1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 1000; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 97 98 int sysctl_tcp_thin_dupack __read_mostly; 99 100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101 int sysctl_tcp_early_retrans __read_mostly = 3; 102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 103 104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 110 #define FLAG_ECE 0x40 /* ECE in this ACK */ 111 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 #define REXMIT_NONE 0 /* no loss recovery to do */ 128 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 129 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 130 131 /* Adapt the MSS value used to make delayed ack decision to the 132 * real world. 133 */ 134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 135 { 136 struct inet_connection_sock *icsk = inet_csk(sk); 137 const unsigned int lss = icsk->icsk_ack.last_seg_size; 138 unsigned int len; 139 140 icsk->icsk_ack.last_seg_size = 0; 141 142 /* skb->len may jitter because of SACKs, even if peer 143 * sends good full-sized frames. 144 */ 145 len = skb_shinfo(skb)->gso_size ? : skb->len; 146 if (len >= icsk->icsk_ack.rcv_mss) { 147 icsk->icsk_ack.rcv_mss = len; 148 } else { 149 /* Otherwise, we make more careful check taking into account, 150 * that SACKs block is variable. 151 * 152 * "len" is invariant segment length, including TCP header. 153 */ 154 len += skb->data - skb_transport_header(skb); 155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 156 /* If PSH is not set, packet should be 157 * full sized, provided peer TCP is not badly broken. 158 * This observation (if it is correct 8)) allows 159 * to handle super-low mtu links fairly. 160 */ 161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 163 /* Subtract also invariant (if peer is RFC compliant), 164 * tcp header plus fixed timestamp option length. 165 * Resulting "len" is MSS free of SACK jitter. 166 */ 167 len -= tcp_sk(sk)->tcp_header_len; 168 icsk->icsk_ack.last_seg_size = len; 169 if (len == lss) { 170 icsk->icsk_ack.rcv_mss = len; 171 return; 172 } 173 } 174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 177 } 178 } 179 180 static void tcp_incr_quickack(struct sock *sk) 181 { 182 struct inet_connection_sock *icsk = inet_csk(sk); 183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 184 185 if (quickacks == 0) 186 quickacks = 2; 187 if (quickacks > icsk->icsk_ack.quick) 188 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 189 } 190 191 static void tcp_enter_quickack_mode(struct sock *sk) 192 { 193 struct inet_connection_sock *icsk = inet_csk(sk); 194 tcp_incr_quickack(sk); 195 icsk->icsk_ack.pingpong = 0; 196 icsk->icsk_ack.ato = TCP_ATO_MIN; 197 } 198 199 /* Send ACKs quickly, if "quick" count is not exhausted 200 * and the session is not interactive. 201 */ 202 203 static bool tcp_in_quickack_mode(struct sock *sk) 204 { 205 const struct inet_connection_sock *icsk = inet_csk(sk); 206 const struct dst_entry *dst = __sk_dst_get(sk); 207 208 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 209 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 210 } 211 212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 213 { 214 if (tp->ecn_flags & TCP_ECN_OK) 215 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 216 } 217 218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 219 { 220 if (tcp_hdr(skb)->cwr) 221 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 222 } 223 224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 225 { 226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 227 } 228 229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 230 { 231 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 232 case INET_ECN_NOT_ECT: 233 /* Funny extension: if ECT is not set on a segment, 234 * and we already seen ECT on a previous segment, 235 * it is probably a retransmit. 236 */ 237 if (tp->ecn_flags & TCP_ECN_SEEN) 238 tcp_enter_quickack_mode((struct sock *)tp); 239 break; 240 case INET_ECN_CE: 241 if (tcp_ca_needs_ecn((struct sock *)tp)) 242 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 243 244 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 245 /* Better not delay acks, sender can have a very low cwnd */ 246 tcp_enter_quickack_mode((struct sock *)tp); 247 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 248 } 249 tp->ecn_flags |= TCP_ECN_SEEN; 250 break; 251 default: 252 if (tcp_ca_needs_ecn((struct sock *)tp)) 253 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 254 tp->ecn_flags |= TCP_ECN_SEEN; 255 break; 256 } 257 } 258 259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 260 { 261 if (tp->ecn_flags & TCP_ECN_OK) 262 __tcp_ecn_check_ce(tp, skb); 263 } 264 265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 266 { 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 268 tp->ecn_flags &= ~TCP_ECN_OK; 269 } 270 271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 274 tp->ecn_flags &= ~TCP_ECN_OK; 275 } 276 277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 278 { 279 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 280 return true; 281 return false; 282 } 283 284 /* Buffer size and advertised window tuning. 285 * 286 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 287 */ 288 289 static void tcp_sndbuf_expand(struct sock *sk) 290 { 291 const struct tcp_sock *tp = tcp_sk(sk); 292 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 293 int sndmem, per_mss; 294 u32 nr_segs; 295 296 /* Worst case is non GSO/TSO : each frame consumes one skb 297 * and skb->head is kmalloced using power of two area of memory 298 */ 299 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 300 MAX_TCP_HEADER + 301 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 302 303 per_mss = roundup_pow_of_two(per_mss) + 304 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 305 306 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 307 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 308 309 /* Fast Recovery (RFC 5681 3.2) : 310 * Cubic needs 1.7 factor, rounded to 2 to include 311 * extra cushion (application might react slowly to POLLOUT) 312 */ 313 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 314 sndmem *= nr_segs * per_mss; 315 316 if (sk->sk_sndbuf < sndmem) 317 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 318 } 319 320 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 321 * 322 * All tcp_full_space() is split to two parts: "network" buffer, allocated 323 * forward and advertised in receiver window (tp->rcv_wnd) and 324 * "application buffer", required to isolate scheduling/application 325 * latencies from network. 326 * window_clamp is maximal advertised window. It can be less than 327 * tcp_full_space(), in this case tcp_full_space() - window_clamp 328 * is reserved for "application" buffer. The less window_clamp is 329 * the smoother our behaviour from viewpoint of network, but the lower 330 * throughput and the higher sensitivity of the connection to losses. 8) 331 * 332 * rcv_ssthresh is more strict window_clamp used at "slow start" 333 * phase to predict further behaviour of this connection. 334 * It is used for two goals: 335 * - to enforce header prediction at sender, even when application 336 * requires some significant "application buffer". It is check #1. 337 * - to prevent pruning of receive queue because of misprediction 338 * of receiver window. Check #2. 339 * 340 * The scheme does not work when sender sends good segments opening 341 * window and then starts to feed us spaghetti. But it should work 342 * in common situations. Otherwise, we have to rely on queue collapsing. 343 */ 344 345 /* Slow part of check#2. */ 346 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 347 { 348 struct tcp_sock *tp = tcp_sk(sk); 349 /* Optimize this! */ 350 int truesize = tcp_win_from_space(skb->truesize) >> 1; 351 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 352 353 while (tp->rcv_ssthresh <= window) { 354 if (truesize <= skb->len) 355 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 356 357 truesize >>= 1; 358 window >>= 1; 359 } 360 return 0; 361 } 362 363 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 364 { 365 struct tcp_sock *tp = tcp_sk(sk); 366 367 /* Check #1 */ 368 if (tp->rcv_ssthresh < tp->window_clamp && 369 (int)tp->rcv_ssthresh < tcp_space(sk) && 370 !tcp_under_memory_pressure(sk)) { 371 int incr; 372 373 /* Check #2. Increase window, if skb with such overhead 374 * will fit to rcvbuf in future. 375 */ 376 if (tcp_win_from_space(skb->truesize) <= skb->len) 377 incr = 2 * tp->advmss; 378 else 379 incr = __tcp_grow_window(sk, skb); 380 381 if (incr) { 382 incr = max_t(int, incr, 2 * skb->len); 383 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 384 tp->window_clamp); 385 inet_csk(sk)->icsk_ack.quick |= 1; 386 } 387 } 388 } 389 390 /* 3. Tuning rcvbuf, when connection enters established state. */ 391 static void tcp_fixup_rcvbuf(struct sock *sk) 392 { 393 u32 mss = tcp_sk(sk)->advmss; 394 int rcvmem; 395 396 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 397 tcp_default_init_rwnd(mss); 398 399 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 400 * Allow enough cushion so that sender is not limited by our window 401 */ 402 if (sysctl_tcp_moderate_rcvbuf) 403 rcvmem <<= 2; 404 405 if (sk->sk_rcvbuf < rcvmem) 406 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 407 } 408 409 /* 4. Try to fixup all. It is made immediately after connection enters 410 * established state. 411 */ 412 void tcp_init_buffer_space(struct sock *sk) 413 { 414 struct tcp_sock *tp = tcp_sk(sk); 415 int maxwin; 416 417 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 418 tcp_fixup_rcvbuf(sk); 419 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 420 tcp_sndbuf_expand(sk); 421 422 tp->rcvq_space.space = tp->rcv_wnd; 423 tp->rcvq_space.time = tcp_time_stamp; 424 tp->rcvq_space.seq = tp->copied_seq; 425 426 maxwin = tcp_full_space(sk); 427 428 if (tp->window_clamp >= maxwin) { 429 tp->window_clamp = maxwin; 430 431 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 432 tp->window_clamp = max(maxwin - 433 (maxwin >> sysctl_tcp_app_win), 434 4 * tp->advmss); 435 } 436 437 /* Force reservation of one segment. */ 438 if (sysctl_tcp_app_win && 439 tp->window_clamp > 2 * tp->advmss && 440 tp->window_clamp + tp->advmss > maxwin) 441 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 442 443 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 444 tp->snd_cwnd_stamp = tcp_time_stamp; 445 } 446 447 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 448 static void tcp_clamp_window(struct sock *sk) 449 { 450 struct tcp_sock *tp = tcp_sk(sk); 451 struct inet_connection_sock *icsk = inet_csk(sk); 452 453 icsk->icsk_ack.quick = 0; 454 455 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 456 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 457 !tcp_under_memory_pressure(sk) && 458 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 459 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 460 sysctl_tcp_rmem[2]); 461 } 462 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 463 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 464 } 465 466 /* Initialize RCV_MSS value. 467 * RCV_MSS is an our guess about MSS used by the peer. 468 * We haven't any direct information about the MSS. 469 * It's better to underestimate the RCV_MSS rather than overestimate. 470 * Overestimations make us ACKing less frequently than needed. 471 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 472 */ 473 void tcp_initialize_rcv_mss(struct sock *sk) 474 { 475 const struct tcp_sock *tp = tcp_sk(sk); 476 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 477 478 hint = min(hint, tp->rcv_wnd / 2); 479 hint = min(hint, TCP_MSS_DEFAULT); 480 hint = max(hint, TCP_MIN_MSS); 481 482 inet_csk(sk)->icsk_ack.rcv_mss = hint; 483 } 484 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 485 486 /* Receiver "autotuning" code. 487 * 488 * The algorithm for RTT estimation w/o timestamps is based on 489 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 490 * <http://public.lanl.gov/radiant/pubs.html#DRS> 491 * 492 * More detail on this code can be found at 493 * <http://staff.psc.edu/jheffner/>, 494 * though this reference is out of date. A new paper 495 * is pending. 496 */ 497 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 498 { 499 u32 new_sample = tp->rcv_rtt_est.rtt; 500 long m = sample; 501 502 if (m == 0) 503 m = 1; 504 505 if (new_sample != 0) { 506 /* If we sample in larger samples in the non-timestamp 507 * case, we could grossly overestimate the RTT especially 508 * with chatty applications or bulk transfer apps which 509 * are stalled on filesystem I/O. 510 * 511 * Also, since we are only going for a minimum in the 512 * non-timestamp case, we do not smooth things out 513 * else with timestamps disabled convergence takes too 514 * long. 515 */ 516 if (!win_dep) { 517 m -= (new_sample >> 3); 518 new_sample += m; 519 } else { 520 m <<= 3; 521 if (m < new_sample) 522 new_sample = m; 523 } 524 } else { 525 /* No previous measure. */ 526 new_sample = m << 3; 527 } 528 529 if (tp->rcv_rtt_est.rtt != new_sample) 530 tp->rcv_rtt_est.rtt = new_sample; 531 } 532 533 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 534 { 535 if (tp->rcv_rtt_est.time == 0) 536 goto new_measure; 537 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 538 return; 539 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 540 541 new_measure: 542 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 543 tp->rcv_rtt_est.time = tcp_time_stamp; 544 } 545 546 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 547 const struct sk_buff *skb) 548 { 549 struct tcp_sock *tp = tcp_sk(sk); 550 if (tp->rx_opt.rcv_tsecr && 551 (TCP_SKB_CB(skb)->end_seq - 552 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 553 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 554 } 555 556 /* 557 * This function should be called every time data is copied to user space. 558 * It calculates the appropriate TCP receive buffer space. 559 */ 560 void tcp_rcv_space_adjust(struct sock *sk) 561 { 562 struct tcp_sock *tp = tcp_sk(sk); 563 int time; 564 int copied; 565 566 time = tcp_time_stamp - tp->rcvq_space.time; 567 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 568 return; 569 570 /* Number of bytes copied to user in last RTT */ 571 copied = tp->copied_seq - tp->rcvq_space.seq; 572 if (copied <= tp->rcvq_space.space) 573 goto new_measure; 574 575 /* A bit of theory : 576 * copied = bytes received in previous RTT, our base window 577 * To cope with packet losses, we need a 2x factor 578 * To cope with slow start, and sender growing its cwin by 100 % 579 * every RTT, we need a 4x factor, because the ACK we are sending 580 * now is for the next RTT, not the current one : 581 * <prev RTT . ><current RTT .. ><next RTT .... > 582 */ 583 584 if (sysctl_tcp_moderate_rcvbuf && 585 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 586 int rcvwin, rcvmem, rcvbuf; 587 588 /* minimal window to cope with packet losses, assuming 589 * steady state. Add some cushion because of small variations. 590 */ 591 rcvwin = (copied << 1) + 16 * tp->advmss; 592 593 /* If rate increased by 25%, 594 * assume slow start, rcvwin = 3 * copied 595 * If rate increased by 50%, 596 * assume sender can use 2x growth, rcvwin = 4 * copied 597 */ 598 if (copied >= 599 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 600 if (copied >= 601 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 602 rcvwin <<= 1; 603 else 604 rcvwin += (rcvwin >> 1); 605 } 606 607 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 608 while (tcp_win_from_space(rcvmem) < tp->advmss) 609 rcvmem += 128; 610 611 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 612 if (rcvbuf > sk->sk_rcvbuf) { 613 sk->sk_rcvbuf = rcvbuf; 614 615 /* Make the window clamp follow along. */ 616 tp->window_clamp = rcvwin; 617 } 618 } 619 tp->rcvq_space.space = copied; 620 621 new_measure: 622 tp->rcvq_space.seq = tp->copied_seq; 623 tp->rcvq_space.time = tcp_time_stamp; 624 } 625 626 /* There is something which you must keep in mind when you analyze the 627 * behavior of the tp->ato delayed ack timeout interval. When a 628 * connection starts up, we want to ack as quickly as possible. The 629 * problem is that "good" TCP's do slow start at the beginning of data 630 * transmission. The means that until we send the first few ACK's the 631 * sender will sit on his end and only queue most of his data, because 632 * he can only send snd_cwnd unacked packets at any given time. For 633 * each ACK we send, he increments snd_cwnd and transmits more of his 634 * queue. -DaveM 635 */ 636 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 637 { 638 struct tcp_sock *tp = tcp_sk(sk); 639 struct inet_connection_sock *icsk = inet_csk(sk); 640 u32 now; 641 642 inet_csk_schedule_ack(sk); 643 644 tcp_measure_rcv_mss(sk, skb); 645 646 tcp_rcv_rtt_measure(tp); 647 648 now = tcp_time_stamp; 649 650 if (!icsk->icsk_ack.ato) { 651 /* The _first_ data packet received, initialize 652 * delayed ACK engine. 653 */ 654 tcp_incr_quickack(sk); 655 icsk->icsk_ack.ato = TCP_ATO_MIN; 656 } else { 657 int m = now - icsk->icsk_ack.lrcvtime; 658 659 if (m <= TCP_ATO_MIN / 2) { 660 /* The fastest case is the first. */ 661 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 662 } else if (m < icsk->icsk_ack.ato) { 663 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 664 if (icsk->icsk_ack.ato > icsk->icsk_rto) 665 icsk->icsk_ack.ato = icsk->icsk_rto; 666 } else if (m > icsk->icsk_rto) { 667 /* Too long gap. Apparently sender failed to 668 * restart window, so that we send ACKs quickly. 669 */ 670 tcp_incr_quickack(sk); 671 sk_mem_reclaim(sk); 672 } 673 } 674 icsk->icsk_ack.lrcvtime = now; 675 676 tcp_ecn_check_ce(tp, skb); 677 678 if (skb->len >= 128) 679 tcp_grow_window(sk, skb); 680 } 681 682 /* Called to compute a smoothed rtt estimate. The data fed to this 683 * routine either comes from timestamps, or from segments that were 684 * known _not_ to have been retransmitted [see Karn/Partridge 685 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 686 * piece by Van Jacobson. 687 * NOTE: the next three routines used to be one big routine. 688 * To save cycles in the RFC 1323 implementation it was better to break 689 * it up into three procedures. -- erics 690 */ 691 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 692 { 693 struct tcp_sock *tp = tcp_sk(sk); 694 long m = mrtt_us; /* RTT */ 695 u32 srtt = tp->srtt_us; 696 697 /* The following amusing code comes from Jacobson's 698 * article in SIGCOMM '88. Note that rtt and mdev 699 * are scaled versions of rtt and mean deviation. 700 * This is designed to be as fast as possible 701 * m stands for "measurement". 702 * 703 * On a 1990 paper the rto value is changed to: 704 * RTO = rtt + 4 * mdev 705 * 706 * Funny. This algorithm seems to be very broken. 707 * These formulae increase RTO, when it should be decreased, increase 708 * too slowly, when it should be increased quickly, decrease too quickly 709 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 710 * does not matter how to _calculate_ it. Seems, it was trap 711 * that VJ failed to avoid. 8) 712 */ 713 if (srtt != 0) { 714 m -= (srtt >> 3); /* m is now error in rtt est */ 715 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 716 if (m < 0) { 717 m = -m; /* m is now abs(error) */ 718 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 719 /* This is similar to one of Eifel findings. 720 * Eifel blocks mdev updates when rtt decreases. 721 * This solution is a bit different: we use finer gain 722 * for mdev in this case (alpha*beta). 723 * Like Eifel it also prevents growth of rto, 724 * but also it limits too fast rto decreases, 725 * happening in pure Eifel. 726 */ 727 if (m > 0) 728 m >>= 3; 729 } else { 730 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 731 } 732 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 733 if (tp->mdev_us > tp->mdev_max_us) { 734 tp->mdev_max_us = tp->mdev_us; 735 if (tp->mdev_max_us > tp->rttvar_us) 736 tp->rttvar_us = tp->mdev_max_us; 737 } 738 if (after(tp->snd_una, tp->rtt_seq)) { 739 if (tp->mdev_max_us < tp->rttvar_us) 740 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 741 tp->rtt_seq = tp->snd_nxt; 742 tp->mdev_max_us = tcp_rto_min_us(sk); 743 } 744 } else { 745 /* no previous measure. */ 746 srtt = m << 3; /* take the measured time to be rtt */ 747 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 748 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 749 tp->mdev_max_us = tp->rttvar_us; 750 tp->rtt_seq = tp->snd_nxt; 751 } 752 tp->srtt_us = max(1U, srtt); 753 } 754 755 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 756 * Note: TCP stack does not yet implement pacing. 757 * FQ packet scheduler can be used to implement cheap but effective 758 * TCP pacing, to smooth the burst on large writes when packets 759 * in flight is significantly lower than cwnd (or rwin) 760 */ 761 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 762 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 763 764 static void tcp_update_pacing_rate(struct sock *sk) 765 { 766 const struct tcp_sock *tp = tcp_sk(sk); 767 u64 rate; 768 769 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 770 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 771 772 /* current rate is (cwnd * mss) / srtt 773 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 774 * In Congestion Avoidance phase, set it to 120 % the current rate. 775 * 776 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 777 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 778 * end of slow start and should slow down. 779 */ 780 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 781 rate *= sysctl_tcp_pacing_ss_ratio; 782 else 783 rate *= sysctl_tcp_pacing_ca_ratio; 784 785 rate *= max(tp->snd_cwnd, tp->packets_out); 786 787 if (likely(tp->srtt_us)) 788 do_div(rate, tp->srtt_us); 789 790 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 791 * without any lock. We want to make sure compiler wont store 792 * intermediate values in this location. 793 */ 794 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 795 sk->sk_max_pacing_rate); 796 } 797 798 /* Calculate rto without backoff. This is the second half of Van Jacobson's 799 * routine referred to above. 800 */ 801 static void tcp_set_rto(struct sock *sk) 802 { 803 const struct tcp_sock *tp = tcp_sk(sk); 804 /* Old crap is replaced with new one. 8) 805 * 806 * More seriously: 807 * 1. If rtt variance happened to be less 50msec, it is hallucination. 808 * It cannot be less due to utterly erratic ACK generation made 809 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 810 * to do with delayed acks, because at cwnd>2 true delack timeout 811 * is invisible. Actually, Linux-2.4 also generates erratic 812 * ACKs in some circumstances. 813 */ 814 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 815 816 /* 2. Fixups made earlier cannot be right. 817 * If we do not estimate RTO correctly without them, 818 * all the algo is pure shit and should be replaced 819 * with correct one. It is exactly, which we pretend to do. 820 */ 821 822 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 823 * guarantees that rto is higher. 824 */ 825 tcp_bound_rto(sk); 826 } 827 828 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 829 { 830 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 831 832 if (!cwnd) 833 cwnd = TCP_INIT_CWND; 834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 835 } 836 837 /* 838 * Packet counting of FACK is based on in-order assumptions, therefore TCP 839 * disables it when reordering is detected 840 */ 841 void tcp_disable_fack(struct tcp_sock *tp) 842 { 843 /* RFC3517 uses different metric in lost marker => reset on change */ 844 if (tcp_is_fack(tp)) 845 tp->lost_skb_hint = NULL; 846 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 847 } 848 849 /* Take a notice that peer is sending D-SACKs */ 850 static void tcp_dsack_seen(struct tcp_sock *tp) 851 { 852 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 853 } 854 855 static void tcp_update_reordering(struct sock *sk, const int metric, 856 const int ts) 857 { 858 struct tcp_sock *tp = tcp_sk(sk); 859 if (metric > tp->reordering) { 860 int mib_idx; 861 862 tp->reordering = min(sysctl_tcp_max_reordering, metric); 863 864 /* This exciting event is worth to be remembered. 