xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 752beb5e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_inc(&clean_acked_data_enabled.key);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 
133 void clean_acked_data_flush(void)
134 {
135 	static_key_deferred_flush(&clean_acked_data_enabled);
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138 #endif
139 
140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 			     unsigned int len)
142 {
143 	static bool __once __read_mostly;
144 
145 	if (!__once) {
146 		struct net_device *dev;
147 
148 		__once = true;
149 
150 		rcu_read_lock();
151 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 		if (!dev || len >= dev->mtu)
153 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 				dev ? dev->name : "Unknown driver");
155 		rcu_read_unlock();
156 	}
157 }
158 
159 /* Adapt the MSS value used to make delayed ack decision to the
160  * real world.
161  */
162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 	unsigned int len;
167 
168 	icsk->icsk_ack.last_seg_size = 0;
169 
170 	/* skb->len may jitter because of SACKs, even if peer
171 	 * sends good full-sized frames.
172 	 */
173 	len = skb_shinfo(skb)->gso_size ? : skb->len;
174 	if (len >= icsk->icsk_ack.rcv_mss) {
175 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 					       tcp_sk(sk)->advmss);
177 		/* Account for possibly-removed options */
178 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 				   MAX_TCP_OPTION_SPACE))
180 			tcp_gro_dev_warn(sk, skb, len);
181 	} else {
182 		/* Otherwise, we make more careful check taking into account,
183 		 * that SACKs block is variable.
184 		 *
185 		 * "len" is invariant segment length, including TCP header.
186 		 */
187 		len += skb->data - skb_transport_header(skb);
188 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 		    /* If PSH is not set, packet should be
190 		     * full sized, provided peer TCP is not badly broken.
191 		     * This observation (if it is correct 8)) allows
192 		     * to handle super-low mtu links fairly.
193 		     */
194 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 			/* Subtract also invariant (if peer is RFC compliant),
197 			 * tcp header plus fixed timestamp option length.
198 			 * Resulting "len" is MSS free of SACK jitter.
199 			 */
200 			len -= tcp_sk(sk)->tcp_header_len;
201 			icsk->icsk_ack.last_seg_size = len;
202 			if (len == lss) {
203 				icsk->icsk_ack.rcv_mss = len;
204 				return;
205 			}
206 		}
207 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 	}
211 }
212 
213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214 {
215 	struct inet_connection_sock *icsk = inet_csk(sk);
216 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217 
218 	if (quickacks == 0)
219 		quickacks = 2;
220 	quickacks = min(quickacks, max_quickacks);
221 	if (quickacks > icsk->icsk_ack.quick)
222 		icsk->icsk_ack.quick = quickacks;
223 }
224 
225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226 {
227 	struct inet_connection_sock *icsk = inet_csk(sk);
228 
229 	tcp_incr_quickack(sk, max_quickacks);
230 	inet_csk_exit_pingpong_mode(sk);
231 	icsk->icsk_ack.ato = TCP_ATO_MIN;
232 }
233 EXPORT_SYMBOL(tcp_enter_quickack_mode);
234 
235 /* Send ACKs quickly, if "quick" count is not exhausted
236  * and the session is not interactive.
237  */
238 
239 static bool tcp_in_quickack_mode(struct sock *sk)
240 {
241 	const struct inet_connection_sock *icsk = inet_csk(sk);
242 	const struct dst_entry *dst = __sk_dst_get(sk);
243 
244 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
246 }
247 
248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249 {
250 	if (tp->ecn_flags & TCP_ECN_OK)
251 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252 }
253 
254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255 {
256 	if (tcp_hdr(skb)->cwr) {
257 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258 
259 		/* If the sender is telling us it has entered CWR, then its
260 		 * cwnd may be very low (even just 1 packet), so we should ACK
261 		 * immediately.
262 		 */
263 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
264 	}
265 }
266 
267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
268 {
269 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
270 }
271 
272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 
276 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 	case INET_ECN_NOT_ECT:
278 		/* Funny extension: if ECT is not set on a segment,
279 		 * and we already seen ECT on a previous segment,
280 		 * it is probably a retransmit.
281 		 */
282 		if (tp->ecn_flags & TCP_ECN_SEEN)
283 			tcp_enter_quickack_mode(sk, 2);
284 		break;
285 	case INET_ECN_CE:
286 		if (tcp_ca_needs_ecn(sk))
287 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
288 
289 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 			/* Better not delay acks, sender can have a very low cwnd */
291 			tcp_enter_quickack_mode(sk, 2);
292 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 		}
294 		tp->ecn_flags |= TCP_ECN_SEEN;
295 		break;
296 	default:
297 		if (tcp_ca_needs_ecn(sk))
298 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 		tp->ecn_flags |= TCP_ECN_SEEN;
300 		break;
301 	}
302 }
303 
304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
305 {
306 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 		__tcp_ecn_check_ce(sk, skb);
308 }
309 
310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 		tp->ecn_flags &= ~TCP_ECN_OK;
320 }
321 
322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
323 {
324 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 		return true;
326 	return false;
327 }
328 
329 /* Buffer size and advertised window tuning.
330  *
331  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332  */
333 
334 static void tcp_sndbuf_expand(struct sock *sk)
335 {
336 	const struct tcp_sock *tp = tcp_sk(sk);
337 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 	int sndmem, per_mss;
339 	u32 nr_segs;
340 
341 	/* Worst case is non GSO/TSO : each frame consumes one skb
342 	 * and skb->head is kmalloced using power of two area of memory
343 	 */
344 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 		  MAX_TCP_HEADER +
346 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347 
348 	per_mss = roundup_pow_of_two(per_mss) +
349 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
350 
351 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353 
354 	/* Fast Recovery (RFC 5681 3.2) :
355 	 * Cubic needs 1.7 factor, rounded to 2 to include
356 	 * extra cushion (application might react slowly to EPOLLOUT)
357 	 */
358 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 	sndmem *= nr_segs * per_mss;
360 
361 	if (sk->sk_sndbuf < sndmem)
362 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
363 }
364 
365 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
366  *
367  * All tcp_full_space() is split to two parts: "network" buffer, allocated
368  * forward and advertised in receiver window (tp->rcv_wnd) and
369  * "application buffer", required to isolate scheduling/application
370  * latencies from network.
371  * window_clamp is maximal advertised window. It can be less than
372  * tcp_full_space(), in this case tcp_full_space() - window_clamp
373  * is reserved for "application" buffer. The less window_clamp is
374  * the smoother our behaviour from viewpoint of network, but the lower
375  * throughput and the higher sensitivity of the connection to losses. 8)
376  *
377  * rcv_ssthresh is more strict window_clamp used at "slow start"
378  * phase to predict further behaviour of this connection.
379  * It is used for two goals:
380  * - to enforce header prediction at sender, even when application
381  *   requires some significant "application buffer". It is check #1.
382  * - to prevent pruning of receive queue because of misprediction
383  *   of receiver window. Check #2.
384  *
385  * The scheme does not work when sender sends good segments opening
386  * window and then starts to feed us spaghetti. But it should work
387  * in common situations. Otherwise, we have to rely on queue collapsing.
388  */
389 
390 /* Slow part of check#2. */
391 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
392 {
393 	struct tcp_sock *tp = tcp_sk(sk);
394 	/* Optimize this! */
395 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
396 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
397 
398 	while (tp->rcv_ssthresh <= window) {
399 		if (truesize <= skb->len)
400 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
401 
402 		truesize >>= 1;
403 		window >>= 1;
404 	}
405 	return 0;
406 }
407 
408 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	int room;
412 
413 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
414 
415 	/* Check #1 */
416 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
417 		int incr;
418 
419 		/* Check #2. Increase window, if skb with such overhead
420 		 * will fit to rcvbuf in future.
421 		 */
422 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
423 			incr = 2 * tp->advmss;
424 		else
425 			incr = __tcp_grow_window(sk, skb);
426 
427 		if (incr) {
428 			incr = max_t(int, incr, 2 * skb->len);
429 			tp->rcv_ssthresh += min(room, incr);
430 			inet_csk(sk)->icsk_ack.quick |= 1;
431 		}
432 	}
433 }
434 
435 /* 3. Try to fixup all. It is made immediately after connection enters
436  *    established state.
437  */
438 void tcp_init_buffer_space(struct sock *sk)
439 {
440 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
441 	struct tcp_sock *tp = tcp_sk(sk);
442 	int maxwin;
443 
444 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
445 		tcp_sndbuf_expand(sk);
446 
447 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
448 	tcp_mstamp_refresh(tp);
449 	tp->rcvq_space.time = tp->tcp_mstamp;
450 	tp->rcvq_space.seq = tp->copied_seq;
451 
452 	maxwin = tcp_full_space(sk);
453 
454 	if (tp->window_clamp >= maxwin) {
455 		tp->window_clamp = maxwin;
456 
457 		if (tcp_app_win && maxwin > 4 * tp->advmss)
458 			tp->window_clamp = max(maxwin -
459 					       (maxwin >> tcp_app_win),
460 					       4 * tp->advmss);
461 	}
462 
463 	/* Force reservation of one segment. */
464 	if (tcp_app_win &&
465 	    tp->window_clamp > 2 * tp->advmss &&
466 	    tp->window_clamp + tp->advmss > maxwin)
467 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
468 
469 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
470 	tp->snd_cwnd_stamp = tcp_jiffies32;
471 }
472 
473 /* 4. Recalculate window clamp after socket hit its memory bounds. */
474 static void tcp_clamp_window(struct sock *sk)
475 {
476 	struct tcp_sock *tp = tcp_sk(sk);
477 	struct inet_connection_sock *icsk = inet_csk(sk);
478 	struct net *net = sock_net(sk);
479 
480 	icsk->icsk_ack.quick = 0;
481 
482 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
483 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
484 	    !tcp_under_memory_pressure(sk) &&
485 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
486 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
487 				    net->ipv4.sysctl_tcp_rmem[2]);
488 	}
489 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
490 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
491 }
492 
493 /* Initialize RCV_MSS value.
494  * RCV_MSS is an our guess about MSS used by the peer.
495  * We haven't any direct information about the MSS.
496  * It's better to underestimate the RCV_MSS rather than overestimate.
497  * Overestimations make us ACKing less frequently than needed.
498  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
499  */
500 void tcp_initialize_rcv_mss(struct sock *sk)
501 {
502 	const struct tcp_sock *tp = tcp_sk(sk);
503 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
504 
505 	hint = min(hint, tp->rcv_wnd / 2);
506 	hint = min(hint, TCP_MSS_DEFAULT);
507 	hint = max(hint, TCP_MIN_MSS);
508 
509 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
510 }
511 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
512 
513 /* Receiver "autotuning" code.
514  *
515  * The algorithm for RTT estimation w/o timestamps is based on
516  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
517  * <http://public.lanl.gov/radiant/pubs.html#DRS>
518  *
519  * More detail on this code can be found at
520  * <http://staff.psc.edu/jheffner/>,
521  * though this reference is out of date.  A new paper
522  * is pending.
523  */
524 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
525 {
526 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
527 	long m = sample;
528 
529 	if (new_sample != 0) {
530 		/* If we sample in larger samples in the non-timestamp
531 		 * case, we could grossly overestimate the RTT especially
532 		 * with chatty applications or bulk transfer apps which
533 		 * are stalled on filesystem I/O.
534 		 *
535 		 * Also, since we are only going for a minimum in the
536 		 * non-timestamp case, we do not smooth things out
537 		 * else with timestamps disabled convergence takes too
538 		 * long.
539 		 */
540 		if (!win_dep) {
541 			m -= (new_sample >> 3);
542 			new_sample += m;
543 		} else {
544 			m <<= 3;
545 			if (m < new_sample)
546 				new_sample = m;
547 		}
548 	} else {
549 		/* No previous measure. */
550 		new_sample = m << 3;
551 	}
552 
553 	tp->rcv_rtt_est.rtt_us = new_sample;
554 }
555 
556 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
557 {
558 	u32 delta_us;
559 
560 	if (tp->rcv_rtt_est.time == 0)
561 		goto new_measure;
562 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
563 		return;
564 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
565 	if (!delta_us)
566 		delta_us = 1;
567 	tcp_rcv_rtt_update(tp, delta_us, 1);
568 
569 new_measure:
570 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
571 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
572 }
573 
574 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
575 					  const struct sk_buff *skb)
576 {
577 	struct tcp_sock *tp = tcp_sk(sk);
578 
579 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
580 		return;
581 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
582 
583 	if (TCP_SKB_CB(skb)->end_seq -
584 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
585 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
586 		u32 delta_us;
587 
588 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
589 			if (!delta)
590 				delta = 1;
591 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
592 			tcp_rcv_rtt_update(tp, delta_us, 0);
593 		}
594 	}
595 }
596 
597 /*
598  * This function should be called every time data is copied to user space.
599  * It calculates the appropriate TCP receive buffer space.
600  */
601 void tcp_rcv_space_adjust(struct sock *sk)
602 {
603 	struct tcp_sock *tp = tcp_sk(sk);
604 	u32 copied;
605 	int time;
606 
607 	trace_tcp_rcv_space_adjust(sk);
608 
609 	tcp_mstamp_refresh(tp);
610 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
611 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
612 		return;
613 
614 	/* Number of bytes copied to user in last RTT */
615 	copied = tp->copied_seq - tp->rcvq_space.seq;
616 	if (copied <= tp->rcvq_space.space)
617 		goto new_measure;
618 
619 	/* A bit of theory :
620 	 * copied = bytes received in previous RTT, our base window
621 	 * To cope with packet losses, we need a 2x factor
622 	 * To cope with slow start, and sender growing its cwin by 100 %
623 	 * every RTT, we need a 4x factor, because the ACK we are sending
624 	 * now is for the next RTT, not the current one :
625 	 * <prev RTT . ><current RTT .. ><next RTT .... >
626 	 */
627 
628 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
629 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
630 		int rcvmem, rcvbuf;
631 		u64 rcvwin, grow;
632 
633 		/* minimal window to cope with packet losses, assuming
634 		 * steady state. Add some cushion because of small variations.
635 		 */
636 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
637 
638 		/* Accommodate for sender rate increase (eg. slow start) */
639 		grow = rcvwin * (copied - tp->rcvq_space.space);
640 		do_div(grow, tp->rcvq_space.space);
641 		rcvwin += (grow << 1);
642 
643 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
644 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
645 			rcvmem += 128;
646 
647 		do_div(rcvwin, tp->advmss);
648 		rcvbuf = min_t(u64, rcvwin * rcvmem,
649 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
650 		if (rcvbuf > sk->sk_rcvbuf) {
651 			sk->sk_rcvbuf = rcvbuf;
652 
653 			/* Make the window clamp follow along.  */
654 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
655 		}
656 	}
657 	tp->rcvq_space.space = copied;
658 
659 new_measure:
660 	tp->rcvq_space.seq = tp->copied_seq;
661 	tp->rcvq_space.time = tp->tcp_mstamp;
662 }
663 
664 /* There is something which you must keep in mind when you analyze the
665  * behavior of the tp->ato delayed ack timeout interval.  When a
666  * connection starts up, we want to ack as quickly as possible.  The
667  * problem is that "good" TCP's do slow start at the beginning of data
668  * transmission.  The means that until we send the first few ACK's the
669  * sender will sit on his end and only queue most of his data, because
670  * he can only send snd_cwnd unacked packets at any given time.  For
671  * each ACK we send, he increments snd_cwnd and transmits more of his
672  * queue.  -DaveM
673  */
674 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 	struct inet_connection_sock *icsk = inet_csk(sk);
678 	u32 now;
679 
680 	inet_csk_schedule_ack(sk);
681 
682 	tcp_measure_rcv_mss(sk, skb);
683 
684 	tcp_rcv_rtt_measure(tp);
685 
686 	now = tcp_jiffies32;
687 
688 	if (!icsk->icsk_ack.ato) {
689 		/* The _first_ data packet received, initialize
690 		 * delayed ACK engine.
691 		 */
692 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
693 		icsk->icsk_ack.ato = TCP_ATO_MIN;
694 	} else {
695 		int m = now - icsk->icsk_ack.lrcvtime;
696 
697 		if (m <= TCP_ATO_MIN / 2) {
698 			/* The fastest case is the first. */
699 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
700 		} else if (m < icsk->icsk_ack.ato) {
701 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
702 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
703 				icsk->icsk_ack.ato = icsk->icsk_rto;
704 		} else if (m > icsk->icsk_rto) {
705 			/* Too long gap. Apparently sender failed to
706 			 * restart window, so that we send ACKs quickly.
707 			 */
708 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
709 			sk_mem_reclaim(sk);
710 		}
711 	}
712 	icsk->icsk_ack.lrcvtime = now;
713 
714 	tcp_ecn_check_ce(sk, skb);
715 
716 	if (skb->len >= 128)
717 		tcp_grow_window(sk, skb);
718 }
719 
720 /* Called to compute a smoothed rtt estimate. The data fed to this
721  * routine either comes from timestamps, or from segments that were
722  * known _not_ to have been retransmitted [see Karn/Partridge
723  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
724  * piece by Van Jacobson.
725  * NOTE: the next three routines used to be one big routine.
726  * To save cycles in the RFC 1323 implementation it was better to break
727  * it up into three procedures. -- erics
728  */
729 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
730 {
731 	struct tcp_sock *tp = tcp_sk(sk);
732 	long m = mrtt_us; /* RTT */
733 	u32 srtt = tp->srtt_us;
734 
735 	/*	The following amusing code comes from Jacobson's
736 	 *	article in SIGCOMM '88.  Note that rtt and mdev
737 	 *	are scaled versions of rtt and mean deviation.
738 	 *	This is designed to be as fast as possible
739 	 *	m stands for "measurement".
740 	 *
741 	 *	On a 1990 paper the rto value is changed to:
742 	 *	RTO = rtt + 4 * mdev
743 	 *
744 	 * Funny. This algorithm seems to be very broken.
745 	 * These formulae increase RTO, when it should be decreased, increase
746 	 * too slowly, when it should be increased quickly, decrease too quickly
747 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
748 	 * does not matter how to _calculate_ it. Seems, it was trap
749 	 * that VJ failed to avoid. 8)
750 	 */
751 	if (srtt != 0) {
752 		m -= (srtt >> 3);	/* m is now error in rtt est */
753 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
754 		if (m < 0) {
755 			m = -m;		/* m is now abs(error) */
756 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
757 			/* This is similar to one of Eifel findings.
758 			 * Eifel blocks mdev updates when rtt decreases.
759 			 * This solution is a bit different: we use finer gain
760 			 * for mdev in this case (alpha*beta).
761 			 * Like Eifel it also prevents growth of rto,
762 			 * but also it limits too fast rto decreases,
763 			 * happening in pure Eifel.
764 			 */
765 			if (m > 0)
766 				m >>= 3;
767 		} else {
768 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
769 		}
770 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
771 		if (tp->mdev_us > tp->mdev_max_us) {
772 			tp->mdev_max_us = tp->mdev_us;
773 			if (tp->mdev_max_us > tp->rttvar_us)
774 				tp->rttvar_us = tp->mdev_max_us;
775 		}
776 		if (after(tp->snd_una, tp->rtt_seq)) {
777 			if (tp->mdev_max_us < tp->rttvar_us)
778 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
779 			tp->rtt_seq = tp->snd_nxt;
780 			tp->mdev_max_us = tcp_rto_min_us(sk);
781 		}
782 	} else {
783 		/* no previous measure. */
784 		srtt = m << 3;		/* take the measured time to be rtt */
785 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
786 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
787 		tp->mdev_max_us = tp->rttvar_us;
788 		tp->rtt_seq = tp->snd_nxt;
789 	}
790 	tp->srtt_us = max(1U, srtt);
791 }
792 
793 static void tcp_update_pacing_rate(struct sock *sk)
794 {
795 	const struct tcp_sock *tp = tcp_sk(sk);
796 	u64 rate;
797 
798 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
799 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
800 
801 	/* current rate is (cwnd * mss) / srtt
802 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
803 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
804 	 *
805 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
806 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
807 	 *	 end of slow start and should slow down.
808 	 */
809 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
810 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
811 	else
812 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
813 
814 	rate *= max(tp->snd_cwnd, tp->packets_out);
815 
816 	if (likely(tp->srtt_us))
817 		do_div(rate, tp->srtt_us);
818 
819 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
820 	 * without any lock. We want to make sure compiler wont store
821 	 * intermediate values in this location.
822 	 */
823 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
824 					     sk->sk_max_pacing_rate));
825 }
826 
827 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
828  * routine referred to above.
829  */
830 static void tcp_set_rto(struct sock *sk)
831 {
832 	const struct tcp_sock *tp = tcp_sk(sk);
833 	/* Old crap is replaced with new one. 8)
834 	 *
835 	 * More seriously:
836 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
837 	 *    It cannot be less due to utterly erratic ACK generation made
838 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
839 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
840 	 *    is invisible. Actually, Linux-2.4 also generates erratic
841 	 *    ACKs in some circumstances.
842 	 */
843 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
844 
845 	/* 2. Fixups made earlier cannot be right.
846 	 *    If we do not estimate RTO correctly without them,
847 	 *    all the algo is pure shit and should be replaced
848 	 *    with correct one. It is exactly, which we pretend to do.
849 	 */
850 
851 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
852 	 * guarantees that rto is higher.
853 	 */
854 	tcp_bound_rto(sk);
855 }
856 
857 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
858 {
859 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
860 
861 	if (!cwnd)
862 		cwnd = TCP_INIT_CWND;
863 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
864 }
865 
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
868 {
869 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
870 	tp->rack.dsack_seen = 1;
871 	tp->dsack_dups++;
872 }
873 
874 /* It's reordering when higher sequence was delivered (i.e. sacked) before
875  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
876  * distance is approximated in full-mss packet distance ("reordering").
877  */
878 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
879 				      const int ts)
880 {
881 	struct tcp_sock *tp = tcp_sk(sk);
882 	const u32 mss = tp->mss_cache;
883 	u32 fack, metric;
884 
885 	fack = tcp_highest_sack_seq(tp);
886 	if (!before(low_seq, fack))
887 		return;
888 
889 	metric = fack - low_seq;
890 	if ((metric > tp->reordering * mss) && mss) {
891 #if FASTRETRANS_DEBUG > 1
892 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
894 			 tp->reordering,
895 			 0,
896 			 tp->sacked_out,
897 			 tp->undo_marker ? tp->undo_retrans : 0);
898 #endif
899 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
900 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
901 	}
902 
903 	/* This exciting event is worth to be remembered. 8) */
904 	tp->reord_seen++;
905 	NET_INC_STATS(sock_net(sk),
906 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
907 }
908 
909 /* This must be called before lost_out is incremented */
910 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
911 {
912 	if (!tp->retransmit_skb_hint ||
913 	    before(TCP_SKB_CB(skb)->seq,
914 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
915 		tp->retransmit_skb_hint = skb;
916 }
917 
918 /* Sum the number of packets on the wire we have marked as lost.
919  * There are two cases we care about here:
920  * a) Packet hasn't been marked lost (nor retransmitted),
921  *    and this is the first loss.
922  * b) Packet has been marked both lost and retransmitted,
923  *    and this means we think it was lost again.
924  */
925 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
926 {
927 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
928 
929 	if (!(sacked & TCPCB_LOST) ||
930 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
931 		tp->lost += tcp_skb_pcount(skb);
932 }
933 
934 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
935 {
936 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
937 		tcp_verify_retransmit_hint(tp, skb);
938 
939 		tp->lost_out += tcp_skb_pcount(skb);
940 		tcp_sum_lost(tp, skb);
941 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
942 	}
943 }
944 
945 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
946 {
947 	tcp_verify_retransmit_hint(tp, skb);
948 
949 	tcp_sum_lost(tp, skb);
950 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
951 		tp->lost_out += tcp_skb_pcount(skb);
952 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
953 	}
954 }
955 
956 /* This procedure tags the retransmission queue when SACKs arrive.
957  *
958  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
959  * Packets in queue with these bits set are counted in variables
960  * sacked_out, retrans_out and lost_out, correspondingly.
961  *
962  * Valid combinations are:
963  * Tag  InFlight	Description
964  * 0	1		- orig segment is in flight.
965  * S	0		- nothing flies, orig reached receiver.
966  * L	0		- nothing flies, orig lost by net.
967  * R	2		- both orig and retransmit are in flight.
968  * L|R	1		- orig is lost, retransmit is in flight.
969  * S|R  1		- orig reached receiver, retrans is still in flight.
970  * (L|S|R is logically valid, it could occur when L|R is sacked,
971  *  but it is equivalent to plain S and code short-curcuits it to S.
972  *  L|S is logically invalid, it would mean -1 packet in flight 8))
973  *
974  * These 6 states form finite state machine, controlled by the following events:
975  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
976  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
977  * 3. Loss detection event of two flavors:
978  *	A. Scoreboard estimator decided the packet is lost.
979  *	   A'. Reno "three dupacks" marks head of queue lost.
980  *	B. SACK arrives sacking SND.NXT at the moment, when the
981  *	   segment was retransmitted.
982  * 4. D-SACK added new rule: D-SACK changes any tag to S.
983  *
984  * It is pleasant to note, that state diagram turns out to be commutative,
985  * so that we are allowed not to be bothered by order of our actions,
986  * when multiple events arrive simultaneously. (see the function below).
