1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_inc(&clean_acked_data_enabled.key); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 133 void clean_acked_data_flush(void) 134 { 135 static_key_deferred_flush(&clean_acked_data_enabled); 136 } 137 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 138 #endif 139 140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 141 unsigned int len) 142 { 143 static bool __once __read_mostly; 144 145 if (!__once) { 146 struct net_device *dev; 147 148 __once = true; 149 150 rcu_read_lock(); 151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 152 if (!dev || len >= dev->mtu) 153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 154 dev ? dev->name : "Unknown driver"); 155 rcu_read_unlock(); 156 } 157 } 158 159 /* Adapt the MSS value used to make delayed ack decision to the 160 * real world. 161 */ 162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const unsigned int lss = icsk->icsk_ack.last_seg_size; 166 unsigned int len; 167 168 icsk->icsk_ack.last_seg_size = 0; 169 170 /* skb->len may jitter because of SACKs, even if peer 171 * sends good full-sized frames. 172 */ 173 len = skb_shinfo(skb)->gso_size ? : skb->len; 174 if (len >= icsk->icsk_ack.rcv_mss) { 175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 176 tcp_sk(sk)->advmss); 177 /* Account for possibly-removed options */ 178 if (unlikely(len > icsk->icsk_ack.rcv_mss + 179 MAX_TCP_OPTION_SPACE)) 180 tcp_gro_dev_warn(sk, skb, len); 181 } else { 182 /* Otherwise, we make more careful check taking into account, 183 * that SACKs block is variable. 184 * 185 * "len" is invariant segment length, including TCP header. 186 */ 187 len += skb->data - skb_transport_header(skb); 188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 189 /* If PSH is not set, packet should be 190 * full sized, provided peer TCP is not badly broken. 191 * This observation (if it is correct 8)) allows 192 * to handle super-low mtu links fairly. 193 */ 194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 196 /* Subtract also invariant (if peer is RFC compliant), 197 * tcp header plus fixed timestamp option length. 198 * Resulting "len" is MSS free of SACK jitter. 199 */ 200 len -= tcp_sk(sk)->tcp_header_len; 201 icsk->icsk_ack.last_seg_size = len; 202 if (len == lss) { 203 icsk->icsk_ack.rcv_mss = len; 204 return; 205 } 206 } 207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 210 } 211 } 212 213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 214 { 215 struct inet_connection_sock *icsk = inet_csk(sk); 216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 217 218 if (quickacks == 0) 219 quickacks = 2; 220 quickacks = min(quickacks, max_quickacks); 221 if (quickacks > icsk->icsk_ack.quick) 222 icsk->icsk_ack.quick = quickacks; 223 } 224 225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 226 { 227 struct inet_connection_sock *icsk = inet_csk(sk); 228 229 tcp_incr_quickack(sk, max_quickacks); 230 inet_csk_exit_pingpong_mode(sk); 231 icsk->icsk_ack.ato = TCP_ATO_MIN; 232 } 233 EXPORT_SYMBOL(tcp_enter_quickack_mode); 234 235 /* Send ACKs quickly, if "quick" count is not exhausted 236 * and the session is not interactive. 237 */ 238 239 static bool tcp_in_quickack_mode(struct sock *sk) 240 { 241 const struct inet_connection_sock *icsk = inet_csk(sk); 242 const struct dst_entry *dst = __sk_dst_get(sk); 243 244 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 246 } 247 248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 249 { 250 if (tp->ecn_flags & TCP_ECN_OK) 251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 252 } 253 254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 255 { 256 if (tcp_hdr(skb)->cwr) { 257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 258 259 /* If the sender is telling us it has entered CWR, then its 260 * cwnd may be very low (even just 1 packet), so we should ACK 261 * immediately. 262 */ 263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 264 } 265 } 266 267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 268 { 269 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 270 } 271 272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 273 { 274 struct tcp_sock *tp = tcp_sk(sk); 275 276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 277 case INET_ECN_NOT_ECT: 278 /* Funny extension: if ECT is not set on a segment, 279 * and we already seen ECT on a previous segment, 280 * it is probably a retransmit. 281 */ 282 if (tp->ecn_flags & TCP_ECN_SEEN) 283 tcp_enter_quickack_mode(sk, 2); 284 break; 285 case INET_ECN_CE: 286 if (tcp_ca_needs_ecn(sk)) 287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 288 289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 290 /* Better not delay acks, sender can have a very low cwnd */ 291 tcp_enter_quickack_mode(sk, 2); 292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 293 } 294 tp->ecn_flags |= TCP_ECN_SEEN; 295 break; 296 default: 297 if (tcp_ca_needs_ecn(sk)) 298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 299 tp->ecn_flags |= TCP_ECN_SEEN; 300 break; 301 } 302 } 303 304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 305 { 306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 307 __tcp_ecn_check_ce(sk, skb); 308 } 309 310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 311 { 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 313 tp->ecn_flags &= ~TCP_ECN_OK; 314 } 315 316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 317 { 318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 319 tp->ecn_flags &= ~TCP_ECN_OK; 320 } 321 322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 323 { 324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 325 return true; 326 return false; 327 } 328 329 /* Buffer size and advertised window tuning. 330 * 331 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 332 */ 333 334 static void tcp_sndbuf_expand(struct sock *sk) 335 { 336 const struct tcp_sock *tp = tcp_sk(sk); 337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 338 int sndmem, per_mss; 339 u32 nr_segs; 340 341 /* Worst case is non GSO/TSO : each frame consumes one skb 342 * and skb->head is kmalloced using power of two area of memory 343 */ 344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 345 MAX_TCP_HEADER + 346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 347 348 per_mss = roundup_pow_of_two(per_mss) + 349 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 350 351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 353 354 /* Fast Recovery (RFC 5681 3.2) : 355 * Cubic needs 1.7 factor, rounded to 2 to include 356 * extra cushion (application might react slowly to EPOLLOUT) 357 */ 358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 359 sndmem *= nr_segs * per_mss; 360 361 if (sk->sk_sndbuf < sndmem) 362 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 363 } 364 365 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 366 * 367 * All tcp_full_space() is split to two parts: "network" buffer, allocated 368 * forward and advertised in receiver window (tp->rcv_wnd) and 369 * "application buffer", required to isolate scheduling/application 370 * latencies from network. 371 * window_clamp is maximal advertised window. It can be less than 372 * tcp_full_space(), in this case tcp_full_space() - window_clamp 373 * is reserved for "application" buffer. The less window_clamp is 374 * the smoother our behaviour from viewpoint of network, but the lower 375 * throughput and the higher sensitivity of the connection to losses. 8) 376 * 377 * rcv_ssthresh is more strict window_clamp used at "slow start" 378 * phase to predict further behaviour of this connection. 379 * It is used for two goals: 380 * - to enforce header prediction at sender, even when application 381 * requires some significant "application buffer". It is check #1. 382 * - to prevent pruning of receive queue because of misprediction 383 * of receiver window. Check #2. 384 * 385 * The scheme does not work when sender sends good segments opening 386 * window and then starts to feed us spaghetti. But it should work 387 * in common situations. Otherwise, we have to rely on queue collapsing. 388 */ 389 390 /* Slow part of check#2. */ 391 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 392 { 393 struct tcp_sock *tp = tcp_sk(sk); 394 /* Optimize this! */ 395 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 396 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 397 398 while (tp->rcv_ssthresh <= window) { 399 if (truesize <= skb->len) 400 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 401 402 truesize >>= 1; 403 window >>= 1; 404 } 405 return 0; 406 } 407 408 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 409 { 410 struct tcp_sock *tp = tcp_sk(sk); 411 int room; 412 413 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 414 415 /* Check #1 */ 416 if (room > 0 && !tcp_under_memory_pressure(sk)) { 417 int incr; 418 419 /* Check #2. Increase window, if skb with such overhead 420 * will fit to rcvbuf in future. 421 */ 422 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 423 incr = 2 * tp->advmss; 424 else 425 incr = __tcp_grow_window(sk, skb); 426 427 if (incr) { 428 incr = max_t(int, incr, 2 * skb->len); 429 tp->rcv_ssthresh += min(room, incr); 430 inet_csk(sk)->icsk_ack.quick |= 1; 431 } 432 } 433 } 434 435 /* 3. Try to fixup all. It is made immediately after connection enters 436 * established state. 437 */ 438 void tcp_init_buffer_space(struct sock *sk) 439 { 440 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 441 struct tcp_sock *tp = tcp_sk(sk); 442 int maxwin; 443 444 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 445 tcp_sndbuf_expand(sk); 446 447 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 448 tcp_mstamp_refresh(tp); 449 tp->rcvq_space.time = tp->tcp_mstamp; 450 tp->rcvq_space.seq = tp->copied_seq; 451 452 maxwin = tcp_full_space(sk); 453 454 if (tp->window_clamp >= maxwin) { 455 tp->window_clamp = maxwin; 456 457 if (tcp_app_win && maxwin > 4 * tp->advmss) 458 tp->window_clamp = max(maxwin - 459 (maxwin >> tcp_app_win), 460 4 * tp->advmss); 461 } 462 463 /* Force reservation of one segment. */ 464 if (tcp_app_win && 465 tp->window_clamp > 2 * tp->advmss && 466 tp->window_clamp + tp->advmss > maxwin) 467 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 468 469 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 470 tp->snd_cwnd_stamp = tcp_jiffies32; 471 } 472 473 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 474 static void tcp_clamp_window(struct sock *sk) 475 { 476 struct tcp_sock *tp = tcp_sk(sk); 477 struct inet_connection_sock *icsk = inet_csk(sk); 478 struct net *net = sock_net(sk); 479 480 icsk->icsk_ack.quick = 0; 481 482 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 483 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 484 !tcp_under_memory_pressure(sk) && 485 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 486 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 487 net->ipv4.sysctl_tcp_rmem[2]); 488 } 489 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 490 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 491 } 492 493 /* Initialize RCV_MSS value. 494 * RCV_MSS is an our guess about MSS used by the peer. 495 * We haven't any direct information about the MSS. 496 * It's better to underestimate the RCV_MSS rather than overestimate. 497 * Overestimations make us ACKing less frequently than needed. 498 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 499 */ 500 void tcp_initialize_rcv_mss(struct sock *sk) 501 { 502 const struct tcp_sock *tp = tcp_sk(sk); 503 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 504 505 hint = min(hint, tp->rcv_wnd / 2); 506 hint = min(hint, TCP_MSS_DEFAULT); 507 hint = max(hint, TCP_MIN_MSS); 508 509 inet_csk(sk)->icsk_ack.rcv_mss = hint; 510 } 511 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 512 513 /* Receiver "autotuning" code. 514 * 515 * The algorithm for RTT estimation w/o timestamps is based on 516 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 517 * <http://public.lanl.gov/radiant/pubs.html#DRS> 518 * 519 * More detail on this code can be found at 520 * <http://staff.psc.edu/jheffner/>, 521 * though this reference is out of date. A new paper 522 * is pending. 523 */ 524 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 525 { 526 u32 new_sample = tp->rcv_rtt_est.rtt_us; 527 long m = sample; 528 529 if (new_sample != 0) { 530 /* If we sample in larger samples in the non-timestamp 531 * case, we could grossly overestimate the RTT especially 532 * with chatty applications or bulk transfer apps which 533 * are stalled on filesystem I/O. 534 * 535 * Also, since we are only going for a minimum in the 536 * non-timestamp case, we do not smooth things out 537 * else with timestamps disabled convergence takes too 538 * long. 539 */ 540 if (!win_dep) { 541 m -= (new_sample >> 3); 542 new_sample += m; 543 } else { 544 m <<= 3; 545 if (m < new_sample) 546 new_sample = m; 547 } 548 } else { 549 /* No previous measure. */ 550 new_sample = m << 3; 551 } 552 553 tp->rcv_rtt_est.rtt_us = new_sample; 554 } 555 556 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 557 { 558 u32 delta_us; 559 560 if (tp->rcv_rtt_est.time == 0) 561 goto new_measure; 562 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 563 return; 564 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 565 if (!delta_us) 566 delta_us = 1; 567 tcp_rcv_rtt_update(tp, delta_us, 1); 568 569 new_measure: 570 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 571 tp->rcv_rtt_est.time = tp->tcp_mstamp; 572 } 573 574 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 575 const struct sk_buff *skb) 576 { 577 struct tcp_sock *tp = tcp_sk(sk); 578 579 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 580 return; 581 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 582 583 if (TCP_SKB_CB(skb)->end_seq - 584 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 585 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 586 u32 delta_us; 587 588 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 589 if (!delta) 590 delta = 1; 591 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 592 tcp_rcv_rtt_update(tp, delta_us, 0); 593 } 594 } 595 } 596 597 /* 598 * This function should be called every time data is copied to user space. 599 * It calculates the appropriate TCP receive buffer space. 600 */ 601 void tcp_rcv_space_adjust(struct sock *sk) 602 { 603 struct tcp_sock *tp = tcp_sk(sk); 604 u32 copied; 605 int time; 606 607 trace_tcp_rcv_space_adjust(sk); 608 609 tcp_mstamp_refresh(tp); 610 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 611 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 612 return; 613 614 /* Number of bytes copied to user in last RTT */ 615 copied = tp->copied_seq - tp->rcvq_space.seq; 616 if (copied <= tp->rcvq_space.space) 617 goto new_measure; 618 619 /* A bit of theory : 620 * copied = bytes received in previous RTT, our base window 621 * To cope with packet losses, we need a 2x factor 622 * To cope with slow start, and sender growing its cwin by 100 % 623 * every RTT, we need a 4x factor, because the ACK we are sending 624 * now is for the next RTT, not the current one : 625 * <prev RTT . ><current RTT .. ><next RTT .... > 626 */ 627 628 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 629 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 630 int rcvmem, rcvbuf; 631 u64 rcvwin, grow; 632 633 /* minimal window to cope with packet losses, assuming 634 * steady state. Add some cushion because of small variations. 635 */ 636 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 637 638 /* Accommodate for sender rate increase (eg. slow start) */ 639 grow = rcvwin * (copied - tp->rcvq_space.space); 640 do_div(grow, tp->rcvq_space.space); 641 rcvwin += (grow << 1); 642 643 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 644 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 645 rcvmem += 128; 646 647 do_div(rcvwin, tp->advmss); 648 rcvbuf = min_t(u64, rcvwin * rcvmem, 649 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 650 if (rcvbuf > sk->sk_rcvbuf) { 651 sk->sk_rcvbuf = rcvbuf; 652 653 /* Make the window clamp follow along. */ 654 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 655 } 656 } 657 tp->rcvq_space.space = copied; 658 659 new_measure: 660 tp->rcvq_space.seq = tp->copied_seq; 661 tp->rcvq_space.time = tp->tcp_mstamp; 662 } 663 664 /* There is something which you must keep in mind when you analyze the 665 * behavior of the tp->ato delayed ack timeout interval. When a 666 * connection starts up, we want to ack as quickly as possible. The 667 * problem is that "good" TCP's do slow start at the beginning of data 668 * transmission. The means that until we send the first few ACK's the 669 * sender will sit on his end and only queue most of his data, because 670 * he can only send snd_cwnd unacked packets at any given time. For 671 * each ACK we send, he increments snd_cwnd and transmits more of his 672 * queue. -DaveM 673 */ 674 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 675 { 676 struct tcp_sock *tp = tcp_sk(sk); 677 struct inet_connection_sock *icsk = inet_csk(sk); 678 u32 now; 679 680 inet_csk_schedule_ack(sk); 681 682 tcp_measure_rcv_mss(sk, skb); 683 684 tcp_rcv_rtt_measure(tp); 685 686 now = tcp_jiffies32; 687 688 if (!icsk->icsk_ack.ato) { 689 /* The _first_ data packet received, initialize 690 * delayed ACK engine. 691 */ 692 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 693 icsk->icsk_ack.ato = TCP_ATO_MIN; 694 } else { 695 int m = now - icsk->icsk_ack.lrcvtime; 696 697 if (m <= TCP_ATO_MIN / 2) { 698 /* The fastest case is the first. */ 699 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 700 } else if (m < icsk->icsk_ack.ato) { 701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 702 if (icsk->icsk_ack.ato > icsk->icsk_rto) 703 icsk->icsk_ack.ato = icsk->icsk_rto; 704 } else if (m > icsk->icsk_rto) { 705 /* Too long gap. Apparently sender failed to 706 * restart window, so that we send ACKs quickly. 707 */ 708 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 709 sk_mem_reclaim(sk); 710 } 711 } 712 icsk->icsk_ack.lrcvtime = now; 713 714 tcp_ecn_check_ce(sk, skb); 715 716 if (skb->len >= 128) 717 tcp_grow_window(sk, skb); 718 } 719 720 /* Called to compute a smoothed rtt estimate. The data fed to this 721 * routine either comes from timestamps, or from segments that were 722 * known _not_ to have been retransmitted [see Karn/Partridge 723 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 724 * piece by Van Jacobson. 725 * NOTE: the next three routines used to be one big routine. 726 * To save cycles in the RFC 1323 implementation it was better to break 727 * it up into three procedures. -- erics 728 */ 729 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 730 { 731 struct tcp_sock *tp = tcp_sk(sk); 732 long m = mrtt_us; /* RTT */ 733 u32 srtt = tp->srtt_us; 734 735 /* The following amusing code comes from Jacobson's 736 * article in SIGCOMM '88. Note that rtt and mdev 737 * are scaled versions of rtt and mean deviation. 738 * This is designed to be as fast as possible 739 * m stands for "measurement". 740 * 741 * On a 1990 paper the rto value is changed to: 742 * RTO = rtt + 4 * mdev 743 * 744 * Funny. This algorithm seems to be very broken. 745 * These formulae increase RTO, when it should be decreased, increase 746 * too slowly, when it should be increased quickly, decrease too quickly 747 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 748 * does not matter how to _calculate_ it. Seems, it was trap 749 * that VJ failed to avoid. 8) 750 */ 751 if (srtt != 0) { 752 m -= (srtt >> 3); /* m is now error in rtt est */ 753 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 754 if (m < 0) { 755 m = -m; /* m is now abs(error) */ 756 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 757 /* This is similar to one of Eifel findings. 758 * Eifel blocks mdev updates when rtt decreases. 759 * This solution is a bit different: we use finer gain 760 * for mdev in this case (alpha*beta). 761 * Like Eifel it also prevents growth of rto, 762 * but also it limits too fast rto decreases, 763 * happening in pure Eifel. 764 */ 765 if (m > 0) 766 m >>= 3; 767 } else { 768 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 769 } 770 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 771 if (tp->mdev_us > tp->mdev_max_us) { 772 tp->mdev_max_us = tp->mdev_us; 773 if (tp->mdev_max_us > tp->rttvar_us) 774 tp->rttvar_us = tp->mdev_max_us; 775 } 776 if (after(tp->snd_una, tp->rtt_seq)) { 777 if (tp->mdev_max_us < tp->rttvar_us) 778 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 779 tp->rtt_seq = tp->snd_nxt; 780 tp->mdev_max_us = tcp_rto_min_us(sk); 781 } 782 } else { 783 /* no previous measure. */ 784 srtt = m << 3; /* take the measured time to be rtt */ 785 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 786 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 787 tp->mdev_max_us = tp->rttvar_us; 788 tp->rtt_seq = tp->snd_nxt; 789 } 790 tp->srtt_us = max(1U, srtt); 791 } 792 793 static void tcp_update_pacing_rate(struct sock *sk) 794 { 795 const struct tcp_sock *tp = tcp_sk(sk); 796 u64 rate; 797 798 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 799 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 800 801 /* current rate is (cwnd * mss) / srtt 802 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 803 * In Congestion Avoidance phase, set it to 120 % the current rate. 804 * 805 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 806 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 807 * end of slow start and should slow down. 808 */ 809 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 810 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 811 else 812 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 813 814 rate *= max(tp->snd_cwnd, tp->packets_out); 815 816 if (likely(tp->srtt_us)) 817 do_div(rate, tp->srtt_us); 818 819 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 820 * without any lock. We want to make sure compiler wont store 821 * intermediate values in this location. 822 */ 823 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 824 sk->sk_max_pacing_rate)); 825 } 826 827 /* Calculate rto without backoff. This is the second half of Van Jacobson's 828 * routine referred to above. 829 */ 830 static void tcp_set_rto(struct sock *sk) 831 { 832 const struct tcp_sock *tp = tcp_sk(sk); 833 /* Old crap is replaced with new one. 8) 834 * 835 * More seriously: 836 * 1. If rtt variance happened to be less 50msec, it is hallucination. 837 * It cannot be less due to utterly erratic ACK generation made 838 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 839 * to do with delayed acks, because at cwnd>2 true delack timeout 840 * is invisible. Actually, Linux-2.4 also generates erratic 841 * ACKs in some circumstances. 842 */ 843 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 844 845 /* 2. Fixups made earlier cannot be right. 846 * If we do not estimate RTO correctly without them, 847 * all the algo is pure shit and should be replaced 848 * with correct one. It is exactly, which we pretend to do. 849 */ 850 851 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 852 * guarantees that rto is higher. 853 */ 854 tcp_bound_rto(sk); 855 } 856 857 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 858 { 859 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 860 861 if (!cwnd) 862 cwnd = TCP_INIT_CWND; 863 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 864 } 865 866 /* Take a notice that peer is sending D-SACKs */ 867 static void tcp_dsack_seen(struct tcp_sock *tp) 868 { 869 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 870 tp->rack.dsack_seen = 1; 871 tp->dsack_dups++; 872 } 873 874 /* It's reordering when higher sequence was delivered (i.e. sacked) before 875 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 876 * distance is approximated in full-mss packet distance ("reordering"). 877 */ 878 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 879 const int ts) 880 { 881 struct tcp_sock *tp = tcp_sk(sk); 882 const u32 mss = tp->mss_cache; 883 u32 fack, metric; 884 885 fack = tcp_highest_sack_seq(tp); 886 if (!before(low_seq, fack)) 887 return; 888 889 metric = fack - low_seq; 890 if ((metric > tp->reordering * mss) && mss) { 891 #if FASTRETRANS_DEBUG > 1 892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 893 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 894 tp->reordering, 895 0, 896 tp->sacked_out, 897 tp->undo_marker ? tp->undo_retrans : 0); 898 #endif 899 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 900 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 901 } 902 903 /* This exciting event is worth to be remembered. 8) */ 904 tp->reord_seen++; 905 NET_INC_STATS(sock_net(sk), 906 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 907 } 908 909 /* This must be called before lost_out is incremented */ 910 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 911 { 912 if (!tp->retransmit_skb_hint || 913 before(TCP_SKB_CB(skb)->seq, 914 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 915 tp->retransmit_skb_hint = skb; 916 } 917 918 /* Sum the number of packets on the wire we have marked as lost. 919 * There are two cases we care about here: 920 * a) Packet hasn't been marked lost (nor retransmitted), 921 * and this is the first loss. 922 * b) Packet has been marked both lost and retransmitted, 923 * and this means we think it was lost again. 