xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 77d84ff8)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 
97 int sysctl_tcp_thin_dupack __read_mostly;
98 
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 	if (!(tp->ecn_flags & TCP_ECN_OK))
223 		return;
224 
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 			/* Better not delay acks, sender can have a very low cwnd */
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 		}
240 		/* fallinto */
241 	default:
242 		tp->ecn_flags |= TCP_ECN_SEEN;
243 	}
244 }
245 
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 		tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251 
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 		tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257 
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 		return true;
262 	return false;
263 }
264 
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269 
270 static void tcp_sndbuf_expand(struct sock *sk)
271 {
272 	const struct tcp_sock *tp = tcp_sk(sk);
273 	int sndmem, per_mss;
274 	u32 nr_segs;
275 
276 	/* Worst case is non GSO/TSO : each frame consumes one skb
277 	 * and skb->head is kmalloced using power of two area of memory
278 	 */
279 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
280 		  MAX_TCP_HEADER +
281 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
282 
283 	per_mss = roundup_pow_of_two(per_mss) +
284 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
285 
286 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
287 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
288 
289 	/* Fast Recovery (RFC 5681 3.2) :
290 	 * Cubic needs 1.7 factor, rounded to 2 to include
291 	 * extra cushion (application might react slowly to POLLOUT)
292 	 */
293 	sndmem = 2 * nr_segs * per_mss;
294 
295 	if (sk->sk_sndbuf < sndmem)
296 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
297 }
298 
299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
300  *
301  * All tcp_full_space() is split to two parts: "network" buffer, allocated
302  * forward and advertised in receiver window (tp->rcv_wnd) and
303  * "application buffer", required to isolate scheduling/application
304  * latencies from network.
305  * window_clamp is maximal advertised window. It can be less than
306  * tcp_full_space(), in this case tcp_full_space() - window_clamp
307  * is reserved for "application" buffer. The less window_clamp is
308  * the smoother our behaviour from viewpoint of network, but the lower
309  * throughput and the higher sensitivity of the connection to losses. 8)
310  *
311  * rcv_ssthresh is more strict window_clamp used at "slow start"
312  * phase to predict further behaviour of this connection.
313  * It is used for two goals:
314  * - to enforce header prediction at sender, even when application
315  *   requires some significant "application buffer". It is check #1.
316  * - to prevent pruning of receive queue because of misprediction
317  *   of receiver window. Check #2.
318  *
319  * The scheme does not work when sender sends good segments opening
320  * window and then starts to feed us spaghetti. But it should work
321  * in common situations. Otherwise, we have to rely on queue collapsing.
322  */
323 
324 /* Slow part of check#2. */
325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 	/* Optimize this! */
329 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
330 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
331 
332 	while (tp->rcv_ssthresh <= window) {
333 		if (truesize <= skb->len)
334 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
335 
336 		truesize >>= 1;
337 		window >>= 1;
338 	}
339 	return 0;
340 }
341 
342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
343 {
344 	struct tcp_sock *tp = tcp_sk(sk);
345 
346 	/* Check #1 */
347 	if (tp->rcv_ssthresh < tp->window_clamp &&
348 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
349 	    !sk_under_memory_pressure(sk)) {
350 		int incr;
351 
352 		/* Check #2. Increase window, if skb with such overhead
353 		 * will fit to rcvbuf in future.
354 		 */
355 		if (tcp_win_from_space(skb->truesize) <= skb->len)
356 			incr = 2 * tp->advmss;
357 		else
358 			incr = __tcp_grow_window(sk, skb);
359 
360 		if (incr) {
361 			incr = max_t(int, incr, 2 * skb->len);
362 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
363 					       tp->window_clamp);
364 			inet_csk(sk)->icsk_ack.quick |= 1;
365 		}
366 	}
367 }
368 
369 /* 3. Tuning rcvbuf, when connection enters established state. */
370 static void tcp_fixup_rcvbuf(struct sock *sk)
371 {
372 	u32 mss = tcp_sk(sk)->advmss;
373 	int rcvmem;
374 
375 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
376 		 tcp_default_init_rwnd(mss);
377 
378 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
379 	 * Allow enough cushion so that sender is not limited by our window
380 	 */
381 	if (sysctl_tcp_moderate_rcvbuf)
382 		rcvmem <<= 2;
383 
384 	if (sk->sk_rcvbuf < rcvmem)
385 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
386 }
387 
388 /* 4. Try to fixup all. It is made immediately after connection enters
389  *    established state.
390  */
391 void tcp_init_buffer_space(struct sock *sk)
392 {
393 	struct tcp_sock *tp = tcp_sk(sk);
394 	int maxwin;
395 
396 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
397 		tcp_fixup_rcvbuf(sk);
398 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
399 		tcp_sndbuf_expand(sk);
400 
401 	tp->rcvq_space.space = tp->rcv_wnd;
402 	tp->rcvq_space.time = tcp_time_stamp;
403 	tp->rcvq_space.seq = tp->copied_seq;
404 
405 	maxwin = tcp_full_space(sk);
406 
407 	if (tp->window_clamp >= maxwin) {
408 		tp->window_clamp = maxwin;
409 
410 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
411 			tp->window_clamp = max(maxwin -
412 					       (maxwin >> sysctl_tcp_app_win),
413 					       4 * tp->advmss);
414 	}
415 
416 	/* Force reservation of one segment. */
417 	if (sysctl_tcp_app_win &&
418 	    tp->window_clamp > 2 * tp->advmss &&
419 	    tp->window_clamp + tp->advmss > maxwin)
420 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
421 
422 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
423 	tp->snd_cwnd_stamp = tcp_time_stamp;
424 }
425 
426 /* 5. Recalculate window clamp after socket hit its memory bounds. */
427 static void tcp_clamp_window(struct sock *sk)
428 {
429 	struct tcp_sock *tp = tcp_sk(sk);
430 	struct inet_connection_sock *icsk = inet_csk(sk);
431 
432 	icsk->icsk_ack.quick = 0;
433 
434 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
435 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
436 	    !sk_under_memory_pressure(sk) &&
437 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
438 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
439 				    sysctl_tcp_rmem[2]);
440 	}
441 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
442 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
443 }
444 
445 /* Initialize RCV_MSS value.
446  * RCV_MSS is an our guess about MSS used by the peer.
447  * We haven't any direct information about the MSS.
448  * It's better to underestimate the RCV_MSS rather than overestimate.
449  * Overestimations make us ACKing less frequently than needed.
450  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
451  */
452 void tcp_initialize_rcv_mss(struct sock *sk)
453 {
454 	const struct tcp_sock *tp = tcp_sk(sk);
455 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
456 
457 	hint = min(hint, tp->rcv_wnd / 2);
458 	hint = min(hint, TCP_MSS_DEFAULT);
459 	hint = max(hint, TCP_MIN_MSS);
460 
461 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
462 }
463 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
464 
465 /* Receiver "autotuning" code.
466  *
467  * The algorithm for RTT estimation w/o timestamps is based on
468  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
469  * <http://public.lanl.gov/radiant/pubs.html#DRS>
470  *
471  * More detail on this code can be found at
472  * <http://staff.psc.edu/jheffner/>,
473  * though this reference is out of date.  A new paper
474  * is pending.
475  */
476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
477 {
478 	u32 new_sample = tp->rcv_rtt_est.rtt;
479 	long m = sample;
480 
481 	if (m == 0)
482 		m = 1;
483 
484 	if (new_sample != 0) {
485 		/* If we sample in larger samples in the non-timestamp
486 		 * case, we could grossly overestimate the RTT especially
487 		 * with chatty applications or bulk transfer apps which
488 		 * are stalled on filesystem I/O.
489 		 *
490 		 * Also, since we are only going for a minimum in the
491 		 * non-timestamp case, we do not smooth things out
492 		 * else with timestamps disabled convergence takes too
493 		 * long.
494 		 */
495 		if (!win_dep) {
496 			m -= (new_sample >> 3);
497 			new_sample += m;
498 		} else {
499 			m <<= 3;
500 			if (m < new_sample)
501 				new_sample = m;
502 		}
503 	} else {
504 		/* No previous measure. */
505 		new_sample = m << 3;
506 	}
507 
508 	if (tp->rcv_rtt_est.rtt != new_sample)
509 		tp->rcv_rtt_est.rtt = new_sample;
510 }
511 
512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
513 {
514 	if (tp->rcv_rtt_est.time == 0)
515 		goto new_measure;
516 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
517 		return;
518 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
519 
520 new_measure:
521 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
522 	tp->rcv_rtt_est.time = tcp_time_stamp;
523 }
524 
525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
526 					  const struct sk_buff *skb)
527 {
528 	struct tcp_sock *tp = tcp_sk(sk);
529 	if (tp->rx_opt.rcv_tsecr &&
530 	    (TCP_SKB_CB(skb)->end_seq -
531 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
532 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
533 }
534 
535 /*
536  * This function should be called every time data is copied to user space.
537  * It calculates the appropriate TCP receive buffer space.
538  */
539 void tcp_rcv_space_adjust(struct sock *sk)
540 {
541 	struct tcp_sock *tp = tcp_sk(sk);
542 	int time;
543 	int copied;
544 
545 	time = tcp_time_stamp - tp->rcvq_space.time;
546 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
547 		return;
548 
549 	/* Number of bytes copied to user in last RTT */
550 	copied = tp->copied_seq - tp->rcvq_space.seq;
551 	if (copied <= tp->rcvq_space.space)
552 		goto new_measure;
553 
554 	/* A bit of theory :
555 	 * copied = bytes received in previous RTT, our base window
556 	 * To cope with packet losses, we need a 2x factor
557 	 * To cope with slow start, and sender growing its cwin by 100 %
558 	 * every RTT, we need a 4x factor, because the ACK we are sending
559 	 * now is for the next RTT, not the current one :
560 	 * <prev RTT . ><current RTT .. ><next RTT .... >
561 	 */
562 
563 	if (sysctl_tcp_moderate_rcvbuf &&
564 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
565 		int rcvwin, rcvmem, rcvbuf;
566 
567 		/* minimal window to cope with packet losses, assuming
568 		 * steady state. Add some cushion because of small variations.
569 		 */
570 		rcvwin = (copied << 1) + 16 * tp->advmss;
571 
572 		/* If rate increased by 25%,
573 		 *	assume slow start, rcvwin = 3 * copied
574 		 * If rate increased by 50%,
575 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
576 		 */
577 		if (copied >=
578 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
579 			if (copied >=
580 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
581 				rcvwin <<= 1;
582 			else
583 				rcvwin += (rcvwin >> 1);
584 		}
585 
586 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
587 		while (tcp_win_from_space(rcvmem) < tp->advmss)
588 			rcvmem += 128;
589 
590 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
591 		if (rcvbuf > sk->sk_rcvbuf) {
592 			sk->sk_rcvbuf = rcvbuf;
593 
594 			/* Make the window clamp follow along.  */
595 			tp->window_clamp = rcvwin;
596 		}
597 	}
598 	tp->rcvq_space.space = copied;
599 
600 new_measure:
601 	tp->rcvq_space.seq = tp->copied_seq;
602 	tp->rcvq_space.time = tcp_time_stamp;
603 }
604 
605 /* There is something which you must keep in mind when you analyze the
606  * behavior of the tp->ato delayed ack timeout interval.  When a
607  * connection starts up, we want to ack as quickly as possible.  The
608  * problem is that "good" TCP's do slow start at the beginning of data
609  * transmission.  The means that until we send the first few ACK's the
610  * sender will sit on his end and only queue most of his data, because
611  * he can only send snd_cwnd unacked packets at any given time.  For
612  * each ACK we send, he increments snd_cwnd and transmits more of his
613  * queue.  -DaveM
614  */
615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
616 {
617 	struct tcp_sock *tp = tcp_sk(sk);
618 	struct inet_connection_sock *icsk = inet_csk(sk);
619 	u32 now;
620 
621 	inet_csk_schedule_ack(sk);
622 
623 	tcp_measure_rcv_mss(sk, skb);
624 
625 	tcp_rcv_rtt_measure(tp);
626 
627 	now = tcp_time_stamp;
628 
629 	if (!icsk->icsk_ack.ato) {
630 		/* The _first_ data packet received, initialize
631 		 * delayed ACK engine.
632 		 */
633 		tcp_incr_quickack(sk);
634 		icsk->icsk_ack.ato = TCP_ATO_MIN;
635 	} else {
636 		int m = now - icsk->icsk_ack.lrcvtime;
637 
638 		if (m <= TCP_ATO_MIN / 2) {
639 			/* The fastest case is the first. */
640 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
641 		} else if (m < icsk->icsk_ack.ato) {
642 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
643 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
644 				icsk->icsk_ack.ato = icsk->icsk_rto;
645 		} else if (m > icsk->icsk_rto) {
646 			/* Too long gap. Apparently sender failed to
647 			 * restart window, so that we send ACKs quickly.
648 			 */
649 			tcp_incr_quickack(sk);
650 			sk_mem_reclaim(sk);
651 		}
652 	}
653 	icsk->icsk_ack.lrcvtime = now;
654 
655 	TCP_ECN_check_ce(tp, skb);
656 
657 	if (skb->len >= 128)
658 		tcp_grow_window(sk, skb);
659 }
660 
661 /* Called to compute a smoothed rtt estimate. The data fed to this
662  * routine either comes from timestamps, or from segments that were
663  * known _not_ to have been retransmitted [see Karn/Partridge
664  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
665  * piece by Van Jacobson.
666  * NOTE: the next three routines used to be one big routine.
667  * To save cycles in the RFC 1323 implementation it was better to break
668  * it up into three procedures. -- erics
669  */
670 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
671 {
672 	struct tcp_sock *tp = tcp_sk(sk);
673 	long m = mrtt; /* RTT */
674 
675 	/*	The following amusing code comes from Jacobson's
676 	 *	article in SIGCOMM '88.  Note that rtt and mdev
677 	 *	are scaled versions of rtt and mean deviation.
678 	 *	This is designed to be as fast as possible
679 	 *	m stands for "measurement".
680 	 *
681 	 *	On a 1990 paper the rto value is changed to:
682 	 *	RTO = rtt + 4 * mdev
683 	 *
684 	 * Funny. This algorithm seems to be very broken.
685 	 * These formulae increase RTO, when it should be decreased, increase
686 	 * too slowly, when it should be increased quickly, decrease too quickly
687 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
688 	 * does not matter how to _calculate_ it. Seems, it was trap
689 	 * that VJ failed to avoid. 8)
690 	 */
691 	if (m == 0)
692 		m = 1;
693 	if (tp->srtt != 0) {
694 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
695 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
696 		if (m < 0) {
697 			m = -m;		/* m is now abs(error) */
698 			m -= (tp->mdev >> 2);   /* similar update on mdev */
699 			/* This is similar to one of Eifel findings.
700 			 * Eifel blocks mdev updates when rtt decreases.
701 			 * This solution is a bit different: we use finer gain
702 			 * for mdev in this case (alpha*beta).
703 			 * Like Eifel it also prevents growth of rto,
704 			 * but also it limits too fast rto decreases,
705 			 * happening in pure Eifel.
706 			 */
707 			if (m > 0)
708 				m >>= 3;
709 		} else {
710 			m -= (tp->mdev >> 2);   /* similar update on mdev */
711 		}
712 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
713 		if (tp->mdev > tp->mdev_max) {
714 			tp->mdev_max = tp->mdev;
715 			if (tp->mdev_max > tp->rttvar)
716 				tp->rttvar = tp->mdev_max;
717 		}
718 		if (after(tp->snd_una, tp->rtt_seq)) {
719 			if (tp->mdev_max < tp->rttvar)
720 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
721 			tp->rtt_seq = tp->snd_nxt;
722 			tp->mdev_max = tcp_rto_min(sk);
723 		}
724 	} else {
725 		/* no previous measure. */
726 		tp->srtt = m << 3;	/* take the measured time to be rtt */
727 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
728 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
729 		tp->rtt_seq = tp->snd_nxt;
730 	}
731 }
732 
733 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
734  * Note: TCP stack does not yet implement pacing.
735  * FQ packet scheduler can be used to implement cheap but effective
736  * TCP pacing, to smooth the burst on large writes when packets
737  * in flight is significantly lower than cwnd (or rwin)
738  */
739 static void tcp_update_pacing_rate(struct sock *sk)
740 {
741 	const struct tcp_sock *tp = tcp_sk(sk);
742 	u64 rate;
743 
744 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
745 	rate = (u64)tp->mss_cache * 2 * (HZ << 3);
746 
747 	rate *= max(tp->snd_cwnd, tp->packets_out);
748 
749 	/* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
750 	 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
751 	 * We probably need usec resolution in the future.
752 	 * Note: This also takes care of possible srtt=0 case,
753 	 * when tcp_rtt_estimator() was not yet called.
754 	 */
755 	if (tp->srtt > 8 + 2)
756 		do_div(rate, tp->srtt);
757 
758 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
759 	 * without any lock. We want to make sure compiler wont store
760 	 * intermediate values in this location.
761 	 */
762 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
763 						sk->sk_max_pacing_rate);
764 }
765 
766 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
767  * routine referred to above.
768  */
769 void tcp_set_rto(struct sock *sk)
770 {
771 	const struct tcp_sock *tp = tcp_sk(sk);
772 	/* Old crap is replaced with new one. 8)
773 	 *
774 	 * More seriously:
775 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
776 	 *    It cannot be less due to utterly erratic ACK generation made
777 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
778 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
779 	 *    is invisible. Actually, Linux-2.4 also generates erratic
780 	 *    ACKs in some circumstances.
781 	 */
782 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
783 
784 	/* 2. Fixups made earlier cannot be right.
785 	 *    If we do not estimate RTO correctly without them,
786 	 *    all the algo is pure shit and should be replaced
787 	 *    with correct one. It is exactly, which we pretend to do.
788 	 */
789 
790 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
791 	 * guarantees that rto is higher.
792 	 */
793 	tcp_bound_rto(sk);
794 }
795 
796 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
797 {
798 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
799 
800 	if (!cwnd)
801 		cwnd = TCP_INIT_CWND;
802 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
803 }
804 
805 /*
806  * Packet counting of FACK is based on in-order assumptions, therefore TCP
807  * disables it when reordering is detected
808  */
809 void tcp_disable_fack(struct tcp_sock *tp)
810 {
811 	/* RFC3517 uses different metric in lost marker => reset on change */
812 	if (tcp_is_fack(tp))
813 		tp->lost_skb_hint = NULL;
814 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
815 }
816 
817 /* Take a notice that peer is sending D-SACKs */
818 static void tcp_dsack_seen(struct tcp_sock *tp)
819 {
820 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
821 }
822 
823 static void tcp_update_reordering(struct sock *sk, const int metric,
824 				  const int ts)
825 {
826 	struct tcp_sock *tp = tcp_sk(sk);
827 	if (metric > tp->reordering) {
828 		int mib_idx;
829 
830 		tp->reordering = min(TCP_MAX_REORDERING, metric);
831 
832 		/* This exciting event is worth to be remembered. 8) */
833 		if (ts)
834 			mib_idx = LINUX_MIB_TCPTSREORDER;
835 		else if (tcp_is_reno(tp))
836 			mib_idx = LINUX_MIB_TCPRENOREORDER;
837 		else if (tcp_is_fack(tp))
838 			mib_idx = LINUX_MIB_TCPFACKREORDER;
839 		else
840 			mib_idx = LINUX_MIB_TCPSACKREORDER;
841 
842 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
843 #if FASTRETRANS_DEBUG > 1
844 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
845 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
846 			 tp->reordering,
847 			 tp->fackets_out,
848 			 tp->sacked_out,
849 			 tp->undo_marker ? tp->undo_retrans : 0);
850 #endif
851 		tcp_disable_fack(tp);
852 	}
853 
854 	if (metric > 0)
855 		tcp_disable_early_retrans(tp);
856 }
857 
858 /* This must be called before lost_out is incremented */
859 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
860 {
861 	if ((tp->retransmit_skb_hint == NULL) ||
862 	    before(TCP_SKB_CB(skb)->seq,
863 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
864 		tp->retransmit_skb_hint = skb;
865 
866 	if (!tp->lost_out ||
867 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
868 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
869 }
870 
871 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
872 {
873 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
874 		tcp_verify_retransmit_hint(tp, skb);
875 
876 		tp->lost_out += tcp_skb_pcount(skb);
877 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
878 	}
879 }
880 
881 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
882 					    struct sk_buff *skb)
883 {
884 	tcp_verify_retransmit_hint(tp, skb);
885 
886 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
887 		tp->lost_out += tcp_skb_pcount(skb);
888 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
889 	}
890 }
891 
892 /* This procedure tags the retransmission queue when SACKs arrive.
893  *
894  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
895  * Packets in queue with these bits set are counted in variables
896  * sacked_out, retrans_out and lost_out, correspondingly.
897  *
898  * Valid combinations are:
899  * Tag  InFlight	Description
900  * 0	1		- orig segment is in flight.
901  * S	0		- nothing flies, orig reached receiver.
902  * L	0		- nothing flies, orig lost by net.
903  * R	2		- both orig and retransmit are in flight.
904  * L|R	1		- orig is lost, retransmit is in flight.
905  * S|R  1		- orig reached receiver, retrans is still in flight.
906  * (L|S|R is logically valid, it could occur when L|R is sacked,
907  *  but it is equivalent to plain S and code short-curcuits it to S.
908  *  L|S is logically invalid, it would mean -1 packet in flight 8))
909  *
910  * These 6 states form finite state machine, controlled by the following events:
911  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
912  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
913  * 3. Loss detection event of two flavors:
914  *	A. Scoreboard estimator decided the packet is lost.
915  *	   A'. Reno "three dupacks" marks head of queue lost.
916  *	   A''. Its FACK modification, head until snd.fack is lost.
917  *	B. SACK arrives sacking SND.NXT at the moment, when the
918  *	   segment was retransmitted.
919  * 4. D-SACK added new rule: D-SACK changes any tag to S.
920  *
921  * It is pleasant to note, that state diagram turns out to be commutative,
922  * so that we are allowed not to be bothered by order of our actions,
923  * when multiple events arrive simultaneously. (see the function below).
924  *
925  * Reordering detection.
926  * --------------------
927  * Reordering metric is maximal distance, which a packet can be displaced
928  * in packet stream. With SACKs we can estimate it:
929  *
930  * 1. SACK fills old hole and the corresponding segment was not
931  *    ever retransmitted -> reordering. Alas, we cannot use it
932  *    when segment was retransmitted.