987  *
988  * Reordering detection.
989  * --------------------
990  * Reordering metric is maximal distance, which a packet can be displaced
991  * in packet stream. With SACKs we can estimate it:
992  *
993  * 1. SACK fills old hole and the corresponding segment was not
994  *    ever retransmitted -> reordering. Alas, we cannot use it
995  *    when segment was retransmitted.
996  * 2. The last flaw is solved with D-SACK. D-SACK arrives
997  *    for retransmitted and already SACKed segment -> reordering..
998  * Both of these heuristics are not used in Loss state, when we cannot
999  * account for retransmits accurately.
1000  *
1001  * SACK block validation.
1002  * ----------------------
1003  *
1004  * SACK block range validation checks that the received SACK block fits to
1005  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1006  * Note that SND.UNA is not included to the range though being valid because
1007  * it means that the receiver is rather inconsistent with itself reporting
1008  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1009  * perfectly valid, however, in light of RFC2018 which explicitly states
1010  * that "SACK block MUST reflect the newest segment.  Even if the newest
1011  * segment is going to be discarded ...", not that it looks very clever
1012  * in case of head skb. Due to potentional receiver driven attacks, we
1013  * choose to avoid immediate execution of a walk in write queue due to
1014  * reneging and defer head skb's loss recovery to standard loss recovery
1015  * procedure that will eventually trigger (nothing forbids us doing this).
1016  *
1017  * Implements also blockage to start_seq wrap-around. Problem lies in the
1018  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1019  * there's no guarantee that it will be before snd_nxt (n). The problem
1020  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1021  * wrap (s_w):
1022  *
1023  *         <- outs wnd ->                          <- wrapzone ->
1024  *         u     e      n                         u_w   e_w  s n_w
1025  *         |     |      |                          |     |   |  |
1026  * |<------------+------+----- TCP seqno space --------------+---------->|
1027  * ...-- <2^31 ->|                                           |<--------...
1028  * ...---- >2^31 ------>|                                    |<--------...
1029  *
1030  * Current code wouldn't be vulnerable but it's better still to discard such
1031  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1032  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1033  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1034  * equal to the ideal case (infinite seqno space without wrap caused issues).
1035  *
1036  * With D-SACK the lower bound is extended to cover sequence space below
1037  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1038  * again, D-SACK block must not to go across snd_una (for the same reason as
1039  * for the normal SACK blocks, explained above). But there all simplicity
1040  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1041  * fully below undo_marker they do not affect behavior in anyway and can
1042  * therefore be safely ignored. In rare cases (which are more or less
1043  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1044  * fragmentation and packet reordering past skb's retransmission. To consider
1045  * them correctly, the acceptable range must be extended even more though
1046  * the exact amount is rather hard to quantify. However, tp->max_window can
1047  * be used as an exaggerated estimate.
1048  */
1049 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1050 				   u32 start_seq, u32 end_seq)
1051 {
1052 	/* Too far in future, or reversed (interpretation is ambiguous) */
1053 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1054 		return false;
1055 
1056 	/* Nasty start_seq wrap-around check (see comments above) */
1057 	if (!before(start_seq, tp->snd_nxt))
1058 		return false;
1059 
1060 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1061 	 * start_seq == snd_una is non-sensical (see comments above)
1062 	 */
1063 	if (after(start_seq, tp->snd_una))
1064 		return true;
1065 
1066 	if (!is_dsack || !tp->undo_marker)
1067 		return false;
1068 
1069 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1070 	if (after(end_seq, tp->snd_una))
1071 		return false;
1072 
1073 	if (!before(start_seq, tp->undo_marker))
1074 		return true;
1075 
1076 	/* Too old */
1077 	if (!after(end_seq, tp->undo_marker))
1078 		return false;
1079 
1080 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1081 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1082 	 */
1083 	return !before(start_seq, end_seq - tp->max_window);
1084 }
1085 
1086 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1087 			    struct tcp_sack_block_wire *sp, int num_sacks,
1088 			    u32 prior_snd_una)
1089 {
1090 	struct tcp_sock *tp = tcp_sk(sk);
1091 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1092 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1093 	bool dup_sack = false;
1094 
1095 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1096 		dup_sack = true;
1097 		tcp_dsack_seen(tp);
1098 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1099 	} else if (num_sacks > 1) {
1100 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1101 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1102 
1103 		if (!after(end_seq_0, end_seq_1) &&
1104 		    !before(start_seq_0, start_seq_1)) {
1105 			dup_sack = true;
1106 			tcp_dsack_seen(tp);
1107 			NET_INC_STATS(sock_net(sk),
1108 					LINUX_MIB_TCPDSACKOFORECV);
1109 		}
1110 	}
1111 
1112 	/* D-SACK for already forgotten data... Do dumb counting. */
1113 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1114 	    !after(end_seq_0, prior_snd_una) &&
1115 	    after(end_seq_0, tp->undo_marker))
1116 		tp->undo_retrans--;
1117 
1118 	return dup_sack;
1119 }
1120 
1121 struct tcp_sacktag_state {
1122 	u32	reord;
1123 	/* Timestamps for earliest and latest never-retransmitted segment
1124 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1125 	 * but congestion control should still get an accurate delay signal.
1126 	 */
1127 	u64	first_sackt;
1128 	u64	last_sackt;
1129 	struct rate_sample *rate;
1130 	int	flag;
1131 	unsigned int mss_now;
1132 };
1133 
1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135  * the incoming SACK may not exactly match but we can find smaller MSS
1136  * aligned portion of it that matches. Therefore we might need to fragment
1137  * which may fail and creates some hassle (caller must handle error case
1138  * returns).
1139  *
1140  * FIXME: this could be merged to shift decision code
1141  */
1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1143 				  u32 start_seq, u32 end_seq)
1144 {
1145 	int err;
1146 	bool in_sack;
1147 	unsigned int pkt_len;
1148 	unsigned int mss;
1149 
1150 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1151 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1152 
1153 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1154 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1155 		mss = tcp_skb_mss(skb);
1156 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1157 
1158 		if (!in_sack) {
1159 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1160 			if (pkt_len < mss)
1161 				pkt_len = mss;
1162 		} else {
1163 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1164 			if (pkt_len < mss)
1165 				return -EINVAL;
1166 		}
1167 
1168 		/* Round if necessary so that SACKs cover only full MSSes
1169 		 * and/or the remaining small portion (if present)
1170 		 */
1171 		if (pkt_len > mss) {
1172 			unsigned int new_len = (pkt_len / mss) * mss;
1173 			if (!in_sack && new_len < pkt_len)
1174 				new_len += mss;
1175 			pkt_len = new_len;
1176 		}
1177 
1178 		if (pkt_len >= skb->len && !in_sack)
1179 			return 0;
1180 
1181 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1182 				   pkt_len, mss, GFP_ATOMIC);
1183 		if (err < 0)
1184 			return err;
1185 	}
1186 
1187 	return in_sack;
1188 }
1189 
1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1191 static u8 tcp_sacktag_one(struct sock *sk,
1192 			  struct tcp_sacktag_state *state, u8 sacked,
1193 			  u32 start_seq, u32 end_seq,
1194 			  int dup_sack, int pcount,
1195 			  u64 xmit_time)
1196 {
1197 	struct tcp_sock *tp = tcp_sk(sk);
1198 
1199 	/* Account D-SACK for retransmitted packet. */
1200 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1201 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1202 		    after(end_seq, tp->undo_marker))
1203 			tp->undo_retrans--;
1204 		if ((sacked & TCPCB_SACKED_ACKED) &&
1205 		    before(start_seq, state->reord))
1206 				state->reord = start_seq;
1207 	}
1208 
1209 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1210 	if (!after(end_seq, tp->snd_una))
1211 		return sacked;
1212 
1213 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1214 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1215 
1216 		if (sacked & TCPCB_SACKED_RETRANS) {
1217 			/* If the segment is not tagged as lost,
1218 			 * we do not clear RETRANS, believing
1219 			 * that retransmission is still in flight.
1220 			 */
1221 			if (sacked & TCPCB_LOST) {
1222 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1223 				tp->lost_out -= pcount;
1224 				tp->retrans_out -= pcount;
1225 			}
1226 		} else {
1227 			if (!(sacked & TCPCB_RETRANS)) {
1228 				/* New sack for not retransmitted frame,
1229 				 * which was in hole. It is reordering.
1230 				 */
1231 				if (before(start_seq,
1232 					   tcp_highest_sack_seq(tp)) &&
1233 				    before(start_seq, state->reord))
1234 					state->reord = start_seq;
1235 
1236 				if (!after(end_seq, tp->high_seq))
1237 					state->flag |= FLAG_ORIG_SACK_ACKED;
1238 				if (state->first_sackt == 0)
1239 					state->first_sackt = xmit_time;
1240 				state->last_sackt = xmit_time;
1241 			}
1242 
1243 			if (sacked & TCPCB_LOST) {
1244 				sacked &= ~TCPCB_LOST;
1245 				tp->lost_out -= pcount;
1246 			}
1247 		}
1248 
1249 		sacked |= TCPCB_SACKED_ACKED;
1250 		state->flag |= FLAG_DATA_SACKED;
1251 		tp->sacked_out += pcount;
1252 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1253 
1254 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1255 		if (tp->lost_skb_hint &&
1256 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1257 			tp->lost_cnt_hint += pcount;
1258 	}
1259 
1260 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1261 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1262 	 * are accounted above as well.
1263 	 */
1264 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1265 		sacked &= ~TCPCB_SACKED_RETRANS;
1266 		tp->retrans_out -= pcount;
1267 	}
1268 
1269 	return sacked;
1270 }
1271 
1272 /* Shift newly-SACKed bytes from this skb to the immediately previous
1273  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1274  */
1275 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1276 			    struct sk_buff *skb,
1277 			    struct tcp_sacktag_state *state,
1278 			    unsigned int pcount, int shifted, int mss,
1279 			    bool dup_sack)
1280 {
1281 	struct tcp_sock *tp = tcp_sk(sk);
1282 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1283 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1284 
1285 	BUG_ON(!pcount);
1286 
1287 	/* Adjust counters and hints for the newly sacked sequence
1288 	 * range but discard the return value since prev is already
1289 	 * marked. We must tag the range first because the seq
1290 	 * advancement below implicitly advances
1291 	 * tcp_highest_sack_seq() when skb is highest_sack.
1292 	 */
1293 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1294 			start_seq, end_seq, dup_sack, pcount,
1295 			tcp_skb_timestamp_us(skb));
1296 	tcp_rate_skb_delivered(sk, skb, state->rate);
1297 
1298 	if (skb == tp->lost_skb_hint)
1299 		tp->lost_cnt_hint += pcount;
1300 
1301 	TCP_SKB_CB(prev)->end_seq += shifted;
1302 	TCP_SKB_CB(skb)->seq += shifted;
1303 
1304 	tcp_skb_pcount_add(prev, pcount);
1305 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1306 	tcp_skb_pcount_add(skb, -pcount);
1307 
1308 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1309 	 * in theory this shouldn't be necessary but as long as DSACK
1310 	 * code can come after this skb later on it's better to keep
1311 	 * setting gso_size to something.
1312 	 */
1313 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1314 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1315 
1316 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1317 	if (tcp_skb_pcount(skb) <= 1)
1318 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1319 
1320 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1321 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1322 
1323 	if (skb->len > 0) {
1324 		BUG_ON(!tcp_skb_pcount(skb));
1325 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1326 		return false;
1327 	}
1328 
1329 	/* Whole SKB was eaten :-) */
1330 
1331 	if (skb == tp->retransmit_skb_hint)
1332 		tp->retransmit_skb_hint = prev;
1333 	if (skb == tp->lost_skb_hint) {
1334 		tp->lost_skb_hint = prev;
1335 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1336 	}
1337 
1338 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1339 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1340 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1341 		TCP_SKB_CB(prev)->end_seq++;
1342 
1343 	if (skb == tcp_highest_sack(sk))
1344 		tcp_advance_highest_sack(sk, skb);
1345 
1346 	tcp_skb_collapse_tstamp(prev, skb);
1347 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1348 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1349 
1350 	tcp_rtx_queue_unlink_and_free(skb, sk);
1351 
1352 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1353 
1354 	return true;
1355 }
1356 
1357 /* I wish gso_size would have a bit more sane initialization than
1358  * something-or-zero which complicates things
1359  */
1360 static int tcp_skb_seglen(const struct sk_buff *skb)
1361 {
1362 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1363 }
1364 
1365 /* Shifting pages past head area doesn't work */
1366 static int skb_can_shift(const struct sk_buff *skb)
1367 {
1368 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1369 }
1370 
1371 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1372  * skb.
1373  */
1374 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1375 					  struct tcp_sacktag_state *state,
1376 					  u32 start_seq, u32 end_seq,
1377 					  bool dup_sack)
1378 {
1379 	struct tcp_sock *tp = tcp_sk(sk);
1380 	struct sk_buff *prev;
1381 	int mss;
1382 	int pcount = 0;
1383 	int len;
1384 	int in_sack;
1385 
1386 	/* Normally R but no L won't result in plain S */
1387 	if (!dup_sack &&
1388 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1389 		goto fallback;
1390 	if (!skb_can_shift(skb))
1391 		goto fallback;
1392 	/* This frame is about to be dropped (was ACKed). */
1393 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1394 		goto fallback;
1395 
1396 	/* Can only happen with delayed DSACK + discard craziness */
1397 	prev = skb_rb_prev(skb);
1398 	if (!prev)
1399 		goto fallback;
1400 
1401 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1402 		goto fallback;
1403 
1404 	if (!tcp_skb_can_collapse_to(prev))
1405 		goto fallback;
1406 
1407 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1408 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1409 
1410 	if (in_sack) {
1411 		len = skb->len;
1412 		pcount = tcp_skb_pcount(skb);
1413 		mss = tcp_skb_seglen(skb);
1414 
1415 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1416 		 * drop this restriction as unnecessary
1417 		 */
1418 		if (mss != tcp_skb_seglen(prev))
1419 			goto fallback;
1420 	} else {
1421 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1422 			goto noop;
1423 		/* CHECKME: This is non-MSS split case only?, this will
1424 		 * cause skipped skbs due to advancing loop btw, original
1425 		 * has that feature too
1426 		 */
1427 		if (tcp_skb_pcount(skb) <= 1)
1428 			goto noop;
1429 
1430 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1431 		if (!in_sack) {
1432 			/* TODO: head merge to next could be attempted here
1433 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1434 			 * though it might not be worth of the additional hassle
1435 			 *
1436 			 * ...we can probably just fallback to what was done
1437 			 * previously. We could try merging non-SACKed ones
1438 			 * as well but it probably isn't going to buy off
1439 			 * because later SACKs might again split them, and
1440 			 * it would make skb timestamp tracking considerably
1441 			 * harder problem.
1442 			 */
1443 			goto fallback;
1444 		}
1445 
1446 		len = end_seq - TCP_SKB_CB(skb)->seq;
1447 		BUG_ON(len < 0);
1448 		BUG_ON(len > skb->len);
1449 
1450 		/* MSS boundaries should be honoured or else pcount will
1451 		 * severely break even though it makes things bit trickier.
1452 		 * Optimize common case to avoid most of the divides
1453 		 */
1454 		mss = tcp_skb_mss(skb);
1455 
1456 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1457 		 * drop this restriction as unnecessary
1458 		 */
1459 		if (mss != tcp_skb_seglen(prev))
1460 			goto fallback;
1461 
1462 		if (len == mss) {
1463 			pcount = 1;
1464 		} else if (len < mss) {
1465 			goto noop;
1466 		} else {
1467 			pcount = len / mss;
1468 			len = pcount * mss;
1469 		}
1470 	}
1471 
1472 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1473 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1474 		goto fallback;
1475 
1476 	if (!skb_shift(prev, skb, len))
1477 		goto fallback;
1478 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1479 		goto out;
1480 
1481 	/* Hole filled allows collapsing with the next as well, this is very
1482 	 * useful when hole on every nth skb pattern happens
1483 	 */
1484 	skb = skb_rb_next(prev);
1485 	if (!skb)
1486 		goto out;
1487 
1488 	if (!skb_can_shift(skb) ||
1489 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1490 	    (mss != tcp_skb_seglen(skb)))
1491 		goto out;
1492 
1493 	len = skb->len;
1494 	if (skb_shift(prev, skb, len)) {
1495 		pcount += tcp_skb_pcount(skb);
1496 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1497 				len, mss, 0);
1498 	}
1499 
1500 out:
1501 	return prev;
1502 
1503 noop:
1504 	return skb;
1505 
1506 fallback:
1507 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1508 	return NULL;
1509 }
1510 
1511 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1512 					struct tcp_sack_block *next_dup,
1513 					struct tcp_sacktag_state *state,
1514 					u32 start_seq, u32 end_seq,
1515 					bool dup_sack_in)
1516 {
1517 	struct tcp_sock *tp = tcp_sk(sk);
1518 	struct sk_buff *tmp;
1519 
1520 	skb_rbtree_walk_from(skb) {
1521 		int in_sack = 0;
1522 		bool dup_sack = dup_sack_in;
1523 
1524 		/* queue is in-order => we can short-circuit the walk early */
1525 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1526 			break;
1527 
1528 		if (next_dup  &&
1529 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1530 			in_sack = tcp_match_skb_to_sack(sk, skb,
1531 							next_dup->start_seq,
1532 							next_dup->end_seq);
1533 			if (in_sack > 0)
1534 				dup_sack = true;
1535 		}
1536 
1537 		/* skb reference here is a bit tricky to get right, since
1538 		 * shifting can eat and free both this skb and the next,
1539 		 * so not even _safe variant of the loop is enough.
1540 		 */
1541 		if (in_sack <= 0) {
1542 			tmp = tcp_shift_skb_data(sk, skb, state,
1543 						 start_seq, end_seq, dup_sack);
1544 			if (tmp) {
1545 				if (tmp != skb) {
1546 					skb = tmp;
1547 					continue;
1548 				}
1549 
1550 				in_sack = 0;
1551 			} else {
1552 				in_sack = tcp_match_skb_to_sack(sk, skb,
1553 								start_seq,
1554 								end_seq);
1555 			}
1556 		}
1557 
1558 		if (unlikely(in_sack < 0))
1559 			break;
1560 
1561 		if (in_sack) {
1562 			TCP_SKB_CB(skb)->sacked =
1563 				tcp_sacktag_one(sk,
1564 						state,
1565 						TCP_SKB_CB(skb)->sacked,
1566 						TCP_SKB_CB(skb)->seq,
1567 						TCP_SKB_CB(skb)->end_seq,
1568 						dup_sack,
1569 						tcp_skb_pcount(skb),
1570 						tcp_skb_timestamp_us(skb));
1571 			tcp_rate_skb_delivered(sk, skb, state->rate);
1572 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1573 				list_del_init(&skb->tcp_tsorted_anchor);
1574 
1575 			if (!before(TCP_SKB_CB(skb)->seq,
1576 				    tcp_highest_sack_seq(tp)))
1577 				tcp_advance_highest_sack(sk, skb);
1578 		}
1579 	}
1580 	return skb;
1581 }
1582 
1583 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1584 {
1585 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1586 	struct sk_buff *skb;
1587 
1588 	while (*p) {
1589 		parent = *p;
1590 		skb = rb_to_skb(parent);
1591 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1592 			p = &parent->rb_left;
1593 			continue;
1594 		}
1595 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1596 			p = &parent->rb_right;
1597 			continue;
1598 		}
1599 		return skb;
1600 	}
1601 	return NULL;
1602 }
1603 
1604 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1605 					u32 skip_to_seq)
1606 {
1607 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1608 		return skb;
1609 
1610 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1611 }
1612 
1613 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1614 						struct sock *sk,
1615 						struct tcp_sack_block *next_dup,
1616 						struct tcp_sacktag_state *state,
1617 						u32 skip_to_seq)
1618 {
1619 	if (!next_dup)
1620 		return skb;
1621 
1622 	if (before(next_dup->start_seq, skip_to_seq)) {
1623 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1624 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1625 				       next_dup->start_seq, next_dup->end_seq,
1626 				       1);
1627 	}
1628 
1629 	return skb;
1630 }
1631 
1632 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1633 {
1634 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1635 }
1636 
1637 static int
1638 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1639 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1640 {
1641 	struct tcp_sock *tp = tcp_sk(sk);
1642 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1643 				    TCP_SKB_CB(ack_skb)->sacked);
1644 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1645 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1646 	struct tcp_sack_block *cache;
1647 	struct sk_buff *skb;
1648 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1649 	int used_sacks;
1650 	bool found_dup_sack = false;
1651 	int i, j;
1652 	int first_sack_index;
1653 
1654 	state->flag = 0;
1655 	state->reord = tp->snd_nxt;
1656 
1657 	if (!tp->sacked_out)
1658 		tcp_highest_sack_reset(sk);
1659 
1660 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1661 					 num_sacks, prior_snd_una);
1662 	if (found_dup_sack) {
1663 		state->flag |= FLAG_DSACKING_ACK;
1664 		tp->delivered++; /* A spurious retransmission is delivered */
1665 	}
1666 
1667 	/* Eliminate too old ACKs, but take into
1668 	 * account more or less fresh ones, they can
1669 	 * contain valid SACK info.
1670 	 */
1671 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1672 		return 0;
1673 
1674 	if (!tp->packets_out)
1675 		goto out;
1676 
1677 	used_sacks = 0;
1678 	first_sack_index = 0;
1679 	for (i = 0; i < num_sacks; i++) {
1680 		bool dup_sack = !i && found_dup_sack;
1681 
1682 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1683 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1684 
1685 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1686 					    sp[used_sacks].start_seq,
1687 					    sp[used_sacks].end_seq)) {
1688 			int mib_idx;
1689 
1690 			if (dup_sack) {
1691 				if (!tp->undo_marker)
1692 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1693 				else
1694 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1695 			} else {
1696 				/* Don't count olds caused by ACK reordering */
1697 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1698 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1699 					continue;
1700 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1701 			}
1702 
1703 			NET_INC_STATS(sock_net(sk), mib_idx);
1704 			if (i == 0)
1705 				first_sack_index = -1;
1706 			continue;
1707 		}
1708 
1709 		/* Ignore very old stuff early */
1710 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1711 			continue;
1712 
1713 		used_sacks++;
1714 	}
1715 
1716 	/* order SACK blocks to allow in order walk of the retrans queue */
1717 	for (i = used_sacks - 1; i > 0; i--) {
1718 		for (j = 0; j < i; j++) {
1719 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1720 				swap(sp[j], sp[j + 1]);
1721 
1722 				/* Track where the first SACK block goes to */
1723 				if (j == first_sack_index)
1724 					first_sack_index = j + 1;
1725 			}
1726 		}
1727 	}
1728 
1729 	state->mss_now = tcp_current_mss(sk);
1730 	skb = NULL;
1731 	i = 0;
1732 
1733 	if (!tp->sacked_out) {
1734 		/* It's already past, so skip checking against it */
1735 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1736 	} else {
1737 		cache = tp->recv_sack_cache;
1738 		/* Skip empty blocks in at head of the cache */
1739 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1740 		       !cache->end_seq)
1741 			cache++;
1742 	}
1743 
1744 	while (i < used_sacks) {
1745 		u32 start_seq = sp[i].start_seq;
1746 		u32 end_seq = sp[i].end_seq;
1747 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1748 		struct tcp_sack_block *next_dup = NULL;
1749 
1750 		if (found_dup_sack && ((i + 1) == first_sack_index))
1751 			next_dup = &sp[i + 1];
1752 
1753 		/* Skip too early cached blocks */
1754 		while (tcp_sack_cache_ok(tp, cache) &&
1755 		       !before(start_seq, cache->end_seq))
1756 			cache++;
1757 
1758 		/* Can skip some work by looking recv_sack_cache? */
1759 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1760 		    after(end_seq, cache->start_seq)) {
1761 
1762 			/* Head todo? */
1763 			if (before(start_seq, cache->start_seq)) {
1764 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1765 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1766 						       state,
1767 						       start_seq,
1768 						       cache->start_seq,
1769 						       dup_sack);
1770 			}
1771 
1772 			/* Rest of the block already fully processed? */
1773 			if (!after(end_seq, cache->end_seq))
1774 				goto advance_sp;
1775 
1776 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1777 						       state,
1778 						       cache->end_seq);
1779 
1780 			/* ...tail remains todo... */
1781 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1782 				/* ...but better entrypoint exists! */
1783 				skb = tcp_highest_sack(sk);
1784 				if (!skb)
1785 					break;
1786 				cache++;
1787 				goto walk;
1788 			}
1789 
1790 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1791 			/* Check overlap against next cached too (past this one already) */
1792 			cache++;
1793 			continue;
1794 		}
1795 
1796 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1797 			skb = tcp_highest_sack(sk);
1798 			if (!skb)
1799 				break;
1800 		}
1801 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1802 
1803 walk:
1804 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1805 				       start_seq, end_seq, dup_sack);
1806 
1807 advance_sp:
1808 		i++;
1809 	}
1810 
1811 	/* Clear the head of the cache sack blocks so we can skip it next time */
1812 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1813 		tp->recv_sack_cache[i].start_seq = 0;
1814 		tp->recv_sack_cache[i].end_seq = 0;
1815 	}
1816 	for (j = 0; j < used_sacks; j++)
1817 		tp->recv_sack_cache[i++] = sp[j];
1818 
1819 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1820 		tcp_check_sack_reordering(sk, state->reord, 0);
1821 
1822 	tcp_verify_left_out(tp);
1823 out:
1824 
1825 #if FASTRETRANS_DEBUG > 0
1826 	WARN_ON((int)tp->sacked_out < 0);
1827 	WARN_ON((int)tp->lost_out < 0);
1828 	WARN_ON((int)tp->retrans_out < 0);
1829 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1830 #endif
1831 	return state->flag;
1832 }
1833 
1834 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1835  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1836  */
1837 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1838 {
1839 	u32 holes;
1840 
1841 	holes = max(tp->lost_out, 1U);
1842 	holes = min(holes, tp->packets_out);
1843 
1844 	if ((tp->sacked_out + holes) > tp->packets_out) {
1845 		tp->sacked_out = tp->packets_out - holes;
1846 		return true;
1847 	}
1848 	return false;
1849 }
1850 
1851 /* If we receive more dupacks than we expected counting segments
1852  * in assumption of absent reordering, interpret this as reordering.