8) */ 865 if (ts) 866 mib_idx = LINUX_MIB_TCPTSREORDER; 867 else if (tcp_is_reno(tp)) 868 mib_idx = LINUX_MIB_TCPRENOREORDER; 869 else if (tcp_is_fack(tp)) 870 mib_idx = LINUX_MIB_TCPFACKREORDER; 871 else 872 mib_idx = LINUX_MIB_TCPSACKREORDER; 873 874 NET_INC_STATS(sock_net(sk), mib_idx); 875 #if FASTRETRANS_DEBUG > 1 876 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 877 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 878 tp->reordering, 879 tp->fackets_out, 880 tp->sacked_out, 881 tp->undo_marker ? tp->undo_retrans : 0); 882 #endif 883 tcp_disable_fack(tp); 884 } 885 886 if (metric > 0) 887 tcp_disable_early_retrans(tp); 888 tp->rack.reord = 1; 889 } 890 891 /* This must be called before lost_out is incremented */ 892 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 893 { 894 if (!tp->retransmit_skb_hint || 895 before(TCP_SKB_CB(skb)->seq, 896 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 897 tp->retransmit_skb_hint = skb; 898 899 if (!tp->lost_out || 900 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 901 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 902 } 903 904 /* Sum the number of packets on the wire we have marked as lost. 905 * There are two cases we care about here: 906 * a) Packet hasn't been marked lost (nor retransmitted), 907 * and this is the first loss. 908 * b) Packet has been marked both lost and retransmitted, 909 * and this means we think it was lost again. 910 */ 911 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 912 { 913 __u8 sacked = TCP_SKB_CB(skb)->sacked; 914 915 if (!(sacked & TCPCB_LOST) || 916 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 917 tp->lost += tcp_skb_pcount(skb); 918 } 919 920 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 921 { 922 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 923 tcp_verify_retransmit_hint(tp, skb); 924 925 tp->lost_out += tcp_skb_pcount(skb); 926 tcp_sum_lost(tp, skb); 927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 928 } 929 } 930 931 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 932 { 933 tcp_verify_retransmit_hint(tp, skb); 934 935 tcp_sum_lost(tp, skb); 936 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 937 tp->lost_out += tcp_skb_pcount(skb); 938 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 939 } 940 } 941 942 /* This procedure tags the retransmission queue when SACKs arrive. 943 * 944 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 945 * Packets in queue with these bits set are counted in variables 946 * sacked_out, retrans_out and lost_out, correspondingly. 947 * 948 * Valid combinations are: 949 * Tag InFlight Description 950 * 0 1 - orig segment is in flight. 951 * S 0 - nothing flies, orig reached receiver. 952 * L 0 - nothing flies, orig lost by net. 953 * R 2 - both orig and retransmit are in flight. 954 * L|R 1 - orig is lost, retransmit is in flight. 955 * S|R 1 - orig reached receiver, retrans is still in flight. 956 * (L|S|R is logically valid, it could occur when L|R is sacked, 957 * but it is equivalent to plain S and code short-curcuits it to S. 958 * L|S is logically invalid, it would mean -1 packet in flight 8)) 959 * 960 * These 6 states form finite state machine, controlled by the following events: 961 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 962 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 963 * 3. Loss detection event of two flavors: 964 * A. Scoreboard estimator decided the packet is lost. 965 * A'. Reno "three dupacks" marks head of queue lost. 966 * A''. Its FACK modification, head until snd.fack is lost. 967 * B. SACK arrives sacking SND.NXT at the moment, when the 968 * segment was retransmitted. 969 * 4. D-SACK added new rule: D-SACK changes any tag to S. 970 * 971 * It is pleasant to note, that state diagram turns out to be commutative, 972 * so that we are allowed not to be bothered by order of our actions, 973 * when multiple events arrive simultaneously. (see the function below). 974 * 975 * Reordering detection. 976 * -------------------- 977 * Reordering metric is maximal distance, which a packet can be displaced 978 * in packet stream. With SACKs we can estimate it: 979 * 980 * 1. SACK fills old hole and the corresponding segment was not 981 * ever retransmitted -> reordering. Alas, we cannot use it 982 * when segment was retransmitted. 983 * 2. The last flaw is solved with D-SACK. D-SACK arrives 984 * for retransmitted and already SACKed segment -> reordering.. 985 * Both of these heuristics are not used in Loss state, when we cannot 986 * account for retransmits accurately. 987 * 988 * SACK block validation. 989 * ---------------------- 990 * 991 * SACK block range validation checks that the received SACK block fits to 992 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 993 * Note that SND.UNA is not included to the range though being valid because 994 * it means that the receiver is rather inconsistent with itself reporting 995 * SACK reneging when it should advance SND.UNA. Such SACK block this is 996 * perfectly valid, however, in light of RFC2018 which explicitly states 997 * that "SACK block MUST reflect the newest segment. Even if the newest 998 * segment is going to be discarded ...", not that it looks very clever 999 * in case of head skb. Due to potentional receiver driven attacks, we 1000 * choose to avoid immediate execution of a walk in write queue due to 1001 * reneging and defer head skb's loss recovery to standard loss recovery 1002 * procedure that will eventually trigger (nothing forbids us doing this). 1003 * 1004 * Implements also blockage to start_seq wrap-around. Problem lies in the 1005 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1006 * there's no guarantee that it will be before snd_nxt (n). The problem 1007 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1008 * wrap (s_w): 1009 * 1010 * <- outs wnd -> <- wrapzone -> 1011 * u e n u_w e_w s n_w 1012 * | | | | | | | 1013 * |<------------+------+----- TCP seqno space --------------+---------->| 1014 * ...-- <2^31 ->| |<--------... 1015 * ...---- >2^31 ------>| |<--------... 1016 * 1017 * Current code wouldn't be vulnerable but it's better still to discard such 1018 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1019 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1020 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1021 * equal to the ideal case (infinite seqno space without wrap caused issues). 1022 * 1023 * With D-SACK the lower bound is extended to cover sequence space below 1024 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1025 * again, D-SACK block must not to go across snd_una (for the same reason as 1026 * for the normal SACK blocks, explained above). But there all simplicity 1027 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1028 * fully below undo_marker they do not affect behavior in anyway and can 1029 * therefore be safely ignored. In rare cases (which are more or less 1030 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1031 * fragmentation and packet reordering past skb's retransmission. To consider 1032 * them correctly, the acceptable range must be extended even more though 1033 * the exact amount is rather hard to quantify. However, tp->max_window can 1034 * be used as an exaggerated estimate. 1035 */ 1036 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1037 u32 start_seq, u32 end_seq) 1038 { 1039 /* Too far in future, or reversed (interpretation is ambiguous) */ 1040 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1041 return false; 1042 1043 /* Nasty start_seq wrap-around check (see comments above) */ 1044 if (!before(start_seq, tp->snd_nxt)) 1045 return false; 1046 1047 /* In outstanding window? ...This is valid exit for D-SACKs too. 1048 * start_seq == snd_una is non-sensical (see comments above) 1049 */ 1050 if (after(start_seq, tp->snd_una)) 1051 return true; 1052 1053 if (!is_dsack || !tp->undo_marker) 1054 return false; 1055 1056 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1057 if (after(end_seq, tp->snd_una)) 1058 return false; 1059 1060 if (!before(start_seq, tp->undo_marker)) 1061 return true; 1062 1063 /* Too old */ 1064 if (!after(end_seq, tp->undo_marker)) 1065 return false; 1066 1067 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1068 * start_seq < undo_marker and end_seq >= undo_marker. 1069 */ 1070 return !before(start_seq, end_seq - tp->max_window); 1071 } 1072 1073 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1074 struct tcp_sack_block_wire *sp, int num_sacks, 1075 u32 prior_snd_una) 1076 { 1077 struct tcp_sock *tp = tcp_sk(sk); 1078 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1079 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1080 bool dup_sack = false; 1081 1082 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1083 dup_sack = true; 1084 tcp_dsack_seen(tp); 1085 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1086 } else if (num_sacks > 1) { 1087 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1088 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1089 1090 if (!after(end_seq_0, end_seq_1) && 1091 !before(start_seq_0, start_seq_1)) { 1092 dup_sack = true; 1093 tcp_dsack_seen(tp); 1094 NET_INC_STATS(sock_net(sk), 1095 LINUX_MIB_TCPDSACKOFORECV); 1096 } 1097 } 1098 1099 /* D-SACK for already forgotten data... Do dumb counting. */ 1100 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1101 !after(end_seq_0, prior_snd_una) && 1102 after(end_seq_0, tp->undo_marker)) 1103 tp->undo_retrans--; 1104 1105 return dup_sack; 1106 } 1107 1108 struct tcp_sacktag_state { 1109 int reord; 1110 int fack_count; 1111 /* Timestamps for earliest and latest never-retransmitted segment 1112 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1113 * but congestion control should still get an accurate delay signal. 1114 */ 1115 struct skb_mstamp first_sackt; 1116 struct skb_mstamp last_sackt; 1117 struct rate_sample *rate; 1118 int flag; 1119 }; 1120 1121 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1122 * the incoming SACK may not exactly match but we can find smaller MSS 1123 * aligned portion of it that matches. Therefore we might need to fragment 1124 * which may fail and creates some hassle (caller must handle error case 1125 * returns). 1126 * 1127 * FIXME: this could be merged to shift decision code 1128 */ 1129 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1130 u32 start_seq, u32 end_seq) 1131 { 1132 int err; 1133 bool in_sack; 1134 unsigned int pkt_len; 1135 unsigned int mss; 1136 1137 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1138 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1139 1140 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1141 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1142 mss = tcp_skb_mss(skb); 1143 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1144 1145 if (!in_sack) { 1146 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1147 if (pkt_len < mss) 1148 pkt_len = mss; 1149 } else { 1150 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1151 if (pkt_len < mss) 1152 return -EINVAL; 1153 } 1154 1155 /* Round if necessary so that SACKs cover only full MSSes 1156 * and/or the remaining small portion (if present) 1157 */ 1158 if (pkt_len > mss) { 1159 unsigned int new_len = (pkt_len / mss) * mss; 1160 if (!in_sack && new_len < pkt_len) { 1161 new_len += mss; 1162 if (new_len >= skb->len) 1163 return 0; 1164 } 1165 pkt_len = new_len; 1166 } 1167 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1168 if (err < 0) 1169 return err; 1170 } 1171 1172 return in_sack; 1173 } 1174 1175 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1176 static u8 tcp_sacktag_one(struct sock *sk, 1177 struct tcp_sacktag_state *state, u8 sacked, 1178 u32 start_seq, u32 end_seq, 1179 int dup_sack, int pcount, 1180 const struct skb_mstamp *xmit_time) 1181 { 1182 struct tcp_sock *tp = tcp_sk(sk); 1183 int fack_count = state->fack_count; 1184 1185 /* Account D-SACK for retransmitted packet. */ 1186 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1187 if (tp->undo_marker && tp->undo_retrans > 0 && 1188 after(end_seq, tp->undo_marker)) 1189 tp->undo_retrans--; 1190 if (sacked & TCPCB_SACKED_ACKED) 1191 state->reord = min(fack_count, state->reord); 1192 } 1193 1194 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1195 if (!after(end_seq, tp->snd_una)) 1196 return sacked; 1197 1198 if (!(sacked & TCPCB_SACKED_ACKED)) { 1199 tcp_rack_advance(tp, xmit_time, sacked); 1200 1201 if (sacked & TCPCB_SACKED_RETRANS) { 1202 /* If the segment is not tagged as lost, 1203 * we do not clear RETRANS, believing 1204 * that retransmission is still in flight. 1205 */ 1206 if (sacked & TCPCB_LOST) { 1207 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1208 tp->lost_out -= pcount; 1209 tp->retrans_out -= pcount; 1210 } 1211 } else { 1212 if (!(sacked & TCPCB_RETRANS)) { 1213 /* New sack for not retransmitted frame, 1214 * which was in hole. It is reordering. 1215 */ 1216 if (before(start_seq, 1217 tcp_highest_sack_seq(tp))) 1218 state->reord = min(fack_count, 1219 state->reord); 1220 if (!after(end_seq, tp->high_seq)) 1221 state->flag |= FLAG_ORIG_SACK_ACKED; 1222 if (state->first_sackt.v64 == 0) 1223 state->first_sackt = *xmit_time; 1224 state->last_sackt = *xmit_time; 1225 } 1226 1227 if (sacked & TCPCB_LOST) { 1228 sacked &= ~TCPCB_LOST; 1229 tp->lost_out -= pcount; 1230 } 1231 } 1232 1233 sacked |= TCPCB_SACKED_ACKED; 1234 state->flag |= FLAG_DATA_SACKED; 1235 tp->sacked_out += pcount; 1236 tp->delivered += pcount; /* Out-of-order packets delivered */ 1237 1238 fack_count += pcount; 1239 1240 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1241 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1242 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1243 tp->lost_cnt_hint += pcount; 1244 1245 if (fack_count > tp->fackets_out) 1246 tp->fackets_out = fack_count; 1247 } 1248 1249 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1250 * frames and clear it. undo_retrans is decreased above, L|R frames 1251 * are accounted above as well. 1252 */ 1253 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1254 sacked &= ~TCPCB_SACKED_RETRANS; 1255 tp->retrans_out -= pcount; 1256 } 1257 1258 return sacked; 1259 } 1260 1261 /* Shift newly-SACKed bytes from this skb to the immediately previous 1262 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1263 */ 1264 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1265 struct tcp_sacktag_state *state, 1266 unsigned int pcount, int shifted, int mss, 1267 bool dup_sack) 1268 { 1269 struct tcp_sock *tp = tcp_sk(sk); 1270 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1271 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1272 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1273 1274 BUG_ON(!pcount); 1275 1276 /* Adjust counters and hints for the newly sacked sequence 1277 * range but discard the return value since prev is already 1278 * marked. We must tag the range first because the seq 1279 * advancement below implicitly advances 1280 * tcp_highest_sack_seq() when skb is highest_sack. 1281 */ 1282 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1283 start_seq, end_seq, dup_sack, pcount, 1284 &skb->skb_mstamp); 1285 tcp_rate_skb_delivered(sk, skb, state->rate); 1286 1287 if (skb == tp->lost_skb_hint) 1288 tp->lost_cnt_hint += pcount; 1289 1290 TCP_SKB_CB(prev)->end_seq += shifted; 1291 TCP_SKB_CB(skb)->seq += shifted; 1292 1293 tcp_skb_pcount_add(prev, pcount); 1294 BUG_ON(tcp_skb_pcount(skb) < pcount); 1295 tcp_skb_pcount_add(skb, -pcount); 1296 1297 /* When we're adding to gso_segs == 1, gso_size will be zero, 1298 * in theory this shouldn't be necessary but as long as DSACK 1299 * code can come after this skb later on it's better to keep 1300 * setting gso_size to something. 1301 */ 1302 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1303 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1304 1305 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1306 if (tcp_skb_pcount(skb) <= 1) 1307 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1308 1309 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1310 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1311 1312 if (skb->len > 0) { 1313 BUG_ON(!tcp_skb_pcount(skb)); 1314 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1315 return false; 1316 } 1317 1318 /* Whole SKB was eaten :-) */ 1319 1320 if (skb == tp->retransmit_skb_hint) 1321 tp->retransmit_skb_hint = prev; 1322 if (skb == tp->lost_skb_hint) { 1323 tp->lost_skb_hint = prev; 1324 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1325 } 1326 1327 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1328 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1329 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1330 TCP_SKB_CB(prev)->end_seq++; 1331 1332 if (skb == tcp_highest_sack(sk)) 1333 tcp_advance_highest_sack(sk, skb); 1334 1335 tcp_skb_collapse_tstamp(prev, skb); 1336 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64)) 1337 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0; 1338 1339 tcp_unlink_write_queue(skb, sk); 1340 sk_wmem_free_skb(sk, skb); 1341 1342 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1343 1344 return true; 1345 } 1346 1347 /* I wish gso_size would have a bit more sane initialization than 1348 * something-or-zero which complicates things 1349 */ 1350 static int tcp_skb_seglen(const struct sk_buff *skb) 1351 { 1352 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1353 } 1354 1355 /* Shifting pages past head area doesn't work */ 1356 static int skb_can_shift(const struct sk_buff *skb) 1357 { 1358 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1359 } 1360 1361 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1362 * skb. 1363 */ 1364 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1365 struct tcp_sacktag_state *state, 1366 u32 start_seq, u32 end_seq, 1367 bool dup_sack) 1368 { 1369 struct tcp_sock *tp = tcp_sk(sk); 1370 struct sk_buff *prev; 1371 int mss; 1372 int pcount = 0; 1373 int len; 1374 int in_sack; 1375 1376 if (!sk_can_gso(sk)) 1377 goto fallback; 1378 1379 /* Normally R but no L won't result in plain S */ 1380 if (!dup_sack && 1381 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1382 goto fallback; 1383 if (!skb_can_shift(skb)) 1384 goto fallback; 1385 /* This frame is about to be dropped (was ACKed). */ 1386 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1387 goto fallback; 1388 1389 /* Can only happen with delayed DSACK + discard craziness */ 1390 if (unlikely(skb == tcp_write_queue_head(sk))) 1391 goto fallback; 1392 prev = tcp_write_queue_prev(sk, skb); 1393 1394 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1395 goto fallback; 1396 1397 if (!tcp_skb_can_collapse_to(prev)) 1398 goto fallback; 1399 1400 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1401 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1402 1403 if (in_sack) { 1404 len = skb->len; 1405 pcount = tcp_skb_pcount(skb); 1406 mss = tcp_skb_seglen(skb); 1407 1408 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1409 * drop this restriction as unnecessary 1410 */ 1411 if (mss != tcp_skb_seglen(prev)) 1412 goto fallback; 1413 } else { 1414 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1415 goto noop; 1416 /* CHECKME: This is non-MSS split case only?, this will 1417 * cause skipped skbs due to advancing loop btw, original 1418 * has that feature too 1419 */ 1420 if (tcp_skb_pcount(skb) <= 1) 1421 goto noop; 1422 1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1424 if (!in_sack) { 1425 /* TODO: head merge to next could be attempted here 1426 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1427 * though it might not be worth of the additional hassle 1428 * 1429 * ...we can probably just fallback to what was done 1430 * previously. We could try merging non-SACKed ones 1431 * as well but it probably isn't going to buy off 1432 * because later SACKs might again split them, and 1433 * it would make skb timestamp tracking considerably 1434 * harder problem. 1435 */ 1436 goto fallback; 1437 } 1438 1439 len = end_seq - TCP_SKB_CB(skb)->seq; 1440 BUG_ON(len < 0); 1441 BUG_ON(len > skb->len); 1442 1443 /* MSS boundaries should be honoured or else pcount will 1444 * severely break even though it makes things bit trickier. 1445 * Optimize common case to avoid most of the divides 1446 */ 1447 mss = tcp_skb_mss(skb); 1448 1449 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1450 * drop this restriction as unnecessary 1451 */ 1452 if (mss != tcp_skb_seglen(prev)) 1453 goto fallback; 1454 1455 if (len == mss) { 1456 pcount = 1; 1457 } else if (len < mss) { 1458 goto noop; 1459 } else { 1460 pcount = len / mss; 1461 len = pcount * mss; 1462 } 1463 } 1464 1465 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1466 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1467 goto fallback; 1468 1469 if (!skb_shift(prev, skb, len)) 1470 goto fallback; 1471 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1472 goto out; 1473 1474 /* Hole filled allows collapsing with the next as well, this is very 1475 * useful when hole on every nth skb pattern happens 1476 */ 1477 if (prev == tcp_write_queue_tail(sk)) 1478 goto out; 1479 skb = tcp_write_queue_next(sk, prev); 1480 1481 if (!skb_can_shift(skb) || 1482 (skb == tcp_send_head(sk)) || 1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1484 (mss != tcp_skb_seglen(skb))) 1485 goto out; 1486 1487 len = skb->len; 1488 if (skb_shift(prev, skb, len)) { 1489 pcount += tcp_skb_pcount(skb); 1490 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1491 } 1492 1493 out: 1494 state->fack_count += pcount; 1495 return prev; 1496 1497 noop: 1498 return skb; 1499 1500 fallback: 1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1502 return NULL; 1503 } 1504 1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1506 struct tcp_sack_block *next_dup, 1507 struct tcp_sacktag_state *state, 1508 u32 start_seq, u32 end_seq, 1509 bool dup_sack_in) 1510 { 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 struct sk_buff *tmp; 1513 1514 tcp_for_write_queue_from(skb, sk) { 1515 int in_sack = 0; 1516 bool dup_sack = dup_sack_in; 1517 1518 if (skb == tcp_send_head(sk)) 1519 break; 1520 1521 /* queue is in-order => we can short-circuit the walk early */ 1522 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1523 break; 1524 1525 if (next_dup && 1526 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1527 in_sack = tcp_match_skb_to_sack(sk, skb, 1528 next_dup->start_seq, 1529 next_dup->end_seq); 1530 if (in_sack > 0) 1531 dup_sack = true; 1532 } 1533 1534 /* skb reference here is a bit tricky to get right, since 1535 * shifting can eat and free both this skb and the next, 1536 * so not even _safe variant of the loop is enough. 