1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 247 do_div(val, skb->truesize); 248 tcp_sk(sk)->scaling_ratio = val ? val : 1; 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 if (unlikely(len > icsk->icsk_ack.rcv_mss + 254 MAX_TCP_OPTION_SPACE)) 255 tcp_gro_dev_warn(sk, skb, len); 256 /* If the skb has a len of exactly 1*MSS and has the PSH bit 257 * set then it is likely the end of an application write. So 258 * more data may not be arriving soon, and yet the data sender 259 * may be waiting for an ACK if cwnd-bound or using TX zero 260 * copy. So we set ICSK_ACK_PUSHED here so that 261 * tcp_cleanup_rbuf() will send an ACK immediately if the app 262 * reads all of the data and is not ping-pong. If len > MSS 263 * then this logic does not matter (and does not hurt) because 264 * tcp_cleanup_rbuf() will always ACK immediately if the app 265 * reads data and there is more than an MSS of unACKed data. 266 */ 267 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 268 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 269 } else { 270 /* Otherwise, we make more careful check taking into account, 271 * that SACKs block is variable. 272 * 273 * "len" is invariant segment length, including TCP header. 274 */ 275 len += skb->data - skb_transport_header(skb); 276 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 277 /* If PSH is not set, packet should be 278 * full sized, provided peer TCP is not badly broken. 279 * This observation (if it is correct 8)) allows 280 * to handle super-low mtu links fairly. 281 */ 282 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 283 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 284 /* Subtract also invariant (if peer is RFC compliant), 285 * tcp header plus fixed timestamp option length. 286 * Resulting "len" is MSS free of SACK jitter. 287 */ 288 len -= tcp_sk(sk)->tcp_header_len; 289 icsk->icsk_ack.last_seg_size = len; 290 if (len == lss) { 291 icsk->icsk_ack.rcv_mss = len; 292 return; 293 } 294 } 295 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 297 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 298 } 299 } 300 301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 302 { 303 struct inet_connection_sock *icsk = inet_csk(sk); 304 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 305 306 if (quickacks == 0) 307 quickacks = 2; 308 quickacks = min(quickacks, max_quickacks); 309 if (quickacks > icsk->icsk_ack.quick) 310 icsk->icsk_ack.quick = quickacks; 311 } 312 313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 314 { 315 struct inet_connection_sock *icsk = inet_csk(sk); 316 317 tcp_incr_quickack(sk, max_quickacks); 318 inet_csk_exit_pingpong_mode(sk); 319 icsk->icsk_ack.ato = TCP_ATO_MIN; 320 } 321 322 /* Send ACKs quickly, if "quick" count is not exhausted 323 * and the session is not interactive. 324 */ 325 326 static bool tcp_in_quickack_mode(struct sock *sk) 327 { 328 const struct inet_connection_sock *icsk = inet_csk(sk); 329 const struct dst_entry *dst = __sk_dst_get(sk); 330 331 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 332 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 333 } 334 335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 336 { 337 if (tp->ecn_flags & TCP_ECN_OK) 338 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 339 } 340 341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 342 { 343 if (tcp_hdr(skb)->cwr) { 344 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 345 346 /* If the sender is telling us it has entered CWR, then its 347 * cwnd may be very low (even just 1 packet), so we should ACK 348 * immediately. 349 */ 350 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 351 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 352 } 353 } 354 355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 356 { 357 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 358 } 359 360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 361 { 362 struct tcp_sock *tp = tcp_sk(sk); 363 364 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 365 case INET_ECN_NOT_ECT: 366 /* Funny extension: if ECT is not set on a segment, 367 * and we already seen ECT on a previous segment, 368 * it is probably a retransmit. 369 */ 370 if (tp->ecn_flags & TCP_ECN_SEEN) 371 tcp_enter_quickack_mode(sk, 2); 372 break; 373 case INET_ECN_CE: 374 if (tcp_ca_needs_ecn(sk)) 375 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 376 377 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 378 /* Better not delay acks, sender can have a very low cwnd */ 379 tcp_enter_quickack_mode(sk, 2); 380 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 381 } 382 tp->ecn_flags |= TCP_ECN_SEEN; 383 break; 384 default: 385 if (tcp_ca_needs_ecn(sk)) 386 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 387 tp->ecn_flags |= TCP_ECN_SEEN; 388 break; 389 } 390 } 391 392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 393 { 394 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 395 __tcp_ecn_check_ce(sk, skb); 396 } 397 398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 399 { 400 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 401 tp->ecn_flags &= ~TCP_ECN_OK; 402 } 403 404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 405 { 406 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 407 tp->ecn_flags &= ~TCP_ECN_OK; 408 } 409 410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 411 { 412 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 413 return true; 414 return false; 415 } 416 417 /* Buffer size and advertised window tuning. 418 * 419 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 420 */ 421 422 static void tcp_sndbuf_expand(struct sock *sk) 423 { 424 const struct tcp_sock *tp = tcp_sk(sk); 425 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 426 int sndmem, per_mss; 427 u32 nr_segs; 428 429 /* Worst case is non GSO/TSO : each frame consumes one skb 430 * and skb->head is kmalloced using power of two area of memory 431 */ 432 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 433 MAX_TCP_HEADER + 434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 435 436 per_mss = roundup_pow_of_two(per_mss) + 437 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 438 439 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 440 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 441 442 /* Fast Recovery (RFC 5681 3.2) : 443 * Cubic needs 1.7 factor, rounded to 2 to include 444 * extra cushion (application might react slowly to EPOLLOUT) 445 */ 446 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 447 sndmem *= nr_segs * per_mss; 448 449 if (sk->sk_sndbuf < sndmem) 450 WRITE_ONCE(sk->sk_sndbuf, 451 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 452 } 453 454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 455 * 456 * All tcp_full_space() is split to two parts: "network" buffer, allocated 457 * forward and advertised in receiver window (tp->rcv_wnd) and 458 * "application buffer", required to isolate scheduling/application 459 * latencies from network. 460 * window_clamp is maximal advertised window. It can be less than 461 * tcp_full_space(), in this case tcp_full_space() - window_clamp 462 * is reserved for "application" buffer. The less window_clamp is 463 * the smoother our behaviour from viewpoint of network, but the lower 464 * throughput and the higher sensitivity of the connection to losses. 8) 465 * 466 * rcv_ssthresh is more strict window_clamp used at "slow start" 467 * phase to predict further behaviour of this connection. 468 * It is used for two goals: 469 * - to enforce header prediction at sender, even when application 470 * requires some significant "application buffer". It is check #1. 471 * - to prevent pruning of receive queue because of misprediction 472 * of receiver window. Check #2. 473 * 474 * The scheme does not work when sender sends good segments opening 475 * window and then starts to feed us spaghetti. But it should work 476 * in common situations. Otherwise, we have to rely on queue collapsing. 477 */ 478 479 /* Slow part of check#2. */ 480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 481 unsigned int skbtruesize) 482 { 483 const struct tcp_sock *tp = tcp_sk(sk); 484 /* Optimize this! */ 485 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 486 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 487 488 while (tp->rcv_ssthresh <= window) { 489 if (truesize <= skb->len) 490 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 491 492 truesize >>= 1; 493 window >>= 1; 494 } 495 return 0; 496 } 497 498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 499 * can play nice with us, as sk_buff and skb->head might be either 500 * freed or shared with up to MAX_SKB_FRAGS segments. 501 * Only give a boost to drivers using page frag(s) to hold the frame(s), 502 * and if no payload was pulled in skb->head before reaching us. 503 */ 504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 505 { 506 u32 truesize = skb->truesize; 507 508 if (adjust && !skb_headlen(skb)) { 509 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 510 /* paranoid check, some drivers might be buggy */ 511 if (unlikely((int)truesize < (int)skb->len)) 512 truesize = skb->truesize; 513 } 514 return truesize; 515 } 516 517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 518 bool adjust) 519 { 520 struct tcp_sock *tp = tcp_sk(sk); 521 int room; 522 523 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 524 525 if (room <= 0) 526 return; 527 528 /* Check #1 */ 529 if (!tcp_under_memory_pressure(sk)) { 530 unsigned int truesize = truesize_adjust(adjust, skb); 531 int incr; 532 533 /* Check #2. Increase window, if skb with such overhead 534 * will fit to rcvbuf in future. 535 */ 536 if (tcp_win_from_space(sk, truesize) <= skb->len) 537 incr = 2 * tp->advmss; 538 else 539 incr = __tcp_grow_window(sk, skb, truesize); 540 541 if (incr) { 542 incr = max_t(int, incr, 2 * skb->len); 543 tp->rcv_ssthresh += min(room, incr); 544 inet_csk(sk)->icsk_ack.quick |= 1; 545 } 546 } else { 547 /* Under pressure: 548 * Adjust rcv_ssthresh according to reserved mem 549 */ 550 tcp_adjust_rcv_ssthresh(sk); 551 } 552 } 553 554 /* 3. Try to fixup all. It is made immediately after connection enters 555 * established state. 556 */ 557 static void tcp_init_buffer_space(struct sock *sk) 558 { 559 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 560 struct tcp_sock *tp = tcp_sk(sk); 561 int maxwin; 562 563 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 564 tcp_sndbuf_expand(sk); 565 566 tcp_mstamp_refresh(tp); 567 tp->rcvq_space.time = tp->tcp_mstamp; 568 tp->rcvq_space.seq = tp->copied_seq; 569 570 maxwin = tcp_full_space(sk); 571 572 if (tp->window_clamp >= maxwin) { 573 WRITE_ONCE(tp->window_clamp, maxwin); 574 575 if (tcp_app_win && maxwin > 4 * tp->advmss) 576 WRITE_ONCE(tp->window_clamp, 577 max(maxwin - (maxwin >> tcp_app_win), 578 4 * tp->advmss)); 579 } 580 581 /* Force reservation of one segment. */ 582 if (tcp_app_win && 583 tp->window_clamp > 2 * tp->advmss && 584 tp->window_clamp + tp->advmss > maxwin) 585 WRITE_ONCE(tp->window_clamp, 586 max(2 * tp->advmss, maxwin - tp->advmss)); 587 588 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 589 tp->snd_cwnd_stamp = tcp_jiffies32; 590 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 591 (u32)TCP_INIT_CWND * tp->advmss); 592 } 593 594 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 595 static void tcp_clamp_window(struct sock *sk) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 struct inet_connection_sock *icsk = inet_csk(sk); 599 struct net *net = sock_net(sk); 600 int rmem2; 601 602 icsk->icsk_ack.quick = 0; 603 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 604 605 if (sk->sk_rcvbuf < rmem2 && 606 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 607 !tcp_under_memory_pressure(sk) && 608 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 609 WRITE_ONCE(sk->sk_rcvbuf, 610 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 611 } 612 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 613 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 614 } 615 616 /* Initialize RCV_MSS value. 617 * RCV_MSS is an our guess about MSS used by the peer. 618 * We haven't any direct information about the MSS. 619 * It's better to underestimate the RCV_MSS rather than overestimate. 620 * Overestimations make us ACKing less frequently than needed. 621 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 622 */ 623 void tcp_initialize_rcv_mss(struct sock *sk) 624 { 625 const struct tcp_sock *tp = tcp_sk(sk); 626 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 627 628 hint = min(hint, tp->rcv_wnd / 2); 629 hint = min(hint, TCP_MSS_DEFAULT); 630 hint = max(hint, TCP_MIN_MSS); 631 632 inet_csk(sk)->icsk_ack.rcv_mss = hint; 633 } 634 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 635 636 /* Receiver "autotuning" code. 637 * 638 * The algorithm for RTT estimation w/o timestamps is based on 639 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 640 * <https://public.lanl.gov/radiant/pubs.html#DRS> 641 * 642 * More detail on this code can be found at 643 * <http://staff.psc.edu/jheffner/>, 644 * though this reference is out of date. A new paper 645 * is pending. 646 */ 647 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 648 { 649 u32 new_sample = tp->rcv_rtt_est.rtt_us; 650 long m = sample; 651 652 if (new_sample != 0) { 653 /* If we sample in larger samples in the non-timestamp 654 * case, we could grossly overestimate the RTT especially 655 * with chatty applications or bulk transfer apps which 656 * are stalled on filesystem I/O. 657 * 658 * Also, since we are only going for a minimum in the 659 * non-timestamp case, we do not smooth things out 660 * else with timestamps disabled convergence takes too 661 * long. 662 */ 663 if (!win_dep) { 664 m -= (new_sample >> 3); 665 new_sample += m; 666 } else { 667 m <<= 3; 668 if (m < new_sample) 669 new_sample = m; 670 } 671 } else { 672 /* No previous measure. */ 673 new_sample = m << 3; 674 } 675 676 tp->rcv_rtt_est.rtt_us = new_sample; 677 } 678 679 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 680 { 681 u32 delta_us; 682 683 if (tp->rcv_rtt_est.time == 0) 684 goto new_measure; 685 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 686 return; 687 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 688 if (!delta_us) 689 delta_us = 1; 690 tcp_rcv_rtt_update(tp, delta_us, 1); 691 692 new_measure: 693 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 694 tp->rcv_rtt_est.time = tp->tcp_mstamp; 695 } 696 697 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 698 const struct sk_buff *skb) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 702 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 703 return; 704 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 705 706 if (TCP_SKB_CB(skb)->end_seq - 707 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 708 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 709 u32 delta_us; 710 711 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 712 if (!delta) 713 delta = 1; 714 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 715 tcp_rcv_rtt_update(tp, delta_us, 0); 716 } 717 } 718 } 719 720 /* 721 * This function should be called every time data is copied to user space. 722 * It calculates the appropriate TCP receive buffer space. 723 */ 724 void tcp_rcv_space_adjust(struct sock *sk) 725 { 726 struct tcp_sock *tp = tcp_sk(sk); 727 u32 copied; 728 int time; 729 730 trace_tcp_rcv_space_adjust(sk); 731 732 tcp_mstamp_refresh(tp); 733 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 734 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 735 return; 736 737 /* Number of bytes copied to user in last RTT */ 738 copied = tp->copied_seq - tp->rcvq_space.seq; 739 if (copied <= tp->rcvq_space.space) 740 goto new_measure; 741 742 /* A bit of theory : 743 * copied = bytes received in previous RTT, our base window 744 * To cope with packet losses, we need a 2x factor 745 * To cope with slow start, and sender growing its cwin by 100 % 746 * every RTT, we need a 4x factor, because the ACK we are sending 747 * now is for the next RTT, not the current one : 748 * <prev RTT . ><current RTT .. ><next RTT .... > 749 */ 750 751 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)) { 752 u64 rcvwin, grow; 753 int rcvbuf; 754 755 /* minimal window to cope with packet losses, assuming 756 * steady state. Add some cushion because of small variations. 757 */ 758 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 759 760 /* Accommodate for sender rate increase (eg. slow start) */ 761 grow = rcvwin * (copied - tp->rcvq_space.space); 762 do_div(grow, tp->rcvq_space.space); 763 rcvwin += (grow << 1); 764 765 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 766 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 767 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 768 if (rcvbuf > sk->sk_rcvbuf) { 769 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 770 771 /* Make the window clamp follow along. */ 772 WRITE_ONCE(tp->window_clamp, 773 tcp_win_from_space(sk, rcvbuf)); 774 } 775 } else { 776 /* Make the window clamp follow along while being bounded 777 * by SO_RCVBUF. 778 */ 779 int clamp = tcp_win_from_space(sk, min(rcvbuf, sk->sk_rcvbuf)); 780 781 if (clamp > tp->window_clamp) 782 WRITE_ONCE(tp->window_clamp, clamp); 783 } 784 } 785 tp->rcvq_space.space = copied; 786 787 new_measure: 788 tp->rcvq_space.seq = tp->copied_seq; 789 tp->rcvq_space.time = tp->tcp_mstamp; 790 } 791 792 /* There is something which you must keep in mind when you analyze the 793 * behavior of the tp->ato delayed ack timeout interval. When a 794 * connection starts up, we want to ack as quickly as possible. The 795 * problem is that "good" TCP's do slow start at the beginning of data 796 * transmission. The means that until we send the first few ACK's the 797 * sender will sit on his end and only queue most of his data, because 798 * he can only send snd_cwnd unacked packets at any given time. For 799 * each ACK we send, he increments snd_cwnd and transmits more of his 800 * queue. -DaveM 801 */ 802 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 803 { 804 struct tcp_sock *tp = tcp_sk(sk); 805 struct inet_connection_sock *icsk = inet_csk(sk); 806 u32 now; 807 808 inet_csk_schedule_ack(sk); 809 810 tcp_measure_rcv_mss(sk, skb); 811 812 tcp_rcv_rtt_measure(tp); 813 814 now = tcp_jiffies32; 815 816 if (!icsk->icsk_ack.ato) { 817 /* The _first_ data packet received, initialize 818 * delayed ACK engine. 819 */ 820 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 821 icsk->icsk_ack.ato = TCP_ATO_MIN; 822 } else { 823 int m = now - icsk->icsk_ack.lrcvtime; 824 825 if (m <= TCP_ATO_MIN / 2) { 826 /* The fastest case is the first. */ 827 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 828 } else if (m < icsk->icsk_ack.ato) { 829 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 830 if (icsk->icsk_ack.ato > icsk->icsk_rto) 831 icsk->icsk_ack.ato = icsk->icsk_rto; 832 } else if (m > icsk->icsk_rto) { 833 /* Too long gap. Apparently sender failed to 834 * restart window, so that we send ACKs quickly. 835 */ 836 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 837 } 838 } 839 icsk->icsk_ack.lrcvtime = now; 840 841 tcp_ecn_check_ce(sk, skb); 842 843 if (skb->len >= 128) 844 tcp_grow_window(sk, skb, true); 845 } 846 847 /* Called to compute a smoothed rtt estimate. The data fed to this 848 * routine either comes from timestamps, or from segments that were 849 * known _not_ to have been retransmitted [see Karn/Partridge 850 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 851 * piece by Van Jacobson. 852 * NOTE: the next three routines used to be one big routine. 853 * To save cycles in the RFC 1323 implementation it was better to break 854 * it up into three procedures. -- erics 855 */ 856 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 857 { 858 struct tcp_sock *tp = tcp_sk(sk); 859 long m = mrtt_us; /* RTT */ 860 u32 srtt = tp->srtt_us; 861 862 /* The following amusing code comes from Jacobson's 863 * article in SIGCOMM '88. Note that rtt and mdev 864 * are scaled versions of rtt and mean deviation. 865 * This is designed to be as fast as possible 866 * m stands for "measurement". 867 * 868 * On a 1990 paper the rto value is changed to: 869 * RTO = rtt + 4 * mdev 870 * 871 * Funny. This algorithm seems to be very broken. 872 * These formulae increase RTO, when it should be decreased, increase 873 * too slowly, when it should be increased quickly, decrease too quickly 874 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 875 * does not matter how to _calculate_ it. Seems, it was trap 876 * that VJ failed to avoid. 8) 877 */ 878 if (srtt != 0) { 879 m -= (srtt >> 3); /* m is now error in rtt est */ 880 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 881 if (m < 0) { 882 m = -m; /* m is now abs(error) */ 883 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 884 /* This is similar to one of Eifel findings. 885 * Eifel blocks mdev updates when rtt decreases. 886 * This solution is a bit different: we use finer gain 887 * for mdev in this case (alpha*beta). 888 * Like Eifel it also prevents growth of rto, 889 * but also it limits too fast rto decreases, 890 * happening in pure Eifel. 891 */ 892 if (m > 0) 893 m >>= 3; 894 } else { 895 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 896 } 897 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 898 if (tp->mdev_us > tp->mdev_max_us) { 899 tp->mdev_max_us = tp->mdev_us; 900 if (tp->mdev_max_us > tp->rttvar_us) 901 tp->rttvar_us = tp->mdev_max_us; 902 } 903 if (after(tp->snd_una, tp->rtt_seq)) { 904 if (tp->mdev_max_us < tp->rttvar_us) 905 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 906 tp->rtt_seq = tp->snd_nxt; 907 tp->mdev_max_us = tcp_rto_min_us(sk); 908 909 tcp_bpf_rtt(sk); 910 } 911 } else { 912 /* no previous measure. */ 913 srtt = m << 3; /* take the measured time to be rtt */ 914 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 915 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 916 tp->mdev_max_us = tp->rttvar_us; 917 tp->rtt_seq = tp->snd_nxt; 918 919 tcp_bpf_rtt(sk); 920 } 921 tp->srtt_us = max(1U, srtt); 922 } 923 924 static void tcp_update_pacing_rate(struct sock *sk) 925 { 926 const struct tcp_sock *tp = tcp_sk(sk); 927 u64 rate; 928 929 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 930 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 931 932 /* current rate is (cwnd * mss) / srtt 933 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 934 * In Congestion Avoidance phase, set it to 120 % the current rate. 935 * 936 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 937 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 938 * end of slow start and should slow down. 939 */ 940 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 941 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 942 else 943 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 944 945 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 946 947 if (likely(tp->srtt_us)) 948 do_div(rate, tp->srtt_us); 949 950 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 951 * without any lock. We want to make sure compiler wont store 952 * intermediate values in this location. 953 */ 954 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 955 sk->sk_max_pacing_rate)); 956 } 957 958 /* Calculate rto without backoff. This is the second half of Van Jacobson's 959 * routine referred to above. 960 */ 961 static void tcp_set_rto(struct sock *sk) 962 { 963 const struct tcp_sock *tp = tcp_sk(sk); 964 /* Old crap is replaced with new one. 8) 965 * 966 * More seriously: 967 * 1. If rtt variance happened to be less 50msec, it is hallucination. 968 * It cannot be less due to utterly erratic ACK generation made 969 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 970 * to do with delayed acks, because at cwnd>2 true delack timeout 971 * is invisible. Actually, Linux-2.4 also generates erratic 972 * ACKs in some circumstances. 973 */ 974 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 975 976 /* 2. Fixups made earlier cannot be right. 977 * If we do not estimate RTO correctly without them, 978 * all the algo is pure shit and should be replaced 979 * with correct one. It is exactly, which we pretend to do. 980 */ 981 982 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 983 * guarantees that rto is higher. 984 */ 985 tcp_bound_rto(sk); 986 } 987 988 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 989 { 990 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 991 992 if (!cwnd) 993 cwnd = TCP_INIT_CWND; 994 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 995 } 996 997 struct tcp_sacktag_state { 998 /* Timestamps for earliest and latest never-retransmitted segment 999 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1000 * but congestion control should still get an accurate delay signal. 1001 */ 1002 u64 first_sackt; 1003 u64 last_sackt; 1004 u32 reord; 1005 u32 sack_delivered; 1006 int flag; 1007 unsigned int mss_now; 1008 struct rate_sample *rate; 1009 }; 1010 1011 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1012 * and spurious retransmission information if this DSACK is unlikely caused by 1013 * sender's action: 1014 * - DSACKed sequence range is larger than maximum receiver's window. 1015 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1016 */ 1017 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1018 u32 end_seq, struct tcp_sacktag_state *state) 1019 { 1020 u32 seq_len, dup_segs = 1; 1021 1022 if (!before(start_seq, end_seq)) 1023 return 0; 1024 1025 seq_len = end_seq - start_seq; 1026 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1027 if (seq_len > tp->max_window) 1028 return 0; 1029 if (seq_len > tp->mss_cache) 1030 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1031 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1032 state->flag |= FLAG_DSACK_TLP; 1033 1034 tp->dsack_dups += dup_segs; 1035 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1036 if (tp->dsack_dups > tp->total_retrans) 1037 return 0; 1038 1039 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1040 /* We increase the RACK ordering window in rounds where we receive 1041 * DSACKs that may have been due to reordering causing RACK to trigger 1042 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1043 * without having seen reordering, or that match TLP probes (TLP 1044 * is timer-driven, not triggered by RACK). 1045 */ 1046 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1047 tp->rack.dsack_seen = 1; 1048 1049 state->flag |= FLAG_DSACKING_ACK; 1050 /* A spurious retransmission is delivered */ 1051 state->sack_delivered += dup_segs; 1052 1053 return dup_segs; 1054 } 1055 1056 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1057 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1058 * distance is approximated in full-mss packet distance ("reordering"). 