924 */ 925 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 926 { 927 __u8 sacked = TCP_SKB_CB(skb)->sacked; 928 929 if (!(sacked & TCPCB_LOST) || 930 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 931 tp->lost += tcp_skb_pcount(skb); 932 } 933 934 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 935 { 936 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 937 tcp_verify_retransmit_hint(tp, skb); 938 939 tp->lost_out += tcp_skb_pcount(skb); 940 tcp_sum_lost(tp, skb); 941 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 942 } 943 } 944 945 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 946 { 947 tcp_verify_retransmit_hint(tp, skb); 948 949 tcp_sum_lost(tp, skb); 950 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 951 tp->lost_out += tcp_skb_pcount(skb); 952 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 953 } 954 } 955 956 /* This procedure tags the retransmission queue when SACKs arrive. 957 * 958 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 959 * Packets in queue with these bits set are counted in variables 960 * sacked_out, retrans_out and lost_out, correspondingly. 961 * 962 * Valid combinations are: 963 * Tag InFlight Description 964 * 0 1 - orig segment is in flight. 965 * S 0 - nothing flies, orig reached receiver. 966 * L 0 - nothing flies, orig lost by net. 967 * R 2 - both orig and retransmit are in flight. 968 * L|R 1 - orig is lost, retransmit is in flight. 969 * S|R 1 - orig reached receiver, retrans is still in flight. 970 * (L|S|R is logically valid, it could occur when L|R is sacked, 971 * but it is equivalent to plain S and code short-curcuits it to S. 972 * L|S is logically invalid, it would mean -1 packet in flight 8)) 973 * 974 * These 6 states form finite state machine, controlled by the following events: 975 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 976 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 977 * 3. Loss detection event of two flavors: 978 * A. Scoreboard estimator decided the packet is lost. 979 * A'. Reno "three dupacks" marks head of queue lost. 980 * B. SACK arrives sacking SND.NXT at the moment, when the 981 * segment was retransmitted. 982 * 4. D-SACK added new rule: D-SACK changes any tag to S. 983 * 984 * It is pleasant to note, that state diagram turns out to be commutative, 985 * so that we are allowed not to be bothered by order of our actions, 986 * when multiple events arrive simultaneously. (see the function below). 987 * 988 * Reordering detection. 989 * -------------------- 990 * Reordering metric is maximal distance, which a packet can be displaced 991 * in packet stream. With SACKs we can estimate it: 992 * 993 * 1. SACK fills old hole and the corresponding segment was not 994 * ever retransmitted -> reordering. Alas, we cannot use it 995 * when segment was retransmitted. 996 * 2. The last flaw is solved with D-SACK. D-SACK arrives 997 * for retransmitted and already SACKed segment -> reordering.. 998 * Both of these heuristics are not used in Loss state, when we cannot 999 * account for retransmits accurately. 1000 * 1001 * SACK block validation. 1002 * ---------------------- 1003 * 1004 * SACK block range validation checks that the received SACK block fits to 1005 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1006 * Note that SND.UNA is not included to the range though being valid because 1007 * it means that the receiver is rather inconsistent with itself reporting 1008 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1009 * perfectly valid, however, in light of RFC2018 which explicitly states 1010 * that "SACK block MUST reflect the newest segment. Even if the newest 1011 * segment is going to be discarded ...", not that it looks very clever 1012 * in case of head skb. Due to potentional receiver driven attacks, we 1013 * choose to avoid immediate execution of a walk in write queue due to 1014 * reneging and defer head skb's loss recovery to standard loss recovery 1015 * procedure that will eventually trigger (nothing forbids us doing this). 1016 * 1017 * Implements also blockage to start_seq wrap-around. Problem lies in the 1018 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1019 * there's no guarantee that it will be before snd_nxt (n). The problem 1020 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1021 * wrap (s_w): 1022 * 1023 * <- outs wnd -> <- wrapzone -> 1024 * u e n u_w e_w s n_w 1025 * | | | | | | | 1026 * |<------------+------+----- TCP seqno space --------------+---------->| 1027 * ...-- <2^31 ->| |<--------... 1028 * ...---- >2^31 ------>| |<--------... 1029 * 1030 * Current code wouldn't be vulnerable but it's better still to discard such 1031 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1032 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1033 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1034 * equal to the ideal case (infinite seqno space without wrap caused issues). 1035 * 1036 * With D-SACK the lower bound is extended to cover sequence space below 1037 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1038 * again, D-SACK block must not to go across snd_una (for the same reason as 1039 * for the normal SACK blocks, explained above). But there all simplicity 1040 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1041 * fully below undo_marker they do not affect behavior in anyway and can 1042 * therefore be safely ignored. In rare cases (which are more or less 1043 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1044 * fragmentation and packet reordering past skb's retransmission. To consider 1045 * them correctly, the acceptable range must be extended even more though 1046 * the exact amount is rather hard to quantify. However, tp->max_window can 1047 * be used as an exaggerated estimate. 1048 */ 1049 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1050 u32 start_seq, u32 end_seq) 1051 { 1052 /* Too far in future, or reversed (interpretation is ambiguous) */ 1053 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1054 return false; 1055 1056 /* Nasty start_seq wrap-around check (see comments above) */ 1057 if (!before(start_seq, tp->snd_nxt)) 1058 return false; 1059 1060 /* In outstanding window? ...This is valid exit for D-SACKs too. 1061 * start_seq == snd_una is non-sensical (see comments above) 1062 */ 1063 if (after(start_seq, tp->snd_una)) 1064 return true; 1065 1066 if (!is_dsack || !tp->undo_marker) 1067 return false; 1068 1069 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1070 if (after(end_seq, tp->snd_una)) 1071 return false; 1072 1073 if (!before(start_seq, tp->undo_marker)) 1074 return true; 1075 1076 /* Too old */ 1077 if (!after(end_seq, tp->undo_marker)) 1078 return false; 1079 1080 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1081 * start_seq < undo_marker and end_seq >= undo_marker. 1082 */ 1083 return !before(start_seq, end_seq - tp->max_window); 1084 } 1085 1086 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1087 struct tcp_sack_block_wire *sp, int num_sacks, 1088 u32 prior_snd_una) 1089 { 1090 struct tcp_sock *tp = tcp_sk(sk); 1091 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1092 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1093 bool dup_sack = false; 1094 1095 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1096 dup_sack = true; 1097 tcp_dsack_seen(tp); 1098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1099 } else if (num_sacks > 1) { 1100 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1101 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1102 1103 if (!after(end_seq_0, end_seq_1) && 1104 !before(start_seq_0, start_seq_1)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS(sock_net(sk), 1108 LINUX_MIB_TCPDSACKOFORECV); 1109 } 1110 } 1111 1112 /* D-SACK for already forgotten data... Do dumb counting. */ 1113 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1114 !after(end_seq_0, prior_snd_una) && 1115 after(end_seq_0, tp->undo_marker)) 1116 tp->undo_retrans--; 1117 1118 return dup_sack; 1119 } 1120 1121 struct tcp_sacktag_state { 1122 u32 reord; 1123 /* Timestamps for earliest and latest never-retransmitted segment 1124 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1125 * but congestion control should still get an accurate delay signal. 1126 */ 1127 u64 first_sackt; 1128 u64 last_sackt; 1129 struct rate_sample *rate; 1130 int flag; 1131 unsigned int mss_now; 1132 }; 1133 1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1135 * the incoming SACK may not exactly match but we can find smaller MSS 1136 * aligned portion of it that matches. Therefore we might need to fragment 1137 * which may fail and creates some hassle (caller must handle error case 1138 * returns). 1139 * 1140 * FIXME: this could be merged to shift decision code 1141 */ 1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1143 u32 start_seq, u32 end_seq) 1144 { 1145 int err; 1146 bool in_sack; 1147 unsigned int pkt_len; 1148 unsigned int mss; 1149 1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1151 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1152 1153 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1154 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1155 mss = tcp_skb_mss(skb); 1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1157 1158 if (!in_sack) { 1159 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1160 if (pkt_len < mss) 1161 pkt_len = mss; 1162 } else { 1163 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1164 if (pkt_len < mss) 1165 return -EINVAL; 1166 } 1167 1168 /* Round if necessary so that SACKs cover only full MSSes 1169 * and/or the remaining small portion (if present) 1170 */ 1171 if (pkt_len > mss) { 1172 unsigned int new_len = (pkt_len / mss) * mss; 1173 if (!in_sack && new_len < pkt_len) 1174 new_len += mss; 1175 pkt_len = new_len; 1176 } 1177 1178 if (pkt_len >= skb->len && !in_sack) 1179 return 0; 1180 1181 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1182 pkt_len, mss, GFP_ATOMIC); 1183 if (err < 0) 1184 return err; 1185 } 1186 1187 return in_sack; 1188 } 1189 1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1191 static u8 tcp_sacktag_one(struct sock *sk, 1192 struct tcp_sacktag_state *state, u8 sacked, 1193 u32 start_seq, u32 end_seq, 1194 int dup_sack, int pcount, 1195 u64 xmit_time) 1196 { 1197 struct tcp_sock *tp = tcp_sk(sk); 1198 1199 /* Account D-SACK for retransmitted packet. */ 1200 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1201 if (tp->undo_marker && tp->undo_retrans > 0 && 1202 after(end_seq, tp->undo_marker)) 1203 tp->undo_retrans--; 1204 if ((sacked & TCPCB_SACKED_ACKED) && 1205 before(start_seq, state->reord)) 1206 state->reord = start_seq; 1207 } 1208 1209 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1210 if (!after(end_seq, tp->snd_una)) 1211 return sacked; 1212 1213 if (!(sacked & TCPCB_SACKED_ACKED)) { 1214 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1215 1216 if (sacked & TCPCB_SACKED_RETRANS) { 1217 /* If the segment is not tagged as lost, 1218 * we do not clear RETRANS, believing 1219 * that retransmission is still in flight. 1220 */ 1221 if (sacked & TCPCB_LOST) { 1222 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1223 tp->lost_out -= pcount; 1224 tp->retrans_out -= pcount; 1225 } 1226 } else { 1227 if (!(sacked & TCPCB_RETRANS)) { 1228 /* New sack for not retransmitted frame, 1229 * which was in hole. It is reordering. 1230 */ 1231 if (before(start_seq, 1232 tcp_highest_sack_seq(tp)) && 1233 before(start_seq, state->reord)) 1234 state->reord = start_seq; 1235 1236 if (!after(end_seq, tp->high_seq)) 1237 state->flag |= FLAG_ORIG_SACK_ACKED; 1238 if (state->first_sackt == 0) 1239 state->first_sackt = xmit_time; 1240 state->last_sackt = xmit_time; 1241 } 1242 1243 if (sacked & TCPCB_LOST) { 1244 sacked &= ~TCPCB_LOST; 1245 tp->lost_out -= pcount; 1246 } 1247 } 1248 1249 sacked |= TCPCB_SACKED_ACKED; 1250 state->flag |= FLAG_DATA_SACKED; 1251 tp->sacked_out += pcount; 1252 tp->delivered += pcount; /* Out-of-order packets delivered */ 1253 1254 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1255 if (tp->lost_skb_hint && 1256 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1257 tp->lost_cnt_hint += pcount; 1258 } 1259 1260 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1261 * frames and clear it. undo_retrans is decreased above, L|R frames 1262 * are accounted above as well. 1263 */ 1264 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1265 sacked &= ~TCPCB_SACKED_RETRANS; 1266 tp->retrans_out -= pcount; 1267 } 1268 1269 return sacked; 1270 } 1271 1272 /* Shift newly-SACKed bytes from this skb to the immediately previous 1273 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1274 */ 1275 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1276 struct sk_buff *skb, 1277 struct tcp_sacktag_state *state, 1278 unsigned int pcount, int shifted, int mss, 1279 bool dup_sack) 1280 { 1281 struct tcp_sock *tp = tcp_sk(sk); 1282 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1283 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1284 1285 BUG_ON(!pcount); 1286 1287 /* Adjust counters and hints for the newly sacked sequence 1288 * range but discard the return value since prev is already 1289 * marked. We must tag the range first because the seq 1290 * advancement below implicitly advances 1291 * tcp_highest_sack_seq() when skb is highest_sack. 1292 */ 1293 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1294 start_seq, end_seq, dup_sack, pcount, 1295 tcp_skb_timestamp_us(skb)); 1296 tcp_rate_skb_delivered(sk, skb, state->rate); 1297 1298 if (skb == tp->lost_skb_hint) 1299 tp->lost_cnt_hint += pcount; 1300 1301 TCP_SKB_CB(prev)->end_seq += shifted; 1302 TCP_SKB_CB(skb)->seq += shifted; 1303 1304 tcp_skb_pcount_add(prev, pcount); 1305 BUG_ON(tcp_skb_pcount(skb) < pcount); 1306 tcp_skb_pcount_add(skb, -pcount); 1307 1308 /* When we're adding to gso_segs == 1, gso_size will be zero, 1309 * in theory this shouldn't be necessary but as long as DSACK 1310 * code can come after this skb later on it's better to keep 1311 * setting gso_size to something. 1312 */ 1313 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1314 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1315 1316 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1317 if (tcp_skb_pcount(skb) <= 1) 1318 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1319 1320 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1321 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1322 1323 if (skb->len > 0) { 1324 BUG_ON(!tcp_skb_pcount(skb)); 1325 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1326 return false; 1327 } 1328 1329 /* Whole SKB was eaten :-) */ 1330 1331 if (skb == tp->retransmit_skb_hint) 1332 tp->retransmit_skb_hint = prev; 1333 if (skb == tp->lost_skb_hint) { 1334 tp->lost_skb_hint = prev; 1335 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1336 } 1337 1338 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1339 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1340 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1341 TCP_SKB_CB(prev)->end_seq++; 1342 1343 if (skb == tcp_highest_sack(sk)) 1344 tcp_advance_highest_sack(sk, skb); 1345 1346 tcp_skb_collapse_tstamp(prev, skb); 1347 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1348 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1349 1350 tcp_rtx_queue_unlink_and_free(skb, sk); 1351 1352 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1353 1354 return true; 1355 } 1356 1357 /* I wish gso_size would have a bit more sane initialization than 1358 * something-or-zero which complicates things 1359 */ 1360 static int tcp_skb_seglen(const struct sk_buff *skb) 1361 { 1362 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1363 } 1364 1365 /* Shifting pages past head area doesn't work */ 1366 static int skb_can_shift(const struct sk_buff *skb) 1367 { 1368 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1369 } 1370 1371 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1372 * skb. 1373 */ 1374 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1375 struct tcp_sacktag_state *state, 1376 u32 start_seq, u32 end_seq, 1377 bool dup_sack) 1378 { 1379 struct tcp_sock *tp = tcp_sk(sk); 1380 struct sk_buff *prev; 1381 int mss; 1382 int pcount = 0; 1383 int len; 1384 int in_sack; 1385 1386 /* Normally R but no L won't result in plain S */ 1387 if (!dup_sack && 1388 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1389 goto fallback; 1390 if (!skb_can_shift(skb)) 1391 goto fallback; 1392 /* This frame is about to be dropped (was ACKed). */ 1393 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1394 goto fallback; 1395 1396 /* Can only happen with delayed DSACK + discard craziness */ 1397 prev = skb_rb_prev(skb); 1398 if (!prev) 1399 goto fallback; 1400 1401 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1402 goto fallback; 1403 1404 if (!tcp_skb_can_collapse_to(prev)) 1405 goto fallback; 1406 1407 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1408 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1409 1410 if (in_sack) { 1411 len = skb->len; 1412 pcount = tcp_skb_pcount(skb); 1413 mss = tcp_skb_seglen(skb); 1414 1415 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1416 * drop this restriction as unnecessary 1417 */ 1418 if (mss != tcp_skb_seglen(prev)) 1419 goto fallback; 1420 } else { 1421 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1422 goto noop; 1423 /* CHECKME: This is non-MSS split case only?, this will 1424 * cause skipped skbs due to advancing loop btw, original 1425 * has that feature too 1426 */ 1427 if (tcp_skb_pcount(skb) <= 1) 1428 goto noop; 1429 1430 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1431 if (!in_sack) { 1432 /* TODO: head merge to next could be attempted here 1433 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1434 * though it might not be worth of the additional hassle 1435 * 1436 * ...we can probably just fallback to what was done 1437 * previously. We could try merging non-SACKed ones 1438 * as well but it probably isn't going to buy off 1439 * because later SACKs might again split them, and 1440 * it would make skb timestamp tracking considerably 1441 * harder problem. 1442 */ 1443 goto fallback; 1444 } 1445 1446 len = end_seq - TCP_SKB_CB(skb)->seq; 1447 BUG_ON(len < 0); 1448 BUG_ON(len > skb->len); 1449 1450 /* MSS boundaries should be honoured or else pcount will 1451 * severely break even though it makes things bit trickier. 1452 * Optimize common case to avoid most of the divides 1453 */ 1454 mss = tcp_skb_mss(skb); 1455 1456 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1457 * drop this restriction as unnecessary 1458 */ 1459 if (mss != tcp_skb_seglen(prev)) 1460 goto fallback; 1461 1462 if (len == mss) { 1463 pcount = 1; 1464 } else if (len < mss) { 1465 goto noop; 1466 } else { 1467 pcount = len / mss; 1468 len = pcount * mss; 1469 } 1470 } 1471 1472 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1473 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1474 goto fallback; 1475 1476 if (!skb_shift(prev, skb, len)) 1477 goto fallback; 1478 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1479 goto out; 1480 1481 /* Hole filled allows collapsing with the next as well, this is very 1482 * useful when hole on every nth skb pattern happens 1483 */ 1484 skb = skb_rb_next(prev); 1485 if (!skb) 1486 goto out; 1487 1488 if (!skb_can_shift(skb) || 1489 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1490 (mss != tcp_skb_seglen(skb))) 1491 goto out; 1492 1493 len = skb->len; 1494 if (skb_shift(prev, skb, len)) { 1495 pcount += tcp_skb_pcount(skb); 1496 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1497 len, mss, 0); 1498 } 1499 1500 out: 1501 return prev; 1502 1503 noop: 1504 return skb; 1505 1506 fallback: 1507 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1508 return NULL; 1509 } 1510 1511 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1512 struct tcp_sack_block *next_dup, 1513 struct tcp_sacktag_state *state, 1514 u32 start_seq, u32 end_seq, 1515 bool dup_sack_in) 1516 { 1517 struct tcp_sock *tp = tcp_sk(sk); 1518 struct sk_buff *tmp; 1519 1520 skb_rbtree_walk_from(skb) { 1521 int in_sack = 0; 1522 bool dup_sack = dup_sack_in; 1523 1524 /* queue is in-order => we can short-circuit the walk early */ 1525 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1526 break; 1527 1528 if (next_dup && 1529 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1530 in_sack = tcp_match_skb_to_sack(sk, skb, 1531 next_dup->start_seq, 1532 next_dup->end_seq); 1533 if (in_sack > 0) 1534 dup_sack = true; 1535 } 1536 1537 /* skb reference here is a bit tricky to get right, since 1538 * shifting can eat and free both this skb and the next, 1539 * so not even _safe variant of the loop is enough. 1540 */ 1541 if (in_sack <= 0) { 1542 tmp = tcp_shift_skb_data(sk, skb, state, 1543 start_seq, end_seq, dup_sack); 1544 if (tmp) { 1545 if (tmp != skb) { 1546 skb = tmp; 1547 continue; 1548 } 1549 1550 in_sack = 0; 1551 } else { 1552 in_sack = tcp_match_skb_to_sack(sk, skb, 1553 start_seq, 1554 end_seq); 1555 } 1556 } 1557 1558 if (unlikely(in_sack < 0)) 1559 break; 1560 1561 if (in_sack) { 1562 TCP_SKB_CB(skb)->sacked = 1563 tcp_sacktag_one(sk, 1564 state, 1565 TCP_SKB_CB(skb)->sacked, 1566 TCP_SKB_CB(skb)->seq, 1567 TCP_SKB_CB(skb)->end_seq, 1568 dup_sack, 1569 tcp_skb_pcount(skb), 1570 tcp_skb_timestamp_us(skb)); 1571 tcp_rate_skb_delivered(sk, skb, state->rate); 1572 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1573 list_del_init(&skb->tcp_tsorted_anchor); 1574 1575 if (!before(TCP_SKB_CB(skb)->seq, 1576 tcp_highest_sack_seq(tp))) 1577 tcp_advance_highest_sack(sk, skb); 1578 } 1579 } 1580 return skb; 1581 } 1582 1583 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1584 { 1585 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1586 struct sk_buff *skb; 1587 1588 while (*p) { 1589 parent = *p; 1590 skb = rb_to_skb(parent); 1591 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1592 p = &parent->rb_left; 1593 continue; 1594 } 1595 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1596 p = &parent->rb_right; 1597 continue; 1598 } 1599 return skb; 1600 } 1601 return NULL; 1602 } 1603 1604 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1605 u32 skip_to_seq) 1606 { 1607 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1608 return skb; 1609 1610 return tcp_sacktag_bsearch(sk, skip_to_seq); 1611 } 1612 1613 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1614 struct sock *sk, 1615 struct tcp_sack_block *next_dup, 1616 struct tcp_sacktag_state *state, 1617 u32 skip_to_seq) 1618 { 1619 if (!next_dup) 1620 return skb; 1621 1622 if (before(next_dup->start_seq, skip_to_seq)) { 1623 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1624 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1625 next_dup->start_seq, next_dup->end_seq, 1626 1); 1627 } 1628 1629 return skb; 1630 } 1631 1632 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1633 { 1634 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1635 } 1636 1637 static int 1638 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1639 u32 prior_snd_una, struct tcp_sacktag_state *state) 1640 { 1641 struct tcp_sock *tp = tcp_sk(sk); 1642 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1643 TCP_SKB_CB(ack_skb)->sacked); 1644 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1645 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1646 struct tcp_sack_block *cache; 1647 struct sk_buff *skb; 1648 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1649 int used_sacks; 1650 bool found_dup_sack = false; 1651 int i, j; 1652 int first_sack_index; 1653 1654 state->flag = 0; 1655 state->reord = tp->snd_nxt; 1656 1657 if (!tp->sacked_out) 1658 tcp_highest_sack_reset(sk); 1659 1660 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1661 num_sacks, prior_snd_una); 1662 if (found_dup_sack) { 1663 state->flag |= FLAG_DSACKING_ACK; 1664 tp->delivered++; /* A spurious retransmission is delivered */ 1665 } 1666 1667 /* Eliminate too old ACKs, but take into 1668 * account more or less fresh ones, they can 1669 * contain valid SACK info. 1670 */ 1671 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1672 return 0; 1673 1674 if (!tp->packets_out) 1675 goto out; 1676 1677 used_sacks = 0; 1678 first_sack_index = 0; 1679 for (i = 0; i < num_sacks; i++) { 1680 bool dup_sack = !i && found_dup_sack; 1681 1682 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1683 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1684 1685 if (!tcp_is_sackblock_valid(tp, dup_sack, 1686 sp[used_sacks].start_seq, 1687 sp[used_sacks].end_seq)) { 1688 int mib_idx; 1689 1690 if (dup_sack) { 1691 if (!tp->undo_marker) 1692 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1693 else 1694 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1695 } else { 1696 /* Don't count