1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 100; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 97 int sysctl_tcp_thin_dupack __read_mostly; 98 99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 100 int sysctl_tcp_early_retrans __read_mostly = 3; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 /* Adapt the MSS value used to make delayed ack decision to the 125 * real world. 126 */ 127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 128 { 129 struct inet_connection_sock *icsk = inet_csk(sk); 130 const unsigned int lss = icsk->icsk_ack.last_seg_size; 131 unsigned int len; 132 133 icsk->icsk_ack.last_seg_size = 0; 134 135 /* skb->len may jitter because of SACKs, even if peer 136 * sends good full-sized frames. 137 */ 138 len = skb_shinfo(skb)->gso_size ? : skb->len; 139 if (len >= icsk->icsk_ack.rcv_mss) { 140 icsk->icsk_ack.rcv_mss = len; 141 } else { 142 /* Otherwise, we make more careful check taking into account, 143 * that SACKs block is variable. 144 * 145 * "len" is invariant segment length, including TCP header. 146 */ 147 len += skb->data - skb_transport_header(skb); 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 149 /* If PSH is not set, packet should be 150 * full sized, provided peer TCP is not badly broken. 151 * This observation (if it is correct 8)) allows 152 * to handle super-low mtu links fairly. 153 */ 154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 156 /* Subtract also invariant (if peer is RFC compliant), 157 * tcp header plus fixed timestamp option length. 158 * Resulting "len" is MSS free of SACK jitter. 159 */ 160 len -= tcp_sk(sk)->tcp_header_len; 161 icsk->icsk_ack.last_seg_size = len; 162 if (len == lss) { 163 icsk->icsk_ack.rcv_mss = len; 164 return; 165 } 166 } 167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 170 } 171 } 172 173 static void tcp_incr_quickack(struct sock *sk) 174 { 175 struct inet_connection_sock *icsk = inet_csk(sk); 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 177 178 if (quickacks == 0) 179 quickacks = 2; 180 if (quickacks > icsk->icsk_ack.quick) 181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 182 } 183 184 static void tcp_enter_quickack_mode(struct sock *sk) 185 { 186 struct inet_connection_sock *icsk = inet_csk(sk); 187 tcp_incr_quickack(sk); 188 icsk->icsk_ack.pingpong = 0; 189 icsk->icsk_ack.ato = TCP_ATO_MIN; 190 } 191 192 /* Send ACKs quickly, if "quick" count is not exhausted 193 * and the session is not interactive. 194 */ 195 196 static inline bool tcp_in_quickack_mode(const struct sock *sk) 197 { 198 const struct inet_connection_sock *icsk = inet_csk(sk); 199 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 221 { 222 if (!(tp->ecn_flags & TCP_ECN_OK)) 223 return; 224 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 236 /* Better not delay acks, sender can have a very low cwnd */ 237 tcp_enter_quickack_mode((struct sock *)tp); 238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 239 } 240 /* fallinto */ 241 default: 242 tp->ecn_flags |= TCP_ECN_SEEN; 243 } 244 } 245 246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 247 { 248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 249 tp->ecn_flags &= ~TCP_ECN_OK; 250 } 251 252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 253 { 254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 255 tp->ecn_flags &= ~TCP_ECN_OK; 256 } 257 258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 259 { 260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 261 return true; 262 return false; 263 } 264 265 /* Buffer size and advertised window tuning. 266 * 267 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 268 */ 269 270 static void tcp_sndbuf_expand(struct sock *sk) 271 { 272 const struct tcp_sock *tp = tcp_sk(sk); 273 int sndmem, per_mss; 274 u32 nr_segs; 275 276 /* Worst case is non GSO/TSO : each frame consumes one skb 277 * and skb->head is kmalloced using power of two area of memory 278 */ 279 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 280 MAX_TCP_HEADER + 281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 282 283 per_mss = roundup_pow_of_two(per_mss) + 284 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 285 286 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 287 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 288 289 /* Fast Recovery (RFC 5681 3.2) : 290 * Cubic needs 1.7 factor, rounded to 2 to include 291 * extra cushion (application might react slowly to POLLOUT) 292 */ 293 sndmem = 2 * nr_segs * per_mss; 294 295 if (sk->sk_sndbuf < sndmem) 296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 297 } 298 299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 300 * 301 * All tcp_full_space() is split to two parts: "network" buffer, allocated 302 * forward and advertised in receiver window (tp->rcv_wnd) and 303 * "application buffer", required to isolate scheduling/application 304 * latencies from network. 305 * window_clamp is maximal advertised window. It can be less than 306 * tcp_full_space(), in this case tcp_full_space() - window_clamp 307 * is reserved for "application" buffer. The less window_clamp is 308 * the smoother our behaviour from viewpoint of network, but the lower 309 * throughput and the higher sensitivity of the connection to losses. 8) 310 * 311 * rcv_ssthresh is more strict window_clamp used at "slow start" 312 * phase to predict further behaviour of this connection. 313 * It is used for two goals: 314 * - to enforce header prediction at sender, even when application 315 * requires some significant "application buffer". It is check #1. 316 * - to prevent pruning of receive queue because of misprediction 317 * of receiver window. Check #2. 318 * 319 * The scheme does not work when sender sends good segments opening 320 * window and then starts to feed us spaghetti. But it should work 321 * in common situations. Otherwise, we have to rely on queue collapsing. 322 */ 323 324 /* Slow part of check#2. */ 325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 326 { 327 struct tcp_sock *tp = tcp_sk(sk); 328 /* Optimize this! */ 329 int truesize = tcp_win_from_space(skb->truesize) >> 1; 330 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 331 332 while (tp->rcv_ssthresh <= window) { 333 if (truesize <= skb->len) 334 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 335 336 truesize >>= 1; 337 window >>= 1; 338 } 339 return 0; 340 } 341 342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 343 { 344 struct tcp_sock *tp = tcp_sk(sk); 345 346 /* Check #1 */ 347 if (tp->rcv_ssthresh < tp->window_clamp && 348 (int)tp->rcv_ssthresh < tcp_space(sk) && 349 !sk_under_memory_pressure(sk)) { 350 int incr; 351 352 /* Check #2. Increase window, if skb with such overhead 353 * will fit to rcvbuf in future. 354 */ 355 if (tcp_win_from_space(skb->truesize) <= skb->len) 356 incr = 2 * tp->advmss; 357 else 358 incr = __tcp_grow_window(sk, skb); 359 360 if (incr) { 361 incr = max_t(int, incr, 2 * skb->len); 362 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 363 tp->window_clamp); 364 inet_csk(sk)->icsk_ack.quick |= 1; 365 } 366 } 367 } 368 369 /* 3. Tuning rcvbuf, when connection enters established state. */ 370 static void tcp_fixup_rcvbuf(struct sock *sk) 371 { 372 u32 mss = tcp_sk(sk)->advmss; 373 int rcvmem; 374 375 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 376 tcp_default_init_rwnd(mss); 377 378 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 379 * Allow enough cushion so that sender is not limited by our window 380 */ 381 if (sysctl_tcp_moderate_rcvbuf) 382 rcvmem <<= 2; 383 384 if (sk->sk_rcvbuf < rcvmem) 385 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 386 } 387 388 /* 4. Try to fixup all. It is made immediately after connection enters 389 * established state. 390 */ 391 void tcp_init_buffer_space(struct sock *sk) 392 { 393 struct tcp_sock *tp = tcp_sk(sk); 394 int maxwin; 395 396 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 397 tcp_fixup_rcvbuf(sk); 398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 399 tcp_sndbuf_expand(sk); 400 401 tp->rcvq_space.space = tp->rcv_wnd; 402 tp->rcvq_space.time = tcp_time_stamp; 403 tp->rcvq_space.seq = tp->copied_seq; 404 405 maxwin = tcp_full_space(sk); 406 407 if (tp->window_clamp >= maxwin) { 408 tp->window_clamp = maxwin; 409 410 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 411 tp->window_clamp = max(maxwin - 412 (maxwin >> sysctl_tcp_app_win), 413 4 * tp->advmss); 414 } 415 416 /* Force reservation of one segment. */ 417 if (sysctl_tcp_app_win && 418 tp->window_clamp > 2 * tp->advmss && 419 tp->window_clamp + tp->advmss > maxwin) 420 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 421 422 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 423 tp->snd_cwnd_stamp = tcp_time_stamp; 424 } 425 426 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 427 static void tcp_clamp_window(struct sock *sk) 428 { 429 struct tcp_sock *tp = tcp_sk(sk); 430 struct inet_connection_sock *icsk = inet_csk(sk); 431 432 icsk->icsk_ack.quick = 0; 433 434 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 435 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 436 !sk_under_memory_pressure(sk) && 437 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 438 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 439 sysctl_tcp_rmem[2]); 440 } 441 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 442 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 443 } 444 445 /* Initialize RCV_MSS value. 446 * RCV_MSS is an our guess about MSS used by the peer. 447 * We haven't any direct information about the MSS. 448 * It's better to underestimate the RCV_MSS rather than overestimate. 449 * Overestimations make us ACKing less frequently than needed. 450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 451 */ 452 void tcp_initialize_rcv_mss(struct sock *sk) 453 { 454 const struct tcp_sock *tp = tcp_sk(sk); 455 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 456 457 hint = min(hint, tp->rcv_wnd / 2); 458 hint = min(hint, TCP_MSS_DEFAULT); 459 hint = max(hint, TCP_MIN_MSS); 460 461 inet_csk(sk)->icsk_ack.rcv_mss = hint; 462 } 463 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 464 465 /* Receiver "autotuning" code. 466 * 467 * The algorithm for RTT estimation w/o timestamps is based on 468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 469 * <http://public.lanl.gov/radiant/pubs.html#DRS> 470 * 471 * More detail on this code can be found at 472 * <http://staff.psc.edu/jheffner/>, 473 * though this reference is out of date. A new paper 474 * is pending. 475 */ 476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 477 { 478 u32 new_sample = tp->rcv_rtt_est.rtt; 479 long m = sample; 480 481 if (m == 0) 482 m = 1; 483 484 if (new_sample != 0) { 485 /* If we sample in larger samples in the non-timestamp 486 * case, we could grossly overestimate the RTT especially 487 * with chatty applications or bulk transfer apps which 488 * are stalled on filesystem I/O. 489 * 490 * Also, since we are only going for a minimum in the 491 * non-timestamp case, we do not smooth things out 492 * else with timestamps disabled convergence takes too 493 * long. 494 */ 495 if (!win_dep) { 496 m -= (new_sample >> 3); 497 new_sample += m; 498 } else { 499 m <<= 3; 500 if (m < new_sample) 501 new_sample = m; 502 } 503 } else { 504 /* No previous measure. */ 505 new_sample = m << 3; 506 } 507 508 if (tp->rcv_rtt_est.rtt != new_sample) 509 tp->rcv_rtt_est.rtt = new_sample; 510 } 511 512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 513 { 514 if (tp->rcv_rtt_est.time == 0) 515 goto new_measure; 516 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 517 return; 518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 519 520 new_measure: 521 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 522 tp->rcv_rtt_est.time = tcp_time_stamp; 523 } 524 525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 526 const struct sk_buff *skb) 527 { 528 struct tcp_sock *tp = tcp_sk(sk); 529 if (tp->rx_opt.rcv_tsecr && 530 (TCP_SKB_CB(skb)->end_seq - 531 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 533 } 534 535 /* 536 * This function should be called every time data is copied to user space. 537 * It calculates the appropriate TCP receive buffer space. 538 */ 539 void tcp_rcv_space_adjust(struct sock *sk) 540 { 541 struct tcp_sock *tp = tcp_sk(sk); 542 int time; 543 int copied; 544 545 time = tcp_time_stamp - tp->rcvq_space.time; 546 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 547 return; 548 549 /* Number of bytes copied to user in last RTT */ 550 copied = tp->copied_seq - tp->rcvq_space.seq; 551 if (copied <= tp->rcvq_space.space) 552 goto new_measure; 553 554 /* A bit of theory : 555 * copied = bytes received in previous RTT, our base window 556 * To cope with packet losses, we need a 2x factor 557 * To cope with slow start, and sender growing its cwin by 100 % 558 * every RTT, we need a 4x factor, because the ACK we are sending 559 * now is for the next RTT, not the current one : 560 * <prev RTT . ><current RTT .. ><next RTT .... > 561 */ 562 563 if (sysctl_tcp_moderate_rcvbuf && 564 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 565 int rcvwin, rcvmem, rcvbuf; 566 567 /* minimal window to cope with packet losses, assuming 568 * steady state. Add some cushion because of small variations. 569 */ 570 rcvwin = (copied << 1) + 16 * tp->advmss; 571 572 /* If rate increased by 25%, 573 * assume slow start, rcvwin = 3 * copied 574 * If rate increased by 50%, 575 * assume sender can use 2x growth, rcvwin = 4 * copied 576 */ 577 if (copied >= 578 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 579 if (copied >= 580 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 581 rcvwin <<= 1; 582 else 583 rcvwin += (rcvwin >> 1); 584 } 585 586 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 587 while (tcp_win_from_space(rcvmem) < tp->advmss) 588 rcvmem += 128; 589 590 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 591 if (rcvbuf > sk->sk_rcvbuf) { 592 sk->sk_rcvbuf = rcvbuf; 593 594 /* Make the window clamp follow along. */ 595 tp->window_clamp = rcvwin; 596 } 597 } 598 tp->rcvq_space.space = copied; 599 600 new_measure: 601 tp->rcvq_space.seq = tp->copied_seq; 602 tp->rcvq_space.time = tcp_time_stamp; 603 } 604 605 /* There is something which you must keep in mind when you analyze the 606 * behavior of the tp->ato delayed ack timeout interval. When a 607 * connection starts up, we want to ack as quickly as possible. The 608 * problem is that "good" TCP's do slow start at the beginning of data 609 * transmission. The means that until we send the first few ACK's the 610 * sender will sit on his end and only queue most of his data, because 611 * he can only send snd_cwnd unacked packets at any given time. For 612 * each ACK we send, he increments snd_cwnd and transmits more of his 613 * queue. -DaveM 614 */ 615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 616 { 617 struct tcp_sock *tp = tcp_sk(sk); 618 struct inet_connection_sock *icsk = inet_csk(sk); 619 u32 now; 620 621 inet_csk_schedule_ack(sk); 622 623 tcp_measure_rcv_mss(sk, skb); 624 625 tcp_rcv_rtt_measure(tp); 626 627 now = tcp_time_stamp; 628 629 if (!icsk->icsk_ack.ato) { 630 /* The _first_ data packet received, initialize 631 * delayed ACK engine. 632 */ 633 tcp_incr_quickack(sk); 634 icsk->icsk_ack.ato = TCP_ATO_MIN; 635 } else { 636 int m = now - icsk->icsk_ack.lrcvtime; 637 638 if (m <= TCP_ATO_MIN / 2) { 639 /* The fastest case is the first. */ 640 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 641 } else if (m < icsk->icsk_ack.ato) { 642 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 643 if (icsk->icsk_ack.ato > icsk->icsk_rto) 644 icsk->icsk_ack.ato = icsk->icsk_rto; 645 } else if (m > icsk->icsk_rto) { 646 /* Too long gap. Apparently sender failed to 647 * restart window, so that we send ACKs quickly. 648 */ 649 tcp_incr_quickack(sk); 650 sk_mem_reclaim(sk); 651 } 652 } 653 icsk->icsk_ack.lrcvtime = now; 654 655 TCP_ECN_check_ce(tp, skb); 656 657 if (skb->len >= 128) 658 tcp_grow_window(sk, skb); 659 } 660 661 /* Called to compute a smoothed rtt estimate. The data fed to this 662 * routine either comes from timestamps, or from segments that were 663 * known _not_ to have been retransmitted [see Karn/Partridge 664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 665 * piece by Van Jacobson. 666 * NOTE: the next three routines used to be one big routine. 667 * To save cycles in the RFC 1323 implementation it was better to break 668 * it up into three procedures. -- erics 669 */ 670 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 671 { 672 struct tcp_sock *tp = tcp_sk(sk); 673 long m = mrtt; /* RTT */ 674 675 /* The following amusing code comes from Jacobson's 676 * article in SIGCOMM '88. Note that rtt and mdev 677 * are scaled versions of rtt and mean deviation. 678 * This is designed to be as fast as possible 679 * m stands for "measurement". 680 * 681 * On a 1990 paper the rto value is changed to: 682 * RTO = rtt + 4 * mdev 683 * 684 * Funny. This algorithm seems to be very broken. 685 * These formulae increase RTO, when it should be decreased, increase 686 * too slowly, when it should be increased quickly, decrease too quickly 687 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 688 * does not matter how to _calculate_ it. Seems, it was trap 689 * that VJ failed to avoid. 8) 690 */ 691 if (m == 0) 692 m = 1; 693 if (tp->srtt != 0) { 694 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 695 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 696 if (m < 0) { 697 m = -m; /* m is now abs(error) */ 698 m -= (tp->mdev >> 2); /* similar update on mdev */ 699 /* This is similar to one of Eifel findings. 700 * Eifel blocks mdev updates when rtt decreases. 701 * This solution is a bit different: we use finer gain 702 * for mdev in this case (alpha*beta). 703 * Like Eifel it also prevents growth of rto, 704 * but also it limits too fast rto decreases, 705 * happening in pure Eifel. 706 */ 707 if (m > 0) 708 m >>= 3; 709 } else { 710 m -= (tp->mdev >> 2); /* similar update on mdev */ 711 } 712 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 713 if (tp->mdev > tp->mdev_max) { 714 tp->mdev_max = tp->mdev; 715 if (tp->mdev_max > tp->rttvar) 716 tp->rttvar = tp->mdev_max; 717 } 718 if (after(tp->snd_una, tp->rtt_seq)) { 719 if (tp->mdev_max < tp->rttvar) 720 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 721 tp->rtt_seq = tp->snd_nxt; 722 tp->mdev_max = tcp_rto_min(sk); 723 } 724 } else { 725 /* no previous measure. */ 726 tp->srtt = m << 3; /* take the measured time to be rtt */ 727 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 728 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 729 tp->rtt_seq = tp->snd_nxt; 730 } 731 } 732 733 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 734 * Note: TCP stack does not yet implement pacing. 735 * FQ packet scheduler can be used to implement cheap but effective 736 * TCP pacing, to smooth the burst on large writes when packets 737 * in flight is significantly lower than cwnd (or rwin) 738 */ 739 static void tcp_update_pacing_rate(struct sock *sk) 740 { 741 const struct tcp_sock *tp = tcp_sk(sk); 742 u64 rate; 743 744 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 745 rate = (u64)tp->mss_cache * 2 * (HZ << 3); 746 747 rate *= max(tp->snd_cwnd, tp->packets_out); 748 749 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3), 750 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms) 751 * We probably need usec resolution in the future. 752 * Note: This also takes care of possible srtt=0 case, 753 * when tcp_rtt_estimator() was not yet called. 754 */ 755 if (tp->srtt > 8 + 2) 756 do_div(rate, tp->srtt); 757 758 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 759 * without any lock. We want to make sure compiler wont store 760 * intermediate values in this location. 761 */ 762 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 763 sk->sk_max_pacing_rate); 764 } 765 766 /* Calculate rto without backoff. This is the second half of Van Jacobson's 767 * routine referred to above. 768 */ 769 void tcp_set_rto(struct sock *sk) 770 { 771 const struct tcp_sock *tp = tcp_sk(sk); 772 /* Old crap is replaced with new one. 8) 773 * 774 * More seriously: 775 * 1. If rtt variance happened to be less 50msec, it is hallucination. 776 * It cannot be less due to utterly erratic ACK generation made 777 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 778 * to do with delayed acks, because at cwnd>2 true delack timeout 779 * is invisible. Actually, Linux-2.4 also generates erratic 780 * ACKs in some circumstances. 781 */ 782 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 783 784 /* 2. Fixups made earlier cannot be right. 785 * If we do not estimate RTO correctly without them, 786 * all the algo is pure shit and should be replaced 787 * with correct one. It is exactly, which we pretend to do. 788 */ 789 790 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 791 * guarantees that rto is higher. 792 */ 793 tcp_bound_rto(sk); 794 } 795 796 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 797 { 798 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 799 800 if (!cwnd) 801 cwnd = TCP_INIT_CWND; 802 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 803 } 804 805 /* 806 * Packet counting of FACK is based on in-order assumptions, therefore TCP 807 * disables it when reordering is detected 808 */ 809 void tcp_disable_fack(struct tcp_sock *tp) 810 { 811 /* RFC3517 uses different metric in lost marker => reset on change */ 812 if (tcp_is_fack(tp)) 813 tp->lost_skb_hint = NULL; 814 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 815 } 816 817 /* Take a notice that peer is sending D-SACKs */ 818 static void tcp_dsack_seen(struct tcp_sock *tp) 819 { 820 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 821 } 822 823 static void tcp_update_reordering(struct sock *sk, const int metric, 824 const int ts) 825 { 826 struct tcp_sock *tp = tcp_sk(sk); 827 if (metric > tp->reordering) { 828 int mib_idx; 829 830 tp->reordering = min(TCP_MAX_REORDERING, metric); 831 832 /* This exciting event is worth to be remembered. 