xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 
247 			do_div(val, skb->truesize);
248 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
249 		}
250 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
251 					       tcp_sk(sk)->advmss);
252 		/* Account for possibly-removed options */
253 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
254 				   MAX_TCP_OPTION_SPACE))
255 			tcp_gro_dev_warn(sk, skb, len);
256 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
257 		 * set then it is likely the end of an application write. So
258 		 * more data may not be arriving soon, and yet the data sender
259 		 * may be waiting for an ACK if cwnd-bound or using TX zero
260 		 * copy. So we set ICSK_ACK_PUSHED here so that
261 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
262 		 * reads all of the data and is not ping-pong. If len > MSS
263 		 * then this logic does not matter (and does not hurt) because
264 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
265 		 * reads data and there is more than an MSS of unACKed data.
266 		 */
267 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
268 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
269 	} else {
270 		/* Otherwise, we make more careful check taking into account,
271 		 * that SACKs block is variable.
272 		 *
273 		 * "len" is invariant segment length, including TCP header.
274 		 */
275 		len += skb->data - skb_transport_header(skb);
276 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
277 		    /* If PSH is not set, packet should be
278 		     * full sized, provided peer TCP is not badly broken.
279 		     * This observation (if it is correct 8)) allows
280 		     * to handle super-low mtu links fairly.
281 		     */
282 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
283 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
284 			/* Subtract also invariant (if peer is RFC compliant),
285 			 * tcp header plus fixed timestamp option length.
286 			 * Resulting "len" is MSS free of SACK jitter.
287 			 */
288 			len -= tcp_sk(sk)->tcp_header_len;
289 			icsk->icsk_ack.last_seg_size = len;
290 			if (len == lss) {
291 				icsk->icsk_ack.rcv_mss = len;
292 				return;
293 			}
294 		}
295 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
296 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
297 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
298 	}
299 }
300 
301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
302 {
303 	struct inet_connection_sock *icsk = inet_csk(sk);
304 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
305 
306 	if (quickacks == 0)
307 		quickacks = 2;
308 	quickacks = min(quickacks, max_quickacks);
309 	if (quickacks > icsk->icsk_ack.quick)
310 		icsk->icsk_ack.quick = quickacks;
311 }
312 
313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
314 {
315 	struct inet_connection_sock *icsk = inet_csk(sk);
316 
317 	tcp_incr_quickack(sk, max_quickacks);
318 	inet_csk_exit_pingpong_mode(sk);
319 	icsk->icsk_ack.ato = TCP_ATO_MIN;
320 }
321 
322 /* Send ACKs quickly, if "quick" count is not exhausted
323  * and the session is not interactive.
324  */
325 
326 static bool tcp_in_quickack_mode(struct sock *sk)
327 {
328 	const struct inet_connection_sock *icsk = inet_csk(sk);
329 	const struct dst_entry *dst = __sk_dst_get(sk);
330 
331 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
332 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
333 }
334 
335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
336 {
337 	if (tp->ecn_flags & TCP_ECN_OK)
338 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
339 }
340 
341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
342 {
343 	if (tcp_hdr(skb)->cwr) {
344 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
345 
346 		/* If the sender is telling us it has entered CWR, then its
347 		 * cwnd may be very low (even just 1 packet), so we should ACK
348 		 * immediately.
349 		 */
350 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
351 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
352 	}
353 }
354 
355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
356 {
357 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
358 }
359 
360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
361 {
362 	struct tcp_sock *tp = tcp_sk(sk);
363 
364 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
365 	case INET_ECN_NOT_ECT:
366 		/* Funny extension: if ECT is not set on a segment,
367 		 * and we already seen ECT on a previous segment,
368 		 * it is probably a retransmit.
369 		 */
370 		if (tp->ecn_flags & TCP_ECN_SEEN)
371 			tcp_enter_quickack_mode(sk, 2);
372 		break;
373 	case INET_ECN_CE:
374 		if (tcp_ca_needs_ecn(sk))
375 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
376 
377 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
378 			/* Better not delay acks, sender can have a very low cwnd */
379 			tcp_enter_quickack_mode(sk, 2);
380 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
381 		}
382 		tp->ecn_flags |= TCP_ECN_SEEN;
383 		break;
384 	default:
385 		if (tcp_ca_needs_ecn(sk))
386 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
387 		tp->ecn_flags |= TCP_ECN_SEEN;
388 		break;
389 	}
390 }
391 
392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
393 {
394 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
395 		__tcp_ecn_check_ce(sk, skb);
396 }
397 
398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
399 {
400 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
401 		tp->ecn_flags &= ~TCP_ECN_OK;
402 }
403 
404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
405 {
406 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
407 		tp->ecn_flags &= ~TCP_ECN_OK;
408 }
409 
410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
411 {
412 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
413 		return true;
414 	return false;
415 }
416 
417 /* Buffer size and advertised window tuning.
418  *
419  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
420  */
421 
422 static void tcp_sndbuf_expand(struct sock *sk)
423 {
424 	const struct tcp_sock *tp = tcp_sk(sk);
425 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
426 	int sndmem, per_mss;
427 	u32 nr_segs;
428 
429 	/* Worst case is non GSO/TSO : each frame consumes one skb
430 	 * and skb->head is kmalloced using power of two area of memory
431 	 */
432 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
433 		  MAX_TCP_HEADER +
434 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 
436 	per_mss = roundup_pow_of_two(per_mss) +
437 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
438 
439 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
440 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
441 
442 	/* Fast Recovery (RFC 5681 3.2) :
443 	 * Cubic needs 1.7 factor, rounded to 2 to include
444 	 * extra cushion (application might react slowly to EPOLLOUT)
445 	 */
446 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
447 	sndmem *= nr_segs * per_mss;
448 
449 	if (sk->sk_sndbuf < sndmem)
450 		WRITE_ONCE(sk->sk_sndbuf,
451 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
452 }
453 
454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
455  *
456  * All tcp_full_space() is split to two parts: "network" buffer, allocated
457  * forward and advertised in receiver window (tp->rcv_wnd) and
458  * "application buffer", required to isolate scheduling/application
459  * latencies from network.
460  * window_clamp is maximal advertised window. It can be less than
461  * tcp_full_space(), in this case tcp_full_space() - window_clamp
462  * is reserved for "application" buffer. The less window_clamp is
463  * the smoother our behaviour from viewpoint of network, but the lower
464  * throughput and the higher sensitivity of the connection to losses. 8)
465  *
466  * rcv_ssthresh is more strict window_clamp used at "slow start"
467  * phase to predict further behaviour of this connection.
468  * It is used for two goals:
469  * - to enforce header prediction at sender, even when application
470  *   requires some significant "application buffer". It is check #1.
471  * - to prevent pruning of receive queue because of misprediction
472  *   of receiver window. Check #2.
473  *
474  * The scheme does not work when sender sends good segments opening
475  * window and then starts to feed us spaghetti. But it should work
476  * in common situations. Otherwise, we have to rely on queue collapsing.
477  */
478 
479 /* Slow part of check#2. */
480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
481 			     unsigned int skbtruesize)
482 {
483 	const struct tcp_sock *tp = tcp_sk(sk);
484 	/* Optimize this! */
485 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
486 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
487 
488 	while (tp->rcv_ssthresh <= window) {
489 		if (truesize <= skb->len)
490 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
491 
492 		truesize >>= 1;
493 		window >>= 1;
494 	}
495 	return 0;
496 }
497 
498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
499  * can play nice with us, as sk_buff and skb->head might be either
500  * freed or shared with up to MAX_SKB_FRAGS segments.
501  * Only give a boost to drivers using page frag(s) to hold the frame(s),
502  * and if no payload was pulled in skb->head before reaching us.
503  */
504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
505 {
506 	u32 truesize = skb->truesize;
507 
508 	if (adjust && !skb_headlen(skb)) {
509 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
510 		/* paranoid check, some drivers might be buggy */
511 		if (unlikely((int)truesize < (int)skb->len))
512 			truesize = skb->truesize;
513 	}
514 	return truesize;
515 }
516 
517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
518 			    bool adjust)
519 {
520 	struct tcp_sock *tp = tcp_sk(sk);
521 	int room;
522 
523 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
524 
525 	if (room <= 0)
526 		return;
527 
528 	/* Check #1 */
529 	if (!tcp_under_memory_pressure(sk)) {
530 		unsigned int truesize = truesize_adjust(adjust, skb);
531 		int incr;
532 
533 		/* Check #2. Increase window, if skb with such overhead
534 		 * will fit to rcvbuf in future.
535 		 */
536 		if (tcp_win_from_space(sk, truesize) <= skb->len)
537 			incr = 2 * tp->advmss;
538 		else
539 			incr = __tcp_grow_window(sk, skb, truesize);
540 
541 		if (incr) {
542 			incr = max_t(int, incr, 2 * skb->len);
543 			tp->rcv_ssthresh += min(room, incr);
544 			inet_csk(sk)->icsk_ack.quick |= 1;
545 		}
546 	} else {
547 		/* Under pressure:
548 		 * Adjust rcv_ssthresh according to reserved mem
549 		 */
550 		tcp_adjust_rcv_ssthresh(sk);
551 	}
552 }
553 
554 /* 3. Try to fixup all. It is made immediately after connection enters
555  *    established state.
556  */
557 static void tcp_init_buffer_space(struct sock *sk)
558 {
559 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
560 	struct tcp_sock *tp = tcp_sk(sk);
561 	int maxwin;
562 
563 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
564 		tcp_sndbuf_expand(sk);
565 
566 	tcp_mstamp_refresh(tp);
567 	tp->rcvq_space.time = tp->tcp_mstamp;
568 	tp->rcvq_space.seq = tp->copied_seq;
569 
570 	maxwin = tcp_full_space(sk);
571 
572 	if (tp->window_clamp >= maxwin) {
573 		WRITE_ONCE(tp->window_clamp, maxwin);
574 
575 		if (tcp_app_win && maxwin > 4 * tp->advmss)
576 			WRITE_ONCE(tp->window_clamp,
577 				   max(maxwin - (maxwin >> tcp_app_win),
578 				       4 * tp->advmss));
579 	}
580 
581 	/* Force reservation of one segment. */
582 	if (tcp_app_win &&
583 	    tp->window_clamp > 2 * tp->advmss &&
584 	    tp->window_clamp + tp->advmss > maxwin)
585 		WRITE_ONCE(tp->window_clamp,
586 			   max(2 * tp->advmss, maxwin - tp->advmss));
587 
588 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
589 	tp->snd_cwnd_stamp = tcp_jiffies32;
590 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
591 				    (u32)TCP_INIT_CWND * tp->advmss);
592 }
593 
594 /* 4. Recalculate window clamp after socket hit its memory bounds. */
595 static void tcp_clamp_window(struct sock *sk)
596 {
597 	struct tcp_sock *tp = tcp_sk(sk);
598 	struct inet_connection_sock *icsk = inet_csk(sk);
599 	struct net *net = sock_net(sk);
600 	int rmem2;
601 
602 	icsk->icsk_ack.quick = 0;
603 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
604 
605 	if (sk->sk_rcvbuf < rmem2 &&
606 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
607 	    !tcp_under_memory_pressure(sk) &&
608 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
609 		WRITE_ONCE(sk->sk_rcvbuf,
610 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
611 	}
612 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
613 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
614 }
615 
616 /* Initialize RCV_MSS value.
617  * RCV_MSS is an our guess about MSS used by the peer.
618  * We haven't any direct information about the MSS.
619  * It's better to underestimate the RCV_MSS rather than overestimate.
620  * Overestimations make us ACKing less frequently than needed.
621  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
622  */
623 void tcp_initialize_rcv_mss(struct sock *sk)
624 {
625 	const struct tcp_sock *tp = tcp_sk(sk);
626 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
627 
628 	hint = min(hint, tp->rcv_wnd / 2);
629 	hint = min(hint, TCP_MSS_DEFAULT);
630 	hint = max(hint, TCP_MIN_MSS);
631 
632 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
633 }
634 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
635 
636 /* Receiver "autotuning" code.
637  *
638  * The algorithm for RTT estimation w/o timestamps is based on
639  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
640  * <https://public.lanl.gov/radiant/pubs.html#DRS>
641  *
642  * More detail on this code can be found at
643  * <http://staff.psc.edu/jheffner/>,
644  * though this reference is out of date.  A new paper
645  * is pending.
646  */
647 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
648 {
649 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
650 	long m = sample;
651 
652 	if (new_sample != 0) {
653 		/* If we sample in larger samples in the non-timestamp
654 		 * case, we could grossly overestimate the RTT especially
655 		 * with chatty applications or bulk transfer apps which
656 		 * are stalled on filesystem I/O.
657 		 *
658 		 * Also, since we are only going for a minimum in the
659 		 * non-timestamp case, we do not smooth things out
660 		 * else with timestamps disabled convergence takes too
661 		 * long.
662 		 */
663 		if (!win_dep) {
664 			m -= (new_sample >> 3);
665 			new_sample += m;
666 		} else {
667 			m <<= 3;
668 			if (m < new_sample)
669 				new_sample = m;
670 		}
671 	} else {
672 		/* No previous measure. */
673 		new_sample = m << 3;
674 	}
675 
676 	tp->rcv_rtt_est.rtt_us = new_sample;
677 }
678 
679 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
680 {
681 	u32 delta_us;
682 
683 	if (tp->rcv_rtt_est.time == 0)
684 		goto new_measure;
685 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
686 		return;
687 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
688 	if (!delta_us)
689 		delta_us = 1;
690 	tcp_rcv_rtt_update(tp, delta_us, 1);
691 
692 new_measure:
693 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
694 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
695 }
696 
697 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
698 					  const struct sk_buff *skb)
699 {
700 	struct tcp_sock *tp = tcp_sk(sk);
701 
702 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
703 		return;
704 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
705 
706 	if (TCP_SKB_CB(skb)->end_seq -
707 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
708 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
709 		u32 delta_us;
710 
711 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
712 			if (!delta)
713 				delta = 1;
714 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
715 			tcp_rcv_rtt_update(tp, delta_us, 0);
716 		}
717 	}
718 }
719 
720 /*
721  * This function should be called every time data is copied to user space.
722  * It calculates the appropriate TCP receive buffer space.
723  */
724 void tcp_rcv_space_adjust(struct sock *sk)
725 {
726 	struct tcp_sock *tp = tcp_sk(sk);
727 	u32 copied;
728 	int time;
729 
730 	trace_tcp_rcv_space_adjust(sk);
731 
732 	tcp_mstamp_refresh(tp);
733 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
734 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
735 		return;
736 
737 	/* Number of bytes copied to user in last RTT */
738 	copied = tp->copied_seq - tp->rcvq_space.seq;
739 	if (copied <= tp->rcvq_space.space)
740 		goto new_measure;
741 
742 	/* A bit of theory :
743 	 * copied = bytes received in previous RTT, our base window
744 	 * To cope with packet losses, we need a 2x factor
745 	 * To cope with slow start, and sender growing its cwin by 100 %
746 	 * every RTT, we need a 4x factor, because the ACK we are sending
747 	 * now is for the next RTT, not the current one :
748 	 * <prev RTT . ><current RTT .. ><next RTT .... >
749 	 */
750 
751 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)) {
752 		u64 rcvwin, grow;
753 		int rcvbuf;
754 
755 		/* minimal window to cope with packet losses, assuming
756 		 * steady state. Add some cushion because of small variations.
757 		 */
758 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
759 
760 		/* Accommodate for sender rate increase (eg. slow start) */
761 		grow = rcvwin * (copied - tp->rcvq_space.space);
762 		do_div(grow, tp->rcvq_space.space);
763 		rcvwin += (grow << 1);
764 
765 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
766 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
767 		if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
768 			if (rcvbuf > sk->sk_rcvbuf) {
769 				WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
770 
771 				/* Make the window clamp follow along.  */
772 				WRITE_ONCE(tp->window_clamp,
773 					   tcp_win_from_space(sk, rcvbuf));
774 			}
775 		} else {
776 			/* Make the window clamp follow along while being bounded
777 			 * by SO_RCVBUF.
778 			 */
779 			int clamp = tcp_win_from_space(sk, min(rcvbuf, sk->sk_rcvbuf));
780 
781 			if (clamp > tp->window_clamp)
782 				WRITE_ONCE(tp->window_clamp, clamp);
783 		}
784 	}
785 	tp->rcvq_space.space = copied;
786 
787 new_measure:
788 	tp->rcvq_space.seq = tp->copied_seq;
789 	tp->rcvq_space.time = tp->tcp_mstamp;
790 }
791 
792 /* There is something which you must keep in mind when you analyze the
793  * behavior of the tp->ato delayed ack timeout interval.  When a
794  * connection starts up, we want to ack as quickly as possible.  The
795  * problem is that "good" TCP's do slow start at the beginning of data
796  * transmission.  The means that until we send the first few ACK's the
797  * sender will sit on his end and only queue most of his data, because
798  * he can only send snd_cwnd unacked packets at any given time.  For
799  * each ACK we send, he increments snd_cwnd and transmits more of his
800  * queue.  -DaveM
801  */
802 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
803 {
804 	struct tcp_sock *tp = tcp_sk(sk);
805 	struct inet_connection_sock *icsk = inet_csk(sk);
806 	u32 now;
807 
808 	inet_csk_schedule_ack(sk);
809 
810 	tcp_measure_rcv_mss(sk, skb);
811 
812 	tcp_rcv_rtt_measure(tp);
813 
814 	now = tcp_jiffies32;
815 
816 	if (!icsk->icsk_ack.ato) {
817 		/* The _first_ data packet received, initialize
818 		 * delayed ACK engine.
819 		 */
820 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
821 		icsk->icsk_ack.ato = TCP_ATO_MIN;
822 	} else {
823 		int m = now - icsk->icsk_ack.lrcvtime;
824 
825 		if (m <= TCP_ATO_MIN / 2) {
826 			/* The fastest case is the first. */
827 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
828 		} else if (m < icsk->icsk_ack.ato) {
829 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
830 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
831 				icsk->icsk_ack.ato = icsk->icsk_rto;
832 		} else if (m > icsk->icsk_rto) {
833 			/* Too long gap. Apparently sender failed to
834 			 * restart window, so that we send ACKs quickly.
835 			 */
836 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
837 		}
838 	}
839 	icsk->icsk_ack.lrcvtime = now;
840 
841 	tcp_ecn_check_ce(sk, skb);
842 
843 	if (skb->len >= 128)
844 		tcp_grow_window(sk, skb, true);
845 }
846 
847 /* Called to compute a smoothed rtt estimate. The data fed to this
848  * routine either comes from timestamps, or from segments that were
849  * known _not_ to have been retransmitted [see Karn/Partridge
850  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
851  * piece by Van Jacobson.
852  * NOTE: the next three routines used to be one big routine.
853  * To save cycles in the RFC 1323 implementation it was better to break
854  * it up into three procedures. -- erics
855  */
856 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	long m = mrtt_us; /* RTT */
860 	u32 srtt = tp->srtt_us;
861 
862 	/*	The following amusing code comes from Jacobson's
863 	 *	article in SIGCOMM '88.  Note that rtt and mdev
864 	 *	are scaled versions of rtt and mean deviation.
865 	 *	This is designed to be as fast as possible
866 	 *	m stands for "measurement".
867 	 *
868 	 *	On a 1990 paper the rto value is changed to:
869 	 *	RTO = rtt + 4 * mdev
870 	 *
871 	 * Funny. This algorithm seems to be very broken.
872 	 * These formulae increase RTO, when it should be decreased, increase
873 	 * too slowly, when it should be increased quickly, decrease too quickly
874 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
875 	 * does not matter how to _calculate_ it. Seems, it was trap
876 	 * that VJ failed to avoid. 8)
877 	 */
878 	if (srtt != 0) {
879 		m -= (srtt >> 3);	/* m is now error in rtt est */
880 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
881 		if (m < 0) {
882 			m = -m;		/* m is now abs(error) */
883 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
884 			/* This is similar to one of Eifel findings.
885 			 * Eifel blocks mdev updates when rtt decreases.
886 			 * This solution is a bit different: we use finer gain
887 			 * for mdev in this case (alpha*beta).
888 			 * Like Eifel it also prevents growth of rto,
889 			 * but also it limits too fast rto decreases,
890 			 * happening in pure Eifel.
891 			 */
892 			if (m > 0)
893 				m >>= 3;
894 		} else {
895 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
896 		}
897 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
898 		if (tp->mdev_us > tp->mdev_max_us) {
899 			tp->mdev_max_us = tp->mdev_us;
900 			if (tp->mdev_max_us > tp->rttvar_us)
901 				tp->rttvar_us = tp->mdev_max_us;
902 		}
903 		if (after(tp->snd_una, tp->rtt_seq)) {
904 			if (tp->mdev_max_us < tp->rttvar_us)
905 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
906 			tp->rtt_seq = tp->snd_nxt;
907 			tp->mdev_max_us = tcp_rto_min_us(sk);
908 
909 			tcp_bpf_rtt(sk);
910 		}
911 	} else {
912 		/* no previous measure. */
913 		srtt = m << 3;		/* take the measured time to be rtt */
914 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
915 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
916 		tp->mdev_max_us = tp->rttvar_us;
917 		tp->rtt_seq = tp->snd_nxt;
918 
919 		tcp_bpf_rtt(sk);
920 	}
921 	tp->srtt_us = max(1U, srtt);
922 }
923 
924 static void tcp_update_pacing_rate(struct sock *sk)
925 {
926 	const struct tcp_sock *tp = tcp_sk(sk);
927 	u64 rate;
928 
929 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
930 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
931 
932 	/* current rate is (cwnd * mss) / srtt
933 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
934 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
935 	 *
936 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
937 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
938 	 *	 end of slow start and should slow down.
939 	 */
940 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
941 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
942 	else
943 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
944 
945 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
946 
947 	if (likely(tp->srtt_us))
948 		do_div(rate, tp->srtt_us);
949 
950 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
951 	 * without any lock. We want to make sure compiler wont store
952 	 * intermediate values in this location.
953 	 */
954 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
955 					     sk->sk_max_pacing_rate));
956 }
957 
958 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
959  * routine referred to above.
960  */
961 static void tcp_set_rto(struct sock *sk)
962 {
963 	const struct tcp_sock *tp = tcp_sk(sk);
964 	/* Old crap is replaced with new one. 8)
965 	 *
966 	 * More seriously:
967 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
968 	 *    It cannot be less due to utterly erratic ACK generation made
969 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
970 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
971 	 *    is invisible. Actually, Linux-2.4 also generates erratic
972 	 *    ACKs in some circumstances.
973 	 */
974 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
975 
976 	/* 2. Fixups made earlier cannot be right.
977 	 *    If we do not estimate RTO correctly without them,
978 	 *    all the algo is pure shit and should be replaced
979 	 *    with correct one. It is exactly, which we pretend to do.
980 	 */
981 
982 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
983 	 * guarantees that rto is higher.
984 	 */
985 	tcp_bound_rto(sk);
986 }
987 
988 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
989 {
990 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
991 
992 	if (!cwnd)
993 		cwnd = TCP_INIT_CWND;
994 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
995 }
996 
997 struct tcp_sacktag_state {
998 	/* Timestamps for earliest and latest never-retransmitted segment
999 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1000 	 * but congestion control should still get an accurate delay signal.
1001 	 */
1002 	u64	first_sackt;
1003 	u64	last_sackt;
1004 	u32	reord;
1005 	u32	sack_delivered;
1006 	int	flag;
1007 	unsigned int mss_now;
1008 	struct rate_sample *rate;
1009 };
1010 
1011 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1012  * and spurious retransmission information if this DSACK is unlikely caused by
1013  * sender's action:
1014  * - DSACKed sequence range is larger than maximum receiver's window.
1015  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1016  */
1017 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1018 			  u32 end_seq, struct tcp_sacktag_state *state)
1019 {
1020 	u32 seq_len, dup_segs = 1;
1021 
1022 	if (!before(start_seq, end_seq))
1023 		return 0;
1024 
1025 	seq_len = end_seq - start_seq;
1026 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1027 	if (seq_len > tp->max_window)
1028 		return 0;
1029 	if (seq_len > tp->mss_cache)
1030 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1031 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1032 		state->flag |= FLAG_DSACK_TLP;
1033 
1034 	tp->dsack_dups += dup_segs;
1035 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1036 	if (tp->dsack_dups > tp->total_retrans)
1037 		return 0;
1038 
1039 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1040 	/* We increase the RACK ordering window in rounds where we receive
1041 	 * DSACKs that may have been due to reordering causing RACK to trigger
1042 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1043 	 * without having seen reordering, or that match TLP probes (TLP
1044 	 * is timer-driven, not triggered by RACK).
1045 	 */
1046 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1047 		tp->rack.dsack_seen = 1;
1048 
1049 	state->flag |= FLAG_DSACKING_ACK;
1050 	/* A spurious retransmission is delivered */
1051 	state->sack_delivered += dup_segs;
1052 
1053 	return dup_segs;
1054 }
1055 
1056 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1057  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1058  * distance is approximated in full-mss packet distance ("reordering").
1059  */
1060 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1061 				      const int ts)
1062 {
1063 	struct tcp_sock *tp = tcp_sk(sk);
1064 	const u32 mss = tp->mss_cache;
1065 	u32 fack, metric;
1066 
1067 	fack = tcp_highest_sack_seq(tp);
1068 	if (!before(low_seq, fack))
1069 		return;
1070 
1071 	metric = fack - low_seq;
1072 	if ((metric > tp->reordering * mss) && mss) {
1073 #if FASTRETRANS_DEBUG > 1
1074 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1075 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1076 			 tp->reordering,
1077 			 0,
1078 			 tp->sacked_out,
1079 			 tp->undo_marker ? tp->undo_retrans : 0);
1080 #endif
1081 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1082 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1083 	}
1084 
1085 	/* This exciting event is worth to be remembered. 8) */
1086 	tp->reord_seen++;
1087 	NET_INC_STATS(sock_net(sk),
1088 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1089 }
1090 
1091  /* This must be called before lost_out or retrans_out are updated
1092   * on a new loss, because we want to know if all skbs previously
1093   * known to be lost have already been retransmitted, indicating
1094   * that this newly lost skb is our next skb to retransmit.
1095   */
1096 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1097 {
1098 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1099 	    (tp->retransmit_skb_hint &&
1100 	     before(TCP_SKB_CB(skb)->seq,
1101 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1102 		tp->retransmit_skb_hint = skb;
1103 }
1104 
1105 /* Sum the number of packets on the wire we have marked as lost, and
1106  * notify the congestion control module that the given skb was marked lost.