olds caused by ACK reordering */ 1697 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1698 !after(sp[used_sacks].end_seq, tp->snd_una)) 1699 continue; 1700 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1701 } 1702 1703 NET_INC_STATS(sock_net(sk), mib_idx); 1704 if (i == 0) 1705 first_sack_index = -1; 1706 continue; 1707 } 1708 1709 /* Ignore very old stuff early */ 1710 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1711 continue; 1712 1713 used_sacks++; 1714 } 1715 1716 /* order SACK blocks to allow in order walk of the retrans queue */ 1717 for (i = used_sacks - 1; i > 0; i--) { 1718 for (j = 0; j < i; j++) { 1719 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1720 swap(sp[j], sp[j + 1]); 1721 1722 /* Track where the first SACK block goes to */ 1723 if (j == first_sack_index) 1724 first_sack_index = j + 1; 1725 } 1726 } 1727 } 1728 1729 state->mss_now = tcp_current_mss(sk); 1730 skb = NULL; 1731 i = 0; 1732 1733 if (!tp->sacked_out) { 1734 /* It's already past, so skip checking against it */ 1735 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1736 } else { 1737 cache = tp->recv_sack_cache; 1738 /* Skip empty blocks in at head of the cache */ 1739 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1740 !cache->end_seq) 1741 cache++; 1742 } 1743 1744 while (i < used_sacks) { 1745 u32 start_seq = sp[i].start_seq; 1746 u32 end_seq = sp[i].end_seq; 1747 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1748 struct tcp_sack_block *next_dup = NULL; 1749 1750 if (found_dup_sack && ((i + 1) == first_sack_index)) 1751 next_dup = &sp[i + 1]; 1752 1753 /* Skip too early cached blocks */ 1754 while (tcp_sack_cache_ok(tp, cache) && 1755 !before(start_seq, cache->end_seq)) 1756 cache++; 1757 1758 /* Can skip some work by looking recv_sack_cache? */ 1759 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1760 after(end_seq, cache->start_seq)) { 1761 1762 /* Head todo? */ 1763 if (before(start_seq, cache->start_seq)) { 1764 skb = tcp_sacktag_skip(skb, sk, start_seq); 1765 skb = tcp_sacktag_walk(skb, sk, next_dup, 1766 state, 1767 start_seq, 1768 cache->start_seq, 1769 dup_sack); 1770 } 1771 1772 /* Rest of the block already fully processed? */ 1773 if (!after(end_seq, cache->end_seq)) 1774 goto advance_sp; 1775 1776 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1777 state, 1778 cache->end_seq); 1779 1780 /* ...tail remains todo... */ 1781 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1782 /* ...but better entrypoint exists! */ 1783 skb = tcp_highest_sack(sk); 1784 if (!skb) 1785 break; 1786 cache++; 1787 goto walk; 1788 } 1789 1790 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1791 /* Check overlap against next cached too (past this one already) */ 1792 cache++; 1793 continue; 1794 } 1795 1796 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1797 skb = tcp_highest_sack(sk); 1798 if (!skb) 1799 break; 1800 } 1801 skb = tcp_sacktag_skip(skb, sk, start_seq); 1802 1803 walk: 1804 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1805 start_seq, end_seq, dup_sack); 1806 1807 advance_sp: 1808 i++; 1809 } 1810 1811 /* Clear the head of the cache sack blocks so we can skip it next time */ 1812 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1813 tp->recv_sack_cache[i].start_seq = 0; 1814 tp->recv_sack_cache[i].end_seq = 0; 1815 } 1816 for (j = 0; j < used_sacks; j++) 1817 tp->recv_sack_cache[i++] = sp[j]; 1818 1819 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1820 tcp_check_sack_reordering(sk, state->reord, 0); 1821 1822 tcp_verify_left_out(tp); 1823 out: 1824 1825 #if FASTRETRANS_DEBUG > 0 1826 WARN_ON((int)tp->sacked_out < 0); 1827 WARN_ON((int)tp->lost_out < 0); 1828 WARN_ON((int)tp->retrans_out < 0); 1829 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1830 #endif 1831 return state->flag; 1832 } 1833 1834 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1835 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1836 */ 1837 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1838 { 1839 u32 holes; 1840 1841 holes = max(tp->lost_out, 1U); 1842 holes = min(holes, tp->packets_out); 1843 1844 if ((tp->sacked_out + holes) > tp->packets_out) { 1845 tp->sacked_out = tp->packets_out - holes; 1846 return true; 1847 } 1848 return false; 1849 } 1850 1851 /* If we receive more dupacks than we expected counting segments 1852 * in assumption of absent reordering, interpret this as reordering. 1853 * The only another reason could be bug in receiver TCP. 1854 */ 1855 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1856 { 1857 struct tcp_sock *tp = tcp_sk(sk); 1858 1859 if (!tcp_limit_reno_sacked(tp)) 1860 return; 1861 1862 tp->reordering = min_t(u32, tp->packets_out + addend, 1863 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1864 tp->reord_seen++; 1865 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1866 } 1867 1868 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1869 1870 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1871 { 1872 if (num_dupack) { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 u32 prior_sacked = tp->sacked_out; 1875 s32 delivered; 1876 1877 tp->sacked_out += num_dupack; 1878 tcp_check_reno_reordering(sk, 0); 1879 delivered = tp->sacked_out - prior_sacked; 1880 if (delivered > 0) 1881 tp->delivered += delivered; 1882 tcp_verify_left_out(tp); 1883 } 1884 } 1885 1886 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1887 1888 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1889 { 1890 struct tcp_sock *tp = tcp_sk(sk); 1891 1892 if (acked > 0) { 1893 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1894 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1895 if (acked - 1 >= tp->sacked_out) 1896 tp->sacked_out = 0; 1897 else 1898 tp->sacked_out -= acked - 1; 1899 } 1900 tcp_check_reno_reordering(sk, acked); 1901 tcp_verify_left_out(tp); 1902 } 1903 1904 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1905 { 1906 tp->sacked_out = 0; 1907 } 1908 1909 void tcp_clear_retrans(struct tcp_sock *tp) 1910 { 1911 tp->retrans_out = 0; 1912 tp->lost_out = 0; 1913 tp->undo_marker = 0; 1914 tp->undo_retrans = -1; 1915 tp->sacked_out = 0; 1916 } 1917 1918 static inline void tcp_init_undo(struct tcp_sock *tp) 1919 { 1920 tp->undo_marker = tp->snd_una; 1921 /* Retransmission still in flight may cause DSACKs later. */ 1922 tp->undo_retrans = tp->retrans_out ? : -1; 1923 } 1924 1925 static bool tcp_is_rack(const struct sock *sk) 1926 { 1927 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1928 } 1929 1930 /* If we detect SACK reneging, forget all SACK information 1931 * and reset tags completely, otherwise preserve SACKs. If receiver 1932 * dropped its ofo queue, we will know this due to reneging detection. 1933 */ 1934 static void tcp_timeout_mark_lost(struct sock *sk) 1935 { 1936 struct tcp_sock *tp = tcp_sk(sk); 1937 struct sk_buff *skb, *head; 1938 bool is_reneg; /* is receiver reneging on SACKs? */ 1939 1940 head = tcp_rtx_queue_head(sk); 1941 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1942 if (is_reneg) { 1943 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1944 tp->sacked_out = 0; 1945 /* Mark SACK reneging until we recover from this loss event. */ 1946 tp->is_sack_reneg = 1; 1947 } else if (tcp_is_reno(tp)) { 1948 tcp_reset_reno_sack(tp); 1949 } 1950 1951 skb = head; 1952 skb_rbtree_walk_from(skb) { 1953 if (is_reneg) 1954 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1955 else if (tcp_is_rack(sk) && skb != head && 1956 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1957 continue; /* Don't mark recently sent ones lost yet */ 1958 tcp_mark_skb_lost(sk, skb); 1959 } 1960 tcp_verify_left_out(tp); 1961 tcp_clear_all_retrans_hints(tp); 1962 } 1963 1964 /* Enter Loss state. */ 1965 void tcp_enter_loss(struct sock *sk) 1966 { 1967 const struct inet_connection_sock *icsk = inet_csk(sk); 1968 struct tcp_sock *tp = tcp_sk(sk); 1969 struct net *net = sock_net(sk); 1970 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1971 1972 tcp_timeout_mark_lost(sk); 1973 1974 /* Reduce ssthresh if it has not yet been made inside this window. */ 1975 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1976 !after(tp->high_seq, tp->snd_una) || 1977 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1978 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1979 tp->prior_cwnd = tp->snd_cwnd; 1980 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1981 tcp_ca_event(sk, CA_EVENT_LOSS); 1982 tcp_init_undo(tp); 1983 } 1984 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1985 tp->snd_cwnd_cnt = 0; 1986 tp->snd_cwnd_stamp = tcp_jiffies32; 1987 1988 /* Timeout in disordered state after receiving substantial DUPACKs 1989 * suggests that the degree of reordering is over-estimated. 1990 */ 1991 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1992 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1993 tp->reordering = min_t(unsigned int, tp->reordering, 1994 net->ipv4.sysctl_tcp_reordering); 1995 tcp_set_ca_state(sk, TCP_CA_Loss); 1996 tp->high_seq = tp->snd_nxt; 1997 tcp_ecn_queue_cwr(tp); 1998 1999 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2000 * loss recovery is underway except recurring timeout(s) on 2001 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2002 */ 2003 tp->frto = net->ipv4.sysctl_tcp_frto && 2004 (new_recovery || icsk->icsk_retransmits) && 2005 !inet_csk(sk)->icsk_mtup.probe_size; 2006 } 2007 2008 /* If ACK arrived pointing to a remembered SACK, it means that our 2009 * remembered SACKs do not reflect real state of receiver i.e. 2010 * receiver _host_ is heavily congested (or buggy). 2011 * 2012 * To avoid big spurious retransmission bursts due to transient SACK 2013 * scoreboard oddities that look like reneging, we give the receiver a 2014 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2015 * restore sanity to the SACK scoreboard. If the apparent reneging 2016 * persists until this RTO then we'll clear the SACK scoreboard. 2017 */ 2018 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2019 { 2020 if (flag & FLAG_SACK_RENEGING) { 2021 struct tcp_sock *tp = tcp_sk(sk); 2022 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2023 msecs_to_jiffies(10)); 2024 2025 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2026 delay, TCP_RTO_MAX); 2027 return true; 2028 } 2029 return false; 2030 } 2031 2032 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2033 * counter when SACK is enabled (without SACK, sacked_out is used for 2034 * that purpose). 2035 * 2036 * With reordering, holes may still be in flight, so RFC3517 recovery 2037 * uses pure sacked_out (total number of SACKed segments) even though 2038 * it violates the RFC that uses duplicate ACKs, often these are equal 2039 * but when e.g. out-of-window ACKs or packet duplication occurs, 2040 * they differ. Since neither occurs due to loss, TCP should really 2041 * ignore them. 2042 */ 2043 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2044 { 2045 return tp->sacked_out + 1; 2046 } 2047 2048 /* Linux NewReno/SACK/ECN state machine. 2049 * -------------------------------------- 2050 * 2051 * "Open" Normal state, no dubious events, fast path. 2052 * "Disorder" In all the respects it is "Open", 2053 * but requires a bit more attention. It is entered when 2054 * we see some SACKs or dupacks. It is split of "Open" 2055 * mainly to move some processing from fast path to slow one. 2056 * "CWR" CWND was reduced due to some Congestion Notification event. 2057 * It can be ECN, ICMP source quench, local device congestion. 2058 * "Recovery" CWND was reduced, we are fast-retransmitting. 2059 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2060 * 2061 * tcp_fastretrans_alert() is entered: 2062 * - each incoming ACK, if state is not "Open" 2063 * - when arrived ACK is unusual, namely: 2064 * * SACK 2065 * * Duplicate ACK. 2066 * * ECN ECE. 2067 * 2068 * Counting packets in flight is pretty simple. 2069 * 2070 * in_flight = packets_out - left_out + retrans_out 2071 * 2072 * packets_out is SND.NXT-SND.UNA counted in packets. 2073 * 2074 * retrans_out is number of retransmitted segments. 2075 * 2076 * left_out is number of segments left network, but not ACKed yet. 2077 * 2078 * left_out = sacked_out + lost_out 2079 * 2080 * sacked_out: Packets, which arrived to receiver out of order 2081 * and hence not ACKed. With SACKs this number is simply 2082 * amount of SACKed data. Even without SACKs 2083 * it is easy to give pretty reliable estimate of this number, 2084 * counting duplicate ACKs. 2085 * 2086 * lost_out: Packets lost by network. TCP has no explicit 2087 * "loss notification" feedback from network (for now). 2088 * It means that this number can be only _guessed_. 2089 * Actually, it is the heuristics to predict lossage that 2090 * distinguishes different algorithms. 2091 * 2092 * F.e. after RTO, when all the queue is considered as lost, 2093 * lost_out = packets_out and in_flight = retrans_out. 2094 * 2095 * Essentially, we have now a few algorithms detecting 2096 * lost packets. 2097 * 2098 * If the receiver supports SACK: 2099 * 2100 * RFC6675/3517: It is the conventional algorithm. A packet is 2101 * considered lost if the number of higher sequence packets 2102 * SACKed is greater than or equal the DUPACK thoreshold 2103 * (reordering). This is implemented in tcp_mark_head_lost and 2104 * tcp_update_scoreboard. 2105 * 2106 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2107 * (2017-) that checks timing instead of counting DUPACKs. 2108 * Essentially a packet is considered lost if it's not S/ACKed 2109 * after RTT + reordering_window, where both metrics are 2110 * dynamically measured and adjusted. This is implemented in 2111 * tcp_rack_mark_lost. 2112 * 2113 * If the receiver does not support SACK: 2114 * 2115 * NewReno (RFC6582): in Recovery we assume that one segment 2116 * is lost (classic Reno). While we are in Recovery and 2117 * a partial ACK arrives, we assume that one more packet 2118 * is lost (NewReno). This heuristics are the same in NewReno 2119 * and SACK. 2120 * 2121 * Really tricky (and requiring careful tuning) part of algorithm 2122 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2123 * The first determines the moment _when_ we should reduce CWND and, 2124 * hence, slow down forward transmission. In fact, it determines the moment 2125 * when we decide that hole is caused by loss, rather than by a reorder. 2126 * 2127 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2128 * holes, caused by lost packets. 2129 * 2130 * And the most logically complicated part of algorithm is undo 2131 * heuristics. We detect false retransmits due to both too early 2132 * fast retransmit (reordering) and underestimated RTO, analyzing 2133 * timestamps and D-SACKs. When we detect that some segments were 2134 * retransmitted by mistake and CWND reduction was wrong, we undo 2135 * window reduction and abort recovery phase. This logic is hidden 2136 * inside several functions named tcp_try_undo_<something>. 2137 */ 2138 2139 /* This function decides, when we should leave Disordered state 2140 * and enter Recovery phase, reducing congestion window. 2141 * 2142 * Main question: may we further continue forward transmission 2143 * with the same cwnd? 2144 */ 2145 static bool tcp_time_to_recover(struct sock *sk, int flag) 2146 { 2147 struct tcp_sock *tp = tcp_sk(sk); 2148 2149 /* Trick#1: The loss is proven. */ 2150 if (tp->lost_out) 2151 return true; 2152 2153 /* Not-A-Trick#2 : Classic rule... */ 2154 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2155 return true; 2156 2157 return false; 2158 } 2159 2160 /* Detect loss in event "A" above by marking head of queue up as lost. 2161 * For non-SACK(Reno) senders, the first "packets" number of segments 2162 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2163 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2164 * the maximum SACKed segments to pass before reaching this limit. 2165 */ 2166 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2167 { 2168 struct tcp_sock *tp = tcp_sk(sk); 2169 struct sk_buff *skb; 2170 int cnt, oldcnt, lost; 2171 unsigned int mss; 2172 /* Use SACK to deduce losses of new sequences sent during recovery */ 2173 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2174 2175 WARN_ON(packets > tp->packets_out); 2176 skb = tp->lost_skb_hint; 2177 if (skb) { 2178 /* Head already handled? */ 2179 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2180 return; 2181 cnt = tp->lost_cnt_hint; 2182 } else { 2183 skb = tcp_rtx_queue_head(sk); 2184 cnt = 0; 2185 } 2186 2187 skb_rbtree_walk_from(skb) { 2188 /* TODO: do this better */ 2189 /* this is not the most efficient way to do this... */ 2190 tp->lost_skb_hint = skb; 2191 tp->lost_cnt_hint = cnt; 2192 2193 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2194 break; 2195 2196 oldcnt = cnt; 2197 if (tcp_is_reno(tp) || 2198 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2199 cnt += tcp_skb_pcount(skb); 2200 2201 if (cnt > packets) { 2202 if (tcp_is_sack(tp) || 2203 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2204 (oldcnt >= packets)) 2205 break; 2206 2207 mss = tcp_skb_mss(skb); 2208 /* If needed, chop off the prefix to mark as lost. */ 2209 lost = (packets - oldcnt) * mss; 2210 if (lost < skb->len && 2211 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2212 lost, mss, GFP_ATOMIC) < 0) 2213 break; 2214 cnt = packets; 2215 } 2216 2217 tcp_skb_mark_lost(tp, skb); 2218 2219 if (mark_head) 2220 break; 2221 } 2222 tcp_verify_left_out(tp); 2223 } 2224 2225 /* Account newly detected lost packet(s) */ 2226 2227 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2228 { 2229 struct tcp_sock *tp = tcp_sk(sk); 2230 2231 if (tcp_is_sack(tp)) { 2232 int sacked_upto = tp->sacked_out - tp->reordering; 2233 if (sacked_upto >= 0) 2234 tcp_mark_head_lost(sk, sacked_upto, 0); 2235 else if (fast_rexmit) 2236 tcp_mark_head_lost(sk, 1, 1); 2237 } 2238 } 2239 2240 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2241 { 2242 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2243 before(tp->rx_opt.rcv_tsecr, when); 2244 } 2245 2246 /* skb is spurious retransmitted if the returned timestamp echo 2247 * reply is prior to the skb transmission time 2248 */ 2249 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2250 const struct sk_buff *skb) 2251 { 2252 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2253 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2254 } 2255 2256 /* Nothing was retransmitted or returned timestamp is less 2257 * than timestamp of the first retransmission. 2258 */ 2259 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2260 { 2261 return tp->retrans_stamp && 2262 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2263 } 2264 2265 /* Undo procedures. */ 2266 2267 /* We can clear retrans_stamp when there are no retransmissions in the 2268 * window. It would seem that it is trivially available for us in 2269 * tp->retrans_out, however, that kind of assumptions doesn't consider 2270 * what will happen if errors occur when sending retransmission for the 2271 * second time. ...It could the that such segment has only 2272 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2273 * the head skb is enough except for some reneging corner cases that 2274 * are not worth the effort. 2275 * 2276 * Main reason for all this complexity is the fact that connection dying 2277 * time now depends on the validity of the retrans_stamp, in particular, 2278 * that successive retransmissions of a segment must not advance 2279 * retrans_stamp under any conditions. 2280 */ 2281 static bool tcp_any_retrans_done(const struct sock *sk) 2282 { 2283 const struct tcp_sock *tp = tcp_sk(sk); 2284 struct sk_buff *skb; 2285 2286 if (tp->retrans_out) 2287 return true; 2288 2289 skb = tcp_rtx_queue_head(sk); 2290 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2291 return true; 2292 2293 return false; 2294 } 2295 2296 static void DBGUNDO(struct sock *sk, const char *msg) 2297 { 2298 #if FASTRETRANS_DEBUG > 1 2299 struct tcp_sock *tp = tcp_sk(sk); 2300 struct inet_sock *inet = inet_sk(sk); 2301 2302 if (sk->sk_family == AF_INET) { 2303 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2304 msg, 2305 &inet->inet_daddr, ntohs(inet->inet_dport), 2306 tp->snd_cwnd, tcp_left_out(tp), 2307 tp->snd_ssthresh, tp->prior_ssthresh, 2308 tp->packets_out); 2309 } 2310 #if IS_ENABLED(CONFIG_IPV6) 2311 else if (sk->sk_family == AF_INET6) { 2312 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2313 msg, 2314 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2315 tp->snd_cwnd, tcp_left_out(tp), 2316 tp->snd_ssthresh, tp->prior_ssthresh, 2317 tp->packets_out); 2318 } 2319 #endif 2320 #endif 2321 } 2322 2323 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2324 { 2325 struct tcp_sock *tp = tcp_sk(sk); 2326 2327 if (unmark_loss) { 2328 struct sk_buff *skb; 2329 2330 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2331 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2332 } 2333 tp->lost_out = 0; 2334 tcp_clear_all_retrans_hints(tp); 2335 } 2336 2337 if (tp->prior_ssthresh) { 2338 const struct inet_connection_sock *icsk = inet_csk(sk); 2339 2340 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2341 2342 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2343 tp->snd_ssthresh = tp->prior_ssthresh; 2344 tcp_ecn_withdraw_cwr(tp); 2345 } 2346 } 2347 tp->snd_cwnd_stamp = tcp_jiffies32; 2348 tp->undo_marker = 0; 2349 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2350 } 2351 2352 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2353 { 2354 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2355 } 2356 2357 /* People celebrate: "We love our President!" */ 2358 static bool tcp_try_undo_recovery(struct sock *sk) 2359 { 2360 struct tcp_sock *tp = tcp_sk(sk); 2361 2362 if (tcp_may_undo(tp)) { 2363 int mib_idx; 2364 2365 /* Happy end! We did not retransmit anything 2366 * or our original transmission succeeded. 2367 */ 2368 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2369 tcp_undo_cwnd_reduction(sk, false); 2370 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2371 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2372 else 2373 mib_idx = LINUX_MIB_TCPFULLUNDO; 2374 2375 NET_INC_STATS(sock_net(sk), mib_idx); 2376 } else if (tp->rack.reo_wnd_persist) { 2377 tp->rack.reo_wnd_persist--; 2378 } 2379 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2380 /* Hold old state until something *above* high_seq 2381 * is ACKed. For Reno it is MUST to prevent false 2382 * fast retransmits (RFC2582). SACK TCP is safe. */ 2383 if (!tcp_any_retrans_done(sk)) 2384 tp->retrans_stamp = 0; 2385 return true; 2386 } 2387 tcp_set_ca_state(sk, TCP_CA_Open); 2388 tp->is_sack_reneg = 0; 2389 return false; 2390 } 2391 2392 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2393 static bool tcp_try_undo_dsack(struct sock *sk) 2394 { 2395 struct tcp_sock *tp = tcp_sk(sk); 2396 2397 if (tp->undo_marker && !tp->undo_retrans) { 2398 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2399 tp->rack.reo_wnd_persist + 1); 2400 DBGUNDO(sk, "D-SACK"); 2401 tcp_undo_cwnd_reduction(sk, false); 2402 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2403 return true; 2404 } 2405 return false; 2406 } 2407 2408 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2409 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2410 { 2411 struct tcp_sock *tp = tcp_sk(sk); 2412 2413 if (frto_undo || tcp_may_undo(tp)) { 2414 tcp_undo_cwnd_reduction(sk, true); 2415 2416 DBGUNDO(sk, "partial loss"); 2417 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2418 if (frto_undo) 2419 NET_INC_STATS(sock_net(sk), 2420 LINUX_MIB_TCPSPURIOUSRTOS); 2421 inet_csk(sk)->icsk_retransmits = 0; 2422 if (frto_undo || tcp_is_sack(tp)) { 2423 tcp_set_ca_state(sk, TCP_CA_Open); 2424 tp->is_sack_reneg = 0; 2425 } 2426 return true; 2427 } 2428 return false; 2429 } 2430 2431 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2432 * It computes the number of packets to send (sndcnt) based on packets newly 2433 * delivered: 2434 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2435 * cwnd reductions across a full RTT. 2436 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2437 * But when the retransmits are acked without further losses, PRR 2438 * slow starts cwnd up to ssthresh to speed up the recovery. 