8) */ 833 if (ts) 834 mib_idx = LINUX_MIB_TCPTSREORDER; 835 else if (tcp_is_reno(tp)) 836 mib_idx = LINUX_MIB_TCPRENOREORDER; 837 else if (tcp_is_fack(tp)) 838 mib_idx = LINUX_MIB_TCPFACKREORDER; 839 else 840 mib_idx = LINUX_MIB_TCPSACKREORDER; 841 842 NET_INC_STATS_BH(sock_net(sk), mib_idx); 843 #if FASTRETRANS_DEBUG > 1 844 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 845 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 846 tp->reordering, 847 tp->fackets_out, 848 tp->sacked_out, 849 tp->undo_marker ? tp->undo_retrans : 0); 850 #endif 851 tcp_disable_fack(tp); 852 } 853 854 if (metric > 0) 855 tcp_disable_early_retrans(tp); 856 } 857 858 /* This must be called before lost_out is incremented */ 859 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 860 { 861 if ((tp->retransmit_skb_hint == NULL) || 862 before(TCP_SKB_CB(skb)->seq, 863 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 864 tp->retransmit_skb_hint = skb; 865 866 if (!tp->lost_out || 867 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 868 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 869 } 870 871 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 872 { 873 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 874 tcp_verify_retransmit_hint(tp, skb); 875 876 tp->lost_out += tcp_skb_pcount(skb); 877 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 878 } 879 } 880 881 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 882 struct sk_buff *skb) 883 { 884 tcp_verify_retransmit_hint(tp, skb); 885 886 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 887 tp->lost_out += tcp_skb_pcount(skb); 888 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 889 } 890 } 891 892 /* This procedure tags the retransmission queue when SACKs arrive. 893 * 894 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 895 * Packets in queue with these bits set are counted in variables 896 * sacked_out, retrans_out and lost_out, correspondingly. 897 * 898 * Valid combinations are: 899 * Tag InFlight Description 900 * 0 1 - orig segment is in flight. 901 * S 0 - nothing flies, orig reached receiver. 902 * L 0 - nothing flies, orig lost by net. 903 * R 2 - both orig and retransmit are in flight. 904 * L|R 1 - orig is lost, retransmit is in flight. 905 * S|R 1 - orig reached receiver, retrans is still in flight. 906 * (L|S|R is logically valid, it could occur when L|R is sacked, 907 * but it is equivalent to plain S and code short-curcuits it to S. 908 * L|S is logically invalid, it would mean -1 packet in flight 8)) 909 * 910 * These 6 states form finite state machine, controlled by the following events: 911 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 912 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 913 * 3. Loss detection event of two flavors: 914 * A. Scoreboard estimator decided the packet is lost. 915 * A'. Reno "three dupacks" marks head of queue lost. 916 * A''. Its FACK modification, head until snd.fack is lost. 917 * B. SACK arrives sacking SND.NXT at the moment, when the 918 * segment was retransmitted. 919 * 4. D-SACK added new rule: D-SACK changes any tag to S. 920 * 921 * It is pleasant to note, that state diagram turns out to be commutative, 922 * so that we are allowed not to be bothered by order of our actions, 923 * when multiple events arrive simultaneously. (see the function below). 924 * 925 * Reordering detection. 926 * -------------------- 927 * Reordering metric is maximal distance, which a packet can be displaced 928 * in packet stream. With SACKs we can estimate it: 929 * 930 * 1. SACK fills old hole and the corresponding segment was not 931 * ever retransmitted -> reordering. Alas, we cannot use it 932 * when segment was retransmitted. 933 * 2. The last flaw is solved with D-SACK. D-SACK arrives 934 * for retransmitted and already SACKed segment -> reordering.. 935 * Both of these heuristics are not used in Loss state, when we cannot 936 * account for retransmits accurately. 937 * 938 * SACK block validation. 939 * ---------------------- 940 * 941 * SACK block range validation checks that the received SACK block fits to 942 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 943 * Note that SND.UNA is not included to the range though being valid because 944 * it means that the receiver is rather inconsistent with itself reporting 945 * SACK reneging when it should advance SND.UNA. Such SACK block this is 946 * perfectly valid, however, in light of RFC2018 which explicitly states 947 * that "SACK block MUST reflect the newest segment. Even if the newest 948 * segment is going to be discarded ...", not that it looks very clever 949 * in case of head skb. Due to potentional receiver driven attacks, we 950 * choose to avoid immediate execution of a walk in write queue due to 951 * reneging and defer head skb's loss recovery to standard loss recovery 952 * procedure that will eventually trigger (nothing forbids us doing this). 953 * 954 * Implements also blockage to start_seq wrap-around. Problem lies in the 955 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 956 * there's no guarantee that it will be before snd_nxt (n). The problem 957 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 958 * wrap (s_w): 959 * 960 * <- outs wnd -> <- wrapzone -> 961 * u e n u_w e_w s n_w 962 * | | | | | | | 963 * |<------------+------+----- TCP seqno space --------------+---------->| 964 * ...-- <2^31 ->| |<--------... 965 * ...---- >2^31 ------>| |<--------... 966 * 967 * Current code wouldn't be vulnerable but it's better still to discard such 968 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 969 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 970 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 971 * equal to the ideal case (infinite seqno space without wrap caused issues). 972 * 973 * With D-SACK the lower bound is extended to cover sequence space below 974 * SND.UNA down to undo_marker, which is the last point of interest. Yet 975 * again, D-SACK block must not to go across snd_una (for the same reason as 976 * for the normal SACK blocks, explained above). But there all simplicity 977 * ends, TCP might receive valid D-SACKs below that. As long as they reside 978 * fully below undo_marker they do not affect behavior in anyway and can 979 * therefore be safely ignored. In rare cases (which are more or less 980 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 981 * fragmentation and packet reordering past skb's retransmission. To consider 982 * them correctly, the acceptable range must be extended even more though 983 * the exact amount is rather hard to quantify. However, tp->max_window can 984 * be used as an exaggerated estimate. 985 */ 986 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 987 u32 start_seq, u32 end_seq) 988 { 989 /* Too far in future, or reversed (interpretation is ambiguous) */ 990 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 991 return false; 992 993 /* Nasty start_seq wrap-around check (see comments above) */ 994 if (!before(start_seq, tp->snd_nxt)) 995 return false; 996 997 /* In outstanding window? ...This is valid exit for D-SACKs too. 998 * start_seq == snd_una is non-sensical (see comments above) 999 */ 1000 if (after(start_seq, tp->snd_una)) 1001 return true; 1002 1003 if (!is_dsack || !tp->undo_marker) 1004 return false; 1005 1006 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1007 if (after(end_seq, tp->snd_una)) 1008 return false; 1009 1010 if (!before(start_seq, tp->undo_marker)) 1011 return true; 1012 1013 /* Too old */ 1014 if (!after(end_seq, tp->undo_marker)) 1015 return false; 1016 1017 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1018 * start_seq < undo_marker and end_seq >= undo_marker. 1019 */ 1020 return !before(start_seq, end_seq - tp->max_window); 1021 } 1022 1023 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1024 * Event "B". Later note: FACK people cheated me again 8), we have to account 1025 * for reordering! Ugly, but should help. 1026 * 1027 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1028 * less than what is now known to be received by the other end (derived from 1029 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1030 * retransmitted skbs to avoid some costly processing per ACKs. 1031 */ 1032 static void tcp_mark_lost_retrans(struct sock *sk) 1033 { 1034 const struct inet_connection_sock *icsk = inet_csk(sk); 1035 struct tcp_sock *tp = tcp_sk(sk); 1036 struct sk_buff *skb; 1037 int cnt = 0; 1038 u32 new_low_seq = tp->snd_nxt; 1039 u32 received_upto = tcp_highest_sack_seq(tp); 1040 1041 if (!tcp_is_fack(tp) || !tp->retrans_out || 1042 !after(received_upto, tp->lost_retrans_low) || 1043 icsk->icsk_ca_state != TCP_CA_Recovery) 1044 return; 1045 1046 tcp_for_write_queue(skb, sk) { 1047 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1048 1049 if (skb == tcp_send_head(sk)) 1050 break; 1051 if (cnt == tp->retrans_out) 1052 break; 1053 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1054 continue; 1055 1056 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1057 continue; 1058 1059 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1060 * constraint here (see above) but figuring out that at 1061 * least tp->reordering SACK blocks reside between ack_seq 1062 * and received_upto is not easy task to do cheaply with 1063 * the available datastructures. 1064 * 1065 * Whether FACK should check here for tp->reordering segs 1066 * in-between one could argue for either way (it would be 1067 * rather simple to implement as we could count fack_count 1068 * during the walk and do tp->fackets_out - fack_count). 1069 */ 1070 if (after(received_upto, ack_seq)) { 1071 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1072 tp->retrans_out -= tcp_skb_pcount(skb); 1073 1074 tcp_skb_mark_lost_uncond_verify(tp, skb); 1075 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1076 } else { 1077 if (before(ack_seq, new_low_seq)) 1078 new_low_seq = ack_seq; 1079 cnt += tcp_skb_pcount(skb); 1080 } 1081 } 1082 1083 if (tp->retrans_out) 1084 tp->lost_retrans_low = new_low_seq; 1085 } 1086 1087 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1088 struct tcp_sack_block_wire *sp, int num_sacks, 1089 u32 prior_snd_una) 1090 { 1091 struct tcp_sock *tp = tcp_sk(sk); 1092 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1093 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1094 bool dup_sack = false; 1095 1096 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1097 dup_sack = true; 1098 tcp_dsack_seen(tp); 1099 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1100 } else if (num_sacks > 1) { 1101 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1102 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1103 1104 if (!after(end_seq_0, end_seq_1) && 1105 !before(start_seq_0, start_seq_1)) { 1106 dup_sack = true; 1107 tcp_dsack_seen(tp); 1108 NET_INC_STATS_BH(sock_net(sk), 1109 LINUX_MIB_TCPDSACKOFORECV); 1110 } 1111 } 1112 1113 /* D-SACK for already forgotten data... Do dumb counting. */ 1114 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1115 !after(end_seq_0, prior_snd_una) && 1116 after(end_seq_0, tp->undo_marker)) 1117 tp->undo_retrans--; 1118 1119 return dup_sack; 1120 } 1121 1122 struct tcp_sacktag_state { 1123 int reord; 1124 int fack_count; 1125 int flag; 1126 s32 rtt; /* RTT measured by SACKing never-retransmitted data */ 1127 }; 1128 1129 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1130 * the incoming SACK may not exactly match but we can find smaller MSS 1131 * aligned portion of it that matches. Therefore we might need to fragment 1132 * which may fail and creates some hassle (caller must handle error case 1133 * returns). 1134 * 1135 * FIXME: this could be merged to shift decision code 1136 */ 1137 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1138 u32 start_seq, u32 end_seq) 1139 { 1140 int err; 1141 bool in_sack; 1142 unsigned int pkt_len; 1143 unsigned int mss; 1144 1145 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1146 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1147 1148 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1149 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1150 mss = tcp_skb_mss(skb); 1151 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1152 1153 if (!in_sack) { 1154 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1155 if (pkt_len < mss) 1156 pkt_len = mss; 1157 } else { 1158 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1159 if (pkt_len < mss) 1160 return -EINVAL; 1161 } 1162 1163 /* Round if necessary so that SACKs cover only full MSSes 1164 * and/or the remaining small portion (if present) 1165 */ 1166 if (pkt_len > mss) { 1167 unsigned int new_len = (pkt_len / mss) * mss; 1168 if (!in_sack && new_len < pkt_len) { 1169 new_len += mss; 1170 if (new_len > skb->len) 1171 return 0; 1172 } 1173 pkt_len = new_len; 1174 } 1175 err = tcp_fragment(sk, skb, pkt_len, mss); 1176 if (err < 0) 1177 return err; 1178 } 1179 1180 return in_sack; 1181 } 1182 1183 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1184 static u8 tcp_sacktag_one(struct sock *sk, 1185 struct tcp_sacktag_state *state, u8 sacked, 1186 u32 start_seq, u32 end_seq, 1187 int dup_sack, int pcount, u32 xmit_time) 1188 { 1189 struct tcp_sock *tp = tcp_sk(sk); 1190 int fack_count = state->fack_count; 1191 1192 /* Account D-SACK for retransmitted packet. */ 1193 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1194 if (tp->undo_marker && tp->undo_retrans && 1195 after(end_seq, tp->undo_marker)) 1196 tp->undo_retrans--; 1197 if (sacked & TCPCB_SACKED_ACKED) 1198 state->reord = min(fack_count, state->reord); 1199 } 1200 1201 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1202 if (!after(end_seq, tp->snd_una)) 1203 return sacked; 1204 1205 if (!(sacked & TCPCB_SACKED_ACKED)) { 1206 if (sacked & TCPCB_SACKED_RETRANS) { 1207 /* If the segment is not tagged as lost, 1208 * we do not clear RETRANS, believing 1209 * that retransmission is still in flight. 1210 */ 1211 if (sacked & TCPCB_LOST) { 1212 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1213 tp->lost_out -= pcount; 1214 tp->retrans_out -= pcount; 1215 } 1216 } else { 1217 if (!(sacked & TCPCB_RETRANS)) { 1218 /* New sack for not retransmitted frame, 1219 * which was in hole. It is reordering. 1220 */ 1221 if (before(start_seq, 1222 tcp_highest_sack_seq(tp))) 1223 state->reord = min(fack_count, 1224 state->reord); 1225 if (!after(end_seq, tp->high_seq)) 1226 state->flag |= FLAG_ORIG_SACK_ACKED; 1227 /* Pick the earliest sequence sacked for RTT */ 1228 if (state->rtt < 0) 1229 state->rtt = tcp_time_stamp - xmit_time; 1230 } 1231 1232 if (sacked & TCPCB_LOST) { 1233 sacked &= ~TCPCB_LOST; 1234 tp->lost_out -= pcount; 1235 } 1236 } 1237 1238 sacked |= TCPCB_SACKED_ACKED; 1239 state->flag |= FLAG_DATA_SACKED; 1240 tp->sacked_out += pcount; 1241 1242 fack_count += pcount; 1243 1244 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1245 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1246 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1247 tp->lost_cnt_hint += pcount; 1248 1249 if (fack_count > tp->fackets_out) 1250 tp->fackets_out = fack_count; 1251 } 1252 1253 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1254 * frames and clear it. undo_retrans is decreased above, L|R frames 1255 * are accounted above as well. 1256 */ 1257 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1258 sacked &= ~TCPCB_SACKED_RETRANS; 1259 tp->retrans_out -= pcount; 1260 } 1261 1262 return sacked; 1263 } 1264 1265 /* Shift newly-SACKed bytes from this skb to the immediately previous 1266 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1267 */ 1268 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1269 struct tcp_sacktag_state *state, 1270 unsigned int pcount, int shifted, int mss, 1271 bool dup_sack) 1272 { 1273 struct tcp_sock *tp = tcp_sk(sk); 1274 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1275 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1276 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1277 1278 BUG_ON(!pcount); 1279 1280 /* Adjust counters and hints for the newly sacked sequence 1281 * range but discard the return value since prev is already 1282 * marked. We must tag the range first because the seq 1283 * advancement below implicitly advances 1284 * tcp_highest_sack_seq() when skb is highest_sack. 1285 */ 1286 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1287 start_seq, end_seq, dup_sack, pcount, 1288 TCP_SKB_CB(skb)->when); 1289 1290 if (skb == tp->lost_skb_hint) 1291 tp->lost_cnt_hint += pcount; 1292 1293 TCP_SKB_CB(prev)->end_seq += shifted; 1294 TCP_SKB_CB(skb)->seq += shifted; 1295 1296 skb_shinfo(prev)->gso_segs += pcount; 1297 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1298 skb_shinfo(skb)->gso_segs -= pcount; 1299 1300 /* When we're adding to gso_segs == 1, gso_size will be zero, 1301 * in theory this shouldn't be necessary but as long as DSACK 1302 * code can come after this skb later on it's better to keep 1303 * setting gso_size to something. 1304 */ 1305 if (!skb_shinfo(prev)->gso_size) { 1306 skb_shinfo(prev)->gso_size = mss; 1307 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1308 } 1309 1310 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1311 if (skb_shinfo(skb)->gso_segs <= 1) { 1312 skb_shinfo(skb)->gso_size = 0; 1313 skb_shinfo(skb)->gso_type = 0; 1314 } 1315 1316 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1317 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1318 1319 if (skb->len > 0) { 1320 BUG_ON(!tcp_skb_pcount(skb)); 1321 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1322 return false; 1323 } 1324 1325 /* Whole SKB was eaten :-) */ 1326 1327 if (skb == tp->retransmit_skb_hint) 1328 tp->retransmit_skb_hint = prev; 1329 if (skb == tp->lost_skb_hint) { 1330 tp->lost_skb_hint = prev; 1331 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1332 } 1333 1334 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1335 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1336 TCP_SKB_CB(prev)->end_seq++; 1337 1338 if (skb == tcp_highest_sack(sk)) 1339 tcp_advance_highest_sack(sk, skb); 1340 1341 tcp_unlink_write_queue(skb, sk); 1342 sk_wmem_free_skb(sk, skb); 1343 1344 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1345 1346 return true; 1347 } 1348 1349 /* I wish gso_size would have a bit more sane initialization than 1350 * something-or-zero which complicates things 1351 */ 1352 static int tcp_skb_seglen(const struct sk_buff *skb) 1353 { 1354 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1355 } 1356 1357 /* Shifting pages past head area doesn't work */ 1358 static int skb_can_shift(const struct sk_buff *skb) 1359 { 1360 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1361 } 1362 1363 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1364 * skb. 1365 */ 1366 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1367 struct tcp_sacktag_state *state, 1368 u32 start_seq, u32 end_seq, 1369 bool dup_sack) 1370 { 1371 struct tcp_sock *tp = tcp_sk(sk); 1372 struct sk_buff *prev; 1373 int mss; 1374 int pcount = 0; 1375 int len; 1376 int in_sack; 1377 1378 if (!sk_can_gso(sk)) 1379 goto fallback; 1380 1381 /* Normally R but no L won't result in plain S */ 1382 if (!dup_sack && 1383 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1384 goto fallback; 1385 if (!skb_can_shift(skb)) 1386 goto fallback; 1387 /* This frame is about to be dropped (was ACKed). */ 1388 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1389 goto fallback; 1390 1391 /* Can only happen with delayed DSACK + discard craziness */ 1392 if (unlikely(skb == tcp_write_queue_head(sk))) 1393 goto fallback; 1394 prev = tcp_write_queue_prev(sk, skb); 1395 1396 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1397 goto fallback; 1398 1399 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1400 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1401 1402 if (in_sack) { 1403 len = skb->len; 1404 pcount = tcp_skb_pcount(skb); 1405 mss = tcp_skb_seglen(skb); 1406 1407 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1408 * drop this restriction as unnecessary 1409 */ 1410 if (mss != tcp_skb_seglen(prev)) 1411 goto fallback; 1412 } else { 1413 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1414 goto noop; 1415 /* CHECKME: This is non-MSS split case only?, this will 1416 * cause skipped skbs due to advancing loop btw, original 1417 * has that feature too 1418 */ 1419 if (tcp_skb_pcount(skb) <= 1) 1420 goto noop; 1421 1422 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1423 if (!in_sack) { 1424 /* TODO: head merge to next could be attempted here 1425 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1426 * though it might not be worth of the additional hassle 1427 * 1428 * ...we can probably just fallback to what was done 1429 * previously. We could try merging non-SACKed ones 1430 * as well but it probably isn't going to buy off 1431 * because later SACKs might again split them, and 1432 * it would make skb timestamp tracking considerably 1433 * harder problem. 1434 */ 1435 goto fallback; 1436 } 1437 1438 len = end_seq - TCP_SKB_CB(skb)->seq; 1439 BUG_ON(len < 0); 1440 BUG_ON(len > skb->len); 1441 1442 /* MSS boundaries should be honoured or else pcount will 1443 * severely break even though it makes things bit trickier. 