xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 6e0e846ee2ab01bc44254e6a0a6a6a0db1cba16d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 	} else {
247 		/* Otherwise, we make more careful check taking into account,
248 		 * that SACKs block is variable.
249 		 *
250 		 * "len" is invariant segment length, including TCP header.
251 		 */
252 		len += skb->data - skb_transport_header(skb);
253 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 		    /* If PSH is not set, packet should be
255 		     * full sized, provided peer TCP is not badly broken.
256 		     * This observation (if it is correct 8)) allows
257 		     * to handle super-low mtu links fairly.
258 		     */
259 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 			/* Subtract also invariant (if peer is RFC compliant),
262 			 * tcp header plus fixed timestamp option length.
263 			 * Resulting "len" is MSS free of SACK jitter.
264 			 */
265 			len -= tcp_sk(sk)->tcp_header_len;
266 			icsk->icsk_ack.last_seg_size = len;
267 			if (len == lss) {
268 				icsk->icsk_ack.rcv_mss = len;
269 				return;
270 			}
271 		}
272 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 	}
276 }
277 
278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 	struct inet_connection_sock *icsk = inet_csk(sk);
281 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282 
283 	if (quickacks == 0)
284 		quickacks = 2;
285 	quickacks = min(quickacks, max_quickacks);
286 	if (quickacks > icsk->icsk_ack.quick)
287 		icsk->icsk_ack.quick = quickacks;
288 }
289 
290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 	struct inet_connection_sock *icsk = inet_csk(sk);
293 
294 	tcp_incr_quickack(sk, max_quickacks);
295 	inet_csk_exit_pingpong_mode(sk);
296 	icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 
300 /* Send ACKs quickly, if "quick" count is not exhausted
301  * and the session is not interactive.
302  */
303 
304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 	const struct inet_connection_sock *icsk = inet_csk(sk);
307 	const struct dst_entry *dst = __sk_dst_get(sk);
308 
309 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312 
313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 	if (tp->ecn_flags & TCP_ECN_OK)
316 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318 
319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 	if (tcp_hdr(skb)->cwr) {
322 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 
324 		/* If the sender is telling us it has entered CWR, then its
325 		 * cwnd may be very low (even just 1 packet), so we should ACK
326 		 * immediately.
327 		 */
328 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 	}
331 }
332 
333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337 
338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 	case INET_ECN_NOT_ECT:
344 		/* Funny extension: if ECT is not set on a segment,
345 		 * and we already seen ECT on a previous segment,
346 		 * it is probably a retransmit.
347 		 */
348 		if (tp->ecn_flags & TCP_ECN_SEEN)
349 			tcp_enter_quickack_mode(sk, 2);
350 		break;
351 	case INET_ECN_CE:
352 		if (tcp_ca_needs_ecn(sk))
353 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 
355 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 			/* Better not delay acks, sender can have a very low cwnd */
357 			tcp_enter_quickack_mode(sk, 2);
358 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 		}
360 		tp->ecn_flags |= TCP_ECN_SEEN;
361 		break;
362 	default:
363 		if (tcp_ca_needs_ecn(sk))
364 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 		tp->ecn_flags |= TCP_ECN_SEEN;
366 		break;
367 	}
368 }
369 
370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 		__tcp_ecn_check_ce(sk, skb);
374 }
375 
376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 		tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381 
382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 		tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387 
388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 		return true;
392 	return false;
393 }
394 
395 /* Buffer size and advertised window tuning.
396  *
397  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398  */
399 
400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 	const struct tcp_sock *tp = tcp_sk(sk);
403 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 	int sndmem, per_mss;
405 	u32 nr_segs;
406 
407 	/* Worst case is non GSO/TSO : each frame consumes one skb
408 	 * and skb->head is kmalloced using power of two area of memory
409 	 */
410 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 		  MAX_TCP_HEADER +
412 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 
414 	per_mss = roundup_pow_of_two(per_mss) +
415 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 
417 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
418 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 
420 	/* Fast Recovery (RFC 5681 3.2) :
421 	 * Cubic needs 1.7 factor, rounded to 2 to include
422 	 * extra cushion (application might react slowly to EPOLLOUT)
423 	 */
424 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 	sndmem *= nr_segs * per_mss;
426 
427 	if (sk->sk_sndbuf < sndmem)
428 		WRITE_ONCE(sk->sk_sndbuf,
429 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430 }
431 
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433  *
434  * All tcp_full_space() is split to two parts: "network" buffer, allocated
435  * forward and advertised in receiver window (tp->rcv_wnd) and
436  * "application buffer", required to isolate scheduling/application
437  * latencies from network.
438  * window_clamp is maximal advertised window. It can be less than
439  * tcp_full_space(), in this case tcp_full_space() - window_clamp
440  * is reserved for "application" buffer. The less window_clamp is
441  * the smoother our behaviour from viewpoint of network, but the lower
442  * throughput and the higher sensitivity of the connection to losses. 8)
443  *
444  * rcv_ssthresh is more strict window_clamp used at "slow start"
445  * phase to predict further behaviour of this connection.
446  * It is used for two goals:
447  * - to enforce header prediction at sender, even when application
448  *   requires some significant "application buffer". It is check #1.
449  * - to prevent pruning of receive queue because of misprediction
450  *   of receiver window. Check #2.
451  *
452  * The scheme does not work when sender sends good segments opening
453  * window and then starts to feed us spaghetti. But it should work
454  * in common situations. Otherwise, we have to rely on queue collapsing.
455  */
456 
457 /* Slow part of check#2. */
458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 			     unsigned int skbtruesize)
460 {
461 	struct tcp_sock *tp = tcp_sk(sk);
462 	/* Optimize this! */
463 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465 
466 	while (tp->rcv_ssthresh <= window) {
467 		if (truesize <= skb->len)
468 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469 
470 		truesize >>= 1;
471 		window >>= 1;
472 	}
473 	return 0;
474 }
475 
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477  * can play nice with us, as sk_buff and skb->head might be either
478  * freed or shared with up to MAX_SKB_FRAGS segments.
479  * Only give a boost to drivers using page frag(s) to hold the frame(s),
480  * and if no payload was pulled in skb->head before reaching us.
481  */
482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 	u32 truesize = skb->truesize;
485 
486 	if (adjust && !skb_headlen(skb)) {
487 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 		/* paranoid check, some drivers might be buggy */
489 		if (unlikely((int)truesize < (int)skb->len))
490 			truesize = skb->truesize;
491 	}
492 	return truesize;
493 }
494 
495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 			    bool adjust)
497 {
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	int room;
500 
501 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502 
503 	if (room <= 0)
504 		return;
505 
506 	/* Check #1 */
507 	if (!tcp_under_memory_pressure(sk)) {
508 		unsigned int truesize = truesize_adjust(adjust, skb);
509 		int incr;
510 
511 		/* Check #2. Increase window, if skb with such overhead
512 		 * will fit to rcvbuf in future.
513 		 */
514 		if (tcp_win_from_space(sk, truesize) <= skb->len)
515 			incr = 2 * tp->advmss;
516 		else
517 			incr = __tcp_grow_window(sk, skb, truesize);
518 
519 		if (incr) {
520 			incr = max_t(int, incr, 2 * skb->len);
521 			tp->rcv_ssthresh += min(room, incr);
522 			inet_csk(sk)->icsk_ack.quick |= 1;
523 		}
524 	} else {
525 		/* Under pressure:
526 		 * Adjust rcv_ssthresh according to reserved mem
527 		 */
528 		tcp_adjust_rcv_ssthresh(sk);
529 	}
530 }
531 
532 /* 3. Try to fixup all. It is made immediately after connection enters
533  *    established state.
534  */
535 static void tcp_init_buffer_space(struct sock *sk)
536 {
537 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	int maxwin;
540 
541 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542 		tcp_sndbuf_expand(sk);
543 
544 	tcp_mstamp_refresh(tp);
545 	tp->rcvq_space.time = tp->tcp_mstamp;
546 	tp->rcvq_space.seq = tp->copied_seq;
547 
548 	maxwin = tcp_full_space(sk);
549 
550 	if (tp->window_clamp >= maxwin) {
551 		tp->window_clamp = maxwin;
552 
553 		if (tcp_app_win && maxwin > 4 * tp->advmss)
554 			tp->window_clamp = max(maxwin -
555 					       (maxwin >> tcp_app_win),
556 					       4 * tp->advmss);
557 	}
558 
559 	/* Force reservation of one segment. */
560 	if (tcp_app_win &&
561 	    tp->window_clamp > 2 * tp->advmss &&
562 	    tp->window_clamp + tp->advmss > maxwin)
563 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564 
565 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566 	tp->snd_cwnd_stamp = tcp_jiffies32;
567 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568 				    (u32)TCP_INIT_CWND * tp->advmss);
569 }
570 
571 /* 4. Recalculate window clamp after socket hit its memory bounds. */
572 static void tcp_clamp_window(struct sock *sk)
573 {
574 	struct tcp_sock *tp = tcp_sk(sk);
575 	struct inet_connection_sock *icsk = inet_csk(sk);
576 	struct net *net = sock_net(sk);
577 
578 	icsk->icsk_ack.quick = 0;
579 
580 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
581 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
582 	    !tcp_under_memory_pressure(sk) &&
583 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
584 		WRITE_ONCE(sk->sk_rcvbuf,
585 			   min(atomic_read(&sk->sk_rmem_alloc),
586 			       net->ipv4.sysctl_tcp_rmem[2]));
587 	}
588 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
589 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
590 }
591 
592 /* Initialize RCV_MSS value.
593  * RCV_MSS is an our guess about MSS used by the peer.
594  * We haven't any direct information about the MSS.
595  * It's better to underestimate the RCV_MSS rather than overestimate.
596  * Overestimations make us ACKing less frequently than needed.
597  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
598  */
599 void tcp_initialize_rcv_mss(struct sock *sk)
600 {
601 	const struct tcp_sock *tp = tcp_sk(sk);
602 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
603 
604 	hint = min(hint, tp->rcv_wnd / 2);
605 	hint = min(hint, TCP_MSS_DEFAULT);
606 	hint = max(hint, TCP_MIN_MSS);
607 
608 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
609 }
610 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
611 
612 /* Receiver "autotuning" code.
613  *
614  * The algorithm for RTT estimation w/o timestamps is based on
615  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
616  * <https://public.lanl.gov/radiant/pubs.html#DRS>
617  *
618  * More detail on this code can be found at
619  * <http://staff.psc.edu/jheffner/>,
620  * though this reference is out of date.  A new paper
621  * is pending.
622  */
623 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
624 {
625 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
626 	long m = sample;
627 
628 	if (new_sample != 0) {
629 		/* If we sample in larger samples in the non-timestamp
630 		 * case, we could grossly overestimate the RTT especially
631 		 * with chatty applications or bulk transfer apps which
632 		 * are stalled on filesystem I/O.
633 		 *
634 		 * Also, since we are only going for a minimum in the
635 		 * non-timestamp case, we do not smooth things out
636 		 * else with timestamps disabled convergence takes too
637 		 * long.
638 		 */
639 		if (!win_dep) {
640 			m -= (new_sample >> 3);
641 			new_sample += m;
642 		} else {
643 			m <<= 3;
644 			if (m < new_sample)
645 				new_sample = m;
646 		}
647 	} else {
648 		/* No previous measure. */
649 		new_sample = m << 3;
650 	}
651 
652 	tp->rcv_rtt_est.rtt_us = new_sample;
653 }
654 
655 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
656 {
657 	u32 delta_us;
658 
659 	if (tp->rcv_rtt_est.time == 0)
660 		goto new_measure;
661 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
662 		return;
663 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
664 	if (!delta_us)
665 		delta_us = 1;
666 	tcp_rcv_rtt_update(tp, delta_us, 1);
667 
668 new_measure:
669 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
670 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
671 }
672 
673 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
674 					  const struct sk_buff *skb)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 
678 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
679 		return;
680 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
681 
682 	if (TCP_SKB_CB(skb)->end_seq -
683 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
684 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
685 		u32 delta_us;
686 
687 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
688 			if (!delta)
689 				delta = 1;
690 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
691 			tcp_rcv_rtt_update(tp, delta_us, 0);
692 		}
693 	}
694 }
695 
696 /*
697  * This function should be called every time data is copied to user space.
698  * It calculates the appropriate TCP receive buffer space.
699  */
700 void tcp_rcv_space_adjust(struct sock *sk)
701 {
702 	struct tcp_sock *tp = tcp_sk(sk);
703 	u32 copied;
704 	int time;
705 
706 	trace_tcp_rcv_space_adjust(sk);
707 
708 	tcp_mstamp_refresh(tp);
709 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
710 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
711 		return;
712 
713 	/* Number of bytes copied to user in last RTT */
714 	copied = tp->copied_seq - tp->rcvq_space.seq;
715 	if (copied <= tp->rcvq_space.space)
716 		goto new_measure;
717 
718 	/* A bit of theory :
719 	 * copied = bytes received in previous RTT, our base window
720 	 * To cope with packet losses, we need a 2x factor
721 	 * To cope with slow start, and sender growing its cwin by 100 %
722 	 * every RTT, we need a 4x factor, because the ACK we are sending
723 	 * now is for the next RTT, not the current one :
724 	 * <prev RTT . ><current RTT .. ><next RTT .... >
725 	 */
726 
727 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
728 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
729 		int rcvmem, rcvbuf;
730 		u64 rcvwin, grow;
731 
732 		/* minimal window to cope with packet losses, assuming
733 		 * steady state. Add some cushion because of small variations.
734 		 */
735 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
736 
737 		/* Accommodate for sender rate increase (eg. slow start) */
738 		grow = rcvwin * (copied - tp->rcvq_space.space);
739 		do_div(grow, tp->rcvq_space.space);
740 		rcvwin += (grow << 1);
741 
742 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
743 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
744 			rcvmem += 128;
745 
746 		do_div(rcvwin, tp->advmss);
747 		rcvbuf = min_t(u64, rcvwin * rcvmem,
748 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
749 		if (rcvbuf > sk->sk_rcvbuf) {
750 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
751 
752 			/* Make the window clamp follow along.  */
753 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
754 		}
755 	}
756 	tp->rcvq_space.space = copied;
757 
758 new_measure:
759 	tp->rcvq_space.seq = tp->copied_seq;
760 	tp->rcvq_space.time = tp->tcp_mstamp;
761 }
762 
763 /* There is something which you must keep in mind when you analyze the
764  * behavior of the tp->ato delayed ack timeout interval.  When a
765  * connection starts up, we want to ack as quickly as possible.  The
766  * problem is that "good" TCP's do slow start at the beginning of data
767  * transmission.  The means that until we send the first few ACK's the
768  * sender will sit on his end and only queue most of his data, because
769  * he can only send snd_cwnd unacked packets at any given time.  For
770  * each ACK we send, he increments snd_cwnd and transmits more of his
771  * queue.  -DaveM
772  */
773 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
774 {
775 	struct tcp_sock *tp = tcp_sk(sk);
776 	struct inet_connection_sock *icsk = inet_csk(sk);
777 	u32 now;
778 
779 	inet_csk_schedule_ack(sk);
780 
781 	tcp_measure_rcv_mss(sk, skb);
782 
783 	tcp_rcv_rtt_measure(tp);
784 
785 	now = tcp_jiffies32;
786 
787 	if (!icsk->icsk_ack.ato) {
788 		/* The _first_ data packet received, initialize
789 		 * delayed ACK engine.
790 		 */
791 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
792 		icsk->icsk_ack.ato = TCP_ATO_MIN;
793 	} else {
794 		int m = now - icsk->icsk_ack.lrcvtime;
795 
796 		if (m <= TCP_ATO_MIN / 2) {
797 			/* The fastest case is the first. */
798 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
799 		} else if (m < icsk->icsk_ack.ato) {
800 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
801 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
802 				icsk->icsk_ack.ato = icsk->icsk_rto;
803 		} else if (m > icsk->icsk_rto) {
804 			/* Too long gap. Apparently sender failed to
805 			 * restart window, so that we send ACKs quickly.
806 			 */
807 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
808 		}
809 	}
810 	icsk->icsk_ack.lrcvtime = now;
811 
812 	tcp_ecn_check_ce(sk, skb);
813 
814 	if (skb->len >= 128)
815 		tcp_grow_window(sk, skb, true);
816 }
817 
818 /* Called to compute a smoothed rtt estimate. The data fed to this
819  * routine either comes from timestamps, or from segments that were
820  * known _not_ to have been retransmitted [see Karn/Partridge
821  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
822  * piece by Van Jacobson.
823  * NOTE: the next three routines used to be one big routine.
824  * To save cycles in the RFC 1323 implementation it was better to break
825  * it up into three procedures. -- erics
826  */
827 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
828 {
829 	struct tcp_sock *tp = tcp_sk(sk);
830 	long m = mrtt_us; /* RTT */
831 	u32 srtt = tp->srtt_us;
832 
833 	/*	The following amusing code comes from Jacobson's
834 	 *	article in SIGCOMM '88.  Note that rtt and mdev
835 	 *	are scaled versions of rtt and mean deviation.
836 	 *	This is designed to be as fast as possible
837 	 *	m stands for "measurement".
838 	 *
839 	 *	On a 1990 paper the rto value is changed to:
840 	 *	RTO = rtt + 4 * mdev
841 	 *
842 	 * Funny. This algorithm seems to be very broken.
843 	 * These formulae increase RTO, when it should be decreased, increase
844 	 * too slowly, when it should be increased quickly, decrease too quickly
845 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
846 	 * does not matter how to _calculate_ it. Seems, it was trap
847 	 * that VJ failed to avoid. 8)
848 	 */
849 	if (srtt != 0) {
850 		m -= (srtt >> 3);	/* m is now error in rtt est */
851 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
852 		if (m < 0) {
853 			m = -m;		/* m is now abs(error) */
854 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
855 			/* This is similar to one of Eifel findings.
856 			 * Eifel blocks mdev updates when rtt decreases.
857 			 * This solution is a bit different: we use finer gain
858 			 * for mdev in this case (alpha*beta).
859 			 * Like Eifel it also prevents growth of rto,
860 			 * but also it limits too fast rto decreases,
861 			 * happening in pure Eifel.
862 			 */
863 			if (m > 0)
864 				m >>= 3;
865 		} else {
866 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
867 		}
868 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
869 		if (tp->mdev_us > tp->mdev_max_us) {
870 			tp->mdev_max_us = tp->mdev_us;
871 			if (tp->mdev_max_us > tp->rttvar_us)
872 				tp->rttvar_us = tp->mdev_max_us;
873 		}
874 		if (after(tp->snd_una, tp->rtt_seq)) {
875 			if (tp->mdev_max_us < tp->rttvar_us)
876 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
877 			tp->rtt_seq = tp->snd_nxt;
878 			tp->mdev_max_us = tcp_rto_min_us(sk);
879 
880 			tcp_bpf_rtt(sk);
881 		}
882 	} else {
883 		/* no previous measure. */
884 		srtt = m << 3;		/* take the measured time to be rtt */
885 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
886 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
887 		tp->mdev_max_us = tp->rttvar_us;
888 		tp->rtt_seq = tp->snd_nxt;
889 
890 		tcp_bpf_rtt(sk);
891 	}
892 	tp->srtt_us = max(1U, srtt);
893 }
894 
895 static void tcp_update_pacing_rate(struct sock *sk)
896 {
897 	const struct tcp_sock *tp = tcp_sk(sk);
898 	u64 rate;
899 
900 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
901 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
902 
903 	/* current rate is (cwnd * mss) / srtt
904 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
905 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
906 	 *
907 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
908 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
909 	 *	 end of slow start and should slow down.
910 	 */
911 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
912 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
913 	else
914 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
915 
916 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
917 
918 	if (likely(tp->srtt_us))
919 		do_div(rate, tp->srtt_us);
920 
921 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
922 	 * without any lock. We want to make sure compiler wont store
923 	 * intermediate values in this location.
924 	 */
925 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
926 					     sk->sk_max_pacing_rate));
927 }
928 
929 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
930  * routine referred to above.
931  */
932 static void tcp_set_rto(struct sock *sk)
933 {
934 	const struct tcp_sock *tp = tcp_sk(sk);
935 	/* Old crap is replaced with new one. 8)
936 	 *
937 	 * More seriously:
938 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
939 	 *    It cannot be less due to utterly erratic ACK generation made
940 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
941 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
942 	 *    is invisible. Actually, Linux-2.4 also generates erratic
943 	 *    ACKs in some circumstances.
944 	 */
945 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
946 
947 	/* 2. Fixups made earlier cannot be right.
948 	 *    If we do not estimate RTO correctly without them,
949 	 *    all the algo is pure shit and should be replaced
950 	 *    with correct one. It is exactly, which we pretend to do.
951 	 */
952 
953 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
954 	 * guarantees that rto is higher.
955 	 */
956 	tcp_bound_rto(sk);
957 }
958 
959 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
960 {
961 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
962 
963 	if (!cwnd)
964 		cwnd = TCP_INIT_CWND;
965 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
966 }
967 
968 struct tcp_sacktag_state {
969 	/* Timestamps for earliest and latest never-retransmitted segment
970 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
971 	 * but congestion control should still get an accurate delay signal.
972 	 */
973 	u64	first_sackt;
974 	u64	last_sackt;
975 	u32	reord;
976 	u32	sack_delivered;
977 	int	flag;
978 	unsigned int mss_now;
979 	struct rate_sample *rate;
980 };
981 
982 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
983  * and spurious retransmission information if this DSACK is unlikely caused by
984  * sender's action:
985  * - DSACKed sequence range is larger than maximum receiver's window.
986  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
987  */
988 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
989 			  u32 end_seq, struct tcp_sacktag_state *state)
990 {
991 	u32 seq_len, dup_segs = 1;
992 
993 	if (!before(start_seq, end_seq))
994 		return 0;
995 
996 	seq_len = end_seq - start_seq;
997 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
998 	if (seq_len > tp->max_window)
999 		return 0;
1000 	if (seq_len > tp->mss_cache)
1001 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1002 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1003 		state->flag |= FLAG_DSACK_TLP;
1004 
1005 	tp->dsack_dups += dup_segs;
1006 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1007 	if (tp->dsack_dups > tp->total_retrans)
1008 		return 0;
1009 
1010 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1011 	/* We increase the RACK ordering window in rounds where we receive
1012 	 * DSACKs that may have been due to reordering causing RACK to trigger
1013 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1014 	 * without having seen reordering, or that match TLP probes (TLP
1015 	 * is timer-driven, not triggered by RACK).
1016 	 */
1017 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1018 		tp->rack.dsack_seen = 1;
1019 
1020 	state->flag |= FLAG_DSACKING_ACK;
1021 	/* A spurious retransmission is delivered */
1022 	state->sack_delivered += dup_segs;
1023 
1024 	return dup_segs;
1025 }
1026 
1027 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1028  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1029  * distance is approximated in full-mss packet distance ("reordering").
1030  */
1031 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1032 				      const int ts)
1033 {
1034 	struct tcp_sock *tp = tcp_sk(sk);
1035 	const u32 mss = tp->mss_cache;
1036 	u32 fack, metric;
1037 
1038 	fack = tcp_highest_sack_seq(tp);
1039 	if (!before(low_seq, fack))
1040 		return;
1041 
1042 	metric = fack - low_seq;
1043 	if ((metric > tp->reordering * mss) && mss) {
1044 #if FASTRETRANS_DEBUG > 1
1045 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1046 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1047 			 tp->reordering,
1048 			 0,
1049 			 tp->sacked_out,
1050 			 tp->undo_marker ? tp->undo_retrans : 0);
1051 #endif
1052 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1053 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1054 	}
1055 
1056 	/* This exciting event is worth to be remembered. 8) */
1057 	tp->reord_seen++;
1058 	NET_INC_STATS(sock_net(sk),
1059 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1060 }
1061 
1062  /* This must be called before lost_out or retrans_out are updated
1063   * on a new loss, because we want to know if all skbs previously
1064   * known to be lost have already been retransmitted, indicating
1065   * that this newly lost skb is our next skb to retransmit.
1066   */
1067 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1068 {
1069 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1070 	    (tp->retransmit_skb_hint &&
1071 	     before(TCP_SKB_CB(skb)->seq,
1072 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1073 		tp->retransmit_skb_hint = skb;
1074 }
1075 
1076 /* Sum the number of packets on the wire we have marked as lost, and
1077  * notify the congestion control module that the given skb was marked lost.
1078  */
1079 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1080 {
1081 	tp->lost += tcp_skb_pcount(skb);
1082 }
1083 
1084 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1085 {
1086 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1087 	struct tcp_sock *tp = tcp_sk(sk);
1088 
1089 	if (sacked & TCPCB_SACKED_ACKED)
1090 		return;
1091 
1092 	tcp_verify_retransmit_hint(tp, skb);
1093 	if (sacked & TCPCB_LOST) {
1094 		if (sacked & TCPCB_SACKED_RETRANS) {
1095 			/* Account for retransmits that are lost again */
1096 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1097 			tp->retrans_out -= tcp_skb_pcount(skb);
1098 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1099 				      tcp_skb_pcount(skb));
1100 			tcp_notify_skb_loss_event(tp, skb);
1101 		}
1102 	} else {
1103 		tp->lost_out += tcp_skb_pcount(skb);
1104 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1105 		tcp_notify_skb_loss_event(tp, skb);
1106 	}
1107 }
1108 
1109 /* Updates the delivered and delivered_ce counts */
1110 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1111 				bool ece_ack)
1112 {
1113 	tp->delivered += delivered;
1114 	if (ece_ack)
1115 		tp->delivered_ce += delivered;
1116 }
1117 
1118 /* This procedure tags the retransmission queue when SACKs arrive.
1119  *
1120  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1121  * Packets in queue with these bits set are counted in variables
1122  * sacked_out, retrans_out and lost_out, correspondingly.
1123  *
1124  * Valid combinations are:
1125  * Tag  InFlight	Description
1126  * 0	1		- orig segment is in flight.
1127  * S	0		- nothing flies, orig reached receiver.
1128  * L	0		- nothing flies, orig lost by net.
1129  * R	2		- both orig and retransmit are in flight.
1130  * L|R	1		- orig is lost, retransmit is in flight.
1131  * S|R  1		- orig reached receiver, retrans is still in flight.
