xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 6dfcd296)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118 
119 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 #define REXMIT_NONE	0 /* no loss recovery to do */
128 #define REXMIT_LOST	1 /* retransmit packets marked lost */
129 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
130 
131 /* Adapt the MSS value used to make delayed ack decision to the
132  * real world.
133  */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 	struct inet_connection_sock *icsk = inet_csk(sk);
137 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 	unsigned int len;
139 
140 	icsk->icsk_ack.last_seg_size = 0;
141 
142 	/* skb->len may jitter because of SACKs, even if peer
143 	 * sends good full-sized frames.
144 	 */
145 	len = skb_shinfo(skb)->gso_size ? : skb->len;
146 	if (len >= icsk->icsk_ack.rcv_mss) {
147 		icsk->icsk_ack.rcv_mss = len;
148 	} else {
149 		/* Otherwise, we make more careful check taking into account,
150 		 * that SACKs block is variable.
151 		 *
152 		 * "len" is invariant segment length, including TCP header.
153 		 */
154 		len += skb->data - skb_transport_header(skb);
155 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 		    /* If PSH is not set, packet should be
157 		     * full sized, provided peer TCP is not badly broken.
158 		     * This observation (if it is correct 8)) allows
159 		     * to handle super-low mtu links fairly.
160 		     */
161 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 			/* Subtract also invariant (if peer is RFC compliant),
164 			 * tcp header plus fixed timestamp option length.
165 			 * Resulting "len" is MSS free of SACK jitter.
166 			 */
167 			len -= tcp_sk(sk)->tcp_header_len;
168 			icsk->icsk_ack.last_seg_size = len;
169 			if (len == lss) {
170 				icsk->icsk_ack.rcv_mss = len;
171 				return;
172 			}
173 		}
174 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 	}
178 }
179 
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184 
185 	if (quickacks == 0)
186 		quickacks = 2;
187 	if (quickacks > icsk->icsk_ack.quick)
188 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190 
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 	struct inet_connection_sock *icsk = inet_csk(sk);
194 	tcp_incr_quickack(sk);
195 	icsk->icsk_ack.pingpong = 0;
196 	icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198 
199 /* Send ACKs quickly, if "quick" count is not exhausted
200  * and the session is not interactive.
201  */
202 
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 	const struct inet_connection_sock *icsk = inet_csk(sk);
206 	const struct dst_entry *dst = __sk_dst_get(sk);
207 
208 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211 
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 	if (tp->ecn_flags & TCP_ECN_OK)
215 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217 
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 	if (tcp_hdr(skb)->cwr)
221 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223 
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228 
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 	case INET_ECN_NOT_ECT:
233 		/* Funny extension: if ECT is not set on a segment,
234 		 * and we already seen ECT on a previous segment,
235 		 * it is probably a retransmit.
236 		 */
237 		if (tp->ecn_flags & TCP_ECN_SEEN)
238 			tcp_enter_quickack_mode((struct sock *)tp);
239 		break;
240 	case INET_ECN_CE:
241 		if (tcp_ca_needs_ecn((struct sock *)tp))
242 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243 
244 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 			/* Better not delay acks, sender can have a very low cwnd */
246 			tcp_enter_quickack_mode((struct sock *)tp);
247 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 		}
249 		tp->ecn_flags |= TCP_ECN_SEEN;
250 		break;
251 	default:
252 		if (tcp_ca_needs_ecn((struct sock *)tp))
253 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 		tp->ecn_flags |= TCP_ECN_SEEN;
255 		break;
256 	}
257 }
258 
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 	if (tp->ecn_flags & TCP_ECN_OK)
262 		__tcp_ecn_check_ce(tp, skb);
263 }
264 
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 		tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270 
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 		return true;
281 	return false;
282 }
283 
284 /* Buffer size and advertised window tuning.
285  *
286  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287  */
288 
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 	const struct tcp_sock *tp = tcp_sk(sk);
292 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
293 	int sndmem, per_mss;
294 	u32 nr_segs;
295 
296 	/* Worst case is non GSO/TSO : each frame consumes one skb
297 	 * and skb->head is kmalloced using power of two area of memory
298 	 */
299 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
300 		  MAX_TCP_HEADER +
301 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
302 
303 	per_mss = roundup_pow_of_two(per_mss) +
304 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
305 
306 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
307 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
308 
309 	/* Fast Recovery (RFC 5681 3.2) :
310 	 * Cubic needs 1.7 factor, rounded to 2 to include
311 	 * extra cushion (application might react slowly to POLLOUT)
312 	 */
313 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
314 	sndmem *= nr_segs * per_mss;
315 
316 	if (sk->sk_sndbuf < sndmem)
317 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
318 }
319 
320 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
321  *
322  * All tcp_full_space() is split to two parts: "network" buffer, allocated
323  * forward and advertised in receiver window (tp->rcv_wnd) and
324  * "application buffer", required to isolate scheduling/application
325  * latencies from network.
326  * window_clamp is maximal advertised window. It can be less than
327  * tcp_full_space(), in this case tcp_full_space() - window_clamp
328  * is reserved for "application" buffer. The less window_clamp is
329  * the smoother our behaviour from viewpoint of network, but the lower
330  * throughput and the higher sensitivity of the connection to losses. 8)
331  *
332  * rcv_ssthresh is more strict window_clamp used at "slow start"
333  * phase to predict further behaviour of this connection.
334  * It is used for two goals:
335  * - to enforce header prediction at sender, even when application
336  *   requires some significant "application buffer". It is check #1.
337  * - to prevent pruning of receive queue because of misprediction
338  *   of receiver window. Check #2.
339  *
340  * The scheme does not work when sender sends good segments opening
341  * window and then starts to feed us spaghetti. But it should work
342  * in common situations. Otherwise, we have to rely on queue collapsing.
343  */
344 
345 /* Slow part of check#2. */
346 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
347 {
348 	struct tcp_sock *tp = tcp_sk(sk);
349 	/* Optimize this! */
350 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
351 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
352 
353 	while (tp->rcv_ssthresh <= window) {
354 		if (truesize <= skb->len)
355 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
356 
357 		truesize >>= 1;
358 		window >>= 1;
359 	}
360 	return 0;
361 }
362 
363 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
364 {
365 	struct tcp_sock *tp = tcp_sk(sk);
366 
367 	/* Check #1 */
368 	if (tp->rcv_ssthresh < tp->window_clamp &&
369 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
370 	    !tcp_under_memory_pressure(sk)) {
371 		int incr;
372 
373 		/* Check #2. Increase window, if skb with such overhead
374 		 * will fit to rcvbuf in future.
375 		 */
376 		if (tcp_win_from_space(skb->truesize) <= skb->len)
377 			incr = 2 * tp->advmss;
378 		else
379 			incr = __tcp_grow_window(sk, skb);
380 
381 		if (incr) {
382 			incr = max_t(int, incr, 2 * skb->len);
383 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
384 					       tp->window_clamp);
385 			inet_csk(sk)->icsk_ack.quick |= 1;
386 		}
387 	}
388 }
389 
390 /* 3. Tuning rcvbuf, when connection enters established state. */
391 static void tcp_fixup_rcvbuf(struct sock *sk)
392 {
393 	u32 mss = tcp_sk(sk)->advmss;
394 	int rcvmem;
395 
396 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
397 		 tcp_default_init_rwnd(mss);
398 
399 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
400 	 * Allow enough cushion so that sender is not limited by our window
401 	 */
402 	if (sysctl_tcp_moderate_rcvbuf)
403 		rcvmem <<= 2;
404 
405 	if (sk->sk_rcvbuf < rcvmem)
406 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
407 }
408 
409 /* 4. Try to fixup all. It is made immediately after connection enters
410  *    established state.
411  */
412 void tcp_init_buffer_space(struct sock *sk)
413 {
414 	struct tcp_sock *tp = tcp_sk(sk);
415 	int maxwin;
416 
417 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
418 		tcp_fixup_rcvbuf(sk);
419 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
420 		tcp_sndbuf_expand(sk);
421 
422 	tp->rcvq_space.space = tp->rcv_wnd;
423 	tp->rcvq_space.time = tcp_time_stamp;
424 	tp->rcvq_space.seq = tp->copied_seq;
425 
426 	maxwin = tcp_full_space(sk);
427 
428 	if (tp->window_clamp >= maxwin) {
429 		tp->window_clamp = maxwin;
430 
431 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
432 			tp->window_clamp = max(maxwin -
433 					       (maxwin >> sysctl_tcp_app_win),
434 					       4 * tp->advmss);
435 	}
436 
437 	/* Force reservation of one segment. */
438 	if (sysctl_tcp_app_win &&
439 	    tp->window_clamp > 2 * tp->advmss &&
440 	    tp->window_clamp + tp->advmss > maxwin)
441 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
442 
443 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
444 	tp->snd_cwnd_stamp = tcp_time_stamp;
445 }
446 
447 /* 5. Recalculate window clamp after socket hit its memory bounds. */
448 static void tcp_clamp_window(struct sock *sk)
449 {
450 	struct tcp_sock *tp = tcp_sk(sk);
451 	struct inet_connection_sock *icsk = inet_csk(sk);
452 
453 	icsk->icsk_ack.quick = 0;
454 
455 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
456 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
457 	    !tcp_under_memory_pressure(sk) &&
458 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
459 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
460 				    sysctl_tcp_rmem[2]);
461 	}
462 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
463 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
464 }
465 
466 /* Initialize RCV_MSS value.
467  * RCV_MSS is an our guess about MSS used by the peer.
468  * We haven't any direct information about the MSS.
469  * It's better to underestimate the RCV_MSS rather than overestimate.
470  * Overestimations make us ACKing less frequently than needed.
471  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
472  */
473 void tcp_initialize_rcv_mss(struct sock *sk)
474 {
475 	const struct tcp_sock *tp = tcp_sk(sk);
476 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
477 
478 	hint = min(hint, tp->rcv_wnd / 2);
479 	hint = min(hint, TCP_MSS_DEFAULT);
480 	hint = max(hint, TCP_MIN_MSS);
481 
482 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
483 }
484 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
485 
486 /* Receiver "autotuning" code.
487  *
488  * The algorithm for RTT estimation w/o timestamps is based on
489  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
490  * <http://public.lanl.gov/radiant/pubs.html#DRS>
491  *
492  * More detail on this code can be found at
493  * <http://staff.psc.edu/jheffner/>,
494  * though this reference is out of date.  A new paper
495  * is pending.
496  */
497 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
498 {
499 	u32 new_sample = tp->rcv_rtt_est.rtt;
500 	long m = sample;
501 
502 	if (m == 0)
503 		m = 1;
504 
505 	if (new_sample != 0) {
506 		/* If we sample in larger samples in the non-timestamp
507 		 * case, we could grossly overestimate the RTT especially
508 		 * with chatty applications or bulk transfer apps which
509 		 * are stalled on filesystem I/O.
510 		 *
511 		 * Also, since we are only going for a minimum in the
512 		 * non-timestamp case, we do not smooth things out
513 		 * else with timestamps disabled convergence takes too
514 		 * long.
515 		 */
516 		if (!win_dep) {
517 			m -= (new_sample >> 3);
518 			new_sample += m;
519 		} else {
520 			m <<= 3;
521 			if (m < new_sample)
522 				new_sample = m;
523 		}
524 	} else {
525 		/* No previous measure. */
526 		new_sample = m << 3;
527 	}
528 
529 	if (tp->rcv_rtt_est.rtt != new_sample)
530 		tp->rcv_rtt_est.rtt = new_sample;
531 }
532 
533 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
534 {
535 	if (tp->rcv_rtt_est.time == 0)
536 		goto new_measure;
537 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
538 		return;
539 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
540 
541 new_measure:
542 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
543 	tp->rcv_rtt_est.time = tcp_time_stamp;
544 }
545 
546 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
547 					  const struct sk_buff *skb)
548 {
549 	struct tcp_sock *tp = tcp_sk(sk);
550 	if (tp->rx_opt.rcv_tsecr &&
551 	    (TCP_SKB_CB(skb)->end_seq -
552 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
553 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
554 }
555 
556 /*
557  * This function should be called every time data is copied to user space.
558  * It calculates the appropriate TCP receive buffer space.
559  */
560 void tcp_rcv_space_adjust(struct sock *sk)
561 {
562 	struct tcp_sock *tp = tcp_sk(sk);
563 	int time;
564 	int copied;
565 
566 	time = tcp_time_stamp - tp->rcvq_space.time;
567 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
568 		return;
569 
570 	/* Number of bytes copied to user in last RTT */
571 	copied = tp->copied_seq - tp->rcvq_space.seq;
572 	if (copied <= tp->rcvq_space.space)
573 		goto new_measure;
574 
575 	/* A bit of theory :
576 	 * copied = bytes received in previous RTT, our base window
577 	 * To cope with packet losses, we need a 2x factor
578 	 * To cope with slow start, and sender growing its cwin by 100 %
579 	 * every RTT, we need a 4x factor, because the ACK we are sending
580 	 * now is for the next RTT, not the current one :
581 	 * <prev RTT . ><current RTT .. ><next RTT .... >
582 	 */
583 
584 	if (sysctl_tcp_moderate_rcvbuf &&
585 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
586 		int rcvwin, rcvmem, rcvbuf;
587 
588 		/* minimal window to cope with packet losses, assuming
589 		 * steady state. Add some cushion because of small variations.
590 		 */
591 		rcvwin = (copied << 1) + 16 * tp->advmss;
592 
593 		/* If rate increased by 25%,
594 		 *	assume slow start, rcvwin = 3 * copied
595 		 * If rate increased by 50%,
596 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
597 		 */
598 		if (copied >=
599 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
600 			if (copied >=
601 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
602 				rcvwin <<= 1;
603 			else
604 				rcvwin += (rcvwin >> 1);
605 		}
606 
607 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
608 		while (tcp_win_from_space(rcvmem) < tp->advmss)
609 			rcvmem += 128;
610 
611 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
612 		if (rcvbuf > sk->sk_rcvbuf) {
613 			sk->sk_rcvbuf = rcvbuf;
614 
615 			/* Make the window clamp follow along.  */
616 			tp->window_clamp = rcvwin;
617 		}
618 	}
619 	tp->rcvq_space.space = copied;
620 
621 new_measure:
622 	tp->rcvq_space.seq = tp->copied_seq;
623 	tp->rcvq_space.time = tcp_time_stamp;
624 }
625 
626 /* There is something which you must keep in mind when you analyze the
627  * behavior of the tp->ato delayed ack timeout interval.  When a
628  * connection starts up, we want to ack as quickly as possible.  The
629  * problem is that "good" TCP's do slow start at the beginning of data
630  * transmission.  The means that until we send the first few ACK's the
631  * sender will sit on his end and only queue most of his data, because
632  * he can only send snd_cwnd unacked packets at any given time.  For
633  * each ACK we send, he increments snd_cwnd and transmits more of his
634  * queue.  -DaveM
635  */
636 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
637 {
638 	struct tcp_sock *tp = tcp_sk(sk);
639 	struct inet_connection_sock *icsk = inet_csk(sk);
640 	u32 now;
641 
642 	inet_csk_schedule_ack(sk);
643 
644 	tcp_measure_rcv_mss(sk, skb);
645 
646 	tcp_rcv_rtt_measure(tp);
647 
648 	now = tcp_time_stamp;
649 
650 	if (!icsk->icsk_ack.ato) {
651 		/* The _first_ data packet received, initialize
652 		 * delayed ACK engine.
653 		 */
654 		tcp_incr_quickack(sk);
655 		icsk->icsk_ack.ato = TCP_ATO_MIN;
656 	} else {
657 		int m = now - icsk->icsk_ack.lrcvtime;
658 
659 		if (m <= TCP_ATO_MIN / 2) {
660 			/* The fastest case is the first. */
661 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
662 		} else if (m < icsk->icsk_ack.ato) {
663 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
664 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
665 				icsk->icsk_ack.ato = icsk->icsk_rto;
666 		} else if (m > icsk->icsk_rto) {
667 			/* Too long gap. Apparently sender failed to
668 			 * restart window, so that we send ACKs quickly.
669 			 */
670 			tcp_incr_quickack(sk);
671 			sk_mem_reclaim(sk);
672 		}
673 	}
674 	icsk->icsk_ack.lrcvtime = now;
675 
676 	tcp_ecn_check_ce(tp, skb);
677 
678 	if (skb->len >= 128)
679 		tcp_grow_window(sk, skb);
680 }
681 
682 /* Called to compute a smoothed rtt estimate. The data fed to this
683  * routine either comes from timestamps, or from segments that were
684  * known _not_ to have been retransmitted [see Karn/Partridge
685  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
686  * piece by Van Jacobson.
687  * NOTE: the next three routines used to be one big routine.
688  * To save cycles in the RFC 1323 implementation it was better to break
689  * it up into three procedures. -- erics
690  */
691 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
692 {
693 	struct tcp_sock *tp = tcp_sk(sk);
694 	long m = mrtt_us; /* RTT */
695 	u32 srtt = tp->srtt_us;
696 
697 	/*	The following amusing code comes from Jacobson's
698 	 *	article in SIGCOMM '88.  Note that rtt and mdev
699 	 *	are scaled versions of rtt and mean deviation.
700 	 *	This is designed to be as fast as possible
701 	 *	m stands for "measurement".
702 	 *
703 	 *	On a 1990 paper the rto value is changed to:
704 	 *	RTO = rtt + 4 * mdev
705 	 *
706 	 * Funny. This algorithm seems to be very broken.
707 	 * These formulae increase RTO, when it should be decreased, increase
708 	 * too slowly, when it should be increased quickly, decrease too quickly
709 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
710 	 * does not matter how to _calculate_ it. Seems, it was trap
711 	 * that VJ failed to avoid. 8)
712 	 */
713 	if (srtt != 0) {
714 		m -= (srtt >> 3);	/* m is now error in rtt est */
715 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
716 		if (m < 0) {
717 			m = -m;		/* m is now abs(error) */
718 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
719 			/* This is similar to one of Eifel findings.
720 			 * Eifel blocks mdev updates when rtt decreases.
721 			 * This solution is a bit different: we use finer gain
722 			 * for mdev in this case (alpha*beta).
723 			 * Like Eifel it also prevents growth of rto,
724 			 * but also it limits too fast rto decreases,
725 			 * happening in pure Eifel.
726 			 */
727 			if (m > 0)
728 				m >>= 3;
729 		} else {
730 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
731 		}
732 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
733 		if (tp->mdev_us > tp->mdev_max_us) {
734 			tp->mdev_max_us = tp->mdev_us;
735 			if (tp->mdev_max_us > tp->rttvar_us)
736 				tp->rttvar_us = tp->mdev_max_us;
737 		}
738 		if (after(tp->snd_una, tp->rtt_seq)) {
739 			if (tp->mdev_max_us < tp->rttvar_us)
740 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
741 			tp->rtt_seq = tp->snd_nxt;
742 			tp->mdev_max_us = tcp_rto_min_us(sk);
743 		}
744 	} else {
745 		/* no previous measure. */
746 		srtt = m << 3;		/* take the measured time to be rtt */
747 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
748 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
749 		tp->mdev_max_us = tp->rttvar_us;
750 		tp->rtt_seq = tp->snd_nxt;
751 	}
752 	tp->srtt_us = max(1U, srtt);
753 }
754 
755 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
756  * Note: TCP stack does not yet implement pacing.
757  * FQ packet scheduler can be used to implement cheap but effective
758  * TCP pacing, to smooth the burst on large writes when packets
759  * in flight is significantly lower than cwnd (or rwin)
760  */
761 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
762 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
763 
764 static void tcp_update_pacing_rate(struct sock *sk)
765 {
766 	const struct tcp_sock *tp = tcp_sk(sk);
767 	u64 rate;
768 
769 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
770 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
771 
772 	/* current rate is (cwnd * mss) / srtt
773 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
774 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
775 	 *
776 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
777 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
778 	 *	 end of slow start and should slow down.
779 	 */
780 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
781 		rate *= sysctl_tcp_pacing_ss_ratio;
782 	else
783 		rate *= sysctl_tcp_pacing_ca_ratio;
784 
785 	rate *= max(tp->snd_cwnd, tp->packets_out);
786 
787 	if (likely(tp->srtt_us))
788 		do_div(rate, tp->srtt_us);
789 
790 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
791 	 * without any lock. We want to make sure compiler wont store
792 	 * intermediate values in this location.
793 	 */
794 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
795 						sk->sk_max_pacing_rate);
796 }
797 
798 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
799  * routine referred to above.
800  */
801 static void tcp_set_rto(struct sock *sk)
802 {
803 	const struct tcp_sock *tp = tcp_sk(sk);
804 	/* Old crap is replaced with new one. 8)
805 	 *
806 	 * More seriously:
807 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
808 	 *    It cannot be less due to utterly erratic ACK generation made
809 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
810 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
811 	 *    is invisible. Actually, Linux-2.4 also generates erratic
812 	 *    ACKs in some circumstances.
813 	 */
814 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
815 
816 	/* 2. Fixups made earlier cannot be right.
817 	 *    If we do not estimate RTO correctly without them,
818 	 *    all the algo is pure shit and should be replaced
819 	 *    with correct one. It is exactly, which we pretend to do.
820 	 */
821 
822 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
823 	 * guarantees that rto is higher.
824 	 */
825 	tcp_bound_rto(sk);
826 }
827 
828 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
829 {
830 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
831 
832 	if (!cwnd)
833 		cwnd = TCP_INIT_CWND;
834 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836 
837 /*
838  * Packet counting of FACK is based on in-order assumptions, therefore TCP
839  * disables it when reordering is detected
840  */
841 void tcp_disable_fack(struct tcp_sock *tp)
842 {
843 	/* RFC3517 uses different metric in lost marker => reset on change */
844 	if (tcp_is_fack(tp))
845 		tp->lost_skb_hint = NULL;
846 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
847 }
848 
849 /* Take a notice that peer is sending D-SACKs */
850 static void tcp_dsack_seen(struct tcp_sock *tp)
851 {
852 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
853 }
854 
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 				  const int ts)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	if (metric > tp->reordering) {
860 		int mib_idx;
861 
862 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
863 
864 		/* This exciting event is worth to be remembered. 8) */
865 		if (ts)
866 			mib_idx = LINUX_MIB_TCPTSREORDER;
867 		else if (tcp_is_reno(tp))
868 			mib_idx = LINUX_MIB_TCPRENOREORDER;
869 		else if (tcp_is_fack(tp))
870 			mib_idx = LINUX_MIB_TCPFACKREORDER;
871 		else
872 			mib_idx = LINUX_MIB_TCPSACKREORDER;
873 
874 		NET_INC_STATS(sock_net(sk), mib_idx);
875 #if FASTRETRANS_DEBUG > 1
876 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
877 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
878 			 tp->reordering,
879 			 tp->fackets_out,
880 			 tp->sacked_out,
881 			 tp->undo_marker ? tp->undo_retrans : 0);
882 #endif
883 		tcp_disable_fack(tp);
884 	}
885 
886 	if (metric > 0)
887 		tcp_disable_early_retrans(tp);
888 	tp->rack.reord = 1;
889 }
890 
891 /* This must be called before lost_out is incremented */
892 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
893 {
894 	if (!tp->retransmit_skb_hint ||
895 	    before(TCP_SKB_CB(skb)->seq,
896 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
897 		tp->retransmit_skb_hint = skb;
898 
899 	if (!tp->lost_out ||
900 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
901 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
902 }
903 
904 /* Sum the number of packets on the wire we have marked as lost.
905  * There are two cases we care about here:
906  * a) Packet hasn't been marked lost (nor retransmitted),
907  *    and this is the first loss.
908  * b) Packet has been marked both lost and retransmitted,
909  *    and this means we think it was lost again.
910  */
911 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
912 {
913 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
914 
915 	if (!(sacked & TCPCB_LOST) ||
916 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
917 		tp->lost += tcp_skb_pcount(skb);
918 }
919 
920 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
921 {
922 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
923 		tcp_verify_retransmit_hint(tp, skb);
924 
925 		tp->lost_out += tcp_skb_pcount(skb);
926 		tcp_sum_lost(tp, skb);
927 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
928 	}
929 }
930 
931 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
932 {
933 	tcp_verify_retransmit_hint(tp, skb);
934 
935 	tcp_sum_lost(tp, skb);
936 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
937 		tp->lost_out += tcp_skb_pcount(skb);
938 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
939 	}
940 }
941 
942 /* This procedure tags the retransmission queue when SACKs arrive.
943  *
944  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
945  * Packets in queue with these bits set are counted in variables
946  * sacked_out, retrans_out and lost_out, correspondingly.
947  *
948  * Valid combinations are:
949  * Tag  InFlight	Description
950  * 0	1		- orig segment is in flight.
951  * S	0		- nothing flies, orig reached receiver.
