synack_rtt_meas(sk, req); 6693 6694 if (req) { 6695 tcp_rcv_synrecv_state_fastopen(sk); 6696 } else { 6697 tcp_try_undo_spurious_syn(sk); 6698 tp->retrans_stamp = 0; 6699 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6700 skb); 6701 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6702 } 6703 smp_mb(); 6704 tcp_set_state(sk, TCP_ESTABLISHED); 6705 sk->sk_state_change(sk); 6706 6707 /* Note, that this wakeup is only for marginal crossed SYN case. 6708 * Passively open sockets are not waked up, because 6709 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6710 */ 6711 if (sk->sk_socket) 6712 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6713 6714 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6715 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6716 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6717 6718 if (tp->rx_opt.tstamp_ok) 6719 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6720 6721 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6722 tcp_update_pacing_rate(sk); 6723 6724 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6725 tp->lsndtime = tcp_jiffies32; 6726 6727 tcp_initialize_rcv_mss(sk); 6728 tcp_fast_path_on(tp); 6729 if (sk->sk_shutdown & SEND_SHUTDOWN) 6730 tcp_shutdown(sk, SEND_SHUTDOWN); 6731 break; 6732 6733 case TCP_FIN_WAIT1: { 6734 int tmo; 6735 6736 if (req) 6737 tcp_rcv_synrecv_state_fastopen(sk); 6738 6739 if (tp->snd_una != tp->write_seq) 6740 break; 6741 6742 tcp_set_state(sk, TCP_FIN_WAIT2); 6743 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6744 6745 sk_dst_confirm(sk); 6746 6747 if (!sock_flag(sk, SOCK_DEAD)) { 6748 /* Wake up lingering close() */ 6749 sk->sk_state_change(sk); 6750 break; 6751 } 6752 6753 if (READ_ONCE(tp->linger2) < 0) { 6754 tcp_done(sk); 6755 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6756 return 1; 6757 } 6758 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6759 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6760 /* Receive out of order FIN after close() */ 6761 if (tp->syn_fastopen && th->fin) 6762 tcp_fastopen_active_disable(sk); 6763 tcp_done(sk); 6764 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6765 return 1; 6766 } 6767 6768 tmo = tcp_fin_time(sk); 6769 if (tmo > TCP_TIMEWAIT_LEN) { 6770 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6771 } else if (th->fin || sock_owned_by_user(sk)) { 6772 /* Bad case. We could lose such FIN otherwise. 6773 * It is not a big problem, but it looks confusing 6774 * and not so rare event. We still can lose it now, 6775 * if it spins in bh_lock_sock(), but it is really 6776 * marginal case. 6777 */ 6778 inet_csk_reset_keepalive_timer(sk, tmo); 6779 } else { 6780 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6781 goto consume; 6782 } 6783 break; 6784 } 6785 6786 case TCP_CLOSING: 6787 if (tp->snd_una == tp->write_seq) { 6788 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6789 goto consume; 6790 } 6791 break; 6792 6793 case TCP_LAST_ACK: 6794 if (tp->snd_una == tp->write_seq) { 6795 tcp_update_metrics(sk); 6796 tcp_done(sk); 6797 goto consume; 6798 } 6799 break; 6800 } 6801 6802 /* step 6: check the URG bit */ 6803 tcp_urg(sk, skb, th); 6804 6805 /* step 7: process the segment text */ 6806 switch (sk->sk_state) { 6807 case TCP_CLOSE_WAIT: 6808 case TCP_CLOSING: 6809 case TCP_LAST_ACK: 6810 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6811 /* If a subflow has been reset, the packet should not 6812 * continue to be processed, drop the packet. 6813 */ 6814 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6815 goto discard; 6816 break; 6817 } 6818 fallthrough; 6819 case TCP_FIN_WAIT1: 6820 case TCP_FIN_WAIT2: 6821 /* RFC 793 says to queue data in these states, 6822 * RFC 1122 says we MUST send a reset. 6823 * BSD 4.4 also does reset. 