1853  * The only another reason could be bug in receiver TCP.
1854  */
1855 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1856 {
1857 	struct tcp_sock *tp = tcp_sk(sk);
1858 
1859 	if (!tcp_limit_reno_sacked(tp))
1860 		return;
1861 
1862 	tp->reordering = min_t(u32, tp->packets_out + addend,
1863 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1864 	tp->reord_seen++;
1865 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1866 }
1867 
1868 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1869 
1870 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1871 {
1872 	if (num_dupack) {
1873 		struct tcp_sock *tp = tcp_sk(sk);
1874 		u32 prior_sacked = tp->sacked_out;
1875 		s32 delivered;
1876 
1877 		tp->sacked_out += num_dupack;
1878 		tcp_check_reno_reordering(sk, 0);
1879 		delivered = tp->sacked_out - prior_sacked;
1880 		if (delivered > 0)
1881 			tp->delivered += delivered;
1882 		tcp_verify_left_out(tp);
1883 	}
1884 }
1885 
1886 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1887 
1888 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1889 {
1890 	struct tcp_sock *tp = tcp_sk(sk);
1891 
1892 	if (acked > 0) {
1893 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1894 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1895 		if (acked - 1 >= tp->sacked_out)
1896 			tp->sacked_out = 0;
1897 		else
1898 			tp->sacked_out -= acked - 1;
1899 	}
1900 	tcp_check_reno_reordering(sk, acked);
1901 	tcp_verify_left_out(tp);
1902 }
1903 
1904 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1905 {
1906 	tp->sacked_out = 0;
1907 }
1908 
1909 void tcp_clear_retrans(struct tcp_sock *tp)
1910 {
1911 	tp->retrans_out = 0;
1912 	tp->lost_out = 0;
1913 	tp->undo_marker = 0;
1914 	tp->undo_retrans = -1;
1915 	tp->sacked_out = 0;
1916 }
1917 
1918 static inline void tcp_init_undo(struct tcp_sock *tp)
1919 {
1920 	tp->undo_marker = tp->snd_una;
1921 	/* Retransmission still in flight may cause DSACKs later. */
1922 	tp->undo_retrans = tp->retrans_out ? : -1;
1923 }
1924 
1925 static bool tcp_is_rack(const struct sock *sk)
1926 {
1927 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1928 }
1929 
1930 /* If we detect SACK reneging, forget all SACK information
1931  * and reset tags completely, otherwise preserve SACKs. If receiver
1932  * dropped its ofo queue, we will know this due to reneging detection.
1933  */
1934 static void tcp_timeout_mark_lost(struct sock *sk)
1935 {
1936 	struct tcp_sock *tp = tcp_sk(sk);
1937 	struct sk_buff *skb, *head;
1938 	bool is_reneg;			/* is receiver reneging on SACKs? */
1939 
1940 	head = tcp_rtx_queue_head(sk);
1941 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1942 	if (is_reneg) {
1943 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1944 		tp->sacked_out = 0;
1945 		/* Mark SACK reneging until we recover from this loss event. */
1946 		tp->is_sack_reneg = 1;
1947 	} else if (tcp_is_reno(tp)) {
1948 		tcp_reset_reno_sack(tp);
1949 	}
1950 
1951 	skb = head;
1952 	skb_rbtree_walk_from(skb) {
1953 		if (is_reneg)
1954 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1955 		else if (tcp_is_rack(sk) && skb != head &&
1956 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1957 			continue; /* Don't mark recently sent ones lost yet */
1958 		tcp_mark_skb_lost(sk, skb);
1959 	}
1960 	tcp_verify_left_out(tp);
1961 	tcp_clear_all_retrans_hints(tp);
1962 }
1963 
1964 /* Enter Loss state. */
1965 void tcp_enter_loss(struct sock *sk)
1966 {
1967 	const struct inet_connection_sock *icsk = inet_csk(sk);
1968 	struct tcp_sock *tp = tcp_sk(sk);
1969 	struct net *net = sock_net(sk);
1970 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1971 
1972 	tcp_timeout_mark_lost(sk);
1973 
1974 	/* Reduce ssthresh if it has not yet been made inside this window. */
1975 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1976 	    !after(tp->high_seq, tp->snd_una) ||
1977 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1978 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1979 		tp->prior_cwnd = tp->snd_cwnd;
1980 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1981 		tcp_ca_event(sk, CA_EVENT_LOSS);
1982 		tcp_init_undo(tp);
1983 	}
1984 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1985 	tp->snd_cwnd_cnt   = 0;
1986 	tp->snd_cwnd_stamp = tcp_jiffies32;
1987 
1988 	/* Timeout in disordered state after receiving substantial DUPACKs
1989 	 * suggests that the degree of reordering is over-estimated.
1990 	 */
1991 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1992 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1993 		tp->reordering = min_t(unsigned int, tp->reordering,
1994 				       net->ipv4.sysctl_tcp_reordering);
1995 	tcp_set_ca_state(sk, TCP_CA_Loss);
1996 	tp->high_seq = tp->snd_nxt;
1997 	tcp_ecn_queue_cwr(tp);
1998 
1999 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2000 	 * loss recovery is underway except recurring timeout(s) on
2001 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2002 	 */
2003 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2004 		   (new_recovery || icsk->icsk_retransmits) &&
2005 		   !inet_csk(sk)->icsk_mtup.probe_size;
2006 }
2007 
2008 /* If ACK arrived pointing to a remembered SACK, it means that our
2009  * remembered SACKs do not reflect real state of receiver i.e.
2010  * receiver _host_ is heavily congested (or buggy).
2011  *
2012  * To avoid big spurious retransmission bursts due to transient SACK
2013  * scoreboard oddities that look like reneging, we give the receiver a
2014  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2015  * restore sanity to the SACK scoreboard. If the apparent reneging
2016  * persists until this RTO then we'll clear the SACK scoreboard.
2017  */
2018 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2019 {
2020 	if (flag & FLAG_SACK_RENEGING) {
2021 		struct tcp_sock *tp = tcp_sk(sk);
2022 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2023 					  msecs_to_jiffies(10));
2024 
2025 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2026 					  delay, TCP_RTO_MAX);
2027 		return true;
2028 	}
2029 	return false;
2030 }
2031 
2032 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2033  * counter when SACK is enabled (without SACK, sacked_out is used for
2034  * that purpose).
2035  *
2036  * With reordering, holes may still be in flight, so RFC3517 recovery
2037  * uses pure sacked_out (total number of SACKed segments) even though
2038  * it violates the RFC that uses duplicate ACKs, often these are equal
2039  * but when e.g. out-of-window ACKs or packet duplication occurs,
2040  * they differ. Since neither occurs due to loss, TCP should really
2041  * ignore them.
2042  */
2043 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2044 {
2045 	return tp->sacked_out + 1;
2046 }
2047 
2048 /* Linux NewReno/SACK/ECN state machine.
2049  * --------------------------------------
2050  *
2051  * "Open"	Normal state, no dubious events, fast path.
2052  * "Disorder"   In all the respects it is "Open",
2053  *		but requires a bit more attention. It is entered when
2054  *		we see some SACKs or dupacks. It is split of "Open"
2055  *		mainly to move some processing from fast path to slow one.
2056  * "CWR"	CWND was reduced due to some Congestion Notification event.
2057  *		It can be ECN, ICMP source quench, local device congestion.
2058  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2059  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2060  *
2061  * tcp_fastretrans_alert() is entered:
2062  * - each incoming ACK, if state is not "Open"
2063  * - when arrived ACK is unusual, namely:
2064  *	* SACK
2065  *	* Duplicate ACK.
2066  *	* ECN ECE.
2067  *
2068  * Counting packets in flight is pretty simple.
2069  *
2070  *	in_flight = packets_out - left_out + retrans_out
2071  *
2072  *	packets_out is SND.NXT-SND.UNA counted in packets.
2073  *
2074  *	retrans_out is number of retransmitted segments.
2075  *
2076  *	left_out is number of segments left network, but not ACKed yet.
2077  *
2078  *		left_out = sacked_out + lost_out
2079  *
2080  *     sacked_out: Packets, which arrived to receiver out of order
2081  *		   and hence not ACKed. With SACKs this number is simply
2082  *		   amount of SACKed data. Even without SACKs
2083  *		   it is easy to give pretty reliable estimate of this number,
2084  *		   counting duplicate ACKs.
2085  *
2086  *       lost_out: Packets lost by network. TCP has no explicit
2087  *		   "loss notification" feedback from network (for now).
2088  *		   It means that this number can be only _guessed_.
2089  *		   Actually, it is the heuristics to predict lossage that
2090  *		   distinguishes different algorithms.
2091  *
2092  *	F.e. after RTO, when all the queue is considered as lost,
2093  *	lost_out = packets_out and in_flight = retrans_out.
2094  *
2095  *		Essentially, we have now a few algorithms detecting
2096  *		lost packets.
2097  *
2098  *		If the receiver supports SACK:
2099  *
2100  *		RFC6675/3517: It is the conventional algorithm. A packet is
2101  *		considered lost if the number of higher sequence packets
2102  *		SACKed is greater than or equal the DUPACK thoreshold
2103  *		(reordering). This is implemented in tcp_mark_head_lost and
2104  *		tcp_update_scoreboard.
2105  *
2106  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2107  *		(2017-) that checks timing instead of counting DUPACKs.
2108  *		Essentially a packet is considered lost if it's not S/ACKed
2109  *		after RTT + reordering_window, where both metrics are
2110  *		dynamically measured and adjusted. This is implemented in
2111  *		tcp_rack_mark_lost.
2112  *
2113  *		If the receiver does not support SACK:
2114  *
2115  *		NewReno (RFC6582): in Recovery we assume that one segment
2116  *		is lost (classic Reno). While we are in Recovery and
2117  *		a partial ACK arrives, we assume that one more packet
2118  *		is lost (NewReno). This heuristics are the same in NewReno
2119  *		and SACK.
2120  *
2121  * Really tricky (and requiring careful tuning) part of algorithm
2122  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2123  * The first determines the moment _when_ we should reduce CWND and,
2124  * hence, slow down forward transmission. In fact, it determines the moment
2125  * when we decide that hole is caused by loss, rather than by a reorder.
2126  *
2127  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2128  * holes, caused by lost packets.
2129  *
2130  * And the most logically complicated part of algorithm is undo
2131  * heuristics. We detect false retransmits due to both too early
2132  * fast retransmit (reordering) and underestimated RTO, analyzing
2133  * timestamps and D-SACKs. When we detect that some segments were
2134  * retransmitted by mistake and CWND reduction was wrong, we undo
2135  * window reduction and abort recovery phase. This logic is hidden
2136  * inside several functions named tcp_try_undo_<something>.
2137  */
2138 
2139 /* This function decides, when we should leave Disordered state
2140  * and enter Recovery phase, reducing congestion window.
2141  *
2142  * Main question: may we further continue forward transmission
2143  * with the same cwnd?
2144  */
2145 static bool tcp_time_to_recover(struct sock *sk, int flag)
2146 {
2147 	struct tcp_sock *tp = tcp_sk(sk);
2148 
2149 	/* Trick#1: The loss is proven. */
2150 	if (tp->lost_out)
2151 		return true;
2152 
2153 	/* Not-A-Trick#2 : Classic rule... */
2154 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2155 		return true;
2156 
2157 	return false;
2158 }
2159 
2160 /* Detect loss in event "A" above by marking head of queue up as lost.
2161  * For non-SACK(Reno) senders, the first "packets" number of segments
2162  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2163  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2164  * the maximum SACKed segments to pass before reaching this limit.
2165  */
2166 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2167 {
2168 	struct tcp_sock *tp = tcp_sk(sk);
2169 	struct sk_buff *skb;
2170 	int cnt, oldcnt, lost;
2171 	unsigned int mss;
2172 	/* Use SACK to deduce losses of new sequences sent during recovery */
2173 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2174 
2175 	WARN_ON(packets > tp->packets_out);
2176 	skb = tp->lost_skb_hint;
2177 	if (skb) {
2178 		/* Head already handled? */
2179 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2180 			return;
2181 		cnt = tp->lost_cnt_hint;
2182 	} else {
2183 		skb = tcp_rtx_queue_head(sk);
2184 		cnt = 0;
2185 	}
2186 
2187 	skb_rbtree_walk_from(skb) {
2188 		/* TODO: do this better */
2189 		/* this is not the most efficient way to do this... */
2190 		tp->lost_skb_hint = skb;
2191 		tp->lost_cnt_hint = cnt;
2192 
2193 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2194 			break;
2195 
2196 		oldcnt = cnt;
2197 		if (tcp_is_reno(tp) ||
2198 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2199 			cnt += tcp_skb_pcount(skb);
2200 
2201 		if (cnt > packets) {
2202 			if (tcp_is_sack(tp) ||
2203 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2204 			    (oldcnt >= packets))
2205 				break;
2206 
2207 			mss = tcp_skb_mss(skb);
2208 			/* If needed, chop off the prefix to mark as lost. */
2209 			lost = (packets - oldcnt) * mss;
2210 			if (lost < skb->len &&
2211 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2212 					 lost, mss, GFP_ATOMIC) < 0)
2213 				break;
2214 			cnt = packets;
2215 		}
2216 
2217 		tcp_skb_mark_lost(tp, skb);
2218 
2219 		if (mark_head)
2220 			break;
2221 	}
2222 	tcp_verify_left_out(tp);
2223 }
2224 
2225 /* Account newly detected lost packet(s) */
2226 
2227 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2228 {
2229 	struct tcp_sock *tp = tcp_sk(sk);
2230 
2231 	if (tcp_is_sack(tp)) {
2232 		int sacked_upto = tp->sacked_out - tp->reordering;
2233 		if (sacked_upto >= 0)
2234 			tcp_mark_head_lost(sk, sacked_upto, 0);
2235 		else if (fast_rexmit)
2236 			tcp_mark_head_lost(sk, 1, 1);
2237 	}
2238 }
2239 
2240 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2241 {
2242 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2243 	       before(tp->rx_opt.rcv_tsecr, when);
2244 }
2245 
2246 /* skb is spurious retransmitted if the returned timestamp echo
2247  * reply is prior to the skb transmission time
2248  */
2249 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2250 				     const struct sk_buff *skb)
2251 {
2252 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2253 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2254 }
2255 
2256 /* Nothing was retransmitted or returned timestamp is less
2257  * than timestamp of the first retransmission.
2258  */
2259 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2260 {
2261 	return tp->retrans_stamp &&
2262 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2263 }
2264 
2265 /* Undo procedures. */
2266 
2267 /* We can clear retrans_stamp when there are no retransmissions in the
2268  * window. It would seem that it is trivially available for us in
2269  * tp->retrans_out, however, that kind of assumptions doesn't consider
2270  * what will happen if errors occur when sending retransmission for the
2271  * second time. ...It could the that such segment has only
2272  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2273  * the head skb is enough except for some reneging corner cases that
2274  * are not worth the effort.
2275  *
2276  * Main reason for all this complexity is the fact that connection dying
2277  * time now depends on the validity of the retrans_stamp, in particular,
2278  * that successive retransmissions of a segment must not advance
2279  * retrans_stamp under any conditions.
2280  */
2281 static bool tcp_any_retrans_done(const struct sock *sk)
2282 {
2283 	const struct tcp_sock *tp = tcp_sk(sk);
2284 	struct sk_buff *skb;
2285 
2286 	if (tp->retrans_out)
2287 		return true;
2288 
2289 	skb = tcp_rtx_queue_head(sk);
2290 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2291 		return true;
2292 
2293 	return false;
2294 }
2295 
2296 static void DBGUNDO(struct sock *sk, const char *msg)
2297 {
2298 #if FASTRETRANS_DEBUG > 1
2299 	struct tcp_sock *tp = tcp_sk(sk);
2300 	struct inet_sock *inet = inet_sk(sk);
2301 
2302 	if (sk->sk_family == AF_INET) {
2303 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2304 			 msg,
2305 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2306 			 tp->snd_cwnd, tcp_left_out(tp),
2307 			 tp->snd_ssthresh, tp->prior_ssthresh,
2308 			 tp->packets_out);
2309 	}
2310 #if IS_ENABLED(CONFIG_IPV6)
2311 	else if (sk->sk_family == AF_INET6) {
2312 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2313 			 msg,
2314 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2315 			 tp->snd_cwnd, tcp_left_out(tp),
2316 			 tp->snd_ssthresh, tp->prior_ssthresh,
2317 			 tp->packets_out);
2318 	}
2319 #endif
2320 #endif
2321 }
2322 
2323 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2324 {
2325 	struct tcp_sock *tp = tcp_sk(sk);
2326 
2327 	if (unmark_loss) {
2328 		struct sk_buff *skb;
2329 
2330 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2331 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2332 		}
2333 		tp->lost_out = 0;
2334 		tcp_clear_all_retrans_hints(tp);
2335 	}
2336 
2337 	if (tp->prior_ssthresh) {
2338 		const struct inet_connection_sock *icsk = inet_csk(sk);
2339 
2340 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2341 
2342 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2343 			tp->snd_ssthresh = tp->prior_ssthresh;
2344 			tcp_ecn_withdraw_cwr(tp);
2345 		}
2346 	}
2347 	tp->snd_cwnd_stamp = tcp_jiffies32;
2348 	tp->undo_marker = 0;
2349 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2350 }
2351 
2352 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2353 {
2354 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2355 }
2356 
2357 /* People celebrate: "We love our President!" */
2358 static bool tcp_try_undo_recovery(struct sock *sk)
2359 {
2360 	struct tcp_sock *tp = tcp_sk(sk);
2361 
2362 	if (tcp_may_undo(tp)) {
2363 		int mib_idx;
2364 
2365 		/* Happy end! We did not retransmit anything
2366 		 * or our original transmission succeeded.
2367 		 */
2368 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2369 		tcp_undo_cwnd_reduction(sk, false);
2370 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2371 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2372 		else
2373 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2374 
2375 		NET_INC_STATS(sock_net(sk), mib_idx);
2376 	} else if (tp->rack.reo_wnd_persist) {
2377 		tp->rack.reo_wnd_persist--;
2378 	}
2379 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2380 		/* Hold old state until something *above* high_seq
2381 		 * is ACKed. For Reno it is MUST to prevent false
2382 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2383 		if (!tcp_any_retrans_done(sk))
2384 			tp->retrans_stamp = 0;
2385 		return true;
2386 	}
2387 	tcp_set_ca_state(sk, TCP_CA_Open);
2388 	tp->is_sack_reneg = 0;
2389 	return false;
2390 }
2391 
2392 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2393 static bool tcp_try_undo_dsack(struct sock *sk)
2394 {
2395 	struct tcp_sock *tp = tcp_sk(sk);
2396 
2397 	if (tp->undo_marker && !tp->undo_retrans) {
2398 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2399 					       tp->rack.reo_wnd_persist + 1);
2400 		DBGUNDO(sk, "D-SACK");
2401 		tcp_undo_cwnd_reduction(sk, false);
2402 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2403 		return true;
2404 	}
2405 	return false;
2406 }
2407 
2408 /* Undo during loss recovery after partial ACK or using F-RTO. */
2409 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2410 {
2411 	struct tcp_sock *tp = tcp_sk(sk);
2412 
2413 	if (frto_undo || tcp_may_undo(tp)) {
2414 		tcp_undo_cwnd_reduction(sk, true);
2415 
2416 		DBGUNDO(sk, "partial loss");
2417 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2418 		if (frto_undo)
2419 			NET_INC_STATS(sock_net(sk),
2420 					LINUX_MIB_TCPSPURIOUSRTOS);
2421 		inet_csk(sk)->icsk_retransmits = 0;
2422 		if (frto_undo || tcp_is_sack(tp)) {
2423 			tcp_set_ca_state(sk, TCP_CA_Open);
2424 			tp->is_sack_reneg = 0;
2425 		}
2426 		return true;
2427 	}
2428 	return false;
2429 }
2430 
2431 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2432  * It computes the number of packets to send (sndcnt) based on packets newly
2433  * delivered:
2434  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2435  *	cwnd reductions across a full RTT.
2436  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2437  *      But when the retransmits are acked without further losses, PRR
2438  *      slow starts cwnd up to ssthresh to speed up the recovery.
2439  */
2440 static void tcp_init_cwnd_reduction(struct sock *sk)
2441 {
2442 	struct tcp_sock *tp = tcp_sk(sk);
2443 
2444 	tp->high_seq = tp->snd_nxt;
2445 	tp->tlp_high_seq = 0;
2446 	tp->snd_cwnd_cnt = 0;
2447 	tp->prior_cwnd = tp->snd_cwnd;
2448 	tp->prr_delivered = 0;
2449 	tp->prr_out = 0;
2450 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2451 	tcp_ecn_queue_cwr(tp);
2452 }
2453 
2454 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2455 {
2456 	struct tcp_sock *tp = tcp_sk(sk);
2457 	int sndcnt = 0;
2458 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2459 
2460 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2461 		return;
2462 
2463 	tp->prr_delivered += newly_acked_sacked;
2464 	if (delta < 0) {
2465 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2466 			       tp->prior_cwnd - 1;
2467 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2468 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2469 		   FLAG_RETRANS_DATA_ACKED) {
2470 		sndcnt = min_t(int, delta,
2471 			       max_t(int, tp->prr_delivered - tp->prr_out,
2472 				     newly_acked_sacked) + 1);
2473 	} else {
2474 		sndcnt = min(delta, newly_acked_sacked);
2475 	}
2476 	/* Force a fast retransmit upon entering fast recovery */
2477 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2478 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2479 }
2480 
2481 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2482 {
2483 	struct tcp_sock *tp = tcp_sk(sk);
2484 
2485 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2486 		return;
2487 
2488 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2489 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2490 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2491 		tp->snd_cwnd = tp->snd_ssthresh;
2492 		tp->snd_cwnd_stamp = tcp_jiffies32;
2493 	}
2494 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2495 }
2496 
2497 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2498 void tcp_enter_cwr(struct sock *sk)
2499 {
2500 	struct tcp_sock *tp = tcp_sk(sk);
2501 
2502 	tp->prior_ssthresh = 0;
2503 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2504 		tp->undo_marker = 0;
2505 		tcp_init_cwnd_reduction(sk);
2506 		tcp_set_ca_state(sk, TCP_CA_CWR);
2507 	}
2508 }
2509 EXPORT_SYMBOL(tcp_enter_cwr);
2510 
2511 static void tcp_try_keep_open(struct sock *sk)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 	int state = TCP_CA_Open;
2515 
2516 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2517 		state = TCP_CA_Disorder;
2518 
2519 	if (inet_csk(sk)->icsk_ca_state != state) {
2520 		tcp_set_ca_state(sk, state);
2521 		tp->high_seq = tp->snd_nxt;
2522 	}
2523 }
2524 
2525 static void tcp_try_to_open(struct sock *sk, int flag)
2526 {
2527 	struct tcp_sock *tp = tcp_sk(sk);
2528 
2529 	tcp_verify_left_out(tp);
2530 
2531 	if (!tcp_any_retrans_done(sk))
2532 		tp->retrans_stamp = 0;
2533 
2534 	if (flag & FLAG_ECE)
2535 		tcp_enter_cwr(sk);
2536 
2537 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2538 		tcp_try_keep_open(sk);
2539 	}
2540 }
2541 
2542 static void tcp_mtup_probe_failed(struct sock *sk)
2543 {
2544 	struct inet_connection_sock *icsk = inet_csk(sk);
2545 
2546 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2547 	icsk->icsk_mtup.probe_size = 0;
2548 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2549 }
2550 
2551 static void tcp_mtup_probe_success(struct sock *sk)
2552 {
2553 	struct tcp_sock *tp = tcp_sk(sk);
2554 	struct inet_connection_sock *icsk = inet_csk(sk);
2555 
2556 	/* FIXME: breaks with very large cwnd */
2557 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2558 	tp->snd_cwnd = tp->snd_cwnd *
2559 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2560 		       icsk->icsk_mtup.probe_size;
2561 	tp->snd_cwnd_cnt = 0;
2562 	tp->snd_cwnd_stamp = tcp_jiffies32;
2563 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2564 
2565 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2566 	icsk->icsk_mtup.probe_size = 0;
2567 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2568 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2569 }
2570 
2571 /* Do a simple retransmit without using the backoff mechanisms in
2572  * tcp_timer. This is used for path mtu discovery.