952  * L	0		- nothing flies, orig lost by net.
953  * R	2		- both orig and retransmit are in flight.
954  * L|R	1		- orig is lost, retransmit is in flight.
955  * S|R  1		- orig reached receiver, retrans is still in flight.
956  * (L|S|R is logically valid, it could occur when L|R is sacked,
957  *  but it is equivalent to plain S and code short-curcuits it to S.
958  *  L|S is logically invalid, it would mean -1 packet in flight 8))
959  *
960  * These 6 states form finite state machine, controlled by the following events:
961  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
962  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
963  * 3. Loss detection event of two flavors:
964  *	A. Scoreboard estimator decided the packet is lost.
965  *	   A'. Reno "three dupacks" marks head of queue lost.
966  *	   A''. Its FACK modification, head until snd.fack is lost.
967  *	B. SACK arrives sacking SND.NXT at the moment, when the
968  *	   segment was retransmitted.
969  * 4. D-SACK added new rule: D-SACK changes any tag to S.
970  *
971  * It is pleasant to note, that state diagram turns out to be commutative,
972  * so that we are allowed not to be bothered by order of our actions,
973  * when multiple events arrive simultaneously. (see the function below).
974  *
975  * Reordering detection.
976  * --------------------
977  * Reordering metric is maximal distance, which a packet can be displaced
978  * in packet stream. With SACKs we can estimate it:
979  *
980  * 1. SACK fills old hole and the corresponding segment was not
981  *    ever retransmitted -> reordering. Alas, we cannot use it
982  *    when segment was retransmitted.
983  * 2. The last flaw is solved with D-SACK. D-SACK arrives
984  *    for retransmitted and already SACKed segment -> reordering..
985  * Both of these heuristics are not used in Loss state, when we cannot
986  * account for retransmits accurately.
987  *
988  * SACK block validation.
989  * ----------------------
990  *
991  * SACK block range validation checks that the received SACK block fits to
992  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
993  * Note that SND.UNA is not included to the range though being valid because
994  * it means that the receiver is rather inconsistent with itself reporting
995  * SACK reneging when it should advance SND.UNA. Such SACK block this is
996  * perfectly valid, however, in light of RFC2018 which explicitly states
997  * that "SACK block MUST reflect the newest segment.  Even if the newest
998  * segment is going to be discarded ...", not that it looks very clever
999  * in case of head skb. Due to potentional receiver driven attacks, we
1000  * choose to avoid immediate execution of a walk in write queue due to
1001  * reneging and defer head skb's loss recovery to standard loss recovery
1002  * procedure that will eventually trigger (nothing forbids us doing this).
1003  *
1004  * Implements also blockage to start_seq wrap-around. Problem lies in the
1005  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1006  * there's no guarantee that it will be before snd_nxt (n). The problem
1007  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1008  * wrap (s_w):
1009  *
1010  *         <- outs wnd ->                          <- wrapzone ->
1011  *         u     e      n                         u_w   e_w  s n_w
1012  *         |     |      |                          |     |   |  |
1013  * |<------------+------+----- TCP seqno space --------------+---------->|
1014  * ...-- <2^31 ->|                                           |<--------...
1015  * ...---- >2^31 ------>|                                    |<--------...
1016  *
1017  * Current code wouldn't be vulnerable but it's better still to discard such
1018  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1019  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1020  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1021  * equal to the ideal case (infinite seqno space without wrap caused issues).
1022  *
1023  * With D-SACK the lower bound is extended to cover sequence space below
1024  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1025  * again, D-SACK block must not to go across snd_una (for the same reason as
1026  * for the normal SACK blocks, explained above). But there all simplicity
1027  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1028  * fully below undo_marker they do not affect behavior in anyway and can
1029  * therefore be safely ignored. In rare cases (which are more or less
1030  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1031  * fragmentation and packet reordering past skb's retransmission. To consider
1032  * them correctly, the acceptable range must be extended even more though
1033  * the exact amount is rather hard to quantify. However, tp->max_window can
1034  * be used as an exaggerated estimate.
1035  */
1036 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1037 				   u32 start_seq, u32 end_seq)
1038 {
1039 	/* Too far in future, or reversed (interpretation is ambiguous) */
1040 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1041 		return false;
1042 
1043 	/* Nasty start_seq wrap-around check (see comments above) */
1044 	if (!before(start_seq, tp->snd_nxt))
1045 		return false;
1046 
1047 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1048 	 * start_seq == snd_una is non-sensical (see comments above)
1049 	 */
1050 	if (after(start_seq, tp->snd_una))
1051 		return true;
1052 
1053 	if (!is_dsack || !tp->undo_marker)
1054 		return false;
1055 
1056 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1057 	if (after(end_seq, tp->snd_una))
1058 		return false;
1059 
1060 	if (!before(start_seq, tp->undo_marker))
1061 		return true;
1062 
1063 	/* Too old */
1064 	if (!after(end_seq, tp->undo_marker))
1065 		return false;
1066 
1067 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1068 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1069 	 */
1070 	return !before(start_seq, end_seq - tp->max_window);
1071 }
1072 
1073 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1074 			    struct tcp_sack_block_wire *sp, int num_sacks,
1075 			    u32 prior_snd_una)
1076 {
1077 	struct tcp_sock *tp = tcp_sk(sk);
1078 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1079 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1080 	bool dup_sack = false;
1081 
1082 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1083 		dup_sack = true;
1084 		tcp_dsack_seen(tp);
1085 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1086 	} else if (num_sacks > 1) {
1087 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1088 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1089 
1090 		if (!after(end_seq_0, end_seq_1) &&
1091 		    !before(start_seq_0, start_seq_1)) {
1092 			dup_sack = true;
1093 			tcp_dsack_seen(tp);
1094 			NET_INC_STATS(sock_net(sk),
1095 					LINUX_MIB_TCPDSACKOFORECV);
1096 		}
1097 	}
1098 
1099 	/* D-SACK for already forgotten data... Do dumb counting. */
1100 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1101 	    !after(end_seq_0, prior_snd_una) &&
1102 	    after(end_seq_0, tp->undo_marker))
1103 		tp->undo_retrans--;
1104 
1105 	return dup_sack;
1106 }
1107 
1108 struct tcp_sacktag_state {
1109 	int	reord;
1110 	int	fack_count;
1111 	/* Timestamps for earliest and latest never-retransmitted segment
1112 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1113 	 * but congestion control should still get an accurate delay signal.
1114 	 */
1115 	struct skb_mstamp first_sackt;
1116 	struct skb_mstamp last_sackt;
1117 	struct rate_sample *rate;
1118 	int	flag;
1119 };
1120 
1121 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1122  * the incoming SACK may not exactly match but we can find smaller MSS
1123  * aligned portion of it that matches. Therefore we might need to fragment
1124  * which may fail and creates some hassle (caller must handle error case
1125  * returns).
1126  *
1127  * FIXME: this could be merged to shift decision code
1128  */
1129 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1130 				  u32 start_seq, u32 end_seq)
1131 {
1132 	int err;
1133 	bool in_sack;
1134 	unsigned int pkt_len;
1135 	unsigned int mss;
1136 
1137 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1138 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1139 
1140 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1141 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1142 		mss = tcp_skb_mss(skb);
1143 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1144 
1145 		if (!in_sack) {
1146 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1147 			if (pkt_len < mss)
1148 				pkt_len = mss;
1149 		} else {
1150 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1151 			if (pkt_len < mss)
1152 				return -EINVAL;
1153 		}
1154 
1155 		/* Round if necessary so that SACKs cover only full MSSes
1156 		 * and/or the remaining small portion (if present)
1157 		 */
1158 		if (pkt_len > mss) {
1159 			unsigned int new_len = (pkt_len / mss) * mss;
1160 			if (!in_sack && new_len < pkt_len) {
1161 				new_len += mss;
1162 				if (new_len >= skb->len)
1163 					return 0;
1164 			}
1165 			pkt_len = new_len;
1166 		}
1167 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1168 		if (err < 0)
1169 			return err;
1170 	}
1171 
1172 	return in_sack;
1173 }
1174 
1175 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1176 static u8 tcp_sacktag_one(struct sock *sk,
1177 			  struct tcp_sacktag_state *state, u8 sacked,
1178 			  u32 start_seq, u32 end_seq,
1179 			  int dup_sack, int pcount,
1180 			  const struct skb_mstamp *xmit_time)
1181 {
1182 	struct tcp_sock *tp = tcp_sk(sk);
1183 	int fack_count = state->fack_count;
1184 
1185 	/* Account D-SACK for retransmitted packet. */
1186 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1187 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1188 		    after(end_seq, tp->undo_marker))
1189 			tp->undo_retrans--;
1190 		if (sacked & TCPCB_SACKED_ACKED)
1191 			state->reord = min(fack_count, state->reord);
1192 	}
1193 
1194 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1195 	if (!after(end_seq, tp->snd_una))
1196 		return sacked;
1197 
1198 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1199 		tcp_rack_advance(tp, xmit_time, sacked);
1200 
1201 		if (sacked & TCPCB_SACKED_RETRANS) {
1202 			/* If the segment is not tagged as lost,
1203 			 * we do not clear RETRANS, believing
1204 			 * that retransmission is still in flight.
1205 			 */
1206 			if (sacked & TCPCB_LOST) {
1207 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1208 				tp->lost_out -= pcount;
1209 				tp->retrans_out -= pcount;
1210 			}
1211 		} else {
1212 			if (!(sacked & TCPCB_RETRANS)) {
1213 				/* New sack for not retransmitted frame,
1214 				 * which was in hole. It is reordering.
1215 				 */
1216 				if (before(start_seq,
1217 					   tcp_highest_sack_seq(tp)))
1218 					state->reord = min(fack_count,
1219 							   state->reord);
1220 				if (!after(end_seq, tp->high_seq))
1221 					state->flag |= FLAG_ORIG_SACK_ACKED;
1222 				if (state->first_sackt.v64 == 0)
1223 					state->first_sackt = *xmit_time;
1224 				state->last_sackt = *xmit_time;
1225 			}
1226 
1227 			if (sacked & TCPCB_LOST) {
1228 				sacked &= ~TCPCB_LOST;
1229 				tp->lost_out -= pcount;
1230 			}
1231 		}
1232 
1233 		sacked |= TCPCB_SACKED_ACKED;
1234 		state->flag |= FLAG_DATA_SACKED;
1235 		tp->sacked_out += pcount;
1236 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1237 
1238 		fack_count += pcount;
1239 
1240 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1241 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1242 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1243 			tp->lost_cnt_hint += pcount;
1244 
1245 		if (fack_count > tp->fackets_out)
1246 			tp->fackets_out = fack_count;
1247 	}
1248 
1249 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1250 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1251 	 * are accounted above as well.
1252 	 */
1253 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1254 		sacked &= ~TCPCB_SACKED_RETRANS;
1255 		tp->retrans_out -= pcount;
1256 	}
1257 
1258 	return sacked;
1259 }
1260 
1261 /* Shift newly-SACKed bytes from this skb to the immediately previous
1262  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1263  */
1264 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1265 			    struct tcp_sacktag_state *state,
1266 			    unsigned int pcount, int shifted, int mss,
1267 			    bool dup_sack)
1268 {
1269 	struct tcp_sock *tp = tcp_sk(sk);
1270 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1271 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1272 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1273 
1274 	BUG_ON(!pcount);
1275 
1276 	/* Adjust counters and hints for the newly sacked sequence
1277 	 * range but discard the return value since prev is already
1278 	 * marked. We must tag the range first because the seq
1279 	 * advancement below implicitly advances
1280 	 * tcp_highest_sack_seq() when skb is highest_sack.
1281 	 */
1282 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1283 			start_seq, end_seq, dup_sack, pcount,
1284 			&skb->skb_mstamp);
1285 	tcp_rate_skb_delivered(sk, skb, state->rate);
1286 
1287 	if (skb == tp->lost_skb_hint)
1288 		tp->lost_cnt_hint += pcount;
1289 
1290 	TCP_SKB_CB(prev)->end_seq += shifted;
1291 	TCP_SKB_CB(skb)->seq += shifted;
1292 
1293 	tcp_skb_pcount_add(prev, pcount);
1294 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1295 	tcp_skb_pcount_add(skb, -pcount);
1296 
1297 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1298 	 * in theory this shouldn't be necessary but as long as DSACK
1299 	 * code can come after this skb later on it's better to keep
1300 	 * setting gso_size to something.
1301 	 */
1302 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1303 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1304 
1305 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1306 	if (tcp_skb_pcount(skb) <= 1)
1307 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1308 
1309 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1310 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1311 
1312 	if (skb->len > 0) {
1313 		BUG_ON(!tcp_skb_pcount(skb));
1314 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1315 		return false;
1316 	}
1317 
1318 	/* Whole SKB was eaten :-) */
1319 
1320 	if (skb == tp->retransmit_skb_hint)
1321 		tp->retransmit_skb_hint = prev;
1322 	if (skb == tp->lost_skb_hint) {
1323 		tp->lost_skb_hint = prev;
1324 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1325 	}
1326 
1327 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1328 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1329 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1330 		TCP_SKB_CB(prev)->end_seq++;
1331 
1332 	if (skb == tcp_highest_sack(sk))
1333 		tcp_advance_highest_sack(sk, skb);
1334 
1335 	tcp_skb_collapse_tstamp(prev, skb);
1336 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1337 		TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1338 
1339 	tcp_unlink_write_queue(skb, sk);
1340 	sk_wmem_free_skb(sk, skb);
1341 
1342 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1343 
1344 	return true;
1345 }
1346 
1347 /* I wish gso_size would have a bit more sane initialization than
1348  * something-or-zero which complicates things
1349  */
1350 static int tcp_skb_seglen(const struct sk_buff *skb)
1351 {
1352 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1353 }
1354 
1355 /* Shifting pages past head area doesn't work */
1356 static int skb_can_shift(const struct sk_buff *skb)
1357 {
1358 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1359 }
1360 
1361 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1362  * skb.
1363  */
1364 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1365 					  struct tcp_sacktag_state *state,
1366 					  u32 start_seq, u32 end_seq,
1367 					  bool dup_sack)
1368 {
1369 	struct tcp_sock *tp = tcp_sk(sk);
1370 	struct sk_buff *prev;
1371 	int mss;
1372 	int pcount = 0;
1373 	int len;
1374 	int in_sack;
1375 
1376 	if (!sk_can_gso(sk))
1377 		goto fallback;
1378 
1379 	/* Normally R but no L won't result in plain S */
1380 	if (!dup_sack &&
1381 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1382 		goto fallback;
1383 	if (!skb_can_shift(skb))
1384 		goto fallback;
1385 	/* This frame is about to be dropped (was ACKed). */
1386 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1387 		goto fallback;
1388 
1389 	/* Can only happen with delayed DSACK + discard craziness */
1390 	if (unlikely(skb == tcp_write_queue_head(sk)))
1391 		goto fallback;
1392 	prev = tcp_write_queue_prev(sk, skb);
1393 
1394 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1395 		goto fallback;
1396 
1397 	if (!tcp_skb_can_collapse_to(prev))
1398 		goto fallback;
1399 
1400 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402 
1403 	if (in_sack) {
1404 		len = skb->len;
1405 		pcount = tcp_skb_pcount(skb);
1406 		mss = tcp_skb_seglen(skb);
1407 
1408 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1409 		 * drop this restriction as unnecessary
1410 		 */
1411 		if (mss != tcp_skb_seglen(prev))
1412 			goto fallback;
1413 	} else {
1414 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415 			goto noop;
1416 		/* CHECKME: This is non-MSS split case only?, this will
1417 		 * cause skipped skbs due to advancing loop btw, original
1418 		 * has that feature too
1419 		 */
1420 		if (tcp_skb_pcount(skb) <= 1)
1421 			goto noop;
1422 
1423 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424 		if (!in_sack) {
1425 			/* TODO: head merge to next could be attempted here
1426 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427 			 * though it might not be worth of the additional hassle
1428 			 *
1429 			 * ...we can probably just fallback to what was done
1430 			 * previously. We could try merging non-SACKed ones
1431 			 * as well but it probably isn't going to buy off
1432 			 * because later SACKs might again split them, and
1433 			 * it would make skb timestamp tracking considerably
1434 			 * harder problem.
1435 			 */
1436 			goto fallback;
1437 		}
1438 
1439 		len = end_seq - TCP_SKB_CB(skb)->seq;
1440 		BUG_ON(len < 0);
1441 		BUG_ON(len > skb->len);
1442 
1443 		/* MSS boundaries should be honoured or else pcount will
1444 		 * severely break even though it makes things bit trickier.
1445 		 * Optimize common case to avoid most of the divides
1446 		 */
1447 		mss = tcp_skb_mss(skb);
1448 
1449 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1450 		 * drop this restriction as unnecessary
1451 		 */
1452 		if (mss != tcp_skb_seglen(prev))
1453 			goto fallback;
1454 
1455 		if (len == mss) {
1456 			pcount = 1;
1457 		} else if (len < mss) {
1458 			goto noop;
1459 		} else {
1460 			pcount = len / mss;
1461 			len = pcount * mss;
1462 		}
1463 	}
1464 
1465 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467 		goto fallback;
1468 
1469 	if (!skb_shift(prev, skb, len))
1470 		goto fallback;
1471 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1472 		goto out;
1473 
1474 	/* Hole filled allows collapsing with the next as well, this is very
1475 	 * useful when hole on every nth skb pattern happens
1476 	 */
1477 	if (prev == tcp_write_queue_tail(sk))
1478 		goto out;
1479 	skb = tcp_write_queue_next(sk, prev);
1480 
1481 	if (!skb_can_shift(skb) ||
1482 	    (skb == tcp_send_head(sk)) ||
1483 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 	    (mss != tcp_skb_seglen(skb)))
1485 		goto out;
1486 
1487 	len = skb->len;
1488 	if (skb_shift(prev, skb, len)) {
1489 		pcount += tcp_skb_pcount(skb);
1490 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1491 	}
1492 
1493 out:
1494 	state->fack_count += pcount;
1495 	return prev;
1496 
1497 noop:
1498 	return skb;
1499 
1500 fallback:
1501 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 	return NULL;
1503 }
1504 
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 					struct tcp_sack_block *next_dup,
1507 					struct tcp_sacktag_state *state,
1508 					u32 start_seq, u32 end_seq,
1509 					bool dup_sack_in)
1510 {
1511 	struct tcp_sock *tp = tcp_sk(sk);
1512 	struct sk_buff *tmp;
1513 
1514 	tcp_for_write_queue_from(skb, sk) {
1515 		int in_sack = 0;
1516 		bool dup_sack = dup_sack_in;
1517 
1518 		if (skb == tcp_send_head(sk))
1519 			break;
1520 
1521 		/* queue is in-order => we can short-circuit the walk early */
1522 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1523 			break;
1524 
1525 		if (next_dup  &&
1526 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1527 			in_sack = tcp_match_skb_to_sack(sk, skb,
1528 							next_dup->start_seq,
1529 							next_dup->end_seq);
1530 			if (in_sack > 0)
1531 				dup_sack = true;
1532 		}
1533 
1534 		/* skb reference here is a bit tricky to get right, since
1535 		 * shifting can eat and free both this skb and the next,
1536 		 * so not even _safe variant of the loop is enough.
1537 		 */
1538 		if (in_sack <= 0) {
1539 			tmp = tcp_shift_skb_data(sk, skb, state,
1540 						 start_seq, end_seq, dup_sack);
1541 			if (tmp) {
1542 				if (tmp != skb) {
1543 					skb = tmp;
1544 					continue;
1545 				}
1546 
1547 				in_sack = 0;
1548 			} else {
1549 				in_sack = tcp_match_skb_to_sack(sk, skb,
1550 								start_seq,
1551 								end_seq);
1552 			}
1553 		}
1554 
1555 		if (unlikely(in_sack < 0))
1556 			break;
1557 
1558 		if (in_sack) {
1559 			TCP_SKB_CB(skb)->sacked =
1560 				tcp_sacktag_one(sk,
1561 						state,
1562 						TCP_SKB_CB(skb)->sacked,
1563 						TCP_SKB_CB(skb)->seq,
1564 						TCP_SKB_CB(skb)->end_seq,
1565 						dup_sack,
1566 						tcp_skb_pcount(skb),
1567 						&skb->skb_mstamp);
1568 			tcp_rate_skb_delivered(sk, skb, state->rate);
1569 
1570 			if (!before(TCP_SKB_CB(skb)->seq,
1571 				    tcp_highest_sack_seq(tp)))
1572 				tcp_advance_highest_sack(sk, skb);
1573 		}
1574 
1575 		state->fack_count += tcp_skb_pcount(skb);
1576 	}
1577 	return skb;
1578 }
1579 
1580 /* Avoid all extra work that is being done by sacktag while walking in
1581  * a normal way
1582  */
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 					struct tcp_sacktag_state *state,
1585 					u32 skip_to_seq)
1586 {
1587 	tcp_for_write_queue_from(skb, sk) {
1588 		if (skb == tcp_send_head(sk))
1589 			break;
1590 
1591 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1592 			break;
1593 
1594 		state->fack_count += tcp_skb_pcount(skb);
1595 	}
1596 	return skb;
1597 }
1598 
1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 						struct sock *sk,
1601 						struct tcp_sack_block *next_dup,
1602 						struct tcp_sacktag_state *state,
1603 						u32 skip_to_seq)
1604 {
1605 	if (!next_dup)
1606 		return skb;
1607 
1608 	if (before(next_dup->start_seq, skip_to_seq)) {
1609 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 				       next_dup->start_seq, next_dup->end_seq,
1612 				       1);
1613 	}
1614 
1615 	return skb;
1616 }
1617 
1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1619 {
1620 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621 }
1622 
1623 static int
1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1625 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1626 {
1627 	struct tcp_sock *tp = tcp_sk(sk);
1628 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 				    TCP_SKB_CB(ack_skb)->sacked);
1630 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1631 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1632 	struct tcp_sack_block *cache;
1633 	struct sk_buff *skb;
1634 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1635 	int used_sacks;
1636 	bool found_dup_sack = false;
1637 	int i, j;
1638 	int first_sack_index;
1639 
1640 	state->flag = 0;
1641 	state->reord = tp->packets_out;
1642 
1643 	if (!tp->sacked_out) {
1644 		if (WARN_ON(tp->fackets_out))
1645 			tp->fackets_out = 0;
1646 		tcp_highest_sack_reset(sk);
1647 	}
1648 
1649 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1650 					 num_sacks, prior_snd_una);
1651 	if (found_dup_sack) {
1652 		state->flag |= FLAG_DSACKING_ACK;
1653 		tp->delivered++; /* A spurious retransmission is delivered */
1654 	}
1655 
1656 	/* Eliminate too old ACKs, but take into
1657 	 * account more or less fresh ones, they can
1658 	 * contain valid SACK info.