1107  */
1108 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1109 {
1110 	tp->lost += tcp_skb_pcount(skb);
1111 }
1112 
1113 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1114 {
1115 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1116 	struct tcp_sock *tp = tcp_sk(sk);
1117 
1118 	if (sacked & TCPCB_SACKED_ACKED)
1119 		return;
1120 
1121 	tcp_verify_retransmit_hint(tp, skb);
1122 	if (sacked & TCPCB_LOST) {
1123 		if (sacked & TCPCB_SACKED_RETRANS) {
1124 			/* Account for retransmits that are lost again */
1125 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1126 			tp->retrans_out -= tcp_skb_pcount(skb);
1127 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1128 				      tcp_skb_pcount(skb));
1129 			tcp_notify_skb_loss_event(tp, skb);
1130 		}
1131 	} else {
1132 		tp->lost_out += tcp_skb_pcount(skb);
1133 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1134 		tcp_notify_skb_loss_event(tp, skb);
1135 	}
1136 }
1137 
1138 /* Updates the delivered and delivered_ce counts */
1139 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1140 				bool ece_ack)
1141 {
1142 	tp->delivered += delivered;
1143 	if (ece_ack)
1144 		tp->delivered_ce += delivered;
1145 }
1146 
1147 /* This procedure tags the retransmission queue when SACKs arrive.
1148  *
1149  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1150  * Packets in queue with these bits set are counted in variables
1151  * sacked_out, retrans_out and lost_out, correspondingly.
1152  *
1153  * Valid combinations are:
1154  * Tag  InFlight	Description
1155  * 0	1		- orig segment is in flight.
1156  * S	0		- nothing flies, orig reached receiver.
1157  * L	0		- nothing flies, orig lost by net.
1158  * R	2		- both orig and retransmit are in flight.
1159  * L|R	1		- orig is lost, retransmit is in flight.
1160  * S|R  1		- orig reached receiver, retrans is still in flight.
1161  * (L|S|R is logically valid, it could occur when L|R is sacked,
1162  *  but it is equivalent to plain S and code short-curcuits it to S.
1163  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1164  *
1165  * These 6 states form finite state machine, controlled by the following events:
1166  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1167  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1168  * 3. Loss detection event of two flavors:
1169  *	A. Scoreboard estimator decided the packet is lost.
1170  *	   A'. Reno "three dupacks" marks head of queue lost.
1171  *	B. SACK arrives sacking SND.NXT at the moment, when the
1172  *	   segment was retransmitted.
1173  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1174  *
1175  * It is pleasant to note, that state diagram turns out to be commutative,
1176  * so that we are allowed not to be bothered by order of our actions,
1177  * when multiple events arrive simultaneously. (see the function below).
1178  *
1179  * Reordering detection.
1180  * --------------------
1181  * Reordering metric is maximal distance, which a packet can be displaced
1182  * in packet stream. With SACKs we can estimate it:
1183  *
1184  * 1. SACK fills old hole and the corresponding segment was not
1185  *    ever retransmitted -> reordering. Alas, we cannot use it
1186  *    when segment was retransmitted.
1187  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1188  *    for retransmitted and already SACKed segment -> reordering..
1189  * Both of these heuristics are not used in Loss state, when we cannot
1190  * account for retransmits accurately.
1191  *
1192  * SACK block validation.
1193  * ----------------------
1194  *
1195  * SACK block range validation checks that the received SACK block fits to
1196  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1197  * Note that SND.UNA is not included to the range though being valid because
1198  * it means that the receiver is rather inconsistent with itself reporting
1199  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1200  * perfectly valid, however, in light of RFC2018 which explicitly states
1201  * that "SACK block MUST reflect the newest segment.  Even if the newest
1202  * segment is going to be discarded ...", not that it looks very clever
1203  * in case of head skb. Due to potentional receiver driven attacks, we
1204  * choose to avoid immediate execution of a walk in write queue due to
1205  * reneging and defer head skb's loss recovery to standard loss recovery
1206  * procedure that will eventually trigger (nothing forbids us doing this).
1207  *
1208  * Implements also blockage to start_seq wrap-around. Problem lies in the
1209  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1210  * there's no guarantee that it will be before snd_nxt (n). The problem
1211  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1212  * wrap (s_w):
1213  *
1214  *         <- outs wnd ->                          <- wrapzone ->
1215  *         u     e      n                         u_w   e_w  s n_w
1216  *         |     |      |                          |     |   |  |
1217  * |<------------+------+----- TCP seqno space --------------+---------->|
1218  * ...-- <2^31 ->|                                           |<--------...
1219  * ...---- >2^31 ------>|                                    |<--------...
1220  *
1221  * Current code wouldn't be vulnerable but it's better still to discard such
1222  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1223  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1224  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1225  * equal to the ideal case (infinite seqno space without wrap caused issues).
1226  *
1227  * With D-SACK the lower bound is extended to cover sequence space below
1228  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1229  * again, D-SACK block must not to go across snd_una (for the same reason as
1230  * for the normal SACK blocks, explained above). But there all simplicity
1231  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1232  * fully below undo_marker they do not affect behavior in anyway and can
1233  * therefore be safely ignored. In rare cases (which are more or less
1234  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1235  * fragmentation and packet reordering past skb's retransmission. To consider
1236  * them correctly, the acceptable range must be extended even more though
1237  * the exact amount is rather hard to quantify. However, tp->max_window can
1238  * be used as an exaggerated estimate.
1239  */
1240 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1241 				   u32 start_seq, u32 end_seq)
1242 {
1243 	/* Too far in future, or reversed (interpretation is ambiguous) */
1244 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1245 		return false;
1246 
1247 	/* Nasty start_seq wrap-around check (see comments above) */
1248 	if (!before(start_seq, tp->snd_nxt))
1249 		return false;
1250 
1251 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1252 	 * start_seq == snd_una is non-sensical (see comments above)
1253 	 */
1254 	if (after(start_seq, tp->snd_una))
1255 		return true;
1256 
1257 	if (!is_dsack || !tp->undo_marker)
1258 		return false;
1259 
1260 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1261 	if (after(end_seq, tp->snd_una))
1262 		return false;
1263 
1264 	if (!before(start_seq, tp->undo_marker))
1265 		return true;
1266 
1267 	/* Too old */
1268 	if (!after(end_seq, tp->undo_marker))
1269 		return false;
1270 
1271 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1272 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1273 	 */
1274 	return !before(start_seq, end_seq - tp->max_window);
1275 }
1276 
1277 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1278 			    struct tcp_sack_block_wire *sp, int num_sacks,
1279 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1280 {
1281 	struct tcp_sock *tp = tcp_sk(sk);
1282 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1283 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1284 	u32 dup_segs;
1285 
1286 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1287 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1288 	} else if (num_sacks > 1) {
1289 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1290 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1291 
1292 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1293 			return false;
1294 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1295 	} else {
1296 		return false;
1297 	}
1298 
1299 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1300 	if (!dup_segs) {	/* Skip dubious DSACK */
1301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1302 		return false;
1303 	}
1304 
1305 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1306 
1307 	/* D-SACK for already forgotten data... Do dumb counting. */
1308 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1309 	    !after(end_seq_0, prior_snd_una) &&
1310 	    after(end_seq_0, tp->undo_marker))
1311 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1312 
1313 	return true;
1314 }
1315 
1316 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1317  * the incoming SACK may not exactly match but we can find smaller MSS
1318  * aligned portion of it that matches. Therefore we might need to fragment
1319  * which may fail and creates some hassle (caller must handle error case
1320  * returns).
1321  *
1322  * FIXME: this could be merged to shift decision code
1323  */
1324 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1325 				  u32 start_seq, u32 end_seq)
1326 {
1327 	int err;
1328 	bool in_sack;
1329 	unsigned int pkt_len;
1330 	unsigned int mss;
1331 
1332 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1333 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1334 
1335 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1336 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1337 		mss = tcp_skb_mss(skb);
1338 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1339 
1340 		if (!in_sack) {
1341 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1342 			if (pkt_len < mss)
1343 				pkt_len = mss;
1344 		} else {
1345 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1346 			if (pkt_len < mss)
1347 				return -EINVAL;
1348 		}
1349 
1350 		/* Round if necessary so that SACKs cover only full MSSes
1351 		 * and/or the remaining small portion (if present)
1352 		 */
1353 		if (pkt_len > mss) {
1354 			unsigned int new_len = (pkt_len / mss) * mss;
1355 			if (!in_sack && new_len < pkt_len)
1356 				new_len += mss;
1357 			pkt_len = new_len;
1358 		}
1359 
1360 		if (pkt_len >= skb->len && !in_sack)
1361 			return 0;
1362 
1363 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1364 				   pkt_len, mss, GFP_ATOMIC);
1365 		if (err < 0)
1366 			return err;
1367 	}
1368 
1369 	return in_sack;
1370 }
1371 
1372 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1373 static u8 tcp_sacktag_one(struct sock *sk,
1374 			  struct tcp_sacktag_state *state, u8 sacked,
1375 			  u32 start_seq, u32 end_seq,
1376 			  int dup_sack, int pcount,
1377 			  u64 xmit_time)
1378 {
1379 	struct tcp_sock *tp = tcp_sk(sk);
1380 
1381 	/* Account D-SACK for retransmitted packet. */
1382 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1383 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1384 		    after(end_seq, tp->undo_marker))
1385 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1386 		if ((sacked & TCPCB_SACKED_ACKED) &&
1387 		    before(start_seq, state->reord))
1388 				state->reord = start_seq;
1389 	}
1390 
1391 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1392 	if (!after(end_seq, tp->snd_una))
1393 		return sacked;
1394 
1395 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1396 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1397 
1398 		if (sacked & TCPCB_SACKED_RETRANS) {
1399 			/* If the segment is not tagged as lost,
1400 			 * we do not clear RETRANS, believing
1401 			 * that retransmission is still in flight.
1402 			 */
1403 			if (sacked & TCPCB_LOST) {
1404 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1405 				tp->lost_out -= pcount;
1406 				tp->retrans_out -= pcount;
1407 			}
1408 		} else {
1409 			if (!(sacked & TCPCB_RETRANS)) {
1410 				/* New sack for not retransmitted frame,
1411 				 * which was in hole. It is reordering.
1412 				 */
1413 				if (before(start_seq,
1414 					   tcp_highest_sack_seq(tp)) &&
1415 				    before(start_seq, state->reord))
1416 					state->reord = start_seq;
1417 
1418 				if (!after(end_seq, tp->high_seq))
1419 					state->flag |= FLAG_ORIG_SACK_ACKED;
1420 				if (state->first_sackt == 0)
1421 					state->first_sackt = xmit_time;
1422 				state->last_sackt = xmit_time;
1423 			}
1424 
1425 			if (sacked & TCPCB_LOST) {
1426 				sacked &= ~TCPCB_LOST;
1427 				tp->lost_out -= pcount;
1428 			}
1429 		}
1430 
1431 		sacked |= TCPCB_SACKED_ACKED;
1432 		state->flag |= FLAG_DATA_SACKED;
1433 		tp->sacked_out += pcount;
1434 		/* Out-of-order packets delivered */
1435 		state->sack_delivered += pcount;
1436 
1437 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1438 		if (tp->lost_skb_hint &&
1439 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1440 			tp->lost_cnt_hint += pcount;
1441 	}
1442 
1443 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1444 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1445 	 * are accounted above as well.
1446 	 */
1447 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1448 		sacked &= ~TCPCB_SACKED_RETRANS;
1449 		tp->retrans_out -= pcount;
1450 	}
1451 
1452 	return sacked;
1453 }
1454 
1455 /* Shift newly-SACKed bytes from this skb to the immediately previous
1456  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1457  */
1458 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1459 			    struct sk_buff *skb,
1460 			    struct tcp_sacktag_state *state,
1461 			    unsigned int pcount, int shifted, int mss,
1462 			    bool dup_sack)
1463 {
1464 	struct tcp_sock *tp = tcp_sk(sk);
1465 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1466 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1467 
1468 	BUG_ON(!pcount);
1469 
1470 	/* Adjust counters and hints for the newly sacked sequence
1471 	 * range but discard the return value since prev is already
1472 	 * marked. We must tag the range first because the seq
1473 	 * advancement below implicitly advances
1474 	 * tcp_highest_sack_seq() when skb is highest_sack.
1475 	 */
1476 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1477 			start_seq, end_seq, dup_sack, pcount,
1478 			tcp_skb_timestamp_us(skb));
1479 	tcp_rate_skb_delivered(sk, skb, state->rate);
1480 
1481 	if (skb == tp->lost_skb_hint)
1482 		tp->lost_cnt_hint += pcount;
1483 
1484 	TCP_SKB_CB(prev)->end_seq += shifted;
1485 	TCP_SKB_CB(skb)->seq += shifted;
1486 
1487 	tcp_skb_pcount_add(prev, pcount);
1488 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1489 	tcp_skb_pcount_add(skb, -pcount);
1490 
1491 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1492 	 * in theory this shouldn't be necessary but as long as DSACK
1493 	 * code can come after this skb later on it's better to keep
1494 	 * setting gso_size to something.
1495 	 */
1496 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1497 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1498 
1499 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1500 	if (tcp_skb_pcount(skb) <= 1)
1501 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1502 
1503 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1504 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1505 
1506 	if (skb->len > 0) {
1507 		BUG_ON(!tcp_skb_pcount(skb));
1508 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1509 		return false;
1510 	}
1511 
1512 	/* Whole SKB was eaten :-) */
1513 
1514 	if (skb == tp->retransmit_skb_hint)
1515 		tp->retransmit_skb_hint = prev;
1516 	if (skb == tp->lost_skb_hint) {
1517 		tp->lost_skb_hint = prev;
1518 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1519 	}
1520 
1521 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1522 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1523 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1524 		TCP_SKB_CB(prev)->end_seq++;
1525 
1526 	if (skb == tcp_highest_sack(sk))
1527 		tcp_advance_highest_sack(sk, skb);
1528 
1529 	tcp_skb_collapse_tstamp(prev, skb);
1530 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1531 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1532 
1533 	tcp_rtx_queue_unlink_and_free(skb, sk);
1534 
1535 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1536 
1537 	return true;
1538 }
1539 
1540 /* I wish gso_size would have a bit more sane initialization than
1541  * something-or-zero which complicates things
1542  */
1543 static int tcp_skb_seglen(const struct sk_buff *skb)
1544 {
1545 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1546 }
1547 
1548 /* Shifting pages past head area doesn't work */
1549 static int skb_can_shift(const struct sk_buff *skb)
1550 {
1551 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1552 }
1553 
1554 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1555 		  int pcount, int shiftlen)
1556 {
1557 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1558 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1559 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1560 	 * even if current MSS is bigger.
1561 	 */
1562 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1563 		return 0;
1564 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1565 		return 0;
1566 	return skb_shift(to, from, shiftlen);
1567 }
1568 
1569 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1570  * skb.
1571  */
1572 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1573 					  struct tcp_sacktag_state *state,
1574 					  u32 start_seq, u32 end_seq,
1575 					  bool dup_sack)
1576 {
1577 	struct tcp_sock *tp = tcp_sk(sk);
1578 	struct sk_buff *prev;
1579 	int mss;
1580 	int pcount = 0;
1581 	int len;
1582 	int in_sack;
1583 
1584 	/* Normally R but no L won't result in plain S */
1585 	if (!dup_sack &&
1586 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1587 		goto fallback;
1588 	if (!skb_can_shift(skb))
1589 		goto fallback;
1590 	/* This frame is about to be dropped (was ACKed). */
1591 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1592 		goto fallback;
1593 
1594 	/* Can only happen with delayed DSACK + discard craziness */
1595 	prev = skb_rb_prev(skb);
1596 	if (!prev)
1597 		goto fallback;
1598 
1599 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1600 		goto fallback;
1601 
1602 	if (!tcp_skb_can_collapse(prev, skb))
1603 		goto fallback;
1604 
1605 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1606 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1607 
1608 	if (in_sack) {
1609 		len = skb->len;
1610 		pcount = tcp_skb_pcount(skb);
1611 		mss = tcp_skb_seglen(skb);
1612 
1613 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1614 		 * drop this restriction as unnecessary
1615 		 */
1616 		if (mss != tcp_skb_seglen(prev))
1617 			goto fallback;
1618 	} else {
1619 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1620 			goto noop;
1621 		/* CHECKME: This is non-MSS split case only?, this will
1622 		 * cause skipped skbs due to advancing loop btw, original
1623 		 * has that feature too
1624 		 */
1625 		if (tcp_skb_pcount(skb) <= 1)
1626 			goto noop;
1627 
1628 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1629 		if (!in_sack) {
1630 			/* TODO: head merge to next could be attempted here
1631 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1632 			 * though it might not be worth of the additional hassle
1633 			 *
1634 			 * ...we can probably just fallback to what was done
1635 			 * previously. We could try merging non-SACKed ones
1636 			 * as well but it probably isn't going to buy off
1637 			 * because later SACKs might again split them, and
1638 			 * it would make skb timestamp tracking considerably
1639 			 * harder problem.
1640 			 */
1641 			goto fallback;
1642 		}
1643 
1644 		len = end_seq - TCP_SKB_CB(skb)->seq;
1645 		BUG_ON(len < 0);
1646 		BUG_ON(len > skb->len);
1647 
1648 		/* MSS boundaries should be honoured or else pcount will
1649 		 * severely break even though it makes things bit trickier.
1650 		 * Optimize common case to avoid most of the divides
1651 		 */
1652 		mss = tcp_skb_mss(skb);
1653 
1654 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1655 		 * drop this restriction as unnecessary
1656 		 */
1657 		if (mss != tcp_skb_seglen(prev))
1658 			goto fallback;
1659 
1660 		if (len == mss) {
1661 			pcount = 1;
1662 		} else if (len < mss) {
1663 			goto noop;
1664 		} else {
1665 			pcount = len / mss;
1666 			len = pcount * mss;
1667 		}
1668 	}
1669 
1670 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1671 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1672 		goto fallback;
1673 
1674 	if (!tcp_skb_shift(prev, skb, pcount, len))
1675 		goto fallback;
1676 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1677 		goto out;
1678 
1679 	/* Hole filled allows collapsing with the next as well, this is very
1680 	 * useful when hole on every nth skb pattern happens
1681 	 */
1682 	skb = skb_rb_next(prev);
1683 	if (!skb)
1684 		goto out;
1685 
1686 	if (!skb_can_shift(skb) ||
1687 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1688 	    (mss != tcp_skb_seglen(skb)))
1689 		goto out;
1690 
1691 	if (!tcp_skb_can_collapse(prev, skb))
1692 		goto out;
1693 	len = skb->len;
1694 	pcount = tcp_skb_pcount(skb);
1695 	if (tcp_skb_shift(prev, skb, pcount, len))
1696 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1697 				len, mss, 0);
1698 
1699 out:
1700 	return prev;
1701 
1702 noop:
1703 	return skb;
1704 
1705 fallback:
1706 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1707 	return NULL;
1708 }
1709 
1710 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1711 					struct tcp_sack_block *next_dup,
1712 					struct tcp_sacktag_state *state,
1713 					u32 start_seq, u32 end_seq,
1714 					bool dup_sack_in)
1715 {
1716 	struct tcp_sock *tp = tcp_sk(sk);
1717 	struct sk_buff *tmp;
1718 
1719 	skb_rbtree_walk_from(skb) {
1720 		int in_sack = 0;
1721 		bool dup_sack = dup_sack_in;
1722 
1723 		/* queue is in-order => we can short-circuit the walk early */
1724 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1725 			break;
1726 
1727 		if (next_dup  &&
1728 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1729 			in_sack = tcp_match_skb_to_sack(sk, skb,
1730 							next_dup->start_seq,
1731 							next_dup->end_seq);
1732 			if (in_sack > 0)
1733 				dup_sack = true;
1734 		}
1735 
1736 		/* skb reference here is a bit tricky to get right, since
1737 		 * shifting can eat and free both this skb and the next,
1738 		 * so not even _safe variant of the loop is enough.
1739 		 */
1740 		if (in_sack <= 0) {
1741 			tmp = tcp_shift_skb_data(sk, skb, state,
1742 						 start_seq, end_seq, dup_sack);
1743 			if (tmp) {
1744 				if (tmp != skb) {
1745 					skb = tmp;
1746 					continue;
1747 				}
1748 
1749 				in_sack = 0;
1750 			} else {
1751 				in_sack = tcp_match_skb_to_sack(sk, skb,
1752 								start_seq,
1753 								end_seq);
1754 			}
1755 		}
1756 
1757 		if (unlikely(in_sack < 0))
1758 			break;
1759 
1760 		if (in_sack) {
1761 			TCP_SKB_CB(skb)->sacked =
1762 				tcp_sacktag_one(sk,
1763 						state,
1764 						TCP_SKB_CB(skb)->sacked,
1765 						TCP_SKB_CB(skb)->seq,
1766 						TCP_SKB_CB(skb)->end_seq,
1767 						dup_sack,
1768 						tcp_skb_pcount(skb),
1769 						tcp_skb_timestamp_us(skb));
1770 			tcp_rate_skb_delivered(sk, skb, state->rate);
1771 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1772 				list_del_init(&skb->tcp_tsorted_anchor);
1773 
1774 			if (!before(TCP_SKB_CB(skb)->seq,
1775 				    tcp_highest_sack_seq(tp)))
1776 				tcp_advance_highest_sack(sk, skb);
1777 		}
1778 	}
1779 	return skb;
1780 }
1781 
1782 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1783 {
1784 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1785 	struct sk_buff *skb;
1786 
1787 	while (*p) {
1788 		parent = *p;
1789 		skb = rb_to_skb(parent);
1790 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1791 			p = &parent->rb_left;
1792 			continue;
1793 		}
1794 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1795 			p = &parent->rb_right;
1796 			continue;
1797 		}
1798 		return skb;
1799 	}
1800 	return NULL;
1801 }
1802 
1803 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1804 					u32 skip_to_seq)
1805 {
1806 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1807 		return skb;
1808 
1809 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1810 }
1811 
1812 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1813 						struct sock *sk,
1814 						struct tcp_sack_block *next_dup,
1815 						struct tcp_sacktag_state *state,
1816 						u32 skip_to_seq)
1817 {
1818 	if (!next_dup)
1819 		return skb;
1820 
1821 	if (before(next_dup->start_seq, skip_to_seq)) {
1822 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1823 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1824 				       next_dup->start_seq, next_dup->end_seq,
1825 				       1);
1826 	}
1827 
1828 	return skb;
1829 }
1830 
1831 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1832 {
1833 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1834 }
1835 
1836 static int
1837 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1838 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1839 {
1840 	struct tcp_sock *tp = tcp_sk(sk);
1841 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1842 				    TCP_SKB_CB(ack_skb)->sacked);
1843 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1844 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1845 	struct tcp_sack_block *cache;
1846 	struct sk_buff *skb;
1847 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1848 	int used_sacks;
1849 	bool found_dup_sack = false;
1850 	int i, j;
1851 	int first_sack_index;
1852 
1853 	state->flag = 0;
1854 	state->reord = tp->snd_nxt;
1855 
1856 	if (!tp->sacked_out)
1857 		tcp_highest_sack_reset(sk);
1858 
1859 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1860 					 num_sacks, prior_snd_una, state);
1861 
1862 	/* Eliminate too old ACKs, but take into
1863 	 * account more or less fresh ones, they can
1864 	 * contain valid SACK info.
1865 	 */
1866 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1867 		return 0;
1868 
1869 	if (!tp->packets_out)
1870 		goto out;
1871 
1872 	used_sacks = 0;
1873 	first_sack_index = 0;
1874 	for (i = 0; i < num_sacks; i++) {
1875 		bool dup_sack = !i && found_dup_sack;
1876 
1877 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1878 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1879 
1880 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1881 					    sp[used_sacks].start_seq,
1882 					    sp[used_sacks].end_seq)) {
1883 			int mib_idx;
1884 
1885 			if (dup_sack) {
1886 				if (!tp->undo_marker)
1887 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1888 				else
1889 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1890 			} else {
1891 				/* Don't count olds caused by ACK reordering */
1892 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1893 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1894 					continue;
1895 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1896 			}
1897 
1898 			NET_INC_STATS(sock_net(sk), mib_idx);
1899 			if (i == 0)
1900 				first_sack_index = -1;
1901 			continue;
1902 		}
1903 
1904 		/* Ignore very old stuff early */
1905 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1906 			if (i == 0)
1907 				first_sack_index = -1;
1908 			continue;
1909 		}
1910 
1911 		used_sacks++;
1912 	}
1913 
1914 	/* order SACK blocks to allow in order walk of the retrans queue */
1915 	for (i = used_sacks - 1; i > 0; i--) {
1916 		for (j = 0; j < i; j++) {
1917 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1918 				swap(sp[j], sp[j + 1]);
1919 
1920 				/* Track where the first SACK block goes to */
1921 				if (j == first_sack_index)
1922 					first_sack_index = j + 1;
1923 			}
1924 		}
1925 	}
1926 
1927 	state->mss_now = tcp_current_mss(sk);
1928 	skb = NULL;
1929 	i = 0;
1930 
1931 	if (!tp->sacked_out) {
1932 		/* It's already past, so skip checking against it */
1933 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1934 	} else {
1935 		cache = tp->recv_sack_cache;
1936 		/* Skip empty blocks in at head of the cache */
1937 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1938 		       !cache->end_seq)
1939 			cache++;
1940 	}
1941 
1942 	while (i < used_sacks) {
1943 		u32 start_seq = sp[i].start_seq;
1944 		u32 end_seq = sp[i].end_seq;
1945 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1946 		struct tcp_sack_block *next_dup = NULL;
1947 
1948 		if (found_dup_sack && ((i + 1) == first_sack_index))
1949 			next_dup = &sp[i + 1];
1950 
1951 		/* Skip too early cached blocks */
1952 		while (tcp_sack_cache_ok(tp, cache) &&
1953 		       !before(start_seq, cache->end_seq))
1954 			cache++;
1955 
1956 		/* Can skip some work by looking recv_sack_cache? */
1957 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1958 		    after(end_seq, cache->start_seq)) {
1959 
1960 			/* Head todo? */
1961 			if (before(start_seq, cache->start_seq)) {
1962 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1963 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1964 						       state,
1965 						       start_seq,
1966 						       cache->start_seq,
1967 						       dup_sack);
1968 			}
1969 
1970 			/* Rest of the block already fully processed? */
1971 			if (!after(end_seq, cache->end_seq))
1972 				goto advance_sp;
1973 
1974 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1975 						       state,
1976 						       cache->end_seq);
1977 
1978 			/* ...tail remains todo... */
1979 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1980 				/* ...but better entrypoint exists! */
1981 				skb = tcp_highest_sack(sk);
1982 				if (!skb)
1983 					break;
1984 				cache++;
1985 				goto walk;
1986 			}
1987 
1988 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1989 			/* Check overlap against next cached too (past this one already) */
1990 			cache++;
1991 			continue;
1992 		}
1993 
1994 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1995 			skb = tcp_highest_sack(sk);
1996 			if (!skb)
1997 				break;
1998 		}
1999 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2000 
2001 walk:
2002 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2003 				       start_seq, end_seq, dup_sack);
2004 
2005 advance_sp:
2006 		i++;
2007 	}
2008 
2009 	/* Clear the head of the cache sack blocks so we can skip it next time */
2010 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2011 		tp->recv_sack_cache[i].start_seq = 0;
2012 		tp->recv_sack_cache[i].end_seq = 0;
2013 	}
2014 	for (j = 0; j < used_sacks; j++)
2015 		tp->recv_sack_cache[i++] = sp[j];
2016 
2017 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2018 		tcp_check_sack_reordering(sk, state->reord, 0);
2019 
2020 	tcp_verify_left_out(tp);
2021 out:
2022 
2023 #if FASTRETRANS_DEBUG > 0
2024 	WARN_ON((int)tp->sacked_out < 0);
2025 	WARN_ON((int)tp->lost_out < 0);
2026 	WARN_ON((int)tp->retrans_out < 0);
2027 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2028 #endif
2029 	return state->flag;
2030 }
2031 
2032 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2033  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2034  */
2035 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2036 {
2037 	u32 holes;
2038 
2039 	holes = max(tp->lost_out, 1U);
2040 	holes = min(holes, tp->packets_out);
2041 
2042 	if ((tp->sacked_out + holes) > tp->packets_out) {
2043 		tp->sacked_out = tp->packets_out - holes;
2044 		return true;
2045 	}
2046 	return false;
2047 }
2048 
2049 /* If we receive more dupacks than we expected counting segments
2050  * in assumption of absent reordering, interpret this as reordering.