1132  * (L|S|R is logically valid, it could occur when L|R is sacked,
1133  *  but it is equivalent to plain S and code short-curcuits it to S.
1134  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1135  *
1136  * These 6 states form finite state machine, controlled by the following events:
1137  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1138  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1139  * 3. Loss detection event of two flavors:
1140  *	A. Scoreboard estimator decided the packet is lost.
1141  *	   A'. Reno "three dupacks" marks head of queue lost.
1142  *	B. SACK arrives sacking SND.NXT at the moment, when the
1143  *	   segment was retransmitted.
1144  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1145  *
1146  * It is pleasant to note, that state diagram turns out to be commutative,
1147  * so that we are allowed not to be bothered by order of our actions,
1148  * when multiple events arrive simultaneously. (see the function below).
1149  *
1150  * Reordering detection.
1151  * --------------------
1152  * Reordering metric is maximal distance, which a packet can be displaced
1153  * in packet stream. With SACKs we can estimate it:
1154  *
1155  * 1. SACK fills old hole and the corresponding segment was not
1156  *    ever retransmitted -> reordering. Alas, we cannot use it
1157  *    when segment was retransmitted.
1158  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1159  *    for retransmitted and already SACKed segment -> reordering..
1160  * Both of these heuristics are not used in Loss state, when we cannot
1161  * account for retransmits accurately.
1162  *
1163  * SACK block validation.
1164  * ----------------------
1165  *
1166  * SACK block range validation checks that the received SACK block fits to
1167  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1168  * Note that SND.UNA is not included to the range though being valid because
1169  * it means that the receiver is rather inconsistent with itself reporting
1170  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1171  * perfectly valid, however, in light of RFC2018 which explicitly states
1172  * that "SACK block MUST reflect the newest segment.  Even if the newest
1173  * segment is going to be discarded ...", not that it looks very clever
1174  * in case of head skb. Due to potentional receiver driven attacks, we
1175  * choose to avoid immediate execution of a walk in write queue due to
1176  * reneging and defer head skb's loss recovery to standard loss recovery
1177  * procedure that will eventually trigger (nothing forbids us doing this).
1178  *
1179  * Implements also blockage to start_seq wrap-around. Problem lies in the
1180  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1181  * there's no guarantee that it will be before snd_nxt (n). The problem
1182  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1183  * wrap (s_w):
1184  *
1185  *         <- outs wnd ->                          <- wrapzone ->
1186  *         u     e      n                         u_w   e_w  s n_w
1187  *         |     |      |                          |     |   |  |
1188  * |<------------+------+----- TCP seqno space --------------+---------->|
1189  * ...-- <2^31 ->|                                           |<--------...
1190  * ...---- >2^31 ------>|                                    |<--------...
1191  *
1192  * Current code wouldn't be vulnerable but it's better still to discard such
1193  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1194  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1195  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1196  * equal to the ideal case (infinite seqno space without wrap caused issues).
1197  *
1198  * With D-SACK the lower bound is extended to cover sequence space below
1199  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1200  * again, D-SACK block must not to go across snd_una (for the same reason as
1201  * for the normal SACK blocks, explained above). But there all simplicity
1202  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1203  * fully below undo_marker they do not affect behavior in anyway and can
1204  * therefore be safely ignored. In rare cases (which are more or less
1205  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1206  * fragmentation and packet reordering past skb's retransmission. To consider
1207  * them correctly, the acceptable range must be extended even more though
1208  * the exact amount is rather hard to quantify. However, tp->max_window can
1209  * be used as an exaggerated estimate.
1210  */
1211 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1212 				   u32 start_seq, u32 end_seq)
1213 {
1214 	/* Too far in future, or reversed (interpretation is ambiguous) */
1215 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1216 		return false;
1217 
1218 	/* Nasty start_seq wrap-around check (see comments above) */
1219 	if (!before(start_seq, tp->snd_nxt))
1220 		return false;
1221 
1222 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1223 	 * start_seq == snd_una is non-sensical (see comments above)
1224 	 */
1225 	if (after(start_seq, tp->snd_una))
1226 		return true;
1227 
1228 	if (!is_dsack || !tp->undo_marker)
1229 		return false;
1230 
1231 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1232 	if (after(end_seq, tp->snd_una))
1233 		return false;
1234 
1235 	if (!before(start_seq, tp->undo_marker))
1236 		return true;
1237 
1238 	/* Too old */
1239 	if (!after(end_seq, tp->undo_marker))
1240 		return false;
1241 
1242 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1243 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1244 	 */
1245 	return !before(start_seq, end_seq - tp->max_window);
1246 }
1247 
1248 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1249 			    struct tcp_sack_block_wire *sp, int num_sacks,
1250 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1251 {
1252 	struct tcp_sock *tp = tcp_sk(sk);
1253 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1254 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1255 	u32 dup_segs;
1256 
1257 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1258 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1259 	} else if (num_sacks > 1) {
1260 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1261 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1262 
1263 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1264 			return false;
1265 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1266 	} else {
1267 		return false;
1268 	}
1269 
1270 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1271 	if (!dup_segs) {	/* Skip dubious DSACK */
1272 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1273 		return false;
1274 	}
1275 
1276 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1277 
1278 	/* D-SACK for already forgotten data... Do dumb counting. */
1279 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1280 	    !after(end_seq_0, prior_snd_una) &&
1281 	    after(end_seq_0, tp->undo_marker))
1282 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1283 
1284 	return true;
1285 }
1286 
1287 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1288  * the incoming SACK may not exactly match but we can find smaller MSS
1289  * aligned portion of it that matches. Therefore we might need to fragment
1290  * which may fail and creates some hassle (caller must handle error case
1291  * returns).
1292  *
1293  * FIXME: this could be merged to shift decision code
1294  */
1295 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1296 				  u32 start_seq, u32 end_seq)
1297 {
1298 	int err;
1299 	bool in_sack;
1300 	unsigned int pkt_len;
1301 	unsigned int mss;
1302 
1303 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1304 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1305 
1306 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1307 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1308 		mss = tcp_skb_mss(skb);
1309 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1310 
1311 		if (!in_sack) {
1312 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1313 			if (pkt_len < mss)
1314 				pkt_len = mss;
1315 		} else {
1316 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1317 			if (pkt_len < mss)
1318 				return -EINVAL;
1319 		}
1320 
1321 		/* Round if necessary so that SACKs cover only full MSSes
1322 		 * and/or the remaining small portion (if present)
1323 		 */
1324 		if (pkt_len > mss) {
1325 			unsigned int new_len = (pkt_len / mss) * mss;
1326 			if (!in_sack && new_len < pkt_len)
1327 				new_len += mss;
1328 			pkt_len = new_len;
1329 		}
1330 
1331 		if (pkt_len >= skb->len && !in_sack)
1332 			return 0;
1333 
1334 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1335 				   pkt_len, mss, GFP_ATOMIC);
1336 		if (err < 0)
1337 			return err;
1338 	}
1339 
1340 	return in_sack;
1341 }
1342 
1343 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1344 static u8 tcp_sacktag_one(struct sock *sk,
1345 			  struct tcp_sacktag_state *state, u8 sacked,
1346 			  u32 start_seq, u32 end_seq,
1347 			  int dup_sack, int pcount,
1348 			  u64 xmit_time)
1349 {
1350 	struct tcp_sock *tp = tcp_sk(sk);
1351 
1352 	/* Account D-SACK for retransmitted packet. */
1353 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1354 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1355 		    after(end_seq, tp->undo_marker))
1356 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1357 		if ((sacked & TCPCB_SACKED_ACKED) &&
1358 		    before(start_seq, state->reord))
1359 				state->reord = start_seq;
1360 	}
1361 
1362 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1363 	if (!after(end_seq, tp->snd_una))
1364 		return sacked;
1365 
1366 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1367 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1368 
1369 		if (sacked & TCPCB_SACKED_RETRANS) {
1370 			/* If the segment is not tagged as lost,
1371 			 * we do not clear RETRANS, believing
1372 			 * that retransmission is still in flight.
1373 			 */
1374 			if (sacked & TCPCB_LOST) {
1375 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1376 				tp->lost_out -= pcount;
1377 				tp->retrans_out -= pcount;
1378 			}
1379 		} else {
1380 			if (!(sacked & TCPCB_RETRANS)) {
1381 				/* New sack for not retransmitted frame,
1382 				 * which was in hole. It is reordering.
1383 				 */
1384 				if (before(start_seq,
1385 					   tcp_highest_sack_seq(tp)) &&
1386 				    before(start_seq, state->reord))
1387 					state->reord = start_seq;
1388 
1389 				if (!after(end_seq, tp->high_seq))
1390 					state->flag |= FLAG_ORIG_SACK_ACKED;
1391 				if (state->first_sackt == 0)
1392 					state->first_sackt = xmit_time;
1393 				state->last_sackt = xmit_time;
1394 			}
1395 
1396 			if (sacked & TCPCB_LOST) {
1397 				sacked &= ~TCPCB_LOST;
1398 				tp->lost_out -= pcount;
1399 			}
1400 		}
1401 
1402 		sacked |= TCPCB_SACKED_ACKED;
1403 		state->flag |= FLAG_DATA_SACKED;
1404 		tp->sacked_out += pcount;
1405 		/* Out-of-order packets delivered */
1406 		state->sack_delivered += pcount;
1407 
1408 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1409 		if (tp->lost_skb_hint &&
1410 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1411 			tp->lost_cnt_hint += pcount;
1412 	}
1413 
1414 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1415 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1416 	 * are accounted above as well.
1417 	 */
1418 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1419 		sacked &= ~TCPCB_SACKED_RETRANS;
1420 		tp->retrans_out -= pcount;
1421 	}
1422 
1423 	return sacked;
1424 }
1425 
1426 /* Shift newly-SACKed bytes from this skb to the immediately previous
1427  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1428  */
1429 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1430 			    struct sk_buff *skb,
1431 			    struct tcp_sacktag_state *state,
1432 			    unsigned int pcount, int shifted, int mss,
1433 			    bool dup_sack)
1434 {
1435 	struct tcp_sock *tp = tcp_sk(sk);
1436 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1437 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1438 
1439 	BUG_ON(!pcount);
1440 
1441 	/* Adjust counters and hints for the newly sacked sequence
1442 	 * range but discard the return value since prev is already
1443 	 * marked. We must tag the range first because the seq
1444 	 * advancement below implicitly advances
1445 	 * tcp_highest_sack_seq() when skb is highest_sack.
1446 	 */
1447 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1448 			start_seq, end_seq, dup_sack, pcount,
1449 			tcp_skb_timestamp_us(skb));
1450 	tcp_rate_skb_delivered(sk, skb, state->rate);
1451 
1452 	if (skb == tp->lost_skb_hint)
1453 		tp->lost_cnt_hint += pcount;
1454 
1455 	TCP_SKB_CB(prev)->end_seq += shifted;
1456 	TCP_SKB_CB(skb)->seq += shifted;
1457 
1458 	tcp_skb_pcount_add(prev, pcount);
1459 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1460 	tcp_skb_pcount_add(skb, -pcount);
1461 
1462 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1463 	 * in theory this shouldn't be necessary but as long as DSACK
1464 	 * code can come after this skb later on it's better to keep
1465 	 * setting gso_size to something.
1466 	 */
1467 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1468 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1469 
1470 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1471 	if (tcp_skb_pcount(skb) <= 1)
1472 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1473 
1474 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1475 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1476 
1477 	if (skb->len > 0) {
1478 		BUG_ON(!tcp_skb_pcount(skb));
1479 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1480 		return false;
1481 	}
1482 
1483 	/* Whole SKB was eaten :-) */
1484 
1485 	if (skb == tp->retransmit_skb_hint)
1486 		tp->retransmit_skb_hint = prev;
1487 	if (skb == tp->lost_skb_hint) {
1488 		tp->lost_skb_hint = prev;
1489 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1490 	}
1491 
1492 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1493 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1494 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1495 		TCP_SKB_CB(prev)->end_seq++;
1496 
1497 	if (skb == tcp_highest_sack(sk))
1498 		tcp_advance_highest_sack(sk, skb);
1499 
1500 	tcp_skb_collapse_tstamp(prev, skb);
1501 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1502 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1503 
1504 	tcp_rtx_queue_unlink_and_free(skb, sk);
1505 
1506 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1507 
1508 	return true;
1509 }
1510 
1511 /* I wish gso_size would have a bit more sane initialization than
1512  * something-or-zero which complicates things
1513  */
1514 static int tcp_skb_seglen(const struct sk_buff *skb)
1515 {
1516 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1517 }
1518 
1519 /* Shifting pages past head area doesn't work */
1520 static int skb_can_shift(const struct sk_buff *skb)
1521 {
1522 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1523 }
1524 
1525 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1526 		  int pcount, int shiftlen)
1527 {
1528 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1529 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1530 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1531 	 * even if current MSS is bigger.
1532 	 */
1533 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1534 		return 0;
1535 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1536 		return 0;
1537 	return skb_shift(to, from, shiftlen);
1538 }
1539 
1540 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1541  * skb.
1542  */
1543 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1544 					  struct tcp_sacktag_state *state,
1545 					  u32 start_seq, u32 end_seq,
1546 					  bool dup_sack)
1547 {
1548 	struct tcp_sock *tp = tcp_sk(sk);
1549 	struct sk_buff *prev;
1550 	int mss;
1551 	int pcount = 0;
1552 	int len;
1553 	int in_sack;
1554 
1555 	/* Normally R but no L won't result in plain S */
1556 	if (!dup_sack &&
1557 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1558 		goto fallback;
1559 	if (!skb_can_shift(skb))
1560 		goto fallback;
1561 	/* This frame is about to be dropped (was ACKed). */
1562 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1563 		goto fallback;
1564 
1565 	/* Can only happen with delayed DSACK + discard craziness */
1566 	prev = skb_rb_prev(skb);
1567 	if (!prev)
1568 		goto fallback;
1569 
1570 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1571 		goto fallback;
1572 
1573 	if (!tcp_skb_can_collapse(prev, skb))
1574 		goto fallback;
1575 
1576 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1577 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1578 
1579 	if (in_sack) {
1580 		len = skb->len;
1581 		pcount = tcp_skb_pcount(skb);
1582 		mss = tcp_skb_seglen(skb);
1583 
1584 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1585 		 * drop this restriction as unnecessary
1586 		 */
1587 		if (mss != tcp_skb_seglen(prev))
1588 			goto fallback;
1589 	} else {
1590 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1591 			goto noop;
1592 		/* CHECKME: This is non-MSS split case only?, this will
1593 		 * cause skipped skbs due to advancing loop btw, original
1594 		 * has that feature too
1595 		 */
1596 		if (tcp_skb_pcount(skb) <= 1)
1597 			goto noop;
1598 
1599 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1600 		if (!in_sack) {
1601 			/* TODO: head merge to next could be attempted here
1602 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1603 			 * though it might not be worth of the additional hassle
1604 			 *
1605 			 * ...we can probably just fallback to what was done
1606 			 * previously. We could try merging non-SACKed ones
1607 			 * as well but it probably isn't going to buy off
1608 			 * because later SACKs might again split them, and
1609 			 * it would make skb timestamp tracking considerably
1610 			 * harder problem.
1611 			 */
1612 			goto fallback;
1613 		}
1614 
1615 		len = end_seq - TCP_SKB_CB(skb)->seq;
1616 		BUG_ON(len < 0);
1617 		BUG_ON(len > skb->len);
1618 
1619 		/* MSS boundaries should be honoured or else pcount will
1620 		 * severely break even though it makes things bit trickier.
1621 		 * Optimize common case to avoid most of the divides
1622 		 */
1623 		mss = tcp_skb_mss(skb);
1624 
1625 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1626 		 * drop this restriction as unnecessary
1627 		 */
1628 		if (mss != tcp_skb_seglen(prev))
1629 			goto fallback;
1630 
1631 		if (len == mss) {
1632 			pcount = 1;
1633 		} else if (len < mss) {
1634 			goto noop;
1635 		} else {
1636 			pcount = len / mss;
1637 			len = pcount * mss;
1638 		}
1639 	}
1640 
1641 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1642 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1643 		goto fallback;
1644 
1645 	if (!tcp_skb_shift(prev, skb, pcount, len))
1646 		goto fallback;
1647 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1648 		goto out;
1649 
1650 	/* Hole filled allows collapsing with the next as well, this is very
1651 	 * useful when hole on every nth skb pattern happens
1652 	 */
1653 	skb = skb_rb_next(prev);
1654 	if (!skb)
1655 		goto out;
1656 
1657 	if (!skb_can_shift(skb) ||
1658 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1659 	    (mss != tcp_skb_seglen(skb)))
1660 		goto out;
1661 
1662 	if (!tcp_skb_can_collapse(prev, skb))
1663 		goto out;
1664 	len = skb->len;
1665 	pcount = tcp_skb_pcount(skb);
1666 	if (tcp_skb_shift(prev, skb, pcount, len))
1667 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1668 				len, mss, 0);
1669 
1670 out:
1671 	return prev;
1672 
1673 noop:
1674 	return skb;
1675 
1676 fallback:
1677 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1678 	return NULL;
1679 }
1680 
1681 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1682 					struct tcp_sack_block *next_dup,
1683 					struct tcp_sacktag_state *state,
1684 					u32 start_seq, u32 end_seq,
1685 					bool dup_sack_in)
1686 {
1687 	struct tcp_sock *tp = tcp_sk(sk);
1688 	struct sk_buff *tmp;
1689 
1690 	skb_rbtree_walk_from(skb) {
1691 		int in_sack = 0;
1692 		bool dup_sack = dup_sack_in;
1693 
1694 		/* queue is in-order => we can short-circuit the walk early */
1695 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1696 			break;
1697 
1698 		if (next_dup  &&
1699 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1700 			in_sack = tcp_match_skb_to_sack(sk, skb,
1701 							next_dup->start_seq,
1702 							next_dup->end_seq);
1703 			if (in_sack > 0)
1704 				dup_sack = true;
1705 		}
1706 
1707 		/* skb reference here is a bit tricky to get right, since
1708 		 * shifting can eat and free both this skb and the next,
1709 		 * so not even _safe variant of the loop is enough.
1710 		 */
1711 		if (in_sack <= 0) {
1712 			tmp = tcp_shift_skb_data(sk, skb, state,
1713 						 start_seq, end_seq, dup_sack);
1714 			if (tmp) {
1715 				if (tmp != skb) {
1716 					skb = tmp;
1717 					continue;
1718 				}
1719 
1720 				in_sack = 0;
1721 			} else {
1722 				in_sack = tcp_match_skb_to_sack(sk, skb,
1723 								start_seq,
1724 								end_seq);
1725 			}
1726 		}
1727 
1728 		if (unlikely(in_sack < 0))
1729 			break;
1730 
1731 		if (in_sack) {
1732 			TCP_SKB_CB(skb)->sacked =
1733 				tcp_sacktag_one(sk,
1734 						state,
1735 						TCP_SKB_CB(skb)->sacked,
1736 						TCP_SKB_CB(skb)->seq,
1737 						TCP_SKB_CB(skb)->end_seq,
1738 						dup_sack,
1739 						tcp_skb_pcount(skb),
1740 						tcp_skb_timestamp_us(skb));
1741 			tcp_rate_skb_delivered(sk, skb, state->rate);
1742 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1743 				list_del_init(&skb->tcp_tsorted_anchor);
1744 
1745 			if (!before(TCP_SKB_CB(skb)->seq,
1746 				    tcp_highest_sack_seq(tp)))
1747 				tcp_advance_highest_sack(sk, skb);
1748 		}
1749 	}
1750 	return skb;
1751 }
1752 
1753 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1754 {
1755 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1756 	struct sk_buff *skb;
1757 
1758 	while (*p) {
1759 		parent = *p;
1760 		skb = rb_to_skb(parent);
1761 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1762 			p = &parent->rb_left;
1763 			continue;
1764 		}
1765 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1766 			p = &parent->rb_right;
1767 			continue;
1768 		}
1769 		return skb;
1770 	}
1771 	return NULL;
1772 }
1773 
1774 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1775 					u32 skip_to_seq)
1776 {
1777 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1778 		return skb;
1779 
1780 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1781 }
1782 
1783 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1784 						struct sock *sk,
1785 						struct tcp_sack_block *next_dup,
1786 						struct tcp_sacktag_state *state,
1787 						u32 skip_to_seq)
1788 {
1789 	if (!next_dup)
1790 		return skb;
1791 
1792 	if (before(next_dup->start_seq, skip_to_seq)) {
1793 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1794 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1795 				       next_dup->start_seq, next_dup->end_seq,
1796 				       1);
1797 	}
1798 
1799 	return skb;
1800 }
1801 
1802 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1803 {
1804 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1805 }
1806 
1807 static int
1808 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1809 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1810 {
1811 	struct tcp_sock *tp = tcp_sk(sk);
1812 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1813 				    TCP_SKB_CB(ack_skb)->sacked);
1814 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1815 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1816 	struct tcp_sack_block *cache;
1817 	struct sk_buff *skb;
1818 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1819 	int used_sacks;
1820 	bool found_dup_sack = false;
1821 	int i, j;
1822 	int first_sack_index;
1823 
1824 	state->flag = 0;
1825 	state->reord = tp->snd_nxt;
1826 
1827 	if (!tp->sacked_out)
1828 		tcp_highest_sack_reset(sk);
1829 
1830 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1831 					 num_sacks, prior_snd_una, state);
1832 
1833 	/* Eliminate too old ACKs, but take into
1834 	 * account more or less fresh ones, they can
1835 	 * contain valid SACK info.
1836 	 */
1837 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1838 		return 0;
1839 
1840 	if (!tp->packets_out)
1841 		goto out;
1842 
1843 	used_sacks = 0;
1844 	first_sack_index = 0;
1845 	for (i = 0; i < num_sacks; i++) {
1846 		bool dup_sack = !i && found_dup_sack;
1847 
1848 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1849 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1850 
1851 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1852 					    sp[used_sacks].start_seq,
1853 					    sp[used_sacks].end_seq)) {
1854 			int mib_idx;
1855 
1856 			if (dup_sack) {
1857 				if (!tp->undo_marker)
1858 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1859 				else
1860 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1861 			} else {
1862 				/* Don't count olds caused by ACK reordering */
1863 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1864 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1865 					continue;
1866 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1867 			}
1868 
1869 			NET_INC_STATS(sock_net(sk), mib_idx);
1870 			if (i == 0)
1871 				first_sack_index = -1;
1872 			continue;
1873 		}
1874 
1875 		/* Ignore very old stuff early */
1876 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1877 			if (i == 0)
1878 				first_sack_index = -1;
1879 			continue;
1880 		}
1881 
1882 		used_sacks++;
1883 	}
1884 
1885 	/* order SACK blocks to allow in order walk of the retrans queue */
1886 	for (i = used_sacks - 1; i > 0; i--) {
1887 		for (j = 0; j < i; j++) {
1888 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1889 				swap(sp[j], sp[j + 1]);
1890 
1891 				/* Track where the first SACK block goes to */
1892 				if (j == first_sack_index)
1893 					first_sack_index = j + 1;
1894 			}
1895 		}
1896 	}
1897 
1898 	state->mss_now = tcp_current_mss(sk);
1899 	skb = NULL;
1900 	i = 0;
1901 
1902 	if (!tp->sacked_out) {
1903 		/* It's already past, so skip checking against it */
1904 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1905 	} else {
1906 		cache = tp->recv_sack_cache;
1907 		/* Skip empty blocks in at head of the cache */
1908 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1909 		       !cache->end_seq)
1910 			cache++;
1911 	}
1912 
1913 	while (i < used_sacks) {
1914 		u32 start_seq = sp[i].start_seq;
1915 		u32 end_seq = sp[i].end_seq;
1916 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1917 		struct tcp_sack_block *next_dup = NULL;
1918 
1919 		if (found_dup_sack && ((i + 1) == first_sack_index))
1920 			next_dup = &sp[i + 1];
1921 
1922 		/* Skip too early cached blocks */
1923 		while (tcp_sack_cache_ok(tp, cache) &&
1924 		       !before(start_seq, cache->end_seq))
1925 			cache++;
1926 
1927 		/* Can skip some work by looking recv_sack_cache? */
1928 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1929 		    after(end_seq, cache->start_seq)) {
1930 
1931 			/* Head todo? */
1932 			if (before(start_seq, cache->start_seq)) {
1933 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1934 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1935 						       state,
1936 						       start_seq,
1937 						       cache->start_seq,
1938 						       dup_sack);
1939 			}
1940 
1941 			/* Rest of the block already fully processed? */
1942 			if (!after(end_seq, cache->end_seq))
1943 				goto advance_sp;
1944 
1945 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1946 						       state,
1947 						       cache->end_seq);
1948 
1949 			/* ...tail remains todo... */
1950 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1951 				/* ...but better entrypoint exists! */
1952 				skb = tcp_highest_sack(sk);
1953 				if (!skb)
1954 					break;
1955 				cache++;
1956 				goto walk;
1957 			}
1958 
1959 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1960 			/* Check overlap against next cached too (past this one already) */
1961 			cache++;
1962 			continue;
1963 		}
1964 
1965 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1966 			skb = tcp_highest_sack(sk);
1967 			if (!skb)
1968 				break;
1969 		}
1970 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1971 
1972 walk:
1973 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1974 				       start_seq, end_seq, dup_sack);
1975 
1976 advance_sp:
1977 		i++;
1978 	}
1979 
1980 	/* Clear the head of the cache sack blocks so we can skip it next time */
1981 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1982 		tp->recv_sack_cache[i].start_seq = 0;
1983 		tp->recv_sack_cache[i].end_seq = 0;
1984 	}
1985 	for (j = 0; j < used_sacks; j++)
1986 		tp->recv_sack_cache[i++] = sp[j];
1987 
1988 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1989 		tcp_check_sack_reordering(sk, state->reord, 0);
1990 
1991 	tcp_verify_left_out(tp);
1992 out:
1993 
1994 #if FASTRETRANS_DEBUG > 0
1995 	WARN_ON((int)tp->sacked_out < 0);
1996 	WARN_ON((int)tp->lost_out < 0);
1997 	WARN_ON((int)tp->retrans_out < 0);
1998 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1999 #endif
2000 	return state->flag;
2001 }
2002 
2003 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2004  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2005  */
2006 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2007 {
2008 	u32 holes;
2009 
2010 	holes = max(tp->lost_out, 1U);
2011 	holes = min(holes, tp->packets_out);
2012 
2013 	if ((tp->sacked_out + holes) > tp->packets_out) {
2014 		tp->sacked_out = tp->packets_out - holes;
2015 		return true;
2016 	}
2017 	return false;
2018 }
2019 
2020 /* If we receive more dupacks than we expected counting segments
2021  * in assumption of absent reordering, interpret this as reordering.