1659 	 */
1660 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 		return 0;
1662 
1663 	if (!tp->packets_out)
1664 		goto out;
1665 
1666 	used_sacks = 0;
1667 	first_sack_index = 0;
1668 	for (i = 0; i < num_sacks; i++) {
1669 		bool dup_sack = !i && found_dup_sack;
1670 
1671 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1673 
1674 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1675 					    sp[used_sacks].start_seq,
1676 					    sp[used_sacks].end_seq)) {
1677 			int mib_idx;
1678 
1679 			if (dup_sack) {
1680 				if (!tp->undo_marker)
1681 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682 				else
1683 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684 			} else {
1685 				/* Don't count olds caused by ACK reordering */
1686 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1688 					continue;
1689 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690 			}
1691 
1692 			NET_INC_STATS(sock_net(sk), mib_idx);
1693 			if (i == 0)
1694 				first_sack_index = -1;
1695 			continue;
1696 		}
1697 
1698 		/* Ignore very old stuff early */
1699 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700 			continue;
1701 
1702 		used_sacks++;
1703 	}
1704 
1705 	/* order SACK blocks to allow in order walk of the retrans queue */
1706 	for (i = used_sacks - 1; i > 0; i--) {
1707 		for (j = 0; j < i; j++) {
1708 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709 				swap(sp[j], sp[j + 1]);
1710 
1711 				/* Track where the first SACK block goes to */
1712 				if (j == first_sack_index)
1713 					first_sack_index = j + 1;
1714 			}
1715 		}
1716 	}
1717 
1718 	skb = tcp_write_queue_head(sk);
1719 	state->fack_count = 0;
1720 	i = 0;
1721 
1722 	if (!tp->sacked_out) {
1723 		/* It's already past, so skip checking against it */
1724 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725 	} else {
1726 		cache = tp->recv_sack_cache;
1727 		/* Skip empty blocks in at head of the cache */
1728 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729 		       !cache->end_seq)
1730 			cache++;
1731 	}
1732 
1733 	while (i < used_sacks) {
1734 		u32 start_seq = sp[i].start_seq;
1735 		u32 end_seq = sp[i].end_seq;
1736 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737 		struct tcp_sack_block *next_dup = NULL;
1738 
1739 		if (found_dup_sack && ((i + 1) == first_sack_index))
1740 			next_dup = &sp[i + 1];
1741 
1742 		/* Skip too early cached blocks */
1743 		while (tcp_sack_cache_ok(tp, cache) &&
1744 		       !before(start_seq, cache->end_seq))
1745 			cache++;
1746 
1747 		/* Can skip some work by looking recv_sack_cache? */
1748 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749 		    after(end_seq, cache->start_seq)) {
1750 
1751 			/* Head todo? */
1752 			if (before(start_seq, cache->start_seq)) {
1753 				skb = tcp_sacktag_skip(skb, sk, state,
1754 						       start_seq);
1755 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1756 						       state,
1757 						       start_seq,
1758 						       cache->start_seq,
1759 						       dup_sack);
1760 			}
1761 
1762 			/* Rest of the block already fully processed? */
1763 			if (!after(end_seq, cache->end_seq))
1764 				goto advance_sp;
1765 
1766 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767 						       state,
1768 						       cache->end_seq);
1769 
1770 			/* ...tail remains todo... */
1771 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772 				/* ...but better entrypoint exists! */
1773 				skb = tcp_highest_sack(sk);
1774 				if (!skb)
1775 					break;
1776 				state->fack_count = tp->fackets_out;
1777 				cache++;
1778 				goto walk;
1779 			}
1780 
1781 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1782 			/* Check overlap against next cached too (past this one already) */
1783 			cache++;
1784 			continue;
1785 		}
1786 
1787 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1788 			skb = tcp_highest_sack(sk);
1789 			if (!skb)
1790 				break;
1791 			state->fack_count = tp->fackets_out;
1792 		}
1793 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1794 
1795 walk:
1796 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1797 				       start_seq, end_seq, dup_sack);
1798 
1799 advance_sp:
1800 		i++;
1801 	}
1802 
1803 	/* Clear the head of the cache sack blocks so we can skip it next time */
1804 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1805 		tp->recv_sack_cache[i].start_seq = 0;
1806 		tp->recv_sack_cache[i].end_seq = 0;
1807 	}
1808 	for (j = 0; j < used_sacks; j++)
1809 		tp->recv_sack_cache[i++] = sp[j];
1810 
1811 	if ((state->reord < tp->fackets_out) &&
1812 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1813 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1814 
1815 	tcp_verify_left_out(tp);
1816 out:
1817 
1818 #if FASTRETRANS_DEBUG > 0
1819 	WARN_ON((int)tp->sacked_out < 0);
1820 	WARN_ON((int)tp->lost_out < 0);
1821 	WARN_ON((int)tp->retrans_out < 0);
1822 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1823 #endif
1824 	return state->flag;
1825 }
1826 
1827 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1828  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1829  */
1830 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1831 {
1832 	u32 holes;
1833 
1834 	holes = max(tp->lost_out, 1U);
1835 	holes = min(holes, tp->packets_out);
1836 
1837 	if ((tp->sacked_out + holes) > tp->packets_out) {
1838 		tp->sacked_out = tp->packets_out - holes;
1839 		return true;
1840 	}
1841 	return false;
1842 }
1843 
1844 /* If we receive more dupacks than we expected counting segments
1845  * in assumption of absent reordering, interpret this as reordering.
1846  * The only another reason could be bug in receiver TCP.
1847  */
1848 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1849 {
1850 	struct tcp_sock *tp = tcp_sk(sk);
1851 	if (tcp_limit_reno_sacked(tp))
1852 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1853 }
1854 
1855 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1856 
1857 static void tcp_add_reno_sack(struct sock *sk)
1858 {
1859 	struct tcp_sock *tp = tcp_sk(sk);
1860 	u32 prior_sacked = tp->sacked_out;
1861 
1862 	tp->sacked_out++;
1863 	tcp_check_reno_reordering(sk, 0);
1864 	if (tp->sacked_out > prior_sacked)
1865 		tp->delivered++; /* Some out-of-order packet is delivered */
1866 	tcp_verify_left_out(tp);
1867 }
1868 
1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1870 
1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 
1875 	if (acked > 0) {
1876 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1877 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1878 		if (acked - 1 >= tp->sacked_out)
1879 			tp->sacked_out = 0;
1880 		else
1881 			tp->sacked_out -= acked - 1;
1882 	}
1883 	tcp_check_reno_reordering(sk, acked);
1884 	tcp_verify_left_out(tp);
1885 }
1886 
1887 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1888 {
1889 	tp->sacked_out = 0;
1890 }
1891 
1892 void tcp_clear_retrans(struct tcp_sock *tp)
1893 {
1894 	tp->retrans_out = 0;
1895 	tp->lost_out = 0;
1896 	tp->undo_marker = 0;
1897 	tp->undo_retrans = -1;
1898 	tp->fackets_out = 0;
1899 	tp->sacked_out = 0;
1900 }
1901 
1902 static inline void tcp_init_undo(struct tcp_sock *tp)
1903 {
1904 	tp->undo_marker = tp->snd_una;
1905 	/* Retransmission still in flight may cause DSACKs later. */
1906 	tp->undo_retrans = tp->retrans_out ? : -1;
1907 }
1908 
1909 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1910  * and reset tags completely, otherwise preserve SACKs. If receiver
1911  * dropped its ofo queue, we will know this due to reneging detection.
1912  */
1913 void tcp_enter_loss(struct sock *sk)
1914 {
1915 	const struct inet_connection_sock *icsk = inet_csk(sk);
1916 	struct tcp_sock *tp = tcp_sk(sk);
1917 	struct net *net = sock_net(sk);
1918 	struct sk_buff *skb;
1919 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1920 	bool is_reneg;			/* is receiver reneging on SACKs? */
1921 	bool mark_lost;
1922 
1923 	/* Reduce ssthresh if it has not yet been made inside this window. */
1924 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1925 	    !after(tp->high_seq, tp->snd_una) ||
1926 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1927 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1928 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1929 		tcp_ca_event(sk, CA_EVENT_LOSS);
1930 		tcp_init_undo(tp);
1931 	}
1932 	tp->snd_cwnd	   = 1;
1933 	tp->snd_cwnd_cnt   = 0;
1934 	tp->snd_cwnd_stamp = tcp_time_stamp;
1935 
1936 	tp->retrans_out = 0;
1937 	tp->lost_out = 0;
1938 
1939 	if (tcp_is_reno(tp))
1940 		tcp_reset_reno_sack(tp);
1941 
1942 	skb = tcp_write_queue_head(sk);
1943 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1944 	if (is_reneg) {
1945 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1946 		tp->sacked_out = 0;
1947 		tp->fackets_out = 0;
1948 	}
1949 	tcp_clear_all_retrans_hints(tp);
1950 
1951 	tcp_for_write_queue(skb, sk) {
1952 		if (skb == tcp_send_head(sk))
1953 			break;
1954 
1955 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1956 			     is_reneg);
1957 		if (mark_lost)
1958 			tcp_sum_lost(tp, skb);
1959 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1960 		if (mark_lost) {
1961 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1962 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1963 			tp->lost_out += tcp_skb_pcount(skb);
1964 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1965 		}
1966 	}
1967 	tcp_verify_left_out(tp);
1968 
1969 	/* Timeout in disordered state after receiving substantial DUPACKs
1970 	 * suggests that the degree of reordering is over-estimated.
1971 	 */
1972 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1973 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1974 		tp->reordering = min_t(unsigned int, tp->reordering,
1975 				       net->ipv4.sysctl_tcp_reordering);
1976 	tcp_set_ca_state(sk, TCP_CA_Loss);
1977 	tp->high_seq = tp->snd_nxt;
1978 	tcp_ecn_queue_cwr(tp);
1979 
1980 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1981 	 * loss recovery is underway except recurring timeout(s) on
1982 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1983 	 */
1984 	tp->frto = sysctl_tcp_frto &&
1985 		   (new_recovery || icsk->icsk_retransmits) &&
1986 		   !inet_csk(sk)->icsk_mtup.probe_size;
1987 }
1988 
1989 /* If ACK arrived pointing to a remembered SACK, it means that our
1990  * remembered SACKs do not reflect real state of receiver i.e.
1991  * receiver _host_ is heavily congested (or buggy).
1992  *
1993  * To avoid big spurious retransmission bursts due to transient SACK
1994  * scoreboard oddities that look like reneging, we give the receiver a
1995  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1996  * restore sanity to the SACK scoreboard. If the apparent reneging
1997  * persists until this RTO then we'll clear the SACK scoreboard.
1998  */
1999 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2000 {
2001 	if (flag & FLAG_SACK_RENEGING) {
2002 		struct tcp_sock *tp = tcp_sk(sk);
2003 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2004 					  msecs_to_jiffies(10));
2005 
2006 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2007 					  delay, TCP_RTO_MAX);
2008 		return true;
2009 	}
2010 	return false;
2011 }
2012 
2013 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2014 {
2015 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2016 }
2017 
2018 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2019  * counter when SACK is enabled (without SACK, sacked_out is used for
2020  * that purpose).
2021  *
2022  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2023  * segments up to the highest received SACK block so far and holes in
2024  * between them.
2025  *
2026  * With reordering, holes may still be in flight, so RFC3517 recovery
2027  * uses pure sacked_out (total number of SACKed segments) even though
2028  * it violates the RFC that uses duplicate ACKs, often these are equal
2029  * but when e.g. out-of-window ACKs or packet duplication occurs,
2030  * they differ. Since neither occurs due to loss, TCP should really
2031  * ignore them.
2032  */
2033 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2034 {
2035 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2036 }
2037 
2038 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2039 {
2040 	struct tcp_sock *tp = tcp_sk(sk);
2041 	unsigned long delay;
2042 
2043 	/* Delay early retransmit and entering fast recovery for
2044 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2045 	 * available, or RTO is scheduled to fire first.
2046 	 */
2047 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2048 	    (flag & FLAG_ECE) || !tp->srtt_us)
2049 		return false;
2050 
2051 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2052 		    msecs_to_jiffies(2));
2053 
2054 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2055 		return false;
2056 
2057 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2058 				  TCP_RTO_MAX);
2059 	return true;
2060 }
2061 
2062 /* Linux NewReno/SACK/FACK/ECN state machine.
2063  * --------------------------------------
2064  *
2065  * "Open"	Normal state, no dubious events, fast path.
2066  * "Disorder"   In all the respects it is "Open",
2067  *		but requires a bit more attention. It is entered when
2068  *		we see some SACKs or dupacks. It is split of "Open"
2069  *		mainly to move some processing from fast path to slow one.
2070  * "CWR"	CWND was reduced due to some Congestion Notification event.
2071  *		It can be ECN, ICMP source quench, local device congestion.
2072  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2073  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2074  *
2075  * tcp_fastretrans_alert() is entered:
2076  * - each incoming ACK, if state is not "Open"
2077  * - when arrived ACK is unusual, namely:
2078  *	* SACK
2079  *	* Duplicate ACK.
2080  *	* ECN ECE.
2081  *
2082  * Counting packets in flight is pretty simple.
2083  *
2084  *	in_flight = packets_out - left_out + retrans_out
2085  *
2086  *	packets_out is SND.NXT-SND.UNA counted in packets.
2087  *
2088  *	retrans_out is number of retransmitted segments.
2089  *
2090  *	left_out is number of segments left network, but not ACKed yet.
2091  *
2092  *		left_out = sacked_out + lost_out
2093  *
2094  *     sacked_out: Packets, which arrived to receiver out of order
2095  *		   and hence not ACKed. With SACKs this number is simply
2096  *		   amount of SACKed data. Even without SACKs
2097  *		   it is easy to give pretty reliable estimate of this number,
2098  *		   counting duplicate ACKs.
2099  *
2100  *       lost_out: Packets lost by network. TCP has no explicit
2101  *		   "loss notification" feedback from network (for now).
2102  *		   It means that this number can be only _guessed_.
2103  *		   Actually, it is the heuristics to predict lossage that
2104  *		   distinguishes different algorithms.
2105  *
2106  *	F.e. after RTO, when all the queue is considered as lost,
2107  *	lost_out = packets_out and in_flight = retrans_out.
2108  *
2109  *		Essentially, we have now two algorithms counting
2110  *		lost packets.
2111  *
2112  *		FACK: It is the simplest heuristics. As soon as we decided
2113  *		that something is lost, we decide that _all_ not SACKed
2114  *		packets until the most forward SACK are lost. I.e.
2115  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2116  *		It is absolutely correct estimate, if network does not reorder
2117  *		packets. And it loses any connection to reality when reordering
2118  *		takes place. We use FACK by default until reordering
2119  *		is suspected on the path to this destination.
2120  *
2121  *		NewReno: when Recovery is entered, we assume that one segment
2122  *		is lost (classic Reno). While we are in Recovery and
2123  *		a partial ACK arrives, we assume that one more packet
2124  *		is lost (NewReno). This heuristics are the same in NewReno
2125  *		and SACK.
2126  *
2127  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2128  *  deflation etc. CWND is real congestion window, never inflated, changes
2129  *  only according to classic VJ rules.
2130  *
2131  * Really tricky (and requiring careful tuning) part of algorithm
2132  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2133  * The first determines the moment _when_ we should reduce CWND and,
2134  * hence, slow down forward transmission. In fact, it determines the moment
2135  * when we decide that hole is caused by loss, rather than by a reorder.
2136  *
2137  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2138  * holes, caused by lost packets.
2139  *
2140  * And the most logically complicated part of algorithm is undo
2141  * heuristics. We detect false retransmits due to both too early
2142  * fast retransmit (reordering) and underestimated RTO, analyzing
2143  * timestamps and D-SACKs. When we detect that some segments were
2144  * retransmitted by mistake and CWND reduction was wrong, we undo
2145  * window reduction and abort recovery phase. This logic is hidden
2146  * inside several functions named tcp_try_undo_<something>.
2147  */
2148 
2149 /* This function decides, when we should leave Disordered state
2150  * and enter Recovery phase, reducing congestion window.
2151  *
2152  * Main question: may we further continue forward transmission
2153  * with the same cwnd?
2154  */
2155 static bool tcp_time_to_recover(struct sock *sk, int flag)
2156 {
2157 	struct tcp_sock *tp = tcp_sk(sk);
2158 	__u32 packets_out;
2159 	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2160 
2161 	/* Trick#1: The loss is proven. */
2162 	if (tp->lost_out)
2163 		return true;
2164 
2165 	/* Not-A-Trick#2 : Classic rule... */
2166 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2167 		return true;
2168 
2169 	/* Trick#4: It is still not OK... But will it be useful to delay
2170 	 * recovery more?
2171 	 */
2172 	packets_out = tp->packets_out;
2173 	if (packets_out <= tp->reordering &&
2174 	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2175 	    !tcp_may_send_now(sk)) {
2176 		/* We have nothing to send. This connection is limited
2177 		 * either by receiver window or by application.
2178 		 */
2179 		return true;
2180 	}
2181 
2182 	/* If a thin stream is detected, retransmit after first
2183 	 * received dupack. Employ only if SACK is supported in order
2184 	 * to avoid possible corner-case series of spurious retransmissions
2185 	 * Use only if there are no unsent data.
2186 	 */
2187 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2188 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2189 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2190 		return true;
2191 
2192 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2193 	 * retransmissions due to small network reorderings, we implement
2194 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2195 	 * interval if appropriate.
2196 	 */
2197 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2198 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2199 	    !tcp_may_send_now(sk))
2200 		return !tcp_pause_early_retransmit(sk, flag);
2201 
2202 	return false;
2203 }
2204 
2205 /* Detect loss in event "A" above by marking head of queue up as lost.
2206  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2207  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2208  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2209  * the maximum SACKed segments to pass before reaching this limit.
2210  */
2211 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2212 {
2213 	struct tcp_sock *tp = tcp_sk(sk);
2214 	struct sk_buff *skb;
2215 	int cnt, oldcnt, lost;
2216 	unsigned int mss;
2217 	/* Use SACK to deduce losses of new sequences sent during recovery */
2218 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2219 
2220 	WARN_ON(packets > tp->packets_out);
2221 	if (tp->lost_skb_hint) {
2222 		skb = tp->lost_skb_hint;
2223 		cnt = tp->lost_cnt_hint;
2224 		/* Head already handled? */
2225 		if (mark_head && skb != tcp_write_queue_head(sk))
2226 			return;
2227 	} else {
2228 		skb = tcp_write_queue_head(sk);
2229 		cnt = 0;
2230 	}
2231 
2232 	tcp_for_write_queue_from(skb, sk) {
2233 		if (skb == tcp_send_head(sk))
2234 			break;
2235 		/* TODO: do this better */
2236 		/* this is not the most efficient way to do this... */
2237 		tp->lost_skb_hint = skb;
2238 		tp->lost_cnt_hint = cnt;
2239 
2240 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2241 			break;
2242 
2243 		oldcnt = cnt;
2244 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2245 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2246 			cnt += tcp_skb_pcount(skb);
2247 
2248 		if (cnt > packets) {
2249 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2250 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2251 			    (oldcnt >= packets))
2252 				break;
2253 
2254 			mss = tcp_skb_mss(skb);
2255 			/* If needed, chop off the prefix to mark as lost. */
2256 			lost = (packets - oldcnt) * mss;
2257 			if (lost < skb->len &&
2258 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2259 				break;
2260 			cnt = packets;
2261 		}
2262 
2263 		tcp_skb_mark_lost(tp, skb);
2264 
2265 		if (mark_head)
2266 			break;
2267 	}
2268 	tcp_verify_left_out(tp);
2269 }
2270 
2271 /* Account newly detected lost packet(s) */
2272 
2273 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2274 {
2275 	struct tcp_sock *tp = tcp_sk(sk);
2276 
2277 	if (tcp_is_reno(tp)) {
2278 		tcp_mark_head_lost(sk, 1, 1);
2279 	} else if (tcp_is_fack(tp)) {
2280 		int lost = tp->fackets_out - tp->reordering;
2281 		if (lost <= 0)
2282 			lost = 1;
2283 		tcp_mark_head_lost(sk, lost, 0);
2284 	} else {
2285 		int sacked_upto = tp->sacked_out - tp->reordering;
2286 		if (sacked_upto >= 0)
2287 			tcp_mark_head_lost(sk, sacked_upto, 0);
2288 		else if (fast_rexmit)
2289 			tcp_mark_head_lost(sk, 1, 1);
2290 	}
2291 }
2292 
2293 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2294 {
2295 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2296 	       before(tp->rx_opt.rcv_tsecr, when);
2297 }
2298 
2299 /* skb is spurious retransmitted if the returned timestamp echo
2300  * reply is prior to the skb transmission time
2301  */
2302 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2303 				     const struct sk_buff *skb)
2304 {
2305 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2306 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2307 }
2308 
2309 /* Nothing was retransmitted or returned timestamp is less
2310  * than timestamp of the first retransmission.
2311  */
2312 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2313 {
2314 	return !tp->retrans_stamp ||
2315 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2316 }
2317 
2318 /* Undo procedures. */
2319 
2320 /* We can clear retrans_stamp when there are no retransmissions in the
2321  * window. It would seem that it is trivially available for us in
2322  * tp->retrans_out, however, that kind of assumptions doesn't consider
2323  * what will happen if errors occur when sending retransmission for the
2324  * second time. ...It could the that such segment has only
2325  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2326  * the head skb is enough except for some reneging corner cases that
2327  * are not worth the effort.
2328  *
2329  * Main reason for all this complexity is the fact that connection dying
2330  * time now depends on the validity of the retrans_stamp, in particular,
2331  * that successive retransmissions of a segment must not advance
2332  * retrans_stamp under any conditions.
2333  */
2334 static bool tcp_any_retrans_done(const struct sock *sk)
2335 {
2336 	const struct tcp_sock *tp = tcp_sk(sk);
2337 	struct sk_buff *skb;
2338 
2339 	if (tp->retrans_out)
2340 		return true;
2341 
2342 	skb = tcp_write_queue_head(sk);
2343 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2344 		return true;
2345 
2346 	return false;
2347 }
2348 
2349 #if FASTRETRANS_DEBUG > 1
2350 static void DBGUNDO(struct sock *sk, const char *msg)
2351 {
2352 	struct tcp_sock *tp = tcp_sk(sk);
2353 	struct inet_sock *inet = inet_sk(sk);
2354 
2355 	if (sk->sk_family == AF_INET) {
2356 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2357 			 msg,
2358 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2359 			 tp->snd_cwnd, tcp_left_out(tp),
2360 			 tp->snd_ssthresh, tp->prior_ssthresh,
2361 			 tp->packets_out);
2362 	}
2363 #if IS_ENABLED(CONFIG_IPV6)
2364 	else if (sk->sk_family == AF_INET6) {
2365 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2366 			 msg,
2367 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2368 			 tp->snd_cwnd, tcp_left_out(tp),
2369 			 tp->snd_ssthresh, tp->prior_ssthresh,
2370 			 tp->packets_out);
2371 	}
2372 #endif
2373 }
2374 #else
2375 #define DBGUNDO(x...) do { } while (0)
2376 #endif
2377 
2378 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2379 {
2380 	struct tcp_sock *tp = tcp_sk(sk);
2381 
2382 	if (unmark_loss) {
2383 		struct sk_buff *skb;
2384 
2385 		tcp_for_write_queue(skb, sk) {
2386 			if (skb == tcp_send_head(sk))
2387 				break;
2388 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2389 		}
2390 		tp->lost_out = 0;
2391 		tcp_clear_all_retrans_hints(tp);
2392 	}
2393 
2394 	if (tp->prior_ssthresh) {
2395 		const struct inet_connection_sock *icsk = inet_csk(sk);
2396 
2397 		if (icsk->icsk_ca_ops->undo_cwnd)
2398 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2399 		else
2400 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2401 
2402 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2403 			tp->snd_ssthresh = tp->prior_ssthresh;
2404 			tcp_ecn_withdraw_cwr(tp);
2405 		}
2406 	}
2407 	tp->snd_cwnd_stamp = tcp_time_stamp;
2408 	tp->undo_marker = 0;
2409 }
2410 
2411 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2412 {
2413 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2414 }
2415 
2416 /* People celebrate: "We love our President!" */
2417 static bool tcp_try_undo_recovery(struct sock *sk)
2418 {
2419 	struct tcp_sock *tp = tcp_sk(sk);
2420 
2421 	if (tcp_may_undo(tp)) {
2422 		int mib_idx;
2423 
2424 		/* Happy end! We did not retransmit anything
2425 		 * or our original transmission succeeded.
2426 		 */
2427 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2428 		tcp_undo_cwnd_reduction(sk, false);
2429 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2430 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2431 		else
2432 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2433 
2434 		NET_INC_STATS(sock_net(sk), mib_idx);
2435 	}
2436 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2437 		/* Hold old state until something *above* high_seq
2438 		 * is ACKed. For Reno it is MUST to prevent false
2439 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2440 		if (!tcp_any_retrans_done(sk))
2441 			tp->retrans_stamp = 0;
2442 		return true;
2443 	}
2444 	tcp_set_ca_state(sk, TCP_CA_Open);
2445 	return false;
2446 }
2447 
2448 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2449 static bool tcp_try_undo_dsack(struct sock *sk)
2450 {
2451 	struct tcp_sock *tp = tcp_sk(sk);
2452 
2453 	if (tp->undo_marker && !tp->undo_retrans) {
2454 		DBGUNDO(sk, "D-SACK");
2455 		tcp_undo_cwnd_reduction(sk, false);
2456 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2457 		return true;
2458 	}
2459 	return false;
2460 }
2461 
2462 /* Undo during loss recovery after partial ACK or using F-RTO. */
2463 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2464 {
2465 	struct tcp_sock *tp = tcp_sk(sk);
2466 
2467 	if (frto_undo || tcp_may_undo(tp)) {
2468 		tcp_undo_cwnd_reduction(sk, true);
2469 
2470 		DBGUNDO(sk, "partial loss");
2471 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2472 		if (frto_undo)
2473 			NET_INC_STATS(sock_net(sk),
2474 					LINUX_MIB_TCPSPURIOUSRTOS);
2475 		inet_csk(sk)->icsk_retransmits = 0;
2476 		if (frto_undo || tcp_is_sack(tp))
2477 			tcp_set_ca_state(sk, TCP_CA_Open);
2478 		return true;
2479 	}
2480 	return false;
2481 }
2482 
2483 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2484  * It computes the number of packets to send (sndcnt) based on packets newly
2485  * delivered:
2486  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2487  *	cwnd reductions across a full RTT.
2488  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2489  *      But when the retransmits are acked without further losses, PRR
2490  *      slow starts cwnd up to ssthresh to speed up the recovery.