1059 */ 1060 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1061 const int ts) 1062 { 1063 struct tcp_sock *tp = tcp_sk(sk); 1064 const u32 mss = tp->mss_cache; 1065 u32 fack, metric; 1066 1067 fack = tcp_highest_sack_seq(tp); 1068 if (!before(low_seq, fack)) 1069 return; 1070 1071 metric = fack - low_seq; 1072 if ((metric > tp->reordering * mss) && mss) { 1073 #if FASTRETRANS_DEBUG > 1 1074 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1075 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1076 tp->reordering, 1077 0, 1078 tp->sacked_out, 1079 tp->undo_marker ? tp->undo_retrans : 0); 1080 #endif 1081 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1082 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1083 } 1084 1085 /* This exciting event is worth to be remembered. 8) */ 1086 tp->reord_seen++; 1087 NET_INC_STATS(sock_net(sk), 1088 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1089 } 1090 1091 /* This must be called before lost_out or retrans_out are updated 1092 * on a new loss, because we want to know if all skbs previously 1093 * known to be lost have already been retransmitted, indicating 1094 * that this newly lost skb is our next skb to retransmit. 1095 */ 1096 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1097 { 1098 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1099 (tp->retransmit_skb_hint && 1100 before(TCP_SKB_CB(skb)->seq, 1101 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1102 tp->retransmit_skb_hint = skb; 1103 } 1104 1105 /* Sum the number of packets on the wire we have marked as lost, and 1106 * notify the congestion control module that the given skb was marked lost. 1107 */ 1108 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1109 { 1110 tp->lost += tcp_skb_pcount(skb); 1111 } 1112 1113 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1114 { 1115 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1116 struct tcp_sock *tp = tcp_sk(sk); 1117 1118 if (sacked & TCPCB_SACKED_ACKED) 1119 return; 1120 1121 tcp_verify_retransmit_hint(tp, skb); 1122 if (sacked & TCPCB_LOST) { 1123 if (sacked & TCPCB_SACKED_RETRANS) { 1124 /* Account for retransmits that are lost again */ 1125 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1126 tp->retrans_out -= tcp_skb_pcount(skb); 1127 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1128 tcp_skb_pcount(skb)); 1129 tcp_notify_skb_loss_event(tp, skb); 1130 } 1131 } else { 1132 tp->lost_out += tcp_skb_pcount(skb); 1133 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1134 tcp_notify_skb_loss_event(tp, skb); 1135 } 1136 } 1137 1138 /* Updates the delivered and delivered_ce counts */ 1139 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1140 bool ece_ack) 1141 { 1142 tp->delivered += delivered; 1143 if (ece_ack) 1144 tp->delivered_ce += delivered; 1145 } 1146 1147 /* This procedure tags the retransmission queue when SACKs arrive. 1148 * 1149 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1150 * Packets in queue with these bits set are counted in variables 1151 * sacked_out, retrans_out and lost_out, correspondingly. 1152 * 1153 * Valid combinations are: 1154 * Tag InFlight Description 1155 * 0 1 - orig segment is in flight. 1156 * S 0 - nothing flies, orig reached receiver. 1157 * L 0 - nothing flies, orig lost by net. 1158 * R 2 - both orig and retransmit are in flight. 1159 * L|R 1 - orig is lost, retransmit is in flight. 1160 * S|R 1 - orig reached receiver, retrans is still in flight. 1161 * (L|S|R is logically valid, it could occur when L|R is sacked, 1162 * but it is equivalent to plain S and code short-curcuits it to S. 1163 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1164 * 1165 * These 6 states form finite state machine, controlled by the following events: 1166 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1167 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1168 * 3. Loss detection event of two flavors: 1169 * A. Scoreboard estimator decided the packet is lost. 1170 * A'. Reno "three dupacks" marks head of queue lost. 1171 * B. SACK arrives sacking SND.NXT at the moment, when the 1172 * segment was retransmitted. 1173 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1174 * 1175 * It is pleasant to note, that state diagram turns out to be commutative, 1176 * so that we are allowed not to be bothered by order of our actions, 1177 * when multiple events arrive simultaneously. (see the function below). 1178 * 1179 * Reordering detection. 1180 * -------------------- 1181 * Reordering metric is maximal distance, which a packet can be displaced 1182 * in packet stream. With SACKs we can estimate it: 1183 * 1184 * 1. SACK fills old hole and the corresponding segment was not 1185 * ever retransmitted -> reordering. Alas, we cannot use it 1186 * when segment was retransmitted. 1187 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1188 * for retransmitted and already SACKed segment -> reordering.. 1189 * Both of these heuristics are not used in Loss state, when we cannot 1190 * account for retransmits accurately. 1191 * 1192 * SACK block validation. 1193 * ---------------------- 1194 * 1195 * SACK block range validation checks that the received SACK block fits to 1196 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1197 * Note that SND.UNA is not included to the range though being valid because 1198 * it means that the receiver is rather inconsistent with itself reporting 1199 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1200 * perfectly valid, however, in light of RFC2018 which explicitly states 1201 * that "SACK block MUST reflect the newest segment. Even if the newest 1202 * segment is going to be discarded ...", not that it looks very clever 1203 * in case of head skb. Due to potentional receiver driven attacks, we 1204 * choose to avoid immediate execution of a walk in write queue due to 1205 * reneging and defer head skb's loss recovery to standard loss recovery 1206 * procedure that will eventually trigger (nothing forbids us doing this). 1207 * 1208 * Implements also blockage to start_seq wrap-around. Problem lies in the 1209 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1210 * there's no guarantee that it will be before snd_nxt (n). The problem 1211 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1212 * wrap (s_w): 1213 * 1214 * <- outs wnd -> <- wrapzone -> 1215 * u e n u_w e_w s n_w 1216 * | | | | | | | 1217 * |<------------+------+----- TCP seqno space --------------+---------->| 1218 * ...-- <2^31 ->| |<--------... 1219 * ...---- >2^31 ------>| |<--------... 1220 * 1221 * Current code wouldn't be vulnerable but it's better still to discard such 1222 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1223 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1224 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1225 * equal to the ideal case (infinite seqno space without wrap caused issues). 1226 * 1227 * With D-SACK the lower bound is extended to cover sequence space below 1228 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1229 * again, D-SACK block must not to go across snd_una (for the same reason as 1230 * for the normal SACK blocks, explained above). But there all simplicity 1231 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1232 * fully below undo_marker they do not affect behavior in anyway and can 1233 * therefore be safely ignored. In rare cases (which are more or less 1234 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1235 * fragmentation and packet reordering past skb's retransmission. To consider 1236 * them correctly, the acceptable range must be extended even more though 1237 * the exact amount is rather hard to quantify. However, tp->max_window can 1238 * be used as an exaggerated estimate. 1239 */ 1240 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1241 u32 start_seq, u32 end_seq) 1242 { 1243 /* Too far in future, or reversed (interpretation is ambiguous) */ 1244 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1245 return false; 1246 1247 /* Nasty start_seq wrap-around check (see comments above) */ 1248 if (!before(start_seq, tp->snd_nxt)) 1249 return false; 1250 1251 /* In outstanding window? ...This is valid exit for D-SACKs too. 1252 * start_seq == snd_una is non-sensical (see comments above) 1253 */ 1254 if (after(start_seq, tp->snd_una)) 1255 return true; 1256 1257 if (!is_dsack || !tp->undo_marker) 1258 return false; 1259 1260 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1261 if (after(end_seq, tp->snd_una)) 1262 return false; 1263 1264 if (!before(start_seq, tp->undo_marker)) 1265 return true; 1266 1267 /* Too old */ 1268 if (!after(end_seq, tp->undo_marker)) 1269 return false; 1270 1271 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1272 * start_seq < undo_marker and end_seq >= undo_marker. 1273 */ 1274 return !before(start_seq, end_seq - tp->max_window); 1275 } 1276 1277 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1278 struct tcp_sack_block_wire *sp, int num_sacks, 1279 u32 prior_snd_una, struct tcp_sacktag_state *state) 1280 { 1281 struct tcp_sock *tp = tcp_sk(sk); 1282 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1283 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1284 u32 dup_segs; 1285 1286 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1287 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1288 } else if (num_sacks > 1) { 1289 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1290 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1291 1292 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1293 return false; 1294 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1295 } else { 1296 return false; 1297 } 1298 1299 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1300 if (!dup_segs) { /* Skip dubious DSACK */ 1301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1302 return false; 1303 } 1304 1305 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1306 1307 /* D-SACK for already forgotten data... Do dumb counting. */ 1308 if (tp->undo_marker && tp->undo_retrans > 0 && 1309 !after(end_seq_0, prior_snd_una) && 1310 after(end_seq_0, tp->undo_marker)) 1311 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1312 1313 return true; 1314 } 1315 1316 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1317 * the incoming SACK may not exactly match but we can find smaller MSS 1318 * aligned portion of it that matches. Therefore we might need to fragment 1319 * which may fail and creates some hassle (caller must handle error case 1320 * returns). 1321 * 1322 * FIXME: this could be merged to shift decision code 1323 */ 1324 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1325 u32 start_seq, u32 end_seq) 1326 { 1327 int err; 1328 bool in_sack; 1329 unsigned int pkt_len; 1330 unsigned int mss; 1331 1332 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1333 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1334 1335 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1336 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1337 mss = tcp_skb_mss(skb); 1338 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1339 1340 if (!in_sack) { 1341 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1342 if (pkt_len < mss) 1343 pkt_len = mss; 1344 } else { 1345 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1346 if (pkt_len < mss) 1347 return -EINVAL; 1348 } 1349 1350 /* Round if necessary so that SACKs cover only full MSSes 1351 * and/or the remaining small portion (if present) 1352 */ 1353 if (pkt_len > mss) { 1354 unsigned int new_len = (pkt_len / mss) * mss; 1355 if (!in_sack && new_len < pkt_len) 1356 new_len += mss; 1357 pkt_len = new_len; 1358 } 1359 1360 if (pkt_len >= skb->len && !in_sack) 1361 return 0; 1362 1363 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1364 pkt_len, mss, GFP_ATOMIC); 1365 if (err < 0) 1366 return err; 1367 } 1368 1369 return in_sack; 1370 } 1371 1372 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1373 static u8 tcp_sacktag_one(struct sock *sk, 1374 struct tcp_sacktag_state *state, u8 sacked, 1375 u32 start_seq, u32 end_seq, 1376 int dup_sack, int pcount, 1377 u64 xmit_time) 1378 { 1379 struct tcp_sock *tp = tcp_sk(sk); 1380 1381 /* Account D-SACK for retransmitted packet. */ 1382 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1383 if (tp->undo_marker && tp->undo_retrans > 0 && 1384 after(end_seq, tp->undo_marker)) 1385 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1386 if ((sacked & TCPCB_SACKED_ACKED) && 1387 before(start_seq, state->reord)) 1388 state->reord = start_seq; 1389 } 1390 1391 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1392 if (!after(end_seq, tp->snd_una)) 1393 return sacked; 1394 1395 if (!(sacked & TCPCB_SACKED_ACKED)) { 1396 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1397 1398 if (sacked & TCPCB_SACKED_RETRANS) { 1399 /* If the segment is not tagged as lost, 1400 * we do not clear RETRANS, believing 1401 * that retransmission is still in flight. 1402 */ 1403 if (sacked & TCPCB_LOST) { 1404 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1405 tp->lost_out -= pcount; 1406 tp->retrans_out -= pcount; 1407 } 1408 } else { 1409 if (!(sacked & TCPCB_RETRANS)) { 1410 /* New sack for not retransmitted frame, 1411 * which was in hole. It is reordering. 1412 */ 1413 if (before(start_seq, 1414 tcp_highest_sack_seq(tp)) && 1415 before(start_seq, state->reord)) 1416 state->reord = start_seq; 1417 1418 if (!after(end_seq, tp->high_seq)) 1419 state->flag |= FLAG_ORIG_SACK_ACKED; 1420 if (state->first_sackt == 0) 1421 state->first_sackt = xmit_time; 1422 state->last_sackt = xmit_time; 1423 } 1424 1425 if (sacked & TCPCB_LOST) { 1426 sacked &= ~TCPCB_LOST; 1427 tp->lost_out -= pcount; 1428 } 1429 } 1430 1431 sacked |= TCPCB_SACKED_ACKED; 1432 state->flag |= FLAG_DATA_SACKED; 1433 tp->sacked_out += pcount; 1434 /* Out-of-order packets delivered */ 1435 state->sack_delivered += pcount; 1436 1437 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1438 if (tp->lost_skb_hint && 1439 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1440 tp->lost_cnt_hint += pcount; 1441 } 1442 1443 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1444 * frames and clear it. undo_retrans is decreased above, L|R frames 1445 * are accounted above as well. 1446 */ 1447 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1448 sacked &= ~TCPCB_SACKED_RETRANS; 1449 tp->retrans_out -= pcount; 1450 } 1451 1452 return sacked; 1453 } 1454 1455 /* Shift newly-SACKed bytes from this skb to the immediately previous 1456 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1457 */ 1458 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1459 struct sk_buff *skb, 1460 struct tcp_sacktag_state *state, 1461 unsigned int pcount, int shifted, int mss, 1462 bool dup_sack) 1463 { 1464 struct tcp_sock *tp = tcp_sk(sk); 1465 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1466 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1467 1468 BUG_ON(!pcount); 1469 1470 /* Adjust counters and hints for the newly sacked sequence 1471 * range but discard the return value since prev is already 1472 * marked. We must tag the range first because the seq 1473 * advancement below implicitly advances 1474 * tcp_highest_sack_seq() when skb is highest_sack. 1475 */ 1476 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1477 start_seq, end_seq, dup_sack, pcount, 1478 tcp_skb_timestamp_us(skb)); 1479 tcp_rate_skb_delivered(sk, skb, state->rate); 1480 1481 if (skb == tp->lost_skb_hint) 1482 tp->lost_cnt_hint += pcount; 1483 1484 TCP_SKB_CB(prev)->end_seq += shifted; 1485 TCP_SKB_CB(skb)->seq += shifted; 1486 1487 tcp_skb_pcount_add(prev, pcount); 1488 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1489 tcp_skb_pcount_add(skb, -pcount); 1490 1491 /* When we're adding to gso_segs == 1, gso_size will be zero, 1492 * in theory this shouldn't be necessary but as long as DSACK 1493 * code can come after this skb later on it's better to keep 1494 * setting gso_size to something. 1495 */ 1496 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1497 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1498 1499 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1500 if (tcp_skb_pcount(skb) <= 1) 1501 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1502 1503 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1504 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1505 1506 if (skb->len > 0) { 1507 BUG_ON(!tcp_skb_pcount(skb)); 1508 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1509 return false; 1510 } 1511 1512 /* Whole SKB was eaten :-) */ 1513 1514 if (skb == tp->retransmit_skb_hint) 1515 tp->retransmit_skb_hint = prev; 1516 if (skb == tp->lost_skb_hint) { 1517 tp->lost_skb_hint = prev; 1518 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1519 } 1520 1521 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1522 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1523 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1524 TCP_SKB_CB(prev)->end_seq++; 1525 1526 if (skb == tcp_highest_sack(sk)) 1527 tcp_advance_highest_sack(sk, skb); 1528 1529 tcp_skb_collapse_tstamp(prev, skb); 1530 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1531 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1532 1533 tcp_rtx_queue_unlink_and_free(skb, sk); 1534 1535 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1536 1537 return true; 1538 } 1539 1540 /* I wish gso_size would have a bit more sane initialization than 1541 * something-or-zero which complicates things 1542 */ 1543 static int tcp_skb_seglen(const struct sk_buff *skb) 1544 { 1545 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1546 } 1547 1548 /* Shifting pages past head area doesn't work */ 1549 static int skb_can_shift(const struct sk_buff *skb) 1550 { 1551 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1552 } 1553 1554 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1555 int pcount, int shiftlen) 1556 { 1557 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1558 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1559 * to make sure not storing more than 65535 * 8 bytes per skb, 1560 * even if current MSS is bigger. 1561 */ 1562 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1563 return 0; 1564 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1565 return 0; 1566 return skb_shift(to, from, shiftlen); 1567 } 1568 1569 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1570 * skb. 1571 */ 1572 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1573 struct tcp_sacktag_state *state, 1574 u32 start_seq, u32 end_seq, 1575 bool dup_sack) 1576 { 1577 struct tcp_sock *tp = tcp_sk(sk); 1578 struct sk_buff *prev; 1579 int mss; 1580 int pcount = 0; 1581 int len; 1582 int in_sack; 1583 1584 /* Normally R but no L won't result in plain S */ 1585 if (!dup_sack && 1586 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1587 goto fallback; 1588 if (!skb_can_shift(skb)) 1589 goto fallback; 1590 /* This frame is about to be dropped (was ACKed). */ 1591 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1592 goto fallback; 1593 1594 /* Can only happen with delayed DSACK + discard craziness */ 1595 prev = skb_rb_prev(skb); 1596 if (!prev) 1597 goto fallback; 1598 1599 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1600 goto fallback; 1601 1602 if (!tcp_skb_can_collapse(prev, skb)) 1603 goto fallback; 1604 1605 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1606 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1607 1608 if (in_sack) { 1609 len = skb->len; 1610 pcount = tcp_skb_pcount(skb); 1611 mss = tcp_skb_seglen(skb); 1612 1613 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1614 * drop this restriction as unnecessary 1615 */ 1616 if (mss != tcp_skb_seglen(prev)) 1617 goto fallback; 1618 } else { 1619 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1620 goto noop; 1621 /* CHECKME: This is non-MSS split case only?, this will 1622 * cause skipped skbs due to advancing loop btw, original 1623 * has that feature too 1624 */ 1625 if (tcp_skb_pcount(skb) <= 1) 1626 goto noop; 1627 1628 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1629 if (!in_sack) { 1630 /* TODO: head merge to next could be attempted here 1631 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1632 * though it might not be worth of the additional hassle 1633 * 1634 * ...we can probably just fallback to what was done 1635 * previously. We could try merging non-SACKed ones 1636 * as well but it probably isn't going to buy off 1637 * because later SACKs might again split them, and 1638 * it would make skb timestamp tracking considerably 1639 * harder problem. 1640 */ 1641 goto fallback; 1642 } 1643 1644 len = end_seq - TCP_SKB_CB(skb)->seq; 1645 BUG_ON(len < 0); 1646 BUG_ON(len > skb->len); 1647 1648 /* MSS boundaries should be honoured or else pcount will 1649 * severely break even though it makes things bit trickier. 1650 * Optimize common case to avoid most of the divides 1651 */ 1652 mss = tcp_skb_mss(skb); 1653 1654 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1655 * drop this restriction as unnecessary 1656 */ 1657 if (mss != tcp_skb_seglen(prev)) 1658 goto fallback; 1659 1660 if (len == mss) { 1661 pcount = 1; 1662 } else if (len < mss) { 1663 goto noop; 1664 } else { 1665 pcount = len / mss; 1666 len = pcount * mss; 1667 } 1668 } 1669 1670 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1671 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1672 goto fallback; 1673 1674 if (!tcp_skb_shift(prev, skb, pcount, len)) 1675 goto fallback; 1676 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1677 goto out; 1678 1679 /* Hole filled allows collapsing with the next as well, this is very 1680 * useful when hole on every nth skb pattern happens 1681 */ 1682 skb = skb_rb_next(prev); 1683 if (!skb) 1684 goto out; 1685 1686 if (!skb_can_shift(skb) || 1687 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1688 (mss != tcp_skb_seglen(skb))) 1689 goto out; 1690 1691 if (!tcp_skb_can_collapse(prev, skb)) 1692 goto out; 1693 len = skb->len; 1694 pcount = tcp_skb_pcount(skb); 1695 if (tcp_skb_shift(prev, skb, pcount, len)) 1696 tcp_shifted_skb(sk, prev, skb, state, pcount, 1697 len, mss, 0); 1698 1699 out: 1700 return prev; 1701 1702 noop: 1703 return skb; 1704 1705 fallback: 1706 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1707 return NULL; 1708 } 1709 1710 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1711 struct tcp_sack_block *next_dup, 1712 struct tcp_sacktag_state *state, 1713 u32 start_seq, u32 end_seq, 1714 bool dup_sack_in) 1715 { 1716 struct tcp_sock *tp = tcp_sk(sk); 1717 struct sk_buff *tmp; 1718 1719 skb_rbtree_walk_from(skb) { 1720 int in_sack = 0; 1721 bool dup_sack = dup_sack_in; 1722 1723 /* queue is in-order => we can short-circuit the walk early */ 1724 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1725 break; 1726 1727 if (next_dup && 1728 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1729 in_sack = tcp_match_skb_to_sack(sk, skb, 1730 next_dup->start_seq, 1731 next_dup->end_seq); 1732 if (in_sack > 0) 1733 dup_sack = true; 1734 } 1735 1736 /* skb reference here is a bit tricky to get right, since 1737 * shifting can eat and free both this skb and the next, 1738 * so not even _safe variant of the loop is enough. 1739 */ 1740 if (in_sack <= 0) { 1741 tmp = tcp_shift_skb_data(sk, skb, state, 1742 start_seq, end_seq, dup_sack); 1743 if (tmp) { 1744 if (tmp != skb) { 1745 skb = tmp; 1746 continue; 1747 } 1748 1749 in_sack = 0; 1750 } else { 1751 in_sack = tcp_match_skb_to_sack(sk, skb, 1752 start_seq, 1753 end_seq); 1754 } 1755 } 1756 1757 if (unlikely(in_sack < 0)) 1758 break; 1759 1760 if (in_sack) { 1761 TCP_SKB_CB(skb)->sacked = 1762 tcp_sacktag_one(sk, 1763 state, 1764 TCP_SKB_CB(skb)->sacked, 1765 TCP_SKB_CB(skb)->seq, 1766 TCP_SKB_CB(skb)->end_seq, 1767 dup_sack, 1768 tcp_skb_pcount(skb), 1769 tcp_skb_timestamp_us(skb)); 1770 tcp_rate_skb_delivered(sk, skb, state->rate); 1771 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1772 list_del_init(&skb->tcp_tsorted_anchor); 1773 1774 if (!before(TCP_SKB_CB(skb)->seq, 1775 tcp_highest_sack_seq(tp))) 1776 tcp_advance_highest_sack(sk, skb); 1777 } 1778 } 1779 return skb; 1780 } 1781 1782 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1783 { 1784 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1785 struct sk_buff *skb; 1786 1787 while (*p) { 1788 parent = *p; 1789 skb = rb_to_skb(parent); 1790 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1791 p = &parent->rb_left; 1792 continue; 1793 } 1794 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1795 p = &parent->rb_right; 1796 continue; 1797 } 1798 return skb; 1799 } 1800 return NULL; 1801 } 1802 1803 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1804 u32 skip_to_seq) 1805 { 1806 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1807 return skb; 1808 1809 return tcp_sacktag_bsearch(sk, skip_to_seq); 1810 } 1811 1812 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1813 struct sock *sk, 1814 struct tcp_sack_block *next_dup, 1815 struct tcp_sacktag_state *state, 1816 u32 skip_to_seq) 1817 { 1818 if (!next_dup) 1819 return skb; 1820 1821 if (before(next_dup->start_seq, skip_to_seq)) { 1822 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1823 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1824 next_dup->start_seq, next_dup->end_seq, 1825 1); 1826 } 1827 1828 return skb; 1829 } 1830 1831 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1832 { 1833 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1834 } 1835 1836 static int 1837 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1838 u32 prior_snd_una, struct tcp_sacktag_state *state) 1839 { 1840 struct tcp_sock *tp = tcp_sk(sk); 1841 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1842 TCP_SKB_CB(ack_skb)->sacked); 1843 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1844 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1845 struct tcp_sack_block *cache; 1846 struct sk_buff *skb; 1847 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1848 int used_sacks; 1849 bool found_dup_sack = false; 1850 int i, j; 1851 int first_sack_index; 1852 1853 state->flag = 0; 1854 state->reord = tp->snd_nxt; 1855 1856 if (!tp->sacked_out) 1857 tcp_highest_sack_reset(sk); 1858 1859 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1860 num_sacks, prior_snd_una, state); 1861 1862 /* Eliminate too old ACKs, but take into 1863 * account more or less fresh ones, they can 1864 * contain valid SACK info. 1865 */ 1866 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1867 return 0; 1868 1869 if (!tp->packets_out) 1870 goto out; 1871 1872 used_sacks = 0; 1873 first_sack_index = 0; 1874 for (i = 0; i < num_sacks; i++) { 1875 bool dup_sack = !i && found_dup_sack; 1876 1877 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1878 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1879 1880 if (!tcp_is_sackblock_valid(tp, dup_sack, 1881 sp[used_sacks].start_seq, 1882 sp[used_sacks].end_seq)) { 1883 int mib_idx; 1884 1885 if (dup_sack) { 1886 if (!tp->undo_marker) 1887 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1888 else 1889 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1890 } else { 1891 /* Don't count olds caused by ACK reordering */ 1892 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1893 !after(sp[used_sacks].end_seq, tp->snd_una)) 1894 continue; 1895 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1896 } 1897 1898 NET_INC_STATS(sock_net(sk), mib_idx); 1899 if (i == 0) 1900 first_sack_index = -1; 1901 continue; 1902 } 1903 1904 /* Ignore very old stuff early */ 1905 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1906 if (i == 0) 1907 first_sack_index = -1; 1908 continue; 1909 } 1910 1911 used_sacks++; 1912 } 1913 1914 /* order SACK blocks to allow in order walk of the retrans queue */ 1915 for (i = used_sacks - 1; i > 0; i--) { 1916 for (j = 0; j < i; j++) { 1917 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1918 swap(sp[j], sp[j + 1]); 1919 1920 /* Track where the first SACK block goes to */ 1921 if (j == first_sack_index) 1922 first_sack_index = j + 1; 1923 } 1924 } 1925 } 1926 1927 state->mss_now = tcp_current_mss(sk); 1928 skb = NULL; 1929 i = 0; 1930 1931 if (!tp->sacked_out) { 1932 /* It's already past, so skip checking against it */ 1933 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1934 } else { 1935 cache = tp->recv_sack_cache; 1936 /* Skip empty blocks in at head of the cache */ 1937 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1938 !cache->end_seq) 1939 cache++; 1940 } 1941 1942 while (i < used_sacks) { 1943 u32 start_seq = sp[i].start_seq; 1944 u32 end_seq = sp[i].end_seq; 1945 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1946 struct tcp_sack_block *next_dup = NULL; 1947 1948 if (found_dup_sack && ((i + 1) == first_sack_index)) 1949 next_dup = &sp[i + 1]; 1950 1951 /* Skip too early cached blocks */ 1952 while (tcp_sack_cache_ok(tp, cache) && 1953 !before(start_seq, cache->end_seq)) 1954 cache++; 1955 1956 /* Can skip some work by looking recv_sack_cache? */ 1957 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1958 after(end_seq, cache->start_seq)) { 1959 1960 /* Head todo? */ 1961 if (before(start_seq, cache->start_seq)) { 1962 skb = tcp_sacktag_skip(skb, sk, start_seq); 1963 skb = tcp_sacktag_walk(skb, sk, next_dup, 1964 state, 1965 start_seq, 1966 cache->start_seq, 1967 dup_sack); 1968 } 1969 1970 /* Rest of the block already fully processed? */ 1971 if (!after(end_seq, cache->end_seq)) 1972 goto advance_sp; 1973 1974 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1975 state, 1976 cache->end_seq); 1977 1978 /* ...tail remains todo... */ 1979 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1980 /* ...but better entrypoint exists! */ 1981 skb = tcp_highest_sack(sk); 1982 if (!skb) 1983 break; 1984 cache++; 1985 goto walk; 1986 } 1987 1988 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1989 /* Check overlap against next cached too (past this one already) */ 1990 cache++; 1991 continue; 1992 } 1993 1994 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1995 skb = tcp_highest_sack(sk); 1996 if (!skb) 1997 break; 1998 } 1999 skb = tcp_sacktag_skip(skb, sk, start_seq); 2000 2001 walk: 2002 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2003 start_seq, end_seq, dup_sack); 2004 2005 advance_sp: 2006 i++; 2007 } 2008 2009 /* Clear the head of the cache sack blocks so we can skip it next time */ 2010 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2011 tp->recv_sack_cache[i].start_seq = 0; 2012 tp->recv_sack_cache[i].end_seq = 0; 2013 } 2014 for (j = 0; j < used_sacks; j++) 2015 tp->recv_sack_cache[i++] = sp[j]; 2016 2017 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2018 tcp_check_sack_reordering(sk, state->reord, 0); 2019 2020 tcp_verify_left_out(tp); 2021 out: 2022 2023 #if FASTRETRANS_DEBUG > 0 2024 WARN_ON((int)tp->sacked_out < 0); 2025 WARN_ON((int)tp->lost_out < 0); 2026 WARN_ON((int)tp->retrans_out < 0); 2027 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2028 #endif 2029 return state->flag; 2030 } 2031 2032 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2033 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2034 */ 2035 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2036 { 2037 u32 holes; 2038 2039 holes = max(tp->lost_out, 1U); 2040 holes = min(holes, tp->packets_out); 2041 2042 if ((tp->sacked_out + holes) > tp->packets_out) { 2043 tp->sacked_out = tp->packets_out - holes; 2044 return true; 2045 } 2046 return false; 2047 } 2048 2049 /* If we receive more dupacks than we expected counting segments 2050 * in assumption of absent reordering, interpret this as reordering. 2051 * The only another reason could be bug in receiver TCP. 2052 */ 2053 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2054 { 2055 struct tcp_sock *tp = tcp_sk(sk); 2056 2057 if (!tcp_limit_reno_sacked(tp)) 2058 return; 2059 2060 tp->reordering = min_t(u32, tp->packets_out + addend, 2061 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2062 tp->reord_seen++; 2063 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2064 } 2065 2066 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2067 2068 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2069 { 2070 if (num_dupack) { 2071 struct tcp_sock *tp = tcp_sk(sk); 2072 u32 prior_sacked = tp->sacked_out; 2073 s32 delivered; 2074 2075 tp->sacked_out += num_dupack; 2076 tcp_check_reno_reordering(sk, 0); 2077 delivered = tp->sacked_out - prior_sacked; 2078 if (delivered > 0) 2079 tcp_count_delivered(tp, delivered, ece_ack); 2080 tcp_verify_left_out(tp); 2081 } 2082 } 2083 2084 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2085 2086 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2087 { 2088 struct tcp_sock *tp = tcp_sk(sk); 2089 2090 if (acked > 0) { 2091 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2092 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2093 ece_ack); 2094 if (acked - 1 >= tp->sacked_out) 2095 tp->sacked_out = 0; 2096 else 2097 tp->sacked_out -= acked - 1; 2098 } 2099 tcp_check_reno_reordering(sk, acked); 2100 tcp_verify_left_out(tp); 2101 } 2102 2103 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2104 { 2105 tp->sacked_out = 0; 2106 } 2107 2108 void tcp_clear_retrans(struct tcp_sock *tp) 2109 { 2110 tp->retrans_out = 0; 2111 tp->lost_out = 0; 2112 tp->undo_marker = 0; 2113 tp->undo_retrans = -1; 2114 tp->sacked_out = 0; 2115 } 2116 2117 static inline void tcp_init_undo(struct tcp_sock *tp) 2118 { 2119 tp->undo_marker = tp->snd_una; 2120 2121 /* Retransmission still in flight may cause DSACKs later. */ 2122 /* First, account for regular retransmits in flight: */ 2123 tp->undo_retrans = tp->retrans_out; 2124 /* Next, account for TLP retransmits in flight: */ 2125 if (tp->tlp_high_seq && tp->tlp_retrans) 2126 tp->undo_retrans++; 2127 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2128 if (!tp->undo_retrans) 2129 tp->undo_retrans = -1; 2130 } 2131 2132 static bool tcp_is_rack(const struct sock *sk) 2133 { 2134 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2135 TCP_RACK_LOSS_DETECTION; 2136 } 2137 2138 /* If we detect SACK reneging, forget all SACK information 2139 * and reset tags completely, otherwise preserve SACKs. If receiver 2140 * dropped its ofo queue, we will know this due to reneging detection. 2141 */ 2142 static void tcp_timeout_mark_lost(struct sock *sk) 2143 { 2144 struct tcp_sock *tp = tcp_sk(sk); 2145 struct sk_buff *skb, *head; 2146 bool is_reneg; /* is receiver reneging on SACKs? */ 2147 2148 head = tcp_rtx_queue_head(sk); 2149 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2150 if (is_reneg) { 2151 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2152 tp->sacked_out = 0; 2153 /* Mark SACK reneging until we recover from this loss event. */ 2154 tp->is_sack_reneg = 1; 2155 } else if (tcp_is_reno(tp)) { 2156 tcp_reset_reno_sack(tp); 2157 } 2158 2159 skb = head; 2160 skb_rbtree_walk_from(skb) { 2161 if (is_reneg) 2162 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2163 else if (tcp_is_rack(sk) && skb != head && 2164 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2165 continue; /* Don't mark recently sent ones lost yet */ 2166 tcp_mark_skb_lost(sk, skb); 2167 } 2168 tcp_verify_left_out(tp); 2169 tcp_clear_all_retrans_hints(tp); 2170 } 2171 2172 /* Enter Loss state. */ 2173 void tcp_enter_loss(struct sock *sk) 2174 { 2175 const struct inet_connection_sock *icsk = inet_csk(sk); 2176 struct tcp_sock *tp = tcp_sk(sk); 2177 struct net *net = sock_net(sk); 2178 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2179 u8 reordering; 2180 2181 tcp_timeout_mark_lost(sk); 2182 2183 /* Reduce ssthresh if it has not yet been made inside this window. */ 2184 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2185 !after(tp->high_seq, tp->snd_una) || 2186 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2187 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2188 tp->prior_cwnd = tcp_snd_cwnd(tp); 2189 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2190 tcp_ca_event(sk, CA_EVENT_LOSS); 2191 tcp_init_undo(tp); 2192 } 2193 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2194 tp->snd_cwnd_cnt = 0; 2195 tp->snd_cwnd_stamp = tcp_jiffies32; 2196 2197 /* Timeout in disordered state after receiving substantial DUPACKs 2198 * suggests that the degree of reordering is over-estimated. 2199 */ 2200 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2201 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2202 tp->sacked_out >= reordering) 2203 tp->reordering = min_t(unsigned int, tp->reordering, 2204 reordering); 2205 2206 tcp_set_ca_state(sk, TCP_CA_Loss); 2207 tp->high_seq = tp->snd_nxt; 2208 tp->tlp_high_seq = 0; 2209 tcp_ecn_queue_cwr(tp); 2210 2211 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2212 * loss recovery is underway except recurring timeout(s) on 2213 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2214 */ 2215 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2216 (new_recovery || icsk->icsk_retransmits) && 2217 !inet_csk(sk)->icsk_mtup.probe_size; 2218 } 2219 2220 /* If ACK arrived pointing to a remembered SACK, it means that our 2221 * remembered SACKs do not reflect real state of receiver i.e. 2222 * receiver _host_ is heavily congested (or buggy). 2223 * 2224 * To avoid big spurious retransmission bursts due to transient SACK 2225 * scoreboard oddities that look like reneging, we give the receiver a 2226 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2227 * restore sanity to the SACK scoreboard. If the apparent reneging 2228 * persists until this RTO then we'll clear the SACK scoreboard. 2229 */ 2230 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2231 { 2232 if (*ack_flag & FLAG_SACK_RENEGING && 2233 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2234 struct tcp_sock *tp = tcp_sk(sk); 2235 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2236 msecs_to_jiffies(10)); 2237 2238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2239 delay, TCP_RTO_MAX); 2240 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2247 * counter when SACK is enabled (without SACK, sacked_out is used for 2248 * that purpose). 2249 * 2250 * With reordering, holes may still be in flight, so RFC3517 recovery 2251 * uses pure sacked_out (total number of SACKed segments) even though 2252 * it violates the RFC that uses duplicate ACKs, often these are equal 2253 * but when e.g. out-of-window ACKs or packet duplication occurs, 2254 * they differ. Since neither occurs due to loss, TCP should really 2255 * ignore them. 2256 */ 2257 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2258 { 2259 return tp->sacked_out + 1; 2260 } 2261 2262 /* Linux NewReno/SACK/ECN state machine. 2263 * -------------------------------------- 2264 * 2265 * "Open" Normal state, no dubious events, fast path. 2266 * "Disorder" In all the respects it is "Open", 2267 * but requires a bit more attention. It is entered when 2268 * we see some SACKs or dupacks. It is split of "Open" 2269 * mainly to move some processing from fast path to slow one. 2270 * "CWR" CWND was reduced due to some Congestion Notification event. 2271 * It can be ECN, ICMP source quench, local device congestion. 2272 * "Recovery" CWND was reduced, we are fast-retransmitting. 2273 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2274 * 2275 * tcp_fastretrans_alert() is entered: 2276 * - each incoming ACK, if state is not "Open" 2277 * - when arrived ACK is unusual, namely: 2278 * * SACK 2279 * * Duplicate ACK. 2280 * * ECN ECE. 2281 * 2282 * Counting packets in flight is pretty simple. 2283 * 2284 * in_flight = packets_out - left_out + retrans_out 2285 * 2286 * packets_out is SND.NXT-SND.UNA counted in packets. 2287 * 2288 * retrans_out is number of retransmitted segments. 2289 * 2290 * left_out is number of segments left network, but not ACKed yet. 2291 * 2292 * left_out = sacked_out + lost_out 2293 * 2294 * sacked_out: Packets, which arrived to receiver out of order 2295 * and hence not ACKed. With SACKs this number is simply 2296 * amount of SACKed data. Even without SACKs 2297 * it is easy to give pretty reliable estimate of this number, 2298 * counting duplicate ACKs. 2299 * 2300 * lost_out: Packets lost by network. TCP has no explicit 2301 * "loss notification" feedback from network (for now). 2302 * It means that this number can be only _guessed_. 2303 * Actually, it is the heuristics to predict lossage that 2304 * distinguishes different algorithms. 2305 * 2306 * F.e. after RTO, when all the queue is considered as lost, 2307 * lost_out = packets_out and in_flight = retrans_out. 2308 * 2309 * Essentially, we have now a few algorithms detecting 2310 * lost packets. 2311 * 2312 * If the receiver supports SACK: 2313 * 2314 * RFC6675/3517: It is the conventional algorithm. A packet is 2315 * considered lost if the number of higher sequence packets 2316 * SACKed is greater than or equal the DUPACK thoreshold 2317 * (reordering). This is implemented in tcp_mark_head_lost and 2318 * tcp_update_scoreboard. 2319 * 2320 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2321 * (2017-) that checks timing instead of counting DUPACKs. 2322 * Essentially a packet is considered lost if it's not S/ACKed 2323 * after RTT + reordering_window, where both metrics are 2324 * dynamically measured and adjusted. This is implemented in 2325 * tcp_rack_mark_lost. 2326 * 2327 * If the receiver does not support SACK: 2328 * 2329 * NewReno (RFC6582): in Recovery we assume that one segment 2330 * is lost (classic Reno). While we are in Recovery and 2331 * a partial ACK arrives, we assume that one more packet 2332 * is lost (NewReno). This heuristics are the same in NewReno 2333 * and SACK. 2334 * 2335 * Really tricky (and requiring careful tuning) part of algorithm 2336 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2337 * The first determines the moment _when_ we should reduce CWND and, 2338 * hence, slow down forward transmission. In fact, it determines the moment 2339 * when we decide that hole is caused by loss, rather than by a reorder. 2340 * 2341 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2342 * holes, caused by lost packets. 2343 * 2344 * And the most logically complicated part of algorithm is undo 2345 * heuristics. We detect false retransmits due to both too early 2346 * fast retransmit (reordering) and underestimated RTO, analyzing 2347 * timestamps and D-SACKs. When we detect that some segments were 2348 * retransmitted by mistake and CWND reduction was wrong, we undo 2349 * window reduction and abort recovery phase. This logic is hidden 2350 * inside several functions named tcp_try_undo_<something>. 2351 */ 2352 2353 /* This function decides, when we should leave Disordered state 2354 * and enter Recovery phase, reducing congestion window. 2355 * 2356 * Main question: may we further continue forward transmission 2357 * with the same cwnd? 2358 */ 2359 static bool tcp_time_to_recover(struct sock *sk, int flag) 2360 { 2361 struct tcp_sock *tp = tcp_sk(sk); 2362 2363 /* Trick#1: The loss is proven. */ 2364 if (tp->lost_out) 2365 return true; 2366 2367 /* Not-A-Trick#2 : Classic rule... */ 2368 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2369 return true; 2370 2371 return false; 2372 } 2373 2374 /* Detect loss in event "A" above by marking head of queue up as lost. 2375 * For RFC3517 SACK, a segment is considered lost if it 2376 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2377 * the maximum SACKed segments to pass before reaching this limit. 2378 */ 2379 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 struct sk_buff *skb; 2383 int cnt; 2384 /* Use SACK to deduce losses of new sequences sent during recovery */ 2385 const u32 loss_high = tp->snd_nxt; 2386 2387 WARN_ON(packets > tp->packets_out); 2388 skb = tp->lost_skb_hint; 2389 if (skb) { 2390 /* Head already handled? */ 2391 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2392 return; 2393 cnt = tp->lost_cnt_hint; 2394 } else { 2395 skb = tcp_rtx_queue_head(sk); 2396 cnt = 0; 2397 } 2398 2399 skb_rbtree_walk_from(skb) { 2400 /* TODO: do this better */ 2401 /* this is not the most efficient way to do this... */ 2402 tp->lost_skb_hint = skb; 2403 tp->lost_cnt_hint = cnt; 2404 2405 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2406 break; 2407 2408 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2409 cnt += tcp_skb_pcount(skb); 2410 2411 if (cnt > packets) 2412 break; 2413 2414 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2415 tcp_mark_skb_lost(sk, skb); 2416 2417 if (mark_head) 2418 break; 2419 } 2420 tcp_verify_left_out(tp); 2421 } 2422 2423 /* Account newly detected lost packet(s) */ 2424 2425 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2426 { 2427 struct tcp_sock *tp = tcp_sk(sk); 2428 2429 if (tcp_is_sack(tp)) { 2430 int sacked_upto = tp->sacked_out - tp->reordering; 2431 if (sacked_upto >= 0) 2432 tcp_mark_head_lost(sk, sacked_upto, 0); 2433 else if (fast_rexmit) 2434 tcp_mark_head_lost(sk, 1, 1); 2435 } 2436 } 2437 2438 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2439 { 2440 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2441 before(tp->rx_opt.rcv_tsecr, when); 2442 } 2443 2444 /* skb is spurious retransmitted if the returned timestamp echo 2445 * reply is prior to the skb transmission time 2446 */ 2447 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2448 const struct sk_buff *skb) 2449 { 2450 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2451 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2452 } 2453 2454 /* Nothing was retransmitted or returned timestamp is less 2455 * than timestamp of the first retransmission. 2456 */ 2457 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2458 { 2459 return tp->retrans_stamp && 2460 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2461 } 2462 2463 /* Undo procedures. */ 2464 2465 /* We can clear retrans_stamp when there are no retransmissions in the 2466 * window. It would seem that it is trivially available for us in 2467 * tp->retrans_out, however, that kind of assumptions doesn't consider 2468 * what will happen if errors occur when sending retransmission for the 2469 * second time. ...It could the that such segment has only 2470 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2471 * the head skb is enough except for some reneging corner cases that 2472 * are not worth the effort. 2473 * 2474 * Main reason for all this complexity is the fact that connection dying 2475 * time now depends on the validity of the retrans_stamp, in particular, 2476 * that successive retransmissions of a segment must not advance 2477 * retrans_stamp under any conditions. 2478 */ 2479 static bool tcp_any_retrans_done(const struct sock *sk) 2480 { 2481 const struct tcp_sock *tp = tcp_sk(sk); 2482 struct sk_buff *skb; 2483 2484 if (tp->retrans_out) 2485 return true; 2486 2487 skb = tcp_rtx_queue_head(sk); 2488 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2489 return true; 2490 2491 return false; 2492 } 2493 2494 static void DBGUNDO(struct sock *sk, const char *msg) 2495 { 2496 #if FASTRETRANS_DEBUG > 1 2497 struct tcp_sock *tp = tcp_sk(sk); 2498 struct inet_sock *inet = inet_sk(sk); 2499 2500 if (sk->sk_family == AF_INET) { 2501 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2502 msg, 2503 &inet->inet_daddr, ntohs(inet->inet_dport), 2504 tcp_snd_cwnd(tp), tcp_left_out(tp), 2505 tp->snd_ssthresh, tp->prior_ssthresh, 2506 tp->packets_out); 2507 } 2508 #if IS_ENABLED(CONFIG_IPV6) 2509 else if (sk->sk_family == AF_INET6) { 2510 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2511 msg, 2512 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2513 tcp_snd_cwnd(tp), tcp_left_out(tp), 2514 tp->snd_ssthresh, tp->prior_ssthresh, 2515 tp->packets_out); 2516 } 2517 #endif 2518 #endif 2519 } 2520 2521 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2522 { 2523 struct tcp_sock *tp = tcp_sk(sk); 2524 2525 if (unmark_loss) { 2526 struct sk_buff *skb; 2527 2528 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2529 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2530 } 2531 tp->lost_out = 0; 2532 tcp_clear_all_retrans_hints(tp); 2533 } 2534 2535 if (tp->prior_ssthresh) { 2536 const struct inet_connection_sock *icsk = inet_csk(sk); 2537 2538 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2539 2540 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2541 tp->snd_ssthresh = tp->prior_ssthresh; 2542 tcp_ecn_withdraw_cwr(tp); 2543 } 2544 } 2545 tp->snd_cwnd_stamp = tcp_jiffies32; 2546 tp->undo_marker = 0; 2547 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2548 } 2549 2550 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2551 { 2552 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2553 } 2554 2555 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2556 { 2557 struct tcp_sock *tp = tcp_sk(sk); 2558 2559 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2560 /* Hold old state until something *above* high_seq 2561 * is ACKed. For Reno it is MUST to prevent false 2562 * fast retransmits (RFC2582). SACK TCP is safe. */ 2563 if (!tcp_any_retrans_done(sk)) 2564 tp->retrans_stamp = 0; 2565 return true; 2566 } 2567 return false; 2568 } 2569 2570 /* People celebrate: "We love our President!" */ 2571 static bool tcp_try_undo_recovery(struct sock *sk) 2572 { 2573 struct tcp_sock *tp = tcp_sk(sk); 2574 2575 if (tcp_may_undo(tp)) { 2576 int mib_idx; 2577 2578 /* Happy end! We did not retransmit anything 2579 * or our original transmission succeeded. 2580 */ 2581 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2582 tcp_undo_cwnd_reduction(sk, false); 2583 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2584 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2585 else 2586 mib_idx = LINUX_MIB_TCPFULLUNDO; 2587 2588 NET_INC_STATS(sock_net(sk), mib_idx); 2589 } else if (tp->rack.reo_wnd_persist) { 2590 tp->rack.reo_wnd_persist--; 2591 } 2592 if (tcp_is_non_sack_preventing_reopen(sk)) 2593 return true; 2594 tcp_set_ca_state(sk, TCP_CA_Open); 2595 tp->is_sack_reneg = 0; 2596 return false; 2597 } 2598 2599 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2600 static bool tcp_try_undo_dsack(struct sock *sk) 2601 { 2602 struct tcp_sock *tp = tcp_sk(sk); 2603 2604 if (tp->undo_marker && !tp->undo_retrans) { 2605 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2606 tp->rack.reo_wnd_persist + 1); 2607 DBGUNDO(sk, "D-SACK"); 2608 tcp_undo_cwnd_reduction(sk, false); 2609 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2610 return true; 2611 } 2612 return false; 2613 } 2614 2615 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2616 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2617 { 2618 struct tcp_sock *tp = tcp_sk(sk); 2619 2620 if (frto_undo || tcp_may_undo(tp)) { 2621 tcp_undo_cwnd_reduction(sk, true); 2622 2623 DBGUNDO(sk, "partial loss"); 2624 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2625 if (frto_undo) 2626 NET_INC_STATS(sock_net(sk), 2627 LINUX_MIB_TCPSPURIOUSRTOS); 2628 inet_csk(sk)->icsk_retransmits = 0; 2629 if (tcp_is_non_sack_preventing_reopen(sk)) 2630 return true; 2631 if (frto_undo || tcp_is_sack(tp)) { 2632 tcp_set_ca_state(sk, TCP_CA_Open); 2633 tp->is_sack_reneg = 0; 2634 } 2635 return true; 2636 } 2637 return false; 2638 } 2639 2640 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2641 * It computes the number of packets to send (sndcnt) based on packets newly 2642 * delivered: 2643 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2644 * cwnd reductions across a full RTT. 2645 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2646 * But when SND_UNA is acked without further losses, 2647 * slow starts cwnd up to ssthresh to speed up the recovery. 2648 */ 2649 static void tcp_init_cwnd_reduction(struct sock *sk) 2650 { 2651 struct tcp_sock *tp = tcp_sk(sk); 2652 2653 tp->high_seq = tp->snd_nxt; 2654 tp->tlp_high_seq = 0; 2655 tp->snd_cwnd_cnt = 0; 2656 tp->prior_cwnd = tcp_snd_cwnd(tp); 2657 tp->prr_delivered = 0; 2658 tp->prr_out = 0; 2659 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2660 tcp_ecn_queue_cwr(tp); 2661 } 2662 2663 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2664 { 2665 struct tcp_sock *tp = tcp_sk(sk); 2666 int sndcnt = 0; 2667 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2668 2669 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2670 return; 2671 2672 tp->prr_delivered += newly_acked_sacked; 2673 if (delta < 0) { 2674 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2675 tp->prior_cwnd - 1; 2676 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2677 } else { 2678 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2679 newly_acked_sacked); 2680 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2681 sndcnt++; 2682 sndcnt = min(delta, sndcnt); 2683 } 2684 /* Force a fast retransmit upon entering fast recovery */ 2685 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2686 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2687 } 2688 2689 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2690 { 2691 struct tcp_sock *tp = tcp_sk(sk); 2692 2693 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2694 return; 2695 2696 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2697 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2698 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2699 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2700 tp->snd_cwnd_stamp = tcp_jiffies32; 2701 } 2702 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2703 } 2704 2705 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2706 void tcp_enter_cwr(struct sock *sk) 2707 { 2708 struct tcp_sock *tp = tcp_sk(sk); 2709 2710 tp->prior_ssthresh = 0; 2711 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2712 tp->undo_marker = 0; 2713 tcp_init_cwnd_reduction(sk); 2714 tcp_set_ca_state(sk, TCP_CA_CWR); 2715 } 2716 } 2717 EXPORT_SYMBOL(tcp_enter_cwr); 2718 2719 static void tcp_try_keep_open(struct sock *sk) 2720 { 2721 struct tcp_sock *tp = tcp_sk(sk); 2722 int state = TCP_CA_Open; 2723 2724 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2725 state = TCP_CA_Disorder; 2726 2727 if (inet_csk(sk)->icsk_ca_state != state) { 2728 tcp_set_ca_state(sk, state); 2729 tp->high_seq = tp->snd_nxt; 2730 } 2731 } 2732 2733 static void tcp_try_to_open(struct sock *sk, int flag) 2734 { 2735 struct tcp_sock *tp = tcp_sk(sk); 2736 2737 tcp_verify_left_out(tp); 2738 2739 if (!tcp_any_retrans_done(sk)) 2740 tp->retrans_stamp = 0; 2741 2742 if (flag & FLAG_ECE) 2743 tcp_enter_cwr(sk); 2744 2745 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2746 tcp_try_keep_open(sk); 2747 } 2748 } 2749 2750 static void tcp_mtup_probe_failed(struct sock *sk) 2751 { 2752 struct inet_connection_sock *icsk = inet_csk(sk); 2753 2754 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2755 icsk->icsk_mtup.probe_size = 0; 2756 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2757 } 2758 2759 static void tcp_mtup_probe_success(struct sock *sk) 2760 { 2761 struct tcp_sock *tp = tcp_sk(sk); 2762 struct inet_connection_sock *icsk = inet_csk(sk); 2763 u64 val; 2764 2765 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2766 2767 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2768 do_div(val, icsk->icsk_mtup.probe_size); 2769 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2770 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2771 2772 tp->snd_cwnd_cnt = 0; 2773 tp->snd_cwnd_stamp = tcp_jiffies32; 2774 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2775 2776 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2777 icsk->icsk_mtup.probe_size = 0; 2778 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2779 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2780 } 2781 2782 /* Sometimes we deduce that packets have been dropped due to reasons other than 2783 * congestion, like path MTU reductions or failed client TFO attempts. In these 2784 * cases we call this function to retransmit as many packets as cwnd allows, 2785 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2786 * non-zero value (and may do so in a later calling context due to TSQ), we 2787 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2788 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2789 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2790 * prematurely). 