2022  * The only another reason could be bug in receiver TCP.
2023  */
2024 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2025 {
2026 	struct tcp_sock *tp = tcp_sk(sk);
2027 
2028 	if (!tcp_limit_reno_sacked(tp))
2029 		return;
2030 
2031 	tp->reordering = min_t(u32, tp->packets_out + addend,
2032 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2033 	tp->reord_seen++;
2034 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2035 }
2036 
2037 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2038 
2039 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2040 {
2041 	if (num_dupack) {
2042 		struct tcp_sock *tp = tcp_sk(sk);
2043 		u32 prior_sacked = tp->sacked_out;
2044 		s32 delivered;
2045 
2046 		tp->sacked_out += num_dupack;
2047 		tcp_check_reno_reordering(sk, 0);
2048 		delivered = tp->sacked_out - prior_sacked;
2049 		if (delivered > 0)
2050 			tcp_count_delivered(tp, delivered, ece_ack);
2051 		tcp_verify_left_out(tp);
2052 	}
2053 }
2054 
2055 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2056 
2057 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2058 {
2059 	struct tcp_sock *tp = tcp_sk(sk);
2060 
2061 	if (acked > 0) {
2062 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2063 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2064 				    ece_ack);
2065 		if (acked - 1 >= tp->sacked_out)
2066 			tp->sacked_out = 0;
2067 		else
2068 			tp->sacked_out -= acked - 1;
2069 	}
2070 	tcp_check_reno_reordering(sk, acked);
2071 	tcp_verify_left_out(tp);
2072 }
2073 
2074 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2075 {
2076 	tp->sacked_out = 0;
2077 }
2078 
2079 void tcp_clear_retrans(struct tcp_sock *tp)
2080 {
2081 	tp->retrans_out = 0;
2082 	tp->lost_out = 0;
2083 	tp->undo_marker = 0;
2084 	tp->undo_retrans = -1;
2085 	tp->sacked_out = 0;
2086 }
2087 
2088 static inline void tcp_init_undo(struct tcp_sock *tp)
2089 {
2090 	tp->undo_marker = tp->snd_una;
2091 	/* Retransmission still in flight may cause DSACKs later. */
2092 	tp->undo_retrans = tp->retrans_out ? : -1;
2093 }
2094 
2095 static bool tcp_is_rack(const struct sock *sk)
2096 {
2097 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2098 		TCP_RACK_LOSS_DETECTION;
2099 }
2100 
2101 /* If we detect SACK reneging, forget all SACK information
2102  * and reset tags completely, otherwise preserve SACKs. If receiver
2103  * dropped its ofo queue, we will know this due to reneging detection.
2104  */
2105 static void tcp_timeout_mark_lost(struct sock *sk)
2106 {
2107 	struct tcp_sock *tp = tcp_sk(sk);
2108 	struct sk_buff *skb, *head;
2109 	bool is_reneg;			/* is receiver reneging on SACKs? */
2110 
2111 	head = tcp_rtx_queue_head(sk);
2112 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2113 	if (is_reneg) {
2114 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2115 		tp->sacked_out = 0;
2116 		/* Mark SACK reneging until we recover from this loss event. */
2117 		tp->is_sack_reneg = 1;
2118 	} else if (tcp_is_reno(tp)) {
2119 		tcp_reset_reno_sack(tp);
2120 	}
2121 
2122 	skb = head;
2123 	skb_rbtree_walk_from(skb) {
2124 		if (is_reneg)
2125 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2126 		else if (tcp_is_rack(sk) && skb != head &&
2127 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2128 			continue; /* Don't mark recently sent ones lost yet */
2129 		tcp_mark_skb_lost(sk, skb);
2130 	}
2131 	tcp_verify_left_out(tp);
2132 	tcp_clear_all_retrans_hints(tp);
2133 }
2134 
2135 /* Enter Loss state. */
2136 void tcp_enter_loss(struct sock *sk)
2137 {
2138 	const struct inet_connection_sock *icsk = inet_csk(sk);
2139 	struct tcp_sock *tp = tcp_sk(sk);
2140 	struct net *net = sock_net(sk);
2141 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2142 	u8 reordering;
2143 
2144 	tcp_timeout_mark_lost(sk);
2145 
2146 	/* Reduce ssthresh if it has not yet been made inside this window. */
2147 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2148 	    !after(tp->high_seq, tp->snd_una) ||
2149 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2150 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2151 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2152 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2153 		tcp_ca_event(sk, CA_EVENT_LOSS);
2154 		tcp_init_undo(tp);
2155 	}
2156 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2157 	tp->snd_cwnd_cnt   = 0;
2158 	tp->snd_cwnd_stamp = tcp_jiffies32;
2159 
2160 	/* Timeout in disordered state after receiving substantial DUPACKs
2161 	 * suggests that the degree of reordering is over-estimated.
2162 	 */
2163 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2164 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2165 	    tp->sacked_out >= reordering)
2166 		tp->reordering = min_t(unsigned int, tp->reordering,
2167 				       reordering);
2168 
2169 	tcp_set_ca_state(sk, TCP_CA_Loss);
2170 	tp->high_seq = tp->snd_nxt;
2171 	tcp_ecn_queue_cwr(tp);
2172 
2173 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2174 	 * loss recovery is underway except recurring timeout(s) on
2175 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2176 	 */
2177 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2178 		   (new_recovery || icsk->icsk_retransmits) &&
2179 		   !inet_csk(sk)->icsk_mtup.probe_size;
2180 }
2181 
2182 /* If ACK arrived pointing to a remembered SACK, it means that our
2183  * remembered SACKs do not reflect real state of receiver i.e.
2184  * receiver _host_ is heavily congested (or buggy).
2185  *
2186  * To avoid big spurious retransmission bursts due to transient SACK
2187  * scoreboard oddities that look like reneging, we give the receiver a
2188  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2189  * restore sanity to the SACK scoreboard. If the apparent reneging
2190  * persists until this RTO then we'll clear the SACK scoreboard.
2191  */
2192 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2193 {
2194 	if (flag & FLAG_SACK_RENEGING) {
2195 		struct tcp_sock *tp = tcp_sk(sk);
2196 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2197 					  msecs_to_jiffies(10));
2198 
2199 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2200 					  delay, TCP_RTO_MAX);
2201 		return true;
2202 	}
2203 	return false;
2204 }
2205 
2206 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2207  * counter when SACK is enabled (without SACK, sacked_out is used for
2208  * that purpose).
2209  *
2210  * With reordering, holes may still be in flight, so RFC3517 recovery
2211  * uses pure sacked_out (total number of SACKed segments) even though
2212  * it violates the RFC that uses duplicate ACKs, often these are equal
2213  * but when e.g. out-of-window ACKs or packet duplication occurs,
2214  * they differ. Since neither occurs due to loss, TCP should really
2215  * ignore them.
2216  */
2217 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2218 {
2219 	return tp->sacked_out + 1;
2220 }
2221 
2222 /* Linux NewReno/SACK/ECN state machine.
2223  * --------------------------------------
2224  *
2225  * "Open"	Normal state, no dubious events, fast path.
2226  * "Disorder"   In all the respects it is "Open",
2227  *		but requires a bit more attention. It is entered when
2228  *		we see some SACKs or dupacks. It is split of "Open"
2229  *		mainly to move some processing from fast path to slow one.
2230  * "CWR"	CWND was reduced due to some Congestion Notification event.
2231  *		It can be ECN, ICMP source quench, local device congestion.
2232  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2233  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2234  *
2235  * tcp_fastretrans_alert() is entered:
2236  * - each incoming ACK, if state is not "Open"
2237  * - when arrived ACK is unusual, namely:
2238  *	* SACK
2239  *	* Duplicate ACK.
2240  *	* ECN ECE.
2241  *
2242  * Counting packets in flight is pretty simple.
2243  *
2244  *	in_flight = packets_out - left_out + retrans_out
2245  *
2246  *	packets_out is SND.NXT-SND.UNA counted in packets.
2247  *
2248  *	retrans_out is number of retransmitted segments.
2249  *
2250  *	left_out is number of segments left network, but not ACKed yet.
2251  *
2252  *		left_out = sacked_out + lost_out
2253  *
2254  *     sacked_out: Packets, which arrived to receiver out of order
2255  *		   and hence not ACKed. With SACKs this number is simply
2256  *		   amount of SACKed data. Even without SACKs
2257  *		   it is easy to give pretty reliable estimate of this number,
2258  *		   counting duplicate ACKs.
2259  *
2260  *       lost_out: Packets lost by network. TCP has no explicit
2261  *		   "loss notification" feedback from network (for now).
2262  *		   It means that this number can be only _guessed_.
2263  *		   Actually, it is the heuristics to predict lossage that
2264  *		   distinguishes different algorithms.
2265  *
2266  *	F.e. after RTO, when all the queue is considered as lost,
2267  *	lost_out = packets_out and in_flight = retrans_out.
2268  *
2269  *		Essentially, we have now a few algorithms detecting
2270  *		lost packets.
2271  *
2272  *		If the receiver supports SACK:
2273  *
2274  *		RFC6675/3517: It is the conventional algorithm. A packet is
2275  *		considered lost if the number of higher sequence packets
2276  *		SACKed is greater than or equal the DUPACK thoreshold
2277  *		(reordering). This is implemented in tcp_mark_head_lost and
2278  *		tcp_update_scoreboard.
2279  *
2280  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2281  *		(2017-) that checks timing instead of counting DUPACKs.
2282  *		Essentially a packet is considered lost if it's not S/ACKed
2283  *		after RTT + reordering_window, where both metrics are
2284  *		dynamically measured and adjusted. This is implemented in
2285  *		tcp_rack_mark_lost.
2286  *
2287  *		If the receiver does not support SACK:
2288  *
2289  *		NewReno (RFC6582): in Recovery we assume that one segment
2290  *		is lost (classic Reno). While we are in Recovery and
2291  *		a partial ACK arrives, we assume that one more packet
2292  *		is lost (NewReno). This heuristics are the same in NewReno
2293  *		and SACK.
2294  *
2295  * Really tricky (and requiring careful tuning) part of algorithm
2296  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2297  * The first determines the moment _when_ we should reduce CWND and,
2298  * hence, slow down forward transmission. In fact, it determines the moment
2299  * when we decide that hole is caused by loss, rather than by a reorder.
2300  *
2301  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2302  * holes, caused by lost packets.
2303  *
2304  * And the most logically complicated part of algorithm is undo
2305  * heuristics. We detect false retransmits due to both too early
2306  * fast retransmit (reordering) and underestimated RTO, analyzing
2307  * timestamps and D-SACKs. When we detect that some segments were
2308  * retransmitted by mistake and CWND reduction was wrong, we undo
2309  * window reduction and abort recovery phase. This logic is hidden
2310  * inside several functions named tcp_try_undo_<something>.
2311  */
2312 
2313 /* This function decides, when we should leave Disordered state
2314  * and enter Recovery phase, reducing congestion window.
2315  *
2316  * Main question: may we further continue forward transmission
2317  * with the same cwnd?
2318  */
2319 static bool tcp_time_to_recover(struct sock *sk, int flag)
2320 {
2321 	struct tcp_sock *tp = tcp_sk(sk);
2322 
2323 	/* Trick#1: The loss is proven. */
2324 	if (tp->lost_out)
2325 		return true;
2326 
2327 	/* Not-A-Trick#2 : Classic rule... */
2328 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2329 		return true;
2330 
2331 	return false;
2332 }
2333 
2334 /* Detect loss in event "A" above by marking head of queue up as lost.
2335  * For RFC3517 SACK, a segment is considered lost if it
2336  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2337  * the maximum SACKed segments to pass before reaching this limit.
2338  */
2339 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2340 {
2341 	struct tcp_sock *tp = tcp_sk(sk);
2342 	struct sk_buff *skb;
2343 	int cnt;
2344 	/* Use SACK to deduce losses of new sequences sent during recovery */
2345 	const u32 loss_high = tp->snd_nxt;
2346 
2347 	WARN_ON(packets > tp->packets_out);
2348 	skb = tp->lost_skb_hint;
2349 	if (skb) {
2350 		/* Head already handled? */
2351 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2352 			return;
2353 		cnt = tp->lost_cnt_hint;
2354 	} else {
2355 		skb = tcp_rtx_queue_head(sk);
2356 		cnt = 0;
2357 	}
2358 
2359 	skb_rbtree_walk_from(skb) {
2360 		/* TODO: do this better */
2361 		/* this is not the most efficient way to do this... */
2362 		tp->lost_skb_hint = skb;
2363 		tp->lost_cnt_hint = cnt;
2364 
2365 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2366 			break;
2367 
2368 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2369 			cnt += tcp_skb_pcount(skb);
2370 
2371 		if (cnt > packets)
2372 			break;
2373 
2374 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2375 			tcp_mark_skb_lost(sk, skb);
2376 
2377 		if (mark_head)
2378 			break;
2379 	}
2380 	tcp_verify_left_out(tp);
2381 }
2382 
2383 /* Account newly detected lost packet(s) */
2384 
2385 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2386 {
2387 	struct tcp_sock *tp = tcp_sk(sk);
2388 
2389 	if (tcp_is_sack(tp)) {
2390 		int sacked_upto = tp->sacked_out - tp->reordering;
2391 		if (sacked_upto >= 0)
2392 			tcp_mark_head_lost(sk, sacked_upto, 0);
2393 		else if (fast_rexmit)
2394 			tcp_mark_head_lost(sk, 1, 1);
2395 	}
2396 }
2397 
2398 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2399 {
2400 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2401 	       before(tp->rx_opt.rcv_tsecr, when);
2402 }
2403 
2404 /* skb is spurious retransmitted if the returned timestamp echo
2405  * reply is prior to the skb transmission time
2406  */
2407 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2408 				     const struct sk_buff *skb)
2409 {
2410 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2411 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2412 }
2413 
2414 /* Nothing was retransmitted or returned timestamp is less
2415  * than timestamp of the first retransmission.
2416  */
2417 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2418 {
2419 	return tp->retrans_stamp &&
2420 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2421 }
2422 
2423 /* Undo procedures. */
2424 
2425 /* We can clear retrans_stamp when there are no retransmissions in the
2426  * window. It would seem that it is trivially available for us in
2427  * tp->retrans_out, however, that kind of assumptions doesn't consider
2428  * what will happen if errors occur when sending retransmission for the
2429  * second time. ...It could the that such segment has only
2430  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2431  * the head skb is enough except for some reneging corner cases that
2432  * are not worth the effort.
2433  *
2434  * Main reason for all this complexity is the fact that connection dying
2435  * time now depends on the validity of the retrans_stamp, in particular,
2436  * that successive retransmissions of a segment must not advance
2437  * retrans_stamp under any conditions.
2438  */
2439 static bool tcp_any_retrans_done(const struct sock *sk)
2440 {
2441 	const struct tcp_sock *tp = tcp_sk(sk);
2442 	struct sk_buff *skb;
2443 
2444 	if (tp->retrans_out)
2445 		return true;
2446 
2447 	skb = tcp_rtx_queue_head(sk);
2448 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2449 		return true;
2450 
2451 	return false;
2452 }
2453 
2454 static void DBGUNDO(struct sock *sk, const char *msg)
2455 {
2456 #if FASTRETRANS_DEBUG > 1
2457 	struct tcp_sock *tp = tcp_sk(sk);
2458 	struct inet_sock *inet = inet_sk(sk);
2459 
2460 	if (sk->sk_family == AF_INET) {
2461 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2462 			 msg,
2463 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2464 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2465 			 tp->snd_ssthresh, tp->prior_ssthresh,
2466 			 tp->packets_out);
2467 	}
2468 #if IS_ENABLED(CONFIG_IPV6)
2469 	else if (sk->sk_family == AF_INET6) {
2470 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2471 			 msg,
2472 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2473 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2474 			 tp->snd_ssthresh, tp->prior_ssthresh,
2475 			 tp->packets_out);
2476 	}
2477 #endif
2478 #endif
2479 }
2480 
2481 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2482 {
2483 	struct tcp_sock *tp = tcp_sk(sk);
2484 
2485 	if (unmark_loss) {
2486 		struct sk_buff *skb;
2487 
2488 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2489 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2490 		}
2491 		tp->lost_out = 0;
2492 		tcp_clear_all_retrans_hints(tp);
2493 	}
2494 
2495 	if (tp->prior_ssthresh) {
2496 		const struct inet_connection_sock *icsk = inet_csk(sk);
2497 
2498 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2499 
2500 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2501 			tp->snd_ssthresh = tp->prior_ssthresh;
2502 			tcp_ecn_withdraw_cwr(tp);
2503 		}
2504 	}
2505 	tp->snd_cwnd_stamp = tcp_jiffies32;
2506 	tp->undo_marker = 0;
2507 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2508 }
2509 
2510 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2511 {
2512 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2513 }
2514 
2515 /* People celebrate: "We love our President!" */
2516 static bool tcp_try_undo_recovery(struct sock *sk)
2517 {
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 
2520 	if (tcp_may_undo(tp)) {
2521 		int mib_idx;
2522 
2523 		/* Happy end! We did not retransmit anything
2524 		 * or our original transmission succeeded.
2525 		 */
2526 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2527 		tcp_undo_cwnd_reduction(sk, false);
2528 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2529 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2530 		else
2531 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2532 
2533 		NET_INC_STATS(sock_net(sk), mib_idx);
2534 	} else if (tp->rack.reo_wnd_persist) {
2535 		tp->rack.reo_wnd_persist--;
2536 	}
2537 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2538 		/* Hold old state until something *above* high_seq
2539 		 * is ACKed. For Reno it is MUST to prevent false
2540 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2541 		if (!tcp_any_retrans_done(sk))
2542 			tp->retrans_stamp = 0;
2543 		return true;
2544 	}
2545 	tcp_set_ca_state(sk, TCP_CA_Open);
2546 	tp->is_sack_reneg = 0;
2547 	return false;
2548 }
2549 
2550 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2551 static bool tcp_try_undo_dsack(struct sock *sk)
2552 {
2553 	struct tcp_sock *tp = tcp_sk(sk);
2554 
2555 	if (tp->undo_marker && !tp->undo_retrans) {
2556 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2557 					       tp->rack.reo_wnd_persist + 1);
2558 		DBGUNDO(sk, "D-SACK");
2559 		tcp_undo_cwnd_reduction(sk, false);
2560 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2561 		return true;
2562 	}
2563 	return false;
2564 }
2565 
2566 /* Undo during loss recovery after partial ACK or using F-RTO. */
2567 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 
2571 	if (frto_undo || tcp_may_undo(tp)) {
2572 		tcp_undo_cwnd_reduction(sk, true);
2573 
2574 		DBGUNDO(sk, "partial loss");
2575 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2576 		if (frto_undo)
2577 			NET_INC_STATS(sock_net(sk),
2578 					LINUX_MIB_TCPSPURIOUSRTOS);
2579 		inet_csk(sk)->icsk_retransmits = 0;
2580 		if (frto_undo || tcp_is_sack(tp)) {
2581 			tcp_set_ca_state(sk, TCP_CA_Open);
2582 			tp->is_sack_reneg = 0;
2583 		}
2584 		return true;
2585 	}
2586 	return false;
2587 }
2588 
2589 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2590  * It computes the number of packets to send (sndcnt) based on packets newly
2591  * delivered:
2592  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2593  *	cwnd reductions across a full RTT.
2594  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2595  *      But when SND_UNA is acked without further losses,
2596  *      slow starts cwnd up to ssthresh to speed up the recovery.
2597  */
2598 static void tcp_init_cwnd_reduction(struct sock *sk)
2599 {
2600 	struct tcp_sock *tp = tcp_sk(sk);
2601 
2602 	tp->high_seq = tp->snd_nxt;
2603 	tp->tlp_high_seq = 0;
2604 	tp->snd_cwnd_cnt = 0;
2605 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2606 	tp->prr_delivered = 0;
2607 	tp->prr_out = 0;
2608 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2609 	tcp_ecn_queue_cwr(tp);
2610 }
2611 
2612 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2613 {
2614 	struct tcp_sock *tp = tcp_sk(sk);
2615 	int sndcnt = 0;
2616 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2617 
2618 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2619 		return;
2620 
2621 	tp->prr_delivered += newly_acked_sacked;
2622 	if (delta < 0) {
2623 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2624 			       tp->prior_cwnd - 1;
2625 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2626 	} else {
2627 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2628 			       newly_acked_sacked);
2629 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2630 			sndcnt++;
2631 		sndcnt = min(delta, sndcnt);
2632 	}
2633 	/* Force a fast retransmit upon entering fast recovery */
2634 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2635 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2636 }
2637 
2638 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 
2642 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2643 		return;
2644 
2645 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2646 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2647 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2648 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2649 		tp->snd_cwnd_stamp = tcp_jiffies32;
2650 	}
2651 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2652 }
2653 
2654 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2655 void tcp_enter_cwr(struct sock *sk)
2656 {
2657 	struct tcp_sock *tp = tcp_sk(sk);
2658 
2659 	tp->prior_ssthresh = 0;
2660 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2661 		tp->undo_marker = 0;
2662 		tcp_init_cwnd_reduction(sk);
2663 		tcp_set_ca_state(sk, TCP_CA_CWR);
2664 	}
2665 }
2666 EXPORT_SYMBOL(tcp_enter_cwr);
2667 
2668 static void tcp_try_keep_open(struct sock *sk)
2669 {
2670 	struct tcp_sock *tp = tcp_sk(sk);
2671 	int state = TCP_CA_Open;
2672 
2673 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2674 		state = TCP_CA_Disorder;
2675 
2676 	if (inet_csk(sk)->icsk_ca_state != state) {
2677 		tcp_set_ca_state(sk, state);
2678 		tp->high_seq = tp->snd_nxt;
2679 	}
2680 }
2681 
2682 static void tcp_try_to_open(struct sock *sk, int flag)
2683 {
2684 	struct tcp_sock *tp = tcp_sk(sk);
2685 
2686 	tcp_verify_left_out(tp);
2687 
2688 	if (!tcp_any_retrans_done(sk))
2689 		tp->retrans_stamp = 0;
2690 
2691 	if (flag & FLAG_ECE)
2692 		tcp_enter_cwr(sk);
2693 
2694 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2695 		tcp_try_keep_open(sk);
2696 	}
2697 }
2698 
2699 static void tcp_mtup_probe_failed(struct sock *sk)
2700 {
2701 	struct inet_connection_sock *icsk = inet_csk(sk);
2702 
2703 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2704 	icsk->icsk_mtup.probe_size = 0;
2705 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2706 }
2707 
2708 static void tcp_mtup_probe_success(struct sock *sk)
2709 {
2710 	struct tcp_sock *tp = tcp_sk(sk);
2711 	struct inet_connection_sock *icsk = inet_csk(sk);
2712 	u64 val;
2713 
2714 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2715 
2716 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2717 	do_div(val, icsk->icsk_mtup.probe_size);
2718 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2719 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2720 
2721 	tp->snd_cwnd_cnt = 0;
2722 	tp->snd_cwnd_stamp = tcp_jiffies32;
2723 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2724 
2725 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2726 	icsk->icsk_mtup.probe_size = 0;
2727 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2728 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2729 }
2730 
2731 /* Do a simple retransmit without using the backoff mechanisms in
2732  * tcp_timer. This is used for path mtu discovery.
2733  * The socket is already locked here.
2734  */
2735 void tcp_simple_retransmit(struct sock *sk)
2736 {
2737 	const struct inet_connection_sock *icsk = inet_csk(sk);
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 	struct sk_buff *skb;
2740 	int mss;
2741 
2742 	/* A fastopen SYN request is stored as two separate packets within
2743 	 * the retransmit queue, this is done by tcp_send_syn_data().
2744 	 * As a result simply checking the MSS of the frames in the queue
2745 	 * will not work for the SYN packet.
2746 	 *
2747 	 * Us being here is an indication of a path MTU issue so we can
2748 	 * assume that the fastopen SYN was lost and just mark all the
2749 	 * frames in the retransmit queue as lost. We will use an MSS of
2750 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2751 	 */
2752 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2753 		mss = -1;
2754 	else
2755 		mss = tcp_current_mss(sk);
2756 
2757 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2758 		if (tcp_skb_seglen(skb) > mss)
2759 			tcp_mark_skb_lost(sk, skb);
2760 	}
2761 
2762 	tcp_clear_retrans_hints_partial(tp);
2763 
2764 	if (!tp->lost_out)
2765 		return;
2766 
2767 	if (tcp_is_reno(tp))
2768 		tcp_limit_reno_sacked(tp);
2769 
2770 	tcp_verify_left_out(tp);
2771 
2772 	/* Don't muck with the congestion window here.
2773 	 * Reason is that we do not increase amount of _data_
2774 	 * in network, but units changed and effective
2775 	 * cwnd/ssthresh really reduced now.
2776 	 */
2777 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2778 		tp->high_seq = tp->snd_nxt;
2779 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2780 		tp->prior_ssthresh = 0;
2781 		tp->undo_marker = 0;
2782 		tcp_set_ca_state(sk, TCP_CA_Loss);
2783 	}
2784 	tcp_xmit_retransmit_queue(sk);
2785 }
2786 EXPORT_SYMBOL(tcp_simple_retransmit);
2787 
2788 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2789 {
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 	int mib_idx;
2792 
2793 	if (tcp_is_reno(tp))
2794 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2795 	else
2796 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2797 
2798 	NET_INC_STATS(sock_net(sk), mib_idx);
2799 
2800 	tp->prior_ssthresh = 0;
2801 	tcp_init_undo(tp);
2802 
2803 	if (!tcp_in_cwnd_reduction(sk)) {
2804 		if (!ece_ack)
2805 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2806 		tcp_init_cwnd_reduction(sk);
2807 	}
2808 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2809 }
2810 
2811 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2812  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2813  */
2814 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2815 			     int *rexmit)
2816 {
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 	bool recovered = !before(tp->snd_una, tp->high_seq);
2819 
2820 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2821 	    tcp_try_undo_loss(sk, false))
2822 		return;
2823 
2824 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2825 		/* Step 3.b. A timeout is spurious if not all data are
2826 		 * lost, i.e., never-retransmitted data are (s)acked.