933  * 2. The last flaw is solved with D-SACK. D-SACK arrives
934  *    for retransmitted and already SACKed segment -> reordering..
935  * Both of these heuristics are not used in Loss state, when we cannot
936  * account for retransmits accurately.
937  *
938  * SACK block validation.
939  * ----------------------
940  *
941  * SACK block range validation checks that the received SACK block fits to
942  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
943  * Note that SND.UNA is not included to the range though being valid because
944  * it means that the receiver is rather inconsistent with itself reporting
945  * SACK reneging when it should advance SND.UNA. Such SACK block this is
946  * perfectly valid, however, in light of RFC2018 which explicitly states
947  * that "SACK block MUST reflect the newest segment.  Even if the newest
948  * segment is going to be discarded ...", not that it looks very clever
949  * in case of head skb. Due to potentional receiver driven attacks, we
950  * choose to avoid immediate execution of a walk in write queue due to
951  * reneging and defer head skb's loss recovery to standard loss recovery
952  * procedure that will eventually trigger (nothing forbids us doing this).
953  *
954  * Implements also blockage to start_seq wrap-around. Problem lies in the
955  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
956  * there's no guarantee that it will be before snd_nxt (n). The problem
957  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
958  * wrap (s_w):
959  *
960  *         <- outs wnd ->                          <- wrapzone ->
961  *         u     e      n                         u_w   e_w  s n_w
962  *         |     |      |                          |     |   |  |
963  * |<------------+------+----- TCP seqno space --------------+---------->|
964  * ...-- <2^31 ->|                                           |<--------...
965  * ...---- >2^31 ------>|                                    |<--------...
966  *
967  * Current code wouldn't be vulnerable but it's better still to discard such
968  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
969  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
970  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
971  * equal to the ideal case (infinite seqno space without wrap caused issues).
972  *
973  * With D-SACK the lower bound is extended to cover sequence space below
974  * SND.UNA down to undo_marker, which is the last point of interest. Yet
975  * again, D-SACK block must not to go across snd_una (for the same reason as
976  * for the normal SACK blocks, explained above). But there all simplicity
977  * ends, TCP might receive valid D-SACKs below that. As long as they reside
978  * fully below undo_marker they do not affect behavior in anyway and can
979  * therefore be safely ignored. In rare cases (which are more or less
980  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
981  * fragmentation and packet reordering past skb's retransmission. To consider
982  * them correctly, the acceptable range must be extended even more though
983  * the exact amount is rather hard to quantify. However, tp->max_window can
984  * be used as an exaggerated estimate.
985  */
986 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
987 				   u32 start_seq, u32 end_seq)
988 {
989 	/* Too far in future, or reversed (interpretation is ambiguous) */
990 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
991 		return false;
992 
993 	/* Nasty start_seq wrap-around check (see comments above) */
994 	if (!before(start_seq, tp->snd_nxt))
995 		return false;
996 
997 	/* In outstanding window? ...This is valid exit for D-SACKs too.
998 	 * start_seq == snd_una is non-sensical (see comments above)
999 	 */
1000 	if (after(start_seq, tp->snd_una))
1001 		return true;
1002 
1003 	if (!is_dsack || !tp->undo_marker)
1004 		return false;
1005 
1006 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1007 	if (after(end_seq, tp->snd_una))
1008 		return false;
1009 
1010 	if (!before(start_seq, tp->undo_marker))
1011 		return true;
1012 
1013 	/* Too old */
1014 	if (!after(end_seq, tp->undo_marker))
1015 		return false;
1016 
1017 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1018 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1019 	 */
1020 	return !before(start_seq, end_seq - tp->max_window);
1021 }
1022 
1023 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1024  * Event "B". Later note: FACK people cheated me again 8), we have to account
1025  * for reordering! Ugly, but should help.
1026  *
1027  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1028  * less than what is now known to be received by the other end (derived from
1029  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1030  * retransmitted skbs to avoid some costly processing per ACKs.
1031  */
1032 static void tcp_mark_lost_retrans(struct sock *sk)
1033 {
1034 	const struct inet_connection_sock *icsk = inet_csk(sk);
1035 	struct tcp_sock *tp = tcp_sk(sk);
1036 	struct sk_buff *skb;
1037 	int cnt = 0;
1038 	u32 new_low_seq = tp->snd_nxt;
1039 	u32 received_upto = tcp_highest_sack_seq(tp);
1040 
1041 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1042 	    !after(received_upto, tp->lost_retrans_low) ||
1043 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1044 		return;
1045 
1046 	tcp_for_write_queue(skb, sk) {
1047 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1048 
1049 		if (skb == tcp_send_head(sk))
1050 			break;
1051 		if (cnt == tp->retrans_out)
1052 			break;
1053 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1054 			continue;
1055 
1056 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1057 			continue;
1058 
1059 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1060 		 * constraint here (see above) but figuring out that at
1061 		 * least tp->reordering SACK blocks reside between ack_seq
1062 		 * and received_upto is not easy task to do cheaply with
1063 		 * the available datastructures.
1064 		 *
1065 		 * Whether FACK should check here for tp->reordering segs
1066 		 * in-between one could argue for either way (it would be
1067 		 * rather simple to implement as we could count fack_count
1068 		 * during the walk and do tp->fackets_out - fack_count).
1069 		 */
1070 		if (after(received_upto, ack_seq)) {
1071 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1072 			tp->retrans_out -= tcp_skb_pcount(skb);
1073 
1074 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1075 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1076 		} else {
1077 			if (before(ack_seq, new_low_seq))
1078 				new_low_seq = ack_seq;
1079 			cnt += tcp_skb_pcount(skb);
1080 		}
1081 	}
1082 
1083 	if (tp->retrans_out)
1084 		tp->lost_retrans_low = new_low_seq;
1085 }
1086 
1087 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1088 			    struct tcp_sack_block_wire *sp, int num_sacks,
1089 			    u32 prior_snd_una)
1090 {
1091 	struct tcp_sock *tp = tcp_sk(sk);
1092 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1093 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1094 	bool dup_sack = false;
1095 
1096 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1097 		dup_sack = true;
1098 		tcp_dsack_seen(tp);
1099 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1100 	} else if (num_sacks > 1) {
1101 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1102 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1103 
1104 		if (!after(end_seq_0, end_seq_1) &&
1105 		    !before(start_seq_0, start_seq_1)) {
1106 			dup_sack = true;
1107 			tcp_dsack_seen(tp);
1108 			NET_INC_STATS_BH(sock_net(sk),
1109 					LINUX_MIB_TCPDSACKOFORECV);
1110 		}
1111 	}
1112 
1113 	/* D-SACK for already forgotten data... Do dumb counting. */
1114 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1115 	    !after(end_seq_0, prior_snd_una) &&
1116 	    after(end_seq_0, tp->undo_marker))
1117 		tp->undo_retrans--;
1118 
1119 	return dup_sack;
1120 }
1121 
1122 struct tcp_sacktag_state {
1123 	int reord;
1124 	int fack_count;
1125 	int flag;
1126 	s32 rtt; /* RTT measured by SACKing never-retransmitted data */
1127 };
1128 
1129 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1130  * the incoming SACK may not exactly match but we can find smaller MSS
1131  * aligned portion of it that matches. Therefore we might need to fragment
1132  * which may fail and creates some hassle (caller must handle error case
1133  * returns).
1134  *
1135  * FIXME: this could be merged to shift decision code
1136  */
1137 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1138 				  u32 start_seq, u32 end_seq)
1139 {
1140 	int err;
1141 	bool in_sack;
1142 	unsigned int pkt_len;
1143 	unsigned int mss;
1144 
1145 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1146 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1147 
1148 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1149 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1150 		mss = tcp_skb_mss(skb);
1151 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1152 
1153 		if (!in_sack) {
1154 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1155 			if (pkt_len < mss)
1156 				pkt_len = mss;
1157 		} else {
1158 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1159 			if (pkt_len < mss)
1160 				return -EINVAL;
1161 		}
1162 
1163 		/* Round if necessary so that SACKs cover only full MSSes
1164 		 * and/or the remaining small portion (if present)
1165 		 */
1166 		if (pkt_len > mss) {
1167 			unsigned int new_len = (pkt_len / mss) * mss;
1168 			if (!in_sack && new_len < pkt_len) {
1169 				new_len += mss;
1170 				if (new_len > skb->len)
1171 					return 0;
1172 			}
1173 			pkt_len = new_len;
1174 		}
1175 		err = tcp_fragment(sk, skb, pkt_len, mss);
1176 		if (err < 0)
1177 			return err;
1178 	}
1179 
1180 	return in_sack;
1181 }
1182 
1183 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1184 static u8 tcp_sacktag_one(struct sock *sk,
1185 			  struct tcp_sacktag_state *state, u8 sacked,
1186 			  u32 start_seq, u32 end_seq,
1187 			  int dup_sack, int pcount, u32 xmit_time)
1188 {
1189 	struct tcp_sock *tp = tcp_sk(sk);
1190 	int fack_count = state->fack_count;
1191 
1192 	/* Account D-SACK for retransmitted packet. */
1193 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1194 		if (tp->undo_marker && tp->undo_retrans &&
1195 		    after(end_seq, tp->undo_marker))
1196 			tp->undo_retrans--;
1197 		if (sacked & TCPCB_SACKED_ACKED)
1198 			state->reord = min(fack_count, state->reord);
1199 	}
1200 
1201 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1202 	if (!after(end_seq, tp->snd_una))
1203 		return sacked;
1204 
1205 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1206 		if (sacked & TCPCB_SACKED_RETRANS) {
1207 			/* If the segment is not tagged as lost,
1208 			 * we do not clear RETRANS, believing
1209 			 * that retransmission is still in flight.
1210 			 */
1211 			if (sacked & TCPCB_LOST) {
1212 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1213 				tp->lost_out -= pcount;
1214 				tp->retrans_out -= pcount;
1215 			}
1216 		} else {
1217 			if (!(sacked & TCPCB_RETRANS)) {
1218 				/* New sack for not retransmitted frame,
1219 				 * which was in hole. It is reordering.
1220 				 */
1221 				if (before(start_seq,
1222 					   tcp_highest_sack_seq(tp)))
1223 					state->reord = min(fack_count,
1224 							   state->reord);
1225 				if (!after(end_seq, tp->high_seq))
1226 					state->flag |= FLAG_ORIG_SACK_ACKED;
1227 				/* Pick the earliest sequence sacked for RTT */
1228 				if (state->rtt < 0)
1229 					state->rtt = tcp_time_stamp - xmit_time;
1230 			}
1231 
1232 			if (sacked & TCPCB_LOST) {
1233 				sacked &= ~TCPCB_LOST;
1234 				tp->lost_out -= pcount;
1235 			}
1236 		}
1237 
1238 		sacked |= TCPCB_SACKED_ACKED;
1239 		state->flag |= FLAG_DATA_SACKED;
1240 		tp->sacked_out += pcount;
1241 
1242 		fack_count += pcount;
1243 
1244 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1245 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1246 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1247 			tp->lost_cnt_hint += pcount;
1248 
1249 		if (fack_count > tp->fackets_out)
1250 			tp->fackets_out = fack_count;
1251 	}
1252 
1253 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1254 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1255 	 * are accounted above as well.
1256 	 */
1257 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1258 		sacked &= ~TCPCB_SACKED_RETRANS;
1259 		tp->retrans_out -= pcount;
1260 	}
1261 
1262 	return sacked;
1263 }
1264 
1265 /* Shift newly-SACKed bytes from this skb to the immediately previous
1266  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1267  */
1268 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1269 			    struct tcp_sacktag_state *state,
1270 			    unsigned int pcount, int shifted, int mss,
1271 			    bool dup_sack)
1272 {
1273 	struct tcp_sock *tp = tcp_sk(sk);
1274 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1275 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1276 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1277 
1278 	BUG_ON(!pcount);
1279 
1280 	/* Adjust counters and hints for the newly sacked sequence
1281 	 * range but discard the return value since prev is already
1282 	 * marked. We must tag the range first because the seq
1283 	 * advancement below implicitly advances
1284 	 * tcp_highest_sack_seq() when skb is highest_sack.
1285 	 */
1286 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1287 			start_seq, end_seq, dup_sack, pcount,
1288 			TCP_SKB_CB(skb)->when);
1289 
1290 	if (skb == tp->lost_skb_hint)
1291 		tp->lost_cnt_hint += pcount;
1292 
1293 	TCP_SKB_CB(prev)->end_seq += shifted;
1294 	TCP_SKB_CB(skb)->seq += shifted;
1295 
1296 	skb_shinfo(prev)->gso_segs += pcount;
1297 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1298 	skb_shinfo(skb)->gso_segs -= pcount;
1299 
1300 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1301 	 * in theory this shouldn't be necessary but as long as DSACK
1302 	 * code can come after this skb later on it's better to keep
1303 	 * setting gso_size to something.
1304 	 */
1305 	if (!skb_shinfo(prev)->gso_size) {
1306 		skb_shinfo(prev)->gso_size = mss;
1307 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1308 	}
1309 
1310 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1311 	if (skb_shinfo(skb)->gso_segs <= 1) {
1312 		skb_shinfo(skb)->gso_size = 0;
1313 		skb_shinfo(skb)->gso_type = 0;
1314 	}
1315 
1316 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1317 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1318 
1319 	if (skb->len > 0) {
1320 		BUG_ON(!tcp_skb_pcount(skb));
1321 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1322 		return false;
1323 	}
1324 
1325 	/* Whole SKB was eaten :-) */
1326 
1327 	if (skb == tp->retransmit_skb_hint)
1328 		tp->retransmit_skb_hint = prev;
1329 	if (skb == tp->lost_skb_hint) {
1330 		tp->lost_skb_hint = prev;
1331 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1332 	}
1333 
1334 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1335 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1336 		TCP_SKB_CB(prev)->end_seq++;
1337 
1338 	if (skb == tcp_highest_sack(sk))
1339 		tcp_advance_highest_sack(sk, skb);
1340 
1341 	tcp_unlink_write_queue(skb, sk);
1342 	sk_wmem_free_skb(sk, skb);
1343 
1344 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1345 
1346 	return true;
1347 }
1348 
1349 /* I wish gso_size would have a bit more sane initialization than
1350  * something-or-zero which complicates things
1351  */
1352 static int tcp_skb_seglen(const struct sk_buff *skb)
1353 {
1354 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1355 }
1356 
1357 /* Shifting pages past head area doesn't work */
1358 static int skb_can_shift(const struct sk_buff *skb)
1359 {
1360 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1361 }
1362 
1363 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1364  * skb.
1365  */
1366 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1367 					  struct tcp_sacktag_state *state,
1368 					  u32 start_seq, u32 end_seq,
1369 					  bool dup_sack)
1370 {
1371 	struct tcp_sock *tp = tcp_sk(sk);
1372 	struct sk_buff *prev;
1373 	int mss;
1374 	int pcount = 0;
1375 	int len;
1376 	int in_sack;
1377 
1378 	if (!sk_can_gso(sk))
1379 		goto fallback;
1380 
1381 	/* Normally R but no L won't result in plain S */
1382 	if (!dup_sack &&
1383 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1384 		goto fallback;
1385 	if (!skb_can_shift(skb))
1386 		goto fallback;
1387 	/* This frame is about to be dropped (was ACKed). */
1388 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1389 		goto fallback;
1390 
1391 	/* Can only happen with delayed DSACK + discard craziness */
1392 	if (unlikely(skb == tcp_write_queue_head(sk)))
1393 		goto fallback;
1394 	prev = tcp_write_queue_prev(sk, skb);
1395 
1396 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1397 		goto fallback;
1398 
1399 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1400 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1401 
1402 	if (in_sack) {
1403 		len = skb->len;
1404 		pcount = tcp_skb_pcount(skb);
1405 		mss = tcp_skb_seglen(skb);
1406 
1407 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1408 		 * drop this restriction as unnecessary
1409 		 */
1410 		if (mss != tcp_skb_seglen(prev))
1411 			goto fallback;
1412 	} else {
1413 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1414 			goto noop;
1415 		/* CHECKME: This is non-MSS split case only?, this will
1416 		 * cause skipped skbs due to advancing loop btw, original
1417 		 * has that feature too
1418 		 */
1419 		if (tcp_skb_pcount(skb) <= 1)
1420 			goto noop;
1421 
1422 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1423 		if (!in_sack) {
1424 			/* TODO: head merge to next could be attempted here
1425 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1426 			 * though it might not be worth of the additional hassle
1427 			 *
1428 			 * ...we can probably just fallback to what was done
1429 			 * previously. We could try merging non-SACKed ones
1430 			 * as well but it probably isn't going to buy off
1431 			 * because later SACKs might again split them, and
1432 			 * it would make skb timestamp tracking considerably
1433 			 * harder problem.
1434 			 */
1435 			goto fallback;
1436 		}
1437 
1438 		len = end_seq - TCP_SKB_CB(skb)->seq;
1439 		BUG_ON(len < 0);
1440 		BUG_ON(len > skb->len);
1441 
1442 		/* MSS boundaries should be honoured or else pcount will
1443 		 * severely break even though it makes things bit trickier.
1444 		 * Optimize common case to avoid most of the divides
1445 		 */
1446 		mss = tcp_skb_mss(skb);
1447 
1448 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1449 		 * drop this restriction as unnecessary
1450 		 */
1451 		if (mss != tcp_skb_seglen(prev))
1452 			goto fallback;
1453 
1454 		if (len == mss) {
1455 			pcount = 1;
1456 		} else if (len < mss) {
1457 			goto noop;
1458 		} else {
1459 			pcount = len / mss;
1460 			len = pcount * mss;
1461 		}
1462 	}
1463 
1464 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1465 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1466 		goto fallback;
1467 
1468 	if (!skb_shift(prev, skb, len))
1469 		goto fallback;
1470 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1471 		goto out;
1472 
1473 	/* Hole filled allows collapsing with the next as well, this is very
1474 	 * useful when hole on every nth skb pattern happens
1475 	 */
1476 	if (prev == tcp_write_queue_tail(sk))
1477 		goto out;
1478 	skb = tcp_write_queue_next(sk, prev);
1479 
1480 	if (!skb_can_shift(skb) ||
1481 	    (skb == tcp_send_head(sk)) ||
1482 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1483 	    (mss != tcp_skb_seglen(skb)))
1484 		goto out;
1485 
1486 	len = skb->len;
1487 	if (skb_shift(prev, skb, len)) {
1488 		pcount += tcp_skb_pcount(skb);
1489 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1490 	}
1491 
1492 out:
1493 	state->fack_count += pcount;
1494 	return prev;
1495 
1496 noop:
1497 	return skb;
1498 
1499 fallback:
1500 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1501 	return NULL;
1502 }
1503 
1504 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1505 					struct tcp_sack_block *next_dup,
1506 					struct tcp_sacktag_state *state,
1507 					u32 start_seq, u32 end_seq,
1508 					bool dup_sack_in)
1509 {
1510 	struct tcp_sock *tp = tcp_sk(sk);
1511 	struct sk_buff *tmp;
1512 
1513 	tcp_for_write_queue_from(skb, sk) {
1514 		int in_sack = 0;
1515 		bool dup_sack = dup_sack_in;
1516 
1517 		if (skb == tcp_send_head(sk))
1518 			break;
1519 
1520 		/* queue is in-order => we can short-circuit the walk early */
1521 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1522 			break;
1523 
1524 		if ((next_dup != NULL) &&
1525 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1526 			in_sack = tcp_match_skb_to_sack(sk, skb,
1527 							next_dup->start_seq,
1528 							next_dup->end_seq);
1529 			if (in_sack > 0)
1530 				dup_sack = true;
1531 		}
1532 
1533 		/* skb reference here is a bit tricky to get right, since
1534 		 * shifting can eat and free both this skb and the next,
1535 		 * so not even _safe variant of the loop is enough.
1536 		 */
1537 		if (in_sack <= 0) {
1538 			tmp = tcp_shift_skb_data(sk, skb, state,
1539 						 start_seq, end_seq, dup_sack);
1540 			if (tmp != NULL) {
1541 				if (tmp != skb) {
1542 					skb = tmp;
1543 					continue;
1544 				}
1545 
1546 				in_sack = 0;
1547 			} else {
1548 				in_sack = tcp_match_skb_to_sack(sk, skb,
1549 								start_seq,
1550 								end_seq);
1551 			}
1552 		}
1553 
1554 		if (unlikely(in_sack < 0))
1555 			break;
1556 
1557 		if (in_sack) {
1558 			TCP_SKB_CB(skb)->sacked =
1559 				tcp_sacktag_one(sk,
1560 						state,
1561 						TCP_SKB_CB(skb)->sacked,
1562 						TCP_SKB_CB(skb)->seq,
1563 						TCP_SKB_CB(skb)->end_seq,
1564 						dup_sack,
1565 						tcp_skb_pcount(skb),
1566 						TCP_SKB_CB(skb)->when);
1567 
1568 			if (!before(TCP_SKB_CB(skb)->seq,
1569 				    tcp_highest_sack_seq(tp)))
1570 				tcp_advance_highest_sack(sk, skb);
1571 		}
1572 
1573 		state->fack_count += tcp_skb_pcount(skb);
1574 	}
1575 	return skb;
1576 }
1577 
1578 /* Avoid all extra work that is being done by sacktag while walking in
1579  * a normal way
1580  */
1581 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1582 					struct tcp_sacktag_state *state,
1583 					u32 skip_to_seq)
1584 {
1585 	tcp_for_write_queue_from(skb, sk) {
1586 		if (skb == tcp_send_head(sk))
1587 			break;
1588 
1589 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1590 			break;
1591 
1592 		state->fack_count += tcp_skb_pcount(skb);
1593 	}
1594 	return skb;
1595 }
1596 
1597 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1598 						struct sock *sk,
1599 						struct tcp_sack_block *next_dup,
1600 						struct tcp_sacktag_state *state,
1601 						u32 skip_to_seq)
1602 {
1603 	if (next_dup == NULL)
1604 		return skb;
1605 
1606 	if (before(next_dup->start_seq, skip_to_seq)) {
1607 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1608 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1609 				       next_dup->start_seq, next_dup->end_seq,
1610 				       1);
1611 	}
1612 
1613 	return skb;
1614 }
1615 
1616 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1617 {
1618 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1619 }
1620 
1621 static int
1622 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1623 			u32 prior_snd_una, s32 *sack_rtt)
1624 {
1625 	struct tcp_sock *tp = tcp_sk(sk);
1626 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1627 				    TCP_SKB_CB(ack_skb)->sacked);
1628 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1629 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1630 	struct tcp_sack_block *cache;
1631 	struct tcp_sacktag_state state;
1632 	struct sk_buff *skb;
1633 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1634 	int used_sacks;
1635 	bool found_dup_sack = false;
1636 	int i, j;
1637 	int first_sack_index;
1638 
1639 	state.flag = 0;
1640 	state.reord = tp->packets_out;
1641 	state.rtt = -1;
1642 
1643 	if (!tp->sacked_out) {
1644 		if (WARN_ON(tp->fackets_out))
1645 			tp->fackets_out = 0;
1646 		tcp_highest_sack_reset(sk);
1647 	}
1648 
1649 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1650 					 num_sacks, prior_snd_una);
1651 	if (found_dup_sack)
1652 		state.flag |= FLAG_DSACKING_ACK;
1653 
1654 	/* Eliminate too old ACKs, but take into
1655 	 * account more or less fresh ones, they can
1656 	 * contain valid SACK info.