1537 */ 1538 if (in_sack <= 0) { 1539 tmp = tcp_shift_skb_data(sk, skb, state, 1540 start_seq, end_seq, dup_sack); 1541 if (tmp) { 1542 if (tmp != skb) { 1543 skb = tmp; 1544 continue; 1545 } 1546 1547 in_sack = 0; 1548 } else { 1549 in_sack = tcp_match_skb_to_sack(sk, skb, 1550 start_seq, 1551 end_seq); 1552 } 1553 } 1554 1555 if (unlikely(in_sack < 0)) 1556 break; 1557 1558 if (in_sack) { 1559 TCP_SKB_CB(skb)->sacked = 1560 tcp_sacktag_one(sk, 1561 state, 1562 TCP_SKB_CB(skb)->sacked, 1563 TCP_SKB_CB(skb)->seq, 1564 TCP_SKB_CB(skb)->end_seq, 1565 dup_sack, 1566 tcp_skb_pcount(skb), 1567 &skb->skb_mstamp); 1568 tcp_rate_skb_delivered(sk, skb, state->rate); 1569 1570 if (!before(TCP_SKB_CB(skb)->seq, 1571 tcp_highest_sack_seq(tp))) 1572 tcp_advance_highest_sack(sk, skb); 1573 } 1574 1575 state->fack_count += tcp_skb_pcount(skb); 1576 } 1577 return skb; 1578 } 1579 1580 /* Avoid all extra work that is being done by sacktag while walking in 1581 * a normal way 1582 */ 1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1584 struct tcp_sacktag_state *state, 1585 u32 skip_to_seq) 1586 { 1587 tcp_for_write_queue_from(skb, sk) { 1588 if (skb == tcp_send_head(sk)) 1589 break; 1590 1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1592 break; 1593 1594 state->fack_count += tcp_skb_pcount(skb); 1595 } 1596 return skb; 1597 } 1598 1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1600 struct sock *sk, 1601 struct tcp_sack_block *next_dup, 1602 struct tcp_sacktag_state *state, 1603 u32 skip_to_seq) 1604 { 1605 if (!next_dup) 1606 return skb; 1607 1608 if (before(next_dup->start_seq, skip_to_seq)) { 1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1610 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1611 next_dup->start_seq, next_dup->end_seq, 1612 1); 1613 } 1614 1615 return skb; 1616 } 1617 1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1619 { 1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1621 } 1622 1623 static int 1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1625 u32 prior_snd_una, struct tcp_sacktag_state *state) 1626 { 1627 struct tcp_sock *tp = tcp_sk(sk); 1628 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1629 TCP_SKB_CB(ack_skb)->sacked); 1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1631 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1632 struct tcp_sack_block *cache; 1633 struct sk_buff *skb; 1634 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1635 int used_sacks; 1636 bool found_dup_sack = false; 1637 int i, j; 1638 int first_sack_index; 1639 1640 state->flag = 0; 1641 state->reord = tp->packets_out; 1642 1643 if (!tp->sacked_out) { 1644 if (WARN_ON(tp->fackets_out)) 1645 tp->fackets_out = 0; 1646 tcp_highest_sack_reset(sk); 1647 } 1648 1649 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1650 num_sacks, prior_snd_una); 1651 if (found_dup_sack) { 1652 state->flag |= FLAG_DSACKING_ACK; 1653 tp->delivered++; /* A spurious retransmission is delivered */ 1654 } 1655 1656 /* Eliminate too old ACKs, but take into 1657 * account more or less fresh ones, they can 1658 * contain valid SACK info. 1659 */ 1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1661 return 0; 1662 1663 if (!tp->packets_out) 1664 goto out; 1665 1666 used_sacks = 0; 1667 first_sack_index = 0; 1668 for (i = 0; i < num_sacks; i++) { 1669 bool dup_sack = !i && found_dup_sack; 1670 1671 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1672 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1673 1674 if (!tcp_is_sackblock_valid(tp, dup_sack, 1675 sp[used_sacks].start_seq, 1676 sp[used_sacks].end_seq)) { 1677 int mib_idx; 1678 1679 if (dup_sack) { 1680 if (!tp->undo_marker) 1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1682 else 1683 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1684 } else { 1685 /* Don't count olds caused by ACK reordering */ 1686 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1687 !after(sp[used_sacks].end_seq, tp->snd_una)) 1688 continue; 1689 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1690 } 1691 1692 NET_INC_STATS(sock_net(sk), mib_idx); 1693 if (i == 0) 1694 first_sack_index = -1; 1695 continue; 1696 } 1697 1698 /* Ignore very old stuff early */ 1699 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1700 continue; 1701 1702 used_sacks++; 1703 } 1704 1705 /* order SACK blocks to allow in order walk of the retrans queue */ 1706 for (i = used_sacks - 1; i > 0; i--) { 1707 for (j = 0; j < i; j++) { 1708 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1709 swap(sp[j], sp[j + 1]); 1710 1711 /* Track where the first SACK block goes to */ 1712 if (j == first_sack_index) 1713 first_sack_index = j + 1; 1714 } 1715 } 1716 } 1717 1718 skb = tcp_write_queue_head(sk); 1719 state->fack_count = 0; 1720 i = 0; 1721 1722 if (!tp->sacked_out) { 1723 /* It's already past, so skip checking against it */ 1724 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1725 } else { 1726 cache = tp->recv_sack_cache; 1727 /* Skip empty blocks in at head of the cache */ 1728 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1729 !cache->end_seq) 1730 cache++; 1731 } 1732 1733 while (i < used_sacks) { 1734 u32 start_seq = sp[i].start_seq; 1735 u32 end_seq = sp[i].end_seq; 1736 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1737 struct tcp_sack_block *next_dup = NULL; 1738 1739 if (found_dup_sack && ((i + 1) == first_sack_index)) 1740 next_dup = &sp[i + 1]; 1741 1742 /* Skip too early cached blocks */ 1743 while (tcp_sack_cache_ok(tp, cache) && 1744 !before(start_seq, cache->end_seq)) 1745 cache++; 1746 1747 /* Can skip some work by looking recv_sack_cache? */ 1748 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1749 after(end_seq, cache->start_seq)) { 1750 1751 /* Head todo? */ 1752 if (before(start_seq, cache->start_seq)) { 1753 skb = tcp_sacktag_skip(skb, sk, state, 1754 start_seq); 1755 skb = tcp_sacktag_walk(skb, sk, next_dup, 1756 state, 1757 start_seq, 1758 cache->start_seq, 1759 dup_sack); 1760 } 1761 1762 /* Rest of the block already fully processed? */ 1763 if (!after(end_seq, cache->end_seq)) 1764 goto advance_sp; 1765 1766 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1767 state, 1768 cache->end_seq); 1769 1770 /* ...tail remains todo... */ 1771 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1772 /* ...but better entrypoint exists! */ 1773 skb = tcp_highest_sack(sk); 1774 if (!skb) 1775 break; 1776 state->fack_count = tp->fackets_out; 1777 cache++; 1778 goto walk; 1779 } 1780 1781 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1782 /* Check overlap against next cached too (past this one already) */ 1783 cache++; 1784 continue; 1785 } 1786 1787 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1788 skb = tcp_highest_sack(sk); 1789 if (!skb) 1790 break; 1791 state->fack_count = tp->fackets_out; 1792 } 1793 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1794 1795 walk: 1796 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1797 start_seq, end_seq, dup_sack); 1798 1799 advance_sp: 1800 i++; 1801 } 1802 1803 /* Clear the head of the cache sack blocks so we can skip it next time */ 1804 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1805 tp->recv_sack_cache[i].start_seq = 0; 1806 tp->recv_sack_cache[i].end_seq = 0; 1807 } 1808 for (j = 0; j < used_sacks; j++) 1809 tp->recv_sack_cache[i++] = sp[j]; 1810 1811 if ((state->reord < tp->fackets_out) && 1812 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1813 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1814 1815 tcp_verify_left_out(tp); 1816 out: 1817 1818 #if FASTRETRANS_DEBUG > 0 1819 WARN_ON((int)tp->sacked_out < 0); 1820 WARN_ON((int)tp->lost_out < 0); 1821 WARN_ON((int)tp->retrans_out < 0); 1822 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1823 #endif 1824 return state->flag; 1825 } 1826 1827 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1828 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1829 */ 1830 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1831 { 1832 u32 holes; 1833 1834 holes = max(tp->lost_out, 1U); 1835 holes = min(holes, tp->packets_out); 1836 1837 if ((tp->sacked_out + holes) > tp->packets_out) { 1838 tp->sacked_out = tp->packets_out - holes; 1839 return true; 1840 } 1841 return false; 1842 } 1843 1844 /* If we receive more dupacks than we expected counting segments 1845 * in assumption of absent reordering, interpret this as reordering. 1846 * The only another reason could be bug in receiver TCP. 1847 */ 1848 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1849 { 1850 struct tcp_sock *tp = tcp_sk(sk); 1851 if (tcp_limit_reno_sacked(tp)) 1852 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1853 } 1854 1855 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1856 1857 static void tcp_add_reno_sack(struct sock *sk) 1858 { 1859 struct tcp_sock *tp = tcp_sk(sk); 1860 u32 prior_sacked = tp->sacked_out; 1861 1862 tp->sacked_out++; 1863 tcp_check_reno_reordering(sk, 0); 1864 if (tp->sacked_out > prior_sacked) 1865 tp->delivered++; /* Some out-of-order packet is delivered */ 1866 tcp_verify_left_out(tp); 1867 } 1868 1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1870 1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 1875 if (acked > 0) { 1876 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1877 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1878 if (acked - 1 >= tp->sacked_out) 1879 tp->sacked_out = 0; 1880 else 1881 tp->sacked_out -= acked - 1; 1882 } 1883 tcp_check_reno_reordering(sk, acked); 1884 tcp_verify_left_out(tp); 1885 } 1886 1887 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1888 { 1889 tp->sacked_out = 0; 1890 } 1891 1892 void tcp_clear_retrans(struct tcp_sock *tp) 1893 { 1894 tp->retrans_out = 0; 1895 tp->lost_out = 0; 1896 tp->undo_marker = 0; 1897 tp->undo_retrans = -1; 1898 tp->fackets_out = 0; 1899 tp->sacked_out = 0; 1900 } 1901 1902 static inline void tcp_init_undo(struct tcp_sock *tp) 1903 { 1904 tp->undo_marker = tp->snd_una; 1905 /* Retransmission still in flight may cause DSACKs later. */ 1906 tp->undo_retrans = tp->retrans_out ? : -1; 1907 } 1908 1909 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1910 * and reset tags completely, otherwise preserve SACKs. If receiver 1911 * dropped its ofo queue, we will know this due to reneging detection. 1912 */ 1913 void tcp_enter_loss(struct sock *sk) 1914 { 1915 const struct inet_connection_sock *icsk = inet_csk(sk); 1916 struct tcp_sock *tp = tcp_sk(sk); 1917 struct net *net = sock_net(sk); 1918 struct sk_buff *skb; 1919 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1920 bool is_reneg; /* is receiver reneging on SACKs? */ 1921 bool mark_lost; 1922 1923 /* Reduce ssthresh if it has not yet been made inside this window. */ 1924 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1925 !after(tp->high_seq, tp->snd_una) || 1926 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1927 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1928 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1929 tcp_ca_event(sk, CA_EVENT_LOSS); 1930 tcp_init_undo(tp); 1931 } 1932 tp->snd_cwnd = 1; 1933 tp->snd_cwnd_cnt = 0; 1934 tp->snd_cwnd_stamp = tcp_time_stamp; 1935 1936 tp->retrans_out = 0; 1937 tp->lost_out = 0; 1938 1939 if (tcp_is_reno(tp)) 1940 tcp_reset_reno_sack(tp); 1941 1942 skb = tcp_write_queue_head(sk); 1943 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1944 if (is_reneg) { 1945 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1946 tp->sacked_out = 0; 1947 tp->fackets_out = 0; 1948 } 1949 tcp_clear_all_retrans_hints(tp); 1950 1951 tcp_for_write_queue(skb, sk) { 1952 if (skb == tcp_send_head(sk)) 1953 break; 1954 1955 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1956 is_reneg); 1957 if (mark_lost) 1958 tcp_sum_lost(tp, skb); 1959 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1960 if (mark_lost) { 1961 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1962 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1963 tp->lost_out += tcp_skb_pcount(skb); 1964 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1965 } 1966 } 1967 tcp_verify_left_out(tp); 1968 1969 /* Timeout in disordered state after receiving substantial DUPACKs 1970 * suggests that the degree of reordering is over-estimated. 1971 */ 1972 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1973 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1974 tp->reordering = min_t(unsigned int, tp->reordering, 1975 net->ipv4.sysctl_tcp_reordering); 1976 tcp_set_ca_state(sk, TCP_CA_Loss); 1977 tp->high_seq = tp->snd_nxt; 1978 tcp_ecn_queue_cwr(tp); 1979 1980 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1981 * loss recovery is underway except recurring timeout(s) on 1982 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1983 */ 1984 tp->frto = sysctl_tcp_frto && 1985 (new_recovery || icsk->icsk_retransmits) && 1986 !inet_csk(sk)->icsk_mtup.probe_size; 1987 } 1988 1989 /* If ACK arrived pointing to a remembered SACK, it means that our 1990 * remembered SACKs do not reflect real state of receiver i.e. 1991 * receiver _host_ is heavily congested (or buggy). 1992 * 1993 * To avoid big spurious retransmission bursts due to transient SACK 1994 * scoreboard oddities that look like reneging, we give the receiver a 1995 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1996 * restore sanity to the SACK scoreboard. If the apparent reneging 1997 * persists until this RTO then we'll clear the SACK scoreboard. 1998 */ 1999 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2000 { 2001 if (flag & FLAG_SACK_RENEGING) { 2002 struct tcp_sock *tp = tcp_sk(sk); 2003 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2004 msecs_to_jiffies(10)); 2005 2006 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2007 delay, TCP_RTO_MAX); 2008 return true; 2009 } 2010 return false; 2011 } 2012 2013 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2014 { 2015 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2016 } 2017 2018 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2019 * counter when SACK is enabled (without SACK, sacked_out is used for 2020 * that purpose). 2021 * 2022 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2023 * segments up to the highest received SACK block so far and holes in 2024 * between them. 2025 * 2026 * With reordering, holes may still be in flight, so RFC3517 recovery 2027 * uses pure sacked_out (total number of SACKed segments) even though 2028 * it violates the RFC that uses duplicate ACKs, often these are equal 2029 * but when e.g. out-of-window ACKs or packet duplication occurs, 2030 * they differ. Since neither occurs due to loss, TCP should really 2031 * ignore them. 2032 */ 2033 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2034 { 2035 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2036 } 2037 2038 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2039 { 2040 struct tcp_sock *tp = tcp_sk(sk); 2041 unsigned long delay; 2042 2043 /* Delay early retransmit and entering fast recovery for 2044 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2045 * available, or RTO is scheduled to fire first. 2046 */ 2047 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2048 (flag & FLAG_ECE) || !tp->srtt_us) 2049 return false; 2050 2051 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2052 msecs_to_jiffies(2)); 2053 2054 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2055 return false; 2056 2057 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2058 TCP_RTO_MAX); 2059 return true; 2060 } 2061 2062 /* Linux NewReno/SACK/FACK/ECN state machine. 2063 * -------------------------------------- 2064 * 2065 * "Open" Normal state, no dubious events, fast path. 2066 * "Disorder" In all the respects it is "Open", 2067 * but requires a bit more attention. It is entered when 2068 * we see some SACKs or dupacks. It is split of "Open" 2069 * mainly to move some processing from fast path to slow one. 2070 * "CWR" CWND was reduced due to some Congestion Notification event. 2071 * It can be ECN, ICMP source quench, local device congestion. 2072 * "Recovery" CWND was reduced, we are fast-retransmitting. 2073 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2074 * 2075 * tcp_fastretrans_alert() is entered: 2076 * - each incoming ACK, if state is not "Open" 2077 * - when arrived ACK is unusual, namely: 2078 * * SACK 2079 * * Duplicate ACK. 2080 * * ECN ECE. 2081 * 2082 * Counting packets in flight is pretty simple. 2083 * 2084 * in_flight = packets_out - left_out + retrans_out 2085 * 2086 * packets_out is SND.NXT-SND.UNA counted in packets. 2087 * 2088 * retrans_out is number of retransmitted segments. 2089 * 2090 * left_out is number of segments left network, but not ACKed yet. 2091 * 2092 * left_out = sacked_out + lost_out 2093 * 2094 * sacked_out: Packets, which arrived to receiver out of order 2095 * and hence not ACKed. With SACKs this number is simply 2096 * amount of SACKed data. Even without SACKs 2097 * it is easy to give pretty reliable estimate of this number, 2098 * counting duplicate ACKs. 2099 * 2100 * lost_out: Packets lost by network. TCP has no explicit 2101 * "loss notification" feedback from network (for now). 2102 * It means that this number can be only _guessed_. 2103 * Actually, it is the heuristics to predict lossage that 2104 * distinguishes different algorithms. 2105 * 2106 * F.e. after RTO, when all the queue is considered as lost, 2107 * lost_out = packets_out and in_flight = retrans_out. 2108 * 2109 * Essentially, we have now two algorithms counting 2110 * lost packets. 2111 * 2112 * FACK: It is the simplest heuristics. As soon as we decided 2113 * that something is lost, we decide that _all_ not SACKed 2114 * packets until the most forward SACK are lost. I.e. 2115 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2116 * It is absolutely correct estimate, if network does not reorder 2117 * packets. And it loses any connection to reality when reordering 2118 * takes place. We use FACK by default until reordering 2119 * is suspected on the path to this destination. 2120 * 2121 * NewReno: when Recovery is entered, we assume that one segment 2122 * is lost (classic Reno). While we are in Recovery and 2123 * a partial ACK arrives, we assume that one more packet 2124 * is lost (NewReno). This heuristics are the same in NewReno 2125 * and SACK. 2126 * 2127 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2128 * deflation etc. CWND is real congestion window, never inflated, changes 2129 * only according to classic VJ rules. 2130 * 2131 * Really tricky (and requiring careful tuning) part of algorithm 2132 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2133 * The first determines the moment _when_ we should reduce CWND and, 2134 * hence, slow down forward transmission. In fact, it determines the moment 2135 * when we decide that hole is caused by loss, rather than by a reorder. 2136 * 2137 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2138 * holes, caused by lost packets. 2139 * 2140 * And the most logically complicated part of algorithm is undo 2141 * heuristics. We detect false retransmits due to both too early 2142 * fast retransmit (reordering) and underestimated RTO, analyzing 2143 * timestamps and D-SACKs. When we detect that some segments were 2144 * retransmitted by mistake and CWND reduction was wrong, we undo 2145 * window reduction and abort recovery phase. This logic is hidden 2146 * inside several functions named tcp_try_undo_<something>. 2147 */ 2148 2149 /* This function decides, when we should leave Disordered state 2150 * and enter Recovery phase, reducing congestion window. 2151 * 2152 * Main question: may we further continue forward transmission 2153 * with the same cwnd? 2154 */ 2155 static bool tcp_time_to_recover(struct sock *sk, int flag) 2156 { 2157 struct tcp_sock *tp = tcp_sk(sk); 2158 __u32 packets_out; 2159 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 2160 2161 /* Trick#1: The loss is proven. */ 2162 if (tp->lost_out) 2163 return true; 2164 2165 /* Not-A-Trick#2 : Classic rule... */ 2166 if (tcp_dupack_heuristics(tp) > tp->reordering) 2167 return true; 2168 2169 /* Trick#4: It is still not OK... But will it be useful to delay 2170 * recovery more? 2171 */ 2172 packets_out = tp->packets_out; 2173 if (packets_out <= tp->reordering && 2174 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) && 2175 !tcp_may_send_now(sk)) { 2176 /* We have nothing to send. This connection is limited 2177 * either by receiver window or by application. 2178 */ 2179 return true; 2180 } 2181 2182 /* If a thin stream is detected, retransmit after first 2183 * received dupack. Employ only if SACK is supported in order 2184 * to avoid possible corner-case series of spurious retransmissions 2185 * Use only if there are no unsent data. 2186 */ 2187 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2188 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2189 tcp_is_sack(tp) && !tcp_send_head(sk)) 2190 return true; 2191 2192 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2193 * retransmissions due to small network reorderings, we implement 2194 * Mitigation A.3 in the RFC and delay the retransmission for a short 2195 * interval if appropriate. 2196 */ 2197 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2198 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2199 !tcp_may_send_now(sk)) 2200 return !tcp_pause_early_retransmit(sk, flag); 2201 2202 return false; 2203 } 2204 2205 /* Detect loss in event "A" above by marking head of queue up as lost. 2206 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2207 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2208 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2209 * the maximum SACKed segments to pass before reaching this limit. 2210 */ 2211 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2212 { 2213 struct tcp_sock *tp = tcp_sk(sk); 2214 struct sk_buff *skb; 2215 int cnt, oldcnt, lost; 2216 unsigned int mss; 2217 /* Use SACK to deduce losses of new sequences sent during recovery */ 2218 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2219 2220 WARN_ON(packets > tp->packets_out); 2221 if (tp->lost_skb_hint) { 2222 skb = tp->lost_skb_hint; 2223 cnt = tp->lost_cnt_hint; 2224 /* Head already handled? */ 2225 if (mark_head && skb != tcp_write_queue_head(sk)) 2226 return; 2227 } else { 2228 skb = tcp_write_queue_head(sk); 2229 cnt = 0; 2230 } 2231 2232 tcp_for_write_queue_from(skb, sk) { 2233 if (skb == tcp_send_head(sk)) 2234 break; 2235 /* TODO: do this better */ 2236 /* this is not the most efficient way to do this... */ 2237 tp->lost_skb_hint = skb; 2238 tp->lost_cnt_hint = cnt; 2239 2240 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2241 break; 2242 2243 oldcnt = cnt; 2244 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2245 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2246 cnt += tcp_skb_pcount(skb); 2247 2248 if (cnt > packets) { 2249 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2250 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2251 (oldcnt >= packets)) 2252 break; 2253 2254 mss = tcp_skb_mss(skb); 2255 /* If needed, chop off the prefix to mark as lost. */ 2256 lost = (packets - oldcnt) * mss; 2257 if (lost < skb->len && 2258 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2259 break; 2260 cnt = packets; 2261 } 2262 2263 tcp_skb_mark_lost(tp, skb); 2264 2265 if (mark_head) 2266 break; 2267 } 2268 tcp_verify_left_out(tp); 2269 } 2270 2271 /* Account newly detected lost packet(s) */ 2272 2273 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2274 { 2275 struct tcp_sock *tp = tcp_sk(sk); 2276 2277 if (tcp_is_reno(tp)) { 2278 tcp_mark_head_lost(sk, 1, 1); 2279 } else if (tcp_is_fack(tp)) { 2280 int lost = tp->fackets_out - tp->reordering; 2281 if (lost <= 0) 2282 lost = 1; 2283 tcp_mark_head_lost(sk, lost, 0); 2284 } else { 2285 int sacked_upto = tp->sacked_out - tp->reordering; 2286 if (sacked_upto >= 0) 2287 tcp_mark_head_lost(sk, sacked_upto, 0); 2288 else if (fast_rexmit) 2289 tcp_mark_head_lost(sk, 1, 1); 2290 } 2291 } 2292 2293 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2294 { 2295 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2296 before(tp->rx_opt.rcv_tsecr, when); 2297 } 2298 2299 /* skb is spurious retransmitted if the returned timestamp echo 2300 * reply is prior to the skb transmission time 2301 */ 2302 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2303 const struct sk_buff *skb) 2304 { 2305 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2306 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2307 } 2308 2309 /* Nothing was retransmitted or returned timestamp is less 2310 * than timestamp of the first retransmission. 2311 */ 2312 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2313 { 2314 return !tp->retrans_stamp || 2315 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2316 } 2317 2318 /* Undo procedures. */ 2319 2320 /* We can clear retrans_stamp when there are no retransmissions in the 2321 * window. It would seem that it is trivially available for us in 2322 * tp->retrans_out, however, that kind of assumptions doesn't consider 2323 * what will happen if errors occur when sending retransmission for the 2324 * second time. ...It could the that such segment has only 2325 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2326 * the head skb is enough except for some reneging corner cases that 2327 * are not worth the effort. 2328 * 2329 * Main reason for all this complexity is the fact that connection dying 2330 * time now depends on the validity of the retrans_stamp, in particular, 2331 * that successive retransmissions of a segment must not advance 2332 * retrans_stamp under any conditions. 