2827 		 */
2828 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2829 		    tcp_try_undo_loss(sk, true))
2830 			return;
2831 
2832 		if (after(tp->snd_nxt, tp->high_seq)) {
2833 			if (flag & FLAG_DATA_SACKED || num_dupack)
2834 				tp->frto = 0; /* Step 3.a. loss was real */
2835 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2836 			tp->high_seq = tp->snd_nxt;
2837 			/* Step 2.b. Try send new data (but deferred until cwnd
2838 			 * is updated in tcp_ack()). Otherwise fall back to
2839 			 * the conventional recovery.
2840 			 */
2841 			if (!tcp_write_queue_empty(sk) &&
2842 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2843 				*rexmit = REXMIT_NEW;
2844 				return;
2845 			}
2846 			tp->frto = 0;
2847 		}
2848 	}
2849 
2850 	if (recovered) {
2851 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2852 		tcp_try_undo_recovery(sk);
2853 		return;
2854 	}
2855 	if (tcp_is_reno(tp)) {
2856 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2857 		 * delivered. Lower inflight to clock out (re)tranmissions.
2858 		 */
2859 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2860 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2861 		else if (flag & FLAG_SND_UNA_ADVANCED)
2862 			tcp_reset_reno_sack(tp);
2863 	}
2864 	*rexmit = REXMIT_LOST;
2865 }
2866 
2867 static bool tcp_force_fast_retransmit(struct sock *sk)
2868 {
2869 	struct tcp_sock *tp = tcp_sk(sk);
2870 
2871 	return after(tcp_highest_sack_seq(tp),
2872 		     tp->snd_una + tp->reordering * tp->mss_cache);
2873 }
2874 
2875 /* Undo during fast recovery after partial ACK. */
2876 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2877 				 bool *do_lost)
2878 {
2879 	struct tcp_sock *tp = tcp_sk(sk);
2880 
2881 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2882 		/* Plain luck! Hole if filled with delayed
2883 		 * packet, rather than with a retransmit. Check reordering.
2884 		 */
2885 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2886 
2887 		/* We are getting evidence that the reordering degree is higher
2888 		 * than we realized. If there are no retransmits out then we
2889 		 * can undo. Otherwise we clock out new packets but do not
2890 		 * mark more packets lost or retransmit more.
2891 		 */
2892 		if (tp->retrans_out)
2893 			return true;
2894 
2895 		if (!tcp_any_retrans_done(sk))
2896 			tp->retrans_stamp = 0;
2897 
2898 		DBGUNDO(sk, "partial recovery");
2899 		tcp_undo_cwnd_reduction(sk, true);
2900 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2901 		tcp_try_keep_open(sk);
2902 	} else {
2903 		/* Partial ACK arrived. Force fast retransmit. */
2904 		*do_lost = tcp_force_fast_retransmit(sk);
2905 	}
2906 	return false;
2907 }
2908 
2909 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2910 {
2911 	struct tcp_sock *tp = tcp_sk(sk);
2912 
2913 	if (tcp_rtx_queue_empty(sk))
2914 		return;
2915 
2916 	if (unlikely(tcp_is_reno(tp))) {
2917 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2918 	} else if (tcp_is_rack(sk)) {
2919 		u32 prior_retrans = tp->retrans_out;
2920 
2921 		if (tcp_rack_mark_lost(sk))
2922 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2923 		if (prior_retrans > tp->retrans_out)
2924 			*ack_flag |= FLAG_LOST_RETRANS;
2925 	}
2926 }
2927 
2928 /* Process an event, which can update packets-in-flight not trivially.
2929  * Main goal of this function is to calculate new estimate for left_out,
2930  * taking into account both packets sitting in receiver's buffer and
2931  * packets lost by network.
2932  *
2933  * Besides that it updates the congestion state when packet loss or ECN
2934  * is detected. But it does not reduce the cwnd, it is done by the
2935  * congestion control later.
2936  *
2937  * It does _not_ decide what to send, it is made in function
2938  * tcp_xmit_retransmit_queue().
2939  */
2940 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2941 				  int num_dupack, int *ack_flag, int *rexmit)
2942 {
2943 	struct inet_connection_sock *icsk = inet_csk(sk);
2944 	struct tcp_sock *tp = tcp_sk(sk);
2945 	int fast_rexmit = 0, flag = *ack_flag;
2946 	bool ece_ack = flag & FLAG_ECE;
2947 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2948 				      tcp_force_fast_retransmit(sk));
2949 
2950 	if (!tp->packets_out && tp->sacked_out)
2951 		tp->sacked_out = 0;
2952 
2953 	/* Now state machine starts.
2954 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2955 	if (ece_ack)
2956 		tp->prior_ssthresh = 0;
2957 
2958 	/* B. In all the states check for reneging SACKs. */
2959 	if (tcp_check_sack_reneging(sk, flag))
2960 		return;
2961 
2962 	/* C. Check consistency of the current state. */
2963 	tcp_verify_left_out(tp);
2964 
2965 	/* D. Check state exit conditions. State can be terminated
2966 	 *    when high_seq is ACKed. */
2967 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2968 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2969 		tp->retrans_stamp = 0;
2970 	} else if (!before(tp->snd_una, tp->high_seq)) {
2971 		switch (icsk->icsk_ca_state) {
2972 		case TCP_CA_CWR:
2973 			/* CWR is to be held something *above* high_seq
2974 			 * is ACKed for CWR bit to reach receiver. */
2975 			if (tp->snd_una != tp->high_seq) {
2976 				tcp_end_cwnd_reduction(sk);
2977 				tcp_set_ca_state(sk, TCP_CA_Open);
2978 			}
2979 			break;
2980 
2981 		case TCP_CA_Recovery:
2982 			if (tcp_is_reno(tp))
2983 				tcp_reset_reno_sack(tp);
2984 			if (tcp_try_undo_recovery(sk))
2985 				return;
2986 			tcp_end_cwnd_reduction(sk);
2987 			break;
2988 		}
2989 	}
2990 
2991 	/* E. Process state. */
2992 	switch (icsk->icsk_ca_state) {
2993 	case TCP_CA_Recovery:
2994 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2995 			if (tcp_is_reno(tp))
2996 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2997 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2998 			return;
2999 
3000 		if (tcp_try_undo_dsack(sk))
3001 			tcp_try_keep_open(sk);
3002 
3003 		tcp_identify_packet_loss(sk, ack_flag);
3004 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3005 			if (!tcp_time_to_recover(sk, flag))
3006 				return;
3007 			/* Undo reverts the recovery state. If loss is evident,
3008 			 * starts a new recovery (e.g. reordering then loss);
3009 			 */
3010 			tcp_enter_recovery(sk, ece_ack);
3011 		}
3012 		break;
3013 	case TCP_CA_Loss:
3014 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3015 		tcp_identify_packet_loss(sk, ack_flag);
3016 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3017 		      (*ack_flag & FLAG_LOST_RETRANS)))
3018 			return;
3019 		/* Change state if cwnd is undone or retransmits are lost */
3020 		fallthrough;
3021 	default:
3022 		if (tcp_is_reno(tp)) {
3023 			if (flag & FLAG_SND_UNA_ADVANCED)
3024 				tcp_reset_reno_sack(tp);
3025 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3026 		}
3027 
3028 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3029 			tcp_try_undo_dsack(sk);
3030 
3031 		tcp_identify_packet_loss(sk, ack_flag);
3032 		if (!tcp_time_to_recover(sk, flag)) {
3033 			tcp_try_to_open(sk, flag);
3034 			return;
3035 		}
3036 
3037 		/* MTU probe failure: don't reduce cwnd */
3038 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3039 		    icsk->icsk_mtup.probe_size &&
3040 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3041 			tcp_mtup_probe_failed(sk);
3042 			/* Restores the reduction we did in tcp_mtup_probe() */
3043 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3044 			tcp_simple_retransmit(sk);
3045 			return;
3046 		}
3047 
3048 		/* Otherwise enter Recovery state */
3049 		tcp_enter_recovery(sk, ece_ack);
3050 		fast_rexmit = 1;
3051 	}
3052 
3053 	if (!tcp_is_rack(sk) && do_lost)
3054 		tcp_update_scoreboard(sk, fast_rexmit);
3055 	*rexmit = REXMIT_LOST;
3056 }
3057 
3058 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3059 {
3060 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3061 	struct tcp_sock *tp = tcp_sk(sk);
3062 
3063 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3064 		/* If the remote keeps returning delayed ACKs, eventually
3065 		 * the min filter would pick it up and overestimate the
3066 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3067 		 */
3068 		return;
3069 	}
3070 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3071 			   rtt_us ? : jiffies_to_usecs(1));
3072 }
3073 
3074 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3075 			       long seq_rtt_us, long sack_rtt_us,
3076 			       long ca_rtt_us, struct rate_sample *rs)
3077 {
3078 	const struct tcp_sock *tp = tcp_sk(sk);
3079 
3080 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3081 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3082 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3083 	 * is acked (RFC6298).
3084 	 */
3085 	if (seq_rtt_us < 0)
3086 		seq_rtt_us = sack_rtt_us;
3087 
3088 	/* RTTM Rule: A TSecr value received in a segment is used to
3089 	 * update the averaged RTT measurement only if the segment
3090 	 * acknowledges some new data, i.e., only if it advances the
3091 	 * left edge of the send window.
3092 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3093 	 */
3094 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3095 	    flag & FLAG_ACKED) {
3096 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3097 
3098 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3099 			if (!delta)
3100 				delta = 1;
3101 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3102 			ca_rtt_us = seq_rtt_us;
3103 		}
3104 	}
3105 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3106 	if (seq_rtt_us < 0)
3107 		return false;
3108 
3109 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3110 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3111 	 * values will be skipped with the seq_rtt_us < 0 check above.
3112 	 */
3113 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3114 	tcp_rtt_estimator(sk, seq_rtt_us);
3115 	tcp_set_rto(sk);
3116 
3117 	/* RFC6298: only reset backoff on valid RTT measurement. */
3118 	inet_csk(sk)->icsk_backoff = 0;
3119 	return true;
3120 }
3121 
3122 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3123 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3124 {
3125 	struct rate_sample rs;
3126 	long rtt_us = -1L;
3127 
3128 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3129 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3130 
3131 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3132 }
3133 
3134 
3135 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3136 {
3137 	const struct inet_connection_sock *icsk = inet_csk(sk);
3138 
3139 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3140 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3141 }
3142 
3143 /* Restart timer after forward progress on connection.
3144  * RFC2988 recommends to restart timer to now+rto.
3145  */
3146 void tcp_rearm_rto(struct sock *sk)
3147 {
3148 	const struct inet_connection_sock *icsk = inet_csk(sk);
3149 	struct tcp_sock *tp = tcp_sk(sk);
3150 
3151 	/* If the retrans timer is currently being used by Fast Open
3152 	 * for SYN-ACK retrans purpose, stay put.
3153 	 */
3154 	if (rcu_access_pointer(tp->fastopen_rsk))
3155 		return;
3156 
3157 	if (!tp->packets_out) {
3158 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3159 	} else {
3160 		u32 rto = inet_csk(sk)->icsk_rto;
3161 		/* Offset the time elapsed after installing regular RTO */
3162 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3163 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3164 			s64 delta_us = tcp_rto_delta_us(sk);
3165 			/* delta_us may not be positive if the socket is locked
3166 			 * when the retrans timer fires and is rescheduled.
3167 			 */
3168 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3169 		}
3170 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3171 				     TCP_RTO_MAX);
3172 	}
3173 }
3174 
3175 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3176 static void tcp_set_xmit_timer(struct sock *sk)
3177 {
3178 	if (!tcp_schedule_loss_probe(sk, true))
3179 		tcp_rearm_rto(sk);
3180 }
3181 
3182 /* If we get here, the whole TSO packet has not been acked. */
3183 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3184 {
3185 	struct tcp_sock *tp = tcp_sk(sk);
3186 	u32 packets_acked;
3187 
3188 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3189 
3190 	packets_acked = tcp_skb_pcount(skb);
3191 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3192 		return 0;
3193 	packets_acked -= tcp_skb_pcount(skb);
3194 
3195 	if (packets_acked) {
3196 		BUG_ON(tcp_skb_pcount(skb) == 0);
3197 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3198 	}
3199 
3200 	return packets_acked;
3201 }
3202 
3203 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3204 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3205 {
3206 	const struct skb_shared_info *shinfo;
3207 
3208 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3209 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3210 		return;
3211 
3212 	shinfo = skb_shinfo(skb);
3213 	if (!before(shinfo->tskey, prior_snd_una) &&
3214 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3215 		tcp_skb_tsorted_save(skb) {
3216 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3217 		} tcp_skb_tsorted_restore(skb);
3218 	}
3219 }
3220 
3221 /* Remove acknowledged frames from the retransmission queue. If our packet
3222  * is before the ack sequence we can discard it as it's confirmed to have
3223  * arrived at the other end.
3224  */
3225 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3226 			       u32 prior_fack, u32 prior_snd_una,
3227 			       struct tcp_sacktag_state *sack, bool ece_ack)
3228 {
3229 	const struct inet_connection_sock *icsk = inet_csk(sk);
3230 	u64 first_ackt, last_ackt;
3231 	struct tcp_sock *tp = tcp_sk(sk);
3232 	u32 prior_sacked = tp->sacked_out;
3233 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3234 	struct sk_buff *skb, *next;
3235 	bool fully_acked = true;
3236 	long sack_rtt_us = -1L;
3237 	long seq_rtt_us = -1L;
3238 	long ca_rtt_us = -1L;
3239 	u32 pkts_acked = 0;
3240 	bool rtt_update;
3241 	int flag = 0;
3242 
3243 	first_ackt = 0;
3244 
3245 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3246 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3247 		const u32 start_seq = scb->seq;
3248 		u8 sacked = scb->sacked;
3249 		u32 acked_pcount;
3250 
3251 		/* Determine how many packets and what bytes were acked, tso and else */
3252 		if (after(scb->end_seq, tp->snd_una)) {
3253 			if (tcp_skb_pcount(skb) == 1 ||
3254 			    !after(tp->snd_una, scb->seq))
3255 				break;
3256 
3257 			acked_pcount = tcp_tso_acked(sk, skb);
3258 			if (!acked_pcount)
3259 				break;
3260 			fully_acked = false;
3261 		} else {
3262 			acked_pcount = tcp_skb_pcount(skb);
3263 		}
3264 
3265 		if (unlikely(sacked & TCPCB_RETRANS)) {
3266 			if (sacked & TCPCB_SACKED_RETRANS)
3267 				tp->retrans_out -= acked_pcount;
3268 			flag |= FLAG_RETRANS_DATA_ACKED;
3269 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3270 			last_ackt = tcp_skb_timestamp_us(skb);
3271 			WARN_ON_ONCE(last_ackt == 0);
3272 			if (!first_ackt)
3273 				first_ackt = last_ackt;
3274 
3275 			if (before(start_seq, reord))
3276 				reord = start_seq;
3277 			if (!after(scb->end_seq, tp->high_seq))
3278 				flag |= FLAG_ORIG_SACK_ACKED;
3279 		}
3280 
3281 		if (sacked & TCPCB_SACKED_ACKED) {
3282 			tp->sacked_out -= acked_pcount;
3283 		} else if (tcp_is_sack(tp)) {
3284 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3285 			if (!tcp_skb_spurious_retrans(tp, skb))
3286 				tcp_rack_advance(tp, sacked, scb->end_seq,
3287 						 tcp_skb_timestamp_us(skb));
3288 		}
3289 		if (sacked & TCPCB_LOST)
3290 			tp->lost_out -= acked_pcount;
3291 
3292 		tp->packets_out -= acked_pcount;
3293 		pkts_acked += acked_pcount;
3294 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3295 
3296 		/* Initial outgoing SYN's get put onto the write_queue
3297 		 * just like anything else we transmit.  It is not
3298 		 * true data, and if we misinform our callers that
3299 		 * this ACK acks real data, we will erroneously exit
3300 		 * connection startup slow start one packet too
3301 		 * quickly.  This is severely frowned upon behavior.
3302 		 */
3303 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3304 			flag |= FLAG_DATA_ACKED;
3305 		} else {
3306 			flag |= FLAG_SYN_ACKED;
3307 			tp->retrans_stamp = 0;
3308 		}
3309 
3310 		if (!fully_acked)
3311 			break;
3312 
3313 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3314 
3315 		next = skb_rb_next(skb);
3316 		if (unlikely(skb == tp->retransmit_skb_hint))
3317 			tp->retransmit_skb_hint = NULL;
3318 		if (unlikely(skb == tp->lost_skb_hint))
3319 			tp->lost_skb_hint = NULL;
3320 		tcp_highest_sack_replace(sk, skb, next);
3321 		tcp_rtx_queue_unlink_and_free(skb, sk);
3322 	}
3323 
3324 	if (!skb)
3325 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3326 
3327 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3328 		tp->snd_up = tp->snd_una;
3329 
3330 	if (skb) {
3331 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3332 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3333 			flag |= FLAG_SACK_RENEGING;
3334 	}
3335 
3336 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3337 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3338 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3339 
3340 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3341 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3342 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3343 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3344 			/* Conservatively mark a delayed ACK. It's typically
3345 			 * from a lone runt packet over the round trip to
3346 			 * a receiver w/o out-of-order or CE events.
3347 			 */
3348 			flag |= FLAG_ACK_MAYBE_DELAYED;
3349 		}
3350 	}
3351 	if (sack->first_sackt) {
3352 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3353 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3354 	}
3355 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3356 					ca_rtt_us, sack->rate);
3357 
3358 	if (flag & FLAG_ACKED) {
3359 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3360 		if (unlikely(icsk->icsk_mtup.probe_size &&
3361 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3362 			tcp_mtup_probe_success(sk);
3363 		}
3364 
3365 		if (tcp_is_reno(tp)) {
3366 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3367 
3368 			/* If any of the cumulatively ACKed segments was
3369 			 * retransmitted, non-SACK case cannot confirm that
3370 			 * progress was due to original transmission due to
3371 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3372 			 * the packets may have been never retransmitted.
3373 			 */
3374 			if (flag & FLAG_RETRANS_DATA_ACKED)
3375 				flag &= ~FLAG_ORIG_SACK_ACKED;
3376 		} else {
3377 			int delta;
3378 
3379 			/* Non-retransmitted hole got filled? That's reordering */
3380 			if (before(reord, prior_fack))
3381 				tcp_check_sack_reordering(sk, reord, 0);
3382 
3383 			delta = prior_sacked - tp->sacked_out;
3384 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3385 		}
3386 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3387 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3388 						    tcp_skb_timestamp_us(skb))) {
3389 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3390 		 * after when the head was last (re)transmitted. Otherwise the
3391 		 * timeout may continue to extend in loss recovery.
3392 		 */
3393 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3394 	}
3395 
3396 	if (icsk->icsk_ca_ops->pkts_acked) {
3397 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3398 					     .rtt_us = sack->rate->rtt_us };
3399 
3400 		sample.in_flight = tp->mss_cache *
3401 			(tp->delivered - sack->rate->prior_delivered);
3402 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3403 	}
3404 
3405 #if FASTRETRANS_DEBUG > 0
3406 	WARN_ON((int)tp->sacked_out < 0);
3407 	WARN_ON((int)tp->lost_out < 0);
3408 	WARN_ON((int)tp->retrans_out < 0);
3409 	if (!tp->packets_out && tcp_is_sack(tp)) {
3410 		icsk = inet_csk(sk);
3411 		if (tp->lost_out) {
3412 			pr_debug("Leak l=%u %d\n",
3413 				 tp->lost_out, icsk->icsk_ca_state);
3414 			tp->lost_out = 0;
3415 		}
3416 		if (tp->sacked_out) {
3417 			pr_debug("Leak s=%u %d\n",
3418 				 tp->sacked_out, icsk->icsk_ca_state);
3419 			tp->sacked_out = 0;
3420 		}
3421 		if (tp->retrans_out) {
3422 			pr_debug("Leak r=%u %d\n",
3423 				 tp->retrans_out, icsk->icsk_ca_state);
3424 			tp->retrans_out = 0;
3425 		}
3426 	}
3427 #endif
3428 	return flag;
3429 }
3430 
3431 static void tcp_ack_probe(struct sock *sk)
3432 {
3433 	struct inet_connection_sock *icsk = inet_csk(sk);
3434 	struct sk_buff *head = tcp_send_head(sk);
3435 	const struct tcp_sock *tp = tcp_sk(sk);
3436 
3437 	/* Was it a usable window open? */
3438 	if (!head)
3439 		return;
3440 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3441 		icsk->icsk_backoff = 0;
3442 		icsk->icsk_probes_tstamp = 0;
3443 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3444 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3445 		 * This function is not for random using!
3446 		 */
3447 	} else {
3448 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3449 
3450 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3451 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3452 	}
3453 }
3454 
3455 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3456 {
3457 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3458 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3459 }
3460 
3461 /* Decide wheather to run the increase function of congestion control. */
3462 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3463 {
3464 	/* If reordering is high then always grow cwnd whenever data is
3465 	 * delivered regardless of its ordering. Otherwise stay conservative
3466 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3467 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3468 	 * cwnd in tcp_fastretrans_alert() based on more states.
3469 	 */
3470 	if (tcp_sk(sk)->reordering >
3471 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3472 		return flag & FLAG_FORWARD_PROGRESS;
3473 
3474 	return flag & FLAG_DATA_ACKED;
3475 }
3476 
3477 /* The "ultimate" congestion control function that aims to replace the rigid
3478  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3479  * It's called toward the end of processing an ACK with precise rate
3480  * information. All transmission or retransmission are delayed afterwards.
3481  */
3482 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3483 			     int flag, const struct rate_sample *rs)
3484 {
3485 	const struct inet_connection_sock *icsk = inet_csk(sk);
3486 
3487 	if (icsk->icsk_ca_ops->cong_control) {
3488 		icsk->icsk_ca_ops->cong_control(sk, rs);
3489 		return;
3490 	}
3491 
3492 	if (tcp_in_cwnd_reduction(sk)) {
3493 		/* Reduce cwnd if state mandates */
3494 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3495 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3496 		/* Advance cwnd if state allows */
3497 		tcp_cong_avoid(sk, ack, acked_sacked);
3498 	}
3499 	tcp_update_pacing_rate(sk);
3500 }
3501 
3502 /* Check that window update is acceptable.
3503  * The function assumes that snd_una<=ack<=snd_next.
3504  */
3505 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3506 					const u32 ack, const u32 ack_seq,
3507 					const u32 nwin)
3508 {
3509 	return	after(ack, tp->snd_una) ||
3510 		after(ack_seq, tp->snd_wl1) ||
3511 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3512 }
3513 
3514 /* If we update tp->snd_una, also update tp->bytes_acked */
3515 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3516 {
3517 	u32 delta = ack - tp->snd_una;
3518 
3519 	sock_owned_by_me((struct sock *)tp);
3520 	tp->bytes_acked += delta;
3521 	tp->snd_una = ack;
3522 }
3523 
3524 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3525 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3526 {
3527 	u32 delta = seq - tp->rcv_nxt;
3528 
3529 	sock_owned_by_me((struct sock *)tp);
3530 	tp->bytes_received += delta;
3531 	WRITE_ONCE(tp->rcv_nxt, seq);
3532 }
3533 
3534 /* Update our send window.
3535  *
3536  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3537  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3538  */
3539 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3540 				 u32 ack_seq)
3541 {
3542 	struct tcp_sock *tp = tcp_sk(sk);
3543 	int flag = 0;
3544 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3545 
3546 	if (likely(!tcp_hdr(skb)->syn))
3547 		nwin <<= tp->rx_opt.snd_wscale;
3548 
3549 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3550 		flag |= FLAG_WIN_UPDATE;
3551 		tcp_update_wl(tp, ack_seq);
3552 
3553 		if (tp->snd_wnd != nwin) {
3554 			tp->snd_wnd = nwin;
3555 
3556 			/* Note, it is the only place, where
3557 			 * fast path is recovered for sending TCP.
3558 			 */
3559 			tp->pred_flags = 0;
3560 			tcp_fast_path_check(sk);
3561 
3562 			if (!tcp_write_queue_empty(sk))
3563 				tcp_slow_start_after_idle_check(sk);
3564 
3565 			if (nwin > tp->max_window) {
3566 				tp->max_window = nwin;
3567 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3568 			}
3569 		}
3570 	}
3571 
3572 	tcp_snd_una_update(tp, ack);
3573 
3574 	return flag;
3575 }
3576 
3577 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3578 				   u32 *last_oow_ack_time)
3579 {
3580 	if (*last_oow_ack_time) {
3581 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3582 
3583 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3584 			NET_INC_STATS(net, mib_idx);
3585 			return true;	/* rate-limited: don't send yet! */
3586 		}
3587 	}
3588 
3589 	*last_oow_ack_time = tcp_jiffies32;
3590 
3591 	return false;	/* not rate-limited: go ahead, send dupack now! */
3592 }
3593 
3594 /* Return true if we're currently rate-limiting out-of-window ACKs and
3595  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3596  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3597  * attacks that send repeated SYNs or ACKs for the same connection. To
3598  * do this, we do not send a duplicate SYNACK or ACK if the remote
3599  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3600  */
3601 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3602 			  int mib_idx, u32 *last_oow_ack_time)
3603 {
3604 	/* Data packets without SYNs are not likely part of an ACK loop. */
3605 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3606 	    !tcp_hdr(skb)->syn)
3607 		return false;
3608 
3609 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3610 }
3611 
3612 /* RFC 5961 7 [ACK Throttling] */
3613 static void tcp_send_challenge_ack(struct sock *sk)
3614 {
3615 	/* unprotected vars, we dont care of overwrites */
3616 	static u32 challenge_timestamp;
3617 	static unsigned int challenge_count;
3618 	struct tcp_sock *tp = tcp_sk(sk);
3619 	struct net *net = sock_net(sk);
3620 	u32 count, now;
3621 
3622 	/* First check our per-socket dupack rate limit. */
3623 	if (__tcp_oow_rate_limited(net,
3624 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3625 				   &tp->last_oow_ack_time))
3626 		return;
3627 
3628 	/* Then check host-wide RFC 5961 rate limit. */
3629 	now = jiffies / HZ;
3630 	if (now != challenge_timestamp) {
3631 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3632 		u32 half = (ack_limit + 1) >> 1;
3633 
3634 		challenge_timestamp = now;
3635 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3636 	}
3637 	count = READ_ONCE(challenge_count);
3638 	if (count > 0) {
3639 		WRITE_ONCE(challenge_count, count - 1);
3640 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3641 		tcp_send_ack(sk);
3642 	}
3643 }
3644 
3645 static void tcp_store_ts_recent(struct tcp_sock *tp)
3646 {
3647 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3648 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3649 }
3650 
3651 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3652 {
3653 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3654 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3655 		 * extra check below makes sure this can only happen
3656 		 * for pure ACK frames.  -DaveM
3657 		 *
3658 		 * Not only, also it occurs for expired timestamps.
