1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 101 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 102 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 103 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 104 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 105 106 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 107 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 108 109 #define REXMIT_NONE 0 /* no loss recovery to do */ 110 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 111 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 112 113 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 114 unsigned int len) 115 { 116 static bool __once __read_mostly; 117 118 if (!__once) { 119 struct net_device *dev; 120 121 __once = true; 122 123 rcu_read_lock(); 124 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 125 if (!dev || len >= dev->mtu) 126 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 127 dev ? dev->name : "Unknown driver"); 128 rcu_read_unlock(); 129 } 130 } 131 132 /* Adapt the MSS value used to make delayed ack decision to the 133 * real world. 134 */ 135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 136 { 137 struct inet_connection_sock *icsk = inet_csk(sk); 138 const unsigned int lss = icsk->icsk_ack.last_seg_size; 139 unsigned int len; 140 141 icsk->icsk_ack.last_seg_size = 0; 142 143 /* skb->len may jitter because of SACKs, even if peer 144 * sends good full-sized frames. 145 */ 146 len = skb_shinfo(skb)->gso_size ? : skb->len; 147 if (len >= icsk->icsk_ack.rcv_mss) { 148 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 149 tcp_sk(sk)->advmss); 150 /* Account for possibly-removed options */ 151 if (unlikely(len > icsk->icsk_ack.rcv_mss + 152 MAX_TCP_OPTION_SPACE)) 153 tcp_gro_dev_warn(sk, skb, len); 154 } else { 155 /* Otherwise, we make more careful check taking into account, 156 * that SACKs block is variable. 157 * 158 * "len" is invariant segment length, including TCP header. 159 */ 160 len += skb->data - skb_transport_header(skb); 161 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 162 /* If PSH is not set, packet should be 163 * full sized, provided peer TCP is not badly broken. 164 * This observation (if it is correct 8)) allows 165 * to handle super-low mtu links fairly. 166 */ 167 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 168 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 169 /* Subtract also invariant (if peer is RFC compliant), 170 * tcp header plus fixed timestamp option length. 171 * Resulting "len" is MSS free of SACK jitter. 172 */ 173 len -= tcp_sk(sk)->tcp_header_len; 174 icsk->icsk_ack.last_seg_size = len; 175 if (len == lss) { 176 icsk->icsk_ack.rcv_mss = len; 177 return; 178 } 179 } 180 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 183 } 184 } 185 186 static void tcp_incr_quickack(struct sock *sk) 187 { 188 struct inet_connection_sock *icsk = inet_csk(sk); 189 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 190 191 if (quickacks == 0) 192 quickacks = 2; 193 if (quickacks > icsk->icsk_ack.quick) 194 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 195 } 196 197 static void tcp_enter_quickack_mode(struct sock *sk) 198 { 199 struct inet_connection_sock *icsk = inet_csk(sk); 200 tcp_incr_quickack(sk); 201 icsk->icsk_ack.pingpong = 0; 202 icsk->icsk_ack.ato = TCP_ATO_MIN; 203 } 204 205 /* Send ACKs quickly, if "quick" count is not exhausted 206 * and the session is not interactive. 207 */ 208 209 static bool tcp_in_quickack_mode(struct sock *sk) 210 { 211 const struct inet_connection_sock *icsk = inet_csk(sk); 212 const struct dst_entry *dst = __sk_dst_get(sk); 213 214 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 215 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 216 } 217 218 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 219 { 220 if (tp->ecn_flags & TCP_ECN_OK) 221 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 222 } 223 224 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 225 { 226 if (tcp_hdr(skb)->cwr) 227 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 228 } 229 230 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 231 { 232 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 233 } 234 235 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 236 { 237 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 238 case INET_ECN_NOT_ECT: 239 /* Funny extension: if ECT is not set on a segment, 240 * and we already seen ECT on a previous segment, 241 * it is probably a retransmit. 242 */ 243 if (tp->ecn_flags & TCP_ECN_SEEN) 244 tcp_enter_quickack_mode((struct sock *)tp); 245 break; 246 case INET_ECN_CE: 247 if (tcp_ca_needs_ecn((struct sock *)tp)) 248 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 249 250 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 251 /* Better not delay acks, sender can have a very low cwnd */ 252 tcp_enter_quickack_mode((struct sock *)tp); 253 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 254 } 255 tp->ecn_flags |= TCP_ECN_SEEN; 256 break; 257 default: 258 if (tcp_ca_needs_ecn((struct sock *)tp)) 259 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 260 tp->ecn_flags |= TCP_ECN_SEEN; 261 break; 262 } 263 } 264 265 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 266 { 267 if (tp->ecn_flags & TCP_ECN_OK) 268 __tcp_ecn_check_ce(tp, skb); 269 } 270 271 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 274 tp->ecn_flags &= ~TCP_ECN_OK; 275 } 276 277 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 278 { 279 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 280 tp->ecn_flags &= ~TCP_ECN_OK; 281 } 282 283 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 284 { 285 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 286 return true; 287 return false; 288 } 289 290 /* Buffer size and advertised window tuning. 291 * 292 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 293 */ 294 295 static void tcp_sndbuf_expand(struct sock *sk) 296 { 297 const struct tcp_sock *tp = tcp_sk(sk); 298 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 299 int sndmem, per_mss; 300 u32 nr_segs; 301 302 /* Worst case is non GSO/TSO : each frame consumes one skb 303 * and skb->head is kmalloced using power of two area of memory 304 */ 305 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 306 MAX_TCP_HEADER + 307 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 308 309 per_mss = roundup_pow_of_two(per_mss) + 310 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 311 312 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 313 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 314 315 /* Fast Recovery (RFC 5681 3.2) : 316 * Cubic needs 1.7 factor, rounded to 2 to include 317 * extra cushion (application might react slowly to POLLOUT) 318 */ 319 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 320 sndmem *= nr_segs * per_mss; 321 322 if (sk->sk_sndbuf < sndmem) 323 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 324 } 325 326 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 327 * 328 * All tcp_full_space() is split to two parts: "network" buffer, allocated 329 * forward and advertised in receiver window (tp->rcv_wnd) and 330 * "application buffer", required to isolate scheduling/application 331 * latencies from network. 332 * window_clamp is maximal advertised window. It can be less than 333 * tcp_full_space(), in this case tcp_full_space() - window_clamp 334 * is reserved for "application" buffer. The less window_clamp is 335 * the smoother our behaviour from viewpoint of network, but the lower 336 * throughput and the higher sensitivity of the connection to losses. 8) 337 * 338 * rcv_ssthresh is more strict window_clamp used at "slow start" 339 * phase to predict further behaviour of this connection. 340 * It is used for two goals: 341 * - to enforce header prediction at sender, even when application 342 * requires some significant "application buffer". It is check #1. 343 * - to prevent pruning of receive queue because of misprediction 344 * of receiver window. Check #2. 345 * 346 * The scheme does not work when sender sends good segments opening 347 * window and then starts to feed us spaghetti. But it should work 348 * in common situations. Otherwise, we have to rely on queue collapsing. 349 */ 350 351 /* Slow part of check#2. */ 352 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 353 { 354 struct tcp_sock *tp = tcp_sk(sk); 355 /* Optimize this! */ 356 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 357 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 358 359 while (tp->rcv_ssthresh <= window) { 360 if (truesize <= skb->len) 361 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 362 363 truesize >>= 1; 364 window >>= 1; 365 } 366 return 0; 367 } 368 369 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 370 { 371 struct tcp_sock *tp = tcp_sk(sk); 372 373 /* Check #1 */ 374 if (tp->rcv_ssthresh < tp->window_clamp && 375 (int)tp->rcv_ssthresh < tcp_space(sk) && 376 !tcp_under_memory_pressure(sk)) { 377 int incr; 378 379 /* Check #2. Increase window, if skb with such overhead 380 * will fit to rcvbuf in future. 381 */ 382 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 383 incr = 2 * tp->advmss; 384 else 385 incr = __tcp_grow_window(sk, skb); 386 387 if (incr) { 388 incr = max_t(int, incr, 2 * skb->len); 389 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 390 tp->window_clamp); 391 inet_csk(sk)->icsk_ack.quick |= 1; 392 } 393 } 394 } 395 396 /* 3. Tuning rcvbuf, when connection enters established state. */ 397 static void tcp_fixup_rcvbuf(struct sock *sk) 398 { 399 u32 mss = tcp_sk(sk)->advmss; 400 int rcvmem; 401 402 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 403 tcp_default_init_rwnd(mss); 404 405 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 406 * Allow enough cushion so that sender is not limited by our window 407 */ 408 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 409 rcvmem <<= 2; 410 411 if (sk->sk_rcvbuf < rcvmem) 412 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 413 } 414 415 /* 4. Try to fixup all. It is made immediately after connection enters 416 * established state. 417 */ 418 void tcp_init_buffer_space(struct sock *sk) 419 { 420 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 421 struct tcp_sock *tp = tcp_sk(sk); 422 int maxwin; 423 424 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 425 tcp_fixup_rcvbuf(sk); 426 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 427 tcp_sndbuf_expand(sk); 428 429 tp->rcvq_space.space = tp->rcv_wnd; 430 tcp_mstamp_refresh(tp); 431 tp->rcvq_space.time = tp->tcp_mstamp; 432 tp->rcvq_space.seq = tp->copied_seq; 433 434 maxwin = tcp_full_space(sk); 435 436 if (tp->window_clamp >= maxwin) { 437 tp->window_clamp = maxwin; 438 439 if (tcp_app_win && maxwin > 4 * tp->advmss) 440 tp->window_clamp = max(maxwin - 441 (maxwin >> tcp_app_win), 442 4 * tp->advmss); 443 } 444 445 /* Force reservation of one segment. */ 446 if (tcp_app_win && 447 tp->window_clamp > 2 * tp->advmss && 448 tp->window_clamp + tp->advmss > maxwin) 449 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 450 451 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 452 tp->snd_cwnd_stamp = tcp_jiffies32; 453 } 454 455 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 456 static void tcp_clamp_window(struct sock *sk) 457 { 458 struct tcp_sock *tp = tcp_sk(sk); 459 struct inet_connection_sock *icsk = inet_csk(sk); 460 struct net *net = sock_net(sk); 461 462 icsk->icsk_ack.quick = 0; 463 464 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 465 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 466 !tcp_under_memory_pressure(sk) && 467 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 468 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 469 net->ipv4.sysctl_tcp_rmem[2]); 470 } 471 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 472 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 473 } 474 475 /* Initialize RCV_MSS value. 476 * RCV_MSS is an our guess about MSS used by the peer. 477 * We haven't any direct information about the MSS. 478 * It's better to underestimate the RCV_MSS rather than overestimate. 479 * Overestimations make us ACKing less frequently than needed. 480 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 481 */ 482 void tcp_initialize_rcv_mss(struct sock *sk) 483 { 484 const struct tcp_sock *tp = tcp_sk(sk); 485 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 486 487 hint = min(hint, tp->rcv_wnd / 2); 488 hint = min(hint, TCP_MSS_DEFAULT); 489 hint = max(hint, TCP_MIN_MSS); 490 491 inet_csk(sk)->icsk_ack.rcv_mss = hint; 492 } 493 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 494 495 /* Receiver "autotuning" code. 496 * 497 * The algorithm for RTT estimation w/o timestamps is based on 498 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 499 * <http://public.lanl.gov/radiant/pubs.html#DRS> 500 * 501 * More detail on this code can be found at 502 * <http://staff.psc.edu/jheffner/>, 503 * though this reference is out of date. A new paper 504 * is pending. 505 */ 506 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 507 { 508 u32 new_sample = tp->rcv_rtt_est.rtt_us; 509 long m = sample; 510 511 if (new_sample != 0) { 512 /* If we sample in larger samples in the non-timestamp 513 * case, we could grossly overestimate the RTT especially 514 * with chatty applications or bulk transfer apps which 515 * are stalled on filesystem I/O. 516 * 517 * Also, since we are only going for a minimum in the 518 * non-timestamp case, we do not smooth things out 519 * else with timestamps disabled convergence takes too 520 * long. 521 */ 522 if (!win_dep) { 523 m -= (new_sample >> 3); 524 new_sample += m; 525 } else { 526 m <<= 3; 527 if (m < new_sample) 528 new_sample = m; 529 } 530 } else { 531 /* No previous measure. */ 532 new_sample = m << 3; 533 } 534 535 tp->rcv_rtt_est.rtt_us = new_sample; 536 } 537 538 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 539 { 540 u32 delta_us; 541 542 if (tp->rcv_rtt_est.time == 0) 543 goto new_measure; 544 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 545 return; 546 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 547 if (!delta_us) 548 delta_us = 1; 549 tcp_rcv_rtt_update(tp, delta_us, 1); 550 551 new_measure: 552 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 553 tp->rcv_rtt_est.time = tp->tcp_mstamp; 554 } 555 556 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 557 const struct sk_buff *skb) 558 { 559 struct tcp_sock *tp = tcp_sk(sk); 560 561 if (tp->rx_opt.rcv_tsecr && 562 (TCP_SKB_CB(skb)->end_seq - 563 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 564 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 565 u32 delta_us; 566 567 if (!delta) 568 delta = 1; 569 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 570 tcp_rcv_rtt_update(tp, delta_us, 0); 571 } 572 } 573 574 /* 575 * This function should be called every time data is copied to user space. 576 * It calculates the appropriate TCP receive buffer space. 577 */ 578 void tcp_rcv_space_adjust(struct sock *sk) 579 { 580 struct tcp_sock *tp = tcp_sk(sk); 581 int time; 582 int copied; 583 584 tcp_mstamp_refresh(tp); 585 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 586 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 587 return; 588 589 /* Number of bytes copied to user in last RTT */ 590 copied = tp->copied_seq - tp->rcvq_space.seq; 591 if (copied <= tp->rcvq_space.space) 592 goto new_measure; 593 594 /* A bit of theory : 595 * copied = bytes received in previous RTT, our base window 596 * To cope with packet losses, we need a 2x factor 597 * To cope with slow start, and sender growing its cwin by 100 % 598 * every RTT, we need a 4x factor, because the ACK we are sending 599 * now is for the next RTT, not the current one : 600 * <prev RTT . ><current RTT .. ><next RTT .... > 601 */ 602 603 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 604 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 605 int rcvwin, rcvmem, rcvbuf; 606 607 /* minimal window to cope with packet losses, assuming 608 * steady state. Add some cushion because of small variations. 609 */ 610 rcvwin = (copied << 1) + 16 * tp->advmss; 611 612 /* If rate increased by 25%, 613 * assume slow start, rcvwin = 3 * copied 614 * If rate increased by 50%, 615 * assume sender can use 2x growth, rcvwin = 4 * copied 616 */ 617 if (copied >= 618 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 619 if (copied >= 620 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 621 rcvwin <<= 1; 622 else 623 rcvwin += (rcvwin >> 1); 624 } 625 626 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 627 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 628 rcvmem += 128; 629 630 rcvbuf = min(rcvwin / tp->advmss * rcvmem, 631 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 632 if (rcvbuf > sk->sk_rcvbuf) { 633 sk->sk_rcvbuf = rcvbuf; 634 635 /* Make the window clamp follow along. */ 636 tp->window_clamp = rcvwin; 637 } 638 } 639 tp->rcvq_space.space = copied; 640 641 new_measure: 642 tp->rcvq_space.seq = tp->copied_seq; 643 tp->rcvq_space.time = tp->tcp_mstamp; 644 } 645 646 /* There is something which you must keep in mind when you analyze the 647 * behavior of the tp->ato delayed ack timeout interval. When a 648 * connection starts up, we want to ack as quickly as possible. The 649 * problem is that "good" TCP's do slow start at the beginning of data 650 * transmission. The means that until we send the first few ACK's the 651 * sender will sit on his end and only queue most of his data, because 652 * he can only send snd_cwnd unacked packets at any given time. For 653 * each ACK we send, he increments snd_cwnd and transmits more of his 654 * queue. -DaveM 655 */ 656 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 657 { 658 struct tcp_sock *tp = tcp_sk(sk); 659 struct inet_connection_sock *icsk = inet_csk(sk); 660 u32 now; 661 662 inet_csk_schedule_ack(sk); 663 664 tcp_measure_rcv_mss(sk, skb); 665 666 tcp_rcv_rtt_measure(tp); 667 668 now = tcp_jiffies32; 669 670 if (!icsk->icsk_ack.ato) { 671 /* The _first_ data packet received, initialize 672 * delayed ACK engine. 673 */ 674 tcp_incr_quickack(sk); 675 icsk->icsk_ack.ato = TCP_ATO_MIN; 676 } else { 677 int m = now - icsk->icsk_ack.lrcvtime; 678 679 if (m <= TCP_ATO_MIN / 2) { 680 /* The fastest case is the first. */ 681 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 682 } else if (m < icsk->icsk_ack.ato) { 683 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 684 if (icsk->icsk_ack.ato > icsk->icsk_rto) 685 icsk->icsk_ack.ato = icsk->icsk_rto; 686 } else if (m > icsk->icsk_rto) { 687 /* Too long gap. Apparently sender failed to 688 * restart window, so that we send ACKs quickly. 689 */ 690 tcp_incr_quickack(sk); 691 sk_mem_reclaim(sk); 692 } 693 } 694 icsk->icsk_ack.lrcvtime = now; 695 696 tcp_ecn_check_ce(tp, skb); 697 698 if (skb->len >= 128) 699 tcp_grow_window(sk, skb); 700 } 701 702 /* Called to compute a smoothed rtt estimate. The data fed to this 703 * routine either comes from timestamps, or from segments that were 704 * known _not_ to have been retransmitted [see Karn/Partridge 705 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 706 * piece by Van Jacobson. 707 * NOTE: the next three routines used to be one big routine. 708 * To save cycles in the RFC 1323 implementation it was better to break 709 * it up into three procedures. -- erics 710 */ 711 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 712 { 713 struct tcp_sock *tp = tcp_sk(sk); 714 long m = mrtt_us; /* RTT */ 715 u32 srtt = tp->srtt_us; 716 717 /* The following amusing code comes from Jacobson's 718 * article in SIGCOMM '88. Note that rtt and mdev 719 * are scaled versions of rtt and mean deviation. 720 * This is designed to be as fast as possible 721 * m stands for "measurement". 722 * 723 * On a 1990 paper the rto value is changed to: 724 * RTO = rtt + 4 * mdev 725 * 726 * Funny. This algorithm seems to be very broken. 727 * These formulae increase RTO, when it should be decreased, increase 728 * too slowly, when it should be increased quickly, decrease too quickly 729 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 730 * does not matter how to _calculate_ it. Seems, it was trap 731 * that VJ failed to avoid. 