1657 	 */
1658 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1659 		return 0;
1660 
1661 	if (!tp->packets_out)
1662 		goto out;
1663 
1664 	used_sacks = 0;
1665 	first_sack_index = 0;
1666 	for (i = 0; i < num_sacks; i++) {
1667 		bool dup_sack = !i && found_dup_sack;
1668 
1669 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1670 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1671 
1672 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1673 					    sp[used_sacks].start_seq,
1674 					    sp[used_sacks].end_seq)) {
1675 			int mib_idx;
1676 
1677 			if (dup_sack) {
1678 				if (!tp->undo_marker)
1679 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1680 				else
1681 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1682 			} else {
1683 				/* Don't count olds caused by ACK reordering */
1684 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1685 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1686 					continue;
1687 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1688 			}
1689 
1690 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1691 			if (i == 0)
1692 				first_sack_index = -1;
1693 			continue;
1694 		}
1695 
1696 		/* Ignore very old stuff early */
1697 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1698 			continue;
1699 
1700 		used_sacks++;
1701 	}
1702 
1703 	/* order SACK blocks to allow in order walk of the retrans queue */
1704 	for (i = used_sacks - 1; i > 0; i--) {
1705 		for (j = 0; j < i; j++) {
1706 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1707 				swap(sp[j], sp[j + 1]);
1708 
1709 				/* Track where the first SACK block goes to */
1710 				if (j == first_sack_index)
1711 					first_sack_index = j + 1;
1712 			}
1713 		}
1714 	}
1715 
1716 	skb = tcp_write_queue_head(sk);
1717 	state.fack_count = 0;
1718 	i = 0;
1719 
1720 	if (!tp->sacked_out) {
1721 		/* It's already past, so skip checking against it */
1722 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1723 	} else {
1724 		cache = tp->recv_sack_cache;
1725 		/* Skip empty blocks in at head of the cache */
1726 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1727 		       !cache->end_seq)
1728 			cache++;
1729 	}
1730 
1731 	while (i < used_sacks) {
1732 		u32 start_seq = sp[i].start_seq;
1733 		u32 end_seq = sp[i].end_seq;
1734 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1735 		struct tcp_sack_block *next_dup = NULL;
1736 
1737 		if (found_dup_sack && ((i + 1) == first_sack_index))
1738 			next_dup = &sp[i + 1];
1739 
1740 		/* Skip too early cached blocks */
1741 		while (tcp_sack_cache_ok(tp, cache) &&
1742 		       !before(start_seq, cache->end_seq))
1743 			cache++;
1744 
1745 		/* Can skip some work by looking recv_sack_cache? */
1746 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1747 		    after(end_seq, cache->start_seq)) {
1748 
1749 			/* Head todo? */
1750 			if (before(start_seq, cache->start_seq)) {
1751 				skb = tcp_sacktag_skip(skb, sk, &state,
1752 						       start_seq);
1753 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1754 						       &state,
1755 						       start_seq,
1756 						       cache->start_seq,
1757 						       dup_sack);
1758 			}
1759 
1760 			/* Rest of the block already fully processed? */
1761 			if (!after(end_seq, cache->end_seq))
1762 				goto advance_sp;
1763 
1764 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1765 						       &state,
1766 						       cache->end_seq);
1767 
1768 			/* ...tail remains todo... */
1769 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1770 				/* ...but better entrypoint exists! */
1771 				skb = tcp_highest_sack(sk);
1772 				if (skb == NULL)
1773 					break;
1774 				state.fack_count = tp->fackets_out;
1775 				cache++;
1776 				goto walk;
1777 			}
1778 
1779 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1780 			/* Check overlap against next cached too (past this one already) */
1781 			cache++;
1782 			continue;
1783 		}
1784 
1785 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1786 			skb = tcp_highest_sack(sk);
1787 			if (skb == NULL)
1788 				break;
1789 			state.fack_count = tp->fackets_out;
1790 		}
1791 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1792 
1793 walk:
1794 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1795 				       start_seq, end_seq, dup_sack);
1796 
1797 advance_sp:
1798 		i++;
1799 	}
1800 
1801 	/* Clear the head of the cache sack blocks so we can skip it next time */
1802 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1803 		tp->recv_sack_cache[i].start_seq = 0;
1804 		tp->recv_sack_cache[i].end_seq = 0;
1805 	}
1806 	for (j = 0; j < used_sacks; j++)
1807 		tp->recv_sack_cache[i++] = sp[j];
1808 
1809 	tcp_mark_lost_retrans(sk);
1810 
1811 	tcp_verify_left_out(tp);
1812 
1813 	if ((state.reord < tp->fackets_out) &&
1814 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1815 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1816 
1817 out:
1818 
1819 #if FASTRETRANS_DEBUG > 0
1820 	WARN_ON((int)tp->sacked_out < 0);
1821 	WARN_ON((int)tp->lost_out < 0);
1822 	WARN_ON((int)tp->retrans_out < 0);
1823 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1824 #endif
1825 	*sack_rtt = state.rtt;
1826 	return state.flag;
1827 }
1828 
1829 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1830  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1831  */
1832 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1833 {
1834 	u32 holes;
1835 
1836 	holes = max(tp->lost_out, 1U);
1837 	holes = min(holes, tp->packets_out);
1838 
1839 	if ((tp->sacked_out + holes) > tp->packets_out) {
1840 		tp->sacked_out = tp->packets_out - holes;
1841 		return true;
1842 	}
1843 	return false;
1844 }
1845 
1846 /* If we receive more dupacks than we expected counting segments
1847  * in assumption of absent reordering, interpret this as reordering.
1848  * The only another reason could be bug in receiver TCP.
1849  */
1850 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1851 {
1852 	struct tcp_sock *tp = tcp_sk(sk);
1853 	if (tcp_limit_reno_sacked(tp))
1854 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1855 }
1856 
1857 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1858 
1859 static void tcp_add_reno_sack(struct sock *sk)
1860 {
1861 	struct tcp_sock *tp = tcp_sk(sk);
1862 	tp->sacked_out++;
1863 	tcp_check_reno_reordering(sk, 0);
1864 	tcp_verify_left_out(tp);
1865 }
1866 
1867 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1868 
1869 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1870 {
1871 	struct tcp_sock *tp = tcp_sk(sk);
1872 
1873 	if (acked > 0) {
1874 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1875 		if (acked - 1 >= tp->sacked_out)
1876 			tp->sacked_out = 0;
1877 		else
1878 			tp->sacked_out -= acked - 1;
1879 	}
1880 	tcp_check_reno_reordering(sk, acked);
1881 	tcp_verify_left_out(tp);
1882 }
1883 
1884 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1885 {
1886 	tp->sacked_out = 0;
1887 }
1888 
1889 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1890 {
1891 	tp->retrans_out = 0;
1892 	tp->lost_out = 0;
1893 
1894 	tp->undo_marker = 0;
1895 	tp->undo_retrans = 0;
1896 }
1897 
1898 void tcp_clear_retrans(struct tcp_sock *tp)
1899 {
1900 	tcp_clear_retrans_partial(tp);
1901 
1902 	tp->fackets_out = 0;
1903 	tp->sacked_out = 0;
1904 }
1905 
1906 /* Enter Loss state. If "how" is not zero, forget all SACK information
1907  * and reset tags completely, otherwise preserve SACKs. If receiver
1908  * dropped its ofo queue, we will know this due to reneging detection.
1909  */
1910 void tcp_enter_loss(struct sock *sk, int how)
1911 {
1912 	const struct inet_connection_sock *icsk = inet_csk(sk);
1913 	struct tcp_sock *tp = tcp_sk(sk);
1914 	struct sk_buff *skb;
1915 	bool new_recovery = false;
1916 
1917 	/* Reduce ssthresh if it has not yet been made inside this window. */
1918 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1919 	    !after(tp->high_seq, tp->snd_una) ||
1920 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1921 		new_recovery = true;
1922 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1923 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1924 		tcp_ca_event(sk, CA_EVENT_LOSS);
1925 	}
1926 	tp->snd_cwnd	   = 1;
1927 	tp->snd_cwnd_cnt   = 0;
1928 	tp->snd_cwnd_stamp = tcp_time_stamp;
1929 
1930 	tcp_clear_retrans_partial(tp);
1931 
1932 	if (tcp_is_reno(tp))
1933 		tcp_reset_reno_sack(tp);
1934 
1935 	tp->undo_marker = tp->snd_una;
1936 	if (how) {
1937 		tp->sacked_out = 0;
1938 		tp->fackets_out = 0;
1939 	}
1940 	tcp_clear_all_retrans_hints(tp);
1941 
1942 	tcp_for_write_queue(skb, sk) {
1943 		if (skb == tcp_send_head(sk))
1944 			break;
1945 
1946 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1947 			tp->undo_marker = 0;
1948 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1949 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1950 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1951 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1952 			tp->lost_out += tcp_skb_pcount(skb);
1953 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1954 		}
1955 	}
1956 	tcp_verify_left_out(tp);
1957 
1958 	/* Timeout in disordered state after receiving substantial DUPACKs
1959 	 * suggests that the degree of reordering is over-estimated.
1960 	 */
1961 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1962 	    tp->sacked_out >= sysctl_tcp_reordering)
1963 		tp->reordering = min_t(unsigned int, tp->reordering,
1964 				       sysctl_tcp_reordering);
1965 	tcp_set_ca_state(sk, TCP_CA_Loss);
1966 	tp->high_seq = tp->snd_nxt;
1967 	TCP_ECN_queue_cwr(tp);
1968 
1969 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1970 	 * loss recovery is underway except recurring timeout(s) on
1971 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1972 	 */
1973 	tp->frto = sysctl_tcp_frto &&
1974 		   (new_recovery || icsk->icsk_retransmits) &&
1975 		   !inet_csk(sk)->icsk_mtup.probe_size;
1976 }
1977 
1978 /* If ACK arrived pointing to a remembered SACK, it means that our
1979  * remembered SACKs do not reflect real state of receiver i.e.
1980  * receiver _host_ is heavily congested (or buggy).
1981  *
1982  * Do processing similar to RTO timeout.
1983  */
1984 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1985 {
1986 	if (flag & FLAG_SACK_RENEGING) {
1987 		struct inet_connection_sock *icsk = inet_csk(sk);
1988 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1989 
1990 		tcp_enter_loss(sk, 1);
1991 		icsk->icsk_retransmits++;
1992 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1993 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1994 					  icsk->icsk_rto, TCP_RTO_MAX);
1995 		return true;
1996 	}
1997 	return false;
1998 }
1999 
2000 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2001 {
2002 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2003 }
2004 
2005 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2006  * counter when SACK is enabled (without SACK, sacked_out is used for
2007  * that purpose).
2008  *
2009  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2010  * segments up to the highest received SACK block so far and holes in
2011  * between them.
2012  *
2013  * With reordering, holes may still be in flight, so RFC3517 recovery
2014  * uses pure sacked_out (total number of SACKed segments) even though
2015  * it violates the RFC that uses duplicate ACKs, often these are equal
2016  * but when e.g. out-of-window ACKs or packet duplication occurs,
2017  * they differ. Since neither occurs due to loss, TCP should really
2018  * ignore them.
2019  */
2020 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2021 {
2022 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2023 }
2024 
2025 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2026 {
2027 	struct tcp_sock *tp = tcp_sk(sk);
2028 	unsigned long delay;
2029 
2030 	/* Delay early retransmit and entering fast recovery for
2031 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2032 	 * available, or RTO is scheduled to fire first.
2033 	 */
2034 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2035 	    (flag & FLAG_ECE) || !tp->srtt)
2036 		return false;
2037 
2038 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2039 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2040 		return false;
2041 
2042 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2043 				  TCP_RTO_MAX);
2044 	return true;
2045 }
2046 
2047 /* Linux NewReno/SACK/FACK/ECN state machine.
2048  * --------------------------------------
2049  *
2050  * "Open"	Normal state, no dubious events, fast path.
2051  * "Disorder"   In all the respects it is "Open",
2052  *		but requires a bit more attention. It is entered when
2053  *		we see some SACKs or dupacks. It is split of "Open"
2054  *		mainly to move some processing from fast path to slow one.
2055  * "CWR"	CWND was reduced due to some Congestion Notification event.
2056  *		It can be ECN, ICMP source quench, local device congestion.
2057  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2058  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2059  *
2060  * tcp_fastretrans_alert() is entered:
2061  * - each incoming ACK, if state is not "Open"
2062  * - when arrived ACK is unusual, namely:
2063  *	* SACK
2064  *	* Duplicate ACK.
2065  *	* ECN ECE.
2066  *
2067  * Counting packets in flight is pretty simple.
2068  *
2069  *	in_flight = packets_out - left_out + retrans_out
2070  *
2071  *	packets_out is SND.NXT-SND.UNA counted in packets.
2072  *
2073  *	retrans_out is number of retransmitted segments.
2074  *
2075  *	left_out is number of segments left network, but not ACKed yet.
2076  *
2077  *		left_out = sacked_out + lost_out
2078  *
2079  *     sacked_out: Packets, which arrived to receiver out of order
2080  *		   and hence not ACKed. With SACKs this number is simply
2081  *		   amount of SACKed data. Even without SACKs
2082  *		   it is easy to give pretty reliable estimate of this number,
2083  *		   counting duplicate ACKs.
2084  *
2085  *       lost_out: Packets lost by network. TCP has no explicit
2086  *		   "loss notification" feedback from network (for now).
2087  *		   It means that this number can be only _guessed_.
2088  *		   Actually, it is the heuristics to predict lossage that
2089  *		   distinguishes different algorithms.
2090  *
2091  *	F.e. after RTO, when all the queue is considered as lost,
2092  *	lost_out = packets_out and in_flight = retrans_out.
2093  *
2094  *		Essentially, we have now two algorithms counting
2095  *		lost packets.
2096  *
2097  *		FACK: It is the simplest heuristics. As soon as we decided
2098  *		that something is lost, we decide that _all_ not SACKed
2099  *		packets until the most forward SACK are lost. I.e.
2100  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2101  *		It is absolutely correct estimate, if network does not reorder
2102  *		packets. And it loses any connection to reality when reordering
2103  *		takes place. We use FACK by default until reordering
2104  *		is suspected on the path to this destination.
2105  *
2106  *		NewReno: when Recovery is entered, we assume that one segment
2107  *		is lost (classic Reno). While we are in Recovery and
2108  *		a partial ACK arrives, we assume that one more packet
2109  *		is lost (NewReno). This heuristics are the same in NewReno
2110  *		and SACK.
2111  *
2112  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2113  *  deflation etc. CWND is real congestion window, never inflated, changes
2114  *  only according to classic VJ rules.
2115  *
2116  * Really tricky (and requiring careful tuning) part of algorithm
2117  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2118  * The first determines the moment _when_ we should reduce CWND and,
2119  * hence, slow down forward transmission. In fact, it determines the moment
2120  * when we decide that hole is caused by loss, rather than by a reorder.
2121  *
2122  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2123  * holes, caused by lost packets.
2124  *
2125  * And the most logically complicated part of algorithm is undo
2126  * heuristics. We detect false retransmits due to both too early
2127  * fast retransmit (reordering) and underestimated RTO, analyzing
2128  * timestamps and D-SACKs. When we detect that some segments were
2129  * retransmitted by mistake and CWND reduction was wrong, we undo
2130  * window reduction and abort recovery phase. This logic is hidden
2131  * inside several functions named tcp_try_undo_<something>.
2132  */
2133 
2134 /* This function decides, when we should leave Disordered state
2135  * and enter Recovery phase, reducing congestion window.
2136  *
2137  * Main question: may we further continue forward transmission
2138  * with the same cwnd?
2139  */
2140 static bool tcp_time_to_recover(struct sock *sk, int flag)
2141 {
2142 	struct tcp_sock *tp = tcp_sk(sk);
2143 	__u32 packets_out;
2144 
2145 	/* Trick#1: The loss is proven. */
2146 	if (tp->lost_out)
2147 		return true;
2148 
2149 	/* Not-A-Trick#2 : Classic rule... */
2150 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2151 		return true;
2152 
2153 	/* Trick#4: It is still not OK... But will it be useful to delay
2154 	 * recovery more?
2155 	 */
2156 	packets_out = tp->packets_out;
2157 	if (packets_out <= tp->reordering &&
2158 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2159 	    !tcp_may_send_now(sk)) {
2160 		/* We have nothing to send. This connection is limited
2161 		 * either by receiver window or by application.
2162 		 */
2163 		return true;
2164 	}
2165 
2166 	/* If a thin stream is detected, retransmit after first
2167 	 * received dupack. Employ only if SACK is supported in order
2168 	 * to avoid possible corner-case series of spurious retransmissions
2169 	 * Use only if there are no unsent data.
2170 	 */
2171 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2172 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2173 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2174 		return true;
2175 
2176 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2177 	 * retransmissions due to small network reorderings, we implement
2178 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2179 	 * interval if appropriate.
2180 	 */
2181 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2182 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2183 	    !tcp_may_send_now(sk))
2184 		return !tcp_pause_early_retransmit(sk, flag);
2185 
2186 	return false;
2187 }
2188 
2189 /* Detect loss in event "A" above by marking head of queue up as lost.
2190  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2191  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2192  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2193  * the maximum SACKed segments to pass before reaching this limit.
2194  */
2195 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2196 {
2197 	struct tcp_sock *tp = tcp_sk(sk);
2198 	struct sk_buff *skb;
2199 	int cnt, oldcnt;
2200 	int err;
2201 	unsigned int mss;
2202 	/* Use SACK to deduce losses of new sequences sent during recovery */
2203 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2204 
2205 	WARN_ON(packets > tp->packets_out);
2206 	if (tp->lost_skb_hint) {
2207 		skb = tp->lost_skb_hint;
2208 		cnt = tp->lost_cnt_hint;
2209 		/* Head already handled? */
2210 		if (mark_head && skb != tcp_write_queue_head(sk))
2211 			return;
2212 	} else {
2213 		skb = tcp_write_queue_head(sk);
2214 		cnt = 0;
2215 	}
2216 
2217 	tcp_for_write_queue_from(skb, sk) {
2218 		if (skb == tcp_send_head(sk))
2219 			break;
2220 		/* TODO: do this better */
2221 		/* this is not the most efficient way to do this... */
2222 		tp->lost_skb_hint = skb;
2223 		tp->lost_cnt_hint = cnt;
2224 
2225 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2226 			break;
2227 
2228 		oldcnt = cnt;
2229 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2230 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2231 			cnt += tcp_skb_pcount(skb);
2232 
2233 		if (cnt > packets) {
2234 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2235 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2236 			    (oldcnt >= packets))
2237 				break;
2238 
2239 			mss = skb_shinfo(skb)->gso_size;
2240 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2241 			if (err < 0)
2242 				break;
2243 			cnt = packets;
2244 		}
2245 
2246 		tcp_skb_mark_lost(tp, skb);
2247 
2248 		if (mark_head)
2249 			break;
2250 	}
2251 	tcp_verify_left_out(tp);
2252 }
2253 
2254 /* Account newly detected lost packet(s) */
2255 
2256 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2257 {
2258 	struct tcp_sock *tp = tcp_sk(sk);
2259 
2260 	if (tcp_is_reno(tp)) {
2261 		tcp_mark_head_lost(sk, 1, 1);
2262 	} else if (tcp_is_fack(tp)) {
2263 		int lost = tp->fackets_out - tp->reordering;
2264 		if (lost <= 0)
2265 			lost = 1;
2266 		tcp_mark_head_lost(sk, lost, 0);
2267 	} else {
2268 		int sacked_upto = tp->sacked_out - tp->reordering;
2269 		if (sacked_upto >= 0)
2270 			tcp_mark_head_lost(sk, sacked_upto, 0);
2271 		else if (fast_rexmit)
2272 			tcp_mark_head_lost(sk, 1, 1);
2273 	}
2274 }
2275 
2276 /* CWND moderation, preventing bursts due to too big ACKs
2277  * in dubious situations.
2278  */
2279 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2280 {
2281 	tp->snd_cwnd = min(tp->snd_cwnd,
2282 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2283 	tp->snd_cwnd_stamp = tcp_time_stamp;
2284 }
2285 
2286 /* Nothing was retransmitted or returned timestamp is less
2287  * than timestamp of the first retransmission.