2573  * The socket is already locked here.
2574  */
2575 void tcp_simple_retransmit(struct sock *sk)
2576 {
2577 	const struct inet_connection_sock *icsk = inet_csk(sk);
2578 	struct tcp_sock *tp = tcp_sk(sk);
2579 	struct sk_buff *skb;
2580 	unsigned int mss = tcp_current_mss(sk);
2581 
2582 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2583 		if (tcp_skb_seglen(skb) > mss &&
2584 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2585 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2586 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2587 				tp->retrans_out -= tcp_skb_pcount(skb);
2588 			}
2589 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2590 		}
2591 	}
2592 
2593 	tcp_clear_retrans_hints_partial(tp);
2594 
2595 	if (!tp->lost_out)
2596 		return;
2597 
2598 	if (tcp_is_reno(tp))
2599 		tcp_limit_reno_sacked(tp);
2600 
2601 	tcp_verify_left_out(tp);
2602 
2603 	/* Don't muck with the congestion window here.
2604 	 * Reason is that we do not increase amount of _data_
2605 	 * in network, but units changed and effective
2606 	 * cwnd/ssthresh really reduced now.
2607 	 */
2608 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2609 		tp->high_seq = tp->snd_nxt;
2610 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2611 		tp->prior_ssthresh = 0;
2612 		tp->undo_marker = 0;
2613 		tcp_set_ca_state(sk, TCP_CA_Loss);
2614 	}
2615 	tcp_xmit_retransmit_queue(sk);
2616 }
2617 EXPORT_SYMBOL(tcp_simple_retransmit);
2618 
2619 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2620 {
2621 	struct tcp_sock *tp = tcp_sk(sk);
2622 	int mib_idx;
2623 
2624 	if (tcp_is_reno(tp))
2625 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2626 	else
2627 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2628 
2629 	NET_INC_STATS(sock_net(sk), mib_idx);
2630 
2631 	tp->prior_ssthresh = 0;
2632 	tcp_init_undo(tp);
2633 
2634 	if (!tcp_in_cwnd_reduction(sk)) {
2635 		if (!ece_ack)
2636 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2637 		tcp_init_cwnd_reduction(sk);
2638 	}
2639 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2640 }
2641 
2642 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2643  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2644  */
2645 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2646 			     int *rexmit)
2647 {
2648 	struct tcp_sock *tp = tcp_sk(sk);
2649 	bool recovered = !before(tp->snd_una, tp->high_seq);
2650 
2651 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2652 	    tcp_try_undo_loss(sk, false))
2653 		return;
2654 
2655 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2656 		/* Step 3.b. A timeout is spurious if not all data are
2657 		 * lost, i.e., never-retransmitted data are (s)acked.
2658 		 */
2659 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2660 		    tcp_try_undo_loss(sk, true))
2661 			return;
2662 
2663 		if (after(tp->snd_nxt, tp->high_seq)) {
2664 			if (flag & FLAG_DATA_SACKED || num_dupack)
2665 				tp->frto = 0; /* Step 3.a. loss was real */
2666 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2667 			tp->high_seq = tp->snd_nxt;
2668 			/* Step 2.b. Try send new data (but deferred until cwnd
2669 			 * is updated in tcp_ack()). Otherwise fall back to
2670 			 * the conventional recovery.
2671 			 */
2672 			if (!tcp_write_queue_empty(sk) &&
2673 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2674 				*rexmit = REXMIT_NEW;
2675 				return;
2676 			}
2677 			tp->frto = 0;
2678 		}
2679 	}
2680 
2681 	if (recovered) {
2682 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2683 		tcp_try_undo_recovery(sk);
2684 		return;
2685 	}
2686 	if (tcp_is_reno(tp)) {
2687 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2688 		 * delivered. Lower inflight to clock out (re)tranmissions.
2689 		 */
2690 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2691 			tcp_add_reno_sack(sk, num_dupack);
2692 		else if (flag & FLAG_SND_UNA_ADVANCED)
2693 			tcp_reset_reno_sack(tp);
2694 	}
2695 	*rexmit = REXMIT_LOST;
2696 }
2697 
2698 /* Undo during fast recovery after partial ACK. */
2699 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2700 {
2701 	struct tcp_sock *tp = tcp_sk(sk);
2702 
2703 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2704 		/* Plain luck! Hole if filled with delayed
2705 		 * packet, rather than with a retransmit. Check reordering.
2706 		 */
2707 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2708 
2709 		/* We are getting evidence that the reordering degree is higher
2710 		 * than we realized. If there are no retransmits out then we
2711 		 * can undo. Otherwise we clock out new packets but do not
2712 		 * mark more packets lost or retransmit more.
2713 		 */
2714 		if (tp->retrans_out)
2715 			return true;
2716 
2717 		if (!tcp_any_retrans_done(sk))
2718 			tp->retrans_stamp = 0;
2719 
2720 		DBGUNDO(sk, "partial recovery");
2721 		tcp_undo_cwnd_reduction(sk, true);
2722 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2723 		tcp_try_keep_open(sk);
2724 		return true;
2725 	}
2726 	return false;
2727 }
2728 
2729 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2730 {
2731 	struct tcp_sock *tp = tcp_sk(sk);
2732 
2733 	if (tcp_rtx_queue_empty(sk))
2734 		return;
2735 
2736 	if (unlikely(tcp_is_reno(tp))) {
2737 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2738 	} else if (tcp_is_rack(sk)) {
2739 		u32 prior_retrans = tp->retrans_out;
2740 
2741 		tcp_rack_mark_lost(sk);
2742 		if (prior_retrans > tp->retrans_out)
2743 			*ack_flag |= FLAG_LOST_RETRANS;
2744 	}
2745 }
2746 
2747 static bool tcp_force_fast_retransmit(struct sock *sk)
2748 {
2749 	struct tcp_sock *tp = tcp_sk(sk);
2750 
2751 	return after(tcp_highest_sack_seq(tp),
2752 		     tp->snd_una + tp->reordering * tp->mss_cache);
2753 }
2754 
2755 /* Process an event, which can update packets-in-flight not trivially.
2756  * Main goal of this function is to calculate new estimate for left_out,
2757  * taking into account both packets sitting in receiver's buffer and
2758  * packets lost by network.
2759  *
2760  * Besides that it updates the congestion state when packet loss or ECN
2761  * is detected. But it does not reduce the cwnd, it is done by the
2762  * congestion control later.
2763  *
2764  * It does _not_ decide what to send, it is made in function
2765  * tcp_xmit_retransmit_queue().
2766  */
2767 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2768 				  int num_dupack, int *ack_flag, int *rexmit)
2769 {
2770 	struct inet_connection_sock *icsk = inet_csk(sk);
2771 	struct tcp_sock *tp = tcp_sk(sk);
2772 	int fast_rexmit = 0, flag = *ack_flag;
2773 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2774 				      tcp_force_fast_retransmit(sk));
2775 
2776 	if (!tp->packets_out && tp->sacked_out)
2777 		tp->sacked_out = 0;
2778 
2779 	/* Now state machine starts.
2780 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2781 	if (flag & FLAG_ECE)
2782 		tp->prior_ssthresh = 0;
2783 
2784 	/* B. In all the states check for reneging SACKs. */
2785 	if (tcp_check_sack_reneging(sk, flag))
2786 		return;
2787 
2788 	/* C. Check consistency of the current state. */
2789 	tcp_verify_left_out(tp);
2790 
2791 	/* D. Check state exit conditions. State can be terminated
2792 	 *    when high_seq is ACKed. */
2793 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2794 		WARN_ON(tp->retrans_out != 0);
2795 		tp->retrans_stamp = 0;
2796 	} else if (!before(tp->snd_una, tp->high_seq)) {
2797 		switch (icsk->icsk_ca_state) {
2798 		case TCP_CA_CWR:
2799 			/* CWR is to be held something *above* high_seq
2800 			 * is ACKed for CWR bit to reach receiver. */
2801 			if (tp->snd_una != tp->high_seq) {
2802 				tcp_end_cwnd_reduction(sk);
2803 				tcp_set_ca_state(sk, TCP_CA_Open);
2804 			}
2805 			break;
2806 
2807 		case TCP_CA_Recovery:
2808 			if (tcp_is_reno(tp))
2809 				tcp_reset_reno_sack(tp);
2810 			if (tcp_try_undo_recovery(sk))
2811 				return;
2812 			tcp_end_cwnd_reduction(sk);
2813 			break;
2814 		}
2815 	}
2816 
2817 	/* E. Process state. */
2818 	switch (icsk->icsk_ca_state) {
2819 	case TCP_CA_Recovery:
2820 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2821 			if (tcp_is_reno(tp))
2822 				tcp_add_reno_sack(sk, num_dupack);
2823 		} else {
2824 			if (tcp_try_undo_partial(sk, prior_snd_una))
2825 				return;
2826 			/* Partial ACK arrived. Force fast retransmit. */
2827 			do_lost = tcp_is_reno(tp) ||
2828 				  tcp_force_fast_retransmit(sk);
2829 		}
2830 		if (tcp_try_undo_dsack(sk)) {
2831 			tcp_try_keep_open(sk);
2832 			return;
2833 		}
2834 		tcp_identify_packet_loss(sk, ack_flag);
2835 		break;
2836 	case TCP_CA_Loss:
2837 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2838 		tcp_identify_packet_loss(sk, ack_flag);
2839 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2840 		      (*ack_flag & FLAG_LOST_RETRANS)))
2841 			return;
2842 		/* Change state if cwnd is undone or retransmits are lost */
2843 		/* fall through */
2844 	default:
2845 		if (tcp_is_reno(tp)) {
2846 			if (flag & FLAG_SND_UNA_ADVANCED)
2847 				tcp_reset_reno_sack(tp);
2848 			tcp_add_reno_sack(sk, num_dupack);
2849 		}
2850 
2851 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2852 			tcp_try_undo_dsack(sk);
2853 
2854 		tcp_identify_packet_loss(sk, ack_flag);
2855 		if (!tcp_time_to_recover(sk, flag)) {
2856 			tcp_try_to_open(sk, flag);
2857 			return;
2858 		}
2859 
2860 		/* MTU probe failure: don't reduce cwnd */
2861 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2862 		    icsk->icsk_mtup.probe_size &&
2863 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2864 			tcp_mtup_probe_failed(sk);
2865 			/* Restores the reduction we did in tcp_mtup_probe() */
2866 			tp->snd_cwnd++;
2867 			tcp_simple_retransmit(sk);
2868 			return;
2869 		}
2870 
2871 		/* Otherwise enter Recovery state */
2872 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2873 		fast_rexmit = 1;
2874 	}
2875 
2876 	if (!tcp_is_rack(sk) && do_lost)
2877 		tcp_update_scoreboard(sk, fast_rexmit);
2878 	*rexmit = REXMIT_LOST;
2879 }
2880 
2881 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2882 {
2883 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2884 	struct tcp_sock *tp = tcp_sk(sk);
2885 
2886 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2887 		/* If the remote keeps returning delayed ACKs, eventually
2888 		 * the min filter would pick it up and overestimate the
2889 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2890 		 */
2891 		return;
2892 	}
2893 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2894 			   rtt_us ? : jiffies_to_usecs(1));
2895 }
2896 
2897 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2898 			       long seq_rtt_us, long sack_rtt_us,
2899 			       long ca_rtt_us, struct rate_sample *rs)
2900 {
2901 	const struct tcp_sock *tp = tcp_sk(sk);
2902 
2903 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2904 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2905 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2906 	 * is acked (RFC6298).
2907 	 */
2908 	if (seq_rtt_us < 0)
2909 		seq_rtt_us = sack_rtt_us;
2910 
2911 	/* RTTM Rule: A TSecr value received in a segment is used to
2912 	 * update the averaged RTT measurement only if the segment
2913 	 * acknowledges some new data, i.e., only if it advances the
2914 	 * left edge of the send window.
2915 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2916 	 */
2917 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2918 	    flag & FLAG_ACKED) {
2919 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2920 
2921 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2922 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2923 			ca_rtt_us = seq_rtt_us;
2924 		}
2925 	}
2926 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2927 	if (seq_rtt_us < 0)
2928 		return false;
2929 
2930 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2931 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2932 	 * values will be skipped with the seq_rtt_us < 0 check above.
2933 	 */
2934 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2935 	tcp_rtt_estimator(sk, seq_rtt_us);
2936 	tcp_set_rto(sk);
2937 
2938 	/* RFC6298: only reset backoff on valid RTT measurement. */
2939 	inet_csk(sk)->icsk_backoff = 0;
2940 	return true;
2941 }
2942 
2943 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2944 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2945 {
2946 	struct rate_sample rs;
2947 	long rtt_us = -1L;
2948 
2949 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2950 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2951 
2952 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2953 }
2954 
2955 
2956 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2957 {
2958 	const struct inet_connection_sock *icsk = inet_csk(sk);
2959 
2960 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2961 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2962 }
2963 
2964 /* Restart timer after forward progress on connection.
2965  * RFC2988 recommends to restart timer to now+rto.
2966  */
2967 void tcp_rearm_rto(struct sock *sk)
2968 {
2969 	const struct inet_connection_sock *icsk = inet_csk(sk);
2970 	struct tcp_sock *tp = tcp_sk(sk);
2971 
2972 	/* If the retrans timer is currently being used by Fast Open
2973 	 * for SYN-ACK retrans purpose, stay put.
2974 	 */
2975 	if (tp->fastopen_rsk)
2976 		return;
2977 
2978 	if (!tp->packets_out) {
2979 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2980 	} else {
2981 		u32 rto = inet_csk(sk)->icsk_rto;
2982 		/* Offset the time elapsed after installing regular RTO */
2983 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2984 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2985 			s64 delta_us = tcp_rto_delta_us(sk);
2986 			/* delta_us may not be positive if the socket is locked
2987 			 * when the retrans timer fires and is rescheduled.
2988 			 */
2989 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2990 		}
2991 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2992 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
2993 	}
2994 }
2995 
2996 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2997 static void tcp_set_xmit_timer(struct sock *sk)
2998 {
2999 	if (!tcp_schedule_loss_probe(sk, true))
3000 		tcp_rearm_rto(sk);
3001 }
3002 
3003 /* If we get here, the whole TSO packet has not been acked. */
3004 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3005 {
3006 	struct tcp_sock *tp = tcp_sk(sk);
3007 	u32 packets_acked;
3008 
3009 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3010 
3011 	packets_acked = tcp_skb_pcount(skb);
3012 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3013 		return 0;
3014 	packets_acked -= tcp_skb_pcount(skb);
3015 
3016 	if (packets_acked) {
3017 		BUG_ON(tcp_skb_pcount(skb) == 0);
3018 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3019 	}
3020 
3021 	return packets_acked;
3022 }
3023 
3024 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3025 			   u32 prior_snd_una)
3026 {
3027 	const struct skb_shared_info *shinfo;
3028 
3029 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3030 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3031 		return;
3032 
3033 	shinfo = skb_shinfo(skb);
3034 	if (!before(shinfo->tskey, prior_snd_una) &&
3035 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3036 		tcp_skb_tsorted_save(skb) {
3037 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3038 		} tcp_skb_tsorted_restore(skb);
3039 	}
3040 }
3041 
3042 /* Remove acknowledged frames from the retransmission queue. If our packet
3043  * is before the ack sequence we can discard it as it's confirmed to have
3044  * arrived at the other end.
3045  */
3046 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3047 			       u32 prior_snd_una,
3048 			       struct tcp_sacktag_state *sack)
3049 {
3050 	const struct inet_connection_sock *icsk = inet_csk(sk);
3051 	u64 first_ackt, last_ackt;
3052 	struct tcp_sock *tp = tcp_sk(sk);
3053 	u32 prior_sacked = tp->sacked_out;
3054 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3055 	struct sk_buff *skb, *next;
3056 	bool fully_acked = true;
3057 	long sack_rtt_us = -1L;
3058 	long seq_rtt_us = -1L;
3059 	long ca_rtt_us = -1L;
3060 	u32 pkts_acked = 0;
3061 	u32 last_in_flight = 0;
3062 	bool rtt_update;
3063 	int flag = 0;
3064 
3065 	first_ackt = 0;
3066 
3067 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3068 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3069 		const u32 start_seq = scb->seq;
3070 		u8 sacked = scb->sacked;
3071 		u32 acked_pcount;
3072 
3073 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3074 
3075 		/* Determine how many packets and what bytes were acked, tso and else */
3076 		if (after(scb->end_seq, tp->snd_una)) {
3077 			if (tcp_skb_pcount(skb) == 1 ||
3078 			    !after(tp->snd_una, scb->seq))
3079 				break;
3080 
3081 			acked_pcount = tcp_tso_acked(sk, skb);
3082 			if (!acked_pcount)
3083 				break;
3084 			fully_acked = false;
3085 		} else {
3086 			acked_pcount = tcp_skb_pcount(skb);
3087 		}
3088 
3089 		if (unlikely(sacked & TCPCB_RETRANS)) {
3090 			if (sacked & TCPCB_SACKED_RETRANS)
3091 				tp->retrans_out -= acked_pcount;
3092 			flag |= FLAG_RETRANS_DATA_ACKED;
3093 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3094 			last_ackt = tcp_skb_timestamp_us(skb);
3095 			WARN_ON_ONCE(last_ackt == 0);
3096 			if (!first_ackt)
3097 				first_ackt = last_ackt;
3098 
3099 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3100 			if (before(start_seq, reord))
3101 				reord = start_seq;
3102 			if (!after(scb->end_seq, tp->high_seq))
3103 				flag |= FLAG_ORIG_SACK_ACKED;
3104 		}
3105 
3106 		if (sacked & TCPCB_SACKED_ACKED) {
3107 			tp->sacked_out -= acked_pcount;
3108 		} else if (tcp_is_sack(tp)) {
3109 			tp->delivered += acked_pcount;
3110 			if (!tcp_skb_spurious_retrans(tp, skb))
3111 				tcp_rack_advance(tp, sacked, scb->end_seq,
3112 						 tcp_skb_timestamp_us(skb));
3113 		}
3114 		if (sacked & TCPCB_LOST)
3115 			tp->lost_out -= acked_pcount;
3116 
3117 		tp->packets_out -= acked_pcount;
3118 		pkts_acked += acked_pcount;
3119 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3120 
3121 		/* Initial outgoing SYN's get put onto the write_queue
3122 		 * just like anything else we transmit.  It is not
3123 		 * true data, and if we misinform our callers that
3124 		 * this ACK acks real data, we will erroneously exit
3125 		 * connection startup slow start one packet too
3126 		 * quickly.  This is severely frowned upon behavior.
3127 		 */
3128 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3129 			flag |= FLAG_DATA_ACKED;
3130 		} else {
3131 			flag |= FLAG_SYN_ACKED;
3132 			tp->retrans_stamp = 0;
3133 		}
3134 
3135 		if (!fully_acked)
3136 			break;
3137 
3138 		next = skb_rb_next(skb);
3139 		if (unlikely(skb == tp->retransmit_skb_hint))
3140 			tp->retransmit_skb_hint = NULL;
3141 		if (unlikely(skb == tp->lost_skb_hint))
3142 			tp->lost_skb_hint = NULL;
3143 		tcp_rtx_queue_unlink_and_free(skb, sk);
3144 	}
3145 
3146 	if (!skb)
3147 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3148 
3149 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3150 		tp->snd_up = tp->snd_una;
3151 
3152 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3153 		flag |= FLAG_SACK_RENEGING;
3154 
3155 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3156 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3157 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3158 
3159 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3160 		    last_in_flight && !prior_sacked && fully_acked &&
3161 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3162 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3163 			/* Conservatively mark a delayed ACK. It's typically
3164 			 * from a lone runt packet over the round trip to
3165 			 * a receiver w/o out-of-order or CE events.
3166 			 */
3167 			flag |= FLAG_ACK_MAYBE_DELAYED;
3168 		}
3169 	}
3170 	if (sack->first_sackt) {
3171 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3172 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3173 	}
3174 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3175 					ca_rtt_us, sack->rate);
3176 
3177 	if (flag & FLAG_ACKED) {
3178 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3179 		if (unlikely(icsk->icsk_mtup.probe_size &&
3180 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3181 			tcp_mtup_probe_success(sk);
3182 		}
3183 
3184 		if (tcp_is_reno(tp)) {
3185 			tcp_remove_reno_sacks(sk, pkts_acked);
3186 
3187 			/* If any of the cumulatively ACKed segments was
3188 			 * retransmitted, non-SACK case cannot confirm that
3189 			 * progress was due to original transmission due to
3190 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3191 			 * the packets may have been never retransmitted.
3192 			 */
3193 			if (flag & FLAG_RETRANS_DATA_ACKED)
3194 				flag &= ~FLAG_ORIG_SACK_ACKED;
3195 		} else {
3196 			int delta;
3197 
3198 			/* Non-retransmitted hole got filled? That's reordering */
3199 			if (before(reord, prior_fack))
3200 				tcp_check_sack_reordering(sk, reord, 0);
3201 
3202 			delta = prior_sacked - tp->sacked_out;
3203 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3204 		}
3205 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3206 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3207 						    tcp_skb_timestamp_us(skb))) {
3208 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3209 		 * after when the head was last (re)transmitted. Otherwise the
3210 		 * timeout may continue to extend in loss recovery.
3211 		 */
3212 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3213 	}
3214 
3215 	if (icsk->icsk_ca_ops->pkts_acked) {
3216 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3217 					     .rtt_us = sack->rate->rtt_us,
3218 					     .in_flight = last_in_flight };
3219 
3220 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3221 	}
3222 
3223 #if FASTRETRANS_DEBUG > 0
3224 	WARN_ON((int)tp->sacked_out < 0);
3225 	WARN_ON((int)tp->lost_out < 0);
3226 	WARN_ON((int)tp->retrans_out < 0);
3227 	if (!tp->packets_out && tcp_is_sack(tp)) {
3228 		icsk = inet_csk(sk);
3229 		if (tp->lost_out) {
3230 			pr_debug("Leak l=%u %d\n",
3231 				 tp->lost_out, icsk->icsk_ca_state);
3232 			tp->lost_out = 0;
3233 		}
3234 		if (tp->sacked_out) {
3235 			pr_debug("Leak s=%u %d\n",
3236 				 tp->sacked_out, icsk->icsk_ca_state);
3237 			tp->sacked_out = 0;
3238 		}
3239 		if (tp->retrans_out) {
3240 			pr_debug("Leak r=%u %d\n",
3241 				 tp->retrans_out, icsk->icsk_ca_state);
3242 			tp->retrans_out = 0;
3243 		}
3244 	}
3245 #endif
3246 	return flag;
3247 }
3248 
3249 static void tcp_ack_probe(struct sock *sk)
3250 {
3251 	struct inet_connection_sock *icsk = inet_csk(sk);
3252 	struct sk_buff *head = tcp_send_head(sk);
3253 	const struct tcp_sock *tp = tcp_sk(sk);
3254 
3255 	/* Was it a usable window open? */
3256 	if (!head)
3257 		return;
3258 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3259 		icsk->icsk_backoff = 0;
3260 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3261 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3262 		 * This function is not for random using!
3263 		 */
3264 	} else {
3265 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3266 
3267 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3268 				     when, TCP_RTO_MAX, NULL);
3269 	}
3270 }
3271 
3272 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3273 {
3274 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3275 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3276 }
3277 
3278 /* Decide wheather to run the increase function of congestion control. */
3279 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3280 {
3281 	/* If reordering is high then always grow cwnd whenever data is
3282 	 * delivered regardless of its ordering. Otherwise stay conservative
3283 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3284 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3285 	 * cwnd in tcp_fastretrans_alert() based on more states.
3286 	 */
3287 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3288 		return flag & FLAG_FORWARD_PROGRESS;
3289 
3290 	return flag & FLAG_DATA_ACKED;
3291 }
3292 
3293 /* The "ultimate" congestion control function that aims to replace the rigid
3294  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3295  * It's called toward the end of processing an ACK with precise rate
3296  * information. All transmission or retransmission are delayed afterwards.
3297  */
3298 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3299 			     int flag, const struct rate_sample *rs)
3300 {
3301 	const struct inet_connection_sock *icsk = inet_csk(sk);
3302 
3303 	if (icsk->icsk_ca_ops->cong_control) {
3304 		icsk->icsk_ca_ops->cong_control(sk, rs);
3305 		return;
3306 	}
3307 
3308 	if (tcp_in_cwnd_reduction(sk)) {
3309 		/* Reduce cwnd if state mandates */
3310 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3311 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3312 		/* Advance cwnd if state allows */
3313 		tcp_cong_avoid(sk, ack, acked_sacked);
3314 	}
3315 	tcp_update_pacing_rate(sk);
3316 }
3317 
3318 /* Check that window update is acceptable.
3319  * The function assumes that snd_una<=ack<=snd_next.