2439 */ 2440 static void tcp_init_cwnd_reduction(struct sock *sk) 2441 { 2442 struct tcp_sock *tp = tcp_sk(sk); 2443 2444 tp->high_seq = tp->snd_nxt; 2445 tp->tlp_high_seq = 0; 2446 tp->snd_cwnd_cnt = 0; 2447 tp->prior_cwnd = tp->snd_cwnd; 2448 tp->prr_delivered = 0; 2449 tp->prr_out = 0; 2450 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2451 tcp_ecn_queue_cwr(tp); 2452 } 2453 2454 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2455 { 2456 struct tcp_sock *tp = tcp_sk(sk); 2457 int sndcnt = 0; 2458 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2459 2460 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2461 return; 2462 2463 tp->prr_delivered += newly_acked_sacked; 2464 if (delta < 0) { 2465 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2466 tp->prior_cwnd - 1; 2467 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2468 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2469 FLAG_RETRANS_DATA_ACKED) { 2470 sndcnt = min_t(int, delta, 2471 max_t(int, tp->prr_delivered - tp->prr_out, 2472 newly_acked_sacked) + 1); 2473 } else { 2474 sndcnt = min(delta, newly_acked_sacked); 2475 } 2476 /* Force a fast retransmit upon entering fast recovery */ 2477 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2478 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2479 } 2480 2481 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2482 { 2483 struct tcp_sock *tp = tcp_sk(sk); 2484 2485 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2486 return; 2487 2488 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2489 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2490 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2491 tp->snd_cwnd = tp->snd_ssthresh; 2492 tp->snd_cwnd_stamp = tcp_jiffies32; 2493 } 2494 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2495 } 2496 2497 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2498 void tcp_enter_cwr(struct sock *sk) 2499 { 2500 struct tcp_sock *tp = tcp_sk(sk); 2501 2502 tp->prior_ssthresh = 0; 2503 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2504 tp->undo_marker = 0; 2505 tcp_init_cwnd_reduction(sk); 2506 tcp_set_ca_state(sk, TCP_CA_CWR); 2507 } 2508 } 2509 EXPORT_SYMBOL(tcp_enter_cwr); 2510 2511 static void tcp_try_keep_open(struct sock *sk) 2512 { 2513 struct tcp_sock *tp = tcp_sk(sk); 2514 int state = TCP_CA_Open; 2515 2516 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2517 state = TCP_CA_Disorder; 2518 2519 if (inet_csk(sk)->icsk_ca_state != state) { 2520 tcp_set_ca_state(sk, state); 2521 tp->high_seq = tp->snd_nxt; 2522 } 2523 } 2524 2525 static void tcp_try_to_open(struct sock *sk, int flag) 2526 { 2527 struct tcp_sock *tp = tcp_sk(sk); 2528 2529 tcp_verify_left_out(tp); 2530 2531 if (!tcp_any_retrans_done(sk)) 2532 tp->retrans_stamp = 0; 2533 2534 if (flag & FLAG_ECE) 2535 tcp_enter_cwr(sk); 2536 2537 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2538 tcp_try_keep_open(sk); 2539 } 2540 } 2541 2542 static void tcp_mtup_probe_failed(struct sock *sk) 2543 { 2544 struct inet_connection_sock *icsk = inet_csk(sk); 2545 2546 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2547 icsk->icsk_mtup.probe_size = 0; 2548 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2549 } 2550 2551 static void tcp_mtup_probe_success(struct sock *sk) 2552 { 2553 struct tcp_sock *tp = tcp_sk(sk); 2554 struct inet_connection_sock *icsk = inet_csk(sk); 2555 2556 /* FIXME: breaks with very large cwnd */ 2557 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2558 tp->snd_cwnd = tp->snd_cwnd * 2559 tcp_mss_to_mtu(sk, tp->mss_cache) / 2560 icsk->icsk_mtup.probe_size; 2561 tp->snd_cwnd_cnt = 0; 2562 tp->snd_cwnd_stamp = tcp_jiffies32; 2563 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2564 2565 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2566 icsk->icsk_mtup.probe_size = 0; 2567 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2568 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2569 } 2570 2571 /* Do a simple retransmit without using the backoff mechanisms in 2572 * tcp_timer. This is used for path mtu discovery. 2573 * The socket is already locked here. 2574 */ 2575 void tcp_simple_retransmit(struct sock *sk) 2576 { 2577 const struct inet_connection_sock *icsk = inet_csk(sk); 2578 struct tcp_sock *tp = tcp_sk(sk); 2579 struct sk_buff *skb; 2580 unsigned int mss = tcp_current_mss(sk); 2581 2582 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2583 if (tcp_skb_seglen(skb) > mss && 2584 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2585 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2586 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2587 tp->retrans_out -= tcp_skb_pcount(skb); 2588 } 2589 tcp_skb_mark_lost_uncond_verify(tp, skb); 2590 } 2591 } 2592 2593 tcp_clear_retrans_hints_partial(tp); 2594 2595 if (!tp->lost_out) 2596 return; 2597 2598 if (tcp_is_reno(tp)) 2599 tcp_limit_reno_sacked(tp); 2600 2601 tcp_verify_left_out(tp); 2602 2603 /* Don't muck with the congestion window here. 2604 * Reason is that we do not increase amount of _data_ 2605 * in network, but units changed and effective 2606 * cwnd/ssthresh really reduced now. 2607 */ 2608 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2609 tp->high_seq = tp->snd_nxt; 2610 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2611 tp->prior_ssthresh = 0; 2612 tp->undo_marker = 0; 2613 tcp_set_ca_state(sk, TCP_CA_Loss); 2614 } 2615 tcp_xmit_retransmit_queue(sk); 2616 } 2617 EXPORT_SYMBOL(tcp_simple_retransmit); 2618 2619 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2620 { 2621 struct tcp_sock *tp = tcp_sk(sk); 2622 int mib_idx; 2623 2624 if (tcp_is_reno(tp)) 2625 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2626 else 2627 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2628 2629 NET_INC_STATS(sock_net(sk), mib_idx); 2630 2631 tp->prior_ssthresh = 0; 2632 tcp_init_undo(tp); 2633 2634 if (!tcp_in_cwnd_reduction(sk)) { 2635 if (!ece_ack) 2636 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2637 tcp_init_cwnd_reduction(sk); 2638 } 2639 tcp_set_ca_state(sk, TCP_CA_Recovery); 2640 } 2641 2642 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2643 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2644 */ 2645 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2646 int *rexmit) 2647 { 2648 struct tcp_sock *tp = tcp_sk(sk); 2649 bool recovered = !before(tp->snd_una, tp->high_seq); 2650 2651 if ((flag & FLAG_SND_UNA_ADVANCED) && 2652 tcp_try_undo_loss(sk, false)) 2653 return; 2654 2655 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2656 /* Step 3.b. A timeout is spurious if not all data are 2657 * lost, i.e., never-retransmitted data are (s)acked. 2658 */ 2659 if ((flag & FLAG_ORIG_SACK_ACKED) && 2660 tcp_try_undo_loss(sk, true)) 2661 return; 2662 2663 if (after(tp->snd_nxt, tp->high_seq)) { 2664 if (flag & FLAG_DATA_SACKED || num_dupack) 2665 tp->frto = 0; /* Step 3.a. loss was real */ 2666 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2667 tp->high_seq = tp->snd_nxt; 2668 /* Step 2.b. Try send new data (but deferred until cwnd 2669 * is updated in tcp_ack()). Otherwise fall back to 2670 * the conventional recovery. 2671 */ 2672 if (!tcp_write_queue_empty(sk) && 2673 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2674 *rexmit = REXMIT_NEW; 2675 return; 2676 } 2677 tp->frto = 0; 2678 } 2679 } 2680 2681 if (recovered) { 2682 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2683 tcp_try_undo_recovery(sk); 2684 return; 2685 } 2686 if (tcp_is_reno(tp)) { 2687 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2688 * delivered. Lower inflight to clock out (re)tranmissions. 2689 */ 2690 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2691 tcp_add_reno_sack(sk, num_dupack); 2692 else if (flag & FLAG_SND_UNA_ADVANCED) 2693 tcp_reset_reno_sack(tp); 2694 } 2695 *rexmit = REXMIT_LOST; 2696 } 2697 2698 /* Undo during fast recovery after partial ACK. */ 2699 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2700 { 2701 struct tcp_sock *tp = tcp_sk(sk); 2702 2703 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2704 /* Plain luck! Hole if filled with delayed 2705 * packet, rather than with a retransmit. Check reordering. 2706 */ 2707 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2708 2709 /* We are getting evidence that the reordering degree is higher 2710 * than we realized. If there are no retransmits out then we 2711 * can undo. Otherwise we clock out new packets but do not 2712 * mark more packets lost or retransmit more. 2713 */ 2714 if (tp->retrans_out) 2715 return true; 2716 2717 if (!tcp_any_retrans_done(sk)) 2718 tp->retrans_stamp = 0; 2719 2720 DBGUNDO(sk, "partial recovery"); 2721 tcp_undo_cwnd_reduction(sk, true); 2722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2723 tcp_try_keep_open(sk); 2724 return true; 2725 } 2726 return false; 2727 } 2728 2729 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2730 { 2731 struct tcp_sock *tp = tcp_sk(sk); 2732 2733 if (tcp_rtx_queue_empty(sk)) 2734 return; 2735 2736 if (unlikely(tcp_is_reno(tp))) { 2737 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2738 } else if (tcp_is_rack(sk)) { 2739 u32 prior_retrans = tp->retrans_out; 2740 2741 tcp_rack_mark_lost(sk); 2742 if (prior_retrans > tp->retrans_out) 2743 *ack_flag |= FLAG_LOST_RETRANS; 2744 } 2745 } 2746 2747 static bool tcp_force_fast_retransmit(struct sock *sk) 2748 { 2749 struct tcp_sock *tp = tcp_sk(sk); 2750 2751 return after(tcp_highest_sack_seq(tp), 2752 tp->snd_una + tp->reordering * tp->mss_cache); 2753 } 2754 2755 /* Process an event, which can update packets-in-flight not trivially. 2756 * Main goal of this function is to calculate new estimate for left_out, 2757 * taking into account both packets sitting in receiver's buffer and 2758 * packets lost by network. 2759 * 2760 * Besides that it updates the congestion state when packet loss or ECN 2761 * is detected. But it does not reduce the cwnd, it is done by the 2762 * congestion control later. 2763 * 2764 * It does _not_ decide what to send, it is made in function 2765 * tcp_xmit_retransmit_queue(). 2766 */ 2767 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2768 int num_dupack, int *ack_flag, int *rexmit) 2769 { 2770 struct inet_connection_sock *icsk = inet_csk(sk); 2771 struct tcp_sock *tp = tcp_sk(sk); 2772 int fast_rexmit = 0, flag = *ack_flag; 2773 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2774 tcp_force_fast_retransmit(sk)); 2775 2776 if (!tp->packets_out && tp->sacked_out) 2777 tp->sacked_out = 0; 2778 2779 /* Now state machine starts. 2780 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2781 if (flag & FLAG_ECE) 2782 tp->prior_ssthresh = 0; 2783 2784 /* B. In all the states check for reneging SACKs. */ 2785 if (tcp_check_sack_reneging(sk, flag)) 2786 return; 2787 2788 /* C. Check consistency of the current state. */ 2789 tcp_verify_left_out(tp); 2790 2791 /* D. Check state exit conditions. State can be terminated 2792 * when high_seq is ACKed. */ 2793 if (icsk->icsk_ca_state == TCP_CA_Open) { 2794 WARN_ON(tp->retrans_out != 0); 2795 tp->retrans_stamp = 0; 2796 } else if (!before(tp->snd_una, tp->high_seq)) { 2797 switch (icsk->icsk_ca_state) { 2798 case TCP_CA_CWR: 2799 /* CWR is to be held something *above* high_seq 2800 * is ACKed for CWR bit to reach receiver. */ 2801 if (tp->snd_una != tp->high_seq) { 2802 tcp_end_cwnd_reduction(sk); 2803 tcp_set_ca_state(sk, TCP_CA_Open); 2804 } 2805 break; 2806 2807 case TCP_CA_Recovery: 2808 if (tcp_is_reno(tp)) 2809 tcp_reset_reno_sack(tp); 2810 if (tcp_try_undo_recovery(sk)) 2811 return; 2812 tcp_end_cwnd_reduction(sk); 2813 break; 2814 } 2815 } 2816 2817 /* E. Process state. */ 2818 switch (icsk->icsk_ca_state) { 2819 case TCP_CA_Recovery: 2820 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2821 if (tcp_is_reno(tp)) 2822 tcp_add_reno_sack(sk, num_dupack); 2823 } else { 2824 if (tcp_try_undo_partial(sk, prior_snd_una)) 2825 return; 2826 /* Partial ACK arrived. Force fast retransmit. */ 2827 do_lost = tcp_is_reno(tp) || 2828 tcp_force_fast_retransmit(sk); 2829 } 2830 if (tcp_try_undo_dsack(sk)) { 2831 tcp_try_keep_open(sk); 2832 return; 2833 } 2834 tcp_identify_packet_loss(sk, ack_flag); 2835 break; 2836 case TCP_CA_Loss: 2837 tcp_process_loss(sk, flag, num_dupack, rexmit); 2838 tcp_identify_packet_loss(sk, ack_flag); 2839 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2840 (*ack_flag & FLAG_LOST_RETRANS))) 2841 return; 2842 /* Change state if cwnd is undone or retransmits are lost */ 2843 /* fall through */ 2844 default: 2845 if (tcp_is_reno(tp)) { 2846 if (flag & FLAG_SND_UNA_ADVANCED) 2847 tcp_reset_reno_sack(tp); 2848 tcp_add_reno_sack(sk, num_dupack); 2849 } 2850 2851 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2852 tcp_try_undo_dsack(sk); 2853 2854 tcp_identify_packet_loss(sk, ack_flag); 2855 if (!tcp_time_to_recover(sk, flag)) { 2856 tcp_try_to_open(sk, flag); 2857 return; 2858 } 2859 2860 /* MTU probe failure: don't reduce cwnd */ 2861 if (icsk->icsk_ca_state < TCP_CA_CWR && 2862 icsk->icsk_mtup.probe_size && 2863 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2864 tcp_mtup_probe_failed(sk); 2865 /* Restores the reduction we did in tcp_mtup_probe() */ 2866 tp->snd_cwnd++; 2867 tcp_simple_retransmit(sk); 2868 return; 2869 } 2870 2871 /* Otherwise enter Recovery state */ 2872 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2873 fast_rexmit = 1; 2874 } 2875 2876 if (!tcp_is_rack(sk) && do_lost) 2877 tcp_update_scoreboard(sk, fast_rexmit); 2878 *rexmit = REXMIT_LOST; 2879 } 2880 2881 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2882 { 2883 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2884 struct tcp_sock *tp = tcp_sk(sk); 2885 2886 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2887 /* If the remote keeps returning delayed ACKs, eventually 2888 * the min filter would pick it up and overestimate the 2889 * prop. delay when it expires. Skip suspected delayed ACKs. 2890 */ 2891 return; 2892 } 2893 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2894 rtt_us ? : jiffies_to_usecs(1)); 2895 } 2896 2897 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2898 long seq_rtt_us, long sack_rtt_us, 2899 long ca_rtt_us, struct rate_sample *rs) 2900 { 2901 const struct tcp_sock *tp = tcp_sk(sk); 2902 2903 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2904 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2905 * Karn's algorithm forbids taking RTT if some retransmitted data 2906 * is acked (RFC6298). 2907 */ 2908 if (seq_rtt_us < 0) 2909 seq_rtt_us = sack_rtt_us; 2910 2911 /* RTTM Rule: A TSecr value received in a segment is used to 2912 * update the averaged RTT measurement only if the segment 2913 * acknowledges some new data, i.e., only if it advances the 2914 * left edge of the send window. 2915 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2916 */ 2917 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2918 flag & FLAG_ACKED) { 2919 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2920 2921 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2922 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2923 ca_rtt_us = seq_rtt_us; 2924 } 2925 } 2926 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2927 if (seq_rtt_us < 0) 2928 return false; 2929 2930 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2931 * always taken together with ACK, SACK, or TS-opts. Any negative 2932 * values will be skipped with the seq_rtt_us < 0 check above. 2933 */ 2934 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2935 tcp_rtt_estimator(sk, seq_rtt_us); 2936 tcp_set_rto(sk); 2937 2938 /* RFC6298: only reset backoff on valid RTT measurement. */ 2939 inet_csk(sk)->icsk_backoff = 0; 2940 return true; 2941 } 2942 2943 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2944 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2945 { 2946 struct rate_sample rs; 2947 long rtt_us = -1L; 2948 2949 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2950 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2951 2952 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2953 } 2954 2955 2956 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2957 { 2958 const struct inet_connection_sock *icsk = inet_csk(sk); 2959 2960 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2961 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2962 } 2963 2964 /* Restart timer after forward progress on connection. 2965 * RFC2988 recommends to restart timer to now+rto. 2966 */ 2967 void tcp_rearm_rto(struct sock *sk) 2968 { 2969 const struct inet_connection_sock *icsk = inet_csk(sk); 2970 struct tcp_sock *tp = tcp_sk(sk); 2971 2972 /* If the retrans timer is currently being used by Fast Open 2973 * for SYN-ACK retrans purpose, stay put. 2974 */ 2975 if (tp->fastopen_rsk) 2976 return; 2977 2978 if (!tp->packets_out) { 2979 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2980 } else { 2981 u32 rto = inet_csk(sk)->icsk_rto; 2982 /* Offset the time elapsed after installing regular RTO */ 2983 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2984 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2985 s64 delta_us = tcp_rto_delta_us(sk); 2986 /* delta_us may not be positive if the socket is locked 2987 * when the retrans timer fires and is rescheduled. 2988 */ 2989 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2990 } 2991 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2992 TCP_RTO_MAX, tcp_rtx_queue_head(sk)); 2993 } 2994 } 2995 2996 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2997 static void tcp_set_xmit_timer(struct sock *sk) 2998 { 2999 if (!tcp_schedule_loss_probe(sk, true)) 3000 tcp_rearm_rto(sk); 3001 } 3002 3003 /* If we get here, the whole TSO packet has not been acked. */ 3004 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3005 { 3006 struct tcp_sock *tp = tcp_sk(sk); 3007 u32 packets_acked; 3008 3009 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3010 3011 packets_acked = tcp_skb_pcount(skb); 3012 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3013 return 0; 3014 packets_acked -= tcp_skb_pcount(skb); 3015 3016 if (packets_acked) { 3017 BUG_ON(tcp_skb_pcount(skb) == 0); 3018 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3019 } 3020 3021 return packets_acked; 3022 } 3023 3024 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3025 u32 prior_snd_una) 3026 { 3027 const struct skb_shared_info *shinfo; 3028 3029 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3030 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3031 return; 3032 3033 shinfo = skb_shinfo(skb); 3034 if (!before(shinfo->tskey, prior_snd_una) && 3035 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3036 tcp_skb_tsorted_save(skb) { 3037 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3038 } tcp_skb_tsorted_restore(skb); 3039 } 3040 } 3041 3042 /* Remove acknowledged frames from the retransmission queue. If our packet 3043 * is before the ack sequence we can discard it as it's confirmed to have 3044 * arrived at the other end. 3045 */ 3046 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3047 u32 prior_snd_una, 3048 struct tcp_sacktag_state *sack) 3049 { 3050 const struct inet_connection_sock *icsk = inet_csk(sk); 3051 u64 first_ackt, last_ackt; 3052 struct tcp_sock *tp = tcp_sk(sk); 3053 u32 prior_sacked = tp->sacked_out; 3054 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3055 struct sk_buff *skb, *next; 3056 bool fully_acked = true; 3057 long sack_rtt_us = -1L; 3058 long seq_rtt_us = -1L; 3059 long ca_rtt_us = -1L; 3060 u32 pkts_acked = 0; 3061 u32 last_in_flight = 0; 3062 bool rtt_update; 3063 int flag = 0; 3064 3065 first_ackt = 0; 3066 3067 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3068 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3069 const u32 start_seq = scb->seq; 3070 u8 sacked = scb->sacked; 3071 u32 acked_pcount; 3072 3073 tcp_ack_tstamp(sk, skb, prior_snd_una); 3074 3075 /* Determine how many packets and what bytes were acked, tso and else */ 3076 if (after(scb->end_seq, tp->snd_una)) { 3077 if (tcp_skb_pcount(skb) == 1 || 3078 !after(tp->snd_una, scb->seq)) 3079 break; 3080 3081 acked_pcount = tcp_tso_acked(sk, skb); 3082 if (!acked_pcount) 3083 break; 3084 fully_acked = false; 3085 } else { 3086 acked_pcount = tcp_skb_pcount(skb); 3087 } 3088 3089 if (unlikely(sacked & TCPCB_RETRANS)) { 3090 if (sacked & TCPCB_SACKED_RETRANS) 3091 tp->retrans_out -= acked_pcount; 3092 flag |= FLAG_RETRANS_DATA_ACKED; 3093 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3094 last_ackt = tcp_skb_timestamp_us(skb); 3095 WARN_ON_ONCE(last_ackt == 0); 3096 if (!first_ackt) 3097 first_ackt = last_ackt; 3098 3099 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3100 if (before(start_seq, reord)) 3101 reord = start_seq; 3102 if (!after(scb->end_seq, tp->high_seq)) 3103 flag |= FLAG_ORIG_SACK_ACKED; 3104 } 3105 3106 if (sacked & TCPCB_SACKED_ACKED) { 3107 tp->sacked_out -= acked_pcount; 3108 } else if (tcp_is_sack(tp)) { 3109 tp->delivered += acked_pcount; 3110 if (!tcp_skb_spurious_retrans(tp, skb)) 3111 tcp_rack_advance(tp, sacked, scb->end_seq, 3112 tcp_skb_timestamp_us(skb)); 3113 } 3114 if (sacked & TCPCB_LOST) 3115 tp->lost_out -= acked_pcount; 3116 3117 tp->packets_out -= acked_pcount; 3118 pkts_acked += acked_pcount; 3119 tcp_rate_skb_delivered(sk, skb, sack->rate); 3120 3121 /* Initial outgoing SYN's get put onto the write_queue 3122 * just like anything else we transmit. It is not 3123 * true data, and if we misinform our callers that 3124 * this ACK acks real data, we will erroneously exit 3125 * connection startup slow start one packet too 3126 * quickly. This is severely frowned upon behavior. 3127 */ 3128 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3129 flag |= FLAG_DATA_ACKED; 3130 } else { 3131 flag |= FLAG_SYN_ACKED; 3132 tp->retrans_stamp = 0; 3133 } 3134 3135 if (!fully_acked) 3136 break; 3137 3138 next = skb_rb_next(skb); 3139 if (unlikely(skb == tp->retransmit_skb_hint)) 3140 tp->retransmit_skb_hint = NULL; 3141 if (unlikely(skb == tp->lost_skb_hint)) 3142 tp->lost_skb_hint = NULL; 3143 tcp_rtx_queue_unlink_and_free(skb, sk); 3144 } 3145 3146 if (!skb) 3147 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3148 3149 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3150 tp->snd_up = tp->snd_una; 3151 3152 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3153 flag |= FLAG_SACK_RENEGING; 3154 3155 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3156 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3157 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3158 3159 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3160 last_in_flight && !prior_sacked && fully_acked && 3161 sack->rate->prior_delivered + 1 == tp->delivered && 3162 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3163 /* Conservatively mark a delayed ACK. It's typically 3164 * from a lone runt packet over the round trip to 3165 * a receiver w/o out-of-order or CE events. 3166 */ 3167 flag |= FLAG_ACK_MAYBE_DELAYED; 3168 } 3169 } 3170 if (sack->first_sackt) { 3171 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3172 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3173 } 3174 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3175 ca_rtt_us, sack->rate); 3176 3177 if (flag & FLAG_ACKED) { 3178 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3179 if (unlikely(icsk->icsk_mtup.probe_size && 3180 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3181 tcp_mtup_probe_success(sk); 3182 } 3183 3184 if (tcp_is_reno(tp)) { 3185 tcp_remove_reno_sacks(sk, pkts_acked); 3186 3187 /* If any of the cumulatively ACKed segments was 3188 * retransmitted, non-SACK case cannot confirm that 3189 * progress was due to original transmission due to 3190 * lack of TCPCB_SACKED_ACKED bits even if some of 3191 * the packets may have been never retransmitted. 3192 */ 3193 if (flag & FLAG_RETRANS_DATA_ACKED) 3194 flag &= ~FLAG_ORIG_SACK_ACKED; 3195 } else { 3196 int delta; 3197 3198 /* Non-retransmitted hole got filled? That's reordering */ 3199 if (before(reord, prior_fack)) 3200 tcp_check_sack_reordering(sk, reord, 0); 3201 3202 delta = prior_sacked - tp->sacked_out; 3203 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3204 } 3205 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3206 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3207 tcp_skb_timestamp_us(skb))) { 3208 /* Do not re-arm RTO if the sack RTT is measured from data sent 3209 * after when the head was last (re)transmitted. Otherwise the 3210 * timeout may continue to extend in loss recovery. 3211 */ 3212 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3213 } 3214 3215 if (icsk->icsk_ca_ops->pkts_acked) { 3216 struct ack_sample sample = { .pkts_acked = pkts_acked, 3217 .rtt_us = sack->rate->rtt_us, 3218 .in_flight = last_in_flight }; 3219 3220 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3221 } 3222 3223 #if FASTRETRANS_DEBUG > 0 3224 WARN_ON((int)tp->sacked_out < 0); 3225 WARN_ON((int)tp->lost_out < 0); 3226 WARN_ON((int)tp->retrans_out < 0); 3227 if (!tp->packets_out && tcp_is_sack(tp)) { 3228 icsk = inet_csk(sk); 3229 if (tp->lost_out) { 3230 pr_debug("Leak l=%u %d\n", 3231 tp->lost_out, icsk->icsk_ca_state); 3232 tp->lost_out = 0; 3233 } 3234 if (tp->sacked_out) { 3235 pr_debug("Leak s=%u %d\n", 3236 tp->sacked_out, icsk->icsk_ca_state); 3237 tp->sacked_out = 0; 3238 } 3239 if (tp->retrans_out) { 3240 pr_debug("Leak r=%u %d\n", 3241 tp->retrans_out, icsk->icsk_ca_state); 3242 tp->retrans_out = 0; 3243 } 3244 } 3245 #endif 3246 return flag; 3247 } 3248 3249 static void tcp_ack_probe(struct sock *sk) 3250 { 3251 struct inet_connection_sock *icsk = inet_csk(sk); 3252 struct sk_buff *head = tcp_send_head(sk); 3253 const struct tcp_sock *tp = tcp_sk(sk); 3254 3255 /* Was it a usable window open? */ 3256 if (!head) 3257 return; 3258 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3259 icsk->icsk_backoff = 0; 3260 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3261 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3262 * This function is not for random using! 