2288  */
2289 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2290 {
2291 	return !tp->retrans_stamp ||
2292 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2293 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2294 }
2295 
2296 /* Undo procedures. */
2297 
2298 #if FASTRETRANS_DEBUG > 1
2299 static void DBGUNDO(struct sock *sk, const char *msg)
2300 {
2301 	struct tcp_sock *tp = tcp_sk(sk);
2302 	struct inet_sock *inet = inet_sk(sk);
2303 
2304 	if (sk->sk_family == AF_INET) {
2305 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2306 			 msg,
2307 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2308 			 tp->snd_cwnd, tcp_left_out(tp),
2309 			 tp->snd_ssthresh, tp->prior_ssthresh,
2310 			 tp->packets_out);
2311 	}
2312 #if IS_ENABLED(CONFIG_IPV6)
2313 	else if (sk->sk_family == AF_INET6) {
2314 		struct ipv6_pinfo *np = inet6_sk(sk);
2315 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2316 			 msg,
2317 			 &np->daddr, ntohs(inet->inet_dport),
2318 			 tp->snd_cwnd, tcp_left_out(tp),
2319 			 tp->snd_ssthresh, tp->prior_ssthresh,
2320 			 tp->packets_out);
2321 	}
2322 #endif
2323 }
2324 #else
2325 #define DBGUNDO(x...) do { } while (0)
2326 #endif
2327 
2328 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2329 {
2330 	struct tcp_sock *tp = tcp_sk(sk);
2331 
2332 	if (unmark_loss) {
2333 		struct sk_buff *skb;
2334 
2335 		tcp_for_write_queue(skb, sk) {
2336 			if (skb == tcp_send_head(sk))
2337 				break;
2338 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2339 		}
2340 		tp->lost_out = 0;
2341 		tcp_clear_all_retrans_hints(tp);
2342 	}
2343 
2344 	if (tp->prior_ssthresh) {
2345 		const struct inet_connection_sock *icsk = inet_csk(sk);
2346 
2347 		if (icsk->icsk_ca_ops->undo_cwnd)
2348 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2349 		else
2350 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2351 
2352 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2353 			tp->snd_ssthresh = tp->prior_ssthresh;
2354 			TCP_ECN_withdraw_cwr(tp);
2355 		}
2356 	} else {
2357 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2358 	}
2359 	tp->snd_cwnd_stamp = tcp_time_stamp;
2360 	tp->undo_marker = 0;
2361 }
2362 
2363 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2364 {
2365 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2366 }
2367 
2368 /* People celebrate: "We love our President!" */
2369 static bool tcp_try_undo_recovery(struct sock *sk)
2370 {
2371 	struct tcp_sock *tp = tcp_sk(sk);
2372 
2373 	if (tcp_may_undo(tp)) {
2374 		int mib_idx;
2375 
2376 		/* Happy end! We did not retransmit anything
2377 		 * or our original transmission succeeded.
2378 		 */
2379 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2380 		tcp_undo_cwnd_reduction(sk, false);
2381 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2382 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2383 		else
2384 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2385 
2386 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2387 	}
2388 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2389 		/* Hold old state until something *above* high_seq
2390 		 * is ACKed. For Reno it is MUST to prevent false
2391 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2392 		tcp_moderate_cwnd(tp);
2393 		return true;
2394 	}
2395 	tcp_set_ca_state(sk, TCP_CA_Open);
2396 	return false;
2397 }
2398 
2399 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2400 static bool tcp_try_undo_dsack(struct sock *sk)
2401 {
2402 	struct tcp_sock *tp = tcp_sk(sk);
2403 
2404 	if (tp->undo_marker && !tp->undo_retrans) {
2405 		DBGUNDO(sk, "D-SACK");
2406 		tcp_undo_cwnd_reduction(sk, false);
2407 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2408 		return true;
2409 	}
2410 	return false;
2411 }
2412 
2413 /* We can clear retrans_stamp when there are no retransmissions in the
2414  * window. It would seem that it is trivially available for us in
2415  * tp->retrans_out, however, that kind of assumptions doesn't consider
2416  * what will happen if errors occur when sending retransmission for the
2417  * second time. ...It could the that such segment has only
2418  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2419  * the head skb is enough except for some reneging corner cases that
2420  * are not worth the effort.
2421  *
2422  * Main reason for all this complexity is the fact that connection dying
2423  * time now depends on the validity of the retrans_stamp, in particular,
2424  * that successive retransmissions of a segment must not advance
2425  * retrans_stamp under any conditions.
2426  */
2427 static bool tcp_any_retrans_done(const struct sock *sk)
2428 {
2429 	const struct tcp_sock *tp = tcp_sk(sk);
2430 	struct sk_buff *skb;
2431 
2432 	if (tp->retrans_out)
2433 		return true;
2434 
2435 	skb = tcp_write_queue_head(sk);
2436 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2437 		return true;
2438 
2439 	return false;
2440 }
2441 
2442 /* Undo during loss recovery after partial ACK or using F-RTO. */
2443 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2444 {
2445 	struct tcp_sock *tp = tcp_sk(sk);
2446 
2447 	if (frto_undo || tcp_may_undo(tp)) {
2448 		tcp_undo_cwnd_reduction(sk, true);
2449 
2450 		DBGUNDO(sk, "partial loss");
2451 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2452 		if (frto_undo)
2453 			NET_INC_STATS_BH(sock_net(sk),
2454 					 LINUX_MIB_TCPSPURIOUSRTOS);
2455 		inet_csk(sk)->icsk_retransmits = 0;
2456 		if (frto_undo || tcp_is_sack(tp))
2457 			tcp_set_ca_state(sk, TCP_CA_Open);
2458 		return true;
2459 	}
2460 	return false;
2461 }
2462 
2463 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2464  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2465  * It computes the number of packets to send (sndcnt) based on packets newly
2466  * delivered:
2467  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2468  *	cwnd reductions across a full RTT.
2469  *   2) If packets in flight is lower than ssthresh (such as due to excess
2470  *	losses and/or application stalls), do not perform any further cwnd
2471  *	reductions, but instead slow start up to ssthresh.
2472  */
2473 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2474 {
2475 	struct tcp_sock *tp = tcp_sk(sk);
2476 
2477 	tp->high_seq = tp->snd_nxt;
2478 	tp->tlp_high_seq = 0;
2479 	tp->snd_cwnd_cnt = 0;
2480 	tp->prior_cwnd = tp->snd_cwnd;
2481 	tp->prr_delivered = 0;
2482 	tp->prr_out = 0;
2483 	if (set_ssthresh)
2484 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2485 	TCP_ECN_queue_cwr(tp);
2486 }
2487 
2488 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2489 			       int fast_rexmit)
2490 {
2491 	struct tcp_sock *tp = tcp_sk(sk);
2492 	int sndcnt = 0;
2493 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2494 	int newly_acked_sacked = prior_unsacked -
2495 				 (tp->packets_out - tp->sacked_out);
2496 
2497 	tp->prr_delivered += newly_acked_sacked;
2498 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2499 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2500 			       tp->prior_cwnd - 1;
2501 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2502 	} else {
2503 		sndcnt = min_t(int, delta,
2504 			       max_t(int, tp->prr_delivered - tp->prr_out,
2505 				     newly_acked_sacked) + 1);
2506 	}
2507 
2508 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2509 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2510 }
2511 
2512 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2513 {
2514 	struct tcp_sock *tp = tcp_sk(sk);
2515 
2516 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2517 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2518 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2519 		tp->snd_cwnd = tp->snd_ssthresh;
2520 		tp->snd_cwnd_stamp = tcp_time_stamp;
2521 	}
2522 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2523 }
2524 
2525 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2526 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2527 {
2528 	struct tcp_sock *tp = tcp_sk(sk);
2529 
2530 	tp->prior_ssthresh = 0;
2531 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2532 		tp->undo_marker = 0;
2533 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2534 		tcp_set_ca_state(sk, TCP_CA_CWR);
2535 	}
2536 }
2537 
2538 static void tcp_try_keep_open(struct sock *sk)
2539 {
2540 	struct tcp_sock *tp = tcp_sk(sk);
2541 	int state = TCP_CA_Open;
2542 
2543 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2544 		state = TCP_CA_Disorder;
2545 
2546 	if (inet_csk(sk)->icsk_ca_state != state) {
2547 		tcp_set_ca_state(sk, state);
2548 		tp->high_seq = tp->snd_nxt;
2549 	}
2550 }
2551 
2552 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2553 {
2554 	struct tcp_sock *tp = tcp_sk(sk);
2555 
2556 	tcp_verify_left_out(tp);
2557 
2558 	if (!tcp_any_retrans_done(sk))
2559 		tp->retrans_stamp = 0;
2560 
2561 	if (flag & FLAG_ECE)
2562 		tcp_enter_cwr(sk, 1);
2563 
2564 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2565 		tcp_try_keep_open(sk);
2566 	} else {
2567 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2568 	}
2569 }
2570 
2571 static void tcp_mtup_probe_failed(struct sock *sk)
2572 {
2573 	struct inet_connection_sock *icsk = inet_csk(sk);
2574 
2575 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2576 	icsk->icsk_mtup.probe_size = 0;
2577 }
2578 
2579 static void tcp_mtup_probe_success(struct sock *sk)
2580 {
2581 	struct tcp_sock *tp = tcp_sk(sk);
2582 	struct inet_connection_sock *icsk = inet_csk(sk);
2583 
2584 	/* FIXME: breaks with very large cwnd */
2585 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2586 	tp->snd_cwnd = tp->snd_cwnd *
2587 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2588 		       icsk->icsk_mtup.probe_size;
2589 	tp->snd_cwnd_cnt = 0;
2590 	tp->snd_cwnd_stamp = tcp_time_stamp;
2591 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2592 
2593 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2594 	icsk->icsk_mtup.probe_size = 0;
2595 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2596 }
2597 
2598 /* Do a simple retransmit without using the backoff mechanisms in
2599  * tcp_timer. This is used for path mtu discovery.
2600  * The socket is already locked here.
2601  */
2602 void tcp_simple_retransmit(struct sock *sk)
2603 {
2604 	const struct inet_connection_sock *icsk = inet_csk(sk);
2605 	struct tcp_sock *tp = tcp_sk(sk);
2606 	struct sk_buff *skb;
2607 	unsigned int mss = tcp_current_mss(sk);
2608 	u32 prior_lost = tp->lost_out;
2609 
2610 	tcp_for_write_queue(skb, sk) {
2611 		if (skb == tcp_send_head(sk))
2612 			break;
2613 		if (tcp_skb_seglen(skb) > mss &&
2614 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2615 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2616 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2617 				tp->retrans_out -= tcp_skb_pcount(skb);
2618 			}
2619 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2620 		}
2621 	}
2622 
2623 	tcp_clear_retrans_hints_partial(tp);
2624 
2625 	if (prior_lost == tp->lost_out)
2626 		return;
2627 
2628 	if (tcp_is_reno(tp))
2629 		tcp_limit_reno_sacked(tp);
2630 
2631 	tcp_verify_left_out(tp);
2632 
2633 	/* Don't muck with the congestion window here.
2634 	 * Reason is that we do not increase amount of _data_
2635 	 * in network, but units changed and effective
2636 	 * cwnd/ssthresh really reduced now.
2637 	 */
2638 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2639 		tp->high_seq = tp->snd_nxt;
2640 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2641 		tp->prior_ssthresh = 0;
2642 		tp->undo_marker = 0;
2643 		tcp_set_ca_state(sk, TCP_CA_Loss);
2644 	}
2645 	tcp_xmit_retransmit_queue(sk);
2646 }
2647 EXPORT_SYMBOL(tcp_simple_retransmit);
2648 
2649 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2650 {
2651 	struct tcp_sock *tp = tcp_sk(sk);
2652 	int mib_idx;
2653 
2654 	if (tcp_is_reno(tp))
2655 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2656 	else
2657 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2658 
2659 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2660 
2661 	tp->prior_ssthresh = 0;
2662 	tp->undo_marker = tp->snd_una;
2663 	tp->undo_retrans = tp->retrans_out;
2664 
2665 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2666 		if (!ece_ack)
2667 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2668 		tcp_init_cwnd_reduction(sk, true);
2669 	}
2670 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2671 }
2672 
2673 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2674  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2675  */
2676 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2677 {
2678 	struct inet_connection_sock *icsk = inet_csk(sk);
2679 	struct tcp_sock *tp = tcp_sk(sk);
2680 	bool recovered = !before(tp->snd_una, tp->high_seq);
2681 
2682 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2683 		if (flag & FLAG_ORIG_SACK_ACKED) {
2684 			/* Step 3.b. A timeout is spurious if not all data are
2685 			 * lost, i.e., never-retransmitted data are (s)acked.
2686 			 */
2687 			tcp_try_undo_loss(sk, true);
2688 			return;
2689 		}
2690 		if (after(tp->snd_nxt, tp->high_seq) &&
2691 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2692 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2693 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2694 			tp->high_seq = tp->snd_nxt;
2695 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2696 						  TCP_NAGLE_OFF);
2697 			if (after(tp->snd_nxt, tp->high_seq))
2698 				return; /* Step 2.b */
2699 			tp->frto = 0;
2700 		}
2701 	}
2702 
2703 	if (recovered) {
2704 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2705 		icsk->icsk_retransmits = 0;
2706 		tcp_try_undo_recovery(sk);
2707 		return;
2708 	}
2709 	if (flag & FLAG_DATA_ACKED)
2710 		icsk->icsk_retransmits = 0;
2711 	if (tcp_is_reno(tp)) {
2712 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2713 		 * delivered. Lower inflight to clock out (re)tranmissions.
2714 		 */
2715 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2716 			tcp_add_reno_sack(sk);
2717 		else if (flag & FLAG_SND_UNA_ADVANCED)
2718 			tcp_reset_reno_sack(tp);
2719 	}
2720 	if (tcp_try_undo_loss(sk, false))
2721 		return;
2722 	tcp_xmit_retransmit_queue(sk);
2723 }
2724 
2725 /* Undo during fast recovery after partial ACK. */
2726 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2727 				 const int prior_unsacked)
2728 {
2729 	struct tcp_sock *tp = tcp_sk(sk);
2730 
2731 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2732 		/* Plain luck! Hole if filled with delayed
2733 		 * packet, rather than with a retransmit.
2734 		 */
2735 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2736 
2737 		/* We are getting evidence that the reordering degree is higher
2738 		 * than we realized. If there are no retransmits out then we
2739 		 * can undo. Otherwise we clock out new packets but do not
2740 		 * mark more packets lost or retransmit more.
2741 		 */
2742 		if (tp->retrans_out) {
2743 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2744 			return true;
2745 		}
2746 
2747 		if (!tcp_any_retrans_done(sk))
2748 			tp->retrans_stamp = 0;
2749 
2750 		DBGUNDO(sk, "partial recovery");
2751 		tcp_undo_cwnd_reduction(sk, true);
2752 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2753 		tcp_try_keep_open(sk);
2754 		return true;
2755 	}
2756 	return false;
2757 }
2758 
2759 /* Process an event, which can update packets-in-flight not trivially.
2760  * Main goal of this function is to calculate new estimate for left_out,
2761  * taking into account both packets sitting in receiver's buffer and
2762  * packets lost by network.
2763  *
2764  * Besides that it does CWND reduction, when packet loss is detected
2765  * and changes state of machine.
2766  *
2767  * It does _not_ decide what to send, it is made in function
2768  * tcp_xmit_retransmit_queue().
2769  */
2770 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2771 				  const int prior_unsacked,
2772 				  bool is_dupack, int flag)
2773 {
2774 	struct inet_connection_sock *icsk = inet_csk(sk);
2775 	struct tcp_sock *tp = tcp_sk(sk);
2776 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2777 				    (tcp_fackets_out(tp) > tp->reordering));
2778 	int fast_rexmit = 0;
2779 
2780 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2781 		tp->sacked_out = 0;
2782 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2783 		tp->fackets_out = 0;
2784 
2785 	/* Now state machine starts.
2786 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2787 	if (flag & FLAG_ECE)
2788 		tp->prior_ssthresh = 0;
2789 
2790 	/* B. In all the states check for reneging SACKs. */
2791 	if (tcp_check_sack_reneging(sk, flag))
2792 		return;
2793 
2794 	/* C. Check consistency of the current state. */
2795 	tcp_verify_left_out(tp);
2796 
2797 	/* D. Check state exit conditions. State can be terminated
2798 	 *    when high_seq is ACKed. */
2799 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2800 		WARN_ON(tp->retrans_out != 0);
2801 		tp->retrans_stamp = 0;
2802 	} else if (!before(tp->snd_una, tp->high_seq)) {
2803 		switch (icsk->icsk_ca_state) {
2804 		case TCP_CA_CWR:
2805 			/* CWR is to be held something *above* high_seq
2806 			 * is ACKed for CWR bit to reach receiver. */
2807 			if (tp->snd_una != tp->high_seq) {
2808 				tcp_end_cwnd_reduction(sk);
2809 				tcp_set_ca_state(sk, TCP_CA_Open);
2810 			}
2811 			break;
2812 
2813 		case TCP_CA_Recovery:
2814 			if (tcp_is_reno(tp))
2815 				tcp_reset_reno_sack(tp);
2816 			if (tcp_try_undo_recovery(sk))
2817 				return;
2818 			tcp_end_cwnd_reduction(sk);
2819 			break;
2820 		}
2821 	}
2822 
2823 	/* E. Process state. */
2824 	switch (icsk->icsk_ca_state) {
2825 	case TCP_CA_Recovery:
2826 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2827 			if (tcp_is_reno(tp) && is_dupack)
2828 				tcp_add_reno_sack(sk);
2829 		} else {
2830 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2831 				return;
2832 			/* Partial ACK arrived. Force fast retransmit. */
2833 			do_lost = tcp_is_reno(tp) ||
2834 				  tcp_fackets_out(tp) > tp->reordering;
2835 		}
2836 		if (tcp_try_undo_dsack(sk)) {
2837 			tcp_try_keep_open(sk);
2838 			return;
2839 		}
2840 		break;
2841 	case TCP_CA_Loss:
2842 		tcp_process_loss(sk, flag, is_dupack);
2843 		if (icsk->icsk_ca_state != TCP_CA_Open)
2844 			return;
2845 		/* Fall through to processing in Open state. */
2846 	default:
2847 		if (tcp_is_reno(tp)) {
2848 			if (flag & FLAG_SND_UNA_ADVANCED)
2849 				tcp_reset_reno_sack(tp);
2850 			if (is_dupack)
2851 				tcp_add_reno_sack(sk);
2852 		}
2853 
2854 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2855 			tcp_try_undo_dsack(sk);
2856 
2857 		if (!tcp_time_to_recover(sk, flag)) {
2858 			tcp_try_to_open(sk, flag, prior_unsacked);
2859 			return;
2860 		}
2861 
2862 		/* MTU probe failure: don't reduce cwnd */
2863 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2864 		    icsk->icsk_mtup.probe_size &&
2865 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2866 			tcp_mtup_probe_failed(sk);
2867 			/* Restores the reduction we did in tcp_mtup_probe() */
2868 			tp->snd_cwnd++;
2869 			tcp_simple_retransmit(sk);
2870 			return;
2871 		}
2872 
2873 		/* Otherwise enter Recovery state */
2874 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2875 		fast_rexmit = 1;
2876 	}
2877 
2878 	if (do_lost)
2879 		tcp_update_scoreboard(sk, fast_rexmit);
2880 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2881 	tcp_xmit_retransmit_queue(sk);
2882 }
2883 
2884 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2885 				      s32 seq_rtt, s32 sack_rtt)
2886 {
2887 	const struct tcp_sock *tp = tcp_sk(sk);
2888 
2889 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2890 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2891 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2892 	 * is acked (RFC6298).
2893 	 */
2894 	if (flag & FLAG_RETRANS_DATA_ACKED)
2895 		seq_rtt = -1;
2896 
2897 	if (seq_rtt < 0)
2898 		seq_rtt = sack_rtt;
2899 
2900 	/* RTTM Rule: A TSecr value received in a segment is used to
2901 	 * update the averaged RTT measurement only if the segment
2902 	 * acknowledges some new data, i.e., only if it advances the
2903 	 * left edge of the send window.
2904 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2905 	 */
2906 	if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2907 	    flag & FLAG_ACKED)
2908 		seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2909 
2910 	if (seq_rtt < 0)
2911 		return false;
2912 
2913 	tcp_rtt_estimator(sk, seq_rtt);
2914 	tcp_set_rto(sk);
2915 
2916 	/* RFC6298: only reset backoff on valid RTT measurement. */
2917 	inet_csk(sk)->icsk_backoff = 0;
2918 	return true;
2919 }
2920 
2921 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2922 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2923 {
2924 	struct tcp_sock *tp = tcp_sk(sk);
2925 	s32 seq_rtt = -1;
2926 
2927 	if (synack_stamp && !tp->total_retrans)
2928 		seq_rtt = tcp_time_stamp - synack_stamp;
2929 
2930 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2931 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2932 	 */
2933 	if (!tp->srtt)
2934 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
2935 }
2936 
2937 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight)
2938 {
2939 	const struct inet_connection_sock *icsk = inet_csk(sk);
2940 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight);
2941 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2942 }
2943 
2944 /* Restart timer after forward progress on connection.
2945  * RFC2988 recommends to restart timer to now+rto.
2946  */
2947 void tcp_rearm_rto(struct sock *sk)
2948 {
2949 	const struct inet_connection_sock *icsk = inet_csk(sk);
2950 	struct tcp_sock *tp = tcp_sk(sk);
2951 
2952 	/* If the retrans timer is currently being used by Fast Open
2953 	 * for SYN-ACK retrans purpose, stay put.
2954 	 */
2955 	if (tp->fastopen_rsk)
2956 		return;
2957 
2958 	if (!tp->packets_out) {
2959 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2960 	} else {
2961 		u32 rto = inet_csk(sk)->icsk_rto;
2962 		/* Offset the time elapsed after installing regular RTO */
2963 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2964 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2965 			struct sk_buff *skb = tcp_write_queue_head(sk);
2966 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2967 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2968 			/* delta may not be positive if the socket is locked
2969 			 * when the retrans timer fires and is rescheduled.
2970 			 */
2971 			if (delta > 0)
2972 				rto = delta;
2973 		}
2974 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2975 					  TCP_RTO_MAX);
2976 	}
2977 }
2978 
2979 /* This function is called when the delayed ER timer fires. TCP enters
2980  * fast recovery and performs fast-retransmit.
2981  */
2982 void tcp_resume_early_retransmit(struct sock *sk)
2983 {
2984 	struct tcp_sock *tp = tcp_sk(sk);
2985 
2986 	tcp_rearm_rto(sk);
2987 
2988 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2989 	if (!tp->do_early_retrans)
2990 		return;
2991 
2992 	tcp_enter_recovery(sk, false);
2993 	tcp_update_scoreboard(sk, 1);
2994 	tcp_xmit_retransmit_queue(sk);
2995 }
2996 
2997 /* If we get here, the whole TSO packet has not been acked. */
2998 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2999 {
3000 	struct tcp_sock *tp = tcp_sk(sk);
3001 	u32 packets_acked;
3002 
3003 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3004 
3005 	packets_acked = tcp_skb_pcount(skb);
3006 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3007 		return 0;
3008 	packets_acked -= tcp_skb_pcount(skb);
3009 
3010 	if (packets_acked) {
3011 		BUG_ON(tcp_skb_pcount(skb) == 0);
3012 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3013 	}
3014 
3015 	return packets_acked;
3016 }
3017 
3018 /* Remove acknowledged frames from the retransmission queue. If our packet
3019  * is before the ack sequence we can discard it as it's confirmed to have
3020  * arrived at the other end.