3659 		 */
3660 
3661 		if (tcp_paws_check(&tp->rx_opt, 0))
3662 			tcp_store_ts_recent(tp);
3663 	}
3664 }
3665 
3666 /* This routine deals with acks during a TLP episode and ends an episode by
3667  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3668  */
3669 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3670 {
3671 	struct tcp_sock *tp = tcp_sk(sk);
3672 
3673 	if (before(ack, tp->tlp_high_seq))
3674 		return;
3675 
3676 	if (!tp->tlp_retrans) {
3677 		/* TLP of new data has been acknowledged */
3678 		tp->tlp_high_seq = 0;
3679 	} else if (flag & FLAG_DSACK_TLP) {
3680 		/* This DSACK means original and TLP probe arrived; no loss */
3681 		tp->tlp_high_seq = 0;
3682 	} else if (after(ack, tp->tlp_high_seq)) {
3683 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3684 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3685 		 */
3686 		tcp_init_cwnd_reduction(sk);
3687 		tcp_set_ca_state(sk, TCP_CA_CWR);
3688 		tcp_end_cwnd_reduction(sk);
3689 		tcp_try_keep_open(sk);
3690 		NET_INC_STATS(sock_net(sk),
3691 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3692 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3693 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3694 		/* Pure dupack: original and TLP probe arrived; no loss */
3695 		tp->tlp_high_seq = 0;
3696 	}
3697 }
3698 
3699 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3700 {
3701 	const struct inet_connection_sock *icsk = inet_csk(sk);
3702 
3703 	if (icsk->icsk_ca_ops->in_ack_event)
3704 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3705 }
3706 
3707 /* Congestion control has updated the cwnd already. So if we're in
3708  * loss recovery then now we do any new sends (for FRTO) or
3709  * retransmits (for CA_Loss or CA_recovery) that make sense.
3710  */
3711 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3712 {
3713 	struct tcp_sock *tp = tcp_sk(sk);
3714 
3715 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3716 		return;
3717 
3718 	if (unlikely(rexmit == REXMIT_NEW)) {
3719 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3720 					  TCP_NAGLE_OFF);
3721 		if (after(tp->snd_nxt, tp->high_seq))
3722 			return;
3723 		tp->frto = 0;
3724 	}
3725 	tcp_xmit_retransmit_queue(sk);
3726 }
3727 
3728 /* Returns the number of packets newly acked or sacked by the current ACK */
3729 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3730 {
3731 	const struct net *net = sock_net(sk);
3732 	struct tcp_sock *tp = tcp_sk(sk);
3733 	u32 delivered;
3734 
3735 	delivered = tp->delivered - prior_delivered;
3736 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3737 	if (flag & FLAG_ECE)
3738 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3739 
3740 	return delivered;
3741 }
3742 
3743 /* This routine deals with incoming acks, but not outgoing ones. */
3744 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3745 {
3746 	struct inet_connection_sock *icsk = inet_csk(sk);
3747 	struct tcp_sock *tp = tcp_sk(sk);
3748 	struct tcp_sacktag_state sack_state;
3749 	struct rate_sample rs = { .prior_delivered = 0 };
3750 	u32 prior_snd_una = tp->snd_una;
3751 	bool is_sack_reneg = tp->is_sack_reneg;
3752 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3753 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3754 	int num_dupack = 0;
3755 	int prior_packets = tp->packets_out;
3756 	u32 delivered = tp->delivered;
3757 	u32 lost = tp->lost;
3758 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3759 	u32 prior_fack;
3760 
3761 	sack_state.first_sackt = 0;
3762 	sack_state.rate = &rs;
3763 	sack_state.sack_delivered = 0;
3764 
3765 	/* We very likely will need to access rtx queue. */
3766 	prefetch(sk->tcp_rtx_queue.rb_node);
3767 
3768 	/* If the ack is older than previous acks
3769 	 * then we can probably ignore it.
3770 	 */
3771 	if (before(ack, prior_snd_una)) {
3772 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3773 		if (before(ack, prior_snd_una - tp->max_window)) {
3774 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3775 				tcp_send_challenge_ack(sk);
3776 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3777 		}
3778 		goto old_ack;
3779 	}
3780 
3781 	/* If the ack includes data we haven't sent yet, discard
3782 	 * this segment (RFC793 Section 3.9).
3783 	 */
3784 	if (after(ack, tp->snd_nxt))
3785 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3786 
3787 	if (after(ack, prior_snd_una)) {
3788 		flag |= FLAG_SND_UNA_ADVANCED;
3789 		icsk->icsk_retransmits = 0;
3790 
3791 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3792 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3793 			if (icsk->icsk_clean_acked)
3794 				icsk->icsk_clean_acked(sk, ack);
3795 #endif
3796 	}
3797 
3798 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3799 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3800 
3801 	/* ts_recent update must be made after we are sure that the packet
3802 	 * is in window.
3803 	 */
3804 	if (flag & FLAG_UPDATE_TS_RECENT)
3805 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3806 
3807 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3808 	    FLAG_SND_UNA_ADVANCED) {
3809 		/* Window is constant, pure forward advance.
3810 		 * No more checks are required.
3811 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3812 		 */
3813 		tcp_update_wl(tp, ack_seq);
3814 		tcp_snd_una_update(tp, ack);
3815 		flag |= FLAG_WIN_UPDATE;
3816 
3817 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3818 
3819 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3820 	} else {
3821 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3822 
3823 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3824 			flag |= FLAG_DATA;
3825 		else
3826 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3827 
3828 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3829 
3830 		if (TCP_SKB_CB(skb)->sacked)
3831 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3832 							&sack_state);
3833 
3834 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3835 			flag |= FLAG_ECE;
3836 			ack_ev_flags |= CA_ACK_ECE;
3837 		}
3838 
3839 		if (sack_state.sack_delivered)
3840 			tcp_count_delivered(tp, sack_state.sack_delivered,
3841 					    flag & FLAG_ECE);
3842 
3843 		if (flag & FLAG_WIN_UPDATE)
3844 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3845 
3846 		tcp_in_ack_event(sk, ack_ev_flags);
3847 	}
3848 
3849 	/* This is a deviation from RFC3168 since it states that:
3850 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3851 	 * the congestion window, it SHOULD set the CWR bit only on the first
3852 	 * new data packet that it transmits."
3853 	 * We accept CWR on pure ACKs to be more robust
3854 	 * with widely-deployed TCP implementations that do this.
3855 	 */
3856 	tcp_ecn_accept_cwr(sk, skb);
3857 
3858 	/* We passed data and got it acked, remove any soft error
3859 	 * log. Something worked...
3860 	 */
3861 	sk->sk_err_soft = 0;
3862 	icsk->icsk_probes_out = 0;
3863 	tp->rcv_tstamp = tcp_jiffies32;
3864 	if (!prior_packets)
3865 		goto no_queue;
3866 
3867 	/* See if we can take anything off of the retransmit queue. */
3868 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3869 				    &sack_state, flag & FLAG_ECE);
3870 
3871 	tcp_rack_update_reo_wnd(sk, &rs);
3872 
3873 	if (tp->tlp_high_seq)
3874 		tcp_process_tlp_ack(sk, ack, flag);
3875 
3876 	if (tcp_ack_is_dubious(sk, flag)) {
3877 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3878 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3879 			num_dupack = 1;
3880 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3881 			if (!(flag & FLAG_DATA))
3882 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3883 		}
3884 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3885 				      &rexmit);
3886 	}
3887 
3888 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3889 	if (flag & FLAG_SET_XMIT_TIMER)
3890 		tcp_set_xmit_timer(sk);
3891 
3892 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3893 		sk_dst_confirm(sk);
3894 
3895 	delivered = tcp_newly_delivered(sk, delivered, flag);
3896 	lost = tp->lost - lost;			/* freshly marked lost */
3897 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3898 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3899 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3900 	tcp_xmit_recovery(sk, rexmit);
3901 	return 1;
3902 
3903 no_queue:
3904 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3905 	if (flag & FLAG_DSACKING_ACK) {
3906 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3907 				      &rexmit);
3908 		tcp_newly_delivered(sk, delivered, flag);
3909 	}
3910 	/* If this ack opens up a zero window, clear backoff.  It was
3911 	 * being used to time the probes, and is probably far higher than
3912 	 * it needs to be for normal retransmission.
3913 	 */
3914 	tcp_ack_probe(sk);
3915 
3916 	if (tp->tlp_high_seq)
3917 		tcp_process_tlp_ack(sk, ack, flag);
3918 	return 1;
3919 
3920 old_ack:
3921 	/* If data was SACKed, tag it and see if we should send more data.
3922 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3923 	 */
3924 	if (TCP_SKB_CB(skb)->sacked) {
3925 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3926 						&sack_state);
3927 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3928 				      &rexmit);
3929 		tcp_newly_delivered(sk, delivered, flag);
3930 		tcp_xmit_recovery(sk, rexmit);
3931 	}
3932 
3933 	return 0;
3934 }
3935 
3936 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3937 				      bool syn, struct tcp_fastopen_cookie *foc,
3938 				      bool exp_opt)
3939 {
3940 	/* Valid only in SYN or SYN-ACK with an even length.  */
3941 	if (!foc || !syn || len < 0 || (len & 1))
3942 		return;
3943 
3944 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3945 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3946 		memcpy(foc->val, cookie, len);
3947 	else if (len != 0)
3948 		len = -1;
3949 	foc->len = len;
3950 	foc->exp = exp_opt;
3951 }
3952 
3953 static bool smc_parse_options(const struct tcphdr *th,
3954 			      struct tcp_options_received *opt_rx,
3955 			      const unsigned char *ptr,
3956 			      int opsize)
3957 {
3958 #if IS_ENABLED(CONFIG_SMC)
3959 	if (static_branch_unlikely(&tcp_have_smc)) {
3960 		if (th->syn && !(opsize & 1) &&
3961 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3962 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3963 			opt_rx->smc_ok = 1;
3964 			return true;
3965 		}
3966 	}
3967 #endif
3968 	return false;
3969 }
3970 
3971 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3972  * value on success.
3973  */
3974 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3975 {
3976 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3977 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3978 	u16 mss = 0;
3979 
3980 	while (length > 0) {
3981 		int opcode = *ptr++;
3982 		int opsize;
3983 
3984 		switch (opcode) {
3985 		case TCPOPT_EOL:
3986 			return mss;
3987 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3988 			length--;
3989 			continue;
3990 		default:
3991 			if (length < 2)
3992 				return mss;
3993 			opsize = *ptr++;
3994 			if (opsize < 2) /* "silly options" */
3995 				return mss;
3996 			if (opsize > length)
3997 				return mss;	/* fail on partial options */
3998 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3999 				u16 in_mss = get_unaligned_be16(ptr);
4000 
4001 				if (in_mss) {
4002 					if (user_mss && user_mss < in_mss)
4003 						in_mss = user_mss;
4004 					mss = in_mss;
4005 				}
4006 			}
4007 			ptr += opsize - 2;
4008 			length -= opsize;
4009 		}
4010 	}
4011 	return mss;
4012 }
4013 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4014 
4015 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4016  * But, this can also be called on packets in the established flow when
4017  * the fast version below fails.
4018  */
4019 void tcp_parse_options(const struct net *net,
4020 		       const struct sk_buff *skb,
4021 		       struct tcp_options_received *opt_rx, int estab,
4022 		       struct tcp_fastopen_cookie *foc)
4023 {
4024 	const unsigned char *ptr;
4025 	const struct tcphdr *th = tcp_hdr(skb);
4026 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4027 
4028 	ptr = (const unsigned char *)(th + 1);
4029 	opt_rx->saw_tstamp = 0;
4030 	opt_rx->saw_unknown = 0;
4031 
4032 	while (length > 0) {
4033 		int opcode = *ptr++;
4034 		int opsize;
4035 
4036 		switch (opcode) {
4037 		case TCPOPT_EOL:
4038 			return;
4039 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4040 			length--;
4041 			continue;
4042 		default:
4043 			if (length < 2)
4044 				return;
4045 			opsize = *ptr++;
4046 			if (opsize < 2) /* "silly options" */
4047 				return;
4048 			if (opsize > length)
4049 				return;	/* don't parse partial options */
4050 			switch (opcode) {
4051 			case TCPOPT_MSS:
4052 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4053 					u16 in_mss = get_unaligned_be16(ptr);
4054 					if (in_mss) {
4055 						if (opt_rx->user_mss &&
4056 						    opt_rx->user_mss < in_mss)
4057 							in_mss = opt_rx->user_mss;
4058 						opt_rx->mss_clamp = in_mss;
4059 					}
4060 				}
4061 				break;
4062 			case TCPOPT_WINDOW:
4063 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4064 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4065 					__u8 snd_wscale = *(__u8 *)ptr;
4066 					opt_rx->wscale_ok = 1;
4067 					if (snd_wscale > TCP_MAX_WSCALE) {
4068 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4069 								     __func__,
4070 								     snd_wscale,
4071 								     TCP_MAX_WSCALE);
4072 						snd_wscale = TCP_MAX_WSCALE;
4073 					}
4074 					opt_rx->snd_wscale = snd_wscale;
4075 				}
4076 				break;
4077 			case TCPOPT_TIMESTAMP:
4078 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4079 				    ((estab && opt_rx->tstamp_ok) ||
4080 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4081 					opt_rx->saw_tstamp = 1;
4082 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4083 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4084 				}
4085 				break;
4086 			case TCPOPT_SACK_PERM:
4087 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4088 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4089 					opt_rx->sack_ok = TCP_SACK_SEEN;
4090 					tcp_sack_reset(opt_rx);
4091 				}
4092 				break;
4093 
4094 			case TCPOPT_SACK:
4095 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4096 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4097 				   opt_rx->sack_ok) {
4098 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4099 				}
4100 				break;
4101 #ifdef CONFIG_TCP_MD5SIG
4102 			case TCPOPT_MD5SIG:
4103 				/*
4104 				 * The MD5 Hash has already been
4105 				 * checked (see tcp_v{4,6}_do_rcv()).
4106 				 */
4107 				break;
4108 #endif
4109 			case TCPOPT_FASTOPEN:
4110 				tcp_parse_fastopen_option(
4111 					opsize - TCPOLEN_FASTOPEN_BASE,
4112 					ptr, th->syn, foc, false);
4113 				break;
4114 
4115 			case TCPOPT_EXP:
4116 				/* Fast Open option shares code 254 using a
4117 				 * 16 bits magic number.
4118 				 */
4119 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4120 				    get_unaligned_be16(ptr) ==
4121 				    TCPOPT_FASTOPEN_MAGIC) {
4122 					tcp_parse_fastopen_option(opsize -
4123 						TCPOLEN_EXP_FASTOPEN_BASE,
4124 						ptr + 2, th->syn, foc, true);
4125 					break;
4126 				}
4127 
4128 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4129 					break;
4130 
4131 				opt_rx->saw_unknown = 1;
4132 				break;
4133 
4134 			default:
4135 				opt_rx->saw_unknown = 1;
4136 			}
4137 			ptr += opsize-2;
4138 			length -= opsize;
4139 		}
4140 	}
4141 }
4142 EXPORT_SYMBOL(tcp_parse_options);
4143 
4144 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4145 {
4146 	const __be32 *ptr = (const __be32 *)(th + 1);
4147 
4148 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4149 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4150 		tp->rx_opt.saw_tstamp = 1;
4151 		++ptr;
4152 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4153 		++ptr;
4154 		if (*ptr)
4155 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4156 		else
4157 			tp->rx_opt.rcv_tsecr = 0;
4158 		return true;
4159 	}
4160 	return false;
4161 }
4162 
4163 /* Fast parse options. This hopes to only see timestamps.
4164  * If it is wrong it falls back on tcp_parse_options().
4165  */
4166 static bool tcp_fast_parse_options(const struct net *net,
4167 				   const struct sk_buff *skb,
4168 				   const struct tcphdr *th, struct tcp_sock *tp)
4169 {
4170 	/* In the spirit of fast parsing, compare doff directly to constant
4171 	 * values.  Because equality is used, short doff can be ignored here.
4172 	 */
4173 	if (th->doff == (sizeof(*th) / 4)) {
4174 		tp->rx_opt.saw_tstamp = 0;
4175 		return false;
4176 	} else if (tp->rx_opt.tstamp_ok &&
4177 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4178 		if (tcp_parse_aligned_timestamp(tp, th))
4179 			return true;
4180 	}
4181 
4182 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4183 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4184 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4185 
4186 	return true;
4187 }
4188 
4189 #ifdef CONFIG_TCP_MD5SIG
4190 /*
4191  * Parse MD5 Signature option
4192  */
4193 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4194 {
4195 	int length = (th->doff << 2) - sizeof(*th);
4196 	const u8 *ptr = (const u8 *)(th + 1);
4197 
4198 	/* If not enough data remaining, we can short cut */
4199 	while (length >= TCPOLEN_MD5SIG) {
4200 		int opcode = *ptr++;
4201 		int opsize;
4202 
4203 		switch (opcode) {
4204 		case TCPOPT_EOL:
4205 			return NULL;
4206 		case TCPOPT_NOP:
4207 			length--;
4208 			continue;
4209 		default:
4210 			opsize = *ptr++;
4211 			if (opsize < 2 || opsize > length)
4212 				return NULL;
4213 			if (opcode == TCPOPT_MD5SIG)
4214 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4215 		}
4216 		ptr += opsize - 2;
4217 		length -= opsize;
4218 	}
4219 	return NULL;
4220 }
4221 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4222 #endif
4223 
4224 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4225  *
4226  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4227  * it can pass through stack. So, the following predicate verifies that
4228  * this segment is not used for anything but congestion avoidance or
4229  * fast retransmit. Moreover, we even are able to eliminate most of such
4230  * second order effects, if we apply some small "replay" window (~RTO)
4231  * to timestamp space.
4232  *
4233  * All these measures still do not guarantee that we reject wrapped ACKs
4234  * on networks with high bandwidth, when sequence space is recycled fastly,
4235  * but it guarantees that such events will be very rare and do not affect
4236  * connection seriously. This doesn't look nice, but alas, PAWS is really
4237  * buggy extension.
4238  *
4239  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4240  * states that events when retransmit arrives after original data are rare.
4241  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4242  * the biggest problem on large power networks even with minor reordering.
4243  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4244  * up to bandwidth of 18Gigabit/sec. 8) ]
4245  */
4246 
4247 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4248 {
4249 	const struct tcp_sock *tp = tcp_sk(sk);
4250 	const struct tcphdr *th = tcp_hdr(skb);
4251 	u32 seq = TCP_SKB_CB(skb)->seq;
4252 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4253 
4254 	return (/* 1. Pure ACK with correct sequence number. */
4255 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4256 
4257 		/* 2. ... and duplicate ACK. */
4258 		ack == tp->snd_una &&
4259 
4260 		/* 3. ... and does not update window. */
4261 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4262 
4263 		/* 4. ... and sits in replay window. */
4264 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4265 }
4266 
4267 static inline bool tcp_paws_discard(const struct sock *sk,
4268 				   const struct sk_buff *skb)
4269 {
4270 	const struct tcp_sock *tp = tcp_sk(sk);
4271 
4272 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4273 	       !tcp_disordered_ack(sk, skb);
4274 }
4275 
4276 /* Check segment sequence number for validity.
4277  *
4278  * Segment controls are considered valid, if the segment
4279  * fits to the window after truncation to the window. Acceptability
4280  * of data (and SYN, FIN, of course) is checked separately.
4281  * See tcp_data_queue(), for example.
4282  *
4283  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4284  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4285  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4286  * (borrowed from freebsd)
4287  */
4288 
4289 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4290 {
4291 	return	!before(end_seq, tp->rcv_wup) &&
4292 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4293 }
4294 
4295 /* When we get a reset we do this. */
4296 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4297 {
4298 	trace_tcp_receive_reset(sk);
4299 
4300 	/* mptcp can't tell us to ignore reset pkts,
4301 	 * so just ignore the return value of mptcp_incoming_options().
4302 	 */
4303 	if (sk_is_mptcp(sk))
4304 		mptcp_incoming_options(sk, skb);
4305 
4306 	/* We want the right error as BSD sees it (and indeed as we do). */
4307 	switch (sk->sk_state) {
4308 	case TCP_SYN_SENT:
4309 		sk->sk_err = ECONNREFUSED;
4310 		break;
4311 	case TCP_CLOSE_WAIT:
4312 		sk->sk_err = EPIPE;
4313 		break;
4314 	case TCP_CLOSE:
4315 		return;
4316 	default:
4317 		sk->sk_err = ECONNRESET;
4318 	}
4319 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4320 	smp_wmb();
4321 
4322 	tcp_write_queue_purge(sk);
4323 	tcp_done(sk);
4324 
4325 	if (!sock_flag(sk, SOCK_DEAD))
4326 		sk_error_report(sk);
4327 }
4328 
4329 /*
4330  * 	Process the FIN bit. This now behaves as it is supposed to work
4331  *	and the FIN takes effect when it is validly part of sequence
4332  *	space. Not before when we get holes.
4333  *
4334  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4335  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4336  *	TIME-WAIT)
4337  *
4338  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4339  *	close and we go into CLOSING (and later onto TIME-WAIT)
4340  *
4341  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4342  */
4343 void tcp_fin(struct sock *sk)
4344 {
4345 	struct tcp_sock *tp = tcp_sk(sk);
4346 
4347 	inet_csk_schedule_ack(sk);
4348 
4349 	sk->sk_shutdown |= RCV_SHUTDOWN;
4350 	sock_set_flag(sk, SOCK_DONE);
4351 
4352 	switch (sk->sk_state) {
4353 	case TCP_SYN_RECV:
4354 	case TCP_ESTABLISHED:
4355 		/* Move to CLOSE_WAIT */
4356 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4357 		inet_csk_enter_pingpong_mode(sk);
4358 		break;
4359 
4360 	case TCP_CLOSE_WAIT:
4361 	case TCP_CLOSING:
4362 		/* Received a retransmission of the FIN, do
4363 		 * nothing.
4364 		 */
4365 		break;
4366 	case TCP_LAST_ACK:
4367 		/* RFC793: Remain in the LAST-ACK state. */
4368 		break;
4369 
4370 	case TCP_FIN_WAIT1:
4371 		/* This case occurs when a simultaneous close
4372 		 * happens, we must ack the received FIN and
4373 		 * enter the CLOSING state.
4374 		 */
4375 		tcp_send_ack(sk);
4376 		tcp_set_state(sk, TCP_CLOSING);
4377 		break;
4378 	case TCP_FIN_WAIT2:
4379 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4380 		tcp_send_ack(sk);
4381 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4382 		break;
4383 	default:
4384 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4385 		 * cases we should never reach this piece of code.
4386 		 */
4387 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4388 		       __func__, sk->sk_state);
4389 		break;
4390 	}
4391 
4392 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4393 	 * Probably, we should reset in this case. For now drop them.
4394 	 */
4395 	skb_rbtree_purge(&tp->out_of_order_queue);
4396 	if (tcp_is_sack(tp))
4397 		tcp_sack_reset(&tp->rx_opt);
4398 
4399 	if (!sock_flag(sk, SOCK_DEAD)) {
4400 		sk->sk_state_change(sk);
4401 
4402 		/* Do not send POLL_HUP for half duplex close. */
4403 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4404 		    sk->sk_state == TCP_CLOSE)
4405 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4406 		else
4407 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4408 	}
4409 }
4410 
4411 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4412 				  u32 end_seq)
4413 {
4414 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4415 		if (before(seq, sp->start_seq))
4416 			sp->start_seq = seq;
4417 		if (after(end_seq, sp->end_seq))
4418 			sp->end_seq = end_seq;
4419 		return true;
4420 	}
4421 	return false;
4422 }
4423 
4424 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4425 {
4426 	struct tcp_sock *tp = tcp_sk(sk);
4427 
4428 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4429 		int mib_idx;
4430 
4431 		if (before(seq, tp->rcv_nxt))
4432 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4433 		else
4434 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4435 
4436 		NET_INC_STATS(sock_net(sk), mib_idx);
4437 
4438 		tp->rx_opt.dsack = 1;
4439 		tp->duplicate_sack[0].start_seq = seq;
4440 		tp->duplicate_sack[0].end_seq = end_seq;
4441 	}
4442 }
4443 
4444 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4445 {
4446 	struct tcp_sock *tp = tcp_sk(sk);
4447 
4448 	if (!tp->rx_opt.dsack)
4449 		tcp_dsack_set(sk, seq, end_seq);
4450 	else
4451 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4452 }
4453 
4454 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4455 {
4456 	/* When the ACK path fails or drops most ACKs, the sender would
4457 	 * timeout and spuriously retransmit the same segment repeatedly.
4458 	 * The receiver remembers and reflects via DSACKs. Leverage the
4459 	 * DSACK state and change the txhash to re-route speculatively.