2491  */
2492 static void tcp_init_cwnd_reduction(struct sock *sk)
2493 {
2494 	struct tcp_sock *tp = tcp_sk(sk);
2495 
2496 	tp->high_seq = tp->snd_nxt;
2497 	tp->tlp_high_seq = 0;
2498 	tp->snd_cwnd_cnt = 0;
2499 	tp->prior_cwnd = tp->snd_cwnd;
2500 	tp->prr_delivered = 0;
2501 	tp->prr_out = 0;
2502 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2503 	tcp_ecn_queue_cwr(tp);
2504 }
2505 
2506 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2507 			       int flag)
2508 {
2509 	struct tcp_sock *tp = tcp_sk(sk);
2510 	int sndcnt = 0;
2511 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2512 
2513 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2514 		return;
2515 
2516 	tp->prr_delivered += newly_acked_sacked;
2517 	if (delta < 0) {
2518 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2519 			       tp->prior_cwnd - 1;
2520 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2521 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2522 		   !(flag & FLAG_LOST_RETRANS)) {
2523 		sndcnt = min_t(int, delta,
2524 			       max_t(int, tp->prr_delivered - tp->prr_out,
2525 				     newly_acked_sacked) + 1);
2526 	} else {
2527 		sndcnt = min(delta, newly_acked_sacked);
2528 	}
2529 	/* Force a fast retransmit upon entering fast recovery */
2530 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2531 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2532 }
2533 
2534 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 
2538 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2539 		return;
2540 
2541 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2542 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2543 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2544 		tp->snd_cwnd = tp->snd_ssthresh;
2545 		tp->snd_cwnd_stamp = tcp_time_stamp;
2546 	}
2547 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2548 }
2549 
2550 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2551 void tcp_enter_cwr(struct sock *sk)
2552 {
2553 	struct tcp_sock *tp = tcp_sk(sk);
2554 
2555 	tp->prior_ssthresh = 0;
2556 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2557 		tp->undo_marker = 0;
2558 		tcp_init_cwnd_reduction(sk);
2559 		tcp_set_ca_state(sk, TCP_CA_CWR);
2560 	}
2561 }
2562 EXPORT_SYMBOL(tcp_enter_cwr);
2563 
2564 static void tcp_try_keep_open(struct sock *sk)
2565 {
2566 	struct tcp_sock *tp = tcp_sk(sk);
2567 	int state = TCP_CA_Open;
2568 
2569 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2570 		state = TCP_CA_Disorder;
2571 
2572 	if (inet_csk(sk)->icsk_ca_state != state) {
2573 		tcp_set_ca_state(sk, state);
2574 		tp->high_seq = tp->snd_nxt;
2575 	}
2576 }
2577 
2578 static void tcp_try_to_open(struct sock *sk, int flag)
2579 {
2580 	struct tcp_sock *tp = tcp_sk(sk);
2581 
2582 	tcp_verify_left_out(tp);
2583 
2584 	if (!tcp_any_retrans_done(sk))
2585 		tp->retrans_stamp = 0;
2586 
2587 	if (flag & FLAG_ECE)
2588 		tcp_enter_cwr(sk);
2589 
2590 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2591 		tcp_try_keep_open(sk);
2592 	}
2593 }
2594 
2595 static void tcp_mtup_probe_failed(struct sock *sk)
2596 {
2597 	struct inet_connection_sock *icsk = inet_csk(sk);
2598 
2599 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2600 	icsk->icsk_mtup.probe_size = 0;
2601 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2602 }
2603 
2604 static void tcp_mtup_probe_success(struct sock *sk)
2605 {
2606 	struct tcp_sock *tp = tcp_sk(sk);
2607 	struct inet_connection_sock *icsk = inet_csk(sk);
2608 
2609 	/* FIXME: breaks with very large cwnd */
2610 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2611 	tp->snd_cwnd = tp->snd_cwnd *
2612 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2613 		       icsk->icsk_mtup.probe_size;
2614 	tp->snd_cwnd_cnt = 0;
2615 	tp->snd_cwnd_stamp = tcp_time_stamp;
2616 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2617 
2618 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2619 	icsk->icsk_mtup.probe_size = 0;
2620 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2621 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2622 }
2623 
2624 /* Do a simple retransmit without using the backoff mechanisms in
2625  * tcp_timer. This is used for path mtu discovery.
2626  * The socket is already locked here.
2627  */
2628 void tcp_simple_retransmit(struct sock *sk)
2629 {
2630 	const struct inet_connection_sock *icsk = inet_csk(sk);
2631 	struct tcp_sock *tp = tcp_sk(sk);
2632 	struct sk_buff *skb;
2633 	unsigned int mss = tcp_current_mss(sk);
2634 	u32 prior_lost = tp->lost_out;
2635 
2636 	tcp_for_write_queue(skb, sk) {
2637 		if (skb == tcp_send_head(sk))
2638 			break;
2639 		if (tcp_skb_seglen(skb) > mss &&
2640 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2641 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2642 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2643 				tp->retrans_out -= tcp_skb_pcount(skb);
2644 			}
2645 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2646 		}
2647 	}
2648 
2649 	tcp_clear_retrans_hints_partial(tp);
2650 
2651 	if (prior_lost == tp->lost_out)
2652 		return;
2653 
2654 	if (tcp_is_reno(tp))
2655 		tcp_limit_reno_sacked(tp);
2656 
2657 	tcp_verify_left_out(tp);
2658 
2659 	/* Don't muck with the congestion window here.
2660 	 * Reason is that we do not increase amount of _data_
2661 	 * in network, but units changed and effective
2662 	 * cwnd/ssthresh really reduced now.
2663 	 */
2664 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2665 		tp->high_seq = tp->snd_nxt;
2666 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2667 		tp->prior_ssthresh = 0;
2668 		tp->undo_marker = 0;
2669 		tcp_set_ca_state(sk, TCP_CA_Loss);
2670 	}
2671 	tcp_xmit_retransmit_queue(sk);
2672 }
2673 EXPORT_SYMBOL(tcp_simple_retransmit);
2674 
2675 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2676 {
2677 	struct tcp_sock *tp = tcp_sk(sk);
2678 	int mib_idx;
2679 
2680 	if (tcp_is_reno(tp))
2681 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2682 	else
2683 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2684 
2685 	NET_INC_STATS(sock_net(sk), mib_idx);
2686 
2687 	tp->prior_ssthresh = 0;
2688 	tcp_init_undo(tp);
2689 
2690 	if (!tcp_in_cwnd_reduction(sk)) {
2691 		if (!ece_ack)
2692 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2693 		tcp_init_cwnd_reduction(sk);
2694 	}
2695 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2696 }
2697 
2698 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2699  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2700  */
2701 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2702 			     int *rexmit)
2703 {
2704 	struct tcp_sock *tp = tcp_sk(sk);
2705 	bool recovered = !before(tp->snd_una, tp->high_seq);
2706 
2707 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2708 	    tcp_try_undo_loss(sk, false))
2709 		return;
2710 
2711 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2712 		/* Step 3.b. A timeout is spurious if not all data are
2713 		 * lost, i.e., never-retransmitted data are (s)acked.
2714 		 */
2715 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2716 		    tcp_try_undo_loss(sk, true))
2717 			return;
2718 
2719 		if (after(tp->snd_nxt, tp->high_seq)) {
2720 			if (flag & FLAG_DATA_SACKED || is_dupack)
2721 				tp->frto = 0; /* Step 3.a. loss was real */
2722 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2723 			tp->high_seq = tp->snd_nxt;
2724 			/* Step 2.b. Try send new data (but deferred until cwnd
2725 			 * is updated in tcp_ack()). Otherwise fall back to
2726 			 * the conventional recovery.
2727 			 */
2728 			if (tcp_send_head(sk) &&
2729 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2730 				*rexmit = REXMIT_NEW;
2731 				return;
2732 			}
2733 			tp->frto = 0;
2734 		}
2735 	}
2736 
2737 	if (recovered) {
2738 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2739 		tcp_try_undo_recovery(sk);
2740 		return;
2741 	}
2742 	if (tcp_is_reno(tp)) {
2743 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2744 		 * delivered. Lower inflight to clock out (re)tranmissions.
2745 		 */
2746 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2747 			tcp_add_reno_sack(sk);
2748 		else if (flag & FLAG_SND_UNA_ADVANCED)
2749 			tcp_reset_reno_sack(tp);
2750 	}
2751 	*rexmit = REXMIT_LOST;
2752 }
2753 
2754 /* Undo during fast recovery after partial ACK. */
2755 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2756 {
2757 	struct tcp_sock *tp = tcp_sk(sk);
2758 
2759 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2760 		/* Plain luck! Hole if filled with delayed
2761 		 * packet, rather than with a retransmit.
2762 		 */
2763 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2764 
2765 		/* We are getting evidence that the reordering degree is higher
2766 		 * than we realized. If there are no retransmits out then we
2767 		 * can undo. Otherwise we clock out new packets but do not
2768 		 * mark more packets lost or retransmit more.
2769 		 */
2770 		if (tp->retrans_out)
2771 			return true;
2772 
2773 		if (!tcp_any_retrans_done(sk))
2774 			tp->retrans_stamp = 0;
2775 
2776 		DBGUNDO(sk, "partial recovery");
2777 		tcp_undo_cwnd_reduction(sk, true);
2778 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2779 		tcp_try_keep_open(sk);
2780 		return true;
2781 	}
2782 	return false;
2783 }
2784 
2785 /* Process an event, which can update packets-in-flight not trivially.
2786  * Main goal of this function is to calculate new estimate for left_out,
2787  * taking into account both packets sitting in receiver's buffer and
2788  * packets lost by network.
2789  *
2790  * Besides that it updates the congestion state when packet loss or ECN
2791  * is detected. But it does not reduce the cwnd, it is done by the
2792  * congestion control later.
2793  *
2794  * It does _not_ decide what to send, it is made in function
2795  * tcp_xmit_retransmit_queue().
2796  */
2797 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2798 				  bool is_dupack, int *ack_flag, int *rexmit)
2799 {
2800 	struct inet_connection_sock *icsk = inet_csk(sk);
2801 	struct tcp_sock *tp = tcp_sk(sk);
2802 	int fast_rexmit = 0, flag = *ack_flag;
2803 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2804 				    (tcp_fackets_out(tp) > tp->reordering));
2805 
2806 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2807 		tp->sacked_out = 0;
2808 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2809 		tp->fackets_out = 0;
2810 
2811 	/* Now state machine starts.
2812 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2813 	if (flag & FLAG_ECE)
2814 		tp->prior_ssthresh = 0;
2815 
2816 	/* B. In all the states check for reneging SACKs. */
2817 	if (tcp_check_sack_reneging(sk, flag))
2818 		return;
2819 
2820 	/* C. Check consistency of the current state. */
2821 	tcp_verify_left_out(tp);
2822 
2823 	/* D. Check state exit conditions. State can be terminated
2824 	 *    when high_seq is ACKed. */
2825 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2826 		WARN_ON(tp->retrans_out != 0);
2827 		tp->retrans_stamp = 0;
2828 	} else if (!before(tp->snd_una, tp->high_seq)) {
2829 		switch (icsk->icsk_ca_state) {
2830 		case TCP_CA_CWR:
2831 			/* CWR is to be held something *above* high_seq
2832 			 * is ACKed for CWR bit to reach receiver. */
2833 			if (tp->snd_una != tp->high_seq) {
2834 				tcp_end_cwnd_reduction(sk);
2835 				tcp_set_ca_state(sk, TCP_CA_Open);
2836 			}
2837 			break;
2838 
2839 		case TCP_CA_Recovery:
2840 			if (tcp_is_reno(tp))
2841 				tcp_reset_reno_sack(tp);
2842 			if (tcp_try_undo_recovery(sk))
2843 				return;
2844 			tcp_end_cwnd_reduction(sk);
2845 			break;
2846 		}
2847 	}
2848 
2849 	/* Use RACK to detect loss */
2850 	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2851 	    tcp_rack_mark_lost(sk)) {
2852 		flag |= FLAG_LOST_RETRANS;
2853 		*ack_flag |= FLAG_LOST_RETRANS;
2854 	}
2855 
2856 	/* E. Process state. */
2857 	switch (icsk->icsk_ca_state) {
2858 	case TCP_CA_Recovery:
2859 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2860 			if (tcp_is_reno(tp) && is_dupack)
2861 				tcp_add_reno_sack(sk);
2862 		} else {
2863 			if (tcp_try_undo_partial(sk, acked))
2864 				return;
2865 			/* Partial ACK arrived. Force fast retransmit. */
2866 			do_lost = tcp_is_reno(tp) ||
2867 				  tcp_fackets_out(tp) > tp->reordering;
2868 		}
2869 		if (tcp_try_undo_dsack(sk)) {
2870 			tcp_try_keep_open(sk);
2871 			return;
2872 		}
2873 		break;
2874 	case TCP_CA_Loss:
2875 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2876 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2877 		    !(flag & FLAG_LOST_RETRANS))
2878 			return;
2879 		/* Change state if cwnd is undone or retransmits are lost */
2880 	default:
2881 		if (tcp_is_reno(tp)) {
2882 			if (flag & FLAG_SND_UNA_ADVANCED)
2883 				tcp_reset_reno_sack(tp);
2884 			if (is_dupack)
2885 				tcp_add_reno_sack(sk);
2886 		}
2887 
2888 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2889 			tcp_try_undo_dsack(sk);
2890 
2891 		if (!tcp_time_to_recover(sk, flag)) {
2892 			tcp_try_to_open(sk, flag);
2893 			return;
2894 		}
2895 
2896 		/* MTU probe failure: don't reduce cwnd */
2897 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2898 		    icsk->icsk_mtup.probe_size &&
2899 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2900 			tcp_mtup_probe_failed(sk);
2901 			/* Restores the reduction we did in tcp_mtup_probe() */
2902 			tp->snd_cwnd++;
2903 			tcp_simple_retransmit(sk);
2904 			return;
2905 		}
2906 
2907 		/* Otherwise enter Recovery state */
2908 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2909 		fast_rexmit = 1;
2910 	}
2911 
2912 	if (do_lost)
2913 		tcp_update_scoreboard(sk, fast_rexmit);
2914 	*rexmit = REXMIT_LOST;
2915 }
2916 
2917 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2918 {
2919 	struct tcp_sock *tp = tcp_sk(sk);
2920 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2921 
2922 	minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2923 			   rtt_us ? : jiffies_to_usecs(1));
2924 }
2925 
2926 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2927 				      long seq_rtt_us, long sack_rtt_us,
2928 				      long ca_rtt_us)
2929 {
2930 	const struct tcp_sock *tp = tcp_sk(sk);
2931 
2932 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2933 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2934 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2935 	 * is acked (RFC6298).
2936 	 */
2937 	if (seq_rtt_us < 0)
2938 		seq_rtt_us = sack_rtt_us;
2939 
2940 	/* RTTM Rule: A TSecr value received in a segment is used to
2941 	 * update the averaged RTT measurement only if the segment
2942 	 * acknowledges some new data, i.e., only if it advances the
2943 	 * left edge of the send window.
2944 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2945 	 */
2946 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2947 	    flag & FLAG_ACKED)
2948 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2949 							  tp->rx_opt.rcv_tsecr);
2950 	if (seq_rtt_us < 0)
2951 		return false;
2952 
2953 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2954 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2955 	 * values will be skipped with the seq_rtt_us < 0 check above.
2956 	 */
2957 	tcp_update_rtt_min(sk, ca_rtt_us);
2958 	tcp_rtt_estimator(sk, seq_rtt_us);
2959 	tcp_set_rto(sk);
2960 
2961 	/* RFC6298: only reset backoff on valid RTT measurement. */
2962 	inet_csk(sk)->icsk_backoff = 0;
2963 	return true;
2964 }
2965 
2966 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2967 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2968 {
2969 	long rtt_us = -1L;
2970 
2971 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2972 		struct skb_mstamp now;
2973 
2974 		skb_mstamp_get(&now);
2975 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2976 	}
2977 
2978 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2979 }
2980 
2981 
2982 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2983 {
2984 	const struct inet_connection_sock *icsk = inet_csk(sk);
2985 
2986 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2987 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2988 }
2989 
2990 /* Restart timer after forward progress on connection.
2991  * RFC2988 recommends to restart timer to now+rto.
2992  */
2993 void tcp_rearm_rto(struct sock *sk)
2994 {
2995 	const struct inet_connection_sock *icsk = inet_csk(sk);
2996 	struct tcp_sock *tp = tcp_sk(sk);
2997 
2998 	/* If the retrans timer is currently being used by Fast Open
2999 	 * for SYN-ACK retrans purpose, stay put.
3000 	 */
3001 	if (tp->fastopen_rsk)
3002 		return;
3003 
3004 	if (!tp->packets_out) {
3005 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3006 	} else {
3007 		u32 rto = inet_csk(sk)->icsk_rto;
3008 		/* Offset the time elapsed after installing regular RTO */
3009 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3010 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3011 			struct sk_buff *skb = tcp_write_queue_head(sk);
3012 			const u32 rto_time_stamp =
3013 				tcp_skb_timestamp(skb) + rto;
3014 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3015 			/* delta may not be positive if the socket is locked
3016 			 * when the retrans timer fires and is rescheduled.
3017 			 */
3018 			if (delta > 0)
3019 				rto = delta;
3020 		}
3021 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3022 					  TCP_RTO_MAX);
3023 	}
3024 }
3025 
3026 /* This function is called when the delayed ER timer fires. TCP enters
3027  * fast recovery and performs fast-retransmit.
3028  */
3029 void tcp_resume_early_retransmit(struct sock *sk)
3030 {
3031 	struct tcp_sock *tp = tcp_sk(sk);
3032 
3033 	tcp_rearm_rto(sk);
3034 
3035 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3036 	if (!tp->do_early_retrans)
3037 		return;
3038 
3039 	tcp_enter_recovery(sk, false);
3040 	tcp_update_scoreboard(sk, 1);
3041 	tcp_xmit_retransmit_queue(sk);
3042 }
3043 
3044 /* If we get here, the whole TSO packet has not been acked. */
3045 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3046 {
3047 	struct tcp_sock *tp = tcp_sk(sk);
3048 	u32 packets_acked;
3049 
3050 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3051 
3052 	packets_acked = tcp_skb_pcount(skb);
3053 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3054 		return 0;
3055 	packets_acked -= tcp_skb_pcount(skb);
3056 
3057 	if (packets_acked) {
3058 		BUG_ON(tcp_skb_pcount(skb) == 0);
3059 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3060 	}
3061 
3062 	return packets_acked;
3063 }
3064 
3065 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3066 			   u32 prior_snd_una)
3067 {
3068 	const struct skb_shared_info *shinfo;
3069 
3070 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3071 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3072 		return;
3073 
3074 	shinfo = skb_shinfo(skb);
3075 	if (!before(shinfo->tskey, prior_snd_una) &&
3076 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3077 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3078 }
3079 
3080 /* Remove acknowledged frames from the retransmission queue. If our packet
3081  * is before the ack sequence we can discard it as it's confirmed to have
3082  * arrived at the other end.
3083  */
3084 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3085 			       u32 prior_snd_una, int *acked,
3086 			       struct tcp_sacktag_state *sack,
3087 			       struct skb_mstamp *now)
3088 {
3089 	const struct inet_connection_sock *icsk = inet_csk(sk);
3090 	struct skb_mstamp first_ackt, last_ackt;
3091 	struct tcp_sock *tp = tcp_sk(sk);
3092 	u32 prior_sacked = tp->sacked_out;
3093 	u32 reord = tp->packets_out;
3094 	bool fully_acked = true;
3095 	long sack_rtt_us = -1L;
3096 	long seq_rtt_us = -1L;
3097 	long ca_rtt_us = -1L;
3098 	struct sk_buff *skb;
3099 	u32 pkts_acked = 0;
3100 	u32 last_in_flight = 0;
3101 	bool rtt_update;
3102 	int flag = 0;
3103 
3104 	first_ackt.v64 = 0;
3105 
3106 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3107 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3108 		u8 sacked = scb->sacked;
3109 		u32 acked_pcount;
3110 
3111 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3112 
3113 		/* Determine how many packets and what bytes were acked, tso and else */
3114 		if (after(scb->end_seq, tp->snd_una)) {
3115 			if (tcp_skb_pcount(skb) == 1 ||
3116 			    !after(tp->snd_una, scb->seq))
3117 				break;
3118 
3119 			acked_pcount = tcp_tso_acked(sk, skb);
3120 			if (!acked_pcount)
3121 				break;
3122 			fully_acked = false;
3123 		} else {
3124 			/* Speedup tcp_unlink_write_queue() and next loop */
3125 			prefetchw(skb->next);
3126 			acked_pcount = tcp_skb_pcount(skb);
3127 		}
3128 
3129 		if (unlikely(sacked & TCPCB_RETRANS)) {
3130 			if (sacked & TCPCB_SACKED_RETRANS)
3131 				tp->retrans_out -= acked_pcount;
3132 			flag |= FLAG_RETRANS_DATA_ACKED;
3133 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3134 			last_ackt = skb->skb_mstamp;
3135 			WARN_ON_ONCE(last_ackt.v64 == 0);
3136 			if (!first_ackt.v64)
3137 				first_ackt = last_ackt;
3138 
3139 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3140 			reord = min(pkts_acked, reord);
3141 			if (!after(scb->end_seq, tp->high_seq))
3142 				flag |= FLAG_ORIG_SACK_ACKED;
3143 		}
3144 
3145 		if (sacked & TCPCB_SACKED_ACKED) {
3146 			tp->sacked_out -= acked_pcount;
3147 		} else if (tcp_is_sack(tp)) {
3148 			tp->delivered += acked_pcount;
3149 			if (!tcp_skb_spurious_retrans(tp, skb))
3150 				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3151 		}
3152 		if (sacked & TCPCB_LOST)
3153 			tp->lost_out -= acked_pcount;
3154 
3155 		tp->packets_out -= acked_pcount;
3156 		pkts_acked += acked_pcount;
3157 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3158 
3159 		/* Initial outgoing SYN's get put onto the write_queue
3160 		 * just like anything else we transmit.  It is not
3161 		 * true data, and if we misinform our callers that
3162 		 * this ACK acks real data, we will erroneously exit
3163 		 * connection startup slow start one packet too
3164 		 * quickly.  This is severely frowned upon behavior.
3165 		 */
3166 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3167 			flag |= FLAG_DATA_ACKED;
3168 		} else {
3169 			flag |= FLAG_SYN_ACKED;
3170 			tp->retrans_stamp = 0;
3171 		}
3172 
3173 		if (!fully_acked)
3174 			break;
3175 
3176 		tcp_unlink_write_queue(skb, sk);
3177 		sk_wmem_free_skb(sk, skb);
3178 		if (unlikely(skb == tp->retransmit_skb_hint))
3179 			tp->retransmit_skb_hint = NULL;
3180 		if (unlikely(skb == tp->lost_skb_hint))
3181 			tp->lost_skb_hint = NULL;
3182 	}
3183 
3184 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3185 		tp->snd_up = tp->snd_una;
3186 
3187 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3188 		flag |= FLAG_SACK_RENEGING;
3189 
3190 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3191 		seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3192 		ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3193 	}
3194 	if (sack->first_sackt.v64) {
3195 		sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3196 		ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3197 	}
3198 	sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3199 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3200 					ca_rtt_us);
3201 
3202 	if (flag & FLAG_ACKED) {
3203 		tcp_rearm_rto(sk);
3204 		if (unlikely(icsk->icsk_mtup.probe_size &&
3205 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3206 			tcp_mtup_probe_success(sk);
3207 		}
3208 
3209 		if (tcp_is_reno(tp)) {
3210 			tcp_remove_reno_sacks(sk, pkts_acked);
3211 		} else {
3212 			int delta;
3213 
3214 			/* Non-retransmitted hole got filled? That's reordering */
3215 			if (reord < prior_fackets)
3216 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3217 
3218 			delta = tcp_is_fack(tp) ? pkts_acked :
3219 						  prior_sacked - tp->sacked_out;
3220 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3221 		}
3222 
3223 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3224 
3225 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3226 		   sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3227 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3228 		 * after when the head was last (re)transmitted. Otherwise the
3229 		 * timeout may continue to extend in loss recovery.