2791 */ 2792 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2793 { 2794 const struct inet_connection_sock *icsk = inet_csk(sk); 2795 struct tcp_sock *tp = tcp_sk(sk); 2796 2797 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2798 tp->high_seq = tp->snd_nxt; 2799 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2800 tp->prior_ssthresh = 0; 2801 tp->undo_marker = 0; 2802 tcp_set_ca_state(sk, TCP_CA_Loss); 2803 } 2804 tcp_xmit_retransmit_queue(sk); 2805 } 2806 2807 /* Do a simple retransmit without using the backoff mechanisms in 2808 * tcp_timer. This is used for path mtu discovery. 2809 * The socket is already locked here. 2810 */ 2811 void tcp_simple_retransmit(struct sock *sk) 2812 { 2813 struct tcp_sock *tp = tcp_sk(sk); 2814 struct sk_buff *skb; 2815 int mss; 2816 2817 /* A fastopen SYN request is stored as two separate packets within 2818 * the retransmit queue, this is done by tcp_send_syn_data(). 2819 * As a result simply checking the MSS of the frames in the queue 2820 * will not work for the SYN packet. 2821 * 2822 * Us being here is an indication of a path MTU issue so we can 2823 * assume that the fastopen SYN was lost and just mark all the 2824 * frames in the retransmit queue as lost. We will use an MSS of 2825 * -1 to mark all frames as lost, otherwise compute the current MSS. 2826 */ 2827 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2828 mss = -1; 2829 else 2830 mss = tcp_current_mss(sk); 2831 2832 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2833 if (tcp_skb_seglen(skb) > mss) 2834 tcp_mark_skb_lost(sk, skb); 2835 } 2836 2837 tcp_clear_retrans_hints_partial(tp); 2838 2839 if (!tp->lost_out) 2840 return; 2841 2842 if (tcp_is_reno(tp)) 2843 tcp_limit_reno_sacked(tp); 2844 2845 tcp_verify_left_out(tp); 2846 2847 /* Don't muck with the congestion window here. 2848 * Reason is that we do not increase amount of _data_ 2849 * in network, but units changed and effective 2850 * cwnd/ssthresh really reduced now. 2851 */ 2852 tcp_non_congestion_loss_retransmit(sk); 2853 } 2854 EXPORT_SYMBOL(tcp_simple_retransmit); 2855 2856 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2857 { 2858 struct tcp_sock *tp = tcp_sk(sk); 2859 int mib_idx; 2860 2861 if (tcp_is_reno(tp)) 2862 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2863 else 2864 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2865 2866 NET_INC_STATS(sock_net(sk), mib_idx); 2867 2868 tp->prior_ssthresh = 0; 2869 tcp_init_undo(tp); 2870 2871 if (!tcp_in_cwnd_reduction(sk)) { 2872 if (!ece_ack) 2873 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2874 tcp_init_cwnd_reduction(sk); 2875 } 2876 tcp_set_ca_state(sk, TCP_CA_Recovery); 2877 } 2878 2879 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2880 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2881 */ 2882 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2883 int *rexmit) 2884 { 2885 struct tcp_sock *tp = tcp_sk(sk); 2886 bool recovered = !before(tp->snd_una, tp->high_seq); 2887 2888 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2889 tcp_try_undo_loss(sk, false)) 2890 return; 2891 2892 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2893 /* Step 3.b. A timeout is spurious if not all data are 2894 * lost, i.e., never-retransmitted data are (s)acked. 2895 */ 2896 if ((flag & FLAG_ORIG_SACK_ACKED) && 2897 tcp_try_undo_loss(sk, true)) 2898 return; 2899 2900 if (after(tp->snd_nxt, tp->high_seq)) { 2901 if (flag & FLAG_DATA_SACKED || num_dupack) 2902 tp->frto = 0; /* Step 3.a. loss was real */ 2903 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2904 tp->high_seq = tp->snd_nxt; 2905 /* Step 2.b. Try send new data (but deferred until cwnd 2906 * is updated in tcp_ack()). Otherwise fall back to 2907 * the conventional recovery. 2908 */ 2909 if (!tcp_write_queue_empty(sk) && 2910 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2911 *rexmit = REXMIT_NEW; 2912 return; 2913 } 2914 tp->frto = 0; 2915 } 2916 } 2917 2918 if (recovered) { 2919 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2920 tcp_try_undo_recovery(sk); 2921 return; 2922 } 2923 if (tcp_is_reno(tp)) { 2924 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2925 * delivered. Lower inflight to clock out (re)transmissions. 2926 */ 2927 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2928 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2929 else if (flag & FLAG_SND_UNA_ADVANCED) 2930 tcp_reset_reno_sack(tp); 2931 } 2932 *rexmit = REXMIT_LOST; 2933 } 2934 2935 static bool tcp_force_fast_retransmit(struct sock *sk) 2936 { 2937 struct tcp_sock *tp = tcp_sk(sk); 2938 2939 return after(tcp_highest_sack_seq(tp), 2940 tp->snd_una + tp->reordering * tp->mss_cache); 2941 } 2942 2943 /* Undo during fast recovery after partial ACK. */ 2944 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2945 bool *do_lost) 2946 { 2947 struct tcp_sock *tp = tcp_sk(sk); 2948 2949 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2950 /* Plain luck! Hole if filled with delayed 2951 * packet, rather than with a retransmit. Check reordering. 2952 */ 2953 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2954 2955 /* We are getting evidence that the reordering degree is higher 2956 * than we realized. If there are no retransmits out then we 2957 * can undo. Otherwise we clock out new packets but do not 2958 * mark more packets lost or retransmit more. 2959 */ 2960 if (tp->retrans_out) 2961 return true; 2962 2963 if (!tcp_any_retrans_done(sk)) 2964 tp->retrans_stamp = 0; 2965 2966 DBGUNDO(sk, "partial recovery"); 2967 tcp_undo_cwnd_reduction(sk, true); 2968 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2969 tcp_try_keep_open(sk); 2970 } else { 2971 /* Partial ACK arrived. Force fast retransmit. */ 2972 *do_lost = tcp_force_fast_retransmit(sk); 2973 } 2974 return false; 2975 } 2976 2977 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2978 { 2979 struct tcp_sock *tp = tcp_sk(sk); 2980 2981 if (tcp_rtx_queue_empty(sk)) 2982 return; 2983 2984 if (unlikely(tcp_is_reno(tp))) { 2985 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2986 } else if (tcp_is_rack(sk)) { 2987 u32 prior_retrans = tp->retrans_out; 2988 2989 if (tcp_rack_mark_lost(sk)) 2990 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2991 if (prior_retrans > tp->retrans_out) 2992 *ack_flag |= FLAG_LOST_RETRANS; 2993 } 2994 } 2995 2996 /* Process an event, which can update packets-in-flight not trivially. 2997 * Main goal of this function is to calculate new estimate for left_out, 2998 * taking into account both packets sitting in receiver's buffer and 2999 * packets lost by network. 3000 * 3001 * Besides that it updates the congestion state when packet loss or ECN 3002 * is detected. But it does not reduce the cwnd, it is done by the 3003 * congestion control later. 3004 * 3005 * It does _not_ decide what to send, it is made in function 3006 * tcp_xmit_retransmit_queue(). 3007 */ 3008 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3009 int num_dupack, int *ack_flag, int *rexmit) 3010 { 3011 struct inet_connection_sock *icsk = inet_csk(sk); 3012 struct tcp_sock *tp = tcp_sk(sk); 3013 int fast_rexmit = 0, flag = *ack_flag; 3014 bool ece_ack = flag & FLAG_ECE; 3015 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3016 tcp_force_fast_retransmit(sk)); 3017 3018 if (!tp->packets_out && tp->sacked_out) 3019 tp->sacked_out = 0; 3020 3021 /* Now state machine starts. 3022 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3023 if (ece_ack) 3024 tp->prior_ssthresh = 0; 3025 3026 /* B. In all the states check for reneging SACKs. */ 3027 if (tcp_check_sack_reneging(sk, ack_flag)) 3028 return; 3029 3030 /* C. Check consistency of the current state. */ 3031 tcp_verify_left_out(tp); 3032 3033 /* D. Check state exit conditions. State can be terminated 3034 * when high_seq is ACKed. */ 3035 if (icsk->icsk_ca_state == TCP_CA_Open) { 3036 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3037 tp->retrans_stamp = 0; 3038 } else if (!before(tp->snd_una, tp->high_seq)) { 3039 switch (icsk->icsk_ca_state) { 3040 case TCP_CA_CWR: 3041 /* CWR is to be held something *above* high_seq 3042 * is ACKed for CWR bit to reach receiver. */ 3043 if (tp->snd_una != tp->high_seq) { 3044 tcp_end_cwnd_reduction(sk); 3045 tcp_set_ca_state(sk, TCP_CA_Open); 3046 } 3047 break; 3048 3049 case TCP_CA_Recovery: 3050 if (tcp_is_reno(tp)) 3051 tcp_reset_reno_sack(tp); 3052 if (tcp_try_undo_recovery(sk)) 3053 return; 3054 tcp_end_cwnd_reduction(sk); 3055 break; 3056 } 3057 } 3058 3059 /* E. Process state. */ 3060 switch (icsk->icsk_ca_state) { 3061 case TCP_CA_Recovery: 3062 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3063 if (tcp_is_reno(tp)) 3064 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3065 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3066 return; 3067 3068 if (tcp_try_undo_dsack(sk)) 3069 tcp_try_to_open(sk, flag); 3070 3071 tcp_identify_packet_loss(sk, ack_flag); 3072 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3073 if (!tcp_time_to_recover(sk, flag)) 3074 return; 3075 /* Undo reverts the recovery state. If loss is evident, 3076 * starts a new recovery (e.g. reordering then loss); 3077 */ 3078 tcp_enter_recovery(sk, ece_ack); 3079 } 3080 break; 3081 case TCP_CA_Loss: 3082 tcp_process_loss(sk, flag, num_dupack, rexmit); 3083 tcp_identify_packet_loss(sk, ack_flag); 3084 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3085 (*ack_flag & FLAG_LOST_RETRANS))) 3086 return; 3087 /* Change state if cwnd is undone or retransmits are lost */ 3088 fallthrough; 3089 default: 3090 if (tcp_is_reno(tp)) { 3091 if (flag & FLAG_SND_UNA_ADVANCED) 3092 tcp_reset_reno_sack(tp); 3093 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3094 } 3095 3096 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3097 tcp_try_undo_dsack(sk); 3098 3099 tcp_identify_packet_loss(sk, ack_flag); 3100 if (!tcp_time_to_recover(sk, flag)) { 3101 tcp_try_to_open(sk, flag); 3102 return; 3103 } 3104 3105 /* MTU probe failure: don't reduce cwnd */ 3106 if (icsk->icsk_ca_state < TCP_CA_CWR && 3107 icsk->icsk_mtup.probe_size && 3108 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3109 tcp_mtup_probe_failed(sk); 3110 /* Restores the reduction we did in tcp_mtup_probe() */ 3111 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3112 tcp_simple_retransmit(sk); 3113 return; 3114 } 3115 3116 /* Otherwise enter Recovery state */ 3117 tcp_enter_recovery(sk, ece_ack); 3118 fast_rexmit = 1; 3119 } 3120 3121 if (!tcp_is_rack(sk) && do_lost) 3122 tcp_update_scoreboard(sk, fast_rexmit); 3123 *rexmit = REXMIT_LOST; 3124 } 3125 3126 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3127 { 3128 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3129 struct tcp_sock *tp = tcp_sk(sk); 3130 3131 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3132 /* If the remote keeps returning delayed ACKs, eventually 3133 * the min filter would pick it up and overestimate the 3134 * prop. delay when it expires. Skip suspected delayed ACKs. 3135 */ 3136 return; 3137 } 3138 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3139 rtt_us ? : jiffies_to_usecs(1)); 3140 } 3141 3142 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3143 long seq_rtt_us, long sack_rtt_us, 3144 long ca_rtt_us, struct rate_sample *rs) 3145 { 3146 const struct tcp_sock *tp = tcp_sk(sk); 3147 3148 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3149 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3150 * Karn's algorithm forbids taking RTT if some retransmitted data 3151 * is acked (RFC6298). 3152 */ 3153 if (seq_rtt_us < 0) 3154 seq_rtt_us = sack_rtt_us; 3155 3156 /* RTTM Rule: A TSecr value received in a segment is used to 3157 * update the averaged RTT measurement only if the segment 3158 * acknowledges some new data, i.e., only if it advances the 3159 * left edge of the send window. 3160 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3161 */ 3162 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3163 flag & FLAG_ACKED) { 3164 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3165 3166 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3167 if (!delta) 3168 delta = 1; 3169 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3170 ca_rtt_us = seq_rtt_us; 3171 } 3172 } 3173 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3174 if (seq_rtt_us < 0) 3175 return false; 3176 3177 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3178 * always taken together with ACK, SACK, or TS-opts. Any negative 3179 * values will be skipped with the seq_rtt_us < 0 check above. 3180 */ 3181 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3182 tcp_rtt_estimator(sk, seq_rtt_us); 3183 tcp_set_rto(sk); 3184 3185 /* RFC6298: only reset backoff on valid RTT measurement. */ 3186 inet_csk(sk)->icsk_backoff = 0; 3187 return true; 3188 } 3189 3190 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3191 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3192 { 3193 struct rate_sample rs; 3194 long rtt_us = -1L; 3195 3196 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3197 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3198 3199 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3200 } 3201 3202 3203 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3204 { 3205 const struct inet_connection_sock *icsk = inet_csk(sk); 3206 3207 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3208 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3209 } 3210 3211 /* Restart timer after forward progress on connection. 3212 * RFC2988 recommends to restart timer to now+rto. 3213 */ 3214 void tcp_rearm_rto(struct sock *sk) 3215 { 3216 const struct inet_connection_sock *icsk = inet_csk(sk); 3217 struct tcp_sock *tp = tcp_sk(sk); 3218 3219 /* If the retrans timer is currently being used by Fast Open 3220 * for SYN-ACK retrans purpose, stay put. 3221 */ 3222 if (rcu_access_pointer(tp->fastopen_rsk)) 3223 return; 3224 3225 if (!tp->packets_out) { 3226 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3227 } else { 3228 u32 rto = inet_csk(sk)->icsk_rto; 3229 /* Offset the time elapsed after installing regular RTO */ 3230 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3231 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3232 s64 delta_us = tcp_rto_delta_us(sk); 3233 /* delta_us may not be positive if the socket is locked 3234 * when the retrans timer fires and is rescheduled. 3235 */ 3236 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3237 } 3238 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3239 TCP_RTO_MAX); 3240 } 3241 } 3242 3243 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3244 static void tcp_set_xmit_timer(struct sock *sk) 3245 { 3246 if (!tcp_schedule_loss_probe(sk, true)) 3247 tcp_rearm_rto(sk); 3248 } 3249 3250 /* If we get here, the whole TSO packet has not been acked. */ 3251 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3252 { 3253 struct tcp_sock *tp = tcp_sk(sk); 3254 u32 packets_acked; 3255 3256 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3257 3258 packets_acked = tcp_skb_pcount(skb); 3259 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3260 return 0; 3261 packets_acked -= tcp_skb_pcount(skb); 3262 3263 if (packets_acked) { 3264 BUG_ON(tcp_skb_pcount(skb) == 0); 3265 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3266 } 3267 3268 return packets_acked; 3269 } 3270 3271 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3272 const struct sk_buff *ack_skb, u32 prior_snd_una) 3273 { 3274 const struct skb_shared_info *shinfo; 3275 3276 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3277 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3278 return; 3279 3280 shinfo = skb_shinfo(skb); 3281 if (!before(shinfo->tskey, prior_snd_una) && 3282 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3283 tcp_skb_tsorted_save(skb) { 3284 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3285 } tcp_skb_tsorted_restore(skb); 3286 } 3287 } 3288 3289 /* Remove acknowledged frames from the retransmission queue. If our packet 3290 * is before the ack sequence we can discard it as it's confirmed to have 3291 * arrived at the other end. 3292 */ 3293 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3294 u32 prior_fack, u32 prior_snd_una, 3295 struct tcp_sacktag_state *sack, bool ece_ack) 3296 { 3297 const struct inet_connection_sock *icsk = inet_csk(sk); 3298 u64 first_ackt, last_ackt; 3299 struct tcp_sock *tp = tcp_sk(sk); 3300 u32 prior_sacked = tp->sacked_out; 3301 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3302 struct sk_buff *skb, *next; 3303 bool fully_acked = true; 3304 long sack_rtt_us = -1L; 3305 long seq_rtt_us = -1L; 3306 long ca_rtt_us = -1L; 3307 u32 pkts_acked = 0; 3308 bool rtt_update; 3309 int flag = 0; 3310 3311 first_ackt = 0; 3312 3313 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3314 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3315 const u32 start_seq = scb->seq; 3316 u8 sacked = scb->sacked; 3317 u32 acked_pcount; 3318 3319 /* Determine how many packets and what bytes were acked, tso and else */ 3320 if (after(scb->end_seq, tp->snd_una)) { 3321 if (tcp_skb_pcount(skb) == 1 || 3322 !after(tp->snd_una, scb->seq)) 3323 break; 3324 3325 acked_pcount = tcp_tso_acked(sk, skb); 3326 if (!acked_pcount) 3327 break; 3328 fully_acked = false; 3329 } else { 3330 acked_pcount = tcp_skb_pcount(skb); 3331 } 3332 3333 if (unlikely(sacked & TCPCB_RETRANS)) { 3334 if (sacked & TCPCB_SACKED_RETRANS) 3335 tp->retrans_out -= acked_pcount; 3336 flag |= FLAG_RETRANS_DATA_ACKED; 3337 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3338 last_ackt = tcp_skb_timestamp_us(skb); 3339 WARN_ON_ONCE(last_ackt == 0); 3340 if (!first_ackt) 3341 first_ackt = last_ackt; 3342 3343 if (before(start_seq, reord)) 3344 reord = start_seq; 3345 if (!after(scb->end_seq, tp->high_seq)) 3346 flag |= FLAG_ORIG_SACK_ACKED; 3347 } 3348 3349 if (sacked & TCPCB_SACKED_ACKED) { 3350 tp->sacked_out -= acked_pcount; 3351 } else if (tcp_is_sack(tp)) { 3352 tcp_count_delivered(tp, acked_pcount, ece_ack); 3353 if (!tcp_skb_spurious_retrans(tp, skb)) 3354 tcp_rack_advance(tp, sacked, scb->end_seq, 3355 tcp_skb_timestamp_us(skb)); 3356 } 3357 if (sacked & TCPCB_LOST) 3358 tp->lost_out -= acked_pcount; 3359 3360 tp->packets_out -= acked_pcount; 3361 pkts_acked += acked_pcount; 3362 tcp_rate_skb_delivered(sk, skb, sack->rate); 3363 3364 /* Initial outgoing SYN's get put onto the write_queue 3365 * just like anything else we transmit. It is not 3366 * true data, and if we misinform our callers that 3367 * this ACK acks real data, we will erroneously exit 3368 * connection startup slow start one packet too 3369 * quickly. This is severely frowned upon behavior. 3370 */ 3371 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3372 flag |= FLAG_DATA_ACKED; 3373 } else { 3374 flag |= FLAG_SYN_ACKED; 3375 tp->retrans_stamp = 0; 3376 } 3377 3378 if (!fully_acked) 3379 break; 3380 3381 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3382 3383 next = skb_rb_next(skb); 3384 if (unlikely(skb == tp->retransmit_skb_hint)) 3385 tp->retransmit_skb_hint = NULL; 3386 if (unlikely(skb == tp->lost_skb_hint)) 3387 tp->lost_skb_hint = NULL; 3388 tcp_highest_sack_replace(sk, skb, next); 3389 tcp_rtx_queue_unlink_and_free(skb, sk); 3390 } 3391 3392 if (!skb) 3393 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3394 3395 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3396 tp->snd_up = tp->snd_una; 3397 3398 if (skb) { 3399 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3400 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3401 flag |= FLAG_SACK_RENEGING; 3402 } 3403 3404 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3405 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3406 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3407 3408 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3409 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3410 sack->rate->prior_delivered + 1 == tp->delivered && 3411 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3412 /* Conservatively mark a delayed ACK. It's typically 3413 * from a lone runt packet over the round trip to 3414 * a receiver w/o out-of-order or CE events. 3415 */ 3416 flag |= FLAG_ACK_MAYBE_DELAYED; 3417 } 3418 } 3419 if (sack->first_sackt) { 3420 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3421 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3422 } 3423 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3424 ca_rtt_us, sack->rate); 3425 3426 if (flag & FLAG_ACKED) { 3427 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3428 if (unlikely(icsk->icsk_mtup.probe_size && 3429 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3430 tcp_mtup_probe_success(sk); 3431 } 3432 3433 if (tcp_is_reno(tp)) { 3434 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3435 3436 /* If any of the cumulatively ACKed segments was 3437 * retransmitted, non-SACK case cannot confirm that 3438 * progress was due to original transmission due to 3439 * lack of TCPCB_SACKED_ACKED bits even if some of 3440 * the packets may have been never retransmitted. 3441 */ 3442 if (flag & FLAG_RETRANS_DATA_ACKED) 3443 flag &= ~FLAG_ORIG_SACK_ACKED; 3444 } else { 3445 int delta; 3446 3447 /* Non-retransmitted hole got filled? That's reordering */ 3448 if (before(reord, prior_fack)) 3449 tcp_check_sack_reordering(sk, reord, 0); 3450 3451 delta = prior_sacked - tp->sacked_out; 3452 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3453 } 3454 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3455 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3456 tcp_skb_timestamp_us(skb))) { 3457 /* Do not re-arm RTO if the sack RTT is measured from data sent 3458 * after when the head was last (re)transmitted. Otherwise the 3459 * timeout may continue to extend in loss recovery. 3460 */ 3461 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3462 } 3463 3464 if (icsk->icsk_ca_ops->pkts_acked) { 3465 struct ack_sample sample = { .pkts_acked = pkts_acked, 3466 .rtt_us = sack->rate->rtt_us }; 3467 3468 sample.in_flight = tp->mss_cache * 3469 (tp->delivered - sack->rate->prior_delivered); 3470 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3471 } 3472 3473 #if FASTRETRANS_DEBUG > 0 3474 WARN_ON((int)tp->sacked_out < 0); 3475 WARN_ON((int)tp->lost_out < 0); 3476 WARN_ON((int)tp->retrans_out < 0); 3477 if (!tp->packets_out && tcp_is_sack(tp)) { 3478 icsk = inet_csk(sk); 3479 if (tp->lost_out) { 3480 pr_debug("Leak l=%u %d\n", 3481 tp->lost_out, icsk->icsk_ca_state); 3482 tp->lost_out = 0; 3483 } 3484 if (tp->sacked_out) { 3485 pr_debug("Leak s=%u %d\n", 3486 tp->sacked_out, icsk->icsk_ca_state); 3487 tp->sacked_out = 0; 3488 } 3489 if (tp->retrans_out) { 3490 pr_debug("Leak r=%u %d\n", 3491 tp->retrans_out, icsk->icsk_ca_state); 3492 tp->retrans_out = 0; 3493 } 3494 } 3495 #endif 3496 return flag; 3497 } 3498 3499 static void tcp_ack_probe(struct sock *sk) 3500 { 3501 struct inet_connection_sock *icsk = inet_csk(sk); 3502 struct sk_buff *head = tcp_send_head(sk); 3503 const struct tcp_sock *tp = tcp_sk(sk); 3504 3505 /* Was it a usable window open? */ 3506 if (!head) 3507 return; 3508 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3509 icsk->icsk_backoff = 0; 3510 icsk->icsk_probes_tstamp = 0; 3511 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3512 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3513 * This function is not for random using! 3514 */ 3515 } else { 3516 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3517 3518 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3519 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3520 } 3521 } 3522 3523 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3524 { 3525 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3526 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3527 } 3528 3529 /* Decide wheather to run the increase function of congestion control. */ 3530 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3531 { 3532 /* If reordering is high then always grow cwnd whenever data is 3533 * delivered regardless of its ordering. Otherwise stay conservative 3534 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3535 * new SACK or ECE mark may first advance cwnd here and later reduce 3536 * cwnd in tcp_fastretrans_alert() based on more states. 3537 */ 3538 if (tcp_sk(sk)->reordering > 3539 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3540 return flag & FLAG_FORWARD_PROGRESS; 3541 3542 return flag & FLAG_DATA_ACKED; 3543 } 3544 3545 /* The "ultimate" congestion control function that aims to replace the rigid 3546 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3547 * It's called toward the end of processing an ACK with precise rate 3548 * information. All transmission or retransmission are delayed afterwards. 3549 */ 3550 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3551 int flag, const struct rate_sample *rs) 3552 { 3553 const struct inet_connection_sock *icsk = inet_csk(sk); 3554 3555 if (icsk->icsk_ca_ops->cong_control) { 3556 icsk->icsk_ca_ops->cong_control(sk, rs); 3557 return; 3558 } 3559 3560 if (tcp_in_cwnd_reduction(sk)) { 3561 /* Reduce cwnd if state mandates */ 3562 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3563 } else if (tcp_may_raise_cwnd(sk, flag)) { 3564 /* Advance cwnd if state allows */ 3565 tcp_cong_avoid(sk, ack, acked_sacked); 3566 } 3567 tcp_update_pacing_rate(sk); 3568 } 3569 3570 /* Check that window update is acceptable. 