8) 732 */ 733 if (srtt != 0) { 734 m -= (srtt >> 3); /* m is now error in rtt est */ 735 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 736 if (m < 0) { 737 m = -m; /* m is now abs(error) */ 738 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 739 /* This is similar to one of Eifel findings. 740 * Eifel blocks mdev updates when rtt decreases. 741 * This solution is a bit different: we use finer gain 742 * for mdev in this case (alpha*beta). 743 * Like Eifel it also prevents growth of rto, 744 * but also it limits too fast rto decreases, 745 * happening in pure Eifel. 746 */ 747 if (m > 0) 748 m >>= 3; 749 } else { 750 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 751 } 752 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 753 if (tp->mdev_us > tp->mdev_max_us) { 754 tp->mdev_max_us = tp->mdev_us; 755 if (tp->mdev_max_us > tp->rttvar_us) 756 tp->rttvar_us = tp->mdev_max_us; 757 } 758 if (after(tp->snd_una, tp->rtt_seq)) { 759 if (tp->mdev_max_us < tp->rttvar_us) 760 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 761 tp->rtt_seq = tp->snd_nxt; 762 tp->mdev_max_us = tcp_rto_min_us(sk); 763 } 764 } else { 765 /* no previous measure. */ 766 srtt = m << 3; /* take the measured time to be rtt */ 767 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 768 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 769 tp->mdev_max_us = tp->rttvar_us; 770 tp->rtt_seq = tp->snd_nxt; 771 } 772 tp->srtt_us = max(1U, srtt); 773 } 774 775 static void tcp_update_pacing_rate(struct sock *sk) 776 { 777 const struct tcp_sock *tp = tcp_sk(sk); 778 u64 rate; 779 780 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 781 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 782 783 /* current rate is (cwnd * mss) / srtt 784 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 785 * In Congestion Avoidance phase, set it to 120 % the current rate. 786 * 787 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 788 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 789 * end of slow start and should slow down. 790 */ 791 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 792 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 793 else 794 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 795 796 rate *= max(tp->snd_cwnd, tp->packets_out); 797 798 if (likely(tp->srtt_us)) 799 do_div(rate, tp->srtt_us); 800 801 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 802 * without any lock. We want to make sure compiler wont store 803 * intermediate values in this location. 804 */ 805 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 806 sk->sk_max_pacing_rate)); 807 } 808 809 /* Calculate rto without backoff. This is the second half of Van Jacobson's 810 * routine referred to above. 811 */ 812 static void tcp_set_rto(struct sock *sk) 813 { 814 const struct tcp_sock *tp = tcp_sk(sk); 815 /* Old crap is replaced with new one. 8) 816 * 817 * More seriously: 818 * 1. If rtt variance happened to be less 50msec, it is hallucination. 819 * It cannot be less due to utterly erratic ACK generation made 820 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 821 * to do with delayed acks, because at cwnd>2 true delack timeout 822 * is invisible. Actually, Linux-2.4 also generates erratic 823 * ACKs in some circumstances. 824 */ 825 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 826 827 /* 2. Fixups made earlier cannot be right. 828 * If we do not estimate RTO correctly without them, 829 * all the algo is pure shit and should be replaced 830 * with correct one. It is exactly, which we pretend to do. 831 */ 832 833 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 834 * guarantees that rto is higher. 835 */ 836 tcp_bound_rto(sk); 837 } 838 839 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 840 { 841 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 842 843 if (!cwnd) 844 cwnd = TCP_INIT_CWND; 845 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 846 } 847 848 /* Take a notice that peer is sending D-SACKs */ 849 static void tcp_dsack_seen(struct tcp_sock *tp) 850 { 851 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 852 tp->rack.dsack_seen = 1; 853 } 854 855 /* It's reordering when higher sequence was delivered (i.e. sacked) before 856 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 857 * distance is approximated in full-mss packet distance ("reordering"). 858 */ 859 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 860 const int ts) 861 { 862 struct tcp_sock *tp = tcp_sk(sk); 863 const u32 mss = tp->mss_cache; 864 u32 fack, metric; 865 866 fack = tcp_highest_sack_seq(tp); 867 if (!before(low_seq, fack)) 868 return; 869 870 metric = fack - low_seq; 871 if ((metric > tp->reordering * mss) && mss) { 872 #if FASTRETRANS_DEBUG > 1 873 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 874 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 875 tp->reordering, 876 0, 877 tp->sacked_out, 878 tp->undo_marker ? tp->undo_retrans : 0); 879 #endif 880 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 881 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 882 } 883 884 tp->rack.reord = 1; 885 /* This exciting event is worth to be remembered. 8) */ 886 NET_INC_STATS(sock_net(sk), 887 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 888 } 889 890 /* This must be called before lost_out is incremented */ 891 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 892 { 893 if (!tp->retransmit_skb_hint || 894 before(TCP_SKB_CB(skb)->seq, 895 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 896 tp->retransmit_skb_hint = skb; 897 } 898 899 /* Sum the number of packets on the wire we have marked as lost. 900 * There are two cases we care about here: 901 * a) Packet hasn't been marked lost (nor retransmitted), 902 * and this is the first loss. 903 * b) Packet has been marked both lost and retransmitted, 904 * and this means we think it was lost again. 905 */ 906 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 907 { 908 __u8 sacked = TCP_SKB_CB(skb)->sacked; 909 910 if (!(sacked & TCPCB_LOST) || 911 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 912 tp->lost += tcp_skb_pcount(skb); 913 } 914 915 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 916 { 917 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 918 tcp_verify_retransmit_hint(tp, skb); 919 920 tp->lost_out += tcp_skb_pcount(skb); 921 tcp_sum_lost(tp, skb); 922 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 923 } 924 } 925 926 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 927 { 928 tcp_verify_retransmit_hint(tp, skb); 929 930 tcp_sum_lost(tp, skb); 931 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 932 tp->lost_out += tcp_skb_pcount(skb); 933 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 934 } 935 } 936 937 /* This procedure tags the retransmission queue when SACKs arrive. 938 * 939 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 940 * Packets in queue with these bits set are counted in variables 941 * sacked_out, retrans_out and lost_out, correspondingly. 942 * 943 * Valid combinations are: 944 * Tag InFlight Description 945 * 0 1 - orig segment is in flight. 946 * S 0 - nothing flies, orig reached receiver. 947 * L 0 - nothing flies, orig lost by net. 948 * R 2 - both orig and retransmit are in flight. 949 * L|R 1 - orig is lost, retransmit is in flight. 950 * S|R 1 - orig reached receiver, retrans is still in flight. 951 * (L|S|R is logically valid, it could occur when L|R is sacked, 952 * but it is equivalent to plain S and code short-curcuits it to S. 953 * L|S is logically invalid, it would mean -1 packet in flight 8)) 954 * 955 * These 6 states form finite state machine, controlled by the following events: 956 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 957 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 958 * 3. Loss detection event of two flavors: 959 * A. Scoreboard estimator decided the packet is lost. 960 * A'. Reno "three dupacks" marks head of queue lost. 961 * B. SACK arrives sacking SND.NXT at the moment, when the 962 * segment was retransmitted. 963 * 4. D-SACK added new rule: D-SACK changes any tag to S. 964 * 965 * It is pleasant to note, that state diagram turns out to be commutative, 966 * so that we are allowed not to be bothered by order of our actions, 967 * when multiple events arrive simultaneously. (see the function below). 968 * 969 * Reordering detection. 970 * -------------------- 971 * Reordering metric is maximal distance, which a packet can be displaced 972 * in packet stream. With SACKs we can estimate it: 973 * 974 * 1. SACK fills old hole and the corresponding segment was not 975 * ever retransmitted -> reordering. Alas, we cannot use it 976 * when segment was retransmitted. 977 * 2. The last flaw is solved with D-SACK. D-SACK arrives 978 * for retransmitted and already SACKed segment -> reordering.. 979 * Both of these heuristics are not used in Loss state, when we cannot 980 * account for retransmits accurately. 981 * 982 * SACK block validation. 983 * ---------------------- 984 * 985 * SACK block range validation checks that the received SACK block fits to 986 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 987 * Note that SND.UNA is not included to the range though being valid because 988 * it means that the receiver is rather inconsistent with itself reporting 989 * SACK reneging when it should advance SND.UNA. Such SACK block this is 990 * perfectly valid, however, in light of RFC2018 which explicitly states 991 * that "SACK block MUST reflect the newest segment. Even if the newest 992 * segment is going to be discarded ...", not that it looks very clever 993 * in case of head skb. Due to potentional receiver driven attacks, we 994 * choose to avoid immediate execution of a walk in write queue due to 995 * reneging and defer head skb's loss recovery to standard loss recovery 996 * procedure that will eventually trigger (nothing forbids us doing this). 997 * 998 * Implements also blockage to start_seq wrap-around. Problem lies in the 999 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1000 * there's no guarantee that it will be before snd_nxt (n). The problem 1001 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1002 * wrap (s_w): 1003 * 1004 * <- outs wnd -> <- wrapzone -> 1005 * u e n u_w e_w s n_w 1006 * | | | | | | | 1007 * |<------------+------+----- TCP seqno space --------------+---------->| 1008 * ...-- <2^31 ->| |<--------... 1009 * ...---- >2^31 ------>| |<--------... 1010 * 1011 * Current code wouldn't be vulnerable but it's better still to discard such 1012 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1013 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1014 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1015 * equal to the ideal case (infinite seqno space without wrap caused issues). 1016 * 1017 * With D-SACK the lower bound is extended to cover sequence space below 1018 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1019 * again, D-SACK block must not to go across snd_una (for the same reason as 1020 * for the normal SACK blocks, explained above). But there all simplicity 1021 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1022 * fully below undo_marker they do not affect behavior in anyway and can 1023 * therefore be safely ignored. In rare cases (which are more or less 1024 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1025 * fragmentation and packet reordering past skb's retransmission. To consider 1026 * them correctly, the acceptable range must be extended even more though 1027 * the exact amount is rather hard to quantify. However, tp->max_window can 1028 * be used as an exaggerated estimate. 1029 */ 1030 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1031 u32 start_seq, u32 end_seq) 1032 { 1033 /* Too far in future, or reversed (interpretation is ambiguous) */ 1034 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1035 return false; 1036 1037 /* Nasty start_seq wrap-around check (see comments above) */ 1038 if (!before(start_seq, tp->snd_nxt)) 1039 return false; 1040 1041 /* In outstanding window? ...This is valid exit for D-SACKs too. 1042 * start_seq == snd_una is non-sensical (see comments above) 1043 */ 1044 if (after(start_seq, tp->snd_una)) 1045 return true; 1046 1047 if (!is_dsack || !tp->undo_marker) 1048 return false; 1049 1050 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1051 if (after(end_seq, tp->snd_una)) 1052 return false; 1053 1054 if (!before(start_seq, tp->undo_marker)) 1055 return true; 1056 1057 /* Too old */ 1058 if (!after(end_seq, tp->undo_marker)) 1059 return false; 1060 1061 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1062 * start_seq < undo_marker and end_seq >= undo_marker. 1063 */ 1064 return !before(start_seq, end_seq - tp->max_window); 1065 } 1066 1067 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1068 struct tcp_sack_block_wire *sp, int num_sacks, 1069 u32 prior_snd_una) 1070 { 1071 struct tcp_sock *tp = tcp_sk(sk); 1072 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1073 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1074 bool dup_sack = false; 1075 1076 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1077 dup_sack = true; 1078 tcp_dsack_seen(tp); 1079 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1080 } else if (num_sacks > 1) { 1081 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1082 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1083 1084 if (!after(end_seq_0, end_seq_1) && 1085 !before(start_seq_0, start_seq_1)) { 1086 dup_sack = true; 1087 tcp_dsack_seen(tp); 1088 NET_INC_STATS(sock_net(sk), 1089 LINUX_MIB_TCPDSACKOFORECV); 1090 } 1091 } 1092 1093 /* D-SACK for already forgotten data... Do dumb counting. */ 1094 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1095 !after(end_seq_0, prior_snd_una) && 1096 after(end_seq_0, tp->undo_marker)) 1097 tp->undo_retrans--; 1098 1099 return dup_sack; 1100 } 1101 1102 struct tcp_sacktag_state { 1103 u32 reord; 1104 /* Timestamps for earliest and latest never-retransmitted segment 1105 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1106 * but congestion control should still get an accurate delay signal. 1107 */ 1108 u64 first_sackt; 1109 u64 last_sackt; 1110 struct rate_sample *rate; 1111 int flag; 1112 unsigned int mss_now; 1113 }; 1114 1115 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1116 * the incoming SACK may not exactly match but we can find smaller MSS 1117 * aligned portion of it that matches. Therefore we might need to fragment 1118 * which may fail and creates some hassle (caller must handle error case 1119 * returns). 1120 * 1121 * FIXME: this could be merged to shift decision code 1122 */ 1123 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1124 u32 start_seq, u32 end_seq) 1125 { 1126 int err; 1127 bool in_sack; 1128 unsigned int pkt_len; 1129 unsigned int mss; 1130 1131 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1132 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1133 1134 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1135 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1136 mss = tcp_skb_mss(skb); 1137 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1138 1139 if (!in_sack) { 1140 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1141 if (pkt_len < mss) 1142 pkt_len = mss; 1143 } else { 1144 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1145 if (pkt_len < mss) 1146 return -EINVAL; 1147 } 1148 1149 /* Round if necessary so that SACKs cover only full MSSes 1150 * and/or the remaining small portion (if present) 1151 */ 1152 if (pkt_len > mss) { 1153 unsigned int new_len = (pkt_len / mss) * mss; 1154 if (!in_sack && new_len < pkt_len) 1155 new_len += mss; 1156 pkt_len = new_len; 1157 } 1158 1159 if (pkt_len >= skb->len && !in_sack) 1160 return 0; 1161 1162 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1163 pkt_len, mss, GFP_ATOMIC); 1164 if (err < 0) 1165 return err; 1166 } 1167 1168 return in_sack; 1169 } 1170 1171 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1172 static u8 tcp_sacktag_one(struct sock *sk, 1173 struct tcp_sacktag_state *state, u8 sacked, 1174 u32 start_seq, u32 end_seq, 1175 int dup_sack, int pcount, 1176 u64 xmit_time) 1177 { 1178 struct tcp_sock *tp = tcp_sk(sk); 1179 1180 /* Account D-SACK for retransmitted packet. */ 1181 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1182 if (tp->undo_marker && tp->undo_retrans > 0 && 1183 after(end_seq, tp->undo_marker)) 1184 tp->undo_retrans--; 1185 if ((sacked & TCPCB_SACKED_ACKED) && 1186 before(start_seq, state->reord)) 1187 state->reord = start_seq; 1188 } 1189 1190 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1191 if (!after(end_seq, tp->snd_una)) 1192 return sacked; 1193 1194 if (!(sacked & TCPCB_SACKED_ACKED)) { 1195 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1196 1197 if (sacked & TCPCB_SACKED_RETRANS) { 1198 /* If the segment is not tagged as lost, 1199 * we do not clear RETRANS, believing 1200 * that retransmission is still in flight. 1201 */ 1202 if (sacked & TCPCB_LOST) { 1203 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1204 tp->lost_out -= pcount; 1205 tp->retrans_out -= pcount; 1206 } 1207 } else { 1208 if (!(sacked & TCPCB_RETRANS)) { 1209 /* New sack for not retransmitted frame, 1210 * which was in hole. It is reordering. 1211 */ 1212 if (before(start_seq, 1213 tcp_highest_sack_seq(tp)) && 1214 before(start_seq, state->reord)) 1215 state->reord = start_seq; 1216 1217 if (!after(end_seq, tp->high_seq)) 1218 state->flag |= FLAG_ORIG_SACK_ACKED; 1219 if (state->first_sackt == 0) 1220 state->first_sackt = xmit_time; 1221 state->last_sackt = xmit_time; 1222 } 1223 1224 if (sacked & TCPCB_LOST) { 1225 sacked &= ~TCPCB_LOST; 1226 tp->lost_out -= pcount; 1227 } 1228 } 1229 1230 sacked |= TCPCB_SACKED_ACKED; 1231 state->flag |= FLAG_DATA_SACKED; 1232 tp->sacked_out += pcount; 1233 tp->delivered += pcount; /* Out-of-order packets delivered */ 1234 1235 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1236 if (tp->lost_skb_hint && 1237 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1238 tp->lost_cnt_hint += pcount; 1239 } 1240 1241 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1242 * frames and clear it. undo_retrans is decreased above, L|R frames 1243 * are accounted above as well. 1244 */ 1245 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1246 sacked &= ~TCPCB_SACKED_RETRANS; 1247 tp->retrans_out -= pcount; 1248 } 1249 1250 return sacked; 1251 } 1252 1253 /* Shift newly-SACKed bytes from this skb to the immediately previous 1254 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1255 */ 1256 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1257 struct sk_buff *skb, 1258 struct tcp_sacktag_state *state, 1259 unsigned int pcount, int shifted, int mss, 1260 bool dup_sack) 1261 { 1262 struct tcp_sock *tp = tcp_sk(sk); 1263 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1264 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1265 1266 BUG_ON(!pcount); 1267 1268 /* Adjust counters and hints for the newly sacked sequence 1269 * range but discard the return value since prev is already 1270 * marked. We must tag the range first because the seq 1271 * advancement below implicitly advances 1272 * tcp_highest_sack_seq() when skb is highest_sack. 1273 */ 1274 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1275 start_seq, end_seq, dup_sack, pcount, 1276 skb->skb_mstamp); 1277 tcp_rate_skb_delivered(sk, skb, state->rate); 1278 1279 if (skb == tp->lost_skb_hint) 1280 tp->lost_cnt_hint += pcount; 1281 1282 TCP_SKB_CB(prev)->end_seq += shifted; 1283 TCP_SKB_CB(skb)->seq += shifted; 1284 1285 tcp_skb_pcount_add(prev, pcount); 1286 BUG_ON(tcp_skb_pcount(skb) < pcount); 1287 tcp_skb_pcount_add(skb, -pcount); 1288 1289 /* When we're adding to gso_segs == 1, gso_size will be zero, 1290 * in theory this shouldn't be necessary but as long as DSACK 1291 * code can come after this skb later on it's better to keep 1292 * setting gso_size to something. 