2051  * The only another reason could be bug in receiver TCP.
2052  */
2053 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2054 {
2055 	struct tcp_sock *tp = tcp_sk(sk);
2056 
2057 	if (!tcp_limit_reno_sacked(tp))
2058 		return;
2059 
2060 	tp->reordering = min_t(u32, tp->packets_out + addend,
2061 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2062 	tp->reord_seen++;
2063 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2064 }
2065 
2066 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2067 
2068 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2069 {
2070 	if (num_dupack) {
2071 		struct tcp_sock *tp = tcp_sk(sk);
2072 		u32 prior_sacked = tp->sacked_out;
2073 		s32 delivered;
2074 
2075 		tp->sacked_out += num_dupack;
2076 		tcp_check_reno_reordering(sk, 0);
2077 		delivered = tp->sacked_out - prior_sacked;
2078 		if (delivered > 0)
2079 			tcp_count_delivered(tp, delivered, ece_ack);
2080 		tcp_verify_left_out(tp);
2081 	}
2082 }
2083 
2084 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2085 
2086 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2087 {
2088 	struct tcp_sock *tp = tcp_sk(sk);
2089 
2090 	if (acked > 0) {
2091 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2092 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2093 				    ece_ack);
2094 		if (acked - 1 >= tp->sacked_out)
2095 			tp->sacked_out = 0;
2096 		else
2097 			tp->sacked_out -= acked - 1;
2098 	}
2099 	tcp_check_reno_reordering(sk, acked);
2100 	tcp_verify_left_out(tp);
2101 }
2102 
2103 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2104 {
2105 	tp->sacked_out = 0;
2106 }
2107 
2108 void tcp_clear_retrans(struct tcp_sock *tp)
2109 {
2110 	tp->retrans_out = 0;
2111 	tp->lost_out = 0;
2112 	tp->undo_marker = 0;
2113 	tp->undo_retrans = -1;
2114 	tp->sacked_out = 0;
2115 }
2116 
2117 static inline void tcp_init_undo(struct tcp_sock *tp)
2118 {
2119 	tp->undo_marker = tp->snd_una;
2120 
2121 	/* Retransmission still in flight may cause DSACKs later. */
2122 	/* First, account for regular retransmits in flight: */
2123 	tp->undo_retrans = tp->retrans_out;
2124 	/* Next, account for TLP retransmits in flight: */
2125 	if (tp->tlp_high_seq && tp->tlp_retrans)
2126 		tp->undo_retrans++;
2127 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2128 	if (!tp->undo_retrans)
2129 		tp->undo_retrans = -1;
2130 }
2131 
2132 static bool tcp_is_rack(const struct sock *sk)
2133 {
2134 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2135 		TCP_RACK_LOSS_DETECTION;
2136 }
2137 
2138 /* If we detect SACK reneging, forget all SACK information
2139  * and reset tags completely, otherwise preserve SACKs. If receiver
2140  * dropped its ofo queue, we will know this due to reneging detection.
2141  */
2142 static void tcp_timeout_mark_lost(struct sock *sk)
2143 {
2144 	struct tcp_sock *tp = tcp_sk(sk);
2145 	struct sk_buff *skb, *head;
2146 	bool is_reneg;			/* is receiver reneging on SACKs? */
2147 
2148 	head = tcp_rtx_queue_head(sk);
2149 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2150 	if (is_reneg) {
2151 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2152 		tp->sacked_out = 0;
2153 		/* Mark SACK reneging until we recover from this loss event. */
2154 		tp->is_sack_reneg = 1;
2155 	} else if (tcp_is_reno(tp)) {
2156 		tcp_reset_reno_sack(tp);
2157 	}
2158 
2159 	skb = head;
2160 	skb_rbtree_walk_from(skb) {
2161 		if (is_reneg)
2162 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2163 		else if (tcp_is_rack(sk) && skb != head &&
2164 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2165 			continue; /* Don't mark recently sent ones lost yet */
2166 		tcp_mark_skb_lost(sk, skb);
2167 	}
2168 	tcp_verify_left_out(tp);
2169 	tcp_clear_all_retrans_hints(tp);
2170 }
2171 
2172 /* Enter Loss state. */
2173 void tcp_enter_loss(struct sock *sk)
2174 {
2175 	const struct inet_connection_sock *icsk = inet_csk(sk);
2176 	struct tcp_sock *tp = tcp_sk(sk);
2177 	struct net *net = sock_net(sk);
2178 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2179 	u8 reordering;
2180 
2181 	tcp_timeout_mark_lost(sk);
2182 
2183 	/* Reduce ssthresh if it has not yet been made inside this window. */
2184 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2185 	    !after(tp->high_seq, tp->snd_una) ||
2186 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2187 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2188 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2189 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2190 		tcp_ca_event(sk, CA_EVENT_LOSS);
2191 		tcp_init_undo(tp);
2192 	}
2193 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2194 	tp->snd_cwnd_cnt   = 0;
2195 	tp->snd_cwnd_stamp = tcp_jiffies32;
2196 
2197 	/* Timeout in disordered state after receiving substantial DUPACKs
2198 	 * suggests that the degree of reordering is over-estimated.
2199 	 */
2200 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2201 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2202 	    tp->sacked_out >= reordering)
2203 		tp->reordering = min_t(unsigned int, tp->reordering,
2204 				       reordering);
2205 
2206 	tcp_set_ca_state(sk, TCP_CA_Loss);
2207 	tp->high_seq = tp->snd_nxt;
2208 	tp->tlp_high_seq = 0;
2209 	tcp_ecn_queue_cwr(tp);
2210 
2211 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2212 	 * loss recovery is underway except recurring timeout(s) on
2213 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2214 	 */
2215 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2216 		   (new_recovery || icsk->icsk_retransmits) &&
2217 		   !inet_csk(sk)->icsk_mtup.probe_size;
2218 }
2219 
2220 /* If ACK arrived pointing to a remembered SACK, it means that our
2221  * remembered SACKs do not reflect real state of receiver i.e.
2222  * receiver _host_ is heavily congested (or buggy).
2223  *
2224  * To avoid big spurious retransmission bursts due to transient SACK
2225  * scoreboard oddities that look like reneging, we give the receiver a
2226  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2227  * restore sanity to the SACK scoreboard. If the apparent reneging
2228  * persists until this RTO then we'll clear the SACK scoreboard.
2229  */
2230 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2231 {
2232 	if (*ack_flag & FLAG_SACK_RENEGING &&
2233 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2234 		struct tcp_sock *tp = tcp_sk(sk);
2235 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2236 					  msecs_to_jiffies(10));
2237 
2238 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2239 					  delay, TCP_RTO_MAX);
2240 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2241 		return true;
2242 	}
2243 	return false;
2244 }
2245 
2246 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2247  * counter when SACK is enabled (without SACK, sacked_out is used for
2248  * that purpose).
2249  *
2250  * With reordering, holes may still be in flight, so RFC3517 recovery
2251  * uses pure sacked_out (total number of SACKed segments) even though
2252  * it violates the RFC that uses duplicate ACKs, often these are equal
2253  * but when e.g. out-of-window ACKs or packet duplication occurs,
2254  * they differ. Since neither occurs due to loss, TCP should really
2255  * ignore them.
2256  */
2257 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2258 {
2259 	return tp->sacked_out + 1;
2260 }
2261 
2262 /* Linux NewReno/SACK/ECN state machine.
2263  * --------------------------------------
2264  *
2265  * "Open"	Normal state, no dubious events, fast path.
2266  * "Disorder"   In all the respects it is "Open",
2267  *		but requires a bit more attention. It is entered when
2268  *		we see some SACKs or dupacks. It is split of "Open"
2269  *		mainly to move some processing from fast path to slow one.
2270  * "CWR"	CWND was reduced due to some Congestion Notification event.
2271  *		It can be ECN, ICMP source quench, local device congestion.
2272  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2273  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2274  *
2275  * tcp_fastretrans_alert() is entered:
2276  * - each incoming ACK, if state is not "Open"
2277  * - when arrived ACK is unusual, namely:
2278  *	* SACK
2279  *	* Duplicate ACK.
2280  *	* ECN ECE.
2281  *
2282  * Counting packets in flight is pretty simple.
2283  *
2284  *	in_flight = packets_out - left_out + retrans_out
2285  *
2286  *	packets_out is SND.NXT-SND.UNA counted in packets.
2287  *
2288  *	retrans_out is number of retransmitted segments.
2289  *
2290  *	left_out is number of segments left network, but not ACKed yet.
2291  *
2292  *		left_out = sacked_out + lost_out
2293  *
2294  *     sacked_out: Packets, which arrived to receiver out of order
2295  *		   and hence not ACKed. With SACKs this number is simply
2296  *		   amount of SACKed data. Even without SACKs
2297  *		   it is easy to give pretty reliable estimate of this number,
2298  *		   counting duplicate ACKs.
2299  *
2300  *       lost_out: Packets lost by network. TCP has no explicit
2301  *		   "loss notification" feedback from network (for now).
2302  *		   It means that this number can be only _guessed_.
2303  *		   Actually, it is the heuristics to predict lossage that
2304  *		   distinguishes different algorithms.
2305  *
2306  *	F.e. after RTO, when all the queue is considered as lost,
2307  *	lost_out = packets_out and in_flight = retrans_out.
2308  *
2309  *		Essentially, we have now a few algorithms detecting
2310  *		lost packets.
2311  *
2312  *		If the receiver supports SACK:
2313  *
2314  *		RFC6675/3517: It is the conventional algorithm. A packet is
2315  *		considered lost if the number of higher sequence packets
2316  *		SACKed is greater than or equal the DUPACK thoreshold
2317  *		(reordering). This is implemented in tcp_mark_head_lost and
2318  *		tcp_update_scoreboard.
2319  *
2320  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2321  *		(2017-) that checks timing instead of counting DUPACKs.
2322  *		Essentially a packet is considered lost if it's not S/ACKed
2323  *		after RTT + reordering_window, where both metrics are
2324  *		dynamically measured and adjusted. This is implemented in
2325  *		tcp_rack_mark_lost.
2326  *
2327  *		If the receiver does not support SACK:
2328  *
2329  *		NewReno (RFC6582): in Recovery we assume that one segment
2330  *		is lost (classic Reno). While we are in Recovery and
2331  *		a partial ACK arrives, we assume that one more packet
2332  *		is lost (NewReno). This heuristics are the same in NewReno
2333  *		and SACK.
2334  *
2335  * Really tricky (and requiring careful tuning) part of algorithm
2336  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2337  * The first determines the moment _when_ we should reduce CWND and,
2338  * hence, slow down forward transmission. In fact, it determines the moment
2339  * when we decide that hole is caused by loss, rather than by a reorder.
2340  *
2341  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2342  * holes, caused by lost packets.
2343  *
2344  * And the most logically complicated part of algorithm is undo
2345  * heuristics. We detect false retransmits due to both too early
2346  * fast retransmit (reordering) and underestimated RTO, analyzing
2347  * timestamps and D-SACKs. When we detect that some segments were
2348  * retransmitted by mistake and CWND reduction was wrong, we undo
2349  * window reduction and abort recovery phase. This logic is hidden
2350  * inside several functions named tcp_try_undo_<something>.
2351  */
2352 
2353 /* This function decides, when we should leave Disordered state
2354  * and enter Recovery phase, reducing congestion window.
2355  *
2356  * Main question: may we further continue forward transmission
2357  * with the same cwnd?
2358  */
2359 static bool tcp_time_to_recover(struct sock *sk, int flag)
2360 {
2361 	struct tcp_sock *tp = tcp_sk(sk);
2362 
2363 	/* Trick#1: The loss is proven. */
2364 	if (tp->lost_out)
2365 		return true;
2366 
2367 	/* Not-A-Trick#2 : Classic rule... */
2368 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2369 		return true;
2370 
2371 	return false;
2372 }
2373 
2374 /* Detect loss in event "A" above by marking head of queue up as lost.
2375  * For RFC3517 SACK, a segment is considered lost if it
2376  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2377  * the maximum SACKed segments to pass before reaching this limit.
2378  */
2379 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2380 {
2381 	struct tcp_sock *tp = tcp_sk(sk);
2382 	struct sk_buff *skb;
2383 	int cnt;
2384 	/* Use SACK to deduce losses of new sequences sent during recovery */
2385 	const u32 loss_high = tp->snd_nxt;
2386 
2387 	WARN_ON(packets > tp->packets_out);
2388 	skb = tp->lost_skb_hint;
2389 	if (skb) {
2390 		/* Head already handled? */
2391 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2392 			return;
2393 		cnt = tp->lost_cnt_hint;
2394 	} else {
2395 		skb = tcp_rtx_queue_head(sk);
2396 		cnt = 0;
2397 	}
2398 
2399 	skb_rbtree_walk_from(skb) {
2400 		/* TODO: do this better */
2401 		/* this is not the most efficient way to do this... */
2402 		tp->lost_skb_hint = skb;
2403 		tp->lost_cnt_hint = cnt;
2404 
2405 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2406 			break;
2407 
2408 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2409 			cnt += tcp_skb_pcount(skb);
2410 
2411 		if (cnt > packets)
2412 			break;
2413 
2414 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2415 			tcp_mark_skb_lost(sk, skb);
2416 
2417 		if (mark_head)
2418 			break;
2419 	}
2420 	tcp_verify_left_out(tp);
2421 }
2422 
2423 /* Account newly detected lost packet(s) */
2424 
2425 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2426 {
2427 	struct tcp_sock *tp = tcp_sk(sk);
2428 
2429 	if (tcp_is_sack(tp)) {
2430 		int sacked_upto = tp->sacked_out - tp->reordering;
2431 		if (sacked_upto >= 0)
2432 			tcp_mark_head_lost(sk, sacked_upto, 0);
2433 		else if (fast_rexmit)
2434 			tcp_mark_head_lost(sk, 1, 1);
2435 	}
2436 }
2437 
2438 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2439 {
2440 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2441 	       before(tp->rx_opt.rcv_tsecr, when);
2442 }
2443 
2444 /* skb is spurious retransmitted if the returned timestamp echo
2445  * reply is prior to the skb transmission time
2446  */
2447 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2448 				     const struct sk_buff *skb)
2449 {
2450 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2451 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2452 }
2453 
2454 /* Nothing was retransmitted or returned timestamp is less
2455  * than timestamp of the first retransmission.
2456  */
2457 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2458 {
2459 	return tp->retrans_stamp &&
2460 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2461 }
2462 
2463 /* Undo procedures. */
2464 
2465 /* We can clear retrans_stamp when there are no retransmissions in the
2466  * window. It would seem that it is trivially available for us in
2467  * tp->retrans_out, however, that kind of assumptions doesn't consider
2468  * what will happen if errors occur when sending retransmission for the
2469  * second time. ...It could the that such segment has only
2470  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2471  * the head skb is enough except for some reneging corner cases that
2472  * are not worth the effort.
2473  *
2474  * Main reason for all this complexity is the fact that connection dying
2475  * time now depends on the validity of the retrans_stamp, in particular,
2476  * that successive retransmissions of a segment must not advance
2477  * retrans_stamp under any conditions.
2478  */
2479 static bool tcp_any_retrans_done(const struct sock *sk)
2480 {
2481 	const struct tcp_sock *tp = tcp_sk(sk);
2482 	struct sk_buff *skb;
2483 
2484 	if (tp->retrans_out)
2485 		return true;
2486 
2487 	skb = tcp_rtx_queue_head(sk);
2488 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2489 		return true;
2490 
2491 	return false;
2492 }
2493 
2494 static void DBGUNDO(struct sock *sk, const char *msg)
2495 {
2496 #if FASTRETRANS_DEBUG > 1
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 	struct inet_sock *inet = inet_sk(sk);
2499 
2500 	if (sk->sk_family == AF_INET) {
2501 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2502 			 msg,
2503 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2504 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2505 			 tp->snd_ssthresh, tp->prior_ssthresh,
2506 			 tp->packets_out);
2507 	}
2508 #if IS_ENABLED(CONFIG_IPV6)
2509 	else if (sk->sk_family == AF_INET6) {
2510 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2511 			 msg,
2512 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2513 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2514 			 tp->snd_ssthresh, tp->prior_ssthresh,
2515 			 tp->packets_out);
2516 	}
2517 #endif
2518 #endif
2519 }
2520 
2521 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2522 {
2523 	struct tcp_sock *tp = tcp_sk(sk);
2524 
2525 	if (unmark_loss) {
2526 		struct sk_buff *skb;
2527 
2528 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2529 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2530 		}
2531 		tp->lost_out = 0;
2532 		tcp_clear_all_retrans_hints(tp);
2533 	}
2534 
2535 	if (tp->prior_ssthresh) {
2536 		const struct inet_connection_sock *icsk = inet_csk(sk);
2537 
2538 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2539 
2540 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2541 			tp->snd_ssthresh = tp->prior_ssthresh;
2542 			tcp_ecn_withdraw_cwr(tp);
2543 		}
2544 	}
2545 	tp->snd_cwnd_stamp = tcp_jiffies32;
2546 	tp->undo_marker = 0;
2547 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2548 }
2549 
2550 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2551 {
2552 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2553 }
2554 
2555 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2556 {
2557 	struct tcp_sock *tp = tcp_sk(sk);
2558 
2559 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2560 		/* Hold old state until something *above* high_seq
2561 		 * is ACKed. For Reno it is MUST to prevent false
2562 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2563 		if (!tcp_any_retrans_done(sk))
2564 			tp->retrans_stamp = 0;
2565 		return true;
2566 	}
2567 	return false;
2568 }
2569 
2570 /* People celebrate: "We love our President!" */
2571 static bool tcp_try_undo_recovery(struct sock *sk)
2572 {
2573 	struct tcp_sock *tp = tcp_sk(sk);
2574 
2575 	if (tcp_may_undo(tp)) {
2576 		int mib_idx;
2577 
2578 		/* Happy end! We did not retransmit anything
2579 		 * or our original transmission succeeded.
2580 		 */
2581 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2582 		tcp_undo_cwnd_reduction(sk, false);
2583 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2584 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2585 		else
2586 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2587 
2588 		NET_INC_STATS(sock_net(sk), mib_idx);
2589 	} else if (tp->rack.reo_wnd_persist) {
2590 		tp->rack.reo_wnd_persist--;
2591 	}
2592 	if (tcp_is_non_sack_preventing_reopen(sk))
2593 		return true;
2594 	tcp_set_ca_state(sk, TCP_CA_Open);
2595 	tp->is_sack_reneg = 0;
2596 	return false;
2597 }
2598 
2599 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2600 static bool tcp_try_undo_dsack(struct sock *sk)
2601 {
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 
2604 	if (tp->undo_marker && !tp->undo_retrans) {
2605 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2606 					       tp->rack.reo_wnd_persist + 1);
2607 		DBGUNDO(sk, "D-SACK");
2608 		tcp_undo_cwnd_reduction(sk, false);
2609 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2610 		return true;
2611 	}
2612 	return false;
2613 }
2614 
2615 /* Undo during loss recovery after partial ACK or using F-RTO. */
2616 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2617 {
2618 	struct tcp_sock *tp = tcp_sk(sk);
2619 
2620 	if (frto_undo || tcp_may_undo(tp)) {
2621 		tcp_undo_cwnd_reduction(sk, true);
2622 
2623 		DBGUNDO(sk, "partial loss");
2624 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2625 		if (frto_undo)
2626 			NET_INC_STATS(sock_net(sk),
2627 					LINUX_MIB_TCPSPURIOUSRTOS);
2628 		inet_csk(sk)->icsk_retransmits = 0;
2629 		if (tcp_is_non_sack_preventing_reopen(sk))
2630 			return true;
2631 		if (frto_undo || tcp_is_sack(tp)) {
2632 			tcp_set_ca_state(sk, TCP_CA_Open);
2633 			tp->is_sack_reneg = 0;
2634 		}
2635 		return true;
2636 	}
2637 	return false;
2638 }
2639 
2640 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2641  * It computes the number of packets to send (sndcnt) based on packets newly
2642  * delivered:
2643  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2644  *	cwnd reductions across a full RTT.
2645  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2646  *      But when SND_UNA is acked without further losses,
2647  *      slow starts cwnd up to ssthresh to speed up the recovery.
2648  */
2649 static void tcp_init_cwnd_reduction(struct sock *sk)
2650 {
2651 	struct tcp_sock *tp = tcp_sk(sk);
2652 
2653 	tp->high_seq = tp->snd_nxt;
2654 	tp->tlp_high_seq = 0;
2655 	tp->snd_cwnd_cnt = 0;
2656 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2657 	tp->prr_delivered = 0;
2658 	tp->prr_out = 0;
2659 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2660 	tcp_ecn_queue_cwr(tp);
2661 }
2662 
2663 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 	int sndcnt = 0;
2667 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2668 
2669 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2670 		return;
2671 
2672 	tp->prr_delivered += newly_acked_sacked;
2673 	if (delta < 0) {
2674 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2675 			       tp->prior_cwnd - 1;
2676 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2677 	} else {
2678 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2679 			       newly_acked_sacked);
2680 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2681 			sndcnt++;
2682 		sndcnt = min(delta, sndcnt);
2683 	}
2684 	/* Force a fast retransmit upon entering fast recovery */
2685 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2686 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2687 }
2688 
2689 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2690 {
2691 	struct tcp_sock *tp = tcp_sk(sk);
2692 
2693 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2694 		return;
2695 
2696 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2697 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2698 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2699 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2700 		tp->snd_cwnd_stamp = tcp_jiffies32;
2701 	}
2702 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2703 }
2704 
2705 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2706 void tcp_enter_cwr(struct sock *sk)
2707 {
2708 	struct tcp_sock *tp = tcp_sk(sk);
2709 
2710 	tp->prior_ssthresh = 0;
2711 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2712 		tp->undo_marker = 0;
2713 		tcp_init_cwnd_reduction(sk);
2714 		tcp_set_ca_state(sk, TCP_CA_CWR);
2715 	}
2716 }
2717 EXPORT_SYMBOL(tcp_enter_cwr);
2718 
2719 static void tcp_try_keep_open(struct sock *sk)
2720 {
2721 	struct tcp_sock *tp = tcp_sk(sk);
2722 	int state = TCP_CA_Open;
2723 
2724 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2725 		state = TCP_CA_Disorder;
2726 
2727 	if (inet_csk(sk)->icsk_ca_state != state) {
2728 		tcp_set_ca_state(sk, state);
2729 		tp->high_seq = tp->snd_nxt;
2730 	}
2731 }
2732 
2733 static void tcp_try_to_open(struct sock *sk, int flag)
2734 {
2735 	struct tcp_sock *tp = tcp_sk(sk);
2736 
2737 	tcp_verify_left_out(tp);
2738 
2739 	if (!tcp_any_retrans_done(sk))
2740 		tp->retrans_stamp = 0;
2741 
2742 	if (flag & FLAG_ECE)
2743 		tcp_enter_cwr(sk);
2744 
2745 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2746 		tcp_try_keep_open(sk);
2747 	}
2748 }
2749 
2750 static void tcp_mtup_probe_failed(struct sock *sk)
2751 {
2752 	struct inet_connection_sock *icsk = inet_csk(sk);
2753 
2754 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2755 	icsk->icsk_mtup.probe_size = 0;
2756 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2757 }
2758 
2759 static void tcp_mtup_probe_success(struct sock *sk)
2760 {
2761 	struct tcp_sock *tp = tcp_sk(sk);
2762 	struct inet_connection_sock *icsk = inet_csk(sk);
2763 	u64 val;
2764 
2765 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2766 
2767 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2768 	do_div(val, icsk->icsk_mtup.probe_size);
2769 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2770 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2771 
2772 	tp->snd_cwnd_cnt = 0;
2773 	tp->snd_cwnd_stamp = tcp_jiffies32;
2774 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2775 
2776 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2777 	icsk->icsk_mtup.probe_size = 0;
2778 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2779 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2780 }
2781 
2782 /* Sometimes we deduce that packets have been dropped due to reasons other than
2783  * congestion, like path MTU reductions or failed client TFO attempts. In these
2784  * cases we call this function to retransmit as many packets as cwnd allows,
2785  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2786  * non-zero value (and may do so in a later calling context due to TSQ), we
2787  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2788  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2789  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2790  * prematurely).
2791  */
2792 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2793 {
2794 	const struct inet_connection_sock *icsk = inet_csk(sk);
2795 	struct tcp_sock *tp = tcp_sk(sk);
2796 
2797 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2798 		tp->high_seq = tp->snd_nxt;
2799 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2800 		tp->prior_ssthresh = 0;
2801 		tp->undo_marker = 0;
2802 		tcp_set_ca_state(sk, TCP_CA_Loss);
2803 	}
2804 	tcp_xmit_retransmit_queue(sk);
2805 }
2806 
2807 /* Do a simple retransmit without using the backoff mechanisms in
2808  * tcp_timer. This is used for path mtu discovery.
2809  * The socket is already locked here.
2810  */
2811 void tcp_simple_retransmit(struct sock *sk)
2812 {
2813 	struct tcp_sock *tp = tcp_sk(sk);
2814 	struct sk_buff *skb;
2815 	int mss;
2816 
2817 	/* A fastopen SYN request is stored as two separate packets within
2818 	 * the retransmit queue, this is done by tcp_send_syn_data().
2819 	 * As a result simply checking the MSS of the frames in the queue
2820 	 * will not work for the SYN packet.