3263 */ 3264 } else { 3265 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3266 3267 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3268 when, TCP_RTO_MAX, NULL); 3269 } 3270 } 3271 3272 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3273 { 3274 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3275 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3276 } 3277 3278 /* Decide wheather to run the increase function of congestion control. */ 3279 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3280 { 3281 /* If reordering is high then always grow cwnd whenever data is 3282 * delivered regardless of its ordering. Otherwise stay conservative 3283 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3284 * new SACK or ECE mark may first advance cwnd here and later reduce 3285 * cwnd in tcp_fastretrans_alert() based on more states. 3286 */ 3287 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3288 return flag & FLAG_FORWARD_PROGRESS; 3289 3290 return flag & FLAG_DATA_ACKED; 3291 } 3292 3293 /* The "ultimate" congestion control function that aims to replace the rigid 3294 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3295 * It's called toward the end of processing an ACK with precise rate 3296 * information. All transmission or retransmission are delayed afterwards. 3297 */ 3298 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3299 int flag, const struct rate_sample *rs) 3300 { 3301 const struct inet_connection_sock *icsk = inet_csk(sk); 3302 3303 if (icsk->icsk_ca_ops->cong_control) { 3304 icsk->icsk_ca_ops->cong_control(sk, rs); 3305 return; 3306 } 3307 3308 if (tcp_in_cwnd_reduction(sk)) { 3309 /* Reduce cwnd if state mandates */ 3310 tcp_cwnd_reduction(sk, acked_sacked, flag); 3311 } else if (tcp_may_raise_cwnd(sk, flag)) { 3312 /* Advance cwnd if state allows */ 3313 tcp_cong_avoid(sk, ack, acked_sacked); 3314 } 3315 tcp_update_pacing_rate(sk); 3316 } 3317 3318 /* Check that window update is acceptable. 3319 * The function assumes that snd_una<=ack<=snd_next. 3320 */ 3321 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3322 const u32 ack, const u32 ack_seq, 3323 const u32 nwin) 3324 { 3325 return after(ack, tp->snd_una) || 3326 after(ack_seq, tp->snd_wl1) || 3327 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3328 } 3329 3330 /* If we update tp->snd_una, also update tp->bytes_acked */ 3331 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3332 { 3333 u32 delta = ack - tp->snd_una; 3334 3335 sock_owned_by_me((struct sock *)tp); 3336 tp->bytes_acked += delta; 3337 tp->snd_una = ack; 3338 } 3339 3340 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3341 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3342 { 3343 u32 delta = seq - tp->rcv_nxt; 3344 3345 sock_owned_by_me((struct sock *)tp); 3346 tp->bytes_received += delta; 3347 tp->rcv_nxt = seq; 3348 } 3349 3350 /* Update our send window. 3351 * 3352 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3353 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3354 */ 3355 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3356 u32 ack_seq) 3357 { 3358 struct tcp_sock *tp = tcp_sk(sk); 3359 int flag = 0; 3360 u32 nwin = ntohs(tcp_hdr(skb)->window); 3361 3362 if (likely(!tcp_hdr(skb)->syn)) 3363 nwin <<= tp->rx_opt.snd_wscale; 3364 3365 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3366 flag |= FLAG_WIN_UPDATE; 3367 tcp_update_wl(tp, ack_seq); 3368 3369 if (tp->snd_wnd != nwin) { 3370 tp->snd_wnd = nwin; 3371 3372 /* Note, it is the only place, where 3373 * fast path is recovered for sending TCP. 3374 */ 3375 tp->pred_flags = 0; 3376 tcp_fast_path_check(sk); 3377 3378 if (!tcp_write_queue_empty(sk)) 3379 tcp_slow_start_after_idle_check(sk); 3380 3381 if (nwin > tp->max_window) { 3382 tp->max_window = nwin; 3383 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3384 } 3385 } 3386 } 3387 3388 tcp_snd_una_update(tp, ack); 3389 3390 return flag; 3391 } 3392 3393 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3394 u32 *last_oow_ack_time) 3395 { 3396 if (*last_oow_ack_time) { 3397 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3398 3399 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3400 NET_INC_STATS(net, mib_idx); 3401 return true; /* rate-limited: don't send yet! */ 3402 } 3403 } 3404 3405 *last_oow_ack_time = tcp_jiffies32; 3406 3407 return false; /* not rate-limited: go ahead, send dupack now! */ 3408 } 3409 3410 /* Return true if we're currently rate-limiting out-of-window ACKs and 3411 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3412 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3413 * attacks that send repeated SYNs or ACKs for the same connection. To 3414 * do this, we do not send a duplicate SYNACK or ACK if the remote 3415 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3416 */ 3417 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3418 int mib_idx, u32 *last_oow_ack_time) 3419 { 3420 /* Data packets without SYNs are not likely part of an ACK loop. */ 3421 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3422 !tcp_hdr(skb)->syn) 3423 return false; 3424 3425 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3426 } 3427 3428 /* RFC 5961 7 [ACK Throttling] */ 3429 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3430 { 3431 /* unprotected vars, we dont care of overwrites */ 3432 static u32 challenge_timestamp; 3433 static unsigned int challenge_count; 3434 struct tcp_sock *tp = tcp_sk(sk); 3435 struct net *net = sock_net(sk); 3436 u32 count, now; 3437 3438 /* First check our per-socket dupack rate limit. */ 3439 if (__tcp_oow_rate_limited(net, 3440 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3441 &tp->last_oow_ack_time)) 3442 return; 3443 3444 /* Then check host-wide RFC 5961 rate limit. */ 3445 now = jiffies / HZ; 3446 if (now != challenge_timestamp) { 3447 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3448 u32 half = (ack_limit + 1) >> 1; 3449 3450 challenge_timestamp = now; 3451 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3452 } 3453 count = READ_ONCE(challenge_count); 3454 if (count > 0) { 3455 WRITE_ONCE(challenge_count, count - 1); 3456 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3457 tcp_send_ack(sk); 3458 } 3459 } 3460 3461 static void tcp_store_ts_recent(struct tcp_sock *tp) 3462 { 3463 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3464 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3465 } 3466 3467 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3468 { 3469 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3470 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3471 * extra check below makes sure this can only happen 3472 * for pure ACK frames. -DaveM 3473 * 3474 * Not only, also it occurs for expired timestamps. 3475 */ 3476 3477 if (tcp_paws_check(&tp->rx_opt, 0)) 3478 tcp_store_ts_recent(tp); 3479 } 3480 } 3481 3482 /* This routine deals with acks during a TLP episode. 3483 * We mark the end of a TLP episode on receiving TLP dupack or when 3484 * ack is after tlp_high_seq. 3485 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3486 */ 3487 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3488 { 3489 struct tcp_sock *tp = tcp_sk(sk); 3490 3491 if (before(ack, tp->tlp_high_seq)) 3492 return; 3493 3494 if (flag & FLAG_DSACKING_ACK) { 3495 /* This DSACK means original and TLP probe arrived; no loss */ 3496 tp->tlp_high_seq = 0; 3497 } else if (after(ack, tp->tlp_high_seq)) { 3498 /* ACK advances: there was a loss, so reduce cwnd. Reset 3499 * tlp_high_seq in tcp_init_cwnd_reduction() 3500 */ 3501 tcp_init_cwnd_reduction(sk); 3502 tcp_set_ca_state(sk, TCP_CA_CWR); 3503 tcp_end_cwnd_reduction(sk); 3504 tcp_try_keep_open(sk); 3505 NET_INC_STATS(sock_net(sk), 3506 LINUX_MIB_TCPLOSSPROBERECOVERY); 3507 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3508 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3509 /* Pure dupack: original and TLP probe arrived; no loss */ 3510 tp->tlp_high_seq = 0; 3511 } 3512 } 3513 3514 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3515 { 3516 const struct inet_connection_sock *icsk = inet_csk(sk); 3517 3518 if (icsk->icsk_ca_ops->in_ack_event) 3519 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3520 } 3521 3522 /* Congestion control has updated the cwnd already. So if we're in 3523 * loss recovery then now we do any new sends (for FRTO) or 3524 * retransmits (for CA_Loss or CA_recovery) that make sense. 3525 */ 3526 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3527 { 3528 struct tcp_sock *tp = tcp_sk(sk); 3529 3530 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3531 return; 3532 3533 if (unlikely(rexmit == 2)) { 3534 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3535 TCP_NAGLE_OFF); 3536 if (after(tp->snd_nxt, tp->high_seq)) 3537 return; 3538 tp->frto = 0; 3539 } 3540 tcp_xmit_retransmit_queue(sk); 3541 } 3542 3543 /* Returns the number of packets newly acked or sacked by the current ACK */ 3544 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3545 { 3546 const struct net *net = sock_net(sk); 3547 struct tcp_sock *tp = tcp_sk(sk); 3548 u32 delivered; 3549 3550 delivered = tp->delivered - prior_delivered; 3551 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3552 if (flag & FLAG_ECE) { 3553 tp->delivered_ce += delivered; 3554 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3555 } 3556 return delivered; 3557 } 3558 3559 /* This routine deals with incoming acks, but not outgoing ones. */ 3560 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3561 { 3562 struct inet_connection_sock *icsk = inet_csk(sk); 3563 struct tcp_sock *tp = tcp_sk(sk); 3564 struct tcp_sacktag_state sack_state; 3565 struct rate_sample rs = { .prior_delivered = 0 }; 3566 u32 prior_snd_una = tp->snd_una; 3567 bool is_sack_reneg = tp->is_sack_reneg; 3568 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3569 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3570 int num_dupack = 0; 3571 int prior_packets = tp->packets_out; 3572 u32 delivered = tp->delivered; 3573 u32 lost = tp->lost; 3574 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3575 u32 prior_fack; 3576 3577 sack_state.first_sackt = 0; 3578 sack_state.rate = &rs; 3579 3580 /* We very likely will need to access rtx queue. */ 3581 prefetch(sk->tcp_rtx_queue.rb_node); 3582 3583 /* If the ack is older than previous acks 3584 * then we can probably ignore it. 3585 */ 3586 if (before(ack, prior_snd_una)) { 3587 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3588 if (before(ack, prior_snd_una - tp->max_window)) { 3589 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3590 tcp_send_challenge_ack(sk, skb); 3591 return -1; 3592 } 3593 goto old_ack; 3594 } 3595 3596 /* If the ack includes data we haven't sent yet, discard 3597 * this segment (RFC793 Section 3.9). 3598 */ 3599 if (after(ack, tp->snd_nxt)) 3600 return -1; 3601 3602 if (after(ack, prior_snd_una)) { 3603 flag |= FLAG_SND_UNA_ADVANCED; 3604 icsk->icsk_retransmits = 0; 3605 3606 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3607 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3608 if (icsk->icsk_clean_acked) 3609 icsk->icsk_clean_acked(sk, ack); 3610 #endif 3611 } 3612 3613 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3614 rs.prior_in_flight = tcp_packets_in_flight(tp); 3615 3616 /* ts_recent update must be made after we are sure that the packet 3617 * is in window. 3618 */ 3619 if (flag & FLAG_UPDATE_TS_RECENT) 3620 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3621 3622 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3623 FLAG_SND_UNA_ADVANCED) { 3624 /* Window is constant, pure forward advance. 3625 * No more checks are required. 3626 * Note, we use the fact that SND.UNA>=SND.WL2. 3627 */ 3628 tcp_update_wl(tp, ack_seq); 3629 tcp_snd_una_update(tp, ack); 3630 flag |= FLAG_WIN_UPDATE; 3631 3632 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3633 3634 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3635 } else { 3636 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3637 3638 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3639 flag |= FLAG_DATA; 3640 else 3641 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3642 3643 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3644 3645 if (TCP_SKB_CB(skb)->sacked) 3646 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3647 &sack_state); 3648 3649 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3650 flag |= FLAG_ECE; 3651 ack_ev_flags |= CA_ACK_ECE; 3652 } 3653 3654 if (flag & FLAG_WIN_UPDATE) 3655 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3656 3657 tcp_in_ack_event(sk, ack_ev_flags); 3658 } 3659 3660 /* We passed data and got it acked, remove any soft error 3661 * log. Something worked... 3662 */ 3663 sk->sk_err_soft = 0; 3664 icsk->icsk_probes_out = 0; 3665 tp->rcv_tstamp = tcp_jiffies32; 3666 if (!prior_packets) 3667 goto no_queue; 3668 3669 /* See if we can take anything off of the retransmit queue. */ 3670 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3671 3672 tcp_rack_update_reo_wnd(sk, &rs); 3673 3674 if (tp->tlp_high_seq) 3675 tcp_process_tlp_ack(sk, ack, flag); 3676 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3677 if (flag & FLAG_SET_XMIT_TIMER) 3678 tcp_set_xmit_timer(sk); 3679 3680 if (tcp_ack_is_dubious(sk, flag)) { 3681 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3682 num_dupack = 1; 3683 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3684 if (!(flag & FLAG_DATA)) 3685 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3686 } 3687 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3688 &rexmit); 3689 } 3690 3691 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3692 sk_dst_confirm(sk); 3693 3694 delivered = tcp_newly_delivered(sk, delivered, flag); 3695 lost = tp->lost - lost; /* freshly marked lost */ 3696 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3697 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3698 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3699 tcp_xmit_recovery(sk, rexmit); 3700 return 1; 3701 3702 no_queue: 3703 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3704 if (flag & FLAG_DSACKING_ACK) { 3705 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3706 &rexmit); 3707 tcp_newly_delivered(sk, delivered, flag); 3708 } 3709 /* If this ack opens up a zero window, clear backoff. It was 3710 * being used to time the probes, and is probably far higher than 3711 * it needs to be for normal retransmission. 3712 */ 3713 tcp_ack_probe(sk); 3714 3715 if (tp->tlp_high_seq) 3716 tcp_process_tlp_ack(sk, ack, flag); 3717 return 1; 3718 3719 old_ack: 3720 /* If data was SACKed, tag it and see if we should send more data. 3721 * If data was DSACKed, see if we can undo a cwnd reduction. 3722 */ 3723 if (TCP_SKB_CB(skb)->sacked) { 3724 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3725 &sack_state); 3726 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3727 &rexmit); 3728 tcp_newly_delivered(sk, delivered, flag); 3729 tcp_xmit_recovery(sk, rexmit); 3730 } 3731 3732 return 0; 3733 } 3734 3735 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3736 bool syn, struct tcp_fastopen_cookie *foc, 3737 bool exp_opt) 3738 { 3739 /* Valid only in SYN or SYN-ACK with an even length. */ 3740 if (!foc || !syn || len < 0 || (len & 1)) 3741 return; 3742 3743 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3744 len <= TCP_FASTOPEN_COOKIE_MAX) 3745 memcpy(foc->val, cookie, len); 3746 else if (len != 0) 3747 len = -1; 3748 foc->len = len; 3749 foc->exp = exp_opt; 3750 } 3751 3752 static void smc_parse_options(const struct tcphdr *th, 3753 struct tcp_options_received *opt_rx, 3754 const unsigned char *ptr, 3755 int opsize) 3756 { 3757 #if IS_ENABLED(CONFIG_SMC) 3758 if (static_branch_unlikely(&tcp_have_smc)) { 3759 if (th->syn && !(opsize & 1) && 3760 opsize >= TCPOLEN_EXP_SMC_BASE && 3761 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3762 opt_rx->smc_ok = 1; 3763 } 3764 #endif 3765 } 3766 3767 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3768 * But, this can also be called on packets in the established flow when 3769 * the fast version below fails. 3770 */ 3771 void tcp_parse_options(const struct net *net, 3772 const struct sk_buff *skb, 3773 struct tcp_options_received *opt_rx, int estab, 3774 struct tcp_fastopen_cookie *foc) 3775 { 3776 const unsigned char *ptr; 3777 const struct tcphdr *th = tcp_hdr(skb); 3778 int length = (th->doff * 4) - sizeof(struct tcphdr); 3779 3780 ptr = (const unsigned char *)(th + 1); 3781 opt_rx->saw_tstamp = 0; 3782 3783 while (length > 0) { 3784 int opcode = *ptr++; 3785 int opsize; 3786 3787 switch (opcode) { 3788 case TCPOPT_EOL: 3789 return; 3790 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3791 length--; 3792 continue; 3793 default: 3794 opsize = *ptr++; 3795 if (opsize < 2) /* "silly options" */ 3796 return; 3797 if (opsize > length) 3798 return; /* don't parse partial options */ 3799 switch (opcode) { 3800 case TCPOPT_MSS: 3801 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3802 u16 in_mss = get_unaligned_be16(ptr); 3803 if (in_mss) { 3804 if (opt_rx->user_mss && 3805 opt_rx->user_mss < in_mss) 3806 in_mss = opt_rx->user_mss; 3807 opt_rx->mss_clamp = in_mss; 3808 } 3809 } 3810 break; 3811 case TCPOPT_WINDOW: 3812 if (opsize == TCPOLEN_WINDOW && th->syn && 3813 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3814 __u8 snd_wscale = *(__u8 *)ptr; 3815 opt_rx->wscale_ok = 1; 3816 if (snd_wscale > TCP_MAX_WSCALE) { 3817 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3818 __func__, 3819 snd_wscale, 3820 TCP_MAX_WSCALE); 3821 snd_wscale = TCP_MAX_WSCALE; 3822 } 3823 opt_rx->snd_wscale = snd_wscale; 3824 } 3825 break; 3826 case TCPOPT_TIMESTAMP: 3827 if ((opsize == TCPOLEN_TIMESTAMP) && 3828 ((estab && opt_rx->tstamp_ok) || 3829 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3830 opt_rx->saw_tstamp = 1; 3831 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3832 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3833 } 3834 break; 3835 case TCPOPT_SACK_PERM: 3836 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3837 !estab && net->ipv4.sysctl_tcp_sack) { 3838 opt_rx->sack_ok = TCP_SACK_SEEN; 3839 tcp_sack_reset(opt_rx); 3840 } 3841 break; 3842 3843 case TCPOPT_SACK: 3844 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3845 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3846 opt_rx->sack_ok) { 3847 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3848 } 3849 break; 3850 #ifdef CONFIG_TCP_MD5SIG 3851 case TCPOPT_MD5SIG: 3852 /* 3853 * The MD5 Hash has already been 3854 * checked (see tcp_v{4,6}_do_rcv()). 3855 */ 3856 break; 3857 #endif 3858 case TCPOPT_FASTOPEN: 3859 tcp_parse_fastopen_option( 3860 opsize - TCPOLEN_FASTOPEN_BASE, 3861 ptr, th->syn, foc, false); 3862 break; 3863 3864 case TCPOPT_EXP: 3865 /* Fast Open option shares code 254 using a 3866 * 16 bits magic number. 3867 */ 3868 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3869 get_unaligned_be16(ptr) == 3870 TCPOPT_FASTOPEN_MAGIC) 3871 tcp_parse_fastopen_option(opsize - 3872 TCPOLEN_EXP_FASTOPEN_BASE, 3873 ptr + 2, th->syn, foc, true); 3874 else 3875 smc_parse_options(th, opt_rx, ptr, 3876 opsize); 3877 break; 3878 3879 } 3880 ptr += opsize-2; 3881 length -= opsize; 3882 } 3883 } 3884 } 3885 EXPORT_SYMBOL(tcp_parse_options); 3886 3887 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3888 { 3889 const __be32 *ptr = (const __be32 *)(th + 1); 3890 3891 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3892 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3893 tp->rx_opt.saw_tstamp = 1; 3894 ++ptr; 3895 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3896 ++ptr; 3897 if (*ptr) 3898 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3899 else 3900 tp->rx_opt.rcv_tsecr = 0; 3901 return true; 3902 } 3903 return false; 3904 } 3905 3906 /* Fast parse options. This hopes to only see timestamps. 3907 * If it is wrong it falls back on tcp_parse_options(). 3908 */ 3909 static bool tcp_fast_parse_options(const struct net *net, 3910 const struct sk_buff *skb, 3911 const struct tcphdr *th, struct tcp_sock *tp) 3912 { 3913 /* In the spirit of fast parsing, compare doff directly to constant 3914 * values. Because equality is used, short doff can be ignored here. 3915 */ 3916 if (th->doff == (sizeof(*th) / 4)) { 3917 tp->rx_opt.saw_tstamp = 0; 3918 return false; 3919 } else if (tp->rx_opt.tstamp_ok && 3920 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3921 if (tcp_parse_aligned_timestamp(tp, th)) 3922 return true; 3923 } 3924 3925 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3926 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3927 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3928 3929 return true; 3930 } 3931 3932 #ifdef CONFIG_TCP_MD5SIG 3933 /* 3934 * Parse MD5 Signature option 3935 */ 3936 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3937 { 3938 int length = (th->doff << 2) - sizeof(*th); 3939 const u8 *ptr = (const u8 *)(th + 1); 3940 3941 /* If not enough data remaining, we can short cut */ 3942 while (length >= TCPOLEN_MD5SIG) { 3943 int opcode = *ptr++; 3944 int opsize; 3945 3946 switch (opcode) { 3947 case TCPOPT_EOL: 3948 return NULL; 3949 case TCPOPT_NOP: 3950 length--; 3951 continue; 3952 default: 3953 opsize = *ptr++; 3954 if (opsize < 2 || opsize > length) 3955 return NULL; 3956 if (opcode == TCPOPT_MD5SIG) 3957 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3958 } 3959 ptr += opsize - 2; 3960 length -= opsize; 3961 } 3962 return NULL; 3963 } 3964 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3965 #endif 3966 3967 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3968 * 3969 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3970 * it can pass through stack. So, the following predicate verifies that 3971 * this segment is not used for anything but congestion avoidance or 3972 * fast retransmit. Moreover, we even are able to eliminate most of such 3973 * second order effects, if we apply some small "replay" window (~RTO) 3974 * to timestamp space. 3975 * 3976 * All these measures still do not guarantee that we reject wrapped ACKs 3977 * on networks with high bandwidth, when sequence space is recycled fastly, 3978 * but it guarantees that such events will be very rare and do not affect 3979 * connection seriously. This doesn't look nice, but alas, PAWS is really 3980 * buggy extension. 3981 * 3982 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3983 * states that events when retransmit arrives after original data are rare. 3984 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3985 * the biggest problem on large power networks even with minor reordering. 3986 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3987 * up to bandwidth of 18Gigabit/sec. 8) ] 3988 */ 3989 3990 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3991 { 3992 const struct tcp_sock *tp = tcp_sk(sk); 3993 const struct tcphdr *th = tcp_hdr(skb); 3994 u32 seq = TCP_SKB_CB(skb)->seq; 3995 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3996 3997 return (/* 1. Pure ACK with correct sequence number. */ 3998 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3999 4000 /* 2. ... and duplicate ACK. */ 4001 ack == tp->snd_una && 4002 4003 /* 3. ... and does not update window. */ 4004 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4005 4006 /* 4. ... and sits in replay window. */ 4007 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4008 } 4009 4010 static inline bool tcp_paws_discard(const struct sock *sk, 4011 const struct sk_buff *skb) 4012 { 4013 const struct tcp_sock *tp = tcp_sk(sk); 4014 4015 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4016 !tcp_disordered_ack(sk, skb); 4017 } 4018 4019 /* Check segment sequence number for validity. 4020 * 4021 * Segment controls are considered valid, if the segment 4022 * fits to the window after truncation to the window. Acceptability 4023 * of data (and SYN, FIN, of course) is checked separately. 4024 * See tcp_data_queue(), for example. 4025 * 4026 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4027 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4028 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4029 * (borrowed from freebsd) 4030 */ 4031 4032 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4033 { 4034 return !before(end_seq, tp->rcv_wup) && 4035 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4036 } 4037 4038 /* When we get a reset we do this. */ 4039 void tcp_reset(struct sock *sk) 4040 { 4041 trace_tcp_receive_reset(sk); 4042 4043 /* We want the right error as BSD sees it (and indeed as we do). */ 4044 switch (sk->sk_state) { 4045 case TCP_SYN_SENT: 4046 sk->sk_err = ECONNREFUSED; 4047 break; 4048 case TCP_CLOSE_WAIT: 4049 sk->sk_err = EPIPE; 4050 break; 4051 case TCP_CLOSE: 4052 return; 4053 default: 4054 sk->sk_err = ECONNRESET; 4055 } 4056 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4057 smp_wmb(); 4058 4059 tcp_write_queue_purge(sk); 4060 tcp_done(sk); 4061 4062 if (!sock_flag(sk, SOCK_DEAD)) 4063 sk->sk_error_report(sk); 4064 } 4065 4066 /* 4067 * Process the FIN bit. This now behaves as it is supposed to work 4068 * and the FIN takes effect when it is validly part of sequence 4069 * space. Not before when we get holes. 