6824 */ 6825 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6826 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6827 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6828 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6829 tcp_reset(sk, skb); 6830 return 1; 6831 } 6832 } 6833 fallthrough; 6834 case TCP_ESTABLISHED: 6835 tcp_data_queue(sk, skb); 6836 queued = 1; 6837 break; 6838 } 6839 6840 /* tcp_data could move socket to TIME-WAIT */ 6841 if (sk->sk_state != TCP_CLOSE) { 6842 tcp_data_snd_check(sk); 6843 tcp_ack_snd_check(sk); 6844 } 6845 6846 if (!queued) { 6847 discard: 6848 tcp_drop_reason(sk, skb, reason); 6849 } 6850 return 0; 6851 6852 consume: 6853 __kfree_skb(skb); 6854 return 0; 6855 } 6856 EXPORT_SYMBOL(tcp_rcv_state_process); 6857 6858 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6859 { 6860 struct inet_request_sock *ireq = inet_rsk(req); 6861 6862 if (family == AF_INET) 6863 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6864 &ireq->ir_rmt_addr, port); 6865 #if IS_ENABLED(CONFIG_IPV6) 6866 else if (family == AF_INET6) 6867 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6868 &ireq->ir_v6_rmt_addr, port); 6869 #endif 6870 } 6871 6872 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6873 * 6874 * If we receive a SYN packet with these bits set, it means a 6875 * network is playing bad games with TOS bits. In order to 6876 * avoid possible false congestion notifications, we disable 6877 * TCP ECN negotiation. 6878 * 6879 * Exception: tcp_ca wants ECN. This is required for DCTCP 6880 * congestion control: Linux DCTCP asserts ECT on all packets, 6881 * including SYN, which is most optimal solution; however, 6882 * others, such as FreeBSD do not. 6883 * 6884 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6885 * set, indicating the use of a future TCP extension (such as AccECN). See 6886 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6887 * extensions. 6888 */ 6889 static void tcp_ecn_create_request(struct request_sock *req, 6890 const struct sk_buff *skb, 6891 const struct sock *listen_sk, 6892 const struct dst_entry *dst) 6893 { 6894 const struct tcphdr *th = tcp_hdr(skb); 6895 const struct net *net = sock_net(listen_sk); 6896 bool th_ecn = th->ece && th->cwr; 6897 bool ect, ecn_ok; 6898 u32 ecn_ok_dst; 6899 6900 if (!th_ecn) 6901 return; 6902 6903 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6904 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6905 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6906 6907 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6908 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6909 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6910 inet_rsk(req)->ecn_ok = 1; 6911 } 6912 6913 static void tcp_openreq_init(struct request_sock *req, 6914 const struct tcp_options_received *rx_opt, 6915 struct sk_buff *skb, const struct sock *sk) 6916 { 6917 struct inet_request_sock *ireq = inet_rsk(req); 6918 6919 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6920 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6921 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6922 tcp_rsk(req)->snt_synack = 0; 6923 tcp_rsk(req)->last_oow_ack_time = 0; 6924 req->mss = rx_opt->mss_clamp; 6925 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6926 ireq->tstamp_ok = rx_opt->tstamp_ok; 6927 ireq->sack_ok = rx_opt->sack_ok; 6928 ireq->snd_wscale = rx_opt->snd_wscale; 6929 ireq->wscale_ok = rx_opt->wscale_ok; 6930 ireq->acked = 0; 6931 ireq->ecn_ok = 0; 6932 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6933 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6934 ireq->ir_mark = inet_request_mark(sk, skb); 6935 #if IS_ENABLED(CONFIG_SMC) 6936 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6937 tcp_sk(sk)->smc_hs_congested(sk)); 6938 #endif 6939 } 6940 6941 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6942 struct sock *sk_listener, 6943 bool attach_listener) 6944 { 6945 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6946 attach_listener); 6947 6948 if (req) { 6949 struct inet_request_sock *ireq = inet_rsk(req); 