3320  */
3321 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3322 					const u32 ack, const u32 ack_seq,
3323 					const u32 nwin)
3324 {
3325 	return	after(ack, tp->snd_una) ||
3326 		after(ack_seq, tp->snd_wl1) ||
3327 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3328 }
3329 
3330 /* If we update tp->snd_una, also update tp->bytes_acked */
3331 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3332 {
3333 	u32 delta = ack - tp->snd_una;
3334 
3335 	sock_owned_by_me((struct sock *)tp);
3336 	tp->bytes_acked += delta;
3337 	tp->snd_una = ack;
3338 }
3339 
3340 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3341 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3342 {
3343 	u32 delta = seq - tp->rcv_nxt;
3344 
3345 	sock_owned_by_me((struct sock *)tp);
3346 	tp->bytes_received += delta;
3347 	tp->rcv_nxt = seq;
3348 }
3349 
3350 /* Update our send window.
3351  *
3352  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3353  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3354  */
3355 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3356 				 u32 ack_seq)
3357 {
3358 	struct tcp_sock *tp = tcp_sk(sk);
3359 	int flag = 0;
3360 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3361 
3362 	if (likely(!tcp_hdr(skb)->syn))
3363 		nwin <<= tp->rx_opt.snd_wscale;
3364 
3365 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3366 		flag |= FLAG_WIN_UPDATE;
3367 		tcp_update_wl(tp, ack_seq);
3368 
3369 		if (tp->snd_wnd != nwin) {
3370 			tp->snd_wnd = nwin;
3371 
3372 			/* Note, it is the only place, where
3373 			 * fast path is recovered for sending TCP.
3374 			 */
3375 			tp->pred_flags = 0;
3376 			tcp_fast_path_check(sk);
3377 
3378 			if (!tcp_write_queue_empty(sk))
3379 				tcp_slow_start_after_idle_check(sk);
3380 
3381 			if (nwin > tp->max_window) {
3382 				tp->max_window = nwin;
3383 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3384 			}
3385 		}
3386 	}
3387 
3388 	tcp_snd_una_update(tp, ack);
3389 
3390 	return flag;
3391 }
3392 
3393 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3394 				   u32 *last_oow_ack_time)
3395 {
3396 	if (*last_oow_ack_time) {
3397 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3398 
3399 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3400 			NET_INC_STATS(net, mib_idx);
3401 			return true;	/* rate-limited: don't send yet! */
3402 		}
3403 	}
3404 
3405 	*last_oow_ack_time = tcp_jiffies32;
3406 
3407 	return false;	/* not rate-limited: go ahead, send dupack now! */
3408 }
3409 
3410 /* Return true if we're currently rate-limiting out-of-window ACKs and
3411  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3412  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3413  * attacks that send repeated SYNs or ACKs for the same connection. To
3414  * do this, we do not send a duplicate SYNACK or ACK if the remote
3415  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3416  */
3417 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3418 			  int mib_idx, u32 *last_oow_ack_time)
3419 {
3420 	/* Data packets without SYNs are not likely part of an ACK loop. */
3421 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3422 	    !tcp_hdr(skb)->syn)
3423 		return false;
3424 
3425 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3426 }
3427 
3428 /* RFC 5961 7 [ACK Throttling] */
3429 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3430 {
3431 	/* unprotected vars, we dont care of overwrites */
3432 	static u32 challenge_timestamp;
3433 	static unsigned int challenge_count;
3434 	struct tcp_sock *tp = tcp_sk(sk);
3435 	struct net *net = sock_net(sk);
3436 	u32 count, now;
3437 
3438 	/* First check our per-socket dupack rate limit. */
3439 	if (__tcp_oow_rate_limited(net,
3440 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3441 				   &tp->last_oow_ack_time))
3442 		return;
3443 
3444 	/* Then check host-wide RFC 5961 rate limit. */
3445 	now = jiffies / HZ;
3446 	if (now != challenge_timestamp) {
3447 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3448 		u32 half = (ack_limit + 1) >> 1;
3449 
3450 		challenge_timestamp = now;
3451 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3452 	}
3453 	count = READ_ONCE(challenge_count);
3454 	if (count > 0) {
3455 		WRITE_ONCE(challenge_count, count - 1);
3456 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3457 		tcp_send_ack(sk);
3458 	}
3459 }
3460 
3461 static void tcp_store_ts_recent(struct tcp_sock *tp)
3462 {
3463 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3464 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3465 }
3466 
3467 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3468 {
3469 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3470 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3471 		 * extra check below makes sure this can only happen
3472 		 * for pure ACK frames.  -DaveM
3473 		 *
3474 		 * Not only, also it occurs for expired timestamps.
3475 		 */
3476 
3477 		if (tcp_paws_check(&tp->rx_opt, 0))
3478 			tcp_store_ts_recent(tp);
3479 	}
3480 }
3481 
3482 /* This routine deals with acks during a TLP episode.
3483  * We mark the end of a TLP episode on receiving TLP dupack or when
3484  * ack is after tlp_high_seq.
3485  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3486  */
3487 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3488 {
3489 	struct tcp_sock *tp = tcp_sk(sk);
3490 
3491 	if (before(ack, tp->tlp_high_seq))
3492 		return;
3493 
3494 	if (flag & FLAG_DSACKING_ACK) {
3495 		/* This DSACK means original and TLP probe arrived; no loss */
3496 		tp->tlp_high_seq = 0;
3497 	} else if (after(ack, tp->tlp_high_seq)) {
3498 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3499 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3500 		 */
3501 		tcp_init_cwnd_reduction(sk);
3502 		tcp_set_ca_state(sk, TCP_CA_CWR);
3503 		tcp_end_cwnd_reduction(sk);
3504 		tcp_try_keep_open(sk);
3505 		NET_INC_STATS(sock_net(sk),
3506 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3507 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3508 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3509 		/* Pure dupack: original and TLP probe arrived; no loss */
3510 		tp->tlp_high_seq = 0;
3511 	}
3512 }
3513 
3514 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3515 {
3516 	const struct inet_connection_sock *icsk = inet_csk(sk);
3517 
3518 	if (icsk->icsk_ca_ops->in_ack_event)
3519 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3520 }
3521 
3522 /* Congestion control has updated the cwnd already. So if we're in
3523  * loss recovery then now we do any new sends (for FRTO) or
3524  * retransmits (for CA_Loss or CA_recovery) that make sense.
3525  */
3526 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3527 {
3528 	struct tcp_sock *tp = tcp_sk(sk);
3529 
3530 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3531 		return;
3532 
3533 	if (unlikely(rexmit == 2)) {
3534 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3535 					  TCP_NAGLE_OFF);
3536 		if (after(tp->snd_nxt, tp->high_seq))
3537 			return;
3538 		tp->frto = 0;
3539 	}
3540 	tcp_xmit_retransmit_queue(sk);
3541 }
3542 
3543 /* Returns the number of packets newly acked or sacked by the current ACK */
3544 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3545 {
3546 	const struct net *net = sock_net(sk);
3547 	struct tcp_sock *tp = tcp_sk(sk);
3548 	u32 delivered;
3549 
3550 	delivered = tp->delivered - prior_delivered;
3551 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3552 	if (flag & FLAG_ECE) {
3553 		tp->delivered_ce += delivered;
3554 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3555 	}
3556 	return delivered;
3557 }
3558 
3559 /* This routine deals with incoming acks, but not outgoing ones. */
3560 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3561 {
3562 	struct inet_connection_sock *icsk = inet_csk(sk);
3563 	struct tcp_sock *tp = tcp_sk(sk);
3564 	struct tcp_sacktag_state sack_state;
3565 	struct rate_sample rs = { .prior_delivered = 0 };
3566 	u32 prior_snd_una = tp->snd_una;
3567 	bool is_sack_reneg = tp->is_sack_reneg;
3568 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3569 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3570 	int num_dupack = 0;
3571 	int prior_packets = tp->packets_out;
3572 	u32 delivered = tp->delivered;
3573 	u32 lost = tp->lost;
3574 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3575 	u32 prior_fack;
3576 
3577 	sack_state.first_sackt = 0;
3578 	sack_state.rate = &rs;
3579 
3580 	/* We very likely will need to access rtx queue. */
3581 	prefetch(sk->tcp_rtx_queue.rb_node);
3582 
3583 	/* If the ack is older than previous acks
3584 	 * then we can probably ignore it.
3585 	 */
3586 	if (before(ack, prior_snd_una)) {
3587 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3588 		if (before(ack, prior_snd_una - tp->max_window)) {
3589 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3590 				tcp_send_challenge_ack(sk, skb);
3591 			return -1;
3592 		}
3593 		goto old_ack;
3594 	}
3595 
3596 	/* If the ack includes data we haven't sent yet, discard
3597 	 * this segment (RFC793 Section 3.9).
3598 	 */
3599 	if (after(ack, tp->snd_nxt))
3600 		return -1;
3601 
3602 	if (after(ack, prior_snd_una)) {
3603 		flag |= FLAG_SND_UNA_ADVANCED;
3604 		icsk->icsk_retransmits = 0;
3605 
3606 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3607 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3608 			if (icsk->icsk_clean_acked)
3609 				icsk->icsk_clean_acked(sk, ack);
3610 #endif
3611 	}
3612 
3613 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3614 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3615 
3616 	/* ts_recent update must be made after we are sure that the packet
3617 	 * is in window.
3618 	 */
3619 	if (flag & FLAG_UPDATE_TS_RECENT)
3620 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3621 
3622 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3623 	    FLAG_SND_UNA_ADVANCED) {
3624 		/* Window is constant, pure forward advance.
3625 		 * No more checks are required.
3626 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3627 		 */
3628 		tcp_update_wl(tp, ack_seq);
3629 		tcp_snd_una_update(tp, ack);
3630 		flag |= FLAG_WIN_UPDATE;
3631 
3632 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3633 
3634 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3635 	} else {
3636 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3637 
3638 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3639 			flag |= FLAG_DATA;
3640 		else
3641 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3642 
3643 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3644 
3645 		if (TCP_SKB_CB(skb)->sacked)
3646 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3647 							&sack_state);
3648 
3649 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3650 			flag |= FLAG_ECE;
3651 			ack_ev_flags |= CA_ACK_ECE;
3652 		}
3653 
3654 		if (flag & FLAG_WIN_UPDATE)
3655 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3656 
3657 		tcp_in_ack_event(sk, ack_ev_flags);
3658 	}
3659 
3660 	/* We passed data and got it acked, remove any soft error
3661 	 * log. Something worked...
3662 	 */
3663 	sk->sk_err_soft = 0;
3664 	icsk->icsk_probes_out = 0;
3665 	tp->rcv_tstamp = tcp_jiffies32;
3666 	if (!prior_packets)
3667 		goto no_queue;
3668 
3669 	/* See if we can take anything off of the retransmit queue. */
3670 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3671 
3672 	tcp_rack_update_reo_wnd(sk, &rs);
3673 
3674 	if (tp->tlp_high_seq)
3675 		tcp_process_tlp_ack(sk, ack, flag);
3676 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3677 	if (flag & FLAG_SET_XMIT_TIMER)
3678 		tcp_set_xmit_timer(sk);
3679 
3680 	if (tcp_ack_is_dubious(sk, flag)) {
3681 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3682 			num_dupack = 1;
3683 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3684 			if (!(flag & FLAG_DATA))
3685 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3686 		}
3687 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3688 				      &rexmit);
3689 	}
3690 
3691 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3692 		sk_dst_confirm(sk);
3693 
3694 	delivered = tcp_newly_delivered(sk, delivered, flag);
3695 	lost = tp->lost - lost;			/* freshly marked lost */
3696 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3697 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3698 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3699 	tcp_xmit_recovery(sk, rexmit);
3700 	return 1;
3701 
3702 no_queue:
3703 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3704 	if (flag & FLAG_DSACKING_ACK) {
3705 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3706 				      &rexmit);
3707 		tcp_newly_delivered(sk, delivered, flag);
3708 	}
3709 	/* If this ack opens up a zero window, clear backoff.  It was
3710 	 * being used to time the probes, and is probably far higher than
3711 	 * it needs to be for normal retransmission.
3712 	 */
3713 	tcp_ack_probe(sk);
3714 
3715 	if (tp->tlp_high_seq)
3716 		tcp_process_tlp_ack(sk, ack, flag);
3717 	return 1;
3718 
3719 old_ack:
3720 	/* If data was SACKed, tag it and see if we should send more data.
3721 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3722 	 */
3723 	if (TCP_SKB_CB(skb)->sacked) {
3724 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3725 						&sack_state);
3726 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3727 				      &rexmit);
3728 		tcp_newly_delivered(sk, delivered, flag);
3729 		tcp_xmit_recovery(sk, rexmit);
3730 	}
3731 
3732 	return 0;
3733 }
3734 
3735 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3736 				      bool syn, struct tcp_fastopen_cookie *foc,
3737 				      bool exp_opt)
3738 {
3739 	/* Valid only in SYN or SYN-ACK with an even length.  */
3740 	if (!foc || !syn || len < 0 || (len & 1))
3741 		return;
3742 
3743 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3744 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3745 		memcpy(foc->val, cookie, len);
3746 	else if (len != 0)
3747 		len = -1;
3748 	foc->len = len;
3749 	foc->exp = exp_opt;
3750 }
3751 
3752 static void smc_parse_options(const struct tcphdr *th,
3753 			      struct tcp_options_received *opt_rx,
3754 			      const unsigned char *ptr,
3755 			      int opsize)
3756 {
3757 #if IS_ENABLED(CONFIG_SMC)
3758 	if (static_branch_unlikely(&tcp_have_smc)) {
3759 		if (th->syn && !(opsize & 1) &&
3760 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3761 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3762 			opt_rx->smc_ok = 1;
3763 	}
3764 #endif
3765 }
3766 
3767 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3768  * But, this can also be called on packets in the established flow when
3769  * the fast version below fails.
3770  */
3771 void tcp_parse_options(const struct net *net,
3772 		       const struct sk_buff *skb,
3773 		       struct tcp_options_received *opt_rx, int estab,
3774 		       struct tcp_fastopen_cookie *foc)
3775 {
3776 	const unsigned char *ptr;
3777 	const struct tcphdr *th = tcp_hdr(skb);
3778 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3779 
3780 	ptr = (const unsigned char *)(th + 1);
3781 	opt_rx->saw_tstamp = 0;
3782 
3783 	while (length > 0) {
3784 		int opcode = *ptr++;
3785 		int opsize;
3786 
3787 		switch (opcode) {
3788 		case TCPOPT_EOL:
3789 			return;
3790 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3791 			length--;
3792 			continue;
3793 		default:
3794 			opsize = *ptr++;
3795 			if (opsize < 2) /* "silly options" */
3796 				return;
3797 			if (opsize > length)
3798 				return;	/* don't parse partial options */
3799 			switch (opcode) {
3800 			case TCPOPT_MSS:
3801 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3802 					u16 in_mss = get_unaligned_be16(ptr);
3803 					if (in_mss) {
3804 						if (opt_rx->user_mss &&
3805 						    opt_rx->user_mss < in_mss)
3806 							in_mss = opt_rx->user_mss;
3807 						opt_rx->mss_clamp = in_mss;
3808 					}
3809 				}
3810 				break;
3811 			case TCPOPT_WINDOW:
3812 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3813 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3814 					__u8 snd_wscale = *(__u8 *)ptr;
3815 					opt_rx->wscale_ok = 1;
3816 					if (snd_wscale > TCP_MAX_WSCALE) {
3817 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3818 								     __func__,
3819 								     snd_wscale,
3820 								     TCP_MAX_WSCALE);
3821 						snd_wscale = TCP_MAX_WSCALE;
3822 					}
3823 					opt_rx->snd_wscale = snd_wscale;
3824 				}
3825 				break;
3826 			case TCPOPT_TIMESTAMP:
3827 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3828 				    ((estab && opt_rx->tstamp_ok) ||
3829 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3830 					opt_rx->saw_tstamp = 1;
3831 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3832 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3833 				}
3834 				break;
3835 			case TCPOPT_SACK_PERM:
3836 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3837 				    !estab && net->ipv4.sysctl_tcp_sack) {
3838 					opt_rx->sack_ok = TCP_SACK_SEEN;
3839 					tcp_sack_reset(opt_rx);
3840 				}
3841 				break;
3842 
3843 			case TCPOPT_SACK:
3844 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3845 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3846 				   opt_rx->sack_ok) {
3847 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3848 				}
3849 				break;
3850 #ifdef CONFIG_TCP_MD5SIG
3851 			case TCPOPT_MD5SIG:
3852 				/*
3853 				 * The MD5 Hash has already been
3854 				 * checked (see tcp_v{4,6}_do_rcv()).
3855 				 */
3856 				break;
3857 #endif
3858 			case TCPOPT_FASTOPEN:
3859 				tcp_parse_fastopen_option(
3860 					opsize - TCPOLEN_FASTOPEN_BASE,
3861 					ptr, th->syn, foc, false);
3862 				break;
3863 
3864 			case TCPOPT_EXP:
3865 				/* Fast Open option shares code 254 using a
3866 				 * 16 bits magic number.
3867 				 */
3868 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3869 				    get_unaligned_be16(ptr) ==
3870 				    TCPOPT_FASTOPEN_MAGIC)
3871 					tcp_parse_fastopen_option(opsize -
3872 						TCPOLEN_EXP_FASTOPEN_BASE,
3873 						ptr + 2, th->syn, foc, true);
3874 				else
3875 					smc_parse_options(th, opt_rx, ptr,
3876 							  opsize);
3877 				break;
3878 
3879 			}
3880 			ptr += opsize-2;
3881 			length -= opsize;
3882 		}
3883 	}
3884 }
3885 EXPORT_SYMBOL(tcp_parse_options);
3886 
3887 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3888 {
3889 	const __be32 *ptr = (const __be32 *)(th + 1);
3890 
3891 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3892 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3893 		tp->rx_opt.saw_tstamp = 1;
3894 		++ptr;
3895 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3896 		++ptr;
3897 		if (*ptr)
3898 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3899 		else
3900 			tp->rx_opt.rcv_tsecr = 0;
3901 		return true;
3902 	}
3903 	return false;
3904 }
3905 
3906 /* Fast parse options. This hopes to only see timestamps.
3907  * If it is wrong it falls back on tcp_parse_options().
3908  */
3909 static bool tcp_fast_parse_options(const struct net *net,
3910 				   const struct sk_buff *skb,
3911 				   const struct tcphdr *th, struct tcp_sock *tp)
3912 {
3913 	/* In the spirit of fast parsing, compare doff directly to constant
3914 	 * values.  Because equality is used, short doff can be ignored here.
3915 	 */
3916 	if (th->doff == (sizeof(*th) / 4)) {
3917 		tp->rx_opt.saw_tstamp = 0;
3918 		return false;
3919 	} else if (tp->rx_opt.tstamp_ok &&
3920 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3921 		if (tcp_parse_aligned_timestamp(tp, th))
3922 			return true;
3923 	}
3924 
3925 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3926 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3927 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3928 
3929 	return true;
3930 }
3931 
3932 #ifdef CONFIG_TCP_MD5SIG
3933 /*
3934  * Parse MD5 Signature option
3935  */
3936 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3937 {
3938 	int length = (th->doff << 2) - sizeof(*th);
3939 	const u8 *ptr = (const u8 *)(th + 1);
3940 
3941 	/* If not enough data remaining, we can short cut */
3942 	while (length >= TCPOLEN_MD5SIG) {
3943 		int opcode = *ptr++;
3944 		int opsize;
3945 
3946 		switch (opcode) {
3947 		case TCPOPT_EOL:
3948 			return NULL;
3949 		case TCPOPT_NOP:
3950 			length--;
3951 			continue;
3952 		default:
3953 			opsize = *ptr++;
3954 			if (opsize < 2 || opsize > length)
3955 				return NULL;
3956 			if (opcode == TCPOPT_MD5SIG)
3957 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3958 		}
3959 		ptr += opsize - 2;
3960 		length -= opsize;
3961 	}
3962 	return NULL;
3963 }
3964 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3965 #endif
3966 
3967 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3968  *
3969  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3970  * it can pass through stack. So, the following predicate verifies that
3971  * this segment is not used for anything but congestion avoidance or
3972  * fast retransmit. Moreover, we even are able to eliminate most of such
3973  * second order effects, if we apply some small "replay" window (~RTO)
3974  * to timestamp space.
3975  *
3976  * All these measures still do not guarantee that we reject wrapped ACKs
3977  * on networks with high bandwidth, when sequence space is recycled fastly,
3978  * but it guarantees that such events will be very rare and do not affect
3979  * connection seriously. This doesn't look nice, but alas, PAWS is really
3980  * buggy extension.
3981  *
3982  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3983  * states that events when retransmit arrives after original data are rare.
3984  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3985  * the biggest problem on large power networks even with minor reordering.
3986  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3987  * up to bandwidth of 18Gigabit/sec. 8) ]
3988  */
3989 
3990 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3991 {
3992 	const struct tcp_sock *tp = tcp_sk(sk);
3993 	const struct tcphdr *th = tcp_hdr(skb);
3994 	u32 seq = TCP_SKB_CB(skb)->seq;
3995 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3996 
3997 	return (/* 1. Pure ACK with correct sequence number. */
3998 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3999 
4000 		/* 2. ... and duplicate ACK. */
4001 		ack == tp->snd_una &&
4002 
4003 		/* 3. ... and does not update window. */
4004 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4005 
4006 		/* 4. ... and sits in replay window. */
4007 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4008 }
4009 
4010 static inline bool tcp_paws_discard(const struct sock *sk,
4011 				   const struct sk_buff *skb)
4012 {
4013 	const struct tcp_sock *tp = tcp_sk(sk);
4014 
4015 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4016 	       !tcp_disordered_ack(sk, skb);
4017 }
4018 
4019 /* Check segment sequence number for validity.
4020  *
4021  * Segment controls are considered valid, if the segment
4022  * fits to the window after truncation to the window. Acceptability
4023  * of data (and SYN, FIN, of course) is checked separately.
4024  * See tcp_data_queue(), for example.
4025  *
4026  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4027  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4028  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4029  * (borrowed from freebsd)
4030  */
4031 
4032 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4033 {
4034 	return	!before(end_seq, tp->rcv_wup) &&
4035 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4036 }
4037 
4038 /* When we get a reset we do this. */
4039 void tcp_reset(struct sock *sk)
4040 {
4041 	trace_tcp_receive_reset(sk);
4042 
4043 	/* We want the right error as BSD sees it (and indeed as we do). */
4044 	switch (sk->sk_state) {
4045 	case TCP_SYN_SENT:
4046 		sk->sk_err = ECONNREFUSED;
4047 		break;
4048 	case TCP_CLOSE_WAIT:
4049 		sk->sk_err = EPIPE;
4050 		break;
4051 	case TCP_CLOSE:
4052 		return;
4053 	default:
4054 		sk->sk_err = ECONNRESET;
4055 	}
4056 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4057 	smp_wmb();
4058 
4059 	tcp_write_queue_purge(sk);
4060 	tcp_done(sk);
4061 
4062 	if (!sock_flag(sk, SOCK_DEAD))
4063 		sk->sk_error_report(sk);
4064 }
4065 
4066 /*
4067  * 	Process the FIN bit. This now behaves as it is supposed to work
4068  *	and the FIN takes effect when it is validly part of sequence
4069  *	space. Not before when we get holes.
4070  *
4071  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4072  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4073  *	TIME-WAIT)
4074  *
4075  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4076  *	close and we go into CLOSING (and later onto TIME-WAIT)
4077  *
4078  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4079  */
4080 void tcp_fin(struct sock *sk)
4081 {
4082 	struct tcp_sock *tp = tcp_sk(sk);
4083 
4084 	inet_csk_schedule_ack(sk);
4085 
4086 	sk->sk_shutdown |= RCV_SHUTDOWN;
4087 	sock_set_flag(sk, SOCK_DONE);
4088 
4089 	switch (sk->sk_state) {
4090 	case TCP_SYN_RECV:
4091 	case TCP_ESTABLISHED:
4092 		/* Move to CLOSE_WAIT */
4093 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4094 		inet_csk_enter_pingpong_mode(sk);
4095 		break;
4096 
4097 	case TCP_CLOSE_WAIT:
4098 	case TCP_CLOSING:
4099 		/* Received a retransmission of the FIN, do
4100 		 * nothing.
4101 		 */
4102 		break;
4103 	case TCP_LAST_ACK:
4104 		/* RFC793: Remain in the LAST-ACK state. */
4105 		break;
4106 
4107 	case TCP_FIN_WAIT1:
4108 		/* This case occurs when a simultaneous close
4109 		 * happens, we must ack the received FIN and
4110 		 * enter the CLOSING state.
4111 		 */
4112 		tcp_send_ack(sk);
4113 		tcp_set_state(sk, TCP_CLOSING);
4114 		break;
4115 	case TCP_FIN_WAIT2:
4116 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4117 		tcp_send_ack(sk);
4118 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4119 		break;
4120 	default:
4121 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4122 		 * cases we should never reach this piece of code.
4123 		 */
4124 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4125 		       __func__, sk->sk_state);
4126 		break;
4127 	}
4128 
4129 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4130 	 * Probably, we should reset in this case. For now drop them.