4460 	 */
4461 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4462 	    sk_rethink_txhash(sk))
4463 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4464 }
4465 
4466 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4467 {
4468 	struct tcp_sock *tp = tcp_sk(sk);
4469 
4470 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4471 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4472 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4473 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4474 
4475 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4476 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4477 
4478 			tcp_rcv_spurious_retrans(sk, skb);
4479 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4480 				end_seq = tp->rcv_nxt;
4481 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4482 		}
4483 	}
4484 
4485 	tcp_send_ack(sk);
4486 }
4487 
4488 /* These routines update the SACK block as out-of-order packets arrive or
4489  * in-order packets close up the sequence space.
4490  */
4491 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4492 {
4493 	int this_sack;
4494 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4495 	struct tcp_sack_block *swalk = sp + 1;
4496 
4497 	/* See if the recent change to the first SACK eats into
4498 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4499 	 */
4500 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4501 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4502 			int i;
4503 
4504 			/* Zap SWALK, by moving every further SACK up by one slot.
4505 			 * Decrease num_sacks.
4506 			 */
4507 			tp->rx_opt.num_sacks--;
4508 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4509 				sp[i] = sp[i + 1];
4510 			continue;
4511 		}
4512 		this_sack++;
4513 		swalk++;
4514 	}
4515 }
4516 
4517 static void tcp_sack_compress_send_ack(struct sock *sk)
4518 {
4519 	struct tcp_sock *tp = tcp_sk(sk);
4520 
4521 	if (!tp->compressed_ack)
4522 		return;
4523 
4524 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4525 		__sock_put(sk);
4526 
4527 	/* Since we have to send one ack finally,
4528 	 * substract one from tp->compressed_ack to keep
4529 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4530 	 */
4531 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4532 		      tp->compressed_ack - 1);
4533 
4534 	tp->compressed_ack = 0;
4535 	tcp_send_ack(sk);
4536 }
4537 
4538 /* Reasonable amount of sack blocks included in TCP SACK option
4539  * The max is 4, but this becomes 3 if TCP timestamps are there.
4540  * Given that SACK packets might be lost, be conservative and use 2.
4541  */
4542 #define TCP_SACK_BLOCKS_EXPECTED 2
4543 
4544 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4545 {
4546 	struct tcp_sock *tp = tcp_sk(sk);
4547 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4548 	int cur_sacks = tp->rx_opt.num_sacks;
4549 	int this_sack;
4550 
4551 	if (!cur_sacks)
4552 		goto new_sack;
4553 
4554 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4555 		if (tcp_sack_extend(sp, seq, end_seq)) {
4556 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4557 				tcp_sack_compress_send_ack(sk);
4558 			/* Rotate this_sack to the first one. */
4559 			for (; this_sack > 0; this_sack--, sp--)
4560 				swap(*sp, *(sp - 1));
4561 			if (cur_sacks > 1)
4562 				tcp_sack_maybe_coalesce(tp);
4563 			return;
4564 		}
4565 	}
4566 
4567 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4568 		tcp_sack_compress_send_ack(sk);
4569 
4570 	/* Could not find an adjacent existing SACK, build a new one,
4571 	 * put it at the front, and shift everyone else down.  We
4572 	 * always know there is at least one SACK present already here.
4573 	 *
4574 	 * If the sack array is full, forget about the last one.
4575 	 */
4576 	if (this_sack >= TCP_NUM_SACKS) {
4577 		this_sack--;
4578 		tp->rx_opt.num_sacks--;
4579 		sp--;
4580 	}
4581 	for (; this_sack > 0; this_sack--, sp--)
4582 		*sp = *(sp - 1);
4583 
4584 new_sack:
4585 	/* Build the new head SACK, and we're done. */
4586 	sp->start_seq = seq;
4587 	sp->end_seq = end_seq;
4588 	tp->rx_opt.num_sacks++;
4589 }
4590 
4591 /* RCV.NXT advances, some SACKs should be eaten. */
4592 
4593 static void tcp_sack_remove(struct tcp_sock *tp)
4594 {
4595 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4596 	int num_sacks = tp->rx_opt.num_sacks;
4597 	int this_sack;
4598 
4599 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4600 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4601 		tp->rx_opt.num_sacks = 0;
4602 		return;
4603 	}
4604 
4605 	for (this_sack = 0; this_sack < num_sacks;) {
4606 		/* Check if the start of the sack is covered by RCV.NXT. */
4607 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4608 			int i;
4609 
4610 			/* RCV.NXT must cover all the block! */
4611 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4612 
4613 			/* Zap this SACK, by moving forward any other SACKS. */
4614 			for (i = this_sack+1; i < num_sacks; i++)
4615 				tp->selective_acks[i-1] = tp->selective_acks[i];
4616 			num_sacks--;
4617 			continue;
4618 		}
4619 		this_sack++;
4620 		sp++;
4621 	}
4622 	tp->rx_opt.num_sacks = num_sacks;
4623 }
4624 
4625 /**
4626  * tcp_try_coalesce - try to merge skb to prior one
4627  * @sk: socket
4628  * @to: prior buffer
4629  * @from: buffer to add in queue
4630  * @fragstolen: pointer to boolean
4631  *
4632  * Before queueing skb @from after @to, try to merge them
4633  * to reduce overall memory use and queue lengths, if cost is small.
4634  * Packets in ofo or receive queues can stay a long time.
4635  * Better try to coalesce them right now to avoid future collapses.
4636  * Returns true if caller should free @from instead of queueing it
4637  */
4638 static bool tcp_try_coalesce(struct sock *sk,
4639 			     struct sk_buff *to,
4640 			     struct sk_buff *from,
4641 			     bool *fragstolen)
4642 {
4643 	int delta;
4644 
4645 	*fragstolen = false;
4646 
4647 	/* Its possible this segment overlaps with prior segment in queue */
4648 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4649 		return false;
4650 
4651 	if (!mptcp_skb_can_collapse(to, from))
4652 		return false;
4653 
4654 #ifdef CONFIG_TLS_DEVICE
4655 	if (from->decrypted != to->decrypted)
4656 		return false;
4657 #endif
4658 
4659 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4660 		return false;
4661 
4662 	atomic_add(delta, &sk->sk_rmem_alloc);
4663 	sk_mem_charge(sk, delta);
4664 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4665 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4666 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4667 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4668 
4669 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4670 		TCP_SKB_CB(to)->has_rxtstamp = true;
4671 		to->tstamp = from->tstamp;
4672 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4673 	}
4674 
4675 	return true;
4676 }
4677 
4678 static bool tcp_ooo_try_coalesce(struct sock *sk,
4679 			     struct sk_buff *to,
4680 			     struct sk_buff *from,
4681 			     bool *fragstolen)
4682 {
4683 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4684 
4685 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4686 	if (res) {
4687 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4688 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4689 
4690 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4691 	}
4692 	return res;
4693 }
4694 
4695 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4696 			    enum skb_drop_reason reason)
4697 {
4698 	sk_drops_add(sk, skb);
4699 	kfree_skb_reason(skb, reason);
4700 }
4701 
4702 /* This one checks to see if we can put data from the
4703  * out_of_order queue into the receive_queue.
4704  */
4705 static void tcp_ofo_queue(struct sock *sk)
4706 {
4707 	struct tcp_sock *tp = tcp_sk(sk);
4708 	__u32 dsack_high = tp->rcv_nxt;
4709 	bool fin, fragstolen, eaten;
4710 	struct sk_buff *skb, *tail;
4711 	struct rb_node *p;
4712 
4713 	p = rb_first(&tp->out_of_order_queue);
4714 	while (p) {
4715 		skb = rb_to_skb(p);
4716 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4717 			break;
4718 
4719 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4720 			__u32 dsack = dsack_high;
4721 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4722 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4723 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4724 		}
4725 		p = rb_next(p);
4726 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4727 
4728 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4729 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4730 			continue;
4731 		}
4732 
4733 		tail = skb_peek_tail(&sk->sk_receive_queue);
4734 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4735 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4736 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4737 		if (!eaten)
4738 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4739 		else
4740 			kfree_skb_partial(skb, fragstolen);
4741 
4742 		if (unlikely(fin)) {
4743 			tcp_fin(sk);
4744 			/* tcp_fin() purges tp->out_of_order_queue,
4745 			 * so we must end this loop right now.
4746 			 */
4747 			break;
4748 		}
4749 	}
4750 }
4751 
4752 static bool tcp_prune_ofo_queue(struct sock *sk);
4753 static int tcp_prune_queue(struct sock *sk);
4754 
4755 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4756 				 unsigned int size)
4757 {
4758 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4759 	    !sk_rmem_schedule(sk, skb, size)) {
4760 
4761 		if (tcp_prune_queue(sk) < 0)
4762 			return -1;
4763 
4764 		while (!sk_rmem_schedule(sk, skb, size)) {
4765 			if (!tcp_prune_ofo_queue(sk))
4766 				return -1;
4767 		}
4768 	}
4769 	return 0;
4770 }
4771 
4772 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4773 {
4774 	struct tcp_sock *tp = tcp_sk(sk);
4775 	struct rb_node **p, *parent;
4776 	struct sk_buff *skb1;
4777 	u32 seq, end_seq;
4778 	bool fragstolen;
4779 
4780 	tcp_ecn_check_ce(sk, skb);
4781 
4782 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4783 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4784 		sk->sk_data_ready(sk);
4785 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4786 		return;
4787 	}
4788 
4789 	/* Disable header prediction. */
4790 	tp->pred_flags = 0;
4791 	inet_csk_schedule_ack(sk);
4792 
4793 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4794 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4795 	seq = TCP_SKB_CB(skb)->seq;
4796 	end_seq = TCP_SKB_CB(skb)->end_seq;
4797 
4798 	p = &tp->out_of_order_queue.rb_node;
4799 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4800 		/* Initial out of order segment, build 1 SACK. */
4801 		if (tcp_is_sack(tp)) {
4802 			tp->rx_opt.num_sacks = 1;
4803 			tp->selective_acks[0].start_seq = seq;
4804 			tp->selective_acks[0].end_seq = end_seq;
4805 		}
4806 		rb_link_node(&skb->rbnode, NULL, p);
4807 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4808 		tp->ooo_last_skb = skb;
4809 		goto end;
4810 	}
4811 
4812 	/* In the typical case, we are adding an skb to the end of the list.
4813 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4814 	 */
4815 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4816 				 skb, &fragstolen)) {
4817 coalesce_done:
4818 		/* For non sack flows, do not grow window to force DUPACK
4819 		 * and trigger fast retransmit.
4820 		 */
4821 		if (tcp_is_sack(tp))
4822 			tcp_grow_window(sk, skb, true);
4823 		kfree_skb_partial(skb, fragstolen);
4824 		skb = NULL;
4825 		goto add_sack;
4826 	}
4827 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4828 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4829 		parent = &tp->ooo_last_skb->rbnode;
4830 		p = &parent->rb_right;
4831 		goto insert;
4832 	}
4833 
4834 	/* Find place to insert this segment. Handle overlaps on the way. */
4835 	parent = NULL;
4836 	while (*p) {
4837 		parent = *p;
4838 		skb1 = rb_to_skb(parent);
4839 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4840 			p = &parent->rb_left;
4841 			continue;
4842 		}
4843 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4844 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4845 				/* All the bits are present. Drop. */
4846 				NET_INC_STATS(sock_net(sk),
4847 					      LINUX_MIB_TCPOFOMERGE);
4848 				tcp_drop_reason(sk, skb,
4849 						SKB_DROP_REASON_TCP_OFOMERGE);
4850 				skb = NULL;
4851 				tcp_dsack_set(sk, seq, end_seq);
4852 				goto add_sack;
4853 			}
4854 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4855 				/* Partial overlap. */
4856 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4857 			} else {
4858 				/* skb's seq == skb1's seq and skb covers skb1.
4859 				 * Replace skb1 with skb.
4860 				 */
4861 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4862 						&tp->out_of_order_queue);
4863 				tcp_dsack_extend(sk,
4864 						 TCP_SKB_CB(skb1)->seq,
4865 						 TCP_SKB_CB(skb1)->end_seq);
4866 				NET_INC_STATS(sock_net(sk),
4867 					      LINUX_MIB_TCPOFOMERGE);
4868 				tcp_drop_reason(sk, skb1,
4869 						SKB_DROP_REASON_TCP_OFOMERGE);
4870 				goto merge_right;
4871 			}
4872 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4873 						skb, &fragstolen)) {
4874 			goto coalesce_done;
4875 		}
4876 		p = &parent->rb_right;
4877 	}
4878 insert:
4879 	/* Insert segment into RB tree. */
4880 	rb_link_node(&skb->rbnode, parent, p);
4881 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4882 
4883 merge_right:
4884 	/* Remove other segments covered by skb. */
4885 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4886 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4887 			break;
4888 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4889 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4890 					 end_seq);
4891 			break;
4892 		}
4893 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4894 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4895 				 TCP_SKB_CB(skb1)->end_seq);
4896 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4897 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4898 	}
4899 	/* If there is no skb after us, we are the last_skb ! */
4900 	if (!skb1)
4901 		tp->ooo_last_skb = skb;
4902 
4903 add_sack:
4904 	if (tcp_is_sack(tp))
4905 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4906 end:
4907 	if (skb) {
4908 		/* For non sack flows, do not grow window to force DUPACK
4909 		 * and trigger fast retransmit.
4910 		 */
4911 		if (tcp_is_sack(tp))
4912 			tcp_grow_window(sk, skb, false);
4913 		skb_condense(skb);
4914 		skb_set_owner_r(skb, sk);
4915 	}
4916 }
4917 
4918 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4919 				      bool *fragstolen)
4920 {
4921 	int eaten;
4922 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4923 
4924 	eaten = (tail &&
4925 		 tcp_try_coalesce(sk, tail,
4926 				  skb, fragstolen)) ? 1 : 0;
4927 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4928 	if (!eaten) {
4929 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4930 		skb_set_owner_r(skb, sk);
4931 	}
4932 	return eaten;
4933 }
4934 
4935 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4936 {
4937 	struct sk_buff *skb;
4938 	int err = -ENOMEM;
4939 	int data_len = 0;
4940 	bool fragstolen;
4941 
4942 	if (size == 0)
4943 		return 0;
4944 
4945 	if (size > PAGE_SIZE) {
4946 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4947 
4948 		data_len = npages << PAGE_SHIFT;
4949 		size = data_len + (size & ~PAGE_MASK);
4950 	}
4951 	skb = alloc_skb_with_frags(size - data_len, data_len,
4952 				   PAGE_ALLOC_COSTLY_ORDER,
4953 				   &err, sk->sk_allocation);
4954 	if (!skb)
4955 		goto err;
4956 
4957 	skb_put(skb, size - data_len);
4958 	skb->data_len = data_len;
4959 	skb->len = size;
4960 
4961 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4962 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4963 		goto err_free;
4964 	}
4965 
4966 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4967 	if (err)
4968 		goto err_free;
4969 
4970 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4971 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4972 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4973 
4974 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4975 		WARN_ON_ONCE(fragstolen); /* should not happen */
4976 		__kfree_skb(skb);
4977 	}
4978 	return size;
4979 
4980 err_free:
4981 	kfree_skb(skb);
4982 err:
4983 	return err;
4984 
4985 }
4986 
4987 void tcp_data_ready(struct sock *sk)
4988 {
4989 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4990 		sk->sk_data_ready(sk);
4991 }
4992 
4993 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4994 {
4995 	struct tcp_sock *tp = tcp_sk(sk);
4996 	enum skb_drop_reason reason;
4997 	bool fragstolen;
4998 	int eaten;
4999 
5000 	/* If a subflow has been reset, the packet should not continue
5001 	 * to be processed, drop the packet.
5002 	 */
5003 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5004 		__kfree_skb(skb);
5005 		return;
5006 	}
5007 
5008 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5009 		__kfree_skb(skb);
5010 		return;
5011 	}
5012 	skb_dst_drop(skb);
5013 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5014 
5015 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5016 	tp->rx_opt.dsack = 0;
5017 
5018 	/*  Queue data for delivery to the user.
5019 	 *  Packets in sequence go to the receive queue.
5020 	 *  Out of sequence packets to the out_of_order_queue.
5021 	 */
5022 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5023 		if (tcp_receive_window(tp) == 0) {
5024 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5025 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5026 			goto out_of_window;
5027 		}
5028 
5029 		/* Ok. In sequence. In window. */
5030 queue_and_out:
5031 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5032 			sk_forced_mem_schedule(sk, skb->truesize);
5033 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5034 			reason = SKB_DROP_REASON_PROTO_MEM;
5035 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5036 			sk->sk_data_ready(sk);
5037 			goto drop;
5038 		}
5039 
5040 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5041 		if (skb->len)
5042 			tcp_event_data_recv(sk, skb);
5043 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5044 			tcp_fin(sk);
5045 
5046 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5047 			tcp_ofo_queue(sk);
5048 
5049 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5050 			 * gap in queue is filled.
5051 			 */
5052 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5053 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5054 		}
5055 
5056 		if (tp->rx_opt.num_sacks)
5057 			tcp_sack_remove(tp);
5058 
5059 		tcp_fast_path_check(sk);
5060 
5061 		if (eaten > 0)
5062 			kfree_skb_partial(skb, fragstolen);
5063 		if (!sock_flag(sk, SOCK_DEAD))
5064 			tcp_data_ready(sk);
5065 		return;
5066 	}
5067 
5068 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5069 		tcp_rcv_spurious_retrans(sk, skb);
5070 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5071 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5072 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5073 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5074 
5075 out_of_window:
5076 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5077 		inet_csk_schedule_ack(sk);
5078 drop:
5079 		tcp_drop_reason(sk, skb, reason);
5080 		return;
5081 	}
5082 
5083 	/* Out of window. F.e. zero window probe. */
5084 	if (!before(TCP_SKB_CB(skb)->seq,
5085 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5086 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5087 		goto out_of_window;
5088 	}
5089 
5090 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5091 		/* Partial packet, seq < rcv_next < end_seq */
5092 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5093 
5094 		/* If window is closed, drop tail of packet. But after
5095 		 * remembering D-SACK for its head made in previous line.
5096 		 */
5097 		if (!tcp_receive_window(tp)) {
5098 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5099 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5100 			goto out_of_window;
5101 		}
5102 		goto queue_and_out;
5103 	}
5104 
5105 	tcp_data_queue_ofo(sk, skb);
5106 }
5107 
5108 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5109 {
5110 	if (list)
5111 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5112 
5113 	return skb_rb_next(skb);
5114 }
5115 
5116 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5117 					struct sk_buff_head *list,
5118 					struct rb_root *root)
5119 {
5120 	struct sk_buff *next = tcp_skb_next(skb, list);
5121 
5122 	if (list)
5123 		__skb_unlink(skb, list);
5124 	else
5125 		rb_erase(&skb->rbnode, root);
5126 
5127 	__kfree_skb(skb);
5128 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5129 
5130 	return next;
5131 }
5132 
5133 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5134 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5135 {
5136 	struct rb_node **p = &root->rb_node;
5137 	struct rb_node *parent = NULL;
5138 	struct sk_buff *skb1;
5139 
5140 	while (*p) {
5141 		parent = *p;
5142 		skb1 = rb_to_skb(parent);
5143 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5144 			p = &parent->rb_left;
5145 		else
5146 			p = &parent->rb_right;
5147 	}
5148 	rb_link_node(&skb->rbnode, parent, p);
5149 	rb_insert_color(&skb->rbnode, root);
5150 }
5151 
5152 /* Collapse contiguous sequence of skbs head..tail with
5153  * sequence numbers start..end.
5154  *
5155  * If tail is NULL, this means until the end of the queue.
5156  *
5157  * Segments with FIN/SYN are not collapsed (only because this
5158  * simplifies code)
5159  */
5160 static void
5161 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5162 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5163 {
5164 	struct sk_buff *skb = head, *n;
5165 	struct sk_buff_head tmp;
5166 	bool end_of_skbs;
5167 
5168 	/* First, check that queue is collapsible and find
5169 	 * the point where collapsing can be useful.
5170 	 */
5171 restart:
5172 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5173 		n = tcp_skb_next(skb, list);
5174 
5175 		/* No new bits? It is possible on ofo queue. */
5176 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5177 			skb = tcp_collapse_one(sk, skb, list, root);
5178 			if (!skb)
5179 				break;
5180 			goto restart;
5181 		}
5182 
5183 		/* The first skb to collapse is:
5184 		 * - not SYN/FIN and
5185 		 * - bloated or contains data before "start" or
5186 		 *   overlaps to the next one and mptcp allow collapsing.
5187 		 */
5188 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5189 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5190 		     before(TCP_SKB_CB(skb)->seq, start))) {
5191 			end_of_skbs = false;
5192 			break;
5193 		}
5194 
5195 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5196 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5197 			end_of_skbs = false;
5198 			break;
5199 		}
5200 
5201 		/* Decided to skip this, advance start seq. */
5202 		start = TCP_SKB_CB(skb)->end_seq;
5203 	}
5204 	if (end_of_skbs ||
5205 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5206 		return;
5207 
5208 	__skb_queue_head_init(&tmp);
5209 
5210 	while (before(start, end)) {
5211 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5212 		struct sk_buff *nskb;
5213 
5214 		nskb = alloc_skb(copy, GFP_ATOMIC);
5215 		if (!nskb)
5216 			break;
5217 
5218 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5219 #ifdef CONFIG_TLS_DEVICE
5220 		nskb->decrypted = skb->decrypted;
5221 #endif
5222 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5223 		if (list)
5224 			__skb_queue_before(list, skb, nskb);
5225 		else
5226 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5227 		skb_set_owner_r(nskb, sk);
5228 		mptcp_skb_ext_move(nskb, skb);
5229 
5230 		/* Copy data, releasing collapsed skbs. */
5231 		while (copy > 0) {
5232 			int offset = start - TCP_SKB_CB(skb)->seq;
5233 			int size = TCP_SKB_CB(skb)->end_seq - start;
5234 
5235 			BUG_ON(offset < 0);
5236 			if (size > 0) {
5237 				size = min(copy, size);
5238 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5239 					BUG();
5240 				TCP_SKB_CB(nskb)->end_seq += size;
5241 				copy -= size;
5242 				start += size;
5243 			}
5244 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5245 				skb = tcp_collapse_one(sk, skb, list, root);
5246 				if (!skb ||
5247 				    skb == tail ||
5248 				    !mptcp_skb_can_collapse(nskb, skb) ||
5249 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5250 					goto end;
5251 #ifdef CONFIG_TLS_DEVICE
5252 				if (skb->decrypted != nskb->decrypted)
5253 					goto end;
5254 #endif
5255 			}
5256 		}
5257 	}
5258 end:
5259 	skb_queue_walk_safe(&tmp, skb, n)
5260 		tcp_rbtree_insert(root, skb);
5261 }
5262 
5263 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5264  * and tcp_collapse() them until all the queue is collapsed.
5265  */
5266 static void tcp_collapse_ofo_queue(struct sock *sk)
5267 {
5268 	struct tcp_sock *tp = tcp_sk(sk);
5269 	u32 range_truesize, sum_tiny = 0;
5270 	struct sk_buff *skb, *head;
5271 	u32 start, end;
5272 
5273 	skb = skb_rb_first(&tp->out_of_order_queue);
5274 new_range:
5275 	if (!skb) {
5276 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5277 		return;
5278 	}
5279 	start = TCP_SKB_CB(skb)->seq;
5280 	end = TCP_SKB_CB(skb)->end_seq;
5281 	range_truesize = skb->truesize;
5282 
5283 	for (head = skb;;) {
5284 		skb = skb_rb_next(skb);
5285 
5286 		/* Range is terminated when we see a gap or when
5287 		 * we are at the queue end.
5288 		 */
5289 		if (!skb ||
5290 		    after(TCP_SKB_CB(skb)->seq, end) ||
5291 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5292 			/* Do not attempt collapsing tiny skbs */
5293 			if (range_truesize != head->truesize ||
5294 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5295 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5296 					     head, skb, start, end);
5297 			} else {
5298 				sum_tiny += range_truesize;
5299 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5300 					return;
5301 			}
5302 			goto new_range;
5303 		}
5304 
5305 		range_truesize += skb->truesize;
5306 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5307 			start = TCP_SKB_CB(skb)->seq;
5308 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5309 			end = TCP_SKB_CB(skb)->end_seq;
5310 	}
5311 }
5312 
5313 /*
5314  * Clean the out-of-order queue to make room.
5315  * We drop high sequences packets to :
5316  * 1) Let a chance for holes to be filled.
5317  * 2) not add too big latencies if thousands of packets sit there.
5318  *    (But if application shrinks SO_RCVBUF, we could still end up
5319  *     freeing whole queue here)
5320  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5321  *
5322  * Return true if queue has shrunk.
5323  */
5324 static bool tcp_prune_ofo_queue(struct sock *sk)
5325 {
5326 	struct tcp_sock *tp = tcp_sk(sk);
5327 	struct rb_node *node, *prev;
5328 	int goal;
5329 
5330 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5331 		return false;
5332 
5333 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5334 	goal = sk->sk_rcvbuf >> 3;
5335 	node = &tp->ooo_last_skb->rbnode;
5336 	do {
5337 		prev = rb_prev(node);
5338 		rb_erase(node, &tp->out_of_order_queue);
5339 		goal -= rb_to_skb(node)->truesize;
5340 		tcp_drop_reason(sk, rb_to_skb(node),
5341 				SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5342 		if (!prev || goal <= 0) {
5343 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5344 			    !tcp_under_memory_pressure(sk))
5345 				break;
5346 			goal = sk->sk_rcvbuf >> 3;
5347 		}
5348 		node = prev;
5349 	} while (node);
5350 	tp->ooo_last_skb = rb_to_skb(prev);
5351 
5352 	/* Reset SACK state.  A conforming SACK implementation will
5353 	 * do the same at a timeout based retransmit.  When a connection
5354 	 * is in a sad state like this, we care only about integrity
5355 	 * of the connection not performance.
5356 	 */
5357 	if (tp->rx_opt.sack_ok)
5358 		tcp_sack_reset(&tp->rx_opt);
5359 	return true;
5360 }
5361 
5362 /* Reduce allocated memory if we can, trying to get
5363  * the socket within its memory limits again.
5364  *
5365  * Return less than zero if we should start dropping frames
5366  * until the socket owning process reads some of the data
5367  * to stabilize the situation.