1293 */ 1294 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1295 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1296 1297 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1298 if (tcp_skb_pcount(skb) <= 1) 1299 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1300 1301 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1302 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1303 1304 if (skb->len > 0) { 1305 BUG_ON(!tcp_skb_pcount(skb)); 1306 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1307 return false; 1308 } 1309 1310 /* Whole SKB was eaten :-) */ 1311 1312 if (skb == tp->retransmit_skb_hint) 1313 tp->retransmit_skb_hint = prev; 1314 if (skb == tp->lost_skb_hint) { 1315 tp->lost_skb_hint = prev; 1316 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1317 } 1318 1319 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1320 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1321 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1322 TCP_SKB_CB(prev)->end_seq++; 1323 1324 if (skb == tcp_highest_sack(sk)) 1325 tcp_advance_highest_sack(sk, skb); 1326 1327 tcp_skb_collapse_tstamp(prev, skb); 1328 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1329 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1330 1331 tcp_rtx_queue_unlink_and_free(skb, sk); 1332 1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1334 1335 return true; 1336 } 1337 1338 /* I wish gso_size would have a bit more sane initialization than 1339 * something-or-zero which complicates things 1340 */ 1341 static int tcp_skb_seglen(const struct sk_buff *skb) 1342 { 1343 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1344 } 1345 1346 /* Shifting pages past head area doesn't work */ 1347 static int skb_can_shift(const struct sk_buff *skb) 1348 { 1349 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1350 } 1351 1352 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1353 * skb. 1354 */ 1355 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1356 struct tcp_sacktag_state *state, 1357 u32 start_seq, u32 end_seq, 1358 bool dup_sack) 1359 { 1360 struct tcp_sock *tp = tcp_sk(sk); 1361 struct sk_buff *prev; 1362 int mss; 1363 int pcount = 0; 1364 int len; 1365 int in_sack; 1366 1367 if (!sk_can_gso(sk)) 1368 goto fallback; 1369 1370 /* Normally R but no L won't result in plain S */ 1371 if (!dup_sack && 1372 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1373 goto fallback; 1374 if (!skb_can_shift(skb)) 1375 goto fallback; 1376 /* This frame is about to be dropped (was ACKed). */ 1377 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1378 goto fallback; 1379 1380 /* Can only happen with delayed DSACK + discard craziness */ 1381 prev = skb_rb_prev(skb); 1382 if (!prev) 1383 goto fallback; 1384 1385 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1386 goto fallback; 1387 1388 if (!tcp_skb_can_collapse_to(prev)) 1389 goto fallback; 1390 1391 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1392 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1393 1394 if (in_sack) { 1395 len = skb->len; 1396 pcount = tcp_skb_pcount(skb); 1397 mss = tcp_skb_seglen(skb); 1398 1399 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1400 * drop this restriction as unnecessary 1401 */ 1402 if (mss != tcp_skb_seglen(prev)) 1403 goto fallback; 1404 } else { 1405 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1406 goto noop; 1407 /* CHECKME: This is non-MSS split case only?, this will 1408 * cause skipped skbs due to advancing loop btw, original 1409 * has that feature too 1410 */ 1411 if (tcp_skb_pcount(skb) <= 1) 1412 goto noop; 1413 1414 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1415 if (!in_sack) { 1416 /* TODO: head merge to next could be attempted here 1417 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1418 * though it might not be worth of the additional hassle 1419 * 1420 * ...we can probably just fallback to what was done 1421 * previously. We could try merging non-SACKed ones 1422 * as well but it probably isn't going to buy off 1423 * because later SACKs might again split them, and 1424 * it would make skb timestamp tracking considerably 1425 * harder problem. 1426 */ 1427 goto fallback; 1428 } 1429 1430 len = end_seq - TCP_SKB_CB(skb)->seq; 1431 BUG_ON(len < 0); 1432 BUG_ON(len > skb->len); 1433 1434 /* MSS boundaries should be honoured or else pcount will 1435 * severely break even though it makes things bit trickier. 1436 * Optimize common case to avoid most of the divides 1437 */ 1438 mss = tcp_skb_mss(skb); 1439 1440 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1441 * drop this restriction as unnecessary 1442 */ 1443 if (mss != tcp_skb_seglen(prev)) 1444 goto fallback; 1445 1446 if (len == mss) { 1447 pcount = 1; 1448 } else if (len < mss) { 1449 goto noop; 1450 } else { 1451 pcount = len / mss; 1452 len = pcount * mss; 1453 } 1454 } 1455 1456 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1457 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1458 goto fallback; 1459 1460 if (!skb_shift(prev, skb, len)) 1461 goto fallback; 1462 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1463 goto out; 1464 1465 /* Hole filled allows collapsing with the next as well, this is very 1466 * useful when hole on every nth skb pattern happens 1467 */ 1468 skb = skb_rb_next(prev); 1469 if (!skb) 1470 goto out; 1471 1472 if (!skb_can_shift(skb) || 1473 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1474 (mss != tcp_skb_seglen(skb))) 1475 goto out; 1476 1477 len = skb->len; 1478 if (skb_shift(prev, skb, len)) { 1479 pcount += tcp_skb_pcount(skb); 1480 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1481 len, mss, 0); 1482 } 1483 1484 out: 1485 return prev; 1486 1487 noop: 1488 return skb; 1489 1490 fallback: 1491 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1492 return NULL; 1493 } 1494 1495 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1496 struct tcp_sack_block *next_dup, 1497 struct tcp_sacktag_state *state, 1498 u32 start_seq, u32 end_seq, 1499 bool dup_sack_in) 1500 { 1501 struct tcp_sock *tp = tcp_sk(sk); 1502 struct sk_buff *tmp; 1503 1504 skb_rbtree_walk_from(skb) { 1505 int in_sack = 0; 1506 bool dup_sack = dup_sack_in; 1507 1508 /* queue is in-order => we can short-circuit the walk early */ 1509 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1510 break; 1511 1512 if (next_dup && 1513 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1514 in_sack = tcp_match_skb_to_sack(sk, skb, 1515 next_dup->start_seq, 1516 next_dup->end_seq); 1517 if (in_sack > 0) 1518 dup_sack = true; 1519 } 1520 1521 /* skb reference here is a bit tricky to get right, since 1522 * shifting can eat and free both this skb and the next, 1523 * so not even _safe variant of the loop is enough. 1524 */ 1525 if (in_sack <= 0) { 1526 tmp = tcp_shift_skb_data(sk, skb, state, 1527 start_seq, end_seq, dup_sack); 1528 if (tmp) { 1529 if (tmp != skb) { 1530 skb = tmp; 1531 continue; 1532 } 1533 1534 in_sack = 0; 1535 } else { 1536 in_sack = tcp_match_skb_to_sack(sk, skb, 1537 start_seq, 1538 end_seq); 1539 } 1540 } 1541 1542 if (unlikely(in_sack < 0)) 1543 break; 1544 1545 if (in_sack) { 1546 TCP_SKB_CB(skb)->sacked = 1547 tcp_sacktag_one(sk, 1548 state, 1549 TCP_SKB_CB(skb)->sacked, 1550 TCP_SKB_CB(skb)->seq, 1551 TCP_SKB_CB(skb)->end_seq, 1552 dup_sack, 1553 tcp_skb_pcount(skb), 1554 skb->skb_mstamp); 1555 tcp_rate_skb_delivered(sk, skb, state->rate); 1556 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1557 list_del_init(&skb->tcp_tsorted_anchor); 1558 1559 if (!before(TCP_SKB_CB(skb)->seq, 1560 tcp_highest_sack_seq(tp))) 1561 tcp_advance_highest_sack(sk, skb); 1562 } 1563 } 1564 return skb; 1565 } 1566 1567 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1568 struct tcp_sacktag_state *state, 1569 u32 seq) 1570 { 1571 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1572 struct sk_buff *skb; 1573 1574 while (*p) { 1575 parent = *p; 1576 skb = rb_to_skb(parent); 1577 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1578 p = &parent->rb_left; 1579 continue; 1580 } 1581 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1582 p = &parent->rb_right; 1583 continue; 1584 } 1585 return skb; 1586 } 1587 return NULL; 1588 } 1589 1590 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1591 struct tcp_sacktag_state *state, 1592 u32 skip_to_seq) 1593 { 1594 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1595 return skb; 1596 1597 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1598 } 1599 1600 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1601 struct sock *sk, 1602 struct tcp_sack_block *next_dup, 1603 struct tcp_sacktag_state *state, 1604 u32 skip_to_seq) 1605 { 1606 if (!next_dup) 1607 return skb; 1608 1609 if (before(next_dup->start_seq, skip_to_seq)) { 1610 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1611 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1612 next_dup->start_seq, next_dup->end_seq, 1613 1); 1614 } 1615 1616 return skb; 1617 } 1618 1619 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1620 { 1621 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1622 } 1623 1624 static int 1625 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1626 u32 prior_snd_una, struct tcp_sacktag_state *state) 1627 { 1628 struct tcp_sock *tp = tcp_sk(sk); 1629 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1630 TCP_SKB_CB(ack_skb)->sacked); 1631 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1632 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1633 struct tcp_sack_block *cache; 1634 struct sk_buff *skb; 1635 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1636 int used_sacks; 1637 bool found_dup_sack = false; 1638 int i, j; 1639 int first_sack_index; 1640 1641 state->flag = 0; 1642 state->reord = tp->snd_nxt; 1643 1644 if (!tp->sacked_out) 1645 tcp_highest_sack_reset(sk); 1646 1647 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1648 num_sacks, prior_snd_una); 1649 if (found_dup_sack) { 1650 state->flag |= FLAG_DSACKING_ACK; 1651 tp->delivered++; /* A spurious retransmission is delivered */ 1652 } 1653 1654 /* Eliminate too old ACKs, but take into 1655 * account more or less fresh ones, they can 1656 * contain valid SACK info. 1657 */ 1658 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1659 return 0; 1660 1661 if (!tp->packets_out) 1662 goto out; 1663 1664 used_sacks = 0; 1665 first_sack_index = 0; 1666 for (i = 0; i < num_sacks; i++) { 1667 bool dup_sack = !i && found_dup_sack; 1668 1669 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1670 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1671 1672 if (!tcp_is_sackblock_valid(tp, dup_sack, 1673 sp[used_sacks].start_seq, 1674 sp[used_sacks].end_seq)) { 1675 int mib_idx; 1676 1677 if (dup_sack) { 1678 if (!tp->undo_marker) 1679 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1680 else 1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1682 } else { 1683 /* Don't count olds caused by ACK reordering */ 1684 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1685 !after(sp[used_sacks].end_seq, tp->snd_una)) 1686 continue; 1687 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1688 } 1689 1690 NET_INC_STATS(sock_net(sk), mib_idx); 1691 if (i == 0) 1692 first_sack_index = -1; 1693 continue; 1694 } 1695 1696 /* Ignore very old stuff early */ 1697 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1698 continue; 1699 1700 used_sacks++; 1701 } 1702 1703 /* order SACK blocks to allow in order walk of the retrans queue */ 1704 for (i = used_sacks - 1; i > 0; i--) { 1705 for (j = 0; j < i; j++) { 1706 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1707 swap(sp[j], sp[j + 1]); 1708 1709 /* Track where the first SACK block goes to */ 1710 if (j == first_sack_index) 1711 first_sack_index = j + 1; 1712 } 1713 } 1714 } 1715 1716 state->mss_now = tcp_current_mss(sk); 1717 skb = NULL; 1718 i = 0; 1719 1720 if (!tp->sacked_out) { 1721 /* It's already past, so skip checking against it */ 1722 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1723 } else { 1724 cache = tp->recv_sack_cache; 1725 /* Skip empty blocks in at head of the cache */ 1726 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1727 !cache->end_seq) 1728 cache++; 1729 } 1730 1731 while (i < used_sacks) { 1732 u32 start_seq = sp[i].start_seq; 1733 u32 end_seq = sp[i].end_seq; 1734 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1735 struct tcp_sack_block *next_dup = NULL; 1736 1737 if (found_dup_sack && ((i + 1) == first_sack_index)) 1738 next_dup = &sp[i + 1]; 1739 1740 /* Skip too early cached blocks */ 1741 while (tcp_sack_cache_ok(tp, cache) && 1742 !before(start_seq, cache->end_seq)) 1743 cache++; 1744 1745 /* Can skip some work by looking recv_sack_cache? */ 1746 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1747 after(end_seq, cache->start_seq)) { 1748 1749 /* Head todo? */ 1750 if (before(start_seq, cache->start_seq)) { 1751 skb = tcp_sacktag_skip(skb, sk, state, 1752 start_seq); 1753 skb = tcp_sacktag_walk(skb, sk, next_dup, 1754 state, 1755 start_seq, 1756 cache->start_seq, 1757 dup_sack); 1758 } 1759 1760 /* Rest of the block already fully processed? */ 1761 if (!after(end_seq, cache->end_seq)) 1762 goto advance_sp; 1763 1764 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1765 state, 1766 cache->end_seq); 1767 1768 /* ...tail remains todo... */ 1769 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1770 /* ...but better entrypoint exists! */ 1771 skb = tcp_highest_sack(sk); 1772 if (!skb) 1773 break; 1774 cache++; 1775 goto walk; 1776 } 1777 1778 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1779 /* Check overlap against next cached too (past this one already) */ 1780 cache++; 1781 continue; 1782 } 1783 1784 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1785 skb = tcp_highest_sack(sk); 1786 if (!skb) 1787 break; 1788 } 1789 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1790 1791 walk: 1792 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1793 start_seq, end_seq, dup_sack); 1794 1795 advance_sp: 1796 i++; 1797 } 1798 1799 /* Clear the head of the cache sack blocks so we can skip it next time */ 1800 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1801 tp->recv_sack_cache[i].start_seq = 0; 1802 tp->recv_sack_cache[i].end_seq = 0; 1803 } 1804 for (j = 0; j < used_sacks; j++) 1805 tp->recv_sack_cache[i++] = sp[j]; 1806 1807 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1808 tcp_check_sack_reordering(sk, state->reord, 0); 1809 1810 tcp_verify_left_out(tp); 1811 out: 1812 1813 #if FASTRETRANS_DEBUG > 0 1814 WARN_ON((int)tp->sacked_out < 0); 1815 WARN_ON((int)tp->lost_out < 0); 1816 WARN_ON((int)tp->retrans_out < 0); 1817 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1818 #endif 1819 return state->flag; 1820 } 1821 1822 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1823 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1824 */ 1825 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1826 { 1827 u32 holes; 1828 1829 holes = max(tp->lost_out, 1U); 1830 holes = min(holes, tp->packets_out); 1831 1832 if ((tp->sacked_out + holes) > tp->packets_out) { 1833 tp->sacked_out = tp->packets_out - holes; 1834 return true; 1835 } 1836 return false; 1837 } 1838 1839 /* If we receive more dupacks than we expected counting segments 1840 * in assumption of absent reordering, interpret this as reordering. 1841 * The only another reason could be bug in receiver TCP. 1842 */ 1843 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1844 { 1845 struct tcp_sock *tp = tcp_sk(sk); 1846 1847 if (!tcp_limit_reno_sacked(tp)) 1848 return; 1849 1850 tp->reordering = min_t(u32, tp->packets_out + addend, 1851 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1853 } 1854 1855 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1856 1857 static void tcp_add_reno_sack(struct sock *sk) 1858 { 1859 struct tcp_sock *tp = tcp_sk(sk); 1860 u32 prior_sacked = tp->sacked_out; 1861 1862 tp->sacked_out++; 1863 tcp_check_reno_reordering(sk, 0); 1864 if (tp->sacked_out > prior_sacked) 1865 tp->delivered++; /* Some out-of-order packet is delivered */ 1866 tcp_verify_left_out(tp); 1867 } 1868 1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1870 1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 1875 if (acked > 0) { 1876 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1877 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1878 if (acked - 1 >= tp->sacked_out) 1879 tp->sacked_out = 0; 1880 else 1881 tp->sacked_out -= acked - 1; 1882 } 1883 tcp_check_reno_reordering(sk, acked); 1884 tcp_verify_left_out(tp); 1885 } 1886 1887 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1888 { 1889 tp->sacked_out = 0; 1890 } 1891 1892 void tcp_clear_retrans(struct tcp_sock *tp) 1893 { 1894 tp->retrans_out = 0; 1895 tp->lost_out = 0; 1896 tp->undo_marker = 0; 1897 tp->undo_retrans = -1; 1898 tp->sacked_out = 0; 1899 } 1900 1901 static inline void tcp_init_undo(struct tcp_sock *tp) 1902 { 1903 tp->undo_marker = tp->snd_una; 1904 /* Retransmission still in flight may cause DSACKs later. */ 1905 tp->undo_retrans = tp->retrans_out ? : -1; 1906 } 1907 1908 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1909 * and reset tags completely, otherwise preserve SACKs. If receiver 1910 * dropped its ofo queue, we will know this due to reneging detection. 1911 */ 1912 void tcp_enter_loss(struct sock *sk) 1913 { 1914 const struct inet_connection_sock *icsk = inet_csk(sk); 1915 struct tcp_sock *tp = tcp_sk(sk); 1916 struct net *net = sock_net(sk); 1917 struct sk_buff *skb; 1918 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1919 bool is_reneg; /* is receiver reneging on SACKs? */ 1920 bool mark_lost; 1921 1922 /* Reduce ssthresh if it has not yet been made inside this window. */ 1923 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1924 !after(tp->high_seq, tp->snd_una) || 1925 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1926 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1927 tp->prior_cwnd = tp->snd_cwnd; 1928 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1929 tcp_ca_event(sk, CA_EVENT_LOSS); 1930 tcp_init_undo(tp); 1931 } 1932 tp->snd_cwnd = 1; 1933 tp->snd_cwnd_cnt = 0; 1934 tp->snd_cwnd_stamp = tcp_jiffies32; 1935 1936 tp->retrans_out = 0; 1937 tp->lost_out = 0; 1938 1939 if (tcp_is_reno(tp)) 1940 tcp_reset_reno_sack(tp); 1941 1942 skb = tcp_rtx_queue_head(sk); 1943 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1944 if (is_reneg) { 1945 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1946 tp->sacked_out = 0; 1947 /* Mark SACK reneging until we recover from this loss event. */ 1948 tp->is_sack_reneg = 1; 1949 } 1950 tcp_clear_all_retrans_hints(tp); 1951 1952 skb_rbtree_walk_from(skb) { 1953 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1954 is_reneg); 1955 if (mark_lost) 1956 tcp_sum_lost(tp, skb); 1957 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1958 if (mark_lost) { 1959 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1961 tp->lost_out += tcp_skb_pcount(skb); 1962 } 1963 } 1964 tcp_verify_left_out(tp); 1965 1966 /* Timeout in disordered state after receiving substantial DUPACKs 1967 * suggests that the degree of reordering is over-estimated. 1968 */ 1969 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1970 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1971 tp->reordering = min_t(unsigned int, tp->reordering, 1972 net->ipv4.sysctl_tcp_reordering); 1973 tcp_set_ca_state(sk, TCP_CA_Loss); 1974 tp->high_seq = tp->snd_nxt; 1975 tcp_ecn_queue_cwr(tp); 1976 1977 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1978 * loss recovery is underway except recurring timeout(s) on 1979 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1980 * 1981 * In theory F-RTO can be used repeatedly during loss recovery. 1982 * In practice this interacts badly with broken middle-boxes that 1983 * falsely raise the receive window, which results in repeated 1984 * timeouts and stop-and-go behavior. 1985 */ 1986 tp->frto = net->ipv4.sysctl_tcp_frto && 1987 (new_recovery || icsk->icsk_retransmits) && 1988 !inet_csk(sk)->icsk_mtup.probe_size; 1989 } 1990 1991 /* If ACK arrived pointing to a remembered SACK, it means that our 1992 * remembered SACKs do not reflect real state of receiver i.e. 1993 * receiver _host_ is heavily congested (or buggy). 