4070 * 4071 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4072 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4073 * TIME-WAIT) 4074 * 4075 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4076 * close and we go into CLOSING (and later onto TIME-WAIT) 4077 * 4078 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4079 */ 4080 void tcp_fin(struct sock *sk) 4081 { 4082 struct tcp_sock *tp = tcp_sk(sk); 4083 4084 inet_csk_schedule_ack(sk); 4085 4086 sk->sk_shutdown |= RCV_SHUTDOWN; 4087 sock_set_flag(sk, SOCK_DONE); 4088 4089 switch (sk->sk_state) { 4090 case TCP_SYN_RECV: 4091 case TCP_ESTABLISHED: 4092 /* Move to CLOSE_WAIT */ 4093 tcp_set_state(sk, TCP_CLOSE_WAIT); 4094 inet_csk_enter_pingpong_mode(sk); 4095 break; 4096 4097 case TCP_CLOSE_WAIT: 4098 case TCP_CLOSING: 4099 /* Received a retransmission of the FIN, do 4100 * nothing. 4101 */ 4102 break; 4103 case TCP_LAST_ACK: 4104 /* RFC793: Remain in the LAST-ACK state. */ 4105 break; 4106 4107 case TCP_FIN_WAIT1: 4108 /* This case occurs when a simultaneous close 4109 * happens, we must ack the received FIN and 4110 * enter the CLOSING state. 4111 */ 4112 tcp_send_ack(sk); 4113 tcp_set_state(sk, TCP_CLOSING); 4114 break; 4115 case TCP_FIN_WAIT2: 4116 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4117 tcp_send_ack(sk); 4118 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4119 break; 4120 default: 4121 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4122 * cases we should never reach this piece of code. 4123 */ 4124 pr_err("%s: Impossible, sk->sk_state=%d\n", 4125 __func__, sk->sk_state); 4126 break; 4127 } 4128 4129 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4130 * Probably, we should reset in this case. For now drop them. 4131 */ 4132 skb_rbtree_purge(&tp->out_of_order_queue); 4133 if (tcp_is_sack(tp)) 4134 tcp_sack_reset(&tp->rx_opt); 4135 sk_mem_reclaim(sk); 4136 4137 if (!sock_flag(sk, SOCK_DEAD)) { 4138 sk->sk_state_change(sk); 4139 4140 /* Do not send POLL_HUP for half duplex close. */ 4141 if (sk->sk_shutdown == SHUTDOWN_MASK || 4142 sk->sk_state == TCP_CLOSE) 4143 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4144 else 4145 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4146 } 4147 } 4148 4149 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4150 u32 end_seq) 4151 { 4152 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4153 if (before(seq, sp->start_seq)) 4154 sp->start_seq = seq; 4155 if (after(end_seq, sp->end_seq)) 4156 sp->end_seq = end_seq; 4157 return true; 4158 } 4159 return false; 4160 } 4161 4162 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4163 { 4164 struct tcp_sock *tp = tcp_sk(sk); 4165 4166 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4167 int mib_idx; 4168 4169 if (before(seq, tp->rcv_nxt)) 4170 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4171 else 4172 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4173 4174 NET_INC_STATS(sock_net(sk), mib_idx); 4175 4176 tp->rx_opt.dsack = 1; 4177 tp->duplicate_sack[0].start_seq = seq; 4178 tp->duplicate_sack[0].end_seq = end_seq; 4179 } 4180 } 4181 4182 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4183 { 4184 struct tcp_sock *tp = tcp_sk(sk); 4185 4186 if (!tp->rx_opt.dsack) 4187 tcp_dsack_set(sk, seq, end_seq); 4188 else 4189 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4190 } 4191 4192 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4193 { 4194 /* When the ACK path fails or drops most ACKs, the sender would 4195 * timeout and spuriously retransmit the same segment repeatedly. 4196 * The receiver remembers and reflects via DSACKs. Leverage the 4197 * DSACK state and change the txhash to re-route speculatively. 4198 */ 4199 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) 4200 sk_rethink_txhash(sk); 4201 } 4202 4203 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4204 { 4205 struct tcp_sock *tp = tcp_sk(sk); 4206 4207 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4208 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4209 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4210 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4211 4212 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4213 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4214 4215 tcp_rcv_spurious_retrans(sk, skb); 4216 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4217 end_seq = tp->rcv_nxt; 4218 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4219 } 4220 } 4221 4222 tcp_send_ack(sk); 4223 } 4224 4225 /* These routines update the SACK block as out-of-order packets arrive or 4226 * in-order packets close up the sequence space. 4227 */ 4228 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4229 { 4230 int this_sack; 4231 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4232 struct tcp_sack_block *swalk = sp + 1; 4233 4234 /* See if the recent change to the first SACK eats into 4235 * or hits the sequence space of other SACK blocks, if so coalesce. 4236 */ 4237 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4238 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4239 int i; 4240 4241 /* Zap SWALK, by moving every further SACK up by one slot. 4242 * Decrease num_sacks. 4243 */ 4244 tp->rx_opt.num_sacks--; 4245 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4246 sp[i] = sp[i + 1]; 4247 continue; 4248 } 4249 this_sack++, swalk++; 4250 } 4251 } 4252 4253 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4254 { 4255 struct tcp_sock *tp = tcp_sk(sk); 4256 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4257 int cur_sacks = tp->rx_opt.num_sacks; 4258 int this_sack; 4259 4260 if (!cur_sacks) 4261 goto new_sack; 4262 4263 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4264 if (tcp_sack_extend(sp, seq, end_seq)) { 4265 /* Rotate this_sack to the first one. */ 4266 for (; this_sack > 0; this_sack--, sp--) 4267 swap(*sp, *(sp - 1)); 4268 if (cur_sacks > 1) 4269 tcp_sack_maybe_coalesce(tp); 4270 return; 4271 } 4272 } 4273 4274 /* Could not find an adjacent existing SACK, build a new one, 4275 * put it at the front, and shift everyone else down. We 4276 * always know there is at least one SACK present already here. 4277 * 4278 * If the sack array is full, forget about the last one. 4279 */ 4280 if (this_sack >= TCP_NUM_SACKS) { 4281 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 4282 tcp_send_ack(sk); 4283 this_sack--; 4284 tp->rx_opt.num_sacks--; 4285 sp--; 4286 } 4287 for (; this_sack > 0; this_sack--, sp--) 4288 *sp = *(sp - 1); 4289 4290 new_sack: 4291 /* Build the new head SACK, and we're done. */ 4292 sp->start_seq = seq; 4293 sp->end_seq = end_seq; 4294 tp->rx_opt.num_sacks++; 4295 } 4296 4297 /* RCV.NXT advances, some SACKs should be eaten. */ 4298 4299 static void tcp_sack_remove(struct tcp_sock *tp) 4300 { 4301 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4302 int num_sacks = tp->rx_opt.num_sacks; 4303 int this_sack; 4304 4305 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4306 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4307 tp->rx_opt.num_sacks = 0; 4308 return; 4309 } 4310 4311 for (this_sack = 0; this_sack < num_sacks;) { 4312 /* Check if the start of the sack is covered by RCV.NXT. */ 4313 if (!before(tp->rcv_nxt, sp->start_seq)) { 4314 int i; 4315 4316 /* RCV.NXT must cover all the block! */ 4317 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4318 4319 /* Zap this SACK, by moving forward any other SACKS. */ 4320 for (i = this_sack+1; i < num_sacks; i++) 4321 tp->selective_acks[i-1] = tp->selective_acks[i]; 4322 num_sacks--; 4323 continue; 4324 } 4325 this_sack++; 4326 sp++; 4327 } 4328 tp->rx_opt.num_sacks = num_sacks; 4329 } 4330 4331 /** 4332 * tcp_try_coalesce - try to merge skb to prior one 4333 * @sk: socket 4334 * @dest: destination queue 4335 * @to: prior buffer 4336 * @from: buffer to add in queue 4337 * @fragstolen: pointer to boolean 4338 * 4339 * Before queueing skb @from after @to, try to merge them 4340 * to reduce overall memory use and queue lengths, if cost is small. 4341 * Packets in ofo or receive queues can stay a long time. 4342 * Better try to coalesce them right now to avoid future collapses. 4343 * Returns true if caller should free @from instead of queueing it 4344 */ 4345 static bool tcp_try_coalesce(struct sock *sk, 4346 struct sk_buff *to, 4347 struct sk_buff *from, 4348 bool *fragstolen) 4349 { 4350 int delta; 4351 4352 *fragstolen = false; 4353 4354 /* Its possible this segment overlaps with prior segment in queue */ 4355 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4356 return false; 4357 4358 #ifdef CONFIG_TLS_DEVICE 4359 if (from->decrypted != to->decrypted) 4360 return false; 4361 #endif 4362 4363 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4364 return false; 4365 4366 atomic_add(delta, &sk->sk_rmem_alloc); 4367 sk_mem_charge(sk, delta); 4368 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4369 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4370 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4371 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4372 4373 if (TCP_SKB_CB(from)->has_rxtstamp) { 4374 TCP_SKB_CB(to)->has_rxtstamp = true; 4375 to->tstamp = from->tstamp; 4376 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4377 } 4378 4379 return true; 4380 } 4381 4382 static bool tcp_ooo_try_coalesce(struct sock *sk, 4383 struct sk_buff *to, 4384 struct sk_buff *from, 4385 bool *fragstolen) 4386 { 4387 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4388 4389 /* In case tcp_drop() is called later, update to->gso_segs */ 4390 if (res) { 4391 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4392 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4393 4394 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4395 } 4396 return res; 4397 } 4398 4399 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4400 { 4401 sk_drops_add(sk, skb); 4402 __kfree_skb(skb); 4403 } 4404 4405 /* This one checks to see if we can put data from the 4406 * out_of_order queue into the receive_queue. 4407 */ 4408 static void tcp_ofo_queue(struct sock *sk) 4409 { 4410 struct tcp_sock *tp = tcp_sk(sk); 4411 __u32 dsack_high = tp->rcv_nxt; 4412 bool fin, fragstolen, eaten; 4413 struct sk_buff *skb, *tail; 4414 struct rb_node *p; 4415 4416 p = rb_first(&tp->out_of_order_queue); 4417 while (p) { 4418 skb = rb_to_skb(p); 4419 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4420 break; 4421 4422 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4423 __u32 dsack = dsack_high; 4424 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4425 dsack_high = TCP_SKB_CB(skb)->end_seq; 4426 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4427 } 4428 p = rb_next(p); 4429 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4430 4431 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4432 tcp_drop(sk, skb); 4433 continue; 4434 } 4435 4436 tail = skb_peek_tail(&sk->sk_receive_queue); 4437 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4438 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4439 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4440 if (!eaten) 4441 __skb_queue_tail(&sk->sk_receive_queue, skb); 4442 else 4443 kfree_skb_partial(skb, fragstolen); 4444 4445 if (unlikely(fin)) { 4446 tcp_fin(sk); 4447 /* tcp_fin() purges tp->out_of_order_queue, 4448 * so we must end this loop right now. 4449 */ 4450 break; 4451 } 4452 } 4453 } 4454 4455 static bool tcp_prune_ofo_queue(struct sock *sk); 4456 static int tcp_prune_queue(struct sock *sk); 4457 4458 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4459 unsigned int size) 4460 { 4461 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4462 !sk_rmem_schedule(sk, skb, size)) { 4463 4464 if (tcp_prune_queue(sk) < 0) 4465 return -1; 4466 4467 while (!sk_rmem_schedule(sk, skb, size)) { 4468 if (!tcp_prune_ofo_queue(sk)) 4469 return -1; 4470 } 4471 } 4472 return 0; 4473 } 4474 4475 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4476 { 4477 struct tcp_sock *tp = tcp_sk(sk); 4478 struct rb_node **p, *parent; 4479 struct sk_buff *skb1; 4480 u32 seq, end_seq; 4481 bool fragstolen; 4482 4483 tcp_ecn_check_ce(sk, skb); 4484 4485 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4486 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4487 tcp_drop(sk, skb); 4488 return; 4489 } 4490 4491 /* Disable header prediction. */ 4492 tp->pred_flags = 0; 4493 inet_csk_schedule_ack(sk); 4494 4495 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4496 seq = TCP_SKB_CB(skb)->seq; 4497 end_seq = TCP_SKB_CB(skb)->end_seq; 4498 4499 p = &tp->out_of_order_queue.rb_node; 4500 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4501 /* Initial out of order segment, build 1 SACK. */ 4502 if (tcp_is_sack(tp)) { 4503 tp->rx_opt.num_sacks = 1; 4504 tp->selective_acks[0].start_seq = seq; 4505 tp->selective_acks[0].end_seq = end_seq; 4506 } 4507 rb_link_node(&skb->rbnode, NULL, p); 4508 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4509 tp->ooo_last_skb = skb; 4510 goto end; 4511 } 4512 4513 /* In the typical case, we are adding an skb to the end of the list. 4514 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4515 */ 4516 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4517 skb, &fragstolen)) { 4518 coalesce_done: 4519 tcp_grow_window(sk, skb); 4520 kfree_skb_partial(skb, fragstolen); 4521 skb = NULL; 4522 goto add_sack; 4523 } 4524 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4525 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4526 parent = &tp->ooo_last_skb->rbnode; 4527 p = &parent->rb_right; 4528 goto insert; 4529 } 4530 4531 /* Find place to insert this segment. Handle overlaps on the way. */ 4532 parent = NULL; 4533 while (*p) { 4534 parent = *p; 4535 skb1 = rb_to_skb(parent); 4536 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4537 p = &parent->rb_left; 4538 continue; 4539 } 4540 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4541 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4542 /* All the bits are present. Drop. */ 4543 NET_INC_STATS(sock_net(sk), 4544 LINUX_MIB_TCPOFOMERGE); 4545 tcp_drop(sk, skb); 4546 skb = NULL; 4547 tcp_dsack_set(sk, seq, end_seq); 4548 goto add_sack; 4549 } 4550 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4551 /* Partial overlap. */ 4552 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4553 } else { 4554 /* skb's seq == skb1's seq and skb covers skb1. 4555 * Replace skb1 with skb. 4556 */ 4557 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4558 &tp->out_of_order_queue); 4559 tcp_dsack_extend(sk, 4560 TCP_SKB_CB(skb1)->seq, 4561 TCP_SKB_CB(skb1)->end_seq); 4562 NET_INC_STATS(sock_net(sk), 4563 LINUX_MIB_TCPOFOMERGE); 4564 tcp_drop(sk, skb1); 4565 goto merge_right; 4566 } 4567 } else if (tcp_ooo_try_coalesce(sk, skb1, 4568 skb, &fragstolen)) { 4569 goto coalesce_done; 4570 } 4571 p = &parent->rb_right; 4572 } 4573 insert: 4574 /* Insert segment into RB tree. */ 4575 rb_link_node(&skb->rbnode, parent, p); 4576 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4577 4578 merge_right: 4579 /* Remove other segments covered by skb. */ 4580 while ((skb1 = skb_rb_next(skb)) != NULL) { 4581 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4582 break; 4583 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4584 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4585 end_seq); 4586 break; 4587 } 4588 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4589 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4590 TCP_SKB_CB(skb1)->end_seq); 4591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4592 tcp_drop(sk, skb1); 4593 } 4594 /* If there is no skb after us, we are the last_skb ! */ 4595 if (!skb1) 4596 tp->ooo_last_skb = skb; 4597 4598 add_sack: 4599 if (tcp_is_sack(tp)) 4600 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4601 end: 4602 if (skb) { 4603 tcp_grow_window(sk, skb); 4604 skb_condense(skb); 4605 skb_set_owner_r(skb, sk); 4606 } 4607 } 4608 4609 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4610 bool *fragstolen) 4611 { 4612 int eaten; 4613 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4614 4615 eaten = (tail && 4616 tcp_try_coalesce(sk, tail, 4617 skb, fragstolen)) ? 1 : 0; 4618 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4619 if (!eaten) { 4620 __skb_queue_tail(&sk->sk_receive_queue, skb); 4621 skb_set_owner_r(skb, sk); 4622 } 4623 return eaten; 4624 } 4625 4626 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4627 { 4628 struct sk_buff *skb; 4629 int err = -ENOMEM; 4630 int data_len = 0; 4631 bool fragstolen; 4632 4633 if (size == 0) 4634 return 0; 4635 4636 if (size > PAGE_SIZE) { 4637 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4638 4639 data_len = npages << PAGE_SHIFT; 4640 size = data_len + (size & ~PAGE_MASK); 4641 } 4642 skb = alloc_skb_with_frags(size - data_len, data_len, 4643 PAGE_ALLOC_COSTLY_ORDER, 4644 &err, sk->sk_allocation); 4645 if (!skb) 4646 goto err; 4647 4648 skb_put(skb, size - data_len); 4649 skb->data_len = data_len; 4650 skb->len = size; 4651 4652 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4653 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4654 goto err_free; 4655 } 4656 4657 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4658 if (err) 4659 goto err_free; 4660 4661 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4662 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4663 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4664 4665 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4666 WARN_ON_ONCE(fragstolen); /* should not happen */ 4667 __kfree_skb(skb); 4668 } 4669 return size; 4670 4671 err_free: 4672 kfree_skb(skb); 4673 err: 4674 return err; 4675 4676 } 4677 4678 void tcp_data_ready(struct sock *sk) 4679 { 4680 const struct tcp_sock *tp = tcp_sk(sk); 4681 int avail = tp->rcv_nxt - tp->copied_seq; 4682 4683 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4684 return; 4685 4686 sk->sk_data_ready(sk); 4687 } 4688 4689 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4690 { 4691 struct tcp_sock *tp = tcp_sk(sk); 4692 bool fragstolen; 4693 int eaten; 4694 4695 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4696 __kfree_skb(skb); 4697 return; 4698 } 4699 skb_dst_drop(skb); 4700 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4701 4702 tcp_ecn_accept_cwr(sk, skb); 4703 4704 tp->rx_opt.dsack = 0; 4705 4706 /* Queue data for delivery to the user. 4707 * Packets in sequence go to the receive queue. 4708 * Out of sequence packets to the out_of_order_queue. 4709 */ 4710 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4711 if (tcp_receive_window(tp) == 0) { 4712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4713 goto out_of_window; 4714 } 4715 4716 /* Ok. In sequence. In window. */ 4717 queue_and_out: 4718 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4719 sk_forced_mem_schedule(sk, skb->truesize); 4720 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4722 goto drop; 4723 } 4724 4725 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4726 if (skb->len) 4727 tcp_event_data_recv(sk, skb); 4728 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4729 tcp_fin(sk); 4730 4731 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4732 tcp_ofo_queue(sk); 4733 4734 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4735 * gap in queue is filled. 4736 */ 4737 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4738 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4739 } 4740 4741 if (tp->rx_opt.num_sacks) 4742 tcp_sack_remove(tp); 4743 4744 tcp_fast_path_check(sk); 4745 4746 if (eaten > 0) 4747 kfree_skb_partial(skb, fragstolen); 4748 if (!sock_flag(sk, SOCK_DEAD)) 4749 tcp_data_ready(sk); 4750 return; 4751 } 4752 4753 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4754 tcp_rcv_spurious_retrans(sk, skb); 4755 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4756 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4757 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4758 4759 out_of_window: 4760 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4761 inet_csk_schedule_ack(sk); 4762 drop: 4763 tcp_drop(sk, skb); 4764 return; 4765 } 4766 4767 /* Out of window. F.e. zero window probe. */ 4768 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4769 goto out_of_window; 4770 4771 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4772 /* Partial packet, seq < rcv_next < end_seq */ 4773 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4774 4775 /* If window is closed, drop tail of packet. But after 4776 * remembering D-SACK for its head made in previous line. 4777 */ 4778 if (!tcp_receive_window(tp)) { 4779 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4780 goto out_of_window; 4781 } 4782 goto queue_and_out; 4783 } 4784 4785 tcp_data_queue_ofo(sk, skb); 4786 } 4787 4788 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4789 { 4790 if (list) 4791 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4792 4793 return skb_rb_next(skb); 4794 } 4795 4796 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4797 struct sk_buff_head *list, 4798 struct rb_root *root) 4799 { 4800 struct sk_buff *next = tcp_skb_next(skb, list); 4801 4802 if (list) 4803 __skb_unlink(skb, list); 4804 else 4805 rb_erase(&skb->rbnode, root); 4806 4807 __kfree_skb(skb); 4808 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4809 4810 return next; 4811 } 4812 4813 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4814 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4815 { 4816 struct rb_node **p = &root->rb_node; 4817 struct rb_node *parent = NULL; 4818 struct sk_buff *skb1; 4819 4820 while (*p) { 4821 parent = *p; 4822 skb1 = rb_to_skb(parent); 4823 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4824 p = &parent->rb_left; 4825 else 4826 p = &parent->rb_right; 4827 } 4828 rb_link_node(&skb->rbnode, parent, p); 4829 rb_insert_color(&skb->rbnode, root); 4830 } 4831 4832 /* Collapse contiguous sequence of skbs head..tail with 4833 * sequence numbers start..end. 4834 * 4835 * If tail is NULL, this means until the end of the queue. 4836 * 4837 * Segments with FIN/SYN are not collapsed (only because this 4838 * simplifies code) 4839 */ 4840 static void 4841 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4842 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4843 { 4844 struct sk_buff *skb = head, *n; 4845 struct sk_buff_head tmp; 4846 bool end_of_skbs; 4847 4848 /* First, check that queue is collapsible and find 4849 * the point where collapsing can be useful. 4850 */ 4851 restart: 4852 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4853 n = tcp_skb_next(skb, list); 4854 4855 /* No new bits? It is possible on ofo queue. */ 4856 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4857 skb = tcp_collapse_one(sk, skb, list, root); 4858 if (!skb) 4859 break; 4860 goto restart; 4861 } 4862 4863 /* The first skb to collapse is: 4864 * - not SYN/FIN and 4865 * - bloated or contains data before "start" or 4866 * overlaps to the next one. 4867 */ 4868 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4869 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4870 before(TCP_SKB_CB(skb)->seq, start))) { 4871 end_of_skbs = false; 4872 break; 4873 } 4874 4875 if (n && n != tail && 4876 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4877 end_of_skbs = false; 4878 break; 4879 } 4880 4881 /* Decided to skip this, advance start seq. */ 4882 start = TCP_SKB_CB(skb)->end_seq; 4883 } 4884 if (end_of_skbs || 4885 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4886 return; 4887 4888 __skb_queue_head_init(&tmp); 4889 4890 while (before(start, end)) { 4891 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4892 struct sk_buff *nskb; 4893 4894 nskb = alloc_skb(copy, GFP_ATOMIC); 4895 if (!nskb) 4896 break; 4897 4898 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4899 #ifdef CONFIG_TLS_DEVICE 4900 nskb->decrypted = skb->decrypted; 4901 #endif 4902 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4903 if (list) 4904 __skb_queue_before(list, skb, nskb); 4905 else 4906 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4907 skb_set_owner_r(nskb, sk); 4908 4909 /* Copy data, releasing collapsed skbs. */ 4910 while (copy > 0) { 4911 int offset = start - TCP_SKB_CB(skb)->seq; 4912 int size = TCP_SKB_CB(skb)->end_seq - start; 4913 4914 BUG_ON(offset < 0); 4915 if (size > 0) { 4916 size = min(copy, size); 4917 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4918 BUG(); 4919 TCP_SKB_CB(nskb)->end_seq += size; 4920 copy -= size; 4921 start += size; 4922 } 4923 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4924 skb = tcp_collapse_one(sk, skb, list, root); 4925 if (!skb || 4926 skb == tail || 4927 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4928 goto end; 4929 #ifdef CONFIG_TLS_DEVICE 4930 if (skb->decrypted != nskb->decrypted) 4931 goto end; 4932 #endif 4933 } 4934 } 4935 } 4936 end: 4937 skb_queue_walk_safe(&tmp, skb, n) 4938 tcp_rbtree_insert(root, skb); 4939 } 4940 4941 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4942 * and tcp_collapse() them until all the queue is collapsed. 