2821 	 *
2822 	 * Us being here is an indication of a path MTU issue so we can
2823 	 * assume that the fastopen SYN was lost and just mark all the
2824 	 * frames in the retransmit queue as lost. We will use an MSS of
2825 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2826 	 */
2827 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2828 		mss = -1;
2829 	else
2830 		mss = tcp_current_mss(sk);
2831 
2832 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2833 		if (tcp_skb_seglen(skb) > mss)
2834 			tcp_mark_skb_lost(sk, skb);
2835 	}
2836 
2837 	tcp_clear_retrans_hints_partial(tp);
2838 
2839 	if (!tp->lost_out)
2840 		return;
2841 
2842 	if (tcp_is_reno(tp))
2843 		tcp_limit_reno_sacked(tp);
2844 
2845 	tcp_verify_left_out(tp);
2846 
2847 	/* Don't muck with the congestion window here.
2848 	 * Reason is that we do not increase amount of _data_
2849 	 * in network, but units changed and effective
2850 	 * cwnd/ssthresh really reduced now.
2851 	 */
2852 	tcp_non_congestion_loss_retransmit(sk);
2853 }
2854 EXPORT_SYMBOL(tcp_simple_retransmit);
2855 
2856 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2857 {
2858 	struct tcp_sock *tp = tcp_sk(sk);
2859 	int mib_idx;
2860 
2861 	if (tcp_is_reno(tp))
2862 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2863 	else
2864 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2865 
2866 	NET_INC_STATS(sock_net(sk), mib_idx);
2867 
2868 	tp->prior_ssthresh = 0;
2869 	tcp_init_undo(tp);
2870 
2871 	if (!tcp_in_cwnd_reduction(sk)) {
2872 		if (!ece_ack)
2873 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2874 		tcp_init_cwnd_reduction(sk);
2875 	}
2876 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2877 }
2878 
2879 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2880  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2881  */
2882 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2883 			     int *rexmit)
2884 {
2885 	struct tcp_sock *tp = tcp_sk(sk);
2886 	bool recovered = !before(tp->snd_una, tp->high_seq);
2887 
2888 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2889 	    tcp_try_undo_loss(sk, false))
2890 		return;
2891 
2892 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2893 		/* Step 3.b. A timeout is spurious if not all data are
2894 		 * lost, i.e., never-retransmitted data are (s)acked.
2895 		 */
2896 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2897 		    tcp_try_undo_loss(sk, true))
2898 			return;
2899 
2900 		if (after(tp->snd_nxt, tp->high_seq)) {
2901 			if (flag & FLAG_DATA_SACKED || num_dupack)
2902 				tp->frto = 0; /* Step 3.a. loss was real */
2903 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2904 			tp->high_seq = tp->snd_nxt;
2905 			/* Step 2.b. Try send new data (but deferred until cwnd
2906 			 * is updated in tcp_ack()). Otherwise fall back to
2907 			 * the conventional recovery.
2908 			 */
2909 			if (!tcp_write_queue_empty(sk) &&
2910 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2911 				*rexmit = REXMIT_NEW;
2912 				return;
2913 			}
2914 			tp->frto = 0;
2915 		}
2916 	}
2917 
2918 	if (recovered) {
2919 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2920 		tcp_try_undo_recovery(sk);
2921 		return;
2922 	}
2923 	if (tcp_is_reno(tp)) {
2924 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2925 		 * delivered. Lower inflight to clock out (re)transmissions.
2926 		 */
2927 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2928 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2929 		else if (flag & FLAG_SND_UNA_ADVANCED)
2930 			tcp_reset_reno_sack(tp);
2931 	}
2932 	*rexmit = REXMIT_LOST;
2933 }
2934 
2935 static bool tcp_force_fast_retransmit(struct sock *sk)
2936 {
2937 	struct tcp_sock *tp = tcp_sk(sk);
2938 
2939 	return after(tcp_highest_sack_seq(tp),
2940 		     tp->snd_una + tp->reordering * tp->mss_cache);
2941 }
2942 
2943 /* Undo during fast recovery after partial ACK. */
2944 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2945 				 bool *do_lost)
2946 {
2947 	struct tcp_sock *tp = tcp_sk(sk);
2948 
2949 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2950 		/* Plain luck! Hole if filled with delayed
2951 		 * packet, rather than with a retransmit. Check reordering.
2952 		 */
2953 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2954 
2955 		/* We are getting evidence that the reordering degree is higher
2956 		 * than we realized. If there are no retransmits out then we
2957 		 * can undo. Otherwise we clock out new packets but do not
2958 		 * mark more packets lost or retransmit more.
2959 		 */
2960 		if (tp->retrans_out)
2961 			return true;
2962 
2963 		if (!tcp_any_retrans_done(sk))
2964 			tp->retrans_stamp = 0;
2965 
2966 		DBGUNDO(sk, "partial recovery");
2967 		tcp_undo_cwnd_reduction(sk, true);
2968 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2969 		tcp_try_keep_open(sk);
2970 	} else {
2971 		/* Partial ACK arrived. Force fast retransmit. */
2972 		*do_lost = tcp_force_fast_retransmit(sk);
2973 	}
2974 	return false;
2975 }
2976 
2977 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2978 {
2979 	struct tcp_sock *tp = tcp_sk(sk);
2980 
2981 	if (tcp_rtx_queue_empty(sk))
2982 		return;
2983 
2984 	if (unlikely(tcp_is_reno(tp))) {
2985 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2986 	} else if (tcp_is_rack(sk)) {
2987 		u32 prior_retrans = tp->retrans_out;
2988 
2989 		if (tcp_rack_mark_lost(sk))
2990 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2991 		if (prior_retrans > tp->retrans_out)
2992 			*ack_flag |= FLAG_LOST_RETRANS;
2993 	}
2994 }
2995 
2996 /* Process an event, which can update packets-in-flight not trivially.
2997  * Main goal of this function is to calculate new estimate for left_out,
2998  * taking into account both packets sitting in receiver's buffer and
2999  * packets lost by network.
3000  *
3001  * Besides that it updates the congestion state when packet loss or ECN
3002  * is detected. But it does not reduce the cwnd, it is done by the
3003  * congestion control later.
3004  *
3005  * It does _not_ decide what to send, it is made in function
3006  * tcp_xmit_retransmit_queue().
3007  */
3008 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3009 				  int num_dupack, int *ack_flag, int *rexmit)
3010 {
3011 	struct inet_connection_sock *icsk = inet_csk(sk);
3012 	struct tcp_sock *tp = tcp_sk(sk);
3013 	int fast_rexmit = 0, flag = *ack_flag;
3014 	bool ece_ack = flag & FLAG_ECE;
3015 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3016 				      tcp_force_fast_retransmit(sk));
3017 
3018 	if (!tp->packets_out && tp->sacked_out)
3019 		tp->sacked_out = 0;
3020 
3021 	/* Now state machine starts.
3022 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3023 	if (ece_ack)
3024 		tp->prior_ssthresh = 0;
3025 
3026 	/* B. In all the states check for reneging SACKs. */
3027 	if (tcp_check_sack_reneging(sk, ack_flag))
3028 		return;
3029 
3030 	/* C. Check consistency of the current state. */
3031 	tcp_verify_left_out(tp);
3032 
3033 	/* D. Check state exit conditions. State can be terminated
3034 	 *    when high_seq is ACKed. */
3035 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3036 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3037 		tp->retrans_stamp = 0;
3038 	} else if (!before(tp->snd_una, tp->high_seq)) {
3039 		switch (icsk->icsk_ca_state) {
3040 		case TCP_CA_CWR:
3041 			/* CWR is to be held something *above* high_seq
3042 			 * is ACKed for CWR bit to reach receiver. */
3043 			if (tp->snd_una != tp->high_seq) {
3044 				tcp_end_cwnd_reduction(sk);
3045 				tcp_set_ca_state(sk, TCP_CA_Open);
3046 			}
3047 			break;
3048 
3049 		case TCP_CA_Recovery:
3050 			if (tcp_is_reno(tp))
3051 				tcp_reset_reno_sack(tp);
3052 			if (tcp_try_undo_recovery(sk))
3053 				return;
3054 			tcp_end_cwnd_reduction(sk);
3055 			break;
3056 		}
3057 	}
3058 
3059 	/* E. Process state. */
3060 	switch (icsk->icsk_ca_state) {
3061 	case TCP_CA_Recovery:
3062 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3063 			if (tcp_is_reno(tp))
3064 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3065 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3066 			return;
3067 
3068 		if (tcp_try_undo_dsack(sk))
3069 			tcp_try_to_open(sk, flag);
3070 
3071 		tcp_identify_packet_loss(sk, ack_flag);
3072 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3073 			if (!tcp_time_to_recover(sk, flag))
3074 				return;
3075 			/* Undo reverts the recovery state. If loss is evident,
3076 			 * starts a new recovery (e.g. reordering then loss);
3077 			 */
3078 			tcp_enter_recovery(sk, ece_ack);
3079 		}
3080 		break;
3081 	case TCP_CA_Loss:
3082 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3083 		tcp_identify_packet_loss(sk, ack_flag);
3084 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3085 		      (*ack_flag & FLAG_LOST_RETRANS)))
3086 			return;
3087 		/* Change state if cwnd is undone or retransmits are lost */
3088 		fallthrough;
3089 	default:
3090 		if (tcp_is_reno(tp)) {
3091 			if (flag & FLAG_SND_UNA_ADVANCED)
3092 				tcp_reset_reno_sack(tp);
3093 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3094 		}
3095 
3096 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3097 			tcp_try_undo_dsack(sk);
3098 
3099 		tcp_identify_packet_loss(sk, ack_flag);
3100 		if (!tcp_time_to_recover(sk, flag)) {
3101 			tcp_try_to_open(sk, flag);
3102 			return;
3103 		}
3104 
3105 		/* MTU probe failure: don't reduce cwnd */
3106 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3107 		    icsk->icsk_mtup.probe_size &&
3108 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3109 			tcp_mtup_probe_failed(sk);
3110 			/* Restores the reduction we did in tcp_mtup_probe() */
3111 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3112 			tcp_simple_retransmit(sk);
3113 			return;
3114 		}
3115 
3116 		/* Otherwise enter Recovery state */
3117 		tcp_enter_recovery(sk, ece_ack);
3118 		fast_rexmit = 1;
3119 	}
3120 
3121 	if (!tcp_is_rack(sk) && do_lost)
3122 		tcp_update_scoreboard(sk, fast_rexmit);
3123 	*rexmit = REXMIT_LOST;
3124 }
3125 
3126 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3127 {
3128 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3129 	struct tcp_sock *tp = tcp_sk(sk);
3130 
3131 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3132 		/* If the remote keeps returning delayed ACKs, eventually
3133 		 * the min filter would pick it up and overestimate the
3134 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3135 		 */
3136 		return;
3137 	}
3138 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3139 			   rtt_us ? : jiffies_to_usecs(1));
3140 }
3141 
3142 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3143 			       long seq_rtt_us, long sack_rtt_us,
3144 			       long ca_rtt_us, struct rate_sample *rs)
3145 {
3146 	const struct tcp_sock *tp = tcp_sk(sk);
3147 
3148 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3149 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3150 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3151 	 * is acked (RFC6298).
3152 	 */
3153 	if (seq_rtt_us < 0)
3154 		seq_rtt_us = sack_rtt_us;
3155 
3156 	/* RTTM Rule: A TSecr value received in a segment is used to
3157 	 * update the averaged RTT measurement only if the segment
3158 	 * acknowledges some new data, i.e., only if it advances the
3159 	 * left edge of the send window.
3160 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3161 	 */
3162 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3163 	    flag & FLAG_ACKED) {
3164 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3165 
3166 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3167 			if (!delta)
3168 				delta = 1;
3169 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3170 			ca_rtt_us = seq_rtt_us;
3171 		}
3172 	}
3173 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3174 	if (seq_rtt_us < 0)
3175 		return false;
3176 
3177 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3178 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3179 	 * values will be skipped with the seq_rtt_us < 0 check above.
3180 	 */
3181 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3182 	tcp_rtt_estimator(sk, seq_rtt_us);
3183 	tcp_set_rto(sk);
3184 
3185 	/* RFC6298: only reset backoff on valid RTT measurement. */
3186 	inet_csk(sk)->icsk_backoff = 0;
3187 	return true;
3188 }
3189 
3190 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3191 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3192 {
3193 	struct rate_sample rs;
3194 	long rtt_us = -1L;
3195 
3196 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3197 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3198 
3199 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3200 }
3201 
3202 
3203 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3204 {
3205 	const struct inet_connection_sock *icsk = inet_csk(sk);
3206 
3207 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3208 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3209 }
3210 
3211 /* Restart timer after forward progress on connection.
3212  * RFC2988 recommends to restart timer to now+rto.
3213  */
3214 void tcp_rearm_rto(struct sock *sk)
3215 {
3216 	const struct inet_connection_sock *icsk = inet_csk(sk);
3217 	struct tcp_sock *tp = tcp_sk(sk);
3218 
3219 	/* If the retrans timer is currently being used by Fast Open
3220 	 * for SYN-ACK retrans purpose, stay put.
3221 	 */
3222 	if (rcu_access_pointer(tp->fastopen_rsk))
3223 		return;
3224 
3225 	if (!tp->packets_out) {
3226 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3227 	} else {
3228 		u32 rto = inet_csk(sk)->icsk_rto;
3229 		/* Offset the time elapsed after installing regular RTO */
3230 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3231 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3232 			s64 delta_us = tcp_rto_delta_us(sk);
3233 			/* delta_us may not be positive if the socket is locked
3234 			 * when the retrans timer fires and is rescheduled.
3235 			 */
3236 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3237 		}
3238 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3239 				     TCP_RTO_MAX);
3240 	}
3241 }
3242 
3243 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3244 static void tcp_set_xmit_timer(struct sock *sk)
3245 {
3246 	if (!tcp_schedule_loss_probe(sk, true))
3247 		tcp_rearm_rto(sk);
3248 }
3249 
3250 /* If we get here, the whole TSO packet has not been acked. */
3251 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3252 {
3253 	struct tcp_sock *tp = tcp_sk(sk);
3254 	u32 packets_acked;
3255 
3256 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3257 
3258 	packets_acked = tcp_skb_pcount(skb);
3259 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3260 		return 0;
3261 	packets_acked -= tcp_skb_pcount(skb);
3262 
3263 	if (packets_acked) {
3264 		BUG_ON(tcp_skb_pcount(skb) == 0);
3265 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3266 	}
3267 
3268 	return packets_acked;
3269 }
3270 
3271 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3272 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3273 {
3274 	const struct skb_shared_info *shinfo;
3275 
3276 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3277 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3278 		return;
3279 
3280 	shinfo = skb_shinfo(skb);
3281 	if (!before(shinfo->tskey, prior_snd_una) &&
3282 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3283 		tcp_skb_tsorted_save(skb) {
3284 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3285 		} tcp_skb_tsorted_restore(skb);
3286 	}
3287 }
3288 
3289 /* Remove acknowledged frames from the retransmission queue. If our packet
3290  * is before the ack sequence we can discard it as it's confirmed to have
3291  * arrived at the other end.
3292  */
3293 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3294 			       u32 prior_fack, u32 prior_snd_una,
3295 			       struct tcp_sacktag_state *sack, bool ece_ack)
3296 {
3297 	const struct inet_connection_sock *icsk = inet_csk(sk);
3298 	u64 first_ackt, last_ackt;
3299 	struct tcp_sock *tp = tcp_sk(sk);
3300 	u32 prior_sacked = tp->sacked_out;
3301 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3302 	struct sk_buff *skb, *next;
3303 	bool fully_acked = true;
3304 	long sack_rtt_us = -1L;
3305 	long seq_rtt_us = -1L;
3306 	long ca_rtt_us = -1L;
3307 	u32 pkts_acked = 0;
3308 	bool rtt_update;
3309 	int flag = 0;
3310 
3311 	first_ackt = 0;
3312 
3313 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3314 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3315 		const u32 start_seq = scb->seq;
3316 		u8 sacked = scb->sacked;
3317 		u32 acked_pcount;
3318 
3319 		/* Determine how many packets and what bytes were acked, tso and else */
3320 		if (after(scb->end_seq, tp->snd_una)) {
3321 			if (tcp_skb_pcount(skb) == 1 ||
3322 			    !after(tp->snd_una, scb->seq))
3323 				break;
3324 
3325 			acked_pcount = tcp_tso_acked(sk, skb);
3326 			if (!acked_pcount)
3327 				break;
3328 			fully_acked = false;
3329 		} else {
3330 			acked_pcount = tcp_skb_pcount(skb);
3331 		}
3332 
3333 		if (unlikely(sacked & TCPCB_RETRANS)) {
3334 			if (sacked & TCPCB_SACKED_RETRANS)
3335 				tp->retrans_out -= acked_pcount;
3336 			flag |= FLAG_RETRANS_DATA_ACKED;
3337 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3338 			last_ackt = tcp_skb_timestamp_us(skb);
3339 			WARN_ON_ONCE(last_ackt == 0);
3340 			if (!first_ackt)
3341 				first_ackt = last_ackt;
3342 
3343 			if (before(start_seq, reord))
3344 				reord = start_seq;
3345 			if (!after(scb->end_seq, tp->high_seq))
3346 				flag |= FLAG_ORIG_SACK_ACKED;
3347 		}
3348 
3349 		if (sacked & TCPCB_SACKED_ACKED) {
3350 			tp->sacked_out -= acked_pcount;
3351 		} else if (tcp_is_sack(tp)) {
3352 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3353 			if (!tcp_skb_spurious_retrans(tp, skb))
3354 				tcp_rack_advance(tp, sacked, scb->end_seq,
3355 						 tcp_skb_timestamp_us(skb));
3356 		}
3357 		if (sacked & TCPCB_LOST)
3358 			tp->lost_out -= acked_pcount;
3359 
3360 		tp->packets_out -= acked_pcount;
3361 		pkts_acked += acked_pcount;
3362 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3363 
3364 		/* Initial outgoing SYN's get put onto the write_queue
3365 		 * just like anything else we transmit.  It is not
3366 		 * true data, and if we misinform our callers that
3367 		 * this ACK acks real data, we will erroneously exit
3368 		 * connection startup slow start one packet too
3369 		 * quickly.  This is severely frowned upon behavior.
3370 		 */
3371 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3372 			flag |= FLAG_DATA_ACKED;
3373 		} else {
3374 			flag |= FLAG_SYN_ACKED;
3375 			tp->retrans_stamp = 0;
3376 		}
3377 
3378 		if (!fully_acked)
3379 			break;
3380 
3381 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3382 
3383 		next = skb_rb_next(skb);
3384 		if (unlikely(skb == tp->retransmit_skb_hint))
3385 			tp->retransmit_skb_hint = NULL;
3386 		if (unlikely(skb == tp->lost_skb_hint))
3387 			tp->lost_skb_hint = NULL;
3388 		tcp_highest_sack_replace(sk, skb, next);
3389 		tcp_rtx_queue_unlink_and_free(skb, sk);
3390 	}
3391 
3392 	if (!skb)
3393 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3394 
3395 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3396 		tp->snd_up = tp->snd_una;
3397 
3398 	if (skb) {
3399 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3400 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3401 			flag |= FLAG_SACK_RENEGING;
3402 	}
3403 
3404 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3405 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3406 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3407 
3408 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3409 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3410 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3411 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3412 			/* Conservatively mark a delayed ACK. It's typically
3413 			 * from a lone runt packet over the round trip to
3414 			 * a receiver w/o out-of-order or CE events.
3415 			 */
3416 			flag |= FLAG_ACK_MAYBE_DELAYED;
3417 		}
3418 	}
3419 	if (sack->first_sackt) {
3420 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3421 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3422 	}
3423 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3424 					ca_rtt_us, sack->rate);
3425 
3426 	if (flag & FLAG_ACKED) {
3427 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3428 		if (unlikely(icsk->icsk_mtup.probe_size &&
3429 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3430 			tcp_mtup_probe_success(sk);
3431 		}
3432 
3433 		if (tcp_is_reno(tp)) {
3434 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3435 
3436 			/* If any of the cumulatively ACKed segments was
3437 			 * retransmitted, non-SACK case cannot confirm that
3438 			 * progress was due to original transmission due to
3439 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3440 			 * the packets may have been never retransmitted.
3441 			 */
3442 			if (flag & FLAG_RETRANS_DATA_ACKED)
3443 				flag &= ~FLAG_ORIG_SACK_ACKED;
3444 		} else {
3445 			int delta;
3446 
3447 			/* Non-retransmitted hole got filled? That's reordering */
3448 			if (before(reord, prior_fack))
3449 				tcp_check_sack_reordering(sk, reord, 0);
3450 
3451 			delta = prior_sacked - tp->sacked_out;
3452 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3453 		}
3454 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3455 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3456 						    tcp_skb_timestamp_us(skb))) {
3457 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3458 		 * after when the head was last (re)transmitted. Otherwise the
3459 		 * timeout may continue to extend in loss recovery.
3460 		 */
3461 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3462 	}
3463 
3464 	if (icsk->icsk_ca_ops->pkts_acked) {
3465 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3466 					     .rtt_us = sack->rate->rtt_us };
3467 
3468 		sample.in_flight = tp->mss_cache *
3469 			(tp->delivered - sack->rate->prior_delivered);
3470 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3471 	}
3472 
3473 #if FASTRETRANS_DEBUG > 0
3474 	WARN_ON((int)tp->sacked_out < 0);
3475 	WARN_ON((int)tp->lost_out < 0);
3476 	WARN_ON((int)tp->retrans_out < 0);
3477 	if (!tp->packets_out && tcp_is_sack(tp)) {
3478 		icsk = inet_csk(sk);
3479 		if (tp->lost_out) {
3480 			pr_debug("Leak l=%u %d\n",
3481 				 tp->lost_out, icsk->icsk_ca_state);
3482 			tp->lost_out = 0;
3483 		}
3484 		if (tp->sacked_out) {
3485 			pr_debug("Leak s=%u %d\n",
3486 				 tp->sacked_out, icsk->icsk_ca_state);
3487 			tp->sacked_out = 0;
3488 		}
3489 		if (tp->retrans_out) {
3490 			pr_debug("Leak r=%u %d\n",
3491 				 tp->retrans_out, icsk->icsk_ca_state);
3492 			tp->retrans_out = 0;
3493 		}
3494 	}
3495 #endif
3496 	return flag;
3497 }
3498 
3499 static void tcp_ack_probe(struct sock *sk)
3500 {
3501 	struct inet_connection_sock *icsk = inet_csk(sk);
3502 	struct sk_buff *head = tcp_send_head(sk);
3503 	const struct tcp_sock *tp = tcp_sk(sk);
3504 
3505 	/* Was it a usable window open? */
3506 	if (!head)
3507 		return;
3508 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3509 		icsk->icsk_backoff = 0;
3510 		icsk->icsk_probes_tstamp = 0;
3511 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3512 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3513 		 * This function is not for random using!
3514 		 */
3515 	} else {
3516 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3517 
3518 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3519 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3520 	}
3521 }
3522 
3523 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3524 {
3525 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3526 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3527 }
3528 
3529 /* Decide wheather to run the increase function of congestion control. */
3530 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3531 {
3532 	/* If reordering is high then always grow cwnd whenever data is
3533 	 * delivered regardless of its ordering. Otherwise stay conservative
3534 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3535 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3536 	 * cwnd in tcp_fastretrans_alert() based on more states.
3537 	 */
3538 	if (tcp_sk(sk)->reordering >
3539 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3540 		return flag & FLAG_FORWARD_PROGRESS;
3541 
3542 	return flag & FLAG_DATA_ACKED;
3543 }
3544 
3545 /* The "ultimate" congestion control function that aims to replace the rigid
3546  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3547  * It's called toward the end of processing an ACK with precise rate
3548  * information. All transmission or retransmission are delayed afterwards.
3549  */
3550 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3551 			     int flag, const struct rate_sample *rs)
3552 {
3553 	const struct inet_connection_sock *icsk = inet_csk(sk);
3554 
3555 	if (icsk->icsk_ca_ops->cong_control) {
3556 		icsk->icsk_ca_ops->cong_control(sk, rs);
3557 		return;
3558 	}
3559 
3560 	if (tcp_in_cwnd_reduction(sk)) {
3561 		/* Reduce cwnd if state mandates */
3562 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3563 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3564 		/* Advance cwnd if state allows */
3565 		tcp_cong_avoid(sk, ack, acked_sacked);
3566 	}
3567 	tcp_update_pacing_rate(sk);
3568 }
3569 
3570 /* Check that window update is acceptable.
3571  * The function assumes that snd_una<=ack<=snd_next.
3572  */
3573 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3574 					const u32 ack, const u32 ack_seq,
3575 					const u32 nwin)
3576 {
3577 	return	after(ack, tp->snd_una) ||
3578 		after(ack_seq, tp->snd_wl1) ||
3579 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3580 }
3581 
3582 /* If we update tp->snd_una, also update tp->bytes_acked */
3583 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3584 {
3585 	u32 delta = ack - tp->snd_una;
3586 
3587 	sock_owned_by_me((struct sock *)tp);
3588 	tp->bytes_acked += delta;
3589 	tp->snd_una = ack;
3590 }
3591 
3592 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3593 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3594 {
3595 	u32 delta = seq - tp->rcv_nxt;
3596 
3597 	sock_owned_by_me((struct sock *)tp);
3598 	tp->bytes_received += delta;
3599 	WRITE_ONCE(tp->rcv_nxt, seq);
3600 }
3601 
3602 /* Update our send window.
3603  *
3604  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3605  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3606  */
3607 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3608 				 u32 ack_seq)
3609 {
3610 	struct tcp_sock *tp = tcp_sk(sk);
3611 	int flag = 0;
3612 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3613 
3614 	if (likely(!tcp_hdr(skb)->syn))
3615 		nwin <<= tp->rx_opt.snd_wscale;
3616 
3617 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3618 		flag |= FLAG_WIN_UPDATE;
3619 		tcp_update_wl(tp, ack_seq);
3620 
3621 		if (tp->snd_wnd != nwin) {
3622 			tp->snd_wnd = nwin;
3623 
3624 			/* Note, it is the only place, where
3625 			 * fast path is recovered for sending TCP.
3626 			 */
3627 			tp->pred_flags = 0;
3628 			tcp_fast_path_check(sk);
3629 
3630 			if (!tcp_write_queue_empty(sk))
3631 				tcp_slow_start_after_idle_check(sk);
3632 
3633 			if (nwin > tp->max_window) {
3634 				tp->max_window = nwin;
3635 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3636 			}
3637 		}
3638 	}
3639 
3640 	tcp_snd_una_update(tp, ack);
3641 
3642 	return flag;
3643 }
3644 
3645 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3646 				   u32 *last_oow_ack_time)
3647 {
3648 	/* Paired with the WRITE_ONCE() in this function. */
3649 	u32 val = READ_ONCE(*last_oow_ack_time);
3650 
3651 	if (val) {
3652 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3653 
3654 		if (0 <= elapsed &&
3655 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3656 			NET_INC_STATS(net, mib_idx);
3657 			return true;	/* rate-limited: don't send yet! */
3658 		}
3659 	}
3660 
3661 	/* Paired with the prior READ_ONCE() and with itself,
3662 	 * as we might be lockless.