1994 * 1995 * To avoid big spurious retransmission bursts due to transient SACK 1996 * scoreboard oddities that look like reneging, we give the receiver a 1997 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1998 * restore sanity to the SACK scoreboard. If the apparent reneging 1999 * persists until this RTO then we'll clear the SACK scoreboard. 2000 */ 2001 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2002 { 2003 if (flag & FLAG_SACK_RENEGING) { 2004 struct tcp_sock *tp = tcp_sk(sk); 2005 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2006 msecs_to_jiffies(10)); 2007 2008 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2009 delay, TCP_RTO_MAX); 2010 return true; 2011 } 2012 return false; 2013 } 2014 2015 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2016 * counter when SACK is enabled (without SACK, sacked_out is used for 2017 * that purpose). 2018 * 2019 * With reordering, holes may still be in flight, so RFC3517 recovery 2020 * uses pure sacked_out (total number of SACKed segments) even though 2021 * it violates the RFC that uses duplicate ACKs, often these are equal 2022 * but when e.g. out-of-window ACKs or packet duplication occurs, 2023 * they differ. Since neither occurs due to loss, TCP should really 2024 * ignore them. 2025 */ 2026 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2027 { 2028 return tp->sacked_out + 1; 2029 } 2030 2031 /* Linux NewReno/SACK/ECN state machine. 2032 * -------------------------------------- 2033 * 2034 * "Open" Normal state, no dubious events, fast path. 2035 * "Disorder" In all the respects it is "Open", 2036 * but requires a bit more attention. It is entered when 2037 * we see some SACKs or dupacks. It is split of "Open" 2038 * mainly to move some processing from fast path to slow one. 2039 * "CWR" CWND was reduced due to some Congestion Notification event. 2040 * It can be ECN, ICMP source quench, local device congestion. 2041 * "Recovery" CWND was reduced, we are fast-retransmitting. 2042 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2043 * 2044 * tcp_fastretrans_alert() is entered: 2045 * - each incoming ACK, if state is not "Open" 2046 * - when arrived ACK is unusual, namely: 2047 * * SACK 2048 * * Duplicate ACK. 2049 * * ECN ECE. 2050 * 2051 * Counting packets in flight is pretty simple. 2052 * 2053 * in_flight = packets_out - left_out + retrans_out 2054 * 2055 * packets_out is SND.NXT-SND.UNA counted in packets. 2056 * 2057 * retrans_out is number of retransmitted segments. 2058 * 2059 * left_out is number of segments left network, but not ACKed yet. 2060 * 2061 * left_out = sacked_out + lost_out 2062 * 2063 * sacked_out: Packets, which arrived to receiver out of order 2064 * and hence not ACKed. With SACKs this number is simply 2065 * amount of SACKed data. Even without SACKs 2066 * it is easy to give pretty reliable estimate of this number, 2067 * counting duplicate ACKs. 2068 * 2069 * lost_out: Packets lost by network. TCP has no explicit 2070 * "loss notification" feedback from network (for now). 2071 * It means that this number can be only _guessed_. 2072 * Actually, it is the heuristics to predict lossage that 2073 * distinguishes different algorithms. 2074 * 2075 * F.e. after RTO, when all the queue is considered as lost, 2076 * lost_out = packets_out and in_flight = retrans_out. 2077 * 2078 * Essentially, we have now a few algorithms detecting 2079 * lost packets. 2080 * 2081 * If the receiver supports SACK: 2082 * 2083 * RFC6675/3517: It is the conventional algorithm. A packet is 2084 * considered lost if the number of higher sequence packets 2085 * SACKed is greater than or equal the DUPACK thoreshold 2086 * (reordering). This is implemented in tcp_mark_head_lost and 2087 * tcp_update_scoreboard. 2088 * 2089 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2090 * (2017-) that checks timing instead of counting DUPACKs. 2091 * Essentially a packet is considered lost if it's not S/ACKed 2092 * after RTT + reordering_window, where both metrics are 2093 * dynamically measured and adjusted. This is implemented in 2094 * tcp_rack_mark_lost. 2095 * 2096 * If the receiver does not support SACK: 2097 * 2098 * NewReno (RFC6582): in Recovery we assume that one segment 2099 * is lost (classic Reno). While we are in Recovery and 2100 * a partial ACK arrives, we assume that one more packet 2101 * is lost (NewReno). This heuristics are the same in NewReno 2102 * and SACK. 2103 * 2104 * Really tricky (and requiring careful tuning) part of algorithm 2105 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2106 * The first determines the moment _when_ we should reduce CWND and, 2107 * hence, slow down forward transmission. In fact, it determines the moment 2108 * when we decide that hole is caused by loss, rather than by a reorder. 2109 * 2110 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2111 * holes, caused by lost packets. 2112 * 2113 * And the most logically complicated part of algorithm is undo 2114 * heuristics. We detect false retransmits due to both too early 2115 * fast retransmit (reordering) and underestimated RTO, analyzing 2116 * timestamps and D-SACKs. When we detect that some segments were 2117 * retransmitted by mistake and CWND reduction was wrong, we undo 2118 * window reduction and abort recovery phase. This logic is hidden 2119 * inside several functions named tcp_try_undo_<something>. 2120 */ 2121 2122 /* This function decides, when we should leave Disordered state 2123 * and enter Recovery phase, reducing congestion window. 2124 * 2125 * Main question: may we further continue forward transmission 2126 * with the same cwnd? 2127 */ 2128 static bool tcp_time_to_recover(struct sock *sk, int flag) 2129 { 2130 struct tcp_sock *tp = tcp_sk(sk); 2131 2132 /* Trick#1: The loss is proven. */ 2133 if (tp->lost_out) 2134 return true; 2135 2136 /* Not-A-Trick#2 : Classic rule... */ 2137 if (tcp_dupack_heuristics(tp) > tp->reordering) 2138 return true; 2139 2140 return false; 2141 } 2142 2143 /* Detect loss in event "A" above by marking head of queue up as lost. 2144 * For non-SACK(Reno) senders, the first "packets" number of segments 2145 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2146 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2147 * the maximum SACKed segments to pass before reaching this limit. 2148 */ 2149 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2150 { 2151 struct tcp_sock *tp = tcp_sk(sk); 2152 struct sk_buff *skb; 2153 int cnt, oldcnt, lost; 2154 unsigned int mss; 2155 /* Use SACK to deduce losses of new sequences sent during recovery */ 2156 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2157 2158 WARN_ON(packets > tp->packets_out); 2159 skb = tp->lost_skb_hint; 2160 if (skb) { 2161 /* Head already handled? */ 2162 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2163 return; 2164 cnt = tp->lost_cnt_hint; 2165 } else { 2166 skb = tcp_rtx_queue_head(sk); 2167 cnt = 0; 2168 } 2169 2170 skb_rbtree_walk_from(skb) { 2171 /* TODO: do this better */ 2172 /* this is not the most efficient way to do this... */ 2173 tp->lost_skb_hint = skb; 2174 tp->lost_cnt_hint = cnt; 2175 2176 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2177 break; 2178 2179 oldcnt = cnt; 2180 if (tcp_is_reno(tp) || 2181 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2182 cnt += tcp_skb_pcount(skb); 2183 2184 if (cnt > packets) { 2185 if (tcp_is_sack(tp) || 2186 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2187 (oldcnt >= packets)) 2188 break; 2189 2190 mss = tcp_skb_mss(skb); 2191 /* If needed, chop off the prefix to mark as lost. */ 2192 lost = (packets - oldcnt) * mss; 2193 if (lost < skb->len && 2194 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2195 lost, mss, GFP_ATOMIC) < 0) 2196 break; 2197 cnt = packets; 2198 } 2199 2200 tcp_skb_mark_lost(tp, skb); 2201 2202 if (mark_head) 2203 break; 2204 } 2205 tcp_verify_left_out(tp); 2206 } 2207 2208 /* Account newly detected lost packet(s) */ 2209 2210 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2211 { 2212 struct tcp_sock *tp = tcp_sk(sk); 2213 2214 if (tcp_is_reno(tp)) { 2215 tcp_mark_head_lost(sk, 1, 1); 2216 } else { 2217 int sacked_upto = tp->sacked_out - tp->reordering; 2218 if (sacked_upto >= 0) 2219 tcp_mark_head_lost(sk, sacked_upto, 0); 2220 else if (fast_rexmit) 2221 tcp_mark_head_lost(sk, 1, 1); 2222 } 2223 } 2224 2225 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2226 { 2227 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2228 before(tp->rx_opt.rcv_tsecr, when); 2229 } 2230 2231 /* skb is spurious retransmitted if the returned timestamp echo 2232 * reply is prior to the skb transmission time 2233 */ 2234 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2235 const struct sk_buff *skb) 2236 { 2237 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2238 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2239 } 2240 2241 /* Nothing was retransmitted or returned timestamp is less 2242 * than timestamp of the first retransmission. 2243 */ 2244 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2245 { 2246 return !tp->retrans_stamp || 2247 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2248 } 2249 2250 /* Undo procedures. */ 2251 2252 /* We can clear retrans_stamp when there are no retransmissions in the 2253 * window. It would seem that it is trivially available for us in 2254 * tp->retrans_out, however, that kind of assumptions doesn't consider 2255 * what will happen if errors occur when sending retransmission for the 2256 * second time. ...It could the that such segment has only 2257 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2258 * the head skb is enough except for some reneging corner cases that 2259 * are not worth the effort. 2260 * 2261 * Main reason for all this complexity is the fact that connection dying 2262 * time now depends on the validity of the retrans_stamp, in particular, 2263 * that successive retransmissions of a segment must not advance 2264 * retrans_stamp under any conditions. 2265 */ 2266 static bool tcp_any_retrans_done(const struct sock *sk) 2267 { 2268 const struct tcp_sock *tp = tcp_sk(sk); 2269 struct sk_buff *skb; 2270 2271 if (tp->retrans_out) 2272 return true; 2273 2274 skb = tcp_rtx_queue_head(sk); 2275 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2276 return true; 2277 2278 return false; 2279 } 2280 2281 static void DBGUNDO(struct sock *sk, const char *msg) 2282 { 2283 #if FASTRETRANS_DEBUG > 1 2284 struct tcp_sock *tp = tcp_sk(sk); 2285 struct inet_sock *inet = inet_sk(sk); 2286 2287 if (sk->sk_family == AF_INET) { 2288 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2289 msg, 2290 &inet->inet_daddr, ntohs(inet->inet_dport), 2291 tp->snd_cwnd, tcp_left_out(tp), 2292 tp->snd_ssthresh, tp->prior_ssthresh, 2293 tp->packets_out); 2294 } 2295 #if IS_ENABLED(CONFIG_IPV6) 2296 else if (sk->sk_family == AF_INET6) { 2297 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2298 msg, 2299 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2300 tp->snd_cwnd, tcp_left_out(tp), 2301 tp->snd_ssthresh, tp->prior_ssthresh, 2302 tp->packets_out); 2303 } 2304 #endif 2305 #endif 2306 } 2307 2308 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2309 { 2310 struct tcp_sock *tp = tcp_sk(sk); 2311 2312 if (unmark_loss) { 2313 struct sk_buff *skb; 2314 2315 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2316 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2317 } 2318 tp->lost_out = 0; 2319 tcp_clear_all_retrans_hints(tp); 2320 } 2321 2322 if (tp->prior_ssthresh) { 2323 const struct inet_connection_sock *icsk = inet_csk(sk); 2324 2325 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2326 2327 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2328 tp->snd_ssthresh = tp->prior_ssthresh; 2329 tcp_ecn_withdraw_cwr(tp); 2330 } 2331 } 2332 tp->snd_cwnd_stamp = tcp_jiffies32; 2333 tp->undo_marker = 0; 2334 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2335 } 2336 2337 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2338 { 2339 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2340 } 2341 2342 /* People celebrate: "We love our President!" */ 2343 static bool tcp_try_undo_recovery(struct sock *sk) 2344 { 2345 struct tcp_sock *tp = tcp_sk(sk); 2346 2347 if (tcp_may_undo(tp)) { 2348 int mib_idx; 2349 2350 /* Happy end! We did not retransmit anything 2351 * or our original transmission succeeded. 2352 */ 2353 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2354 tcp_undo_cwnd_reduction(sk, false); 2355 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2356 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2357 else 2358 mib_idx = LINUX_MIB_TCPFULLUNDO; 2359 2360 NET_INC_STATS(sock_net(sk), mib_idx); 2361 } else if (tp->rack.reo_wnd_persist) { 2362 tp->rack.reo_wnd_persist--; 2363 } 2364 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2365 /* Hold old state until something *above* high_seq 2366 * is ACKed. For Reno it is MUST to prevent false 2367 * fast retransmits (RFC2582). SACK TCP is safe. */ 2368 if (!tcp_any_retrans_done(sk)) 2369 tp->retrans_stamp = 0; 2370 return true; 2371 } 2372 tcp_set_ca_state(sk, TCP_CA_Open); 2373 tp->is_sack_reneg = 0; 2374 return false; 2375 } 2376 2377 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2378 static bool tcp_try_undo_dsack(struct sock *sk) 2379 { 2380 struct tcp_sock *tp = tcp_sk(sk); 2381 2382 if (tp->undo_marker && !tp->undo_retrans) { 2383 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2384 tp->rack.reo_wnd_persist + 1); 2385 DBGUNDO(sk, "D-SACK"); 2386 tcp_undo_cwnd_reduction(sk, false); 2387 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2388 return true; 2389 } 2390 return false; 2391 } 2392 2393 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2394 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2395 { 2396 struct tcp_sock *tp = tcp_sk(sk); 2397 2398 if (frto_undo || tcp_may_undo(tp)) { 2399 tcp_undo_cwnd_reduction(sk, true); 2400 2401 DBGUNDO(sk, "partial loss"); 2402 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2403 if (frto_undo) 2404 NET_INC_STATS(sock_net(sk), 2405 LINUX_MIB_TCPSPURIOUSRTOS); 2406 inet_csk(sk)->icsk_retransmits = 0; 2407 if (frto_undo || tcp_is_sack(tp)) { 2408 tcp_set_ca_state(sk, TCP_CA_Open); 2409 tp->is_sack_reneg = 0; 2410 } 2411 return true; 2412 } 2413 return false; 2414 } 2415 2416 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2417 * It computes the number of packets to send (sndcnt) based on packets newly 2418 * delivered: 2419 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2420 * cwnd reductions across a full RTT. 2421 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2422 * But when the retransmits are acked without further losses, PRR 2423 * slow starts cwnd up to ssthresh to speed up the recovery. 2424 */ 2425 static void tcp_init_cwnd_reduction(struct sock *sk) 2426 { 2427 struct tcp_sock *tp = tcp_sk(sk); 2428 2429 tp->high_seq = tp->snd_nxt; 2430 tp->tlp_high_seq = 0; 2431 tp->snd_cwnd_cnt = 0; 2432 tp->prior_cwnd = tp->snd_cwnd; 2433 tp->prr_delivered = 0; 2434 tp->prr_out = 0; 2435 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2436 tcp_ecn_queue_cwr(tp); 2437 } 2438 2439 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2440 { 2441 struct tcp_sock *tp = tcp_sk(sk); 2442 int sndcnt = 0; 2443 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2444 2445 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2446 return; 2447 2448 tp->prr_delivered += newly_acked_sacked; 2449 if (delta < 0) { 2450 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2451 tp->prior_cwnd - 1; 2452 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2453 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2454 !(flag & FLAG_LOST_RETRANS)) { 2455 sndcnt = min_t(int, delta, 2456 max_t(int, tp->prr_delivered - tp->prr_out, 2457 newly_acked_sacked) + 1); 2458 } else { 2459 sndcnt = min(delta, newly_acked_sacked); 2460 } 2461 /* Force a fast retransmit upon entering fast recovery */ 2462 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2463 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2464 } 2465 2466 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2467 { 2468 struct tcp_sock *tp = tcp_sk(sk); 2469 2470 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2471 return; 2472 2473 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2474 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2475 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2476 tp->snd_cwnd = tp->snd_ssthresh; 2477 tp->snd_cwnd_stamp = tcp_jiffies32; 2478 } 2479 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2480 } 2481 2482 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2483 void tcp_enter_cwr(struct sock *sk) 2484 { 2485 struct tcp_sock *tp = tcp_sk(sk); 2486 2487 tp->prior_ssthresh = 0; 2488 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2489 tp->undo_marker = 0; 2490 tcp_init_cwnd_reduction(sk); 2491 tcp_set_ca_state(sk, TCP_CA_CWR); 2492 } 2493 } 2494 EXPORT_SYMBOL(tcp_enter_cwr); 2495 2496 static void tcp_try_keep_open(struct sock *sk) 2497 { 2498 struct tcp_sock *tp = tcp_sk(sk); 2499 int state = TCP_CA_Open; 2500 2501 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2502 state = TCP_CA_Disorder; 2503 2504 if (inet_csk(sk)->icsk_ca_state != state) { 2505 tcp_set_ca_state(sk, state); 2506 tp->high_seq = tp->snd_nxt; 2507 } 2508 } 2509 2510 static void tcp_try_to_open(struct sock *sk, int flag) 2511 { 2512 struct tcp_sock *tp = tcp_sk(sk); 2513 2514 tcp_verify_left_out(tp); 2515 2516 if (!tcp_any_retrans_done(sk)) 2517 tp->retrans_stamp = 0; 2518 2519 if (flag & FLAG_ECE) 2520 tcp_enter_cwr(sk); 2521 2522 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2523 tcp_try_keep_open(sk); 2524 } 2525 } 2526 2527 static void tcp_mtup_probe_failed(struct sock *sk) 2528 { 2529 struct inet_connection_sock *icsk = inet_csk(sk); 2530 2531 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2532 icsk->icsk_mtup.probe_size = 0; 2533 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2534 } 2535 2536 static void tcp_mtup_probe_success(struct sock *sk) 2537 { 2538 struct tcp_sock *tp = tcp_sk(sk); 2539 struct inet_connection_sock *icsk = inet_csk(sk); 2540 2541 /* FIXME: breaks with very large cwnd */ 2542 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2543 tp->snd_cwnd = tp->snd_cwnd * 2544 tcp_mss_to_mtu(sk, tp->mss_cache) / 2545 icsk->icsk_mtup.probe_size; 2546 tp->snd_cwnd_cnt = 0; 2547 tp->snd_cwnd_stamp = tcp_jiffies32; 2548 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2549 2550 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2551 icsk->icsk_mtup.probe_size = 0; 2552 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2553 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2554 } 2555 2556 /* Do a simple retransmit without using the backoff mechanisms in 2557 * tcp_timer. This is used for path mtu discovery. 