3230 		 */
3231 		tcp_rearm_rto(sk);
3232 	}
3233 
3234 	if (icsk->icsk_ca_ops->pkts_acked) {
3235 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3236 					     .rtt_us = ca_rtt_us,
3237 					     .in_flight = last_in_flight };
3238 
3239 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3240 	}
3241 
3242 #if FASTRETRANS_DEBUG > 0
3243 	WARN_ON((int)tp->sacked_out < 0);
3244 	WARN_ON((int)tp->lost_out < 0);
3245 	WARN_ON((int)tp->retrans_out < 0);
3246 	if (!tp->packets_out && tcp_is_sack(tp)) {
3247 		icsk = inet_csk(sk);
3248 		if (tp->lost_out) {
3249 			pr_debug("Leak l=%u %d\n",
3250 				 tp->lost_out, icsk->icsk_ca_state);
3251 			tp->lost_out = 0;
3252 		}
3253 		if (tp->sacked_out) {
3254 			pr_debug("Leak s=%u %d\n",
3255 				 tp->sacked_out, icsk->icsk_ca_state);
3256 			tp->sacked_out = 0;
3257 		}
3258 		if (tp->retrans_out) {
3259 			pr_debug("Leak r=%u %d\n",
3260 				 tp->retrans_out, icsk->icsk_ca_state);
3261 			tp->retrans_out = 0;
3262 		}
3263 	}
3264 #endif
3265 	*acked = pkts_acked;
3266 	return flag;
3267 }
3268 
3269 static void tcp_ack_probe(struct sock *sk)
3270 {
3271 	const struct tcp_sock *tp = tcp_sk(sk);
3272 	struct inet_connection_sock *icsk = inet_csk(sk);
3273 
3274 	/* Was it a usable window open? */
3275 
3276 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3277 		icsk->icsk_backoff = 0;
3278 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3279 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3280 		 * This function is not for random using!
3281 		 */
3282 	} else {
3283 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3284 
3285 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3286 					  when, TCP_RTO_MAX);
3287 	}
3288 }
3289 
3290 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3291 {
3292 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3293 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3294 }
3295 
3296 /* Decide wheather to run the increase function of congestion control. */
3297 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3298 {
3299 	/* If reordering is high then always grow cwnd whenever data is
3300 	 * delivered regardless of its ordering. Otherwise stay conservative
3301 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3302 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3303 	 * cwnd in tcp_fastretrans_alert() based on more states.
3304 	 */
3305 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3306 		return flag & FLAG_FORWARD_PROGRESS;
3307 
3308 	return flag & FLAG_DATA_ACKED;
3309 }
3310 
3311 /* The "ultimate" congestion control function that aims to replace the rigid
3312  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3313  * It's called toward the end of processing an ACK with precise rate
3314  * information. All transmission or retransmission are delayed afterwards.
3315  */
3316 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3317 			     int flag, const struct rate_sample *rs)
3318 {
3319 	const struct inet_connection_sock *icsk = inet_csk(sk);
3320 
3321 	if (icsk->icsk_ca_ops->cong_control) {
3322 		icsk->icsk_ca_ops->cong_control(sk, rs);
3323 		return;
3324 	}
3325 
3326 	if (tcp_in_cwnd_reduction(sk)) {
3327 		/* Reduce cwnd if state mandates */
3328 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3329 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3330 		/* Advance cwnd if state allows */
3331 		tcp_cong_avoid(sk, ack, acked_sacked);
3332 	}
3333 	tcp_update_pacing_rate(sk);
3334 }
3335 
3336 /* Check that window update is acceptable.
3337  * The function assumes that snd_una<=ack<=snd_next.
3338  */
3339 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3340 					const u32 ack, const u32 ack_seq,
3341 					const u32 nwin)
3342 {
3343 	return	after(ack, tp->snd_una) ||
3344 		after(ack_seq, tp->snd_wl1) ||
3345 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3346 }
3347 
3348 /* If we update tp->snd_una, also update tp->bytes_acked */
3349 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3350 {
3351 	u32 delta = ack - tp->snd_una;
3352 
3353 	sock_owned_by_me((struct sock *)tp);
3354 	u64_stats_update_begin_raw(&tp->syncp);
3355 	tp->bytes_acked += delta;
3356 	u64_stats_update_end_raw(&tp->syncp);
3357 	tp->snd_una = ack;
3358 }
3359 
3360 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3361 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3362 {
3363 	u32 delta = seq - tp->rcv_nxt;
3364 
3365 	sock_owned_by_me((struct sock *)tp);
3366 	u64_stats_update_begin_raw(&tp->syncp);
3367 	tp->bytes_received += delta;
3368 	u64_stats_update_end_raw(&tp->syncp);
3369 	tp->rcv_nxt = seq;
3370 }
3371 
3372 /* Update our send window.
3373  *
3374  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3375  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3376  */
3377 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3378 				 u32 ack_seq)
3379 {
3380 	struct tcp_sock *tp = tcp_sk(sk);
3381 	int flag = 0;
3382 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3383 
3384 	if (likely(!tcp_hdr(skb)->syn))
3385 		nwin <<= tp->rx_opt.snd_wscale;
3386 
3387 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3388 		flag |= FLAG_WIN_UPDATE;
3389 		tcp_update_wl(tp, ack_seq);
3390 
3391 		if (tp->snd_wnd != nwin) {
3392 			tp->snd_wnd = nwin;
3393 
3394 			/* Note, it is the only place, where
3395 			 * fast path is recovered for sending TCP.
3396 			 */
3397 			tp->pred_flags = 0;
3398 			tcp_fast_path_check(sk);
3399 
3400 			if (tcp_send_head(sk))
3401 				tcp_slow_start_after_idle_check(sk);
3402 
3403 			if (nwin > tp->max_window) {
3404 				tp->max_window = nwin;
3405 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3406 			}
3407 		}
3408 	}
3409 
3410 	tcp_snd_una_update(tp, ack);
3411 
3412 	return flag;
3413 }
3414 
3415 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3416 				   u32 *last_oow_ack_time)
3417 {
3418 	if (*last_oow_ack_time) {
3419 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3420 
3421 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3422 			NET_INC_STATS(net, mib_idx);
3423 			return true;	/* rate-limited: don't send yet! */
3424 		}
3425 	}
3426 
3427 	*last_oow_ack_time = tcp_time_stamp;
3428 
3429 	return false;	/* not rate-limited: go ahead, send dupack now! */
3430 }
3431 
3432 /* Return true if we're currently rate-limiting out-of-window ACKs and
3433  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3434  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3435  * attacks that send repeated SYNs or ACKs for the same connection. To
3436  * do this, we do not send a duplicate SYNACK or ACK if the remote
3437  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3438  */
3439 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3440 			  int mib_idx, u32 *last_oow_ack_time)
3441 {
3442 	/* Data packets without SYNs are not likely part of an ACK loop. */
3443 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3444 	    !tcp_hdr(skb)->syn)
3445 		return false;
3446 
3447 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3448 }
3449 
3450 /* RFC 5961 7 [ACK Throttling] */
3451 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3452 {
3453 	/* unprotected vars, we dont care of overwrites */
3454 	static u32 challenge_timestamp;
3455 	static unsigned int challenge_count;
3456 	struct tcp_sock *tp = tcp_sk(sk);
3457 	u32 count, now;
3458 
3459 	/* First check our per-socket dupack rate limit. */
3460 	if (__tcp_oow_rate_limited(sock_net(sk),
3461 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3462 				   &tp->last_oow_ack_time))
3463 		return;
3464 
3465 	/* Then check host-wide RFC 5961 rate limit. */
3466 	now = jiffies / HZ;
3467 	if (now != challenge_timestamp) {
3468 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3469 
3470 		challenge_timestamp = now;
3471 		WRITE_ONCE(challenge_count, half +
3472 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3473 	}
3474 	count = READ_ONCE(challenge_count);
3475 	if (count > 0) {
3476 		WRITE_ONCE(challenge_count, count - 1);
3477 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3478 		tcp_send_ack(sk);
3479 	}
3480 }
3481 
3482 static void tcp_store_ts_recent(struct tcp_sock *tp)
3483 {
3484 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3485 	tp->rx_opt.ts_recent_stamp = get_seconds();
3486 }
3487 
3488 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3489 {
3490 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3491 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3492 		 * extra check below makes sure this can only happen
3493 		 * for pure ACK frames.  -DaveM
3494 		 *
3495 		 * Not only, also it occurs for expired timestamps.
3496 		 */
3497 
3498 		if (tcp_paws_check(&tp->rx_opt, 0))
3499 			tcp_store_ts_recent(tp);
3500 	}
3501 }
3502 
3503 /* This routine deals with acks during a TLP episode.
3504  * We mark the end of a TLP episode on receiving TLP dupack or when
3505  * ack is after tlp_high_seq.
3506  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3507  */
3508 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3509 {
3510 	struct tcp_sock *tp = tcp_sk(sk);
3511 
3512 	if (before(ack, tp->tlp_high_seq))
3513 		return;
3514 
3515 	if (flag & FLAG_DSACKING_ACK) {
3516 		/* This DSACK means original and TLP probe arrived; no loss */
3517 		tp->tlp_high_seq = 0;
3518 	} else if (after(ack, tp->tlp_high_seq)) {
3519 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3520 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3521 		 */
3522 		tcp_init_cwnd_reduction(sk);
3523 		tcp_set_ca_state(sk, TCP_CA_CWR);
3524 		tcp_end_cwnd_reduction(sk);
3525 		tcp_try_keep_open(sk);
3526 		NET_INC_STATS(sock_net(sk),
3527 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3528 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3529 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3530 		/* Pure dupack: original and TLP probe arrived; no loss */
3531 		tp->tlp_high_seq = 0;
3532 	}
3533 }
3534 
3535 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3536 {
3537 	const struct inet_connection_sock *icsk = inet_csk(sk);
3538 
3539 	if (icsk->icsk_ca_ops->in_ack_event)
3540 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3541 }
3542 
3543 /* Congestion control has updated the cwnd already. So if we're in
3544  * loss recovery then now we do any new sends (for FRTO) or
3545  * retransmits (for CA_Loss or CA_recovery) that make sense.
3546  */
3547 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3548 {
3549 	struct tcp_sock *tp = tcp_sk(sk);
3550 
3551 	if (rexmit == REXMIT_NONE)
3552 		return;
3553 
3554 	if (unlikely(rexmit == 2)) {
3555 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3556 					  TCP_NAGLE_OFF);
3557 		if (after(tp->snd_nxt, tp->high_seq))
3558 			return;
3559 		tp->frto = 0;
3560 	}
3561 	tcp_xmit_retransmit_queue(sk);
3562 }
3563 
3564 /* This routine deals with incoming acks, but not outgoing ones. */
3565 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3566 {
3567 	struct inet_connection_sock *icsk = inet_csk(sk);
3568 	struct tcp_sock *tp = tcp_sk(sk);
3569 	struct tcp_sacktag_state sack_state;
3570 	struct rate_sample rs = { .prior_delivered = 0 };
3571 	u32 prior_snd_una = tp->snd_una;
3572 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3573 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574 	bool is_dupack = false;
3575 	u32 prior_fackets;
3576 	int prior_packets = tp->packets_out;
3577 	u32 delivered = tp->delivered;
3578 	u32 lost = tp->lost;
3579 	int acked = 0; /* Number of packets newly acked */
3580 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3581 	struct skb_mstamp now;
3582 
3583 	sack_state.first_sackt.v64 = 0;
3584 	sack_state.rate = &rs;
3585 
3586 	/* We very likely will need to access write queue head. */
3587 	prefetchw(sk->sk_write_queue.next);
3588 
3589 	/* If the ack is older than previous acks
3590 	 * then we can probably ignore it.
3591 	 */
3592 	if (before(ack, prior_snd_una)) {
3593 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3594 		if (before(ack, prior_snd_una - tp->max_window)) {
3595 			tcp_send_challenge_ack(sk, skb);
3596 			return -1;
3597 		}
3598 		goto old_ack;
3599 	}
3600 
3601 	/* If the ack includes data we haven't sent yet, discard
3602 	 * this segment (RFC793 Section 3.9).
3603 	 */
3604 	if (after(ack, tp->snd_nxt))
3605 		goto invalid_ack;
3606 
3607 	skb_mstamp_get(&now);
3608 
3609 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3610 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3611 		tcp_rearm_rto(sk);
3612 
3613 	if (after(ack, prior_snd_una)) {
3614 		flag |= FLAG_SND_UNA_ADVANCED;
3615 		icsk->icsk_retransmits = 0;
3616 	}
3617 
3618 	prior_fackets = tp->fackets_out;
3619 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3620 
3621 	/* ts_recent update must be made after we are sure that the packet
3622 	 * is in window.
3623 	 */
3624 	if (flag & FLAG_UPDATE_TS_RECENT)
3625 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3626 
3627 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3628 		/* Window is constant, pure forward advance.
3629 		 * No more checks are required.
3630 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3631 		 */
3632 		tcp_update_wl(tp, ack_seq);
3633 		tcp_snd_una_update(tp, ack);
3634 		flag |= FLAG_WIN_UPDATE;
3635 
3636 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3637 
3638 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3639 	} else {
3640 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3641 
3642 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3643 			flag |= FLAG_DATA;
3644 		else
3645 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3646 
3647 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3648 
3649 		if (TCP_SKB_CB(skb)->sacked)
3650 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3651 							&sack_state);
3652 
3653 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3654 			flag |= FLAG_ECE;
3655 			ack_ev_flags |= CA_ACK_ECE;
3656 		}
3657 
3658 		if (flag & FLAG_WIN_UPDATE)
3659 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3660 
3661 		tcp_in_ack_event(sk, ack_ev_flags);
3662 	}
3663 
3664 	/* We passed data and got it acked, remove any soft error
3665 	 * log. Something worked...
3666 	 */
3667 	sk->sk_err_soft = 0;
3668 	icsk->icsk_probes_out = 0;
3669 	tp->rcv_tstamp = tcp_time_stamp;
3670 	if (!prior_packets)
3671 		goto no_queue;
3672 
3673 	/* See if we can take anything off of the retransmit queue. */
3674 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3675 				    &sack_state, &now);
3676 
3677 	if (tcp_ack_is_dubious(sk, flag)) {
3678 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3679 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3680 	}
3681 	if (tp->tlp_high_seq)
3682 		tcp_process_tlp_ack(sk, ack, flag);
3683 
3684 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3685 		struct dst_entry *dst = __sk_dst_get(sk);
3686 		if (dst)
3687 			dst_confirm(dst);
3688 	}
3689 
3690 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3691 		tcp_schedule_loss_probe(sk);
3692 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3693 	lost = tp->lost - lost;			/* freshly marked lost */
3694 	tcp_rate_gen(sk, delivered, lost, &now, &rs);
3695 	tcp_cong_control(sk, ack, delivered, flag, &rs);
3696 	tcp_xmit_recovery(sk, rexmit);
3697 	return 1;
3698 
3699 no_queue:
3700 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3701 	if (flag & FLAG_DSACKING_ACK)
3702 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3703 	/* If this ack opens up a zero window, clear backoff.  It was
3704 	 * being used to time the probes, and is probably far higher than
3705 	 * it needs to be for normal retransmission.
3706 	 */
3707 	if (tcp_send_head(sk))
3708 		tcp_ack_probe(sk);
3709 
3710 	if (tp->tlp_high_seq)
3711 		tcp_process_tlp_ack(sk, ack, flag);
3712 	return 1;
3713 
3714 invalid_ack:
3715 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3716 	return -1;
3717 
3718 old_ack:
3719 	/* If data was SACKed, tag it and see if we should send more data.
3720 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3721 	 */
3722 	if (TCP_SKB_CB(skb)->sacked) {
3723 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3724 						&sack_state);
3725 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3726 		tcp_xmit_recovery(sk, rexmit);
3727 	}
3728 
3729 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3730 	return 0;
3731 }
3732 
3733 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3734 				      bool syn, struct tcp_fastopen_cookie *foc,
3735 				      bool exp_opt)
3736 {
3737 	/* Valid only in SYN or SYN-ACK with an even length.  */
3738 	if (!foc || !syn || len < 0 || (len & 1))
3739 		return;
3740 
3741 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3742 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3743 		memcpy(foc->val, cookie, len);
3744 	else if (len != 0)
3745 		len = -1;
3746 	foc->len = len;
3747 	foc->exp = exp_opt;
3748 }
3749 
3750 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3751  * But, this can also be called on packets in the established flow when
3752  * the fast version below fails.
3753  */
3754 void tcp_parse_options(const struct sk_buff *skb,
3755 		       struct tcp_options_received *opt_rx, int estab,
3756 		       struct tcp_fastopen_cookie *foc)
3757 {
3758 	const unsigned char *ptr;
3759 	const struct tcphdr *th = tcp_hdr(skb);
3760 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3761 
3762 	ptr = (const unsigned char *)(th + 1);
3763 	opt_rx->saw_tstamp = 0;
3764 
3765 	while (length > 0) {
3766 		int opcode = *ptr++;
3767 		int opsize;
3768 
3769 		switch (opcode) {
3770 		case TCPOPT_EOL:
3771 			return;
3772 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3773 			length--;
3774 			continue;
3775 		default:
3776 			opsize = *ptr++;
3777 			if (opsize < 2) /* "silly options" */
3778 				return;
3779 			if (opsize > length)
3780 				return;	/* don't parse partial options */
3781 			switch (opcode) {
3782 			case TCPOPT_MSS:
3783 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3784 					u16 in_mss = get_unaligned_be16(ptr);
3785 					if (in_mss) {
3786 						if (opt_rx->user_mss &&
3787 						    opt_rx->user_mss < in_mss)
3788 							in_mss = opt_rx->user_mss;
3789 						opt_rx->mss_clamp = in_mss;
3790 					}
3791 				}
3792 				break;
3793 			case TCPOPT_WINDOW:
3794 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3795 				    !estab && sysctl_tcp_window_scaling) {
3796 					__u8 snd_wscale = *(__u8 *)ptr;
3797 					opt_rx->wscale_ok = 1;
3798 					if (snd_wscale > 14) {
3799 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3800 								     __func__,
3801 								     snd_wscale);
3802 						snd_wscale = 14;
3803 					}
3804 					opt_rx->snd_wscale = snd_wscale;
3805 				}
3806 				break;
3807 			case TCPOPT_TIMESTAMP:
3808 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3809 				    ((estab && opt_rx->tstamp_ok) ||
3810 				     (!estab && sysctl_tcp_timestamps))) {
3811 					opt_rx->saw_tstamp = 1;
3812 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3813 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3814 				}
3815 				break;
3816 			case TCPOPT_SACK_PERM:
3817 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3818 				    !estab && sysctl_tcp_sack) {
3819 					opt_rx->sack_ok = TCP_SACK_SEEN;
3820 					tcp_sack_reset(opt_rx);
3821 				}
3822 				break;
3823 
3824 			case TCPOPT_SACK:
3825 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3826 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3827 				   opt_rx->sack_ok) {
3828 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3829 				}
3830 				break;
3831 #ifdef CONFIG_TCP_MD5SIG
3832 			case TCPOPT_MD5SIG:
3833 				/*
3834 				 * The MD5 Hash has already been
3835 				 * checked (see tcp_v{4,6}_do_rcv()).
3836 				 */
3837 				break;
3838 #endif
3839 			case TCPOPT_FASTOPEN:
3840 				tcp_parse_fastopen_option(
3841 					opsize - TCPOLEN_FASTOPEN_BASE,
3842 					ptr, th->syn, foc, false);
3843 				break;
3844 
3845 			case TCPOPT_EXP:
3846 				/* Fast Open option shares code 254 using a
3847 				 * 16 bits magic number.
3848 				 */
3849 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3850 				    get_unaligned_be16(ptr) ==
3851 				    TCPOPT_FASTOPEN_MAGIC)
3852 					tcp_parse_fastopen_option(opsize -
3853 						TCPOLEN_EXP_FASTOPEN_BASE,
3854 						ptr + 2, th->syn, foc, true);
3855 				break;
3856 
3857 			}
3858 			ptr += opsize-2;
3859 			length -= opsize;
3860 		}
3861 	}
3862 }
3863 EXPORT_SYMBOL(tcp_parse_options);
3864 
3865 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3866 {
3867 	const __be32 *ptr = (const __be32 *)(th + 1);
3868 
3869 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3870 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3871 		tp->rx_opt.saw_tstamp = 1;
3872 		++ptr;
3873 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3874 		++ptr;
3875 		if (*ptr)
3876 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3877 		else
3878 			tp->rx_opt.rcv_tsecr = 0;
3879 		return true;
3880 	}
3881 	return false;
3882 }
3883 
3884 /* Fast parse options. This hopes to only see timestamps.
3885  * If it is wrong it falls back on tcp_parse_options().
3886  */
3887 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3888 				   const struct tcphdr *th, struct tcp_sock *tp)
3889 {
3890 	/* In the spirit of fast parsing, compare doff directly to constant
3891 	 * values.  Because equality is used, short doff can be ignored here.
3892 	 */
3893 	if (th->doff == (sizeof(*th) / 4)) {
3894 		tp->rx_opt.saw_tstamp = 0;
3895 		return false;
3896 	} else if (tp->rx_opt.tstamp_ok &&
3897 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3898 		if (tcp_parse_aligned_timestamp(tp, th))
3899 			return true;
3900 	}
3901 
3902 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3903 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3904 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3905 
3906 	return true;
3907 }
3908 
3909 #ifdef CONFIG_TCP_MD5SIG
3910 /*
3911  * Parse MD5 Signature option
3912  */
3913 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3914 {
3915 	int length = (th->doff << 2) - sizeof(*th);
3916 	const u8 *ptr = (const u8 *)(th + 1);
3917 
3918 	/* If the TCP option is too short, we can short cut */
3919 	if (length < TCPOLEN_MD5SIG)
3920 		return NULL;
3921 
3922 	while (length > 0) {
3923 		int opcode = *ptr++;
3924 		int opsize;
3925 
3926 		switch (opcode) {
3927 		case TCPOPT_EOL:
3928 			return NULL;
3929 		case TCPOPT_NOP:
3930 			length--;
3931 			continue;
3932 		default:
3933 			opsize = *ptr++;
3934 			if (opsize < 2 || opsize > length)
3935 				return NULL;
3936 			if (opcode == TCPOPT_MD5SIG)
3937 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3938 		}
3939 		ptr += opsize - 2;
3940 		length -= opsize;
3941 	}
3942 	return NULL;
3943 }
3944 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3945 #endif
3946 
3947 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3948  *
3949  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3950  * it can pass through stack. So, the following predicate verifies that
3951  * this segment is not used for anything but congestion avoidance or
3952  * fast retransmit. Moreover, we even are able to eliminate most of such
3953  * second order effects, if we apply some small "replay" window (~RTO)
3954  * to timestamp space.
3955  *
3956  * All these measures still do not guarantee that we reject wrapped ACKs
3957  * on networks with high bandwidth, when sequence space is recycled fastly,
3958  * but it guarantees that such events will be very rare and do not affect
3959  * connection seriously. This doesn't look nice, but alas, PAWS is really
3960  * buggy extension.
3961  *
3962  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3963  * states that events when retransmit arrives after original data are rare.
3964  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3965  * the biggest problem on large power networks even with minor reordering.
3966  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3967  * up to bandwidth of 18Gigabit/sec. 8) ]
3968  */
3969 
3970 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3971 {
3972 	const struct tcp_sock *tp = tcp_sk(sk);
3973 	const struct tcphdr *th = tcp_hdr(skb);
3974 	u32 seq = TCP_SKB_CB(skb)->seq;
3975 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3976 
3977 	return (/* 1. Pure ACK with correct sequence number. */
3978 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3979 
3980 		/* 2. ... and duplicate ACK. */
3981 		ack == tp->snd_una &&
3982 
3983 		/* 3. ... and does not update window. */
3984 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3985 
3986 		/* 4. ... and sits in replay window. */
3987 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3988 }
3989 
3990 static inline bool tcp_paws_discard(const struct sock *sk,
3991 				   const struct sk_buff *skb)
3992 {
3993 	const struct tcp_sock *tp = tcp_sk(sk);
3994 
3995 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3996 	       !tcp_disordered_ack(sk, skb);
3997 }
3998 
3999 /* Check segment sequence number for validity.
4000  *
4001  * Segment controls are considered valid, if the segment
4002  * fits to the window after truncation to the window. Acceptability
4003  * of data (and SYN, FIN, of course) is checked separately.
4004  * See tcp_data_queue(), for example.
4005  *
4006  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4007  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4008  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4009  * (borrowed from freebsd)
4010  */
4011 
4012 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4013 {
4014 	return	!before(end_seq, tp->rcv_wup) &&
4015 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4016 }
4017 
4018 /* When we get a reset we do this. */
4019 void tcp_reset(struct sock *sk)
4020 {
4021 	/* We want the right error as BSD sees it (and indeed as we do). */
4022 	switch (sk->sk_state) {
4023 	case TCP_SYN_SENT:
4024 		sk->sk_err = ECONNREFUSED;
4025 		break;
4026 	case TCP_CLOSE_WAIT:
4027 		sk->sk_err = EPIPE;
4028 		break;
4029 	case TCP_CLOSE:
4030 		return;
4031 	default:
4032 		sk->sk_err = ECONNRESET;
4033 	}
4034 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4035 	smp_wmb();
4036 
4037 	if (!sock_flag(sk, SOCK_DEAD))
4038 		sk->sk_error_report(sk);
4039 
4040 	tcp_done(sk);
4041 }
4042 
4043 /*
4044  * 	Process the FIN bit. This now behaves as it is supposed to work
4045  *	and the FIN takes effect when it is validly part of sequence
4046  *	space. Not before when we get holes.