6950 6951 ireq->ireq_opt = NULL; 6952 #if IS_ENABLED(CONFIG_IPV6) 6953 ireq->pktopts = NULL; 6954 #endif 6955 atomic64_set(&ireq->ir_cookie, 0); 6956 ireq->ireq_state = TCP_NEW_SYN_RECV; 6957 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6958 ireq->ireq_family = sk_listener->sk_family; 6959 req->timeout = TCP_TIMEOUT_INIT; 6960 } 6961 6962 return req; 6963 } 6964 EXPORT_SYMBOL(inet_reqsk_alloc); 6965 6966 /* 6967 * Return true if a syncookie should be sent 6968 */ 6969 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6970 { 6971 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6972 const char *msg = "Dropping request"; 6973 struct net *net = sock_net(sk); 6974 bool want_cookie = false; 6975 u8 syncookies; 6976 6977 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6978 6979 #ifdef CONFIG_SYN_COOKIES 6980 if (syncookies) { 6981 msg = "Sending cookies"; 6982 want_cookie = true; 6983 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6984 } else 6985 #endif 6986 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6987 6988 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6989 xchg(&queue->synflood_warned, 1) == 0) { 6990 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6991 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6992 proto, inet6_rcv_saddr(sk), 6993 sk->sk_num, msg); 6994 } else { 6995 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6996 proto, &sk->sk_rcv_saddr, 6997 sk->sk_num, msg); 6998 } 6999 } 7000 7001 return want_cookie; 7002 } 7003 7004 static void tcp_reqsk_record_syn(const struct sock *sk, 7005 struct request_sock *req, 7006 const struct sk_buff *skb) 7007 { 7008 if (tcp_sk(sk)->save_syn) { 7009 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7010 struct saved_syn *saved_syn; 7011 u32 mac_hdrlen; 7012 void *base; 7013 7014 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7015 base = skb_mac_header(skb); 7016 mac_hdrlen = skb_mac_header_len(skb); 7017 len += mac_hdrlen; 7018 } else { 7019 base = skb_network_header(skb); 7020 mac_hdrlen = 0; 7021 } 7022 7023 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7024 GFP_ATOMIC); 7025 if (saved_syn) { 7026 saved_syn->mac_hdrlen = mac_hdrlen; 7027 saved_syn->network_hdrlen = skb_network_header_len(skb); 7028 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7029 memcpy(saved_syn->data, base, len); 7030 req->saved_syn = saved_syn; 7031 } 7032 } 7033 } 7034 7035 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7036 * used for SYN cookie generation. 7037 */ 7038 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7039 const struct tcp_request_sock_ops *af_ops, 7040 struct sock *sk, struct tcphdr *th) 7041 { 7042 struct tcp_sock *tp = tcp_sk(sk); 7043 u16 mss; 7044 7045 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7046 !inet_csk_reqsk_queue_is_full(sk)) 7047 return 0; 7048 7049 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7050 return 0; 7051 7052 if (sk_acceptq_is_full(sk)) { 7053 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7054 return 0; 7055 } 7056 7057 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7058 if (!mss) 7059 mss = af_ops->mss_clamp; 7060 7061 return mss; 7062 } 7063 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7064 7065 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7066 const struct tcp_request_sock_ops *af_ops, 7067 struct sock *sk, struct sk_buff *skb) 7068 { 7069 struct tcp_fastopen_cookie foc = { .len = -1 }; 7070 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 7071 struct tcp_options_received tmp_opt; 7072 struct tcp_sock *tp = tcp_sk(sk); 7073 struct net *net = sock_net(sk); 7074 struct sock *fastopen_sk = NULL; 7075 struct request_sock *req; 7076 bool want_cookie = false; 7077 struct dst_entry *dst; 7078 struct flowi fl; 7079 u8 syncookies; 7080 7081 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7082 7083 /* TW buckets are converted to open requests without 7084 * limitations, they conserve resources