2558 * The socket is already locked here. 2559 */ 2560 void tcp_simple_retransmit(struct sock *sk) 2561 { 2562 const struct inet_connection_sock *icsk = inet_csk(sk); 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 struct sk_buff *skb; 2565 unsigned int mss = tcp_current_mss(sk); 2566 2567 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2568 if (tcp_skb_seglen(skb) > mss && 2569 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2570 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2571 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2572 tp->retrans_out -= tcp_skb_pcount(skb); 2573 } 2574 tcp_skb_mark_lost_uncond_verify(tp, skb); 2575 } 2576 } 2577 2578 tcp_clear_retrans_hints_partial(tp); 2579 2580 if (!tp->lost_out) 2581 return; 2582 2583 if (tcp_is_reno(tp)) 2584 tcp_limit_reno_sacked(tp); 2585 2586 tcp_verify_left_out(tp); 2587 2588 /* Don't muck with the congestion window here. 2589 * Reason is that we do not increase amount of _data_ 2590 * in network, but units changed and effective 2591 * cwnd/ssthresh really reduced now. 2592 */ 2593 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2594 tp->high_seq = tp->snd_nxt; 2595 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2596 tp->prior_ssthresh = 0; 2597 tp->undo_marker = 0; 2598 tcp_set_ca_state(sk, TCP_CA_Loss); 2599 } 2600 tcp_xmit_retransmit_queue(sk); 2601 } 2602 EXPORT_SYMBOL(tcp_simple_retransmit); 2603 2604 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2605 { 2606 struct tcp_sock *tp = tcp_sk(sk); 2607 int mib_idx; 2608 2609 if (tcp_is_reno(tp)) 2610 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2611 else 2612 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2613 2614 NET_INC_STATS(sock_net(sk), mib_idx); 2615 2616 tp->prior_ssthresh = 0; 2617 tcp_init_undo(tp); 2618 2619 if (!tcp_in_cwnd_reduction(sk)) { 2620 if (!ece_ack) 2621 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2622 tcp_init_cwnd_reduction(sk); 2623 } 2624 tcp_set_ca_state(sk, TCP_CA_Recovery); 2625 } 2626 2627 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2628 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2629 */ 2630 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2631 int *rexmit) 2632 { 2633 struct tcp_sock *tp = tcp_sk(sk); 2634 bool recovered = !before(tp->snd_una, tp->high_seq); 2635 2636 if ((flag & FLAG_SND_UNA_ADVANCED) && 2637 tcp_try_undo_loss(sk, false)) 2638 return; 2639 2640 /* The ACK (s)acks some never-retransmitted data meaning not all 2641 * the data packets before the timeout were lost. Therefore we 2642 * undo the congestion window and state. This is essentially 2643 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2644 * a retransmitted skb is permantly marked, we can apply such an 2645 * operation even if F-RTO was not used. 2646 */ 2647 if ((flag & FLAG_ORIG_SACK_ACKED) && 2648 tcp_try_undo_loss(sk, tp->undo_marker)) 2649 return; 2650 2651 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2652 if (after(tp->snd_nxt, tp->high_seq)) { 2653 if (flag & FLAG_DATA_SACKED || is_dupack) 2654 tp->frto = 0; /* Step 3.a. loss was real */ 2655 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2656 tp->high_seq = tp->snd_nxt; 2657 /* Step 2.b. Try send new data (but deferred until cwnd 2658 * is updated in tcp_ack()). Otherwise fall back to 2659 * the conventional recovery. 2660 */ 2661 if (!tcp_write_queue_empty(sk) && 2662 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2663 *rexmit = REXMIT_NEW; 2664 return; 2665 } 2666 tp->frto = 0; 2667 } 2668 } 2669 2670 if (recovered) { 2671 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2672 tcp_try_undo_recovery(sk); 2673 return; 2674 } 2675 if (tcp_is_reno(tp)) { 2676 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2677 * delivered. Lower inflight to clock out (re)tranmissions. 2678 */ 2679 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2680 tcp_add_reno_sack(sk); 2681 else if (flag & FLAG_SND_UNA_ADVANCED) 2682 tcp_reset_reno_sack(tp); 2683 } 2684 *rexmit = REXMIT_LOST; 2685 } 2686 2687 /* Undo during fast recovery after partial ACK. */ 2688 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2689 { 2690 struct tcp_sock *tp = tcp_sk(sk); 2691 2692 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2693 /* Plain luck! Hole if filled with delayed 2694 * packet, rather than with a retransmit. Check reordering. 2695 */ 2696 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2697 2698 /* We are getting evidence that the reordering degree is higher 2699 * than we realized. If there are no retransmits out then we 2700 * can undo. Otherwise we clock out new packets but do not 2701 * mark more packets lost or retransmit more. 2702 */ 2703 if (tp->retrans_out) 2704 return true; 2705 2706 if (!tcp_any_retrans_done(sk)) 2707 tp->retrans_stamp = 0; 2708 2709 DBGUNDO(sk, "partial recovery"); 2710 tcp_undo_cwnd_reduction(sk, true); 2711 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2712 tcp_try_keep_open(sk); 2713 return true; 2714 } 2715 return false; 2716 } 2717 2718 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2719 { 2720 struct tcp_sock *tp = tcp_sk(sk); 2721 2722 /* Use RACK to detect loss */ 2723 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2724 u32 prior_retrans = tp->retrans_out; 2725 2726 tcp_rack_mark_lost(sk); 2727 if (prior_retrans > tp->retrans_out) 2728 *ack_flag |= FLAG_LOST_RETRANS; 2729 } 2730 } 2731 2732 static bool tcp_force_fast_retransmit(struct sock *sk) 2733 { 2734 struct tcp_sock *tp = tcp_sk(sk); 2735 2736 return after(tcp_highest_sack_seq(tp), 2737 tp->snd_una + tp->reordering * tp->mss_cache); 2738 } 2739 2740 /* Process an event, which can update packets-in-flight not trivially. 2741 * Main goal of this function is to calculate new estimate for left_out, 2742 * taking into account both packets sitting in receiver's buffer and 2743 * packets lost by network. 2744 * 2745 * Besides that it updates the congestion state when packet loss or ECN 2746 * is detected. But it does not reduce the cwnd, it is done by the 2747 * congestion control later. 2748 * 2749 * It does _not_ decide what to send, it is made in function 2750 * tcp_xmit_retransmit_queue(). 2751 */ 2752 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2753 bool is_dupack, int *ack_flag, int *rexmit) 2754 { 2755 struct inet_connection_sock *icsk = inet_csk(sk); 2756 struct tcp_sock *tp = tcp_sk(sk); 2757 int fast_rexmit = 0, flag = *ack_flag; 2758 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2759 tcp_force_fast_retransmit(sk)); 2760 2761 if (!tp->packets_out && tp->sacked_out) 2762 tp->sacked_out = 0; 2763 2764 /* Now state machine starts. 2765 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2766 if (flag & FLAG_ECE) 2767 tp->prior_ssthresh = 0; 2768 2769 /* B. In all the states check for reneging SACKs. */ 2770 if (tcp_check_sack_reneging(sk, flag)) 2771 return; 2772 2773 /* C. Check consistency of the current state. */ 2774 tcp_verify_left_out(tp); 2775 2776 /* D. Check state exit conditions. State can be terminated 2777 * when high_seq is ACKed. */ 2778 if (icsk->icsk_ca_state == TCP_CA_Open) { 2779 WARN_ON(tp->retrans_out != 0); 2780 tp->retrans_stamp = 0; 2781 } else if (!before(tp->snd_una, tp->high_seq)) { 2782 switch (icsk->icsk_ca_state) { 2783 case TCP_CA_CWR: 2784 /* CWR is to be held something *above* high_seq 2785 * is ACKed for CWR bit to reach receiver. */ 2786 if (tp->snd_una != tp->high_seq) { 2787 tcp_end_cwnd_reduction(sk); 2788 tcp_set_ca_state(sk, TCP_CA_Open); 2789 } 2790 break; 2791 2792 case TCP_CA_Recovery: 2793 if (tcp_is_reno(tp)) 2794 tcp_reset_reno_sack(tp); 2795 if (tcp_try_undo_recovery(sk)) 2796 return; 2797 tcp_end_cwnd_reduction(sk); 2798 break; 2799 } 2800 } 2801 2802 /* E. Process state. */ 2803 switch (icsk->icsk_ca_state) { 2804 case TCP_CA_Recovery: 2805 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2806 if (tcp_is_reno(tp) && is_dupack) 2807 tcp_add_reno_sack(sk); 2808 } else { 2809 if (tcp_try_undo_partial(sk, prior_snd_una)) 2810 return; 2811 /* Partial ACK arrived. Force fast retransmit. */ 2812 do_lost = tcp_is_reno(tp) || 2813 tcp_force_fast_retransmit(sk); 2814 } 2815 if (tcp_try_undo_dsack(sk)) { 2816 tcp_try_keep_open(sk); 2817 return; 2818 } 2819 tcp_rack_identify_loss(sk, ack_flag); 2820 break; 2821 case TCP_CA_Loss: 2822 tcp_process_loss(sk, flag, is_dupack, rexmit); 2823 tcp_rack_identify_loss(sk, ack_flag); 2824 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2825 (*ack_flag & FLAG_LOST_RETRANS))) 2826 return; 2827 /* Change state if cwnd is undone or retransmits are lost */ 2828 /* fall through */ 2829 default: 2830 if (tcp_is_reno(tp)) { 2831 if (flag & FLAG_SND_UNA_ADVANCED) 2832 tcp_reset_reno_sack(tp); 2833 if (is_dupack) 2834 tcp_add_reno_sack(sk); 2835 } 2836 2837 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2838 tcp_try_undo_dsack(sk); 2839 2840 tcp_rack_identify_loss(sk, ack_flag); 2841 if (!tcp_time_to_recover(sk, flag)) { 2842 tcp_try_to_open(sk, flag); 2843 return; 2844 } 2845 2846 /* MTU probe failure: don't reduce cwnd */ 2847 if (icsk->icsk_ca_state < TCP_CA_CWR && 2848 icsk->icsk_mtup.probe_size && 2849 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2850 tcp_mtup_probe_failed(sk); 2851 /* Restores the reduction we did in tcp_mtup_probe() */ 2852 tp->snd_cwnd++; 2853 tcp_simple_retransmit(sk); 2854 return; 2855 } 2856 2857 /* Otherwise enter Recovery state */ 2858 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2859 fast_rexmit = 1; 2860 } 2861 2862 if (do_lost) 2863 tcp_update_scoreboard(sk, fast_rexmit); 2864 *rexmit = REXMIT_LOST; 2865 } 2866 2867 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2868 { 2869 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2870 struct tcp_sock *tp = tcp_sk(sk); 2871 2872 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2873 rtt_us ? : jiffies_to_usecs(1)); 2874 } 2875 2876 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2877 long seq_rtt_us, long sack_rtt_us, 2878 long ca_rtt_us, struct rate_sample *rs) 2879 { 2880 const struct tcp_sock *tp = tcp_sk(sk); 2881 2882 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2883 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2884 * Karn's algorithm forbids taking RTT if some retransmitted data 2885 * is acked (RFC6298). 2886 */ 2887 if (seq_rtt_us < 0) 2888 seq_rtt_us = sack_rtt_us; 2889 2890 /* RTTM Rule: A TSecr value received in a segment is used to 2891 * update the averaged RTT measurement only if the segment 2892 * acknowledges some new data, i.e., only if it advances the 2893 * left edge of the send window. 2894 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2895 */ 2896 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2897 flag & FLAG_ACKED) { 2898 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2899 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2900 2901 seq_rtt_us = ca_rtt_us = delta_us; 2902 } 2903 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2904 if (seq_rtt_us < 0) 2905 return false; 2906 2907 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2908 * always taken together with ACK, SACK, or TS-opts. Any negative 2909 * values will be skipped with the seq_rtt_us < 0 check above. 2910 */ 2911 tcp_update_rtt_min(sk, ca_rtt_us); 2912 tcp_rtt_estimator(sk, seq_rtt_us); 2913 tcp_set_rto(sk); 2914 2915 /* RFC6298: only reset backoff on valid RTT measurement. */ 2916 inet_csk(sk)->icsk_backoff = 0; 2917 return true; 2918 } 2919 2920 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2921 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2922 { 2923 struct rate_sample rs; 2924 long rtt_us = -1L; 2925 2926 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2927 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2928 2929 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2930 } 2931 2932 2933 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2934 { 2935 const struct inet_connection_sock *icsk = inet_csk(sk); 2936 2937 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2938 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2939 } 2940 2941 /* Restart timer after forward progress on connection. 2942 * RFC2988 recommends to restart timer to now+rto. 2943 */ 2944 void tcp_rearm_rto(struct sock *sk) 2945 { 2946 const struct inet_connection_sock *icsk = inet_csk(sk); 2947 struct tcp_sock *tp = tcp_sk(sk); 2948 2949 /* If the retrans timer is currently being used by Fast Open 2950 * for SYN-ACK retrans purpose, stay put. 2951 */ 2952 if (tp->fastopen_rsk) 2953 return; 2954 2955 if (!tp->packets_out) { 2956 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2957 } else { 2958 u32 rto = inet_csk(sk)->icsk_rto; 2959 /* Offset the time elapsed after installing regular RTO */ 2960 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2961 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2962 s64 delta_us = tcp_rto_delta_us(sk); 2963 /* delta_us may not be positive if the socket is locked 2964 * when the retrans timer fires and is rescheduled. 2965 */ 2966 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2967 } 2968 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2969 TCP_RTO_MAX); 2970 } 2971 } 2972 2973 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2974 static void tcp_set_xmit_timer(struct sock *sk) 2975 { 2976 if (!tcp_schedule_loss_probe(sk, true)) 2977 tcp_rearm_rto(sk); 2978 } 2979 2980 /* If we get here, the whole TSO packet has not been acked. */ 2981 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2982 { 2983 struct tcp_sock *tp = tcp_sk(sk); 2984 u32 packets_acked; 2985 2986 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2987 2988 packets_acked = tcp_skb_pcount(skb); 2989 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2990 return 0; 2991 packets_acked -= tcp_skb_pcount(skb); 2992 2993 if (packets_acked) { 2994 BUG_ON(tcp_skb_pcount(skb) == 0); 2995 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2996 } 2997 2998 return packets_acked; 2999 } 3000 3001 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3002 u32 prior_snd_una) 3003 { 3004 const struct skb_shared_info *shinfo; 3005 3006 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3007 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3008 return; 3009 3010 shinfo = skb_shinfo(skb); 3011 if (!before(shinfo->tskey, prior_snd_una) && 3012 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3013 tcp_skb_tsorted_save(skb) { 3014 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3015 } tcp_skb_tsorted_restore(skb); 3016 } 3017 } 3018 3019 /* Remove acknowledged frames from the retransmission queue. If our packet 3020 * is before the ack sequence we can discard it as it's confirmed to have 3021 * arrived at the other end. 3022 */ 3023 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3024 u32 prior_snd_una, 3025 struct tcp_sacktag_state *sack) 3026 { 3027 const struct inet_connection_sock *icsk = inet_csk(sk); 3028 u64 first_ackt, last_ackt; 3029 struct tcp_sock *tp = tcp_sk(sk); 3030 u32 prior_sacked = tp->sacked_out; 3031 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3032 struct sk_buff *skb, *next; 3033 bool fully_acked = true; 3034 long sack_rtt_us = -1L; 3035 long seq_rtt_us = -1L; 3036 long ca_rtt_us = -1L; 3037 u32 pkts_acked = 0; 3038 u32 last_in_flight = 0; 3039 bool rtt_update; 3040 int flag = 0; 3041 3042 first_ackt = 0; 3043 3044 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3045 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3046 const u32 start_seq = scb->seq; 3047 u8 sacked = scb->sacked; 3048 u32 acked_pcount; 3049 3050 tcp_ack_tstamp(sk, skb, prior_snd_una); 3051 3052 /* Determine how many packets and what bytes were acked, tso and else */ 3053 if (after(scb->end_seq, tp->snd_una)) { 3054 if (tcp_skb_pcount(skb) == 1 || 3055 !after(tp->snd_una, scb->seq)) 3056 break; 3057 3058 acked_pcount = tcp_tso_acked(sk, skb); 3059 if (!acked_pcount) 3060 break; 3061 fully_acked = false; 3062 } else { 3063 acked_pcount = tcp_skb_pcount(skb); 3064 } 3065 3066 if (unlikely(sacked & TCPCB_RETRANS)) { 3067 if (sacked & TCPCB_SACKED_RETRANS) 3068 tp->retrans_out -= acked_pcount; 3069 flag |= FLAG_RETRANS_DATA_ACKED; 3070 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3071 last_ackt = skb->skb_mstamp; 3072 WARN_ON_ONCE(last_ackt == 0); 3073 if (!first_ackt) 3074 first_ackt = last_ackt; 3075 3076 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3077 if (before(start_seq, reord)) 3078 reord = start_seq; 3079 if (!after(scb->end_seq, tp->high_seq)) 3080 flag |= FLAG_ORIG_SACK_ACKED; 3081 } 3082 3083 if (sacked & TCPCB_SACKED_ACKED) { 3084 tp->sacked_out -= acked_pcount; 3085 } else if (tcp_is_sack(tp)) { 3086 tp->delivered += acked_pcount; 3087 if (!tcp_skb_spurious_retrans(tp, skb)) 3088 tcp_rack_advance(tp, sacked, scb->end_seq, 3089 skb->skb_mstamp); 3090 } 3091 if (sacked & TCPCB_LOST) 3092 tp->lost_out -= acked_pcount; 3093 3094 tp->packets_out -= acked_pcount; 3095 pkts_acked += acked_pcount; 3096 tcp_rate_skb_delivered(sk, skb, sack->rate); 3097 3098 /* Initial outgoing SYN's get put onto the write_queue 3099 * just like anything else we transmit. It is not 3100 * true data, and if we misinform our callers that 3101 * this ACK acks real data, we will erroneously exit 3102 * connection startup slow start one packet too 3103 * quickly. This is severely frowned upon behavior. 3104 */ 3105 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3106 flag |= FLAG_DATA_ACKED; 3107 } else { 3108 flag |= FLAG_SYN_ACKED; 3109 tp->retrans_stamp = 0; 3110 } 3111 3112 if (!fully_acked) 3113 break; 3114 3115 next = skb_rb_next(skb); 3116 if (unlikely(skb == tp->retransmit_skb_hint)) 3117 tp->retransmit_skb_hint = NULL; 3118 if (unlikely(skb == tp->lost_skb_hint)) 3119 tp->lost_skb_hint = NULL; 3120 tcp_rtx_queue_unlink_and_free(skb, sk); 3121 } 3122 3123 if (!skb) 3124 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3125 3126 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3127 tp->snd_up = tp->snd_una; 3128 3129 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3130 flag |= FLAG_SACK_RENEGING; 3131 3132 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3133 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3134 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3135 } 3136 if (sack->first_sackt) { 3137 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3138 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3139 } 3140 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3141 ca_rtt_us, sack->rate); 3142 3143 if (flag & FLAG_ACKED) { 3144 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3145 if (unlikely(icsk->icsk_mtup.probe_size && 3146 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3147 tcp_mtup_probe_success(sk); 3148 } 3149 3150 if (tcp_is_reno(tp)) { 3151 tcp_remove_reno_sacks(sk, pkts_acked); 3152 } else { 3153 int delta; 3154 3155 /* Non-retransmitted hole got filled? That's reordering */ 3156 if (before(reord, prior_fack)) 3157 tcp_check_sack_reordering(sk, reord, 0); 3158 3159 delta = prior_sacked - tp->sacked_out; 3160 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3161 } 3162 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3163 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3164 /* Do not re-arm RTO if the sack RTT is measured from data sent 3165 * after when the head was last (re)transmitted. Otherwise the 3166 * timeout may continue to extend in loss recovery. 3167 */ 3168 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3169 } 3170 3171 if (icsk->icsk_ca_ops->pkts_acked) { 3172 struct ack_sample sample = { .pkts_acked = pkts_acked, 3173 .rtt_us = sack->rate->rtt_us, 3174 .in_flight = last_in_flight }; 3175 3176 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3177 } 3178 3179 #if FASTRETRANS_DEBUG > 0 3180 WARN_ON((int)tp->sacked_out < 0); 3181 WARN_ON((int)tp->lost_out < 0); 3182 WARN_ON((int)tp->retrans_out < 0); 3183 if (!tp->packets_out && tcp_is_sack(tp)) { 3184 icsk = inet_csk(sk); 3185 if (tp->lost_out) { 3186 pr_debug("Leak l=%u %d\n", 3187 tp->lost_out, icsk->icsk_ca_state); 3188 tp->lost_out = 0; 3189 } 3190 if (tp->sacked_out) { 3191 pr_debug("Leak s=%u %d\n", 3192 tp->sacked_out, icsk->icsk_ca_state); 3193 tp->sacked_out = 0; 3194 } 3195 if (tp->retrans_out) { 3196 pr_debug("Leak r=%u %d\n", 3197 tp->retrans_out, icsk->icsk_ca_state); 3198 tp->retrans_out = 0; 3199 } 3200 } 3201 #endif 3202 return flag; 3203 } 3204 3205 static void tcp_ack_probe(struct sock *sk) 3206 { 3207 struct inet_connection_sock *icsk = inet_csk(sk); 3208 struct sk_buff *head = tcp_send_head(sk); 3209 const struct tcp_sock *tp = tcp_sk(sk); 3210 3211 /* Was it a usable window open? */ 3212 if (!head) 3213 return; 3214 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3215 icsk->icsk_backoff = 0; 3216 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3217 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3218 * This function is not for random using! 3219 */ 3220 } else { 3221 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3222 3223 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3224 when, TCP_RTO_MAX); 3225 } 3226 } 3227 3228 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3229 { 3230 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3231 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3232 } 3233 3234 /* Decide wheather to run the increase function of congestion control. */ 3235 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3236 { 3237 /* If reordering is high then always grow cwnd whenever data is 3238 * delivered regardless of its ordering. Otherwise stay conservative 3239 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3240 * new SACK or ECE mark may first advance cwnd here and later reduce 3241 * cwnd in tcp_fastretrans_alert() based on more states. 