2333 */ 2334 static bool tcp_any_retrans_done(const struct sock *sk) 2335 { 2336 const struct tcp_sock *tp = tcp_sk(sk); 2337 struct sk_buff *skb; 2338 2339 if (tp->retrans_out) 2340 return true; 2341 2342 skb = tcp_write_queue_head(sk); 2343 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2344 return true; 2345 2346 return false; 2347 } 2348 2349 #if FASTRETRANS_DEBUG > 1 2350 static void DBGUNDO(struct sock *sk, const char *msg) 2351 { 2352 struct tcp_sock *tp = tcp_sk(sk); 2353 struct inet_sock *inet = inet_sk(sk); 2354 2355 if (sk->sk_family == AF_INET) { 2356 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2357 msg, 2358 &inet->inet_daddr, ntohs(inet->inet_dport), 2359 tp->snd_cwnd, tcp_left_out(tp), 2360 tp->snd_ssthresh, tp->prior_ssthresh, 2361 tp->packets_out); 2362 } 2363 #if IS_ENABLED(CONFIG_IPV6) 2364 else if (sk->sk_family == AF_INET6) { 2365 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2366 msg, 2367 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2368 tp->snd_cwnd, tcp_left_out(tp), 2369 tp->snd_ssthresh, tp->prior_ssthresh, 2370 tp->packets_out); 2371 } 2372 #endif 2373 } 2374 #else 2375 #define DBGUNDO(x...) do { } while (0) 2376 #endif 2377 2378 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2379 { 2380 struct tcp_sock *tp = tcp_sk(sk); 2381 2382 if (unmark_loss) { 2383 struct sk_buff *skb; 2384 2385 tcp_for_write_queue(skb, sk) { 2386 if (skb == tcp_send_head(sk)) 2387 break; 2388 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2389 } 2390 tp->lost_out = 0; 2391 tcp_clear_all_retrans_hints(tp); 2392 } 2393 2394 if (tp->prior_ssthresh) { 2395 const struct inet_connection_sock *icsk = inet_csk(sk); 2396 2397 if (icsk->icsk_ca_ops->undo_cwnd) 2398 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2399 else 2400 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2401 2402 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2403 tp->snd_ssthresh = tp->prior_ssthresh; 2404 tcp_ecn_withdraw_cwr(tp); 2405 } 2406 } 2407 tp->snd_cwnd_stamp = tcp_time_stamp; 2408 tp->undo_marker = 0; 2409 } 2410 2411 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2412 { 2413 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2414 } 2415 2416 /* People celebrate: "We love our President!" */ 2417 static bool tcp_try_undo_recovery(struct sock *sk) 2418 { 2419 struct tcp_sock *tp = tcp_sk(sk); 2420 2421 if (tcp_may_undo(tp)) { 2422 int mib_idx; 2423 2424 /* Happy end! We did not retransmit anything 2425 * or our original transmission succeeded. 2426 */ 2427 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2428 tcp_undo_cwnd_reduction(sk, false); 2429 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2430 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2431 else 2432 mib_idx = LINUX_MIB_TCPFULLUNDO; 2433 2434 NET_INC_STATS(sock_net(sk), mib_idx); 2435 } 2436 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2437 /* Hold old state until something *above* high_seq 2438 * is ACKed. For Reno it is MUST to prevent false 2439 * fast retransmits (RFC2582). SACK TCP is safe. */ 2440 if (!tcp_any_retrans_done(sk)) 2441 tp->retrans_stamp = 0; 2442 return true; 2443 } 2444 tcp_set_ca_state(sk, TCP_CA_Open); 2445 return false; 2446 } 2447 2448 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2449 static bool tcp_try_undo_dsack(struct sock *sk) 2450 { 2451 struct tcp_sock *tp = tcp_sk(sk); 2452 2453 if (tp->undo_marker && !tp->undo_retrans) { 2454 DBGUNDO(sk, "D-SACK"); 2455 tcp_undo_cwnd_reduction(sk, false); 2456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2457 return true; 2458 } 2459 return false; 2460 } 2461 2462 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2463 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2464 { 2465 struct tcp_sock *tp = tcp_sk(sk); 2466 2467 if (frto_undo || tcp_may_undo(tp)) { 2468 tcp_undo_cwnd_reduction(sk, true); 2469 2470 DBGUNDO(sk, "partial loss"); 2471 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2472 if (frto_undo) 2473 NET_INC_STATS(sock_net(sk), 2474 LINUX_MIB_TCPSPURIOUSRTOS); 2475 inet_csk(sk)->icsk_retransmits = 0; 2476 if (frto_undo || tcp_is_sack(tp)) 2477 tcp_set_ca_state(sk, TCP_CA_Open); 2478 return true; 2479 } 2480 return false; 2481 } 2482 2483 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2484 * It computes the number of packets to send (sndcnt) based on packets newly 2485 * delivered: 2486 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2487 * cwnd reductions across a full RTT. 2488 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2489 * But when the retransmits are acked without further losses, PRR 2490 * slow starts cwnd up to ssthresh to speed up the recovery. 2491 */ 2492 static void tcp_init_cwnd_reduction(struct sock *sk) 2493 { 2494 struct tcp_sock *tp = tcp_sk(sk); 2495 2496 tp->high_seq = tp->snd_nxt; 2497 tp->tlp_high_seq = 0; 2498 tp->snd_cwnd_cnt = 0; 2499 tp->prior_cwnd = tp->snd_cwnd; 2500 tp->prr_delivered = 0; 2501 tp->prr_out = 0; 2502 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2503 tcp_ecn_queue_cwr(tp); 2504 } 2505 2506 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, 2507 int flag) 2508 { 2509 struct tcp_sock *tp = tcp_sk(sk); 2510 int sndcnt = 0; 2511 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2512 2513 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2514 return; 2515 2516 tp->prr_delivered += newly_acked_sacked; 2517 if (delta < 0) { 2518 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2519 tp->prior_cwnd - 1; 2520 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2521 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2522 !(flag & FLAG_LOST_RETRANS)) { 2523 sndcnt = min_t(int, delta, 2524 max_t(int, tp->prr_delivered - tp->prr_out, 2525 newly_acked_sacked) + 1); 2526 } else { 2527 sndcnt = min(delta, newly_acked_sacked); 2528 } 2529 /* Force a fast retransmit upon entering fast recovery */ 2530 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2531 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2532 } 2533 2534 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2535 { 2536 struct tcp_sock *tp = tcp_sk(sk); 2537 2538 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2539 return; 2540 2541 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2542 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2543 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2544 tp->snd_cwnd = tp->snd_ssthresh; 2545 tp->snd_cwnd_stamp = tcp_time_stamp; 2546 } 2547 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2548 } 2549 2550 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2551 void tcp_enter_cwr(struct sock *sk) 2552 { 2553 struct tcp_sock *tp = tcp_sk(sk); 2554 2555 tp->prior_ssthresh = 0; 2556 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2557 tp->undo_marker = 0; 2558 tcp_init_cwnd_reduction(sk); 2559 tcp_set_ca_state(sk, TCP_CA_CWR); 2560 } 2561 } 2562 EXPORT_SYMBOL(tcp_enter_cwr); 2563 2564 static void tcp_try_keep_open(struct sock *sk) 2565 { 2566 struct tcp_sock *tp = tcp_sk(sk); 2567 int state = TCP_CA_Open; 2568 2569 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2570 state = TCP_CA_Disorder; 2571 2572 if (inet_csk(sk)->icsk_ca_state != state) { 2573 tcp_set_ca_state(sk, state); 2574 tp->high_seq = tp->snd_nxt; 2575 } 2576 } 2577 2578 static void tcp_try_to_open(struct sock *sk, int flag) 2579 { 2580 struct tcp_sock *tp = tcp_sk(sk); 2581 2582 tcp_verify_left_out(tp); 2583 2584 if (!tcp_any_retrans_done(sk)) 2585 tp->retrans_stamp = 0; 2586 2587 if (flag & FLAG_ECE) 2588 tcp_enter_cwr(sk); 2589 2590 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2591 tcp_try_keep_open(sk); 2592 } 2593 } 2594 2595 static void tcp_mtup_probe_failed(struct sock *sk) 2596 { 2597 struct inet_connection_sock *icsk = inet_csk(sk); 2598 2599 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2600 icsk->icsk_mtup.probe_size = 0; 2601 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2602 } 2603 2604 static void tcp_mtup_probe_success(struct sock *sk) 2605 { 2606 struct tcp_sock *tp = tcp_sk(sk); 2607 struct inet_connection_sock *icsk = inet_csk(sk); 2608 2609 /* FIXME: breaks with very large cwnd */ 2610 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2611 tp->snd_cwnd = tp->snd_cwnd * 2612 tcp_mss_to_mtu(sk, tp->mss_cache) / 2613 icsk->icsk_mtup.probe_size; 2614 tp->snd_cwnd_cnt = 0; 2615 tp->snd_cwnd_stamp = tcp_time_stamp; 2616 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2617 2618 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2619 icsk->icsk_mtup.probe_size = 0; 2620 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2622 } 2623 2624 /* Do a simple retransmit without using the backoff mechanisms in 2625 * tcp_timer. This is used for path mtu discovery. 2626 * The socket is already locked here. 2627 */ 2628 void tcp_simple_retransmit(struct sock *sk) 2629 { 2630 const struct inet_connection_sock *icsk = inet_csk(sk); 2631 struct tcp_sock *tp = tcp_sk(sk); 2632 struct sk_buff *skb; 2633 unsigned int mss = tcp_current_mss(sk); 2634 u32 prior_lost = tp->lost_out; 2635 2636 tcp_for_write_queue(skb, sk) { 2637 if (skb == tcp_send_head(sk)) 2638 break; 2639 if (tcp_skb_seglen(skb) > mss && 2640 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2641 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2642 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2643 tp->retrans_out -= tcp_skb_pcount(skb); 2644 } 2645 tcp_skb_mark_lost_uncond_verify(tp, skb); 2646 } 2647 } 2648 2649 tcp_clear_retrans_hints_partial(tp); 2650 2651 if (prior_lost == tp->lost_out) 2652 return; 2653 2654 if (tcp_is_reno(tp)) 2655 tcp_limit_reno_sacked(tp); 2656 2657 tcp_verify_left_out(tp); 2658 2659 /* Don't muck with the congestion window here. 2660 * Reason is that we do not increase amount of _data_ 2661 * in network, but units changed and effective 2662 * cwnd/ssthresh really reduced now. 2663 */ 2664 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2665 tp->high_seq = tp->snd_nxt; 2666 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2667 tp->prior_ssthresh = 0; 2668 tp->undo_marker = 0; 2669 tcp_set_ca_state(sk, TCP_CA_Loss); 2670 } 2671 tcp_xmit_retransmit_queue(sk); 2672 } 2673 EXPORT_SYMBOL(tcp_simple_retransmit); 2674 2675 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2676 { 2677 struct tcp_sock *tp = tcp_sk(sk); 2678 int mib_idx; 2679 2680 if (tcp_is_reno(tp)) 2681 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2682 else 2683 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2684 2685 NET_INC_STATS(sock_net(sk), mib_idx); 2686 2687 tp->prior_ssthresh = 0; 2688 tcp_init_undo(tp); 2689 2690 if (!tcp_in_cwnd_reduction(sk)) { 2691 if (!ece_ack) 2692 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2693 tcp_init_cwnd_reduction(sk); 2694 } 2695 tcp_set_ca_state(sk, TCP_CA_Recovery); 2696 } 2697 2698 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2699 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2700 */ 2701 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2702 int *rexmit) 2703 { 2704 struct tcp_sock *tp = tcp_sk(sk); 2705 bool recovered = !before(tp->snd_una, tp->high_seq); 2706 2707 if ((flag & FLAG_SND_UNA_ADVANCED) && 2708 tcp_try_undo_loss(sk, false)) 2709 return; 2710 2711 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2712 /* Step 3.b. A timeout is spurious if not all data are 2713 * lost, i.e., never-retransmitted data are (s)acked. 2714 */ 2715 if ((flag & FLAG_ORIG_SACK_ACKED) && 2716 tcp_try_undo_loss(sk, true)) 2717 return; 2718 2719 if (after(tp->snd_nxt, tp->high_seq)) { 2720 if (flag & FLAG_DATA_SACKED || is_dupack) 2721 tp->frto = 0; /* Step 3.a. loss was real */ 2722 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2723 tp->high_seq = tp->snd_nxt; 2724 /* Step 2.b. Try send new data (but deferred until cwnd 2725 * is updated in tcp_ack()). Otherwise fall back to 2726 * the conventional recovery. 2727 */ 2728 if (tcp_send_head(sk) && 2729 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2730 *rexmit = REXMIT_NEW; 2731 return; 2732 } 2733 tp->frto = 0; 2734 } 2735 } 2736 2737 if (recovered) { 2738 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2739 tcp_try_undo_recovery(sk); 2740 return; 2741 } 2742 if (tcp_is_reno(tp)) { 2743 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2744 * delivered. Lower inflight to clock out (re)tranmissions. 2745 */ 2746 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2747 tcp_add_reno_sack(sk); 2748 else if (flag & FLAG_SND_UNA_ADVANCED) 2749 tcp_reset_reno_sack(tp); 2750 } 2751 *rexmit = REXMIT_LOST; 2752 } 2753 2754 /* Undo during fast recovery after partial ACK. */ 2755 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2756 { 2757 struct tcp_sock *tp = tcp_sk(sk); 2758 2759 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2760 /* Plain luck! Hole if filled with delayed 2761 * packet, rather than with a retransmit. 2762 */ 2763 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2764 2765 /* We are getting evidence that the reordering degree is higher 2766 * than we realized. If there are no retransmits out then we 2767 * can undo. Otherwise we clock out new packets but do not 2768 * mark more packets lost or retransmit more. 2769 */ 2770 if (tp->retrans_out) 2771 return true; 2772 2773 if (!tcp_any_retrans_done(sk)) 2774 tp->retrans_stamp = 0; 2775 2776 DBGUNDO(sk, "partial recovery"); 2777 tcp_undo_cwnd_reduction(sk, true); 2778 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2779 tcp_try_keep_open(sk); 2780 return true; 2781 } 2782 return false; 2783 } 2784 2785 /* Process an event, which can update packets-in-flight not trivially. 2786 * Main goal of this function is to calculate new estimate for left_out, 2787 * taking into account both packets sitting in receiver's buffer and 2788 * packets lost by network. 2789 * 2790 * Besides that it updates the congestion state when packet loss or ECN 2791 * is detected. But it does not reduce the cwnd, it is done by the 2792 * congestion control later. 2793 * 2794 * It does _not_ decide what to send, it is made in function 2795 * tcp_xmit_retransmit_queue(). 2796 */ 2797 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2798 bool is_dupack, int *ack_flag, int *rexmit) 2799 { 2800 struct inet_connection_sock *icsk = inet_csk(sk); 2801 struct tcp_sock *tp = tcp_sk(sk); 2802 int fast_rexmit = 0, flag = *ack_flag; 2803 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2804 (tcp_fackets_out(tp) > tp->reordering)); 2805 2806 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2807 tp->sacked_out = 0; 2808 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2809 tp->fackets_out = 0; 2810 2811 /* Now state machine starts. 2812 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2813 if (flag & FLAG_ECE) 2814 tp->prior_ssthresh = 0; 2815 2816 /* B. In all the states check for reneging SACKs. */ 2817 if (tcp_check_sack_reneging(sk, flag)) 2818 return; 2819 2820 /* C. Check consistency of the current state. */ 2821 tcp_verify_left_out(tp); 2822 2823 /* D. Check state exit conditions. State can be terminated 2824 * when high_seq is ACKed. */ 2825 if (icsk->icsk_ca_state == TCP_CA_Open) { 2826 WARN_ON(tp->retrans_out != 0); 2827 tp->retrans_stamp = 0; 2828 } else if (!before(tp->snd_una, tp->high_seq)) { 2829 switch (icsk->icsk_ca_state) { 2830 case TCP_CA_CWR: 2831 /* CWR is to be held something *above* high_seq 2832 * is ACKed for CWR bit to reach receiver. */ 2833 if (tp->snd_una != tp->high_seq) { 2834 tcp_end_cwnd_reduction(sk); 2835 tcp_set_ca_state(sk, TCP_CA_Open); 2836 } 2837 break; 2838 2839 case TCP_CA_Recovery: 2840 if (tcp_is_reno(tp)) 2841 tcp_reset_reno_sack(tp); 2842 if (tcp_try_undo_recovery(sk)) 2843 return; 2844 tcp_end_cwnd_reduction(sk); 2845 break; 2846 } 2847 } 2848 2849 /* Use RACK to detect loss */ 2850 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS && 2851 tcp_rack_mark_lost(sk)) { 2852 flag |= FLAG_LOST_RETRANS; 2853 *ack_flag |= FLAG_LOST_RETRANS; 2854 } 2855 2856 /* E. Process state. */ 2857 switch (icsk->icsk_ca_state) { 2858 case TCP_CA_Recovery: 2859 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2860 if (tcp_is_reno(tp) && is_dupack) 2861 tcp_add_reno_sack(sk); 2862 } else { 2863 if (tcp_try_undo_partial(sk, acked)) 2864 return; 2865 /* Partial ACK arrived. Force fast retransmit. */ 2866 do_lost = tcp_is_reno(tp) || 2867 tcp_fackets_out(tp) > tp->reordering; 2868 } 2869 if (tcp_try_undo_dsack(sk)) { 2870 tcp_try_keep_open(sk); 2871 return; 2872 } 2873 break; 2874 case TCP_CA_Loss: 2875 tcp_process_loss(sk, flag, is_dupack, rexmit); 2876 if (icsk->icsk_ca_state != TCP_CA_Open && 2877 !(flag & FLAG_LOST_RETRANS)) 2878 return; 2879 /* Change state if cwnd is undone or retransmits are lost */ 2880 default: 2881 if (tcp_is_reno(tp)) { 2882 if (flag & FLAG_SND_UNA_ADVANCED) 2883 tcp_reset_reno_sack(tp); 2884 if (is_dupack) 2885 tcp_add_reno_sack(sk); 2886 } 2887 2888 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2889 tcp_try_undo_dsack(sk); 2890 2891 if (!tcp_time_to_recover(sk, flag)) { 2892 tcp_try_to_open(sk, flag); 2893 return; 2894 } 2895 2896 /* MTU probe failure: don't reduce cwnd */ 2897 if (icsk->icsk_ca_state < TCP_CA_CWR && 2898 icsk->icsk_mtup.probe_size && 2899 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2900 tcp_mtup_probe_failed(sk); 2901 /* Restores the reduction we did in tcp_mtup_probe() */ 2902 tp->snd_cwnd++; 2903 tcp_simple_retransmit(sk); 2904 return; 2905 } 2906 2907 /* Otherwise enter Recovery state */ 2908 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2909 fast_rexmit = 1; 2910 } 2911 2912 if (do_lost) 2913 tcp_update_scoreboard(sk, fast_rexmit); 2914 *rexmit = REXMIT_LOST; 2915 } 2916 2917 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2918 { 2919 struct tcp_sock *tp = tcp_sk(sk); 2920 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2921 2922 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp, 2923 rtt_us ? : jiffies_to_usecs(1)); 2924 } 2925 2926 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2927 long seq_rtt_us, long sack_rtt_us, 2928 long ca_rtt_us) 2929 { 2930 const struct tcp_sock *tp = tcp_sk(sk); 2931 2932 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2933 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2934 * Karn's algorithm forbids taking RTT if some retransmitted data 2935 * is acked (RFC6298). 2936 */ 2937 if (seq_rtt_us < 0) 2938 seq_rtt_us = sack_rtt_us; 2939 2940 /* RTTM Rule: A TSecr value received in a segment is used to 2941 * update the averaged RTT measurement only if the segment 2942 * acknowledges some new data, i.e., only if it advances the 2943 * left edge of the send window. 2944 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2945 */ 2946 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2947 flag & FLAG_ACKED) 2948 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2949 tp->rx_opt.rcv_tsecr); 2950 if (seq_rtt_us < 0) 2951 return false; 2952 2953 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2954 * always taken together with ACK, SACK, or TS-opts. Any negative 2955 * values will be skipped with the seq_rtt_us < 0 check above. 2956 */ 2957 tcp_update_rtt_min(sk, ca_rtt_us); 2958 tcp_rtt_estimator(sk, seq_rtt_us); 2959 tcp_set_rto(sk); 2960 2961 /* RFC6298: only reset backoff on valid RTT measurement. */ 2962 inet_csk(sk)->icsk_backoff = 0; 2963 return true; 2964 } 2965 2966 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2967 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2968 { 2969 long rtt_us = -1L; 2970 2971 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2972 struct skb_mstamp now; 2973 2974 skb_mstamp_get(&now); 2975 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2976 } 2977 2978 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2979 } 2980 2981 2982 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2983 { 2984 const struct inet_connection_sock *icsk = inet_csk(sk); 2985 2986 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2987 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2988 } 2989 2990 /* Restart timer after forward progress on connection. 2991 * RFC2988 recommends to restart timer to now+rto. 2992 */ 2993 void tcp_rearm_rto(struct sock *sk) 2994 { 2995 const struct inet_connection_sock *icsk = inet_csk(sk); 2996 struct tcp_sock *tp = tcp_sk(sk); 2997 2998 /* If the retrans timer is currently being used by Fast Open 2999 * for SYN-ACK retrans purpose, stay put. 3000 */ 3001 if (tp->fastopen_rsk) 3002 return; 3003 3004 if (!tp->packets_out) { 3005 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3006 } else { 3007 u32 rto = inet_csk(sk)->icsk_rto; 3008 /* Offset the time elapsed after installing regular RTO */ 3009 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3010 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3011 struct sk_buff *skb = tcp_write_queue_head(sk); 3012 const u32 rto_time_stamp = 3013 tcp_skb_timestamp(skb) + rto; 3014 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3015 /* delta may not be positive if the socket is locked 3016 * when the retrans timer fires and is rescheduled. 3017 */ 3018 if (delta > 0) 3019 rto = delta; 3020 } 3021 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3022 TCP_RTO_MAX); 3023 } 3024 } 3025 3026 /* This function is called when the delayed ER timer fires. TCP enters 3027 * fast recovery and performs fast-retransmit. 3028 */ 3029 void tcp_resume_early_retransmit(struct sock *sk) 3030 { 3031 struct tcp_sock *tp = tcp_sk(sk); 3032 3033 tcp_rearm_rto(sk); 3034 3035 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3036 if (!tp->do_early_retrans) 3037 return; 3038 3039 tcp_enter_recovery(sk, false); 3040 tcp_update_scoreboard(sk, 1); 3041 tcp_xmit_retransmit_queue(sk); 3042 } 3043 3044 /* If we get here, the whole TSO packet has not been acked. */ 3045 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3046 { 3047 struct tcp_sock *tp = tcp_sk(sk); 3048 u32 packets_acked; 3049 3050 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3051 3052 packets_acked = tcp_skb_pcount(skb); 3053 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3054 return 0; 3055 packets_acked -= tcp_skb_pcount(skb); 3056 3057 if (packets_acked) { 3058 BUG_ON(tcp_skb_pcount(skb) == 0); 3059 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3060 } 3061 3062 return packets_acked; 3063 } 3064 3065 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3066 u32 prior_snd_una) 3067 { 3068 const struct skb_shared_info *shinfo; 3069 3070 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3071 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3072 return; 3073 3074 shinfo = skb_shinfo(skb); 3075 if (!before(shinfo->tskey, prior_snd_una) && 3076 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3077 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3078 } 3079 3080 /* Remove acknowledged frames from the retransmission queue. If our packet 3081 * is before the ack sequence we can discard it as it's confirmed to have 3082 * arrived at the other end. 3083 */ 3084 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3085 u32 prior_snd_una, int *acked, 3086 struct tcp_sacktag_state *sack, 3087 struct skb_mstamp *now) 3088 { 3089 const struct inet_connection_sock *icsk = inet_csk(sk); 3090 struct skb_mstamp first_ackt, last_ackt; 3091 struct tcp_sock *tp = tcp_sk(sk); 3092 u32 prior_sacked = tp->sacked_out; 3093 u32 reord = tp->packets_out; 3094 bool fully_acked = true; 3095 long sack_rtt_us = -1L; 3096 long seq_rtt_us = -1L; 3097 long ca_rtt_us = -1L; 3098 struct sk_buff *skb; 3099 u32 pkts_acked = 0; 3100 u32 last_in_flight = 0; 3101 bool rtt_update; 3102 int flag = 0; 3103 3104 first_ackt.v64 = 0; 3105 3106 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3107 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3108 u8 sacked = scb->sacked; 3109 u32 acked_pcount; 3110 3111 tcp_ack_tstamp(sk, skb, prior_snd_una); 3112 3113 /* Determine how many packets and what bytes were acked, tso and else */ 3114 if (after(scb->end_seq, tp->snd_una)) { 3115 if (tcp_skb_pcount(skb) == 1 || 3116 !after(tp->snd_una, scb->seq)) 3117 break; 3118 3119 acked_pcount = tcp_tso_acked(sk, skb); 3120 if (!acked_pcount) 3121 break; 3122 fully_acked = false; 3123 } else { 3124 /* Speedup tcp_unlink_write_queue() and next loop */ 3125 prefetchw(skb->next); 3126 acked_pcount = tcp_skb_pcount(skb); 3127 } 3128 3129 if (unlikely(sacked & TCPCB_RETRANS)) { 3130 if (sacked & TCPCB_SACKED_RETRANS) 3131 tp->retrans_out -= acked_pcount; 3132 flag |= FLAG_RETRANS_DATA_ACKED; 3133 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3134 last_ackt = skb->skb_mstamp; 3135 WARN_ON_ONCE(last_ackt.v64 == 0); 3136 if (!first_ackt.v64) 3137 first_ackt = last_ackt; 3138 3139 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3140 reord = min(pkts_acked, reord); 3141 if (!after(scb->end_seq, tp->high_seq)) 3142 flag |= FLAG_ORIG_SACK_ACKED; 3143 } 3144 3145 if (sacked & TCPCB_SACKED_ACKED) { 3146 tp->sacked_out -= acked_pcount; 3147 } else if (tcp_is_sack(tp)) { 3148 tp->delivered += acked_pcount; 3149 if (!tcp_skb_spurious_retrans(tp, skb)) 3150 tcp_rack_advance(tp, &skb->skb_mstamp, sacked); 3151 } 3152 if (sacked & TCPCB_LOST) 3153 tp->lost_out -= acked_pcount; 3154 3155 tp->packets_out -= acked_pcount; 3156 pkts_acked += acked_pcount; 3157 tcp_rate_skb_delivered(sk, skb, sack->rate); 3158 3159 /* Initial outgoing SYN's get put onto the write_queue 3160 * just like anything else we transmit. It is not 3161 * true data, and if we misinform our callers that 3162 * this ACK acks real data, we will erroneously exit 3163 * connection startup slow start one packet too 3164 * quickly. This is severely frowned upon behavior. 