1444 * Optimize common case to avoid most of the divides 1445 */ 1446 mss = tcp_skb_mss(skb); 1447 1448 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1449 * drop this restriction as unnecessary 1450 */ 1451 if (mss != tcp_skb_seglen(prev)) 1452 goto fallback; 1453 1454 if (len == mss) { 1455 pcount = 1; 1456 } else if (len < mss) { 1457 goto noop; 1458 } else { 1459 pcount = len / mss; 1460 len = pcount * mss; 1461 } 1462 } 1463 1464 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1465 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1466 goto fallback; 1467 1468 if (!skb_shift(prev, skb, len)) 1469 goto fallback; 1470 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1471 goto out; 1472 1473 /* Hole filled allows collapsing with the next as well, this is very 1474 * useful when hole on every nth skb pattern happens 1475 */ 1476 if (prev == tcp_write_queue_tail(sk)) 1477 goto out; 1478 skb = tcp_write_queue_next(sk, prev); 1479 1480 if (!skb_can_shift(skb) || 1481 (skb == tcp_send_head(sk)) || 1482 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1483 (mss != tcp_skb_seglen(skb))) 1484 goto out; 1485 1486 len = skb->len; 1487 if (skb_shift(prev, skb, len)) { 1488 pcount += tcp_skb_pcount(skb); 1489 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1490 } 1491 1492 out: 1493 state->fack_count += pcount; 1494 return prev; 1495 1496 noop: 1497 return skb; 1498 1499 fallback: 1500 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1501 return NULL; 1502 } 1503 1504 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1505 struct tcp_sack_block *next_dup, 1506 struct tcp_sacktag_state *state, 1507 u32 start_seq, u32 end_seq, 1508 bool dup_sack_in) 1509 { 1510 struct tcp_sock *tp = tcp_sk(sk); 1511 struct sk_buff *tmp; 1512 1513 tcp_for_write_queue_from(skb, sk) { 1514 int in_sack = 0; 1515 bool dup_sack = dup_sack_in; 1516 1517 if (skb == tcp_send_head(sk)) 1518 break; 1519 1520 /* queue is in-order => we can short-circuit the walk early */ 1521 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1522 break; 1523 1524 if ((next_dup != NULL) && 1525 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1526 in_sack = tcp_match_skb_to_sack(sk, skb, 1527 next_dup->start_seq, 1528 next_dup->end_seq); 1529 if (in_sack > 0) 1530 dup_sack = true; 1531 } 1532 1533 /* skb reference here is a bit tricky to get right, since 1534 * shifting can eat and free both this skb and the next, 1535 * so not even _safe variant of the loop is enough. 1536 */ 1537 if (in_sack <= 0) { 1538 tmp = tcp_shift_skb_data(sk, skb, state, 1539 start_seq, end_seq, dup_sack); 1540 if (tmp != NULL) { 1541 if (tmp != skb) { 1542 skb = tmp; 1543 continue; 1544 } 1545 1546 in_sack = 0; 1547 } else { 1548 in_sack = tcp_match_skb_to_sack(sk, skb, 1549 start_seq, 1550 end_seq); 1551 } 1552 } 1553 1554 if (unlikely(in_sack < 0)) 1555 break; 1556 1557 if (in_sack) { 1558 TCP_SKB_CB(skb)->sacked = 1559 tcp_sacktag_one(sk, 1560 state, 1561 TCP_SKB_CB(skb)->sacked, 1562 TCP_SKB_CB(skb)->seq, 1563 TCP_SKB_CB(skb)->end_seq, 1564 dup_sack, 1565 tcp_skb_pcount(skb), 1566 TCP_SKB_CB(skb)->when); 1567 1568 if (!before(TCP_SKB_CB(skb)->seq, 1569 tcp_highest_sack_seq(tp))) 1570 tcp_advance_highest_sack(sk, skb); 1571 } 1572 1573 state->fack_count += tcp_skb_pcount(skb); 1574 } 1575 return skb; 1576 } 1577 1578 /* Avoid all extra work that is being done by sacktag while walking in 1579 * a normal way 1580 */ 1581 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1582 struct tcp_sacktag_state *state, 1583 u32 skip_to_seq) 1584 { 1585 tcp_for_write_queue_from(skb, sk) { 1586 if (skb == tcp_send_head(sk)) 1587 break; 1588 1589 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1590 break; 1591 1592 state->fack_count += tcp_skb_pcount(skb); 1593 } 1594 return skb; 1595 } 1596 1597 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1598 struct sock *sk, 1599 struct tcp_sack_block *next_dup, 1600 struct tcp_sacktag_state *state, 1601 u32 skip_to_seq) 1602 { 1603 if (next_dup == NULL) 1604 return skb; 1605 1606 if (before(next_dup->start_seq, skip_to_seq)) { 1607 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1608 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1609 next_dup->start_seq, next_dup->end_seq, 1610 1); 1611 } 1612 1613 return skb; 1614 } 1615 1616 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1617 { 1618 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1619 } 1620 1621 static int 1622 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1623 u32 prior_snd_una, s32 *sack_rtt) 1624 { 1625 struct tcp_sock *tp = tcp_sk(sk); 1626 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1627 TCP_SKB_CB(ack_skb)->sacked); 1628 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1629 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1630 struct tcp_sack_block *cache; 1631 struct tcp_sacktag_state state; 1632 struct sk_buff *skb; 1633 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1634 int used_sacks; 1635 bool found_dup_sack = false; 1636 int i, j; 1637 int first_sack_index; 1638 1639 state.flag = 0; 1640 state.reord = tp->packets_out; 1641 state.rtt = -1; 1642 1643 if (!tp->sacked_out) { 1644 if (WARN_ON(tp->fackets_out)) 1645 tp->fackets_out = 0; 1646 tcp_highest_sack_reset(sk); 1647 } 1648 1649 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1650 num_sacks, prior_snd_una); 1651 if (found_dup_sack) 1652 state.flag |= FLAG_DSACKING_ACK; 1653 1654 /* Eliminate too old ACKs, but take into 1655 * account more or less fresh ones, they can 1656 * contain valid SACK info. 1657 */ 1658 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1659 return 0; 1660 1661 if (!tp->packets_out) 1662 goto out; 1663 1664 used_sacks = 0; 1665 first_sack_index = 0; 1666 for (i = 0; i < num_sacks; i++) { 1667 bool dup_sack = !i && found_dup_sack; 1668 1669 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1670 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1671 1672 if (!tcp_is_sackblock_valid(tp, dup_sack, 1673 sp[used_sacks].start_seq, 1674 sp[used_sacks].end_seq)) { 1675 int mib_idx; 1676 1677 if (dup_sack) { 1678 if (!tp->undo_marker) 1679 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1680 else 1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1682 } else { 1683 /* Don't count olds caused by ACK reordering */ 1684 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1685 !after(sp[used_sacks].end_seq, tp->snd_una)) 1686 continue; 1687 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1688 } 1689 1690 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1691 if (i == 0) 1692 first_sack_index = -1; 1693 continue; 1694 } 1695 1696 /* Ignore very old stuff early */ 1697 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1698 continue; 1699 1700 used_sacks++; 1701 } 1702 1703 /* order SACK blocks to allow in order walk of the retrans queue */ 1704 for (i = used_sacks - 1; i > 0; i--) { 1705 for (j = 0; j < i; j++) { 1706 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1707 swap(sp[j], sp[j + 1]); 1708 1709 /* Track where the first SACK block goes to */ 1710 if (j == first_sack_index) 1711 first_sack_index = j + 1; 1712 } 1713 } 1714 } 1715 1716 skb = tcp_write_queue_head(sk); 1717 state.fack_count = 0; 1718 i = 0; 1719 1720 if (!tp->sacked_out) { 1721 /* It's already past, so skip checking against it */ 1722 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1723 } else { 1724 cache = tp->recv_sack_cache; 1725 /* Skip empty blocks in at head of the cache */ 1726 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1727 !cache->end_seq) 1728 cache++; 1729 } 1730 1731 while (i < used_sacks) { 1732 u32 start_seq = sp[i].start_seq; 1733 u32 end_seq = sp[i].end_seq; 1734 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1735 struct tcp_sack_block *next_dup = NULL; 1736 1737 if (found_dup_sack && ((i + 1) == first_sack_index)) 1738 next_dup = &sp[i + 1]; 1739 1740 /* Skip too early cached blocks */ 1741 while (tcp_sack_cache_ok(tp, cache) && 1742 !before(start_seq, cache->end_seq)) 1743 cache++; 1744 1745 /* Can skip some work by looking recv_sack_cache? */ 1746 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1747 after(end_seq, cache->start_seq)) { 1748 1749 /* Head todo? */ 1750 if (before(start_seq, cache->start_seq)) { 1751 skb = tcp_sacktag_skip(skb, sk, &state, 1752 start_seq); 1753 skb = tcp_sacktag_walk(skb, sk, next_dup, 1754 &state, 1755 start_seq, 1756 cache->start_seq, 1757 dup_sack); 1758 } 1759 1760 /* Rest of the block already fully processed? */ 1761 if (!after(end_seq, cache->end_seq)) 1762 goto advance_sp; 1763 1764 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1765 &state, 1766 cache->end_seq); 1767 1768 /* ...tail remains todo... */ 1769 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1770 /* ...but better entrypoint exists! */ 1771 skb = tcp_highest_sack(sk); 1772 if (skb == NULL) 1773 break; 1774 state.fack_count = tp->fackets_out; 1775 cache++; 1776 goto walk; 1777 } 1778 1779 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1780 /* Check overlap against next cached too (past this one already) */ 1781 cache++; 1782 continue; 1783 } 1784 1785 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1786 skb = tcp_highest_sack(sk); 1787 if (skb == NULL) 1788 break; 1789 state.fack_count = tp->fackets_out; 1790 } 1791 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1792 1793 walk: 1794 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1795 start_seq, end_seq, dup_sack); 1796 1797 advance_sp: 1798 i++; 1799 } 1800 1801 /* Clear the head of the cache sack blocks so we can skip it next time */ 1802 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1803 tp->recv_sack_cache[i].start_seq = 0; 1804 tp->recv_sack_cache[i].end_seq = 0; 1805 } 1806 for (j = 0; j < used_sacks; j++) 1807 tp->recv_sack_cache[i++] = sp[j]; 1808 1809 tcp_mark_lost_retrans(sk); 1810 1811 tcp_verify_left_out(tp); 1812 1813 if ((state.reord < tp->fackets_out) && 1814 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1815 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1816 1817 out: 1818 1819 #if FASTRETRANS_DEBUG > 0 1820 WARN_ON((int)tp->sacked_out < 0); 1821 WARN_ON((int)tp->lost_out < 0); 1822 WARN_ON((int)tp->retrans_out < 0); 1823 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1824 #endif 1825 *sack_rtt = state.rtt; 1826 return state.flag; 1827 } 1828 1829 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1830 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1831 */ 1832 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1833 { 1834 u32 holes; 1835 1836 holes = max(tp->lost_out, 1U); 1837 holes = min(holes, tp->packets_out); 1838 1839 if ((tp->sacked_out + holes) > tp->packets_out) { 1840 tp->sacked_out = tp->packets_out - holes; 1841 return true; 1842 } 1843 return false; 1844 } 1845 1846 /* If we receive more dupacks than we expected counting segments 1847 * in assumption of absent reordering, interpret this as reordering. 1848 * The only another reason could be bug in receiver TCP. 1849 */ 1850 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1851 { 1852 struct tcp_sock *tp = tcp_sk(sk); 1853 if (tcp_limit_reno_sacked(tp)) 1854 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1855 } 1856 1857 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1858 1859 static void tcp_add_reno_sack(struct sock *sk) 1860 { 1861 struct tcp_sock *tp = tcp_sk(sk); 1862 tp->sacked_out++; 1863 tcp_check_reno_reordering(sk, 0); 1864 tcp_verify_left_out(tp); 1865 } 1866 1867 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1868 1869 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1870 { 1871 struct tcp_sock *tp = tcp_sk(sk); 1872 1873 if (acked > 0) { 1874 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1875 if (acked - 1 >= tp->sacked_out) 1876 tp->sacked_out = 0; 1877 else 1878 tp->sacked_out -= acked - 1; 1879 } 1880 tcp_check_reno_reordering(sk, acked); 1881 tcp_verify_left_out(tp); 1882 } 1883 1884 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1885 { 1886 tp->sacked_out = 0; 1887 } 1888 1889 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1890 { 1891 tp->retrans_out = 0; 1892 tp->lost_out = 0; 1893 1894 tp->undo_marker = 0; 1895 tp->undo_retrans = 0; 1896 } 1897 1898 void tcp_clear_retrans(struct tcp_sock *tp) 1899 { 1900 tcp_clear_retrans_partial(tp); 1901 1902 tp->fackets_out = 0; 1903 tp->sacked_out = 0; 1904 } 1905 1906 /* Enter Loss state. If "how" is not zero, forget all SACK information 1907 * and reset tags completely, otherwise preserve SACKs. If receiver 1908 * dropped its ofo queue, we will know this due to reneging detection. 1909 */ 1910 void tcp_enter_loss(struct sock *sk, int how) 1911 { 1912 const struct inet_connection_sock *icsk = inet_csk(sk); 1913 struct tcp_sock *tp = tcp_sk(sk); 1914 struct sk_buff *skb; 1915 bool new_recovery = false; 1916 1917 /* Reduce ssthresh if it has not yet been made inside this window. */ 1918 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1919 !after(tp->high_seq, tp->snd_una) || 1920 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1921 new_recovery = true; 1922 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1923 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1924 tcp_ca_event(sk, CA_EVENT_LOSS); 1925 } 1926 tp->snd_cwnd = 1; 1927 tp->snd_cwnd_cnt = 0; 1928 tp->snd_cwnd_stamp = tcp_time_stamp; 1929 1930 tcp_clear_retrans_partial(tp); 1931 1932 if (tcp_is_reno(tp)) 1933 tcp_reset_reno_sack(tp); 1934 1935 tp->undo_marker = tp->snd_una; 1936 if (how) { 1937 tp->sacked_out = 0; 1938 tp->fackets_out = 0; 1939 } 1940 tcp_clear_all_retrans_hints(tp); 1941 1942 tcp_for_write_queue(skb, sk) { 1943 if (skb == tcp_send_head(sk)) 1944 break; 1945 1946 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1947 tp->undo_marker = 0; 1948 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1949 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1950 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1951 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1952 tp->lost_out += tcp_skb_pcount(skb); 1953 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1954 } 1955 } 1956 tcp_verify_left_out(tp); 1957 1958 /* Timeout in disordered state after receiving substantial DUPACKs 1959 * suggests that the degree of reordering is over-estimated. 1960 */ 1961 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1962 tp->sacked_out >= sysctl_tcp_reordering) 1963 tp->reordering = min_t(unsigned int, tp->reordering, 1964 sysctl_tcp_reordering); 1965 tcp_set_ca_state(sk, TCP_CA_Loss); 1966 tp->high_seq = tp->snd_nxt; 1967 TCP_ECN_queue_cwr(tp); 1968 1969 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1970 * loss recovery is underway except recurring timeout(s) on 1971 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1972 */ 1973 tp->frto = sysctl_tcp_frto && 1974 (new_recovery || icsk->icsk_retransmits) && 1975 !inet_csk(sk)->icsk_mtup.probe_size; 1976 } 1977 1978 /* If ACK arrived pointing to a remembered SACK, it means that our 1979 * remembered SACKs do not reflect real state of receiver i.e. 1980 * receiver _host_ is heavily congested (or buggy). 1981 * 1982 * Do processing similar to RTO timeout. 1983 */ 1984 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1985 { 1986 if (flag & FLAG_SACK_RENEGING) { 1987 struct inet_connection_sock *icsk = inet_csk(sk); 1988 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1989 1990 tcp_enter_loss(sk, 1); 1991 icsk->icsk_retransmits++; 1992 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1993 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1994 icsk->icsk_rto, TCP_RTO_MAX); 1995 return true; 1996 } 1997 return false; 1998 } 1999 2000 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2001 { 2002 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2003 } 2004 2005 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2006 * counter when SACK is enabled (without SACK, sacked_out is used for 2007 * that purpose). 2008 * 2009 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2010 * segments up to the highest received SACK block so far and holes in 2011 * between them. 2012 * 2013 * With reordering, holes may still be in flight, so RFC3517 recovery 2014 * uses pure sacked_out (total number of SACKed segments) even though 2015 * it violates the RFC that uses duplicate ACKs, often these are equal 2016 * but when e.g. out-of-window ACKs or packet duplication occurs, 2017 * they differ. Since neither occurs due to loss, TCP should really 2018 * ignore them. 2019 */ 2020 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2021 { 2022 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2023 } 2024 2025 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2026 { 2027 struct tcp_sock *tp = tcp_sk(sk); 2028 unsigned long delay; 2029 2030 /* Delay early retransmit and entering fast recovery for 2031 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2032 * available, or RTO is scheduled to fire first. 2033 */ 2034 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2035 (flag & FLAG_ECE) || !tp->srtt) 2036 return false; 2037 2038 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2)); 2039 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2040 return false; 2041 2042 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2043 TCP_RTO_MAX); 2044 return true; 2045 } 2046 2047 /* Linux NewReno/SACK/FACK/ECN state machine. 2048 * -------------------------------------- 2049 * 2050 * "Open" Normal state, no dubious events, fast path. 2051 * "Disorder" In all the respects it is "Open", 2052 * but requires a bit more attention. It is entered when 2053 * we see some SACKs or dupacks. It is split of "Open" 2054 * mainly to move some processing from fast path to slow one. 2055 * "CWR" CWND was reduced due to some Congestion Notification event. 2056 * It can be ECN, ICMP source quench, local device congestion. 2057 * "Recovery" CWND was reduced, we are fast-retransmitting. 2058 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2059 * 2060 * tcp_fastretrans_alert() is entered: 2061 * - each incoming ACK, if state is not "Open" 2062 * - when arrived ACK is unusual, namely: 2063 * * SACK 2064 * * Duplicate ACK. 2065 * * ECN ECE. 2066 * 2067 * Counting packets in flight is pretty simple. 2068 * 2069 * in_flight = packets_out - left_out + retrans_out 2070 * 2071 * packets_out is SND.NXT-SND.UNA counted in packets. 2072 * 2073 * retrans_out is number of retransmitted segments. 2074 * 2075 * left_out is number of segments left network, but not ACKed yet. 2076 * 2077 * left_out = sacked_out + lost_out 2078 * 2079 * sacked_out: Packets, which arrived to receiver out of order 2080 * and hence not ACKed. With SACKs this number is simply 2081 * amount of SACKed data. Even without SACKs 2082 * it is easy to give pretty reliable estimate of this number, 2083 * counting duplicate ACKs. 2084 * 2085 * lost_out: Packets lost by network. TCP has no explicit 2086 * "loss notification" feedback from network (for now). 2087 * It means that this number can be only _guessed_. 2088 * Actually, it is the heuristics to predict lossage that 2089 * distinguishes different algorithms. 2090 * 2091 * F.e. after RTO, when all the queue is considered as lost, 2092 * lost_out = packets_out and in_flight = retrans_out. 2093 * 2094 * Essentially, we have now two algorithms counting 2095 * lost packets. 2096 * 2097 * FACK: It is the simplest heuristics. As soon as we decided 2098 * that something is lost, we decide that _all_ not SACKed 2099 * packets until the most forward SACK are lost. I.e. 2100 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2101 * It is absolutely correct estimate, if network does not reorder 2102 * packets. And it loses any connection to reality when reordering 2103 * takes place. We use FACK by default until reordering 2104 * is suspected on the path to this destination. 2105 * 2106 * NewReno: when Recovery is entered, we assume that one segment 2107 * is lost (classic Reno). While we are in Recovery and 2108 * a partial ACK arrives, we assume that one more packet 2109 * is lost (NewReno). This heuristics are the same in NewReno 2110 * and SACK. 2111 * 2112 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2113 * deflation etc. CWND is real congestion window, never inflated, changes 2114 * only according to classic VJ rules. 2115 * 2116 * Really tricky (and requiring careful tuning) part of algorithm 2117 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2118 * The first determines the moment _when_ we should reduce CWND and, 2119 * hence, slow down forward transmission. In fact, it determines the moment 2120 * when we decide that hole is caused by loss, rather than by a reorder. 2121 * 2122 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2123 * holes, caused by lost packets. 2124 * 2125 * And the most logically complicated part of algorithm is undo 2126 * heuristics. We detect false retransmits due to both too early 2127 * fast retransmit (reordering) and underestimated RTO, analyzing 2128 * timestamps and D-SACKs. When we detect that some segments were 2129 * retransmitted by mistake and CWND reduction was wrong, we undo 2130 * window reduction and abort recovery phase. This logic is hidden 2131 * inside several functions named tcp_try_undo_<something>. 2132 */ 2133 2134 /* This function decides, when we should leave Disordered state 2135 * and enter Recovery phase, reducing congestion window. 2136 * 2137 * Main question: may we further continue forward transmission 2138 * with the same cwnd? 2139 */ 2140 static bool tcp_time_to_recover(struct sock *sk, int flag) 2141 { 2142 struct tcp_sock *tp = tcp_sk(sk); 2143 __u32 packets_out; 2144 2145 /* Trick#1: The loss is proven. */ 2146 if (tp->lost_out) 2147 return true; 2148 2149 /* Not-A-Trick#2 : Classic rule... */ 2150 if (tcp_dupack_heuristics(tp) > tp->reordering) 2151 return true; 2152 2153 /* Trick#4: It is still not OK... But will it be useful to delay 2154 * recovery more? 2155 */ 2156 packets_out = tp->packets_out; 2157 if (packets_out <= tp->reordering && 2158 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2159 !tcp_may_send_now(sk)) { 2160 /* We have nothing to send. This connection is limited 2161 * either by receiver window or by application. 2162 */ 2163 return true; 2164 } 2165 2166 /* If a thin stream is detected, retransmit after first 2167 * received dupack. Employ only if SACK is supported in order 2168 * to avoid possible corner-case series of spurious retransmissions 2169 * Use only if there are no unsent data. 2170 */ 2171 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2172 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2173 tcp_is_sack(tp) && !tcp_send_head(sk)) 2174 return true; 2175 2176 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2177 * retransmissions due to small network reorderings, we implement 2178 * Mitigation A.3 in the RFC and delay the retransmission for a short 2179 * interval if appropriate. 2180 */ 2181 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2182 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2183 !tcp_may_send_now(sk)) 2184 return !tcp_pause_early_retransmit(sk, flag); 2185 2186 return false; 2187 } 2188 2189 /* Detect loss in event "A" above by marking head of queue up as lost. 2190 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2191 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2192 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2193 * the maximum SACKed segments to pass before reaching this limit. 