3571 * The function assumes that snd_una<=ack<=snd_next. 3572 */ 3573 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3574 const u32 ack, const u32 ack_seq, 3575 const u32 nwin) 3576 { 3577 return after(ack, tp->snd_una) || 3578 after(ack_seq, tp->snd_wl1) || 3579 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3580 } 3581 3582 /* If we update tp->snd_una, also update tp->bytes_acked */ 3583 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3584 { 3585 u32 delta = ack - tp->snd_una; 3586 3587 sock_owned_by_me((struct sock *)tp); 3588 tp->bytes_acked += delta; 3589 tp->snd_una = ack; 3590 } 3591 3592 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3593 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3594 { 3595 u32 delta = seq - tp->rcv_nxt; 3596 3597 sock_owned_by_me((struct sock *)tp); 3598 tp->bytes_received += delta; 3599 WRITE_ONCE(tp->rcv_nxt, seq); 3600 } 3601 3602 /* Update our send window. 3603 * 3604 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3605 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3606 */ 3607 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3608 u32 ack_seq) 3609 { 3610 struct tcp_sock *tp = tcp_sk(sk); 3611 int flag = 0; 3612 u32 nwin = ntohs(tcp_hdr(skb)->window); 3613 3614 if (likely(!tcp_hdr(skb)->syn)) 3615 nwin <<= tp->rx_opt.snd_wscale; 3616 3617 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3618 flag |= FLAG_WIN_UPDATE; 3619 tcp_update_wl(tp, ack_seq); 3620 3621 if (tp->snd_wnd != nwin) { 3622 tp->snd_wnd = nwin; 3623 3624 /* Note, it is the only place, where 3625 * fast path is recovered for sending TCP. 3626 */ 3627 tp->pred_flags = 0; 3628 tcp_fast_path_check(sk); 3629 3630 if (!tcp_write_queue_empty(sk)) 3631 tcp_slow_start_after_idle_check(sk); 3632 3633 if (nwin > tp->max_window) { 3634 tp->max_window = nwin; 3635 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3636 } 3637 } 3638 } 3639 3640 tcp_snd_una_update(tp, ack); 3641 3642 return flag; 3643 } 3644 3645 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3646 u32 *last_oow_ack_time) 3647 { 3648 /* Paired with the WRITE_ONCE() in this function. */ 3649 u32 val = READ_ONCE(*last_oow_ack_time); 3650 3651 if (val) { 3652 s32 elapsed = (s32)(tcp_jiffies32 - val); 3653 3654 if (0 <= elapsed && 3655 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3656 NET_INC_STATS(net, mib_idx); 3657 return true; /* rate-limited: don't send yet! */ 3658 } 3659 } 3660 3661 /* Paired with the prior READ_ONCE() and with itself, 3662 * as we might be lockless. 3663 */ 3664 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3665 3666 return false; /* not rate-limited: go ahead, send dupack now! */ 3667 } 3668 3669 /* Return true if we're currently rate-limiting out-of-window ACKs and 3670 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3671 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3672 * attacks that send repeated SYNs or ACKs for the same connection. To 3673 * do this, we do not send a duplicate SYNACK or ACK if the remote 3674 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3675 */ 3676 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3677 int mib_idx, u32 *last_oow_ack_time) 3678 { 3679 /* Data packets without SYNs are not likely part of an ACK loop. */ 3680 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3681 !tcp_hdr(skb)->syn) 3682 return false; 3683 3684 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3685 } 3686 3687 /* RFC 5961 7 [ACK Throttling] */ 3688 static void tcp_send_challenge_ack(struct sock *sk) 3689 { 3690 struct tcp_sock *tp = tcp_sk(sk); 3691 struct net *net = sock_net(sk); 3692 u32 count, now, ack_limit; 3693 3694 /* First check our per-socket dupack rate limit. */ 3695 if (__tcp_oow_rate_limited(net, 3696 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3697 &tp->last_oow_ack_time)) 3698 return; 3699 3700 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3701 if (ack_limit == INT_MAX) 3702 goto send_ack; 3703 3704 /* Then check host-wide RFC 5961 rate limit. */ 3705 now = jiffies / HZ; 3706 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3707 u32 half = (ack_limit + 1) >> 1; 3708 3709 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3710 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3711 get_random_u32_inclusive(half, ack_limit + half - 1)); 3712 } 3713 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3714 if (count > 0) { 3715 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3716 send_ack: 3717 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3718 tcp_send_ack(sk); 3719 } 3720 } 3721 3722 static void tcp_store_ts_recent(struct tcp_sock *tp) 3723 { 3724 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3725 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3726 } 3727 3728 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3729 { 3730 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3731 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3732 * extra check below makes sure this can only happen 3733 * for pure ACK frames. -DaveM 3734 * 3735 * Not only, also it occurs for expired timestamps. 3736 */ 3737 3738 if (tcp_paws_check(&tp->rx_opt, 0)) 3739 tcp_store_ts_recent(tp); 3740 } 3741 } 3742 3743 /* This routine deals with acks during a TLP episode and ends an episode by 3744 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3745 */ 3746 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3747 { 3748 struct tcp_sock *tp = tcp_sk(sk); 3749 3750 if (before(ack, tp->tlp_high_seq)) 3751 return; 3752 3753 if (!tp->tlp_retrans) { 3754 /* TLP of new data has been acknowledged */ 3755 tp->tlp_high_seq = 0; 3756 } else if (flag & FLAG_DSACK_TLP) { 3757 /* This DSACK means original and TLP probe arrived; no loss */ 3758 tp->tlp_high_seq = 0; 3759 } else if (after(ack, tp->tlp_high_seq)) { 3760 /* ACK advances: there was a loss, so reduce cwnd. Reset 3761 * tlp_high_seq in tcp_init_cwnd_reduction() 3762 */ 3763 tcp_init_cwnd_reduction(sk); 3764 tcp_set_ca_state(sk, TCP_CA_CWR); 3765 tcp_end_cwnd_reduction(sk); 3766 tcp_try_keep_open(sk); 3767 NET_INC_STATS(sock_net(sk), 3768 LINUX_MIB_TCPLOSSPROBERECOVERY); 3769 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3770 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3771 /* Pure dupack: original and TLP probe arrived; no loss */ 3772 tp->tlp_high_seq = 0; 3773 } 3774 } 3775 3776 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3777 { 3778 const struct inet_connection_sock *icsk = inet_csk(sk); 3779 3780 if (icsk->icsk_ca_ops->in_ack_event) 3781 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3782 } 3783 3784 /* Congestion control has updated the cwnd already. So if we're in 3785 * loss recovery then now we do any new sends (for FRTO) or 3786 * retransmits (for CA_Loss or CA_recovery) that make sense. 3787 */ 3788 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3789 { 3790 struct tcp_sock *tp = tcp_sk(sk); 3791 3792 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3793 return; 3794 3795 if (unlikely(rexmit == REXMIT_NEW)) { 3796 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3797 TCP_NAGLE_OFF); 3798 if (after(tp->snd_nxt, tp->high_seq)) 3799 return; 3800 tp->frto = 0; 3801 } 3802 tcp_xmit_retransmit_queue(sk); 3803 } 3804 3805 /* Returns the number of packets newly acked or sacked by the current ACK */ 3806 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3807 { 3808 const struct net *net = sock_net(sk); 3809 struct tcp_sock *tp = tcp_sk(sk); 3810 u32 delivered; 3811 3812 delivered = tp->delivered - prior_delivered; 3813 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3814 if (flag & FLAG_ECE) 3815 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3816 3817 return delivered; 3818 } 3819 3820 /* This routine deals with incoming acks, but not outgoing ones. */ 3821 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3822 { 3823 struct inet_connection_sock *icsk = inet_csk(sk); 3824 struct tcp_sock *tp = tcp_sk(sk); 3825 struct tcp_sacktag_state sack_state; 3826 struct rate_sample rs = { .prior_delivered = 0 }; 3827 u32 prior_snd_una = tp->snd_una; 3828 bool is_sack_reneg = tp->is_sack_reneg; 3829 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3830 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3831 int num_dupack = 0; 3832 int prior_packets = tp->packets_out; 3833 u32 delivered = tp->delivered; 3834 u32 lost = tp->lost; 3835 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3836 u32 prior_fack; 3837 3838 sack_state.first_sackt = 0; 3839 sack_state.rate = &rs; 3840 sack_state.sack_delivered = 0; 3841 3842 /* We very likely will need to access rtx queue. */ 3843 prefetch(sk->tcp_rtx_queue.rb_node); 3844 3845 /* If the ack is older than previous acks 3846 * then we can probably ignore it. 3847 */ 3848 if (before(ack, prior_snd_una)) { 3849 u32 max_window; 3850 3851 /* do not accept ACK for bytes we never sent. */ 3852 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3853 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3854 if (before(ack, prior_snd_una - max_window)) { 3855 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3856 tcp_send_challenge_ack(sk); 3857 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3858 } 3859 goto old_ack; 3860 } 3861 3862 /* If the ack includes data we haven't sent yet, discard 3863 * this segment (RFC793 Section 3.9). 3864 */ 3865 if (after(ack, tp->snd_nxt)) 3866 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3867 3868 if (after(ack, prior_snd_una)) { 3869 flag |= FLAG_SND_UNA_ADVANCED; 3870 icsk->icsk_retransmits = 0; 3871 3872 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3873 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3874 if (icsk->icsk_clean_acked) 3875 icsk->icsk_clean_acked(sk, ack); 3876 #endif 3877 } 3878 3879 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3880 rs.prior_in_flight = tcp_packets_in_flight(tp); 3881 3882 /* ts_recent update must be made after we are sure that the packet 3883 * is in window. 3884 */ 3885 if (flag & FLAG_UPDATE_TS_RECENT) 3886 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3887 3888 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3889 FLAG_SND_UNA_ADVANCED) { 3890 /* Window is constant, pure forward advance. 3891 * No more checks are required. 3892 * Note, we use the fact that SND.UNA>=SND.WL2. 3893 */ 3894 tcp_update_wl(tp, ack_seq); 3895 tcp_snd_una_update(tp, ack); 3896 flag |= FLAG_WIN_UPDATE; 3897 3898 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3899 3900 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3901 } else { 3902 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3903 3904 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3905 flag |= FLAG_DATA; 3906 else 3907 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3908 3909 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3910 3911 if (TCP_SKB_CB(skb)->sacked) 3912 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3913 &sack_state); 3914 3915 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3916 flag |= FLAG_ECE; 3917 ack_ev_flags |= CA_ACK_ECE; 3918 } 3919 3920 if (sack_state.sack_delivered) 3921 tcp_count_delivered(tp, sack_state.sack_delivered, 3922 flag & FLAG_ECE); 3923 3924 if (flag & FLAG_WIN_UPDATE) 3925 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3926 3927 tcp_in_ack_event(sk, ack_ev_flags); 3928 } 3929 3930 /* This is a deviation from RFC3168 since it states that: 3931 * "When the TCP data sender is ready to set the CWR bit after reducing 3932 * the congestion window, it SHOULD set the CWR bit only on the first 3933 * new data packet that it transmits." 3934 * We accept CWR on pure ACKs to be more robust 3935 * with widely-deployed TCP implementations that do this. 3936 */ 3937 tcp_ecn_accept_cwr(sk, skb); 3938 3939 /* We passed data and got it acked, remove any soft error 3940 * log. Something worked... 3941 */ 3942 WRITE_ONCE(sk->sk_err_soft, 0); 3943 icsk->icsk_probes_out = 0; 3944 tp->rcv_tstamp = tcp_jiffies32; 3945 if (!prior_packets) 3946 goto no_queue; 3947 3948 /* See if we can take anything off of the retransmit queue. */ 3949 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3950 &sack_state, flag & FLAG_ECE); 3951 3952 tcp_rack_update_reo_wnd(sk, &rs); 3953 3954 if (tp->tlp_high_seq) 3955 tcp_process_tlp_ack(sk, ack, flag); 3956 3957 if (tcp_ack_is_dubious(sk, flag)) { 3958 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3959 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3960 num_dupack = 1; 3961 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3962 if (!(flag & FLAG_DATA)) 3963 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3964 } 3965 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3966 &rexmit); 3967 } 3968 3969 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3970 if (flag & FLAG_SET_XMIT_TIMER) 3971 tcp_set_xmit_timer(sk); 3972 3973 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3974 sk_dst_confirm(sk); 3975 3976 delivered = tcp_newly_delivered(sk, delivered, flag); 3977 lost = tp->lost - lost; /* freshly marked lost */ 3978 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3979 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3980 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3981 tcp_xmit_recovery(sk, rexmit); 3982 return 1; 3983 3984 no_queue: 3985 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3986 if (flag & FLAG_DSACKING_ACK) { 3987 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3988 &rexmit); 3989 tcp_newly_delivered(sk, delivered, flag); 3990 } 3991 /* If this ack opens up a zero window, clear backoff. It was 3992 * being used to time the probes, and is probably far higher than 3993 * it needs to be for normal retransmission. 3994 */ 3995 tcp_ack_probe(sk); 3996 3997 if (tp->tlp_high_seq) 3998 tcp_process_tlp_ack(sk, ack, flag); 3999 return 1; 4000 4001 old_ack: 4002 /* If data was SACKed, tag it and see if we should send more data. 4003 * If data was DSACKed, see if we can undo a cwnd reduction. 4004 */ 4005 if (TCP_SKB_CB(skb)->sacked) { 4006 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4007 &sack_state); 4008 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4009 &rexmit); 4010 tcp_newly_delivered(sk, delivered, flag); 4011 tcp_xmit_recovery(sk, rexmit); 4012 } 4013 4014 return 0; 4015 } 4016 4017 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4018 bool syn, struct tcp_fastopen_cookie *foc, 4019 bool exp_opt) 4020 { 4021 /* Valid only in SYN or SYN-ACK with an even length. */ 4022 if (!foc || !syn || len < 0 || (len & 1)) 4023 return; 4024 4025 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4026 len <= TCP_FASTOPEN_COOKIE_MAX) 4027 memcpy(foc->val, cookie, len); 4028 else if (len != 0) 4029 len = -1; 4030 foc->len = len; 4031 foc->exp = exp_opt; 4032 } 4033 4034 static bool smc_parse_options(const struct tcphdr *th, 4035 struct tcp_options_received *opt_rx, 4036 const unsigned char *ptr, 4037 int opsize) 4038 { 4039 #if IS_ENABLED(CONFIG_SMC) 4040 if (static_branch_unlikely(&tcp_have_smc)) { 4041 if (th->syn && !(opsize & 1) && 4042 opsize >= TCPOLEN_EXP_SMC_BASE && 4043 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4044 opt_rx->smc_ok = 1; 4045 return true; 4046 } 4047 } 4048 #endif 4049 return false; 4050 } 4051 4052 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4053 * value on success. 4054 */ 4055 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4056 { 4057 const unsigned char *ptr = (const unsigned char *)(th + 1); 4058 int length = (th->doff * 4) - sizeof(struct tcphdr); 4059 u16 mss = 0; 4060 4061 while (length > 0) { 4062 int opcode = *ptr++; 4063 int opsize; 4064 4065 switch (opcode) { 4066 case TCPOPT_EOL: 4067 return mss; 4068 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4069 length--; 4070 continue; 4071 default: 4072 if (length < 2) 4073 return mss; 4074 opsize = *ptr++; 4075 if (opsize < 2) /* "silly options" */ 4076 return mss; 4077 if (opsize > length) 4078 return mss; /* fail on partial options */ 4079 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4080 u16 in_mss = get_unaligned_be16(ptr); 4081 4082 if (in_mss) { 4083 if (user_mss && user_mss < in_mss) 4084 in_mss = user_mss; 4085 mss = in_mss; 4086 } 4087 } 4088 ptr += opsize - 2; 4089 length -= opsize; 4090 } 4091 } 4092 return mss; 4093 } 4094 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4095 4096 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4097 * But, this can also be called on packets in the established flow when 4098 * the fast version below fails. 4099 */ 4100 void tcp_parse_options(const struct net *net, 4101 const struct sk_buff *skb, 4102 struct tcp_options_received *opt_rx, int estab, 4103 struct tcp_fastopen_cookie *foc) 4104 { 4105 const unsigned char *ptr; 4106 const struct tcphdr *th = tcp_hdr(skb); 4107 int length = (th->doff * 4) - sizeof(struct tcphdr); 4108 4109 ptr = (const unsigned char *)(th + 1); 4110 opt_rx->saw_tstamp = 0; 4111 opt_rx->saw_unknown = 0; 4112 4113 while (length > 0) { 4114 int opcode = *ptr++; 4115 int opsize; 4116 4117 switch (opcode) { 4118 case TCPOPT_EOL: 4119 return; 4120 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4121 length--; 4122 continue; 4123 default: 4124 if (length < 2) 4125 return; 4126 opsize = *ptr++; 4127 if (opsize < 2) /* "silly options" */ 4128 return; 4129 if (opsize > length) 4130 return; /* don't parse partial options */ 4131 switch (opcode) { 4132 case TCPOPT_MSS: 4133 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4134 u16 in_mss = get_unaligned_be16(ptr); 4135 if (in_mss) { 4136 if (opt_rx->user_mss && 4137 opt_rx->user_mss < in_mss) 4138 in_mss = opt_rx->user_mss; 4139 opt_rx->mss_clamp = in_mss; 4140 } 4141 } 4142 break; 4143 case TCPOPT_WINDOW: 4144 if (opsize == TCPOLEN_WINDOW && th->syn && 4145 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4146 __u8 snd_wscale = *(__u8 *)ptr; 4147 opt_rx->wscale_ok = 1; 4148 if (snd_wscale > TCP_MAX_WSCALE) { 4149 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4150 __func__, 4151 snd_wscale, 4152 TCP_MAX_WSCALE); 4153 snd_wscale = TCP_MAX_WSCALE; 4154 } 4155 opt_rx->snd_wscale = snd_wscale; 4156 } 4157 break; 4158 case TCPOPT_TIMESTAMP: 4159 if ((opsize == TCPOLEN_TIMESTAMP) && 4160 ((estab && opt_rx->tstamp_ok) || 4161 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4162 opt_rx->saw_tstamp = 1; 4163 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4164 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4165 } 4166 break; 4167 case TCPOPT_SACK_PERM: 4168 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4169 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4170 opt_rx->sack_ok = TCP_SACK_SEEN; 4171 tcp_sack_reset(opt_rx); 4172 } 4173 break; 4174 4175 case TCPOPT_SACK: 4176 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4177 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4178 opt_rx->sack_ok) { 4179 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4180 } 4181 break; 4182 #ifdef CONFIG_TCP_MD5SIG 4183 case TCPOPT_MD5SIG: 4184 /* The MD5 Hash has already been 4185 * checked (see tcp_v{4,6}_rcv()). 4186 */ 4187 break; 4188 #endif 4189 case TCPOPT_FASTOPEN: 4190 tcp_parse_fastopen_option( 4191 opsize - TCPOLEN_FASTOPEN_BASE, 4192 ptr, th->syn, foc, false); 4193 break; 4194 4195 case TCPOPT_EXP: 4196 /* Fast Open option shares code 254 using a 4197 * 16 bits magic number. 4198 */ 4199 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4200 get_unaligned_be16(ptr) == 4201 TCPOPT_FASTOPEN_MAGIC) { 4202 tcp_parse_fastopen_option(opsize - 4203 TCPOLEN_EXP_FASTOPEN_BASE, 4204 ptr + 2, th->syn, foc, true); 4205 break; 4206 } 4207 4208 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4209 break; 4210 4211 opt_rx->saw_unknown = 1; 4212 break; 4213 4214 default: 4215 opt_rx->saw_unknown = 1; 4216 } 4217 ptr += opsize-2; 4218 length -= opsize; 4219 } 4220 } 4221 } 4222 EXPORT_SYMBOL(tcp_parse_options); 4223 4224 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4225 { 4226 const __be32 *ptr = (const __be32 *)(th + 1); 4227 4228 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4229 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4230 tp->rx_opt.saw_tstamp = 1; 4231 ++ptr; 4232 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4233 ++ptr; 4234 if (*ptr) 4235 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4236 else 4237 tp->rx_opt.rcv_tsecr = 0; 4238 return true; 4239 } 4240 return false; 4241 } 4242 4243 /* Fast parse options. This hopes to only see timestamps. 4244 * If it is wrong it falls back on tcp_parse_options(). 4245 */ 4246 static bool tcp_fast_parse_options(const struct net *net, 4247 const struct sk_buff *skb, 4248 const struct tcphdr *th, struct tcp_sock *tp) 4249 { 4250 /* In the spirit of fast parsing, compare doff directly to constant 4251 * values. Because equality is used, short doff can be ignored here. 4252 */ 4253 if (th->doff == (sizeof(*th) / 4)) { 4254 tp->rx_opt.saw_tstamp = 0; 4255 return false; 4256 } else if (tp->rx_opt.tstamp_ok && 4257 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4258 if (tcp_parse_aligned_timestamp(tp, th)) 4259 return true; 4260 } 4261 4262 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4263 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4264 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4265 4266 return true; 4267 } 4268 4269 #ifdef CONFIG_TCP_MD5SIG 4270 /* 4271 * Parse MD5 Signature option 4272 */ 4273 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4274 { 4275 int length = (th->doff << 2) - sizeof(*th); 4276 const u8 *ptr = (const u8 *)(th + 1); 4277 4278 /* If not enough data remaining, we can short cut */ 4279 while (length >= TCPOLEN_MD5SIG) { 4280 int opcode = *ptr++; 4281 int opsize; 4282 4283 switch (opcode) { 4284 case TCPOPT_EOL: 4285 return NULL; 4286 case TCPOPT_NOP: 4287 length--; 4288 continue; 4289 default: 4290 opsize = *ptr++; 4291 if (opsize < 2 || opsize > length) 4292 return NULL; 4293 if (opcode == TCPOPT_MD5SIG) 4294 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4295 } 4296 ptr += opsize - 2; 4297 length -= opsize; 4298 } 4299 return NULL; 4300 } 4301 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4302 #endif 4303 4304 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4305 * 4306 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4307 * it can pass through stack. So, the following predicate verifies that 4308 * this segment is not used for anything but congestion avoidance or 4309 * fast retransmit. Moreover, we even are able to eliminate most of such 4310 * second order effects, if we apply some small "replay" window (~RTO) 4311 * to timestamp space. 4312 * 4313 * All these measures still do not guarantee that we reject wrapped ACKs 4314 * on networks with high bandwidth, when sequence space is recycled fastly, 4315 * but it guarantees that such events will be very rare and do not affect 4316 * connection seriously. This doesn't look nice, but alas, PAWS is really 4317 * buggy extension. 4318 * 4319 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4320 * states that events when retransmit arrives after original data are rare. 4321 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4322 * the biggest problem on large power networks even with minor reordering. 4323 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4324 * up to bandwidth of 18Gigabit/sec. 8) ] 4325 */ 4326 4327 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4328 { 4329 const struct tcp_sock *tp = tcp_sk(sk); 4330 const struct tcphdr *th = tcp_hdr(skb); 4331 u32 seq = TCP_SKB_CB(skb)->seq; 4332 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4333 4334 return (/* 1. Pure ACK with correct sequence number. */ 4335 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4336 4337 /* 2. ... and duplicate ACK. */ 4338 ack == tp->snd_una && 4339 4340 /* 3. ... and does not update window. */ 4341 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4342 4343 /* 4. ... and sits in replay window. */ 4344 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4345 } 4346 4347 static inline bool tcp_paws_discard(const struct sock *sk, 4348 const struct sk_buff *skb) 4349 { 4350 const struct tcp_sock *tp = tcp_sk(sk); 4351 4352 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4353 !tcp_disordered_ack(sk, skb); 4354 } 4355 4356 /* Check segment sequence number for validity. 4357 * 4358 * Segment controls are considered valid, if the segment 4359 * fits to the window after truncation to the window. Acceptability 4360 * of data (and SYN, FIN, of course) is checked separately. 4361 * See tcp_data_queue(), for example. 4362 * 4363 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4364 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4365 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4366 * (borrowed from freebsd) 4367 */ 4368 4369 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4370 u32 seq, u32 end_seq) 4371 { 4372 if (before(end_seq, tp->rcv_wup)) 4373 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4374 4375 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4376 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4377 4378 return SKB_NOT_DROPPED_YET; 4379 } 4380 4381 4382 void tcp_done_with_error(struct sock *sk, int err) 4383 { 4384 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4385 WRITE_ONCE(sk->sk_err, err); 4386 smp_wmb(); 4387 4388 tcp_write_queue_purge(sk); 4389 tcp_done(sk); 4390 4391 if (!sock_flag(sk, SOCK_DEAD)) 4392 sk_error_report(sk); 4393 } 4394 EXPORT_SYMBOL(tcp_done_with_error); 4395 4396 /* When we get a reset we do this. */ 4397 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4398 { 4399 int err; 4400 4401 trace_tcp_receive_reset(sk); 4402 4403 /* mptcp can't tell us to ignore reset pkts, 4404 * so just ignore the return value of mptcp_incoming_options(). 4405 */ 4406 if (sk_is_mptcp(sk)) 4407 mptcp_incoming_options(sk, skb); 4408 4409 /* We want the right error as BSD sees it (and indeed as we do). */ 4410 switch (sk->sk_state) { 4411 case TCP_SYN_SENT: 4412 err = ECONNREFUSED; 4413 break; 4414 case TCP_CLOSE_WAIT: 4415 err = EPIPE; 4416 break; 4417 case TCP_CLOSE: 4418 return; 4419 default: 4420 err = ECONNRESET; 4421 } 4422 tcp_done_with_error(sk, err); 4423 } 4424 4425 /* 4426 * Process the FIN bit. This now behaves as it is supposed to work 4427 * and the FIN takes effect when it is validly part of sequence 4428 * space. Not before when we get holes. 4429 * 4430 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4431 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4432 * TIME-WAIT) 4433 * 4434 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4435 * close and we go into CLOSING (and later onto TIME-WAIT) 4436 * 4437 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4438 */ 4439 void tcp_fin(struct sock *sk) 4440 { 4441 struct tcp_sock *tp = tcp_sk(sk); 4442 4443 inet_csk_schedule_ack(sk); 4444 4445 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4446 sock_set_flag(sk, SOCK_DONE); 4447 4448 switch (sk->sk_state) { 4449 case TCP_SYN_RECV: 4450 case TCP_ESTABLISHED: 4451 /* Move to CLOSE_WAIT */ 4452 tcp_set_state(sk, TCP_CLOSE_WAIT); 4453 inet_csk_enter_pingpong_mode(sk); 4454 break; 4455 4456 case TCP_CLOSE_WAIT: 4457 case TCP_CLOSING: 4458 /* Received a retransmission of the FIN, do 4459 * nothing. 4460 */ 4461 break; 4462 case TCP_LAST_ACK: 4463 /* RFC793: Remain in the LAST-ACK state. */ 4464 break; 4465 4466 case TCP_FIN_WAIT1: 4467 /* This case occurs when a simultaneous close 4468 * happens, we must ack the received FIN and 4469 * enter the CLOSING state. 