3242 */ 3243 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3244 return flag & FLAG_FORWARD_PROGRESS; 3245 3246 return flag & FLAG_DATA_ACKED; 3247 } 3248 3249 /* The "ultimate" congestion control function that aims to replace the rigid 3250 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3251 * It's called toward the end of processing an ACK with precise rate 3252 * information. All transmission or retransmission are delayed afterwards. 3253 */ 3254 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3255 int flag, const struct rate_sample *rs) 3256 { 3257 const struct inet_connection_sock *icsk = inet_csk(sk); 3258 3259 if (icsk->icsk_ca_ops->cong_control) { 3260 icsk->icsk_ca_ops->cong_control(sk, rs); 3261 return; 3262 } 3263 3264 if (tcp_in_cwnd_reduction(sk)) { 3265 /* Reduce cwnd if state mandates */ 3266 tcp_cwnd_reduction(sk, acked_sacked, flag); 3267 } else if (tcp_may_raise_cwnd(sk, flag)) { 3268 /* Advance cwnd if state allows */ 3269 tcp_cong_avoid(sk, ack, acked_sacked); 3270 } 3271 tcp_update_pacing_rate(sk); 3272 } 3273 3274 /* Check that window update is acceptable. 3275 * The function assumes that snd_una<=ack<=snd_next. 3276 */ 3277 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3278 const u32 ack, const u32 ack_seq, 3279 const u32 nwin) 3280 { 3281 return after(ack, tp->snd_una) || 3282 after(ack_seq, tp->snd_wl1) || 3283 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3284 } 3285 3286 /* If we update tp->snd_una, also update tp->bytes_acked */ 3287 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3288 { 3289 u32 delta = ack - tp->snd_una; 3290 3291 sock_owned_by_me((struct sock *)tp); 3292 tp->bytes_acked += delta; 3293 tp->snd_una = ack; 3294 } 3295 3296 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3297 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3298 { 3299 u32 delta = seq - tp->rcv_nxt; 3300 3301 sock_owned_by_me((struct sock *)tp); 3302 tp->bytes_received += delta; 3303 tp->rcv_nxt = seq; 3304 } 3305 3306 /* Update our send window. 3307 * 3308 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3309 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3310 */ 3311 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3312 u32 ack_seq) 3313 { 3314 struct tcp_sock *tp = tcp_sk(sk); 3315 int flag = 0; 3316 u32 nwin = ntohs(tcp_hdr(skb)->window); 3317 3318 if (likely(!tcp_hdr(skb)->syn)) 3319 nwin <<= tp->rx_opt.snd_wscale; 3320 3321 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3322 flag |= FLAG_WIN_UPDATE; 3323 tcp_update_wl(tp, ack_seq); 3324 3325 if (tp->snd_wnd != nwin) { 3326 tp->snd_wnd = nwin; 3327 3328 /* Note, it is the only place, where 3329 * fast path is recovered for sending TCP. 3330 */ 3331 tp->pred_flags = 0; 3332 tcp_fast_path_check(sk); 3333 3334 if (!tcp_write_queue_empty(sk)) 3335 tcp_slow_start_after_idle_check(sk); 3336 3337 if (nwin > tp->max_window) { 3338 tp->max_window = nwin; 3339 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3340 } 3341 } 3342 } 3343 3344 tcp_snd_una_update(tp, ack); 3345 3346 return flag; 3347 } 3348 3349 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3350 u32 *last_oow_ack_time) 3351 { 3352 if (*last_oow_ack_time) { 3353 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3354 3355 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3356 NET_INC_STATS(net, mib_idx); 3357 return true; /* rate-limited: don't send yet! */ 3358 } 3359 } 3360 3361 *last_oow_ack_time = tcp_jiffies32; 3362 3363 return false; /* not rate-limited: go ahead, send dupack now! */ 3364 } 3365 3366 /* Return true if we're currently rate-limiting out-of-window ACKs and 3367 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3368 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3369 * attacks that send repeated SYNs or ACKs for the same connection. To 3370 * do this, we do not send a duplicate SYNACK or ACK if the remote 3371 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3372 */ 3373 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3374 int mib_idx, u32 *last_oow_ack_time) 3375 { 3376 /* Data packets without SYNs are not likely part of an ACK loop. */ 3377 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3378 !tcp_hdr(skb)->syn) 3379 return false; 3380 3381 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3382 } 3383 3384 /* RFC 5961 7 [ACK Throttling] */ 3385 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3386 { 3387 /* unprotected vars, we dont care of overwrites */ 3388 static u32 challenge_timestamp; 3389 static unsigned int challenge_count; 3390 struct tcp_sock *tp = tcp_sk(sk); 3391 struct net *net = sock_net(sk); 3392 u32 count, now; 3393 3394 /* First check our per-socket dupack rate limit. */ 3395 if (__tcp_oow_rate_limited(net, 3396 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3397 &tp->last_oow_ack_time)) 3398 return; 3399 3400 /* Then check host-wide RFC 5961 rate limit. */ 3401 now = jiffies / HZ; 3402 if (now != challenge_timestamp) { 3403 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3404 u32 half = (ack_limit + 1) >> 1; 3405 3406 challenge_timestamp = now; 3407 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3408 } 3409 count = READ_ONCE(challenge_count); 3410 if (count > 0) { 3411 WRITE_ONCE(challenge_count, count - 1); 3412 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3413 tcp_send_ack(sk); 3414 } 3415 } 3416 3417 static void tcp_store_ts_recent(struct tcp_sock *tp) 3418 { 3419 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3420 tp->rx_opt.ts_recent_stamp = get_seconds(); 3421 } 3422 3423 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3424 { 3425 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3426 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3427 * extra check below makes sure this can only happen 3428 * for pure ACK frames. -DaveM 3429 * 3430 * Not only, also it occurs for expired timestamps. 3431 */ 3432 3433 if (tcp_paws_check(&tp->rx_opt, 0)) 3434 tcp_store_ts_recent(tp); 3435 } 3436 } 3437 3438 /* This routine deals with acks during a TLP episode. 3439 * We mark the end of a TLP episode on receiving TLP dupack or when 3440 * ack is after tlp_high_seq. 3441 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3442 */ 3443 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3444 { 3445 struct tcp_sock *tp = tcp_sk(sk); 3446 3447 if (before(ack, tp->tlp_high_seq)) 3448 return; 3449 3450 if (flag & FLAG_DSACKING_ACK) { 3451 /* This DSACK means original and TLP probe arrived; no loss */ 3452 tp->tlp_high_seq = 0; 3453 } else if (after(ack, tp->tlp_high_seq)) { 3454 /* ACK advances: there was a loss, so reduce cwnd. Reset 3455 * tlp_high_seq in tcp_init_cwnd_reduction() 3456 */ 3457 tcp_init_cwnd_reduction(sk); 3458 tcp_set_ca_state(sk, TCP_CA_CWR); 3459 tcp_end_cwnd_reduction(sk); 3460 tcp_try_keep_open(sk); 3461 NET_INC_STATS(sock_net(sk), 3462 LINUX_MIB_TCPLOSSPROBERECOVERY); 3463 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3464 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3465 /* Pure dupack: original and TLP probe arrived; no loss */ 3466 tp->tlp_high_seq = 0; 3467 } 3468 } 3469 3470 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3471 { 3472 const struct inet_connection_sock *icsk = inet_csk(sk); 3473 3474 if (icsk->icsk_ca_ops->in_ack_event) 3475 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3476 } 3477 3478 /* Congestion control has updated the cwnd already. So if we're in 3479 * loss recovery then now we do any new sends (for FRTO) or 3480 * retransmits (for CA_Loss or CA_recovery) that make sense. 3481 */ 3482 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3483 { 3484 struct tcp_sock *tp = tcp_sk(sk); 3485 3486 if (rexmit == REXMIT_NONE) 3487 return; 3488 3489 if (unlikely(rexmit == 2)) { 3490 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3491 TCP_NAGLE_OFF); 3492 if (after(tp->snd_nxt, tp->high_seq)) 3493 return; 3494 tp->frto = 0; 3495 } 3496 tcp_xmit_retransmit_queue(sk); 3497 } 3498 3499 /* This routine deals with incoming acks, but not outgoing ones. */ 3500 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3501 { 3502 struct inet_connection_sock *icsk = inet_csk(sk); 3503 struct tcp_sock *tp = tcp_sk(sk); 3504 struct tcp_sacktag_state sack_state; 3505 struct rate_sample rs = { .prior_delivered = 0 }; 3506 u32 prior_snd_una = tp->snd_una; 3507 bool is_sack_reneg = tp->is_sack_reneg; 3508 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3509 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3510 bool is_dupack = false; 3511 int prior_packets = tp->packets_out; 3512 u32 delivered = tp->delivered; 3513 u32 lost = tp->lost; 3514 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3515 u32 prior_fack; 3516 3517 sack_state.first_sackt = 0; 3518 sack_state.rate = &rs; 3519 3520 /* We very likely will need to access rtx queue. */ 3521 prefetch(sk->tcp_rtx_queue.rb_node); 3522 3523 /* If the ack is older than previous acks 3524 * then we can probably ignore it. 3525 */ 3526 if (before(ack, prior_snd_una)) { 3527 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3528 if (before(ack, prior_snd_una - tp->max_window)) { 3529 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3530 tcp_send_challenge_ack(sk, skb); 3531 return -1; 3532 } 3533 goto old_ack; 3534 } 3535 3536 /* If the ack includes data we haven't sent yet, discard 3537 * this segment (RFC793 Section 3.9). 3538 */ 3539 if (after(ack, tp->snd_nxt)) 3540 goto invalid_ack; 3541 3542 if (after(ack, prior_snd_una)) { 3543 flag |= FLAG_SND_UNA_ADVANCED; 3544 icsk->icsk_retransmits = 0; 3545 } 3546 3547 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3548 rs.prior_in_flight = tcp_packets_in_flight(tp); 3549 3550 /* ts_recent update must be made after we are sure that the packet 3551 * is in window. 3552 */ 3553 if (flag & FLAG_UPDATE_TS_RECENT) 3554 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3555 3556 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3557 /* Window is constant, pure forward advance. 3558 * No more checks are required. 3559 * Note, we use the fact that SND.UNA>=SND.WL2. 3560 */ 3561 tcp_update_wl(tp, ack_seq); 3562 tcp_snd_una_update(tp, ack); 3563 flag |= FLAG_WIN_UPDATE; 3564 3565 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3566 3567 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3568 } else { 3569 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3570 3571 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3572 flag |= FLAG_DATA; 3573 else 3574 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3575 3576 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3577 3578 if (TCP_SKB_CB(skb)->sacked) 3579 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3580 &sack_state); 3581 3582 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3583 flag |= FLAG_ECE; 3584 ack_ev_flags |= CA_ACK_ECE; 3585 } 3586 3587 if (flag & FLAG_WIN_UPDATE) 3588 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3589 3590 tcp_in_ack_event(sk, ack_ev_flags); 3591 } 3592 3593 /* We passed data and got it acked, remove any soft error 3594 * log. Something worked... 3595 */ 3596 sk->sk_err_soft = 0; 3597 icsk->icsk_probes_out = 0; 3598 tp->rcv_tstamp = tcp_jiffies32; 3599 if (!prior_packets) 3600 goto no_queue; 3601 3602 /* See if we can take anything off of the retransmit queue. */ 3603 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3604 3605 tcp_rack_update_reo_wnd(sk, &rs); 3606 3607 if (tp->tlp_high_seq) 3608 tcp_process_tlp_ack(sk, ack, flag); 3609 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3610 if (flag & FLAG_SET_XMIT_TIMER) 3611 tcp_set_xmit_timer(sk); 3612 3613 if (tcp_ack_is_dubious(sk, flag)) { 3614 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3615 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3616 &rexmit); 3617 } 3618 3619 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3620 sk_dst_confirm(sk); 3621 3622 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3623 lost = tp->lost - lost; /* freshly marked lost */ 3624 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3625 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3626 tcp_xmit_recovery(sk, rexmit); 3627 return 1; 3628 3629 no_queue: 3630 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3631 if (flag & FLAG_DSACKING_ACK) 3632 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3633 &rexmit); 3634 /* If this ack opens up a zero window, clear backoff. It was 3635 * being used to time the probes, and is probably far higher than 3636 * it needs to be for normal retransmission. 3637 */ 3638 tcp_ack_probe(sk); 3639 3640 if (tp->tlp_high_seq) 3641 tcp_process_tlp_ack(sk, ack, flag); 3642 return 1; 3643 3644 invalid_ack: 3645 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3646 return -1; 3647 3648 old_ack: 3649 /* If data was SACKed, tag it and see if we should send more data. 3650 * If data was DSACKed, see if we can undo a cwnd reduction. 3651 */ 3652 if (TCP_SKB_CB(skb)->sacked) { 3653 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3654 &sack_state); 3655 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3656 &rexmit); 3657 tcp_xmit_recovery(sk, rexmit); 3658 } 3659 3660 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3661 return 0; 3662 } 3663 3664 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3665 bool syn, struct tcp_fastopen_cookie *foc, 3666 bool exp_opt) 3667 { 3668 /* Valid only in SYN or SYN-ACK with an even length. */ 3669 if (!foc || !syn || len < 0 || (len & 1)) 3670 return; 3671 3672 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3673 len <= TCP_FASTOPEN_COOKIE_MAX) 3674 memcpy(foc->val, cookie, len); 3675 else if (len != 0) 3676 len = -1; 3677 foc->len = len; 3678 foc->exp = exp_opt; 3679 } 3680 3681 static void smc_parse_options(const struct tcphdr *th, 3682 struct tcp_options_received *opt_rx, 3683 const unsigned char *ptr, 3684 int opsize) 3685 { 3686 #if IS_ENABLED(CONFIG_SMC) 3687 if (static_branch_unlikely(&tcp_have_smc)) { 3688 if (th->syn && !(opsize & 1) && 3689 opsize >= TCPOLEN_EXP_SMC_BASE && 3690 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3691 opt_rx->smc_ok = 1; 3692 } 3693 #endif 3694 } 3695 3696 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3697 * But, this can also be called on packets in the established flow when 3698 * the fast version below fails. 3699 */ 3700 void tcp_parse_options(const struct net *net, 3701 const struct sk_buff *skb, 3702 struct tcp_options_received *opt_rx, int estab, 3703 struct tcp_fastopen_cookie *foc) 3704 { 3705 const unsigned char *ptr; 3706 const struct tcphdr *th = tcp_hdr(skb); 3707 int length = (th->doff * 4) - sizeof(struct tcphdr); 3708 3709 ptr = (const unsigned char *)(th + 1); 3710 opt_rx->saw_tstamp = 0; 3711 3712 while (length > 0) { 3713 int opcode = *ptr++; 3714 int opsize; 3715 3716 switch (opcode) { 3717 case TCPOPT_EOL: 3718 return; 3719 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3720 length--; 3721 continue; 3722 default: 3723 opsize = *ptr++; 3724 if (opsize < 2) /* "silly options" */ 3725 return; 3726 if (opsize > length) 3727 return; /* don't parse partial options */ 3728 switch (opcode) { 3729 case TCPOPT_MSS: 3730 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3731 u16 in_mss = get_unaligned_be16(ptr); 3732 if (in_mss) { 3733 if (opt_rx->user_mss && 3734 opt_rx->user_mss < in_mss) 3735 in_mss = opt_rx->user_mss; 3736 opt_rx->mss_clamp = in_mss; 3737 } 3738 } 3739 break; 3740 case TCPOPT_WINDOW: 3741 if (opsize == TCPOLEN_WINDOW && th->syn && 3742 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3743 __u8 snd_wscale = *(__u8 *)ptr; 3744 opt_rx->wscale_ok = 1; 3745 if (snd_wscale > TCP_MAX_WSCALE) { 3746 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3747 __func__, 3748 snd_wscale, 3749 TCP_MAX_WSCALE); 3750 snd_wscale = TCP_MAX_WSCALE; 3751 } 3752 opt_rx->snd_wscale = snd_wscale; 3753 } 3754 break; 3755 case TCPOPT_TIMESTAMP: 3756 if ((opsize == TCPOLEN_TIMESTAMP) && 3757 ((estab && opt_rx->tstamp_ok) || 3758 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3759 opt_rx->saw_tstamp = 1; 3760 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3761 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3762 } 3763 break; 3764 case TCPOPT_SACK_PERM: 3765 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3766 !estab && net->ipv4.sysctl_tcp_sack) { 3767 opt_rx->sack_ok = TCP_SACK_SEEN; 3768 tcp_sack_reset(opt_rx); 3769 } 3770 break; 3771 3772 case TCPOPT_SACK: 3773 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3774 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3775 opt_rx->sack_ok) { 3776 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3777 } 3778 break; 3779 #ifdef CONFIG_TCP_MD5SIG 3780 case TCPOPT_MD5SIG: 3781 /* 3782 * The MD5 Hash has already been 3783 * checked (see tcp_v{4,6}_do_rcv()). 3784 */ 3785 break; 3786 #endif 3787 case TCPOPT_FASTOPEN: 3788 tcp_parse_fastopen_option( 3789 opsize - TCPOLEN_FASTOPEN_BASE, 3790 ptr, th->syn, foc, false); 3791 break; 3792 3793 case TCPOPT_EXP: 3794 /* Fast Open option shares code 254 using a 3795 * 16 bits magic number. 3796 */ 3797 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3798 get_unaligned_be16(ptr) == 3799 TCPOPT_FASTOPEN_MAGIC) 3800 tcp_parse_fastopen_option(opsize - 3801 TCPOLEN_EXP_FASTOPEN_BASE, 3802 ptr + 2, th->syn, foc, true); 3803 else 3804 smc_parse_options(th, opt_rx, ptr, 3805 opsize); 3806 break; 3807 3808 } 3809 ptr += opsize-2; 3810 length -= opsize; 3811 } 3812 } 3813 } 3814 EXPORT_SYMBOL(tcp_parse_options); 3815 3816 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3817 { 3818 const __be32 *ptr = (const __be32 *)(th + 1); 3819 3820 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3821 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3822 tp->rx_opt.saw_tstamp = 1; 3823 ++ptr; 3824 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3825 ++ptr; 3826 if (*ptr) 3827 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3828 else 3829 tp->rx_opt.rcv_tsecr = 0; 3830 return true; 3831 } 3832 return false; 3833 } 3834 3835 /* Fast parse options. This hopes to only see timestamps. 3836 * If it is wrong it falls back on tcp_parse_options(). 3837 */ 3838 static bool tcp_fast_parse_options(const struct net *net, 3839 const struct sk_buff *skb, 3840 const struct tcphdr *th, struct tcp_sock *tp) 3841 { 3842 /* In the spirit of fast parsing, compare doff directly to constant 3843 * values. Because equality is used, short doff can be ignored here. 3844 */ 3845 if (th->doff == (sizeof(*th) / 4)) { 3846 tp->rx_opt.saw_tstamp = 0; 3847 return false; 3848 } else if (tp->rx_opt.tstamp_ok && 3849 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3850 if (tcp_parse_aligned_timestamp(tp, th)) 3851 return true; 3852 } 3853 3854 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3855 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3856 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3857 3858 return true; 3859 } 3860 3861 #ifdef CONFIG_TCP_MD5SIG 3862 /* 3863 * Parse MD5 Signature option 3864 */ 3865 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3866 { 3867 int length = (th->doff << 2) - sizeof(*th); 3868 const u8 *ptr = (const u8 *)(th + 1); 3869 3870 /* If the TCP option is too short, we can short cut */ 3871 if (length < TCPOLEN_MD5SIG) 3872 return NULL; 3873 3874 while (length > 0) { 3875 int opcode = *ptr++; 3876 int opsize; 3877 3878 switch (opcode) { 3879 case TCPOPT_EOL: 3880 return NULL; 3881 case TCPOPT_NOP: 3882 length--; 3883 continue; 3884 default: 3885 opsize = *ptr++; 3886 if (opsize < 2 || opsize > length) 3887 return NULL; 3888 if (opcode == TCPOPT_MD5SIG) 3889 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3890 } 3891 ptr += opsize - 2; 3892 length -= opsize; 3893 } 3894 return NULL; 3895 } 3896 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3897 #endif 3898 3899 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3900 * 3901 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3902 * it can pass through stack. So, the following predicate verifies that 3903 * this segment is not used for anything but congestion avoidance or 3904 * fast retransmit. Moreover, we even are able to eliminate most of such 3905 * second order effects, if we apply some small "replay" window (~RTO) 3906 * to timestamp space. 