5368  */
5369 static int tcp_prune_queue(struct sock *sk)
5370 {
5371 	struct tcp_sock *tp = tcp_sk(sk);
5372 
5373 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5374 
5375 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5376 		tcp_clamp_window(sk);
5377 	else if (tcp_under_memory_pressure(sk))
5378 		tcp_adjust_rcv_ssthresh(sk);
5379 
5380 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5381 		return 0;
5382 
5383 	tcp_collapse_ofo_queue(sk);
5384 	if (!skb_queue_empty(&sk->sk_receive_queue))
5385 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5386 			     skb_peek(&sk->sk_receive_queue),
5387 			     NULL,
5388 			     tp->copied_seq, tp->rcv_nxt);
5389 
5390 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5391 		return 0;
5392 
5393 	/* Collapsing did not help, destructive actions follow.
5394 	 * This must not ever occur. */
5395 
5396 	tcp_prune_ofo_queue(sk);
5397 
5398 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5399 		return 0;
5400 
5401 	/* If we are really being abused, tell the caller to silently
5402 	 * drop receive data on the floor.  It will get retransmitted
5403 	 * and hopefully then we'll have sufficient space.
5404 	 */
5405 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5406 
5407 	/* Massive buffer overcommit. */
5408 	tp->pred_flags = 0;
5409 	return -1;
5410 }
5411 
5412 static bool tcp_should_expand_sndbuf(struct sock *sk)
5413 {
5414 	const struct tcp_sock *tp = tcp_sk(sk);
5415 
5416 	/* If the user specified a specific send buffer setting, do
5417 	 * not modify it.
5418 	 */
5419 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5420 		return false;
5421 
5422 	/* If we are under global TCP memory pressure, do not expand.  */
5423 	if (tcp_under_memory_pressure(sk)) {
5424 		int unused_mem = sk_unused_reserved_mem(sk);
5425 
5426 		/* Adjust sndbuf according to reserved mem. But make sure
5427 		 * it never goes below SOCK_MIN_SNDBUF.
5428 		 * See sk_stream_moderate_sndbuf() for more details.
5429 		 */
5430 		if (unused_mem > SOCK_MIN_SNDBUF)
5431 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5432 
5433 		return false;
5434 	}
5435 
5436 	/* If we are under soft global TCP memory pressure, do not expand.  */
5437 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5438 		return false;
5439 
5440 	/* If we filled the congestion window, do not expand.  */
5441 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5442 		return false;
5443 
5444 	return true;
5445 }
5446 
5447 static void tcp_new_space(struct sock *sk)
5448 {
5449 	struct tcp_sock *tp = tcp_sk(sk);
5450 
5451 	if (tcp_should_expand_sndbuf(sk)) {
5452 		tcp_sndbuf_expand(sk);
5453 		tp->snd_cwnd_stamp = tcp_jiffies32;
5454 	}
5455 
5456 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5457 }
5458 
5459 /* Caller made space either from:
5460  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5461  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5462  *
5463  * We might be able to generate EPOLLOUT to the application if:
5464  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5465  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5466  *    small enough that tcp_stream_memory_free() decides it
5467  *    is time to generate EPOLLOUT.
5468  */
5469 void tcp_check_space(struct sock *sk)
5470 {
5471 	/* pairs with tcp_poll() */
5472 	smp_mb();
5473 	if (sk->sk_socket &&
5474 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5475 		tcp_new_space(sk);
5476 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5477 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5478 	}
5479 }
5480 
5481 static inline void tcp_data_snd_check(struct sock *sk)
5482 {
5483 	tcp_push_pending_frames(sk);
5484 	tcp_check_space(sk);
5485 }
5486 
5487 /*
5488  * Check if sending an ack is needed.
5489  */
5490 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5491 {
5492 	struct tcp_sock *tp = tcp_sk(sk);
5493 	unsigned long rtt, delay;
5494 
5495 	    /* More than one full frame received... */
5496 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5497 	     /* ... and right edge of window advances far enough.
5498 	      * (tcp_recvmsg() will send ACK otherwise).
5499 	      * If application uses SO_RCVLOWAT, we want send ack now if
5500 	      * we have not received enough bytes to satisfy the condition.
5501 	      */
5502 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5503 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5504 	    /* We ACK each frame or... */
5505 	    tcp_in_quickack_mode(sk) ||
5506 	    /* Protocol state mandates a one-time immediate ACK */
5507 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5508 send_now:
5509 		tcp_send_ack(sk);
5510 		return;
5511 	}
5512 
5513 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5514 		tcp_send_delayed_ack(sk);
5515 		return;
5516 	}
5517 
5518 	if (!tcp_is_sack(tp) ||
5519 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5520 		goto send_now;
5521 
5522 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5523 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5524 		tp->dup_ack_counter = 0;
5525 	}
5526 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5527 		tp->dup_ack_counter++;
5528 		goto send_now;
5529 	}
5530 	tp->compressed_ack++;
5531 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5532 		return;
5533 
5534 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5535 
5536 	rtt = tp->rcv_rtt_est.rtt_us;
5537 	if (tp->srtt_us && tp->srtt_us < rtt)
5538 		rtt = tp->srtt_us;
5539 
5540 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5541 		      rtt * (NSEC_PER_USEC >> 3)/20);
5542 	sock_hold(sk);
5543 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5544 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5545 			       HRTIMER_MODE_REL_PINNED_SOFT);
5546 }
5547 
5548 static inline void tcp_ack_snd_check(struct sock *sk)
5549 {
5550 	if (!inet_csk_ack_scheduled(sk)) {
5551 		/* We sent a data segment already. */
5552 		return;
5553 	}
5554 	__tcp_ack_snd_check(sk, 1);
5555 }
5556 
5557 /*
5558  *	This routine is only called when we have urgent data
5559  *	signaled. Its the 'slow' part of tcp_urg. It could be
5560  *	moved inline now as tcp_urg is only called from one
5561  *	place. We handle URGent data wrong. We have to - as
5562  *	BSD still doesn't use the correction from RFC961.
5563  *	For 1003.1g we should support a new option TCP_STDURG to permit
5564  *	either form (or just set the sysctl tcp_stdurg).
5565  */
5566 
5567 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5568 {
5569 	struct tcp_sock *tp = tcp_sk(sk);
5570 	u32 ptr = ntohs(th->urg_ptr);
5571 
5572 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5573 		ptr--;
5574 	ptr += ntohl(th->seq);
5575 
5576 	/* Ignore urgent data that we've already seen and read. */
5577 	if (after(tp->copied_seq, ptr))
5578 		return;
5579 
5580 	/* Do not replay urg ptr.
5581 	 *
5582 	 * NOTE: interesting situation not covered by specs.
5583 	 * Misbehaving sender may send urg ptr, pointing to segment,
5584 	 * which we already have in ofo queue. We are not able to fetch
5585 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5586 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5587 	 * situations. But it is worth to think about possibility of some
5588 	 * DoSes using some hypothetical application level deadlock.
5589 	 */
5590 	if (before(ptr, tp->rcv_nxt))
5591 		return;
5592 
5593 	/* Do we already have a newer (or duplicate) urgent pointer? */
5594 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5595 		return;
5596 
5597 	/* Tell the world about our new urgent pointer. */
5598 	sk_send_sigurg(sk);
5599 
5600 	/* We may be adding urgent data when the last byte read was
5601 	 * urgent. To do this requires some care. We cannot just ignore
5602 	 * tp->copied_seq since we would read the last urgent byte again
5603 	 * as data, nor can we alter copied_seq until this data arrives
5604 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5605 	 *
5606 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5607 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5608 	 * and expect that both A and B disappear from stream. This is _wrong_.
5609 	 * Though this happens in BSD with high probability, this is occasional.
5610 	 * Any application relying on this is buggy. Note also, that fix "works"
5611 	 * only in this artificial test. Insert some normal data between A and B and we will
5612 	 * decline of BSD again. Verdict: it is better to remove to trap
5613 	 * buggy users.
5614 	 */
5615 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5616 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5617 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5618 		tp->copied_seq++;
5619 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5620 			__skb_unlink(skb, &sk->sk_receive_queue);
5621 			__kfree_skb(skb);
5622 		}
5623 	}
5624 
5625 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5626 	WRITE_ONCE(tp->urg_seq, ptr);
5627 
5628 	/* Disable header prediction. */
5629 	tp->pred_flags = 0;
5630 }
5631 
5632 /* This is the 'fast' part of urgent handling. */
5633 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5634 {
5635 	struct tcp_sock *tp = tcp_sk(sk);
5636 
5637 	/* Check if we get a new urgent pointer - normally not. */
5638 	if (unlikely(th->urg))
5639 		tcp_check_urg(sk, th);
5640 
5641 	/* Do we wait for any urgent data? - normally not... */
5642 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5643 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5644 			  th->syn;
5645 
5646 		/* Is the urgent pointer pointing into this packet? */
5647 		if (ptr < skb->len) {
5648 			u8 tmp;
5649 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5650 				BUG();
5651 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5652 			if (!sock_flag(sk, SOCK_DEAD))
5653 				sk->sk_data_ready(sk);
5654 		}
5655 	}
5656 }
5657 
5658 /* Accept RST for rcv_nxt - 1 after a FIN.
5659  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5660  * FIN is sent followed by a RST packet. The RST is sent with the same
5661  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5662  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5663  * ACKs on the closed socket. In addition middleboxes can drop either the
5664  * challenge ACK or a subsequent RST.
5665  */
5666 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5667 {
5668 	struct tcp_sock *tp = tcp_sk(sk);
5669 
5670 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5671 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5672 					       TCPF_CLOSING));
5673 }
5674 
5675 /* Does PAWS and seqno based validation of an incoming segment, flags will
5676  * play significant role here.
5677  */
5678 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5679 				  const struct tcphdr *th, int syn_inerr)
5680 {
5681 	struct tcp_sock *tp = tcp_sk(sk);
5682 	SKB_DR(reason);
5683 
5684 	/* RFC1323: H1. Apply PAWS check first. */
5685 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5686 	    tp->rx_opt.saw_tstamp &&
5687 	    tcp_paws_discard(sk, skb)) {
5688 		if (!th->rst) {
5689 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5690 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5691 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5692 						  &tp->last_oow_ack_time))
5693 				tcp_send_dupack(sk, skb);
5694 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5695 			goto discard;
5696 		}
5697 		/* Reset is accepted even if it did not pass PAWS. */
5698 	}
5699 
5700 	/* Step 1: check sequence number */
5701 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5702 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5703 		 * (RST) segments are validated by checking their SEQ-fields."
5704 		 * And page 69: "If an incoming segment is not acceptable,
5705 		 * an acknowledgment should be sent in reply (unless the RST
5706 		 * bit is set, if so drop the segment and return)".
5707 		 */
5708 		if (!th->rst) {
5709 			if (th->syn)
5710 				goto syn_challenge;
5711 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5712 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5713 						  &tp->last_oow_ack_time))
5714 				tcp_send_dupack(sk, skb);
5715 		} else if (tcp_reset_check(sk, skb)) {
5716 			goto reset;
5717 		}
5718 		SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5719 		goto discard;
5720 	}
5721 
5722 	/* Step 2: check RST bit */
5723 	if (th->rst) {
5724 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5725 		 * FIN and SACK too if available):
5726 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5727 		 * the right-most SACK block,
5728 		 * then
5729 		 *     RESET the connection
5730 		 * else
5731 		 *     Send a challenge ACK
5732 		 */
5733 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5734 		    tcp_reset_check(sk, skb))
5735 			goto reset;
5736 
5737 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5738 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5739 			int max_sack = sp[0].end_seq;
5740 			int this_sack;
5741 
5742 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5743 			     ++this_sack) {
5744 				max_sack = after(sp[this_sack].end_seq,
5745 						 max_sack) ?
5746 					sp[this_sack].end_seq : max_sack;
5747 			}
5748 
5749 			if (TCP_SKB_CB(skb)->seq == max_sack)
5750 				goto reset;
5751 		}
5752 
5753 		/* Disable TFO if RST is out-of-order
5754 		 * and no data has been received
5755 		 * for current active TFO socket
5756 		 */
5757 		if (tp->syn_fastopen && !tp->data_segs_in &&
5758 		    sk->sk_state == TCP_ESTABLISHED)
5759 			tcp_fastopen_active_disable(sk);
5760 		tcp_send_challenge_ack(sk);
5761 		SKB_DR_SET(reason, TCP_RESET);
5762 		goto discard;
5763 	}
5764 
5765 	/* step 3: check security and precedence [ignored] */
5766 
5767 	/* step 4: Check for a SYN
5768 	 * RFC 5961 4.2 : Send a challenge ack
5769 	 */
5770 	if (th->syn) {
5771 syn_challenge:
5772 		if (syn_inerr)
5773 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5774 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5775 		tcp_send_challenge_ack(sk);
5776 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5777 		goto discard;
5778 	}
5779 
5780 	bpf_skops_parse_hdr(sk, skb);
5781 
5782 	return true;
5783 
5784 discard:
5785 	tcp_drop_reason(sk, skb, reason);
5786 	return false;
5787 
5788 reset:
5789 	tcp_reset(sk, skb);
5790 	__kfree_skb(skb);
5791 	return false;
5792 }
5793 
5794 /*
5795  *	TCP receive function for the ESTABLISHED state.
5796  *
5797  *	It is split into a fast path and a slow path. The fast path is
5798  * 	disabled when:
5799  *	- A zero window was announced from us - zero window probing
5800  *        is only handled properly in the slow path.
5801  *	- Out of order segments arrived.
5802  *	- Urgent data is expected.
5803  *	- There is no buffer space left
5804  *	- Unexpected TCP flags/window values/header lengths are received
5805  *	  (detected by checking the TCP header against pred_flags)
5806  *	- Data is sent in both directions. Fast path only supports pure senders
5807  *	  or pure receivers (this means either the sequence number or the ack
5808  *	  value must stay constant)
5809  *	- Unexpected TCP option.
5810  *
5811  *	When these conditions are not satisfied it drops into a standard
5812  *	receive procedure patterned after RFC793 to handle all cases.
5813  *	The first three cases are guaranteed by proper pred_flags setting,
5814  *	the rest is checked inline. Fast processing is turned on in
5815  *	tcp_data_queue when everything is OK.
5816  */
5817 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5818 {
5819 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5820 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5821 	struct tcp_sock *tp = tcp_sk(sk);
5822 	unsigned int len = skb->len;
5823 
5824 	/* TCP congestion window tracking */
5825 	trace_tcp_probe(sk, skb);
5826 
5827 	tcp_mstamp_refresh(tp);
5828 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5829 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5830 	/*
5831 	 *	Header prediction.
5832 	 *	The code loosely follows the one in the famous
5833 	 *	"30 instruction TCP receive" Van Jacobson mail.
5834 	 *
5835 	 *	Van's trick is to deposit buffers into socket queue
5836 	 *	on a device interrupt, to call tcp_recv function
5837 	 *	on the receive process context and checksum and copy
5838 	 *	the buffer to user space. smart...
5839 	 *
5840 	 *	Our current scheme is not silly either but we take the
5841 	 *	extra cost of the net_bh soft interrupt processing...
5842 	 *	We do checksum and copy also but from device to kernel.
5843 	 */
5844 
5845 	tp->rx_opt.saw_tstamp = 0;
5846 
5847 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5848 	 *	if header_prediction is to be made
5849 	 *	'S' will always be tp->tcp_header_len >> 2
5850 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5851 	 *  turn it off	(when there are holes in the receive
5852 	 *	 space for instance)
5853 	 *	PSH flag is ignored.
5854 	 */
5855 
5856 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5857 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5858 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5859 		int tcp_header_len = tp->tcp_header_len;
5860 
5861 		/* Timestamp header prediction: tcp_header_len
5862 		 * is automatically equal to th->doff*4 due to pred_flags
5863 		 * match.
5864 		 */
5865 
5866 		/* Check timestamp */
5867 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5868 			/* No? Slow path! */
5869 			if (!tcp_parse_aligned_timestamp(tp, th))
5870 				goto slow_path;
5871 
5872 			/* If PAWS failed, check it more carefully in slow path */
5873 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5874 				goto slow_path;
5875 
5876 			/* DO NOT update ts_recent here, if checksum fails
5877 			 * and timestamp was corrupted part, it will result
5878 			 * in a hung connection since we will drop all
5879 			 * future packets due to the PAWS test.
5880 			 */
5881 		}
5882 
5883 		if (len <= tcp_header_len) {
5884 			/* Bulk data transfer: sender */
5885 			if (len == tcp_header_len) {
5886 				/* Predicted packet is in window by definition.
5887 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5888 				 * Hence, check seq<=rcv_wup reduces to:
5889 				 */
5890 				if (tcp_header_len ==
5891 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5892 				    tp->rcv_nxt == tp->rcv_wup)
5893 					tcp_store_ts_recent(tp);
5894 
5895 				/* We know that such packets are checksummed
5896 				 * on entry.
5897 				 */
5898 				tcp_ack(sk, skb, 0);
5899 				__kfree_skb(skb);
5900 				tcp_data_snd_check(sk);
5901 				/* When receiving pure ack in fast path, update
5902 				 * last ts ecr directly instead of calling
5903 				 * tcp_rcv_rtt_measure_ts()
5904 				 */
5905 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5906 				return;
5907 			} else { /* Header too small */
5908 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5909 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5910 				goto discard;
5911 			}
5912 		} else {
5913 			int eaten = 0;
5914 			bool fragstolen = false;
5915 
5916 			if (tcp_checksum_complete(skb))
5917 				goto csum_error;
5918 
5919 			if ((int)skb->truesize > sk->sk_forward_alloc)
5920 				goto step5;
5921 
5922 			/* Predicted packet is in window by definition.
5923 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5924 			 * Hence, check seq<=rcv_wup reduces to:
5925 			 */
5926 			if (tcp_header_len ==
5927 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5928 			    tp->rcv_nxt == tp->rcv_wup)
5929 				tcp_store_ts_recent(tp);
5930 
5931 			tcp_rcv_rtt_measure_ts(sk, skb);
5932 
5933 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5934 
5935 			/* Bulk data transfer: receiver */
5936 			skb_dst_drop(skb);
5937 			__skb_pull(skb, tcp_header_len);
5938 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5939 
5940 			tcp_event_data_recv(sk, skb);
5941 
5942 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5943 				/* Well, only one small jumplet in fast path... */
5944 				tcp_ack(sk, skb, FLAG_DATA);
5945 				tcp_data_snd_check(sk);
5946 				if (!inet_csk_ack_scheduled(sk))
5947 					goto no_ack;
5948 			} else {
5949 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5950 			}
5951 
5952 			__tcp_ack_snd_check(sk, 0);
5953 no_ack:
5954 			if (eaten)
5955 				kfree_skb_partial(skb, fragstolen);
5956 			tcp_data_ready(sk);
5957 			return;
5958 		}
5959 	}
5960 
5961 slow_path:
5962 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5963 		goto csum_error;
5964 
5965 	if (!th->ack && !th->rst && !th->syn) {
5966 		reason = SKB_DROP_REASON_TCP_FLAGS;
5967 		goto discard;
5968 	}
5969 
5970 	/*
5971 	 *	Standard slow path.
5972 	 */
5973 
5974 	if (!tcp_validate_incoming(sk, skb, th, 1))
5975 		return;
5976 
5977 step5:
5978 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
5979 	if ((int)reason < 0) {
5980 		reason = -reason;
5981 		goto discard;
5982 	}
5983 	tcp_rcv_rtt_measure_ts(sk, skb);
5984 
5985 	/* Process urgent data. */
5986 	tcp_urg(sk, skb, th);
5987 
5988 	/* step 7: process the segment text */
5989 	tcp_data_queue(sk, skb);
5990 
5991 	tcp_data_snd_check(sk);
5992 	tcp_ack_snd_check(sk);
5993 	return;
5994 
5995 csum_error:
5996 	reason = SKB_DROP_REASON_TCP_CSUM;
5997 	trace_tcp_bad_csum(skb);
5998 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5999 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6000 
6001 discard:
6002 	tcp_drop_reason(sk, skb, reason);
6003 }
6004 EXPORT_SYMBOL(tcp_rcv_established);
6005 
6006 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6007 {
6008 	struct inet_connection_sock *icsk = inet_csk(sk);
6009 	struct tcp_sock *tp = tcp_sk(sk);
6010 
6011 	tcp_mtup_init(sk);
6012 	icsk->icsk_af_ops->rebuild_header(sk);
6013 	tcp_init_metrics(sk);
6014 
6015 	/* Initialize the congestion window to start the transfer.
6016 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6017 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6018 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6019 	 * retransmission has occurred.
6020 	 */
6021 	if (tp->total_retrans > 1 && tp->undo_marker)
6022 		tcp_snd_cwnd_set(tp, 1);
6023 	else
6024 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6025 	tp->snd_cwnd_stamp = tcp_jiffies32;
6026 
6027 	bpf_skops_established(sk, bpf_op, skb);
6028 	/* Initialize congestion control unless BPF initialized it already: */
6029 	if (!icsk->icsk_ca_initialized)
6030 		tcp_init_congestion_control(sk);
6031 	tcp_init_buffer_space(sk);
6032 }
6033 
6034 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6035 {
6036 	struct tcp_sock *tp = tcp_sk(sk);
6037 	struct inet_connection_sock *icsk = inet_csk(sk);
6038 
6039 	tcp_set_state(sk, TCP_ESTABLISHED);
6040 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6041 
6042 	if (skb) {
6043 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6044 		security_inet_conn_established(sk, skb);
6045 		sk_mark_napi_id(sk, skb);
6046 	}
6047 
6048 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6049 
6050 	/* Prevent spurious tcp_cwnd_restart() on first data
6051 	 * packet.
6052 	 */
6053 	tp->lsndtime = tcp_jiffies32;
6054 
6055 	if (sock_flag(sk, SOCK_KEEPOPEN))
6056 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6057 
6058 	if (!tp->rx_opt.snd_wscale)
6059 		__tcp_fast_path_on(tp, tp->snd_wnd);
6060 	else
6061 		tp->pred_flags = 0;
6062 }
6063 
6064 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6065 				    struct tcp_fastopen_cookie *cookie)
6066 {
6067 	struct tcp_sock *tp = tcp_sk(sk);
6068 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6069 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6070 	bool syn_drop = false;
6071 
6072 	if (mss == tp->rx_opt.user_mss) {
6073 		struct tcp_options_received opt;
6074 
6075 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6076 		tcp_clear_options(&opt);
6077 		opt.user_mss = opt.mss_clamp = 0;
6078 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6079 		mss = opt.mss_clamp;
6080 	}
6081 
6082 	if (!tp->syn_fastopen) {
6083 		/* Ignore an unsolicited cookie */
6084 		cookie->len = -1;
6085 	} else if (tp->total_retrans) {
6086 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6087 		 * acknowledges data. Presumably the remote received only
6088 		 * the retransmitted (regular) SYNs: either the original
6089 		 * SYN-data or the corresponding SYN-ACK was dropped.
6090 		 */
6091 		syn_drop = (cookie->len < 0 && data);
6092 	} else if (cookie->len < 0 && !tp->syn_data) {
6093 		/* We requested a cookie but didn't get it. If we did not use
6094 		 * the (old) exp opt format then try so next time (try_exp=1).
6095 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6096 		 */
6097 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6098 	}
6099 
6100 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6101 
6102 	if (data) { /* Retransmit unacked data in SYN */
6103 		if (tp->total_retrans)
6104 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6105 		else
6106 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6107 		skb_rbtree_walk_from(data)
6108 			 tcp_mark_skb_lost(sk, data);
6109 		tcp_xmit_retransmit_queue(sk);
6110 		NET_INC_STATS(sock_net(sk),
6111 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6112 		return true;
6113 	}
6114 	tp->syn_data_acked = tp->syn_data;
6115 	if (tp->syn_data_acked) {
6116 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6117 		/* SYN-data is counted as two separate packets in tcp_ack() */
6118 		if (tp->delivered > 1)
6119 			--tp->delivered;
6120 	}
6121 
6122 	tcp_fastopen_add_skb(sk, synack);
6123 
6124 	return false;
6125 }
6126 
6127 static void smc_check_reset_syn(struct tcp_sock *tp)
6128 {
6129 #if IS_ENABLED(CONFIG_SMC)
6130 	if (static_branch_unlikely(&tcp_have_smc)) {
6131 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6132 			tp->syn_smc = 0;
6133 	}
6134 #endif
6135 }
6136 
6137 static void tcp_try_undo_spurious_syn(struct sock *sk)
6138 {
6139 	struct tcp_sock *tp = tcp_sk(sk);
6140 	u32 syn_stamp;
6141 
6142 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6143 	 * spurious if the ACK's timestamp option echo value matches the
6144 	 * original SYN timestamp.
6145 	 */
6146 	syn_stamp = tp->retrans_stamp;
6147 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6148 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6149 		tp->undo_marker = 0;
6150 }
6151 
6152 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6153 					 const struct tcphdr *th)
6154 {
6155 	struct inet_connection_sock *icsk = inet_csk(sk);
6156 	struct tcp_sock *tp = tcp_sk(sk);
6157 	struct tcp_fastopen_cookie foc = { .len = -1 };
6158 	int saved_clamp = tp->rx_opt.mss_clamp;
6159 	bool fastopen_fail;
6160 	SKB_DR(reason);
6161 
6162 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6163 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6164 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6165 
6166 	if (th->ack) {
6167 		/* rfc793:
6168 		 * "If the state is SYN-SENT then
6169 		 *    first check the ACK bit
6170 		 *      If the ACK bit is set
6171 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6172 		 *        a reset (unless the RST bit is set, if so drop
6173 		 *        the segment and return)"
6174 		 */
6175 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6176 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6177 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6178 			if (icsk->icsk_retransmits == 0)
6179 				inet_csk_reset_xmit_timer(sk,
6180 						ICSK_TIME_RETRANS,
6181 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6182 			goto reset_and_undo;
6183 		}
6184 
6185 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6186 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6187 			     tcp_time_stamp(tp))) {
6188 			NET_INC_STATS(sock_net(sk),
6189 					LINUX_MIB_PAWSACTIVEREJECTED);
6190 			goto reset_and_undo;
6191 		}
6192 
6193 		/* Now ACK is acceptable.