4047  *
4048  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4049  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4050  *	TIME-WAIT)
4051  *
4052  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4053  *	close and we go into CLOSING (and later onto TIME-WAIT)
4054  *
4055  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4056  */
4057 void tcp_fin(struct sock *sk)
4058 {
4059 	struct tcp_sock *tp = tcp_sk(sk);
4060 
4061 	inet_csk_schedule_ack(sk);
4062 
4063 	sk->sk_shutdown |= RCV_SHUTDOWN;
4064 	sock_set_flag(sk, SOCK_DONE);
4065 
4066 	switch (sk->sk_state) {
4067 	case TCP_SYN_RECV:
4068 	case TCP_ESTABLISHED:
4069 		/* Move to CLOSE_WAIT */
4070 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4071 		inet_csk(sk)->icsk_ack.pingpong = 1;
4072 		break;
4073 
4074 	case TCP_CLOSE_WAIT:
4075 	case TCP_CLOSING:
4076 		/* Received a retransmission of the FIN, do
4077 		 * nothing.
4078 		 */
4079 		break;
4080 	case TCP_LAST_ACK:
4081 		/* RFC793: Remain in the LAST-ACK state. */
4082 		break;
4083 
4084 	case TCP_FIN_WAIT1:
4085 		/* This case occurs when a simultaneous close
4086 		 * happens, we must ack the received FIN and
4087 		 * enter the CLOSING state.
4088 		 */
4089 		tcp_send_ack(sk);
4090 		tcp_set_state(sk, TCP_CLOSING);
4091 		break;
4092 	case TCP_FIN_WAIT2:
4093 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4094 		tcp_send_ack(sk);
4095 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4096 		break;
4097 	default:
4098 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4099 		 * cases we should never reach this piece of code.
4100 		 */
4101 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4102 		       __func__, sk->sk_state);
4103 		break;
4104 	}
4105 
4106 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4107 	 * Probably, we should reset in this case. For now drop them.
4108 	 */
4109 	skb_rbtree_purge(&tp->out_of_order_queue);
4110 	if (tcp_is_sack(tp))
4111 		tcp_sack_reset(&tp->rx_opt);
4112 	sk_mem_reclaim(sk);
4113 
4114 	if (!sock_flag(sk, SOCK_DEAD)) {
4115 		sk->sk_state_change(sk);
4116 
4117 		/* Do not send POLL_HUP for half duplex close. */
4118 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4119 		    sk->sk_state == TCP_CLOSE)
4120 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4121 		else
4122 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4123 	}
4124 }
4125 
4126 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4127 				  u32 end_seq)
4128 {
4129 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4130 		if (before(seq, sp->start_seq))
4131 			sp->start_seq = seq;
4132 		if (after(end_seq, sp->end_seq))
4133 			sp->end_seq = end_seq;
4134 		return true;
4135 	}
4136 	return false;
4137 }
4138 
4139 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4140 {
4141 	struct tcp_sock *tp = tcp_sk(sk);
4142 
4143 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4144 		int mib_idx;
4145 
4146 		if (before(seq, tp->rcv_nxt))
4147 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4148 		else
4149 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4150 
4151 		NET_INC_STATS(sock_net(sk), mib_idx);
4152 
4153 		tp->rx_opt.dsack = 1;
4154 		tp->duplicate_sack[0].start_seq = seq;
4155 		tp->duplicate_sack[0].end_seq = end_seq;
4156 	}
4157 }
4158 
4159 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4160 {
4161 	struct tcp_sock *tp = tcp_sk(sk);
4162 
4163 	if (!tp->rx_opt.dsack)
4164 		tcp_dsack_set(sk, seq, end_seq);
4165 	else
4166 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4167 }
4168 
4169 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4170 {
4171 	struct tcp_sock *tp = tcp_sk(sk);
4172 
4173 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4174 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4175 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4176 		tcp_enter_quickack_mode(sk);
4177 
4178 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4179 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4180 
4181 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4182 				end_seq = tp->rcv_nxt;
4183 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4184 		}
4185 	}
4186 
4187 	tcp_send_ack(sk);
4188 }
4189 
4190 /* These routines update the SACK block as out-of-order packets arrive or
4191  * in-order packets close up the sequence space.
4192  */
4193 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4194 {
4195 	int this_sack;
4196 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4197 	struct tcp_sack_block *swalk = sp + 1;
4198 
4199 	/* See if the recent change to the first SACK eats into
4200 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4201 	 */
4202 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4203 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4204 			int i;
4205 
4206 			/* Zap SWALK, by moving every further SACK up by one slot.
4207 			 * Decrease num_sacks.
4208 			 */
4209 			tp->rx_opt.num_sacks--;
4210 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4211 				sp[i] = sp[i + 1];
4212 			continue;
4213 		}
4214 		this_sack++, swalk++;
4215 	}
4216 }
4217 
4218 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4219 {
4220 	struct tcp_sock *tp = tcp_sk(sk);
4221 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4222 	int cur_sacks = tp->rx_opt.num_sacks;
4223 	int this_sack;
4224 
4225 	if (!cur_sacks)
4226 		goto new_sack;
4227 
4228 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4229 		if (tcp_sack_extend(sp, seq, end_seq)) {
4230 			/* Rotate this_sack to the first one. */
4231 			for (; this_sack > 0; this_sack--, sp--)
4232 				swap(*sp, *(sp - 1));
4233 			if (cur_sacks > 1)
4234 				tcp_sack_maybe_coalesce(tp);
4235 			return;
4236 		}
4237 	}
4238 
4239 	/* Could not find an adjacent existing SACK, build a new one,
4240 	 * put it at the front, and shift everyone else down.  We
4241 	 * always know there is at least one SACK present already here.
4242 	 *
4243 	 * If the sack array is full, forget about the last one.
4244 	 */
4245 	if (this_sack >= TCP_NUM_SACKS) {
4246 		this_sack--;
4247 		tp->rx_opt.num_sacks--;
4248 		sp--;
4249 	}
4250 	for (; this_sack > 0; this_sack--, sp--)
4251 		*sp = *(sp - 1);
4252 
4253 new_sack:
4254 	/* Build the new head SACK, and we're done. */
4255 	sp->start_seq = seq;
4256 	sp->end_seq = end_seq;
4257 	tp->rx_opt.num_sacks++;
4258 }
4259 
4260 /* RCV.NXT advances, some SACKs should be eaten. */
4261 
4262 static void tcp_sack_remove(struct tcp_sock *tp)
4263 {
4264 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4265 	int num_sacks = tp->rx_opt.num_sacks;
4266 	int this_sack;
4267 
4268 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4269 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4270 		tp->rx_opt.num_sacks = 0;
4271 		return;
4272 	}
4273 
4274 	for (this_sack = 0; this_sack < num_sacks;) {
4275 		/* Check if the start of the sack is covered by RCV.NXT. */
4276 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4277 			int i;
4278 
4279 			/* RCV.NXT must cover all the block! */
4280 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4281 
4282 			/* Zap this SACK, by moving forward any other SACKS. */
4283 			for (i = this_sack+1; i < num_sacks; i++)
4284 				tp->selective_acks[i-1] = tp->selective_acks[i];
4285 			num_sacks--;
4286 			continue;
4287 		}
4288 		this_sack++;
4289 		sp++;
4290 	}
4291 	tp->rx_opt.num_sacks = num_sacks;
4292 }
4293 
4294 /**
4295  * tcp_try_coalesce - try to merge skb to prior one
4296  * @sk: socket
4297  * @to: prior buffer
4298  * @from: buffer to add in queue
4299  * @fragstolen: pointer to boolean
4300  *
4301  * Before queueing skb @from after @to, try to merge them
4302  * to reduce overall memory use and queue lengths, if cost is small.
4303  * Packets in ofo or receive queues can stay a long time.
4304  * Better try to coalesce them right now to avoid future collapses.
4305  * Returns true if caller should free @from instead of queueing it
4306  */
4307 static bool tcp_try_coalesce(struct sock *sk,
4308 			     struct sk_buff *to,
4309 			     struct sk_buff *from,
4310 			     bool *fragstolen)
4311 {
4312 	int delta;
4313 
4314 	*fragstolen = false;
4315 
4316 	/* Its possible this segment overlaps with prior segment in queue */
4317 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4318 		return false;
4319 
4320 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4321 		return false;
4322 
4323 	atomic_add(delta, &sk->sk_rmem_alloc);
4324 	sk_mem_charge(sk, delta);
4325 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4326 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4327 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4328 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4329 	return true;
4330 }
4331 
4332 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4333 {
4334 	sk_drops_add(sk, skb);
4335 	__kfree_skb(skb);
4336 }
4337 
4338 /* This one checks to see if we can put data from the
4339  * out_of_order queue into the receive_queue.
4340  */
4341 static void tcp_ofo_queue(struct sock *sk)
4342 {
4343 	struct tcp_sock *tp = tcp_sk(sk);
4344 	__u32 dsack_high = tp->rcv_nxt;
4345 	bool fin, fragstolen, eaten;
4346 	struct sk_buff *skb, *tail;
4347 	struct rb_node *p;
4348 
4349 	p = rb_first(&tp->out_of_order_queue);
4350 	while (p) {
4351 		skb = rb_entry(p, struct sk_buff, rbnode);
4352 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4353 			break;
4354 
4355 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4356 			__u32 dsack = dsack_high;
4357 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4358 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4359 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4360 		}
4361 		p = rb_next(p);
4362 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4363 
4364 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4365 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4366 			tcp_drop(sk, skb);
4367 			continue;
4368 		}
4369 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4370 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4371 			   TCP_SKB_CB(skb)->end_seq);
4372 
4373 		tail = skb_peek_tail(&sk->sk_receive_queue);
4374 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4375 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4376 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4377 		if (!eaten)
4378 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4379 		else
4380 			kfree_skb_partial(skb, fragstolen);
4381 
4382 		if (unlikely(fin)) {
4383 			tcp_fin(sk);
4384 			/* tcp_fin() purges tp->out_of_order_queue,
4385 			 * so we must end this loop right now.
4386 			 */
4387 			break;
4388 		}
4389 	}
4390 }
4391 
4392 static bool tcp_prune_ofo_queue(struct sock *sk);
4393 static int tcp_prune_queue(struct sock *sk);
4394 
4395 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4396 				 unsigned int size)
4397 {
4398 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4399 	    !sk_rmem_schedule(sk, skb, size)) {
4400 
4401 		if (tcp_prune_queue(sk) < 0)
4402 			return -1;
4403 
4404 		while (!sk_rmem_schedule(sk, skb, size)) {
4405 			if (!tcp_prune_ofo_queue(sk))
4406 				return -1;
4407 		}
4408 	}
4409 	return 0;
4410 }
4411 
4412 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4413 {
4414 	struct tcp_sock *tp = tcp_sk(sk);
4415 	struct rb_node **p, *q, *parent;
4416 	struct sk_buff *skb1;
4417 	u32 seq, end_seq;
4418 	bool fragstolen;
4419 
4420 	tcp_ecn_check_ce(tp, skb);
4421 
4422 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4423 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4424 		tcp_drop(sk, skb);
4425 		return;
4426 	}
4427 
4428 	/* Disable header prediction. */
4429 	tp->pred_flags = 0;
4430 	inet_csk_schedule_ack(sk);
4431 
4432 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4433 	seq = TCP_SKB_CB(skb)->seq;
4434 	end_seq = TCP_SKB_CB(skb)->end_seq;
4435 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4436 		   tp->rcv_nxt, seq, end_seq);
4437 
4438 	p = &tp->out_of_order_queue.rb_node;
4439 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4440 		/* Initial out of order segment, build 1 SACK. */
4441 		if (tcp_is_sack(tp)) {
4442 			tp->rx_opt.num_sacks = 1;
4443 			tp->selective_acks[0].start_seq = seq;
4444 			tp->selective_acks[0].end_seq = end_seq;
4445 		}
4446 		rb_link_node(&skb->rbnode, NULL, p);
4447 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4448 		tp->ooo_last_skb = skb;
4449 		goto end;
4450 	}
4451 
4452 	/* In the typical case, we are adding an skb to the end of the list.
4453 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4454 	 */
4455 	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4456 coalesce_done:
4457 		tcp_grow_window(sk, skb);
4458 		kfree_skb_partial(skb, fragstolen);
4459 		skb = NULL;
4460 		goto add_sack;
4461 	}
4462 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4463 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4464 		parent = &tp->ooo_last_skb->rbnode;
4465 		p = &parent->rb_right;
4466 		goto insert;
4467 	}
4468 
4469 	/* Find place to insert this segment. Handle overlaps on the way. */
4470 	parent = NULL;
4471 	while (*p) {
4472 		parent = *p;
4473 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4474 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4475 			p = &parent->rb_left;
4476 			continue;
4477 		}
4478 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4479 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4480 				/* All the bits are present. Drop. */
4481 				NET_INC_STATS(sock_net(sk),
4482 					      LINUX_MIB_TCPOFOMERGE);
4483 				__kfree_skb(skb);
4484 				skb = NULL;
4485 				tcp_dsack_set(sk, seq, end_seq);
4486 				goto add_sack;
4487 			}
4488 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4489 				/* Partial overlap. */
4490 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4491 			} else {
4492 				/* skb's seq == skb1's seq and skb covers skb1.
4493 				 * Replace skb1 with skb.
4494 				 */
4495 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4496 						&tp->out_of_order_queue);
4497 				tcp_dsack_extend(sk,
4498 						 TCP_SKB_CB(skb1)->seq,
4499 						 TCP_SKB_CB(skb1)->end_seq);
4500 				NET_INC_STATS(sock_net(sk),
4501 					      LINUX_MIB_TCPOFOMERGE);
4502 				__kfree_skb(skb1);
4503 				goto merge_right;
4504 			}
4505 		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4506 			goto coalesce_done;
4507 		}
4508 		p = &parent->rb_right;
4509 	}
4510 insert:
4511 	/* Insert segment into RB tree. */
4512 	rb_link_node(&skb->rbnode, parent, p);
4513 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4514 
4515 merge_right:
4516 	/* Remove other segments covered by skb. */
4517 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4518 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4519 
4520 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4521 			break;
4522 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4523 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4524 					 end_seq);
4525 			break;
4526 		}
4527 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4528 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4529 				 TCP_SKB_CB(skb1)->end_seq);
4530 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4531 		tcp_drop(sk, skb1);
4532 	}
4533 	/* If there is no skb after us, we are the last_skb ! */
4534 	if (!q)
4535 		tp->ooo_last_skb = skb;
4536 
4537 add_sack:
4538 	if (tcp_is_sack(tp))
4539 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4540 end:
4541 	if (skb) {
4542 		tcp_grow_window(sk, skb);
4543 		skb_set_owner_r(skb, sk);
4544 	}
4545 }
4546 
4547 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4548 		  bool *fragstolen)
4549 {
4550 	int eaten;
4551 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4552 
4553 	__skb_pull(skb, hdrlen);
4554 	eaten = (tail &&
4555 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4556 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4557 	if (!eaten) {
4558 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4559 		skb_set_owner_r(skb, sk);
4560 	}
4561 	return eaten;
4562 }
4563 
4564 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4565 {
4566 	struct sk_buff *skb;
4567 	int err = -ENOMEM;
4568 	int data_len = 0;
4569 	bool fragstolen;
4570 
4571 	if (size == 0)
4572 		return 0;
4573 
4574 	if (size > PAGE_SIZE) {
4575 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4576 
4577 		data_len = npages << PAGE_SHIFT;
4578 		size = data_len + (size & ~PAGE_MASK);
4579 	}
4580 	skb = alloc_skb_with_frags(size - data_len, data_len,
4581 				   PAGE_ALLOC_COSTLY_ORDER,
4582 				   &err, sk->sk_allocation);
4583 	if (!skb)
4584 		goto err;
4585 
4586 	skb_put(skb, size - data_len);
4587 	skb->data_len = data_len;
4588 	skb->len = size;
4589 
4590 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4591 		goto err_free;
4592 
4593 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4594 	if (err)
4595 		goto err_free;
4596 
4597 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4598 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4599 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4600 
4601 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4602 		WARN_ON_ONCE(fragstolen); /* should not happen */
4603 		__kfree_skb(skb);
4604 	}
4605 	return size;
4606 
4607 err_free:
4608 	kfree_skb(skb);
4609 err:
4610 	return err;
4611 
4612 }
4613 
4614 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4615 {
4616 	struct tcp_sock *tp = tcp_sk(sk);
4617 	bool fragstolen = false;
4618 	int eaten = -1;
4619 
4620 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4621 		__kfree_skb(skb);
4622 		return;
4623 	}
4624 	skb_dst_drop(skb);
4625 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4626 
4627 	tcp_ecn_accept_cwr(tp, skb);
4628 
4629 	tp->rx_opt.dsack = 0;
4630 
4631 	/*  Queue data for delivery to the user.
4632 	 *  Packets in sequence go to the receive queue.
4633 	 *  Out of sequence packets to the out_of_order_queue.
4634 	 */
4635 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4636 		if (tcp_receive_window(tp) == 0)
4637 			goto out_of_window;
4638 
4639 		/* Ok. In sequence. In window. */
4640 		if (tp->ucopy.task == current &&
4641 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4642 		    sock_owned_by_user(sk) && !tp->urg_data) {
4643 			int chunk = min_t(unsigned int, skb->len,
4644 					  tp->ucopy.len);
4645 
4646 			__set_current_state(TASK_RUNNING);
4647 
4648 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4649 				tp->ucopy.len -= chunk;
4650 				tp->copied_seq += chunk;
4651 				eaten = (chunk == skb->len);
4652 				tcp_rcv_space_adjust(sk);
4653 			}
4654 		}
4655 
4656 		if (eaten <= 0) {
4657 queue_and_out:
4658 			if (eaten < 0) {
4659 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4660 					sk_forced_mem_schedule(sk, skb->truesize);
4661 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4662 					goto drop;
4663 			}
4664 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4665 		}
4666 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4667 		if (skb->len)
4668 			tcp_event_data_recv(sk, skb);
4669 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4670 			tcp_fin(sk);
4671 
4672 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4673 			tcp_ofo_queue(sk);
4674 
4675 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4676 			 * gap in queue is filled.
4677 			 */
4678 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4679 				inet_csk(sk)->icsk_ack.pingpong = 0;
4680 		}
4681 
4682 		if (tp->rx_opt.num_sacks)
4683 			tcp_sack_remove(tp);
4684 
4685 		tcp_fast_path_check(sk);
4686 
4687 		if (eaten > 0)
4688 			kfree_skb_partial(skb, fragstolen);
4689 		if (!sock_flag(sk, SOCK_DEAD))
4690 			sk->sk_data_ready(sk);
4691 		return;
4692 	}
4693 
4694 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4695 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4696 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4697 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4698 
4699 out_of_window:
4700 		tcp_enter_quickack_mode(sk);
4701 		inet_csk_schedule_ack(sk);
4702 drop:
4703 		tcp_drop(sk, skb);
4704 		return;
4705 	}
4706 
4707 	/* Out of window. F.e. zero window probe. */
4708 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4709 		goto out_of_window;
4710 
4711 	tcp_enter_quickack_mode(sk);
4712 
4713 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4714 		/* Partial packet, seq < rcv_next < end_seq */
4715 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4716 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4717 			   TCP_SKB_CB(skb)->end_seq);
4718 
4719 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4720 
4721 		/* If window is closed, drop tail of packet. But after
4722 		 * remembering D-SACK for its head made in previous line.
4723 		 */
4724 		if (!tcp_receive_window(tp))
4725 			goto out_of_window;
4726 		goto queue_and_out;
4727 	}
4728 
4729 	tcp_data_queue_ofo(sk, skb);
4730 }
4731 
4732 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4733 {
4734 	if (list)
4735 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4736 
4737 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4738 }
4739 
4740 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4741 					struct sk_buff_head *list,
4742 					struct rb_root *root)
4743 {
4744 	struct sk_buff *next = tcp_skb_next(skb, list);
4745 
4746 	if (list)
4747 		__skb_unlink(skb, list);
4748 	else
4749 		rb_erase(&skb->rbnode, root);
4750 
4751 	__kfree_skb(skb);
4752 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4753 
4754 	return next;
4755 }
4756 
4757 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4758 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4759 {
4760 	struct rb_node **p = &root->rb_node;
4761 	struct rb_node *parent = NULL;
4762 	struct sk_buff *skb1;
4763 
4764 	while (*p) {
4765 		parent = *p;
4766 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4767 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4768 			p = &parent->rb_left;
4769 		else
4770 			p = &parent->rb_right;
4771 	}
4772 	rb_link_node(&skb->rbnode, parent, p);
4773 	rb_insert_color(&skb->rbnode, root);
4774 }
4775 
4776 /* Collapse contiguous sequence of skbs head..tail with
4777  * sequence numbers start..end.
4778  *
4779  * If tail is NULL, this means until the end of the queue.
4780  *
4781  * Segments with FIN/SYN are not collapsed (only because this
4782  * simplifies code)
4783  */
4784 static void
4785 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4786 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4787 {
4788 	struct sk_buff *skb = head, *n;
4789 	struct sk_buff_head tmp;
4790 	bool end_of_skbs;
4791 
4792 	/* First, check that queue is collapsible and find
4793 	 * the point where collapsing can be useful.
4794 	 */
4795 restart:
4796 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4797 		n = tcp_skb_next(skb, list);
4798 
4799 		/* No new bits? It is possible on ofo queue. */
4800 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4801 			skb = tcp_collapse_one(sk, skb, list, root);
4802 			if (!skb)
4803 				break;
4804 			goto restart;
4805 		}
4806 
4807 		/* The first skb to collapse is:
4808 		 * - not SYN/FIN and
4809 		 * - bloated or contains data before "start" or
4810 		 *   overlaps to the next one.
4811 		 */
4812 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4813 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4814 		     before(TCP_SKB_CB(skb)->seq, start))) {
4815 			end_of_skbs = false;
4816 			break;
4817 		}
4818 
4819 		if (n && n != tail &&
4820 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4821 			end_of_skbs = false;
4822 			break;
4823 		}
4824 
4825 		/* Decided to skip this, advance start seq. */
4826 		start = TCP_SKB_CB(skb)->end_seq;
4827 	}
4828 	if (end_of_skbs ||
4829 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4830 		return;
4831 
4832 	__skb_queue_head_init(&tmp);
4833 
4834 	while (before(start, end)) {
4835 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4836 		struct sk_buff *nskb;
4837 
4838 		nskb = alloc_skb(copy, GFP_ATOMIC);
4839 		if (!nskb)
4840 			break;
4841 
4842 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4843 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4844 		if (list)
4845 			__skb_queue_before(list, skb, nskb);
4846 		else
4847 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4848 		skb_set_owner_r(nskb, sk);
4849 
4850 		/* Copy data, releasing collapsed skbs. */
4851 		while (copy > 0) {
4852 			int offset = start - TCP_SKB_CB(skb)->seq;
4853 			int size = TCP_SKB_CB(skb)->end_seq - start;
4854 
4855 			BUG_ON(offset < 0);
4856 			if (size > 0) {
4857 				size = min(copy, size);
4858 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4859 					BUG();
4860 				TCP_SKB_CB(nskb)->end_seq += size;
4861 				copy -= size;
4862 				start += size;
4863 			}
4864 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4865 				skb = tcp_collapse_one(sk, skb, list, root);
4866 				if (!skb ||
4867 				    skb == tail ||
4868 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4869 					goto end;
4870 			}
4871 		}
4872 	}
4873 end:
4874 	skb_queue_walk_safe(&tmp, skb, n)
4875 		tcp_rbtree_insert(root, skb);
4876 }
4877 
4878 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4879  * and tcp_collapse() them until all the queue is collapsed.
4880  */
4881 static void tcp_collapse_ofo_queue(struct sock *sk)
4882 {
4883 	struct tcp_sock *tp = tcp_sk(sk);
4884 	struct sk_buff *skb, *head;
4885 	struct rb_node *p;
4886 	u32 start, end;
4887 
4888 	p = rb_first(&tp->out_of_order_queue);
4889 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4890 new_range:
4891 	if (!skb) {
4892 		p = rb_last(&tp->out_of_order_queue);
4893 		/* Note: This is possible p is NULL here. We do not
4894 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4895 		 * if rbtree is not empty.