3907 * 3908 * All these measures still do not guarantee that we reject wrapped ACKs 3909 * on networks with high bandwidth, when sequence space is recycled fastly, 3910 * but it guarantees that such events will be very rare and do not affect 3911 * connection seriously. This doesn't look nice, but alas, PAWS is really 3912 * buggy extension. 3913 * 3914 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3915 * states that events when retransmit arrives after original data are rare. 3916 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3917 * the biggest problem on large power networks even with minor reordering. 3918 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3919 * up to bandwidth of 18Gigabit/sec. 8) ] 3920 */ 3921 3922 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3923 { 3924 const struct tcp_sock *tp = tcp_sk(sk); 3925 const struct tcphdr *th = tcp_hdr(skb); 3926 u32 seq = TCP_SKB_CB(skb)->seq; 3927 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3928 3929 return (/* 1. Pure ACK with correct sequence number. */ 3930 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3931 3932 /* 2. ... and duplicate ACK. */ 3933 ack == tp->snd_una && 3934 3935 /* 3. ... and does not update window. */ 3936 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3937 3938 /* 4. ... and sits in replay window. */ 3939 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3940 } 3941 3942 static inline bool tcp_paws_discard(const struct sock *sk, 3943 const struct sk_buff *skb) 3944 { 3945 const struct tcp_sock *tp = tcp_sk(sk); 3946 3947 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3948 !tcp_disordered_ack(sk, skb); 3949 } 3950 3951 /* Check segment sequence number for validity. 3952 * 3953 * Segment controls are considered valid, if the segment 3954 * fits to the window after truncation to the window. Acceptability 3955 * of data (and SYN, FIN, of course) is checked separately. 3956 * See tcp_data_queue(), for example. 3957 * 3958 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3959 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3960 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3961 * (borrowed from freebsd) 3962 */ 3963 3964 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3965 { 3966 return !before(end_seq, tp->rcv_wup) && 3967 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3968 } 3969 3970 /* When we get a reset we do this. */ 3971 void tcp_reset(struct sock *sk) 3972 { 3973 trace_tcp_receive_reset(sk); 3974 3975 /* We want the right error as BSD sees it (and indeed as we do). */ 3976 switch (sk->sk_state) { 3977 case TCP_SYN_SENT: 3978 sk->sk_err = ECONNREFUSED; 3979 break; 3980 case TCP_CLOSE_WAIT: 3981 sk->sk_err = EPIPE; 3982 break; 3983 case TCP_CLOSE: 3984 return; 3985 default: 3986 sk->sk_err = ECONNRESET; 3987 } 3988 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3989 smp_wmb(); 3990 3991 tcp_done(sk); 3992 3993 if (!sock_flag(sk, SOCK_DEAD)) 3994 sk->sk_error_report(sk); 3995 } 3996 3997 /* 3998 * Process the FIN bit. This now behaves as it is supposed to work 3999 * and the FIN takes effect when it is validly part of sequence 4000 * space. Not before when we get holes. 4001 * 4002 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4003 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4004 * TIME-WAIT) 4005 * 4006 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4007 * close and we go into CLOSING (and later onto TIME-WAIT) 4008 * 4009 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4010 */ 4011 void tcp_fin(struct sock *sk) 4012 { 4013 struct tcp_sock *tp = tcp_sk(sk); 4014 4015 inet_csk_schedule_ack(sk); 4016 4017 sk->sk_shutdown |= RCV_SHUTDOWN; 4018 sock_set_flag(sk, SOCK_DONE); 4019 4020 switch (sk->sk_state) { 4021 case TCP_SYN_RECV: 4022 case TCP_ESTABLISHED: 4023 /* Move to CLOSE_WAIT */ 4024 tcp_set_state(sk, TCP_CLOSE_WAIT); 4025 inet_csk(sk)->icsk_ack.pingpong = 1; 4026 break; 4027 4028 case TCP_CLOSE_WAIT: 4029 case TCP_CLOSING: 4030 /* Received a retransmission of the FIN, do 4031 * nothing. 4032 */ 4033 break; 4034 case TCP_LAST_ACK: 4035 /* RFC793: Remain in the LAST-ACK state. */ 4036 break; 4037 4038 case TCP_FIN_WAIT1: 4039 /* This case occurs when a simultaneous close 4040 * happens, we must ack the received FIN and 4041 * enter the CLOSING state. 4042 */ 4043 tcp_send_ack(sk); 4044 tcp_set_state(sk, TCP_CLOSING); 4045 break; 4046 case TCP_FIN_WAIT2: 4047 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4048 tcp_send_ack(sk); 4049 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4050 break; 4051 default: 4052 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4053 * cases we should never reach this piece of code. 4054 */ 4055 pr_err("%s: Impossible, sk->sk_state=%d\n", 4056 __func__, sk->sk_state); 4057 break; 4058 } 4059 4060 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4061 * Probably, we should reset in this case. For now drop them. 4062 */ 4063 skb_rbtree_purge(&tp->out_of_order_queue); 4064 if (tcp_is_sack(tp)) 4065 tcp_sack_reset(&tp->rx_opt); 4066 sk_mem_reclaim(sk); 4067 4068 if (!sock_flag(sk, SOCK_DEAD)) { 4069 sk->sk_state_change(sk); 4070 4071 /* Do not send POLL_HUP for half duplex close. */ 4072 if (sk->sk_shutdown == SHUTDOWN_MASK || 4073 sk->sk_state == TCP_CLOSE) 4074 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4075 else 4076 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4077 } 4078 } 4079 4080 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4081 u32 end_seq) 4082 { 4083 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4084 if (before(seq, sp->start_seq)) 4085 sp->start_seq = seq; 4086 if (after(end_seq, sp->end_seq)) 4087 sp->end_seq = end_seq; 4088 return true; 4089 } 4090 return false; 4091 } 4092 4093 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4094 { 4095 struct tcp_sock *tp = tcp_sk(sk); 4096 4097 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4098 int mib_idx; 4099 4100 if (before(seq, tp->rcv_nxt)) 4101 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4102 else 4103 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4104 4105 NET_INC_STATS(sock_net(sk), mib_idx); 4106 4107 tp->rx_opt.dsack = 1; 4108 tp->duplicate_sack[0].start_seq = seq; 4109 tp->duplicate_sack[0].end_seq = end_seq; 4110 } 4111 } 4112 4113 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4114 { 4115 struct tcp_sock *tp = tcp_sk(sk); 4116 4117 if (!tp->rx_opt.dsack) 4118 tcp_dsack_set(sk, seq, end_seq); 4119 else 4120 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4121 } 4122 4123 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4124 { 4125 struct tcp_sock *tp = tcp_sk(sk); 4126 4127 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4128 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4129 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4130 tcp_enter_quickack_mode(sk); 4131 4132 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4133 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4134 4135 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4136 end_seq = tp->rcv_nxt; 4137 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4138 } 4139 } 4140 4141 tcp_send_ack(sk); 4142 } 4143 4144 /* These routines update the SACK block as out-of-order packets arrive or 4145 * in-order packets close up the sequence space. 4146 */ 4147 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4148 { 4149 int this_sack; 4150 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4151 struct tcp_sack_block *swalk = sp + 1; 4152 4153 /* See if the recent change to the first SACK eats into 4154 * or hits the sequence space of other SACK blocks, if so coalesce. 4155 */ 4156 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4157 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4158 int i; 4159 4160 /* Zap SWALK, by moving every further SACK up by one slot. 4161 * Decrease num_sacks. 4162 */ 4163 tp->rx_opt.num_sacks--; 4164 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4165 sp[i] = sp[i + 1]; 4166 continue; 4167 } 4168 this_sack++, swalk++; 4169 } 4170 } 4171 4172 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4173 { 4174 struct tcp_sock *tp = tcp_sk(sk); 4175 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4176 int cur_sacks = tp->rx_opt.num_sacks; 4177 int this_sack; 4178 4179 if (!cur_sacks) 4180 goto new_sack; 4181 4182 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4183 if (tcp_sack_extend(sp, seq, end_seq)) { 4184 /* Rotate this_sack to the first one. */ 4185 for (; this_sack > 0; this_sack--, sp--) 4186 swap(*sp, *(sp - 1)); 4187 if (cur_sacks > 1) 4188 tcp_sack_maybe_coalesce(tp); 4189 return; 4190 } 4191 } 4192 4193 /* Could not find an adjacent existing SACK, build a new one, 4194 * put it at the front, and shift everyone else down. We 4195 * always know there is at least one SACK present already here. 4196 * 4197 * If the sack array is full, forget about the last one. 4198 */ 4199 if (this_sack >= TCP_NUM_SACKS) { 4200 this_sack--; 4201 tp->rx_opt.num_sacks--; 4202 sp--; 4203 } 4204 for (; this_sack > 0; this_sack--, sp--) 4205 *sp = *(sp - 1); 4206 4207 new_sack: 4208 /* Build the new head SACK, and we're done. */ 4209 sp->start_seq = seq; 4210 sp->end_seq = end_seq; 4211 tp->rx_opt.num_sacks++; 4212 } 4213 4214 /* RCV.NXT advances, some SACKs should be eaten. */ 4215 4216 static void tcp_sack_remove(struct tcp_sock *tp) 4217 { 4218 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4219 int num_sacks = tp->rx_opt.num_sacks; 4220 int this_sack; 4221 4222 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4223 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4224 tp->rx_opt.num_sacks = 0; 4225 return; 4226 } 4227 4228 for (this_sack = 0; this_sack < num_sacks;) { 4229 /* Check if the start of the sack is covered by RCV.NXT. */ 4230 if (!before(tp->rcv_nxt, sp->start_seq)) { 4231 int i; 4232 4233 /* RCV.NXT must cover all the block! */ 4234 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4235 4236 /* Zap this SACK, by moving forward any other SACKS. */ 4237 for (i = this_sack+1; i < num_sacks; i++) 4238 tp->selective_acks[i-1] = tp->selective_acks[i]; 4239 num_sacks--; 4240 continue; 4241 } 4242 this_sack++; 4243 sp++; 4244 } 4245 tp->rx_opt.num_sacks = num_sacks; 4246 } 4247 4248 /** 4249 * tcp_try_coalesce - try to merge skb to prior one 4250 * @sk: socket 4251 * @dest: destination queue 4252 * @to: prior buffer 4253 * @from: buffer to add in queue 4254 * @fragstolen: pointer to boolean 4255 * 4256 * Before queueing skb @from after @to, try to merge them 4257 * to reduce overall memory use and queue lengths, if cost is small. 4258 * Packets in ofo or receive queues can stay a long time. 4259 * Better try to coalesce them right now to avoid future collapses. 4260 * Returns true if caller should free @from instead of queueing it 4261 */ 4262 static bool tcp_try_coalesce(struct sock *sk, 4263 struct sk_buff *to, 4264 struct sk_buff *from, 4265 bool *fragstolen) 4266 { 4267 int delta; 4268 4269 *fragstolen = false; 4270 4271 /* Its possible this segment overlaps with prior segment in queue */ 4272 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4273 return false; 4274 4275 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4276 return false; 4277 4278 atomic_add(delta, &sk->sk_rmem_alloc); 4279 sk_mem_charge(sk, delta); 4280 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4281 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4282 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4283 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4284 4285 if (TCP_SKB_CB(from)->has_rxtstamp) { 4286 TCP_SKB_CB(to)->has_rxtstamp = true; 4287 to->tstamp = from->tstamp; 4288 } 4289 4290 return true; 4291 } 4292 4293 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4294 { 4295 sk_drops_add(sk, skb); 4296 __kfree_skb(skb); 4297 } 4298 4299 /* This one checks to see if we can put data from the 4300 * out_of_order queue into the receive_queue. 4301 */ 4302 static void tcp_ofo_queue(struct sock *sk) 4303 { 4304 struct tcp_sock *tp = tcp_sk(sk); 4305 __u32 dsack_high = tp->rcv_nxt; 4306 bool fin, fragstolen, eaten; 4307 struct sk_buff *skb, *tail; 4308 struct rb_node *p; 4309 4310 p = rb_first(&tp->out_of_order_queue); 4311 while (p) { 4312 skb = rb_to_skb(p); 4313 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4314 break; 4315 4316 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4317 __u32 dsack = dsack_high; 4318 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4319 dsack_high = TCP_SKB_CB(skb)->end_seq; 4320 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4321 } 4322 p = rb_next(p); 4323 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4324 4325 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4326 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4327 tcp_drop(sk, skb); 4328 continue; 4329 } 4330 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4331 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4332 TCP_SKB_CB(skb)->end_seq); 4333 4334 tail = skb_peek_tail(&sk->sk_receive_queue); 4335 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4336 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4337 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4338 if (!eaten) 4339 __skb_queue_tail(&sk->sk_receive_queue, skb); 4340 else 4341 kfree_skb_partial(skb, fragstolen); 4342 4343 if (unlikely(fin)) { 4344 tcp_fin(sk); 4345 /* tcp_fin() purges tp->out_of_order_queue, 4346 * so we must end this loop right now. 4347 */ 4348 break; 4349 } 4350 } 4351 } 4352 4353 static bool tcp_prune_ofo_queue(struct sock *sk); 4354 static int tcp_prune_queue(struct sock *sk); 4355 4356 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4357 unsigned int size) 4358 { 4359 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4360 !sk_rmem_schedule(sk, skb, size)) { 4361 4362 if (tcp_prune_queue(sk) < 0) 4363 return -1; 4364 4365 while (!sk_rmem_schedule(sk, skb, size)) { 4366 if (!tcp_prune_ofo_queue(sk)) 4367 return -1; 4368 } 4369 } 4370 return 0; 4371 } 4372 4373 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4374 { 4375 struct tcp_sock *tp = tcp_sk(sk); 4376 struct rb_node **p, *parent; 4377 struct sk_buff *skb1; 4378 u32 seq, end_seq; 4379 bool fragstolen; 4380 4381 tcp_ecn_check_ce(tp, skb); 4382 4383 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4384 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4385 tcp_drop(sk, skb); 4386 return; 4387 } 4388 4389 /* Disable header prediction. */ 4390 tp->pred_flags = 0; 4391 inet_csk_schedule_ack(sk); 4392 4393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4394 seq = TCP_SKB_CB(skb)->seq; 4395 end_seq = TCP_SKB_CB(skb)->end_seq; 4396 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4397 tp->rcv_nxt, seq, end_seq); 4398 4399 p = &tp->out_of_order_queue.rb_node; 4400 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4401 /* Initial out of order segment, build 1 SACK. */ 4402 if (tcp_is_sack(tp)) { 4403 tp->rx_opt.num_sacks = 1; 4404 tp->selective_acks[0].start_seq = seq; 4405 tp->selective_acks[0].end_seq = end_seq; 4406 } 4407 rb_link_node(&skb->rbnode, NULL, p); 4408 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4409 tp->ooo_last_skb = skb; 4410 goto end; 4411 } 4412 4413 /* In the typical case, we are adding an skb to the end of the list. 4414 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4415 */ 4416 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4417 skb, &fragstolen)) { 4418 coalesce_done: 4419 tcp_grow_window(sk, skb); 4420 kfree_skb_partial(skb, fragstolen); 4421 skb = NULL; 4422 goto add_sack; 4423 } 4424 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4425 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4426 parent = &tp->ooo_last_skb->rbnode; 4427 p = &parent->rb_right; 4428 goto insert; 4429 } 4430 4431 /* Find place to insert this segment. Handle overlaps on the way. */ 4432 parent = NULL; 4433 while (*p) { 4434 parent = *p; 4435 skb1 = rb_to_skb(parent); 4436 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4437 p = &parent->rb_left; 4438 continue; 4439 } 4440 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4441 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4442 /* All the bits are present. Drop. */ 4443 NET_INC_STATS(sock_net(sk), 4444 LINUX_MIB_TCPOFOMERGE); 4445 __kfree_skb(skb); 4446 skb = NULL; 4447 tcp_dsack_set(sk, seq, end_seq); 4448 goto add_sack; 4449 } 4450 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4451 /* Partial overlap. */ 4452 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4453 } else { 4454 /* skb's seq == skb1's seq and skb covers skb1. 4455 * Replace skb1 with skb. 4456 */ 4457 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4458 &tp->out_of_order_queue); 4459 tcp_dsack_extend(sk, 4460 TCP_SKB_CB(skb1)->seq, 4461 TCP_SKB_CB(skb1)->end_seq); 4462 NET_INC_STATS(sock_net(sk), 4463 LINUX_MIB_TCPOFOMERGE); 4464 __kfree_skb(skb1); 4465 goto merge_right; 4466 } 4467 } else if (tcp_try_coalesce(sk, skb1, 4468 skb, &fragstolen)) { 4469 goto coalesce_done; 4470 } 4471 p = &parent->rb_right; 4472 } 4473 insert: 4474 /* Insert segment into RB tree. */ 4475 rb_link_node(&skb->rbnode, parent, p); 4476 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4477 4478 merge_right: 4479 /* Remove other segments covered by skb. */ 4480 while ((skb1 = skb_rb_next(skb)) != NULL) { 4481 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4482 break; 4483 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4484 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4485 end_seq); 4486 break; 4487 } 4488 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4489 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4490 TCP_SKB_CB(skb1)->end_seq); 4491 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4492 tcp_drop(sk, skb1); 4493 } 4494 /* If there is no skb after us, we are the last_skb ! */ 4495 if (!skb1) 4496 tp->ooo_last_skb = skb; 4497 4498 add_sack: 4499 if (tcp_is_sack(tp)) 4500 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4501 end: 4502 if (skb) { 4503 tcp_grow_window(sk, skb); 4504 skb_condense(skb); 4505 skb_set_owner_r(skb, sk); 4506 } 4507 } 4508 4509 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4510 bool *fragstolen) 4511 { 4512 int eaten; 4513 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4514 4515 __skb_pull(skb, hdrlen); 4516 eaten = (tail && 4517 tcp_try_coalesce(sk, tail, 4518 skb, fragstolen)) ? 1 : 0; 4519 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4520 if (!eaten) { 4521 __skb_queue_tail(&sk->sk_receive_queue, skb); 4522 skb_set_owner_r(skb, sk); 4523 } 4524 return eaten; 4525 } 4526 4527 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4528 { 4529 struct sk_buff *skb; 4530 int err = -ENOMEM; 4531 int data_len = 0; 4532 bool fragstolen; 4533 4534 if (size == 0) 4535 return 0; 4536 4537 if (size > PAGE_SIZE) { 4538 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4539 4540 data_len = npages << PAGE_SHIFT; 4541 size = data_len + (size & ~PAGE_MASK); 4542 } 4543 skb = alloc_skb_with_frags(size - data_len, data_len, 4544 PAGE_ALLOC_COSTLY_ORDER, 4545 &err, sk->sk_allocation); 4546 if (!skb) 4547 goto err; 4548 4549 skb_put(skb, size - data_len); 4550 skb->data_len = data_len; 4551 skb->len = size; 4552 4553 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4554 goto err_free; 4555 4556 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4557 if (err) 4558 goto err_free; 4559 4560 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4561 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4562 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4563 4564 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4565 WARN_ON_ONCE(fragstolen); /* should not happen */ 4566 __kfree_skb(skb); 4567 } 4568 return size; 4569 4570 err_free: 4571 kfree_skb(skb); 4572 err: 4573 return err; 4574 4575 } 4576 4577 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4578 { 4579 struct tcp_sock *tp = tcp_sk(sk); 4580 bool fragstolen; 4581 int eaten; 4582 4583 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4584 __kfree_skb(skb); 4585 return; 4586 } 4587 skb_dst_drop(skb); 4588 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4589 4590 tcp_ecn_accept_cwr(tp, skb); 4591 4592 tp->rx_opt.dsack = 0; 4593 4594 /* Queue data for delivery to the user. 4595 * Packets in sequence go to the receive queue. 