3663 	 */
3664 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3665 
3666 	return false;	/* not rate-limited: go ahead, send dupack now! */
3667 }
3668 
3669 /* Return true if we're currently rate-limiting out-of-window ACKs and
3670  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3671  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3672  * attacks that send repeated SYNs or ACKs for the same connection. To
3673  * do this, we do not send a duplicate SYNACK or ACK if the remote
3674  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3675  */
3676 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3677 			  int mib_idx, u32 *last_oow_ack_time)
3678 {
3679 	/* Data packets without SYNs are not likely part of an ACK loop. */
3680 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3681 	    !tcp_hdr(skb)->syn)
3682 		return false;
3683 
3684 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3685 }
3686 
3687 /* RFC 5961 7 [ACK Throttling] */
3688 static void tcp_send_challenge_ack(struct sock *sk)
3689 {
3690 	struct tcp_sock *tp = tcp_sk(sk);
3691 	struct net *net = sock_net(sk);
3692 	u32 count, now, ack_limit;
3693 
3694 	/* First check our per-socket dupack rate limit. */
3695 	if (__tcp_oow_rate_limited(net,
3696 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3697 				   &tp->last_oow_ack_time))
3698 		return;
3699 
3700 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3701 	if (ack_limit == INT_MAX)
3702 		goto send_ack;
3703 
3704 	/* Then check host-wide RFC 5961 rate limit. */
3705 	now = jiffies / HZ;
3706 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3707 		u32 half = (ack_limit + 1) >> 1;
3708 
3709 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3710 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3711 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3712 	}
3713 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3714 	if (count > 0) {
3715 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3716 send_ack:
3717 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3718 		tcp_send_ack(sk);
3719 	}
3720 }
3721 
3722 static void tcp_store_ts_recent(struct tcp_sock *tp)
3723 {
3724 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3725 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3726 }
3727 
3728 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3729 {
3730 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3731 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3732 		 * extra check below makes sure this can only happen
3733 		 * for pure ACK frames.  -DaveM
3734 		 *
3735 		 * Not only, also it occurs for expired timestamps.
3736 		 */
3737 
3738 		if (tcp_paws_check(&tp->rx_opt, 0))
3739 			tcp_store_ts_recent(tp);
3740 	}
3741 }
3742 
3743 /* This routine deals with acks during a TLP episode and ends an episode by
3744  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3745  */
3746 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3747 {
3748 	struct tcp_sock *tp = tcp_sk(sk);
3749 
3750 	if (before(ack, tp->tlp_high_seq))
3751 		return;
3752 
3753 	if (!tp->tlp_retrans) {
3754 		/* TLP of new data has been acknowledged */
3755 		tp->tlp_high_seq = 0;
3756 	} else if (flag & FLAG_DSACK_TLP) {
3757 		/* This DSACK means original and TLP probe arrived; no loss */
3758 		tp->tlp_high_seq = 0;
3759 	} else if (after(ack, tp->tlp_high_seq)) {
3760 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3761 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3762 		 */
3763 		tcp_init_cwnd_reduction(sk);
3764 		tcp_set_ca_state(sk, TCP_CA_CWR);
3765 		tcp_end_cwnd_reduction(sk);
3766 		tcp_try_keep_open(sk);
3767 		NET_INC_STATS(sock_net(sk),
3768 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3769 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3770 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3771 		/* Pure dupack: original and TLP probe arrived; no loss */
3772 		tp->tlp_high_seq = 0;
3773 	}
3774 }
3775 
3776 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3777 {
3778 	const struct inet_connection_sock *icsk = inet_csk(sk);
3779 
3780 	if (icsk->icsk_ca_ops->in_ack_event)
3781 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3782 }
3783 
3784 /* Congestion control has updated the cwnd already. So if we're in
3785  * loss recovery then now we do any new sends (for FRTO) or
3786  * retransmits (for CA_Loss or CA_recovery) that make sense.
3787  */
3788 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3789 {
3790 	struct tcp_sock *tp = tcp_sk(sk);
3791 
3792 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3793 		return;
3794 
3795 	if (unlikely(rexmit == REXMIT_NEW)) {
3796 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3797 					  TCP_NAGLE_OFF);
3798 		if (after(tp->snd_nxt, tp->high_seq))
3799 			return;
3800 		tp->frto = 0;
3801 	}
3802 	tcp_xmit_retransmit_queue(sk);
3803 }
3804 
3805 /* Returns the number of packets newly acked or sacked by the current ACK */
3806 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3807 {
3808 	const struct net *net = sock_net(sk);
3809 	struct tcp_sock *tp = tcp_sk(sk);
3810 	u32 delivered;
3811 
3812 	delivered = tp->delivered - prior_delivered;
3813 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3814 	if (flag & FLAG_ECE)
3815 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3816 
3817 	return delivered;
3818 }
3819 
3820 /* This routine deals with incoming acks, but not outgoing ones. */
3821 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3822 {
3823 	struct inet_connection_sock *icsk = inet_csk(sk);
3824 	struct tcp_sock *tp = tcp_sk(sk);
3825 	struct tcp_sacktag_state sack_state;
3826 	struct rate_sample rs = { .prior_delivered = 0 };
3827 	u32 prior_snd_una = tp->snd_una;
3828 	bool is_sack_reneg = tp->is_sack_reneg;
3829 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3830 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3831 	int num_dupack = 0;
3832 	int prior_packets = tp->packets_out;
3833 	u32 delivered = tp->delivered;
3834 	u32 lost = tp->lost;
3835 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3836 	u32 prior_fack;
3837 
3838 	sack_state.first_sackt = 0;
3839 	sack_state.rate = &rs;
3840 	sack_state.sack_delivered = 0;
3841 
3842 	/* We very likely will need to access rtx queue. */
3843 	prefetch(sk->tcp_rtx_queue.rb_node);
3844 
3845 	/* If the ack is older than previous acks
3846 	 * then we can probably ignore it.
3847 	 */
3848 	if (before(ack, prior_snd_una)) {
3849 		u32 max_window;
3850 
3851 		/* do not accept ACK for bytes we never sent. */
3852 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3853 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3854 		if (before(ack, prior_snd_una - max_window)) {
3855 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3856 				tcp_send_challenge_ack(sk);
3857 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3858 		}
3859 		goto old_ack;
3860 	}
3861 
3862 	/* If the ack includes data we haven't sent yet, discard
3863 	 * this segment (RFC793 Section 3.9).
3864 	 */
3865 	if (after(ack, tp->snd_nxt))
3866 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3867 
3868 	if (after(ack, prior_snd_una)) {
3869 		flag |= FLAG_SND_UNA_ADVANCED;
3870 		icsk->icsk_retransmits = 0;
3871 
3872 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3873 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3874 			if (icsk->icsk_clean_acked)
3875 				icsk->icsk_clean_acked(sk, ack);
3876 #endif
3877 	}
3878 
3879 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3880 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3881 
3882 	/* ts_recent update must be made after we are sure that the packet
3883 	 * is in window.
3884 	 */
3885 	if (flag & FLAG_UPDATE_TS_RECENT)
3886 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3887 
3888 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3889 	    FLAG_SND_UNA_ADVANCED) {
3890 		/* Window is constant, pure forward advance.
3891 		 * No more checks are required.
3892 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3893 		 */
3894 		tcp_update_wl(tp, ack_seq);
3895 		tcp_snd_una_update(tp, ack);
3896 		flag |= FLAG_WIN_UPDATE;
3897 
3898 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3899 
3900 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3901 	} else {
3902 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3903 
3904 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3905 			flag |= FLAG_DATA;
3906 		else
3907 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3908 
3909 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3910 
3911 		if (TCP_SKB_CB(skb)->sacked)
3912 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3913 							&sack_state);
3914 
3915 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3916 			flag |= FLAG_ECE;
3917 			ack_ev_flags |= CA_ACK_ECE;
3918 		}
3919 
3920 		if (sack_state.sack_delivered)
3921 			tcp_count_delivered(tp, sack_state.sack_delivered,
3922 					    flag & FLAG_ECE);
3923 
3924 		if (flag & FLAG_WIN_UPDATE)
3925 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3926 
3927 		tcp_in_ack_event(sk, ack_ev_flags);
3928 	}
3929 
3930 	/* This is a deviation from RFC3168 since it states that:
3931 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3932 	 * the congestion window, it SHOULD set the CWR bit only on the first
3933 	 * new data packet that it transmits."
3934 	 * We accept CWR on pure ACKs to be more robust
3935 	 * with widely-deployed TCP implementations that do this.
3936 	 */
3937 	tcp_ecn_accept_cwr(sk, skb);
3938 
3939 	/* We passed data and got it acked, remove any soft error
3940 	 * log. Something worked...
3941 	 */
3942 	WRITE_ONCE(sk->sk_err_soft, 0);
3943 	icsk->icsk_probes_out = 0;
3944 	tp->rcv_tstamp = tcp_jiffies32;
3945 	if (!prior_packets)
3946 		goto no_queue;
3947 
3948 	/* See if we can take anything off of the retransmit queue. */
3949 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3950 				    &sack_state, flag & FLAG_ECE);
3951 
3952 	tcp_rack_update_reo_wnd(sk, &rs);
3953 
3954 	if (tp->tlp_high_seq)
3955 		tcp_process_tlp_ack(sk, ack, flag);
3956 
3957 	if (tcp_ack_is_dubious(sk, flag)) {
3958 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3959 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3960 			num_dupack = 1;
3961 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3962 			if (!(flag & FLAG_DATA))
3963 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3964 		}
3965 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3966 				      &rexmit);
3967 	}
3968 
3969 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3970 	if (flag & FLAG_SET_XMIT_TIMER)
3971 		tcp_set_xmit_timer(sk);
3972 
3973 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3974 		sk_dst_confirm(sk);
3975 
3976 	delivered = tcp_newly_delivered(sk, delivered, flag);
3977 	lost = tp->lost - lost;			/* freshly marked lost */
3978 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3979 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3980 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3981 	tcp_xmit_recovery(sk, rexmit);
3982 	return 1;
3983 
3984 no_queue:
3985 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3986 	if (flag & FLAG_DSACKING_ACK) {
3987 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3988 				      &rexmit);
3989 		tcp_newly_delivered(sk, delivered, flag);
3990 	}
3991 	/* If this ack opens up a zero window, clear backoff.  It was
3992 	 * being used to time the probes, and is probably far higher than
3993 	 * it needs to be for normal retransmission.
3994 	 */
3995 	tcp_ack_probe(sk);
3996 
3997 	if (tp->tlp_high_seq)
3998 		tcp_process_tlp_ack(sk, ack, flag);
3999 	return 1;
4000 
4001 old_ack:
4002 	/* If data was SACKed, tag it and see if we should send more data.
4003 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4004 	 */
4005 	if (TCP_SKB_CB(skb)->sacked) {
4006 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4007 						&sack_state);
4008 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4009 				      &rexmit);
4010 		tcp_newly_delivered(sk, delivered, flag);
4011 		tcp_xmit_recovery(sk, rexmit);
4012 	}
4013 
4014 	return 0;
4015 }
4016 
4017 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4018 				      bool syn, struct tcp_fastopen_cookie *foc,
4019 				      bool exp_opt)
4020 {
4021 	/* Valid only in SYN or SYN-ACK with an even length.  */
4022 	if (!foc || !syn || len < 0 || (len & 1))
4023 		return;
4024 
4025 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4026 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4027 		memcpy(foc->val, cookie, len);
4028 	else if (len != 0)
4029 		len = -1;
4030 	foc->len = len;
4031 	foc->exp = exp_opt;
4032 }
4033 
4034 static bool smc_parse_options(const struct tcphdr *th,
4035 			      struct tcp_options_received *opt_rx,
4036 			      const unsigned char *ptr,
4037 			      int opsize)
4038 {
4039 #if IS_ENABLED(CONFIG_SMC)
4040 	if (static_branch_unlikely(&tcp_have_smc)) {
4041 		if (th->syn && !(opsize & 1) &&
4042 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4043 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4044 			opt_rx->smc_ok = 1;
4045 			return true;
4046 		}
4047 	}
4048 #endif
4049 	return false;
4050 }
4051 
4052 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4053  * value on success.
4054  */
4055 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4056 {
4057 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4058 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4059 	u16 mss = 0;
4060 
4061 	while (length > 0) {
4062 		int opcode = *ptr++;
4063 		int opsize;
4064 
4065 		switch (opcode) {
4066 		case TCPOPT_EOL:
4067 			return mss;
4068 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4069 			length--;
4070 			continue;
4071 		default:
4072 			if (length < 2)
4073 				return mss;
4074 			opsize = *ptr++;
4075 			if (opsize < 2) /* "silly options" */
4076 				return mss;
4077 			if (opsize > length)
4078 				return mss;	/* fail on partial options */
4079 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4080 				u16 in_mss = get_unaligned_be16(ptr);
4081 
4082 				if (in_mss) {
4083 					if (user_mss && user_mss < in_mss)
4084 						in_mss = user_mss;
4085 					mss = in_mss;
4086 				}
4087 			}
4088 			ptr += opsize - 2;
4089 			length -= opsize;
4090 		}
4091 	}
4092 	return mss;
4093 }
4094 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4095 
4096 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4097  * But, this can also be called on packets in the established flow when
4098  * the fast version below fails.
4099  */
4100 void tcp_parse_options(const struct net *net,
4101 		       const struct sk_buff *skb,
4102 		       struct tcp_options_received *opt_rx, int estab,
4103 		       struct tcp_fastopen_cookie *foc)
4104 {
4105 	const unsigned char *ptr;
4106 	const struct tcphdr *th = tcp_hdr(skb);
4107 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4108 
4109 	ptr = (const unsigned char *)(th + 1);
4110 	opt_rx->saw_tstamp = 0;
4111 	opt_rx->saw_unknown = 0;
4112 
4113 	while (length > 0) {
4114 		int opcode = *ptr++;
4115 		int opsize;
4116 
4117 		switch (opcode) {
4118 		case TCPOPT_EOL:
4119 			return;
4120 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4121 			length--;
4122 			continue;
4123 		default:
4124 			if (length < 2)
4125 				return;
4126 			opsize = *ptr++;
4127 			if (opsize < 2) /* "silly options" */
4128 				return;
4129 			if (opsize > length)
4130 				return;	/* don't parse partial options */
4131 			switch (opcode) {
4132 			case TCPOPT_MSS:
4133 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4134 					u16 in_mss = get_unaligned_be16(ptr);
4135 					if (in_mss) {
4136 						if (opt_rx->user_mss &&
4137 						    opt_rx->user_mss < in_mss)
4138 							in_mss = opt_rx->user_mss;
4139 						opt_rx->mss_clamp = in_mss;
4140 					}
4141 				}
4142 				break;
4143 			case TCPOPT_WINDOW:
4144 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4145 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4146 					__u8 snd_wscale = *(__u8 *)ptr;
4147 					opt_rx->wscale_ok = 1;
4148 					if (snd_wscale > TCP_MAX_WSCALE) {
4149 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4150 								     __func__,
4151 								     snd_wscale,
4152 								     TCP_MAX_WSCALE);
4153 						snd_wscale = TCP_MAX_WSCALE;
4154 					}
4155 					opt_rx->snd_wscale = snd_wscale;
4156 				}
4157 				break;
4158 			case TCPOPT_TIMESTAMP:
4159 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4160 				    ((estab && opt_rx->tstamp_ok) ||
4161 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4162 					opt_rx->saw_tstamp = 1;
4163 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4164 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4165 				}
4166 				break;
4167 			case TCPOPT_SACK_PERM:
4168 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4169 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4170 					opt_rx->sack_ok = TCP_SACK_SEEN;
4171 					tcp_sack_reset(opt_rx);
4172 				}
4173 				break;
4174 
4175 			case TCPOPT_SACK:
4176 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4177 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4178 				   opt_rx->sack_ok) {
4179 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4180 				}
4181 				break;
4182 #ifdef CONFIG_TCP_MD5SIG
4183 			case TCPOPT_MD5SIG:
4184 				/* The MD5 Hash has already been
4185 				 * checked (see tcp_v{4,6}_rcv()).
4186 				 */
4187 				break;
4188 #endif
4189 			case TCPOPT_FASTOPEN:
4190 				tcp_parse_fastopen_option(
4191 					opsize - TCPOLEN_FASTOPEN_BASE,
4192 					ptr, th->syn, foc, false);
4193 				break;
4194 
4195 			case TCPOPT_EXP:
4196 				/* Fast Open option shares code 254 using a
4197 				 * 16 bits magic number.
4198 				 */
4199 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4200 				    get_unaligned_be16(ptr) ==
4201 				    TCPOPT_FASTOPEN_MAGIC) {
4202 					tcp_parse_fastopen_option(opsize -
4203 						TCPOLEN_EXP_FASTOPEN_BASE,
4204 						ptr + 2, th->syn, foc, true);
4205 					break;
4206 				}
4207 
4208 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4209 					break;
4210 
4211 				opt_rx->saw_unknown = 1;
4212 				break;
4213 
4214 			default:
4215 				opt_rx->saw_unknown = 1;
4216 			}
4217 			ptr += opsize-2;
4218 			length -= opsize;
4219 		}
4220 	}
4221 }
4222 EXPORT_SYMBOL(tcp_parse_options);
4223 
4224 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4225 {
4226 	const __be32 *ptr = (const __be32 *)(th + 1);
4227 
4228 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4229 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4230 		tp->rx_opt.saw_tstamp = 1;
4231 		++ptr;
4232 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4233 		++ptr;
4234 		if (*ptr)
4235 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4236 		else
4237 			tp->rx_opt.rcv_tsecr = 0;
4238 		return true;
4239 	}
4240 	return false;
4241 }
4242 
4243 /* Fast parse options. This hopes to only see timestamps.
4244  * If it is wrong it falls back on tcp_parse_options().
4245  */
4246 static bool tcp_fast_parse_options(const struct net *net,
4247 				   const struct sk_buff *skb,
4248 				   const struct tcphdr *th, struct tcp_sock *tp)
4249 {
4250 	/* In the spirit of fast parsing, compare doff directly to constant
4251 	 * values.  Because equality is used, short doff can be ignored here.
4252 	 */
4253 	if (th->doff == (sizeof(*th) / 4)) {
4254 		tp->rx_opt.saw_tstamp = 0;
4255 		return false;
4256 	} else if (tp->rx_opt.tstamp_ok &&
4257 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4258 		if (tcp_parse_aligned_timestamp(tp, th))
4259 			return true;
4260 	}
4261 
4262 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4263 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4264 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4265 
4266 	return true;
4267 }
4268 
4269 #ifdef CONFIG_TCP_MD5SIG
4270 /*
4271  * Parse MD5 Signature option
4272  */
4273 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4274 {
4275 	int length = (th->doff << 2) - sizeof(*th);
4276 	const u8 *ptr = (const u8 *)(th + 1);
4277 
4278 	/* If not enough data remaining, we can short cut */
4279 	while (length >= TCPOLEN_MD5SIG) {
4280 		int opcode = *ptr++;
4281 		int opsize;
4282 
4283 		switch (opcode) {
4284 		case TCPOPT_EOL:
4285 			return NULL;
4286 		case TCPOPT_NOP:
4287 			length--;
4288 			continue;
4289 		default:
4290 			opsize = *ptr++;
4291 			if (opsize < 2 || opsize > length)
4292 				return NULL;
4293 			if (opcode == TCPOPT_MD5SIG)
4294 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4295 		}
4296 		ptr += opsize - 2;
4297 		length -= opsize;
4298 	}
4299 	return NULL;
4300 }
4301 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4302 #endif
4303 
4304 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4305  *
4306  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4307  * it can pass through stack. So, the following predicate verifies that
4308  * this segment is not used for anything but congestion avoidance or
4309  * fast retransmit. Moreover, we even are able to eliminate most of such
4310  * second order effects, if we apply some small "replay" window (~RTO)
4311  * to timestamp space.
4312  *
4313  * All these measures still do not guarantee that we reject wrapped ACKs
4314  * on networks with high bandwidth, when sequence space is recycled fastly,
4315  * but it guarantees that such events will be very rare and do not affect
4316  * connection seriously. This doesn't look nice, but alas, PAWS is really
4317  * buggy extension.
4318  *
4319  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4320  * states that events when retransmit arrives after original data are rare.
4321  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4322  * the biggest problem on large power networks even with minor reordering.
4323  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4324  * up to bandwidth of 18Gigabit/sec. 8) ]
4325  */
4326 
4327 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4328 {
4329 	const struct tcp_sock *tp = tcp_sk(sk);
4330 	const struct tcphdr *th = tcp_hdr(skb);
4331 	u32 seq = TCP_SKB_CB(skb)->seq;
4332 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4333 
4334 	return (/* 1. Pure ACK with correct sequence number. */
4335 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4336 
4337 		/* 2. ... and duplicate ACK. */
4338 		ack == tp->snd_una &&
4339 
4340 		/* 3. ... and does not update window. */
4341 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4342 
4343 		/* 4. ... and sits in replay window. */
4344 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4345 }
4346 
4347 static inline bool tcp_paws_discard(const struct sock *sk,
4348 				   const struct sk_buff *skb)
4349 {
4350 	const struct tcp_sock *tp = tcp_sk(sk);
4351 
4352 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4353 	       !tcp_disordered_ack(sk, skb);
4354 }
4355 
4356 /* Check segment sequence number for validity.
4357  *
4358  * Segment controls are considered valid, if the segment
4359  * fits to the window after truncation to the window. Acceptability
4360  * of data (and SYN, FIN, of course) is checked separately.
4361  * See tcp_data_queue(), for example.
4362  *
4363  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4364  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4365  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4366  * (borrowed from freebsd)
4367  */
4368 
4369 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4370 					 u32 seq, u32 end_seq)
4371 {
4372 	if (before(end_seq, tp->rcv_wup))
4373 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4374 
4375 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4376 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4377 
4378 	return SKB_NOT_DROPPED_YET;
4379 }
4380 
4381 
4382 void tcp_done_with_error(struct sock *sk, int err)
4383 {
4384 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4385 	WRITE_ONCE(sk->sk_err, err);
4386 	smp_wmb();
4387 
4388 	tcp_write_queue_purge(sk);
4389 	tcp_done(sk);
4390 
4391 	if (!sock_flag(sk, SOCK_DEAD))
4392 		sk_error_report(sk);
4393 }
4394 EXPORT_SYMBOL(tcp_done_with_error);
4395 
4396 /* When we get a reset we do this. */
4397 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4398 {
4399 	int err;
4400 
4401 	trace_tcp_receive_reset(sk);
4402 
4403 	/* mptcp can't tell us to ignore reset pkts,
4404 	 * so just ignore the return value of mptcp_incoming_options().
4405 	 */
4406 	if (sk_is_mptcp(sk))
4407 		mptcp_incoming_options(sk, skb);
4408 
4409 	/* We want the right error as BSD sees it (and indeed as we do). */
4410 	switch (sk->sk_state) {
4411 	case TCP_SYN_SENT:
4412 		err = ECONNREFUSED;
4413 		break;
4414 	case TCP_CLOSE_WAIT:
4415 		err = EPIPE;
4416 		break;
4417 	case TCP_CLOSE:
4418 		return;
4419 	default:
4420 		err = ECONNRESET;
4421 	}
4422 	tcp_done_with_error(sk, err);
4423 }
4424 
4425 /*
4426  * 	Process the FIN bit. This now behaves as it is supposed to work
4427  *	and the FIN takes effect when it is validly part of sequence
4428  *	space. Not before when we get holes.
4429  *
4430  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4431  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4432  *	TIME-WAIT)
4433  *
4434  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4435  *	close and we go into CLOSING (and later onto TIME-WAIT)
4436  *
4437  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4438  */
4439 void tcp_fin(struct sock *sk)
4440 {
4441 	struct tcp_sock *tp = tcp_sk(sk);
4442 
4443 	inet_csk_schedule_ack(sk);
4444 
4445 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4446 	sock_set_flag(sk, SOCK_DONE);
4447 
4448 	switch (sk->sk_state) {
4449 	case TCP_SYN_RECV:
4450 	case TCP_ESTABLISHED:
4451 		/* Move to CLOSE_WAIT */
4452 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4453 		inet_csk_enter_pingpong_mode(sk);
4454 		break;
4455 
4456 	case TCP_CLOSE_WAIT:
4457 	case TCP_CLOSING:
4458 		/* Received a retransmission of the FIN, do
4459 		 * nothing.
4460 		 */
4461 		break;
4462 	case TCP_LAST_ACK:
4463 		/* RFC793: Remain in the LAST-ACK state. */
4464 		break;
4465 
4466 	case TCP_FIN_WAIT1:
4467 		/* This case occurs when a simultaneous close
4468 		 * happens, we must ack the received FIN and
4469 		 * enter the CLOSING state.
4470 		 */
4471 		tcp_send_ack(sk);
4472 		tcp_set_state(sk, TCP_CLOSING);
4473 		break;
4474 	case TCP_FIN_WAIT2:
4475 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4476 		tcp_send_ack(sk);
4477 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4478 		break;
4479 	default:
4480 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4481 		 * cases we should never reach this piece of code.
4482 		 */
4483 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4484 		       __func__, sk->sk_state);
4485 		break;
4486 	}
4487 
4488 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4489 	 * Probably, we should reset in this case. For now drop them.
4490 	 */
4491 	skb_rbtree_purge(&tp->out_of_order_queue);
4492 	if (tcp_is_sack(tp))
4493 		tcp_sack_reset(&tp->rx_opt);
4494 
4495 	if (!sock_flag(sk, SOCK_DEAD)) {
4496 		sk->sk_state_change(sk);
4497 
4498 		/* Do not send POLL_HUP for half duplex close. */
4499 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4500 		    sk->sk_state == TCP_CLOSE)
4501 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4502 		else
4503 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4504 	}
4505 }
4506 
4507 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4508 				  u32 end_seq)
4509 {
4510 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4511 		if (before(seq, sp->start_seq))
4512 			sp->start_seq = seq;
4513 		if (after(end_seq, sp->end_seq))
4514 			sp->end_seq = end_seq;
4515 		return true;
4516 	}
4517 	return false;
4518 }
4519 
4520 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4521 {
4522 	struct tcp_sock *tp = tcp_sk(sk);
4523 
4524 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4525 		int mib_idx;
4526 
4527 		if (before(seq, tp->rcv_nxt))
4528 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4529 		else
4530 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4531 
4532 		NET_INC_STATS(sock_net(sk), mib_idx);
4533 
4534 		tp->rx_opt.dsack = 1;
4535 		tp->duplicate_sack[0].start_seq = seq;
4536 		tp->duplicate_sack[0].end_seq = end_seq;
4537 	}
4538 }
4539 
4540 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4541 {
4542 	struct tcp_sock *tp = tcp_sk(sk);
4543 
4544 	if (!tp->rx_opt.dsack)
4545 		tcp_dsack_set(sk, seq, end_seq);
4546 	else
4547 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4548 }
4549 
4550 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4551 {
4552 	/* When the ACK path fails or drops most ACKs, the sender would
4553 	 * timeout and spuriously retransmit the same segment repeatedly.