3021  */
3022 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3023 			       u32 prior_snd_una, s32 sack_rtt)
3024 {
3025 	struct tcp_sock *tp = tcp_sk(sk);
3026 	const struct inet_connection_sock *icsk = inet_csk(sk);
3027 	struct sk_buff *skb;
3028 	u32 now = tcp_time_stamp;
3029 	bool fully_acked = true;
3030 	int flag = 0;
3031 	u32 pkts_acked = 0;
3032 	u32 reord = tp->packets_out;
3033 	u32 prior_sacked = tp->sacked_out;
3034 	s32 seq_rtt = -1;
3035 	s32 ca_seq_rtt = -1;
3036 	ktime_t last_ackt = net_invalid_timestamp();
3037 	bool rtt_update;
3038 
3039 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3040 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3041 		u32 acked_pcount;
3042 		u8 sacked = scb->sacked;
3043 
3044 		/* Determine how many packets and what bytes were acked, tso and else */
3045 		if (after(scb->end_seq, tp->snd_una)) {
3046 			if (tcp_skb_pcount(skb) == 1 ||
3047 			    !after(tp->snd_una, scb->seq))
3048 				break;
3049 
3050 			acked_pcount = tcp_tso_acked(sk, skb);
3051 			if (!acked_pcount)
3052 				break;
3053 
3054 			fully_acked = false;
3055 		} else {
3056 			acked_pcount = tcp_skb_pcount(skb);
3057 		}
3058 
3059 		if (sacked & TCPCB_RETRANS) {
3060 			if (sacked & TCPCB_SACKED_RETRANS)
3061 				tp->retrans_out -= acked_pcount;
3062 			flag |= FLAG_RETRANS_DATA_ACKED;
3063 		} else {
3064 			ca_seq_rtt = now - scb->when;
3065 			last_ackt = skb->tstamp;
3066 			if (seq_rtt < 0) {
3067 				seq_rtt = ca_seq_rtt;
3068 			}
3069 			if (!(sacked & TCPCB_SACKED_ACKED))
3070 				reord = min(pkts_acked, reord);
3071 			if (!after(scb->end_seq, tp->high_seq))
3072 				flag |= FLAG_ORIG_SACK_ACKED;
3073 		}
3074 
3075 		if (sacked & TCPCB_SACKED_ACKED)
3076 			tp->sacked_out -= acked_pcount;
3077 		if (sacked & TCPCB_LOST)
3078 			tp->lost_out -= acked_pcount;
3079 
3080 		tp->packets_out -= acked_pcount;
3081 		pkts_acked += acked_pcount;
3082 
3083 		/* Initial outgoing SYN's get put onto the write_queue
3084 		 * just like anything else we transmit.  It is not
3085 		 * true data, and if we misinform our callers that
3086 		 * this ACK acks real data, we will erroneously exit
3087 		 * connection startup slow start one packet too
3088 		 * quickly.  This is severely frowned upon behavior.
3089 		 */
3090 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3091 			flag |= FLAG_DATA_ACKED;
3092 		} else {
3093 			flag |= FLAG_SYN_ACKED;
3094 			tp->retrans_stamp = 0;
3095 		}
3096 
3097 		if (!fully_acked)
3098 			break;
3099 
3100 		tcp_unlink_write_queue(skb, sk);
3101 		sk_wmem_free_skb(sk, skb);
3102 		if (skb == tp->retransmit_skb_hint)
3103 			tp->retransmit_skb_hint = NULL;
3104 		if (skb == tp->lost_skb_hint)
3105 			tp->lost_skb_hint = NULL;
3106 	}
3107 
3108 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3109 		tp->snd_up = tp->snd_una;
3110 
3111 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3112 		flag |= FLAG_SACK_RENEGING;
3113 
3114 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt);
3115 
3116 	if (flag & FLAG_ACKED) {
3117 		const struct tcp_congestion_ops *ca_ops
3118 			= inet_csk(sk)->icsk_ca_ops;
3119 
3120 		tcp_rearm_rto(sk);
3121 		if (unlikely(icsk->icsk_mtup.probe_size &&
3122 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3123 			tcp_mtup_probe_success(sk);
3124 		}
3125 
3126 		if (tcp_is_reno(tp)) {
3127 			tcp_remove_reno_sacks(sk, pkts_acked);
3128 		} else {
3129 			int delta;
3130 
3131 			/* Non-retransmitted hole got filled? That's reordering */
3132 			if (reord < prior_fackets)
3133 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3134 
3135 			delta = tcp_is_fack(tp) ? pkts_acked :
3136 						  prior_sacked - tp->sacked_out;
3137 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3138 		}
3139 
3140 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3141 
3142 		if (ca_ops->pkts_acked) {
3143 			s32 rtt_us = -1;
3144 
3145 			/* Is the ACK triggering packet unambiguous? */
3146 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3147 				/* High resolution needed and available? */
3148 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3149 				    !ktime_equal(last_ackt,
3150 						 net_invalid_timestamp()))
3151 					rtt_us = ktime_us_delta(ktime_get_real(),
3152 								last_ackt);
3153 				else if (ca_seq_rtt >= 0)
3154 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3155 			}
3156 
3157 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3158 		}
3159 	} else if (skb && rtt_update && sack_rtt >= 0 &&
3160 		   sack_rtt > (s32)(now - TCP_SKB_CB(skb)->when)) {
3161 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3162 		 * after when the head was last (re)transmitted. Otherwise the
3163 		 * timeout may continue to extend in loss recovery.
3164 		 */
3165 		tcp_rearm_rto(sk);
3166 	}
3167 
3168 #if FASTRETRANS_DEBUG > 0
3169 	WARN_ON((int)tp->sacked_out < 0);
3170 	WARN_ON((int)tp->lost_out < 0);
3171 	WARN_ON((int)tp->retrans_out < 0);
3172 	if (!tp->packets_out && tcp_is_sack(tp)) {
3173 		icsk = inet_csk(sk);
3174 		if (tp->lost_out) {
3175 			pr_debug("Leak l=%u %d\n",
3176 				 tp->lost_out, icsk->icsk_ca_state);
3177 			tp->lost_out = 0;
3178 		}
3179 		if (tp->sacked_out) {
3180 			pr_debug("Leak s=%u %d\n",
3181 				 tp->sacked_out, icsk->icsk_ca_state);
3182 			tp->sacked_out = 0;
3183 		}
3184 		if (tp->retrans_out) {
3185 			pr_debug("Leak r=%u %d\n",
3186 				 tp->retrans_out, icsk->icsk_ca_state);
3187 			tp->retrans_out = 0;
3188 		}
3189 	}
3190 #endif
3191 	return flag;
3192 }
3193 
3194 static void tcp_ack_probe(struct sock *sk)
3195 {
3196 	const struct tcp_sock *tp = tcp_sk(sk);
3197 	struct inet_connection_sock *icsk = inet_csk(sk);
3198 
3199 	/* Was it a usable window open? */
3200 
3201 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3202 		icsk->icsk_backoff = 0;
3203 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3204 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3205 		 * This function is not for random using!
3206 		 */
3207 	} else {
3208 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3209 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3210 					  TCP_RTO_MAX);
3211 	}
3212 }
3213 
3214 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3215 {
3216 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3217 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3218 }
3219 
3220 /* Decide wheather to run the increase function of congestion control. */
3221 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3222 {
3223 	if (tcp_in_cwnd_reduction(sk))
3224 		return false;
3225 
3226 	/* If reordering is high then always grow cwnd whenever data is
3227 	 * delivered regardless of its ordering. Otherwise stay conservative
3228 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3229 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3230 	 * cwnd in tcp_fastretrans_alert() based on more states.
3231 	 */
3232 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3233 		return flag & FLAG_FORWARD_PROGRESS;
3234 
3235 	return flag & FLAG_DATA_ACKED;
3236 }
3237 
3238 /* Check that window update is acceptable.
3239  * The function assumes that snd_una<=ack<=snd_next.
3240  */
3241 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3242 					const u32 ack, const u32 ack_seq,
3243 					const u32 nwin)
3244 {
3245 	return	after(ack, tp->snd_una) ||
3246 		after(ack_seq, tp->snd_wl1) ||
3247 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3248 }
3249 
3250 /* Update our send window.
3251  *
3252  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3253  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3254  */
3255 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3256 				 u32 ack_seq)
3257 {
3258 	struct tcp_sock *tp = tcp_sk(sk);
3259 	int flag = 0;
3260 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3261 
3262 	if (likely(!tcp_hdr(skb)->syn))
3263 		nwin <<= tp->rx_opt.snd_wscale;
3264 
3265 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3266 		flag |= FLAG_WIN_UPDATE;
3267 		tcp_update_wl(tp, ack_seq);
3268 
3269 		if (tp->snd_wnd != nwin) {
3270 			tp->snd_wnd = nwin;
3271 
3272 			/* Note, it is the only place, where
3273 			 * fast path is recovered for sending TCP.
3274 			 */
3275 			tp->pred_flags = 0;
3276 			tcp_fast_path_check(sk);
3277 
3278 			if (nwin > tp->max_window) {
3279 				tp->max_window = nwin;
3280 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3281 			}
3282 		}
3283 	}
3284 
3285 	tp->snd_una = ack;
3286 
3287 	return flag;
3288 }
3289 
3290 /* RFC 5961 7 [ACK Throttling] */
3291 static void tcp_send_challenge_ack(struct sock *sk)
3292 {
3293 	/* unprotected vars, we dont care of overwrites */
3294 	static u32 challenge_timestamp;
3295 	static unsigned int challenge_count;
3296 	u32 now = jiffies / HZ;
3297 
3298 	if (now != challenge_timestamp) {
3299 		challenge_timestamp = now;
3300 		challenge_count = 0;
3301 	}
3302 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3303 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3304 		tcp_send_ack(sk);
3305 	}
3306 }
3307 
3308 static void tcp_store_ts_recent(struct tcp_sock *tp)
3309 {
3310 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3311 	tp->rx_opt.ts_recent_stamp = get_seconds();
3312 }
3313 
3314 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3315 {
3316 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3317 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3318 		 * extra check below makes sure this can only happen
3319 		 * for pure ACK frames.  -DaveM
3320 		 *
3321 		 * Not only, also it occurs for expired timestamps.
3322 		 */
3323 
3324 		if (tcp_paws_check(&tp->rx_opt, 0))
3325 			tcp_store_ts_recent(tp);
3326 	}
3327 }
3328 
3329 /* This routine deals with acks during a TLP episode.
3330  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3331  */
3332 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3333 {
3334 	struct tcp_sock *tp = tcp_sk(sk);
3335 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3336 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3337 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3338 
3339 	/* Mark the end of TLP episode on receiving TLP dupack or when
3340 	 * ack is after tlp_high_seq.
3341 	 */
3342 	if (is_tlp_dupack) {
3343 		tp->tlp_high_seq = 0;
3344 		return;
3345 	}
3346 
3347 	if (after(ack, tp->tlp_high_seq)) {
3348 		tp->tlp_high_seq = 0;
3349 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3350 		if (!(flag & FLAG_DSACKING_ACK)) {
3351 			tcp_init_cwnd_reduction(sk, true);
3352 			tcp_set_ca_state(sk, TCP_CA_CWR);
3353 			tcp_end_cwnd_reduction(sk);
3354 			tcp_try_keep_open(sk);
3355 			NET_INC_STATS_BH(sock_net(sk),
3356 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3357 		}
3358 	}
3359 }
3360 
3361 /* This routine deals with incoming acks, but not outgoing ones. */
3362 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3363 {
3364 	struct inet_connection_sock *icsk = inet_csk(sk);
3365 	struct tcp_sock *tp = tcp_sk(sk);
3366 	u32 prior_snd_una = tp->snd_una;
3367 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3368 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3369 	bool is_dupack = false;
3370 	u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3371 	u32 prior_fackets;
3372 	int prior_packets = tp->packets_out;
3373 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3374 	int acked = 0; /* Number of packets newly acked */
3375 	s32 sack_rtt = -1;
3376 
3377 	/* If the ack is older than previous acks
3378 	 * then we can probably ignore it.
3379 	 */
3380 	if (before(ack, prior_snd_una)) {
3381 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3382 		if (before(ack, prior_snd_una - tp->max_window)) {
3383 			tcp_send_challenge_ack(sk);
3384 			return -1;
3385 		}
3386 		goto old_ack;
3387 	}
3388 
3389 	/* If the ack includes data we haven't sent yet, discard
3390 	 * this segment (RFC793 Section 3.9).
3391 	 */
3392 	if (after(ack, tp->snd_nxt))
3393 		goto invalid_ack;
3394 
3395 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3396 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3397 		tcp_rearm_rto(sk);
3398 
3399 	if (after(ack, prior_snd_una))
3400 		flag |= FLAG_SND_UNA_ADVANCED;
3401 
3402 	prior_fackets = tp->fackets_out;
3403 	prior_in_flight = tcp_packets_in_flight(tp);
3404 
3405 	/* ts_recent update must be made after we are sure that the packet
3406 	 * is in window.
3407 	 */
3408 	if (flag & FLAG_UPDATE_TS_RECENT)
3409 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3410 
3411 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3412 		/* Window is constant, pure forward advance.
3413 		 * No more checks are required.
3414 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3415 		 */
3416 		tcp_update_wl(tp, ack_seq);
3417 		tp->snd_una = ack;
3418 		flag |= FLAG_WIN_UPDATE;
3419 
3420 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3421 
3422 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3423 	} else {
3424 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3425 			flag |= FLAG_DATA;
3426 		else
3427 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3428 
3429 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3430 
3431 		if (TCP_SKB_CB(skb)->sacked)
3432 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3433 							&sack_rtt);
3434 
3435 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3436 			flag |= FLAG_ECE;
3437 
3438 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3439 	}
3440 
3441 	/* We passed data and got it acked, remove any soft error
3442 	 * log. Something worked...
3443 	 */
3444 	sk->sk_err_soft = 0;
3445 	icsk->icsk_probes_out = 0;
3446 	tp->rcv_tstamp = tcp_time_stamp;
3447 	if (!prior_packets)
3448 		goto no_queue;
3449 
3450 	/* See if we can take anything off of the retransmit queue. */
3451 	acked = tp->packets_out;
3452 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
3453 	acked -= tp->packets_out;
3454 
3455 	/* Advance cwnd if state allows */
3456 	if (tcp_may_raise_cwnd(sk, flag))
3457 		tcp_cong_avoid(sk, ack, acked, prior_in_flight);
3458 
3459 	if (tcp_ack_is_dubious(sk, flag)) {
3460 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3461 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3462 				      is_dupack, flag);
3463 	}
3464 	if (tp->tlp_high_seq)
3465 		tcp_process_tlp_ack(sk, ack, flag);
3466 
3467 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3468 		struct dst_entry *dst = __sk_dst_get(sk);
3469 		if (dst)
3470 			dst_confirm(dst);
3471 	}
3472 
3473 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3474 		tcp_schedule_loss_probe(sk);
3475 	if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3476 		tcp_update_pacing_rate(sk);
3477 	return 1;
3478 
3479 no_queue:
3480 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3481 	if (flag & FLAG_DSACKING_ACK)
3482 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3483 				      is_dupack, flag);
3484 	/* If this ack opens up a zero window, clear backoff.  It was
3485 	 * being used to time the probes, and is probably far higher than
3486 	 * it needs to be for normal retransmission.
3487 	 */
3488 	if (tcp_send_head(sk))
3489 		tcp_ack_probe(sk);
3490 
3491 	if (tp->tlp_high_seq)
3492 		tcp_process_tlp_ack(sk, ack, flag);
3493 	return 1;
3494 
3495 invalid_ack:
3496 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3497 	return -1;
3498 
3499 old_ack:
3500 	/* If data was SACKed, tag it and see if we should send more data.
3501 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3502 	 */
3503 	if (TCP_SKB_CB(skb)->sacked) {
3504 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3505 						&sack_rtt);
3506 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3507 				      is_dupack, flag);
3508 	}
3509 
3510 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3511 	return 0;
3512 }
3513 
3514 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3515  * But, this can also be called on packets in the established flow when
3516  * the fast version below fails.
3517  */
3518 void tcp_parse_options(const struct sk_buff *skb,
3519 		       struct tcp_options_received *opt_rx, int estab,
3520 		       struct tcp_fastopen_cookie *foc)
3521 {
3522 	const unsigned char *ptr;
3523 	const struct tcphdr *th = tcp_hdr(skb);
3524 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3525 
3526 	ptr = (const unsigned char *)(th + 1);
3527 	opt_rx->saw_tstamp = 0;
3528 
3529 	while (length > 0) {
3530 		int opcode = *ptr++;
3531 		int opsize;
3532 
3533 		switch (opcode) {
3534 		case TCPOPT_EOL:
3535 			return;
3536 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3537 			length--;
3538 			continue;
3539 		default:
3540 			opsize = *ptr++;
3541 			if (opsize < 2) /* "silly options" */
3542 				return;
3543 			if (opsize > length)
3544 				return;	/* don't parse partial options */
3545 			switch (opcode) {
3546 			case TCPOPT_MSS:
3547 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3548 					u16 in_mss = get_unaligned_be16(ptr);
3549 					if (in_mss) {
3550 						if (opt_rx->user_mss &&
3551 						    opt_rx->user_mss < in_mss)
3552 							in_mss = opt_rx->user_mss;
3553 						opt_rx->mss_clamp = in_mss;
3554 					}
3555 				}
3556 				break;
3557 			case TCPOPT_WINDOW:
3558 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3559 				    !estab && sysctl_tcp_window_scaling) {
3560 					__u8 snd_wscale = *(__u8 *)ptr;
3561 					opt_rx->wscale_ok = 1;
3562 					if (snd_wscale > 14) {
3563 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3564 								     __func__,
3565 								     snd_wscale);
3566 						snd_wscale = 14;
3567 					}
3568 					opt_rx->snd_wscale = snd_wscale;
3569 				}
3570 				break;
3571 			case TCPOPT_TIMESTAMP:
3572 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3573 				    ((estab && opt_rx->tstamp_ok) ||
3574 				     (!estab && sysctl_tcp_timestamps))) {
3575 					opt_rx->saw_tstamp = 1;
3576 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3577 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3578 				}
3579 				break;
3580 			case TCPOPT_SACK_PERM:
3581 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3582 				    !estab && sysctl_tcp_sack) {
3583 					opt_rx->sack_ok = TCP_SACK_SEEN;
3584 					tcp_sack_reset(opt_rx);
3585 				}
3586 				break;
3587 
3588 			case TCPOPT_SACK:
3589 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3590 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3591 				   opt_rx->sack_ok) {
3592 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3593 				}
3594 				break;
3595 #ifdef CONFIG_TCP_MD5SIG
3596 			case TCPOPT_MD5SIG:
3597 				/*
3598 				 * The MD5 Hash has already been
3599 				 * checked (see tcp_v{4,6}_do_rcv()).
3600 				 */
3601 				break;
3602 #endif
3603 			case TCPOPT_EXP:
3604 				/* Fast Open option shares code 254 using a
3605 				 * 16 bits magic number. It's valid only in
3606 				 * SYN or SYN-ACK with an even size.
3607 				 */
3608 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3609 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3610 				    foc == NULL || !th->syn || (opsize & 1))
3611 					break;
3612 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3613 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3614 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3615 					memcpy(foc->val, ptr + 2, foc->len);
3616 				else if (foc->len != 0)
3617 					foc->len = -1;
3618 				break;
3619 
3620 			}
3621 			ptr += opsize-2;
3622 			length -= opsize;
3623 		}
3624 	}
3625 }
3626 EXPORT_SYMBOL(tcp_parse_options);
3627 
3628 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3629 {
3630 	const __be32 *ptr = (const __be32 *)(th + 1);
3631 
3632 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3633 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3634 		tp->rx_opt.saw_tstamp = 1;
3635 		++ptr;
3636 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3637 		++ptr;
3638 		if (*ptr)
3639 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3640 		else
3641 			tp->rx_opt.rcv_tsecr = 0;
3642 		return true;
3643 	}
3644 	return false;
3645 }
3646 
3647 /* Fast parse options. This hopes to only see timestamps.
3648  * If it is wrong it falls back on tcp_parse_options().
3649  */
3650 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3651 				   const struct tcphdr *th, struct tcp_sock *tp)
3652 {
3653 	/* In the spirit of fast parsing, compare doff directly to constant
3654 	 * values.  Because equality is used, short doff can be ignored here.
3655 	 */
3656 	if (th->doff == (sizeof(*th) / 4)) {
3657 		tp->rx_opt.saw_tstamp = 0;
3658 		return false;
3659 	} else if (tp->rx_opt.tstamp_ok &&
3660 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3661 		if (tcp_parse_aligned_timestamp(tp, th))
3662 			return true;
3663 	}
3664 
3665 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3666 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3667 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3668 
3669 	return true;
3670 }
3671 
3672 #ifdef CONFIG_TCP_MD5SIG
3673 /*
3674  * Parse MD5 Signature option
3675  */
3676 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3677 {
3678 	int length = (th->doff << 2) - sizeof(*th);
3679 	const u8 *ptr = (const u8 *)(th + 1);
3680 
3681 	/* If the TCP option is too short, we can short cut */
3682 	if (length < TCPOLEN_MD5SIG)
3683 		return NULL;
3684 
3685 	while (length > 0) {
3686 		int opcode = *ptr++;
3687 		int opsize;
3688 
3689 		switch(opcode) {
3690 		case TCPOPT_EOL:
3691 			return NULL;
3692 		case TCPOPT_NOP:
3693 			length--;
3694 			continue;
3695 		default:
3696 			opsize = *ptr++;
3697 			if (opsize < 2 || opsize > length)
3698 				return NULL;
3699 			if (opcode == TCPOPT_MD5SIG)
3700 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3701 		}
3702 		ptr += opsize - 2;
3703 		length -= opsize;
3704 	}
3705 	return NULL;
3706 }
3707 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3708 #endif
3709 
3710 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3711  *
3712  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3713  * it can pass through stack. So, the following predicate verifies that
3714  * this segment is not used for anything but congestion avoidance or
3715  * fast retransmit. Moreover, we even are able to eliminate most of such
3716  * second order effects, if we apply some small "replay" window (~RTO)
3717  * to timestamp space.