3165 */ 3166 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3167 flag |= FLAG_DATA_ACKED; 3168 } else { 3169 flag |= FLAG_SYN_ACKED; 3170 tp->retrans_stamp = 0; 3171 } 3172 3173 if (!fully_acked) 3174 break; 3175 3176 tcp_unlink_write_queue(skb, sk); 3177 sk_wmem_free_skb(sk, skb); 3178 if (unlikely(skb == tp->retransmit_skb_hint)) 3179 tp->retransmit_skb_hint = NULL; 3180 if (unlikely(skb == tp->lost_skb_hint)) 3181 tp->lost_skb_hint = NULL; 3182 } 3183 3184 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3185 tp->snd_up = tp->snd_una; 3186 3187 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3188 flag |= FLAG_SACK_RENEGING; 3189 3190 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3191 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt); 3192 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt); 3193 } 3194 if (sack->first_sackt.v64) { 3195 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt); 3196 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); 3197 } 3198 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ 3199 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3200 ca_rtt_us); 3201 3202 if (flag & FLAG_ACKED) { 3203 tcp_rearm_rto(sk); 3204 if (unlikely(icsk->icsk_mtup.probe_size && 3205 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3206 tcp_mtup_probe_success(sk); 3207 } 3208 3209 if (tcp_is_reno(tp)) { 3210 tcp_remove_reno_sacks(sk, pkts_acked); 3211 } else { 3212 int delta; 3213 3214 /* Non-retransmitted hole got filled? That's reordering */ 3215 if (reord < prior_fackets) 3216 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3217 3218 delta = tcp_is_fack(tp) ? pkts_acked : 3219 prior_sacked - tp->sacked_out; 3220 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3221 } 3222 3223 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3224 3225 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3226 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) { 3227 /* Do not re-arm RTO if the sack RTT is measured from data sent 3228 * after when the head was last (re)transmitted. Otherwise the 3229 * timeout may continue to extend in loss recovery. 3230 */ 3231 tcp_rearm_rto(sk); 3232 } 3233 3234 if (icsk->icsk_ca_ops->pkts_acked) { 3235 struct ack_sample sample = { .pkts_acked = pkts_acked, 3236 .rtt_us = ca_rtt_us, 3237 .in_flight = last_in_flight }; 3238 3239 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3240 } 3241 3242 #if FASTRETRANS_DEBUG > 0 3243 WARN_ON((int)tp->sacked_out < 0); 3244 WARN_ON((int)tp->lost_out < 0); 3245 WARN_ON((int)tp->retrans_out < 0); 3246 if (!tp->packets_out && tcp_is_sack(tp)) { 3247 icsk = inet_csk(sk); 3248 if (tp->lost_out) { 3249 pr_debug("Leak l=%u %d\n", 3250 tp->lost_out, icsk->icsk_ca_state); 3251 tp->lost_out = 0; 3252 } 3253 if (tp->sacked_out) { 3254 pr_debug("Leak s=%u %d\n", 3255 tp->sacked_out, icsk->icsk_ca_state); 3256 tp->sacked_out = 0; 3257 } 3258 if (tp->retrans_out) { 3259 pr_debug("Leak r=%u %d\n", 3260 tp->retrans_out, icsk->icsk_ca_state); 3261 tp->retrans_out = 0; 3262 } 3263 } 3264 #endif 3265 *acked = pkts_acked; 3266 return flag; 3267 } 3268 3269 static void tcp_ack_probe(struct sock *sk) 3270 { 3271 const struct tcp_sock *tp = tcp_sk(sk); 3272 struct inet_connection_sock *icsk = inet_csk(sk); 3273 3274 /* Was it a usable window open? */ 3275 3276 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3277 icsk->icsk_backoff = 0; 3278 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3279 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3280 * This function is not for random using! 3281 */ 3282 } else { 3283 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3284 3285 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3286 when, TCP_RTO_MAX); 3287 } 3288 } 3289 3290 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3291 { 3292 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3293 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3294 } 3295 3296 /* Decide wheather to run the increase function of congestion control. */ 3297 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3298 { 3299 /* If reordering is high then always grow cwnd whenever data is 3300 * delivered regardless of its ordering. Otherwise stay conservative 3301 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3302 * new SACK or ECE mark may first advance cwnd here and later reduce 3303 * cwnd in tcp_fastretrans_alert() based on more states. 3304 */ 3305 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3306 return flag & FLAG_FORWARD_PROGRESS; 3307 3308 return flag & FLAG_DATA_ACKED; 3309 } 3310 3311 /* The "ultimate" congestion control function that aims to replace the rigid 3312 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3313 * It's called toward the end of processing an ACK with precise rate 3314 * information. All transmission or retransmission are delayed afterwards. 3315 */ 3316 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3317 int flag, const struct rate_sample *rs) 3318 { 3319 const struct inet_connection_sock *icsk = inet_csk(sk); 3320 3321 if (icsk->icsk_ca_ops->cong_control) { 3322 icsk->icsk_ca_ops->cong_control(sk, rs); 3323 return; 3324 } 3325 3326 if (tcp_in_cwnd_reduction(sk)) { 3327 /* Reduce cwnd if state mandates */ 3328 tcp_cwnd_reduction(sk, acked_sacked, flag); 3329 } else if (tcp_may_raise_cwnd(sk, flag)) { 3330 /* Advance cwnd if state allows */ 3331 tcp_cong_avoid(sk, ack, acked_sacked); 3332 } 3333 tcp_update_pacing_rate(sk); 3334 } 3335 3336 /* Check that window update is acceptable. 3337 * The function assumes that snd_una<=ack<=snd_next. 3338 */ 3339 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3340 const u32 ack, const u32 ack_seq, 3341 const u32 nwin) 3342 { 3343 return after(ack, tp->snd_una) || 3344 after(ack_seq, tp->snd_wl1) || 3345 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3346 } 3347 3348 /* If we update tp->snd_una, also update tp->bytes_acked */ 3349 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3350 { 3351 u32 delta = ack - tp->snd_una; 3352 3353 sock_owned_by_me((struct sock *)tp); 3354 u64_stats_update_begin_raw(&tp->syncp); 3355 tp->bytes_acked += delta; 3356 u64_stats_update_end_raw(&tp->syncp); 3357 tp->snd_una = ack; 3358 } 3359 3360 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3361 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3362 { 3363 u32 delta = seq - tp->rcv_nxt; 3364 3365 sock_owned_by_me((struct sock *)tp); 3366 u64_stats_update_begin_raw(&tp->syncp); 3367 tp->bytes_received += delta; 3368 u64_stats_update_end_raw(&tp->syncp); 3369 tp->rcv_nxt = seq; 3370 } 3371 3372 /* Update our send window. 3373 * 3374 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3375 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3376 */ 3377 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3378 u32 ack_seq) 3379 { 3380 struct tcp_sock *tp = tcp_sk(sk); 3381 int flag = 0; 3382 u32 nwin = ntohs(tcp_hdr(skb)->window); 3383 3384 if (likely(!tcp_hdr(skb)->syn)) 3385 nwin <<= tp->rx_opt.snd_wscale; 3386 3387 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3388 flag |= FLAG_WIN_UPDATE; 3389 tcp_update_wl(tp, ack_seq); 3390 3391 if (tp->snd_wnd != nwin) { 3392 tp->snd_wnd = nwin; 3393 3394 /* Note, it is the only place, where 3395 * fast path is recovered for sending TCP. 3396 */ 3397 tp->pred_flags = 0; 3398 tcp_fast_path_check(sk); 3399 3400 if (tcp_send_head(sk)) 3401 tcp_slow_start_after_idle_check(sk); 3402 3403 if (nwin > tp->max_window) { 3404 tp->max_window = nwin; 3405 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3406 } 3407 } 3408 } 3409 3410 tcp_snd_una_update(tp, ack); 3411 3412 return flag; 3413 } 3414 3415 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3416 u32 *last_oow_ack_time) 3417 { 3418 if (*last_oow_ack_time) { 3419 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3420 3421 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3422 NET_INC_STATS(net, mib_idx); 3423 return true; /* rate-limited: don't send yet! */ 3424 } 3425 } 3426 3427 *last_oow_ack_time = tcp_time_stamp; 3428 3429 return false; /* not rate-limited: go ahead, send dupack now! */ 3430 } 3431 3432 /* Return true if we're currently rate-limiting out-of-window ACKs and 3433 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3434 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3435 * attacks that send repeated SYNs or ACKs for the same connection. To 3436 * do this, we do not send a duplicate SYNACK or ACK if the remote 3437 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3438 */ 3439 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3440 int mib_idx, u32 *last_oow_ack_time) 3441 { 3442 /* Data packets without SYNs are not likely part of an ACK loop. */ 3443 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3444 !tcp_hdr(skb)->syn) 3445 return false; 3446 3447 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3448 } 3449 3450 /* RFC 5961 7 [ACK Throttling] */ 3451 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3452 { 3453 /* unprotected vars, we dont care of overwrites */ 3454 static u32 challenge_timestamp; 3455 static unsigned int challenge_count; 3456 struct tcp_sock *tp = tcp_sk(sk); 3457 u32 count, now; 3458 3459 /* First check our per-socket dupack rate limit. */ 3460 if (__tcp_oow_rate_limited(sock_net(sk), 3461 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3462 &tp->last_oow_ack_time)) 3463 return; 3464 3465 /* Then check host-wide RFC 5961 rate limit. */ 3466 now = jiffies / HZ; 3467 if (now != challenge_timestamp) { 3468 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3469 3470 challenge_timestamp = now; 3471 WRITE_ONCE(challenge_count, half + 3472 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3473 } 3474 count = READ_ONCE(challenge_count); 3475 if (count > 0) { 3476 WRITE_ONCE(challenge_count, count - 1); 3477 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3478 tcp_send_ack(sk); 3479 } 3480 } 3481 3482 static void tcp_store_ts_recent(struct tcp_sock *tp) 3483 { 3484 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3485 tp->rx_opt.ts_recent_stamp = get_seconds(); 3486 } 3487 3488 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3489 { 3490 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3491 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3492 * extra check below makes sure this can only happen 3493 * for pure ACK frames. -DaveM 3494 * 3495 * Not only, also it occurs for expired timestamps. 3496 */ 3497 3498 if (tcp_paws_check(&tp->rx_opt, 0)) 3499 tcp_store_ts_recent(tp); 3500 } 3501 } 3502 3503 /* This routine deals with acks during a TLP episode. 3504 * We mark the end of a TLP episode on receiving TLP dupack or when 3505 * ack is after tlp_high_seq. 3506 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3507 */ 3508 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3509 { 3510 struct tcp_sock *tp = tcp_sk(sk); 3511 3512 if (before(ack, tp->tlp_high_seq)) 3513 return; 3514 3515 if (flag & FLAG_DSACKING_ACK) { 3516 /* This DSACK means original and TLP probe arrived; no loss */ 3517 tp->tlp_high_seq = 0; 3518 } else if (after(ack, tp->tlp_high_seq)) { 3519 /* ACK advances: there was a loss, so reduce cwnd. Reset 3520 * tlp_high_seq in tcp_init_cwnd_reduction() 3521 */ 3522 tcp_init_cwnd_reduction(sk); 3523 tcp_set_ca_state(sk, TCP_CA_CWR); 3524 tcp_end_cwnd_reduction(sk); 3525 tcp_try_keep_open(sk); 3526 NET_INC_STATS(sock_net(sk), 3527 LINUX_MIB_TCPLOSSPROBERECOVERY); 3528 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3529 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3530 /* Pure dupack: original and TLP probe arrived; no loss */ 3531 tp->tlp_high_seq = 0; 3532 } 3533 } 3534 3535 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3536 { 3537 const struct inet_connection_sock *icsk = inet_csk(sk); 3538 3539 if (icsk->icsk_ca_ops->in_ack_event) 3540 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3541 } 3542 3543 /* Congestion control has updated the cwnd already. So if we're in 3544 * loss recovery then now we do any new sends (for FRTO) or 3545 * retransmits (for CA_Loss or CA_recovery) that make sense. 3546 */ 3547 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3548 { 3549 struct tcp_sock *tp = tcp_sk(sk); 3550 3551 if (rexmit == REXMIT_NONE) 3552 return; 3553 3554 if (unlikely(rexmit == 2)) { 3555 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3556 TCP_NAGLE_OFF); 3557 if (after(tp->snd_nxt, tp->high_seq)) 3558 return; 3559 tp->frto = 0; 3560 } 3561 tcp_xmit_retransmit_queue(sk); 3562 } 3563 3564 /* This routine deals with incoming acks, but not outgoing ones. */ 3565 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3566 { 3567 struct inet_connection_sock *icsk = inet_csk(sk); 3568 struct tcp_sock *tp = tcp_sk(sk); 3569 struct tcp_sacktag_state sack_state; 3570 struct rate_sample rs = { .prior_delivered = 0 }; 3571 u32 prior_snd_una = tp->snd_una; 3572 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3573 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3574 bool is_dupack = false; 3575 u32 prior_fackets; 3576 int prior_packets = tp->packets_out; 3577 u32 delivered = tp->delivered; 3578 u32 lost = tp->lost; 3579 int acked = 0; /* Number of packets newly acked */ 3580 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3581 struct skb_mstamp now; 3582 3583 sack_state.first_sackt.v64 = 0; 3584 sack_state.rate = &rs; 3585 3586 /* We very likely will need to access write queue head. */ 3587 prefetchw(sk->sk_write_queue.next); 3588 3589 /* If the ack is older than previous acks 3590 * then we can probably ignore it. 3591 */ 3592 if (before(ack, prior_snd_una)) { 3593 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3594 if (before(ack, prior_snd_una - tp->max_window)) { 3595 tcp_send_challenge_ack(sk, skb); 3596 return -1; 3597 } 3598 goto old_ack; 3599 } 3600 3601 /* If the ack includes data we haven't sent yet, discard 3602 * this segment (RFC793 Section 3.9). 3603 */ 3604 if (after(ack, tp->snd_nxt)) 3605 goto invalid_ack; 3606 3607 skb_mstamp_get(&now); 3608 3609 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3610 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3611 tcp_rearm_rto(sk); 3612 3613 if (after(ack, prior_snd_una)) { 3614 flag |= FLAG_SND_UNA_ADVANCED; 3615 icsk->icsk_retransmits = 0; 3616 } 3617 3618 prior_fackets = tp->fackets_out; 3619 rs.prior_in_flight = tcp_packets_in_flight(tp); 3620 3621 /* ts_recent update must be made after we are sure that the packet 3622 * is in window. 3623 */ 3624 if (flag & FLAG_UPDATE_TS_RECENT) 3625 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3626 3627 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3628 /* Window is constant, pure forward advance. 3629 * No more checks are required. 3630 * Note, we use the fact that SND.UNA>=SND.WL2. 3631 */ 3632 tcp_update_wl(tp, ack_seq); 3633 tcp_snd_una_update(tp, ack); 3634 flag |= FLAG_WIN_UPDATE; 3635 3636 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3637 3638 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3639 } else { 3640 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3641 3642 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3643 flag |= FLAG_DATA; 3644 else 3645 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3646 3647 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3648 3649 if (TCP_SKB_CB(skb)->sacked) 3650 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3651 &sack_state); 3652 3653 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3654 flag |= FLAG_ECE; 3655 ack_ev_flags |= CA_ACK_ECE; 3656 } 3657 3658 if (flag & FLAG_WIN_UPDATE) 3659 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3660 3661 tcp_in_ack_event(sk, ack_ev_flags); 3662 } 3663 3664 /* We passed data and got it acked, remove any soft error 3665 * log. Something worked... 3666 */ 3667 sk->sk_err_soft = 0; 3668 icsk->icsk_probes_out = 0; 3669 tp->rcv_tstamp = tcp_time_stamp; 3670 if (!prior_packets) 3671 goto no_queue; 3672 3673 /* See if we can take anything off of the retransmit queue. */ 3674 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3675 &sack_state, &now); 3676 3677 if (tcp_ack_is_dubious(sk, flag)) { 3678 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3679 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3680 } 3681 if (tp->tlp_high_seq) 3682 tcp_process_tlp_ack(sk, ack, flag); 3683 3684 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3685 struct dst_entry *dst = __sk_dst_get(sk); 3686 if (dst) 3687 dst_confirm(dst); 3688 } 3689 3690 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3691 tcp_schedule_loss_probe(sk); 3692 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3693 lost = tp->lost - lost; /* freshly marked lost */ 3694 tcp_rate_gen(sk, delivered, lost, &now, &rs); 3695 tcp_cong_control(sk, ack, delivered, flag, &rs); 3696 tcp_xmit_recovery(sk, rexmit); 3697 return 1; 3698 3699 no_queue: 3700 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3701 if (flag & FLAG_DSACKING_ACK) 3702 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3703 /* If this ack opens up a zero window, clear backoff. It was 3704 * being used to time the probes, and is probably far higher than 3705 * it needs to be for normal retransmission. 3706 */ 3707 if (tcp_send_head(sk)) 3708 tcp_ack_probe(sk); 3709 3710 if (tp->tlp_high_seq) 3711 tcp_process_tlp_ack(sk, ack, flag); 3712 return 1; 3713 3714 invalid_ack: 3715 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3716 return -1; 3717 3718 old_ack: 3719 /* If data was SACKed, tag it and see if we should send more data. 3720 * If data was DSACKed, see if we can undo a cwnd reduction. 3721 */ 3722 if (TCP_SKB_CB(skb)->sacked) { 3723 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3724 &sack_state); 3725 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3726 tcp_xmit_recovery(sk, rexmit); 3727 } 3728 3729 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3730 return 0; 3731 } 3732 3733 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3734 bool syn, struct tcp_fastopen_cookie *foc, 3735 bool exp_opt) 3736 { 3737 /* Valid only in SYN or SYN-ACK with an even length. */ 3738 if (!foc || !syn || len < 0 || (len & 1)) 3739 return; 3740 3741 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3742 len <= TCP_FASTOPEN_COOKIE_MAX) 3743 memcpy(foc->val, cookie, len); 3744 else if (len != 0) 3745 len = -1; 3746 foc->len = len; 3747 foc->exp = exp_opt; 3748 } 3749 3750 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3751 * But, this can also be called on packets in the established flow when 3752 * the fast version below fails. 3753 */ 3754 void tcp_parse_options(const struct sk_buff *skb, 3755 struct tcp_options_received *opt_rx, int estab, 3756 struct tcp_fastopen_cookie *foc) 3757 { 3758 const unsigned char *ptr; 3759 const struct tcphdr *th = tcp_hdr(skb); 3760 int length = (th->doff * 4) - sizeof(struct tcphdr); 3761 3762 ptr = (const unsigned char *)(th + 1); 3763 opt_rx->saw_tstamp = 0; 3764 3765 while (length > 0) { 3766 int opcode = *ptr++; 3767 int opsize; 3768 3769 switch (opcode) { 3770 case TCPOPT_EOL: 3771 return; 3772 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3773 length--; 3774 continue; 3775 default: 3776 opsize = *ptr++; 3777 if (opsize < 2) /* "silly options" */ 3778 return; 3779 if (opsize > length) 3780 return; /* don't parse partial options */ 3781 switch (opcode) { 3782 case TCPOPT_MSS: 3783 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3784 u16 in_mss = get_unaligned_be16(ptr); 3785 if (in_mss) { 3786 if (opt_rx->user_mss && 3787 opt_rx->user_mss < in_mss) 3788 in_mss = opt_rx->user_mss; 3789 opt_rx->mss_clamp = in_mss; 3790 } 3791 } 3792 break; 3793 case TCPOPT_WINDOW: 3794 if (opsize == TCPOLEN_WINDOW && th->syn && 3795 !estab && sysctl_tcp_window_scaling) { 3796 __u8 snd_wscale = *(__u8 *)ptr; 3797 opt_rx->wscale_ok = 1; 3798 if (snd_wscale > 14) { 3799 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3800 __func__, 3801 snd_wscale); 3802 snd_wscale = 14; 3803 } 3804 opt_rx->snd_wscale = snd_wscale; 3805 } 3806 break; 3807 case TCPOPT_TIMESTAMP: 3808 if ((opsize == TCPOLEN_TIMESTAMP) && 3809 ((estab && opt_rx->tstamp_ok) || 3810 (!estab && sysctl_tcp_timestamps))) { 3811 opt_rx->saw_tstamp = 1; 3812 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3813 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3814 } 3815 break; 3816 case TCPOPT_SACK_PERM: 3817 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3818 !estab && sysctl_tcp_sack) { 3819 opt_rx->sack_ok = TCP_SACK_SEEN; 3820 tcp_sack_reset(opt_rx); 3821 } 3822 break; 3823 3824 case TCPOPT_SACK: 3825 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3826 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3827 opt_rx->sack_ok) { 3828 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3829 } 3830 break; 3831 #ifdef CONFIG_TCP_MD5SIG 3832 case TCPOPT_MD5SIG: 3833 /* 3834 * The MD5 Hash has already been 3835 * checked (see tcp_v{4,6}_do_rcv()). 3836 */ 3837 break; 3838 #endif 3839 case TCPOPT_FASTOPEN: 3840 tcp_parse_fastopen_option( 3841 opsize - TCPOLEN_FASTOPEN_BASE, 3842 ptr, th->syn, foc, false); 3843 break; 3844 3845 case TCPOPT_EXP: 3846 /* Fast Open option shares code 254 using a 3847 * 16 bits magic number. 3848 */ 3849 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3850 get_unaligned_be16(ptr) == 3851 TCPOPT_FASTOPEN_MAGIC) 3852 tcp_parse_fastopen_option(opsize - 3853 TCPOLEN_EXP_FASTOPEN_BASE, 3854 ptr + 2, th->syn, foc, true); 3855 break; 3856 3857 } 3858 ptr += opsize-2; 3859 length -= opsize; 3860 } 3861 } 3862 } 3863 EXPORT_SYMBOL(tcp_parse_options); 3864 3865 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3866 { 3867 const __be32 *ptr = (const __be32 *)(th + 1); 3868 3869 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3870 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3871 tp->rx_opt.saw_tstamp = 1; 3872 ++ptr; 3873 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3874 ++ptr; 3875 if (*ptr) 3876 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3877 else 3878 tp->rx_opt.rcv_tsecr = 0; 3879 return true; 3880 } 3881 return false; 3882 } 3883 3884 /* Fast parse options. This hopes to only see timestamps. 3885 * If it is wrong it falls back on tcp_parse_options(). 3886 */ 3887 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3888 const struct tcphdr *th, struct tcp_sock *tp) 3889 { 3890 /* In the spirit of fast parsing, compare doff directly to constant 3891 * values. Because equality is used, short doff can be ignored here. 3892 */ 3893 if (th->doff == (sizeof(*th) / 4)) { 3894 tp->rx_opt.saw_tstamp = 0; 3895 return false; 3896 } else if (tp->rx_opt.tstamp_ok && 3897 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3898 if (tcp_parse_aligned_timestamp(tp, th)) 3899 return true; 3900 } 3901 3902 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3903 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3904 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3905 3906 return true; 3907 } 3908 3909 #ifdef CONFIG_TCP_MD5SIG 3910 /* 3911 * Parse MD5 Signature option 3912 */ 3913 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3914 { 3915 int length = (th->doff << 2) - sizeof(*th); 3916 const u8 *ptr = (const u8 *)(th + 1); 3917 3918 /* If the TCP option is too short, we can short cut */ 3919 if (length < TCPOLEN_MD5SIG) 3920 return NULL; 3921 3922 while (length > 0) { 3923 int opcode = *ptr++; 3924 int opsize; 3925 3926 switch (opcode) { 3927 case TCPOPT_EOL: 3928 return NULL; 3929 case TCPOPT_NOP: 3930 length--; 3931 continue; 3932 default: 3933 opsize = *ptr++; 3934 if (opsize < 2 || opsize > length) 3935 return NULL; 3936 if (opcode == TCPOPT_MD5SIG) 3937 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3938 } 3939 ptr += opsize - 2; 3940 length -= opsize; 3941 } 3942 return NULL; 3943 } 3944 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3945 #endif 3946 3947 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3948 * 3949 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3950 * it can pass through stack. So, the following predicate verifies that 3951 * this segment is not used for anything but congestion avoidance or 3952 * fast retransmit. Moreover, we even are able to eliminate most of such 3953 * second order effects, if we apply some small "replay" window (~RTO) 3954 * to timestamp space. 3955 * 3956 * All these measures still do not guarantee that we reject wrapped ACKs 3957 * on networks with high bandwidth, when sequence space is recycled fastly, 3958 * but it guarantees that such events will be very rare and do not affect 3959 * connection seriously. This doesn't look nice, but alas, PAWS is really 3960 * buggy extension. 