2194 */ 2195 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2196 { 2197 struct tcp_sock *tp = tcp_sk(sk); 2198 struct sk_buff *skb; 2199 int cnt, oldcnt; 2200 int err; 2201 unsigned int mss; 2202 /* Use SACK to deduce losses of new sequences sent during recovery */ 2203 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2204 2205 WARN_ON(packets > tp->packets_out); 2206 if (tp->lost_skb_hint) { 2207 skb = tp->lost_skb_hint; 2208 cnt = tp->lost_cnt_hint; 2209 /* Head already handled? */ 2210 if (mark_head && skb != tcp_write_queue_head(sk)) 2211 return; 2212 } else { 2213 skb = tcp_write_queue_head(sk); 2214 cnt = 0; 2215 } 2216 2217 tcp_for_write_queue_from(skb, sk) { 2218 if (skb == tcp_send_head(sk)) 2219 break; 2220 /* TODO: do this better */ 2221 /* this is not the most efficient way to do this... */ 2222 tp->lost_skb_hint = skb; 2223 tp->lost_cnt_hint = cnt; 2224 2225 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2226 break; 2227 2228 oldcnt = cnt; 2229 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2230 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2231 cnt += tcp_skb_pcount(skb); 2232 2233 if (cnt > packets) { 2234 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2235 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2236 (oldcnt >= packets)) 2237 break; 2238 2239 mss = skb_shinfo(skb)->gso_size; 2240 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2241 if (err < 0) 2242 break; 2243 cnt = packets; 2244 } 2245 2246 tcp_skb_mark_lost(tp, skb); 2247 2248 if (mark_head) 2249 break; 2250 } 2251 tcp_verify_left_out(tp); 2252 } 2253 2254 /* Account newly detected lost packet(s) */ 2255 2256 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2257 { 2258 struct tcp_sock *tp = tcp_sk(sk); 2259 2260 if (tcp_is_reno(tp)) { 2261 tcp_mark_head_lost(sk, 1, 1); 2262 } else if (tcp_is_fack(tp)) { 2263 int lost = tp->fackets_out - tp->reordering; 2264 if (lost <= 0) 2265 lost = 1; 2266 tcp_mark_head_lost(sk, lost, 0); 2267 } else { 2268 int sacked_upto = tp->sacked_out - tp->reordering; 2269 if (sacked_upto >= 0) 2270 tcp_mark_head_lost(sk, sacked_upto, 0); 2271 else if (fast_rexmit) 2272 tcp_mark_head_lost(sk, 1, 1); 2273 } 2274 } 2275 2276 /* CWND moderation, preventing bursts due to too big ACKs 2277 * in dubious situations. 2278 */ 2279 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2280 { 2281 tp->snd_cwnd = min(tp->snd_cwnd, 2282 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2283 tp->snd_cwnd_stamp = tcp_time_stamp; 2284 } 2285 2286 /* Nothing was retransmitted or returned timestamp is less 2287 * than timestamp of the first retransmission. 2288 */ 2289 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2290 { 2291 return !tp->retrans_stamp || 2292 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2293 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2294 } 2295 2296 /* Undo procedures. */ 2297 2298 #if FASTRETRANS_DEBUG > 1 2299 static void DBGUNDO(struct sock *sk, const char *msg) 2300 { 2301 struct tcp_sock *tp = tcp_sk(sk); 2302 struct inet_sock *inet = inet_sk(sk); 2303 2304 if (sk->sk_family == AF_INET) { 2305 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2306 msg, 2307 &inet->inet_daddr, ntohs(inet->inet_dport), 2308 tp->snd_cwnd, tcp_left_out(tp), 2309 tp->snd_ssthresh, tp->prior_ssthresh, 2310 tp->packets_out); 2311 } 2312 #if IS_ENABLED(CONFIG_IPV6) 2313 else if (sk->sk_family == AF_INET6) { 2314 struct ipv6_pinfo *np = inet6_sk(sk); 2315 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2316 msg, 2317 &np->daddr, ntohs(inet->inet_dport), 2318 tp->snd_cwnd, tcp_left_out(tp), 2319 tp->snd_ssthresh, tp->prior_ssthresh, 2320 tp->packets_out); 2321 } 2322 #endif 2323 } 2324 #else 2325 #define DBGUNDO(x...) do { } while (0) 2326 #endif 2327 2328 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2329 { 2330 struct tcp_sock *tp = tcp_sk(sk); 2331 2332 if (unmark_loss) { 2333 struct sk_buff *skb; 2334 2335 tcp_for_write_queue(skb, sk) { 2336 if (skb == tcp_send_head(sk)) 2337 break; 2338 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2339 } 2340 tp->lost_out = 0; 2341 tcp_clear_all_retrans_hints(tp); 2342 } 2343 2344 if (tp->prior_ssthresh) { 2345 const struct inet_connection_sock *icsk = inet_csk(sk); 2346 2347 if (icsk->icsk_ca_ops->undo_cwnd) 2348 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2349 else 2350 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2351 2352 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2353 tp->snd_ssthresh = tp->prior_ssthresh; 2354 TCP_ECN_withdraw_cwr(tp); 2355 } 2356 } else { 2357 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2358 } 2359 tp->snd_cwnd_stamp = tcp_time_stamp; 2360 tp->undo_marker = 0; 2361 } 2362 2363 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2364 { 2365 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2366 } 2367 2368 /* People celebrate: "We love our President!" */ 2369 static bool tcp_try_undo_recovery(struct sock *sk) 2370 { 2371 struct tcp_sock *tp = tcp_sk(sk); 2372 2373 if (tcp_may_undo(tp)) { 2374 int mib_idx; 2375 2376 /* Happy end! We did not retransmit anything 2377 * or our original transmission succeeded. 2378 */ 2379 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2380 tcp_undo_cwnd_reduction(sk, false); 2381 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2382 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2383 else 2384 mib_idx = LINUX_MIB_TCPFULLUNDO; 2385 2386 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2387 } 2388 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2389 /* Hold old state until something *above* high_seq 2390 * is ACKed. For Reno it is MUST to prevent false 2391 * fast retransmits (RFC2582). SACK TCP is safe. */ 2392 tcp_moderate_cwnd(tp); 2393 return true; 2394 } 2395 tcp_set_ca_state(sk, TCP_CA_Open); 2396 return false; 2397 } 2398 2399 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2400 static bool tcp_try_undo_dsack(struct sock *sk) 2401 { 2402 struct tcp_sock *tp = tcp_sk(sk); 2403 2404 if (tp->undo_marker && !tp->undo_retrans) { 2405 DBGUNDO(sk, "D-SACK"); 2406 tcp_undo_cwnd_reduction(sk, false); 2407 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2408 return true; 2409 } 2410 return false; 2411 } 2412 2413 /* We can clear retrans_stamp when there are no retransmissions in the 2414 * window. It would seem that it is trivially available for us in 2415 * tp->retrans_out, however, that kind of assumptions doesn't consider 2416 * what will happen if errors occur when sending retransmission for the 2417 * second time. ...It could the that such segment has only 2418 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2419 * the head skb is enough except for some reneging corner cases that 2420 * are not worth the effort. 2421 * 2422 * Main reason for all this complexity is the fact that connection dying 2423 * time now depends on the validity of the retrans_stamp, in particular, 2424 * that successive retransmissions of a segment must not advance 2425 * retrans_stamp under any conditions. 2426 */ 2427 static bool tcp_any_retrans_done(const struct sock *sk) 2428 { 2429 const struct tcp_sock *tp = tcp_sk(sk); 2430 struct sk_buff *skb; 2431 2432 if (tp->retrans_out) 2433 return true; 2434 2435 skb = tcp_write_queue_head(sk); 2436 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2437 return true; 2438 2439 return false; 2440 } 2441 2442 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2443 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2444 { 2445 struct tcp_sock *tp = tcp_sk(sk); 2446 2447 if (frto_undo || tcp_may_undo(tp)) { 2448 tcp_undo_cwnd_reduction(sk, true); 2449 2450 DBGUNDO(sk, "partial loss"); 2451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2452 if (frto_undo) 2453 NET_INC_STATS_BH(sock_net(sk), 2454 LINUX_MIB_TCPSPURIOUSRTOS); 2455 inet_csk(sk)->icsk_retransmits = 0; 2456 if (frto_undo || tcp_is_sack(tp)) 2457 tcp_set_ca_state(sk, TCP_CA_Open); 2458 return true; 2459 } 2460 return false; 2461 } 2462 2463 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2464 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2465 * It computes the number of packets to send (sndcnt) based on packets newly 2466 * delivered: 2467 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2468 * cwnd reductions across a full RTT. 2469 * 2) If packets in flight is lower than ssthresh (such as due to excess 2470 * losses and/or application stalls), do not perform any further cwnd 2471 * reductions, but instead slow start up to ssthresh. 2472 */ 2473 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh) 2474 { 2475 struct tcp_sock *tp = tcp_sk(sk); 2476 2477 tp->high_seq = tp->snd_nxt; 2478 tp->tlp_high_seq = 0; 2479 tp->snd_cwnd_cnt = 0; 2480 tp->prior_cwnd = tp->snd_cwnd; 2481 tp->prr_delivered = 0; 2482 tp->prr_out = 0; 2483 if (set_ssthresh) 2484 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2485 TCP_ECN_queue_cwr(tp); 2486 } 2487 2488 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2489 int fast_rexmit) 2490 { 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 int sndcnt = 0; 2493 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2494 int newly_acked_sacked = prior_unsacked - 2495 (tp->packets_out - tp->sacked_out); 2496 2497 tp->prr_delivered += newly_acked_sacked; 2498 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2499 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2500 tp->prior_cwnd - 1; 2501 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2502 } else { 2503 sndcnt = min_t(int, delta, 2504 max_t(int, tp->prr_delivered - tp->prr_out, 2505 newly_acked_sacked) + 1); 2506 } 2507 2508 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2509 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2510 } 2511 2512 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2513 { 2514 struct tcp_sock *tp = tcp_sk(sk); 2515 2516 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2517 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2518 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2519 tp->snd_cwnd = tp->snd_ssthresh; 2520 tp->snd_cwnd_stamp = tcp_time_stamp; 2521 } 2522 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2523 } 2524 2525 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2526 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 2527 { 2528 struct tcp_sock *tp = tcp_sk(sk); 2529 2530 tp->prior_ssthresh = 0; 2531 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2532 tp->undo_marker = 0; 2533 tcp_init_cwnd_reduction(sk, set_ssthresh); 2534 tcp_set_ca_state(sk, TCP_CA_CWR); 2535 } 2536 } 2537 2538 static void tcp_try_keep_open(struct sock *sk) 2539 { 2540 struct tcp_sock *tp = tcp_sk(sk); 2541 int state = TCP_CA_Open; 2542 2543 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2544 state = TCP_CA_Disorder; 2545 2546 if (inet_csk(sk)->icsk_ca_state != state) { 2547 tcp_set_ca_state(sk, state); 2548 tp->high_seq = tp->snd_nxt; 2549 } 2550 } 2551 2552 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2553 { 2554 struct tcp_sock *tp = tcp_sk(sk); 2555 2556 tcp_verify_left_out(tp); 2557 2558 if (!tcp_any_retrans_done(sk)) 2559 tp->retrans_stamp = 0; 2560 2561 if (flag & FLAG_ECE) 2562 tcp_enter_cwr(sk, 1); 2563 2564 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2565 tcp_try_keep_open(sk); 2566 } else { 2567 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2568 } 2569 } 2570 2571 static void tcp_mtup_probe_failed(struct sock *sk) 2572 { 2573 struct inet_connection_sock *icsk = inet_csk(sk); 2574 2575 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2576 icsk->icsk_mtup.probe_size = 0; 2577 } 2578 2579 static void tcp_mtup_probe_success(struct sock *sk) 2580 { 2581 struct tcp_sock *tp = tcp_sk(sk); 2582 struct inet_connection_sock *icsk = inet_csk(sk); 2583 2584 /* FIXME: breaks with very large cwnd */ 2585 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2586 tp->snd_cwnd = tp->snd_cwnd * 2587 tcp_mss_to_mtu(sk, tp->mss_cache) / 2588 icsk->icsk_mtup.probe_size; 2589 tp->snd_cwnd_cnt = 0; 2590 tp->snd_cwnd_stamp = tcp_time_stamp; 2591 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2592 2593 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2594 icsk->icsk_mtup.probe_size = 0; 2595 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2596 } 2597 2598 /* Do a simple retransmit without using the backoff mechanisms in 2599 * tcp_timer. This is used for path mtu discovery. 2600 * The socket is already locked here. 2601 */ 2602 void tcp_simple_retransmit(struct sock *sk) 2603 { 2604 const struct inet_connection_sock *icsk = inet_csk(sk); 2605 struct tcp_sock *tp = tcp_sk(sk); 2606 struct sk_buff *skb; 2607 unsigned int mss = tcp_current_mss(sk); 2608 u32 prior_lost = tp->lost_out; 2609 2610 tcp_for_write_queue(skb, sk) { 2611 if (skb == tcp_send_head(sk)) 2612 break; 2613 if (tcp_skb_seglen(skb) > mss && 2614 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2615 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2616 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2617 tp->retrans_out -= tcp_skb_pcount(skb); 2618 } 2619 tcp_skb_mark_lost_uncond_verify(tp, skb); 2620 } 2621 } 2622 2623 tcp_clear_retrans_hints_partial(tp); 2624 2625 if (prior_lost == tp->lost_out) 2626 return; 2627 2628 if (tcp_is_reno(tp)) 2629 tcp_limit_reno_sacked(tp); 2630 2631 tcp_verify_left_out(tp); 2632 2633 /* Don't muck with the congestion window here. 2634 * Reason is that we do not increase amount of _data_ 2635 * in network, but units changed and effective 2636 * cwnd/ssthresh really reduced now. 2637 */ 2638 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2639 tp->high_seq = tp->snd_nxt; 2640 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2641 tp->prior_ssthresh = 0; 2642 tp->undo_marker = 0; 2643 tcp_set_ca_state(sk, TCP_CA_Loss); 2644 } 2645 tcp_xmit_retransmit_queue(sk); 2646 } 2647 EXPORT_SYMBOL(tcp_simple_retransmit); 2648 2649 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2650 { 2651 struct tcp_sock *tp = tcp_sk(sk); 2652 int mib_idx; 2653 2654 if (tcp_is_reno(tp)) 2655 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2656 else 2657 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2658 2659 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2660 2661 tp->prior_ssthresh = 0; 2662 tp->undo_marker = tp->snd_una; 2663 tp->undo_retrans = tp->retrans_out; 2664 2665 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2666 if (!ece_ack) 2667 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2668 tcp_init_cwnd_reduction(sk, true); 2669 } 2670 tcp_set_ca_state(sk, TCP_CA_Recovery); 2671 } 2672 2673 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2674 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2675 */ 2676 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2677 { 2678 struct inet_connection_sock *icsk = inet_csk(sk); 2679 struct tcp_sock *tp = tcp_sk(sk); 2680 bool recovered = !before(tp->snd_una, tp->high_seq); 2681 2682 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2683 if (flag & FLAG_ORIG_SACK_ACKED) { 2684 /* Step 3.b. A timeout is spurious if not all data are 2685 * lost, i.e., never-retransmitted data are (s)acked. 2686 */ 2687 tcp_try_undo_loss(sk, true); 2688 return; 2689 } 2690 if (after(tp->snd_nxt, tp->high_seq) && 2691 (flag & FLAG_DATA_SACKED || is_dupack)) { 2692 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2693 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2694 tp->high_seq = tp->snd_nxt; 2695 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2696 TCP_NAGLE_OFF); 2697 if (after(tp->snd_nxt, tp->high_seq)) 2698 return; /* Step 2.b */ 2699 tp->frto = 0; 2700 } 2701 } 2702 2703 if (recovered) { 2704 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2705 icsk->icsk_retransmits = 0; 2706 tcp_try_undo_recovery(sk); 2707 return; 2708 } 2709 if (flag & FLAG_DATA_ACKED) 2710 icsk->icsk_retransmits = 0; 2711 if (tcp_is_reno(tp)) { 2712 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2713 * delivered. Lower inflight to clock out (re)tranmissions. 2714 */ 2715 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2716 tcp_add_reno_sack(sk); 2717 else if (flag & FLAG_SND_UNA_ADVANCED) 2718 tcp_reset_reno_sack(tp); 2719 } 2720 if (tcp_try_undo_loss(sk, false)) 2721 return; 2722 tcp_xmit_retransmit_queue(sk); 2723 } 2724 2725 /* Undo during fast recovery after partial ACK. */ 2726 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2727 const int prior_unsacked) 2728 { 2729 struct tcp_sock *tp = tcp_sk(sk); 2730 2731 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2732 /* Plain luck! Hole if filled with delayed 2733 * packet, rather than with a retransmit. 2734 */ 2735 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2736 2737 /* We are getting evidence that the reordering degree is higher 2738 * than we realized. If there are no retransmits out then we 2739 * can undo. Otherwise we clock out new packets but do not 2740 * mark more packets lost or retransmit more. 2741 */ 2742 if (tp->retrans_out) { 2743 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2744 return true; 2745 } 2746 2747 if (!tcp_any_retrans_done(sk)) 2748 tp->retrans_stamp = 0; 2749 2750 DBGUNDO(sk, "partial recovery"); 2751 tcp_undo_cwnd_reduction(sk, true); 2752 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2753 tcp_try_keep_open(sk); 2754 return true; 2755 } 2756 return false; 2757 } 2758 2759 /* Process an event, which can update packets-in-flight not trivially. 2760 * Main goal of this function is to calculate new estimate for left_out, 2761 * taking into account both packets sitting in receiver's buffer and 2762 * packets lost by network. 2763 * 2764 * Besides that it does CWND reduction, when packet loss is detected 2765 * and changes state of machine. 2766 * 2767 * It does _not_ decide what to send, it is made in function 2768 * tcp_xmit_retransmit_queue(). 2769 */ 2770 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2771 const int prior_unsacked, 2772 bool is_dupack, int flag) 2773 { 2774 struct inet_connection_sock *icsk = inet_csk(sk); 2775 struct tcp_sock *tp = tcp_sk(sk); 2776 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2777 (tcp_fackets_out(tp) > tp->reordering)); 2778 int fast_rexmit = 0; 2779 2780 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2781 tp->sacked_out = 0; 2782 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2783 tp->fackets_out = 0; 2784 2785 /* Now state machine starts. 2786 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2787 if (flag & FLAG_ECE) 2788 tp->prior_ssthresh = 0; 2789 2790 /* B. In all the states check for reneging SACKs. */ 2791 if (tcp_check_sack_reneging(sk, flag)) 2792 return; 2793 2794 /* C. Check consistency of the current state. */ 2795 tcp_verify_left_out(tp); 2796 2797 /* D. Check state exit conditions. State can be terminated 2798 * when high_seq is ACKed. */ 2799 if (icsk->icsk_ca_state == TCP_CA_Open) { 2800 WARN_ON(tp->retrans_out != 0); 2801 tp->retrans_stamp = 0; 2802 } else if (!before(tp->snd_una, tp->high_seq)) { 2803 switch (icsk->icsk_ca_state) { 2804 case TCP_CA_CWR: 2805 /* CWR is to be held something *above* high_seq 2806 * is ACKed for CWR bit to reach receiver. */ 2807 if (tp->snd_una != tp->high_seq) { 2808 tcp_end_cwnd_reduction(sk); 2809 tcp_set_ca_state(sk, TCP_CA_Open); 2810 } 2811 break; 2812 2813 case TCP_CA_Recovery: 2814 if (tcp_is_reno(tp)) 2815 tcp_reset_reno_sack(tp); 2816 if (tcp_try_undo_recovery(sk)) 2817 return; 2818 tcp_end_cwnd_reduction(sk); 2819 break; 2820 } 2821 } 2822 2823 /* E. Process state. */ 2824 switch (icsk->icsk_ca_state) { 2825 case TCP_CA_Recovery: 2826 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2827 if (tcp_is_reno(tp) && is_dupack) 2828 tcp_add_reno_sack(sk); 2829 } else { 2830 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2831 return; 2832 /* Partial ACK arrived. Force fast retransmit. */ 2833 do_lost = tcp_is_reno(tp) || 2834 tcp_fackets_out(tp) > tp->reordering; 2835 } 2836 if (tcp_try_undo_dsack(sk)) { 2837 tcp_try_keep_open(sk); 2838 return; 2839 } 2840 break; 2841 case TCP_CA_Loss: 2842 tcp_process_loss(sk, flag, is_dupack); 2843 if (icsk->icsk_ca_state != TCP_CA_Open) 2844 return; 2845 /* Fall through to processing in Open state. */ 2846 default: 2847 if (tcp_is_reno(tp)) { 2848 if (flag & FLAG_SND_UNA_ADVANCED) 2849 tcp_reset_reno_sack(tp); 2850 if (is_dupack) 2851 tcp_add_reno_sack(sk); 2852 } 2853 2854 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2855 tcp_try_undo_dsack(sk); 2856 2857 if (!tcp_time_to_recover(sk, flag)) { 2858 tcp_try_to_open(sk, flag, prior_unsacked); 2859 return; 2860 } 2861 2862 /* MTU probe failure: don't reduce cwnd */ 2863 if (icsk->icsk_ca_state < TCP_CA_CWR && 2864 icsk->icsk_mtup.probe_size && 2865 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2866 tcp_mtup_probe_failed(sk); 2867 /* Restores the reduction we did in tcp_mtup_probe() */ 2868 tp->snd_cwnd++; 2869 tcp_simple_retransmit(sk); 2870 return; 2871 } 2872 2873 /* Otherwise enter Recovery state */ 2874 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2875 fast_rexmit = 1; 2876 } 2877 2878 if (do_lost) 2879 tcp_update_scoreboard(sk, fast_rexmit); 2880 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2881 tcp_xmit_retransmit_queue(sk); 2882 } 2883 2884 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2885 s32 seq_rtt, s32 sack_rtt) 2886 { 2887 const struct tcp_sock *tp = tcp_sk(sk); 2888 2889 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2890 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2891 * Karn's algorithm forbids taking RTT if some retransmitted data 2892 * is acked (RFC6298). 2893 */ 2894 if (flag & FLAG_RETRANS_DATA_ACKED) 2895 seq_rtt = -1; 2896 2897 if (seq_rtt < 0) 2898 seq_rtt = sack_rtt; 2899 2900 /* RTTM Rule: A TSecr value received in a segment is used to 2901 * update the averaged RTT measurement only if the segment 2902 * acknowledges some new data, i.e., only if it advances the 2903 * left edge of the send window. 