4554 	 * The receiver remembers and reflects via DSACKs. Leverage the
4555 	 * DSACK state and change the txhash to re-route speculatively.
4556 	 */
4557 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4558 	    sk_rethink_txhash(sk))
4559 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4560 }
4561 
4562 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4563 {
4564 	struct tcp_sock *tp = tcp_sk(sk);
4565 
4566 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4567 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4568 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4569 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4570 
4571 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4572 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4573 
4574 			tcp_rcv_spurious_retrans(sk, skb);
4575 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4576 				end_seq = tp->rcv_nxt;
4577 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4578 		}
4579 	}
4580 
4581 	tcp_send_ack(sk);
4582 }
4583 
4584 /* These routines update the SACK block as out-of-order packets arrive or
4585  * in-order packets close up the sequence space.
4586  */
4587 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4588 {
4589 	int this_sack;
4590 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4591 	struct tcp_sack_block *swalk = sp + 1;
4592 
4593 	/* See if the recent change to the first SACK eats into
4594 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4595 	 */
4596 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4597 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4598 			int i;
4599 
4600 			/* Zap SWALK, by moving every further SACK up by one slot.
4601 			 * Decrease num_sacks.
4602 			 */
4603 			tp->rx_opt.num_sacks--;
4604 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4605 				sp[i] = sp[i + 1];
4606 			continue;
4607 		}
4608 		this_sack++;
4609 		swalk++;
4610 	}
4611 }
4612 
4613 void tcp_sack_compress_send_ack(struct sock *sk)
4614 {
4615 	struct tcp_sock *tp = tcp_sk(sk);
4616 
4617 	if (!tp->compressed_ack)
4618 		return;
4619 
4620 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4621 		__sock_put(sk);
4622 
4623 	/* Since we have to send one ack finally,
4624 	 * substract one from tp->compressed_ack to keep
4625 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4626 	 */
4627 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4628 		      tp->compressed_ack - 1);
4629 
4630 	tp->compressed_ack = 0;
4631 	tcp_send_ack(sk);
4632 }
4633 
4634 /* Reasonable amount of sack blocks included in TCP SACK option
4635  * The max is 4, but this becomes 3 if TCP timestamps are there.
4636  * Given that SACK packets might be lost, be conservative and use 2.
4637  */
4638 #define TCP_SACK_BLOCKS_EXPECTED 2
4639 
4640 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4641 {
4642 	struct tcp_sock *tp = tcp_sk(sk);
4643 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4644 	int cur_sacks = tp->rx_opt.num_sacks;
4645 	int this_sack;
4646 
4647 	if (!cur_sacks)
4648 		goto new_sack;
4649 
4650 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4651 		if (tcp_sack_extend(sp, seq, end_seq)) {
4652 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4653 				tcp_sack_compress_send_ack(sk);
4654 			/* Rotate this_sack to the first one. */
4655 			for (; this_sack > 0; this_sack--, sp--)
4656 				swap(*sp, *(sp - 1));
4657 			if (cur_sacks > 1)
4658 				tcp_sack_maybe_coalesce(tp);
4659 			return;
4660 		}
4661 	}
4662 
4663 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4664 		tcp_sack_compress_send_ack(sk);
4665 
4666 	/* Could not find an adjacent existing SACK, build a new one,
4667 	 * put it at the front, and shift everyone else down.  We
4668 	 * always know there is at least one SACK present already here.
4669 	 *
4670 	 * If the sack array is full, forget about the last one.
4671 	 */
4672 	if (this_sack >= TCP_NUM_SACKS) {
4673 		this_sack--;
4674 		tp->rx_opt.num_sacks--;
4675 		sp--;
4676 	}
4677 	for (; this_sack > 0; this_sack--, sp--)
4678 		*sp = *(sp - 1);
4679 
4680 new_sack:
4681 	/* Build the new head SACK, and we're done. */
4682 	sp->start_seq = seq;
4683 	sp->end_seq = end_seq;
4684 	tp->rx_opt.num_sacks++;
4685 }
4686 
4687 /* RCV.NXT advances, some SACKs should be eaten. */
4688 
4689 static void tcp_sack_remove(struct tcp_sock *tp)
4690 {
4691 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4692 	int num_sacks = tp->rx_opt.num_sacks;
4693 	int this_sack;
4694 
4695 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4696 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4697 		tp->rx_opt.num_sacks = 0;
4698 		return;
4699 	}
4700 
4701 	for (this_sack = 0; this_sack < num_sacks;) {
4702 		/* Check if the start of the sack is covered by RCV.NXT. */
4703 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4704 			int i;
4705 
4706 			/* RCV.NXT must cover all the block! */
4707 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4708 
4709 			/* Zap this SACK, by moving forward any other SACKS. */
4710 			for (i = this_sack+1; i < num_sacks; i++)
4711 				tp->selective_acks[i-1] = tp->selective_acks[i];
4712 			num_sacks--;
4713 			continue;
4714 		}
4715 		this_sack++;
4716 		sp++;
4717 	}
4718 	tp->rx_opt.num_sacks = num_sacks;
4719 }
4720 
4721 /**
4722  * tcp_try_coalesce - try to merge skb to prior one
4723  * @sk: socket
4724  * @to: prior buffer
4725  * @from: buffer to add in queue
4726  * @fragstolen: pointer to boolean
4727  *
4728  * Before queueing skb @from after @to, try to merge them
4729  * to reduce overall memory use and queue lengths, if cost is small.
4730  * Packets in ofo or receive queues can stay a long time.
4731  * Better try to coalesce them right now to avoid future collapses.
4732  * Returns true if caller should free @from instead of queueing it
4733  */
4734 static bool tcp_try_coalesce(struct sock *sk,
4735 			     struct sk_buff *to,
4736 			     struct sk_buff *from,
4737 			     bool *fragstolen)
4738 {
4739 	int delta;
4740 
4741 	*fragstolen = false;
4742 
4743 	/* Its possible this segment overlaps with prior segment in queue */
4744 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4745 		return false;
4746 
4747 	if (!mptcp_skb_can_collapse(to, from))
4748 		return false;
4749 
4750 #ifdef CONFIG_TLS_DEVICE
4751 	if (from->decrypted != to->decrypted)
4752 		return false;
4753 #endif
4754 
4755 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4756 		return false;
4757 
4758 	atomic_add(delta, &sk->sk_rmem_alloc);
4759 	sk_mem_charge(sk, delta);
4760 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4761 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4762 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4763 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4764 
4765 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4766 		TCP_SKB_CB(to)->has_rxtstamp = true;
4767 		to->tstamp = from->tstamp;
4768 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4769 	}
4770 
4771 	return true;
4772 }
4773 
4774 static bool tcp_ooo_try_coalesce(struct sock *sk,
4775 			     struct sk_buff *to,
4776 			     struct sk_buff *from,
4777 			     bool *fragstolen)
4778 {
4779 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4780 
4781 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4782 	if (res) {
4783 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4784 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4785 
4786 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4787 	}
4788 	return res;
4789 }
4790 
4791 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4792 			    enum skb_drop_reason reason)
4793 {
4794 	sk_drops_add(sk, skb);
4795 	kfree_skb_reason(skb, reason);
4796 }
4797 
4798 /* This one checks to see if we can put data from the
4799  * out_of_order queue into the receive_queue.
4800  */
4801 static void tcp_ofo_queue(struct sock *sk)
4802 {
4803 	struct tcp_sock *tp = tcp_sk(sk);
4804 	__u32 dsack_high = tp->rcv_nxt;
4805 	bool fin, fragstolen, eaten;
4806 	struct sk_buff *skb, *tail;
4807 	struct rb_node *p;
4808 
4809 	p = rb_first(&tp->out_of_order_queue);
4810 	while (p) {
4811 		skb = rb_to_skb(p);
4812 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4813 			break;
4814 
4815 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4816 			__u32 dsack = dsack_high;
4817 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4818 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4819 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4820 		}
4821 		p = rb_next(p);
4822 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4823 
4824 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4825 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4826 			continue;
4827 		}
4828 
4829 		tail = skb_peek_tail(&sk->sk_receive_queue);
4830 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4831 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4832 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4833 		if (!eaten)
4834 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4835 		else
4836 			kfree_skb_partial(skb, fragstolen);
4837 
4838 		if (unlikely(fin)) {
4839 			tcp_fin(sk);
4840 			/* tcp_fin() purges tp->out_of_order_queue,
4841 			 * so we must end this loop right now.
4842 			 */
4843 			break;
4844 		}
4845 	}
4846 }
4847 
4848 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4849 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4850 
4851 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4852 				 unsigned int size)
4853 {
4854 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4855 	    !sk_rmem_schedule(sk, skb, size)) {
4856 
4857 		if (tcp_prune_queue(sk, skb) < 0)
4858 			return -1;
4859 
4860 		while (!sk_rmem_schedule(sk, skb, size)) {
4861 			if (!tcp_prune_ofo_queue(sk, skb))
4862 				return -1;
4863 		}
4864 	}
4865 	return 0;
4866 }
4867 
4868 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4869 {
4870 	struct tcp_sock *tp = tcp_sk(sk);
4871 	struct rb_node **p, *parent;
4872 	struct sk_buff *skb1;
4873 	u32 seq, end_seq;
4874 	bool fragstolen;
4875 
4876 	tcp_ecn_check_ce(sk, skb);
4877 
4878 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4879 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4880 		sk->sk_data_ready(sk);
4881 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4882 		return;
4883 	}
4884 
4885 	/* Disable header prediction. */
4886 	tp->pred_flags = 0;
4887 	inet_csk_schedule_ack(sk);
4888 
4889 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4890 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4891 	seq = TCP_SKB_CB(skb)->seq;
4892 	end_seq = TCP_SKB_CB(skb)->end_seq;
4893 
4894 	p = &tp->out_of_order_queue.rb_node;
4895 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4896 		/* Initial out of order segment, build 1 SACK. */
4897 		if (tcp_is_sack(tp)) {
4898 			tp->rx_opt.num_sacks = 1;
4899 			tp->selective_acks[0].start_seq = seq;
4900 			tp->selective_acks[0].end_seq = end_seq;
4901 		}
4902 		rb_link_node(&skb->rbnode, NULL, p);
4903 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4904 		tp->ooo_last_skb = skb;
4905 		goto end;
4906 	}
4907 
4908 	/* In the typical case, we are adding an skb to the end of the list.
4909 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4910 	 */
4911 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4912 				 skb, &fragstolen)) {
4913 coalesce_done:
4914 		/* For non sack flows, do not grow window to force DUPACK
4915 		 * and trigger fast retransmit.
4916 		 */
4917 		if (tcp_is_sack(tp))
4918 			tcp_grow_window(sk, skb, true);
4919 		kfree_skb_partial(skb, fragstolen);
4920 		skb = NULL;
4921 		goto add_sack;
4922 	}
4923 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4924 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4925 		parent = &tp->ooo_last_skb->rbnode;
4926 		p = &parent->rb_right;
4927 		goto insert;
4928 	}
4929 
4930 	/* Find place to insert this segment. Handle overlaps on the way. */
4931 	parent = NULL;
4932 	while (*p) {
4933 		parent = *p;
4934 		skb1 = rb_to_skb(parent);
4935 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4936 			p = &parent->rb_left;
4937 			continue;
4938 		}
4939 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4940 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4941 				/* All the bits are present. Drop. */
4942 				NET_INC_STATS(sock_net(sk),
4943 					      LINUX_MIB_TCPOFOMERGE);
4944 				tcp_drop_reason(sk, skb,
4945 						SKB_DROP_REASON_TCP_OFOMERGE);
4946 				skb = NULL;
4947 				tcp_dsack_set(sk, seq, end_seq);
4948 				goto add_sack;
4949 			}
4950 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4951 				/* Partial overlap. */
4952 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4953 			} else {
4954 				/* skb's seq == skb1's seq and skb covers skb1.
4955 				 * Replace skb1 with skb.
4956 				 */
4957 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4958 						&tp->out_of_order_queue);
4959 				tcp_dsack_extend(sk,
4960 						 TCP_SKB_CB(skb1)->seq,
4961 						 TCP_SKB_CB(skb1)->end_seq);
4962 				NET_INC_STATS(sock_net(sk),
4963 					      LINUX_MIB_TCPOFOMERGE);
4964 				tcp_drop_reason(sk, skb1,
4965 						SKB_DROP_REASON_TCP_OFOMERGE);
4966 				goto merge_right;
4967 			}
4968 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4969 						skb, &fragstolen)) {
4970 			goto coalesce_done;
4971 		}
4972 		p = &parent->rb_right;
4973 	}
4974 insert:
4975 	/* Insert segment into RB tree. */
4976 	rb_link_node(&skb->rbnode, parent, p);
4977 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4978 
4979 merge_right:
4980 	/* Remove other segments covered by skb. */
4981 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4982 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4983 			break;
4984 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4985 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4986 					 end_seq);
4987 			break;
4988 		}
4989 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4990 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4991 				 TCP_SKB_CB(skb1)->end_seq);
4992 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4993 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4994 	}
4995 	/* If there is no skb after us, we are the last_skb ! */
4996 	if (!skb1)
4997 		tp->ooo_last_skb = skb;
4998 
4999 add_sack:
5000 	if (tcp_is_sack(tp))
5001 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5002 end:
5003 	if (skb) {
5004 		/* For non sack flows, do not grow window to force DUPACK
5005 		 * and trigger fast retransmit.
5006 		 */
5007 		if (tcp_is_sack(tp))
5008 			tcp_grow_window(sk, skb, false);
5009 		skb_condense(skb);
5010 		skb_set_owner_r(skb, sk);
5011 	}
5012 }
5013 
5014 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5015 				      bool *fragstolen)
5016 {
5017 	int eaten;
5018 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5019 
5020 	eaten = (tail &&
5021 		 tcp_try_coalesce(sk, tail,
5022 				  skb, fragstolen)) ? 1 : 0;
5023 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5024 	if (!eaten) {
5025 		__skb_queue_tail(&sk->sk_receive_queue, skb);
5026 		skb_set_owner_r(skb, sk);
5027 	}
5028 	return eaten;
5029 }
5030 
5031 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5032 {
5033 	struct sk_buff *skb;
5034 	int err = -ENOMEM;
5035 	int data_len = 0;
5036 	bool fragstolen;
5037 
5038 	if (size == 0)
5039 		return 0;
5040 
5041 	if (size > PAGE_SIZE) {
5042 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5043 
5044 		data_len = npages << PAGE_SHIFT;
5045 		size = data_len + (size & ~PAGE_MASK);
5046 	}
5047 	skb = alloc_skb_with_frags(size - data_len, data_len,
5048 				   PAGE_ALLOC_COSTLY_ORDER,
5049 				   &err, sk->sk_allocation);
5050 	if (!skb)
5051 		goto err;
5052 
5053 	skb_put(skb, size - data_len);
5054 	skb->data_len = data_len;
5055 	skb->len = size;
5056 
5057 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5058 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5059 		goto err_free;
5060 	}
5061 
5062 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5063 	if (err)
5064 		goto err_free;
5065 
5066 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5067 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5068 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5069 
5070 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5071 		WARN_ON_ONCE(fragstolen); /* should not happen */
5072 		__kfree_skb(skb);
5073 	}
5074 	return size;
5075 
5076 err_free:
5077 	kfree_skb(skb);
5078 err:
5079 	return err;
5080 
5081 }
5082 
5083 void tcp_data_ready(struct sock *sk)
5084 {
5085 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5086 		sk->sk_data_ready(sk);
5087 }
5088 
5089 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5090 {
5091 	struct tcp_sock *tp = tcp_sk(sk);
5092 	enum skb_drop_reason reason;
5093 	bool fragstolen;
5094 	int eaten;
5095 
5096 	/* If a subflow has been reset, the packet should not continue
5097 	 * to be processed, drop the packet.
5098 	 */
5099 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5100 		__kfree_skb(skb);
5101 		return;
5102 	}
5103 
5104 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5105 		__kfree_skb(skb);
5106 		return;
5107 	}
5108 	skb_dst_drop(skb);
5109 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5110 
5111 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5112 	tp->rx_opt.dsack = 0;
5113 
5114 	/*  Queue data for delivery to the user.
5115 	 *  Packets in sequence go to the receive queue.
5116 	 *  Out of sequence packets to the out_of_order_queue.
5117 	 */
5118 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5119 		if (tcp_receive_window(tp) == 0) {
5120 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5121 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5122 			goto out_of_window;
5123 		}
5124 
5125 		/* Ok. In sequence. In window. */
5126 queue_and_out:
5127 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5128 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5129 			inet_csk(sk)->icsk_ack.pending |=
5130 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5131 			inet_csk_schedule_ack(sk);
5132 			sk->sk_data_ready(sk);
5133 
5134 			if (skb_queue_len(&sk->sk_receive_queue)) {
5135 				reason = SKB_DROP_REASON_PROTO_MEM;
5136 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5137 				goto drop;
5138 			}
5139 			sk_forced_mem_schedule(sk, skb->truesize);
5140 		}
5141 
5142 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5143 		if (skb->len)
5144 			tcp_event_data_recv(sk, skb);
5145 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5146 			tcp_fin(sk);
5147 
5148 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5149 			tcp_ofo_queue(sk);
5150 
5151 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5152 			 * gap in queue is filled.
5153 			 */
5154 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5155 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5156 		}
5157 
5158 		if (tp->rx_opt.num_sacks)
5159 			tcp_sack_remove(tp);
5160 
5161 		tcp_fast_path_check(sk);
5162 
5163 		if (eaten > 0)
5164 			kfree_skb_partial(skb, fragstolen);
5165 		if (!sock_flag(sk, SOCK_DEAD))
5166 			tcp_data_ready(sk);
5167 		return;
5168 	}
5169 
5170 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5171 		tcp_rcv_spurious_retrans(sk, skb);
5172 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5173 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5174 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5175 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5176 
5177 out_of_window:
5178 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5179 		inet_csk_schedule_ack(sk);
5180 drop:
5181 		tcp_drop_reason(sk, skb, reason);
5182 		return;
5183 	}
5184 
5185 	/* Out of window. F.e. zero window probe. */
5186 	if (!before(TCP_SKB_CB(skb)->seq,
5187 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5188 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5189 		goto out_of_window;
5190 	}
5191 
5192 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5193 		/* Partial packet, seq < rcv_next < end_seq */
5194 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5195 
5196 		/* If window is closed, drop tail of packet. But after
5197 		 * remembering D-SACK for its head made in previous line.
5198 		 */
5199 		if (!tcp_receive_window(tp)) {
5200 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5201 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5202 			goto out_of_window;
5203 		}
5204 		goto queue_and_out;
5205 	}
5206 
5207 	tcp_data_queue_ofo(sk, skb);
5208 }
5209 
5210 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5211 {
5212 	if (list)
5213 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5214 
5215 	return skb_rb_next(skb);
5216 }
5217 
5218 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5219 					struct sk_buff_head *list,
5220 					struct rb_root *root)
5221 {
5222 	struct sk_buff *next = tcp_skb_next(skb, list);
5223 
5224 	if (list)
5225 		__skb_unlink(skb, list);
5226 	else
5227 		rb_erase(&skb->rbnode, root);
5228 
5229 	__kfree_skb(skb);
5230 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5231 
5232 	return next;
5233 }
5234 
5235 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5236 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5237 {
5238 	struct rb_node **p = &root->rb_node;
5239 	struct rb_node *parent = NULL;
5240 	struct sk_buff *skb1;
5241 
5242 	while (*p) {
5243 		parent = *p;
5244 		skb1 = rb_to_skb(parent);
5245 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5246 			p = &parent->rb_left;
5247 		else
5248 			p = &parent->rb_right;
5249 	}
5250 	rb_link_node(&skb->rbnode, parent, p);
5251 	rb_insert_color(&skb->rbnode, root);
5252 }
5253 
5254 /* Collapse contiguous sequence of skbs head..tail with
5255  * sequence numbers start..end.
5256  *
5257  * If tail is NULL, this means until the end of the queue.
5258  *
5259  * Segments with FIN/SYN are not collapsed (only because this
5260  * simplifies code)
5261  */
5262 static void
5263 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5264 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5265 {
5266 	struct sk_buff *skb = head, *n;
5267 	struct sk_buff_head tmp;
5268 	bool end_of_skbs;
5269 
5270 	/* First, check that queue is collapsible and find
5271 	 * the point where collapsing can be useful.
5272 	 */
5273 restart:
5274 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5275 		n = tcp_skb_next(skb, list);
5276 
5277 		/* No new bits? It is possible on ofo queue. */
5278 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5279 			skb = tcp_collapse_one(sk, skb, list, root);
5280 			if (!skb)
5281 				break;
5282 			goto restart;
5283 		}
5284 
5285 		/* The first skb to collapse is:
5286 		 * - not SYN/FIN and
5287 		 * - bloated or contains data before "start" or
5288 		 *   overlaps to the next one and mptcp allow collapsing.
5289 		 */
5290 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5291 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5292 		     before(TCP_SKB_CB(skb)->seq, start))) {
5293 			end_of_skbs = false;
5294 			break;
5295 		}
5296 
5297 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5298 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5299 			end_of_skbs = false;
5300 			break;
5301 		}
5302 
5303 		/* Decided to skip this, advance start seq. */
5304 		start = TCP_SKB_CB(skb)->end_seq;
5305 	}
5306 	if (end_of_skbs ||
5307 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5308 		return;
5309 
5310 	__skb_queue_head_init(&tmp);
5311 
5312 	while (before(start, end)) {
5313 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5314 		struct sk_buff *nskb;
5315 
5316 		nskb = alloc_skb(copy, GFP_ATOMIC);
5317 		if (!nskb)
5318 			break;
5319 
5320 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5321 #ifdef CONFIG_TLS_DEVICE
5322 		nskb->decrypted = skb->decrypted;
5323 #endif
5324 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5325 		if (list)
5326 			__skb_queue_before(list, skb, nskb);
5327 		else
5328 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5329 		skb_set_owner_r(nskb, sk);
5330 		mptcp_skb_ext_move(nskb, skb);
5331 
5332 		/* Copy data, releasing collapsed skbs. */
5333 		while (copy > 0) {
5334 			int offset = start - TCP_SKB_CB(skb)->seq;
5335 			int size = TCP_SKB_CB(skb)->end_seq - start;
5336 
5337 			BUG_ON(offset < 0);
5338 			if (size > 0) {
5339 				size = min(copy, size);
5340 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5341 					BUG();
5342 				TCP_SKB_CB(nskb)->end_seq += size;
5343 				copy -= size;
5344 				start += size;
5345 			}
5346 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5347 				skb = tcp_collapse_one(sk, skb, list, root);
5348 				if (!skb ||
5349 				    skb == tail ||
5350 				    !mptcp_skb_can_collapse(nskb, skb) ||
5351 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5352 					goto end;
5353 #ifdef CONFIG_TLS_DEVICE
5354 				if (skb->decrypted != nskb->decrypted)
5355 					goto end;
5356 #endif
5357 			}
5358 		}
5359 	}
5360 end:
5361 	skb_queue_walk_safe(&tmp, skb, n)
5362 		tcp_rbtree_insert(root, skb);
5363 }
5364 
5365 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5366  * and tcp_collapse() them until all the queue is collapsed.
5367  */
5368 static void tcp_collapse_ofo_queue(struct sock *sk)
5369 {
5370 	struct tcp_sock *tp = tcp_sk(sk);
5371 	u32 range_truesize, sum_tiny = 0;
5372 	struct sk_buff *skb, *head;
5373 	u32 start, end;
5374 
5375 	skb = skb_rb_first(&tp->out_of_order_queue);
5376 new_range:
5377 	if (!skb) {
5378 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5379 		return;
5380 	}
5381 	start = TCP_SKB_CB(skb)->seq;
5382 	end = TCP_SKB_CB(skb)->end_seq;
5383 	range_truesize = skb->truesize;
5384 
5385 	for (head = skb;;) {
5386 		skb = skb_rb_next(skb);
5387 
5388 		/* Range is terminated when we see a gap or when
5389 		 * we are at the queue end.
5390 		 */
5391 		if (!skb ||
5392 		    after(TCP_SKB_CB(skb)->seq, end) ||
5393 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5394 			/* Do not attempt collapsing tiny skbs */
5395 			if (range_truesize != head->truesize ||
5396 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5397 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5398 					     head, skb, start, end);
5399 			} else {
5400 				sum_tiny += range_truesize;
5401 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5402 					return;
5403 			}
5404 			goto new_range;
5405 		}
5406 
5407 		range_truesize += skb->truesize;
5408 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5409 			start = TCP_SKB_CB(skb)->seq;
5410 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5411 			end = TCP_SKB_CB(skb)->end_seq;
5412 	}
5413 }
5414 
5415 /*
5416  * Clean the out-of-order queue to make room.
5417  * We drop high sequences packets to :
5418  * 1) Let a chance for holes to be filled.
5419  *    This means we do not drop packets from ooo queue if their sequence
5420  *    is before incoming packet sequence.
5421  * 2) not add too big latencies if thousands of packets sit there.
5422  *    (But if application shrinks SO_RCVBUF, we could still end up
5423  *     freeing whole queue here)
5424  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5425  *
5426  * Return true if queue has shrunk.
5427  */
5428 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5429 {
5430 	struct tcp_sock *tp = tcp_sk(sk);
5431 	struct rb_node *node, *prev;
5432 	bool pruned = false;
5433 	int goal;
5434 
5435 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5436 		return false;
5437 
5438 	goal = sk->sk_rcvbuf >> 3;
5439 	node = &tp->ooo_last_skb->rbnode;
5440 
5441 	do {
5442 		struct sk_buff *skb = rb_to_skb(node);
5443 
5444 		/* If incoming skb would land last in ofo queue, stop pruning. */
5445 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5446 			break;
5447 		pruned = true;
5448 		prev = rb_prev(node);
5449 		rb_erase(node, &tp->out_of_order_queue);
5450 		goal -= skb->truesize;
5451 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5452 		tp->ooo_last_skb = rb_to_skb(prev);
5453 		if (!prev || goal <= 0) {
5454 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5455 			    !tcp_under_memory_pressure(sk))
5456 				break;
5457 			goal = sk->sk_rcvbuf >> 3;
5458 		}
5459 		node = prev;
5460 	} while (node);
5461 
5462 	if (pruned) {
5463 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5464 		/* Reset SACK state.  A conforming SACK implementation will
5465 		 * do the same at a timeout based retransmit.  When a connection
5466 		 * is in a sad state like this, we care only about integrity
5467 		 * of the connection not performance.