3961 * 3962 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3963 * states that events when retransmit arrives after original data are rare. 3964 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3965 * the biggest problem on large power networks even with minor reordering. 3966 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3967 * up to bandwidth of 18Gigabit/sec. 8) ] 3968 */ 3969 3970 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3971 { 3972 const struct tcp_sock *tp = tcp_sk(sk); 3973 const struct tcphdr *th = tcp_hdr(skb); 3974 u32 seq = TCP_SKB_CB(skb)->seq; 3975 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3976 3977 return (/* 1. Pure ACK with correct sequence number. */ 3978 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3979 3980 /* 2. ... and duplicate ACK. */ 3981 ack == tp->snd_una && 3982 3983 /* 3. ... and does not update window. */ 3984 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3985 3986 /* 4. ... and sits in replay window. */ 3987 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3988 } 3989 3990 static inline bool tcp_paws_discard(const struct sock *sk, 3991 const struct sk_buff *skb) 3992 { 3993 const struct tcp_sock *tp = tcp_sk(sk); 3994 3995 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3996 !tcp_disordered_ack(sk, skb); 3997 } 3998 3999 /* Check segment sequence number for validity. 4000 * 4001 * Segment controls are considered valid, if the segment 4002 * fits to the window after truncation to the window. Acceptability 4003 * of data (and SYN, FIN, of course) is checked separately. 4004 * See tcp_data_queue(), for example. 4005 * 4006 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4007 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4008 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4009 * (borrowed from freebsd) 4010 */ 4011 4012 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4013 { 4014 return !before(end_seq, tp->rcv_wup) && 4015 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4016 } 4017 4018 /* When we get a reset we do this. */ 4019 void tcp_reset(struct sock *sk) 4020 { 4021 /* We want the right error as BSD sees it (and indeed as we do). */ 4022 switch (sk->sk_state) { 4023 case TCP_SYN_SENT: 4024 sk->sk_err = ECONNREFUSED; 4025 break; 4026 case TCP_CLOSE_WAIT: 4027 sk->sk_err = EPIPE; 4028 break; 4029 case TCP_CLOSE: 4030 return; 4031 default: 4032 sk->sk_err = ECONNRESET; 4033 } 4034 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4035 smp_wmb(); 4036 4037 if (!sock_flag(sk, SOCK_DEAD)) 4038 sk->sk_error_report(sk); 4039 4040 tcp_done(sk); 4041 } 4042 4043 /* 4044 * Process the FIN bit. This now behaves as it is supposed to work 4045 * and the FIN takes effect when it is validly part of sequence 4046 * space. Not before when we get holes. 4047 * 4048 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4049 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4050 * TIME-WAIT) 4051 * 4052 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4053 * close and we go into CLOSING (and later onto TIME-WAIT) 4054 * 4055 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4056 */ 4057 void tcp_fin(struct sock *sk) 4058 { 4059 struct tcp_sock *tp = tcp_sk(sk); 4060 4061 inet_csk_schedule_ack(sk); 4062 4063 sk->sk_shutdown |= RCV_SHUTDOWN; 4064 sock_set_flag(sk, SOCK_DONE); 4065 4066 switch (sk->sk_state) { 4067 case TCP_SYN_RECV: 4068 case TCP_ESTABLISHED: 4069 /* Move to CLOSE_WAIT */ 4070 tcp_set_state(sk, TCP_CLOSE_WAIT); 4071 inet_csk(sk)->icsk_ack.pingpong = 1; 4072 break; 4073 4074 case TCP_CLOSE_WAIT: 4075 case TCP_CLOSING: 4076 /* Received a retransmission of the FIN, do 4077 * nothing. 4078 */ 4079 break; 4080 case TCP_LAST_ACK: 4081 /* RFC793: Remain in the LAST-ACK state. */ 4082 break; 4083 4084 case TCP_FIN_WAIT1: 4085 /* This case occurs when a simultaneous close 4086 * happens, we must ack the received FIN and 4087 * enter the CLOSING state. 4088 */ 4089 tcp_send_ack(sk); 4090 tcp_set_state(sk, TCP_CLOSING); 4091 break; 4092 case TCP_FIN_WAIT2: 4093 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4094 tcp_send_ack(sk); 4095 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4096 break; 4097 default: 4098 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4099 * cases we should never reach this piece of code. 4100 */ 4101 pr_err("%s: Impossible, sk->sk_state=%d\n", 4102 __func__, sk->sk_state); 4103 break; 4104 } 4105 4106 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4107 * Probably, we should reset in this case. For now drop them. 4108 */ 4109 skb_rbtree_purge(&tp->out_of_order_queue); 4110 if (tcp_is_sack(tp)) 4111 tcp_sack_reset(&tp->rx_opt); 4112 sk_mem_reclaim(sk); 4113 4114 if (!sock_flag(sk, SOCK_DEAD)) { 4115 sk->sk_state_change(sk); 4116 4117 /* Do not send POLL_HUP for half duplex close. */ 4118 if (sk->sk_shutdown == SHUTDOWN_MASK || 4119 sk->sk_state == TCP_CLOSE) 4120 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4121 else 4122 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4123 } 4124 } 4125 4126 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4127 u32 end_seq) 4128 { 4129 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4130 if (before(seq, sp->start_seq)) 4131 sp->start_seq = seq; 4132 if (after(end_seq, sp->end_seq)) 4133 sp->end_seq = end_seq; 4134 return true; 4135 } 4136 return false; 4137 } 4138 4139 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4140 { 4141 struct tcp_sock *tp = tcp_sk(sk); 4142 4143 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4144 int mib_idx; 4145 4146 if (before(seq, tp->rcv_nxt)) 4147 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4148 else 4149 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4150 4151 NET_INC_STATS(sock_net(sk), mib_idx); 4152 4153 tp->rx_opt.dsack = 1; 4154 tp->duplicate_sack[0].start_seq = seq; 4155 tp->duplicate_sack[0].end_seq = end_seq; 4156 } 4157 } 4158 4159 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4160 { 4161 struct tcp_sock *tp = tcp_sk(sk); 4162 4163 if (!tp->rx_opt.dsack) 4164 tcp_dsack_set(sk, seq, end_seq); 4165 else 4166 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4167 } 4168 4169 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4170 { 4171 struct tcp_sock *tp = tcp_sk(sk); 4172 4173 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4174 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4175 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4176 tcp_enter_quickack_mode(sk); 4177 4178 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4179 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4180 4181 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4182 end_seq = tp->rcv_nxt; 4183 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4184 } 4185 } 4186 4187 tcp_send_ack(sk); 4188 } 4189 4190 /* These routines update the SACK block as out-of-order packets arrive or 4191 * in-order packets close up the sequence space. 4192 */ 4193 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4194 { 4195 int this_sack; 4196 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4197 struct tcp_sack_block *swalk = sp + 1; 4198 4199 /* See if the recent change to the first SACK eats into 4200 * or hits the sequence space of other SACK blocks, if so coalesce. 4201 */ 4202 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4203 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4204 int i; 4205 4206 /* Zap SWALK, by moving every further SACK up by one slot. 4207 * Decrease num_sacks. 4208 */ 4209 tp->rx_opt.num_sacks--; 4210 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4211 sp[i] = sp[i + 1]; 4212 continue; 4213 } 4214 this_sack++, swalk++; 4215 } 4216 } 4217 4218 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4219 { 4220 struct tcp_sock *tp = tcp_sk(sk); 4221 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4222 int cur_sacks = tp->rx_opt.num_sacks; 4223 int this_sack; 4224 4225 if (!cur_sacks) 4226 goto new_sack; 4227 4228 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4229 if (tcp_sack_extend(sp, seq, end_seq)) { 4230 /* Rotate this_sack to the first one. */ 4231 for (; this_sack > 0; this_sack--, sp--) 4232 swap(*sp, *(sp - 1)); 4233 if (cur_sacks > 1) 4234 tcp_sack_maybe_coalesce(tp); 4235 return; 4236 } 4237 } 4238 4239 /* Could not find an adjacent existing SACK, build a new one, 4240 * put it at the front, and shift everyone else down. We 4241 * always know there is at least one SACK present already here. 4242 * 4243 * If the sack array is full, forget about the last one. 4244 */ 4245 if (this_sack >= TCP_NUM_SACKS) { 4246 this_sack--; 4247 tp->rx_opt.num_sacks--; 4248 sp--; 4249 } 4250 for (; this_sack > 0; this_sack--, sp--) 4251 *sp = *(sp - 1); 4252 4253 new_sack: 4254 /* Build the new head SACK, and we're done. */ 4255 sp->start_seq = seq; 4256 sp->end_seq = end_seq; 4257 tp->rx_opt.num_sacks++; 4258 } 4259 4260 /* RCV.NXT advances, some SACKs should be eaten. */ 4261 4262 static void tcp_sack_remove(struct tcp_sock *tp) 4263 { 4264 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4265 int num_sacks = tp->rx_opt.num_sacks; 4266 int this_sack; 4267 4268 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4269 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4270 tp->rx_opt.num_sacks = 0; 4271 return; 4272 } 4273 4274 for (this_sack = 0; this_sack < num_sacks;) { 4275 /* Check if the start of the sack is covered by RCV.NXT. */ 4276 if (!before(tp->rcv_nxt, sp->start_seq)) { 4277 int i; 4278 4279 /* RCV.NXT must cover all the block! */ 4280 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4281 4282 /* Zap this SACK, by moving forward any other SACKS. */ 4283 for (i = this_sack+1; i < num_sacks; i++) 4284 tp->selective_acks[i-1] = tp->selective_acks[i]; 4285 num_sacks--; 4286 continue; 4287 } 4288 this_sack++; 4289 sp++; 4290 } 4291 tp->rx_opt.num_sacks = num_sacks; 4292 } 4293 4294 /** 4295 * tcp_try_coalesce - try to merge skb to prior one 4296 * @sk: socket 4297 * @to: prior buffer 4298 * @from: buffer to add in queue 4299 * @fragstolen: pointer to boolean 4300 * 4301 * Before queueing skb @from after @to, try to merge them 4302 * to reduce overall memory use and queue lengths, if cost is small. 4303 * Packets in ofo or receive queues can stay a long time. 4304 * Better try to coalesce them right now to avoid future collapses. 4305 * Returns true if caller should free @from instead of queueing it 4306 */ 4307 static bool tcp_try_coalesce(struct sock *sk, 4308 struct sk_buff *to, 4309 struct sk_buff *from, 4310 bool *fragstolen) 4311 { 4312 int delta; 4313 4314 *fragstolen = false; 4315 4316 /* Its possible this segment overlaps with prior segment in queue */ 4317 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4318 return false; 4319 4320 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4321 return false; 4322 4323 atomic_add(delta, &sk->sk_rmem_alloc); 4324 sk_mem_charge(sk, delta); 4325 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4326 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4327 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4328 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4329 return true; 4330 } 4331 4332 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4333 { 4334 sk_drops_add(sk, skb); 4335 __kfree_skb(skb); 4336 } 4337 4338 /* This one checks to see if we can put data from the 4339 * out_of_order queue into the receive_queue. 4340 */ 4341 static void tcp_ofo_queue(struct sock *sk) 4342 { 4343 struct tcp_sock *tp = tcp_sk(sk); 4344 __u32 dsack_high = tp->rcv_nxt; 4345 bool fin, fragstolen, eaten; 4346 struct sk_buff *skb, *tail; 4347 struct rb_node *p; 4348 4349 p = rb_first(&tp->out_of_order_queue); 4350 while (p) { 4351 skb = rb_entry(p, struct sk_buff, rbnode); 4352 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4353 break; 4354 4355 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4356 __u32 dsack = dsack_high; 4357 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4358 dsack_high = TCP_SKB_CB(skb)->end_seq; 4359 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4360 } 4361 p = rb_next(p); 4362 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4363 4364 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4365 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4366 tcp_drop(sk, skb); 4367 continue; 4368 } 4369 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4370 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4371 TCP_SKB_CB(skb)->end_seq); 4372 4373 tail = skb_peek_tail(&sk->sk_receive_queue); 4374 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4375 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4376 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4377 if (!eaten) 4378 __skb_queue_tail(&sk->sk_receive_queue, skb); 4379 else 4380 kfree_skb_partial(skb, fragstolen); 4381 4382 if (unlikely(fin)) { 4383 tcp_fin(sk); 4384 /* tcp_fin() purges tp->out_of_order_queue, 4385 * so we must end this loop right now. 4386 */ 4387 break; 4388 } 4389 } 4390 } 4391 4392 static bool tcp_prune_ofo_queue(struct sock *sk); 4393 static int tcp_prune_queue(struct sock *sk); 4394 4395 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4396 unsigned int size) 4397 { 4398 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4399 !sk_rmem_schedule(sk, skb, size)) { 4400 4401 if (tcp_prune_queue(sk) < 0) 4402 return -1; 4403 4404 while (!sk_rmem_schedule(sk, skb, size)) { 4405 if (!tcp_prune_ofo_queue(sk)) 4406 return -1; 4407 } 4408 } 4409 return 0; 4410 } 4411 4412 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4413 { 4414 struct tcp_sock *tp = tcp_sk(sk); 4415 struct rb_node **p, *q, *parent; 4416 struct sk_buff *skb1; 4417 u32 seq, end_seq; 4418 bool fragstolen; 4419 4420 tcp_ecn_check_ce(tp, skb); 4421 4422 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4423 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4424 tcp_drop(sk, skb); 4425 return; 4426 } 4427 4428 /* Disable header prediction. */ 4429 tp->pred_flags = 0; 4430 inet_csk_schedule_ack(sk); 4431 4432 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4433 seq = TCP_SKB_CB(skb)->seq; 4434 end_seq = TCP_SKB_CB(skb)->end_seq; 4435 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4436 tp->rcv_nxt, seq, end_seq); 4437 4438 p = &tp->out_of_order_queue.rb_node; 4439 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4440 /* Initial out of order segment, build 1 SACK. */ 4441 if (tcp_is_sack(tp)) { 4442 tp->rx_opt.num_sacks = 1; 4443 tp->selective_acks[0].start_seq = seq; 4444 tp->selective_acks[0].end_seq = end_seq; 4445 } 4446 rb_link_node(&skb->rbnode, NULL, p); 4447 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4448 tp->ooo_last_skb = skb; 4449 goto end; 4450 } 4451 4452 /* In the typical case, we are adding an skb to the end of the list. 4453 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4454 */ 4455 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4456 coalesce_done: 4457 tcp_grow_window(sk, skb); 4458 kfree_skb_partial(skb, fragstolen); 4459 skb = NULL; 4460 goto add_sack; 4461 } 4462 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4463 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4464 parent = &tp->ooo_last_skb->rbnode; 4465 p = &parent->rb_right; 4466 goto insert; 4467 } 4468 4469 /* Find place to insert this segment. Handle overlaps on the way. */ 4470 parent = NULL; 4471 while (*p) { 4472 parent = *p; 4473 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4474 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4475 p = &parent->rb_left; 4476 continue; 4477 } 4478 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4479 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4480 /* All the bits are present. Drop. */ 4481 NET_INC_STATS(sock_net(sk), 4482 LINUX_MIB_TCPOFOMERGE); 4483 __kfree_skb(skb); 4484 skb = NULL; 4485 tcp_dsack_set(sk, seq, end_seq); 4486 goto add_sack; 4487 } 4488 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4489 /* Partial overlap. */ 4490 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4491 } else { 4492 /* skb's seq == skb1's seq and skb covers skb1. 4493 * Replace skb1 with skb. 4494 */ 4495 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4496 &tp->out_of_order_queue); 4497 tcp_dsack_extend(sk, 4498 TCP_SKB_CB(skb1)->seq, 4499 TCP_SKB_CB(skb1)->end_seq); 4500 NET_INC_STATS(sock_net(sk), 4501 LINUX_MIB_TCPOFOMERGE); 4502 __kfree_skb(skb1); 4503 goto merge_right; 4504 } 4505 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4506 goto coalesce_done; 4507 } 4508 p = &parent->rb_right; 4509 } 4510 insert: 4511 /* Insert segment into RB tree. */ 4512 rb_link_node(&skb->rbnode, parent, p); 4513 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4514 4515 merge_right: 4516 /* Remove other segments covered by skb. */ 4517 while ((q = rb_next(&skb->rbnode)) != NULL) { 4518 skb1 = rb_entry(q, struct sk_buff, rbnode); 4519 4520 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4521 break; 4522 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4523 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4524 end_seq); 4525 break; 4526 } 4527 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4528 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4529 TCP_SKB_CB(skb1)->end_seq); 4530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4531 tcp_drop(sk, skb1); 4532 } 4533 /* If there is no skb after us, we are the last_skb ! */ 4534 if (!q) 4535 tp->ooo_last_skb = skb; 4536 4537 add_sack: 4538 if (tcp_is_sack(tp)) 4539 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4540 end: 4541 if (skb) { 4542 tcp_grow_window(sk, skb); 4543 skb_set_owner_r(skb, sk); 4544 } 4545 } 4546 4547 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4548 bool *fragstolen) 4549 { 4550 int eaten; 4551 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4552 4553 __skb_pull(skb, hdrlen); 4554 eaten = (tail && 4555 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4556 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4557 if (!eaten) { 4558 __skb_queue_tail(&sk->sk_receive_queue, skb); 4559 skb_set_owner_r(skb, sk); 4560 } 4561 return eaten; 4562 } 4563 4564 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4565 { 4566 struct sk_buff *skb; 4567 int err = -ENOMEM; 4568 int data_len = 0; 4569 bool fragstolen; 4570 4571 if (size == 0) 4572 return 0; 4573 4574 if (size > PAGE_SIZE) { 4575 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4576 4577 data_len = npages << PAGE_SHIFT; 4578 size = data_len + (size & ~PAGE_MASK); 4579 } 4580 skb = alloc_skb_with_frags(size - data_len, data_len, 4581 PAGE_ALLOC_COSTLY_ORDER, 4582 &err, sk->sk_allocation); 4583 if (!skb) 4584 goto err; 4585 4586 skb_put(skb, size - data_len); 4587 skb->data_len = data_len; 4588 skb->len = size; 4589 4590 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4591 goto err_free; 4592 4593 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4594 if (err) 4595 goto err_free; 4596 4597 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4598 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4599 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4600 4601 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4602 WARN_ON_ONCE(fragstolen); /* should not happen */ 4603 __kfree_skb(skb); 4604 } 4605 return size; 4606 4607 err_free: 4608 kfree_skb(skb); 4609 err: 4610 return err; 4611 4612 } 4613 4614 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4615 { 4616 struct tcp_sock *tp = tcp_sk(sk); 4617 bool fragstolen = false; 4618 int eaten = -1; 4619 4620 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4621 __kfree_skb(skb); 4622 return; 4623 } 4624 skb_dst_drop(skb); 4625 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4626 4627 tcp_ecn_accept_cwr(tp, skb); 4628 4629 tp->rx_opt.dsack = 0; 4630 4631 /* Queue data for delivery to the user. 4632 * Packets in sequence go to the receive queue. 4633 * Out of sequence packets to the out_of_order_queue. 4634 */ 4635 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4636 if (tcp_receive_window(tp) == 0) 4637 goto out_of_window; 4638 4639 /* Ok. In sequence. In window. */ 4640 if (tp->ucopy.task == current && 4641 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4642 sock_owned_by_user(sk) && !tp->urg_data) { 4643 int chunk = min_t(unsigned int, skb->len, 4644 tp->ucopy.len); 4645 4646 __set_current_state(TASK_RUNNING); 4647 4648 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4649 tp->ucopy.len -= chunk; 4650 tp->copied_seq += chunk; 4651 eaten = (chunk == skb->len); 4652 tcp_rcv_space_adjust(sk); 4653 } 4654 } 4655 4656 if (eaten <= 0) { 4657 queue_and_out: 4658 if (eaten < 0) { 4659 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4660 sk_forced_mem_schedule(sk, skb->truesize); 4661 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4662 goto drop; 4663 } 4664 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4665 } 4666 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4667 if (skb->len) 4668 tcp_event_data_recv(sk, skb); 4669 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4670 tcp_fin(sk); 4671 4672 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4673 tcp_ofo_queue(sk); 4674 4675 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4676 * gap in queue is filled. 4677 */ 4678 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4679 inet_csk(sk)->icsk_ack.pingpong = 0; 4680 } 4681 4682 if (tp->rx_opt.num_sacks) 4683 tcp_sack_remove(tp); 4684 4685 tcp_fast_path_check(sk); 4686 4687 if (eaten > 0) 4688 kfree_skb_partial(skb, fragstolen); 4689 if (!sock_flag(sk, SOCK_DEAD)) 4690 sk->sk_data_ready(sk); 4691 return; 4692 } 4693 4694 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4695 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4696 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4697 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4698 4699 out_of_window: 4700 tcp_enter_quickack_mode(sk); 4701 inet_csk_schedule_ack(sk); 4702 drop: 4703 tcp_drop(sk, skb); 4704 return; 4705 } 4706 4707 /* Out of window. F.e. zero window probe. */ 4708 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4709 goto out_of_window; 4710 4711 tcp_enter_quickack_mode(sk); 4712 4713 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4714 /* Partial packet, seq < rcv_next < end_seq */ 4715 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4716 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4717 TCP_SKB_CB(skb)->end_seq); 4718 4719 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4720 4721 /* If window is closed, drop tail of packet. But after 4722 * remembering D-SACK for its head made in previous line. 4723 */ 4724 if (!tcp_receive_window(tp)) 4725 goto out_of_window; 4726 goto queue_and_out; 4727 } 4728 4729 tcp_data_queue_ofo(sk, skb); 4730 } 4731 4732 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4733 { 4734 if (list) 4735 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4736 4737 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4738 } 4739 4740 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4741 struct sk_buff_head *list, 4742 struct rb_root *root) 4743 { 4744 struct sk_buff *next = tcp_skb_next(skb, list); 4745 4746 if (list) 4747 __skb_unlink(skb, list); 4748 else 4749 rb_erase(&skb->rbnode, root); 4750 4751 __kfree_skb(skb); 4752 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4753 4754 return next; 4755 } 4756 4757 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4758 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4759 { 4760 struct rb_node **p = &root->rb_node; 4761 struct rb_node *parent = NULL; 4762 struct sk_buff *skb1; 4763 4764 while (*p) { 4765 parent = *p; 4766 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4767 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4768 p = &parent->rb_left; 4769 else 4770 p = &parent->rb_right; 4771 } 4772 rb_link_node(&skb->rbnode, parent, p); 4773 rb_insert_color(&skb->rbnode, root); 4774 } 4775 4776 /* Collapse contiguous sequence of skbs head..tail with 4777 * sequence numbers start..end. 4778 * 4779 * If tail is NULL, this means until the end of the queue. 4780 * 4781 * Segments with FIN/SYN are not collapsed (only because this 4782 * simplifies code) 4783 */ 4784 static void 4785 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4786 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4787 { 4788 struct sk_buff *skb = head, *n; 4789 struct sk_buff_head tmp; 4790 bool end_of_skbs; 4791 4792 /* First, check that queue is collapsible and find 4793 * the point where collapsing can be useful. 