4131 	 */
4132 	skb_rbtree_purge(&tp->out_of_order_queue);
4133 	if (tcp_is_sack(tp))
4134 		tcp_sack_reset(&tp->rx_opt);
4135 	sk_mem_reclaim(sk);
4136 
4137 	if (!sock_flag(sk, SOCK_DEAD)) {
4138 		sk->sk_state_change(sk);
4139 
4140 		/* Do not send POLL_HUP for half duplex close. */
4141 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4142 		    sk->sk_state == TCP_CLOSE)
4143 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4144 		else
4145 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4146 	}
4147 }
4148 
4149 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4150 				  u32 end_seq)
4151 {
4152 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4153 		if (before(seq, sp->start_seq))
4154 			sp->start_seq = seq;
4155 		if (after(end_seq, sp->end_seq))
4156 			sp->end_seq = end_seq;
4157 		return true;
4158 	}
4159 	return false;
4160 }
4161 
4162 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4163 {
4164 	struct tcp_sock *tp = tcp_sk(sk);
4165 
4166 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4167 		int mib_idx;
4168 
4169 		if (before(seq, tp->rcv_nxt))
4170 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4171 		else
4172 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4173 
4174 		NET_INC_STATS(sock_net(sk), mib_idx);
4175 
4176 		tp->rx_opt.dsack = 1;
4177 		tp->duplicate_sack[0].start_seq = seq;
4178 		tp->duplicate_sack[0].end_seq = end_seq;
4179 	}
4180 }
4181 
4182 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4183 {
4184 	struct tcp_sock *tp = tcp_sk(sk);
4185 
4186 	if (!tp->rx_opt.dsack)
4187 		tcp_dsack_set(sk, seq, end_seq);
4188 	else
4189 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4190 }
4191 
4192 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4193 {
4194 	/* When the ACK path fails or drops most ACKs, the sender would
4195 	 * timeout and spuriously retransmit the same segment repeatedly.
4196 	 * The receiver remembers and reflects via DSACKs. Leverage the
4197 	 * DSACK state and change the txhash to re-route speculatively.
4198 	 */
4199 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4200 		sk_rethink_txhash(sk);
4201 }
4202 
4203 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4204 {
4205 	struct tcp_sock *tp = tcp_sk(sk);
4206 
4207 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4208 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4209 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4210 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4211 
4212 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4213 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4214 
4215 			tcp_rcv_spurious_retrans(sk, skb);
4216 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4217 				end_seq = tp->rcv_nxt;
4218 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4219 		}
4220 	}
4221 
4222 	tcp_send_ack(sk);
4223 }
4224 
4225 /* These routines update the SACK block as out-of-order packets arrive or
4226  * in-order packets close up the sequence space.
4227  */
4228 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4229 {
4230 	int this_sack;
4231 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4232 	struct tcp_sack_block *swalk = sp + 1;
4233 
4234 	/* See if the recent change to the first SACK eats into
4235 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4236 	 */
4237 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4238 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4239 			int i;
4240 
4241 			/* Zap SWALK, by moving every further SACK up by one slot.
4242 			 * Decrease num_sacks.
4243 			 */
4244 			tp->rx_opt.num_sacks--;
4245 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4246 				sp[i] = sp[i + 1];
4247 			continue;
4248 		}
4249 		this_sack++, swalk++;
4250 	}
4251 }
4252 
4253 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4254 {
4255 	struct tcp_sock *tp = tcp_sk(sk);
4256 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4257 	int cur_sacks = tp->rx_opt.num_sacks;
4258 	int this_sack;
4259 
4260 	if (!cur_sacks)
4261 		goto new_sack;
4262 
4263 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4264 		if (tcp_sack_extend(sp, seq, end_seq)) {
4265 			/* Rotate this_sack to the first one. */
4266 			for (; this_sack > 0; this_sack--, sp--)
4267 				swap(*sp, *(sp - 1));
4268 			if (cur_sacks > 1)
4269 				tcp_sack_maybe_coalesce(tp);
4270 			return;
4271 		}
4272 	}
4273 
4274 	/* Could not find an adjacent existing SACK, build a new one,
4275 	 * put it at the front, and shift everyone else down.  We
4276 	 * always know there is at least one SACK present already here.
4277 	 *
4278 	 * If the sack array is full, forget about the last one.
4279 	 */
4280 	if (this_sack >= TCP_NUM_SACKS) {
4281 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4282 			tcp_send_ack(sk);
4283 		this_sack--;
4284 		tp->rx_opt.num_sacks--;
4285 		sp--;
4286 	}
4287 	for (; this_sack > 0; this_sack--, sp--)
4288 		*sp = *(sp - 1);
4289 
4290 new_sack:
4291 	/* Build the new head SACK, and we're done. */
4292 	sp->start_seq = seq;
4293 	sp->end_seq = end_seq;
4294 	tp->rx_opt.num_sacks++;
4295 }
4296 
4297 /* RCV.NXT advances, some SACKs should be eaten. */
4298 
4299 static void tcp_sack_remove(struct tcp_sock *tp)
4300 {
4301 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4302 	int num_sacks = tp->rx_opt.num_sacks;
4303 	int this_sack;
4304 
4305 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4306 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4307 		tp->rx_opt.num_sacks = 0;
4308 		return;
4309 	}
4310 
4311 	for (this_sack = 0; this_sack < num_sacks;) {
4312 		/* Check if the start of the sack is covered by RCV.NXT. */
4313 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4314 			int i;
4315 
4316 			/* RCV.NXT must cover all the block! */
4317 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4318 
4319 			/* Zap this SACK, by moving forward any other SACKS. */
4320 			for (i = this_sack+1; i < num_sacks; i++)
4321 				tp->selective_acks[i-1] = tp->selective_acks[i];
4322 			num_sacks--;
4323 			continue;
4324 		}
4325 		this_sack++;
4326 		sp++;
4327 	}
4328 	tp->rx_opt.num_sacks = num_sacks;
4329 }
4330 
4331 /**
4332  * tcp_try_coalesce - try to merge skb to prior one
4333  * @sk: socket
4334  * @dest: destination queue
4335  * @to: prior buffer
4336  * @from: buffer to add in queue
4337  * @fragstolen: pointer to boolean
4338  *
4339  * Before queueing skb @from after @to, try to merge them
4340  * to reduce overall memory use and queue lengths, if cost is small.
4341  * Packets in ofo or receive queues can stay a long time.
4342  * Better try to coalesce them right now to avoid future collapses.
4343  * Returns true if caller should free @from instead of queueing it
4344  */
4345 static bool tcp_try_coalesce(struct sock *sk,
4346 			     struct sk_buff *to,
4347 			     struct sk_buff *from,
4348 			     bool *fragstolen)
4349 {
4350 	int delta;
4351 
4352 	*fragstolen = false;
4353 
4354 	/* Its possible this segment overlaps with prior segment in queue */
4355 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4356 		return false;
4357 
4358 #ifdef CONFIG_TLS_DEVICE
4359 	if (from->decrypted != to->decrypted)
4360 		return false;
4361 #endif
4362 
4363 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4364 		return false;
4365 
4366 	atomic_add(delta, &sk->sk_rmem_alloc);
4367 	sk_mem_charge(sk, delta);
4368 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4369 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4370 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4371 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4372 
4373 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4374 		TCP_SKB_CB(to)->has_rxtstamp = true;
4375 		to->tstamp = from->tstamp;
4376 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4377 	}
4378 
4379 	return true;
4380 }
4381 
4382 static bool tcp_ooo_try_coalesce(struct sock *sk,
4383 			     struct sk_buff *to,
4384 			     struct sk_buff *from,
4385 			     bool *fragstolen)
4386 {
4387 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4388 
4389 	/* In case tcp_drop() is called later, update to->gso_segs */
4390 	if (res) {
4391 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4392 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4393 
4394 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4395 	}
4396 	return res;
4397 }
4398 
4399 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4400 {
4401 	sk_drops_add(sk, skb);
4402 	__kfree_skb(skb);
4403 }
4404 
4405 /* This one checks to see if we can put data from the
4406  * out_of_order queue into the receive_queue.
4407  */
4408 static void tcp_ofo_queue(struct sock *sk)
4409 {
4410 	struct tcp_sock *tp = tcp_sk(sk);
4411 	__u32 dsack_high = tp->rcv_nxt;
4412 	bool fin, fragstolen, eaten;
4413 	struct sk_buff *skb, *tail;
4414 	struct rb_node *p;
4415 
4416 	p = rb_first(&tp->out_of_order_queue);
4417 	while (p) {
4418 		skb = rb_to_skb(p);
4419 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4420 			break;
4421 
4422 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4423 			__u32 dsack = dsack_high;
4424 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4425 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4426 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4427 		}
4428 		p = rb_next(p);
4429 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4430 
4431 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4432 			tcp_drop(sk, skb);
4433 			continue;
4434 		}
4435 
4436 		tail = skb_peek_tail(&sk->sk_receive_queue);
4437 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4438 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4439 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4440 		if (!eaten)
4441 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4442 		else
4443 			kfree_skb_partial(skb, fragstolen);
4444 
4445 		if (unlikely(fin)) {
4446 			tcp_fin(sk);
4447 			/* tcp_fin() purges tp->out_of_order_queue,
4448 			 * so we must end this loop right now.
4449 			 */
4450 			break;
4451 		}
4452 	}
4453 }
4454 
4455 static bool tcp_prune_ofo_queue(struct sock *sk);
4456 static int tcp_prune_queue(struct sock *sk);
4457 
4458 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4459 				 unsigned int size)
4460 {
4461 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4462 	    !sk_rmem_schedule(sk, skb, size)) {
4463 
4464 		if (tcp_prune_queue(sk) < 0)
4465 			return -1;
4466 
4467 		while (!sk_rmem_schedule(sk, skb, size)) {
4468 			if (!tcp_prune_ofo_queue(sk))
4469 				return -1;
4470 		}
4471 	}
4472 	return 0;
4473 }
4474 
4475 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4476 {
4477 	struct tcp_sock *tp = tcp_sk(sk);
4478 	struct rb_node **p, *parent;
4479 	struct sk_buff *skb1;
4480 	u32 seq, end_seq;
4481 	bool fragstolen;
4482 
4483 	tcp_ecn_check_ce(sk, skb);
4484 
4485 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4486 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4487 		tcp_drop(sk, skb);
4488 		return;
4489 	}
4490 
4491 	/* Disable header prediction. */
4492 	tp->pred_flags = 0;
4493 	inet_csk_schedule_ack(sk);
4494 
4495 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4496 	seq = TCP_SKB_CB(skb)->seq;
4497 	end_seq = TCP_SKB_CB(skb)->end_seq;
4498 
4499 	p = &tp->out_of_order_queue.rb_node;
4500 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4501 		/* Initial out of order segment, build 1 SACK. */
4502 		if (tcp_is_sack(tp)) {
4503 			tp->rx_opt.num_sacks = 1;
4504 			tp->selective_acks[0].start_seq = seq;
4505 			tp->selective_acks[0].end_seq = end_seq;
4506 		}
4507 		rb_link_node(&skb->rbnode, NULL, p);
4508 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4509 		tp->ooo_last_skb = skb;
4510 		goto end;
4511 	}
4512 
4513 	/* In the typical case, we are adding an skb to the end of the list.
4514 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4515 	 */
4516 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4517 				 skb, &fragstolen)) {
4518 coalesce_done:
4519 		tcp_grow_window(sk, skb);
4520 		kfree_skb_partial(skb, fragstolen);
4521 		skb = NULL;
4522 		goto add_sack;
4523 	}
4524 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4525 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4526 		parent = &tp->ooo_last_skb->rbnode;
4527 		p = &parent->rb_right;
4528 		goto insert;
4529 	}
4530 
4531 	/* Find place to insert this segment. Handle overlaps on the way. */
4532 	parent = NULL;
4533 	while (*p) {
4534 		parent = *p;
4535 		skb1 = rb_to_skb(parent);
4536 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4537 			p = &parent->rb_left;
4538 			continue;
4539 		}
4540 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4541 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4542 				/* All the bits are present. Drop. */
4543 				NET_INC_STATS(sock_net(sk),
4544 					      LINUX_MIB_TCPOFOMERGE);
4545 				tcp_drop(sk, skb);
4546 				skb = NULL;
4547 				tcp_dsack_set(sk, seq, end_seq);
4548 				goto add_sack;
4549 			}
4550 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4551 				/* Partial overlap. */
4552 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4553 			} else {
4554 				/* skb's seq == skb1's seq and skb covers skb1.
4555 				 * Replace skb1 with skb.
4556 				 */
4557 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4558 						&tp->out_of_order_queue);
4559 				tcp_dsack_extend(sk,
4560 						 TCP_SKB_CB(skb1)->seq,
4561 						 TCP_SKB_CB(skb1)->end_seq);
4562 				NET_INC_STATS(sock_net(sk),
4563 					      LINUX_MIB_TCPOFOMERGE);
4564 				tcp_drop(sk, skb1);
4565 				goto merge_right;
4566 			}
4567 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4568 						skb, &fragstolen)) {
4569 			goto coalesce_done;
4570 		}
4571 		p = &parent->rb_right;
4572 	}
4573 insert:
4574 	/* Insert segment into RB tree. */
4575 	rb_link_node(&skb->rbnode, parent, p);
4576 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4577 
4578 merge_right:
4579 	/* Remove other segments covered by skb. */
4580 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4581 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4582 			break;
4583 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4584 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4585 					 end_seq);
4586 			break;
4587 		}
4588 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4589 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4590 				 TCP_SKB_CB(skb1)->end_seq);
4591 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4592 		tcp_drop(sk, skb1);
4593 	}
4594 	/* If there is no skb after us, we are the last_skb ! */
4595 	if (!skb1)
4596 		tp->ooo_last_skb = skb;
4597 
4598 add_sack:
4599 	if (tcp_is_sack(tp))
4600 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4601 end:
4602 	if (skb) {
4603 		tcp_grow_window(sk, skb);
4604 		skb_condense(skb);
4605 		skb_set_owner_r(skb, sk);
4606 	}
4607 }
4608 
4609 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4610 				      bool *fragstolen)
4611 {
4612 	int eaten;
4613 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4614 
4615 	eaten = (tail &&
4616 		 tcp_try_coalesce(sk, tail,
4617 				  skb, fragstolen)) ? 1 : 0;
4618 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4619 	if (!eaten) {
4620 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4621 		skb_set_owner_r(skb, sk);
4622 	}
4623 	return eaten;
4624 }
4625 
4626 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4627 {
4628 	struct sk_buff *skb;
4629 	int err = -ENOMEM;
4630 	int data_len = 0;
4631 	bool fragstolen;
4632 
4633 	if (size == 0)
4634 		return 0;
4635 
4636 	if (size > PAGE_SIZE) {
4637 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4638 
4639 		data_len = npages << PAGE_SHIFT;
4640 		size = data_len + (size & ~PAGE_MASK);
4641 	}
4642 	skb = alloc_skb_with_frags(size - data_len, data_len,
4643 				   PAGE_ALLOC_COSTLY_ORDER,
4644 				   &err, sk->sk_allocation);
4645 	if (!skb)
4646 		goto err;
4647 
4648 	skb_put(skb, size - data_len);
4649 	skb->data_len = data_len;
4650 	skb->len = size;
4651 
4652 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4653 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4654 		goto err_free;
4655 	}
4656 
4657 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4658 	if (err)
4659 		goto err_free;
4660 
4661 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4662 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4663 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4664 
4665 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4666 		WARN_ON_ONCE(fragstolen); /* should not happen */
4667 		__kfree_skb(skb);
4668 	}
4669 	return size;
4670 
4671 err_free:
4672 	kfree_skb(skb);
4673 err:
4674 	return err;
4675 
4676 }
4677 
4678 void tcp_data_ready(struct sock *sk)
4679 {
4680 	const struct tcp_sock *tp = tcp_sk(sk);
4681 	int avail = tp->rcv_nxt - tp->copied_seq;
4682 
4683 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4684 		return;
4685 
4686 	sk->sk_data_ready(sk);
4687 }
4688 
4689 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4690 {
4691 	struct tcp_sock *tp = tcp_sk(sk);
4692 	bool fragstolen;
4693 	int eaten;
4694 
4695 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4696 		__kfree_skb(skb);
4697 		return;
4698 	}
4699 	skb_dst_drop(skb);
4700 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4701 
4702 	tcp_ecn_accept_cwr(sk, skb);
4703 
4704 	tp->rx_opt.dsack = 0;
4705 
4706 	/*  Queue data for delivery to the user.
4707 	 *  Packets in sequence go to the receive queue.
4708 	 *  Out of sequence packets to the out_of_order_queue.
4709 	 */
4710 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4711 		if (tcp_receive_window(tp) == 0) {
4712 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4713 			goto out_of_window;
4714 		}
4715 
4716 		/* Ok. In sequence. In window. */
4717 queue_and_out:
4718 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4719 			sk_forced_mem_schedule(sk, skb->truesize);
4720 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4721 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4722 			goto drop;
4723 		}
4724 
4725 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4726 		if (skb->len)
4727 			tcp_event_data_recv(sk, skb);
4728 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4729 			tcp_fin(sk);
4730 
4731 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4732 			tcp_ofo_queue(sk);
4733 
4734 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4735 			 * gap in queue is filled.
4736 			 */
4737 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4738 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4739 		}
4740 
4741 		if (tp->rx_opt.num_sacks)
4742 			tcp_sack_remove(tp);
4743 
4744 		tcp_fast_path_check(sk);
4745 
4746 		if (eaten > 0)
4747 			kfree_skb_partial(skb, fragstolen);
4748 		if (!sock_flag(sk, SOCK_DEAD))
4749 			tcp_data_ready(sk);
4750 		return;
4751 	}
4752 
4753 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4754 		tcp_rcv_spurious_retrans(sk, skb);
4755 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4756 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4757 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4758 
4759 out_of_window:
4760 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4761 		inet_csk_schedule_ack(sk);
4762 drop:
4763 		tcp_drop(sk, skb);
4764 		return;
4765 	}
4766 
4767 	/* Out of window. F.e. zero window probe. */
4768 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4769 		goto out_of_window;
4770 
4771 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4772 		/* Partial packet, seq < rcv_next < end_seq */
4773 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4774 
4775 		/* If window is closed, drop tail of packet. But after
4776 		 * remembering D-SACK for its head made in previous line.
4777 		 */
4778 		if (!tcp_receive_window(tp)) {
4779 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4780 			goto out_of_window;
4781 		}
4782 		goto queue_and_out;
4783 	}
4784 
4785 	tcp_data_queue_ofo(sk, skb);
4786 }
4787 
4788 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4789 {
4790 	if (list)
4791 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4792 
4793 	return skb_rb_next(skb);
4794 }
4795 
4796 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4797 					struct sk_buff_head *list,
4798 					struct rb_root *root)
4799 {
4800 	struct sk_buff *next = tcp_skb_next(skb, list);
4801 
4802 	if (list)
4803 		__skb_unlink(skb, list);
4804 	else
4805 		rb_erase(&skb->rbnode, root);
4806 
4807 	__kfree_skb(skb);
4808 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4809 
4810 	return next;
4811 }
4812 
4813 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4814 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4815 {
4816 	struct rb_node **p = &root->rb_node;
4817 	struct rb_node *parent = NULL;
4818 	struct sk_buff *skb1;
4819 
4820 	while (*p) {
4821 		parent = *p;
4822 		skb1 = rb_to_skb(parent);
4823 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4824 			p = &parent->rb_left;
4825 		else
4826 			p = &parent->rb_right;
4827 	}
4828 	rb_link_node(&skb->rbnode, parent, p);
4829 	rb_insert_color(&skb->rbnode, root);
4830 }
4831 
4832 /* Collapse contiguous sequence of skbs head..tail with
4833  * sequence numbers start..end.
4834  *
4835  * If tail is NULL, this means until the end of the queue.
4836  *
4837  * Segments with FIN/SYN are not collapsed (only because this
4838  * simplifies code)
4839  */
4840 static void
4841 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4842 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4843 {
4844 	struct sk_buff *skb = head, *n;
4845 	struct sk_buff_head tmp;
4846 	bool end_of_skbs;
4847 
4848 	/* First, check that queue is collapsible and find
4849 	 * the point where collapsing can be useful.
4850 	 */
4851 restart:
4852 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4853 		n = tcp_skb_next(skb, list);
4854 
4855 		/* No new bits? It is possible on ofo queue. */
4856 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4857 			skb = tcp_collapse_one(sk, skb, list, root);
4858 			if (!skb)
4859 				break;
4860 			goto restart;
4861 		}
4862 
4863 		/* The first skb to collapse is:
4864 		 * - not SYN/FIN and
4865 		 * - bloated or contains data before "start" or
4866 		 *   overlaps to the next one.
4867 		 */
4868 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4869 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4870 		     before(TCP_SKB_CB(skb)->seq, start))) {
4871 			end_of_skbs = false;
4872 			break;
4873 		}
4874 
4875 		if (n && n != tail &&
4876 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4877 			end_of_skbs = false;
4878 			break;
4879 		}
4880 
4881 		/* Decided to skip this, advance start seq. */
4882 		start = TCP_SKB_CB(skb)->end_seq;
4883 	}
4884 	if (end_of_skbs ||
4885 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4886 		return;
4887 
4888 	__skb_queue_head_init(&tmp);
4889 
4890 	while (before(start, end)) {
4891 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4892 		struct sk_buff *nskb;
4893 
4894 		nskb = alloc_skb(copy, GFP_ATOMIC);
4895 		if (!nskb)
4896 			break;
4897 
4898 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4899 #ifdef CONFIG_TLS_DEVICE
4900 		nskb->decrypted = skb->decrypted;
4901 #endif
4902 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4903 		if (list)
4904 			__skb_queue_before(list, skb, nskb);
4905 		else
4906 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4907 		skb_set_owner_r(nskb, sk);
4908 
4909 		/* Copy data, releasing collapsed skbs. */
4910 		while (copy > 0) {
4911 			int offset = start - TCP_SKB_CB(skb)->seq;
4912 			int size = TCP_SKB_CB(skb)->end_seq - start;
4913 
4914 			BUG_ON(offset < 0);
4915 			if (size > 0) {
4916 				size = min(copy, size);
4917 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4918 					BUG();
4919 				TCP_SKB_CB(nskb)->end_seq += size;
4920 				copy -= size;
4921 				start += size;
4922 			}
4923 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4924 				skb = tcp_collapse_one(sk, skb, list, root);
4925 				if (!skb ||
4926 				    skb == tail ||
4927 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4928 					goto end;
4929 #ifdef CONFIG_TLS_DEVICE
4930 				if (skb->decrypted != nskb->decrypted)
4931 					goto end;
4932 #endif
4933 			}
4934 		}
4935 	}
4936 end:
4937 	skb_queue_walk_safe(&tmp, skb, n)
4938 		tcp_rbtree_insert(root, skb);
4939 }
4940 
4941 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4942  * and tcp_collapse() them until all the queue is collapsed.
4943  */
4944 static void tcp_collapse_ofo_queue(struct sock *sk)
4945 {
4946 	struct tcp_sock *tp = tcp_sk(sk);
4947 	u32 range_truesize, sum_tiny = 0;
4948 	struct sk_buff *skb, *head;
4949 	u32 start, end;
4950 
4951 	skb = skb_rb_first(&tp->out_of_order_queue);
4952 new_range:
4953 	if (!skb) {
4954 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4955 		return;
4956 	}
4957 	start = TCP_SKB_CB(skb)->seq;
4958 	end = TCP_SKB_CB(skb)->end_seq;
4959 	range_truesize = skb->truesize;
4960 
4961 	for (head = skb;;) {
4962 		skb = skb_rb_next(skb);
4963 
4964 		/* Range is terminated when we see a gap or when
4965 		 * we are at the queue end.
4966 		 */
4967 		if (!skb ||
4968 		    after(TCP_SKB_CB(skb)->seq, end) ||
4969 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4970 			/* Do not attempt collapsing tiny skbs */
4971 			if (range_truesize != head->truesize ||
4972 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4973 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4974 					     head, skb, start, end);
4975 			} else {
4976 				sum_tiny += range_truesize;
4977 				if (sum_tiny > sk->sk_rcvbuf >> 3)
4978 					return;
4979 			}
4980 			goto new_range;
4981 		}
4982 
4983 		range_truesize += skb->truesize;
4984 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4985 			start = TCP_SKB_CB(skb)->seq;
4986 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4987 			end = TCP_SKB_CB(skb)->end_seq;
4988 	}
4989 }
4990 
4991 /*
4992  * Clean the out-of-order queue to make room.
4993  * We drop high sequences packets to :
4994  * 1) Let a chance for holes to be filled.
4995  * 2) not add too big latencies if thousands of packets sit there.
4996  *    (But if application shrinks SO_RCVBUF, we could still end up
4997  *     freeing whole queue here)
4998  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4999  *
5000  * Return true if queue has shrunk.