4943 */ 4944 static void tcp_collapse_ofo_queue(struct sock *sk) 4945 { 4946 struct tcp_sock *tp = tcp_sk(sk); 4947 u32 range_truesize, sum_tiny = 0; 4948 struct sk_buff *skb, *head; 4949 u32 start, end; 4950 4951 skb = skb_rb_first(&tp->out_of_order_queue); 4952 new_range: 4953 if (!skb) { 4954 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4955 return; 4956 } 4957 start = TCP_SKB_CB(skb)->seq; 4958 end = TCP_SKB_CB(skb)->end_seq; 4959 range_truesize = skb->truesize; 4960 4961 for (head = skb;;) { 4962 skb = skb_rb_next(skb); 4963 4964 /* Range is terminated when we see a gap or when 4965 * we are at the queue end. 4966 */ 4967 if (!skb || 4968 after(TCP_SKB_CB(skb)->seq, end) || 4969 before(TCP_SKB_CB(skb)->end_seq, start)) { 4970 /* Do not attempt collapsing tiny skbs */ 4971 if (range_truesize != head->truesize || 4972 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 4973 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4974 head, skb, start, end); 4975 } else { 4976 sum_tiny += range_truesize; 4977 if (sum_tiny > sk->sk_rcvbuf >> 3) 4978 return; 4979 } 4980 goto new_range; 4981 } 4982 4983 range_truesize += skb->truesize; 4984 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4985 start = TCP_SKB_CB(skb)->seq; 4986 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4987 end = TCP_SKB_CB(skb)->end_seq; 4988 } 4989 } 4990 4991 /* 4992 * Clean the out-of-order queue to make room. 4993 * We drop high sequences packets to : 4994 * 1) Let a chance for holes to be filled. 4995 * 2) not add too big latencies if thousands of packets sit there. 4996 * (But if application shrinks SO_RCVBUF, we could still end up 4997 * freeing whole queue here) 4998 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 4999 * 5000 * Return true if queue has shrunk. 5001 */ 5002 static bool tcp_prune_ofo_queue(struct sock *sk) 5003 { 5004 struct tcp_sock *tp = tcp_sk(sk); 5005 struct rb_node *node, *prev; 5006 int goal; 5007 5008 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5009 return false; 5010 5011 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5012 goal = sk->sk_rcvbuf >> 3; 5013 node = &tp->ooo_last_skb->rbnode; 5014 do { 5015 prev = rb_prev(node); 5016 rb_erase(node, &tp->out_of_order_queue); 5017 goal -= rb_to_skb(node)->truesize; 5018 tcp_drop(sk, rb_to_skb(node)); 5019 if (!prev || goal <= 0) { 5020 sk_mem_reclaim(sk); 5021 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5022 !tcp_under_memory_pressure(sk)) 5023 break; 5024 goal = sk->sk_rcvbuf >> 3; 5025 } 5026 node = prev; 5027 } while (node); 5028 tp->ooo_last_skb = rb_to_skb(prev); 5029 5030 /* Reset SACK state. A conforming SACK implementation will 5031 * do the same at a timeout based retransmit. When a connection 5032 * is in a sad state like this, we care only about integrity 5033 * of the connection not performance. 5034 */ 5035 if (tp->rx_opt.sack_ok) 5036 tcp_sack_reset(&tp->rx_opt); 5037 return true; 5038 } 5039 5040 /* Reduce allocated memory if we can, trying to get 5041 * the socket within its memory limits again. 5042 * 5043 * Return less than zero if we should start dropping frames 5044 * until the socket owning process reads some of the data 5045 * to stabilize the situation. 5046 */ 5047 static int tcp_prune_queue(struct sock *sk) 5048 { 5049 struct tcp_sock *tp = tcp_sk(sk); 5050 5051 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5052 5053 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5054 tcp_clamp_window(sk); 5055 else if (tcp_under_memory_pressure(sk)) 5056 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5057 5058 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5059 return 0; 5060 5061 tcp_collapse_ofo_queue(sk); 5062 if (!skb_queue_empty(&sk->sk_receive_queue)) 5063 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5064 skb_peek(&sk->sk_receive_queue), 5065 NULL, 5066 tp->copied_seq, tp->rcv_nxt); 5067 sk_mem_reclaim(sk); 5068 5069 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5070 return 0; 5071 5072 /* Collapsing did not help, destructive actions follow. 5073 * This must not ever occur. */ 5074 5075 tcp_prune_ofo_queue(sk); 5076 5077 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5078 return 0; 5079 5080 /* If we are really being abused, tell the caller to silently 5081 * drop receive data on the floor. It will get retransmitted 5082 * and hopefully then we'll have sufficient space. 5083 */ 5084 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5085 5086 /* Massive buffer overcommit. */ 5087 tp->pred_flags = 0; 5088 return -1; 5089 } 5090 5091 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5092 { 5093 const struct tcp_sock *tp = tcp_sk(sk); 5094 5095 /* If the user specified a specific send buffer setting, do 5096 * not modify it. 5097 */ 5098 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5099 return false; 5100 5101 /* If we are under global TCP memory pressure, do not expand. */ 5102 if (tcp_under_memory_pressure(sk)) 5103 return false; 5104 5105 /* If we are under soft global TCP memory pressure, do not expand. */ 5106 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5107 return false; 5108 5109 /* If we filled the congestion window, do not expand. */ 5110 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5111 return false; 5112 5113 return true; 5114 } 5115 5116 /* When incoming ACK allowed to free some skb from write_queue, 5117 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5118 * on the exit from tcp input handler. 5119 * 5120 * PROBLEM: sndbuf expansion does not work well with largesend. 5121 */ 5122 static void tcp_new_space(struct sock *sk) 5123 { 5124 struct tcp_sock *tp = tcp_sk(sk); 5125 5126 if (tcp_should_expand_sndbuf(sk)) { 5127 tcp_sndbuf_expand(sk); 5128 tp->snd_cwnd_stamp = tcp_jiffies32; 5129 } 5130 5131 sk->sk_write_space(sk); 5132 } 5133 5134 static void tcp_check_space(struct sock *sk) 5135 { 5136 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5137 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5138 /* pairs with tcp_poll() */ 5139 smp_mb(); 5140 if (sk->sk_socket && 5141 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5142 tcp_new_space(sk); 5143 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5144 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5145 } 5146 } 5147 } 5148 5149 static inline void tcp_data_snd_check(struct sock *sk) 5150 { 5151 tcp_push_pending_frames(sk); 5152 tcp_check_space(sk); 5153 } 5154 5155 /* 5156 * Check if sending an ack is needed. 5157 */ 5158 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5159 { 5160 struct tcp_sock *tp = tcp_sk(sk); 5161 unsigned long rtt, delay; 5162 5163 /* More than one full frame received... */ 5164 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5165 /* ... and right edge of window advances far enough. 5166 * (tcp_recvmsg() will send ACK otherwise). 5167 * If application uses SO_RCVLOWAT, we want send ack now if 5168 * we have not received enough bytes to satisfy the condition. 5169 */ 5170 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5171 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5172 /* We ACK each frame or... */ 5173 tcp_in_quickack_mode(sk) || 5174 /* Protocol state mandates a one-time immediate ACK */ 5175 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5176 send_now: 5177 tcp_send_ack(sk); 5178 return; 5179 } 5180 5181 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5182 tcp_send_delayed_ack(sk); 5183 return; 5184 } 5185 5186 if (!tcp_is_sack(tp) || 5187 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5188 goto send_now; 5189 5190 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5191 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5192 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 5193 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 5194 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 5195 tp->compressed_ack = 0; 5196 } 5197 5198 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH) 5199 goto send_now; 5200 5201 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5202 return; 5203 5204 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5205 5206 rtt = tp->rcv_rtt_est.rtt_us; 5207 if (tp->srtt_us && tp->srtt_us < rtt) 5208 rtt = tp->srtt_us; 5209 5210 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5211 rtt * (NSEC_PER_USEC >> 3)/20); 5212 sock_hold(sk); 5213 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5214 HRTIMER_MODE_REL_PINNED_SOFT); 5215 } 5216 5217 static inline void tcp_ack_snd_check(struct sock *sk) 5218 { 5219 if (!inet_csk_ack_scheduled(sk)) { 5220 /* We sent a data segment already. */ 5221 return; 5222 } 5223 __tcp_ack_snd_check(sk, 1); 5224 } 5225 5226 /* 5227 * This routine is only called when we have urgent data 5228 * signaled. Its the 'slow' part of tcp_urg. It could be 5229 * moved inline now as tcp_urg is only called from one 5230 * place. We handle URGent data wrong. We have to - as 5231 * BSD still doesn't use the correction from RFC961. 5232 * For 1003.1g we should support a new option TCP_STDURG to permit 5233 * either form (or just set the sysctl tcp_stdurg). 5234 */ 5235 5236 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5237 { 5238 struct tcp_sock *tp = tcp_sk(sk); 5239 u32 ptr = ntohs(th->urg_ptr); 5240 5241 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5242 ptr--; 5243 ptr += ntohl(th->seq); 5244 5245 /* Ignore urgent data that we've already seen and read. */ 5246 if (after(tp->copied_seq, ptr)) 5247 return; 5248 5249 /* Do not replay urg ptr. 5250 * 5251 * NOTE: interesting situation not covered by specs. 5252 * Misbehaving sender may send urg ptr, pointing to segment, 5253 * which we already have in ofo queue. We are not able to fetch 5254 * such data and will stay in TCP_URG_NOTYET until will be eaten 5255 * by recvmsg(). Seems, we are not obliged to handle such wicked 5256 * situations. But it is worth to think about possibility of some 5257 * DoSes using some hypothetical application level deadlock. 5258 */ 5259 if (before(ptr, tp->rcv_nxt)) 5260 return; 5261 5262 /* Do we already have a newer (or duplicate) urgent pointer? */ 5263 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5264 return; 5265 5266 /* Tell the world about our new urgent pointer. */ 5267 sk_send_sigurg(sk); 5268 5269 /* We may be adding urgent data when the last byte read was 5270 * urgent. To do this requires some care. We cannot just ignore 5271 * tp->copied_seq since we would read the last urgent byte again 5272 * as data, nor can we alter copied_seq until this data arrives 5273 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5274 * 5275 * NOTE. Double Dutch. Rendering to plain English: author of comment 5276 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5277 * and expect that both A and B disappear from stream. This is _wrong_. 5278 * Though this happens in BSD with high probability, this is occasional. 5279 * Any application relying on this is buggy. Note also, that fix "works" 5280 * only in this artificial test. Insert some normal data between A and B and we will 5281 * decline of BSD again. Verdict: it is better to remove to trap 5282 * buggy users. 5283 */ 5284 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5285 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5286 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5287 tp->copied_seq++; 5288 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5289 __skb_unlink(skb, &sk->sk_receive_queue); 5290 __kfree_skb(skb); 5291 } 5292 } 5293 5294 tp->urg_data = TCP_URG_NOTYET; 5295 tp->urg_seq = ptr; 5296 5297 /* Disable header prediction. */ 5298 tp->pred_flags = 0; 5299 } 5300 5301 /* This is the 'fast' part of urgent handling. */ 5302 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5303 { 5304 struct tcp_sock *tp = tcp_sk(sk); 5305 5306 /* Check if we get a new urgent pointer - normally not. */ 5307 if (th->urg) 5308 tcp_check_urg(sk, th); 5309 5310 /* Do we wait for any urgent data? - normally not... */ 5311 if (tp->urg_data == TCP_URG_NOTYET) { 5312 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5313 th->syn; 5314 5315 /* Is the urgent pointer pointing into this packet? */ 5316 if (ptr < skb->len) { 5317 u8 tmp; 5318 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5319 BUG(); 5320 tp->urg_data = TCP_URG_VALID | tmp; 5321 if (!sock_flag(sk, SOCK_DEAD)) 5322 sk->sk_data_ready(sk); 5323 } 5324 } 5325 } 5326 5327 /* Accept RST for rcv_nxt - 1 after a FIN. 5328 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5329 * FIN is sent followed by a RST packet. The RST is sent with the same 5330 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5331 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5332 * ACKs on the closed socket. In addition middleboxes can drop either the 5333 * challenge ACK or a subsequent RST. 5334 */ 5335 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5336 { 5337 struct tcp_sock *tp = tcp_sk(sk); 5338 5339 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5340 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5341 TCPF_CLOSING)); 5342 } 5343 5344 /* Does PAWS and seqno based validation of an incoming segment, flags will 5345 * play significant role here. 5346 */ 5347 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5348 const struct tcphdr *th, int syn_inerr) 5349 { 5350 struct tcp_sock *tp = tcp_sk(sk); 5351 bool rst_seq_match = false; 5352 5353 /* RFC1323: H1. Apply PAWS check first. */ 5354 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5355 tp->rx_opt.saw_tstamp && 5356 tcp_paws_discard(sk, skb)) { 5357 if (!th->rst) { 5358 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5359 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5360 LINUX_MIB_TCPACKSKIPPEDPAWS, 5361 &tp->last_oow_ack_time)) 5362 tcp_send_dupack(sk, skb); 5363 goto discard; 5364 } 5365 /* Reset is accepted even if it did not pass PAWS. */ 5366 } 5367 5368 /* Step 1: check sequence number */ 5369 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5370 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5371 * (RST) segments are validated by checking their SEQ-fields." 5372 * And page 69: "If an incoming segment is not acceptable, 5373 * an acknowledgment should be sent in reply (unless the RST 5374 * bit is set, if so drop the segment and return)". 5375 */ 5376 if (!th->rst) { 5377 if (th->syn) 5378 goto syn_challenge; 5379 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5380 LINUX_MIB_TCPACKSKIPPEDSEQ, 5381 &tp->last_oow_ack_time)) 5382 tcp_send_dupack(sk, skb); 5383 } else if (tcp_reset_check(sk, skb)) { 5384 tcp_reset(sk); 5385 } 5386 goto discard; 5387 } 5388 5389 /* Step 2: check RST bit */ 5390 if (th->rst) { 5391 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5392 * FIN and SACK too if available): 5393 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5394 * the right-most SACK block, 5395 * then 5396 * RESET the connection 5397 * else 5398 * Send a challenge ACK 5399 */ 5400 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5401 tcp_reset_check(sk, skb)) { 5402 rst_seq_match = true; 5403 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5404 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5405 int max_sack = sp[0].end_seq; 5406 int this_sack; 5407 5408 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5409 ++this_sack) { 5410 max_sack = after(sp[this_sack].end_seq, 5411 max_sack) ? 5412 sp[this_sack].end_seq : max_sack; 5413 } 5414 5415 if (TCP_SKB_CB(skb)->seq == max_sack) 5416 rst_seq_match = true; 5417 } 5418 5419 if (rst_seq_match) 5420 tcp_reset(sk); 5421 else { 5422 /* Disable TFO if RST is out-of-order 5423 * and no data has been received 5424 * for current active TFO socket 5425 */ 5426 if (tp->syn_fastopen && !tp->data_segs_in && 5427 sk->sk_state == TCP_ESTABLISHED) 5428 tcp_fastopen_active_disable(sk); 5429 tcp_send_challenge_ack(sk, skb); 5430 } 5431 goto discard; 5432 } 5433 5434 /* step 3: check security and precedence [ignored] */ 5435 5436 /* step 4: Check for a SYN 5437 * RFC 5961 4.2 : Send a challenge ack 5438 */ 5439 if (th->syn) { 5440 syn_challenge: 5441 if (syn_inerr) 5442 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5443 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5444 tcp_send_challenge_ack(sk, skb); 5445 goto discard; 5446 } 5447 5448 return true; 5449 5450 discard: 5451 tcp_drop(sk, skb); 5452 return false; 5453 } 5454 5455 /* 5456 * TCP receive function for the ESTABLISHED state. 5457 * 5458 * It is split into a fast path and a slow path. The fast path is 5459 * disabled when: 5460 * - A zero window was announced from us - zero window probing 5461 * is only handled properly in the slow path. 5462 * - Out of order segments arrived. 5463 * - Urgent data is expected. 5464 * - There is no buffer space left 5465 * - Unexpected TCP flags/window values/header lengths are received 5466 * (detected by checking the TCP header against pred_flags) 5467 * - Data is sent in both directions. Fast path only supports pure senders 5468 * or pure receivers (this means either the sequence number or the ack 5469 * value must stay constant) 5470 * - Unexpected TCP option. 5471 * 5472 * When these conditions are not satisfied it drops into a standard 5473 * receive procedure patterned after RFC793 to handle all cases. 5474 * The first three cases are guaranteed by proper pred_flags setting, 5475 * the rest is checked inline. Fast processing is turned on in 5476 * tcp_data_queue when everything is OK. 5477 */ 5478 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5479 { 5480 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5481 struct tcp_sock *tp = tcp_sk(sk); 5482 unsigned int len = skb->len; 5483 5484 /* TCP congestion window tracking */ 5485 trace_tcp_probe(sk, skb); 5486 5487 tcp_mstamp_refresh(tp); 5488 if (unlikely(!sk->sk_rx_dst)) 5489 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5490 /* 5491 * Header prediction. 5492 * The code loosely follows the one in the famous 5493 * "30 instruction TCP receive" Van Jacobson mail. 5494 * 5495 * Van's trick is to deposit buffers into socket queue 5496 * on a device interrupt, to call tcp_recv function 5497 * on the receive process context and checksum and copy 5498 * the buffer to user space. smart... 5499 * 5500 * Our current scheme is not silly either but we take the 5501 * extra cost of the net_bh soft interrupt processing... 5502 * We do checksum and copy also but from device to kernel. 5503 */ 5504 5505 tp->rx_opt.saw_tstamp = 0; 5506 5507 /* pred_flags is 0xS?10 << 16 + snd_wnd 5508 * if header_prediction is to be made 5509 * 'S' will always be tp->tcp_header_len >> 2 5510 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5511 * turn it off (when there are holes in the receive 5512 * space for instance) 5513 * PSH flag is ignored. 5514 */ 5515 5516 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5517 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5518 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5519 int tcp_header_len = tp->tcp_header_len; 5520 5521 /* Timestamp header prediction: tcp_header_len 5522 * is automatically equal to th->doff*4 due to pred_flags 5523 * match. 5524 */ 5525 5526 /* Check timestamp */ 5527 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5528 /* No? Slow path! */ 5529 if (!tcp_parse_aligned_timestamp(tp, th)) 5530 goto slow_path; 5531 5532 /* If PAWS failed, check it more carefully in slow path */ 5533 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5534 goto slow_path; 5535 5536 /* DO NOT update ts_recent here, if checksum fails 5537 * and timestamp was corrupted part, it will result 5538 * in a hung connection since we will drop all 5539 * future packets due to the PAWS test. 5540 */ 5541 } 5542 5543 if (len <= tcp_header_len) { 5544 /* Bulk data transfer: sender */ 5545 if (len == tcp_header_len) { 5546 /* Predicted packet is in window by definition. 5547 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5548 * Hence, check seq<=rcv_wup reduces to: 5549 */ 5550 if (tcp_header_len == 5551 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5552 tp->rcv_nxt == tp->rcv_wup) 5553 tcp_store_ts_recent(tp); 5554 5555 /* We know that such packets are checksummed 5556 * on entry. 5557 */ 5558 tcp_ack(sk, skb, 0); 5559 __kfree_skb(skb); 5560 tcp_data_snd_check(sk); 5561 /* When receiving pure ack in fast path, update 5562 * last ts ecr directly instead of calling 5563 * tcp_rcv_rtt_measure_ts() 5564 */ 5565 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5566 return; 5567 } else { /* Header too small */ 5568 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5569 goto discard; 5570 } 5571 } else { 5572 int eaten = 0; 5573 bool fragstolen = false; 5574 5575 if (tcp_checksum_complete(skb)) 5576 goto csum_error; 5577 5578 if ((int)skb->truesize > sk->sk_forward_alloc) 5579 goto step5; 5580 5581 /* Predicted packet is in window by definition. 5582 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5583 * Hence, check seq<=rcv_wup reduces to: 5584 */ 5585 if (tcp_header_len == 5586 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5587 tp->rcv_nxt == tp->rcv_wup) 5588 tcp_store_ts_recent(tp); 5589 5590 tcp_rcv_rtt_measure_ts(sk, skb); 5591 5592 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5593 5594 /* Bulk data transfer: receiver */ 5595 __skb_pull(skb, tcp_header_len); 5596 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5597 5598 tcp_event_data_recv(sk, skb); 5599 5600 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5601 /* Well, only one small jumplet in fast path... */ 5602 tcp_ack(sk, skb, FLAG_DATA); 5603 tcp_data_snd_check(sk); 5604 if (!inet_csk_ack_scheduled(sk)) 5605 goto no_ack; 5606 } 5607 5608 __tcp_ack_snd_check(sk, 0); 5609 no_ack: 5610 if (eaten) 5611 kfree_skb_partial(skb, fragstolen); 5612 tcp_data_ready(sk); 5613 return; 5614 } 5615 } 5616 5617 slow_path: 5618 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5619 goto csum_error; 5620 5621 if (!th->ack && !th->rst && !th->syn) 5622 goto discard; 5623 5624 /* 5625 * Standard slow path. 5626 */ 5627 5628 if (!tcp_validate_incoming(sk, skb, th, 1)) 5629 return; 5630 5631 step5: 5632 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5633 goto discard; 5634 5635 tcp_rcv_rtt_measure_ts(sk, skb); 5636 5637 /* Process urgent data. */ 5638 tcp_urg(sk, skb, th); 5639 5640 /* step 7: process the segment text */ 5641 tcp_data_queue(sk, skb); 5642 5643 tcp_data_snd_check(sk); 5644 tcp_ack_snd_check(sk); 5645 return; 5646 5647 csum_error: 5648 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5649 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5650 5651 discard: 5652 tcp_drop(sk, skb); 5653 } 5654 EXPORT_SYMBOL(tcp_rcv_established); 5655 5656 void tcp_init_transfer(struct sock *sk, int bpf_op) 5657 { 5658 struct inet_connection_sock *icsk = inet_csk(sk); 5659 struct tcp_sock *tp = tcp_sk(sk); 5660 5661 tcp_mtup_init(sk); 5662 icsk->icsk_af_ops->rebuild_header(sk); 5663 tcp_init_metrics(sk); 5664 5665 /* Initialize the congestion window to start the transfer. 5666 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5667 * retransmitted. In light of RFC6298 more aggressive 1sec 5668 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5669 * retransmission has occurred. 5670 */ 5671 if (tp->total_retrans > 1 && tp->undo_marker) 5672 tp->snd_cwnd = 1; 5673 else 5674 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5675 tp->snd_cwnd_stamp = tcp_jiffies32; 5676 5677 tcp_call_bpf(sk, bpf_op, 0, NULL); 5678 tcp_init_congestion_control(sk); 5679 tcp_init_buffer_space(sk); 5680 } 5681 5682 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5683 { 5684 struct tcp_sock *tp = tcp_sk(sk); 5685 struct inet_connection_sock *icsk = inet_csk(sk); 5686 5687 tcp_set_state(sk, TCP_ESTABLISHED); 5688 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5689 5690 if (skb) { 5691 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5692 security_inet_conn_established(sk, skb); 5693 sk_mark_napi_id(sk, skb); 5694 } 5695 5696 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5697 5698 /* Prevent spurious tcp_cwnd_restart() on first data 5699 * packet. 5700 */ 5701 tp->lsndtime = tcp_jiffies32; 5702 5703 if (sock_flag(sk, SOCK_KEEPOPEN)) 5704 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5705 5706 if (!tp->rx_opt.snd_wscale) 5707 __tcp_fast_path_on(tp, tp->snd_wnd); 5708 else 5709 tp->pred_flags = 0; 5710 } 5711 5712 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5713 struct tcp_fastopen_cookie *cookie) 5714 { 5715 struct tcp_sock *tp = tcp_sk(sk); 5716 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5717 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5718 bool syn_drop = false; 5719 5720 if (mss == tp->rx_opt.user_mss) { 5721 struct tcp_options_received opt; 5722 5723 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5724 tcp_clear_options(&opt); 5725 opt.user_mss = opt.mss_clamp = 0; 5726 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5727 mss = opt.mss_clamp; 5728 } 5729 5730 if (!tp->syn_fastopen) { 5731 /* Ignore an unsolicited cookie */ 5732 cookie->len = -1; 5733 } else if (tp->total_retrans) { 5734 /* SYN timed out and the SYN-ACK neither has a cookie nor 5735 * acknowledges data. Presumably the remote received only 5736 * the retransmitted (regular) SYNs: either the original 5737 * SYN-data or the corresponding SYN-ACK was dropped. 