4794 */ 4795 restart: 4796 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4797 n = tcp_skb_next(skb, list); 4798 4799 /* No new bits? It is possible on ofo queue. */ 4800 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4801 skb = tcp_collapse_one(sk, skb, list, root); 4802 if (!skb) 4803 break; 4804 goto restart; 4805 } 4806 4807 /* The first skb to collapse is: 4808 * - not SYN/FIN and 4809 * - bloated or contains data before "start" or 4810 * overlaps to the next one. 4811 */ 4812 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4813 (tcp_win_from_space(skb->truesize) > skb->len || 4814 before(TCP_SKB_CB(skb)->seq, start))) { 4815 end_of_skbs = false; 4816 break; 4817 } 4818 4819 if (n && n != tail && 4820 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4821 end_of_skbs = false; 4822 break; 4823 } 4824 4825 /* Decided to skip this, advance start seq. */ 4826 start = TCP_SKB_CB(skb)->end_seq; 4827 } 4828 if (end_of_skbs || 4829 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4830 return; 4831 4832 __skb_queue_head_init(&tmp); 4833 4834 while (before(start, end)) { 4835 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4836 struct sk_buff *nskb; 4837 4838 nskb = alloc_skb(copy, GFP_ATOMIC); 4839 if (!nskb) 4840 break; 4841 4842 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4843 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4844 if (list) 4845 __skb_queue_before(list, skb, nskb); 4846 else 4847 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4848 skb_set_owner_r(nskb, sk); 4849 4850 /* Copy data, releasing collapsed skbs. */ 4851 while (copy > 0) { 4852 int offset = start - TCP_SKB_CB(skb)->seq; 4853 int size = TCP_SKB_CB(skb)->end_seq - start; 4854 4855 BUG_ON(offset < 0); 4856 if (size > 0) { 4857 size = min(copy, size); 4858 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4859 BUG(); 4860 TCP_SKB_CB(nskb)->end_seq += size; 4861 copy -= size; 4862 start += size; 4863 } 4864 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4865 skb = tcp_collapse_one(sk, skb, list, root); 4866 if (!skb || 4867 skb == tail || 4868 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4869 goto end; 4870 } 4871 } 4872 } 4873 end: 4874 skb_queue_walk_safe(&tmp, skb, n) 4875 tcp_rbtree_insert(root, skb); 4876 } 4877 4878 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4879 * and tcp_collapse() them until all the queue is collapsed. 4880 */ 4881 static void tcp_collapse_ofo_queue(struct sock *sk) 4882 { 4883 struct tcp_sock *tp = tcp_sk(sk); 4884 struct sk_buff *skb, *head; 4885 struct rb_node *p; 4886 u32 start, end; 4887 4888 p = rb_first(&tp->out_of_order_queue); 4889 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4890 new_range: 4891 if (!skb) { 4892 p = rb_last(&tp->out_of_order_queue); 4893 /* Note: This is possible p is NULL here. We do not 4894 * use rb_entry_safe(), as ooo_last_skb is valid only 4895 * if rbtree is not empty. 4896 */ 4897 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4898 return; 4899 } 4900 start = TCP_SKB_CB(skb)->seq; 4901 end = TCP_SKB_CB(skb)->end_seq; 4902 4903 for (head = skb;;) { 4904 skb = tcp_skb_next(skb, NULL); 4905 4906 /* Range is terminated when we see a gap or when 4907 * we are at the queue end. 4908 */ 4909 if (!skb || 4910 after(TCP_SKB_CB(skb)->seq, end) || 4911 before(TCP_SKB_CB(skb)->end_seq, start)) { 4912 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4913 head, skb, start, end); 4914 goto new_range; 4915 } 4916 4917 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4918 start = TCP_SKB_CB(skb)->seq; 4919 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4920 end = TCP_SKB_CB(skb)->end_seq; 4921 } 4922 } 4923 4924 /* 4925 * Clean the out-of-order queue to make room. 4926 * We drop high sequences packets to : 4927 * 1) Let a chance for holes to be filled. 4928 * 2) not add too big latencies if thousands of packets sit there. 4929 * (But if application shrinks SO_RCVBUF, we could still end up 4930 * freeing whole queue here) 4931 * 4932 * Return true if queue has shrunk. 4933 */ 4934 static bool tcp_prune_ofo_queue(struct sock *sk) 4935 { 4936 struct tcp_sock *tp = tcp_sk(sk); 4937 struct rb_node *node, *prev; 4938 4939 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4940 return false; 4941 4942 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4943 node = &tp->ooo_last_skb->rbnode; 4944 do { 4945 prev = rb_prev(node); 4946 rb_erase(node, &tp->out_of_order_queue); 4947 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4948 sk_mem_reclaim(sk); 4949 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4950 !tcp_under_memory_pressure(sk)) 4951 break; 4952 node = prev; 4953 } while (node); 4954 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4955 4956 /* Reset SACK state. A conforming SACK implementation will 4957 * do the same at a timeout based retransmit. When a connection 4958 * is in a sad state like this, we care only about integrity 4959 * of the connection not performance. 4960 */ 4961 if (tp->rx_opt.sack_ok) 4962 tcp_sack_reset(&tp->rx_opt); 4963 return true; 4964 } 4965 4966 /* Reduce allocated memory if we can, trying to get 4967 * the socket within its memory limits again. 4968 * 4969 * Return less than zero if we should start dropping frames 4970 * until the socket owning process reads some of the data 4971 * to stabilize the situation. 4972 */ 4973 static int tcp_prune_queue(struct sock *sk) 4974 { 4975 struct tcp_sock *tp = tcp_sk(sk); 4976 4977 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4978 4979 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4980 4981 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4982 tcp_clamp_window(sk); 4983 else if (tcp_under_memory_pressure(sk)) 4984 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4985 4986 tcp_collapse_ofo_queue(sk); 4987 if (!skb_queue_empty(&sk->sk_receive_queue)) 4988 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4989 skb_peek(&sk->sk_receive_queue), 4990 NULL, 4991 tp->copied_seq, tp->rcv_nxt); 4992 sk_mem_reclaim(sk); 4993 4994 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4995 return 0; 4996 4997 /* Collapsing did not help, destructive actions follow. 4998 * This must not ever occur. */ 4999 5000 tcp_prune_ofo_queue(sk); 5001 5002 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5003 return 0; 5004 5005 /* If we are really being abused, tell the caller to silently 5006 * drop receive data on the floor. It will get retransmitted 5007 * and hopefully then we'll have sufficient space. 5008 */ 5009 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5010 5011 /* Massive buffer overcommit. */ 5012 tp->pred_flags = 0; 5013 return -1; 5014 } 5015 5016 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5017 { 5018 const struct tcp_sock *tp = tcp_sk(sk); 5019 5020 /* If the user specified a specific send buffer setting, do 5021 * not modify it. 5022 */ 5023 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5024 return false; 5025 5026 /* If we are under global TCP memory pressure, do not expand. */ 5027 if (tcp_under_memory_pressure(sk)) 5028 return false; 5029 5030 /* If we are under soft global TCP memory pressure, do not expand. */ 5031 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5032 return false; 5033 5034 /* If we filled the congestion window, do not expand. */ 5035 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5036 return false; 5037 5038 return true; 5039 } 5040 5041 /* When incoming ACK allowed to free some skb from write_queue, 5042 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5043 * on the exit from tcp input handler. 5044 * 5045 * PROBLEM: sndbuf expansion does not work well with largesend. 5046 */ 5047 static void tcp_new_space(struct sock *sk) 5048 { 5049 struct tcp_sock *tp = tcp_sk(sk); 5050 5051 if (tcp_should_expand_sndbuf(sk)) { 5052 tcp_sndbuf_expand(sk); 5053 tp->snd_cwnd_stamp = tcp_time_stamp; 5054 } 5055 5056 sk->sk_write_space(sk); 5057 } 5058 5059 static void tcp_check_space(struct sock *sk) 5060 { 5061 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5062 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5063 /* pairs with tcp_poll() */ 5064 smp_mb__after_atomic(); 5065 if (sk->sk_socket && 5066 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5067 tcp_new_space(sk); 5068 } 5069 } 5070 5071 static inline void tcp_data_snd_check(struct sock *sk) 5072 { 5073 tcp_push_pending_frames(sk); 5074 tcp_check_space(sk); 5075 } 5076 5077 /* 5078 * Check if sending an ack is needed. 5079 */ 5080 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5081 { 5082 struct tcp_sock *tp = tcp_sk(sk); 5083 5084 /* More than one full frame received... */ 5085 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5086 /* ... and right edge of window advances far enough. 5087 * (tcp_recvmsg() will send ACK otherwise). Or... 5088 */ 5089 __tcp_select_window(sk) >= tp->rcv_wnd) || 5090 /* We ACK each frame or... */ 5091 tcp_in_quickack_mode(sk) || 5092 /* We have out of order data. */ 5093 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5094 /* Then ack it now */ 5095 tcp_send_ack(sk); 5096 } else { 5097 /* Else, send delayed ack. */ 5098 tcp_send_delayed_ack(sk); 5099 } 5100 } 5101 5102 static inline void tcp_ack_snd_check(struct sock *sk) 5103 { 5104 if (!inet_csk_ack_scheduled(sk)) { 5105 /* We sent a data segment already. */ 5106 return; 5107 } 5108 __tcp_ack_snd_check(sk, 1); 5109 } 5110 5111 /* 5112 * This routine is only called when we have urgent data 5113 * signaled. Its the 'slow' part of tcp_urg. It could be 5114 * moved inline now as tcp_urg is only called from one 5115 * place. We handle URGent data wrong. We have to - as 5116 * BSD still doesn't use the correction from RFC961. 5117 * For 1003.1g we should support a new option TCP_STDURG to permit 5118 * either form (or just set the sysctl tcp_stdurg). 5119 */ 5120 5121 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5122 { 5123 struct tcp_sock *tp = tcp_sk(sk); 5124 u32 ptr = ntohs(th->urg_ptr); 5125 5126 if (ptr && !sysctl_tcp_stdurg) 5127 ptr--; 5128 ptr += ntohl(th->seq); 5129 5130 /* Ignore urgent data that we've already seen and read. */ 5131 if (after(tp->copied_seq, ptr)) 5132 return; 5133 5134 /* Do not replay urg ptr. 5135 * 5136 * NOTE: interesting situation not covered by specs. 5137 * Misbehaving sender may send urg ptr, pointing to segment, 5138 * which we already have in ofo queue. We are not able to fetch 5139 * such data and will stay in TCP_URG_NOTYET until will be eaten 5140 * by recvmsg(). Seems, we are not obliged to handle such wicked 5141 * situations. But it is worth to think about possibility of some 5142 * DoSes using some hypothetical application level deadlock. 5143 */ 5144 if (before(ptr, tp->rcv_nxt)) 5145 return; 5146 5147 /* Do we already have a newer (or duplicate) urgent pointer? */ 5148 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5149 return; 5150 5151 /* Tell the world about our new urgent pointer. */ 5152 sk_send_sigurg(sk); 5153 5154 /* We may be adding urgent data when the last byte read was 5155 * urgent. To do this requires some care. We cannot just ignore 5156 * tp->copied_seq since we would read the last urgent byte again 5157 * as data, nor can we alter copied_seq until this data arrives 5158 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5159 * 5160 * NOTE. Double Dutch. Rendering to plain English: author of comment 5161 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5162 * and expect that both A and B disappear from stream. This is _wrong_. 5163 * Though this happens in BSD with high probability, this is occasional. 5164 * Any application relying on this is buggy. Note also, that fix "works" 5165 * only in this artificial test. Insert some normal data between A and B and we will 5166 * decline of BSD again. Verdict: it is better to remove to trap 5167 * buggy users. 5168 */ 5169 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5170 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5171 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5172 tp->copied_seq++; 5173 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5174 __skb_unlink(skb, &sk->sk_receive_queue); 5175 __kfree_skb(skb); 5176 } 5177 } 5178 5179 tp->urg_data = TCP_URG_NOTYET; 5180 tp->urg_seq = ptr; 5181 5182 /* Disable header prediction. */ 5183 tp->pred_flags = 0; 5184 } 5185 5186 /* This is the 'fast' part of urgent handling. */ 5187 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5188 { 5189 struct tcp_sock *tp = tcp_sk(sk); 5190 5191 /* Check if we get a new urgent pointer - normally not. */ 5192 if (th->urg) 5193 tcp_check_urg(sk, th); 5194 5195 /* Do we wait for any urgent data? - normally not... */ 5196 if (tp->urg_data == TCP_URG_NOTYET) { 5197 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5198 th->syn; 5199 5200 /* Is the urgent pointer pointing into this packet? */ 5201 if (ptr < skb->len) { 5202 u8 tmp; 5203 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5204 BUG(); 5205 tp->urg_data = TCP_URG_VALID | tmp; 5206 if (!sock_flag(sk, SOCK_DEAD)) 5207 sk->sk_data_ready(sk); 5208 } 5209 } 5210 } 5211 5212 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5213 { 5214 struct tcp_sock *tp = tcp_sk(sk); 5215 int chunk = skb->len - hlen; 5216 int err; 5217 5218 if (skb_csum_unnecessary(skb)) 5219 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5220 else 5221 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5222 5223 if (!err) { 5224 tp->ucopy.len -= chunk; 5225 tp->copied_seq += chunk; 5226 tcp_rcv_space_adjust(sk); 5227 } 5228 5229 return err; 5230 } 5231 5232 /* Does PAWS and seqno based validation of an incoming segment, flags will 5233 * play significant role here. 5234 */ 5235 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5236 const struct tcphdr *th, int syn_inerr) 5237 { 5238 struct tcp_sock *tp = tcp_sk(sk); 5239 bool rst_seq_match = false; 5240 5241 /* RFC1323: H1. Apply PAWS check first. */ 5242 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5243 tcp_paws_discard(sk, skb)) { 5244 if (!th->rst) { 5245 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5246 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5247 LINUX_MIB_TCPACKSKIPPEDPAWS, 5248 &tp->last_oow_ack_time)) 5249 tcp_send_dupack(sk, skb); 5250 goto discard; 5251 } 5252 /* Reset is accepted even if it did not pass PAWS. */ 5253 } 5254 5255 /* Step 1: check sequence number */ 5256 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5257 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5258 * (RST) segments are validated by checking their SEQ-fields." 5259 * And page 69: "If an incoming segment is not acceptable, 5260 * an acknowledgment should be sent in reply (unless the RST 5261 * bit is set, if so drop the segment and return)". 5262 */ 5263 if (!th->rst) { 5264 if (th->syn) 5265 goto syn_challenge; 5266 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5267 LINUX_MIB_TCPACKSKIPPEDSEQ, 5268 &tp->last_oow_ack_time)) 5269 tcp_send_dupack(sk, skb); 5270 } 5271 goto discard; 5272 } 5273 5274 /* Step 2: check RST bit */ 5275 if (th->rst) { 5276 /* RFC 5961 3.2 (extend to match against SACK too if available): 5277 * If seq num matches RCV.NXT or the right-most SACK block, 5278 * then 5279 * RESET the connection 5280 * else 5281 * Send a challenge ACK 5282 */ 5283 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5284 rst_seq_match = true; 5285 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5286 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5287 int max_sack = sp[0].end_seq; 5288 int this_sack; 5289 5290 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5291 ++this_sack) { 5292 max_sack = after(sp[this_sack].end_seq, 5293 max_sack) ? 5294 sp[this_sack].end_seq : max_sack; 5295 } 5296 5297 if (TCP_SKB_CB(skb)->seq == max_sack) 5298 rst_seq_match = true; 5299 } 5300 5301 if (rst_seq_match) 5302 tcp_reset(sk); 5303 else 5304 tcp_send_challenge_ack(sk, skb); 5305 goto discard; 5306 } 5307 5308 /* step 3: check security and precedence [ignored] */ 5309 5310 /* step 4: Check for a SYN 5311 * RFC 5961 4.2 : Send a challenge ack 5312 */ 5313 if (th->syn) { 5314 syn_challenge: 5315 if (syn_inerr) 5316 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5317 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5318 tcp_send_challenge_ack(sk, skb); 5319 goto discard; 5320 } 5321 5322 return true; 5323 5324 discard: 5325 tcp_drop(sk, skb); 5326 return false; 5327 } 5328 5329 /* 5330 * TCP receive function for the ESTABLISHED state. 5331 * 5332 * It is split into a fast path and a slow path. The fast path is 5333 * disabled when: 5334 * - A zero window was announced from us - zero window probing 5335 * is only handled properly in the slow path. 5336 * - Out of order segments arrived. 5337 * - Urgent data is expected. 5338 * - There is no buffer space left 5339 * - Unexpected TCP flags/window values/header lengths are received 5340 * (detected by checking the TCP header against pred_flags) 5341 * - Data is sent in both directions. Fast path only supports pure senders 5342 * or pure receivers (this means either the sequence number or the ack 5343 * value must stay constant) 5344 * - Unexpected TCP option. 5345 * 5346 * When these conditions are not satisfied it drops into a standard 5347 * receive procedure patterned after RFC793 to handle all cases. 5348 * The first three cases are guaranteed by proper pred_flags setting, 5349 * the rest is checked inline. Fast processing is turned on in 5350 * tcp_data_queue when everything is OK. 5351 */ 5352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5353 const struct tcphdr *th, unsigned int len) 5354 { 5355 struct tcp_sock *tp = tcp_sk(sk); 5356 5357 if (unlikely(!sk->sk_rx_dst)) 5358 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5359 /* 5360 * Header prediction. 5361 * The code loosely follows the one in the famous 5362 * "30 instruction TCP receive" Van Jacobson mail. 5363 * 5364 * Van's trick is to deposit buffers into socket queue 5365 * on a device interrupt, to call tcp_recv function 5366 * on the receive process context and checksum and copy 5367 * the buffer to user space. smart... 5368 * 5369 * Our current scheme is not silly either but we take the 5370 * extra cost of the net_bh soft interrupt processing... 5371 * We do checksum and copy also but from device to kernel. 5372 */ 5373 5374 tp->rx_opt.saw_tstamp = 0; 5375 5376 /* pred_flags is 0xS?10 << 16 + snd_wnd 5377 * if header_prediction is to be made 5378 * 'S' will always be tp->tcp_header_len >> 2 5379 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5380 * turn it off (when there are holes in the receive 5381 * space for instance) 5382 * PSH flag is ignored. 5383 */ 5384 5385 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5386 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5387 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5388 int tcp_header_len = tp->tcp_header_len; 5389 5390 /* Timestamp header prediction: tcp_header_len 5391 * is automatically equal to th->doff*4 due to pred_flags 5392 * match. 5393 */ 5394 5395 /* Check timestamp */ 5396 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5397 /* No? Slow path! */ 5398 if (!tcp_parse_aligned_timestamp(tp, th)) 5399 goto slow_path; 5400 5401 /* If PAWS failed, check it more carefully in slow path */ 5402 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5403 goto slow_path; 5404 5405 /* DO NOT update ts_recent here, if checksum fails 5406 * and timestamp was corrupted part, it will result 5407 * in a hung connection since we will drop all 5408 * future packets due to the PAWS test. 5409 */ 5410 } 5411 5412 if (len <= tcp_header_len) { 5413 /* Bulk data transfer: sender */ 5414 if (len == tcp_header_len) { 5415 /* Predicted packet is in window by definition. 5416 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5417 * Hence, check seq<=rcv_wup reduces to: 5418 */ 5419 if (tcp_header_len == 5420 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5421 tp->rcv_nxt == tp->rcv_wup) 5422 tcp_store_ts_recent(tp); 5423 5424 /* We know that such packets are checksummed 5425 * on entry. 5426 */ 5427 tcp_ack(sk, skb, 0); 5428 __kfree_skb(skb); 5429 tcp_data_snd_check(sk); 5430 return; 5431 } else { /* Header too small */ 5432 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5433 goto discard; 5434 } 5435 } else { 5436 int eaten = 0; 5437 bool fragstolen = false; 5438 5439 if (tp->ucopy.task == current && 5440 tp->copied_seq == tp->rcv_nxt && 5441 len - tcp_header_len <= tp->ucopy.len && 5442 sock_owned_by_user(sk)) { 5443 __set_current_state(TASK_RUNNING); 5444 5445 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5446 /* Predicted packet is in window by definition. 5447 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5448 * Hence, check seq<=rcv_wup reduces to: 5449 */ 5450 if (tcp_header_len == 5451 (sizeof(struct tcphdr) + 5452 TCPOLEN_TSTAMP_ALIGNED) && 5453 tp->rcv_nxt == tp->rcv_wup) 5454 tcp_store_ts_recent(tp); 5455 5456 tcp_rcv_rtt_measure_ts(sk, skb); 5457 5458 __skb_pull(skb, tcp_header_len); 5459 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5460 NET_INC_STATS(sock_net(sk), 5461 LINUX_MIB_TCPHPHITSTOUSER); 5462 eaten = 1; 5463 } 5464 } 5465 if (!eaten) { 5466 if (tcp_checksum_complete(skb)) 5467 goto csum_error; 5468 5469 if ((int)skb->truesize > sk->sk_forward_alloc) 5470 goto step5; 5471 5472 /* Predicted packet is in window by definition. 5473 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5474 * Hence, check seq<=rcv_wup reduces to: 5475 */ 5476 if (tcp_header_len == 5477 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5478 tp->rcv_nxt == tp->rcv_wup) 5479 tcp_store_ts_recent(tp); 5480 5481 tcp_rcv_rtt_measure_ts(sk, skb); 5482 5483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5484 5485 /* Bulk data transfer: receiver */ 5486 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5487 &fragstolen); 5488 } 5489 5490 tcp_event_data_recv(sk, skb); 5491 5492 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5493 /* Well, only one small jumplet in fast path... */ 5494 tcp_ack(sk, skb, FLAG_DATA); 5495 tcp_data_snd_check(sk); 5496 if (!inet_csk_ack_scheduled(sk)) 5497 goto no_ack; 5498 } 5499 5500 __tcp_ack_snd_check(sk, 0); 5501 no_ack: 5502 if (eaten) 5503 kfree_skb_partial(skb, fragstolen); 5504 sk->sk_data_ready(sk); 5505 return; 5506 } 5507 } 5508 5509 slow_path: 5510 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5511 goto csum_error; 5512 5513 if (!th->ack && !th->rst && !th->syn) 5514 goto discard; 5515 5516 /* 5517 * Standard slow path. 5518 */ 5519 5520 if (!tcp_validate_incoming(sk, skb, th, 1)) 5521 return; 5522 5523 step5: 5524 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5525 goto discard; 5526 5527 tcp_rcv_rtt_measure_ts(sk, skb); 5528 5529 /* Process urgent data. */ 5530 tcp_urg(sk, skb, th); 5531 5532 /* step 7: process the segment text */ 5533 tcp_data_queue(sk, skb); 5534 5535 tcp_data_snd_check(sk); 5536 tcp_ack_snd_check(sk); 5537 return; 5538 5539 csum_error: 5540 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5541 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5542 5543 discard: 5544 tcp_drop(sk, skb); 5545 } 5546 EXPORT_SYMBOL(tcp_rcv_established); 5547 5548 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5549 { 5550 struct tcp_sock *tp = tcp_sk(sk); 5551 struct inet_connection_sock *icsk = inet_csk(sk); 5552 5553 tcp_set_state(sk, TCP_ESTABLISHED); 5554 5555 if (skb) { 5556 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5557 security_inet_conn_established(sk, skb); 5558 } 5559 5560 /* Make sure socket is routed, for correct metrics. */ 5561 icsk->icsk_af_ops->rebuild_header(sk); 5562 5563 tcp_init_metrics(sk); 5564 5565 tcp_init_congestion_control(sk); 5566 5567 /* Prevent spurious tcp_cwnd_restart() on first data 5568 * packet. 5569 */ 5570 tp->lsndtime = tcp_time_stamp; 5571 5572 tcp_init_buffer_space(sk); 5573 5574 if (sock_flag(sk, SOCK_KEEPOPEN)) 5575 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5576 5577 if (!tp->rx_opt.snd_wscale) 5578 __tcp_fast_path_on(tp, tp->snd_wnd); 5579 else 5580 tp->pred_flags = 0; 5581 5582 if (!sock_flag(sk, SOCK_DEAD)) { 5583 sk->sk_state_change(sk); 5584 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5585 } 5586 } 5587 5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5589 struct tcp_fastopen_cookie *cookie) 5590 { 5591 struct tcp_sock *tp = tcp_sk(sk); 5592 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5593 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5594 bool syn_drop = false; 5595 5596 if (mss == tp->rx_opt.user_mss) { 5597 struct tcp_options_received opt; 5598 5599 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5600 tcp_clear_options(&opt); 5601 opt.user_mss = opt.mss_clamp = 0; 5602 tcp_parse_options(synack, &opt, 0, NULL); 5603 mss = opt.mss_clamp; 5604 } 5605 5606 if (!tp->syn_fastopen) { 5607 /* Ignore an unsolicited cookie */ 5608 cookie->len = -1; 5609 } else if (tp->total_retrans) { 5610 /* SYN timed out and the SYN-ACK neither has a cookie nor 5611 * acknowledges data. Presumably the remote received only 5612 * the retransmitted (regular) SYNs: either the original 5613 * SYN-data or the corresponding SYN-ACK was dropped. 