3718  *
3719  * All these measures still do not guarantee that we reject wrapped ACKs
3720  * on networks with high bandwidth, when sequence space is recycled fastly,
3721  * but it guarantees that such events will be very rare and do not affect
3722  * connection seriously. This doesn't look nice, but alas, PAWS is really
3723  * buggy extension.
3724  *
3725  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3726  * states that events when retransmit arrives after original data are rare.
3727  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3728  * the biggest problem on large power networks even with minor reordering.
3729  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3730  * up to bandwidth of 18Gigabit/sec. 8) ]
3731  */
3732 
3733 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3734 {
3735 	const struct tcp_sock *tp = tcp_sk(sk);
3736 	const struct tcphdr *th = tcp_hdr(skb);
3737 	u32 seq = TCP_SKB_CB(skb)->seq;
3738 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3739 
3740 	return (/* 1. Pure ACK with correct sequence number. */
3741 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3742 
3743 		/* 2. ... and duplicate ACK. */
3744 		ack == tp->snd_una &&
3745 
3746 		/* 3. ... and does not update window. */
3747 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3748 
3749 		/* 4. ... and sits in replay window. */
3750 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3751 }
3752 
3753 static inline bool tcp_paws_discard(const struct sock *sk,
3754 				   const struct sk_buff *skb)
3755 {
3756 	const struct tcp_sock *tp = tcp_sk(sk);
3757 
3758 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3759 	       !tcp_disordered_ack(sk, skb);
3760 }
3761 
3762 /* Check segment sequence number for validity.
3763  *
3764  * Segment controls are considered valid, if the segment
3765  * fits to the window after truncation to the window. Acceptability
3766  * of data (and SYN, FIN, of course) is checked separately.
3767  * See tcp_data_queue(), for example.
3768  *
3769  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3770  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3771  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3772  * (borrowed from freebsd)
3773  */
3774 
3775 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3776 {
3777 	return	!before(end_seq, tp->rcv_wup) &&
3778 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3779 }
3780 
3781 /* When we get a reset we do this. */
3782 void tcp_reset(struct sock *sk)
3783 {
3784 	/* We want the right error as BSD sees it (and indeed as we do). */
3785 	switch (sk->sk_state) {
3786 	case TCP_SYN_SENT:
3787 		sk->sk_err = ECONNREFUSED;
3788 		break;
3789 	case TCP_CLOSE_WAIT:
3790 		sk->sk_err = EPIPE;
3791 		break;
3792 	case TCP_CLOSE:
3793 		return;
3794 	default:
3795 		sk->sk_err = ECONNRESET;
3796 	}
3797 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3798 	smp_wmb();
3799 
3800 	if (!sock_flag(sk, SOCK_DEAD))
3801 		sk->sk_error_report(sk);
3802 
3803 	tcp_done(sk);
3804 }
3805 
3806 /*
3807  * 	Process the FIN bit. This now behaves as it is supposed to work
3808  *	and the FIN takes effect when it is validly part of sequence
3809  *	space. Not before when we get holes.
3810  *
3811  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3812  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3813  *	TIME-WAIT)
3814  *
3815  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3816  *	close and we go into CLOSING (and later onto TIME-WAIT)
3817  *
3818  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3819  */
3820 static void tcp_fin(struct sock *sk)
3821 {
3822 	struct tcp_sock *tp = tcp_sk(sk);
3823 	const struct dst_entry *dst;
3824 
3825 	inet_csk_schedule_ack(sk);
3826 
3827 	sk->sk_shutdown |= RCV_SHUTDOWN;
3828 	sock_set_flag(sk, SOCK_DONE);
3829 
3830 	switch (sk->sk_state) {
3831 	case TCP_SYN_RECV:
3832 	case TCP_ESTABLISHED:
3833 		/* Move to CLOSE_WAIT */
3834 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3835 		dst = __sk_dst_get(sk);
3836 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3837 			inet_csk(sk)->icsk_ack.pingpong = 1;
3838 		break;
3839 
3840 	case TCP_CLOSE_WAIT:
3841 	case TCP_CLOSING:
3842 		/* Received a retransmission of the FIN, do
3843 		 * nothing.
3844 		 */
3845 		break;
3846 	case TCP_LAST_ACK:
3847 		/* RFC793: Remain in the LAST-ACK state. */
3848 		break;
3849 
3850 	case TCP_FIN_WAIT1:
3851 		/* This case occurs when a simultaneous close
3852 		 * happens, we must ack the received FIN and
3853 		 * enter the CLOSING state.
3854 		 */
3855 		tcp_send_ack(sk);
3856 		tcp_set_state(sk, TCP_CLOSING);
3857 		break;
3858 	case TCP_FIN_WAIT2:
3859 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3860 		tcp_send_ack(sk);
3861 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3862 		break;
3863 	default:
3864 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3865 		 * cases we should never reach this piece of code.
3866 		 */
3867 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3868 		       __func__, sk->sk_state);
3869 		break;
3870 	}
3871 
3872 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3873 	 * Probably, we should reset in this case. For now drop them.
3874 	 */
3875 	__skb_queue_purge(&tp->out_of_order_queue);
3876 	if (tcp_is_sack(tp))
3877 		tcp_sack_reset(&tp->rx_opt);
3878 	sk_mem_reclaim(sk);
3879 
3880 	if (!sock_flag(sk, SOCK_DEAD)) {
3881 		sk->sk_state_change(sk);
3882 
3883 		/* Do not send POLL_HUP for half duplex close. */
3884 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3885 		    sk->sk_state == TCP_CLOSE)
3886 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3887 		else
3888 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3889 	}
3890 }
3891 
3892 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3893 				  u32 end_seq)
3894 {
3895 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3896 		if (before(seq, sp->start_seq))
3897 			sp->start_seq = seq;
3898 		if (after(end_seq, sp->end_seq))
3899 			sp->end_seq = end_seq;
3900 		return true;
3901 	}
3902 	return false;
3903 }
3904 
3905 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3906 {
3907 	struct tcp_sock *tp = tcp_sk(sk);
3908 
3909 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3910 		int mib_idx;
3911 
3912 		if (before(seq, tp->rcv_nxt))
3913 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3914 		else
3915 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3916 
3917 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3918 
3919 		tp->rx_opt.dsack = 1;
3920 		tp->duplicate_sack[0].start_seq = seq;
3921 		tp->duplicate_sack[0].end_seq = end_seq;
3922 	}
3923 }
3924 
3925 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3926 {
3927 	struct tcp_sock *tp = tcp_sk(sk);
3928 
3929 	if (!tp->rx_opt.dsack)
3930 		tcp_dsack_set(sk, seq, end_seq);
3931 	else
3932 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3933 }
3934 
3935 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3936 {
3937 	struct tcp_sock *tp = tcp_sk(sk);
3938 
3939 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3940 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3941 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3942 		tcp_enter_quickack_mode(sk);
3943 
3944 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3945 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3946 
3947 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3948 				end_seq = tp->rcv_nxt;
3949 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3950 		}
3951 	}
3952 
3953 	tcp_send_ack(sk);
3954 }
3955 
3956 /* These routines update the SACK block as out-of-order packets arrive or
3957  * in-order packets close up the sequence space.
3958  */
3959 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3960 {
3961 	int this_sack;
3962 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3963 	struct tcp_sack_block *swalk = sp + 1;
3964 
3965 	/* See if the recent change to the first SACK eats into
3966 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3967 	 */
3968 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3969 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3970 			int i;
3971 
3972 			/* Zap SWALK, by moving every further SACK up by one slot.
3973 			 * Decrease num_sacks.
3974 			 */
3975 			tp->rx_opt.num_sacks--;
3976 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3977 				sp[i] = sp[i + 1];
3978 			continue;
3979 		}
3980 		this_sack++, swalk++;
3981 	}
3982 }
3983 
3984 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3985 {
3986 	struct tcp_sock *tp = tcp_sk(sk);
3987 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3988 	int cur_sacks = tp->rx_opt.num_sacks;
3989 	int this_sack;
3990 
3991 	if (!cur_sacks)
3992 		goto new_sack;
3993 
3994 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3995 		if (tcp_sack_extend(sp, seq, end_seq)) {
3996 			/* Rotate this_sack to the first one. */
3997 			for (; this_sack > 0; this_sack--, sp--)
3998 				swap(*sp, *(sp - 1));
3999 			if (cur_sacks > 1)
4000 				tcp_sack_maybe_coalesce(tp);
4001 			return;
4002 		}
4003 	}
4004 
4005 	/* Could not find an adjacent existing SACK, build a new one,
4006 	 * put it at the front, and shift everyone else down.  We
4007 	 * always know there is at least one SACK present already here.
4008 	 *
4009 	 * If the sack array is full, forget about the last one.
4010 	 */
4011 	if (this_sack >= TCP_NUM_SACKS) {
4012 		this_sack--;
4013 		tp->rx_opt.num_sacks--;
4014 		sp--;
4015 	}
4016 	for (; this_sack > 0; this_sack--, sp--)
4017 		*sp = *(sp - 1);
4018 
4019 new_sack:
4020 	/* Build the new head SACK, and we're done. */
4021 	sp->start_seq = seq;
4022 	sp->end_seq = end_seq;
4023 	tp->rx_opt.num_sacks++;
4024 }
4025 
4026 /* RCV.NXT advances, some SACKs should be eaten. */
4027 
4028 static void tcp_sack_remove(struct tcp_sock *tp)
4029 {
4030 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4031 	int num_sacks = tp->rx_opt.num_sacks;
4032 	int this_sack;
4033 
4034 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4035 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4036 		tp->rx_opt.num_sacks = 0;
4037 		return;
4038 	}
4039 
4040 	for (this_sack = 0; this_sack < num_sacks;) {
4041 		/* Check if the start of the sack is covered by RCV.NXT. */
4042 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4043 			int i;
4044 
4045 			/* RCV.NXT must cover all the block! */
4046 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4047 
4048 			/* Zap this SACK, by moving forward any other SACKS. */
4049 			for (i=this_sack+1; i < num_sacks; i++)
4050 				tp->selective_acks[i-1] = tp->selective_acks[i];
4051 			num_sacks--;
4052 			continue;
4053 		}
4054 		this_sack++;
4055 		sp++;
4056 	}
4057 	tp->rx_opt.num_sacks = num_sacks;
4058 }
4059 
4060 /* This one checks to see if we can put data from the
4061  * out_of_order queue into the receive_queue.
4062  */
4063 static void tcp_ofo_queue(struct sock *sk)
4064 {
4065 	struct tcp_sock *tp = tcp_sk(sk);
4066 	__u32 dsack_high = tp->rcv_nxt;
4067 	struct sk_buff *skb;
4068 
4069 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4070 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4071 			break;
4072 
4073 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4074 			__u32 dsack = dsack_high;
4075 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4076 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4077 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4078 		}
4079 
4080 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4081 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4082 			__skb_unlink(skb, &tp->out_of_order_queue);
4083 			__kfree_skb(skb);
4084 			continue;
4085 		}
4086 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4087 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4088 			   TCP_SKB_CB(skb)->end_seq);
4089 
4090 		__skb_unlink(skb, &tp->out_of_order_queue);
4091 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4092 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4093 		if (tcp_hdr(skb)->fin)
4094 			tcp_fin(sk);
4095 	}
4096 }
4097 
4098 static bool tcp_prune_ofo_queue(struct sock *sk);
4099 static int tcp_prune_queue(struct sock *sk);
4100 
4101 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4102 				 unsigned int size)
4103 {
4104 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4105 	    !sk_rmem_schedule(sk, skb, size)) {
4106 
4107 		if (tcp_prune_queue(sk) < 0)
4108 			return -1;
4109 
4110 		if (!sk_rmem_schedule(sk, skb, size)) {
4111 			if (!tcp_prune_ofo_queue(sk))
4112 				return -1;
4113 
4114 			if (!sk_rmem_schedule(sk, skb, size))
4115 				return -1;
4116 		}
4117 	}
4118 	return 0;
4119 }
4120 
4121 /**
4122  * tcp_try_coalesce - try to merge skb to prior one
4123  * @sk: socket
4124  * @to: prior buffer
4125  * @from: buffer to add in queue
4126  * @fragstolen: pointer to boolean
4127  *
4128  * Before queueing skb @from after @to, try to merge them
4129  * to reduce overall memory use and queue lengths, if cost is small.
4130  * Packets in ofo or receive queues can stay a long time.
4131  * Better try to coalesce them right now to avoid future collapses.
4132  * Returns true if caller should free @from instead of queueing it
4133  */
4134 static bool tcp_try_coalesce(struct sock *sk,
4135 			     struct sk_buff *to,
4136 			     struct sk_buff *from,
4137 			     bool *fragstolen)
4138 {
4139 	int delta;
4140 
4141 	*fragstolen = false;
4142 
4143 	if (tcp_hdr(from)->fin)
4144 		return false;
4145 
4146 	/* Its possible this segment overlaps with prior segment in queue */
4147 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4148 		return false;
4149 
4150 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4151 		return false;
4152 
4153 	atomic_add(delta, &sk->sk_rmem_alloc);
4154 	sk_mem_charge(sk, delta);
4155 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4156 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4157 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4158 	return true;
4159 }
4160 
4161 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4162 {
4163 	struct tcp_sock *tp = tcp_sk(sk);
4164 	struct sk_buff *skb1;
4165 	u32 seq, end_seq;
4166 
4167 	TCP_ECN_check_ce(tp, skb);
4168 
4169 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4170 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4171 		__kfree_skb(skb);
4172 		return;
4173 	}
4174 
4175 	/* Disable header prediction. */
4176 	tp->pred_flags = 0;
4177 	inet_csk_schedule_ack(sk);
4178 
4179 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4180 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4181 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4182 
4183 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4184 	if (!skb1) {
4185 		/* Initial out of order segment, build 1 SACK. */
4186 		if (tcp_is_sack(tp)) {
4187 			tp->rx_opt.num_sacks = 1;
4188 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4189 			tp->selective_acks[0].end_seq =
4190 						TCP_SKB_CB(skb)->end_seq;
4191 		}
4192 		__skb_queue_head(&tp->out_of_order_queue, skb);
4193 		goto end;
4194 	}
4195 
4196 	seq = TCP_SKB_CB(skb)->seq;
4197 	end_seq = TCP_SKB_CB(skb)->end_seq;
4198 
4199 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4200 		bool fragstolen;
4201 
4202 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4203 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4204 		} else {
4205 			tcp_grow_window(sk, skb);
4206 			kfree_skb_partial(skb, fragstolen);
4207 			skb = NULL;
4208 		}
4209 
4210 		if (!tp->rx_opt.num_sacks ||
4211 		    tp->selective_acks[0].end_seq != seq)
4212 			goto add_sack;
4213 
4214 		/* Common case: data arrive in order after hole. */
4215 		tp->selective_acks[0].end_seq = end_seq;
4216 		goto end;
4217 	}
4218 
4219 	/* Find place to insert this segment. */
4220 	while (1) {
4221 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4222 			break;
4223 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4224 			skb1 = NULL;
4225 			break;
4226 		}
4227 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4228 	}
4229 
4230 	/* Do skb overlap to previous one? */
4231 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4232 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4233 			/* All the bits are present. Drop. */
4234 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4235 			__kfree_skb(skb);
4236 			skb = NULL;
4237 			tcp_dsack_set(sk, seq, end_seq);
4238 			goto add_sack;
4239 		}
4240 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4241 			/* Partial overlap. */
4242 			tcp_dsack_set(sk, seq,
4243 				      TCP_SKB_CB(skb1)->end_seq);
4244 		} else {
4245 			if (skb_queue_is_first(&tp->out_of_order_queue,
4246 					       skb1))
4247 				skb1 = NULL;
4248 			else
4249 				skb1 = skb_queue_prev(
4250 					&tp->out_of_order_queue,
4251 					skb1);
4252 		}
4253 	}
4254 	if (!skb1)
4255 		__skb_queue_head(&tp->out_of_order_queue, skb);
4256 	else
4257 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4258 
4259 	/* And clean segments covered by new one as whole. */
4260 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4261 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4262 
4263 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4264 			break;
4265 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4266 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4267 					 end_seq);
4268 			break;
4269 		}
4270 		__skb_unlink(skb1, &tp->out_of_order_queue);
4271 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4272 				 TCP_SKB_CB(skb1)->end_seq);
4273 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4274 		__kfree_skb(skb1);
4275 	}
4276 
4277 add_sack:
4278 	if (tcp_is_sack(tp))
4279 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4280 end:
4281 	if (skb) {
4282 		tcp_grow_window(sk, skb);
4283 		skb_set_owner_r(skb, sk);
4284 	}
4285 }
4286 
4287 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4288 		  bool *fragstolen)
4289 {
4290 	int eaten;
4291 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4292 
4293 	__skb_pull(skb, hdrlen);
4294 	eaten = (tail &&
4295 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4296 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4297 	if (!eaten) {
4298 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4299 		skb_set_owner_r(skb, sk);
4300 	}
4301 	return eaten;
4302 }
4303 
4304 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4305 {
4306 	struct sk_buff *skb = NULL;
4307 	struct tcphdr *th;
4308 	bool fragstolen;
4309 
4310 	if (size == 0)
4311 		return 0;
4312 
4313 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4314 	if (!skb)
4315 		goto err;
4316 
4317 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4318 		goto err_free;
4319 
4320 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4321 	skb_reset_transport_header(skb);
4322 	memset(th, 0, sizeof(*th));
4323 
4324 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4325 		goto err_free;
4326 
4327 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4328 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4329 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4330 
4331 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4332 		WARN_ON_ONCE(fragstolen); /* should not happen */
4333 		__kfree_skb(skb);
4334 	}
4335 	return size;
4336 
4337 err_free:
4338 	kfree_skb(skb);
4339 err:
4340 	return -ENOMEM;
4341 }
4342 
4343 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4344 {
4345 	const struct tcphdr *th = tcp_hdr(skb);
4346 	struct tcp_sock *tp = tcp_sk(sk);
4347 	int eaten = -1;
4348 	bool fragstolen = false;
4349 
4350 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4351 		goto drop;
4352 
4353 	skb_dst_drop(skb);
4354 	__skb_pull(skb, th->doff * 4);
4355 
4356 	TCP_ECN_accept_cwr(tp, skb);
4357 
4358 	tp->rx_opt.dsack = 0;
4359 
4360 	/*  Queue data for delivery to the user.
4361 	 *  Packets in sequence go to the receive queue.
4362 	 *  Out of sequence packets to the out_of_order_queue.
4363 	 */
4364 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4365 		if (tcp_receive_window(tp) == 0)
4366 			goto out_of_window;
4367 
4368 		/* Ok. In sequence. In window. */
4369 		if (tp->ucopy.task == current &&
4370 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4371 		    sock_owned_by_user(sk) && !tp->urg_data) {
4372 			int chunk = min_t(unsigned int, skb->len,
4373 					  tp->ucopy.len);
4374 
4375 			__set_current_state(TASK_RUNNING);
4376 
4377 			local_bh_enable();
4378 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4379 				tp->ucopy.len -= chunk;
4380 				tp->copied_seq += chunk;
4381 				eaten = (chunk == skb->len);
4382 				tcp_rcv_space_adjust(sk);
4383 			}
4384 			local_bh_disable();
4385 		}
4386 
4387 		if (eaten <= 0) {
4388 queue_and_out:
4389 			if (eaten < 0 &&
4390 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4391 				goto drop;
4392 
4393 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4394 		}
4395 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4396 		if (skb->len)
4397 			tcp_event_data_recv(sk, skb);
4398 		if (th->fin)
4399 			tcp_fin(sk);
4400 
4401 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4402 			tcp_ofo_queue(sk);
4403 
4404 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4405 			 * gap in queue is filled.
4406 			 */
4407 			if (skb_queue_empty(&tp->out_of_order_queue))
4408 				inet_csk(sk)->icsk_ack.pingpong = 0;
4409 		}
4410 
4411 		if (tp->rx_opt.num_sacks)
4412 			tcp_sack_remove(tp);
4413 
4414 		tcp_fast_path_check(sk);
4415 
4416 		if (eaten > 0)
4417 			kfree_skb_partial(skb, fragstolen);
4418 		if (!sock_flag(sk, SOCK_DEAD))
4419 			sk->sk_data_ready(sk, 0);
4420 		return;
4421 	}
4422 
4423 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4424 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4425 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4426 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4427 
4428 out_of_window:
4429 		tcp_enter_quickack_mode(sk);
4430 		inet_csk_schedule_ack(sk);
4431 drop:
4432 		__kfree_skb(skb);
4433 		return;
4434 	}
4435 
4436 	/* Out of window. F.e. zero window probe. */
4437 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4438 		goto out_of_window;
4439 
4440 	tcp_enter_quickack_mode(sk);
4441 
4442 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4443 		/* Partial packet, seq < rcv_next < end_seq */
4444 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4445 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4446 			   TCP_SKB_CB(skb)->end_seq);
4447 
4448 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4449 
4450 		/* If window is closed, drop tail of packet. But after
4451 		 * remembering D-SACK for its head made in previous line.
4452 		 */
4453 		if (!tcp_receive_window(tp))
4454 			goto out_of_window;
4455 		goto queue_and_out;
4456 	}
4457 
4458 	tcp_data_queue_ofo(sk, skb);
4459 }
4460 
4461 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4462 					struct sk_buff_head *list)
4463 {
4464 	struct sk_buff *next = NULL;
4465 
4466 	if (!skb_queue_is_last(list, skb))
4467 		next = skb_queue_next(list, skb);
4468 
4469 	__skb_unlink(skb, list);
4470 	__kfree_skb(skb);
4471 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4472 
4473 	return next;
4474 }
4475 
4476 /* Collapse contiguous sequence of skbs head..tail with
4477  * sequence numbers start..end.
4478  *
4479  * If tail is NULL, this means until the end of the list.
4480  *
4481  * Segments with FIN/SYN are not collapsed (only because this
4482  * simplifies code)
4483  */
4484 static void
4485 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4486 	     struct sk_buff *head, struct sk_buff *tail,
4487 	     u32 start, u32 end)
4488 {
4489 	struct sk_buff *skb, *n;
4490 	bool end_of_skbs;
4491 
4492 	/* First, check that queue is collapsible and find
4493 	 * the point where collapsing can be useful. */
4494 	skb = head;
4495 restart:
4496 	end_of_skbs = true;
4497 	skb_queue_walk_from_safe(list, skb, n) {
4498 		if (skb == tail)
4499 			break;
4500 		/* No new bits? It is possible on ofo queue. */
4501 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4502 			skb = tcp_collapse_one(sk, skb, list);
4503 			if (!skb)
4504 				break;
4505 			goto restart;
4506 		}
4507 
4508 		/* The first skb to collapse is:
4509 		 * - not SYN/FIN and
4510 		 * - bloated or contains data before "start" or
4511 		 *   overlaps to the next one.