4470 */ 4471 tcp_send_ack(sk); 4472 tcp_set_state(sk, TCP_CLOSING); 4473 break; 4474 case TCP_FIN_WAIT2: 4475 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4476 tcp_send_ack(sk); 4477 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4478 break; 4479 default: 4480 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4481 * cases we should never reach this piece of code. 4482 */ 4483 pr_err("%s: Impossible, sk->sk_state=%d\n", 4484 __func__, sk->sk_state); 4485 break; 4486 } 4487 4488 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4489 * Probably, we should reset in this case. For now drop them. 4490 */ 4491 skb_rbtree_purge(&tp->out_of_order_queue); 4492 if (tcp_is_sack(tp)) 4493 tcp_sack_reset(&tp->rx_opt); 4494 4495 if (!sock_flag(sk, SOCK_DEAD)) { 4496 sk->sk_state_change(sk); 4497 4498 /* Do not send POLL_HUP for half duplex close. */ 4499 if (sk->sk_shutdown == SHUTDOWN_MASK || 4500 sk->sk_state == TCP_CLOSE) 4501 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4502 else 4503 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4504 } 4505 } 4506 4507 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4508 u32 end_seq) 4509 { 4510 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4511 if (before(seq, sp->start_seq)) 4512 sp->start_seq = seq; 4513 if (after(end_seq, sp->end_seq)) 4514 sp->end_seq = end_seq; 4515 return true; 4516 } 4517 return false; 4518 } 4519 4520 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4521 { 4522 struct tcp_sock *tp = tcp_sk(sk); 4523 4524 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4525 int mib_idx; 4526 4527 if (before(seq, tp->rcv_nxt)) 4528 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4529 else 4530 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4531 4532 NET_INC_STATS(sock_net(sk), mib_idx); 4533 4534 tp->rx_opt.dsack = 1; 4535 tp->duplicate_sack[0].start_seq = seq; 4536 tp->duplicate_sack[0].end_seq = end_seq; 4537 } 4538 } 4539 4540 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4541 { 4542 struct tcp_sock *tp = tcp_sk(sk); 4543 4544 if (!tp->rx_opt.dsack) 4545 tcp_dsack_set(sk, seq, end_seq); 4546 else 4547 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4548 } 4549 4550 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4551 { 4552 /* When the ACK path fails or drops most ACKs, the sender would 4553 * timeout and spuriously retransmit the same segment repeatedly. 4554 * The receiver remembers and reflects via DSACKs. Leverage the 4555 * DSACK state and change the txhash to re-route speculatively. 4556 */ 4557 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4558 sk_rethink_txhash(sk)) 4559 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4560 } 4561 4562 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4563 { 4564 struct tcp_sock *tp = tcp_sk(sk); 4565 4566 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4567 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4568 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4569 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4570 4571 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4572 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4573 4574 tcp_rcv_spurious_retrans(sk, skb); 4575 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4576 end_seq = tp->rcv_nxt; 4577 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4578 } 4579 } 4580 4581 tcp_send_ack(sk); 4582 } 4583 4584 /* These routines update the SACK block as out-of-order packets arrive or 4585 * in-order packets close up the sequence space. 4586 */ 4587 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4588 { 4589 int this_sack; 4590 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4591 struct tcp_sack_block *swalk = sp + 1; 4592 4593 /* See if the recent change to the first SACK eats into 4594 * or hits the sequence space of other SACK blocks, if so coalesce. 4595 */ 4596 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4597 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4598 int i; 4599 4600 /* Zap SWALK, by moving every further SACK up by one slot. 4601 * Decrease num_sacks. 4602 */ 4603 tp->rx_opt.num_sacks--; 4604 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4605 sp[i] = sp[i + 1]; 4606 continue; 4607 } 4608 this_sack++; 4609 swalk++; 4610 } 4611 } 4612 4613 void tcp_sack_compress_send_ack(struct sock *sk) 4614 { 4615 struct tcp_sock *tp = tcp_sk(sk); 4616 4617 if (!tp->compressed_ack) 4618 return; 4619 4620 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4621 __sock_put(sk); 4622 4623 /* Since we have to send one ack finally, 4624 * substract one from tp->compressed_ack to keep 4625 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4626 */ 4627 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4628 tp->compressed_ack - 1); 4629 4630 tp->compressed_ack = 0; 4631 tcp_send_ack(sk); 4632 } 4633 4634 /* Reasonable amount of sack blocks included in TCP SACK option 4635 * The max is 4, but this becomes 3 if TCP timestamps are there. 4636 * Given that SACK packets might be lost, be conservative and use 2. 4637 */ 4638 #define TCP_SACK_BLOCKS_EXPECTED 2 4639 4640 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4641 { 4642 struct tcp_sock *tp = tcp_sk(sk); 4643 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4644 int cur_sacks = tp->rx_opt.num_sacks; 4645 int this_sack; 4646 4647 if (!cur_sacks) 4648 goto new_sack; 4649 4650 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4651 if (tcp_sack_extend(sp, seq, end_seq)) { 4652 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4653 tcp_sack_compress_send_ack(sk); 4654 /* Rotate this_sack to the first one. */ 4655 for (; this_sack > 0; this_sack--, sp--) 4656 swap(*sp, *(sp - 1)); 4657 if (cur_sacks > 1) 4658 tcp_sack_maybe_coalesce(tp); 4659 return; 4660 } 4661 } 4662 4663 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4664 tcp_sack_compress_send_ack(sk); 4665 4666 /* Could not find an adjacent existing SACK, build a new one, 4667 * put it at the front, and shift everyone else down. We 4668 * always know there is at least one SACK present already here. 4669 * 4670 * If the sack array is full, forget about the last one. 4671 */ 4672 if (this_sack >= TCP_NUM_SACKS) { 4673 this_sack--; 4674 tp->rx_opt.num_sacks--; 4675 sp--; 4676 } 4677 for (; this_sack > 0; this_sack--, sp--) 4678 *sp = *(sp - 1); 4679 4680 new_sack: 4681 /* Build the new head SACK, and we're done. */ 4682 sp->start_seq = seq; 4683 sp->end_seq = end_seq; 4684 tp->rx_opt.num_sacks++; 4685 } 4686 4687 /* RCV.NXT advances, some SACKs should be eaten. */ 4688 4689 static void tcp_sack_remove(struct tcp_sock *tp) 4690 { 4691 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4692 int num_sacks = tp->rx_opt.num_sacks; 4693 int this_sack; 4694 4695 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4696 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4697 tp->rx_opt.num_sacks = 0; 4698 return; 4699 } 4700 4701 for (this_sack = 0; this_sack < num_sacks;) { 4702 /* Check if the start of the sack is covered by RCV.NXT. */ 4703 if (!before(tp->rcv_nxt, sp->start_seq)) { 4704 int i; 4705 4706 /* RCV.NXT must cover all the block! */ 4707 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4708 4709 /* Zap this SACK, by moving forward any other SACKS. */ 4710 for (i = this_sack+1; i < num_sacks; i++) 4711 tp->selective_acks[i-1] = tp->selective_acks[i]; 4712 num_sacks--; 4713 continue; 4714 } 4715 this_sack++; 4716 sp++; 4717 } 4718 tp->rx_opt.num_sacks = num_sacks; 4719 } 4720 4721 /** 4722 * tcp_try_coalesce - try to merge skb to prior one 4723 * @sk: socket 4724 * @to: prior buffer 4725 * @from: buffer to add in queue 4726 * @fragstolen: pointer to boolean 4727 * 4728 * Before queueing skb @from after @to, try to merge them 4729 * to reduce overall memory use and queue lengths, if cost is small. 4730 * Packets in ofo or receive queues can stay a long time. 4731 * Better try to coalesce them right now to avoid future collapses. 4732 * Returns true if caller should free @from instead of queueing it 4733 */ 4734 static bool tcp_try_coalesce(struct sock *sk, 4735 struct sk_buff *to, 4736 struct sk_buff *from, 4737 bool *fragstolen) 4738 { 4739 int delta; 4740 4741 *fragstolen = false; 4742 4743 /* Its possible this segment overlaps with prior segment in queue */ 4744 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4745 return false; 4746 4747 if (!mptcp_skb_can_collapse(to, from)) 4748 return false; 4749 4750 #ifdef CONFIG_TLS_DEVICE 4751 if (from->decrypted != to->decrypted) 4752 return false; 4753 #endif 4754 4755 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4756 return false; 4757 4758 atomic_add(delta, &sk->sk_rmem_alloc); 4759 sk_mem_charge(sk, delta); 4760 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4761 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4762 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4763 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4764 4765 if (TCP_SKB_CB(from)->has_rxtstamp) { 4766 TCP_SKB_CB(to)->has_rxtstamp = true; 4767 to->tstamp = from->tstamp; 4768 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4769 } 4770 4771 return true; 4772 } 4773 4774 static bool tcp_ooo_try_coalesce(struct sock *sk, 4775 struct sk_buff *to, 4776 struct sk_buff *from, 4777 bool *fragstolen) 4778 { 4779 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4780 4781 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4782 if (res) { 4783 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4784 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4785 4786 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4787 } 4788 return res; 4789 } 4790 4791 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4792 enum skb_drop_reason reason) 4793 { 4794 sk_drops_add(sk, skb); 4795 kfree_skb_reason(skb, reason); 4796 } 4797 4798 /* This one checks to see if we can put data from the 4799 * out_of_order queue into the receive_queue. 4800 */ 4801 static void tcp_ofo_queue(struct sock *sk) 4802 { 4803 struct tcp_sock *tp = tcp_sk(sk); 4804 __u32 dsack_high = tp->rcv_nxt; 4805 bool fin, fragstolen, eaten; 4806 struct sk_buff *skb, *tail; 4807 struct rb_node *p; 4808 4809 p = rb_first(&tp->out_of_order_queue); 4810 while (p) { 4811 skb = rb_to_skb(p); 4812 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4813 break; 4814 4815 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4816 __u32 dsack = dsack_high; 4817 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4818 dsack_high = TCP_SKB_CB(skb)->end_seq; 4819 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4820 } 4821 p = rb_next(p); 4822 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4823 4824 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4825 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4826 continue; 4827 } 4828 4829 tail = skb_peek_tail(&sk->sk_receive_queue); 4830 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4831 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4832 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4833 if (!eaten) 4834 __skb_queue_tail(&sk->sk_receive_queue, skb); 4835 else 4836 kfree_skb_partial(skb, fragstolen); 4837 4838 if (unlikely(fin)) { 4839 tcp_fin(sk); 4840 /* tcp_fin() purges tp->out_of_order_queue, 4841 * so we must end this loop right now. 4842 */ 4843 break; 4844 } 4845 } 4846 } 4847 4848 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4849 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4850 4851 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4852 unsigned int size) 4853 { 4854 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4855 !sk_rmem_schedule(sk, skb, size)) { 4856 4857 if (tcp_prune_queue(sk, skb) < 0) 4858 return -1; 4859 4860 while (!sk_rmem_schedule(sk, skb, size)) { 4861 if (!tcp_prune_ofo_queue(sk, skb)) 4862 return -1; 4863 } 4864 } 4865 return 0; 4866 } 4867 4868 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4869 { 4870 struct tcp_sock *tp = tcp_sk(sk); 4871 struct rb_node **p, *parent; 4872 struct sk_buff *skb1; 4873 u32 seq, end_seq; 4874 bool fragstolen; 4875 4876 tcp_ecn_check_ce(sk, skb); 4877 4878 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4879 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4880 sk->sk_data_ready(sk); 4881 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4882 return; 4883 } 4884 4885 /* Disable header prediction. */ 4886 tp->pred_flags = 0; 4887 inet_csk_schedule_ack(sk); 4888 4889 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4890 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4891 seq = TCP_SKB_CB(skb)->seq; 4892 end_seq = TCP_SKB_CB(skb)->end_seq; 4893 4894 p = &tp->out_of_order_queue.rb_node; 4895 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4896 /* Initial out of order segment, build 1 SACK. */ 4897 if (tcp_is_sack(tp)) { 4898 tp->rx_opt.num_sacks = 1; 4899 tp->selective_acks[0].start_seq = seq; 4900 tp->selective_acks[0].end_seq = end_seq; 4901 } 4902 rb_link_node(&skb->rbnode, NULL, p); 4903 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4904 tp->ooo_last_skb = skb; 4905 goto end; 4906 } 4907 4908 /* In the typical case, we are adding an skb to the end of the list. 4909 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4910 */ 4911 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4912 skb, &fragstolen)) { 4913 coalesce_done: 4914 /* For non sack flows, do not grow window to force DUPACK 4915 * and trigger fast retransmit. 4916 */ 4917 if (tcp_is_sack(tp)) 4918 tcp_grow_window(sk, skb, true); 4919 kfree_skb_partial(skb, fragstolen); 4920 skb = NULL; 4921 goto add_sack; 4922 } 4923 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4924 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4925 parent = &tp->ooo_last_skb->rbnode; 4926 p = &parent->rb_right; 4927 goto insert; 4928 } 4929 4930 /* Find place to insert this segment. Handle overlaps on the way. */ 4931 parent = NULL; 4932 while (*p) { 4933 parent = *p; 4934 skb1 = rb_to_skb(parent); 4935 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4936 p = &parent->rb_left; 4937 continue; 4938 } 4939 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4940 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4941 /* All the bits are present. Drop. */ 4942 NET_INC_STATS(sock_net(sk), 4943 LINUX_MIB_TCPOFOMERGE); 4944 tcp_drop_reason(sk, skb, 4945 SKB_DROP_REASON_TCP_OFOMERGE); 4946 skb = NULL; 4947 tcp_dsack_set(sk, seq, end_seq); 4948 goto add_sack; 4949 } 4950 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4951 /* Partial overlap. */ 4952 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4953 } else { 4954 /* skb's seq == skb1's seq and skb covers skb1. 4955 * Replace skb1 with skb. 4956 */ 4957 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4958 &tp->out_of_order_queue); 4959 tcp_dsack_extend(sk, 4960 TCP_SKB_CB(skb1)->seq, 4961 TCP_SKB_CB(skb1)->end_seq); 4962 NET_INC_STATS(sock_net(sk), 4963 LINUX_MIB_TCPOFOMERGE); 4964 tcp_drop_reason(sk, skb1, 4965 SKB_DROP_REASON_TCP_OFOMERGE); 4966 goto merge_right; 4967 } 4968 } else if (tcp_ooo_try_coalesce(sk, skb1, 4969 skb, &fragstolen)) { 4970 goto coalesce_done; 4971 } 4972 p = &parent->rb_right; 4973 } 4974 insert: 4975 /* Insert segment into RB tree. */ 4976 rb_link_node(&skb->rbnode, parent, p); 4977 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4978 4979 merge_right: 4980 /* Remove other segments covered by skb. */ 4981 while ((skb1 = skb_rb_next(skb)) != NULL) { 4982 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4983 break; 4984 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4985 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4986 end_seq); 4987 break; 4988 } 4989 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4990 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4991 TCP_SKB_CB(skb1)->end_seq); 4992 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4993 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4994 } 4995 /* If there is no skb after us, we are the last_skb ! */ 4996 if (!skb1) 4997 tp->ooo_last_skb = skb; 4998 4999 add_sack: 5000 if (tcp_is_sack(tp)) 5001 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5002 end: 5003 if (skb) { 5004 /* For non sack flows, do not grow window to force DUPACK 5005 * and trigger fast retransmit. 5006 */ 5007 if (tcp_is_sack(tp)) 5008 tcp_grow_window(sk, skb, false); 5009 skb_condense(skb); 5010 skb_set_owner_r(skb, sk); 5011 } 5012 } 5013 5014 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5015 bool *fragstolen) 5016 { 5017 int eaten; 5018 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5019 5020 eaten = (tail && 5021 tcp_try_coalesce(sk, tail, 5022 skb, fragstolen)) ? 1 : 0; 5023 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5024 if (!eaten) { 5025 __skb_queue_tail(&sk->sk_receive_queue, skb); 5026 skb_set_owner_r(skb, sk); 5027 } 5028 return eaten; 5029 } 5030 5031 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5032 { 5033 struct sk_buff *skb; 5034 int err = -ENOMEM; 5035 int data_len = 0; 5036 bool fragstolen; 5037 5038 if (size == 0) 5039 return 0; 5040 5041 if (size > PAGE_SIZE) { 5042 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5043 5044 data_len = npages << PAGE_SHIFT; 5045 size = data_len + (size & ~PAGE_MASK); 5046 } 5047 skb = alloc_skb_with_frags(size - data_len, data_len, 5048 PAGE_ALLOC_COSTLY_ORDER, 5049 &err, sk->sk_allocation); 5050 if (!skb) 5051 goto err; 5052 5053 skb_put(skb, size - data_len); 5054 skb->data_len = data_len; 5055 skb->len = size; 5056 5057 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5058 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5059 goto err_free; 5060 } 5061 5062 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5063 if (err) 5064 goto err_free; 5065 5066 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5067 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5068 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5069 5070 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5071 WARN_ON_ONCE(fragstolen); /* should not happen */ 5072 __kfree_skb(skb); 5073 } 5074 return size; 5075 5076 err_free: 5077 kfree_skb(skb); 5078 err: 5079 return err; 5080 5081 } 5082 5083 void tcp_data_ready(struct sock *sk) 5084 { 5085 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5086 sk->sk_data_ready(sk); 5087 } 5088 5089 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5090 { 5091 struct tcp_sock *tp = tcp_sk(sk); 5092 enum skb_drop_reason reason; 5093 bool fragstolen; 5094 int eaten; 5095 5096 /* If a subflow has been reset, the packet should not continue 5097 * to be processed, drop the packet. 5098 */ 5099 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5100 __kfree_skb(skb); 5101 return; 5102 } 5103 5104 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5105 __kfree_skb(skb); 5106 return; 5107 } 5108 skb_dst_drop(skb); 5109 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5110 5111 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5112 tp->rx_opt.dsack = 0; 5113 5114 /* Queue data for delivery to the user. 5115 * Packets in sequence go to the receive queue. 5116 * Out of sequence packets to the out_of_order_queue. 5117 */ 5118 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5119 if (tcp_receive_window(tp) == 0) { 5120 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5121 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5122 goto out_of_window; 5123 } 5124 5125 /* Ok. In sequence. In window. */ 5126 queue_and_out: 5127 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5128 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5129 inet_csk(sk)->icsk_ack.pending |= 5130 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5131 inet_csk_schedule_ack(sk); 5132 sk->sk_data_ready(sk); 5133 5134 if (skb_queue_len(&sk->sk_receive_queue)) { 5135 reason = SKB_DROP_REASON_PROTO_MEM; 5136 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5137 goto drop; 5138 } 5139 sk_forced_mem_schedule(sk, skb->truesize); 5140 } 5141 5142 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5143 if (skb->len) 5144 tcp_event_data_recv(sk, skb); 5145 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5146 tcp_fin(sk); 5147 5148 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5149 tcp_ofo_queue(sk); 5150 5151 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5152 * gap in queue is filled. 5153 */ 5154 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5155 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5156 } 5157 5158 if (tp->rx_opt.num_sacks) 5159 tcp_sack_remove(tp); 5160 5161 tcp_fast_path_check(sk); 5162 5163 if (eaten > 0) 5164 kfree_skb_partial(skb, fragstolen); 5165 if (!sock_flag(sk, SOCK_DEAD)) 5166 tcp_data_ready(sk); 5167 return; 5168 } 5169 5170 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5171 tcp_rcv_spurious_retrans(sk, skb); 5172 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5173 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5174 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5175 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5176 5177 out_of_window: 5178 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5179 inet_csk_schedule_ack(sk); 5180 drop: 5181 tcp_drop_reason(sk, skb, reason); 5182 return; 5183 } 5184 5185 /* Out of window. F.e. zero window probe. */ 5186 if (!before(TCP_SKB_CB(skb)->seq, 5187 tp->rcv_nxt + tcp_receive_window(tp))) { 5188 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5189 goto out_of_window; 5190 } 5191 5192 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5193 /* Partial packet, seq < rcv_next < end_seq */ 5194 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5195 5196 /* If window is closed, drop tail of packet. But after 5197 * remembering D-SACK for its head made in previous line. 5198 */ 5199 if (!tcp_receive_window(tp)) { 5200 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5201 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5202 goto out_of_window; 5203 } 5204 goto queue_and_out; 5205 } 5206 5207 tcp_data_queue_ofo(sk, skb); 5208 } 5209 5210 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5211 { 5212 if (list) 5213 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5214 5215 return skb_rb_next(skb); 5216 } 5217 5218 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5219 struct sk_buff_head *list, 5220 struct rb_root *root) 5221 { 5222 struct sk_buff *next = tcp_skb_next(skb, list); 5223 5224 if (list) 5225 __skb_unlink(skb, list); 5226 else 5227 rb_erase(&skb->rbnode, root); 5228 5229 __kfree_skb(skb); 5230 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5231 5232 return next; 5233 } 5234 5235 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5236 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5237 { 5238 struct rb_node **p = &root->rb_node; 5239 struct rb_node *parent = NULL; 5240 struct sk_buff *skb1; 5241 5242 while (*p) { 5243 parent = *p; 5244 skb1 = rb_to_skb(parent); 5245 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5246 p = &parent->rb_left; 5247 else 5248 p = &parent->rb_right; 5249 } 5250 rb_link_node(&skb->rbnode, parent, p); 5251 rb_insert_color(&skb->rbnode, root); 5252 } 5253 5254 /* Collapse contiguous sequence of skbs head..tail with 5255 * sequence numbers start..end. 5256 * 5257 * If tail is NULL, this means until the end of the queue. 5258 * 5259 * Segments with FIN/SYN are not collapsed (only because this 5260 * simplifies code) 5261 */ 5262 static void 5263 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5264 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5265 { 5266 struct sk_buff *skb = head, *n; 5267 struct sk_buff_head tmp; 5268 bool end_of_skbs; 5269 5270 /* First, check that queue is collapsible and find 5271 * the point where collapsing can be useful. 5272 */ 5273 restart: 5274 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5275 n = tcp_skb_next(skb, list); 5276 5277 /* No new bits? It is possible on ofo queue. */ 5278 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5279 skb = tcp_collapse_one(sk, skb, list, root); 5280 if (!skb) 5281 break; 5282 goto restart; 5283 } 5284 5285 /* The first skb to collapse is: 5286 * - not SYN/FIN and 5287 * - bloated or contains data before "start" or 5288 * overlaps to the next one and mptcp allow collapsing. 5289 */ 5290 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5291 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5292 before(TCP_SKB_CB(skb)->seq, start))) { 5293 end_of_skbs = false; 5294 break; 5295 } 5296 5297 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5298 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5299 end_of_skbs = false; 5300 break; 5301 } 5302 5303 /* Decided to skip this, advance start seq. */ 5304 start = TCP_SKB_CB(skb)->end_seq; 5305 } 5306 if (end_of_skbs || 5307 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5308 return; 5309 5310 __skb_queue_head_init(&tmp); 5311 5312 while (before(start, end)) { 5313 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5314 struct sk_buff *nskb; 5315 5316 nskb = alloc_skb(copy, GFP_ATOMIC); 5317 if (!nskb) 5318 break; 5319 5320 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5321 #ifdef CONFIG_TLS_DEVICE 5322 nskb->decrypted = skb->decrypted; 5323 #endif 5324 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5325 if (list) 5326 __skb_queue_before(list, skb, nskb); 5327 else 5328 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5329 skb_set_owner_r(nskb, sk); 5330 mptcp_skb_ext_move(nskb, skb); 5331 5332 /* Copy data, releasing collapsed skbs. */ 5333 while (copy > 0) { 5334 int offset = start - TCP_SKB_CB(skb)->seq; 5335 int size = TCP_SKB_CB(skb)->end_seq - start; 5336 5337 BUG_ON(offset < 0); 5338 if (size > 0) { 5339 size = min(copy, size); 5340 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5341 BUG(); 5342 TCP_SKB_CB(nskb)->end_seq += size; 5343 copy -= size; 5344 start += size; 5345 } 5346 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5347 skb = tcp_collapse_one(sk, skb, list, root); 5348 if (!skb || 5349 skb == tail || 5350 !mptcp_skb_can_collapse(nskb, skb) || 5351 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5352 goto end; 5353 #ifdef CONFIG_TLS_DEVICE 5354 if (skb->decrypted != nskb->decrypted) 5355 goto end; 5356 #endif 5357 } 5358 } 5359 } 5360 end: 5361 skb_queue_walk_safe(&tmp, skb, n) 5362 tcp_rbtree_insert(root, skb); 5363 } 5364 5365 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5366 * and tcp_collapse() them until all the queue is collapsed. 5367 */ 5368 static void tcp_collapse_ofo_queue(struct sock *sk) 5369 { 5370 struct tcp_sock *tp = tcp_sk(sk); 5371 u32 range_truesize, sum_tiny = 0; 5372 struct sk_buff *skb, *head; 5373 u32 start, end; 5374 5375 skb = skb_rb_first(&tp->out_of_order_queue); 5376 new_range: 5377 if (!skb) { 5378 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5379 return; 5380 } 5381 start = TCP_SKB_CB(skb)->seq; 5382 end = TCP_SKB_CB(skb)->end_seq; 5383 range_truesize = skb->truesize; 5384 5385 for (head = skb;;) { 5386 skb = skb_rb_next(skb); 5387 5388 /* Range is terminated when we see a gap or when 5389 * we are at the queue end. 5390 */ 5391 if (!skb || 5392 after(TCP_SKB_CB(skb)->seq, end) || 5393 before(TCP_SKB_CB(skb)->end_seq, start)) { 5394 /* Do not attempt collapsing tiny skbs */ 5395 if (range_truesize != head->truesize || 5396 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5397 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5398 head, skb, start, end); 5399 } else { 5400 sum_tiny += range_truesize; 5401 if (sum_tiny > sk->sk_rcvbuf >> 3) 5402 return; 5403 } 5404 goto new_range; 5405 } 5406 5407 range_truesize += skb->truesize; 5408 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5409 start = TCP_SKB_CB(skb)->seq; 5410 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5411 end = TCP_SKB_CB(skb)->end_seq; 5412 } 5413 } 5414 5415 /* 5416 * Clean the out-of-order queue to make room. 5417 * We drop high sequences packets to : 5418 * 1) Let a chance for holes to be filled. 