5001  */
5002 static bool tcp_prune_ofo_queue(struct sock *sk)
5003 {
5004 	struct tcp_sock *tp = tcp_sk(sk);
5005 	struct rb_node *node, *prev;
5006 	int goal;
5007 
5008 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5009 		return false;
5010 
5011 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5012 	goal = sk->sk_rcvbuf >> 3;
5013 	node = &tp->ooo_last_skb->rbnode;
5014 	do {
5015 		prev = rb_prev(node);
5016 		rb_erase(node, &tp->out_of_order_queue);
5017 		goal -= rb_to_skb(node)->truesize;
5018 		tcp_drop(sk, rb_to_skb(node));
5019 		if (!prev || goal <= 0) {
5020 			sk_mem_reclaim(sk);
5021 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5022 			    !tcp_under_memory_pressure(sk))
5023 				break;
5024 			goal = sk->sk_rcvbuf >> 3;
5025 		}
5026 		node = prev;
5027 	} while (node);
5028 	tp->ooo_last_skb = rb_to_skb(prev);
5029 
5030 	/* Reset SACK state.  A conforming SACK implementation will
5031 	 * do the same at a timeout based retransmit.  When a connection
5032 	 * is in a sad state like this, we care only about integrity
5033 	 * of the connection not performance.
5034 	 */
5035 	if (tp->rx_opt.sack_ok)
5036 		tcp_sack_reset(&tp->rx_opt);
5037 	return true;
5038 }
5039 
5040 /* Reduce allocated memory if we can, trying to get
5041  * the socket within its memory limits again.
5042  *
5043  * Return less than zero if we should start dropping frames
5044  * until the socket owning process reads some of the data
5045  * to stabilize the situation.
5046  */
5047 static int tcp_prune_queue(struct sock *sk)
5048 {
5049 	struct tcp_sock *tp = tcp_sk(sk);
5050 
5051 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5052 
5053 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5054 		tcp_clamp_window(sk);
5055 	else if (tcp_under_memory_pressure(sk))
5056 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5057 
5058 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5059 		return 0;
5060 
5061 	tcp_collapse_ofo_queue(sk);
5062 	if (!skb_queue_empty(&sk->sk_receive_queue))
5063 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5064 			     skb_peek(&sk->sk_receive_queue),
5065 			     NULL,
5066 			     tp->copied_seq, tp->rcv_nxt);
5067 	sk_mem_reclaim(sk);
5068 
5069 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5070 		return 0;
5071 
5072 	/* Collapsing did not help, destructive actions follow.
5073 	 * This must not ever occur. */
5074 
5075 	tcp_prune_ofo_queue(sk);
5076 
5077 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5078 		return 0;
5079 
5080 	/* If we are really being abused, tell the caller to silently
5081 	 * drop receive data on the floor.  It will get retransmitted
5082 	 * and hopefully then we'll have sufficient space.
5083 	 */
5084 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5085 
5086 	/* Massive buffer overcommit. */
5087 	tp->pred_flags = 0;
5088 	return -1;
5089 }
5090 
5091 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5092 {
5093 	const struct tcp_sock *tp = tcp_sk(sk);
5094 
5095 	/* If the user specified a specific send buffer setting, do
5096 	 * not modify it.
5097 	 */
5098 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5099 		return false;
5100 
5101 	/* If we are under global TCP memory pressure, do not expand.  */
5102 	if (tcp_under_memory_pressure(sk))
5103 		return false;
5104 
5105 	/* If we are under soft global TCP memory pressure, do not expand.  */
5106 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5107 		return false;
5108 
5109 	/* If we filled the congestion window, do not expand.  */
5110 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5111 		return false;
5112 
5113 	return true;
5114 }
5115 
5116 /* When incoming ACK allowed to free some skb from write_queue,
5117  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5118  * on the exit from tcp input handler.
5119  *
5120  * PROBLEM: sndbuf expansion does not work well with largesend.
5121  */
5122 static void tcp_new_space(struct sock *sk)
5123 {
5124 	struct tcp_sock *tp = tcp_sk(sk);
5125 
5126 	if (tcp_should_expand_sndbuf(sk)) {
5127 		tcp_sndbuf_expand(sk);
5128 		tp->snd_cwnd_stamp = tcp_jiffies32;
5129 	}
5130 
5131 	sk->sk_write_space(sk);
5132 }
5133 
5134 static void tcp_check_space(struct sock *sk)
5135 {
5136 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5137 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5138 		/* pairs with tcp_poll() */
5139 		smp_mb();
5140 		if (sk->sk_socket &&
5141 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5142 			tcp_new_space(sk);
5143 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5144 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5145 		}
5146 	}
5147 }
5148 
5149 static inline void tcp_data_snd_check(struct sock *sk)
5150 {
5151 	tcp_push_pending_frames(sk);
5152 	tcp_check_space(sk);
5153 }
5154 
5155 /*
5156  * Check if sending an ack is needed.
5157  */
5158 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5159 {
5160 	struct tcp_sock *tp = tcp_sk(sk);
5161 	unsigned long rtt, delay;
5162 
5163 	    /* More than one full frame received... */
5164 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5165 	     /* ... and right edge of window advances far enough.
5166 	      * (tcp_recvmsg() will send ACK otherwise).
5167 	      * If application uses SO_RCVLOWAT, we want send ack now if
5168 	      * we have not received enough bytes to satisfy the condition.
5169 	      */
5170 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5171 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5172 	    /* We ACK each frame or... */
5173 	    tcp_in_quickack_mode(sk) ||
5174 	    /* Protocol state mandates a one-time immediate ACK */
5175 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5176 send_now:
5177 		tcp_send_ack(sk);
5178 		return;
5179 	}
5180 
5181 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5182 		tcp_send_delayed_ack(sk);
5183 		return;
5184 	}
5185 
5186 	if (!tcp_is_sack(tp) ||
5187 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5188 		goto send_now;
5189 
5190 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5191 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5192 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5193 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5194 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5195 		tp->compressed_ack = 0;
5196 	}
5197 
5198 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5199 		goto send_now;
5200 
5201 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5202 		return;
5203 
5204 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5205 
5206 	rtt = tp->rcv_rtt_est.rtt_us;
5207 	if (tp->srtt_us && tp->srtt_us < rtt)
5208 		rtt = tp->srtt_us;
5209 
5210 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5211 		      rtt * (NSEC_PER_USEC >> 3)/20);
5212 	sock_hold(sk);
5213 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5214 		      HRTIMER_MODE_REL_PINNED_SOFT);
5215 }
5216 
5217 static inline void tcp_ack_snd_check(struct sock *sk)
5218 {
5219 	if (!inet_csk_ack_scheduled(sk)) {
5220 		/* We sent a data segment already. */
5221 		return;
5222 	}
5223 	__tcp_ack_snd_check(sk, 1);
5224 }
5225 
5226 /*
5227  *	This routine is only called when we have urgent data
5228  *	signaled. Its the 'slow' part of tcp_urg. It could be
5229  *	moved inline now as tcp_urg is only called from one
5230  *	place. We handle URGent data wrong. We have to - as
5231  *	BSD still doesn't use the correction from RFC961.
5232  *	For 1003.1g we should support a new option TCP_STDURG to permit
5233  *	either form (or just set the sysctl tcp_stdurg).
5234  */
5235 
5236 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5237 {
5238 	struct tcp_sock *tp = tcp_sk(sk);
5239 	u32 ptr = ntohs(th->urg_ptr);
5240 
5241 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5242 		ptr--;
5243 	ptr += ntohl(th->seq);
5244 
5245 	/* Ignore urgent data that we've already seen and read. */
5246 	if (after(tp->copied_seq, ptr))
5247 		return;
5248 
5249 	/* Do not replay urg ptr.
5250 	 *
5251 	 * NOTE: interesting situation not covered by specs.
5252 	 * Misbehaving sender may send urg ptr, pointing to segment,
5253 	 * which we already have in ofo queue. We are not able to fetch
5254 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5255 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5256 	 * situations. But it is worth to think about possibility of some
5257 	 * DoSes using some hypothetical application level deadlock.
5258 	 */
5259 	if (before(ptr, tp->rcv_nxt))
5260 		return;
5261 
5262 	/* Do we already have a newer (or duplicate) urgent pointer? */
5263 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5264 		return;
5265 
5266 	/* Tell the world about our new urgent pointer. */
5267 	sk_send_sigurg(sk);
5268 
5269 	/* We may be adding urgent data when the last byte read was
5270 	 * urgent. To do this requires some care. We cannot just ignore
5271 	 * tp->copied_seq since we would read the last urgent byte again
5272 	 * as data, nor can we alter copied_seq until this data arrives
5273 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5274 	 *
5275 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5276 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5277 	 * and expect that both A and B disappear from stream. This is _wrong_.
5278 	 * Though this happens in BSD with high probability, this is occasional.
5279 	 * Any application relying on this is buggy. Note also, that fix "works"
5280 	 * only in this artificial test. Insert some normal data between A and B and we will
5281 	 * decline of BSD again. Verdict: it is better to remove to trap
5282 	 * buggy users.
5283 	 */
5284 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5285 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5286 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5287 		tp->copied_seq++;
5288 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5289 			__skb_unlink(skb, &sk->sk_receive_queue);
5290 			__kfree_skb(skb);
5291 		}
5292 	}
5293 
5294 	tp->urg_data = TCP_URG_NOTYET;
5295 	tp->urg_seq = ptr;
5296 
5297 	/* Disable header prediction. */
5298 	tp->pred_flags = 0;
5299 }
5300 
5301 /* This is the 'fast' part of urgent handling. */
5302 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5303 {
5304 	struct tcp_sock *tp = tcp_sk(sk);
5305 
5306 	/* Check if we get a new urgent pointer - normally not. */
5307 	if (th->urg)
5308 		tcp_check_urg(sk, th);
5309 
5310 	/* Do we wait for any urgent data? - normally not... */
5311 	if (tp->urg_data == TCP_URG_NOTYET) {
5312 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5313 			  th->syn;
5314 
5315 		/* Is the urgent pointer pointing into this packet? */
5316 		if (ptr < skb->len) {
5317 			u8 tmp;
5318 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5319 				BUG();
5320 			tp->urg_data = TCP_URG_VALID | tmp;
5321 			if (!sock_flag(sk, SOCK_DEAD))
5322 				sk->sk_data_ready(sk);
5323 		}
5324 	}
5325 }
5326 
5327 /* Accept RST for rcv_nxt - 1 after a FIN.
5328  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5329  * FIN is sent followed by a RST packet. The RST is sent with the same
5330  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5331  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5332  * ACKs on the closed socket. In addition middleboxes can drop either the
5333  * challenge ACK or a subsequent RST.
5334  */
5335 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5336 {
5337 	struct tcp_sock *tp = tcp_sk(sk);
5338 
5339 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5340 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5341 					       TCPF_CLOSING));
5342 }
5343 
5344 /* Does PAWS and seqno based validation of an incoming segment, flags will
5345  * play significant role here.
5346  */
5347 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5348 				  const struct tcphdr *th, int syn_inerr)
5349 {
5350 	struct tcp_sock *tp = tcp_sk(sk);
5351 	bool rst_seq_match = false;
5352 
5353 	/* RFC1323: H1. Apply PAWS check first. */
5354 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5355 	    tp->rx_opt.saw_tstamp &&
5356 	    tcp_paws_discard(sk, skb)) {
5357 		if (!th->rst) {
5358 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5359 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5360 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5361 						  &tp->last_oow_ack_time))
5362 				tcp_send_dupack(sk, skb);
5363 			goto discard;
5364 		}
5365 		/* Reset is accepted even if it did not pass PAWS. */
5366 	}
5367 
5368 	/* Step 1: check sequence number */
5369 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5370 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5371 		 * (RST) segments are validated by checking their SEQ-fields."
5372 		 * And page 69: "If an incoming segment is not acceptable,
5373 		 * an acknowledgment should be sent in reply (unless the RST
5374 		 * bit is set, if so drop the segment and return)".
5375 		 */
5376 		if (!th->rst) {
5377 			if (th->syn)
5378 				goto syn_challenge;
5379 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5380 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5381 						  &tp->last_oow_ack_time))
5382 				tcp_send_dupack(sk, skb);
5383 		} else if (tcp_reset_check(sk, skb)) {
5384 			tcp_reset(sk);
5385 		}
5386 		goto discard;
5387 	}
5388 
5389 	/* Step 2: check RST bit */
5390 	if (th->rst) {
5391 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5392 		 * FIN and SACK too if available):
5393 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5394 		 * the right-most SACK block,
5395 		 * then
5396 		 *     RESET the connection
5397 		 * else
5398 		 *     Send a challenge ACK
5399 		 */
5400 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5401 		    tcp_reset_check(sk, skb)) {
5402 			rst_seq_match = true;
5403 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5404 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5405 			int max_sack = sp[0].end_seq;
5406 			int this_sack;
5407 
5408 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5409 			     ++this_sack) {
5410 				max_sack = after(sp[this_sack].end_seq,
5411 						 max_sack) ?
5412 					sp[this_sack].end_seq : max_sack;
5413 			}
5414 
5415 			if (TCP_SKB_CB(skb)->seq == max_sack)
5416 				rst_seq_match = true;
5417 		}
5418 
5419 		if (rst_seq_match)
5420 			tcp_reset(sk);
5421 		else {
5422 			/* Disable TFO if RST is out-of-order
5423 			 * and no data has been received
5424 			 * for current active TFO socket
5425 			 */
5426 			if (tp->syn_fastopen && !tp->data_segs_in &&
5427 			    sk->sk_state == TCP_ESTABLISHED)
5428 				tcp_fastopen_active_disable(sk);
5429 			tcp_send_challenge_ack(sk, skb);
5430 		}
5431 		goto discard;
5432 	}
5433 
5434 	/* step 3: check security and precedence [ignored] */
5435 
5436 	/* step 4: Check for a SYN
5437 	 * RFC 5961 4.2 : Send a challenge ack
5438 	 */
5439 	if (th->syn) {
5440 syn_challenge:
5441 		if (syn_inerr)
5442 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5443 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5444 		tcp_send_challenge_ack(sk, skb);
5445 		goto discard;
5446 	}
5447 
5448 	return true;
5449 
5450 discard:
5451 	tcp_drop(sk, skb);
5452 	return false;
5453 }
5454 
5455 /*
5456  *	TCP receive function for the ESTABLISHED state.
5457  *
5458  *	It is split into a fast path and a slow path. The fast path is
5459  * 	disabled when:
5460  *	- A zero window was announced from us - zero window probing
5461  *        is only handled properly in the slow path.
5462  *	- Out of order segments arrived.
5463  *	- Urgent data is expected.
5464  *	- There is no buffer space left
5465  *	- Unexpected TCP flags/window values/header lengths are received
5466  *	  (detected by checking the TCP header against pred_flags)
5467  *	- Data is sent in both directions. Fast path only supports pure senders
5468  *	  or pure receivers (this means either the sequence number or the ack
5469  *	  value must stay constant)
5470  *	- Unexpected TCP option.
5471  *
5472  *	When these conditions are not satisfied it drops into a standard
5473  *	receive procedure patterned after RFC793 to handle all cases.
5474  *	The first three cases are guaranteed by proper pred_flags setting,
5475  *	the rest is checked inline. Fast processing is turned on in
5476  *	tcp_data_queue when everything is OK.
5477  */
5478 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5479 {
5480 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5481 	struct tcp_sock *tp = tcp_sk(sk);
5482 	unsigned int len = skb->len;
5483 
5484 	/* TCP congestion window tracking */
5485 	trace_tcp_probe(sk, skb);
5486 
5487 	tcp_mstamp_refresh(tp);
5488 	if (unlikely(!sk->sk_rx_dst))
5489 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5490 	/*
5491 	 *	Header prediction.
5492 	 *	The code loosely follows the one in the famous
5493 	 *	"30 instruction TCP receive" Van Jacobson mail.
5494 	 *
5495 	 *	Van's trick is to deposit buffers into socket queue
5496 	 *	on a device interrupt, to call tcp_recv function
5497 	 *	on the receive process context and checksum and copy
5498 	 *	the buffer to user space. smart...
5499 	 *
5500 	 *	Our current scheme is not silly either but we take the
5501 	 *	extra cost of the net_bh soft interrupt processing...
5502 	 *	We do checksum and copy also but from device to kernel.
5503 	 */
5504 
5505 	tp->rx_opt.saw_tstamp = 0;
5506 
5507 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5508 	 *	if header_prediction is to be made
5509 	 *	'S' will always be tp->tcp_header_len >> 2
5510 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5511 	 *  turn it off	(when there are holes in the receive
5512 	 *	 space for instance)
5513 	 *	PSH flag is ignored.
5514 	 */
5515 
5516 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5517 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5518 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5519 		int tcp_header_len = tp->tcp_header_len;
5520 
5521 		/* Timestamp header prediction: tcp_header_len
5522 		 * is automatically equal to th->doff*4 due to pred_flags
5523 		 * match.
5524 		 */
5525 
5526 		/* Check timestamp */
5527 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5528 			/* No? Slow path! */
5529 			if (!tcp_parse_aligned_timestamp(tp, th))
5530 				goto slow_path;
5531 
5532 			/* If PAWS failed, check it more carefully in slow path */
5533 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5534 				goto slow_path;
5535 
5536 			/* DO NOT update ts_recent here, if checksum fails
5537 			 * and timestamp was corrupted part, it will result
5538 			 * in a hung connection since we will drop all
5539 			 * future packets due to the PAWS test.
5540 			 */
5541 		}
5542 
5543 		if (len <= tcp_header_len) {
5544 			/* Bulk data transfer: sender */
5545 			if (len == tcp_header_len) {
5546 				/* Predicted packet is in window by definition.
5547 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5548 				 * Hence, check seq<=rcv_wup reduces to:
5549 				 */
5550 				if (tcp_header_len ==
5551 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5552 				    tp->rcv_nxt == tp->rcv_wup)
5553 					tcp_store_ts_recent(tp);
5554 
5555 				/* We know that such packets are checksummed
5556 				 * on entry.
5557 				 */
5558 				tcp_ack(sk, skb, 0);
5559 				__kfree_skb(skb);
5560 				tcp_data_snd_check(sk);
5561 				/* When receiving pure ack in fast path, update
5562 				 * last ts ecr directly instead of calling
5563 				 * tcp_rcv_rtt_measure_ts()
5564 				 */
5565 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5566 				return;
5567 			} else { /* Header too small */
5568 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5569 				goto discard;
5570 			}
5571 		} else {
5572 			int eaten = 0;
5573 			bool fragstolen = false;
5574 
5575 			if (tcp_checksum_complete(skb))
5576 				goto csum_error;
5577 
5578 			if ((int)skb->truesize > sk->sk_forward_alloc)
5579 				goto step5;
5580 
5581 			/* Predicted packet is in window by definition.
5582 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5583 			 * Hence, check seq<=rcv_wup reduces to:
5584 			 */
5585 			if (tcp_header_len ==
5586 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5587 			    tp->rcv_nxt == tp->rcv_wup)
5588 				tcp_store_ts_recent(tp);
5589 
5590 			tcp_rcv_rtt_measure_ts(sk, skb);
5591 
5592 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5593 
5594 			/* Bulk data transfer: receiver */
5595 			__skb_pull(skb, tcp_header_len);
5596 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5597 
5598 			tcp_event_data_recv(sk, skb);
5599 
5600 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5601 				/* Well, only one small jumplet in fast path... */
5602 				tcp_ack(sk, skb, FLAG_DATA);
5603 				tcp_data_snd_check(sk);
5604 				if (!inet_csk_ack_scheduled(sk))
5605 					goto no_ack;
5606 			}
5607 
5608 			__tcp_ack_snd_check(sk, 0);
5609 no_ack:
5610 			if (eaten)
5611 				kfree_skb_partial(skb, fragstolen);
5612 			tcp_data_ready(sk);
5613 			return;
5614 		}
5615 	}
5616 
5617 slow_path:
5618 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5619 		goto csum_error;
5620 
5621 	if (!th->ack && !th->rst && !th->syn)
5622 		goto discard;
5623 
5624 	/*
5625 	 *	Standard slow path.
5626 	 */
5627 
5628 	if (!tcp_validate_incoming(sk, skb, th, 1))
5629 		return;
5630 
5631 step5:
5632 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5633 		goto discard;
5634 
5635 	tcp_rcv_rtt_measure_ts(sk, skb);
5636 
5637 	/* Process urgent data. */
5638 	tcp_urg(sk, skb, th);
5639 
5640 	/* step 7: process the segment text */
5641 	tcp_data_queue(sk, skb);
5642 
5643 	tcp_data_snd_check(sk);
5644 	tcp_ack_snd_check(sk);
5645 	return;
5646 
5647 csum_error:
5648 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5649 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5650 
5651 discard:
5652 	tcp_drop(sk, skb);
5653 }
5654 EXPORT_SYMBOL(tcp_rcv_established);
5655 
5656 void tcp_init_transfer(struct sock *sk, int bpf_op)
5657 {
5658 	struct inet_connection_sock *icsk = inet_csk(sk);
5659 	struct tcp_sock *tp = tcp_sk(sk);
5660 
5661 	tcp_mtup_init(sk);
5662 	icsk->icsk_af_ops->rebuild_header(sk);
5663 	tcp_init_metrics(sk);
5664 
5665 	/* Initialize the congestion window to start the transfer.
5666 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5667 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5668 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5669 	 * retransmission has occurred.
5670 	 */
5671 	if (tp->total_retrans > 1 && tp->undo_marker)
5672 		tp->snd_cwnd = 1;
5673 	else
5674 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5675 	tp->snd_cwnd_stamp = tcp_jiffies32;
5676 
5677 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5678 	tcp_init_congestion_control(sk);
5679 	tcp_init_buffer_space(sk);
5680 }
5681 
5682 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5683 {
5684 	struct tcp_sock *tp = tcp_sk(sk);
5685 	struct inet_connection_sock *icsk = inet_csk(sk);
5686 
5687 	tcp_set_state(sk, TCP_ESTABLISHED);
5688 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5689 
5690 	if (skb) {
5691 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5692 		security_inet_conn_established(sk, skb);
5693 		sk_mark_napi_id(sk, skb);
5694 	}
5695 
5696 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5697 
5698 	/* Prevent spurious tcp_cwnd_restart() on first data
5699 	 * packet.
5700 	 */
5701 	tp->lsndtime = tcp_jiffies32;
5702 
5703 	if (sock_flag(sk, SOCK_KEEPOPEN))
5704 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5705 
5706 	if (!tp->rx_opt.snd_wscale)
5707 		__tcp_fast_path_on(tp, tp->snd_wnd);
5708 	else
5709 		tp->pred_flags = 0;
5710 }
5711 
5712 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5713 				    struct tcp_fastopen_cookie *cookie)
5714 {
5715 	struct tcp_sock *tp = tcp_sk(sk);
5716 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5717 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5718 	bool syn_drop = false;
5719 
5720 	if (mss == tp->rx_opt.user_mss) {
5721 		struct tcp_options_received opt;
5722 
5723 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5724 		tcp_clear_options(&opt);
5725 		opt.user_mss = opt.mss_clamp = 0;
5726 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5727 		mss = opt.mss_clamp;
5728 	}
5729 
5730 	if (!tp->syn_fastopen) {
5731 		/* Ignore an unsolicited cookie */
5732 		cookie->len = -1;
5733 	} else if (tp->total_retrans) {
5734 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5735 		 * acknowledges data. Presumably the remote received only
5736 		 * the retransmitted (regular) SYNs: either the original
5737 		 * SYN-data or the corresponding SYN-ACK was dropped.
5738 		 */
5739 		syn_drop = (cookie->len < 0 && data);
5740 	} else if (cookie->len < 0 && !tp->syn_data) {
5741 		/* We requested a cookie but didn't get it. If we did not use
5742 		 * the (old) exp opt format then try so next time (try_exp=1).
5743 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5744 		 */
5745 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5746 	}
5747 
5748 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5749 
5750 	if (data) { /* Retransmit unacked data in SYN */
5751 		skb_rbtree_walk_from(data) {
5752 			if (__tcp_retransmit_skb(sk, data, 1))
5753 				break;
5754 		}
5755 		tcp_rearm_rto(sk);
5756 		NET_INC_STATS(sock_net(sk),
5757 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5758 		return true;
5759 	}
5760 	tp->syn_data_acked = tp->syn_data;
5761 	if (tp->syn_data_acked) {
5762 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5763 		/* SYN-data is counted as two separate packets in tcp_ack() */
5764 		if (tp->delivered > 1)
5765 			--tp->delivered;
5766 	}
5767 
5768 	tcp_fastopen_add_skb(sk, synack);
5769 
5770 	return false;
5771 }
5772 
5773 static void smc_check_reset_syn(struct tcp_sock *tp)
5774 {
5775 #if IS_ENABLED(CONFIG_SMC)
5776 	if (static_branch_unlikely(&tcp_have_smc)) {
5777 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5778 			tp->syn_smc = 0;
5779 	}
5780 #endif
5781 }
5782 
5783 static void tcp_try_undo_spurious_syn(struct sock *sk)
5784 {
5785 	struct tcp_sock *tp = tcp_sk(sk);
5786 	u32 syn_stamp;
5787 
5788 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5789 	 * spurious if the ACK's timestamp option echo value matches the
5790 	 * original SYN timestamp.