4512 		 */
4513 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4514 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4515 		     before(TCP_SKB_CB(skb)->seq, start))) {
4516 			end_of_skbs = false;
4517 			break;
4518 		}
4519 
4520 		if (!skb_queue_is_last(list, skb)) {
4521 			struct sk_buff *next = skb_queue_next(list, skb);
4522 			if (next != tail &&
4523 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4524 				end_of_skbs = false;
4525 				break;
4526 			}
4527 		}
4528 
4529 		/* Decided to skip this, advance start seq. */
4530 		start = TCP_SKB_CB(skb)->end_seq;
4531 	}
4532 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4533 		return;
4534 
4535 	while (before(start, end)) {
4536 		struct sk_buff *nskb;
4537 		unsigned int header = skb_headroom(skb);
4538 		int copy = SKB_MAX_ORDER(header, 0);
4539 
4540 		/* Too big header? This can happen with IPv6. */
4541 		if (copy < 0)
4542 			return;
4543 		if (end - start < copy)
4544 			copy = end - start;
4545 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4546 		if (!nskb)
4547 			return;
4548 
4549 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4550 		skb_set_network_header(nskb, (skb_network_header(skb) -
4551 					      skb->head));
4552 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4553 						skb->head));
4554 		skb_reserve(nskb, header);
4555 		memcpy(nskb->head, skb->head, header);
4556 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4557 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4558 		__skb_queue_before(list, skb, nskb);
4559 		skb_set_owner_r(nskb, sk);
4560 
4561 		/* Copy data, releasing collapsed skbs. */
4562 		while (copy > 0) {
4563 			int offset = start - TCP_SKB_CB(skb)->seq;
4564 			int size = TCP_SKB_CB(skb)->end_seq - start;
4565 
4566 			BUG_ON(offset < 0);
4567 			if (size > 0) {
4568 				size = min(copy, size);
4569 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4570 					BUG();
4571 				TCP_SKB_CB(nskb)->end_seq += size;
4572 				copy -= size;
4573 				start += size;
4574 			}
4575 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4576 				skb = tcp_collapse_one(sk, skb, list);
4577 				if (!skb ||
4578 				    skb == tail ||
4579 				    tcp_hdr(skb)->syn ||
4580 				    tcp_hdr(skb)->fin)
4581 					return;
4582 			}
4583 		}
4584 	}
4585 }
4586 
4587 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4588  * and tcp_collapse() them until all the queue is collapsed.
4589  */
4590 static void tcp_collapse_ofo_queue(struct sock *sk)
4591 {
4592 	struct tcp_sock *tp = tcp_sk(sk);
4593 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4594 	struct sk_buff *head;
4595 	u32 start, end;
4596 
4597 	if (skb == NULL)
4598 		return;
4599 
4600 	start = TCP_SKB_CB(skb)->seq;
4601 	end = TCP_SKB_CB(skb)->end_seq;
4602 	head = skb;
4603 
4604 	for (;;) {
4605 		struct sk_buff *next = NULL;
4606 
4607 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4608 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4609 		skb = next;
4610 
4611 		/* Segment is terminated when we see gap or when
4612 		 * we are at the end of all the queue. */
4613 		if (!skb ||
4614 		    after(TCP_SKB_CB(skb)->seq, end) ||
4615 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4616 			tcp_collapse(sk, &tp->out_of_order_queue,
4617 				     head, skb, start, end);
4618 			head = skb;
4619 			if (!skb)
4620 				break;
4621 			/* Start new segment */
4622 			start = TCP_SKB_CB(skb)->seq;
4623 			end = TCP_SKB_CB(skb)->end_seq;
4624 		} else {
4625 			if (before(TCP_SKB_CB(skb)->seq, start))
4626 				start = TCP_SKB_CB(skb)->seq;
4627 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4628 				end = TCP_SKB_CB(skb)->end_seq;
4629 		}
4630 	}
4631 }
4632 
4633 /*
4634  * Purge the out-of-order queue.
4635  * Return true if queue was pruned.
4636  */
4637 static bool tcp_prune_ofo_queue(struct sock *sk)
4638 {
4639 	struct tcp_sock *tp = tcp_sk(sk);
4640 	bool res = false;
4641 
4642 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4643 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4644 		__skb_queue_purge(&tp->out_of_order_queue);
4645 
4646 		/* Reset SACK state.  A conforming SACK implementation will
4647 		 * do the same at a timeout based retransmit.  When a connection
4648 		 * is in a sad state like this, we care only about integrity
4649 		 * of the connection not performance.
4650 		 */
4651 		if (tp->rx_opt.sack_ok)
4652 			tcp_sack_reset(&tp->rx_opt);
4653 		sk_mem_reclaim(sk);
4654 		res = true;
4655 	}
4656 	return res;
4657 }
4658 
4659 /* Reduce allocated memory if we can, trying to get
4660  * the socket within its memory limits again.
4661  *
4662  * Return less than zero if we should start dropping frames
4663  * until the socket owning process reads some of the data
4664  * to stabilize the situation.
4665  */
4666 static int tcp_prune_queue(struct sock *sk)
4667 {
4668 	struct tcp_sock *tp = tcp_sk(sk);
4669 
4670 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4671 
4672 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4673 
4674 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4675 		tcp_clamp_window(sk);
4676 	else if (sk_under_memory_pressure(sk))
4677 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4678 
4679 	tcp_collapse_ofo_queue(sk);
4680 	if (!skb_queue_empty(&sk->sk_receive_queue))
4681 		tcp_collapse(sk, &sk->sk_receive_queue,
4682 			     skb_peek(&sk->sk_receive_queue),
4683 			     NULL,
4684 			     tp->copied_seq, tp->rcv_nxt);
4685 	sk_mem_reclaim(sk);
4686 
4687 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4688 		return 0;
4689 
4690 	/* Collapsing did not help, destructive actions follow.
4691 	 * This must not ever occur. */
4692 
4693 	tcp_prune_ofo_queue(sk);
4694 
4695 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4696 		return 0;
4697 
4698 	/* If we are really being abused, tell the caller to silently
4699 	 * drop receive data on the floor.  It will get retransmitted
4700 	 * and hopefully then we'll have sufficient space.
4701 	 */
4702 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4703 
4704 	/* Massive buffer overcommit. */
4705 	tp->pred_flags = 0;
4706 	return -1;
4707 }
4708 
4709 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4710  * As additional protections, we do not touch cwnd in retransmission phases,
4711  * and if application hit its sndbuf limit recently.
4712  */
4713 void tcp_cwnd_application_limited(struct sock *sk)
4714 {
4715 	struct tcp_sock *tp = tcp_sk(sk);
4716 
4717 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4718 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4719 		/* Limited by application or receiver window. */
4720 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4721 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4722 		if (win_used < tp->snd_cwnd) {
4723 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4724 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4725 		}
4726 		tp->snd_cwnd_used = 0;
4727 	}
4728 	tp->snd_cwnd_stamp = tcp_time_stamp;
4729 }
4730 
4731 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4732 {
4733 	const struct tcp_sock *tp = tcp_sk(sk);
4734 
4735 	/* If the user specified a specific send buffer setting, do
4736 	 * not modify it.
4737 	 */
4738 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4739 		return false;
4740 
4741 	/* If we are under global TCP memory pressure, do not expand.  */
4742 	if (sk_under_memory_pressure(sk))
4743 		return false;
4744 
4745 	/* If we are under soft global TCP memory pressure, do not expand.  */
4746 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4747 		return false;
4748 
4749 	/* If we filled the congestion window, do not expand.  */
4750 	if (tp->packets_out >= tp->snd_cwnd)
4751 		return false;
4752 
4753 	return true;
4754 }
4755 
4756 /* When incoming ACK allowed to free some skb from write_queue,
4757  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4758  * on the exit from tcp input handler.
4759  *
4760  * PROBLEM: sndbuf expansion does not work well with largesend.
4761  */
4762 static void tcp_new_space(struct sock *sk)
4763 {
4764 	struct tcp_sock *tp = tcp_sk(sk);
4765 
4766 	if (tcp_should_expand_sndbuf(sk)) {
4767 		tcp_sndbuf_expand(sk);
4768 		tp->snd_cwnd_stamp = tcp_time_stamp;
4769 	}
4770 
4771 	sk->sk_write_space(sk);
4772 }
4773 
4774 static void tcp_check_space(struct sock *sk)
4775 {
4776 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4777 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4778 		if (sk->sk_socket &&
4779 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4780 			tcp_new_space(sk);
4781 	}
4782 }
4783 
4784 static inline void tcp_data_snd_check(struct sock *sk)
4785 {
4786 	tcp_push_pending_frames(sk);
4787 	tcp_check_space(sk);
4788 }
4789 
4790 /*
4791  * Check if sending an ack is needed.
4792  */
4793 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4794 {
4795 	struct tcp_sock *tp = tcp_sk(sk);
4796 
4797 	    /* More than one full frame received... */
4798 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4799 	     /* ... and right edge of window advances far enough.
4800 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4801 	      */
4802 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4803 	    /* We ACK each frame or... */
4804 	    tcp_in_quickack_mode(sk) ||
4805 	    /* We have out of order data. */
4806 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4807 		/* Then ack it now */
4808 		tcp_send_ack(sk);
4809 	} else {
4810 		/* Else, send delayed ack. */
4811 		tcp_send_delayed_ack(sk);
4812 	}
4813 }
4814 
4815 static inline void tcp_ack_snd_check(struct sock *sk)
4816 {
4817 	if (!inet_csk_ack_scheduled(sk)) {
4818 		/* We sent a data segment already. */
4819 		return;
4820 	}
4821 	__tcp_ack_snd_check(sk, 1);
4822 }
4823 
4824 /*
4825  *	This routine is only called when we have urgent data
4826  *	signaled. Its the 'slow' part of tcp_urg. It could be
4827  *	moved inline now as tcp_urg is only called from one
4828  *	place. We handle URGent data wrong. We have to - as
4829  *	BSD still doesn't use the correction from RFC961.
4830  *	For 1003.1g we should support a new option TCP_STDURG to permit
4831  *	either form (or just set the sysctl tcp_stdurg).
4832  */
4833 
4834 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4835 {
4836 	struct tcp_sock *tp = tcp_sk(sk);
4837 	u32 ptr = ntohs(th->urg_ptr);
4838 
4839 	if (ptr && !sysctl_tcp_stdurg)
4840 		ptr--;
4841 	ptr += ntohl(th->seq);
4842 
4843 	/* Ignore urgent data that we've already seen and read. */
4844 	if (after(tp->copied_seq, ptr))
4845 		return;
4846 
4847 	/* Do not replay urg ptr.
4848 	 *
4849 	 * NOTE: interesting situation not covered by specs.
4850 	 * Misbehaving sender may send urg ptr, pointing to segment,
4851 	 * which we already have in ofo queue. We are not able to fetch
4852 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4853 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4854 	 * situations. But it is worth to think about possibility of some
4855 	 * DoSes using some hypothetical application level deadlock.
4856 	 */
4857 	if (before(ptr, tp->rcv_nxt))
4858 		return;
4859 
4860 	/* Do we already have a newer (or duplicate) urgent pointer? */
4861 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4862 		return;
4863 
4864 	/* Tell the world about our new urgent pointer. */
4865 	sk_send_sigurg(sk);
4866 
4867 	/* We may be adding urgent data when the last byte read was
4868 	 * urgent. To do this requires some care. We cannot just ignore
4869 	 * tp->copied_seq since we would read the last urgent byte again
4870 	 * as data, nor can we alter copied_seq until this data arrives
4871 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4872 	 *
4873 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4874 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4875 	 * and expect that both A and B disappear from stream. This is _wrong_.
4876 	 * Though this happens in BSD with high probability, this is occasional.
4877 	 * Any application relying on this is buggy. Note also, that fix "works"
4878 	 * only in this artificial test. Insert some normal data between A and B and we will
4879 	 * decline of BSD again. Verdict: it is better to remove to trap
4880 	 * buggy users.
4881 	 */
4882 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4883 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4884 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4885 		tp->copied_seq++;
4886 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4887 			__skb_unlink(skb, &sk->sk_receive_queue);
4888 			__kfree_skb(skb);
4889 		}
4890 	}
4891 
4892 	tp->urg_data = TCP_URG_NOTYET;
4893 	tp->urg_seq = ptr;
4894 
4895 	/* Disable header prediction. */
4896 	tp->pred_flags = 0;
4897 }
4898 
4899 /* This is the 'fast' part of urgent handling. */
4900 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4901 {
4902 	struct tcp_sock *tp = tcp_sk(sk);
4903 
4904 	/* Check if we get a new urgent pointer - normally not. */
4905 	if (th->urg)
4906 		tcp_check_urg(sk, th);
4907 
4908 	/* Do we wait for any urgent data? - normally not... */
4909 	if (tp->urg_data == TCP_URG_NOTYET) {
4910 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4911 			  th->syn;
4912 
4913 		/* Is the urgent pointer pointing into this packet? */
4914 		if (ptr < skb->len) {
4915 			u8 tmp;
4916 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4917 				BUG();
4918 			tp->urg_data = TCP_URG_VALID | tmp;
4919 			if (!sock_flag(sk, SOCK_DEAD))
4920 				sk->sk_data_ready(sk, 0);
4921 		}
4922 	}
4923 }
4924 
4925 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4926 {
4927 	struct tcp_sock *tp = tcp_sk(sk);
4928 	int chunk = skb->len - hlen;
4929 	int err;
4930 
4931 	local_bh_enable();
4932 	if (skb_csum_unnecessary(skb))
4933 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4934 	else
4935 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4936 						       tp->ucopy.iov);
4937 
4938 	if (!err) {
4939 		tp->ucopy.len -= chunk;
4940 		tp->copied_seq += chunk;
4941 		tcp_rcv_space_adjust(sk);
4942 	}
4943 
4944 	local_bh_disable();
4945 	return err;
4946 }
4947 
4948 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4949 					    struct sk_buff *skb)
4950 {
4951 	__sum16 result;
4952 
4953 	if (sock_owned_by_user(sk)) {
4954 		local_bh_enable();
4955 		result = __tcp_checksum_complete(skb);
4956 		local_bh_disable();
4957 	} else {
4958 		result = __tcp_checksum_complete(skb);
4959 	}
4960 	return result;
4961 }
4962 
4963 static inline bool tcp_checksum_complete_user(struct sock *sk,
4964 					     struct sk_buff *skb)
4965 {
4966 	return !skb_csum_unnecessary(skb) &&
4967 	       __tcp_checksum_complete_user(sk, skb);
4968 }
4969 
4970 #ifdef CONFIG_NET_DMA
4971 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4972 				  int hlen)
4973 {
4974 	struct tcp_sock *tp = tcp_sk(sk);
4975 	int chunk = skb->len - hlen;
4976 	int dma_cookie;
4977 	bool copied_early = false;
4978 
4979 	if (tp->ucopy.wakeup)
4980 		return false;
4981 
4982 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4983 		tp->ucopy.dma_chan = net_dma_find_channel();
4984 
4985 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4986 
4987 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4988 							 skb, hlen,
4989 							 tp->ucopy.iov, chunk,
4990 							 tp->ucopy.pinned_list);
4991 
4992 		if (dma_cookie < 0)
4993 			goto out;
4994 
4995 		tp->ucopy.dma_cookie = dma_cookie;
4996 		copied_early = true;
4997 
4998 		tp->ucopy.len -= chunk;
4999 		tp->copied_seq += chunk;
5000 		tcp_rcv_space_adjust(sk);
5001 
5002 		if ((tp->ucopy.len == 0) ||
5003 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5004 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5005 			tp->ucopy.wakeup = 1;
5006 			sk->sk_data_ready(sk, 0);
5007 		}
5008 	} else if (chunk > 0) {
5009 		tp->ucopy.wakeup = 1;
5010 		sk->sk_data_ready(sk, 0);
5011 	}
5012 out:
5013 	return copied_early;
5014 }
5015 #endif /* CONFIG_NET_DMA */
5016 
5017 /* Does PAWS and seqno based validation of an incoming segment, flags will
5018  * play significant role here.
5019  */
5020 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5021 				  const struct tcphdr *th, int syn_inerr)
5022 {
5023 	struct tcp_sock *tp = tcp_sk(sk);
5024 
5025 	/* RFC1323: H1. Apply PAWS check first. */
5026 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5027 	    tcp_paws_discard(sk, skb)) {
5028 		if (!th->rst) {
5029 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5030 			tcp_send_dupack(sk, skb);
5031 			goto discard;
5032 		}
5033 		/* Reset is accepted even if it did not pass PAWS. */
5034 	}
5035 
5036 	/* Step 1: check sequence number */
5037 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5038 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5039 		 * (RST) segments are validated by checking their SEQ-fields."
5040 		 * And page 69: "If an incoming segment is not acceptable,
5041 		 * an acknowledgment should be sent in reply (unless the RST
5042 		 * bit is set, if so drop the segment and return)".
5043 		 */
5044 		if (!th->rst) {
5045 			if (th->syn)
5046 				goto syn_challenge;
5047 			tcp_send_dupack(sk, skb);
5048 		}
5049 		goto discard;
5050 	}
5051 
5052 	/* Step 2: check RST bit */
5053 	if (th->rst) {
5054 		/* RFC 5961 3.2 :
5055 		 * If sequence number exactly matches RCV.NXT, then
5056 		 *     RESET the connection
5057 		 * else
5058 		 *     Send a challenge ACK
5059 		 */
5060 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5061 			tcp_reset(sk);
5062 		else
5063 			tcp_send_challenge_ack(sk);
5064 		goto discard;
5065 	}
5066 
5067 	/* step 3: check security and precedence [ignored] */
5068 
5069 	/* step 4: Check for a SYN
5070 	 * RFC 5691 4.2 : Send a challenge ack
5071 	 */
5072 	if (th->syn) {
5073 syn_challenge:
5074 		if (syn_inerr)
5075 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5076 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5077 		tcp_send_challenge_ack(sk);
5078 		goto discard;
5079 	}
5080 
5081 	return true;
5082 
5083 discard:
5084 	__kfree_skb(skb);
5085 	return false;
5086 }
5087 
5088 /*
5089  *	TCP receive function for the ESTABLISHED state.
5090  *
5091  *	It is split into a fast path and a slow path. The fast path is
5092  * 	disabled when:
5093  *	- A zero window was announced from us - zero window probing
5094  *        is only handled properly in the slow path.
5095  *	- Out of order segments arrived.
5096  *	- Urgent data is expected.
5097  *	- There is no buffer space left
5098  *	- Unexpected TCP flags/window values/header lengths are received
5099  *	  (detected by checking the TCP header against pred_flags)
5100  *	- Data is sent in both directions. Fast path only supports pure senders
5101  *	  or pure receivers (this means either the sequence number or the ack
5102  *	  value must stay constant)
5103  *	- Unexpected TCP option.
5104  *
5105  *	When these conditions are not satisfied it drops into a standard
5106  *	receive procedure patterned after RFC793 to handle all cases.
5107  *	The first three cases are guaranteed by proper pred_flags setting,
5108  *	the rest is checked inline. Fast processing is turned on in
5109  *	tcp_data_queue when everything is OK.
5110  */
5111 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5112 			 const struct tcphdr *th, unsigned int len)
5113 {
5114 	struct tcp_sock *tp = tcp_sk(sk);
5115 
5116 	if (unlikely(sk->sk_rx_dst == NULL))
5117 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5118 	/*
5119 	 *	Header prediction.
5120 	 *	The code loosely follows the one in the famous
5121 	 *	"30 instruction TCP receive" Van Jacobson mail.
5122 	 *
5123 	 *	Van's trick is to deposit buffers into socket queue
5124 	 *	on a device interrupt, to call tcp_recv function
5125 	 *	on the receive process context and checksum and copy
5126 	 *	the buffer to user space. smart...
5127 	 *
5128 	 *	Our current scheme is not silly either but we take the
5129 	 *	extra cost of the net_bh soft interrupt processing...
5130 	 *	We do checksum and copy also but from device to kernel.
5131 	 */
5132 
5133 	tp->rx_opt.saw_tstamp = 0;
5134 
5135 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5136 	 *	if header_prediction is to be made
5137 	 *	'S' will always be tp->tcp_header_len >> 2
5138 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5139 	 *  turn it off	(when there are holes in the receive
5140 	 *	 space for instance)
5141 	 *	PSH flag is ignored.
5142 	 */
5143 
5144 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5145 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5146 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5147 		int tcp_header_len = tp->tcp_header_len;
5148 
5149 		/* Timestamp header prediction: tcp_header_len
5150 		 * is automatically equal to th->doff*4 due to pred_flags
5151 		 * match.
5152 		 */
5153 
5154 		/* Check timestamp */
5155 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5156 			/* No? Slow path! */
5157 			if (!tcp_parse_aligned_timestamp(tp, th))
5158 				goto slow_path;
5159 
5160 			/* If PAWS failed, check it more carefully in slow path */
5161 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5162 				goto slow_path;
5163 
5164 			/* DO NOT update ts_recent here, if checksum fails
5165 			 * and timestamp was corrupted part, it will result
5166 			 * in a hung connection since we will drop all
5167 			 * future packets due to the PAWS test.
5168 			 */
5169 		}
5170 
5171 		if (len <= tcp_header_len) {
5172 			/* Bulk data transfer: sender */
5173 			if (len == tcp_header_len) {
5174 				/* Predicted packet is in window by definition.
5175 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5176 				 * Hence, check seq<=rcv_wup reduces to:
5177 				 */
5178 				if (tcp_header_len ==
5179 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5180 				    tp->rcv_nxt == tp->rcv_wup)
5181 					tcp_store_ts_recent(tp);
5182 
5183 				/* We know that such packets are checksummed
5184 				 * on entry.