and peer is 7085 * evidently real one. 7086 */ 7087 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7088 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7089 if (!want_cookie) 7090 goto drop; 7091 } 7092 7093 if (sk_acceptq_is_full(sk)) { 7094 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7095 goto drop; 7096 } 7097 7098 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7099 if (!req) 7100 goto drop; 7101 7102 req->syncookie = want_cookie; 7103 tcp_rsk(req)->af_specific = af_ops; 7104 tcp_rsk(req)->ts_off = 0; 7105 #if IS_ENABLED(CONFIG_MPTCP) 7106 tcp_rsk(req)->is_mptcp = 0; 7107 #endif 7108 7109 tcp_clear_options(&tmp_opt); 7110 tmp_opt.mss_clamp = af_ops->mss_clamp; 7111 tmp_opt.user_mss = tp->rx_opt.user_mss; 7112 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7113 want_cookie ? NULL : &foc); 7114 7115 if (want_cookie && !tmp_opt.saw_tstamp) 7116 tcp_clear_options(&tmp_opt); 7117 7118 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7119 tmp_opt.smc_ok = 0; 7120 7121 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7122 tcp_openreq_init(req, &tmp_opt, skb, sk); 7123 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7124 7125 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7126 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7127 7128 dst = af_ops->route_req(sk, skb, &fl, req); 7129 if (!dst) 7130 goto drop_and_free; 7131 7132 if (tmp_opt.tstamp_ok) 7133 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7134 7135 if (!want_cookie && !isn) { 7136 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7137 7138 /* Kill the following clause, if you dislike this way. */ 7139 if (!syncookies && 7140 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7141 (max_syn_backlog >> 2)) && 7142 !tcp_peer_is_proven(req, dst)) { 7143 /* Without syncookies last quarter of 7144 * backlog is filled with destinations, 7145 * proven to be alive. 7146 * It means that we continue to communicate 7147 * to destinations, already remembered 7148 * to the moment of synflood. 7149 */ 7150 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7151 rsk_ops->family); 7152 goto drop_and_release; 7153 } 7154 7155 isn = af_ops->init_seq(skb); 7156 } 7157 7158 tcp_ecn_create_request(req, skb, sk, dst); 7159 7160 if (want_cookie) { 7161 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7162 if (!tmp_opt.tstamp_ok) 7163 inet_rsk(req)->ecn_ok = 0; 7164 } 7165 7166 tcp_rsk(req)->snt_isn = isn; 7167 tcp_rsk(req)->txhash = net_tx_rndhash(); 7168 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7169 tcp_openreq_init_rwin(req, sk, dst); 7170 sk_rx_queue_set(req_to_sk(req), skb); 7171 if (!want_cookie) { 7172 tcp_reqsk_record_syn(sk, req, skb); 7173 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7174 } 7175 if (fastopen_sk) { 7176 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7177 &foc, TCP_SYNACK_FASTOPEN, skb); 7178 /* Add the child socket directly into the accept queue */ 7179 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7180 reqsk_fastopen_remove(fastopen_sk, req, false); 7181 bh_unlock_sock(fastopen_sk); 7182 sock_put(fastopen_sk); 7183 goto drop_and_free; 7184 } 7185 sk->sk_data_ready(sk); 7186 bh_unlock_sock(fastopen_sk); 7187 sock_put(fastopen_sk); 7188 } else { 7189 tcp_rsk(req)->tfo_listener = false; 7190 if (!want_cookie) { 7191 req->timeout = tcp_timeout_init((struct sock *)req); 7192 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7193 req->timeout))) { 7194 reqsk_free(req); 7195 return 0; 7196 } 7197 7198 } 7199 af_ops->send_synack(sk, dst, &fl, req, &foc, 7200 !want_cookie ? TCP_SYNACK_NORMAL : 7201 TCP_SYNACK_COOKIE, 7202 skb); 7203 if (want_cookie) { 7204 reqsk_free(req); 7205 return 0; 7206 } 7207 } 7208 reqsk_put(req); 7209 return 0; 7210 7211 drop_and_release: 7212 dst_release(dst); 7213 drop_and_free: 7214 __reqsk_free(req); 7215 drop: 7216 tcp_listendrop(sk); 7217 return 0; 7218 } 7219 EXPORT_SYMBOL(tcp_conn_request); 7220