5419 * This means we do not drop packets from ooo queue if their sequence 5420 * is before incoming packet sequence. 5421 * 2) not add too big latencies if thousands of packets sit there. 5422 * (But if application shrinks SO_RCVBUF, we could still end up 5423 * freeing whole queue here) 5424 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5425 * 5426 * Return true if queue has shrunk. 5427 */ 5428 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5429 { 5430 struct tcp_sock *tp = tcp_sk(sk); 5431 struct rb_node *node, *prev; 5432 bool pruned = false; 5433 int goal; 5434 5435 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5436 return false; 5437 5438 goal = sk->sk_rcvbuf >> 3; 5439 node = &tp->ooo_last_skb->rbnode; 5440 5441 do { 5442 struct sk_buff *skb = rb_to_skb(node); 5443 5444 /* If incoming skb would land last in ofo queue, stop pruning. */ 5445 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5446 break; 5447 pruned = true; 5448 prev = rb_prev(node); 5449 rb_erase(node, &tp->out_of_order_queue); 5450 goal -= skb->truesize; 5451 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5452 tp->ooo_last_skb = rb_to_skb(prev); 5453 if (!prev || goal <= 0) { 5454 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5455 !tcp_under_memory_pressure(sk)) 5456 break; 5457 goal = sk->sk_rcvbuf >> 3; 5458 } 5459 node = prev; 5460 } while (node); 5461 5462 if (pruned) { 5463 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5464 /* Reset SACK state. A conforming SACK implementation will 5465 * do the same at a timeout based retransmit. When a connection 5466 * is in a sad state like this, we care only about integrity 5467 * of the connection not performance. 5468 */ 5469 if (tp->rx_opt.sack_ok) 5470 tcp_sack_reset(&tp->rx_opt); 5471 } 5472 return pruned; 5473 } 5474 5475 /* Reduce allocated memory if we can, trying to get 5476 * the socket within its memory limits again. 5477 * 5478 * Return less than zero if we should start dropping frames 5479 * until the socket owning process reads some of the data 5480 * to stabilize the situation. 5481 */ 5482 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5483 { 5484 struct tcp_sock *tp = tcp_sk(sk); 5485 5486 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5487 5488 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5489 tcp_clamp_window(sk); 5490 else if (tcp_under_memory_pressure(sk)) 5491 tcp_adjust_rcv_ssthresh(sk); 5492 5493 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5494 return 0; 5495 5496 tcp_collapse_ofo_queue(sk); 5497 if (!skb_queue_empty(&sk->sk_receive_queue)) 5498 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5499 skb_peek(&sk->sk_receive_queue), 5500 NULL, 5501 tp->copied_seq, tp->rcv_nxt); 5502 5503 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5504 return 0; 5505 5506 /* Collapsing did not help, destructive actions follow. 5507 * This must not ever occur. */ 5508 5509 tcp_prune_ofo_queue(sk, in_skb); 5510 5511 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5512 return 0; 5513 5514 /* If we are really being abused, tell the caller to silently 5515 * drop receive data on the floor. It will get retransmitted 5516 * and hopefully then we'll have sufficient space. 5517 */ 5518 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5519 5520 /* Massive buffer overcommit. */ 5521 tp->pred_flags = 0; 5522 return -1; 5523 } 5524 5525 static bool tcp_should_expand_sndbuf(struct sock *sk) 5526 { 5527 const struct tcp_sock *tp = tcp_sk(sk); 5528 5529 /* If the user specified a specific send buffer setting, do 5530 * not modify it. 5531 */ 5532 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5533 return false; 5534 5535 /* If we are under global TCP memory pressure, do not expand. */ 5536 if (tcp_under_memory_pressure(sk)) { 5537 int unused_mem = sk_unused_reserved_mem(sk); 5538 5539 /* Adjust sndbuf according to reserved mem. But make sure 5540 * it never goes below SOCK_MIN_SNDBUF. 5541 * See sk_stream_moderate_sndbuf() for more details. 5542 */ 5543 if (unused_mem > SOCK_MIN_SNDBUF) 5544 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5545 5546 return false; 5547 } 5548 5549 /* If we are under soft global TCP memory pressure, do not expand. */ 5550 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5551 return false; 5552 5553 /* If we filled the congestion window, do not expand. */ 5554 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5555 return false; 5556 5557 return true; 5558 } 5559 5560 static void tcp_new_space(struct sock *sk) 5561 { 5562 struct tcp_sock *tp = tcp_sk(sk); 5563 5564 if (tcp_should_expand_sndbuf(sk)) { 5565 tcp_sndbuf_expand(sk); 5566 tp->snd_cwnd_stamp = tcp_jiffies32; 5567 } 5568 5569 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5570 } 5571 5572 /* Caller made space either from: 5573 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5574 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5575 * 5576 * We might be able to generate EPOLLOUT to the application if: 5577 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5578 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5579 * small enough that tcp_stream_memory_free() decides it 5580 * is time to generate EPOLLOUT. 5581 */ 5582 void tcp_check_space(struct sock *sk) 5583 { 5584 /* pairs with tcp_poll() */ 5585 smp_mb(); 5586 if (sk->sk_socket && 5587 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5588 tcp_new_space(sk); 5589 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5590 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5591 } 5592 } 5593 5594 static inline void tcp_data_snd_check(struct sock *sk) 5595 { 5596 tcp_push_pending_frames(sk); 5597 tcp_check_space(sk); 5598 } 5599 5600 /* 5601 * Check if sending an ack is needed. 5602 */ 5603 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5604 { 5605 struct tcp_sock *tp = tcp_sk(sk); 5606 unsigned long rtt, delay; 5607 5608 /* More than one full frame received... */ 5609 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5610 /* ... and right edge of window advances far enough. 5611 * (tcp_recvmsg() will send ACK otherwise). 5612 * If application uses SO_RCVLOWAT, we want send ack now if 5613 * we have not received enough bytes to satisfy the condition. 5614 */ 5615 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5616 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5617 /* We ACK each frame or... */ 5618 tcp_in_quickack_mode(sk) || 5619 /* Protocol state mandates a one-time immediate ACK */ 5620 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5621 send_now: 5622 tcp_send_ack(sk); 5623 return; 5624 } 5625 5626 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5627 tcp_send_delayed_ack(sk); 5628 return; 5629 } 5630 5631 if (!tcp_is_sack(tp) || 5632 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5633 goto send_now; 5634 5635 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5636 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5637 tp->dup_ack_counter = 0; 5638 } 5639 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5640 tp->dup_ack_counter++; 5641 goto send_now; 5642 } 5643 tp->compressed_ack++; 5644 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5645 return; 5646 5647 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5648 5649 rtt = tp->rcv_rtt_est.rtt_us; 5650 if (tp->srtt_us && tp->srtt_us < rtt) 5651 rtt = tp->srtt_us; 5652 5653 delay = min_t(unsigned long, 5654 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5655 rtt * (NSEC_PER_USEC >> 3)/20); 5656 sock_hold(sk); 5657 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5658 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5659 HRTIMER_MODE_REL_PINNED_SOFT); 5660 } 5661 5662 static inline void tcp_ack_snd_check(struct sock *sk) 5663 { 5664 if (!inet_csk_ack_scheduled(sk)) { 5665 /* We sent a data segment already. */ 5666 return; 5667 } 5668 __tcp_ack_snd_check(sk, 1); 5669 } 5670 5671 /* 5672 * This routine is only called when we have urgent data 5673 * signaled. Its the 'slow' part of tcp_urg. It could be 5674 * moved inline now as tcp_urg is only called from one 5675 * place. We handle URGent data wrong. We have to - as 5676 * BSD still doesn't use the correction from RFC961. 5677 * For 1003.1g we should support a new option TCP_STDURG to permit 5678 * either form (or just set the sysctl tcp_stdurg). 5679 */ 5680 5681 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5682 { 5683 struct tcp_sock *tp = tcp_sk(sk); 5684 u32 ptr = ntohs(th->urg_ptr); 5685 5686 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5687 ptr--; 5688 ptr += ntohl(th->seq); 5689 5690 /* Ignore urgent data that we've already seen and read. */ 5691 if (after(tp->copied_seq, ptr)) 5692 return; 5693 5694 /* Do not replay urg ptr. 5695 * 5696 * NOTE: interesting situation not covered by specs. 5697 * Misbehaving sender may send urg ptr, pointing to segment, 5698 * which we already have in ofo queue. We are not able to fetch 5699 * such data and will stay in TCP_URG_NOTYET until will be eaten 5700 * by recvmsg(). Seems, we are not obliged to handle such wicked 5701 * situations. But it is worth to think about possibility of some 5702 * DoSes using some hypothetical application level deadlock. 5703 */ 5704 if (before(ptr, tp->rcv_nxt)) 5705 return; 5706 5707 /* Do we already have a newer (or duplicate) urgent pointer? */ 5708 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5709 return; 5710 5711 /* Tell the world about our new urgent pointer. */ 5712 sk_send_sigurg(sk); 5713 5714 /* We may be adding urgent data when the last byte read was 5715 * urgent. To do this requires some care. We cannot just ignore 5716 * tp->copied_seq since we would read the last urgent byte again 5717 * as data, nor can we alter copied_seq until this data arrives 5718 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5719 * 5720 * NOTE. Double Dutch. Rendering to plain English: author of comment 5721 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5722 * and expect that both A and B disappear from stream. This is _wrong_. 5723 * Though this happens in BSD with high probability, this is occasional. 5724 * Any application relying on this is buggy. Note also, that fix "works" 5725 * only in this artificial test. Insert some normal data between A and B and we will 5726 * decline of BSD again. Verdict: it is better to remove to trap 5727 * buggy users. 5728 */ 5729 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5730 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5731 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5732 tp->copied_seq++; 5733 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5734 __skb_unlink(skb, &sk->sk_receive_queue); 5735 __kfree_skb(skb); 5736 } 5737 } 5738 5739 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5740 WRITE_ONCE(tp->urg_seq, ptr); 5741 5742 /* Disable header prediction. */ 5743 tp->pred_flags = 0; 5744 } 5745 5746 /* This is the 'fast' part of urgent handling. */ 5747 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5748 { 5749 struct tcp_sock *tp = tcp_sk(sk); 5750 5751 /* Check if we get a new urgent pointer - normally not. */ 5752 if (unlikely(th->urg)) 5753 tcp_check_urg(sk, th); 5754 5755 /* Do we wait for any urgent data? - normally not... */ 5756 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5757 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5758 th->syn; 5759 5760 /* Is the urgent pointer pointing into this packet? */ 5761 if (ptr < skb->len) { 5762 u8 tmp; 5763 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5764 BUG(); 5765 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5766 if (!sock_flag(sk, SOCK_DEAD)) 5767 sk->sk_data_ready(sk); 5768 } 5769 } 5770 } 5771 5772 /* Accept RST for rcv_nxt - 1 after a FIN. 5773 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5774 * FIN is sent followed by a RST packet. The RST is sent with the same 5775 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5776 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5777 * ACKs on the closed socket. In addition middleboxes can drop either the 5778 * challenge ACK or a subsequent RST. 5779 */ 5780 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5781 { 5782 const struct tcp_sock *tp = tcp_sk(sk); 5783 5784 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5785 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5786 TCPF_CLOSING)); 5787 } 5788 5789 /* Does PAWS and seqno based validation of an incoming segment, flags will 5790 * play significant role here. 5791 */ 5792 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5793 const struct tcphdr *th, int syn_inerr) 5794 { 5795 struct tcp_sock *tp = tcp_sk(sk); 5796 SKB_DR(reason); 5797 5798 /* RFC1323: H1. Apply PAWS check first. */ 5799 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5800 tp->rx_opt.saw_tstamp && 5801 tcp_paws_discard(sk, skb)) { 5802 if (!th->rst) { 5803 if (unlikely(th->syn)) 5804 goto syn_challenge; 5805 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5806 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5807 LINUX_MIB_TCPACKSKIPPEDPAWS, 5808 &tp->last_oow_ack_time)) 5809 tcp_send_dupack(sk, skb); 5810 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5811 goto discard; 5812 } 5813 /* Reset is accepted even if it did not pass PAWS. */ 5814 } 5815 5816 /* Step 1: check sequence number */ 5817 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5818 if (reason) { 5819 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5820 * (RST) segments are validated by checking their SEQ-fields." 5821 * And page 69: "If an incoming segment is not acceptable, 5822 * an acknowledgment should be sent in reply (unless the RST 5823 * bit is set, if so drop the segment and return)". 5824 */ 5825 if (!th->rst) { 5826 if (th->syn) 5827 goto syn_challenge; 5828 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5829 LINUX_MIB_TCPACKSKIPPEDSEQ, 5830 &tp->last_oow_ack_time)) 5831 tcp_send_dupack(sk, skb); 5832 } else if (tcp_reset_check(sk, skb)) { 5833 goto reset; 5834 } 5835 goto discard; 5836 } 5837 5838 /* Step 2: check RST bit */ 5839 if (th->rst) { 5840 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5841 * FIN and SACK too if available): 5842 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5843 * the right-most SACK block, 5844 * then 5845 * RESET the connection 5846 * else 5847 * Send a challenge ACK 5848 */ 5849 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5850 tcp_reset_check(sk, skb)) 5851 goto reset; 5852 5853 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5854 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5855 int max_sack = sp[0].end_seq; 5856 int this_sack; 5857 5858 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5859 ++this_sack) { 5860 max_sack = after(sp[this_sack].end_seq, 5861 max_sack) ? 5862 sp[this_sack].end_seq : max_sack; 5863 } 5864 5865 if (TCP_SKB_CB(skb)->seq == max_sack) 5866 goto reset; 5867 } 5868 5869 /* Disable TFO if RST is out-of-order 5870 * and no data has been received 5871 * for current active TFO socket 5872 */ 5873 if (tp->syn_fastopen && !tp->data_segs_in && 5874 sk->sk_state == TCP_ESTABLISHED) 5875 tcp_fastopen_active_disable(sk); 5876 tcp_send_challenge_ack(sk); 5877 SKB_DR_SET(reason, TCP_RESET); 5878 goto discard; 5879 } 5880 5881 /* step 3: check security and precedence [ignored] */ 5882 5883 /* step 4: Check for a SYN 5884 * RFC 5961 4.2 : Send a challenge ack 5885 */ 5886 if (th->syn) { 5887 syn_challenge: 5888 if (syn_inerr) 5889 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5890 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5891 tcp_send_challenge_ack(sk); 5892 SKB_DR_SET(reason, TCP_INVALID_SYN); 5893 goto discard; 5894 } 5895 5896 bpf_skops_parse_hdr(sk, skb); 5897 5898 return true; 5899 5900 discard: 5901 tcp_drop_reason(sk, skb, reason); 5902 return false; 5903 5904 reset: 5905 tcp_reset(sk, skb); 5906 __kfree_skb(skb); 5907 return false; 5908 } 5909 5910 /* 5911 * TCP receive function for the ESTABLISHED state. 5912 * 5913 * It is split into a fast path and a slow path. The fast path is 5914 * disabled when: 5915 * - A zero window was announced from us - zero window probing 5916 * is only handled properly in the slow path. 5917 * - Out of order segments arrived. 5918 * - Urgent data is expected. 5919 * - There is no buffer space left 5920 * - Unexpected TCP flags/window values/header lengths are received 5921 * (detected by checking the TCP header against pred_flags) 5922 * - Data is sent in both directions. Fast path only supports pure senders 5923 * or pure receivers (this means either the sequence number or the ack 5924 * value must stay constant) 5925 * - Unexpected TCP option. 5926 * 5927 * When these conditions are not satisfied it drops into a standard 5928 * receive procedure patterned after RFC793 to handle all cases. 5929 * The first three cases are guaranteed by proper pred_flags setting, 5930 * the rest is checked inline. Fast processing is turned on in 5931 * tcp_data_queue when everything is OK. 5932 */ 5933 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5934 { 5935 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5936 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5937 struct tcp_sock *tp = tcp_sk(sk); 5938 unsigned int len = skb->len; 5939 5940 /* TCP congestion window tracking */ 5941 trace_tcp_probe(sk, skb); 5942 5943 tcp_mstamp_refresh(tp); 5944 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5945 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5946 /* 5947 * Header prediction. 5948 * The code loosely follows the one in the famous 5949 * "30 instruction TCP receive" Van Jacobson mail. 5950 * 5951 * Van's trick is to deposit buffers into socket queue 5952 * on a device interrupt, to call tcp_recv function 5953 * on the receive process context and checksum and copy 5954 * the buffer to user space. smart... 5955 * 5956 * Our current scheme is not silly either but we take the 5957 * extra cost of the net_bh soft interrupt processing... 5958 * We do checksum and copy also but from device to kernel. 5959 */ 5960 5961 tp->rx_opt.saw_tstamp = 0; 5962 5963 /* pred_flags is 0xS?10 << 16 + snd_wnd 5964 * if header_prediction is to be made 5965 * 'S' will always be tp->tcp_header_len >> 2 5966 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5967 * turn it off (when there are holes in the receive 5968 * space for instance) 5969 * PSH flag is ignored. 5970 */ 5971 5972 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5973 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5974 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5975 int tcp_header_len = tp->tcp_header_len; 5976 5977 /* Timestamp header prediction: tcp_header_len 5978 * is automatically equal to th->doff*4 due to pred_flags 5979 * match. 5980 */ 5981 5982 /* Check timestamp */ 5983 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5984 /* No? Slow path! */ 5985 if (!tcp_parse_aligned_timestamp(tp, th)) 5986 goto slow_path; 5987 5988 /* If PAWS failed, check it more carefully in slow path */ 5989 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5990 goto slow_path; 5991 5992 /* DO NOT update ts_recent here, if checksum fails 5993 * and timestamp was corrupted part, it will result 5994 * in a hung connection since we will drop all 5995 * future packets due to the PAWS test. 5996 */ 5997 } 5998 5999 if (len <= tcp_header_len) { 6000 /* Bulk data transfer: sender */ 6001 if (len == tcp_header_len) { 6002 /* Predicted packet is in window by definition. 6003 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6004 * Hence, check seq<=rcv_wup reduces to: 6005 */ 6006 if (tcp_header_len == 6007 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6008 tp->rcv_nxt == tp->rcv_wup) 6009 tcp_store_ts_recent(tp); 6010 6011 /* We know that such packets are checksummed 6012 * on entry. 6013 */ 6014 tcp_ack(sk, skb, 0); 6015 __kfree_skb(skb); 6016 tcp_data_snd_check(sk); 6017 /* When receiving pure ack in fast path, update 6018 * last ts ecr directly instead of calling 6019 * tcp_rcv_rtt_measure_ts() 6020 */ 6021 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6022 return; 6023 } else { /* Header too small */ 6024 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6025 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6026 goto discard; 6027 } 6028 } else { 6029 int eaten = 0; 6030 bool fragstolen = false; 6031 6032 if (tcp_checksum_complete(skb)) 6033 goto csum_error; 6034 6035 if ((int)skb->truesize > sk->sk_forward_alloc) 6036 goto step5; 6037 6038 /* Predicted packet is in window by definition. 6039 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6040 * Hence, check seq<=rcv_wup reduces to: 6041 */ 6042 if (tcp_header_len == 6043 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6044 tp->rcv_nxt == tp->rcv_wup) 6045 tcp_store_ts_recent(tp); 6046 6047 tcp_rcv_rtt_measure_ts(sk, skb); 6048 6049 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6050 6051 /* Bulk data transfer: receiver */ 6052 skb_dst_drop(skb); 6053 __skb_pull(skb, tcp_header_len); 6054 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6055 6056 tcp_event_data_recv(sk, skb); 6057 6058 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6059 /* Well, only one small jumplet in fast path... */ 6060 tcp_ack(sk, skb, FLAG_DATA); 6061 tcp_data_snd_check(sk); 6062 if (!inet_csk_ack_scheduled(sk)) 6063 goto no_ack; 6064 } else { 6065 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6066 } 6067 6068 __tcp_ack_snd_check(sk, 0); 6069 no_ack: 6070 if (eaten) 6071 kfree_skb_partial(skb, fragstolen); 6072 tcp_data_ready(sk); 6073 return; 6074 } 6075 } 6076 6077 slow_path: 6078 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6079 goto csum_error; 6080 6081 if (!th->ack && !th->rst && !th->syn) { 6082 reason = SKB_DROP_REASON_TCP_FLAGS; 6083 goto discard; 6084 } 6085 6086 /* 6087 * Standard slow path. 6088 */ 6089 6090 if (!tcp_validate_incoming(sk, skb, th, 1)) 6091 return; 6092 6093 step5: 6094 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6095 if ((int)reason < 0) { 6096 reason = -reason; 6097 goto discard; 6098 } 6099 tcp_rcv_rtt_measure_ts(sk, skb); 6100 6101 /* Process urgent data. */ 6102 tcp_urg(sk, skb, th); 6103 6104 /* step 7: process the segment text */ 6105 tcp_data_queue(sk, skb); 6106 6107 tcp_data_snd_check(sk); 6108 tcp_ack_snd_check(sk); 6109 return; 6110 6111 csum_error: 6112 reason = SKB_DROP_REASON_TCP_CSUM; 6113 trace_tcp_bad_csum(skb); 6114 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6115 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6116 6117 discard: 6118 tcp_drop_reason(sk, skb, reason); 6119 } 6120 EXPORT_SYMBOL(tcp_rcv_established); 6121 6122 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6123 { 6124 struct inet_connection_sock *icsk = inet_csk(sk); 6125 struct tcp_sock *tp = tcp_sk(sk); 6126 6127 tcp_mtup_init(sk); 6128 icsk->icsk_af_ops->rebuild_header(sk); 6129 tcp_init_metrics(sk); 6130 6131 /* Initialize the congestion window to start the transfer. 6132 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6133 * retransmitted. In light of RFC6298 more aggressive 1sec 6134 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6135 * retransmission has occurred. 6136 */ 6137 if (tp->total_retrans > 1 && tp->undo_marker) 6138 tcp_snd_cwnd_set(tp, 1); 6139 else 6140 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6141 tp->snd_cwnd_stamp = tcp_jiffies32; 6142 6143 bpf_skops_established(sk, bpf_op, skb); 6144 /* Initialize congestion control unless BPF initialized it already: */ 6145 if (!icsk->icsk_ca_initialized) 6146 tcp_init_congestion_control(sk); 6147 tcp_init_buffer_space(sk); 6148 } 6149 6150 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6151 { 6152 struct tcp_sock *tp = tcp_sk(sk); 6153 struct inet_connection_sock *icsk = inet_csk(sk); 6154 6155 tcp_set_state(sk, TCP_ESTABLISHED); 6156 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6157 6158 if (skb) { 6159 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6160 security_inet_conn_established(sk, skb); 6161 sk_mark_napi_id(sk, skb); 6162 } 6163 6164 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6165 6166 /* Prevent spurious tcp_cwnd_restart() on first data 6167 * packet. 6168 */ 6169 tp->lsndtime = tcp_jiffies32; 6170 6171 if (sock_flag(sk, SOCK_KEEPOPEN)) 6172 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6173 6174 if (!tp->rx_opt.snd_wscale) 6175 __tcp_fast_path_on(tp, tp->snd_wnd); 6176 else 6177 tp->pred_flags = 0; 6178 } 6179 6180 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6181 struct tcp_fastopen_cookie *cookie) 6182 { 6183 struct tcp_sock *tp = tcp_sk(sk); 6184 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6185 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6186 bool syn_drop = false; 6187 6188 if (mss == tp->rx_opt.user_mss) { 6189 struct tcp_options_received opt; 6190 6191 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6192 tcp_clear_options(&opt); 6193 opt.user_mss = opt.mss_clamp = 0; 6194 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6195 mss = opt.mss_clamp; 6196 } 6197 6198 if (!tp->syn_fastopen) { 6199 /* Ignore an unsolicited cookie */ 6200 cookie->len = -1; 6201 } else if (tp->total_retrans) { 6202 /* SYN timed out and the SYN-ACK neither has a cookie nor 6203 * acknowledges data. Presumably the remote received only 6204 * the retransmitted (regular) SYNs: either the original 6205 * SYN-data or the corresponding SYN-ACK was dropped. 6206 */ 6207 syn_drop = (cookie->len < 0 && data); 6208 } else if (cookie->len < 0 && !tp->syn_data) { 6209 /* We requested a cookie but didn't get it. If we did not use 6210 * the (old) exp opt format then try so next time (try_exp=1). 6211 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6212 */ 6213 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6214 } 6215 6216 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6217 6218 if (data) { /* Retransmit unacked data in SYN */ 6219 if (tp->total_retrans) 6220 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6221 else 6222 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6223 skb_rbtree_walk_from(data) 6224 tcp_mark_skb_lost(sk, data); 6225 tcp_non_congestion_loss_retransmit(sk); 6226 NET_INC_STATS(sock_net(sk), 6227 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6228 return true; 6229 } 6230 tp->syn_data_acked = tp->syn_data; 6231 if (tp->syn_data_acked) { 6232 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6233 /* SYN-data is counted as two separate packets in tcp_ack() */ 6234 if (tp->delivered > 1) 6235 --tp->delivered; 6236 } 6237 6238 tcp_fastopen_add_skb(sk, synack); 6239 6240 return false; 6241 } 6242 6243 static void smc_check_reset_syn(struct tcp_sock *tp) 6244 { 6245 #if IS_ENABLED(CONFIG_SMC) 6246 if (static_branch_unlikely(&tcp_have_smc)) { 6247 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6248 tp->syn_smc = 0; 6249 } 6250 #endif 6251 } 6252 6253 static void tcp_try_undo_spurious_syn(struct sock *sk) 6254 { 6255 struct tcp_sock *tp = tcp_sk(sk); 6256 u32 syn_stamp; 6257 6258 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6259 * spurious if the ACK's timestamp option echo value matches the 6260 * original SYN timestamp. 