4896 		 */
4897 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4898 		return;
4899 	}
4900 	start = TCP_SKB_CB(skb)->seq;
4901 	end = TCP_SKB_CB(skb)->end_seq;
4902 
4903 	for (head = skb;;) {
4904 		skb = tcp_skb_next(skb, NULL);
4905 
4906 		/* Range is terminated when we see a gap or when
4907 		 * we are at the queue end.
4908 		 */
4909 		if (!skb ||
4910 		    after(TCP_SKB_CB(skb)->seq, end) ||
4911 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4912 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4913 				     head, skb, start, end);
4914 			goto new_range;
4915 		}
4916 
4917 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4918 			start = TCP_SKB_CB(skb)->seq;
4919 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4920 			end = TCP_SKB_CB(skb)->end_seq;
4921 	}
4922 }
4923 
4924 /*
4925  * Clean the out-of-order queue to make room.
4926  * We drop high sequences packets to :
4927  * 1) Let a chance for holes to be filled.
4928  * 2) not add too big latencies if thousands of packets sit there.
4929  *    (But if application shrinks SO_RCVBUF, we could still end up
4930  *     freeing whole queue here)
4931  *
4932  * Return true if queue has shrunk.
4933  */
4934 static bool tcp_prune_ofo_queue(struct sock *sk)
4935 {
4936 	struct tcp_sock *tp = tcp_sk(sk);
4937 	struct rb_node *node, *prev;
4938 
4939 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4940 		return false;
4941 
4942 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4943 	node = &tp->ooo_last_skb->rbnode;
4944 	do {
4945 		prev = rb_prev(node);
4946 		rb_erase(node, &tp->out_of_order_queue);
4947 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4948 		sk_mem_reclaim(sk);
4949 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4950 		    !tcp_under_memory_pressure(sk))
4951 			break;
4952 		node = prev;
4953 	} while (node);
4954 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4955 
4956 	/* Reset SACK state.  A conforming SACK implementation will
4957 	 * do the same at a timeout based retransmit.  When a connection
4958 	 * is in a sad state like this, we care only about integrity
4959 	 * of the connection not performance.
4960 	 */
4961 	if (tp->rx_opt.sack_ok)
4962 		tcp_sack_reset(&tp->rx_opt);
4963 	return true;
4964 }
4965 
4966 /* Reduce allocated memory if we can, trying to get
4967  * the socket within its memory limits again.
4968  *
4969  * Return less than zero if we should start dropping frames
4970  * until the socket owning process reads some of the data
4971  * to stabilize the situation.
4972  */
4973 static int tcp_prune_queue(struct sock *sk)
4974 {
4975 	struct tcp_sock *tp = tcp_sk(sk);
4976 
4977 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4978 
4979 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4980 
4981 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4982 		tcp_clamp_window(sk);
4983 	else if (tcp_under_memory_pressure(sk))
4984 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4985 
4986 	tcp_collapse_ofo_queue(sk);
4987 	if (!skb_queue_empty(&sk->sk_receive_queue))
4988 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4989 			     skb_peek(&sk->sk_receive_queue),
4990 			     NULL,
4991 			     tp->copied_seq, tp->rcv_nxt);
4992 	sk_mem_reclaim(sk);
4993 
4994 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4995 		return 0;
4996 
4997 	/* Collapsing did not help, destructive actions follow.
4998 	 * This must not ever occur. */
4999 
5000 	tcp_prune_ofo_queue(sk);
5001 
5002 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5003 		return 0;
5004 
5005 	/* If we are really being abused, tell the caller to silently
5006 	 * drop receive data on the floor.  It will get retransmitted
5007 	 * and hopefully then we'll have sufficient space.
5008 	 */
5009 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5010 
5011 	/* Massive buffer overcommit. */
5012 	tp->pred_flags = 0;
5013 	return -1;
5014 }
5015 
5016 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5017 {
5018 	const struct tcp_sock *tp = tcp_sk(sk);
5019 
5020 	/* If the user specified a specific send buffer setting, do
5021 	 * not modify it.
5022 	 */
5023 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5024 		return false;
5025 
5026 	/* If we are under global TCP memory pressure, do not expand.  */
5027 	if (tcp_under_memory_pressure(sk))
5028 		return false;
5029 
5030 	/* If we are under soft global TCP memory pressure, do not expand.  */
5031 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5032 		return false;
5033 
5034 	/* If we filled the congestion window, do not expand.  */
5035 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5036 		return false;
5037 
5038 	return true;
5039 }
5040 
5041 /* When incoming ACK allowed to free some skb from write_queue,
5042  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5043  * on the exit from tcp input handler.
5044  *
5045  * PROBLEM: sndbuf expansion does not work well with largesend.
5046  */
5047 static void tcp_new_space(struct sock *sk)
5048 {
5049 	struct tcp_sock *tp = tcp_sk(sk);
5050 
5051 	if (tcp_should_expand_sndbuf(sk)) {
5052 		tcp_sndbuf_expand(sk);
5053 		tp->snd_cwnd_stamp = tcp_time_stamp;
5054 	}
5055 
5056 	sk->sk_write_space(sk);
5057 }
5058 
5059 static void tcp_check_space(struct sock *sk)
5060 {
5061 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5062 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5063 		/* pairs with tcp_poll() */
5064 		smp_mb__after_atomic();
5065 		if (sk->sk_socket &&
5066 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5067 			tcp_new_space(sk);
5068 	}
5069 }
5070 
5071 static inline void tcp_data_snd_check(struct sock *sk)
5072 {
5073 	tcp_push_pending_frames(sk);
5074 	tcp_check_space(sk);
5075 }
5076 
5077 /*
5078  * Check if sending an ack is needed.
5079  */
5080 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5081 {
5082 	struct tcp_sock *tp = tcp_sk(sk);
5083 
5084 	    /* More than one full frame received... */
5085 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5086 	     /* ... and right edge of window advances far enough.
5087 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5088 	      */
5089 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5090 	    /* We ACK each frame or... */
5091 	    tcp_in_quickack_mode(sk) ||
5092 	    /* We have out of order data. */
5093 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5094 		/* Then ack it now */
5095 		tcp_send_ack(sk);
5096 	} else {
5097 		/* Else, send delayed ack. */
5098 		tcp_send_delayed_ack(sk);
5099 	}
5100 }
5101 
5102 static inline void tcp_ack_snd_check(struct sock *sk)
5103 {
5104 	if (!inet_csk_ack_scheduled(sk)) {
5105 		/* We sent a data segment already. */
5106 		return;
5107 	}
5108 	__tcp_ack_snd_check(sk, 1);
5109 }
5110 
5111 /*
5112  *	This routine is only called when we have urgent data
5113  *	signaled. Its the 'slow' part of tcp_urg. It could be
5114  *	moved inline now as tcp_urg is only called from one
5115  *	place. We handle URGent data wrong. We have to - as
5116  *	BSD still doesn't use the correction from RFC961.
5117  *	For 1003.1g we should support a new option TCP_STDURG to permit
5118  *	either form (or just set the sysctl tcp_stdurg).
5119  */
5120 
5121 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5122 {
5123 	struct tcp_sock *tp = tcp_sk(sk);
5124 	u32 ptr = ntohs(th->urg_ptr);
5125 
5126 	if (ptr && !sysctl_tcp_stdurg)
5127 		ptr--;
5128 	ptr += ntohl(th->seq);
5129 
5130 	/* Ignore urgent data that we've already seen and read. */
5131 	if (after(tp->copied_seq, ptr))
5132 		return;
5133 
5134 	/* Do not replay urg ptr.
5135 	 *
5136 	 * NOTE: interesting situation not covered by specs.
5137 	 * Misbehaving sender may send urg ptr, pointing to segment,
5138 	 * which we already have in ofo queue. We are not able to fetch
5139 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5140 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5141 	 * situations. But it is worth to think about possibility of some
5142 	 * DoSes using some hypothetical application level deadlock.
5143 	 */
5144 	if (before(ptr, tp->rcv_nxt))
5145 		return;
5146 
5147 	/* Do we already have a newer (or duplicate) urgent pointer? */
5148 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5149 		return;
5150 
5151 	/* Tell the world about our new urgent pointer. */
5152 	sk_send_sigurg(sk);
5153 
5154 	/* We may be adding urgent data when the last byte read was
5155 	 * urgent. To do this requires some care. We cannot just ignore
5156 	 * tp->copied_seq since we would read the last urgent byte again
5157 	 * as data, nor can we alter copied_seq until this data arrives
5158 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5159 	 *
5160 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5161 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5162 	 * and expect that both A and B disappear from stream. This is _wrong_.
5163 	 * Though this happens in BSD with high probability, this is occasional.
5164 	 * Any application relying on this is buggy. Note also, that fix "works"
5165 	 * only in this artificial test. Insert some normal data between A and B and we will
5166 	 * decline of BSD again. Verdict: it is better to remove to trap
5167 	 * buggy users.
5168 	 */
5169 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5170 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5171 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5172 		tp->copied_seq++;
5173 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5174 			__skb_unlink(skb, &sk->sk_receive_queue);
5175 			__kfree_skb(skb);
5176 		}
5177 	}
5178 
5179 	tp->urg_data = TCP_URG_NOTYET;
5180 	tp->urg_seq = ptr;
5181 
5182 	/* Disable header prediction. */
5183 	tp->pred_flags = 0;
5184 }
5185 
5186 /* This is the 'fast' part of urgent handling. */
5187 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5188 {
5189 	struct tcp_sock *tp = tcp_sk(sk);
5190 
5191 	/* Check if we get a new urgent pointer - normally not. */
5192 	if (th->urg)
5193 		tcp_check_urg(sk, th);
5194 
5195 	/* Do we wait for any urgent data? - normally not... */
5196 	if (tp->urg_data == TCP_URG_NOTYET) {
5197 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5198 			  th->syn;
5199 
5200 		/* Is the urgent pointer pointing into this packet? */
5201 		if (ptr < skb->len) {
5202 			u8 tmp;
5203 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5204 				BUG();
5205 			tp->urg_data = TCP_URG_VALID | tmp;
5206 			if (!sock_flag(sk, SOCK_DEAD))
5207 				sk->sk_data_ready(sk);
5208 		}
5209 	}
5210 }
5211 
5212 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5213 {
5214 	struct tcp_sock *tp = tcp_sk(sk);
5215 	int chunk = skb->len - hlen;
5216 	int err;
5217 
5218 	if (skb_csum_unnecessary(skb))
5219 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5220 	else
5221 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5222 
5223 	if (!err) {
5224 		tp->ucopy.len -= chunk;
5225 		tp->copied_seq += chunk;
5226 		tcp_rcv_space_adjust(sk);
5227 	}
5228 
5229 	return err;
5230 }
5231 
5232 /* Does PAWS and seqno based validation of an incoming segment, flags will
5233  * play significant role here.
5234  */
5235 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5236 				  const struct tcphdr *th, int syn_inerr)
5237 {
5238 	struct tcp_sock *tp = tcp_sk(sk);
5239 	bool rst_seq_match = false;
5240 
5241 	/* RFC1323: H1. Apply PAWS check first. */
5242 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5243 	    tcp_paws_discard(sk, skb)) {
5244 		if (!th->rst) {
5245 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5246 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5247 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5248 						  &tp->last_oow_ack_time))
5249 				tcp_send_dupack(sk, skb);
5250 			goto discard;
5251 		}
5252 		/* Reset is accepted even if it did not pass PAWS. */
5253 	}
5254 
5255 	/* Step 1: check sequence number */
5256 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5257 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5258 		 * (RST) segments are validated by checking their SEQ-fields."
5259 		 * And page 69: "If an incoming segment is not acceptable,
5260 		 * an acknowledgment should be sent in reply (unless the RST
5261 		 * bit is set, if so drop the segment and return)".
5262 		 */
5263 		if (!th->rst) {
5264 			if (th->syn)
5265 				goto syn_challenge;
5266 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5267 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5268 						  &tp->last_oow_ack_time))
5269 				tcp_send_dupack(sk, skb);
5270 		}
5271 		goto discard;
5272 	}
5273 
5274 	/* Step 2: check RST bit */
5275 	if (th->rst) {
5276 		/* RFC 5961 3.2 (extend to match against SACK too if available):
5277 		 * If seq num matches RCV.NXT or the right-most SACK block,
5278 		 * then
5279 		 *     RESET the connection
5280 		 * else
5281 		 *     Send a challenge ACK
5282 		 */
5283 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5284 			rst_seq_match = true;
5285 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5286 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5287 			int max_sack = sp[0].end_seq;
5288 			int this_sack;
5289 
5290 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5291 			     ++this_sack) {
5292 				max_sack = after(sp[this_sack].end_seq,
5293 						 max_sack) ?
5294 					sp[this_sack].end_seq : max_sack;
5295 			}
5296 
5297 			if (TCP_SKB_CB(skb)->seq == max_sack)
5298 				rst_seq_match = true;
5299 		}
5300 
5301 		if (rst_seq_match)
5302 			tcp_reset(sk);
5303 		else
5304 			tcp_send_challenge_ack(sk, skb);
5305 		goto discard;
5306 	}
5307 
5308 	/* step 3: check security and precedence [ignored] */
5309 
5310 	/* step 4: Check for a SYN
5311 	 * RFC 5961 4.2 : Send a challenge ack
5312 	 */
5313 	if (th->syn) {
5314 syn_challenge:
5315 		if (syn_inerr)
5316 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5317 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5318 		tcp_send_challenge_ack(sk, skb);
5319 		goto discard;
5320 	}
5321 
5322 	return true;
5323 
5324 discard:
5325 	tcp_drop(sk, skb);
5326 	return false;
5327 }
5328 
5329 /*
5330  *	TCP receive function for the ESTABLISHED state.
5331  *
5332  *	It is split into a fast path and a slow path. The fast path is
5333  * 	disabled when:
5334  *	- A zero window was announced from us - zero window probing
5335  *        is only handled properly in the slow path.
5336  *	- Out of order segments arrived.
5337  *	- Urgent data is expected.
5338  *	- There is no buffer space left
5339  *	- Unexpected TCP flags/window values/header lengths are received
5340  *	  (detected by checking the TCP header against pred_flags)
5341  *	- Data is sent in both directions. Fast path only supports pure senders
5342  *	  or pure receivers (this means either the sequence number or the ack
5343  *	  value must stay constant)
5344  *	- Unexpected TCP option.
5345  *
5346  *	When these conditions are not satisfied it drops into a standard
5347  *	receive procedure patterned after RFC793 to handle all cases.
5348  *	The first three cases are guaranteed by proper pred_flags setting,
5349  *	the rest is checked inline. Fast processing is turned on in
5350  *	tcp_data_queue when everything is OK.
5351  */
5352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5353 			 const struct tcphdr *th, unsigned int len)
5354 {
5355 	struct tcp_sock *tp = tcp_sk(sk);
5356 
5357 	if (unlikely(!sk->sk_rx_dst))
5358 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5359 	/*
5360 	 *	Header prediction.
5361 	 *	The code loosely follows the one in the famous
5362 	 *	"30 instruction TCP receive" Van Jacobson mail.
5363 	 *
5364 	 *	Van's trick is to deposit buffers into socket queue
5365 	 *	on a device interrupt, to call tcp_recv function
5366 	 *	on the receive process context and checksum and copy
5367 	 *	the buffer to user space. smart...
5368 	 *
5369 	 *	Our current scheme is not silly either but we take the
5370 	 *	extra cost of the net_bh soft interrupt processing...
5371 	 *	We do checksum and copy also but from device to kernel.
5372 	 */
5373 
5374 	tp->rx_opt.saw_tstamp = 0;
5375 
5376 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5377 	 *	if header_prediction is to be made
5378 	 *	'S' will always be tp->tcp_header_len >> 2
5379 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5380 	 *  turn it off	(when there are holes in the receive
5381 	 *	 space for instance)
5382 	 *	PSH flag is ignored.
5383 	 */
5384 
5385 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5386 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5387 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5388 		int tcp_header_len = tp->tcp_header_len;
5389 
5390 		/* Timestamp header prediction: tcp_header_len
5391 		 * is automatically equal to th->doff*4 due to pred_flags
5392 		 * match.
5393 		 */
5394 
5395 		/* Check timestamp */
5396 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5397 			/* No? Slow path! */
5398 			if (!tcp_parse_aligned_timestamp(tp, th))
5399 				goto slow_path;
5400 
5401 			/* If PAWS failed, check it more carefully in slow path */
5402 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5403 				goto slow_path;
5404 
5405 			/* DO NOT update ts_recent here, if checksum fails
5406 			 * and timestamp was corrupted part, it will result
5407 			 * in a hung connection since we will drop all
5408 			 * future packets due to the PAWS test.
5409 			 */
5410 		}
5411 
5412 		if (len <= tcp_header_len) {
5413 			/* Bulk data transfer: sender */
5414 			if (len == tcp_header_len) {
5415 				/* Predicted packet is in window by definition.
5416 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5417 				 * Hence, check seq<=rcv_wup reduces to:
5418 				 */
5419 				if (tcp_header_len ==
5420 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5421 				    tp->rcv_nxt == tp->rcv_wup)
5422 					tcp_store_ts_recent(tp);
5423 
5424 				/* We know that such packets are checksummed
5425 				 * on entry.
5426 				 */
5427 				tcp_ack(sk, skb, 0);
5428 				__kfree_skb(skb);
5429 				tcp_data_snd_check(sk);
5430 				return;
5431 			} else { /* Header too small */
5432 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5433 				goto discard;
5434 			}
5435 		} else {
5436 			int eaten = 0;
5437 			bool fragstolen = false;
5438 
5439 			if (tp->ucopy.task == current &&
5440 			    tp->copied_seq == tp->rcv_nxt &&
5441 			    len - tcp_header_len <= tp->ucopy.len &&
5442 			    sock_owned_by_user(sk)) {
5443 				__set_current_state(TASK_RUNNING);
5444 
5445 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5446 					/* Predicted packet is in window by definition.
5447 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5448 					 * Hence, check seq<=rcv_wup reduces to:
5449 					 */
5450 					if (tcp_header_len ==
5451 					    (sizeof(struct tcphdr) +
5452 					     TCPOLEN_TSTAMP_ALIGNED) &&
5453 					    tp->rcv_nxt == tp->rcv_wup)
5454 						tcp_store_ts_recent(tp);
5455 
5456 					tcp_rcv_rtt_measure_ts(sk, skb);
5457 
5458 					__skb_pull(skb, tcp_header_len);
5459 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5460 					NET_INC_STATS(sock_net(sk),
5461 							LINUX_MIB_TCPHPHITSTOUSER);
5462 					eaten = 1;
5463 				}
5464 			}
5465 			if (!eaten) {
5466 				if (tcp_checksum_complete(skb))
5467 					goto csum_error;
5468 
5469 				if ((int)skb->truesize > sk->sk_forward_alloc)
5470 					goto step5;
5471 
5472 				/* Predicted packet is in window by definition.
5473 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5474 				 * Hence, check seq<=rcv_wup reduces to:
5475 				 */
5476 				if (tcp_header_len ==
5477 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5478 				    tp->rcv_nxt == tp->rcv_wup)
5479 					tcp_store_ts_recent(tp);
5480 
5481 				tcp_rcv_rtt_measure_ts(sk, skb);
5482 
5483 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5484 
5485 				/* Bulk data transfer: receiver */
5486 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5487 						      &fragstolen);
5488 			}
5489 
5490 			tcp_event_data_recv(sk, skb);
5491 
5492 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5493 				/* Well, only one small jumplet in fast path... */
5494 				tcp_ack(sk, skb, FLAG_DATA);
5495 				tcp_data_snd_check(sk);
5496 				if (!inet_csk_ack_scheduled(sk))
5497 					goto no_ack;
5498 			}
5499 
5500 			__tcp_ack_snd_check(sk, 0);
5501 no_ack:
5502 			if (eaten)
5503 				kfree_skb_partial(skb, fragstolen);
5504 			sk->sk_data_ready(sk);
5505 			return;
5506 		}
5507 	}
5508 
5509 slow_path:
5510 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5511 		goto csum_error;
5512 
5513 	if (!th->ack && !th->rst && !th->syn)
5514 		goto discard;
5515 
5516 	/*
5517 	 *	Standard slow path.
5518 	 */
5519 
5520 	if (!tcp_validate_incoming(sk, skb, th, 1))
5521 		return;
5522 
5523 step5:
5524 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5525 		goto discard;
5526 
5527 	tcp_rcv_rtt_measure_ts(sk, skb);
5528 
5529 	/* Process urgent data. */
5530 	tcp_urg(sk, skb, th);
5531 
5532 	/* step 7: process the segment text */
5533 	tcp_data_queue(sk, skb);
5534 
5535 	tcp_data_snd_check(sk);
5536 	tcp_ack_snd_check(sk);
5537 	return;
5538 
5539 csum_error:
5540 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5541 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5542 
5543 discard:
5544 	tcp_drop(sk, skb);
5545 }
5546 EXPORT_SYMBOL(tcp_rcv_established);
5547 
5548 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5549 {
5550 	struct tcp_sock *tp = tcp_sk(sk);
5551 	struct inet_connection_sock *icsk = inet_csk(sk);
5552 
5553 	tcp_set_state(sk, TCP_ESTABLISHED);
5554 
5555 	if (skb) {
5556 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5557 		security_inet_conn_established(sk, skb);
5558 	}
5559 
5560 	/* Make sure socket is routed, for correct metrics.  */
5561 	icsk->icsk_af_ops->rebuild_header(sk);
5562 
5563 	tcp_init_metrics(sk);
5564 
5565 	tcp_init_congestion_control(sk);
5566 
5567 	/* Prevent spurious tcp_cwnd_restart() on first data
5568 	 * packet.
5569 	 */
5570 	tp->lsndtime = tcp_time_stamp;
5571 
5572 	tcp_init_buffer_space(sk);
5573 
5574 	if (sock_flag(sk, SOCK_KEEPOPEN))
5575 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5576 
5577 	if (!tp->rx_opt.snd_wscale)
5578 		__tcp_fast_path_on(tp, tp->snd_wnd);
5579 	else
5580 		tp->pred_flags = 0;
5581 
5582 	if (!sock_flag(sk, SOCK_DEAD)) {
5583 		sk->sk_state_change(sk);
5584 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5585 	}
5586 }
5587 
5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5589 				    struct tcp_fastopen_cookie *cookie)
5590 {
5591 	struct tcp_sock *tp = tcp_sk(sk);
5592 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5593 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5594 	bool syn_drop = false;
5595 
5596 	if (mss == tp->rx_opt.user_mss) {
5597 		struct tcp_options_received opt;
5598 
5599 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5600 		tcp_clear_options(&opt);
5601 		opt.user_mss = opt.mss_clamp = 0;
5602 		tcp_parse_options(synack, &opt, 0, NULL);
5603 		mss = opt.mss_clamp;
5604 	}
5605 
5606 	if (!tp->syn_fastopen) {
5607 		/* Ignore an unsolicited cookie */
5608 		cookie->len = -1;
5609 	} else if (tp->total_retrans) {
5610 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5611 		 * acknowledges data. Presumably the remote received only
5612 		 * the retransmitted (regular) SYNs: either the original
5613 		 * SYN-data or the corresponding SYN-ACK was dropped.
5614 		 */
5615 		syn_drop = (cookie->len < 0 && data);
5616 	} else if (cookie->len < 0 && !tp->syn_data) {
5617 		/* We requested a cookie but didn't get it. If we did not use
5618 		 * the (old) exp opt format then try so next time (try_exp=1).
5619 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5620 		 */
5621 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5622 	}
5623 
5624 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5625 
5626 	if (data) { /* Retransmit unacked data in SYN */
5627 		tcp_for_write_queue_from(data, sk) {
5628 			if (data == tcp_send_head(sk) ||
5629 			    __tcp_retransmit_skb(sk, data, 1))
5630 				break;
5631 		}
5632 		tcp_rearm_rto(sk);
5633 		NET_INC_STATS(sock_net(sk),
5634 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5635 		return true;
5636 	}
5637 	tp->syn_data_acked = tp->syn_data;
5638 	if (tp->syn_data_acked)
5639 		NET_INC_STATS(sock_net(sk),
5640 				LINUX_MIB_TCPFASTOPENACTIVE);
5641 
5642 	tcp_fastopen_add_skb(sk, synack);
5643 
5644 	return false;
5645 }
5646 
5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5648 					 const struct tcphdr *th)
5649 {
5650 	struct inet_connection_sock *icsk = inet_csk(sk);
5651 	struct tcp_sock *tp = tcp_sk(sk);
5652 	struct tcp_fastopen_cookie foc = { .len = -1 };
5653 	int saved_clamp = tp->rx_opt.mss_clamp;
5654 
5655 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5656 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5657 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5658 
5659 	if (th->ack) {
5660 		/* rfc793:
5661 		 * "If the state is SYN-SENT then
5662 		 *    first check the ACK bit
5663 		 *      If the ACK bit is set
5664 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5665 		 *        a reset (unless the RST bit is set, if so drop
5666 		 *        the segment and return)"
5667 		 */
5668 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5669 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5670 			goto reset_and_undo;
5671 
5672 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5673 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5674 			     tcp_time_stamp)) {
5675 			NET_INC_STATS(sock_net(sk),
5676 					LINUX_MIB_PAWSACTIVEREJECTED);
5677 			goto reset_and_undo;
5678 		}
5679 
5680 		/* Now ACK is acceptable.