6194 		 *
6195 		 * "If the RST bit is set
6196 		 *    If the ACK was acceptable then signal the user "error:
6197 		 *    connection reset", drop the segment, enter CLOSED state,
6198 		 *    delete TCB, and return."
6199 		 */
6200 
6201 		if (th->rst) {
6202 			tcp_reset(sk, skb);
6203 consume:
6204 			__kfree_skb(skb);
6205 			return 0;
6206 		}
6207 
6208 		/* rfc793:
6209 		 *   "fifth, if neither of the SYN or RST bits is set then
6210 		 *    drop the segment and return."
6211 		 *
6212 		 *    See note below!
6213 		 *                                        --ANK(990513)
6214 		 */
6215 		if (!th->syn) {
6216 			SKB_DR_SET(reason, TCP_FLAGS);
6217 			goto discard_and_undo;
6218 		}
6219 		/* rfc793:
6220 		 *   "If the SYN bit is on ...
6221 		 *    are acceptable then ...
6222 		 *    (our SYN has been ACKed), change the connection
6223 		 *    state to ESTABLISHED..."
6224 		 */
6225 
6226 		tcp_ecn_rcv_synack(tp, th);
6227 
6228 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6229 		tcp_try_undo_spurious_syn(sk);
6230 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6231 
6232 		/* Ok.. it's good. Set up sequence numbers and
6233 		 * move to established.
6234 		 */
6235 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6236 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6237 
6238 		/* RFC1323: The window in SYN & SYN/ACK segments is
6239 		 * never scaled.
6240 		 */
6241 		tp->snd_wnd = ntohs(th->window);
6242 
6243 		if (!tp->rx_opt.wscale_ok) {
6244 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6245 			tp->window_clamp = min(tp->window_clamp, 65535U);
6246 		}
6247 
6248 		if (tp->rx_opt.saw_tstamp) {
6249 			tp->rx_opt.tstamp_ok	   = 1;
6250 			tp->tcp_header_len =
6251 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6252 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6253 			tcp_store_ts_recent(tp);
6254 		} else {
6255 			tp->tcp_header_len = sizeof(struct tcphdr);
6256 		}
6257 
6258 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6259 		tcp_initialize_rcv_mss(sk);
6260 
6261 		/* Remember, tcp_poll() does not lock socket!
6262 		 * Change state from SYN-SENT only after copied_seq
6263 		 * is initialized. */
6264 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6265 
6266 		smc_check_reset_syn(tp);
6267 
6268 		smp_mb();
6269 
6270 		tcp_finish_connect(sk, skb);
6271 
6272 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6273 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6274 
6275 		if (!sock_flag(sk, SOCK_DEAD)) {
6276 			sk->sk_state_change(sk);
6277 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6278 		}
6279 		if (fastopen_fail)
6280 			return -1;
6281 		if (sk->sk_write_pending ||
6282 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6283 		    inet_csk_in_pingpong_mode(sk)) {
6284 			/* Save one ACK. Data will be ready after
6285 			 * several ticks, if write_pending is set.
6286 			 *
6287 			 * It may be deleted, but with this feature tcpdumps
6288 			 * look so _wonderfully_ clever, that I was not able
6289 			 * to stand against the temptation 8)     --ANK
6290 			 */
6291 			inet_csk_schedule_ack(sk);
6292 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6293 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6294 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6295 			goto consume;
6296 		}
6297 		tcp_send_ack(sk);
6298 		return -1;
6299 	}
6300 
6301 	/* No ACK in the segment */
6302 
6303 	if (th->rst) {
6304 		/* rfc793:
6305 		 * "If the RST bit is set
6306 		 *
6307 		 *      Otherwise (no ACK) drop the segment and return."
6308 		 */
6309 		SKB_DR_SET(reason, TCP_RESET);
6310 		goto discard_and_undo;
6311 	}
6312 
6313 	/* PAWS check. */
6314 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6315 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6316 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6317 		goto discard_and_undo;
6318 	}
6319 	if (th->syn) {
6320 		/* We see SYN without ACK. It is attempt of
6321 		 * simultaneous connect with crossed SYNs.
6322 		 * Particularly, it can be connect to self.
6323 		 */
6324 		tcp_set_state(sk, TCP_SYN_RECV);
6325 
6326 		if (tp->rx_opt.saw_tstamp) {
6327 			tp->rx_opt.tstamp_ok = 1;
6328 			tcp_store_ts_recent(tp);
6329 			tp->tcp_header_len =
6330 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6331 		} else {
6332 			tp->tcp_header_len = sizeof(struct tcphdr);
6333 		}
6334 
6335 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6336 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6337 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6338 
6339 		/* RFC1323: The window in SYN & SYN/ACK segments is
6340 		 * never scaled.
6341 		 */
6342 		tp->snd_wnd    = ntohs(th->window);
6343 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6344 		tp->max_window = tp->snd_wnd;
6345 
6346 		tcp_ecn_rcv_syn(tp, th);
6347 
6348 		tcp_mtup_init(sk);
6349 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6350 		tcp_initialize_rcv_mss(sk);
6351 
6352 		tcp_send_synack(sk);
6353 #if 0
6354 		/* Note, we could accept data and URG from this segment.
6355 		 * There are no obstacles to make this (except that we must
6356 		 * either change tcp_recvmsg() to prevent it from returning data
6357 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6358 		 *
6359 		 * However, if we ignore data in ACKless segments sometimes,
6360 		 * we have no reasons to accept it sometimes.
6361 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6362 		 * is not flawless. So, discard packet for sanity.
6363 		 * Uncomment this return to process the data.
6364 		 */
6365 		return -1;
6366 #else
6367 		goto consume;
6368 #endif
6369 	}
6370 	/* "fifth, if neither of the SYN or RST bits is set then
6371 	 * drop the segment and return."
6372 	 */
6373 
6374 discard_and_undo:
6375 	tcp_clear_options(&tp->rx_opt);
6376 	tp->rx_opt.mss_clamp = saved_clamp;
6377 	tcp_drop_reason(sk, skb, reason);
6378 	return 0;
6379 
6380 reset_and_undo:
6381 	tcp_clear_options(&tp->rx_opt);
6382 	tp->rx_opt.mss_clamp = saved_clamp;
6383 	return 1;
6384 }
6385 
6386 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6387 {
6388 	struct request_sock *req;
6389 
6390 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6391 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6392 	 */
6393 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6394 		tcp_try_undo_loss(sk, false);
6395 
6396 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6397 	tcp_sk(sk)->retrans_stamp = 0;
6398 	inet_csk(sk)->icsk_retransmits = 0;
6399 
6400 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6401 	 * we no longer need req so release it.
6402 	 */
6403 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6404 					lockdep_sock_is_held(sk));
6405 	reqsk_fastopen_remove(sk, req, false);
6406 
6407 	/* Re-arm the timer because data may have been sent out.
6408 	 * This is similar to the regular data transmission case
6409 	 * when new data has just been ack'ed.
6410 	 *
6411 	 * (TFO) - we could try to be more aggressive and
6412 	 * retransmitting any data sooner based on when they
6413 	 * are sent out.
6414 	 */
6415 	tcp_rearm_rto(sk);
6416 }
6417 
6418 /*
6419  *	This function implements the receiving procedure of RFC 793 for
6420  *	all states except ESTABLISHED and TIME_WAIT.
6421  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6422  *	address independent.
6423  */
6424 
6425 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6426 {
6427 	struct tcp_sock *tp = tcp_sk(sk);
6428 	struct inet_connection_sock *icsk = inet_csk(sk);
6429 	const struct tcphdr *th = tcp_hdr(skb);
6430 	struct request_sock *req;
6431 	int queued = 0;
6432 	bool acceptable;
6433 	SKB_DR(reason);
6434 
6435 	switch (sk->sk_state) {
6436 	case TCP_CLOSE:
6437 		SKB_DR_SET(reason, TCP_CLOSE);
6438 		goto discard;
6439 
6440 	case TCP_LISTEN:
6441 		if (th->ack)
6442 			return 1;
6443 
6444 		if (th->rst) {
6445 			SKB_DR_SET(reason, TCP_RESET);
6446 			goto discard;
6447 		}
6448 		if (th->syn) {
6449 			if (th->fin) {
6450 				SKB_DR_SET(reason, TCP_FLAGS);
6451 				goto discard;
6452 			}
6453 			/* It is possible that we process SYN packets from backlog,
6454 			 * so we need to make sure to disable BH and RCU right there.
6455 			 */
6456 			rcu_read_lock();
6457 			local_bh_disable();
6458 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6459 			local_bh_enable();
6460 			rcu_read_unlock();
6461 
6462 			if (!acceptable)
6463 				return 1;
6464 			consume_skb(skb);
6465 			return 0;
6466 		}
6467 		SKB_DR_SET(reason, TCP_FLAGS);
6468 		goto discard;
6469 
6470 	case TCP_SYN_SENT:
6471 		tp->rx_opt.saw_tstamp = 0;
6472 		tcp_mstamp_refresh(tp);
6473 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6474 		if (queued >= 0)
6475 			return queued;
6476 
6477 		/* Do step6 onward by hand. */
6478 		tcp_urg(sk, skb, th);
6479 		__kfree_skb(skb);
6480 		tcp_data_snd_check(sk);
6481 		return 0;
6482 	}
6483 
6484 	tcp_mstamp_refresh(tp);
6485 	tp->rx_opt.saw_tstamp = 0;
6486 	req = rcu_dereference_protected(tp->fastopen_rsk,
6487 					lockdep_sock_is_held(sk));
6488 	if (req) {
6489 		bool req_stolen;
6490 
6491 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6492 		    sk->sk_state != TCP_FIN_WAIT1);
6493 
6494 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6495 			SKB_DR_SET(reason, TCP_FASTOPEN);
6496 			goto discard;
6497 		}
6498 	}
6499 
6500 	if (!th->ack && !th->rst && !th->syn) {
6501 		SKB_DR_SET(reason, TCP_FLAGS);
6502 		goto discard;
6503 	}
6504 	if (!tcp_validate_incoming(sk, skb, th, 0))
6505 		return 0;
6506 
6507 	/* step 5: check the ACK field */
6508 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6509 				      FLAG_UPDATE_TS_RECENT |
6510 				      FLAG_NO_CHALLENGE_ACK) > 0;
6511 
6512 	if (!acceptable) {
6513 		if (sk->sk_state == TCP_SYN_RECV)
6514 			return 1;	/* send one RST */
6515 		tcp_send_challenge_ack(sk);
6516 		SKB_DR_SET(reason, TCP_OLD_ACK);
6517 		goto discard;
6518 	}
6519 	switch (sk->sk_state) {
6520 	case TCP_SYN_RECV:
6521 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6522 		if (!tp->srtt_us)
6523 			tcp_synack_rtt_meas(sk, req);
6524 
6525 		if (req) {
6526 			tcp_rcv_synrecv_state_fastopen(sk);
6527 		} else {
6528 			tcp_try_undo_spurious_syn(sk);
6529 			tp->retrans_stamp = 0;
6530 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6531 					  skb);
6532 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6533 		}
6534 		smp_mb();
6535 		tcp_set_state(sk, TCP_ESTABLISHED);
6536 		sk->sk_state_change(sk);
6537 
6538 		/* Note, that this wakeup is only for marginal crossed SYN case.
6539 		 * Passively open sockets are not waked up, because
6540 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6541 		 */
6542 		if (sk->sk_socket)
6543 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6544 
6545 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6546 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6547 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6548 
6549 		if (tp->rx_opt.tstamp_ok)
6550 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6551 
6552 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6553 			tcp_update_pacing_rate(sk);
6554 
6555 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6556 		tp->lsndtime = tcp_jiffies32;
6557 
6558 		tcp_initialize_rcv_mss(sk);
6559 		tcp_fast_path_on(tp);
6560 		break;
6561 
6562 	case TCP_FIN_WAIT1: {
6563 		int tmo;
6564 
6565 		if (req)
6566 			tcp_rcv_synrecv_state_fastopen(sk);
6567 
6568 		if (tp->snd_una != tp->write_seq)
6569 			break;
6570 
6571 		tcp_set_state(sk, TCP_FIN_WAIT2);
6572 		sk->sk_shutdown |= SEND_SHUTDOWN;
6573 
6574 		sk_dst_confirm(sk);
6575 
6576 		if (!sock_flag(sk, SOCK_DEAD)) {
6577 			/* Wake up lingering close() */
6578 			sk->sk_state_change(sk);
6579 			break;
6580 		}
6581 
6582 		if (tp->linger2 < 0) {
6583 			tcp_done(sk);
6584 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6585 			return 1;
6586 		}
6587 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6588 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6589 			/* Receive out of order FIN after close() */
6590 			if (tp->syn_fastopen && th->fin)
6591 				tcp_fastopen_active_disable(sk);
6592 			tcp_done(sk);
6593 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6594 			return 1;
6595 		}
6596 
6597 		tmo = tcp_fin_time(sk);
6598 		if (tmo > TCP_TIMEWAIT_LEN) {
6599 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6600 		} else if (th->fin || sock_owned_by_user(sk)) {
6601 			/* Bad case. We could lose such FIN otherwise.
6602 			 * It is not a big problem, but it looks confusing
6603 			 * and not so rare event. We still can lose it now,
6604 			 * if it spins in bh_lock_sock(), but it is really
6605 			 * marginal case.
6606 			 */
6607 			inet_csk_reset_keepalive_timer(sk, tmo);
6608 		} else {
6609 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6610 			goto consume;
6611 		}
6612 		break;
6613 	}
6614 
6615 	case TCP_CLOSING:
6616 		if (tp->snd_una == tp->write_seq) {
6617 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6618 			goto consume;
6619 		}
6620 		break;
6621 
6622 	case TCP_LAST_ACK:
6623 		if (tp->snd_una == tp->write_seq) {
6624 			tcp_update_metrics(sk);
6625 			tcp_done(sk);
6626 			goto consume;
6627 		}
6628 		break;
6629 	}
6630 
6631 	/* step 6: check the URG bit */
6632 	tcp_urg(sk, skb, th);
6633 
6634 	/* step 7: process the segment text */
6635 	switch (sk->sk_state) {
6636 	case TCP_CLOSE_WAIT:
6637 	case TCP_CLOSING:
6638 	case TCP_LAST_ACK:
6639 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6640 			/* If a subflow has been reset, the packet should not
6641 			 * continue to be processed, drop the packet.
6642 			 */
6643 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6644 				goto discard;
6645 			break;
6646 		}
6647 		fallthrough;
6648 	case TCP_FIN_WAIT1:
6649 	case TCP_FIN_WAIT2:
6650 		/* RFC 793 says to queue data in these states,
6651 		 * RFC 1122 says we MUST send a reset.
6652 		 * BSD 4.4 also does reset.
6653 		 */
6654 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6655 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6656 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6657 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6658 				tcp_reset(sk, skb);
6659 				return 1;
6660 			}
6661 		}
6662 		fallthrough;
6663 	case TCP_ESTABLISHED:
6664 		tcp_data_queue(sk, skb);
6665 		queued = 1;
6666 		break;
6667 	}
6668 
6669 	/* tcp_data could move socket to TIME-WAIT */
6670 	if (sk->sk_state != TCP_CLOSE) {
6671 		tcp_data_snd_check(sk);
6672 		tcp_ack_snd_check(sk);
6673 	}
6674 
6675 	if (!queued) {
6676 discard:
6677 		tcp_drop_reason(sk, skb, reason);
6678 	}
6679 	return 0;
6680 
6681 consume:
6682 	__kfree_skb(skb);
6683 	return 0;
6684 }
6685 EXPORT_SYMBOL(tcp_rcv_state_process);
6686 
6687 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6688 {
6689 	struct inet_request_sock *ireq = inet_rsk(req);
6690 
6691 	if (family == AF_INET)
6692 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6693 				    &ireq->ir_rmt_addr, port);
6694 #if IS_ENABLED(CONFIG_IPV6)
6695 	else if (family == AF_INET6)
6696 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6697 				    &ireq->ir_v6_rmt_addr, port);
6698 #endif
6699 }
6700 
6701 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6702  *
6703  * If we receive a SYN packet with these bits set, it means a
6704  * network is playing bad games with TOS bits. In order to
6705  * avoid possible false congestion notifications, we disable
6706  * TCP ECN negotiation.
6707  *
6708  * Exception: tcp_ca wants ECN. This is required for DCTCP
6709  * congestion control: Linux DCTCP asserts ECT on all packets,
6710  * including SYN, which is most optimal solution; however,
6711  * others, such as FreeBSD do not.
6712  *
6713  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6714  * set, indicating the use of a future TCP extension (such as AccECN). See
6715  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6716  * extensions.
6717  */
6718 static void tcp_ecn_create_request(struct request_sock *req,
6719 				   const struct sk_buff *skb,
6720 				   const struct sock *listen_sk,
6721 				   const struct dst_entry *dst)
6722 {
6723 	const struct tcphdr *th = tcp_hdr(skb);
6724 	const struct net *net = sock_net(listen_sk);
6725 	bool th_ecn = th->ece && th->cwr;
6726 	bool ect, ecn_ok;
6727 	u32 ecn_ok_dst;
6728 
6729 	if (!th_ecn)
6730 		return;
6731 
6732 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6733 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6734 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6735 
6736 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6737 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6738 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6739 		inet_rsk(req)->ecn_ok = 1;
6740 }
6741 
6742 static void tcp_openreq_init(struct request_sock *req,
6743 			     const struct tcp_options_received *rx_opt,
6744 			     struct sk_buff *skb, const struct sock *sk)
6745 {
6746 	struct inet_request_sock *ireq = inet_rsk(req);
6747 
6748 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6749 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6750 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6751 	tcp_rsk(req)->snt_synack = 0;
6752 	tcp_rsk(req)->last_oow_ack_time = 0;
6753 	req->mss = rx_opt->mss_clamp;
6754 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6755 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6756 	ireq->sack_ok = rx_opt->sack_ok;
6757 	ireq->snd_wscale = rx_opt->snd_wscale;
6758 	ireq->wscale_ok = rx_opt->wscale_ok;
6759 	ireq->acked = 0;
6760 	ireq->ecn_ok = 0;
6761 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6762 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6763 	ireq->ir_mark = inet_request_mark(sk, skb);
6764 #if IS_ENABLED(CONFIG_SMC)
6765 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6766 			tcp_sk(sk)->smc_hs_congested(sk));
6767 #endif
6768 }
6769 
6770 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6771 				      struct sock *sk_listener,
6772 				      bool attach_listener)
6773 {
6774 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6775 					       attach_listener);
6776 
6777 	if (req) {
6778 		struct inet_request_sock *ireq = inet_rsk(req);
6779 
6780 		ireq->ireq_opt = NULL;
6781 #if IS_ENABLED(CONFIG_IPV6)
6782 		ireq->pktopts = NULL;
6783 #endif
6784 		atomic64_set(&ireq->ir_cookie, 0);
6785 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6786 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6787 		ireq->ireq_family = sk_listener->sk_family;
6788 		req->timeout = TCP_TIMEOUT_INIT;
6789 	}
6790 
6791 	return req;
6792 }
6793 EXPORT_SYMBOL(inet_reqsk_alloc);
6794 
6795 /*
6796  * Return true if a syncookie should be sent
6797  */
6798 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6799 {
6800 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6801 	const char *msg = "Dropping request";
6802 	struct net *net = sock_net(sk);
6803 	bool want_cookie = false;
6804 	u8 syncookies;
6805 
6806 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6807 
6808 #ifdef CONFIG_SYN_COOKIES
6809 	if (syncookies) {
6810 		msg = "Sending cookies";
6811 		want_cookie = true;
6812 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6813 	} else
6814 #endif
6815 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6816 
6817 	if (!queue->synflood_warned && syncookies != 2 &&
6818 	    xchg(&queue->synflood_warned, 1) == 0)
6819 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6820 				     proto, sk->sk_num, msg);
6821 
6822 	return want_cookie;
6823 }
6824 
6825 static void tcp_reqsk_record_syn(const struct sock *sk,
6826 				 struct request_sock *req,
6827 				 const struct sk_buff *skb)
6828 {
6829 	if (tcp_sk(sk)->save_syn) {
6830 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6831 		struct saved_syn *saved_syn;
6832 		u32 mac_hdrlen;
6833 		void *base;
6834 
6835 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6836 			base = skb_mac_header(skb);
6837 			mac_hdrlen = skb_mac_header_len(skb);
6838 			len += mac_hdrlen;
6839 		} else {
6840 			base = skb_network_header(skb);
6841 			mac_hdrlen = 0;
6842 		}
6843 
6844 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6845 				    GFP_ATOMIC);
6846 		if (saved_syn) {
6847 			saved_syn->mac_hdrlen = mac_hdrlen;
6848 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6849 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6850 			memcpy(saved_syn->data, base, len);
6851 			req->saved_syn = saved_syn;
6852 		}
6853 	}
6854 }
6855 
6856 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6857  * used for SYN cookie generation.
6858  */
6859 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6860 			  const struct tcp_request_sock_ops *af_ops,
6861 			  struct sock *sk, struct tcphdr *th)
6862 {
6863 	struct tcp_sock *tp = tcp_sk(sk);
6864 	u16 mss;
6865 
6866 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6867 	    !inet_csk_reqsk_queue_is_full(sk))
6868 		return 0;
6869 
6870 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6871 		return 0;
6872 
6873 	if (sk_acceptq_is_full(sk)) {
6874 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6875 		return 0;
6876 	}
6877 
6878 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6879 	if (!mss)
6880 		mss = af_ops->mss_clamp;
6881 
6882 	return mss;
6883 }
6884 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6885 
6886 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6887 		     const struct tcp_request_sock_ops *af_ops,
6888 		     struct sock *sk, struct sk_buff *skb)
6889 {
6890 	struct tcp_fastopen_cookie foc = { .len = -1 };
6891 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6892 	struct tcp_options_received tmp_opt;
6893 	struct tcp_sock *tp = tcp_sk(sk);
6894 	struct net *net = sock_net(sk);
6895 	struct sock *fastopen_sk = NULL;
6896 	struct request_sock *req;
6897 	bool want_cookie = false;
6898 	struct dst_entry *dst;
6899 	struct flowi fl;
6900 	u8 syncookies;
6901 
6902 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6903 
6904 	/* TW buckets are converted to open requests without
6905 	 * limitations, they conserve resources and peer is
6906 	 * evidently real one.
6907 	 */
6908 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6909 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6910 		if (!want_cookie)
6911 			goto drop;
6912 	}
6913 
6914 	if (sk_acceptq_is_full(sk)) {
6915 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6916 		goto drop;
6917 	}
6918 
6919 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6920 	if (!req)
6921 		goto drop;
6922 
6923 	req->syncookie = want_cookie;
6924 	tcp_rsk(req)->af_specific = af_ops;
6925 	tcp_rsk(req)->ts_off = 0;
6926 #if IS_ENABLED(CONFIG_MPTCP)
6927 	tcp_rsk(req)->is_mptcp = 0;
6928 #endif
6929 
6930 	tcp_clear_options(&tmp_opt);
6931 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6932 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6933 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6934 			  want_cookie ? NULL : &foc);
6935 
6936 	if (want_cookie && !tmp_opt.saw_tstamp)
6937 		tcp_clear_options(&tmp_opt);
6938 
6939 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6940 		tmp_opt.smc_ok = 0;
6941 
6942 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6943 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6944 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6945 
6946 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6947 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6948 
6949 	dst = af_ops->route_req(sk, skb, &fl, req);
6950 	if (!dst)
6951 		goto drop_and_free;
6952 
6953 	if (tmp_opt.tstamp_ok)
6954 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6955 
6956 	if (!want_cookie && !isn) {
6957 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6958 
6959 		/* Kill the following clause, if you dislike this way. */
6960 		if (!syncookies &&
6961 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6962 		     (max_syn_backlog >> 2)) &&
6963 		    !tcp_peer_is_proven(req, dst)) {
6964 			/* Without syncookies last quarter of
6965 			 * backlog is filled with destinations,
6966 			 * proven to be alive.
6967 			 * It means that we continue to communicate
6968 			 * to destinations, already remembered
6969 			 * to the moment of synflood.
6970 			 */
6971 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6972 				    rsk_ops->family);
6973 			goto drop_and_release;
6974 		}
6975 
6976 		isn = af_ops->init_seq(skb);
6977 	}
6978 
6979 	tcp_ecn_create_request(req, skb, sk, dst);
6980 
6981 	if (want_cookie) {
6982 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6983 		if (!tmp_opt.tstamp_ok)
6984 			inet_rsk(req)->ecn_ok = 0;
6985 	}
6986 
6987 	tcp_rsk(req)->snt_isn = isn;
6988 	tcp_rsk(req)->txhash = net_tx_rndhash();
6989 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6990 	tcp_openreq_init_rwin(req, sk, dst);
6991 	sk_rx_queue_set(req_to_sk(req), skb);
6992 	if (!want_cookie) {
6993 		tcp_reqsk_record_syn(sk, req, skb);
6994 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6995 	}
6996 	if (fastopen_sk) {
6997 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6998 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6999 		/* Add the child socket directly into the accept queue */
7000 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7001 			reqsk_fastopen_remove(fastopen_sk, req, false);
7002 			bh_unlock_sock(fastopen_sk);
7003 			sock_put(fastopen_sk);
7004 			goto drop_and_free;
7005 		}
7006 		sk->sk_data_ready(sk);
7007 		bh_unlock_sock(fastopen_sk);
7008 		sock_put(fastopen_sk);
7009 	} else {
7010 		tcp_rsk(req)->tfo_listener = false;
7011 		if (!want_cookie) {
7012 			req->timeout = tcp_timeout_init((struct sock *)req);
7013 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7014 		}
7015 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7016 				    !want_cookie ? TCP_SYNACK_NORMAL :
7017 						   TCP_SYNACK_COOKIE,
7018 				    skb);
7019 		if (want_cookie) {
7020 			reqsk_free(req);
7021 			return 0;
7022 		}
7023 	}
7024 	reqsk_put(req);
7025 	return 0;
7026 
7027 drop_and_release:
7028 	dst_release(dst);
7029 drop_and_free:
7030 	__reqsk_free(req);
7031 drop:
7032 	tcp_listendrop(sk);
7033 	return 0;
7034 }
7035 EXPORT_SYMBOL(tcp_conn_request);
7036