6261 */ 6262 syn_stamp = tp->retrans_stamp; 6263 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6264 syn_stamp == tp->rx_opt.rcv_tsecr) 6265 tp->undo_marker = 0; 6266 } 6267 6268 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6269 const struct tcphdr *th) 6270 { 6271 struct inet_connection_sock *icsk = inet_csk(sk); 6272 struct tcp_sock *tp = tcp_sk(sk); 6273 struct tcp_fastopen_cookie foc = { .len = -1 }; 6274 int saved_clamp = tp->rx_opt.mss_clamp; 6275 bool fastopen_fail; 6276 SKB_DR(reason); 6277 6278 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6279 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6280 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6281 6282 if (th->ack) { 6283 /* rfc793: 6284 * "If the state is SYN-SENT then 6285 * first check the ACK bit 6286 * If the ACK bit is set 6287 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6288 * a reset (unless the RST bit is set, if so drop 6289 * the segment and return)" 6290 */ 6291 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6292 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6293 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6294 if (icsk->icsk_retransmits == 0) 6295 inet_csk_reset_xmit_timer(sk, 6296 ICSK_TIME_RETRANS, 6297 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6298 goto reset_and_undo; 6299 } 6300 6301 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6302 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6303 tcp_time_stamp(tp))) { 6304 NET_INC_STATS(sock_net(sk), 6305 LINUX_MIB_PAWSACTIVEREJECTED); 6306 goto reset_and_undo; 6307 } 6308 6309 /* Now ACK is acceptable. 6310 * 6311 * "If the RST bit is set 6312 * If the ACK was acceptable then signal the user "error: 6313 * connection reset", drop the segment, enter CLOSED state, 6314 * delete TCB, and return." 6315 */ 6316 6317 if (th->rst) { 6318 tcp_reset(sk, skb); 6319 consume: 6320 __kfree_skb(skb); 6321 return 0; 6322 } 6323 6324 /* rfc793: 6325 * "fifth, if neither of the SYN or RST bits is set then 6326 * drop the segment and return." 6327 * 6328 * See note below! 6329 * --ANK(990513) 6330 */ 6331 if (!th->syn) { 6332 SKB_DR_SET(reason, TCP_FLAGS); 6333 goto discard_and_undo; 6334 } 6335 /* rfc793: 6336 * "If the SYN bit is on ... 6337 * are acceptable then ... 6338 * (our SYN has been ACKed), change the connection 6339 * state to ESTABLISHED..." 6340 */ 6341 6342 tcp_ecn_rcv_synack(tp, th); 6343 6344 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6345 tcp_try_undo_spurious_syn(sk); 6346 tcp_ack(sk, skb, FLAG_SLOWPATH); 6347 6348 /* Ok.. it's good. Set up sequence numbers and 6349 * move to established. 6350 */ 6351 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6352 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6353 6354 /* RFC1323: The window in SYN & SYN/ACK segments is 6355 * never scaled. 6356 */ 6357 tp->snd_wnd = ntohs(th->window); 6358 6359 if (!tp->rx_opt.wscale_ok) { 6360 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6361 WRITE_ONCE(tp->window_clamp, 6362 min(tp->window_clamp, 65535U)); 6363 } 6364 6365 if (tp->rx_opt.saw_tstamp) { 6366 tp->rx_opt.tstamp_ok = 1; 6367 tp->tcp_header_len = 6368 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6369 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6370 tcp_store_ts_recent(tp); 6371 } else { 6372 tp->tcp_header_len = sizeof(struct tcphdr); 6373 } 6374 6375 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6376 tcp_initialize_rcv_mss(sk); 6377 6378 /* Remember, tcp_poll() does not lock socket! 6379 * Change state from SYN-SENT only after copied_seq 6380 * is initialized. */ 6381 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6382 6383 smc_check_reset_syn(tp); 6384 6385 smp_mb(); 6386 6387 tcp_finish_connect(sk, skb); 6388 6389 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6390 tcp_rcv_fastopen_synack(sk, skb, &foc); 6391 6392 if (!sock_flag(sk, SOCK_DEAD)) { 6393 sk->sk_state_change(sk); 6394 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6395 } 6396 if (fastopen_fail) 6397 return -1; 6398 if (sk->sk_write_pending || 6399 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6400 inet_csk_in_pingpong_mode(sk)) { 6401 /* Save one ACK. Data will be ready after 6402 * several ticks, if write_pending is set. 6403 * 6404 * It may be deleted, but with this feature tcpdumps 6405 * look so _wonderfully_ clever, that I was not able 6406 * to stand against the temptation 8) --ANK 6407 */ 6408 inet_csk_schedule_ack(sk); 6409 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6410 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6411 TCP_DELACK_MAX, TCP_RTO_MAX); 6412 goto consume; 6413 } 6414 tcp_send_ack(sk); 6415 return -1; 6416 } 6417 6418 /* No ACK in the segment */ 6419 6420 if (th->rst) { 6421 /* rfc793: 6422 * "If the RST bit is set 6423 * 6424 * Otherwise (no ACK) drop the segment and return." 6425 */ 6426 SKB_DR_SET(reason, TCP_RESET); 6427 goto discard_and_undo; 6428 } 6429 6430 /* PAWS check. */ 6431 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6432 tcp_paws_reject(&tp->rx_opt, 0)) { 6433 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6434 goto discard_and_undo; 6435 } 6436 if (th->syn) { 6437 /* We see SYN without ACK. It is attempt of 6438 * simultaneous connect with crossed SYNs. 6439 * Particularly, it can be connect to self. 6440 */ 6441 tcp_set_state(sk, TCP_SYN_RECV); 6442 6443 if (tp->rx_opt.saw_tstamp) { 6444 tp->rx_opt.tstamp_ok = 1; 6445 tcp_store_ts_recent(tp); 6446 tp->tcp_header_len = 6447 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6448 } else { 6449 tp->tcp_header_len = sizeof(struct tcphdr); 6450 } 6451 6452 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6453 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6454 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6455 6456 /* RFC1323: The window in SYN & SYN/ACK segments is 6457 * never scaled. 6458 */ 6459 tp->snd_wnd = ntohs(th->window); 6460 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6461 tp->max_window = tp->snd_wnd; 6462 6463 tcp_ecn_rcv_syn(tp, th); 6464 6465 tcp_mtup_init(sk); 6466 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6467 tcp_initialize_rcv_mss(sk); 6468 6469 tcp_send_synack(sk); 6470 #if 0 6471 /* Note, we could accept data and URG from this segment. 6472 * There are no obstacles to make this (except that we must 6473 * either change tcp_recvmsg() to prevent it from returning data 6474 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6475 * 6476 * However, if we ignore data in ACKless segments sometimes, 6477 * we have no reasons to accept it sometimes. 6478 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6479 * is not flawless. So, discard packet for sanity. 6480 * Uncomment this return to process the data. 6481 */ 6482 return -1; 6483 #else 6484 goto consume; 6485 #endif 6486 } 6487 /* "fifth, if neither of the SYN or RST bits is set then 6488 * drop the segment and return." 6489 */ 6490 6491 discard_and_undo: 6492 tcp_clear_options(&tp->rx_opt); 6493 tp->rx_opt.mss_clamp = saved_clamp; 6494 tcp_drop_reason(sk, skb, reason); 6495 return 0; 6496 6497 reset_and_undo: 6498 tcp_clear_options(&tp->rx_opt); 6499 tp->rx_opt.mss_clamp = saved_clamp; 6500 return 1; 6501 } 6502 6503 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6504 { 6505 struct tcp_sock *tp = tcp_sk(sk); 6506 struct request_sock *req; 6507 6508 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6509 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6510 */ 6511 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6512 tcp_try_undo_recovery(sk); 6513 6514 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6515 tp->retrans_stamp = 0; 6516 inet_csk(sk)->icsk_retransmits = 0; 6517 6518 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6519 * we no longer need req so release it. 6520 */ 6521 req = rcu_dereference_protected(tp->fastopen_rsk, 6522 lockdep_sock_is_held(sk)); 6523 reqsk_fastopen_remove(sk, req, false); 6524 6525 /* Re-arm the timer because data may have been sent out. 6526 * This is similar to the regular data transmission case 6527 * when new data has just been ack'ed. 6528 * 6529 * (TFO) - we could try to be more aggressive and 6530 * retransmitting any data sooner based on when they 6531 * are sent out. 6532 */ 6533 tcp_rearm_rto(sk); 6534 } 6535 6536 /* 6537 * This function implements the receiving procedure of RFC 793 for 6538 * all states except ESTABLISHED and TIME_WAIT. 6539 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6540 * address independent. 6541 */ 6542 6543 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6544 { 6545 struct tcp_sock *tp = tcp_sk(sk); 6546 struct inet_connection_sock *icsk = inet_csk(sk); 6547 const struct tcphdr *th = tcp_hdr(skb); 6548 struct request_sock *req; 6549 int queued = 0; 6550 bool acceptable; 6551 SKB_DR(reason); 6552 6553 switch (sk->sk_state) { 6554 case TCP_CLOSE: 6555 SKB_DR_SET(reason, TCP_CLOSE); 6556 goto discard; 6557 6558 case TCP_LISTEN: 6559 if (th->ack) 6560 return 1; 6561 6562 if (th->rst) { 6563 SKB_DR_SET(reason, TCP_RESET); 6564 goto discard; 6565 } 6566 if (th->syn) { 6567 if (th->fin) { 6568 SKB_DR_SET(reason, TCP_FLAGS); 6569 goto discard; 6570 } 6571 /* It is possible that we process SYN packets from backlog, 6572 * so we need to make sure to disable BH and RCU right there. 6573 */ 6574 rcu_read_lock(); 6575 local_bh_disable(); 6576 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6577 local_bh_enable(); 6578 rcu_read_unlock(); 6579 6580 if (!acceptable) 6581 return 1; 6582 consume_skb(skb); 6583 return 0; 6584 } 6585 SKB_DR_SET(reason, TCP_FLAGS); 6586 goto discard; 6587 6588 case TCP_SYN_SENT: 6589 tp->rx_opt.saw_tstamp = 0; 6590 tcp_mstamp_refresh(tp); 6591 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6592 if (queued >= 0) 6593 return queued; 6594 6595 /* Do step6 onward by hand. */ 6596 tcp_urg(sk, skb, th); 6597 __kfree_skb(skb); 6598 tcp_data_snd_check(sk); 6599 return 0; 6600 } 6601 6602 tcp_mstamp_refresh(tp); 6603 tp->rx_opt.saw_tstamp = 0; 6604 req = rcu_dereference_protected(tp->fastopen_rsk, 6605 lockdep_sock_is_held(sk)); 6606 if (req) { 6607 bool req_stolen; 6608 6609 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6610 sk->sk_state != TCP_FIN_WAIT1); 6611 6612 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6613 SKB_DR_SET(reason, TCP_FASTOPEN); 6614 goto discard; 6615 } 6616 } 6617 6618 if (!th->ack && !th->rst && !th->syn) { 6619 SKB_DR_SET(reason, TCP_FLAGS); 6620 goto discard; 6621 } 6622 if (!tcp_validate_incoming(sk, skb, th, 0)) 6623 return 0; 6624 6625 /* step 5: check the ACK field */ 6626 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6627 FLAG_UPDATE_TS_RECENT | 6628 FLAG_NO_CHALLENGE_ACK) > 0; 6629 6630 if (!acceptable) { 6631 if (sk->sk_state == TCP_SYN_RECV) 6632 return 1; /* send one RST */ 6633 tcp_send_challenge_ack(sk); 6634 SKB_DR_SET(reason, TCP_OLD_ACK); 6635 goto discard; 6636 } 6637 switch (sk->sk_state) { 6638 case TCP_SYN_RECV: 6639 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6640 if (!tp->srtt_us) 6641 tcp_synack_rtt_meas(sk, req); 6642 6643 if (req) { 6644 tcp_rcv_synrecv_state_fastopen(sk); 6645 } else { 6646 tcp_try_undo_spurious_syn(sk); 6647 tp->retrans_stamp = 0; 6648 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6649 skb); 6650 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6651 } 6652 smp_mb(); 6653 tcp_set_state(sk, TCP_ESTABLISHED); 6654 sk->sk_state_change(sk); 6655 6656 /* Note, that this wakeup is only for marginal crossed SYN case. 6657 * Passively open sockets are not waked up, because 6658 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6659 */ 6660 if (sk->sk_socket) 6661 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6662 6663 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6664 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6665 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6666 6667 if (tp->rx_opt.tstamp_ok) 6668 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6669 6670 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6671 tcp_update_pacing_rate(sk); 6672 6673 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6674 tp->lsndtime = tcp_jiffies32; 6675 6676 tcp_initialize_rcv_mss(sk); 6677 tcp_fast_path_on(tp); 6678 if (sk->sk_shutdown & SEND_SHUTDOWN) 6679 tcp_shutdown(sk, SEND_SHUTDOWN); 6680 break; 6681 6682 case TCP_FIN_WAIT1: { 6683 int tmo; 6684 6685 if (req) 6686 tcp_rcv_synrecv_state_fastopen(sk); 6687 6688 if (tp->snd_una != tp->write_seq) 6689 break; 6690 6691 tcp_set_state(sk, TCP_FIN_WAIT2); 6692 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6693 6694 sk_dst_confirm(sk); 6695 6696 if (!sock_flag(sk, SOCK_DEAD)) { 6697 /* Wake up lingering close() */ 6698 sk->sk_state_change(sk); 6699 break; 6700 } 6701 6702 if (READ_ONCE(tp->linger2) < 0) { 6703 tcp_done(sk); 6704 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6705 return 1; 6706 } 6707 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6708 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6709 /* Receive out of order FIN after close() */ 6710 if (tp->syn_fastopen && th->fin) 6711 tcp_fastopen_active_disable(sk); 6712 tcp_done(sk); 6713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6714 return 1; 6715 } 6716 6717 tmo = tcp_fin_time(sk); 6718 if (tmo > TCP_TIMEWAIT_LEN) { 6719 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6720 } else if (th->fin || sock_owned_by_user(sk)) { 6721 /* Bad case. We could lose such FIN otherwise. 6722 * It is not a big problem, but it looks confusing 6723 * and not so rare event. We still can lose it now, 6724 * if it spins in bh_lock_sock(), but it is really 6725 * marginal case. 6726 */ 6727 inet_csk_reset_keepalive_timer(sk, tmo); 6728 } else { 6729 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6730 goto consume; 6731 } 6732 break; 6733 } 6734 6735 case TCP_CLOSING: 6736 if (tp->snd_una == tp->write_seq) { 6737 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6738 goto consume; 6739 } 6740 break; 6741 6742 case TCP_LAST_ACK: 6743 if (tp->snd_una == tp->write_seq) { 6744 tcp_update_metrics(sk); 6745 tcp_done(sk); 6746 goto consume; 6747 } 6748 break; 6749 } 6750 6751 /* step 6: check the URG bit */ 6752 tcp_urg(sk, skb, th); 6753 6754 /* step 7: process the segment text */ 6755 switch (sk->sk_state) { 6756 case TCP_CLOSE_WAIT: 6757 case TCP_CLOSING: 6758 case TCP_LAST_ACK: 6759 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6760 /* If a subflow has been reset, the packet should not 6761 * continue to be processed, drop the packet. 6762 */ 6763 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6764 goto discard; 6765 break; 6766 } 6767 fallthrough; 6768 case TCP_FIN_WAIT1: 6769 case TCP_FIN_WAIT2: 6770 /* RFC 793 says to queue data in these states, 6771 * RFC 1122 says we MUST send a reset. 6772 * BSD 4.4 also does reset. 6773 */ 6774 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6775 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6776 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6777 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6778 tcp_reset(sk, skb); 6779 return 1; 6780 } 6781 } 6782 fallthrough; 6783 case TCP_ESTABLISHED: 6784 tcp_data_queue(sk, skb); 6785 queued = 1; 6786 break; 6787 } 6788 6789 /* tcp_data could move socket to TIME-WAIT */ 6790 if (sk->sk_state != TCP_CLOSE) { 6791 tcp_data_snd_check(sk); 6792 tcp_ack_snd_check(sk); 6793 } 6794 6795 if (!queued) { 6796 discard: 6797 tcp_drop_reason(sk, skb, reason); 6798 } 6799 return 0; 6800 6801 consume: 6802 __kfree_skb(skb); 6803 return 0; 6804 } 6805 EXPORT_SYMBOL(tcp_rcv_state_process); 6806 6807 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6808 { 6809 struct inet_request_sock *ireq = inet_rsk(req); 6810 6811 if (family == AF_INET) 6812 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6813 &ireq->ir_rmt_addr, port); 6814 #if IS_ENABLED(CONFIG_IPV6) 6815 else if (family == AF_INET6) 6816 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6817 &ireq->ir_v6_rmt_addr, port); 6818 #endif 6819 } 6820 6821 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6822 * 6823 * If we receive a SYN packet with these bits set, it means a 6824 * network is playing bad games with TOS bits. In order to 6825 * avoid possible false congestion notifications, we disable 6826 * TCP ECN negotiation. 6827 * 6828 * Exception: tcp_ca wants ECN. This is required for DCTCP 6829 * congestion control: Linux DCTCP asserts ECT on all packets, 6830 * including SYN, which is most optimal solution; however, 6831 * others, such as FreeBSD do not. 6832 * 6833 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6834 * set, indicating the use of a future TCP extension (such as AccECN). See 6835 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6836 * extensions. 6837 */ 6838 static void tcp_ecn_create_request(struct request_sock *req, 6839 const struct sk_buff *skb, 6840 const struct sock *listen_sk, 6841 const struct dst_entry *dst) 6842 { 6843 const struct tcphdr *th = tcp_hdr(skb); 6844 const struct net *net = sock_net(listen_sk); 6845 bool th_ecn = th->ece && th->cwr; 6846 bool ect, ecn_ok; 6847 u32 ecn_ok_dst; 6848 6849 if (!th_ecn) 6850 return; 6851 6852 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6853 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6854 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6855 6856 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6857 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6858 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6859 inet_rsk(req)->ecn_ok = 1; 6860 } 6861 6862 static void tcp_openreq_init(struct request_sock *req, 6863 const struct tcp_options_received *rx_opt, 6864 struct sk_buff *skb, const struct sock *sk) 6865 { 6866 struct inet_request_sock *ireq = inet_rsk(req); 6867 6868 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6869 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6870 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6871 tcp_rsk(req)->snt_synack = 0; 6872 tcp_rsk(req)->last_oow_ack_time = 0; 6873 req->mss = rx_opt->mss_clamp; 6874 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6875 ireq->tstamp_ok = rx_opt->tstamp_ok; 6876 ireq->sack_ok = rx_opt->sack_ok; 6877 ireq->snd_wscale = rx_opt->snd_wscale; 6878 ireq->wscale_ok = rx_opt->wscale_ok; 6879 ireq->acked = 0; 6880 ireq->ecn_ok = 0; 6881 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6882 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6883 ireq->ir_mark = inet_request_mark(sk, skb); 6884 #if IS_ENABLED(CONFIG_SMC) 6885 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6886 tcp_sk(sk)->smc_hs_congested(sk)); 6887 #endif 6888 } 6889 6890 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6891 struct sock *sk_listener, 6892 bool attach_listener) 6893 { 6894 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6895 attach_listener); 6896 6897 if (req) { 6898 struct inet_request_sock *ireq = inet_rsk(req); 6899 6900 ireq->ireq_opt = NULL; 6901 #if IS_ENABLED(CONFIG_IPV6) 6902 ireq->pktopts = NULL; 6903 #endif 6904 atomic64_set(&ireq->ir_cookie, 0); 6905 ireq->ireq_state = TCP_NEW_SYN_RECV; 6906 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6907 ireq->ireq_family = sk_listener->sk_family; 6908 req->timeout = TCP_TIMEOUT_INIT; 6909 } 6910 6911 return req; 6912 } 6913 EXPORT_SYMBOL(inet_reqsk_alloc); 6914 6915 /* 6916 * Return true if a syncookie should be sent 6917 */ 6918 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6919 { 6920 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6921 const char *msg = "Dropping request"; 6922 struct net *net = sock_net(sk); 6923 bool want_cookie = false; 6924 u8 syncookies; 6925 6926 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6927 6928 #ifdef CONFIG_SYN_COOKIES 6929 if (syncookies) { 6930 msg = "Sending cookies"; 6931 want_cookie = true; 6932 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6933 } else 6934 #endif 6935 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6936 6937 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6938 xchg(&queue->synflood_warned, 1) == 0) { 6939 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6940 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6941 proto, inet6_rcv_saddr(sk), 6942 sk->sk_num, msg); 6943 } else { 6944 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6945 proto, &sk->sk_rcv_saddr, 6946 sk->sk_num, msg); 6947 } 6948 } 6949 6950 return want_cookie; 6951 } 6952 6953 static void tcp_reqsk_record_syn(const struct sock *sk, 6954 struct request_sock *req, 6955 const struct sk_buff *skb) 6956 { 6957 if (tcp_sk(sk)->save_syn) { 6958 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6959 struct saved_syn *saved_syn; 6960 u32 mac_hdrlen; 6961 void *base; 6962 6963 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6964 base = skb_mac_header(skb); 6965 mac_hdrlen = skb_mac_header_len(skb); 6966 len += mac_hdrlen; 6967 } else { 6968 base = skb_network_header(skb); 6969 mac_hdrlen = 0; 6970 } 6971 6972 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6973 GFP_ATOMIC); 6974 if (saved_syn) { 6975 saved_syn->mac_hdrlen = mac_hdrlen; 6976 saved_syn->network_hdrlen = skb_network_header_len(skb); 6977 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6978 memcpy(saved_syn->data, base, len); 6979 req->saved_syn = saved_syn; 6980 } 6981 } 6982 } 6983 6984 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6985 * used for SYN cookie generation. 6986 */ 6987 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6988 const struct tcp_request_sock_ops *af_ops, 6989 struct sock *sk, struct tcphdr *th) 6990 { 6991 struct tcp_sock *tp = tcp_sk(sk); 6992 u16 mss; 6993 6994 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6995 !inet_csk_reqsk_queue_is_full(sk)) 6996 return 0; 6997 6998 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6999 return 0; 7000 7001 if (sk_acceptq_is_full(sk)) { 7002 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7003 return 0; 7004 } 7005 7006 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7007 if (!mss) 7008 mss = af_ops->mss_clamp; 7009 7010 return mss; 7011 } 7012 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7013 7014 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7015 const struct tcp_request_sock_ops *af_ops, 7016 struct sock *sk, struct sk_buff *skb) 7017 { 7018 struct tcp_fastopen_cookie foc = { .len = -1 }; 7019 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 7020 struct tcp_options_received tmp_opt; 7021 struct tcp_sock *tp = tcp_sk(sk); 7022 struct net *net = sock_net(sk); 7023 struct sock *fastopen_sk = NULL; 7024 struct request_sock *req; 7025 bool want_cookie = false; 7026 struct dst_entry *dst; 7027 struct flowi fl; 7028 u8 syncookies; 7029 7030 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7031 7032 /* TW buckets are converted to open requests without 7033 * limitations, they conserve resources and peer is 7034 * evidently real one. 7035 */ 7036 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7037 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7038 if (!want_cookie) 7039 goto drop; 7040 } 7041 7042 if (sk_acceptq_is_full(sk)) { 7043 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7044 goto drop; 7045 } 7046 7047 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7048 if (!req) 7049 goto drop; 7050 7051 req->syncookie = want_cookie; 7052 tcp_rsk(req)->af_specific = af_ops; 7053 tcp_rsk(req)->ts_off = 0; 7054 #if IS_ENABLED(CONFIG_MPTCP) 7055 tcp_rsk(req)->is_mptcp = 0; 7056 #endif 7057 7058 tcp_clear_options(&tmp_opt); 7059 tmp_opt.mss_clamp = af_ops->mss_clamp; 7060 tmp_opt.user_mss = tp->rx_opt.user_mss; 7061 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7062 want_cookie ? NULL : &foc); 7063 7064 if (want_cookie && !tmp_opt.saw_tstamp) 7065 tcp_clear_options(&tmp_opt); 7066 7067 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7068 tmp_opt.smc_ok = 0; 7069 7070 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7071 tcp_openreq_init(req, &tmp_opt, skb, sk); 7072 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7073 7074 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7075 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7076 7077 dst = af_ops->route_req(sk, skb, &fl, req); 7078 if (!dst) 7079 goto drop_and_free; 7080 7081 if (tmp_opt.tstamp_ok) 7082 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7083 7084 if (!want_cookie && !isn) { 7085 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7086 7087 /* Kill the following clause, if you dislike this way. */ 7088 if (!syncookies && 7089 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7090 (max_syn_backlog >> 2)) && 7091 !tcp_peer_is_proven(req, dst)) { 7092 /* Without syncookies last quarter of 7093 * backlog is filled with destinations, 7094 * proven to be alive. 7095 * It means that we continue to communicate 7096 * to destinations, already remembered 7097 * to the moment of synflood. 7098 */ 7099 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7100 rsk_ops->family); 7101 goto drop_and_release; 7102 } 7103 7104 isn = af_ops->init_seq(skb); 7105 } 7106 7107 tcp_ecn_create_request(req, skb, sk, dst); 7108 7109 if (want_cookie) { 7110 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7111 if (!tmp_opt.tstamp_ok) 7112 inet_rsk(req)->ecn_ok = 0; 7113 } 7114 7115 tcp_rsk(req)->snt_isn = isn; 7116 tcp_rsk(req)->txhash = net_tx_rndhash(); 7117 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7118 tcp_openreq_init_rwin(req, sk, dst); 7119 sk_rx_queue_set(req_to_sk(req), skb); 7120 if (!want_cookie) { 7121 tcp_reqsk_record_syn(sk, req, skb); 7122 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7123 } 7124 if (fastopen_sk) { 7125 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7126 &foc, TCP_SYNACK_FASTOPEN, skb); 7127 /* Add the child socket directly into the accept queue */ 7128 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7129 reqsk_fastopen_remove(fastopen_sk, req, false); 7130 bh_unlock_sock(fastopen_sk); 7131 sock_put(fastopen_sk); 7132 goto drop_and_free; 7133 } 7134 sk->sk_data_ready(sk); 7135 bh_unlock_sock(fastopen_sk); 7136 sock_put(fastopen_sk); 7137 } else { 7138 tcp_rsk(req)->tfo_listener = false; 7139 if (!want_cookie) { 7140 req->timeout = tcp_timeout_init((struct sock *)req); 7141 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7142 req->timeout))) { 7143 reqsk_free(req); 7144 return 0; 7145 } 7146 7147 } 7148 af_ops->send_synack(sk, dst, &fl, req, &foc, 7149 !want_cookie ? TCP_SYNACK_NORMAL : 7150 TCP_SYNACK_COOKIE, 7151 skb); 7152 if (want_cookie) { 7153 reqsk_free(req); 7154 return 0; 7155 } 7156 } 7157 reqsk_put(req); 7158 return 0; 7159 7160 drop_and_release: 7161 dst_release(dst); 7162 drop_and_free: 7163 __reqsk_free(req); 7164 drop: 7165 tcp_listendrop(sk); 7166 return 0; 7167 } 7168 EXPORT_SYMBOL(tcp_conn_request); 7169