5468 		 */
5469 		if (tp->rx_opt.sack_ok)
5470 			tcp_sack_reset(&tp->rx_opt);
5471 	}
5472 	return pruned;
5473 }
5474 
5475 /* Reduce allocated memory if we can, trying to get
5476  * the socket within its memory limits again.
5477  *
5478  * Return less than zero if we should start dropping frames
5479  * until the socket owning process reads some of the data
5480  * to stabilize the situation.
5481  */
5482 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5483 {
5484 	struct tcp_sock *tp = tcp_sk(sk);
5485 
5486 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5487 
5488 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5489 		tcp_clamp_window(sk);
5490 	else if (tcp_under_memory_pressure(sk))
5491 		tcp_adjust_rcv_ssthresh(sk);
5492 
5493 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5494 		return 0;
5495 
5496 	tcp_collapse_ofo_queue(sk);
5497 	if (!skb_queue_empty(&sk->sk_receive_queue))
5498 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5499 			     skb_peek(&sk->sk_receive_queue),
5500 			     NULL,
5501 			     tp->copied_seq, tp->rcv_nxt);
5502 
5503 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5504 		return 0;
5505 
5506 	/* Collapsing did not help, destructive actions follow.
5507 	 * This must not ever occur. */
5508 
5509 	tcp_prune_ofo_queue(sk, in_skb);
5510 
5511 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5512 		return 0;
5513 
5514 	/* If we are really being abused, tell the caller to silently
5515 	 * drop receive data on the floor.  It will get retransmitted
5516 	 * and hopefully then we'll have sufficient space.
5517 	 */
5518 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5519 
5520 	/* Massive buffer overcommit. */
5521 	tp->pred_flags = 0;
5522 	return -1;
5523 }
5524 
5525 static bool tcp_should_expand_sndbuf(struct sock *sk)
5526 {
5527 	const struct tcp_sock *tp = tcp_sk(sk);
5528 
5529 	/* If the user specified a specific send buffer setting, do
5530 	 * not modify it.
5531 	 */
5532 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5533 		return false;
5534 
5535 	/* If we are under global TCP memory pressure, do not expand.  */
5536 	if (tcp_under_memory_pressure(sk)) {
5537 		int unused_mem = sk_unused_reserved_mem(sk);
5538 
5539 		/* Adjust sndbuf according to reserved mem. But make sure
5540 		 * it never goes below SOCK_MIN_SNDBUF.
5541 		 * See sk_stream_moderate_sndbuf() for more details.
5542 		 */
5543 		if (unused_mem > SOCK_MIN_SNDBUF)
5544 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5545 
5546 		return false;
5547 	}
5548 
5549 	/* If we are under soft global TCP memory pressure, do not expand.  */
5550 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5551 		return false;
5552 
5553 	/* If we filled the congestion window, do not expand.  */
5554 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5555 		return false;
5556 
5557 	return true;
5558 }
5559 
5560 static void tcp_new_space(struct sock *sk)
5561 {
5562 	struct tcp_sock *tp = tcp_sk(sk);
5563 
5564 	if (tcp_should_expand_sndbuf(sk)) {
5565 		tcp_sndbuf_expand(sk);
5566 		tp->snd_cwnd_stamp = tcp_jiffies32;
5567 	}
5568 
5569 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5570 }
5571 
5572 /* Caller made space either from:
5573  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5574  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5575  *
5576  * We might be able to generate EPOLLOUT to the application if:
5577  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5578  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5579  *    small enough that tcp_stream_memory_free() decides it
5580  *    is time to generate EPOLLOUT.
5581  */
5582 void tcp_check_space(struct sock *sk)
5583 {
5584 	/* pairs with tcp_poll() */
5585 	smp_mb();
5586 	if (sk->sk_socket &&
5587 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5588 		tcp_new_space(sk);
5589 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5590 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5591 	}
5592 }
5593 
5594 static inline void tcp_data_snd_check(struct sock *sk)
5595 {
5596 	tcp_push_pending_frames(sk);
5597 	tcp_check_space(sk);
5598 }
5599 
5600 /*
5601  * Check if sending an ack is needed.
5602  */
5603 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5604 {
5605 	struct tcp_sock *tp = tcp_sk(sk);
5606 	unsigned long rtt, delay;
5607 
5608 	    /* More than one full frame received... */
5609 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5610 	     /* ... and right edge of window advances far enough.
5611 	      * (tcp_recvmsg() will send ACK otherwise).
5612 	      * If application uses SO_RCVLOWAT, we want send ack now if
5613 	      * we have not received enough bytes to satisfy the condition.
5614 	      */
5615 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5616 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5617 	    /* We ACK each frame or... */
5618 	    tcp_in_quickack_mode(sk) ||
5619 	    /* Protocol state mandates a one-time immediate ACK */
5620 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5621 send_now:
5622 		tcp_send_ack(sk);
5623 		return;
5624 	}
5625 
5626 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5627 		tcp_send_delayed_ack(sk);
5628 		return;
5629 	}
5630 
5631 	if (!tcp_is_sack(tp) ||
5632 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5633 		goto send_now;
5634 
5635 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5636 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5637 		tp->dup_ack_counter = 0;
5638 	}
5639 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5640 		tp->dup_ack_counter++;
5641 		goto send_now;
5642 	}
5643 	tp->compressed_ack++;
5644 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5645 		return;
5646 
5647 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5648 
5649 	rtt = tp->rcv_rtt_est.rtt_us;
5650 	if (tp->srtt_us && tp->srtt_us < rtt)
5651 		rtt = tp->srtt_us;
5652 
5653 	delay = min_t(unsigned long,
5654 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5655 		      rtt * (NSEC_PER_USEC >> 3)/20);
5656 	sock_hold(sk);
5657 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5658 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5659 			       HRTIMER_MODE_REL_PINNED_SOFT);
5660 }
5661 
5662 static inline void tcp_ack_snd_check(struct sock *sk)
5663 {
5664 	if (!inet_csk_ack_scheduled(sk)) {
5665 		/* We sent a data segment already. */
5666 		return;
5667 	}
5668 	__tcp_ack_snd_check(sk, 1);
5669 }
5670 
5671 /*
5672  *	This routine is only called when we have urgent data
5673  *	signaled. Its the 'slow' part of tcp_urg. It could be
5674  *	moved inline now as tcp_urg is only called from one
5675  *	place. We handle URGent data wrong. We have to - as
5676  *	BSD still doesn't use the correction from RFC961.
5677  *	For 1003.1g we should support a new option TCP_STDURG to permit
5678  *	either form (or just set the sysctl tcp_stdurg).
5679  */
5680 
5681 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5682 {
5683 	struct tcp_sock *tp = tcp_sk(sk);
5684 	u32 ptr = ntohs(th->urg_ptr);
5685 
5686 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5687 		ptr--;
5688 	ptr += ntohl(th->seq);
5689 
5690 	/* Ignore urgent data that we've already seen and read. */
5691 	if (after(tp->copied_seq, ptr))
5692 		return;
5693 
5694 	/* Do not replay urg ptr.
5695 	 *
5696 	 * NOTE: interesting situation not covered by specs.
5697 	 * Misbehaving sender may send urg ptr, pointing to segment,
5698 	 * which we already have in ofo queue. We are not able to fetch
5699 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5700 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5701 	 * situations. But it is worth to think about possibility of some
5702 	 * DoSes using some hypothetical application level deadlock.
5703 	 */
5704 	if (before(ptr, tp->rcv_nxt))
5705 		return;
5706 
5707 	/* Do we already have a newer (or duplicate) urgent pointer? */
5708 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5709 		return;
5710 
5711 	/* Tell the world about our new urgent pointer. */
5712 	sk_send_sigurg(sk);
5713 
5714 	/* We may be adding urgent data when the last byte read was
5715 	 * urgent. To do this requires some care. We cannot just ignore
5716 	 * tp->copied_seq since we would read the last urgent byte again
5717 	 * as data, nor can we alter copied_seq until this data arrives
5718 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5719 	 *
5720 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5721 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5722 	 * and expect that both A and B disappear from stream. This is _wrong_.
5723 	 * Though this happens in BSD with high probability, this is occasional.
5724 	 * Any application relying on this is buggy. Note also, that fix "works"
5725 	 * only in this artificial test. Insert some normal data between A and B and we will
5726 	 * decline of BSD again. Verdict: it is better to remove to trap
5727 	 * buggy users.
5728 	 */
5729 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5730 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5731 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5732 		tp->copied_seq++;
5733 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5734 			__skb_unlink(skb, &sk->sk_receive_queue);
5735 			__kfree_skb(skb);
5736 		}
5737 	}
5738 
5739 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5740 	WRITE_ONCE(tp->urg_seq, ptr);
5741 
5742 	/* Disable header prediction. */
5743 	tp->pred_flags = 0;
5744 }
5745 
5746 /* This is the 'fast' part of urgent handling. */
5747 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5748 {
5749 	struct tcp_sock *tp = tcp_sk(sk);
5750 
5751 	/* Check if we get a new urgent pointer - normally not. */
5752 	if (unlikely(th->urg))
5753 		tcp_check_urg(sk, th);
5754 
5755 	/* Do we wait for any urgent data? - normally not... */
5756 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5757 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5758 			  th->syn;
5759 
5760 		/* Is the urgent pointer pointing into this packet? */
5761 		if (ptr < skb->len) {
5762 			u8 tmp;
5763 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5764 				BUG();
5765 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5766 			if (!sock_flag(sk, SOCK_DEAD))
5767 				sk->sk_data_ready(sk);
5768 		}
5769 	}
5770 }
5771 
5772 /* Accept RST for rcv_nxt - 1 after a FIN.
5773  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5774  * FIN is sent followed by a RST packet. The RST is sent with the same
5775  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5776  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5777  * ACKs on the closed socket. In addition middleboxes can drop either the
5778  * challenge ACK or a subsequent RST.
5779  */
5780 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5781 {
5782 	const struct tcp_sock *tp = tcp_sk(sk);
5783 
5784 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5785 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5786 					       TCPF_CLOSING));
5787 }
5788 
5789 /* Does PAWS and seqno based validation of an incoming segment, flags will
5790  * play significant role here.
5791  */
5792 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5793 				  const struct tcphdr *th, int syn_inerr)
5794 {
5795 	struct tcp_sock *tp = tcp_sk(sk);
5796 	SKB_DR(reason);
5797 
5798 	/* RFC1323: H1. Apply PAWS check first. */
5799 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5800 	    tp->rx_opt.saw_tstamp &&
5801 	    tcp_paws_discard(sk, skb)) {
5802 		if (!th->rst) {
5803 			if (unlikely(th->syn))
5804 				goto syn_challenge;
5805 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5806 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5807 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5808 						  &tp->last_oow_ack_time))
5809 				tcp_send_dupack(sk, skb);
5810 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5811 			goto discard;
5812 		}
5813 		/* Reset is accepted even if it did not pass PAWS. */
5814 	}
5815 
5816 	/* Step 1: check sequence number */
5817 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5818 	if (reason) {
5819 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5820 		 * (RST) segments are validated by checking their SEQ-fields."
5821 		 * And page 69: "If an incoming segment is not acceptable,
5822 		 * an acknowledgment should be sent in reply (unless the RST
5823 		 * bit is set, if so drop the segment and return)".
5824 		 */
5825 		if (!th->rst) {
5826 			if (th->syn)
5827 				goto syn_challenge;
5828 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5829 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5830 						  &tp->last_oow_ack_time))
5831 				tcp_send_dupack(sk, skb);
5832 		} else if (tcp_reset_check(sk, skb)) {
5833 			goto reset;
5834 		}
5835 		goto discard;
5836 	}
5837 
5838 	/* Step 2: check RST bit */
5839 	if (th->rst) {
5840 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5841 		 * FIN and SACK too if available):
5842 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5843 		 * the right-most SACK block,
5844 		 * then
5845 		 *     RESET the connection
5846 		 * else
5847 		 *     Send a challenge ACK
5848 		 */
5849 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5850 		    tcp_reset_check(sk, skb))
5851 			goto reset;
5852 
5853 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5854 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5855 			int max_sack = sp[0].end_seq;
5856 			int this_sack;
5857 
5858 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5859 			     ++this_sack) {
5860 				max_sack = after(sp[this_sack].end_seq,
5861 						 max_sack) ?
5862 					sp[this_sack].end_seq : max_sack;
5863 			}
5864 
5865 			if (TCP_SKB_CB(skb)->seq == max_sack)
5866 				goto reset;
5867 		}
5868 
5869 		/* Disable TFO if RST is out-of-order
5870 		 * and no data has been received
5871 		 * for current active TFO socket
5872 		 */
5873 		if (tp->syn_fastopen && !tp->data_segs_in &&
5874 		    sk->sk_state == TCP_ESTABLISHED)
5875 			tcp_fastopen_active_disable(sk);
5876 		tcp_send_challenge_ack(sk);
5877 		SKB_DR_SET(reason, TCP_RESET);
5878 		goto discard;
5879 	}
5880 
5881 	/* step 3: check security and precedence [ignored] */
5882 
5883 	/* step 4: Check for a SYN
5884 	 * RFC 5961 4.2 : Send a challenge ack
5885 	 */
5886 	if (th->syn) {
5887 syn_challenge:
5888 		if (syn_inerr)
5889 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5890 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5891 		tcp_send_challenge_ack(sk);
5892 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5893 		goto discard;
5894 	}
5895 
5896 	bpf_skops_parse_hdr(sk, skb);
5897 
5898 	return true;
5899 
5900 discard:
5901 	tcp_drop_reason(sk, skb, reason);
5902 	return false;
5903 
5904 reset:
5905 	tcp_reset(sk, skb);
5906 	__kfree_skb(skb);
5907 	return false;
5908 }
5909 
5910 /*
5911  *	TCP receive function for the ESTABLISHED state.
5912  *
5913  *	It is split into a fast path and a slow path. The fast path is
5914  * 	disabled when:
5915  *	- A zero window was announced from us - zero window probing
5916  *        is only handled properly in the slow path.
5917  *	- Out of order segments arrived.
5918  *	- Urgent data is expected.
5919  *	- There is no buffer space left
5920  *	- Unexpected TCP flags/window values/header lengths are received
5921  *	  (detected by checking the TCP header against pred_flags)
5922  *	- Data is sent in both directions. Fast path only supports pure senders
5923  *	  or pure receivers (this means either the sequence number or the ack
5924  *	  value must stay constant)
5925  *	- Unexpected TCP option.
5926  *
5927  *	When these conditions are not satisfied it drops into a standard
5928  *	receive procedure patterned after RFC793 to handle all cases.
5929  *	The first three cases are guaranteed by proper pred_flags setting,
5930  *	the rest is checked inline. Fast processing is turned on in
5931  *	tcp_data_queue when everything is OK.
5932  */
5933 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5934 {
5935 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5936 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5937 	struct tcp_sock *tp = tcp_sk(sk);
5938 	unsigned int len = skb->len;
5939 
5940 	/* TCP congestion window tracking */
5941 	trace_tcp_probe(sk, skb);
5942 
5943 	tcp_mstamp_refresh(tp);
5944 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5945 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5946 	/*
5947 	 *	Header prediction.
5948 	 *	The code loosely follows the one in the famous
5949 	 *	"30 instruction TCP receive" Van Jacobson mail.
5950 	 *
5951 	 *	Van's trick is to deposit buffers into socket queue
5952 	 *	on a device interrupt, to call tcp_recv function
5953 	 *	on the receive process context and checksum and copy
5954 	 *	the buffer to user space. smart...
5955 	 *
5956 	 *	Our current scheme is not silly either but we take the
5957 	 *	extra cost of the net_bh soft interrupt processing...
5958 	 *	We do checksum and copy also but from device to kernel.
5959 	 */
5960 
5961 	tp->rx_opt.saw_tstamp = 0;
5962 
5963 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5964 	 *	if header_prediction is to be made
5965 	 *	'S' will always be tp->tcp_header_len >> 2
5966 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5967 	 *  turn it off	(when there are holes in the receive
5968 	 *	 space for instance)
5969 	 *	PSH flag is ignored.
5970 	 */
5971 
5972 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5973 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5974 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5975 		int tcp_header_len = tp->tcp_header_len;
5976 
5977 		/* Timestamp header prediction: tcp_header_len
5978 		 * is automatically equal to th->doff*4 due to pred_flags
5979 		 * match.
5980 		 */
5981 
5982 		/* Check timestamp */
5983 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5984 			/* No? Slow path! */
5985 			if (!tcp_parse_aligned_timestamp(tp, th))
5986 				goto slow_path;
5987 
5988 			/* If PAWS failed, check it more carefully in slow path */
5989 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5990 				goto slow_path;
5991 
5992 			/* DO NOT update ts_recent here, if checksum fails
5993 			 * and timestamp was corrupted part, it will result
5994 			 * in a hung connection since we will drop all
5995 			 * future packets due to the PAWS test.
5996 			 */
5997 		}
5998 
5999 		if (len <= tcp_header_len) {
6000 			/* Bulk data transfer: sender */
6001 			if (len == tcp_header_len) {
6002 				/* Predicted packet is in window by definition.
6003 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6004 				 * Hence, check seq<=rcv_wup reduces to:
6005 				 */
6006 				if (tcp_header_len ==
6007 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6008 				    tp->rcv_nxt == tp->rcv_wup)
6009 					tcp_store_ts_recent(tp);
6010 
6011 				/* We know that such packets are checksummed
6012 				 * on entry.
6013 				 */
6014 				tcp_ack(sk, skb, 0);
6015 				__kfree_skb(skb);
6016 				tcp_data_snd_check(sk);
6017 				/* When receiving pure ack in fast path, update
6018 				 * last ts ecr directly instead of calling
6019 				 * tcp_rcv_rtt_measure_ts()
6020 				 */
6021 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6022 				return;
6023 			} else { /* Header too small */
6024 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6025 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6026 				goto discard;
6027 			}
6028 		} else {
6029 			int eaten = 0;
6030 			bool fragstolen = false;
6031 
6032 			if (tcp_checksum_complete(skb))
6033 				goto csum_error;
6034 
6035 			if ((int)skb->truesize > sk->sk_forward_alloc)
6036 				goto step5;
6037 
6038 			/* Predicted packet is in window by definition.
6039 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6040 			 * Hence, check seq<=rcv_wup reduces to:
6041 			 */
6042 			if (tcp_header_len ==
6043 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6044 			    tp->rcv_nxt == tp->rcv_wup)
6045 				tcp_store_ts_recent(tp);
6046 
6047 			tcp_rcv_rtt_measure_ts(sk, skb);
6048 
6049 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6050 
6051 			/* Bulk data transfer: receiver */
6052 			skb_dst_drop(skb);
6053 			__skb_pull(skb, tcp_header_len);
6054 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6055 
6056 			tcp_event_data_recv(sk, skb);
6057 
6058 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6059 				/* Well, only one small jumplet in fast path... */
6060 				tcp_ack(sk, skb, FLAG_DATA);
6061 				tcp_data_snd_check(sk);
6062 				if (!inet_csk_ack_scheduled(sk))
6063 					goto no_ack;
6064 			} else {
6065 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6066 			}
6067 
6068 			__tcp_ack_snd_check(sk, 0);
6069 no_ack:
6070 			if (eaten)
6071 				kfree_skb_partial(skb, fragstolen);
6072 			tcp_data_ready(sk);
6073 			return;
6074 		}
6075 	}
6076 
6077 slow_path:
6078 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6079 		goto csum_error;
6080 
6081 	if (!th->ack && !th->rst && !th->syn) {
6082 		reason = SKB_DROP_REASON_TCP_FLAGS;
6083 		goto discard;
6084 	}
6085 
6086 	/*
6087 	 *	Standard slow path.
6088 	 */
6089 
6090 	if (!tcp_validate_incoming(sk, skb, th, 1))
6091 		return;
6092 
6093 step5:
6094 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6095 	if ((int)reason < 0) {
6096 		reason = -reason;
6097 		goto discard;
6098 	}
6099 	tcp_rcv_rtt_measure_ts(sk, skb);
6100 
6101 	/* Process urgent data. */
6102 	tcp_urg(sk, skb, th);
6103 
6104 	/* step 7: process the segment text */
6105 	tcp_data_queue(sk, skb);
6106 
6107 	tcp_data_snd_check(sk);
6108 	tcp_ack_snd_check(sk);
6109 	return;
6110 
6111 csum_error:
6112 	reason = SKB_DROP_REASON_TCP_CSUM;
6113 	trace_tcp_bad_csum(skb);
6114 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6115 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6116 
6117 discard:
6118 	tcp_drop_reason(sk, skb, reason);
6119 }
6120 EXPORT_SYMBOL(tcp_rcv_established);
6121 
6122 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6123 {
6124 	struct inet_connection_sock *icsk = inet_csk(sk);
6125 	struct tcp_sock *tp = tcp_sk(sk);
6126 
6127 	tcp_mtup_init(sk);
6128 	icsk->icsk_af_ops->rebuild_header(sk);
6129 	tcp_init_metrics(sk);
6130 
6131 	/* Initialize the congestion window to start the transfer.
6132 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6133 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6134 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6135 	 * retransmission has occurred.
6136 	 */
6137 	if (tp->total_retrans > 1 && tp->undo_marker)
6138 		tcp_snd_cwnd_set(tp, 1);
6139 	else
6140 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6141 	tp->snd_cwnd_stamp = tcp_jiffies32;
6142 
6143 	bpf_skops_established(sk, bpf_op, skb);
6144 	/* Initialize congestion control unless BPF initialized it already: */
6145 	if (!icsk->icsk_ca_initialized)
6146 		tcp_init_congestion_control(sk);
6147 	tcp_init_buffer_space(sk);
6148 }
6149 
6150 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6151 {
6152 	struct tcp_sock *tp = tcp_sk(sk);
6153 	struct inet_connection_sock *icsk = inet_csk(sk);
6154 
6155 	tcp_set_state(sk, TCP_ESTABLISHED);
6156 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6157 
6158 	if (skb) {
6159 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6160 		security_inet_conn_established(sk, skb);
6161 		sk_mark_napi_id(sk, skb);
6162 	}
6163 
6164 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6165 
6166 	/* Prevent spurious tcp_cwnd_restart() on first data
6167 	 * packet.
6168 	 */
6169 	tp->lsndtime = tcp_jiffies32;
6170 
6171 	if (sock_flag(sk, SOCK_KEEPOPEN))
6172 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6173 
6174 	if (!tp->rx_opt.snd_wscale)
6175 		__tcp_fast_path_on(tp, tp->snd_wnd);
6176 	else
6177 		tp->pred_flags = 0;
6178 }
6179 
6180 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6181 				    struct tcp_fastopen_cookie *cookie)
6182 {
6183 	struct tcp_sock *tp = tcp_sk(sk);
6184 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6185 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6186 	bool syn_drop = false;
6187 
6188 	if (mss == tp->rx_opt.user_mss) {
6189 		struct tcp_options_received opt;
6190 
6191 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6192 		tcp_clear_options(&opt);
6193 		opt.user_mss = opt.mss_clamp = 0;
6194 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6195 		mss = opt.mss_clamp;
6196 	}
6197 
6198 	if (!tp->syn_fastopen) {
6199 		/* Ignore an unsolicited cookie */
6200 		cookie->len = -1;
6201 	} else if (tp->total_retrans) {
6202 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6203 		 * acknowledges data. Presumably the remote received only
6204 		 * the retransmitted (regular) SYNs: either the original
6205 		 * SYN-data or the corresponding SYN-ACK was dropped.
6206 		 */
6207 		syn_drop = (cookie->len < 0 && data);
6208 	} else if (cookie->len < 0 && !tp->syn_data) {
6209 		/* We requested a cookie but didn't get it. If we did not use
6210 		 * the (old) exp opt format then try so next time (try_exp=1).
6211 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6212 		 */
6213 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6214 	}
6215 
6216 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6217 
6218 	if (data) { /* Retransmit unacked data in SYN */
6219 		if (tp->total_retrans)
6220 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6221 		else
6222 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6223 		skb_rbtree_walk_from(data)
6224 			 tcp_mark_skb_lost(sk, data);
6225 		tcp_non_congestion_loss_retransmit(sk);
6226 		NET_INC_STATS(sock_net(sk),
6227 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6228 		return true;
6229 	}
6230 	tp->syn_data_acked = tp->syn_data;
6231 	if (tp->syn_data_acked) {
6232 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6233 		/* SYN-data is counted as two separate packets in tcp_ack() */
6234 		if (tp->delivered > 1)
6235 			--tp->delivered;
6236 	}
6237 
6238 	tcp_fastopen_add_skb(sk, synack);
6239 
6240 	return false;
6241 }
6242 
6243 static void smc_check_reset_syn(struct tcp_sock *tp)
6244 {
6245 #if IS_ENABLED(CONFIG_SMC)
6246 	if (static_branch_unlikely(&tcp_have_smc)) {
6247 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6248 			tp->syn_smc = 0;
6249 	}
6250 #endif
6251 }
6252 
6253 static void tcp_try_undo_spurious_syn(struct sock *sk)
6254 {
6255 	struct tcp_sock *tp = tcp_sk(sk);
6256 	u32 syn_stamp;
6257 
6258 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6259 	 * spurious if the ACK's timestamp option echo value matches the
6260 	 * original SYN timestamp.
6261 	 */
6262 	syn_stamp = tp->retrans_stamp;
6263 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6264 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6265 		tp->undo_marker = 0;
6266 }
6267 
6268 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6269 					 const struct tcphdr *th)
6270 {
6271 	struct inet_connection_sock *icsk = inet_csk(sk);
6272 	struct tcp_sock *tp = tcp_sk(sk);
6273 	struct tcp_fastopen_cookie foc = { .len = -1 };
6274 	int saved_clamp = tp->rx_opt.mss_clamp;
6275 	bool fastopen_fail;
6276 	SKB_DR(reason);
6277 
6278 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6279 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6280 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6281 
6282 	if (th->ack) {
6283 		/* rfc793:
6284 		 * "If the state is SYN-SENT then
6285 		 *    first check the ACK bit
6286 		 *      If the ACK bit is set
6287 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6288 		 *        a reset (unless the RST bit is set, if so drop
6289 		 *        the segment and return)"
6290 		 */
6291 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6292 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6293 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6294 			if (icsk->icsk_retransmits == 0)
6295 				inet_csk_reset_xmit_timer(sk,
6296 						ICSK_TIME_RETRANS,
6297 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6298 			goto reset_and_undo;
6299 		}
6300 
6301 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6302 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6303 			     tcp_time_stamp(tp))) {
6304 			NET_INC_STATS(sock_net(sk),
6305 					LINUX_MIB_PAWSACTIVEREJECTED);
6306 			goto reset_and_undo;
6307 		}
6308 
6309 		/* Now ACK is acceptable.