5185 				 */
5186 				tcp_ack(sk, skb, 0);
5187 				__kfree_skb(skb);
5188 				tcp_data_snd_check(sk);
5189 				return;
5190 			} else { /* Header too small */
5191 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5192 				goto discard;
5193 			}
5194 		} else {
5195 			int eaten = 0;
5196 			int copied_early = 0;
5197 			bool fragstolen = false;
5198 
5199 			if (tp->copied_seq == tp->rcv_nxt &&
5200 			    len - tcp_header_len <= tp->ucopy.len) {
5201 #ifdef CONFIG_NET_DMA
5202 				if (tp->ucopy.task == current &&
5203 				    sock_owned_by_user(sk) &&
5204 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5205 					copied_early = 1;
5206 					eaten = 1;
5207 				}
5208 #endif
5209 				if (tp->ucopy.task == current &&
5210 				    sock_owned_by_user(sk) && !copied_early) {
5211 					__set_current_state(TASK_RUNNING);
5212 
5213 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5214 						eaten = 1;
5215 				}
5216 				if (eaten) {
5217 					/* Predicted packet is in window by definition.
5218 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5219 					 * Hence, check seq<=rcv_wup reduces to:
5220 					 */
5221 					if (tcp_header_len ==
5222 					    (sizeof(struct tcphdr) +
5223 					     TCPOLEN_TSTAMP_ALIGNED) &&
5224 					    tp->rcv_nxt == tp->rcv_wup)
5225 						tcp_store_ts_recent(tp);
5226 
5227 					tcp_rcv_rtt_measure_ts(sk, skb);
5228 
5229 					__skb_pull(skb, tcp_header_len);
5230 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5231 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5232 				}
5233 				if (copied_early)
5234 					tcp_cleanup_rbuf(sk, skb->len);
5235 			}
5236 			if (!eaten) {
5237 				if (tcp_checksum_complete_user(sk, skb))
5238 					goto csum_error;
5239 
5240 				if ((int)skb->truesize > sk->sk_forward_alloc)
5241 					goto step5;
5242 
5243 				/* Predicted packet is in window by definition.
5244 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5245 				 * Hence, check seq<=rcv_wup reduces to:
5246 				 */
5247 				if (tcp_header_len ==
5248 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5249 				    tp->rcv_nxt == tp->rcv_wup)
5250 					tcp_store_ts_recent(tp);
5251 
5252 				tcp_rcv_rtt_measure_ts(sk, skb);
5253 
5254 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5255 
5256 				/* Bulk data transfer: receiver */
5257 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5258 						      &fragstolen);
5259 			}
5260 
5261 			tcp_event_data_recv(sk, skb);
5262 
5263 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5264 				/* Well, only one small jumplet in fast path... */
5265 				tcp_ack(sk, skb, FLAG_DATA);
5266 				tcp_data_snd_check(sk);
5267 				if (!inet_csk_ack_scheduled(sk))
5268 					goto no_ack;
5269 			}
5270 
5271 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5272 				__tcp_ack_snd_check(sk, 0);
5273 no_ack:
5274 #ifdef CONFIG_NET_DMA
5275 			if (copied_early)
5276 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5277 			else
5278 #endif
5279 			if (eaten)
5280 				kfree_skb_partial(skb, fragstolen);
5281 			sk->sk_data_ready(sk, 0);
5282 			return;
5283 		}
5284 	}
5285 
5286 slow_path:
5287 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5288 		goto csum_error;
5289 
5290 	if (!th->ack && !th->rst)
5291 		goto discard;
5292 
5293 	/*
5294 	 *	Standard slow path.
5295 	 */
5296 
5297 	if (!tcp_validate_incoming(sk, skb, th, 1))
5298 		return;
5299 
5300 step5:
5301 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5302 		goto discard;
5303 
5304 	tcp_rcv_rtt_measure_ts(sk, skb);
5305 
5306 	/* Process urgent data. */
5307 	tcp_urg(sk, skb, th);
5308 
5309 	/* step 7: process the segment text */
5310 	tcp_data_queue(sk, skb);
5311 
5312 	tcp_data_snd_check(sk);
5313 	tcp_ack_snd_check(sk);
5314 	return;
5315 
5316 csum_error:
5317 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5318 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5319 
5320 discard:
5321 	__kfree_skb(skb);
5322 }
5323 EXPORT_SYMBOL(tcp_rcv_established);
5324 
5325 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5326 {
5327 	struct tcp_sock *tp = tcp_sk(sk);
5328 	struct inet_connection_sock *icsk = inet_csk(sk);
5329 
5330 	tcp_set_state(sk, TCP_ESTABLISHED);
5331 
5332 	if (skb != NULL) {
5333 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5334 		security_inet_conn_established(sk, skb);
5335 	}
5336 
5337 	/* Make sure socket is routed, for correct metrics.  */
5338 	icsk->icsk_af_ops->rebuild_header(sk);
5339 
5340 	tcp_init_metrics(sk);
5341 
5342 	tcp_init_congestion_control(sk);
5343 
5344 	/* Prevent spurious tcp_cwnd_restart() on first data
5345 	 * packet.
5346 	 */
5347 	tp->lsndtime = tcp_time_stamp;
5348 
5349 	tcp_init_buffer_space(sk);
5350 
5351 	if (sock_flag(sk, SOCK_KEEPOPEN))
5352 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5353 
5354 	if (!tp->rx_opt.snd_wscale)
5355 		__tcp_fast_path_on(tp, tp->snd_wnd);
5356 	else
5357 		tp->pred_flags = 0;
5358 
5359 	if (!sock_flag(sk, SOCK_DEAD)) {
5360 		sk->sk_state_change(sk);
5361 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5362 	}
5363 }
5364 
5365 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5366 				    struct tcp_fastopen_cookie *cookie)
5367 {
5368 	struct tcp_sock *tp = tcp_sk(sk);
5369 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5370 	u16 mss = tp->rx_opt.mss_clamp;
5371 	bool syn_drop;
5372 
5373 	if (mss == tp->rx_opt.user_mss) {
5374 		struct tcp_options_received opt;
5375 
5376 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5377 		tcp_clear_options(&opt);
5378 		opt.user_mss = opt.mss_clamp = 0;
5379 		tcp_parse_options(synack, &opt, 0, NULL);
5380 		mss = opt.mss_clamp;
5381 	}
5382 
5383 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5384 		cookie->len = -1;
5385 
5386 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5387 	 * the remote receives only the retransmitted (regular) SYNs: either
5388 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5389 	 */
5390 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5391 
5392 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5393 
5394 	if (data) { /* Retransmit unacked data in SYN */
5395 		tcp_for_write_queue_from(data, sk) {
5396 			if (data == tcp_send_head(sk) ||
5397 			    __tcp_retransmit_skb(sk, data))
5398 				break;
5399 		}
5400 		tcp_rearm_rto(sk);
5401 		return true;
5402 	}
5403 	tp->syn_data_acked = tp->syn_data;
5404 	return false;
5405 }
5406 
5407 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5408 					 const struct tcphdr *th, unsigned int len)
5409 {
5410 	struct inet_connection_sock *icsk = inet_csk(sk);
5411 	struct tcp_sock *tp = tcp_sk(sk);
5412 	struct tcp_fastopen_cookie foc = { .len = -1 };
5413 	int saved_clamp = tp->rx_opt.mss_clamp;
5414 
5415 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5416 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5417 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5418 
5419 	if (th->ack) {
5420 		/* rfc793:
5421 		 * "If the state is SYN-SENT then
5422 		 *    first check the ACK bit
5423 		 *      If the ACK bit is set
5424 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5425 		 *        a reset (unless the RST bit is set, if so drop
5426 		 *        the segment and return)"
5427 		 */
5428 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5429 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5430 			goto reset_and_undo;
5431 
5432 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5433 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5434 			     tcp_time_stamp)) {
5435 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5436 			goto reset_and_undo;
5437 		}
5438 
5439 		/* Now ACK is acceptable.
5440 		 *
5441 		 * "If the RST bit is set
5442 		 *    If the ACK was acceptable then signal the user "error:
5443 		 *    connection reset", drop the segment, enter CLOSED state,
5444 		 *    delete TCB, and return."
5445 		 */
5446 
5447 		if (th->rst) {
5448 			tcp_reset(sk);
5449 			goto discard;
5450 		}
5451 
5452 		/* rfc793:
5453 		 *   "fifth, if neither of the SYN or RST bits is set then
5454 		 *    drop the segment and return."
5455 		 *
5456 		 *    See note below!
5457 		 *                                        --ANK(990513)
5458 		 */
5459 		if (!th->syn)
5460 			goto discard_and_undo;
5461 
5462 		/* rfc793:
5463 		 *   "If the SYN bit is on ...
5464 		 *    are acceptable then ...
5465 		 *    (our SYN has been ACKed), change the connection
5466 		 *    state to ESTABLISHED..."
5467 		 */
5468 
5469 		TCP_ECN_rcv_synack(tp, th);
5470 
5471 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5472 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5473 
5474 		/* Ok.. it's good. Set up sequence numbers and
5475 		 * move to established.
5476 		 */
5477 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5478 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5479 
5480 		/* RFC1323: The window in SYN & SYN/ACK segments is
5481 		 * never scaled.
5482 		 */
5483 		tp->snd_wnd = ntohs(th->window);
5484 
5485 		if (!tp->rx_opt.wscale_ok) {
5486 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5487 			tp->window_clamp = min(tp->window_clamp, 65535U);
5488 		}
5489 
5490 		if (tp->rx_opt.saw_tstamp) {
5491 			tp->rx_opt.tstamp_ok	   = 1;
5492 			tp->tcp_header_len =
5493 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5494 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5495 			tcp_store_ts_recent(tp);
5496 		} else {
5497 			tp->tcp_header_len = sizeof(struct tcphdr);
5498 		}
5499 
5500 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5501 			tcp_enable_fack(tp);
5502 
5503 		tcp_mtup_init(sk);
5504 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5505 		tcp_initialize_rcv_mss(sk);
5506 
5507 		/* Remember, tcp_poll() does not lock socket!
5508 		 * Change state from SYN-SENT only after copied_seq
5509 		 * is initialized. */
5510 		tp->copied_seq = tp->rcv_nxt;
5511 
5512 		smp_mb();
5513 
5514 		tcp_finish_connect(sk, skb);
5515 
5516 		if ((tp->syn_fastopen || tp->syn_data) &&
5517 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5518 			return -1;
5519 
5520 		if (sk->sk_write_pending ||
5521 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5522 		    icsk->icsk_ack.pingpong) {
5523 			/* Save one ACK. Data will be ready after
5524 			 * several ticks, if write_pending is set.
5525 			 *
5526 			 * It may be deleted, but with this feature tcpdumps
5527 			 * look so _wonderfully_ clever, that I was not able
5528 			 * to stand against the temptation 8)     --ANK
5529 			 */
5530 			inet_csk_schedule_ack(sk);
5531 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5532 			tcp_enter_quickack_mode(sk);
5533 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5534 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5535 
5536 discard:
5537 			__kfree_skb(skb);
5538 			return 0;
5539 		} else {
5540 			tcp_send_ack(sk);
5541 		}
5542 		return -1;
5543 	}
5544 
5545 	/* No ACK in the segment */
5546 
5547 	if (th->rst) {
5548 		/* rfc793:
5549 		 * "If the RST bit is set
5550 		 *
5551 		 *      Otherwise (no ACK) drop the segment and return."
5552 		 */
5553 
5554 		goto discard_and_undo;
5555 	}
5556 
5557 	/* PAWS check. */
5558 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5559 	    tcp_paws_reject(&tp->rx_opt, 0))
5560 		goto discard_and_undo;
5561 
5562 	if (th->syn) {
5563 		/* We see SYN without ACK. It is attempt of
5564 		 * simultaneous connect with crossed SYNs.
5565 		 * Particularly, it can be connect to self.
5566 		 */
5567 		tcp_set_state(sk, TCP_SYN_RECV);
5568 
5569 		if (tp->rx_opt.saw_tstamp) {
5570 			tp->rx_opt.tstamp_ok = 1;
5571 			tcp_store_ts_recent(tp);
5572 			tp->tcp_header_len =
5573 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5574 		} else {
5575 			tp->tcp_header_len = sizeof(struct tcphdr);
5576 		}
5577 
5578 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5579 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5580 
5581 		/* RFC1323: The window in SYN & SYN/ACK segments is
5582 		 * never scaled.
5583 		 */
5584 		tp->snd_wnd    = ntohs(th->window);
5585 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5586 		tp->max_window = tp->snd_wnd;
5587 
5588 		TCP_ECN_rcv_syn(tp, th);
5589 
5590 		tcp_mtup_init(sk);
5591 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5592 		tcp_initialize_rcv_mss(sk);
5593 
5594 		tcp_send_synack(sk);
5595 #if 0
5596 		/* Note, we could accept data and URG from this segment.
5597 		 * There are no obstacles to make this (except that we must
5598 		 * either change tcp_recvmsg() to prevent it from returning data
5599 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5600 		 *
5601 		 * However, if we ignore data in ACKless segments sometimes,
5602 		 * we have no reasons to accept it sometimes.
5603 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5604 		 * is not flawless. So, discard packet for sanity.
5605 		 * Uncomment this return to process the data.
5606 		 */
5607 		return -1;
5608 #else
5609 		goto discard;
5610 #endif
5611 	}
5612 	/* "fifth, if neither of the SYN or RST bits is set then
5613 	 * drop the segment and return."
5614 	 */
5615 
5616 discard_and_undo:
5617 	tcp_clear_options(&tp->rx_opt);
5618 	tp->rx_opt.mss_clamp = saved_clamp;
5619 	goto discard;
5620 
5621 reset_and_undo:
5622 	tcp_clear_options(&tp->rx_opt);
5623 	tp->rx_opt.mss_clamp = saved_clamp;
5624 	return 1;
5625 }
5626 
5627 /*
5628  *	This function implements the receiving procedure of RFC 793 for
5629  *	all states except ESTABLISHED and TIME_WAIT.
5630  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5631  *	address independent.
5632  */
5633 
5634 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5635 			  const struct tcphdr *th, unsigned int len)
5636 {
5637 	struct tcp_sock *tp = tcp_sk(sk);
5638 	struct inet_connection_sock *icsk = inet_csk(sk);
5639 	struct request_sock *req;
5640 	int queued = 0;
5641 	bool acceptable;
5642 	u32 synack_stamp;
5643 
5644 	tp->rx_opt.saw_tstamp = 0;
5645 
5646 	switch (sk->sk_state) {
5647 	case TCP_CLOSE:
5648 		goto discard;
5649 
5650 	case TCP_LISTEN:
5651 		if (th->ack)
5652 			return 1;
5653 
5654 		if (th->rst)
5655 			goto discard;
5656 
5657 		if (th->syn) {
5658 			if (th->fin)
5659 				goto discard;
5660 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5661 				return 1;
5662 
5663 			/* Now we have several options: In theory there is
5664 			 * nothing else in the frame. KA9Q has an option to
5665 			 * send data with the syn, BSD accepts data with the
5666 			 * syn up to the [to be] advertised window and
5667 			 * Solaris 2.1 gives you a protocol error. For now
5668 			 * we just ignore it, that fits the spec precisely
5669 			 * and avoids incompatibilities. It would be nice in
5670 			 * future to drop through and process the data.
5671 			 *
5672 			 * Now that TTCP is starting to be used we ought to
5673 			 * queue this data.
5674 			 * But, this leaves one open to an easy denial of
5675 			 * service attack, and SYN cookies can't defend
5676 			 * against this problem. So, we drop the data
5677 			 * in the interest of security over speed unless
5678 			 * it's still in use.
5679 			 */
5680 			kfree_skb(skb);
5681 			return 0;
5682 		}
5683 		goto discard;
5684 
5685 	case TCP_SYN_SENT:
5686 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5687 		if (queued >= 0)
5688 			return queued;
5689 
5690 		/* Do step6 onward by hand. */
5691 		tcp_urg(sk, skb, th);
5692 		__kfree_skb(skb);
5693 		tcp_data_snd_check(sk);
5694 		return 0;
5695 	}
5696 
5697 	req = tp->fastopen_rsk;
5698 	if (req != NULL) {
5699 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5700 		    sk->sk_state != TCP_FIN_WAIT1);
5701 
5702 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5703 			goto discard;
5704 	}
5705 
5706 	if (!th->ack && !th->rst)
5707 		goto discard;
5708 
5709 	if (!tcp_validate_incoming(sk, skb, th, 0))
5710 		return 0;
5711 
5712 	/* step 5: check the ACK field */
5713 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5714 				      FLAG_UPDATE_TS_RECENT) > 0;
5715 
5716 	switch (sk->sk_state) {
5717 	case TCP_SYN_RECV:
5718 		if (!acceptable)
5719 			return 1;
5720 
5721 		/* Once we leave TCP_SYN_RECV, we no longer need req
5722 		 * so release it.
5723 		 */
5724 		if (req) {
5725 			synack_stamp = tcp_rsk(req)->snt_synack;
5726 			tp->total_retrans = req->num_retrans;
5727 			reqsk_fastopen_remove(sk, req, false);
5728 		} else {
5729 			synack_stamp = tp->lsndtime;
5730 			/* Make sure socket is routed, for correct metrics. */
5731 			icsk->icsk_af_ops->rebuild_header(sk);
5732 			tcp_init_congestion_control(sk);
5733 
5734 			tcp_mtup_init(sk);
5735 			tp->copied_seq = tp->rcv_nxt;
5736 			tcp_init_buffer_space(sk);
5737 		}
5738 		smp_mb();
5739 		tcp_set_state(sk, TCP_ESTABLISHED);
5740 		sk->sk_state_change(sk);
5741 
5742 		/* Note, that this wakeup is only for marginal crossed SYN case.
5743 		 * Passively open sockets are not waked up, because
5744 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5745 		 */
5746 		if (sk->sk_socket)
5747 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5748 
5749 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5750 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5751 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5752 		tcp_synack_rtt_meas(sk, synack_stamp);
5753 
5754 		if (tp->rx_opt.tstamp_ok)
5755 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5756 
5757 		if (req) {
5758 			/* Re-arm the timer because data may have been sent out.
5759 			 * This is similar to the regular data transmission case
5760 			 * when new data has just been ack'ed.
5761 			 *
5762 			 * (TFO) - we could try to be more aggressive and
5763 			 * retransmitting any data sooner based on when they
5764 			 * are sent out.
5765 			 */
5766 			tcp_rearm_rto(sk);
5767 		} else
5768 			tcp_init_metrics(sk);
5769 
5770 		tcp_update_pacing_rate(sk);
5771 
5772 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5773 		tp->lsndtime = tcp_time_stamp;
5774 
5775 		tcp_initialize_rcv_mss(sk);
5776 		tcp_fast_path_on(tp);
5777 		break;
5778 
5779 	case TCP_FIN_WAIT1: {
5780 		struct dst_entry *dst;
5781 		int tmo;
5782 
5783 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5784 		 * Fast Open socket and this is the first acceptable
5785 		 * ACK we have received, this would have acknowledged
5786 		 * our SYNACK so stop the SYNACK timer.
5787 		 */
5788 		if (req != NULL) {
5789 			/* Return RST if ack_seq is invalid.
5790 			 * Note that RFC793 only says to generate a
5791 			 * DUPACK for it but for TCP Fast Open it seems
5792 			 * better to treat this case like TCP_SYN_RECV
5793 			 * above.
5794 			 */
5795 			if (!acceptable)
5796 				return 1;
5797 			/* We no longer need the request sock. */
5798 			reqsk_fastopen_remove(sk, req, false);
5799 			tcp_rearm_rto(sk);
5800 		}
5801 		if (tp->snd_una != tp->write_seq)
5802 			break;
5803 
5804 		tcp_set_state(sk, TCP_FIN_WAIT2);
5805 		sk->sk_shutdown |= SEND_SHUTDOWN;
5806 
5807 		dst = __sk_dst_get(sk);
5808 		if (dst)
5809 			dst_confirm(dst);
5810 
5811 		if (!sock_flag(sk, SOCK_DEAD)) {
5812 			/* Wake up lingering close() */
5813 			sk->sk_state_change(sk);
5814 			break;
5815 		}
5816 
5817 		if (tp->linger2 < 0 ||
5818 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5819 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5820 			tcp_done(sk);
5821 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5822 			return 1;
5823 		}
5824 
5825 		tmo = tcp_fin_time(sk);
5826 		if (tmo > TCP_TIMEWAIT_LEN) {
5827 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5828 		} else if (th->fin || sock_owned_by_user(sk)) {
5829 			/* Bad case. We could lose such FIN otherwise.
5830 			 * It is not a big problem, but it looks confusing
5831 			 * and not so rare event. We still can lose it now,
5832 			 * if it spins in bh_lock_sock(), but it is really
5833 			 * marginal case.
5834 			 */
5835 			inet_csk_reset_keepalive_timer(sk, tmo);
5836 		} else {
5837 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5838 			goto discard;
5839 		}
5840 		break;
5841 	}
5842 
5843 	case TCP_CLOSING:
5844 		if (tp->snd_una == tp->write_seq) {
5845 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5846 			goto discard;
5847 		}
5848 		break;
5849 
5850 	case TCP_LAST_ACK:
5851 		if (tp->snd_una == tp->write_seq) {
5852 			tcp_update_metrics(sk);
5853 			tcp_done(sk);
5854 			goto discard;
5855 		}
5856 		break;
5857 	}
5858 
5859 	/* step 6: check the URG bit */
5860 	tcp_urg(sk, skb, th);
5861 
5862 	/* step 7: process the segment text */
5863 	switch (sk->sk_state) {
5864 	case TCP_CLOSE_WAIT:
5865 	case TCP_CLOSING:
5866 	case TCP_LAST_ACK:
5867 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5868 			break;
5869 	case TCP_FIN_WAIT1:
5870 	case TCP_FIN_WAIT2:
5871 		/* RFC 793 says to queue data in these states,
5872 		 * RFC 1122 says we MUST send a reset.
5873 		 * BSD 4.4 also does reset.
5874 		 */
5875 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5876 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5877 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5878 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5879 				tcp_reset(sk);
5880 				return 1;
5881 			}
5882 		}
5883 		/* Fall through */
5884 	case TCP_ESTABLISHED:
5885 		tcp_data_queue(sk, skb);
5886 		queued = 1;
5887 		break;
5888 	}
5889 
5890 	/* tcp_data could move socket to TIME-WAIT */
5891 	if (sk->sk_state != TCP_CLOSE) {
5892 		tcp_data_snd_check(sk);
5893 		tcp_ack_snd_check(sk);
5894 	}
5895 
5896 	if (!queued) {
5897 discard:
5898 		__kfree_skb(skb);
5899 	}
5900 	return 0;
5901 }
5902 EXPORT_SYMBOL(tcp_rcv_state_process);
5903