5681 		 *
5682 		 * "If the RST bit is set
5683 		 *    If the ACK was acceptable then signal the user "error:
5684 		 *    connection reset", drop the segment, enter CLOSED state,
5685 		 *    delete TCB, and return."
5686 		 */
5687 
5688 		if (th->rst) {
5689 			tcp_reset(sk);
5690 			goto discard;
5691 		}
5692 
5693 		/* rfc793:
5694 		 *   "fifth, if neither of the SYN or RST bits is set then
5695 		 *    drop the segment and return."
5696 		 *
5697 		 *    See note below!
5698 		 *                                        --ANK(990513)
5699 		 */
5700 		if (!th->syn)
5701 			goto discard_and_undo;
5702 
5703 		/* rfc793:
5704 		 *   "If the SYN bit is on ...
5705 		 *    are acceptable then ...
5706 		 *    (our SYN has been ACKed), change the connection
5707 		 *    state to ESTABLISHED..."
5708 		 */
5709 
5710 		tcp_ecn_rcv_synack(tp, th);
5711 
5712 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5713 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5714 
5715 		/* Ok.. it's good. Set up sequence numbers and
5716 		 * move to established.
5717 		 */
5718 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5719 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5720 
5721 		/* RFC1323: The window in SYN & SYN/ACK segments is
5722 		 * never scaled.
5723 		 */
5724 		tp->snd_wnd = ntohs(th->window);
5725 
5726 		if (!tp->rx_opt.wscale_ok) {
5727 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5728 			tp->window_clamp = min(tp->window_clamp, 65535U);
5729 		}
5730 
5731 		if (tp->rx_opt.saw_tstamp) {
5732 			tp->rx_opt.tstamp_ok	   = 1;
5733 			tp->tcp_header_len =
5734 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5736 			tcp_store_ts_recent(tp);
5737 		} else {
5738 			tp->tcp_header_len = sizeof(struct tcphdr);
5739 		}
5740 
5741 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5742 			tcp_enable_fack(tp);
5743 
5744 		tcp_mtup_init(sk);
5745 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5746 		tcp_initialize_rcv_mss(sk);
5747 
5748 		/* Remember, tcp_poll() does not lock socket!
5749 		 * Change state from SYN-SENT only after copied_seq
5750 		 * is initialized. */
5751 		tp->copied_seq = tp->rcv_nxt;
5752 
5753 		smp_mb();
5754 
5755 		tcp_finish_connect(sk, skb);
5756 
5757 		if ((tp->syn_fastopen || tp->syn_data) &&
5758 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5759 			return -1;
5760 
5761 		if (sk->sk_write_pending ||
5762 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5763 		    icsk->icsk_ack.pingpong) {
5764 			/* Save one ACK. Data will be ready after
5765 			 * several ticks, if write_pending is set.
5766 			 *
5767 			 * It may be deleted, but with this feature tcpdumps
5768 			 * look so _wonderfully_ clever, that I was not able
5769 			 * to stand against the temptation 8)     --ANK
5770 			 */
5771 			inet_csk_schedule_ack(sk);
5772 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5773 			tcp_enter_quickack_mode(sk);
5774 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5775 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5776 
5777 discard:
5778 			tcp_drop(sk, skb);
5779 			return 0;
5780 		} else {
5781 			tcp_send_ack(sk);
5782 		}
5783 		return -1;
5784 	}
5785 
5786 	/* No ACK in the segment */
5787 
5788 	if (th->rst) {
5789 		/* rfc793:
5790 		 * "If the RST bit is set
5791 		 *
5792 		 *      Otherwise (no ACK) drop the segment and return."
5793 		 */
5794 
5795 		goto discard_and_undo;
5796 	}
5797 
5798 	/* PAWS check. */
5799 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5800 	    tcp_paws_reject(&tp->rx_opt, 0))
5801 		goto discard_and_undo;
5802 
5803 	if (th->syn) {
5804 		/* We see SYN without ACK. It is attempt of
5805 		 * simultaneous connect with crossed SYNs.
5806 		 * Particularly, it can be connect to self.
5807 		 */
5808 		tcp_set_state(sk, TCP_SYN_RECV);
5809 
5810 		if (tp->rx_opt.saw_tstamp) {
5811 			tp->rx_opt.tstamp_ok = 1;
5812 			tcp_store_ts_recent(tp);
5813 			tp->tcp_header_len =
5814 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5815 		} else {
5816 			tp->tcp_header_len = sizeof(struct tcphdr);
5817 		}
5818 
5819 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5820 		tp->copied_seq = tp->rcv_nxt;
5821 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5822 
5823 		/* RFC1323: The window in SYN & SYN/ACK segments is
5824 		 * never scaled.
5825 		 */
5826 		tp->snd_wnd    = ntohs(th->window);
5827 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5828 		tp->max_window = tp->snd_wnd;
5829 
5830 		tcp_ecn_rcv_syn(tp, th);
5831 
5832 		tcp_mtup_init(sk);
5833 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5834 		tcp_initialize_rcv_mss(sk);
5835 
5836 		tcp_send_synack(sk);
5837 #if 0
5838 		/* Note, we could accept data and URG from this segment.
5839 		 * There are no obstacles to make this (except that we must
5840 		 * either change tcp_recvmsg() to prevent it from returning data
5841 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5842 		 *
5843 		 * However, if we ignore data in ACKless segments sometimes,
5844 		 * we have no reasons to accept it sometimes.
5845 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5846 		 * is not flawless. So, discard packet for sanity.
5847 		 * Uncomment this return to process the data.
5848 		 */
5849 		return -1;
5850 #else
5851 		goto discard;
5852 #endif
5853 	}
5854 	/* "fifth, if neither of the SYN or RST bits is set then
5855 	 * drop the segment and return."
5856 	 */
5857 
5858 discard_and_undo:
5859 	tcp_clear_options(&tp->rx_opt);
5860 	tp->rx_opt.mss_clamp = saved_clamp;
5861 	goto discard;
5862 
5863 reset_and_undo:
5864 	tcp_clear_options(&tp->rx_opt);
5865 	tp->rx_opt.mss_clamp = saved_clamp;
5866 	return 1;
5867 }
5868 
5869 /*
5870  *	This function implements the receiving procedure of RFC 793 for
5871  *	all states except ESTABLISHED and TIME_WAIT.
5872  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5873  *	address independent.
5874  */
5875 
5876 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5877 {
5878 	struct tcp_sock *tp = tcp_sk(sk);
5879 	struct inet_connection_sock *icsk = inet_csk(sk);
5880 	const struct tcphdr *th = tcp_hdr(skb);
5881 	struct request_sock *req;
5882 	int queued = 0;
5883 	bool acceptable;
5884 
5885 	switch (sk->sk_state) {
5886 	case TCP_CLOSE:
5887 		goto discard;
5888 
5889 	case TCP_LISTEN:
5890 		if (th->ack)
5891 			return 1;
5892 
5893 		if (th->rst)
5894 			goto discard;
5895 
5896 		if (th->syn) {
5897 			if (th->fin)
5898 				goto discard;
5899 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5900 				return 1;
5901 
5902 			consume_skb(skb);
5903 			return 0;
5904 		}
5905 		goto discard;
5906 
5907 	case TCP_SYN_SENT:
5908 		tp->rx_opt.saw_tstamp = 0;
5909 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5910 		if (queued >= 0)
5911 			return queued;
5912 
5913 		/* Do step6 onward by hand. */
5914 		tcp_urg(sk, skb, th);
5915 		__kfree_skb(skb);
5916 		tcp_data_snd_check(sk);
5917 		return 0;
5918 	}
5919 
5920 	tp->rx_opt.saw_tstamp = 0;
5921 	req = tp->fastopen_rsk;
5922 	if (req) {
5923 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5924 		    sk->sk_state != TCP_FIN_WAIT1);
5925 
5926 		if (!tcp_check_req(sk, skb, req, true))
5927 			goto discard;
5928 	}
5929 
5930 	if (!th->ack && !th->rst && !th->syn)
5931 		goto discard;
5932 
5933 	if (!tcp_validate_incoming(sk, skb, th, 0))
5934 		return 0;
5935 
5936 	/* step 5: check the ACK field */
5937 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5938 				      FLAG_UPDATE_TS_RECENT) > 0;
5939 
5940 	switch (sk->sk_state) {
5941 	case TCP_SYN_RECV:
5942 		if (!acceptable)
5943 			return 1;
5944 
5945 		if (!tp->srtt_us)
5946 			tcp_synack_rtt_meas(sk, req);
5947 
5948 		/* Once we leave TCP_SYN_RECV, we no longer need req
5949 		 * so release it.
5950 		 */
5951 		if (req) {
5952 			inet_csk(sk)->icsk_retransmits = 0;
5953 			reqsk_fastopen_remove(sk, req, false);
5954 		} else {
5955 			/* Make sure socket is routed, for correct metrics. */
5956 			icsk->icsk_af_ops->rebuild_header(sk);
5957 			tcp_init_congestion_control(sk);
5958 
5959 			tcp_mtup_init(sk);
5960 			tp->copied_seq = tp->rcv_nxt;
5961 			tcp_init_buffer_space(sk);
5962 		}
5963 		smp_mb();
5964 		tcp_set_state(sk, TCP_ESTABLISHED);
5965 		sk->sk_state_change(sk);
5966 
5967 		/* Note, that this wakeup is only for marginal crossed SYN case.
5968 		 * Passively open sockets are not waked up, because
5969 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5970 		 */
5971 		if (sk->sk_socket)
5972 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5973 
5974 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5975 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5976 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5977 
5978 		if (tp->rx_opt.tstamp_ok)
5979 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5980 
5981 		if (req) {
5982 			/* Re-arm the timer because data may have been sent out.
5983 			 * This is similar to the regular data transmission case
5984 			 * when new data has just been ack'ed.
5985 			 *
5986 			 * (TFO) - we could try to be more aggressive and
5987 			 * retransmitting any data sooner based on when they
5988 			 * are sent out.
5989 			 */
5990 			tcp_rearm_rto(sk);
5991 		} else
5992 			tcp_init_metrics(sk);
5993 
5994 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5995 			tcp_update_pacing_rate(sk);
5996 
5997 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5998 		tp->lsndtime = tcp_time_stamp;
5999 
6000 		tcp_initialize_rcv_mss(sk);
6001 		tcp_fast_path_on(tp);
6002 		break;
6003 
6004 	case TCP_FIN_WAIT1: {
6005 		struct dst_entry *dst;
6006 		int tmo;
6007 
6008 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6009 		 * Fast Open socket and this is the first acceptable
6010 		 * ACK we have received, this would have acknowledged
6011 		 * our SYNACK so stop the SYNACK timer.
6012 		 */
6013 		if (req) {
6014 			/* Return RST if ack_seq is invalid.
6015 			 * Note that RFC793 only says to generate a
6016 			 * DUPACK for it but for TCP Fast Open it seems
6017 			 * better to treat this case like TCP_SYN_RECV
6018 			 * above.
6019 			 */
6020 			if (!acceptable)
6021 				return 1;
6022 			/* We no longer need the request sock. */
6023 			reqsk_fastopen_remove(sk, req, false);
6024 			tcp_rearm_rto(sk);
6025 		}
6026 		if (tp->snd_una != tp->write_seq)
6027 			break;
6028 
6029 		tcp_set_state(sk, TCP_FIN_WAIT2);
6030 		sk->sk_shutdown |= SEND_SHUTDOWN;
6031 
6032 		dst = __sk_dst_get(sk);
6033 		if (dst)
6034 			dst_confirm(dst);
6035 
6036 		if (!sock_flag(sk, SOCK_DEAD)) {
6037 			/* Wake up lingering close() */
6038 			sk->sk_state_change(sk);
6039 			break;
6040 		}
6041 
6042 		if (tp->linger2 < 0 ||
6043 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6044 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6045 			tcp_done(sk);
6046 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6047 			return 1;
6048 		}
6049 
6050 		tmo = tcp_fin_time(sk);
6051 		if (tmo > TCP_TIMEWAIT_LEN) {
6052 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6053 		} else if (th->fin || sock_owned_by_user(sk)) {
6054 			/* Bad case. We could lose such FIN otherwise.
6055 			 * It is not a big problem, but it looks confusing
6056 			 * and not so rare event. We still can lose it now,
6057 			 * if it spins in bh_lock_sock(), but it is really
6058 			 * marginal case.
6059 			 */
6060 			inet_csk_reset_keepalive_timer(sk, tmo);
6061 		} else {
6062 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6063 			goto discard;
6064 		}
6065 		break;
6066 	}
6067 
6068 	case TCP_CLOSING:
6069 		if (tp->snd_una == tp->write_seq) {
6070 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6071 			goto discard;
6072 		}
6073 		break;
6074 
6075 	case TCP_LAST_ACK:
6076 		if (tp->snd_una == tp->write_seq) {
6077 			tcp_update_metrics(sk);
6078 			tcp_done(sk);
6079 			goto discard;
6080 		}
6081 		break;
6082 	}
6083 
6084 	/* step 6: check the URG bit */
6085 	tcp_urg(sk, skb, th);
6086 
6087 	/* step 7: process the segment text */
6088 	switch (sk->sk_state) {
6089 	case TCP_CLOSE_WAIT:
6090 	case TCP_CLOSING:
6091 	case TCP_LAST_ACK:
6092 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6093 			break;
6094 	case TCP_FIN_WAIT1:
6095 	case TCP_FIN_WAIT2:
6096 		/* RFC 793 says to queue data in these states,
6097 		 * RFC 1122 says we MUST send a reset.
6098 		 * BSD 4.4 also does reset.
6099 		 */
6100 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6101 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6102 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6103 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6104 				tcp_reset(sk);
6105 				return 1;
6106 			}
6107 		}
6108 		/* Fall through */
6109 	case TCP_ESTABLISHED:
6110 		tcp_data_queue(sk, skb);
6111 		queued = 1;
6112 		break;
6113 	}
6114 
6115 	/* tcp_data could move socket to TIME-WAIT */
6116 	if (sk->sk_state != TCP_CLOSE) {
6117 		tcp_data_snd_check(sk);
6118 		tcp_ack_snd_check(sk);
6119 	}
6120 
6121 	if (!queued) {
6122 discard:
6123 		tcp_drop(sk, skb);
6124 	}
6125 	return 0;
6126 }
6127 EXPORT_SYMBOL(tcp_rcv_state_process);
6128 
6129 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6130 {
6131 	struct inet_request_sock *ireq = inet_rsk(req);
6132 
6133 	if (family == AF_INET)
6134 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6135 				    &ireq->ir_rmt_addr, port);
6136 #if IS_ENABLED(CONFIG_IPV6)
6137 	else if (family == AF_INET6)
6138 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6139 				    &ireq->ir_v6_rmt_addr, port);
6140 #endif
6141 }
6142 
6143 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6144  *
6145  * If we receive a SYN packet with these bits set, it means a
6146  * network is playing bad games with TOS bits. In order to
6147  * avoid possible false congestion notifications, we disable
6148  * TCP ECN negotiation.
6149  *
6150  * Exception: tcp_ca wants ECN. This is required for DCTCP
6151  * congestion control: Linux DCTCP asserts ECT on all packets,
6152  * including SYN, which is most optimal solution; however,
6153  * others, such as FreeBSD do not.
6154  */
6155 static void tcp_ecn_create_request(struct request_sock *req,
6156 				   const struct sk_buff *skb,
6157 				   const struct sock *listen_sk,
6158 				   const struct dst_entry *dst)
6159 {
6160 	const struct tcphdr *th = tcp_hdr(skb);
6161 	const struct net *net = sock_net(listen_sk);
6162 	bool th_ecn = th->ece && th->cwr;
6163 	bool ect, ecn_ok;
6164 	u32 ecn_ok_dst;
6165 
6166 	if (!th_ecn)
6167 		return;
6168 
6169 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6170 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6171 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6172 
6173 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6174 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6175 		inet_rsk(req)->ecn_ok = 1;
6176 }
6177 
6178 static void tcp_openreq_init(struct request_sock *req,
6179 			     const struct tcp_options_received *rx_opt,
6180 			     struct sk_buff *skb, const struct sock *sk)
6181 {
6182 	struct inet_request_sock *ireq = inet_rsk(req);
6183 
6184 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6185 	req->cookie_ts = 0;
6186 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6187 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6188 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6189 	tcp_rsk(req)->last_oow_ack_time = 0;
6190 	req->mss = rx_opt->mss_clamp;
6191 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6192 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6193 	ireq->sack_ok = rx_opt->sack_ok;
6194 	ireq->snd_wscale = rx_opt->snd_wscale;
6195 	ireq->wscale_ok = rx_opt->wscale_ok;
6196 	ireq->acked = 0;
6197 	ireq->ecn_ok = 0;
6198 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6199 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6200 	ireq->ir_mark = inet_request_mark(sk, skb);
6201 }
6202 
6203 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6204 				      struct sock *sk_listener,
6205 				      bool attach_listener)
6206 {
6207 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6208 					       attach_listener);
6209 
6210 	if (req) {
6211 		struct inet_request_sock *ireq = inet_rsk(req);
6212 
6213 		kmemcheck_annotate_bitfield(ireq, flags);
6214 		ireq->opt = NULL;
6215 #if IS_ENABLED(CONFIG_IPV6)
6216 		ireq->pktopts = NULL;
6217 #endif
6218 		atomic64_set(&ireq->ir_cookie, 0);
6219 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6220 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6221 		ireq->ireq_family = sk_listener->sk_family;
6222 	}
6223 
6224 	return req;
6225 }
6226 EXPORT_SYMBOL(inet_reqsk_alloc);
6227 
6228 /*
6229  * Return true if a syncookie should be sent
6230  */
6231 static bool tcp_syn_flood_action(const struct sock *sk,
6232 				 const struct sk_buff *skb,
6233 				 const char *proto)
6234 {
6235 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6236 	const char *msg = "Dropping request";
6237 	bool want_cookie = false;
6238 	struct net *net = sock_net(sk);
6239 
6240 #ifdef CONFIG_SYN_COOKIES
6241 	if (net->ipv4.sysctl_tcp_syncookies) {
6242 		msg = "Sending cookies";
6243 		want_cookie = true;
6244 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6245 	} else
6246 #endif
6247 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6248 
6249 	if (!queue->synflood_warned &&
6250 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6251 	    xchg(&queue->synflood_warned, 1) == 0)
6252 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6253 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6254 
6255 	return want_cookie;
6256 }
6257 
6258 static void tcp_reqsk_record_syn(const struct sock *sk,
6259 				 struct request_sock *req,
6260 				 const struct sk_buff *skb)
6261 {
6262 	if (tcp_sk(sk)->save_syn) {
6263 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6264 		u32 *copy;
6265 
6266 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6267 		if (copy) {
6268 			copy[0] = len;
6269 			memcpy(&copy[1], skb_network_header(skb), len);
6270 			req->saved_syn = copy;
6271 		}
6272 	}
6273 }
6274 
6275 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6276 		     const struct tcp_request_sock_ops *af_ops,
6277 		     struct sock *sk, struct sk_buff *skb)
6278 {
6279 	struct tcp_fastopen_cookie foc = { .len = -1 };
6280 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6281 	struct tcp_options_received tmp_opt;
6282 	struct tcp_sock *tp = tcp_sk(sk);
6283 	struct net *net = sock_net(sk);
6284 	struct sock *fastopen_sk = NULL;
6285 	struct dst_entry *dst = NULL;
6286 	struct request_sock *req;
6287 	bool want_cookie = false;
6288 	struct flowi fl;
6289 
6290 	/* TW buckets are converted to open requests without
6291 	 * limitations, they conserve resources and peer is
6292 	 * evidently real one.
6293 	 */
6294 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6295 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6296 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6297 		if (!want_cookie)
6298 			goto drop;
6299 	}
6300 
6301 
6302 	/* Accept backlog is full. If we have already queued enough
6303 	 * of warm entries in syn queue, drop request. It is better than
6304 	 * clogging syn queue with openreqs with exponentially increasing
6305 	 * timeout.
6306 	 */
6307 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6308 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6309 		goto drop;
6310 	}
6311 
6312 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6313 	if (!req)
6314 		goto drop;
6315 
6316 	tcp_rsk(req)->af_specific = af_ops;
6317 
6318 	tcp_clear_options(&tmp_opt);
6319 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6320 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6321 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6322 
6323 	if (want_cookie && !tmp_opt.saw_tstamp)
6324 		tcp_clear_options(&tmp_opt);
6325 
6326 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6327 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6328 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6329 
6330 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6331 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6332 
6333 	af_ops->init_req(req, sk, skb);
6334 
6335 	if (security_inet_conn_request(sk, skb, req))
6336 		goto drop_and_free;
6337 
6338 	if (!want_cookie && !isn) {
6339 		/* VJ's idea. We save last timestamp seen
6340 		 * from the destination in peer table, when entering
6341 		 * state TIME-WAIT, and check against it before
6342 		 * accepting new connection request.
6343 		 *
6344 		 * If "isn" is not zero, this request hit alive
6345 		 * timewait bucket, so that all the necessary checks
6346 		 * are made in the function processing timewait state.
6347 		 */
6348 		if (tcp_death_row.sysctl_tw_recycle) {
6349 			bool strict;
6350 
6351 			dst = af_ops->route_req(sk, &fl, req, &strict);
6352 
6353 			if (dst && strict &&
6354 			    !tcp_peer_is_proven(req, dst, true,
6355 						tmp_opt.saw_tstamp)) {
6356 				NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6357 				goto drop_and_release;
6358 			}
6359 		}
6360 		/* Kill the following clause, if you dislike this way. */
6361 		else if (!net->ipv4.sysctl_tcp_syncookies &&
6362 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6363 			  (sysctl_max_syn_backlog >> 2)) &&
6364 			 !tcp_peer_is_proven(req, dst, false,
6365 					     tmp_opt.saw_tstamp)) {
6366 			/* Without syncookies last quarter of
6367 			 * backlog is filled with destinations,
6368 			 * proven to be alive.
6369 			 * It means that we continue to communicate
6370 			 * to destinations, already remembered
6371 			 * to the moment of synflood.
6372 			 */
6373 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6374 				    rsk_ops->family);
6375 			goto drop_and_release;
6376 		}
6377 
6378 		isn = af_ops->init_seq(skb);
6379 	}
6380 	if (!dst) {
6381 		dst = af_ops->route_req(sk, &fl, req, NULL);
6382 		if (!dst)
6383 			goto drop_and_free;
6384 	}
6385 
6386 	tcp_ecn_create_request(req, skb, sk, dst);
6387 
6388 	if (want_cookie) {
6389 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6390 		req->cookie_ts = tmp_opt.tstamp_ok;
6391 		if (!tmp_opt.tstamp_ok)
6392 			inet_rsk(req)->ecn_ok = 0;
6393 	}
6394 
6395 	tcp_rsk(req)->snt_isn = isn;
6396 	tcp_rsk(req)->txhash = net_tx_rndhash();
6397 	tcp_openreq_init_rwin(req, sk, dst);
6398 	if (!want_cookie) {
6399 		tcp_reqsk_record_syn(sk, req, skb);
6400 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6401 	}
6402 	if (fastopen_sk) {
6403 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6404 				    &foc, TCP_SYNACK_FASTOPEN);
6405 		/* Add the child socket directly into the accept queue */
6406 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6407 		sk->sk_data_ready(sk);
6408 		bh_unlock_sock(fastopen_sk);
6409 		sock_put(fastopen_sk);
6410 	} else {
6411 		tcp_rsk(req)->tfo_listener = false;
6412 		if (!want_cookie)
6413 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6414 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6415 				    !want_cookie ? TCP_SYNACK_NORMAL :
6416 						   TCP_SYNACK_COOKIE);
6417 		if (want_cookie) {
6418 			reqsk_free(req);
6419 			return 0;
6420 		}
6421 	}
6422 	reqsk_put(req);
6423 	return 0;
6424 
6425 drop_and_release:
6426 	dst_release(dst);
6427 drop_and_free:
6428 	reqsk_free(req);
6429 drop:
6430 	tcp_listendrop(sk);
6431 	return 0;
6432 }
6433 EXPORT_SYMBOL(tcp_conn_request);
6434