5791 	 */
5792 	syn_stamp = tp->retrans_stamp;
5793 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5794 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5795 		tp->undo_marker = 0;
5796 }
5797 
5798 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5799 					 const struct tcphdr *th)
5800 {
5801 	struct inet_connection_sock *icsk = inet_csk(sk);
5802 	struct tcp_sock *tp = tcp_sk(sk);
5803 	struct tcp_fastopen_cookie foc = { .len = -1 };
5804 	int saved_clamp = tp->rx_opt.mss_clamp;
5805 	bool fastopen_fail;
5806 
5807 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5808 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5809 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5810 
5811 	if (th->ack) {
5812 		/* rfc793:
5813 		 * "If the state is SYN-SENT then
5814 		 *    first check the ACK bit
5815 		 *      If the ACK bit is set
5816 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5817 		 *        a reset (unless the RST bit is set, if so drop
5818 		 *        the segment and return)"
5819 		 */
5820 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5821 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5822 			goto reset_and_undo;
5823 
5824 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5825 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5826 			     tcp_time_stamp(tp))) {
5827 			NET_INC_STATS(sock_net(sk),
5828 					LINUX_MIB_PAWSACTIVEREJECTED);
5829 			goto reset_and_undo;
5830 		}
5831 
5832 		/* Now ACK is acceptable.
5833 		 *
5834 		 * "If the RST bit is set
5835 		 *    If the ACK was acceptable then signal the user "error:
5836 		 *    connection reset", drop the segment, enter CLOSED state,
5837 		 *    delete TCB, and return."
5838 		 */
5839 
5840 		if (th->rst) {
5841 			tcp_reset(sk);
5842 			goto discard;
5843 		}
5844 
5845 		/* rfc793:
5846 		 *   "fifth, if neither of the SYN or RST bits is set then
5847 		 *    drop the segment and return."
5848 		 *
5849 		 *    See note below!
5850 		 *                                        --ANK(990513)
5851 		 */
5852 		if (!th->syn)
5853 			goto discard_and_undo;
5854 
5855 		/* rfc793:
5856 		 *   "If the SYN bit is on ...
5857 		 *    are acceptable then ...
5858 		 *    (our SYN has been ACKed), change the connection
5859 		 *    state to ESTABLISHED..."
5860 		 */
5861 
5862 		tcp_ecn_rcv_synack(tp, th);
5863 
5864 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5865 		tcp_try_undo_spurious_syn(sk);
5866 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5867 
5868 		/* Ok.. it's good. Set up sequence numbers and
5869 		 * move to established.
5870 		 */
5871 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5872 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5873 
5874 		/* RFC1323: The window in SYN & SYN/ACK segments is
5875 		 * never scaled.
5876 		 */
5877 		tp->snd_wnd = ntohs(th->window);
5878 
5879 		if (!tp->rx_opt.wscale_ok) {
5880 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5881 			tp->window_clamp = min(tp->window_clamp, 65535U);
5882 		}
5883 
5884 		if (tp->rx_opt.saw_tstamp) {
5885 			tp->rx_opt.tstamp_ok	   = 1;
5886 			tp->tcp_header_len =
5887 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5888 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5889 			tcp_store_ts_recent(tp);
5890 		} else {
5891 			tp->tcp_header_len = sizeof(struct tcphdr);
5892 		}
5893 
5894 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5895 		tcp_initialize_rcv_mss(sk);
5896 
5897 		/* Remember, tcp_poll() does not lock socket!
5898 		 * Change state from SYN-SENT only after copied_seq
5899 		 * is initialized. */
5900 		tp->copied_seq = tp->rcv_nxt;
5901 
5902 		smc_check_reset_syn(tp);
5903 
5904 		smp_mb();
5905 
5906 		tcp_finish_connect(sk, skb);
5907 
5908 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5909 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5910 
5911 		if (!sock_flag(sk, SOCK_DEAD)) {
5912 			sk->sk_state_change(sk);
5913 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5914 		}
5915 		if (fastopen_fail)
5916 			return -1;
5917 		if (sk->sk_write_pending ||
5918 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5919 		    inet_csk_in_pingpong_mode(sk)) {
5920 			/* Save one ACK. Data will be ready after
5921 			 * several ticks, if write_pending is set.
5922 			 *
5923 			 * It may be deleted, but with this feature tcpdumps
5924 			 * look so _wonderfully_ clever, that I was not able
5925 			 * to stand against the temptation 8)     --ANK
5926 			 */
5927 			inet_csk_schedule_ack(sk);
5928 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5929 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5930 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5931 
5932 discard:
5933 			tcp_drop(sk, skb);
5934 			return 0;
5935 		} else {
5936 			tcp_send_ack(sk);
5937 		}
5938 		return -1;
5939 	}
5940 
5941 	/* No ACK in the segment */
5942 
5943 	if (th->rst) {
5944 		/* rfc793:
5945 		 * "If the RST bit is set
5946 		 *
5947 		 *      Otherwise (no ACK) drop the segment and return."
5948 		 */
5949 
5950 		goto discard_and_undo;
5951 	}
5952 
5953 	/* PAWS check. */
5954 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5955 	    tcp_paws_reject(&tp->rx_opt, 0))
5956 		goto discard_and_undo;
5957 
5958 	if (th->syn) {
5959 		/* We see SYN without ACK. It is attempt of
5960 		 * simultaneous connect with crossed SYNs.
5961 		 * Particularly, it can be connect to self.
5962 		 */
5963 		tcp_set_state(sk, TCP_SYN_RECV);
5964 
5965 		if (tp->rx_opt.saw_tstamp) {
5966 			tp->rx_opt.tstamp_ok = 1;
5967 			tcp_store_ts_recent(tp);
5968 			tp->tcp_header_len =
5969 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5970 		} else {
5971 			tp->tcp_header_len = sizeof(struct tcphdr);
5972 		}
5973 
5974 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5975 		tp->copied_seq = tp->rcv_nxt;
5976 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5977 
5978 		/* RFC1323: The window in SYN & SYN/ACK segments is
5979 		 * never scaled.
5980 		 */
5981 		tp->snd_wnd    = ntohs(th->window);
5982 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5983 		tp->max_window = tp->snd_wnd;
5984 
5985 		tcp_ecn_rcv_syn(tp, th);
5986 
5987 		tcp_mtup_init(sk);
5988 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5989 		tcp_initialize_rcv_mss(sk);
5990 
5991 		tcp_send_synack(sk);
5992 #if 0
5993 		/* Note, we could accept data and URG from this segment.
5994 		 * There are no obstacles to make this (except that we must
5995 		 * either change tcp_recvmsg() to prevent it from returning data
5996 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5997 		 *
5998 		 * However, if we ignore data in ACKless segments sometimes,
5999 		 * we have no reasons to accept it sometimes.
6000 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6001 		 * is not flawless. So, discard packet for sanity.
6002 		 * Uncomment this return to process the data.
6003 		 */
6004 		return -1;
6005 #else
6006 		goto discard;
6007 #endif
6008 	}
6009 	/* "fifth, if neither of the SYN or RST bits is set then
6010 	 * drop the segment and return."
6011 	 */
6012 
6013 discard_and_undo:
6014 	tcp_clear_options(&tp->rx_opt);
6015 	tp->rx_opt.mss_clamp = saved_clamp;
6016 	goto discard;
6017 
6018 reset_and_undo:
6019 	tcp_clear_options(&tp->rx_opt);
6020 	tp->rx_opt.mss_clamp = saved_clamp;
6021 	return 1;
6022 }
6023 
6024 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6025 {
6026 	tcp_try_undo_loss(sk, false);
6027 
6028 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6029 	tcp_sk(sk)->retrans_stamp = 0;
6030 	inet_csk(sk)->icsk_retransmits = 0;
6031 
6032 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6033 	 * we no longer need req so release it.
6034 	 */
6035 	reqsk_fastopen_remove(sk, tcp_sk(sk)->fastopen_rsk, false);
6036 
6037 	/* Re-arm the timer because data may have been sent out.
6038 	 * This is similar to the regular data transmission case
6039 	 * when new data has just been ack'ed.
6040 	 *
6041 	 * (TFO) - we could try to be more aggressive and
6042 	 * retransmitting any data sooner based on when they
6043 	 * are sent out.
6044 	 */
6045 	tcp_rearm_rto(sk);
6046 }
6047 
6048 /*
6049  *	This function implements the receiving procedure of RFC 793 for
6050  *	all states except ESTABLISHED and TIME_WAIT.
6051  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6052  *	address independent.
6053  */
6054 
6055 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6056 {
6057 	struct tcp_sock *tp = tcp_sk(sk);
6058 	struct inet_connection_sock *icsk = inet_csk(sk);
6059 	const struct tcphdr *th = tcp_hdr(skb);
6060 	struct request_sock *req;
6061 	int queued = 0;
6062 	bool acceptable;
6063 
6064 	switch (sk->sk_state) {
6065 	case TCP_CLOSE:
6066 		goto discard;
6067 
6068 	case TCP_LISTEN:
6069 		if (th->ack)
6070 			return 1;
6071 
6072 		if (th->rst)
6073 			goto discard;
6074 
6075 		if (th->syn) {
6076 			if (th->fin)
6077 				goto discard;
6078 			/* It is possible that we process SYN packets from backlog,
6079 			 * so we need to make sure to disable BH and RCU right there.
6080 			 */
6081 			rcu_read_lock();
6082 			local_bh_disable();
6083 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6084 			local_bh_enable();
6085 			rcu_read_unlock();
6086 
6087 			if (!acceptable)
6088 				return 1;
6089 			consume_skb(skb);
6090 			return 0;
6091 		}
6092 		goto discard;
6093 
6094 	case TCP_SYN_SENT:
6095 		tp->rx_opt.saw_tstamp = 0;
6096 		tcp_mstamp_refresh(tp);
6097 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6098 		if (queued >= 0)
6099 			return queued;
6100 
6101 		/* Do step6 onward by hand. */
6102 		tcp_urg(sk, skb, th);
6103 		__kfree_skb(skb);
6104 		tcp_data_snd_check(sk);
6105 		return 0;
6106 	}
6107 
6108 	tcp_mstamp_refresh(tp);
6109 	tp->rx_opt.saw_tstamp = 0;
6110 	req = tp->fastopen_rsk;
6111 	if (req) {
6112 		bool req_stolen;
6113 
6114 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6115 		    sk->sk_state != TCP_FIN_WAIT1);
6116 
6117 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6118 			goto discard;
6119 	}
6120 
6121 	if (!th->ack && !th->rst && !th->syn)
6122 		goto discard;
6123 
6124 	if (!tcp_validate_incoming(sk, skb, th, 0))
6125 		return 0;
6126 
6127 	/* step 5: check the ACK field */
6128 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6129 				      FLAG_UPDATE_TS_RECENT |
6130 				      FLAG_NO_CHALLENGE_ACK) > 0;
6131 
6132 	if (!acceptable) {
6133 		if (sk->sk_state == TCP_SYN_RECV)
6134 			return 1;	/* send one RST */
6135 		tcp_send_challenge_ack(sk, skb);
6136 		goto discard;
6137 	}
6138 	switch (sk->sk_state) {
6139 	case TCP_SYN_RECV:
6140 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6141 		if (!tp->srtt_us)
6142 			tcp_synack_rtt_meas(sk, req);
6143 
6144 		if (req) {
6145 			tcp_rcv_synrecv_state_fastopen(sk);
6146 		} else {
6147 			tcp_try_undo_spurious_syn(sk);
6148 			tp->retrans_stamp = 0;
6149 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6150 			tp->copied_seq = tp->rcv_nxt;
6151 		}
6152 		smp_mb();
6153 		tcp_set_state(sk, TCP_ESTABLISHED);
6154 		sk->sk_state_change(sk);
6155 
6156 		/* Note, that this wakeup is only for marginal crossed SYN case.
6157 		 * Passively open sockets are not waked up, because
6158 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6159 		 */
6160 		if (sk->sk_socket)
6161 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6162 
6163 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6164 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6165 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6166 
6167 		if (tp->rx_opt.tstamp_ok)
6168 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6169 
6170 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6171 			tcp_update_pacing_rate(sk);
6172 
6173 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6174 		tp->lsndtime = tcp_jiffies32;
6175 
6176 		tcp_initialize_rcv_mss(sk);
6177 		tcp_fast_path_on(tp);
6178 		break;
6179 
6180 	case TCP_FIN_WAIT1: {
6181 		int tmo;
6182 
6183 		if (req)
6184 			tcp_rcv_synrecv_state_fastopen(sk);
6185 
6186 		if (tp->snd_una != tp->write_seq)
6187 			break;
6188 
6189 		tcp_set_state(sk, TCP_FIN_WAIT2);
6190 		sk->sk_shutdown |= SEND_SHUTDOWN;
6191 
6192 		sk_dst_confirm(sk);
6193 
6194 		if (!sock_flag(sk, SOCK_DEAD)) {
6195 			/* Wake up lingering close() */
6196 			sk->sk_state_change(sk);
6197 			break;
6198 		}
6199 
6200 		if (tp->linger2 < 0) {
6201 			tcp_done(sk);
6202 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6203 			return 1;
6204 		}
6205 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6206 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6207 			/* Receive out of order FIN after close() */
6208 			if (tp->syn_fastopen && th->fin)
6209 				tcp_fastopen_active_disable(sk);
6210 			tcp_done(sk);
6211 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6212 			return 1;
6213 		}
6214 
6215 		tmo = tcp_fin_time(sk);
6216 		if (tmo > TCP_TIMEWAIT_LEN) {
6217 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6218 		} else if (th->fin || sock_owned_by_user(sk)) {
6219 			/* Bad case. We could lose such FIN otherwise.
6220 			 * It is not a big problem, but it looks confusing
6221 			 * and not so rare event. We still can lose it now,
6222 			 * if it spins in bh_lock_sock(), but it is really
6223 			 * marginal case.
6224 			 */
6225 			inet_csk_reset_keepalive_timer(sk, tmo);
6226 		} else {
6227 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6228 			goto discard;
6229 		}
6230 		break;
6231 	}
6232 
6233 	case TCP_CLOSING:
6234 		if (tp->snd_una == tp->write_seq) {
6235 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6236 			goto discard;
6237 		}
6238 		break;
6239 
6240 	case TCP_LAST_ACK:
6241 		if (tp->snd_una == tp->write_seq) {
6242 			tcp_update_metrics(sk);
6243 			tcp_done(sk);
6244 			goto discard;
6245 		}
6246 		break;
6247 	}
6248 
6249 	/* step 6: check the URG bit */
6250 	tcp_urg(sk, skb, th);
6251 
6252 	/* step 7: process the segment text */
6253 	switch (sk->sk_state) {
6254 	case TCP_CLOSE_WAIT:
6255 	case TCP_CLOSING:
6256 	case TCP_LAST_ACK:
6257 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6258 			break;
6259 		/* fall through */
6260 	case TCP_FIN_WAIT1:
6261 	case TCP_FIN_WAIT2:
6262 		/* RFC 793 says to queue data in these states,
6263 		 * RFC 1122 says we MUST send a reset.
6264 		 * BSD 4.4 also does reset.
6265 		 */
6266 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6267 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6268 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6269 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6270 				tcp_reset(sk);
6271 				return 1;
6272 			}
6273 		}
6274 		/* Fall through */
6275 	case TCP_ESTABLISHED:
6276 		tcp_data_queue(sk, skb);
6277 		queued = 1;
6278 		break;
6279 	}
6280 
6281 	/* tcp_data could move socket to TIME-WAIT */
6282 	if (sk->sk_state != TCP_CLOSE) {
6283 		tcp_data_snd_check(sk);
6284 		tcp_ack_snd_check(sk);
6285 	}
6286 
6287 	if (!queued) {
6288 discard:
6289 		tcp_drop(sk, skb);
6290 	}
6291 	return 0;
6292 }
6293 EXPORT_SYMBOL(tcp_rcv_state_process);
6294 
6295 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6296 {
6297 	struct inet_request_sock *ireq = inet_rsk(req);
6298 
6299 	if (family == AF_INET)
6300 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6301 				    &ireq->ir_rmt_addr, port);
6302 #if IS_ENABLED(CONFIG_IPV6)
6303 	else if (family == AF_INET6)
6304 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6305 				    &ireq->ir_v6_rmt_addr, port);
6306 #endif
6307 }
6308 
6309 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6310  *
6311  * If we receive a SYN packet with these bits set, it means a
6312  * network is playing bad games with TOS bits. In order to
6313  * avoid possible false congestion notifications, we disable
6314  * TCP ECN negotiation.
6315  *
6316  * Exception: tcp_ca wants ECN. This is required for DCTCP
6317  * congestion control: Linux DCTCP asserts ECT on all packets,
6318  * including SYN, which is most optimal solution; however,
6319  * others, such as FreeBSD do not.
6320  *
6321  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6322  * set, indicating the use of a future TCP extension (such as AccECN). See
6323  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6324  * extensions.
6325  */
6326 static void tcp_ecn_create_request(struct request_sock *req,
6327 				   const struct sk_buff *skb,
6328 				   const struct sock *listen_sk,
6329 				   const struct dst_entry *dst)
6330 {
6331 	const struct tcphdr *th = tcp_hdr(skb);
6332 	const struct net *net = sock_net(listen_sk);
6333 	bool th_ecn = th->ece && th->cwr;
6334 	bool ect, ecn_ok;
6335 	u32 ecn_ok_dst;
6336 
6337 	if (!th_ecn)
6338 		return;
6339 
6340 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6341 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6342 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6343 
6344 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6345 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6346 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6347 		inet_rsk(req)->ecn_ok = 1;
6348 }
6349 
6350 static void tcp_openreq_init(struct request_sock *req,
6351 			     const struct tcp_options_received *rx_opt,
6352 			     struct sk_buff *skb, const struct sock *sk)
6353 {
6354 	struct inet_request_sock *ireq = inet_rsk(req);
6355 
6356 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6357 	req->cookie_ts = 0;
6358 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6359 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6360 	tcp_rsk(req)->snt_synack = 0;
6361 	tcp_rsk(req)->last_oow_ack_time = 0;
6362 	req->mss = rx_opt->mss_clamp;
6363 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6364 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6365 	ireq->sack_ok = rx_opt->sack_ok;
6366 	ireq->snd_wscale = rx_opt->snd_wscale;
6367 	ireq->wscale_ok = rx_opt->wscale_ok;
6368 	ireq->acked = 0;
6369 	ireq->ecn_ok = 0;
6370 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6371 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6372 	ireq->ir_mark = inet_request_mark(sk, skb);
6373 #if IS_ENABLED(CONFIG_SMC)
6374 	ireq->smc_ok = rx_opt->smc_ok;
6375 #endif
6376 }
6377 
6378 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6379 				      struct sock *sk_listener,
6380 				      bool attach_listener)
6381 {
6382 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6383 					       attach_listener);
6384 
6385 	if (req) {
6386 		struct inet_request_sock *ireq = inet_rsk(req);
6387 
6388 		ireq->ireq_opt = NULL;
6389 #if IS_ENABLED(CONFIG_IPV6)
6390 		ireq->pktopts = NULL;
6391 #endif
6392 		atomic64_set(&ireq->ir_cookie, 0);
6393 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6394 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6395 		ireq->ireq_family = sk_listener->sk_family;
6396 	}
6397 
6398 	return req;
6399 }
6400 EXPORT_SYMBOL(inet_reqsk_alloc);
6401 
6402 /*
6403  * Return true if a syncookie should be sent
6404  */
6405 static bool tcp_syn_flood_action(const struct sock *sk,
6406 				 const struct sk_buff *skb,
6407 				 const char *proto)
6408 {
6409 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6410 	const char *msg = "Dropping request";
6411 	bool want_cookie = false;
6412 	struct net *net = sock_net(sk);
6413 
6414 #ifdef CONFIG_SYN_COOKIES
6415 	if (net->ipv4.sysctl_tcp_syncookies) {
6416 		msg = "Sending cookies";
6417 		want_cookie = true;
6418 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6419 	} else
6420 #endif
6421 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6422 
6423 	if (!queue->synflood_warned &&
6424 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6425 	    xchg(&queue->synflood_warned, 1) == 0)
6426 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6427 				     proto, ntohs(tcp_hdr(skb)->dest), msg);
6428 
6429 	return want_cookie;
6430 }
6431 
6432 static void tcp_reqsk_record_syn(const struct sock *sk,
6433 				 struct request_sock *req,
6434 				 const struct sk_buff *skb)
6435 {
6436 	if (tcp_sk(sk)->save_syn) {
6437 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6438 		u32 *copy;
6439 
6440 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6441 		if (copy) {
6442 			copy[0] = len;
6443 			memcpy(&copy[1], skb_network_header(skb), len);
6444 			req->saved_syn = copy;
6445 		}
6446 	}
6447 }
6448 
6449 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6450 		     const struct tcp_request_sock_ops *af_ops,
6451 		     struct sock *sk, struct sk_buff *skb)
6452 {
6453 	struct tcp_fastopen_cookie foc = { .len = -1 };
6454 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6455 	struct tcp_options_received tmp_opt;
6456 	struct tcp_sock *tp = tcp_sk(sk);
6457 	struct net *net = sock_net(sk);
6458 	struct sock *fastopen_sk = NULL;
6459 	struct request_sock *req;
6460 	bool want_cookie = false;
6461 	struct dst_entry *dst;
6462 	struct flowi fl;
6463 
6464 	/* TW buckets are converted to open requests without
6465 	 * limitations, they conserve resources and peer is
6466 	 * evidently real one.
6467 	 */
6468 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6469 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6470 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6471 		if (!want_cookie)
6472 			goto drop;
6473 	}
6474 
6475 	if (sk_acceptq_is_full(sk)) {
6476 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6477 		goto drop;
6478 	}
6479 
6480 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6481 	if (!req)
6482 		goto drop;
6483 
6484 	tcp_rsk(req)->af_specific = af_ops;
6485 	tcp_rsk(req)->ts_off = 0;
6486 
6487 	tcp_clear_options(&tmp_opt);
6488 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6489 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6490 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6491 			  want_cookie ? NULL : &foc);
6492 
6493 	if (want_cookie && !tmp_opt.saw_tstamp)
6494 		tcp_clear_options(&tmp_opt);
6495 
6496 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6497 		tmp_opt.smc_ok = 0;
6498 
6499 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6500 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6501 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6502 
6503 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6504 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6505 
6506 	af_ops->init_req(req, sk, skb);
6507 
6508 	if (security_inet_conn_request(sk, skb, req))
6509 		goto drop_and_free;
6510 
6511 	if (tmp_opt.tstamp_ok)
6512 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6513 
6514 	dst = af_ops->route_req(sk, &fl, req);
6515 	if (!dst)
6516 		goto drop_and_free;
6517 
6518 	if (!want_cookie && !isn) {
6519 		/* Kill the following clause, if you dislike this way. */
6520 		if (!net->ipv4.sysctl_tcp_syncookies &&
6521 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6522 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6523 		    !tcp_peer_is_proven(req, dst)) {
6524 			/* Without syncookies last quarter of
6525 			 * backlog is filled with destinations,
6526 			 * proven to be alive.
6527 			 * It means that we continue to communicate
6528 			 * to destinations, already remembered
6529 			 * to the moment of synflood.
6530 			 */
6531 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6532 				    rsk_ops->family);
6533 			goto drop_and_release;
6534 		}
6535 
6536 		isn = af_ops->init_seq(skb);
6537 	}
6538 
6539 	tcp_ecn_create_request(req, skb, sk, dst);
6540 
6541 	if (want_cookie) {
6542 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6543 		req->cookie_ts = tmp_opt.tstamp_ok;
6544 		if (!tmp_opt.tstamp_ok)
6545 			inet_rsk(req)->ecn_ok = 0;
6546 	}
6547 
6548 	tcp_rsk(req)->snt_isn = isn;
6549 	tcp_rsk(req)->txhash = net_tx_rndhash();
6550 	tcp_openreq_init_rwin(req, sk, dst);
6551 	sk_rx_queue_set(req_to_sk(req), skb);
6552 	if (!want_cookie) {
6553 		tcp_reqsk_record_syn(sk, req, skb);
6554 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6555 	}
6556 	if (fastopen_sk) {
6557 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6558 				    &foc, TCP_SYNACK_FASTOPEN);
6559 		/* Add the child socket directly into the accept queue */
6560 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6561 			reqsk_fastopen_remove(fastopen_sk, req, false);
6562 			bh_unlock_sock(fastopen_sk);
6563 			sock_put(fastopen_sk);
6564 			goto drop_and_free;
6565 		}
6566 		sk->sk_data_ready(sk);
6567 		bh_unlock_sock(fastopen_sk);
6568 		sock_put(fastopen_sk);
6569 	} else {
6570 		tcp_rsk(req)->tfo_listener = false;
6571 		if (!want_cookie)
6572 			inet_csk_reqsk_queue_hash_add(sk, req,
6573 				tcp_timeout_init((struct sock *)req));
6574 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6575 				    !want_cookie ? TCP_SYNACK_NORMAL :
6576 						   TCP_SYNACK_COOKIE);
6577 		if (want_cookie) {
6578 			reqsk_free(req);
6579 			return 0;
6580 		}
6581 	}
6582 	reqsk_put(req);
6583 	return 0;
6584 
6585 drop_and_release:
6586 	dst_release(dst);
6587 drop_and_free:
6588 	__reqsk_free(req);
6589 drop:
6590 	tcp_listendrop(sk);
6591 	return 0;
6592 }
6593 EXPORT_SYMBOL(tcp_conn_request);
6594