2904 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2905 */ 2906 if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2907 flag & FLAG_ACKED) 2908 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2909 2910 if (seq_rtt < 0) 2911 return false; 2912 2913 tcp_rtt_estimator(sk, seq_rtt); 2914 tcp_set_rto(sk); 2915 2916 /* RFC6298: only reset backoff on valid RTT measurement. */ 2917 inet_csk(sk)->icsk_backoff = 0; 2918 return true; 2919 } 2920 2921 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2922 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2923 { 2924 struct tcp_sock *tp = tcp_sk(sk); 2925 s32 seq_rtt = -1; 2926 2927 if (synack_stamp && !tp->total_retrans) 2928 seq_rtt = tcp_time_stamp - synack_stamp; 2929 2930 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2931 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2932 */ 2933 if (!tp->srtt) 2934 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1); 2935 } 2936 2937 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight) 2938 { 2939 const struct inet_connection_sock *icsk = inet_csk(sk); 2940 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight); 2941 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2942 } 2943 2944 /* Restart timer after forward progress on connection. 2945 * RFC2988 recommends to restart timer to now+rto. 2946 */ 2947 void tcp_rearm_rto(struct sock *sk) 2948 { 2949 const struct inet_connection_sock *icsk = inet_csk(sk); 2950 struct tcp_sock *tp = tcp_sk(sk); 2951 2952 /* If the retrans timer is currently being used by Fast Open 2953 * for SYN-ACK retrans purpose, stay put. 2954 */ 2955 if (tp->fastopen_rsk) 2956 return; 2957 2958 if (!tp->packets_out) { 2959 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2960 } else { 2961 u32 rto = inet_csk(sk)->icsk_rto; 2962 /* Offset the time elapsed after installing regular RTO */ 2963 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2964 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2965 struct sk_buff *skb = tcp_write_queue_head(sk); 2966 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto; 2967 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2968 /* delta may not be positive if the socket is locked 2969 * when the retrans timer fires and is rescheduled. 2970 */ 2971 if (delta > 0) 2972 rto = delta; 2973 } 2974 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2975 TCP_RTO_MAX); 2976 } 2977 } 2978 2979 /* This function is called when the delayed ER timer fires. TCP enters 2980 * fast recovery and performs fast-retransmit. 2981 */ 2982 void tcp_resume_early_retransmit(struct sock *sk) 2983 { 2984 struct tcp_sock *tp = tcp_sk(sk); 2985 2986 tcp_rearm_rto(sk); 2987 2988 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 2989 if (!tp->do_early_retrans) 2990 return; 2991 2992 tcp_enter_recovery(sk, false); 2993 tcp_update_scoreboard(sk, 1); 2994 tcp_xmit_retransmit_queue(sk); 2995 } 2996 2997 /* If we get here, the whole TSO packet has not been acked. */ 2998 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2999 { 3000 struct tcp_sock *tp = tcp_sk(sk); 3001 u32 packets_acked; 3002 3003 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3004 3005 packets_acked = tcp_skb_pcount(skb); 3006 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3007 return 0; 3008 packets_acked -= tcp_skb_pcount(skb); 3009 3010 if (packets_acked) { 3011 BUG_ON(tcp_skb_pcount(skb) == 0); 3012 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3013 } 3014 3015 return packets_acked; 3016 } 3017 3018 /* Remove acknowledged frames from the retransmission queue. If our packet 3019 * is before the ack sequence we can discard it as it's confirmed to have 3020 * arrived at the other end. 3021 */ 3022 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3023 u32 prior_snd_una, s32 sack_rtt) 3024 { 3025 struct tcp_sock *tp = tcp_sk(sk); 3026 const struct inet_connection_sock *icsk = inet_csk(sk); 3027 struct sk_buff *skb; 3028 u32 now = tcp_time_stamp; 3029 bool fully_acked = true; 3030 int flag = 0; 3031 u32 pkts_acked = 0; 3032 u32 reord = tp->packets_out; 3033 u32 prior_sacked = tp->sacked_out; 3034 s32 seq_rtt = -1; 3035 s32 ca_seq_rtt = -1; 3036 ktime_t last_ackt = net_invalid_timestamp(); 3037 bool rtt_update; 3038 3039 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3040 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3041 u32 acked_pcount; 3042 u8 sacked = scb->sacked; 3043 3044 /* Determine how many packets and what bytes were acked, tso and else */ 3045 if (after(scb->end_seq, tp->snd_una)) { 3046 if (tcp_skb_pcount(skb) == 1 || 3047 !after(tp->snd_una, scb->seq)) 3048 break; 3049 3050 acked_pcount = tcp_tso_acked(sk, skb); 3051 if (!acked_pcount) 3052 break; 3053 3054 fully_acked = false; 3055 } else { 3056 acked_pcount = tcp_skb_pcount(skb); 3057 } 3058 3059 if (sacked & TCPCB_RETRANS) { 3060 if (sacked & TCPCB_SACKED_RETRANS) 3061 tp->retrans_out -= acked_pcount; 3062 flag |= FLAG_RETRANS_DATA_ACKED; 3063 } else { 3064 ca_seq_rtt = now - scb->when; 3065 last_ackt = skb->tstamp; 3066 if (seq_rtt < 0) { 3067 seq_rtt = ca_seq_rtt; 3068 } 3069 if (!(sacked & TCPCB_SACKED_ACKED)) 3070 reord = min(pkts_acked, reord); 3071 if (!after(scb->end_seq, tp->high_seq)) 3072 flag |= FLAG_ORIG_SACK_ACKED; 3073 } 3074 3075 if (sacked & TCPCB_SACKED_ACKED) 3076 tp->sacked_out -= acked_pcount; 3077 if (sacked & TCPCB_LOST) 3078 tp->lost_out -= acked_pcount; 3079 3080 tp->packets_out -= acked_pcount; 3081 pkts_acked += acked_pcount; 3082 3083 /* Initial outgoing SYN's get put onto the write_queue 3084 * just like anything else we transmit. It is not 3085 * true data, and if we misinform our callers that 3086 * this ACK acks real data, we will erroneously exit 3087 * connection startup slow start one packet too 3088 * quickly. This is severely frowned upon behavior. 3089 */ 3090 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3091 flag |= FLAG_DATA_ACKED; 3092 } else { 3093 flag |= FLAG_SYN_ACKED; 3094 tp->retrans_stamp = 0; 3095 } 3096 3097 if (!fully_acked) 3098 break; 3099 3100 tcp_unlink_write_queue(skb, sk); 3101 sk_wmem_free_skb(sk, skb); 3102 if (skb == tp->retransmit_skb_hint) 3103 tp->retransmit_skb_hint = NULL; 3104 if (skb == tp->lost_skb_hint) 3105 tp->lost_skb_hint = NULL; 3106 } 3107 3108 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3109 tp->snd_up = tp->snd_una; 3110 3111 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3112 flag |= FLAG_SACK_RENEGING; 3113 3114 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt); 3115 3116 if (flag & FLAG_ACKED) { 3117 const struct tcp_congestion_ops *ca_ops 3118 = inet_csk(sk)->icsk_ca_ops; 3119 3120 tcp_rearm_rto(sk); 3121 if (unlikely(icsk->icsk_mtup.probe_size && 3122 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3123 tcp_mtup_probe_success(sk); 3124 } 3125 3126 if (tcp_is_reno(tp)) { 3127 tcp_remove_reno_sacks(sk, pkts_acked); 3128 } else { 3129 int delta; 3130 3131 /* Non-retransmitted hole got filled? That's reordering */ 3132 if (reord < prior_fackets) 3133 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3134 3135 delta = tcp_is_fack(tp) ? pkts_acked : 3136 prior_sacked - tp->sacked_out; 3137 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3138 } 3139 3140 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3141 3142 if (ca_ops->pkts_acked) { 3143 s32 rtt_us = -1; 3144 3145 /* Is the ACK triggering packet unambiguous? */ 3146 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3147 /* High resolution needed and available? */ 3148 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3149 !ktime_equal(last_ackt, 3150 net_invalid_timestamp())) 3151 rtt_us = ktime_us_delta(ktime_get_real(), 3152 last_ackt); 3153 else if (ca_seq_rtt >= 0) 3154 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3155 } 3156 3157 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3158 } 3159 } else if (skb && rtt_update && sack_rtt >= 0 && 3160 sack_rtt > (s32)(now - TCP_SKB_CB(skb)->when)) { 3161 /* Do not re-arm RTO if the sack RTT is measured from data sent 3162 * after when the head was last (re)transmitted. Otherwise the 3163 * timeout may continue to extend in loss recovery. 3164 */ 3165 tcp_rearm_rto(sk); 3166 } 3167 3168 #if FASTRETRANS_DEBUG > 0 3169 WARN_ON((int)tp->sacked_out < 0); 3170 WARN_ON((int)tp->lost_out < 0); 3171 WARN_ON((int)tp->retrans_out < 0); 3172 if (!tp->packets_out && tcp_is_sack(tp)) { 3173 icsk = inet_csk(sk); 3174 if (tp->lost_out) { 3175 pr_debug("Leak l=%u %d\n", 3176 tp->lost_out, icsk->icsk_ca_state); 3177 tp->lost_out = 0; 3178 } 3179 if (tp->sacked_out) { 3180 pr_debug("Leak s=%u %d\n", 3181 tp->sacked_out, icsk->icsk_ca_state); 3182 tp->sacked_out = 0; 3183 } 3184 if (tp->retrans_out) { 3185 pr_debug("Leak r=%u %d\n", 3186 tp->retrans_out, icsk->icsk_ca_state); 3187 tp->retrans_out = 0; 3188 } 3189 } 3190 #endif 3191 return flag; 3192 } 3193 3194 static void tcp_ack_probe(struct sock *sk) 3195 { 3196 const struct tcp_sock *tp = tcp_sk(sk); 3197 struct inet_connection_sock *icsk = inet_csk(sk); 3198 3199 /* Was it a usable window open? */ 3200 3201 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3202 icsk->icsk_backoff = 0; 3203 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3204 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3205 * This function is not for random using! 3206 */ 3207 } else { 3208 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3209 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3210 TCP_RTO_MAX); 3211 } 3212 } 3213 3214 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3215 { 3216 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3217 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3218 } 3219 3220 /* Decide wheather to run the increase function of congestion control. */ 3221 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3222 { 3223 if (tcp_in_cwnd_reduction(sk)) 3224 return false; 3225 3226 /* If reordering is high then always grow cwnd whenever data is 3227 * delivered regardless of its ordering. Otherwise stay conservative 3228 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3229 * new SACK or ECE mark may first advance cwnd here and later reduce 3230 * cwnd in tcp_fastretrans_alert() based on more states. 3231 */ 3232 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3233 return flag & FLAG_FORWARD_PROGRESS; 3234 3235 return flag & FLAG_DATA_ACKED; 3236 } 3237 3238 /* Check that window update is acceptable. 3239 * The function assumes that snd_una<=ack<=snd_next. 3240 */ 3241 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3242 const u32 ack, const u32 ack_seq, 3243 const u32 nwin) 3244 { 3245 return after(ack, tp->snd_una) || 3246 after(ack_seq, tp->snd_wl1) || 3247 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3248 } 3249 3250 /* Update our send window. 3251 * 3252 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3253 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3254 */ 3255 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3256 u32 ack_seq) 3257 { 3258 struct tcp_sock *tp = tcp_sk(sk); 3259 int flag = 0; 3260 u32 nwin = ntohs(tcp_hdr(skb)->window); 3261 3262 if (likely(!tcp_hdr(skb)->syn)) 3263 nwin <<= tp->rx_opt.snd_wscale; 3264 3265 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3266 flag |= FLAG_WIN_UPDATE; 3267 tcp_update_wl(tp, ack_seq); 3268 3269 if (tp->snd_wnd != nwin) { 3270 tp->snd_wnd = nwin; 3271 3272 /* Note, it is the only place, where 3273 * fast path is recovered for sending TCP. 3274 */ 3275 tp->pred_flags = 0; 3276 tcp_fast_path_check(sk); 3277 3278 if (nwin > tp->max_window) { 3279 tp->max_window = nwin; 3280 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3281 } 3282 } 3283 } 3284 3285 tp->snd_una = ack; 3286 3287 return flag; 3288 } 3289 3290 /* RFC 5961 7 [ACK Throttling] */ 3291 static void tcp_send_challenge_ack(struct sock *sk) 3292 { 3293 /* unprotected vars, we dont care of overwrites */ 3294 static u32 challenge_timestamp; 3295 static unsigned int challenge_count; 3296 u32 now = jiffies / HZ; 3297 3298 if (now != challenge_timestamp) { 3299 challenge_timestamp = now; 3300 challenge_count = 0; 3301 } 3302 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3303 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3304 tcp_send_ack(sk); 3305 } 3306 } 3307 3308 static void tcp_store_ts_recent(struct tcp_sock *tp) 3309 { 3310 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3311 tp->rx_opt.ts_recent_stamp = get_seconds(); 3312 } 3313 3314 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3315 { 3316 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3317 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3318 * extra check below makes sure this can only happen 3319 * for pure ACK frames. -DaveM 3320 * 3321 * Not only, also it occurs for expired timestamps. 3322 */ 3323 3324 if (tcp_paws_check(&tp->rx_opt, 0)) 3325 tcp_store_ts_recent(tp); 3326 } 3327 } 3328 3329 /* This routine deals with acks during a TLP episode. 3330 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3331 */ 3332 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3333 { 3334 struct tcp_sock *tp = tcp_sk(sk); 3335 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3336 !(flag & (FLAG_SND_UNA_ADVANCED | 3337 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3338 3339 /* Mark the end of TLP episode on receiving TLP dupack or when 3340 * ack is after tlp_high_seq. 3341 */ 3342 if (is_tlp_dupack) { 3343 tp->tlp_high_seq = 0; 3344 return; 3345 } 3346 3347 if (after(ack, tp->tlp_high_seq)) { 3348 tp->tlp_high_seq = 0; 3349 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3350 if (!(flag & FLAG_DSACKING_ACK)) { 3351 tcp_init_cwnd_reduction(sk, true); 3352 tcp_set_ca_state(sk, TCP_CA_CWR); 3353 tcp_end_cwnd_reduction(sk); 3354 tcp_try_keep_open(sk); 3355 NET_INC_STATS_BH(sock_net(sk), 3356 LINUX_MIB_TCPLOSSPROBERECOVERY); 3357 } 3358 } 3359 } 3360 3361 /* This routine deals with incoming acks, but not outgoing ones. */ 3362 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3363 { 3364 struct inet_connection_sock *icsk = inet_csk(sk); 3365 struct tcp_sock *tp = tcp_sk(sk); 3366 u32 prior_snd_una = tp->snd_una; 3367 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3368 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3369 bool is_dupack = false; 3370 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt; 3371 u32 prior_fackets; 3372 int prior_packets = tp->packets_out; 3373 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3374 int acked = 0; /* Number of packets newly acked */ 3375 s32 sack_rtt = -1; 3376 3377 /* If the ack is older than previous acks 3378 * then we can probably ignore it. 3379 */ 3380 if (before(ack, prior_snd_una)) { 3381 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3382 if (before(ack, prior_snd_una - tp->max_window)) { 3383 tcp_send_challenge_ack(sk); 3384 return -1; 3385 } 3386 goto old_ack; 3387 } 3388 3389 /* If the ack includes data we haven't sent yet, discard 3390 * this segment (RFC793 Section 3.9). 3391 */ 3392 if (after(ack, tp->snd_nxt)) 3393 goto invalid_ack; 3394 3395 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3396 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3397 tcp_rearm_rto(sk); 3398 3399 if (after(ack, prior_snd_una)) 3400 flag |= FLAG_SND_UNA_ADVANCED; 3401 3402 prior_fackets = tp->fackets_out; 3403 prior_in_flight = tcp_packets_in_flight(tp); 3404 3405 /* ts_recent update must be made after we are sure that the packet 3406 * is in window. 3407 */ 3408 if (flag & FLAG_UPDATE_TS_RECENT) 3409 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3410 3411 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3412 /* Window is constant, pure forward advance. 3413 * No more checks are required. 3414 * Note, we use the fact that SND.UNA>=SND.WL2. 3415 */ 3416 tcp_update_wl(tp, ack_seq); 3417 tp->snd_una = ack; 3418 flag |= FLAG_WIN_UPDATE; 3419 3420 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3421 3422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3423 } else { 3424 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3425 flag |= FLAG_DATA; 3426 else 3427 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3428 3429 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3430 3431 if (TCP_SKB_CB(skb)->sacked) 3432 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3433 &sack_rtt); 3434 3435 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3436 flag |= FLAG_ECE; 3437 3438 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3439 } 3440 3441 /* We passed data and got it acked, remove any soft error 3442 * log. Something worked... 3443 */ 3444 sk->sk_err_soft = 0; 3445 icsk->icsk_probes_out = 0; 3446 tp->rcv_tstamp = tcp_time_stamp; 3447 if (!prior_packets) 3448 goto no_queue; 3449 3450 /* See if we can take anything off of the retransmit queue. */ 3451 acked = tp->packets_out; 3452 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt); 3453 acked -= tp->packets_out; 3454 3455 /* Advance cwnd if state allows */ 3456 if (tcp_may_raise_cwnd(sk, flag)) 3457 tcp_cong_avoid(sk, ack, acked, prior_in_flight); 3458 3459 if (tcp_ack_is_dubious(sk, flag)) { 3460 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3461 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3462 is_dupack, flag); 3463 } 3464 if (tp->tlp_high_seq) 3465 tcp_process_tlp_ack(sk, ack, flag); 3466 3467 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3468 struct dst_entry *dst = __sk_dst_get(sk); 3469 if (dst) 3470 dst_confirm(dst); 3471 } 3472 3473 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3474 tcp_schedule_loss_probe(sk); 3475 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd) 3476 tcp_update_pacing_rate(sk); 3477 return 1; 3478 3479 no_queue: 3480 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3481 if (flag & FLAG_DSACKING_ACK) 3482 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3483 is_dupack, flag); 3484 /* If this ack opens up a zero window, clear backoff. It was 3485 * being used to time the probes, and is probably far higher than 3486 * it needs to be for normal retransmission. 3487 */ 3488 if (tcp_send_head(sk)) 3489 tcp_ack_probe(sk); 3490 3491 if (tp->tlp_high_seq) 3492 tcp_process_tlp_ack(sk, ack, flag); 3493 return 1; 3494 3495 invalid_ack: 3496 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3497 return -1; 3498 3499 old_ack: 3500 /* If data was SACKed, tag it and see if we should send more data. 3501 * If data was DSACKed, see if we can undo a cwnd reduction. 3502 */ 3503 if (TCP_SKB_CB(skb)->sacked) { 3504 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3505 &sack_rtt); 3506 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3507 is_dupack, flag); 3508 } 3509 3510 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3511 return 0; 3512 } 3513 3514 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3515 * But, this can also be called on packets in the established flow when 3516 * the fast version below fails. 3517 */ 3518 void tcp_parse_options(const struct sk_buff *skb, 3519 struct tcp_options_received *opt_rx, int estab, 3520 struct tcp_fastopen_cookie *foc) 3521 { 3522 const unsigned char *ptr; 3523 const struct tcphdr *th = tcp_hdr(skb); 3524 int length = (th->doff * 4) - sizeof(struct tcphdr); 3525 3526 ptr = (const unsigned char *)(th + 1); 3527 opt_rx->saw_tstamp = 0; 3528 3529 while (length > 0) { 3530 int opcode = *ptr++; 3531 int opsize; 3532 3533 switch (opcode) { 3534 case TCPOPT_EOL: 3535 return; 3536 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3537 length--; 3538 continue; 3539 default: 3540 opsize = *ptr++; 3541 if (opsize < 2) /* "silly options" */ 3542 return; 3543 if (opsize > length) 3544 return; /* don't parse partial options */ 3545 switch (opcode) { 3546 case TCPOPT_MSS: 3547 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3548 u16 in_mss = get_unaligned_be16(ptr); 3549 if (in_mss) { 3550 if (opt_rx->user_mss && 3551 opt_rx->user_mss < in_mss) 3552 in_mss = opt_rx->user_mss; 3553 opt_rx->mss_clamp = in_mss; 3554 } 3555 } 3556 break; 3557 case TCPOPT_WINDOW: 3558 if (opsize == TCPOLEN_WINDOW && th->syn && 3559 !estab && sysctl_tcp_window_scaling) { 3560 __u8 snd_wscale = *(__u8 *)ptr; 3561 opt_rx->wscale_ok = 1; 3562 if (snd_wscale > 14) { 3563 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3564 __func__, 3565 snd_wscale); 3566 snd_wscale = 14; 3567 } 3568 opt_rx->snd_wscale = snd_wscale; 3569 } 3570 break; 3571 case TCPOPT_TIMESTAMP: 3572 if ((opsize == TCPOLEN_TIMESTAMP) && 3573 ((estab && opt_rx->tstamp_ok) || 3574 (!estab && sysctl_tcp_timestamps))) { 3575 opt_rx->saw_tstamp = 1; 3576 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3577 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3578 } 3579 break; 3580 case TCPOPT_SACK_PERM: 3581 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3582 !estab && sysctl_tcp_sack) { 3583 opt_rx->sack_ok = TCP_SACK_SEEN; 3584 tcp_sack_reset(opt_rx); 3585 } 3586 break; 3587 3588 case TCPOPT_SACK: 3589 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3590 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3591 opt_rx->sack_ok) { 3592 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3593 } 3594 break; 3595 #ifdef CONFIG_TCP_MD5SIG 3596 case TCPOPT_MD5SIG: 3597 /* 3598 * The MD5 Hash has already been 3599 * checked (see tcp_v{4,6}_do_rcv()). 3600 */ 3601 break; 3602 #endif 3603 case TCPOPT_EXP: 3604 /* Fast Open option shares code 254 using a 3605 * 16 bits magic number. It's valid only in 3606 * SYN or SYN-ACK with an even size. 3607 */ 3608 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3609 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3610 foc == NULL || !th->syn || (opsize & 1)) 3611 break; 3612 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3613 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3614 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3615 memcpy(foc->val, ptr + 2, foc->len); 3616 else if (foc->len != 0) 3617 foc->len = -1; 3618 break; 3619 3620 } 3621 ptr += opsize-2; 3622 length -= opsize; 3623 } 3624 } 3625 } 3626 EXPORT_SYMBOL(tcp_parse_options); 3627 3628 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3629 { 3630 const __be32 *ptr = (const __be32 *)(th + 1); 3631 3632 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3633 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3634 tp->rx_opt.saw_tstamp = 1; 3635 ++ptr; 3636 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3637 ++ptr; 3638 if (*ptr) 3639 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3640 else 3641 tp->rx_opt.rcv_tsecr = 0; 3642 return true; 3643 } 3644 return false; 3645 } 3646 3647 /* Fast parse options. This hopes to only see timestamps. 