6310 		 *
6311 		 * "If the RST bit is set
6312 		 *    If the ACK was acceptable then signal the user "error:
6313 		 *    connection reset", drop the segment, enter CLOSED state,
6314 		 *    delete TCB, and return."
6315 		 */
6316 
6317 		if (th->rst) {
6318 			tcp_reset(sk, skb);
6319 consume:
6320 			__kfree_skb(skb);
6321 			return 0;
6322 		}
6323 
6324 		/* rfc793:
6325 		 *   "fifth, if neither of the SYN or RST bits is set then
6326 		 *    drop the segment and return."
6327 		 *
6328 		 *    See note below!
6329 		 *                                        --ANK(990513)
6330 		 */
6331 		if (!th->syn) {
6332 			SKB_DR_SET(reason, TCP_FLAGS);
6333 			goto discard_and_undo;
6334 		}
6335 		/* rfc793:
6336 		 *   "If the SYN bit is on ...
6337 		 *    are acceptable then ...
6338 		 *    (our SYN has been ACKed), change the connection
6339 		 *    state to ESTABLISHED..."
6340 		 */
6341 
6342 		tcp_ecn_rcv_synack(tp, th);
6343 
6344 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6345 		tcp_try_undo_spurious_syn(sk);
6346 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6347 
6348 		/* Ok.. it's good. Set up sequence numbers and
6349 		 * move to established.
6350 		 */
6351 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6352 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6353 
6354 		/* RFC1323: The window in SYN & SYN/ACK segments is
6355 		 * never scaled.
6356 		 */
6357 		tp->snd_wnd = ntohs(th->window);
6358 
6359 		if (!tp->rx_opt.wscale_ok) {
6360 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6361 			WRITE_ONCE(tp->window_clamp,
6362 				   min(tp->window_clamp, 65535U));
6363 		}
6364 
6365 		if (tp->rx_opt.saw_tstamp) {
6366 			tp->rx_opt.tstamp_ok	   = 1;
6367 			tp->tcp_header_len =
6368 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6369 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6370 			tcp_store_ts_recent(tp);
6371 		} else {
6372 			tp->tcp_header_len = sizeof(struct tcphdr);
6373 		}
6374 
6375 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6376 		tcp_initialize_rcv_mss(sk);
6377 
6378 		/* Remember, tcp_poll() does not lock socket!
6379 		 * Change state from SYN-SENT only after copied_seq
6380 		 * is initialized. */
6381 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6382 
6383 		smc_check_reset_syn(tp);
6384 
6385 		smp_mb();
6386 
6387 		tcp_finish_connect(sk, skb);
6388 
6389 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6390 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6391 
6392 		if (!sock_flag(sk, SOCK_DEAD)) {
6393 			sk->sk_state_change(sk);
6394 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6395 		}
6396 		if (fastopen_fail)
6397 			return -1;
6398 		if (sk->sk_write_pending ||
6399 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6400 		    inet_csk_in_pingpong_mode(sk)) {
6401 			/* Save one ACK. Data will be ready after
6402 			 * several ticks, if write_pending is set.
6403 			 *
6404 			 * It may be deleted, but with this feature tcpdumps
6405 			 * look so _wonderfully_ clever, that I was not able
6406 			 * to stand against the temptation 8)     --ANK
6407 			 */
6408 			inet_csk_schedule_ack(sk);
6409 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6410 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6411 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6412 			goto consume;
6413 		}
6414 		tcp_send_ack(sk);
6415 		return -1;
6416 	}
6417 
6418 	/* No ACK in the segment */
6419 
6420 	if (th->rst) {
6421 		/* rfc793:
6422 		 * "If the RST bit is set
6423 		 *
6424 		 *      Otherwise (no ACK) drop the segment and return."
6425 		 */
6426 		SKB_DR_SET(reason, TCP_RESET);
6427 		goto discard_and_undo;
6428 	}
6429 
6430 	/* PAWS check. */
6431 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6432 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6433 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6434 		goto discard_and_undo;
6435 	}
6436 	if (th->syn) {
6437 		/* We see SYN without ACK. It is attempt of
6438 		 * simultaneous connect with crossed SYNs.
6439 		 * Particularly, it can be connect to self.
6440 		 */
6441 		tcp_set_state(sk, TCP_SYN_RECV);
6442 
6443 		if (tp->rx_opt.saw_tstamp) {
6444 			tp->rx_opt.tstamp_ok = 1;
6445 			tcp_store_ts_recent(tp);
6446 			tp->tcp_header_len =
6447 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6448 		} else {
6449 			tp->tcp_header_len = sizeof(struct tcphdr);
6450 		}
6451 
6452 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6453 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6454 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6455 
6456 		/* RFC1323: The window in SYN & SYN/ACK segments is
6457 		 * never scaled.
6458 		 */
6459 		tp->snd_wnd    = ntohs(th->window);
6460 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6461 		tp->max_window = tp->snd_wnd;
6462 
6463 		tcp_ecn_rcv_syn(tp, th);
6464 
6465 		tcp_mtup_init(sk);
6466 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6467 		tcp_initialize_rcv_mss(sk);
6468 
6469 		tcp_send_synack(sk);
6470 #if 0
6471 		/* Note, we could accept data and URG from this segment.
6472 		 * There are no obstacles to make this (except that we must
6473 		 * either change tcp_recvmsg() to prevent it from returning data
6474 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6475 		 *
6476 		 * However, if we ignore data in ACKless segments sometimes,
6477 		 * we have no reasons to accept it sometimes.
6478 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6479 		 * is not flawless. So, discard packet for sanity.
6480 		 * Uncomment this return to process the data.
6481 		 */
6482 		return -1;
6483 #else
6484 		goto consume;
6485 #endif
6486 	}
6487 	/* "fifth, if neither of the SYN or RST bits is set then
6488 	 * drop the segment and return."
6489 	 */
6490 
6491 discard_and_undo:
6492 	tcp_clear_options(&tp->rx_opt);
6493 	tp->rx_opt.mss_clamp = saved_clamp;
6494 	tcp_drop_reason(sk, skb, reason);
6495 	return 0;
6496 
6497 reset_and_undo:
6498 	tcp_clear_options(&tp->rx_opt);
6499 	tp->rx_opt.mss_clamp = saved_clamp;
6500 	return 1;
6501 }
6502 
6503 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6504 {
6505 	struct tcp_sock *tp = tcp_sk(sk);
6506 	struct request_sock *req;
6507 
6508 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6509 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6510 	 */
6511 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6512 		tcp_try_undo_recovery(sk);
6513 
6514 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6515 	tp->retrans_stamp = 0;
6516 	inet_csk(sk)->icsk_retransmits = 0;
6517 
6518 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6519 	 * we no longer need req so release it.
6520 	 */
6521 	req = rcu_dereference_protected(tp->fastopen_rsk,
6522 					lockdep_sock_is_held(sk));
6523 	reqsk_fastopen_remove(sk, req, false);
6524 
6525 	/* Re-arm the timer because data may have been sent out.
6526 	 * This is similar to the regular data transmission case
6527 	 * when new data has just been ack'ed.
6528 	 *
6529 	 * (TFO) - we could try to be more aggressive and
6530 	 * retransmitting any data sooner based on when they
6531 	 * are sent out.
6532 	 */
6533 	tcp_rearm_rto(sk);
6534 }
6535 
6536 /*
6537  *	This function implements the receiving procedure of RFC 793 for
6538  *	all states except ESTABLISHED and TIME_WAIT.
6539  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6540  *	address independent.
6541  */
6542 
6543 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6544 {
6545 	struct tcp_sock *tp = tcp_sk(sk);
6546 	struct inet_connection_sock *icsk = inet_csk(sk);
6547 	const struct tcphdr *th = tcp_hdr(skb);
6548 	struct request_sock *req;
6549 	int queued = 0;
6550 	bool acceptable;
6551 	SKB_DR(reason);
6552 
6553 	switch (sk->sk_state) {
6554 	case TCP_CLOSE:
6555 		SKB_DR_SET(reason, TCP_CLOSE);
6556 		goto discard;
6557 
6558 	case TCP_LISTEN:
6559 		if (th->ack)
6560 			return 1;
6561 
6562 		if (th->rst) {
6563 			SKB_DR_SET(reason, TCP_RESET);
6564 			goto discard;
6565 		}
6566 		if (th->syn) {
6567 			if (th->fin) {
6568 				SKB_DR_SET(reason, TCP_FLAGS);
6569 				goto discard;
6570 			}
6571 			/* It is possible that we process SYN packets from backlog,
6572 			 * so we need to make sure to disable BH and RCU right there.
6573 			 */
6574 			rcu_read_lock();
6575 			local_bh_disable();
6576 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6577 			local_bh_enable();
6578 			rcu_read_unlock();
6579 
6580 			if (!acceptable)
6581 				return 1;
6582 			consume_skb(skb);
6583 			return 0;
6584 		}
6585 		SKB_DR_SET(reason, TCP_FLAGS);
6586 		goto discard;
6587 
6588 	case TCP_SYN_SENT:
6589 		tp->rx_opt.saw_tstamp = 0;
6590 		tcp_mstamp_refresh(tp);
6591 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6592 		if (queued >= 0)
6593 			return queued;
6594 
6595 		/* Do step6 onward by hand. */
6596 		tcp_urg(sk, skb, th);
6597 		__kfree_skb(skb);
6598 		tcp_data_snd_check(sk);
6599 		return 0;
6600 	}
6601 
6602 	tcp_mstamp_refresh(tp);
6603 	tp->rx_opt.saw_tstamp = 0;
6604 	req = rcu_dereference_protected(tp->fastopen_rsk,
6605 					lockdep_sock_is_held(sk));
6606 	if (req) {
6607 		bool req_stolen;
6608 
6609 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6610 		    sk->sk_state != TCP_FIN_WAIT1);
6611 
6612 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6613 			SKB_DR_SET(reason, TCP_FASTOPEN);
6614 			goto discard;
6615 		}
6616 	}
6617 
6618 	if (!th->ack && !th->rst && !th->syn) {
6619 		SKB_DR_SET(reason, TCP_FLAGS);
6620 		goto discard;
6621 	}
6622 	if (!tcp_validate_incoming(sk, skb, th, 0))
6623 		return 0;
6624 
6625 	/* step 5: check the ACK field */
6626 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6627 				      FLAG_UPDATE_TS_RECENT |
6628 				      FLAG_NO_CHALLENGE_ACK) > 0;
6629 
6630 	if (!acceptable) {
6631 		if (sk->sk_state == TCP_SYN_RECV)
6632 			return 1;	/* send one RST */
6633 		tcp_send_challenge_ack(sk);
6634 		SKB_DR_SET(reason, TCP_OLD_ACK);
6635 		goto discard;
6636 	}
6637 	switch (sk->sk_state) {
6638 	case TCP_SYN_RECV:
6639 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6640 		if (!tp->srtt_us)
6641 			tcp_synack_rtt_meas(sk, req);
6642 
6643 		if (req) {
6644 			tcp_rcv_synrecv_state_fastopen(sk);
6645 		} else {
6646 			tcp_try_undo_spurious_syn(sk);
6647 			tp->retrans_stamp = 0;
6648 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6649 					  skb);
6650 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6651 		}
6652 		smp_mb();
6653 		tcp_set_state(sk, TCP_ESTABLISHED);
6654 		sk->sk_state_change(sk);
6655 
6656 		/* Note, that this wakeup is only for marginal crossed SYN case.
6657 		 * Passively open sockets are not waked up, because
6658 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6659 		 */
6660 		if (sk->sk_socket)
6661 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6662 
6663 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6664 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6665 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6666 
6667 		if (tp->rx_opt.tstamp_ok)
6668 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6669 
6670 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6671 			tcp_update_pacing_rate(sk);
6672 
6673 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6674 		tp->lsndtime = tcp_jiffies32;
6675 
6676 		tcp_initialize_rcv_mss(sk);
6677 		tcp_fast_path_on(tp);
6678 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6679 			tcp_shutdown(sk, SEND_SHUTDOWN);
6680 		break;
6681 
6682 	case TCP_FIN_WAIT1: {
6683 		int tmo;
6684 
6685 		if (req)
6686 			tcp_rcv_synrecv_state_fastopen(sk);
6687 
6688 		if (tp->snd_una != tp->write_seq)
6689 			break;
6690 
6691 		tcp_set_state(sk, TCP_FIN_WAIT2);
6692 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6693 
6694 		sk_dst_confirm(sk);
6695 
6696 		if (!sock_flag(sk, SOCK_DEAD)) {
6697 			/* Wake up lingering close() */
6698 			sk->sk_state_change(sk);
6699 			break;
6700 		}
6701 
6702 		if (READ_ONCE(tp->linger2) < 0) {
6703 			tcp_done(sk);
6704 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6705 			return 1;
6706 		}
6707 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6708 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6709 			/* Receive out of order FIN after close() */
6710 			if (tp->syn_fastopen && th->fin)
6711 				tcp_fastopen_active_disable(sk);
6712 			tcp_done(sk);
6713 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6714 			return 1;
6715 		}
6716 
6717 		tmo = tcp_fin_time(sk);
6718 		if (tmo > TCP_TIMEWAIT_LEN) {
6719 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6720 		} else if (th->fin || sock_owned_by_user(sk)) {
6721 			/* Bad case. We could lose such FIN otherwise.
6722 			 * It is not a big problem, but it looks confusing
6723 			 * and not so rare event. We still can lose it now,
6724 			 * if it spins in bh_lock_sock(), but it is really
6725 			 * marginal case.
6726 			 */
6727 			inet_csk_reset_keepalive_timer(sk, tmo);
6728 		} else {
6729 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6730 			goto consume;
6731 		}
6732 		break;
6733 	}
6734 
6735 	case TCP_CLOSING:
6736 		if (tp->snd_una == tp->write_seq) {
6737 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6738 			goto consume;
6739 		}
6740 		break;
6741 
6742 	case TCP_LAST_ACK:
6743 		if (tp->snd_una == tp->write_seq) {
6744 			tcp_update_metrics(sk);
6745 			tcp_done(sk);
6746 			goto consume;
6747 		}
6748 		break;
6749 	}
6750 
6751 	/* step 6: check the URG bit */
6752 	tcp_urg(sk, skb, th);
6753 
6754 	/* step 7: process the segment text */
6755 	switch (sk->sk_state) {
6756 	case TCP_CLOSE_WAIT:
6757 	case TCP_CLOSING:
6758 	case TCP_LAST_ACK:
6759 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6760 			/* If a subflow has been reset, the packet should not
6761 			 * continue to be processed, drop the packet.
6762 			 */
6763 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6764 				goto discard;
6765 			break;
6766 		}
6767 		fallthrough;
6768 	case TCP_FIN_WAIT1:
6769 	case TCP_FIN_WAIT2:
6770 		/* RFC 793 says to queue data in these states,
6771 		 * RFC 1122 says we MUST send a reset.
6772 		 * BSD 4.4 also does reset.
6773 		 */
6774 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6775 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6776 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6777 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6778 				tcp_reset(sk, skb);
6779 				return 1;
6780 			}
6781 		}
6782 		fallthrough;
6783 	case TCP_ESTABLISHED:
6784 		tcp_data_queue(sk, skb);
6785 		queued = 1;
6786 		break;
6787 	}
6788 
6789 	/* tcp_data could move socket to TIME-WAIT */
6790 	if (sk->sk_state != TCP_CLOSE) {
6791 		tcp_data_snd_check(sk);
6792 		tcp_ack_snd_check(sk);
6793 	}
6794 
6795 	if (!queued) {
6796 discard:
6797 		tcp_drop_reason(sk, skb, reason);
6798 	}
6799 	return 0;
6800 
6801 consume:
6802 	__kfree_skb(skb);
6803 	return 0;
6804 }
6805 EXPORT_SYMBOL(tcp_rcv_state_process);
6806 
6807 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6808 {
6809 	struct inet_request_sock *ireq = inet_rsk(req);
6810 
6811 	if (family == AF_INET)
6812 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6813 				    &ireq->ir_rmt_addr, port);
6814 #if IS_ENABLED(CONFIG_IPV6)
6815 	else if (family == AF_INET6)
6816 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6817 				    &ireq->ir_v6_rmt_addr, port);
6818 #endif
6819 }
6820 
6821 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6822  *
6823  * If we receive a SYN packet with these bits set, it means a
6824  * network is playing bad games with TOS bits. In order to
6825  * avoid possible false congestion notifications, we disable
6826  * TCP ECN negotiation.
6827  *
6828  * Exception: tcp_ca wants ECN. This is required for DCTCP
6829  * congestion control: Linux DCTCP asserts ECT on all packets,
6830  * including SYN, which is most optimal solution; however,
6831  * others, such as FreeBSD do not.
6832  *
6833  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6834  * set, indicating the use of a future TCP extension (such as AccECN). See
6835  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6836  * extensions.
6837  */
6838 static void tcp_ecn_create_request(struct request_sock *req,
6839 				   const struct sk_buff *skb,
6840 				   const struct sock *listen_sk,
6841 				   const struct dst_entry *dst)
6842 {
6843 	const struct tcphdr *th = tcp_hdr(skb);
6844 	const struct net *net = sock_net(listen_sk);
6845 	bool th_ecn = th->ece && th->cwr;
6846 	bool ect, ecn_ok;
6847 	u32 ecn_ok_dst;
6848 
6849 	if (!th_ecn)
6850 		return;
6851 
6852 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6853 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6854 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6855 
6856 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6857 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6858 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6859 		inet_rsk(req)->ecn_ok = 1;
6860 }
6861 
6862 static void tcp_openreq_init(struct request_sock *req,
6863 			     const struct tcp_options_received *rx_opt,
6864 			     struct sk_buff *skb, const struct sock *sk)
6865 {
6866 	struct inet_request_sock *ireq = inet_rsk(req);
6867 
6868 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6869 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6870 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6871 	tcp_rsk(req)->snt_synack = 0;
6872 	tcp_rsk(req)->last_oow_ack_time = 0;
6873 	req->mss = rx_opt->mss_clamp;
6874 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6875 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6876 	ireq->sack_ok = rx_opt->sack_ok;
6877 	ireq->snd_wscale = rx_opt->snd_wscale;
6878 	ireq->wscale_ok = rx_opt->wscale_ok;
6879 	ireq->acked = 0;
6880 	ireq->ecn_ok = 0;
6881 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6882 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6883 	ireq->ir_mark = inet_request_mark(sk, skb);
6884 #if IS_ENABLED(CONFIG_SMC)
6885 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6886 			tcp_sk(sk)->smc_hs_congested(sk));
6887 #endif
6888 }
6889 
6890 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6891 				      struct sock *sk_listener,
6892 				      bool attach_listener)
6893 {
6894 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6895 					       attach_listener);
6896 
6897 	if (req) {
6898 		struct inet_request_sock *ireq = inet_rsk(req);
6899 
6900 		ireq->ireq_opt = NULL;
6901 #if IS_ENABLED(CONFIG_IPV6)
6902 		ireq->pktopts = NULL;
6903 #endif
6904 		atomic64_set(&ireq->ir_cookie, 0);
6905 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6906 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6907 		ireq->ireq_family = sk_listener->sk_family;
6908 		req->timeout = TCP_TIMEOUT_INIT;
6909 	}
6910 
6911 	return req;
6912 }
6913 EXPORT_SYMBOL(inet_reqsk_alloc);
6914 
6915 /*
6916  * Return true if a syncookie should be sent
6917  */
6918 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6919 {
6920 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6921 	const char *msg = "Dropping request";
6922 	struct net *net = sock_net(sk);
6923 	bool want_cookie = false;
6924 	u8 syncookies;
6925 
6926 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6927 
6928 #ifdef CONFIG_SYN_COOKIES
6929 	if (syncookies) {
6930 		msg = "Sending cookies";
6931 		want_cookie = true;
6932 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6933 	} else
6934 #endif
6935 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6936 
6937 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6938 	    xchg(&queue->synflood_warned, 1) == 0) {
6939 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6940 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6941 					proto, inet6_rcv_saddr(sk),
6942 					sk->sk_num, msg);
6943 		} else {
6944 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
6945 					proto, &sk->sk_rcv_saddr,
6946 					sk->sk_num, msg);
6947 		}
6948 	}
6949 
6950 	return want_cookie;
6951 }
6952 
6953 static void tcp_reqsk_record_syn(const struct sock *sk,
6954 				 struct request_sock *req,
6955 				 const struct sk_buff *skb)
6956 {
6957 	if (tcp_sk(sk)->save_syn) {
6958 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6959 		struct saved_syn *saved_syn;
6960 		u32 mac_hdrlen;
6961 		void *base;
6962 
6963 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6964 			base = skb_mac_header(skb);
6965 			mac_hdrlen = skb_mac_header_len(skb);
6966 			len += mac_hdrlen;
6967 		} else {
6968 			base = skb_network_header(skb);
6969 			mac_hdrlen = 0;
6970 		}
6971 
6972 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6973 				    GFP_ATOMIC);
6974 		if (saved_syn) {
6975 			saved_syn->mac_hdrlen = mac_hdrlen;
6976 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6977 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6978 			memcpy(saved_syn->data, base, len);
6979 			req->saved_syn = saved_syn;
6980 		}
6981 	}
6982 }
6983 
6984 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6985  * used for SYN cookie generation.
6986  */
6987 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6988 			  const struct tcp_request_sock_ops *af_ops,
6989 			  struct sock *sk, struct tcphdr *th)
6990 {
6991 	struct tcp_sock *tp = tcp_sk(sk);
6992 	u16 mss;
6993 
6994 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6995 	    !inet_csk_reqsk_queue_is_full(sk))
6996 		return 0;
6997 
6998 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6999 		return 0;
7000 
7001 	if (sk_acceptq_is_full(sk)) {
7002 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7003 		return 0;
7004 	}
7005 
7006 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7007 	if (!mss)
7008 		mss = af_ops->mss_clamp;
7009 
7010 	return mss;
7011 }
7012 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7013 
7014 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7015 		     const struct tcp_request_sock_ops *af_ops,
7016 		     struct sock *sk, struct sk_buff *skb)
7017 {
7018 	struct tcp_fastopen_cookie foc = { .len = -1 };
7019 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7020 	struct tcp_options_received tmp_opt;
7021 	struct tcp_sock *tp = tcp_sk(sk);
7022 	struct net *net = sock_net(sk);
7023 	struct sock *fastopen_sk = NULL;
7024 	struct request_sock *req;
7025 	bool want_cookie = false;
7026 	struct dst_entry *dst;
7027 	struct flowi fl;
7028 	u8 syncookies;
7029 
7030 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7031 
7032 	/* TW buckets are converted to open requests without
7033 	 * limitations, they conserve resources and peer is
7034 	 * evidently real one.
7035 	 */
7036 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7037 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7038 		if (!want_cookie)
7039 			goto drop;
7040 	}
7041 
7042 	if (sk_acceptq_is_full(sk)) {
7043 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7044 		goto drop;
7045 	}
7046 
7047 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7048 	if (!req)
7049 		goto drop;
7050 
7051 	req->syncookie = want_cookie;
7052 	tcp_rsk(req)->af_specific = af_ops;
7053 	tcp_rsk(req)->ts_off = 0;
7054 #if IS_ENABLED(CONFIG_MPTCP)
7055 	tcp_rsk(req)->is_mptcp = 0;
7056 #endif
7057 
7058 	tcp_clear_options(&tmp_opt);
7059 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7060 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7061 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7062 			  want_cookie ? NULL : &foc);
7063 
7064 	if (want_cookie && !tmp_opt.saw_tstamp)
7065 		tcp_clear_options(&tmp_opt);
7066 
7067 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7068 		tmp_opt.smc_ok = 0;
7069 
7070 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7071 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7072 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7073 
7074 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7075 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7076 
7077 	dst = af_ops->route_req(sk, skb, &fl, req);
7078 	if (!dst)
7079 		goto drop_and_free;
7080 
7081 	if (tmp_opt.tstamp_ok)
7082 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7083 
7084 	if (!want_cookie && !isn) {
7085 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7086 
7087 		/* Kill the following clause, if you dislike this way. */
7088 		if (!syncookies &&
7089 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7090 		     (max_syn_backlog >> 2)) &&
7091 		    !tcp_peer_is_proven(req, dst)) {
7092 			/* Without syncookies last quarter of
7093 			 * backlog is filled with destinations,
7094 			 * proven to be alive.
7095 			 * It means that we continue to communicate
7096 			 * to destinations, already remembered
7097 			 * to the moment of synflood.
7098 			 */
7099 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7100 				    rsk_ops->family);
7101 			goto drop_and_release;
7102 		}
7103 
7104 		isn = af_ops->init_seq(skb);
7105 	}
7106 
7107 	tcp_ecn_create_request(req, skb, sk, dst);
7108 
7109 	if (want_cookie) {
7110 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7111 		if (!tmp_opt.tstamp_ok)
7112 			inet_rsk(req)->ecn_ok = 0;
7113 	}
7114 
7115 	tcp_rsk(req)->snt_isn = isn;
7116 	tcp_rsk(req)->txhash = net_tx_rndhash();
7117 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7118 	tcp_openreq_init_rwin(req, sk, dst);
7119 	sk_rx_queue_set(req_to_sk(req), skb);
7120 	if (!want_cookie) {
7121 		tcp_reqsk_record_syn(sk, req, skb);
7122 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7123 	}
7124 	if (fastopen_sk) {
7125 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7126 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7127 		/* Add the child socket directly into the accept queue */
7128 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7129 			reqsk_fastopen_remove(fastopen_sk, req, false);
7130 			bh_unlock_sock(fastopen_sk);
7131 			sock_put(fastopen_sk);
7132 			goto drop_and_free;
7133 		}
7134 		sk->sk_data_ready(sk);
7135 		bh_unlock_sock(fastopen_sk);
7136 		sock_put(fastopen_sk);
7137 	} else {
7138 		tcp_rsk(req)->tfo_listener = false;
7139 		if (!want_cookie) {
7140 			req->timeout = tcp_timeout_init((struct sock *)req);
7141 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7142 								    req->timeout))) {
7143 				reqsk_free(req);
7144 				return 0;
7145 			}
7146 
7147 		}
7148 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7149 				    !want_cookie ? TCP_SYNACK_NORMAL :
7150 						   TCP_SYNACK_COOKIE,
7151 				    skb);
7152 		if (want_cookie) {
7153 			reqsk_free(req);
7154 			return 0;
7155 		}
7156 	}
7157 	reqsk_put(req);
7158 	return 0;
7159 
7160 drop_and_release:
7161 	dst_release(dst);
7162 drop_and_free:
7163 	__reqsk_free(req);
7164 drop:
7165 	tcp_listendrop(sk);
7166 	return 0;
7167 }
7168 EXPORT_SYMBOL(tcp_conn_request);
7169