5614 */ 5615 syn_drop = (cookie->len < 0 && data); 5616 } else if (cookie->len < 0 && !tp->syn_data) { 5617 /* We requested a cookie but didn't get it. If we did not use 5618 * the (old) exp opt format then try so next time (try_exp=1). 5619 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5620 */ 5621 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5622 } 5623 5624 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5625 5626 if (data) { /* Retransmit unacked data in SYN */ 5627 tcp_for_write_queue_from(data, sk) { 5628 if (data == tcp_send_head(sk) || 5629 __tcp_retransmit_skb(sk, data, 1)) 5630 break; 5631 } 5632 tcp_rearm_rto(sk); 5633 NET_INC_STATS(sock_net(sk), 5634 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5635 return true; 5636 } 5637 tp->syn_data_acked = tp->syn_data; 5638 if (tp->syn_data_acked) 5639 NET_INC_STATS(sock_net(sk), 5640 LINUX_MIB_TCPFASTOPENACTIVE); 5641 5642 tcp_fastopen_add_skb(sk, synack); 5643 5644 return false; 5645 } 5646 5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5648 const struct tcphdr *th) 5649 { 5650 struct inet_connection_sock *icsk = inet_csk(sk); 5651 struct tcp_sock *tp = tcp_sk(sk); 5652 struct tcp_fastopen_cookie foc = { .len = -1 }; 5653 int saved_clamp = tp->rx_opt.mss_clamp; 5654 5655 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5656 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5657 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5658 5659 if (th->ack) { 5660 /* rfc793: 5661 * "If the state is SYN-SENT then 5662 * first check the ACK bit 5663 * If the ACK bit is set 5664 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5665 * a reset (unless the RST bit is set, if so drop 5666 * the segment and return)" 5667 */ 5668 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5669 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5670 goto reset_and_undo; 5671 5672 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5673 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5674 tcp_time_stamp)) { 5675 NET_INC_STATS(sock_net(sk), 5676 LINUX_MIB_PAWSACTIVEREJECTED); 5677 goto reset_and_undo; 5678 } 5679 5680 /* Now ACK is acceptable. 5681 * 5682 * "If the RST bit is set 5683 * If the ACK was acceptable then signal the user "error: 5684 * connection reset", drop the segment, enter CLOSED state, 5685 * delete TCB, and return." 5686 */ 5687 5688 if (th->rst) { 5689 tcp_reset(sk); 5690 goto discard; 5691 } 5692 5693 /* rfc793: 5694 * "fifth, if neither of the SYN or RST bits is set then 5695 * drop the segment and return." 5696 * 5697 * See note below! 5698 * --ANK(990513) 5699 */ 5700 if (!th->syn) 5701 goto discard_and_undo; 5702 5703 /* rfc793: 5704 * "If the SYN bit is on ... 5705 * are acceptable then ... 5706 * (our SYN has been ACKed), change the connection 5707 * state to ESTABLISHED..." 5708 */ 5709 5710 tcp_ecn_rcv_synack(tp, th); 5711 5712 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5713 tcp_ack(sk, skb, FLAG_SLOWPATH); 5714 5715 /* Ok.. it's good. Set up sequence numbers and 5716 * move to established. 5717 */ 5718 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5719 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5720 5721 /* RFC1323: The window in SYN & SYN/ACK segments is 5722 * never scaled. 5723 */ 5724 tp->snd_wnd = ntohs(th->window); 5725 5726 if (!tp->rx_opt.wscale_ok) { 5727 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5728 tp->window_clamp = min(tp->window_clamp, 65535U); 5729 } 5730 5731 if (tp->rx_opt.saw_tstamp) { 5732 tp->rx_opt.tstamp_ok = 1; 5733 tp->tcp_header_len = 5734 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5735 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5736 tcp_store_ts_recent(tp); 5737 } else { 5738 tp->tcp_header_len = sizeof(struct tcphdr); 5739 } 5740 5741 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5742 tcp_enable_fack(tp); 5743 5744 tcp_mtup_init(sk); 5745 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5746 tcp_initialize_rcv_mss(sk); 5747 5748 /* Remember, tcp_poll() does not lock socket! 5749 * Change state from SYN-SENT only after copied_seq 5750 * is initialized. */ 5751 tp->copied_seq = tp->rcv_nxt; 5752 5753 smp_mb(); 5754 5755 tcp_finish_connect(sk, skb); 5756 5757 if ((tp->syn_fastopen || tp->syn_data) && 5758 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5759 return -1; 5760 5761 if (sk->sk_write_pending || 5762 icsk->icsk_accept_queue.rskq_defer_accept || 5763 icsk->icsk_ack.pingpong) { 5764 /* Save one ACK. Data will be ready after 5765 * several ticks, if write_pending is set. 5766 * 5767 * It may be deleted, but with this feature tcpdumps 5768 * look so _wonderfully_ clever, that I was not able 5769 * to stand against the temptation 8) --ANK 5770 */ 5771 inet_csk_schedule_ack(sk); 5772 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5773 tcp_enter_quickack_mode(sk); 5774 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5775 TCP_DELACK_MAX, TCP_RTO_MAX); 5776 5777 discard: 5778 tcp_drop(sk, skb); 5779 return 0; 5780 } else { 5781 tcp_send_ack(sk); 5782 } 5783 return -1; 5784 } 5785 5786 /* No ACK in the segment */ 5787 5788 if (th->rst) { 5789 /* rfc793: 5790 * "If the RST bit is set 5791 * 5792 * Otherwise (no ACK) drop the segment and return." 5793 */ 5794 5795 goto discard_and_undo; 5796 } 5797 5798 /* PAWS check. */ 5799 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5800 tcp_paws_reject(&tp->rx_opt, 0)) 5801 goto discard_and_undo; 5802 5803 if (th->syn) { 5804 /* We see SYN without ACK. It is attempt of 5805 * simultaneous connect with crossed SYNs. 5806 * Particularly, it can be connect to self. 5807 */ 5808 tcp_set_state(sk, TCP_SYN_RECV); 5809 5810 if (tp->rx_opt.saw_tstamp) { 5811 tp->rx_opt.tstamp_ok = 1; 5812 tcp_store_ts_recent(tp); 5813 tp->tcp_header_len = 5814 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5815 } else { 5816 tp->tcp_header_len = sizeof(struct tcphdr); 5817 } 5818 5819 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5820 tp->copied_seq = tp->rcv_nxt; 5821 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5822 5823 /* RFC1323: The window in SYN & SYN/ACK segments is 5824 * never scaled. 5825 */ 5826 tp->snd_wnd = ntohs(th->window); 5827 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5828 tp->max_window = tp->snd_wnd; 5829 5830 tcp_ecn_rcv_syn(tp, th); 5831 5832 tcp_mtup_init(sk); 5833 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5834 tcp_initialize_rcv_mss(sk); 5835 5836 tcp_send_synack(sk); 5837 #if 0 5838 /* Note, we could accept data and URG from this segment. 5839 * There are no obstacles to make this (except that we must 5840 * either change tcp_recvmsg() to prevent it from returning data 5841 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5842 * 5843 * However, if we ignore data in ACKless segments sometimes, 5844 * we have no reasons to accept it sometimes. 5845 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5846 * is not flawless. So, discard packet for sanity. 5847 * Uncomment this return to process the data. 5848 */ 5849 return -1; 5850 #else 5851 goto discard; 5852 #endif 5853 } 5854 /* "fifth, if neither of the SYN or RST bits is set then 5855 * drop the segment and return." 5856 */ 5857 5858 discard_and_undo: 5859 tcp_clear_options(&tp->rx_opt); 5860 tp->rx_opt.mss_clamp = saved_clamp; 5861 goto discard; 5862 5863 reset_and_undo: 5864 tcp_clear_options(&tp->rx_opt); 5865 tp->rx_opt.mss_clamp = saved_clamp; 5866 return 1; 5867 } 5868 5869 /* 5870 * This function implements the receiving procedure of RFC 793 for 5871 * all states except ESTABLISHED and TIME_WAIT. 5872 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5873 * address independent. 5874 */ 5875 5876 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5877 { 5878 struct tcp_sock *tp = tcp_sk(sk); 5879 struct inet_connection_sock *icsk = inet_csk(sk); 5880 const struct tcphdr *th = tcp_hdr(skb); 5881 struct request_sock *req; 5882 int queued = 0; 5883 bool acceptable; 5884 5885 switch (sk->sk_state) { 5886 case TCP_CLOSE: 5887 goto discard; 5888 5889 case TCP_LISTEN: 5890 if (th->ack) 5891 return 1; 5892 5893 if (th->rst) 5894 goto discard; 5895 5896 if (th->syn) { 5897 if (th->fin) 5898 goto discard; 5899 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5900 return 1; 5901 5902 consume_skb(skb); 5903 return 0; 5904 } 5905 goto discard; 5906 5907 case TCP_SYN_SENT: 5908 tp->rx_opt.saw_tstamp = 0; 5909 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5910 if (queued >= 0) 5911 return queued; 5912 5913 /* Do step6 onward by hand. */ 5914 tcp_urg(sk, skb, th); 5915 __kfree_skb(skb); 5916 tcp_data_snd_check(sk); 5917 return 0; 5918 } 5919 5920 tp->rx_opt.saw_tstamp = 0; 5921 req = tp->fastopen_rsk; 5922 if (req) { 5923 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5924 sk->sk_state != TCP_FIN_WAIT1); 5925 5926 if (!tcp_check_req(sk, skb, req, true)) 5927 goto discard; 5928 } 5929 5930 if (!th->ack && !th->rst && !th->syn) 5931 goto discard; 5932 5933 if (!tcp_validate_incoming(sk, skb, th, 0)) 5934 return 0; 5935 5936 /* step 5: check the ACK field */ 5937 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5938 FLAG_UPDATE_TS_RECENT) > 0; 5939 5940 switch (sk->sk_state) { 5941 case TCP_SYN_RECV: 5942 if (!acceptable) 5943 return 1; 5944 5945 if (!tp->srtt_us) 5946 tcp_synack_rtt_meas(sk, req); 5947 5948 /* Once we leave TCP_SYN_RECV, we no longer need req 5949 * so release it. 5950 */ 5951 if (req) { 5952 inet_csk(sk)->icsk_retransmits = 0; 5953 reqsk_fastopen_remove(sk, req, false); 5954 } else { 5955 /* Make sure socket is routed, for correct metrics. */ 5956 icsk->icsk_af_ops->rebuild_header(sk); 5957 tcp_init_congestion_control(sk); 5958 5959 tcp_mtup_init(sk); 5960 tp->copied_seq = tp->rcv_nxt; 5961 tcp_init_buffer_space(sk); 5962 } 5963 smp_mb(); 5964 tcp_set_state(sk, TCP_ESTABLISHED); 5965 sk->sk_state_change(sk); 5966 5967 /* Note, that this wakeup is only for marginal crossed SYN case. 5968 * Passively open sockets are not waked up, because 5969 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5970 */ 5971 if (sk->sk_socket) 5972 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5973 5974 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5975 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5976 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5977 5978 if (tp->rx_opt.tstamp_ok) 5979 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5980 5981 if (req) { 5982 /* Re-arm the timer because data may have been sent out. 5983 * This is similar to the regular data transmission case 5984 * when new data has just been ack'ed. 5985 * 5986 * (TFO) - we could try to be more aggressive and 5987 * retransmitting any data sooner based on when they 5988 * are sent out. 5989 */ 5990 tcp_rearm_rto(sk); 5991 } else 5992 tcp_init_metrics(sk); 5993 5994 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5995 tcp_update_pacing_rate(sk); 5996 5997 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5998 tp->lsndtime = tcp_time_stamp; 5999 6000 tcp_initialize_rcv_mss(sk); 6001 tcp_fast_path_on(tp); 6002 break; 6003 6004 case TCP_FIN_WAIT1: { 6005 struct dst_entry *dst; 6006 int tmo; 6007 6008 /* If we enter the TCP_FIN_WAIT1 state and we are a 6009 * Fast Open socket and this is the first acceptable 6010 * ACK we have received, this would have acknowledged 6011 * our SYNACK so stop the SYNACK timer. 6012 */ 6013 if (req) { 6014 /* Return RST if ack_seq is invalid. 6015 * Note that RFC793 only says to generate a 6016 * DUPACK for it but for TCP Fast Open it seems 6017 * better to treat this case like TCP_SYN_RECV 6018 * above. 6019 */ 6020 if (!acceptable) 6021 return 1; 6022 /* We no longer need the request sock. */ 6023 reqsk_fastopen_remove(sk, req, false); 6024 tcp_rearm_rto(sk); 6025 } 6026 if (tp->snd_una != tp->write_seq) 6027 break; 6028 6029 tcp_set_state(sk, TCP_FIN_WAIT2); 6030 sk->sk_shutdown |= SEND_SHUTDOWN; 6031 6032 dst = __sk_dst_get(sk); 6033 if (dst) 6034 dst_confirm(dst); 6035 6036 if (!sock_flag(sk, SOCK_DEAD)) { 6037 /* Wake up lingering close() */ 6038 sk->sk_state_change(sk); 6039 break; 6040 } 6041 6042 if (tp->linger2 < 0 || 6043 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6044 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6045 tcp_done(sk); 6046 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6047 return 1; 6048 } 6049 6050 tmo = tcp_fin_time(sk); 6051 if (tmo > TCP_TIMEWAIT_LEN) { 6052 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6053 } else if (th->fin || sock_owned_by_user(sk)) { 6054 /* Bad case. We could lose such FIN otherwise. 6055 * It is not a big problem, but it looks confusing 6056 * and not so rare event. We still can lose it now, 6057 * if it spins in bh_lock_sock(), but it is really 6058 * marginal case. 6059 */ 6060 inet_csk_reset_keepalive_timer(sk, tmo); 6061 } else { 6062 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6063 goto discard; 6064 } 6065 break; 6066 } 6067 6068 case TCP_CLOSING: 6069 if (tp->snd_una == tp->write_seq) { 6070 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6071 goto discard; 6072 } 6073 break; 6074 6075 case TCP_LAST_ACK: 6076 if (tp->snd_una == tp->write_seq) { 6077 tcp_update_metrics(sk); 6078 tcp_done(sk); 6079 goto discard; 6080 } 6081 break; 6082 } 6083 6084 /* step 6: check the URG bit */ 6085 tcp_urg(sk, skb, th); 6086 6087 /* step 7: process the segment text */ 6088 switch (sk->sk_state) { 6089 case TCP_CLOSE_WAIT: 6090 case TCP_CLOSING: 6091 case TCP_LAST_ACK: 6092 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6093 break; 6094 case TCP_FIN_WAIT1: 6095 case TCP_FIN_WAIT2: 6096 /* RFC 793 says to queue data in these states, 6097 * RFC 1122 says we MUST send a reset. 6098 * BSD 4.4 also does reset. 6099 */ 6100 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6101 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6102 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6103 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6104 tcp_reset(sk); 6105 return 1; 6106 } 6107 } 6108 /* Fall through */ 6109 case TCP_ESTABLISHED: 6110 tcp_data_queue(sk, skb); 6111 queued = 1; 6112 break; 6113 } 6114 6115 /* tcp_data could move socket to TIME-WAIT */ 6116 if (sk->sk_state != TCP_CLOSE) { 6117 tcp_data_snd_check(sk); 6118 tcp_ack_snd_check(sk); 6119 } 6120 6121 if (!queued) { 6122 discard: 6123 tcp_drop(sk, skb); 6124 } 6125 return 0; 6126 } 6127 EXPORT_SYMBOL(tcp_rcv_state_process); 6128 6129 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6130 { 6131 struct inet_request_sock *ireq = inet_rsk(req); 6132 6133 if (family == AF_INET) 6134 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6135 &ireq->ir_rmt_addr, port); 6136 #if IS_ENABLED(CONFIG_IPV6) 6137 else if (family == AF_INET6) 6138 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6139 &ireq->ir_v6_rmt_addr, port); 6140 #endif 6141 } 6142 6143 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6144 * 6145 * If we receive a SYN packet with these bits set, it means a 6146 * network is playing bad games with TOS bits. In order to 6147 * avoid possible false congestion notifications, we disable 6148 * TCP ECN negotiation. 6149 * 6150 * Exception: tcp_ca wants ECN. This is required for DCTCP 6151 * congestion control: Linux DCTCP asserts ECT on all packets, 6152 * including SYN, which is most optimal solution; however, 6153 * others, such as FreeBSD do not. 6154 */ 6155 static void tcp_ecn_create_request(struct request_sock *req, 6156 const struct sk_buff *skb, 6157 const struct sock *listen_sk, 6158 const struct dst_entry *dst) 6159 { 6160 const struct tcphdr *th = tcp_hdr(skb); 6161 const struct net *net = sock_net(listen_sk); 6162 bool th_ecn = th->ece && th->cwr; 6163 bool ect, ecn_ok; 6164 u32 ecn_ok_dst; 6165 6166 if (!th_ecn) 6167 return; 6168 6169 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6170 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6171 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6172 6173 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6174 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6175 inet_rsk(req)->ecn_ok = 1; 6176 } 6177 6178 static void tcp_openreq_init(struct request_sock *req, 6179 const struct tcp_options_received *rx_opt, 6180 struct sk_buff *skb, const struct sock *sk) 6181 { 6182 struct inet_request_sock *ireq = inet_rsk(req); 6183 6184 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6185 req->cookie_ts = 0; 6186 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6187 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6188 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6189 tcp_rsk(req)->last_oow_ack_time = 0; 6190 req->mss = rx_opt->mss_clamp; 6191 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6192 ireq->tstamp_ok = rx_opt->tstamp_ok; 6193 ireq->sack_ok = rx_opt->sack_ok; 6194 ireq->snd_wscale = rx_opt->snd_wscale; 6195 ireq->wscale_ok = rx_opt->wscale_ok; 6196 ireq->acked = 0; 6197 ireq->ecn_ok = 0; 6198 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6199 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6200 ireq->ir_mark = inet_request_mark(sk, skb); 6201 } 6202 6203 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6204 struct sock *sk_listener, 6205 bool attach_listener) 6206 { 6207 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6208 attach_listener); 6209 6210 if (req) { 6211 struct inet_request_sock *ireq = inet_rsk(req); 6212 6213 kmemcheck_annotate_bitfield(ireq, flags); 6214 ireq->opt = NULL; 6215 #if IS_ENABLED(CONFIG_IPV6) 6216 ireq->pktopts = NULL; 6217 #endif 6218 atomic64_set(&ireq->ir_cookie, 0); 6219 ireq->ireq_state = TCP_NEW_SYN_RECV; 6220 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6221 ireq->ireq_family = sk_listener->sk_family; 6222 } 6223 6224 return req; 6225 } 6226 EXPORT_SYMBOL(inet_reqsk_alloc); 6227 6228 /* 6229 * Return true if a syncookie should be sent 6230 */ 6231 static bool tcp_syn_flood_action(const struct sock *sk, 6232 const struct sk_buff *skb, 6233 const char *proto) 6234 { 6235 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6236 const char *msg = "Dropping request"; 6237 bool want_cookie = false; 6238 struct net *net = sock_net(sk); 6239 6240 #ifdef CONFIG_SYN_COOKIES 6241 if (net->ipv4.sysctl_tcp_syncookies) { 6242 msg = "Sending cookies"; 6243 want_cookie = true; 6244 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6245 } else 6246 #endif 6247 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6248 6249 if (!queue->synflood_warned && 6250 net->ipv4.sysctl_tcp_syncookies != 2 && 6251 xchg(&queue->synflood_warned, 1) == 0) 6252 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6253 proto, ntohs(tcp_hdr(skb)->dest), msg); 6254 6255 return want_cookie; 6256 } 6257 6258 static void tcp_reqsk_record_syn(const struct sock *sk, 6259 struct request_sock *req, 6260 const struct sk_buff *skb) 6261 { 6262 if (tcp_sk(sk)->save_syn) { 6263 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6264 u32 *copy; 6265 6266 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6267 if (copy) { 6268 copy[0] = len; 6269 memcpy(©[1], skb_network_header(skb), len); 6270 req->saved_syn = copy; 6271 } 6272 } 6273 } 6274 6275 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6276 const struct tcp_request_sock_ops *af_ops, 6277 struct sock *sk, struct sk_buff *skb) 6278 { 6279 struct tcp_fastopen_cookie foc = { .len = -1 }; 6280 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6281 struct tcp_options_received tmp_opt; 6282 struct tcp_sock *tp = tcp_sk(sk); 6283 struct net *net = sock_net(sk); 6284 struct sock *fastopen_sk = NULL; 6285 struct dst_entry *dst = NULL; 6286 struct request_sock *req; 6287 bool want_cookie = false; 6288 struct flowi fl; 6289 6290 /* TW buckets are converted to open requests without 6291 * limitations, they conserve resources and peer is 6292 * evidently real one. 6293 */ 6294 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6295 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6296 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6297 if (!want_cookie) 6298 goto drop; 6299 } 6300 6301 6302 /* Accept backlog is full. If we have already queued enough 6303 * of warm entries in syn queue, drop request. It is better than 6304 * clogging syn queue with openreqs with exponentially increasing 6305 * timeout. 6306 */ 6307 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 6308 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6309 goto drop; 6310 } 6311 6312 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6313 if (!req) 6314 goto drop; 6315 6316 tcp_rsk(req)->af_specific = af_ops; 6317 6318 tcp_clear_options(&tmp_opt); 6319 tmp_opt.mss_clamp = af_ops->mss_clamp; 6320 tmp_opt.user_mss = tp->rx_opt.user_mss; 6321 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6322 6323 if (want_cookie && !tmp_opt.saw_tstamp) 6324 tcp_clear_options(&tmp_opt); 6325 6326 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6327 tcp_openreq_init(req, &tmp_opt, skb, sk); 6328 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6329 6330 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6331 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6332 6333 af_ops->init_req(req, sk, skb); 6334 6335 if (security_inet_conn_request(sk, skb, req)) 6336 goto drop_and_free; 6337 6338 if (!want_cookie && !isn) { 6339 /* VJ's idea. We save last timestamp seen 6340 * from the destination in peer table, when entering 6341 * state TIME-WAIT, and check against it before 6342 * accepting new connection request. 6343 * 6344 * If "isn" is not zero, this request hit alive 6345 * timewait bucket, so that all the necessary checks 6346 * are made in the function processing timewait state. 6347 */ 6348 if (tcp_death_row.sysctl_tw_recycle) { 6349 bool strict; 6350 6351 dst = af_ops->route_req(sk, &fl, req, &strict); 6352 6353 if (dst && strict && 6354 !tcp_peer_is_proven(req, dst, true, 6355 tmp_opt.saw_tstamp)) { 6356 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6357 goto drop_and_release; 6358 } 6359 } 6360 /* Kill the following clause, if you dislike this way. */ 6361 else if (!net->ipv4.sysctl_tcp_syncookies && 6362 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6363 (sysctl_max_syn_backlog >> 2)) && 6364 !tcp_peer_is_proven(req, dst, false, 6365 tmp_opt.saw_tstamp)) { 6366 /* Without syncookies last quarter of 6367 * backlog is filled with destinations, 6368 * proven to be alive. 6369 * It means that we continue to communicate 6370 * to destinations, already remembered 6371 * to the moment of synflood. 6372 */ 6373 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6374 rsk_ops->family); 6375 goto drop_and_release; 6376 } 6377 6378 isn = af_ops->init_seq(skb); 6379 } 6380 if (!dst) { 6381 dst = af_ops->route_req(sk, &fl, req, NULL); 6382 if (!dst) 6383 goto drop_and_free; 6384 } 6385 6386 tcp_ecn_create_request(req, skb, sk, dst); 6387 6388 if (want_cookie) { 6389 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6390 req->cookie_ts = tmp_opt.tstamp_ok; 6391 if (!tmp_opt.tstamp_ok) 6392 inet_rsk(req)->ecn_ok = 0; 6393 } 6394 6395 tcp_rsk(req)->snt_isn = isn; 6396 tcp_rsk(req)->txhash = net_tx_rndhash(); 6397 tcp_openreq_init_rwin(req, sk, dst); 6398 if (!want_cookie) { 6399 tcp_reqsk_record_syn(sk, req, skb); 6400 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6401 } 6402 if (fastopen_sk) { 6403 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6404 &foc, TCP_SYNACK_FASTOPEN); 6405 /* Add the child socket directly into the accept queue */ 6406 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6407 sk->sk_data_ready(sk); 6408 bh_unlock_sock(fastopen_sk); 6409 sock_put(fastopen_sk); 6410 } else { 6411 tcp_rsk(req)->tfo_listener = false; 6412 if (!want_cookie) 6413 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6414 af_ops->send_synack(sk, dst, &fl, req, &foc, 6415 !want_cookie ? TCP_SYNACK_NORMAL : 6416 TCP_SYNACK_COOKIE); 6417 if (want_cookie) { 6418 reqsk_free(req); 6419 return 0; 6420 } 6421 } 6422 reqsk_put(req); 6423 return 0; 6424 6425 drop_and_release: 6426 dst_release(dst); 6427 drop_and_free: 6428 reqsk_free(req); 6429 drop: 6430 tcp_listendrop(sk); 6431 return 0; 6432 } 6433 EXPORT_SYMBOL(tcp_conn_request); 6434