3648 * If it is wrong it falls back on tcp_parse_options(). 3649 */ 3650 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3651 const struct tcphdr *th, struct tcp_sock *tp) 3652 { 3653 /* In the spirit of fast parsing, compare doff directly to constant 3654 * values. Because equality is used, short doff can be ignored here. 3655 */ 3656 if (th->doff == (sizeof(*th) / 4)) { 3657 tp->rx_opt.saw_tstamp = 0; 3658 return false; 3659 } else if (tp->rx_opt.tstamp_ok && 3660 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3661 if (tcp_parse_aligned_timestamp(tp, th)) 3662 return true; 3663 } 3664 3665 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3666 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3667 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3668 3669 return true; 3670 } 3671 3672 #ifdef CONFIG_TCP_MD5SIG 3673 /* 3674 * Parse MD5 Signature option 3675 */ 3676 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3677 { 3678 int length = (th->doff << 2) - sizeof(*th); 3679 const u8 *ptr = (const u8 *)(th + 1); 3680 3681 /* If the TCP option is too short, we can short cut */ 3682 if (length < TCPOLEN_MD5SIG) 3683 return NULL; 3684 3685 while (length > 0) { 3686 int opcode = *ptr++; 3687 int opsize; 3688 3689 switch(opcode) { 3690 case TCPOPT_EOL: 3691 return NULL; 3692 case TCPOPT_NOP: 3693 length--; 3694 continue; 3695 default: 3696 opsize = *ptr++; 3697 if (opsize < 2 || opsize > length) 3698 return NULL; 3699 if (opcode == TCPOPT_MD5SIG) 3700 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3701 } 3702 ptr += opsize - 2; 3703 length -= opsize; 3704 } 3705 return NULL; 3706 } 3707 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3708 #endif 3709 3710 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3711 * 3712 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3713 * it can pass through stack. So, the following predicate verifies that 3714 * this segment is not used for anything but congestion avoidance or 3715 * fast retransmit. Moreover, we even are able to eliminate most of such 3716 * second order effects, if we apply some small "replay" window (~RTO) 3717 * to timestamp space. 3718 * 3719 * All these measures still do not guarantee that we reject wrapped ACKs 3720 * on networks with high bandwidth, when sequence space is recycled fastly, 3721 * but it guarantees that such events will be very rare and do not affect 3722 * connection seriously. This doesn't look nice, but alas, PAWS is really 3723 * buggy extension. 3724 * 3725 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3726 * states that events when retransmit arrives after original data are rare. 3727 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3728 * the biggest problem on large power networks even with minor reordering. 3729 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3730 * up to bandwidth of 18Gigabit/sec. 8) ] 3731 */ 3732 3733 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3734 { 3735 const struct tcp_sock *tp = tcp_sk(sk); 3736 const struct tcphdr *th = tcp_hdr(skb); 3737 u32 seq = TCP_SKB_CB(skb)->seq; 3738 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3739 3740 return (/* 1. Pure ACK with correct sequence number. */ 3741 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3742 3743 /* 2. ... and duplicate ACK. */ 3744 ack == tp->snd_una && 3745 3746 /* 3. ... and does not update window. */ 3747 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3748 3749 /* 4. ... and sits in replay window. */ 3750 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3751 } 3752 3753 static inline bool tcp_paws_discard(const struct sock *sk, 3754 const struct sk_buff *skb) 3755 { 3756 const struct tcp_sock *tp = tcp_sk(sk); 3757 3758 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3759 !tcp_disordered_ack(sk, skb); 3760 } 3761 3762 /* Check segment sequence number for validity. 3763 * 3764 * Segment controls are considered valid, if the segment 3765 * fits to the window after truncation to the window. Acceptability 3766 * of data (and SYN, FIN, of course) is checked separately. 3767 * See tcp_data_queue(), for example. 3768 * 3769 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3770 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3771 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3772 * (borrowed from freebsd) 3773 */ 3774 3775 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3776 { 3777 return !before(end_seq, tp->rcv_wup) && 3778 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3779 } 3780 3781 /* When we get a reset we do this. */ 3782 void tcp_reset(struct sock *sk) 3783 { 3784 /* We want the right error as BSD sees it (and indeed as we do). */ 3785 switch (sk->sk_state) { 3786 case TCP_SYN_SENT: 3787 sk->sk_err = ECONNREFUSED; 3788 break; 3789 case TCP_CLOSE_WAIT: 3790 sk->sk_err = EPIPE; 3791 break; 3792 case TCP_CLOSE: 3793 return; 3794 default: 3795 sk->sk_err = ECONNRESET; 3796 } 3797 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3798 smp_wmb(); 3799 3800 if (!sock_flag(sk, SOCK_DEAD)) 3801 sk->sk_error_report(sk); 3802 3803 tcp_done(sk); 3804 } 3805 3806 /* 3807 * Process the FIN bit. This now behaves as it is supposed to work 3808 * and the FIN takes effect when it is validly part of sequence 3809 * space. Not before when we get holes. 3810 * 3811 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3812 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3813 * TIME-WAIT) 3814 * 3815 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3816 * close and we go into CLOSING (and later onto TIME-WAIT) 3817 * 3818 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3819 */ 3820 static void tcp_fin(struct sock *sk) 3821 { 3822 struct tcp_sock *tp = tcp_sk(sk); 3823 const struct dst_entry *dst; 3824 3825 inet_csk_schedule_ack(sk); 3826 3827 sk->sk_shutdown |= RCV_SHUTDOWN; 3828 sock_set_flag(sk, SOCK_DONE); 3829 3830 switch (sk->sk_state) { 3831 case TCP_SYN_RECV: 3832 case TCP_ESTABLISHED: 3833 /* Move to CLOSE_WAIT */ 3834 tcp_set_state(sk, TCP_CLOSE_WAIT); 3835 dst = __sk_dst_get(sk); 3836 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3837 inet_csk(sk)->icsk_ack.pingpong = 1; 3838 break; 3839 3840 case TCP_CLOSE_WAIT: 3841 case TCP_CLOSING: 3842 /* Received a retransmission of the FIN, do 3843 * nothing. 3844 */ 3845 break; 3846 case TCP_LAST_ACK: 3847 /* RFC793: Remain in the LAST-ACK state. */ 3848 break; 3849 3850 case TCP_FIN_WAIT1: 3851 /* This case occurs when a simultaneous close 3852 * happens, we must ack the received FIN and 3853 * enter the CLOSING state. 3854 */ 3855 tcp_send_ack(sk); 3856 tcp_set_state(sk, TCP_CLOSING); 3857 break; 3858 case TCP_FIN_WAIT2: 3859 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3860 tcp_send_ack(sk); 3861 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3862 break; 3863 default: 3864 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3865 * cases we should never reach this piece of code. 3866 */ 3867 pr_err("%s: Impossible, sk->sk_state=%d\n", 3868 __func__, sk->sk_state); 3869 break; 3870 } 3871 3872 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3873 * Probably, we should reset in this case. For now drop them. 3874 */ 3875 __skb_queue_purge(&tp->out_of_order_queue); 3876 if (tcp_is_sack(tp)) 3877 tcp_sack_reset(&tp->rx_opt); 3878 sk_mem_reclaim(sk); 3879 3880 if (!sock_flag(sk, SOCK_DEAD)) { 3881 sk->sk_state_change(sk); 3882 3883 /* Do not send POLL_HUP for half duplex close. */ 3884 if (sk->sk_shutdown == SHUTDOWN_MASK || 3885 sk->sk_state == TCP_CLOSE) 3886 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3887 else 3888 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3889 } 3890 } 3891 3892 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3893 u32 end_seq) 3894 { 3895 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3896 if (before(seq, sp->start_seq)) 3897 sp->start_seq = seq; 3898 if (after(end_seq, sp->end_seq)) 3899 sp->end_seq = end_seq; 3900 return true; 3901 } 3902 return false; 3903 } 3904 3905 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3906 { 3907 struct tcp_sock *tp = tcp_sk(sk); 3908 3909 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3910 int mib_idx; 3911 3912 if (before(seq, tp->rcv_nxt)) 3913 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3914 else 3915 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3916 3917 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3918 3919 tp->rx_opt.dsack = 1; 3920 tp->duplicate_sack[0].start_seq = seq; 3921 tp->duplicate_sack[0].end_seq = end_seq; 3922 } 3923 } 3924 3925 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3926 { 3927 struct tcp_sock *tp = tcp_sk(sk); 3928 3929 if (!tp->rx_opt.dsack) 3930 tcp_dsack_set(sk, seq, end_seq); 3931 else 3932 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3933 } 3934 3935 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3936 { 3937 struct tcp_sock *tp = tcp_sk(sk); 3938 3939 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3940 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3941 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3942 tcp_enter_quickack_mode(sk); 3943 3944 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3945 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3946 3947 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3948 end_seq = tp->rcv_nxt; 3949 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3950 } 3951 } 3952 3953 tcp_send_ack(sk); 3954 } 3955 3956 /* These routines update the SACK block as out-of-order packets arrive or 3957 * in-order packets close up the sequence space. 3958 */ 3959 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3960 { 3961 int this_sack; 3962 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3963 struct tcp_sack_block *swalk = sp + 1; 3964 3965 /* See if the recent change to the first SACK eats into 3966 * or hits the sequence space of other SACK blocks, if so coalesce. 3967 */ 3968 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3969 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3970 int i; 3971 3972 /* Zap SWALK, by moving every further SACK up by one slot. 3973 * Decrease num_sacks. 3974 */ 3975 tp->rx_opt.num_sacks--; 3976 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 3977 sp[i] = sp[i + 1]; 3978 continue; 3979 } 3980 this_sack++, swalk++; 3981 } 3982 } 3983 3984 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3985 { 3986 struct tcp_sock *tp = tcp_sk(sk); 3987 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3988 int cur_sacks = tp->rx_opt.num_sacks; 3989 int this_sack; 3990 3991 if (!cur_sacks) 3992 goto new_sack; 3993 3994 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 3995 if (tcp_sack_extend(sp, seq, end_seq)) { 3996 /* Rotate this_sack to the first one. */ 3997 for (; this_sack > 0; this_sack--, sp--) 3998 swap(*sp, *(sp - 1)); 3999 if (cur_sacks > 1) 4000 tcp_sack_maybe_coalesce(tp); 4001 return; 4002 } 4003 } 4004 4005 /* Could not find an adjacent existing SACK, build a new one, 4006 * put it at the front, and shift everyone else down. We 4007 * always know there is at least one SACK present already here. 4008 * 4009 * If the sack array is full, forget about the last one. 4010 */ 4011 if (this_sack >= TCP_NUM_SACKS) { 4012 this_sack--; 4013 tp->rx_opt.num_sacks--; 4014 sp--; 4015 } 4016 for (; this_sack > 0; this_sack--, sp--) 4017 *sp = *(sp - 1); 4018 4019 new_sack: 4020 /* Build the new head SACK, and we're done. */ 4021 sp->start_seq = seq; 4022 sp->end_seq = end_seq; 4023 tp->rx_opt.num_sacks++; 4024 } 4025 4026 /* RCV.NXT advances, some SACKs should be eaten. */ 4027 4028 static void tcp_sack_remove(struct tcp_sock *tp) 4029 { 4030 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4031 int num_sacks = tp->rx_opt.num_sacks; 4032 int this_sack; 4033 4034 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4035 if (skb_queue_empty(&tp->out_of_order_queue)) { 4036 tp->rx_opt.num_sacks = 0; 4037 return; 4038 } 4039 4040 for (this_sack = 0; this_sack < num_sacks;) { 4041 /* Check if the start of the sack is covered by RCV.NXT. */ 4042 if (!before(tp->rcv_nxt, sp->start_seq)) { 4043 int i; 4044 4045 /* RCV.NXT must cover all the block! */ 4046 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4047 4048 /* Zap this SACK, by moving forward any other SACKS. */ 4049 for (i=this_sack+1; i < num_sacks; i++) 4050 tp->selective_acks[i-1] = tp->selective_acks[i]; 4051 num_sacks--; 4052 continue; 4053 } 4054 this_sack++; 4055 sp++; 4056 } 4057 tp->rx_opt.num_sacks = num_sacks; 4058 } 4059 4060 /* This one checks to see if we can put data from the 4061 * out_of_order queue into the receive_queue. 4062 */ 4063 static void tcp_ofo_queue(struct sock *sk) 4064 { 4065 struct tcp_sock *tp = tcp_sk(sk); 4066 __u32 dsack_high = tp->rcv_nxt; 4067 struct sk_buff *skb; 4068 4069 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4070 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4071 break; 4072 4073 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4074 __u32 dsack = dsack_high; 4075 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4076 dsack_high = TCP_SKB_CB(skb)->end_seq; 4077 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4078 } 4079 4080 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4081 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4082 __skb_unlink(skb, &tp->out_of_order_queue); 4083 __kfree_skb(skb); 4084 continue; 4085 } 4086 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4087 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4088 TCP_SKB_CB(skb)->end_seq); 4089 4090 __skb_unlink(skb, &tp->out_of_order_queue); 4091 __skb_queue_tail(&sk->sk_receive_queue, skb); 4092 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4093 if (tcp_hdr(skb)->fin) 4094 tcp_fin(sk); 4095 } 4096 } 4097 4098 static bool tcp_prune_ofo_queue(struct sock *sk); 4099 static int tcp_prune_queue(struct sock *sk); 4100 4101 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4102 unsigned int size) 4103 { 4104 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4105 !sk_rmem_schedule(sk, skb, size)) { 4106 4107 if (tcp_prune_queue(sk) < 0) 4108 return -1; 4109 4110 if (!sk_rmem_schedule(sk, skb, size)) { 4111 if (!tcp_prune_ofo_queue(sk)) 4112 return -1; 4113 4114 if (!sk_rmem_schedule(sk, skb, size)) 4115 return -1; 4116 } 4117 } 4118 return 0; 4119 } 4120 4121 /** 4122 * tcp_try_coalesce - try to merge skb to prior one 4123 * @sk: socket 4124 * @to: prior buffer 4125 * @from: buffer to add in queue 4126 * @fragstolen: pointer to boolean 4127 * 4128 * Before queueing skb @from after @to, try to merge them 4129 * to reduce overall memory use and queue lengths, if cost is small. 4130 * Packets in ofo or receive queues can stay a long time. 4131 * Better try to coalesce them right now to avoid future collapses. 4132 * Returns true if caller should free @from instead of queueing it 4133 */ 4134 static bool tcp_try_coalesce(struct sock *sk, 4135 struct sk_buff *to, 4136 struct sk_buff *from, 4137 bool *fragstolen) 4138 { 4139 int delta; 4140 4141 *fragstolen = false; 4142 4143 if (tcp_hdr(from)->fin) 4144 return false; 4145 4146 /* Its possible this segment overlaps with prior segment in queue */ 4147 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4148 return false; 4149 4150 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4151 return false; 4152 4153 atomic_add(delta, &sk->sk_rmem_alloc); 4154 sk_mem_charge(sk, delta); 4155 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4156 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4157 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4158 return true; 4159 } 4160 4161 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4162 { 4163 struct tcp_sock *tp = tcp_sk(sk); 4164 struct sk_buff *skb1; 4165 u32 seq, end_seq; 4166 4167 TCP_ECN_check_ce(tp, skb); 4168 4169 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4170 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4171 __kfree_skb(skb); 4172 return; 4173 } 4174 4175 /* Disable header prediction. */ 4176 tp->pred_flags = 0; 4177 inet_csk_schedule_ack(sk); 4178 4179 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4180 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4181 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4182 4183 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4184 if (!skb1) { 4185 /* Initial out of order segment, build 1 SACK. */ 4186 if (tcp_is_sack(tp)) { 4187 tp->rx_opt.num_sacks = 1; 4188 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4189 tp->selective_acks[0].end_seq = 4190 TCP_SKB_CB(skb)->end_seq; 4191 } 4192 __skb_queue_head(&tp->out_of_order_queue, skb); 4193 goto end; 4194 } 4195 4196 seq = TCP_SKB_CB(skb)->seq; 4197 end_seq = TCP_SKB_CB(skb)->end_seq; 4198 4199 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4200 bool fragstolen; 4201 4202 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4203 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4204 } else { 4205 tcp_grow_window(sk, skb); 4206 kfree_skb_partial(skb, fragstolen); 4207 skb = NULL; 4208 } 4209 4210 if (!tp->rx_opt.num_sacks || 4211 tp->selective_acks[0].end_seq != seq) 4212 goto add_sack; 4213 4214 /* Common case: data arrive in order after hole. */ 4215 tp->selective_acks[0].end_seq = end_seq; 4216 goto end; 4217 } 4218 4219 /* Find place to insert this segment. */ 4220 while (1) { 4221 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4222 break; 4223 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4224 skb1 = NULL; 4225 break; 4226 } 4227 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4228 } 4229 4230 /* Do skb overlap to previous one? */ 4231 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4232 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4233 /* All the bits are present. Drop. */ 4234 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4235 __kfree_skb(skb); 4236 skb = NULL; 4237 tcp_dsack_set(sk, seq, end_seq); 4238 goto add_sack; 4239 } 4240 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4241 /* Partial overlap. */ 4242 tcp_dsack_set(sk, seq, 4243 TCP_SKB_CB(skb1)->end_seq); 4244 } else { 4245 if (skb_queue_is_first(&tp->out_of_order_queue, 4246 skb1)) 4247 skb1 = NULL; 4248 else 4249 skb1 = skb_queue_prev( 4250 &tp->out_of_order_queue, 4251 skb1); 4252 } 4253 } 4254 if (!skb1) 4255 __skb_queue_head(&tp->out_of_order_queue, skb); 4256 else 4257 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4258 4259 /* And clean segments covered by new one as whole. */ 4260 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4261 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4262 4263 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4264 break; 4265 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4266 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4267 end_seq); 4268 break; 4269 } 4270 __skb_unlink(skb1, &tp->out_of_order_queue); 4271 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4272 TCP_SKB_CB(skb1)->end_seq); 4273 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4274 __kfree_skb(skb1); 4275 } 4276 4277 add_sack: 4278 if (tcp_is_sack(tp)) 4279 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4280 end: 4281 if (skb) { 4282 tcp_grow_window(sk, skb); 4283 skb_set_owner_r(skb, sk); 4284 } 4285 } 4286 4287 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4288 bool *fragstolen) 4289 { 4290 int eaten; 4291 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4292 4293 __skb_pull(skb, hdrlen); 4294 eaten = (tail && 4295 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4296 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4297 if (!eaten) { 4298 __skb_queue_tail(&sk->sk_receive_queue, skb); 4299 skb_set_owner_r(skb, sk); 4300 } 4301 return eaten; 4302 } 4303 4304 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4305 { 4306 struct sk_buff *skb = NULL; 4307 struct tcphdr *th; 4308 bool fragstolen; 4309 4310 if (size == 0) 4311 return 0; 4312 4313 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation); 4314 if (!skb) 4315 goto err; 4316 4317 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th))) 4318 goto err_free; 4319 4320 th = (struct tcphdr *)skb_put(skb, sizeof(*th)); 4321 skb_reset_transport_header(skb); 4322 memset(th, 0, sizeof(*th)); 4323 4324 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4325 goto err_free; 4326 4327 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4328 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4329 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4330 4331 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) { 4332 WARN_ON_ONCE(fragstolen); /* should not happen */ 4333 __kfree_skb(skb); 4334 } 4335 return size; 4336 4337 err_free: 4338 kfree_skb(skb); 4339 err: 4340 return -ENOMEM; 4341 } 4342 4343 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4344 { 4345 const struct tcphdr *th = tcp_hdr(skb); 4346 struct tcp_sock *tp = tcp_sk(sk); 4347 int eaten = -1; 4348 bool fragstolen = false; 4349 4350 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4351 goto drop; 4352 4353 skb_dst_drop(skb); 4354 __skb_pull(skb, th->doff * 4); 4355 4356 TCP_ECN_accept_cwr(tp, skb); 4357 4358 tp->rx_opt.dsack = 0; 4359 4360 /* Queue data for delivery to the user. 4361 * Packets in sequence go to the receive queue. 4362 * Out of sequence packets to the out_of_order_queue. 4363 */ 4364 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4365 if (tcp_receive_window(tp) == 0) 4366 goto out_of_window; 4367 4368 /* Ok. In sequence. In window. */ 4369 if (tp->ucopy.task == current && 4370 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4371 sock_owned_by_user(sk) && !tp->urg_data) { 4372 int chunk = min_t(unsigned int, skb->len, 4373 tp->ucopy.len); 4374 4375 __set_current_state(TASK_RUNNING); 4376 4377 local_bh_enable(); 4378 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4379 tp->ucopy.len -= chunk; 4380 tp->copied_seq += chunk; 4381 eaten = (chunk == skb->len); 4382 tcp_rcv_space_adjust(sk); 4383 } 4384 local_bh_disable(); 4385 } 4386 4387 if (eaten <= 0) { 4388 queue_and_out: 4389 if (eaten < 0 && 4390 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4391 goto drop; 4392 4393 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4394 } 4395 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4396 if (skb->len) 4397 tcp_event_data_recv(sk, skb); 4398 if (th->fin) 4399 tcp_fin(sk); 4400 4401 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4402 tcp_ofo_queue(sk); 4403 4404 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4405 * gap in queue is filled. 