5738 */ 5739 syn_drop = (cookie->len < 0 && data); 5740 } else if (cookie->len < 0 && !tp->syn_data) { 5741 /* We requested a cookie but didn't get it. If we did not use 5742 * the (old) exp opt format then try so next time (try_exp=1). 5743 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5744 */ 5745 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5746 } 5747 5748 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5749 5750 if (data) { /* Retransmit unacked data in SYN */ 5751 skb_rbtree_walk_from(data) { 5752 if (__tcp_retransmit_skb(sk, data, 1)) 5753 break; 5754 } 5755 tcp_rearm_rto(sk); 5756 NET_INC_STATS(sock_net(sk), 5757 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5758 return true; 5759 } 5760 tp->syn_data_acked = tp->syn_data; 5761 if (tp->syn_data_acked) { 5762 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5763 /* SYN-data is counted as two separate packets in tcp_ack() */ 5764 if (tp->delivered > 1) 5765 --tp->delivered; 5766 } 5767 5768 tcp_fastopen_add_skb(sk, synack); 5769 5770 return false; 5771 } 5772 5773 static void smc_check_reset_syn(struct tcp_sock *tp) 5774 { 5775 #if IS_ENABLED(CONFIG_SMC) 5776 if (static_branch_unlikely(&tcp_have_smc)) { 5777 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5778 tp->syn_smc = 0; 5779 } 5780 #endif 5781 } 5782 5783 static void tcp_try_undo_spurious_syn(struct sock *sk) 5784 { 5785 struct tcp_sock *tp = tcp_sk(sk); 5786 u32 syn_stamp; 5787 5788 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5789 * spurious if the ACK's timestamp option echo value matches the 5790 * original SYN timestamp. 5791 */ 5792 syn_stamp = tp->retrans_stamp; 5793 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5794 syn_stamp == tp->rx_opt.rcv_tsecr) 5795 tp->undo_marker = 0; 5796 } 5797 5798 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5799 const struct tcphdr *th) 5800 { 5801 struct inet_connection_sock *icsk = inet_csk(sk); 5802 struct tcp_sock *tp = tcp_sk(sk); 5803 struct tcp_fastopen_cookie foc = { .len = -1 }; 5804 int saved_clamp = tp->rx_opt.mss_clamp; 5805 bool fastopen_fail; 5806 5807 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5808 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5809 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5810 5811 if (th->ack) { 5812 /* rfc793: 5813 * "If the state is SYN-SENT then 5814 * first check the ACK bit 5815 * If the ACK bit is set 5816 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5817 * a reset (unless the RST bit is set, if so drop 5818 * the segment and return)" 5819 */ 5820 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5821 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5822 goto reset_and_undo; 5823 5824 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5825 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5826 tcp_time_stamp(tp))) { 5827 NET_INC_STATS(sock_net(sk), 5828 LINUX_MIB_PAWSACTIVEREJECTED); 5829 goto reset_and_undo; 5830 } 5831 5832 /* Now ACK is acceptable. 5833 * 5834 * "If the RST bit is set 5835 * If the ACK was acceptable then signal the user "error: 5836 * connection reset", drop the segment, enter CLOSED state, 5837 * delete TCB, and return." 5838 */ 5839 5840 if (th->rst) { 5841 tcp_reset(sk); 5842 goto discard; 5843 } 5844 5845 /* rfc793: 5846 * "fifth, if neither of the SYN or RST bits is set then 5847 * drop the segment and return." 5848 * 5849 * See note below! 5850 * --ANK(990513) 5851 */ 5852 if (!th->syn) 5853 goto discard_and_undo; 5854 5855 /* rfc793: 5856 * "If the SYN bit is on ... 5857 * are acceptable then ... 5858 * (our SYN has been ACKed), change the connection 5859 * state to ESTABLISHED..." 5860 */ 5861 5862 tcp_ecn_rcv_synack(tp, th); 5863 5864 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5865 tcp_try_undo_spurious_syn(sk); 5866 tcp_ack(sk, skb, FLAG_SLOWPATH); 5867 5868 /* Ok.. it's good. Set up sequence numbers and 5869 * move to established. 5870 */ 5871 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5872 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5873 5874 /* RFC1323: The window in SYN & SYN/ACK segments is 5875 * never scaled. 5876 */ 5877 tp->snd_wnd = ntohs(th->window); 5878 5879 if (!tp->rx_opt.wscale_ok) { 5880 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5881 tp->window_clamp = min(tp->window_clamp, 65535U); 5882 } 5883 5884 if (tp->rx_opt.saw_tstamp) { 5885 tp->rx_opt.tstamp_ok = 1; 5886 tp->tcp_header_len = 5887 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5888 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5889 tcp_store_ts_recent(tp); 5890 } else { 5891 tp->tcp_header_len = sizeof(struct tcphdr); 5892 } 5893 5894 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5895 tcp_initialize_rcv_mss(sk); 5896 5897 /* Remember, tcp_poll() does not lock socket! 5898 * Change state from SYN-SENT only after copied_seq 5899 * is initialized. */ 5900 tp->copied_seq = tp->rcv_nxt; 5901 5902 smc_check_reset_syn(tp); 5903 5904 smp_mb(); 5905 5906 tcp_finish_connect(sk, skb); 5907 5908 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5909 tcp_rcv_fastopen_synack(sk, skb, &foc); 5910 5911 if (!sock_flag(sk, SOCK_DEAD)) { 5912 sk->sk_state_change(sk); 5913 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5914 } 5915 if (fastopen_fail) 5916 return -1; 5917 if (sk->sk_write_pending || 5918 icsk->icsk_accept_queue.rskq_defer_accept || 5919 inet_csk_in_pingpong_mode(sk)) { 5920 /* Save one ACK. Data will be ready after 5921 * several ticks, if write_pending is set. 5922 * 5923 * It may be deleted, but with this feature tcpdumps 5924 * look so _wonderfully_ clever, that I was not able 5925 * to stand against the temptation 8) --ANK 5926 */ 5927 inet_csk_schedule_ack(sk); 5928 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5929 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5930 TCP_DELACK_MAX, TCP_RTO_MAX); 5931 5932 discard: 5933 tcp_drop(sk, skb); 5934 return 0; 5935 } else { 5936 tcp_send_ack(sk); 5937 } 5938 return -1; 5939 } 5940 5941 /* No ACK in the segment */ 5942 5943 if (th->rst) { 5944 /* rfc793: 5945 * "If the RST bit is set 5946 * 5947 * Otherwise (no ACK) drop the segment and return." 5948 */ 5949 5950 goto discard_and_undo; 5951 } 5952 5953 /* PAWS check. */ 5954 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5955 tcp_paws_reject(&tp->rx_opt, 0)) 5956 goto discard_and_undo; 5957 5958 if (th->syn) { 5959 /* We see SYN without ACK. It is attempt of 5960 * simultaneous connect with crossed SYNs. 5961 * Particularly, it can be connect to self. 5962 */ 5963 tcp_set_state(sk, TCP_SYN_RECV); 5964 5965 if (tp->rx_opt.saw_tstamp) { 5966 tp->rx_opt.tstamp_ok = 1; 5967 tcp_store_ts_recent(tp); 5968 tp->tcp_header_len = 5969 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5970 } else { 5971 tp->tcp_header_len = sizeof(struct tcphdr); 5972 } 5973 5974 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5975 tp->copied_seq = tp->rcv_nxt; 5976 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5977 5978 /* RFC1323: The window in SYN & SYN/ACK segments is 5979 * never scaled. 5980 */ 5981 tp->snd_wnd = ntohs(th->window); 5982 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5983 tp->max_window = tp->snd_wnd; 5984 5985 tcp_ecn_rcv_syn(tp, th); 5986 5987 tcp_mtup_init(sk); 5988 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5989 tcp_initialize_rcv_mss(sk); 5990 5991 tcp_send_synack(sk); 5992 #if 0 5993 /* Note, we could accept data and URG from this segment. 5994 * There are no obstacles to make this (except that we must 5995 * either change tcp_recvmsg() to prevent it from returning data 5996 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5997 * 5998 * However, if we ignore data in ACKless segments sometimes, 5999 * we have no reasons to accept it sometimes. 6000 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6001 * is not flawless. So, discard packet for sanity. 6002 * Uncomment this return to process the data. 6003 */ 6004 return -1; 6005 #else 6006 goto discard; 6007 #endif 6008 } 6009 /* "fifth, if neither of the SYN or RST bits is set then 6010 * drop the segment and return." 6011 */ 6012 6013 discard_and_undo: 6014 tcp_clear_options(&tp->rx_opt); 6015 tp->rx_opt.mss_clamp = saved_clamp; 6016 goto discard; 6017 6018 reset_and_undo: 6019 tcp_clear_options(&tp->rx_opt); 6020 tp->rx_opt.mss_clamp = saved_clamp; 6021 return 1; 6022 } 6023 6024 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6025 { 6026 tcp_try_undo_loss(sk, false); 6027 6028 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6029 tcp_sk(sk)->retrans_stamp = 0; 6030 inet_csk(sk)->icsk_retransmits = 0; 6031 6032 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6033 * we no longer need req so release it. 6034 */ 6035 reqsk_fastopen_remove(sk, tcp_sk(sk)->fastopen_rsk, false); 6036 6037 /* Re-arm the timer because data may have been sent out. 6038 * This is similar to the regular data transmission case 6039 * when new data has just been ack'ed. 6040 * 6041 * (TFO) - we could try to be more aggressive and 6042 * retransmitting any data sooner based on when they 6043 * are sent out. 6044 */ 6045 tcp_rearm_rto(sk); 6046 } 6047 6048 /* 6049 * This function implements the receiving procedure of RFC 793 for 6050 * all states except ESTABLISHED and TIME_WAIT. 6051 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6052 * address independent. 6053 */ 6054 6055 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6056 { 6057 struct tcp_sock *tp = tcp_sk(sk); 6058 struct inet_connection_sock *icsk = inet_csk(sk); 6059 const struct tcphdr *th = tcp_hdr(skb); 6060 struct request_sock *req; 6061 int queued = 0; 6062 bool acceptable; 6063 6064 switch (sk->sk_state) { 6065 case TCP_CLOSE: 6066 goto discard; 6067 6068 case TCP_LISTEN: 6069 if (th->ack) 6070 return 1; 6071 6072 if (th->rst) 6073 goto discard; 6074 6075 if (th->syn) { 6076 if (th->fin) 6077 goto discard; 6078 /* It is possible that we process SYN packets from backlog, 6079 * so we need to make sure to disable BH and RCU right there. 6080 */ 6081 rcu_read_lock(); 6082 local_bh_disable(); 6083 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6084 local_bh_enable(); 6085 rcu_read_unlock(); 6086 6087 if (!acceptable) 6088 return 1; 6089 consume_skb(skb); 6090 return 0; 6091 } 6092 goto discard; 6093 6094 case TCP_SYN_SENT: 6095 tp->rx_opt.saw_tstamp = 0; 6096 tcp_mstamp_refresh(tp); 6097 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6098 if (queued >= 0) 6099 return queued; 6100 6101 /* Do step6 onward by hand. */ 6102 tcp_urg(sk, skb, th); 6103 __kfree_skb(skb); 6104 tcp_data_snd_check(sk); 6105 return 0; 6106 } 6107 6108 tcp_mstamp_refresh(tp); 6109 tp->rx_opt.saw_tstamp = 0; 6110 req = tp->fastopen_rsk; 6111 if (req) { 6112 bool req_stolen; 6113 6114 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6115 sk->sk_state != TCP_FIN_WAIT1); 6116 6117 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6118 goto discard; 6119 } 6120 6121 if (!th->ack && !th->rst && !th->syn) 6122 goto discard; 6123 6124 if (!tcp_validate_incoming(sk, skb, th, 0)) 6125 return 0; 6126 6127 /* step 5: check the ACK field */ 6128 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6129 FLAG_UPDATE_TS_RECENT | 6130 FLAG_NO_CHALLENGE_ACK) > 0; 6131 6132 if (!acceptable) { 6133 if (sk->sk_state == TCP_SYN_RECV) 6134 return 1; /* send one RST */ 6135 tcp_send_challenge_ack(sk, skb); 6136 goto discard; 6137 } 6138 switch (sk->sk_state) { 6139 case TCP_SYN_RECV: 6140 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6141 if (!tp->srtt_us) 6142 tcp_synack_rtt_meas(sk, req); 6143 6144 if (req) { 6145 tcp_rcv_synrecv_state_fastopen(sk); 6146 } else { 6147 tcp_try_undo_spurious_syn(sk); 6148 tp->retrans_stamp = 0; 6149 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6150 tp->copied_seq = tp->rcv_nxt; 6151 } 6152 smp_mb(); 6153 tcp_set_state(sk, TCP_ESTABLISHED); 6154 sk->sk_state_change(sk); 6155 6156 /* Note, that this wakeup is only for marginal crossed SYN case. 6157 * Passively open sockets are not waked up, because 6158 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6159 */ 6160 if (sk->sk_socket) 6161 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6162 6163 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6164 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6165 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6166 6167 if (tp->rx_opt.tstamp_ok) 6168 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6169 6170 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6171 tcp_update_pacing_rate(sk); 6172 6173 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6174 tp->lsndtime = tcp_jiffies32; 6175 6176 tcp_initialize_rcv_mss(sk); 6177 tcp_fast_path_on(tp); 6178 break; 6179 6180 case TCP_FIN_WAIT1: { 6181 int tmo; 6182 6183 if (req) 6184 tcp_rcv_synrecv_state_fastopen(sk); 6185 6186 if (tp->snd_una != tp->write_seq) 6187 break; 6188 6189 tcp_set_state(sk, TCP_FIN_WAIT2); 6190 sk->sk_shutdown |= SEND_SHUTDOWN; 6191 6192 sk_dst_confirm(sk); 6193 6194 if (!sock_flag(sk, SOCK_DEAD)) { 6195 /* Wake up lingering close() */ 6196 sk->sk_state_change(sk); 6197 break; 6198 } 6199 6200 if (tp->linger2 < 0) { 6201 tcp_done(sk); 6202 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6203 return 1; 6204 } 6205 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6206 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6207 /* Receive out of order FIN after close() */ 6208 if (tp->syn_fastopen && th->fin) 6209 tcp_fastopen_active_disable(sk); 6210 tcp_done(sk); 6211 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6212 return 1; 6213 } 6214 6215 tmo = tcp_fin_time(sk); 6216 if (tmo > TCP_TIMEWAIT_LEN) { 6217 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6218 } else if (th->fin || sock_owned_by_user(sk)) { 6219 /* Bad case. We could lose such FIN otherwise. 6220 * It is not a big problem, but it looks confusing 6221 * and not so rare event. We still can lose it now, 6222 * if it spins in bh_lock_sock(), but it is really 6223 * marginal case. 6224 */ 6225 inet_csk_reset_keepalive_timer(sk, tmo); 6226 } else { 6227 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6228 goto discard; 6229 } 6230 break; 6231 } 6232 6233 case TCP_CLOSING: 6234 if (tp->snd_una == tp->write_seq) { 6235 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6236 goto discard; 6237 } 6238 break; 6239 6240 case TCP_LAST_ACK: 6241 if (tp->snd_una == tp->write_seq) { 6242 tcp_update_metrics(sk); 6243 tcp_done(sk); 6244 goto discard; 6245 } 6246 break; 6247 } 6248 6249 /* step 6: check the URG bit */ 6250 tcp_urg(sk, skb, th); 6251 6252 /* step 7: process the segment text */ 6253 switch (sk->sk_state) { 6254 case TCP_CLOSE_WAIT: 6255 case TCP_CLOSING: 6256 case TCP_LAST_ACK: 6257 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6258 break; 6259 /* fall through */ 6260 case TCP_FIN_WAIT1: 6261 case TCP_FIN_WAIT2: 6262 /* RFC 793 says to queue data in these states, 6263 * RFC 1122 says we MUST send a reset. 6264 * BSD 4.4 also does reset. 6265 */ 6266 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6267 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6268 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6269 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6270 tcp_reset(sk); 6271 return 1; 6272 } 6273 } 6274 /* Fall through */ 6275 case TCP_ESTABLISHED: 6276 tcp_data_queue(sk, skb); 6277 queued = 1; 6278 break; 6279 } 6280 6281 /* tcp_data could move socket to TIME-WAIT */ 6282 if (sk->sk_state != TCP_CLOSE) { 6283 tcp_data_snd_check(sk); 6284 tcp_ack_snd_check(sk); 6285 } 6286 6287 if (!queued) { 6288 discard: 6289 tcp_drop(sk, skb); 6290 } 6291 return 0; 6292 } 6293 EXPORT_SYMBOL(tcp_rcv_state_process); 6294 6295 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6296 { 6297 struct inet_request_sock *ireq = inet_rsk(req); 6298 6299 if (family == AF_INET) 6300 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6301 &ireq->ir_rmt_addr, port); 6302 #if IS_ENABLED(CONFIG_IPV6) 6303 else if (family == AF_INET6) 6304 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6305 &ireq->ir_v6_rmt_addr, port); 6306 #endif 6307 } 6308 6309 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6310 * 6311 * If we receive a SYN packet with these bits set, it means a 6312 * network is playing bad games with TOS bits. In order to 6313 * avoid possible false congestion notifications, we disable 6314 * TCP ECN negotiation. 6315 * 6316 * Exception: tcp_ca wants ECN. This is required for DCTCP 6317 * congestion control: Linux DCTCP asserts ECT on all packets, 6318 * including SYN, which is most optimal solution; however, 6319 * others, such as FreeBSD do not. 6320 * 6321 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6322 * set, indicating the use of a future TCP extension (such as AccECN). See 6323 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6324 * extensions. 6325 */ 6326 static void tcp_ecn_create_request(struct request_sock *req, 6327 const struct sk_buff *skb, 6328 const struct sock *listen_sk, 6329 const struct dst_entry *dst) 6330 { 6331 const struct tcphdr *th = tcp_hdr(skb); 6332 const struct net *net = sock_net(listen_sk); 6333 bool th_ecn = th->ece && th->cwr; 6334 bool ect, ecn_ok; 6335 u32 ecn_ok_dst; 6336 6337 if (!th_ecn) 6338 return; 6339 6340 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6341 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6342 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6343 6344 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6345 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6346 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6347 inet_rsk(req)->ecn_ok = 1; 6348 } 6349 6350 static void tcp_openreq_init(struct request_sock *req, 6351 const struct tcp_options_received *rx_opt, 6352 struct sk_buff *skb, const struct sock *sk) 6353 { 6354 struct inet_request_sock *ireq = inet_rsk(req); 6355 6356 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6357 req->cookie_ts = 0; 6358 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6359 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6360 tcp_rsk(req)->snt_synack = 0; 6361 tcp_rsk(req)->last_oow_ack_time = 0; 6362 req->mss = rx_opt->mss_clamp; 6363 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6364 ireq->tstamp_ok = rx_opt->tstamp_ok; 6365 ireq->sack_ok = rx_opt->sack_ok; 6366 ireq->snd_wscale = rx_opt->snd_wscale; 6367 ireq->wscale_ok = rx_opt->wscale_ok; 6368 ireq->acked = 0; 6369 ireq->ecn_ok = 0; 6370 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6371 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6372 ireq->ir_mark = inet_request_mark(sk, skb); 6373 #if IS_ENABLED(CONFIG_SMC) 6374 ireq->smc_ok = rx_opt->smc_ok; 6375 #endif 6376 } 6377 6378 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6379 struct sock *sk_listener, 6380 bool attach_listener) 6381 { 6382 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6383 attach_listener); 6384 6385 if (req) { 6386 struct inet_request_sock *ireq = inet_rsk(req); 6387 6388 ireq->ireq_opt = NULL; 6389 #if IS_ENABLED(CONFIG_IPV6) 6390 ireq->pktopts = NULL; 6391 #endif 6392 atomic64_set(&ireq->ir_cookie, 0); 6393 ireq->ireq_state = TCP_NEW_SYN_RECV; 6394 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6395 ireq->ireq_family = sk_listener->sk_family; 6396 } 6397 6398 return req; 6399 } 6400 EXPORT_SYMBOL(inet_reqsk_alloc); 6401 6402 /* 6403 * Return true if a syncookie should be sent 6404 */ 6405 static bool tcp_syn_flood_action(const struct sock *sk, 6406 const struct sk_buff *skb, 6407 const char *proto) 6408 { 6409 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6410 const char *msg = "Dropping request"; 6411 bool want_cookie = false; 6412 struct net *net = sock_net(sk); 6413 6414 #ifdef CONFIG_SYN_COOKIES 6415 if (net->ipv4.sysctl_tcp_syncookies) { 6416 msg = "Sending cookies"; 6417 want_cookie = true; 6418 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6419 } else 6420 #endif 6421 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6422 6423 if (!queue->synflood_warned && 6424 net->ipv4.sysctl_tcp_syncookies != 2 && 6425 xchg(&queue->synflood_warned, 1) == 0) 6426 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6427 proto, ntohs(tcp_hdr(skb)->dest), msg); 6428 6429 return want_cookie; 6430 } 6431 6432 static void tcp_reqsk_record_syn(const struct sock *sk, 6433 struct request_sock *req, 6434 const struct sk_buff *skb) 6435 { 6436 if (tcp_sk(sk)->save_syn) { 6437 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6438 u32 *copy; 6439 6440 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6441 if (copy) { 6442 copy[0] = len; 6443 memcpy(©[1], skb_network_header(skb), len); 6444 req->saved_syn = copy; 6445 } 6446 } 6447 } 6448 6449 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6450 const struct tcp_request_sock_ops *af_ops, 6451 struct sock *sk, struct sk_buff *skb) 6452 { 6453 struct tcp_fastopen_cookie foc = { .len = -1 }; 6454 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6455 struct tcp_options_received tmp_opt; 6456 struct tcp_sock *tp = tcp_sk(sk); 6457 struct net *net = sock_net(sk); 6458 struct sock *fastopen_sk = NULL; 6459 struct request_sock *req; 6460 bool want_cookie = false; 6461 struct dst_entry *dst; 6462 struct flowi fl; 6463 6464 /* TW buckets are converted to open requests without 6465 * limitations, they conserve resources and peer is 6466 * evidently real one. 6467 */ 6468 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6469 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6470 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6471 if (!want_cookie) 6472 goto drop; 6473 } 6474 6475 if (sk_acceptq_is_full(sk)) { 6476 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6477 goto drop; 6478 } 6479 6480 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6481 if (!req) 6482 goto drop; 6483 6484 tcp_rsk(req)->af_specific = af_ops; 6485 tcp_rsk(req)->ts_off = 0; 6486 6487 tcp_clear_options(&tmp_opt); 6488 tmp_opt.mss_clamp = af_ops->mss_clamp; 6489 tmp_opt.user_mss = tp->rx_opt.user_mss; 6490 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6491 want_cookie ? NULL : &foc); 6492 6493 if (want_cookie && !tmp_opt.saw_tstamp) 6494 tcp_clear_options(&tmp_opt); 6495 6496 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6497 tmp_opt.smc_ok = 0; 6498 6499 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6500 tcp_openreq_init(req, &tmp_opt, skb, sk); 6501 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6502 6503 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6504 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6505 6506 af_ops->init_req(req, sk, skb); 6507 6508 if (security_inet_conn_request(sk, skb, req)) 6509 goto drop_and_free; 6510 6511 if (tmp_opt.tstamp_ok) 6512 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6513 6514 dst = af_ops->route_req(sk, &fl, req); 6515 if (!dst) 6516 goto drop_and_free; 6517 6518 if (!want_cookie && !isn) { 6519 /* Kill the following clause, if you dislike this way. */ 6520 if (!net->ipv4.sysctl_tcp_syncookies && 6521 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6522 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6523 !tcp_peer_is_proven(req, dst)) { 6524 /* Without syncookies last quarter of 6525 * backlog is filled with destinations, 6526 * proven to be alive. 6527 * It means that we continue to communicate 6528 * to destinations, already remembered 6529 * to the moment of synflood. 6530 */ 6531 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6532 rsk_ops->family); 6533 goto drop_and_release; 6534 } 6535 6536 isn = af_ops->init_seq(skb); 6537 } 6538 6539 tcp_ecn_create_request(req, skb, sk, dst); 6540 6541 if (want_cookie) { 6542 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6543 req->cookie_ts = tmp_opt.tstamp_ok; 6544 if (!tmp_opt.tstamp_ok) 6545 inet_rsk(req)->ecn_ok = 0; 6546 } 6547 6548 tcp_rsk(req)->snt_isn = isn; 6549 tcp_rsk(req)->txhash = net_tx_rndhash(); 6550 tcp_openreq_init_rwin(req, sk, dst); 6551 sk_rx_queue_set(req_to_sk(req), skb); 6552 if (!want_cookie) { 6553 tcp_reqsk_record_syn(sk, req, skb); 6554 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6555 } 6556 if (fastopen_sk) { 6557 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6558 &foc, TCP_SYNACK_FASTOPEN); 6559 /* Add the child socket directly into the accept queue */ 6560 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6561 reqsk_fastopen_remove(fastopen_sk, req, false); 6562 bh_unlock_sock(fastopen_sk); 6563 sock_put(fastopen_sk); 6564 goto drop_and_free; 6565 } 6566 sk->sk_data_ready(sk); 6567 bh_unlock_sock(fastopen_sk); 6568 sock_put(fastopen_sk); 6569 } else { 6570 tcp_rsk(req)->tfo_listener = false; 6571 if (!want_cookie) 6572 inet_csk_reqsk_queue_hash_add(sk, req, 6573 tcp_timeout_init((struct sock *)req)); 6574 af_ops->send_synack(sk, dst, &fl, req, &foc, 6575 !want_cookie ? TCP_SYNACK_NORMAL : 6576 TCP_SYNACK_COOKIE); 6577 if (want_cookie) { 6578 reqsk_free(req); 6579 return 0; 6580 } 6581 } 6582 reqsk_put(req); 6583 return 0; 6584 6585 drop_and_release: 6586 dst_release(dst); 6587 drop_and_free: 6588 __reqsk_free(req); 6589 drop: 6590 tcp_listendrop(sk); 6591 return 0; 6592 } 6593 EXPORT_SYMBOL(tcp_conn_request); 6594