4406 */ 4407 if (skb_queue_empty(&tp->out_of_order_queue)) 4408 inet_csk(sk)->icsk_ack.pingpong = 0; 4409 } 4410 4411 if (tp->rx_opt.num_sacks) 4412 tcp_sack_remove(tp); 4413 4414 tcp_fast_path_check(sk); 4415 4416 if (eaten > 0) 4417 kfree_skb_partial(skb, fragstolen); 4418 if (!sock_flag(sk, SOCK_DEAD)) 4419 sk->sk_data_ready(sk, 0); 4420 return; 4421 } 4422 4423 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4424 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4425 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4426 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4427 4428 out_of_window: 4429 tcp_enter_quickack_mode(sk); 4430 inet_csk_schedule_ack(sk); 4431 drop: 4432 __kfree_skb(skb); 4433 return; 4434 } 4435 4436 /* Out of window. F.e. zero window probe. */ 4437 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4438 goto out_of_window; 4439 4440 tcp_enter_quickack_mode(sk); 4441 4442 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4443 /* Partial packet, seq < rcv_next < end_seq */ 4444 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4445 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4446 TCP_SKB_CB(skb)->end_seq); 4447 4448 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4449 4450 /* If window is closed, drop tail of packet. But after 4451 * remembering D-SACK for its head made in previous line. 4452 */ 4453 if (!tcp_receive_window(tp)) 4454 goto out_of_window; 4455 goto queue_and_out; 4456 } 4457 4458 tcp_data_queue_ofo(sk, skb); 4459 } 4460 4461 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4462 struct sk_buff_head *list) 4463 { 4464 struct sk_buff *next = NULL; 4465 4466 if (!skb_queue_is_last(list, skb)) 4467 next = skb_queue_next(list, skb); 4468 4469 __skb_unlink(skb, list); 4470 __kfree_skb(skb); 4471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4472 4473 return next; 4474 } 4475 4476 /* Collapse contiguous sequence of skbs head..tail with 4477 * sequence numbers start..end. 4478 * 4479 * If tail is NULL, this means until the end of the list. 4480 * 4481 * Segments with FIN/SYN are not collapsed (only because this 4482 * simplifies code) 4483 */ 4484 static void 4485 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4486 struct sk_buff *head, struct sk_buff *tail, 4487 u32 start, u32 end) 4488 { 4489 struct sk_buff *skb, *n; 4490 bool end_of_skbs; 4491 4492 /* First, check that queue is collapsible and find 4493 * the point where collapsing can be useful. */ 4494 skb = head; 4495 restart: 4496 end_of_skbs = true; 4497 skb_queue_walk_from_safe(list, skb, n) { 4498 if (skb == tail) 4499 break; 4500 /* No new bits? It is possible on ofo queue. */ 4501 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4502 skb = tcp_collapse_one(sk, skb, list); 4503 if (!skb) 4504 break; 4505 goto restart; 4506 } 4507 4508 /* The first skb to collapse is: 4509 * - not SYN/FIN and 4510 * - bloated or contains data before "start" or 4511 * overlaps to the next one. 4512 */ 4513 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4514 (tcp_win_from_space(skb->truesize) > skb->len || 4515 before(TCP_SKB_CB(skb)->seq, start))) { 4516 end_of_skbs = false; 4517 break; 4518 } 4519 4520 if (!skb_queue_is_last(list, skb)) { 4521 struct sk_buff *next = skb_queue_next(list, skb); 4522 if (next != tail && 4523 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4524 end_of_skbs = false; 4525 break; 4526 } 4527 } 4528 4529 /* Decided to skip this, advance start seq. */ 4530 start = TCP_SKB_CB(skb)->end_seq; 4531 } 4532 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4533 return; 4534 4535 while (before(start, end)) { 4536 struct sk_buff *nskb; 4537 unsigned int header = skb_headroom(skb); 4538 int copy = SKB_MAX_ORDER(header, 0); 4539 4540 /* Too big header? This can happen with IPv6. */ 4541 if (copy < 0) 4542 return; 4543 if (end - start < copy) 4544 copy = end - start; 4545 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4546 if (!nskb) 4547 return; 4548 4549 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4550 skb_set_network_header(nskb, (skb_network_header(skb) - 4551 skb->head)); 4552 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4553 skb->head)); 4554 skb_reserve(nskb, header); 4555 memcpy(nskb->head, skb->head, header); 4556 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4557 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4558 __skb_queue_before(list, skb, nskb); 4559 skb_set_owner_r(nskb, sk); 4560 4561 /* Copy data, releasing collapsed skbs. */ 4562 while (copy > 0) { 4563 int offset = start - TCP_SKB_CB(skb)->seq; 4564 int size = TCP_SKB_CB(skb)->end_seq - start; 4565 4566 BUG_ON(offset < 0); 4567 if (size > 0) { 4568 size = min(copy, size); 4569 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4570 BUG(); 4571 TCP_SKB_CB(nskb)->end_seq += size; 4572 copy -= size; 4573 start += size; 4574 } 4575 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4576 skb = tcp_collapse_one(sk, skb, list); 4577 if (!skb || 4578 skb == tail || 4579 tcp_hdr(skb)->syn || 4580 tcp_hdr(skb)->fin) 4581 return; 4582 } 4583 } 4584 } 4585 } 4586 4587 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4588 * and tcp_collapse() them until all the queue is collapsed. 4589 */ 4590 static void tcp_collapse_ofo_queue(struct sock *sk) 4591 { 4592 struct tcp_sock *tp = tcp_sk(sk); 4593 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4594 struct sk_buff *head; 4595 u32 start, end; 4596 4597 if (skb == NULL) 4598 return; 4599 4600 start = TCP_SKB_CB(skb)->seq; 4601 end = TCP_SKB_CB(skb)->end_seq; 4602 head = skb; 4603 4604 for (;;) { 4605 struct sk_buff *next = NULL; 4606 4607 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4608 next = skb_queue_next(&tp->out_of_order_queue, skb); 4609 skb = next; 4610 4611 /* Segment is terminated when we see gap or when 4612 * we are at the end of all the queue. */ 4613 if (!skb || 4614 after(TCP_SKB_CB(skb)->seq, end) || 4615 before(TCP_SKB_CB(skb)->end_seq, start)) { 4616 tcp_collapse(sk, &tp->out_of_order_queue, 4617 head, skb, start, end); 4618 head = skb; 4619 if (!skb) 4620 break; 4621 /* Start new segment */ 4622 start = TCP_SKB_CB(skb)->seq; 4623 end = TCP_SKB_CB(skb)->end_seq; 4624 } else { 4625 if (before(TCP_SKB_CB(skb)->seq, start)) 4626 start = TCP_SKB_CB(skb)->seq; 4627 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4628 end = TCP_SKB_CB(skb)->end_seq; 4629 } 4630 } 4631 } 4632 4633 /* 4634 * Purge the out-of-order queue. 4635 * Return true if queue was pruned. 4636 */ 4637 static bool tcp_prune_ofo_queue(struct sock *sk) 4638 { 4639 struct tcp_sock *tp = tcp_sk(sk); 4640 bool res = false; 4641 4642 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4643 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4644 __skb_queue_purge(&tp->out_of_order_queue); 4645 4646 /* Reset SACK state. A conforming SACK implementation will 4647 * do the same at a timeout based retransmit. When a connection 4648 * is in a sad state like this, we care only about integrity 4649 * of the connection not performance. 4650 */ 4651 if (tp->rx_opt.sack_ok) 4652 tcp_sack_reset(&tp->rx_opt); 4653 sk_mem_reclaim(sk); 4654 res = true; 4655 } 4656 return res; 4657 } 4658 4659 /* Reduce allocated memory if we can, trying to get 4660 * the socket within its memory limits again. 4661 * 4662 * Return less than zero if we should start dropping frames 4663 * until the socket owning process reads some of the data 4664 * to stabilize the situation. 4665 */ 4666 static int tcp_prune_queue(struct sock *sk) 4667 { 4668 struct tcp_sock *tp = tcp_sk(sk); 4669 4670 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4671 4672 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4673 4674 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4675 tcp_clamp_window(sk); 4676 else if (sk_under_memory_pressure(sk)) 4677 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4678 4679 tcp_collapse_ofo_queue(sk); 4680 if (!skb_queue_empty(&sk->sk_receive_queue)) 4681 tcp_collapse(sk, &sk->sk_receive_queue, 4682 skb_peek(&sk->sk_receive_queue), 4683 NULL, 4684 tp->copied_seq, tp->rcv_nxt); 4685 sk_mem_reclaim(sk); 4686 4687 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4688 return 0; 4689 4690 /* Collapsing did not help, destructive actions follow. 4691 * This must not ever occur. */ 4692 4693 tcp_prune_ofo_queue(sk); 4694 4695 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4696 return 0; 4697 4698 /* If we are really being abused, tell the caller to silently 4699 * drop receive data on the floor. It will get retransmitted 4700 * and hopefully then we'll have sufficient space. 4701 */ 4702 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4703 4704 /* Massive buffer overcommit. */ 4705 tp->pred_flags = 0; 4706 return -1; 4707 } 4708 4709 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4710 * As additional protections, we do not touch cwnd in retransmission phases, 4711 * and if application hit its sndbuf limit recently. 4712 */ 4713 void tcp_cwnd_application_limited(struct sock *sk) 4714 { 4715 struct tcp_sock *tp = tcp_sk(sk); 4716 4717 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4718 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4719 /* Limited by application or receiver window. */ 4720 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4721 u32 win_used = max(tp->snd_cwnd_used, init_win); 4722 if (win_used < tp->snd_cwnd) { 4723 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4724 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4725 } 4726 tp->snd_cwnd_used = 0; 4727 } 4728 tp->snd_cwnd_stamp = tcp_time_stamp; 4729 } 4730 4731 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4732 { 4733 const struct tcp_sock *tp = tcp_sk(sk); 4734 4735 /* If the user specified a specific send buffer setting, do 4736 * not modify it. 4737 */ 4738 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4739 return false; 4740 4741 /* If we are under global TCP memory pressure, do not expand. */ 4742 if (sk_under_memory_pressure(sk)) 4743 return false; 4744 4745 /* If we are under soft global TCP memory pressure, do not expand. */ 4746 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4747 return false; 4748 4749 /* If we filled the congestion window, do not expand. */ 4750 if (tp->packets_out >= tp->snd_cwnd) 4751 return false; 4752 4753 return true; 4754 } 4755 4756 /* When incoming ACK allowed to free some skb from write_queue, 4757 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4758 * on the exit from tcp input handler. 4759 * 4760 * PROBLEM: sndbuf expansion does not work well with largesend. 4761 */ 4762 static void tcp_new_space(struct sock *sk) 4763 { 4764 struct tcp_sock *tp = tcp_sk(sk); 4765 4766 if (tcp_should_expand_sndbuf(sk)) { 4767 tcp_sndbuf_expand(sk); 4768 tp->snd_cwnd_stamp = tcp_time_stamp; 4769 } 4770 4771 sk->sk_write_space(sk); 4772 } 4773 4774 static void tcp_check_space(struct sock *sk) 4775 { 4776 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4777 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4778 if (sk->sk_socket && 4779 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4780 tcp_new_space(sk); 4781 } 4782 } 4783 4784 static inline void tcp_data_snd_check(struct sock *sk) 4785 { 4786 tcp_push_pending_frames(sk); 4787 tcp_check_space(sk); 4788 } 4789 4790 /* 4791 * Check if sending an ack is needed. 4792 */ 4793 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4794 { 4795 struct tcp_sock *tp = tcp_sk(sk); 4796 4797 /* More than one full frame received... */ 4798 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4799 /* ... and right edge of window advances far enough. 4800 * (tcp_recvmsg() will send ACK otherwise). Or... 4801 */ 4802 __tcp_select_window(sk) >= tp->rcv_wnd) || 4803 /* We ACK each frame or... */ 4804 tcp_in_quickack_mode(sk) || 4805 /* We have out of order data. */ 4806 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4807 /* Then ack it now */ 4808 tcp_send_ack(sk); 4809 } else { 4810 /* Else, send delayed ack. */ 4811 tcp_send_delayed_ack(sk); 4812 } 4813 } 4814 4815 static inline void tcp_ack_snd_check(struct sock *sk) 4816 { 4817 if (!inet_csk_ack_scheduled(sk)) { 4818 /* We sent a data segment already. */ 4819 return; 4820 } 4821 __tcp_ack_snd_check(sk, 1); 4822 } 4823 4824 /* 4825 * This routine is only called when we have urgent data 4826 * signaled. Its the 'slow' part of tcp_urg. It could be 4827 * moved inline now as tcp_urg is only called from one 4828 * place. We handle URGent data wrong. We have to - as 4829 * BSD still doesn't use the correction from RFC961. 4830 * For 1003.1g we should support a new option TCP_STDURG to permit 4831 * either form (or just set the sysctl tcp_stdurg). 4832 */ 4833 4834 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4835 { 4836 struct tcp_sock *tp = tcp_sk(sk); 4837 u32 ptr = ntohs(th->urg_ptr); 4838 4839 if (ptr && !sysctl_tcp_stdurg) 4840 ptr--; 4841 ptr += ntohl(th->seq); 4842 4843 /* Ignore urgent data that we've already seen and read. */ 4844 if (after(tp->copied_seq, ptr)) 4845 return; 4846 4847 /* Do not replay urg ptr. 4848 * 4849 * NOTE: interesting situation not covered by specs. 4850 * Misbehaving sender may send urg ptr, pointing to segment, 4851 * which we already have in ofo queue. We are not able to fetch 4852 * such data and will stay in TCP_URG_NOTYET until will be eaten 4853 * by recvmsg(). Seems, we are not obliged to handle such wicked 4854 * situations. But it is worth to think about possibility of some 4855 * DoSes using some hypothetical application level deadlock. 4856 */ 4857 if (before(ptr, tp->rcv_nxt)) 4858 return; 4859 4860 /* Do we already have a newer (or duplicate) urgent pointer? */ 4861 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4862 return; 4863 4864 /* Tell the world about our new urgent pointer. */ 4865 sk_send_sigurg(sk); 4866 4867 /* We may be adding urgent data when the last byte read was 4868 * urgent. To do this requires some care. We cannot just ignore 4869 * tp->copied_seq since we would read the last urgent byte again 4870 * as data, nor can we alter copied_seq until this data arrives 4871 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4872 * 4873 * NOTE. Double Dutch. Rendering to plain English: author of comment 4874 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4875 * and expect that both A and B disappear from stream. This is _wrong_. 4876 * Though this happens in BSD with high probability, this is occasional. 4877 * Any application relying on this is buggy. Note also, that fix "works" 4878 * only in this artificial test. Insert some normal data between A and B and we will 4879 * decline of BSD again. Verdict: it is better to remove to trap 4880 * buggy users. 4881 */ 4882 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4883 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4884 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4885 tp->copied_seq++; 4886 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4887 __skb_unlink(skb, &sk->sk_receive_queue); 4888 __kfree_skb(skb); 4889 } 4890 } 4891 4892 tp->urg_data = TCP_URG_NOTYET; 4893 tp->urg_seq = ptr; 4894 4895 /* Disable header prediction. */ 4896 tp->pred_flags = 0; 4897 } 4898 4899 /* This is the 'fast' part of urgent handling. */ 4900 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4901 { 4902 struct tcp_sock *tp = tcp_sk(sk); 4903 4904 /* Check if we get a new urgent pointer - normally not. */ 4905 if (th->urg) 4906 tcp_check_urg(sk, th); 4907 4908 /* Do we wait for any urgent data? - normally not... */ 4909 if (tp->urg_data == TCP_URG_NOTYET) { 4910 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4911 th->syn; 4912 4913 /* Is the urgent pointer pointing into this packet? */ 4914 if (ptr < skb->len) { 4915 u8 tmp; 4916 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4917 BUG(); 4918 tp->urg_data = TCP_URG_VALID | tmp; 4919 if (!sock_flag(sk, SOCK_DEAD)) 4920 sk->sk_data_ready(sk, 0); 4921 } 4922 } 4923 } 4924 4925 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4926 { 4927 struct tcp_sock *tp = tcp_sk(sk); 4928 int chunk = skb->len - hlen; 4929 int err; 4930 4931 local_bh_enable(); 4932 if (skb_csum_unnecessary(skb)) 4933 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4934 else 4935 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4936 tp->ucopy.iov); 4937 4938 if (!err) { 4939 tp->ucopy.len -= chunk; 4940 tp->copied_seq += chunk; 4941 tcp_rcv_space_adjust(sk); 4942 } 4943 4944 local_bh_disable(); 4945 return err; 4946 } 4947 4948 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4949 struct sk_buff *skb) 4950 { 4951 __sum16 result; 4952 4953 if (sock_owned_by_user(sk)) { 4954 local_bh_enable(); 4955 result = __tcp_checksum_complete(skb); 4956 local_bh_disable(); 4957 } else { 4958 result = __tcp_checksum_complete(skb); 4959 } 4960 return result; 4961 } 4962 4963 static inline bool tcp_checksum_complete_user(struct sock *sk, 4964 struct sk_buff *skb) 4965 { 4966 return !skb_csum_unnecessary(skb) && 4967 __tcp_checksum_complete_user(sk, skb); 4968 } 4969 4970 #ifdef CONFIG_NET_DMA 4971 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4972 int hlen) 4973 { 4974 struct tcp_sock *tp = tcp_sk(sk); 4975 int chunk = skb->len - hlen; 4976 int dma_cookie; 4977 bool copied_early = false; 4978 4979 if (tp->ucopy.wakeup) 4980 return false; 4981 4982 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4983 tp->ucopy.dma_chan = net_dma_find_channel(); 4984 4985 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4986 4987 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4988 skb, hlen, 4989 tp->ucopy.iov, chunk, 4990 tp->ucopy.pinned_list); 4991 4992 if (dma_cookie < 0) 4993 goto out; 4994 4995 tp->ucopy.dma_cookie = dma_cookie; 4996 copied_early = true; 4997 4998 tp->ucopy.len -= chunk; 4999 tp->copied_seq += chunk; 5000 tcp_rcv_space_adjust(sk); 5001 5002 if ((tp->ucopy.len == 0) || 5003 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5004 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5005 tp->ucopy.wakeup = 1; 5006 sk->sk_data_ready(sk, 0); 5007 } 5008 } else if (chunk > 0) { 5009 tp->ucopy.wakeup = 1; 5010 sk->sk_data_ready(sk, 0); 5011 } 5012 out: 5013 return copied_early; 5014 } 5015 #endif /* CONFIG_NET_DMA */ 5016 5017 /* Does PAWS and seqno based validation of an incoming segment, flags will 5018 * play significant role here. 5019 */ 5020 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5021 const struct tcphdr *th, int syn_inerr) 5022 { 5023 struct tcp_sock *tp = tcp_sk(sk); 5024 5025 /* RFC1323: H1. Apply PAWS check first. */ 5026 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5027 tcp_paws_discard(sk, skb)) { 5028 if (!th->rst) { 5029 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5030 tcp_send_dupack(sk, skb); 5031 goto discard; 5032 } 5033 /* Reset is accepted even if it did not pass PAWS. */ 5034 } 5035 5036 /* Step 1: check sequence number */ 5037 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5038 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5039 * (RST) segments are validated by checking their SEQ-fields." 5040 * And page 69: "If an incoming segment is not acceptable, 5041 * an acknowledgment should be sent in reply (unless the RST 5042 * bit is set, if so drop the segment and return)". 5043 */ 5044 if (!th->rst) { 5045 if (th->syn) 5046 goto syn_challenge; 5047 tcp_send_dupack(sk, skb); 5048 } 5049 goto discard; 5050 } 5051 5052 /* Step 2: check RST bit */ 5053 if (th->rst) { 5054 /* RFC 5961 3.2 : 5055 * If sequence number exactly matches RCV.NXT, then 5056 * RESET the connection 5057 * else 5058 * Send a challenge ACK 5059 */ 5060 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5061 tcp_reset(sk); 5062 else 5063 tcp_send_challenge_ack(sk); 5064 goto discard; 5065 } 5066 5067 /* step 3: check security and precedence [ignored] */ 5068 5069 /* step 4: Check for a SYN 5070 * RFC 5691 4.2 : Send a challenge ack 5071 */ 5072 if (th->syn) { 5073 syn_challenge: 5074 if (syn_inerr) 5075 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5076 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5077 tcp_send_challenge_ack(sk); 5078 goto discard; 5079 } 5080 5081 return true; 5082 5083 discard: 5084 __kfree_skb(skb); 5085 return false; 5086 } 5087 5088 /* 5089 * TCP receive function for the ESTABLISHED state. 5090 * 5091 * It is split into a fast path and a slow path. The fast path is 5092 * disabled when: 5093 * - A zero window was announced from us - zero window probing 5094 * is only handled properly in the slow path. 5095 * - Out of order segments arrived. 5096 * - Urgent data is expected. 5097 * - There is no buffer space left 5098 * - Unexpected TCP flags/window values/header lengths are received 5099 * (detected by checking the TCP header against pred_flags) 5100 * - Data is sent in both directions. Fast path only supports pure senders 5101 * or pure receivers (this means either the sequence number or the ack 5102 * value must stay constant) 5103 * - Unexpected TCP option. 5104 * 5105 * When these conditions are not satisfied it drops into a standard 5106 * receive procedure patterned after RFC793 to handle all cases. 5107 * The first three cases are guaranteed by proper pred_flags setting, 5108 * the rest is checked inline. Fast processing is turned on in 5109 * tcp_data_queue when everything is OK. 5110 */ 5111 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5112 const struct tcphdr *th, unsigned int len) 5113 { 5114 struct tcp_sock *tp = tcp_sk(sk); 5115 5116 if (unlikely(sk->sk_rx_dst == NULL)) 5117 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5118 /* 5119 * Header prediction. 5120 * The code loosely follows the one in the famous 5121 * "30 instruction TCP receive" Van Jacobson mail. 5122 * 5123 * Van's trick is to deposit buffers into socket queue 5124 * on a device interrupt, to call tcp_recv function 5125 * on the receive process context and checksum and copy 5126 * the buffer to user space. smart... 5127 * 5128 * Our current scheme is not silly either but we take the 5129 * extra cost of the net_bh soft interrupt processing... 5130 * We do checksum and copy also but from device to kernel. 5131 */ 5132 5133 tp->rx_opt.saw_tstamp = 0; 5134 5135 /* pred_flags is 0xS?10 << 16 + snd_wnd 5136 * if header_prediction is to be made 5137 * 'S' will always be tp->tcp_header_len >> 2 5138 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5139 * turn it off (when there are holes in the receive 5140 * space for instance) 5141 * PSH flag is ignored. 5142 */ 5143 5144 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5145 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5146 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5147 int tcp_header_len = tp->tcp_header_len; 5148 5149 /* Timestamp header prediction: tcp_header_len 5150 * is automatically equal to th->doff*4 due to pred_flags 5151 * match. 5152 */ 5153 5154 /* Check timestamp */ 5155 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5156 /* No? Slow path! */ 5157 if (!tcp_parse_aligned_timestamp(tp, th)) 5158 goto slow_path; 5159 5160 /* If PAWS failed, check it more carefully in slow path */ 5161 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5162 goto slow_path; 5163 5164 /* DO NOT update ts_recent here, if checksum fails 5165 * and timestamp was corrupted part, it will result 5166 * in a hung connection since we will drop all 5167 * future packets due to the PAWS test. 5168 */ 5169 } 5170 5171 if (len <= tcp_header_len) { 5172 /* Bulk data transfer: sender */ 5173 if (len == tcp_header_len) { 5174 /* Predicted packet is in window by definition. 5175 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5176 * Hence, check seq<=rcv_wup reduces to: 5177 */ 5178 if (tcp_header_len == 5179 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5180 tp->rcv_nxt == tp->rcv_wup) 5181 tcp_store_ts_recent(tp); 5182 5183 /* We know that such packets are checksummed 5184 * on entry. 5185 */ 5186 tcp_ack(sk, skb, 0); 5187 __kfree_skb(skb); 5188 tcp_data_snd_check(sk); 5189 return; 5190 } else { /* Header too small */ 5191 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5192 goto discard; 5193 } 5194 } else { 5195 int eaten = 0; 5196 int copied_early = 0; 5197 bool fragstolen = false; 5198 5199 if (tp->copied_seq == tp->rcv_nxt && 5200 len - tcp_header_len <= tp->ucopy.len) { 5201 #ifdef CONFIG_NET_DMA 5202 if (tp->ucopy.task == current && 5203 sock_owned_by_user(sk) && 5204 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5205 copied_early = 1; 5206 eaten = 1; 5207 } 5208 #endif 5209 if (tp->ucopy.task == current && 5210 sock_owned_by_user(sk) && !copied_early) { 5211 __set_current_state(TASK_RUNNING); 5212 5213 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5214 eaten = 1; 5215 } 5216 if (eaten) { 5217 /* Predicted packet is in window by definition. 5218 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5219 * Hence, check seq<=rcv_wup reduces to: 5220 */ 5221 if (tcp_header_len == 5222 (sizeof(struct tcphdr) + 5223 TCPOLEN_TSTAMP_ALIGNED) && 5224 tp->rcv_nxt == tp->rcv_wup) 5225 tcp_store_ts_recent(tp); 5226 5227 tcp_rcv_rtt_measure_ts(sk, skb); 5228 5229 __skb_pull(skb, tcp_header_len); 5230 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5231 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5232 } 5233 if (copied_early) 5234 tcp_cleanup_rbuf(sk, skb->len); 5235 } 5236 if (!eaten) { 5237 if (tcp_checksum_complete_user(sk, skb)) 5238 goto csum_error; 5239 5240 if ((int)skb->truesize > sk->sk_forward_alloc) 5241 goto step5; 5242 5243 /* Predicted packet is in window by definition. 5244 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5245 * Hence, check seq<=rcv_wup reduces to: 5246 */ 5247 if (tcp_header_len == 5248 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5249 tp->rcv_nxt == tp->rcv_wup) 5250 tcp_store_ts_recent(tp); 5251 5252 tcp_rcv_rtt_measure_ts(sk, skb); 5253 5254 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5255 5256 /* Bulk data transfer: receiver */ 5257 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5258 &fragstolen); 5259 } 5260 5261 tcp_event_data_recv(sk, skb); 5262 5263 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5264 /* Well, only one small jumplet in fast path... */ 5265 tcp_ack(sk, skb, FLAG_DATA); 5266 tcp_data_snd_check(sk); 5267 if (!inet_csk_ack_scheduled(sk)) 5268 goto no_ack; 5269 } 5270 5271 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5272 __tcp_ack_snd_check(sk, 0); 5273 no_ack: 5274 #ifdef CONFIG_NET_DMA 5275 if (copied_early) 5276 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5277 else 5278 #endif 5279 if (eaten) 5280 kfree_skb_partial(skb, fragstolen); 5281 sk->sk_data_ready(sk, 0); 5282 return; 5283 } 5284 } 5285 5286 slow_path: 5287 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5288 goto csum_error; 5289 5290 if (!th->ack && !th->rst) 5291 goto discard; 5292 5293 /* 5294 * Standard slow path. 5295 */ 5296 5297 if (!tcp_validate_incoming(sk, skb, th, 1)) 5298 return; 5299 5300 step5: 5301 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5302 goto discard; 5303 5304 tcp_rcv_rtt_measure_ts(sk, skb); 5305 5306 /* Process urgent data. */ 5307 tcp_urg(sk, skb, th); 5308 5309 /* step 7: process the segment text */ 5310 tcp_data_queue(sk, skb); 5311 5312 tcp_data_snd_check(sk); 5313 tcp_ack_snd_check(sk); 5314 return; 5315 5316 csum_error: 5317 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5318 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5319 5320 discard: 5321 __kfree_skb(skb); 5322 } 5323 EXPORT_SYMBOL(tcp_rcv_established); 5324 5325 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5326 { 5327 struct tcp_sock *tp = tcp_sk(sk); 5328 struct inet_connection_sock *icsk = inet_csk(sk); 5329 5330 tcp_set_state(sk, TCP_ESTABLISHED); 5331 5332 if (skb != NULL) { 5333 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5334 security_inet_conn_established(sk, skb); 5335 } 5336 5337 /* Make sure socket is routed, for correct metrics. */ 5338 icsk->icsk_af_ops->rebuild_header(sk); 5339 5340 tcp_init_metrics(sk); 5341 5342 tcp_init_congestion_control(sk); 5343 5344 /* Prevent spurious tcp_cwnd_restart() on first data 5345 * packet. 5346 */ 5347 tp->lsndtime = tcp_time_stamp; 5348 5349 tcp_init_buffer_space(sk); 5350 5351 if (sock_flag(sk, SOCK_KEEPOPEN)) 5352 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5353 5354 if (!tp->rx_opt.snd_wscale) 5355 __tcp_fast_path_on(tp, tp->snd_wnd); 5356 else 5357 tp->pred_flags = 0; 5358 5359 if (!sock_flag(sk, SOCK_DEAD)) { 5360 sk->sk_state_change(sk); 5361 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5362 } 5363 } 5364 5365 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5366 struct tcp_fastopen_cookie *cookie) 5367 { 5368 struct tcp_sock *tp = tcp_sk(sk); 5369 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5370 u16 mss = tp->rx_opt.mss_clamp; 5371 bool syn_drop; 5372 5373 if (mss == tp->rx_opt.user_mss) { 5374 struct tcp_options_received opt; 5375 5376 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5377 tcp_clear_options(&opt); 5378 opt.user_mss = opt.mss_clamp = 0; 5379 tcp_parse_options(synack, &opt, 0, NULL); 5380 mss = opt.mss_clamp; 5381 } 5382 5383 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5384 cookie->len = -1; 5385 5386 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5387 * the remote receives only the retransmitted (regular) SYNs: either 5388 * the original SYN-data or the corresponding SYN-ACK is lost. 5389 */ 5390 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5391 5392 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5393 5394 if (data) { /* Retransmit unacked data in SYN */ 5395 tcp_for_write_queue_from(data, sk) { 5396 if (data == tcp_send_head(sk) || 5397 __tcp_retransmit_skb(sk, data)) 5398 break; 5399 } 5400 tcp_rearm_rto(sk); 5401 return true; 5402 } 5403 tp->syn_data_acked = tp->syn_data; 5404 return false; 5405 } 5406 5407 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5408 const struct tcphdr *th, unsigned int len) 5409 { 5410 struct inet_connection_sock *icsk = inet_csk(sk); 5411 struct tcp_sock *tp = tcp_sk(sk); 5412 struct tcp_fastopen_cookie foc = { .len = -1 }; 5413 int saved_clamp = tp->rx_opt.mss_clamp; 5414 5415 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5416 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5417 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5418 5419 if (th->ack) { 5420 /* rfc793: 5421 * "If the state is SYN-SENT then 5422 * first check the ACK bit 5423 * If the ACK bit is set 5424 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5425 * a reset (unless the RST bit is set, if so drop 5426 * the segment and return)" 5427 */ 5428 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5429 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5430 goto reset_and_undo; 5431 5432 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5433 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5434 tcp_time_stamp)) { 5435 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5436 goto reset_and_undo; 5437 } 5438 5439 /* Now ACK is acceptable. 5440 * 5441 * "If the RST bit is set 5442 * If the ACK was acceptable then signal the user "error: 5443 * connection reset", drop the segment, enter CLOSED state, 5444 * delete TCB, and return." 5445 */ 5446 5447 if (th->rst) { 5448 tcp_reset(sk); 5449 goto discard; 5450 } 5451 5452 /* rfc793: 5453 * "fifth, if neither of the SYN or RST bits is set then 5454 * drop the segment and return." 5455 * 5456 * See note below! 5457 * --ANK(990513) 5458 */ 5459 if (!th->syn) 5460 goto discard_and_undo; 5461 5462 /* rfc793: 5463 * "If the SYN bit is on ... 5464 * are acceptable then ... 5465 * (our SYN has been ACKed), change the connection 5466 * state to ESTABLISHED..." 5467 */ 5468 5469 TCP_ECN_rcv_synack(tp, th); 5470 5471 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5472 tcp_ack(sk, skb, FLAG_SLOWPATH); 5473 5474 /* Ok.. it's good. Set up sequence numbers and 5475 * move to established. 5476 */ 5477 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5478 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5479 5480 /* RFC1323: The window in SYN & SYN/ACK segments is 5481 * never scaled. 5482 */ 5483 tp->snd_wnd = ntohs(th->window); 5484 5485 if (!tp->rx_opt.wscale_ok) { 5486 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5487 tp->window_clamp = min(tp->window_clamp, 65535U); 5488 } 5489 5490 if (tp->rx_opt.saw_tstamp) { 5491 tp->rx_opt.tstamp_ok = 1; 5492 tp->tcp_header_len = 5493 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5494 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5495 tcp_store_ts_recent(tp); 5496 } else { 5497 tp->tcp_header_len = sizeof(struct tcphdr); 5498 } 5499 5500 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5501 tcp_enable_fack(tp); 5502 5503 tcp_mtup_init(sk); 5504 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5505 tcp_initialize_rcv_mss(sk); 5506 5507 /* Remember, tcp_poll() does not lock socket! 5508 * Change state from SYN-SENT only after copied_seq 5509 * is initialized. */ 5510 tp->copied_seq = tp->rcv_nxt; 5511 5512 smp_mb(); 5513 5514 tcp_finish_connect(sk, skb); 5515 5516 if ((tp->syn_fastopen || tp->syn_data) && 5517 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5518 return -1; 5519 5520 if (sk->sk_write_pending || 5521 icsk->icsk_accept_queue.rskq_defer_accept || 5522 icsk->icsk_ack.pingpong) { 5523 /* Save one ACK. Data will be ready after 5524 * several ticks, if write_pending is set. 5525 * 5526 * It may be deleted, but with this feature tcpdumps 5527 * look so _wonderfully_ clever, that I was not able 5528 * to stand against the temptation 8) --ANK 5529 */ 5530 inet_csk_schedule_ack(sk); 5531 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5532 tcp_enter_quickack_mode(sk); 5533 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5534 TCP_DELACK_MAX, TCP_RTO_MAX); 5535 5536 discard: 5537 __kfree_skb(skb); 5538 return 0; 5539 } else { 5540 tcp_send_ack(sk); 5541 } 5542 return -1; 5543 } 5544 5545 /* No ACK in the segment */ 5546 5547 if (th->rst) { 5548 /* rfc793: 5549 * "If the RST bit is set 5550 * 5551 * Otherwise (no ACK) drop the segment and return." 5552 */ 5553 5554 goto discard_and_undo; 5555 } 5556 5557 /* PAWS check. */ 5558 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5559 tcp_paws_reject(&tp->rx_opt, 0)) 5560 goto discard_and_undo; 5561 5562 if (th->syn) { 5563 /* We see SYN without ACK. It is attempt of 5564 * simultaneous connect with crossed SYNs. 5565 * Particularly, it can be connect to self. 5566 */ 5567 tcp_set_state(sk, TCP_SYN_RECV); 5568 5569 if (tp->rx_opt.saw_tstamp) { 5570 tp->rx_opt.tstamp_ok = 1; 5571 tcp_store_ts_recent(tp); 5572 tp->tcp_header_len = 5573 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5574 } else { 5575 tp->tcp_header_len = sizeof(struct tcphdr); 5576 } 5577 5578 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5579 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5580 5581 /* RFC1323: The window in SYN & SYN/ACK segments is 5582 * never scaled. 5583 */ 5584 tp->snd_wnd = ntohs(th->window); 5585 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5586 tp->max_window = tp->snd_wnd; 5587 5588 TCP_ECN_rcv_syn(tp, th); 5589 5590 tcp_mtup_init(sk); 5591 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5592 tcp_initialize_rcv_mss(sk); 5593 5594 tcp_send_synack(sk); 5595 #if 0 5596 /* Note, we could accept data and URG from this segment. 5597 * There are no obstacles to make this (except that we must 5598 * either change tcp_recvmsg() to prevent it from returning data 5599 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5600 * 5601 * However, if we ignore data in ACKless segments sometimes, 5602 * we have no reasons to accept it sometimes. 5603 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5604 * is not flawless. So, discard packet for sanity. 5605 * Uncomment this return to process the data. 5606 */ 5607 return -1; 5608 #else 5609 goto discard; 5610 #endif 5611 } 5612 /* "fifth, if neither of the SYN or RST bits is set then 5613 * drop the segment and return." 5614 */ 5615 5616 discard_and_undo: 5617 tcp_clear_options(&tp->rx_opt); 5618 tp->rx_opt.mss_clamp = saved_clamp; 5619 goto discard; 5620 5621 reset_and_undo: 5622 tcp_clear_options(&tp->rx_opt); 5623 tp->rx_opt.mss_clamp = saved_clamp; 5624 return 1; 5625 } 5626 5627 /* 5628 * This function implements the receiving procedure of RFC 793 for 5629 * all states except ESTABLISHED and TIME_WAIT. 5630 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5631 * address independent. 5632 */ 5633 5634 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5635 const struct tcphdr *th, unsigned int len) 5636 { 5637 struct tcp_sock *tp = tcp_sk(sk); 5638 struct inet_connection_sock *icsk = inet_csk(sk); 5639 struct request_sock *req; 5640 int queued = 0; 5641 bool acceptable; 5642 u32 synack_stamp; 5643 5644 tp->rx_opt.saw_tstamp = 0; 5645 5646 switch (sk->sk_state) { 5647 case TCP_CLOSE: 5648 goto discard; 5649 5650 case TCP_LISTEN: 5651 if (th->ack) 5652 return 1; 5653 5654 if (th->rst) 5655 goto discard; 5656 5657 if (th->syn) { 5658 if (th->fin) 5659 goto discard; 5660 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5661 return 1; 5662 5663 /* Now we have several options: In theory there is 5664 * nothing else in the frame. KA9Q has an option to 5665 * send data with the syn, BSD accepts data with the 5666 * syn up to the [to be] advertised window and 5667 * Solaris 2.1 gives you a protocol error. For now 5668 * we just ignore it, that fits the spec precisely 5669 * and avoids incompatibilities. It would be nice in 5670 * future to drop through and process the data. 5671 * 5672 * Now that TTCP is starting to be used we ought to 5673 * queue this data. 5674 * But, this leaves one open to an easy denial of 5675 * service attack, and SYN cookies can't defend 5676 * against this problem. So, we drop the data 5677 * in the interest of security over speed unless 5678 * it's still in use. 5679 */ 5680 kfree_skb(skb); 5681 return 0; 5682 } 5683 goto discard; 5684 5685 case TCP_SYN_SENT: 5686 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5687 if (queued >= 0) 5688 return queued; 5689 5690 /* Do step6 onward by hand. */ 5691 tcp_urg(sk, skb, th); 5692 __kfree_skb(skb); 5693 tcp_data_snd_check(sk); 5694 return 0; 5695 } 5696 5697 req = tp->fastopen_rsk; 5698 if (req != NULL) { 5699 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5700 sk->sk_state != TCP_FIN_WAIT1); 5701 5702 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5703 goto discard; 5704 } 5705 5706 if (!th->ack && !th->rst) 5707 goto discard; 5708 5709 if (!tcp_validate_incoming(sk, skb, th, 0)) 5710 return 0; 5711 5712 /* step 5: check the ACK field */ 5713 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5714 FLAG_UPDATE_TS_RECENT) > 0; 5715 5716 switch (sk->sk_state) { 5717 case TCP_SYN_RECV: 5718 if (!acceptable) 5719 return 1; 5720 5721 /* Once we leave TCP_SYN_RECV, we no longer need req 5722 * so release it. 5723 */ 5724 if (req) { 5725 synack_stamp = tcp_rsk(req)->snt_synack; 5726 tp->total_retrans = req->num_retrans; 5727 reqsk_fastopen_remove(sk, req, false); 5728 } else { 5729 synack_stamp = tp->lsndtime; 5730 /* Make sure socket is routed, for correct metrics. */ 5731 icsk->icsk_af_ops->rebuild_header(sk); 5732 tcp_init_congestion_control(sk); 5733 5734 tcp_mtup_init(sk); 5735 tp->copied_seq = tp->rcv_nxt; 5736 tcp_init_buffer_space(sk); 5737 } 5738 smp_mb(); 5739 tcp_set_state(sk, TCP_ESTABLISHED); 5740 sk->sk_state_change(sk); 5741 5742 /* Note, that this wakeup is only for marginal crossed SYN case. 5743 * Passively open sockets are not waked up, because 5744 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5745 */ 5746 if (sk->sk_socket) 5747 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5748 5749 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5750 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5751 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5752 tcp_synack_rtt_meas(sk, synack_stamp); 5753 5754 if (tp->rx_opt.tstamp_ok) 5755 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5756 5757 if (req) { 5758 /* Re-arm the timer because data may have been sent out. 5759 * This is similar to the regular data transmission case 5760 * when new data has just been ack'ed. 5761 * 5762 * (TFO) - we could try to be more aggressive and 5763 * retransmitting any data sooner based on when they 5764 * are sent out. 5765 */ 5766 tcp_rearm_rto(sk); 5767 } else 5768 tcp_init_metrics(sk); 5769 5770 tcp_update_pacing_rate(sk); 5771 5772 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5773 tp->lsndtime = tcp_time_stamp; 5774 5775 tcp_initialize_rcv_mss(sk); 5776 tcp_fast_path_on(tp); 5777 break; 5778 5779 case TCP_FIN_WAIT1: { 5780 struct dst_entry *dst; 5781 int tmo; 5782 5783 /* If we enter the TCP_FIN_WAIT1 state and we are a 5784 * Fast Open socket and this is the first acceptable 5785 * ACK we have received, this would have acknowledged 5786 * our SYNACK so stop the SYNACK timer. 5787 */ 5788 if (req != NULL) { 5789 /* Return RST if ack_seq is invalid. 5790 * Note that RFC793 only says to generate a 5791 * DUPACK for it but for TCP Fast Open it seems 5792 * better to treat this case like TCP_SYN_RECV 5793 * above. 5794 */ 5795 if (!acceptable) 5796 return 1; 5797 /* We no longer need the request sock. */ 5798 reqsk_fastopen_remove(sk, req, false); 5799 tcp_rearm_rto(sk); 5800 } 5801 if (tp->snd_una != tp->write_seq) 5802 break; 5803 5804 tcp_set_state(sk, TCP_FIN_WAIT2); 5805 sk->sk_shutdown |= SEND_SHUTDOWN; 5806 5807 dst = __sk_dst_get(sk); 5808 if (dst) 5809 dst_confirm(dst); 5810 5811 if (!sock_flag(sk, SOCK_DEAD)) { 5812 /* Wake up lingering close() */ 5813 sk->sk_state_change(sk); 5814 break; 5815 } 5816 5817 if (tp->linger2 < 0 || 5818 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5819 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5820 tcp_done(sk); 5821 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5822 return 1; 5823 } 5824 5825 tmo = tcp_fin_time(sk); 5826 if (tmo > TCP_TIMEWAIT_LEN) { 5827 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5828 } else if (th->fin || sock_owned_by_user(sk)) { 5829 /* Bad case. We could lose such FIN otherwise. 5830 * It is not a big problem, but it looks confusing 5831 * and not so rare event. We still can lose it now, 5832 * if it spins in bh_lock_sock(), but it is really 5833 * marginal case. 5834 */ 5835 inet_csk_reset_keepalive_timer(sk, tmo); 5836 } else { 5837 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5838 goto discard; 5839 } 5840 break; 5841 } 5842 5843 case TCP_CLOSING: 5844 if (tp->snd_una == tp->write_seq) { 5845 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5846 goto discard; 5847 } 5848 break; 5849 5850 case TCP_LAST_ACK: 5851 if (tp->snd_una == tp->write_seq) { 5852 tcp_update_metrics(sk); 5853 tcp_done(sk); 5854 goto discard; 5855 } 5856 break; 5857 } 5858 5859 /* step 6: check the URG bit */ 5860 tcp_urg(sk, skb, th); 5861 5862 /* step 7: process the segment text */ 5863 switch (sk->sk_state) { 5864 case TCP_CLOSE_WAIT: 5865 case TCP_CLOSING: 5866 case TCP_LAST_ACK: 5867 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5868 break; 5869 case TCP_FIN_WAIT1: 5870 case TCP_FIN_WAIT2: 5871 /* RFC 793 says to queue data in these states, 5872 * RFC 1122 says we MUST send a reset. 5873 * BSD 4.4 also does reset. 5874 */ 5875 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5876 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5877 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5878 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5879 tcp_reset(sk); 5880 return 1; 5881 } 5882 } 5883 /* Fall through */ 5884 case TCP_ESTABLISHED: 5885 tcp_data_queue(sk, skb); 5886 queued = 1; 5887 break; 5888 } 5889 5890 /* tcp_data could move socket to TIME-WAIT */ 5891 if (sk->sk_state != TCP_CLOSE) { 5892 tcp_data_snd_check(sk); 5893 tcp_ack_snd_check(sk); 5894 } 5895 5896 if (!queued) { 5897 discard: 5898 __kfree_skb(skb); 5899 } 5900 return 0; 5901 } 5902 EXPORT_SYMBOL(tcp_rcv_state_process); 5903