4596 * Out of sequence packets to the out_of_order_queue. 4597 */ 4598 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4599 if (tcp_receive_window(tp) == 0) 4600 goto out_of_window; 4601 4602 /* Ok. In sequence. In window. */ 4603 queue_and_out: 4604 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4605 sk_forced_mem_schedule(sk, skb->truesize); 4606 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4607 goto drop; 4608 4609 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4610 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4611 if (skb->len) 4612 tcp_event_data_recv(sk, skb); 4613 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4614 tcp_fin(sk); 4615 4616 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4617 tcp_ofo_queue(sk); 4618 4619 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4620 * gap in queue is filled. 4621 */ 4622 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4623 inet_csk(sk)->icsk_ack.pingpong = 0; 4624 } 4625 4626 if (tp->rx_opt.num_sacks) 4627 tcp_sack_remove(tp); 4628 4629 tcp_fast_path_check(sk); 4630 4631 if (eaten > 0) 4632 kfree_skb_partial(skb, fragstolen); 4633 if (!sock_flag(sk, SOCK_DEAD)) 4634 sk->sk_data_ready(sk); 4635 return; 4636 } 4637 4638 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4639 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4640 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4641 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4642 4643 out_of_window: 4644 tcp_enter_quickack_mode(sk); 4645 inet_csk_schedule_ack(sk); 4646 drop: 4647 tcp_drop(sk, skb); 4648 return; 4649 } 4650 4651 /* Out of window. F.e. zero window probe. */ 4652 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4653 goto out_of_window; 4654 4655 tcp_enter_quickack_mode(sk); 4656 4657 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4658 /* Partial packet, seq < rcv_next < end_seq */ 4659 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4660 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4661 TCP_SKB_CB(skb)->end_seq); 4662 4663 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4664 4665 /* If window is closed, drop tail of packet. But after 4666 * remembering D-SACK for its head made in previous line. 4667 */ 4668 if (!tcp_receive_window(tp)) 4669 goto out_of_window; 4670 goto queue_and_out; 4671 } 4672 4673 tcp_data_queue_ofo(sk, skb); 4674 } 4675 4676 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4677 { 4678 if (list) 4679 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4680 4681 return skb_rb_next(skb); 4682 } 4683 4684 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4685 struct sk_buff_head *list, 4686 struct rb_root *root) 4687 { 4688 struct sk_buff *next = tcp_skb_next(skb, list); 4689 4690 if (list) 4691 __skb_unlink(skb, list); 4692 else 4693 rb_erase(&skb->rbnode, root); 4694 4695 __kfree_skb(skb); 4696 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4697 4698 return next; 4699 } 4700 4701 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4702 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4703 { 4704 struct rb_node **p = &root->rb_node; 4705 struct rb_node *parent = NULL; 4706 struct sk_buff *skb1; 4707 4708 while (*p) { 4709 parent = *p; 4710 skb1 = rb_to_skb(parent); 4711 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4712 p = &parent->rb_left; 4713 else 4714 p = &parent->rb_right; 4715 } 4716 rb_link_node(&skb->rbnode, parent, p); 4717 rb_insert_color(&skb->rbnode, root); 4718 } 4719 4720 /* Collapse contiguous sequence of skbs head..tail with 4721 * sequence numbers start..end. 4722 * 4723 * If tail is NULL, this means until the end of the queue. 4724 * 4725 * Segments with FIN/SYN are not collapsed (only because this 4726 * simplifies code) 4727 */ 4728 static void 4729 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4730 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4731 { 4732 struct sk_buff *skb = head, *n; 4733 struct sk_buff_head tmp; 4734 bool end_of_skbs; 4735 4736 /* First, check that queue is collapsible and find 4737 * the point where collapsing can be useful. 4738 */ 4739 restart: 4740 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4741 n = tcp_skb_next(skb, list); 4742 4743 /* No new bits? It is possible on ofo queue. */ 4744 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4745 skb = tcp_collapse_one(sk, skb, list, root); 4746 if (!skb) 4747 break; 4748 goto restart; 4749 } 4750 4751 /* The first skb to collapse is: 4752 * - not SYN/FIN and 4753 * - bloated or contains data before "start" or 4754 * overlaps to the next one. 4755 */ 4756 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4757 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4758 before(TCP_SKB_CB(skb)->seq, start))) { 4759 end_of_skbs = false; 4760 break; 4761 } 4762 4763 if (n && n != tail && 4764 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4765 end_of_skbs = false; 4766 break; 4767 } 4768 4769 /* Decided to skip this, advance start seq. */ 4770 start = TCP_SKB_CB(skb)->end_seq; 4771 } 4772 if (end_of_skbs || 4773 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4774 return; 4775 4776 __skb_queue_head_init(&tmp); 4777 4778 while (before(start, end)) { 4779 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4780 struct sk_buff *nskb; 4781 4782 nskb = alloc_skb(copy, GFP_ATOMIC); 4783 if (!nskb) 4784 break; 4785 4786 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4787 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4788 if (list) 4789 __skb_queue_before(list, skb, nskb); 4790 else 4791 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4792 skb_set_owner_r(nskb, sk); 4793 4794 /* Copy data, releasing collapsed skbs. */ 4795 while (copy > 0) { 4796 int offset = start - TCP_SKB_CB(skb)->seq; 4797 int size = TCP_SKB_CB(skb)->end_seq - start; 4798 4799 BUG_ON(offset < 0); 4800 if (size > 0) { 4801 size = min(copy, size); 4802 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4803 BUG(); 4804 TCP_SKB_CB(nskb)->end_seq += size; 4805 copy -= size; 4806 start += size; 4807 } 4808 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4809 skb = tcp_collapse_one(sk, skb, list, root); 4810 if (!skb || 4811 skb == tail || 4812 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4813 goto end; 4814 } 4815 } 4816 } 4817 end: 4818 skb_queue_walk_safe(&tmp, skb, n) 4819 tcp_rbtree_insert(root, skb); 4820 } 4821 4822 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4823 * and tcp_collapse() them until all the queue is collapsed. 4824 */ 4825 static void tcp_collapse_ofo_queue(struct sock *sk) 4826 { 4827 struct tcp_sock *tp = tcp_sk(sk); 4828 struct sk_buff *skb, *head; 4829 u32 start, end; 4830 4831 skb = skb_rb_first(&tp->out_of_order_queue); 4832 new_range: 4833 if (!skb) { 4834 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4835 return; 4836 } 4837 start = TCP_SKB_CB(skb)->seq; 4838 end = TCP_SKB_CB(skb)->end_seq; 4839 4840 for (head = skb;;) { 4841 skb = skb_rb_next(skb); 4842 4843 /* Range is terminated when we see a gap or when 4844 * we are at the queue end. 4845 */ 4846 if (!skb || 4847 after(TCP_SKB_CB(skb)->seq, end) || 4848 before(TCP_SKB_CB(skb)->end_seq, start)) { 4849 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4850 head, skb, start, end); 4851 goto new_range; 4852 } 4853 4854 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4855 start = TCP_SKB_CB(skb)->seq; 4856 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4857 end = TCP_SKB_CB(skb)->end_seq; 4858 } 4859 } 4860 4861 /* 4862 * Clean the out-of-order queue to make room. 4863 * We drop high sequences packets to : 4864 * 1) Let a chance for holes to be filled. 4865 * 2) not add too big latencies if thousands of packets sit there. 4866 * (But if application shrinks SO_RCVBUF, we could still end up 4867 * freeing whole queue here) 4868 * 4869 * Return true if queue has shrunk. 4870 */ 4871 static bool tcp_prune_ofo_queue(struct sock *sk) 4872 { 4873 struct tcp_sock *tp = tcp_sk(sk); 4874 struct rb_node *node, *prev; 4875 4876 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4877 return false; 4878 4879 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4880 node = &tp->ooo_last_skb->rbnode; 4881 do { 4882 prev = rb_prev(node); 4883 rb_erase(node, &tp->out_of_order_queue); 4884 tcp_drop(sk, rb_to_skb(node)); 4885 sk_mem_reclaim(sk); 4886 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4887 !tcp_under_memory_pressure(sk)) 4888 break; 4889 node = prev; 4890 } while (node); 4891 tp->ooo_last_skb = rb_to_skb(prev); 4892 4893 /* Reset SACK state. A conforming SACK implementation will 4894 * do the same at a timeout based retransmit. When a connection 4895 * is in a sad state like this, we care only about integrity 4896 * of the connection not performance. 4897 */ 4898 if (tp->rx_opt.sack_ok) 4899 tcp_sack_reset(&tp->rx_opt); 4900 return true; 4901 } 4902 4903 /* Reduce allocated memory if we can, trying to get 4904 * the socket within its memory limits again. 4905 * 4906 * Return less than zero if we should start dropping frames 4907 * until the socket owning process reads some of the data 4908 * to stabilize the situation. 4909 */ 4910 static int tcp_prune_queue(struct sock *sk) 4911 { 4912 struct tcp_sock *tp = tcp_sk(sk); 4913 4914 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4915 4916 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4917 4918 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4919 tcp_clamp_window(sk); 4920 else if (tcp_under_memory_pressure(sk)) 4921 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4922 4923 tcp_collapse_ofo_queue(sk); 4924 if (!skb_queue_empty(&sk->sk_receive_queue)) 4925 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4926 skb_peek(&sk->sk_receive_queue), 4927 NULL, 4928 tp->copied_seq, tp->rcv_nxt); 4929 sk_mem_reclaim(sk); 4930 4931 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4932 return 0; 4933 4934 /* Collapsing did not help, destructive actions follow. 4935 * This must not ever occur. */ 4936 4937 tcp_prune_ofo_queue(sk); 4938 4939 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4940 return 0; 4941 4942 /* If we are really being abused, tell the caller to silently 4943 * drop receive data on the floor. It will get retransmitted 4944 * and hopefully then we'll have sufficient space. 4945 */ 4946 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4947 4948 /* Massive buffer overcommit. */ 4949 tp->pred_flags = 0; 4950 return -1; 4951 } 4952 4953 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4954 { 4955 const struct tcp_sock *tp = tcp_sk(sk); 4956 4957 /* If the user specified a specific send buffer setting, do 4958 * not modify it. 4959 */ 4960 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4961 return false; 4962 4963 /* If we are under global TCP memory pressure, do not expand. */ 4964 if (tcp_under_memory_pressure(sk)) 4965 return false; 4966 4967 /* If we are under soft global TCP memory pressure, do not expand. */ 4968 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4969 return false; 4970 4971 /* If we filled the congestion window, do not expand. */ 4972 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4973 return false; 4974 4975 return true; 4976 } 4977 4978 /* When incoming ACK allowed to free some skb from write_queue, 4979 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4980 * on the exit from tcp input handler. 4981 * 4982 * PROBLEM: sndbuf expansion does not work well with largesend. 4983 */ 4984 static void tcp_new_space(struct sock *sk) 4985 { 4986 struct tcp_sock *tp = tcp_sk(sk); 4987 4988 if (tcp_should_expand_sndbuf(sk)) { 4989 tcp_sndbuf_expand(sk); 4990 tp->snd_cwnd_stamp = tcp_jiffies32; 4991 } 4992 4993 sk->sk_write_space(sk); 4994 } 4995 4996 static void tcp_check_space(struct sock *sk) 4997 { 4998 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4999 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5000 /* pairs with tcp_poll() */ 5001 smp_mb(); 5002 if (sk->sk_socket && 5003 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5004 tcp_new_space(sk); 5005 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5006 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5007 } 5008 } 5009 } 5010 5011 static inline void tcp_data_snd_check(struct sock *sk) 5012 { 5013 tcp_push_pending_frames(sk); 5014 tcp_check_space(sk); 5015 } 5016 5017 /* 5018 * Check if sending an ack is needed. 5019 */ 5020 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5021 { 5022 struct tcp_sock *tp = tcp_sk(sk); 5023 5024 /* More than one full frame received... */ 5025 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5026 /* ... and right edge of window advances far enough. 5027 * (tcp_recvmsg() will send ACK otherwise). Or... 5028 */ 5029 __tcp_select_window(sk) >= tp->rcv_wnd) || 5030 /* We ACK each frame or... */ 5031 tcp_in_quickack_mode(sk) || 5032 /* We have out of order data. */ 5033 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5034 /* Then ack it now */ 5035 tcp_send_ack(sk); 5036 } else { 5037 /* Else, send delayed ack. */ 5038 tcp_send_delayed_ack(sk); 5039 } 5040 } 5041 5042 static inline void tcp_ack_snd_check(struct sock *sk) 5043 { 5044 if (!inet_csk_ack_scheduled(sk)) { 5045 /* We sent a data segment already. */ 5046 return; 5047 } 5048 __tcp_ack_snd_check(sk, 1); 5049 } 5050 5051 /* 5052 * This routine is only called when we have urgent data 5053 * signaled. Its the 'slow' part of tcp_urg. It could be 5054 * moved inline now as tcp_urg is only called from one 5055 * place. We handle URGent data wrong. We have to - as 5056 * BSD still doesn't use the correction from RFC961. 5057 * For 1003.1g we should support a new option TCP_STDURG to permit 5058 * either form (or just set the sysctl tcp_stdurg). 5059 */ 5060 5061 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5062 { 5063 struct tcp_sock *tp = tcp_sk(sk); 5064 u32 ptr = ntohs(th->urg_ptr); 5065 5066 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5067 ptr--; 5068 ptr += ntohl(th->seq); 5069 5070 /* Ignore urgent data that we've already seen and read. */ 5071 if (after(tp->copied_seq, ptr)) 5072 return; 5073 5074 /* Do not replay urg ptr. 5075 * 5076 * NOTE: interesting situation not covered by specs. 5077 * Misbehaving sender may send urg ptr, pointing to segment, 5078 * which we already have in ofo queue. We are not able to fetch 5079 * such data and will stay in TCP_URG_NOTYET until will be eaten 5080 * by recvmsg(). Seems, we are not obliged to handle such wicked 5081 * situations. But it is worth to think about possibility of some 5082 * DoSes using some hypothetical application level deadlock. 5083 */ 5084 if (before(ptr, tp->rcv_nxt)) 5085 return; 5086 5087 /* Do we already have a newer (or duplicate) urgent pointer? */ 5088 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5089 return; 5090 5091 /* Tell the world about our new urgent pointer. */ 5092 sk_send_sigurg(sk); 5093 5094 /* We may be adding urgent data when the last byte read was 5095 * urgent. To do this requires some care. We cannot just ignore 5096 * tp->copied_seq since we would read the last urgent byte again 5097 * as data, nor can we alter copied_seq until this data arrives 5098 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5099 * 5100 * NOTE. Double Dutch. Rendering to plain English: author of comment 5101 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5102 * and expect that both A and B disappear from stream. This is _wrong_. 5103 * Though this happens in BSD with high probability, this is occasional. 5104 * Any application relying on this is buggy. Note also, that fix "works" 5105 * only in this artificial test. Insert some normal data between A and B and we will 5106 * decline of BSD again. Verdict: it is better to remove to trap 5107 * buggy users. 5108 */ 5109 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5110 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5111 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5112 tp->copied_seq++; 5113 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5114 __skb_unlink(skb, &sk->sk_receive_queue); 5115 __kfree_skb(skb); 5116 } 5117 } 5118 5119 tp->urg_data = TCP_URG_NOTYET; 5120 tp->urg_seq = ptr; 5121 5122 /* Disable header prediction. */ 5123 tp->pred_flags = 0; 5124 } 5125 5126 /* This is the 'fast' part of urgent handling. */ 5127 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5128 { 5129 struct tcp_sock *tp = tcp_sk(sk); 5130 5131 /* Check if we get a new urgent pointer - normally not. */ 5132 if (th->urg) 5133 tcp_check_urg(sk, th); 5134 5135 /* Do we wait for any urgent data? - normally not... */ 5136 if (tp->urg_data == TCP_URG_NOTYET) { 5137 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5138 th->syn; 5139 5140 /* Is the urgent pointer pointing into this packet? */ 5141 if (ptr < skb->len) { 5142 u8 tmp; 5143 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5144 BUG(); 5145 tp->urg_data = TCP_URG_VALID | tmp; 5146 if (!sock_flag(sk, SOCK_DEAD)) 5147 sk->sk_data_ready(sk); 5148 } 5149 } 5150 } 5151 5152 /* Accept RST for rcv_nxt - 1 after a FIN. 5153 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5154 * FIN is sent followed by a RST packet. The RST is sent with the same 5155 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5156 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5157 * ACKs on the closed socket. In addition middleboxes can drop either the 5158 * challenge ACK or a subsequent RST. 5159 */ 5160 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5161 { 5162 struct tcp_sock *tp = tcp_sk(sk); 5163 5164 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5165 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5166 TCPF_CLOSING)); 5167 } 5168 5169 /* Does PAWS and seqno based validation of an incoming segment, flags will 5170 * play significant role here. 5171 */ 5172 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5173 const struct tcphdr *th, int syn_inerr) 5174 { 5175 struct tcp_sock *tp = tcp_sk(sk); 5176 bool rst_seq_match = false; 5177 5178 /* RFC1323: H1. Apply PAWS check first. */ 5179 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5180 tp->rx_opt.saw_tstamp && 5181 tcp_paws_discard(sk, skb)) { 5182 if (!th->rst) { 5183 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5184 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5185 LINUX_MIB_TCPACKSKIPPEDPAWS, 5186 &tp->last_oow_ack_time)) 5187 tcp_send_dupack(sk, skb); 5188 goto discard; 5189 } 5190 /* Reset is accepted even if it did not pass PAWS. */ 5191 } 5192 5193 /* Step 1: check sequence number */ 5194 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5195 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5196 * (RST) segments are validated by checking their SEQ-fields." 5197 * And page 69: "If an incoming segment is not acceptable, 5198 * an acknowledgment should be sent in reply (unless the RST 5199 * bit is set, if so drop the segment and return)". 5200 */ 5201 if (!th->rst) { 5202 if (th->syn) 5203 goto syn_challenge; 5204 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5205 LINUX_MIB_TCPACKSKIPPEDSEQ, 5206 &tp->last_oow_ack_time)) 5207 tcp_send_dupack(sk, skb); 5208 } else if (tcp_reset_check(sk, skb)) { 5209 tcp_reset(sk); 5210 } 5211 goto discard; 5212 } 5213 5214 /* Step 2: check RST bit */ 5215 if (th->rst) { 5216 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5217 * FIN and SACK too if available): 5218 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5219 * the right-most SACK block, 5220 * then 5221 * RESET the connection 5222 * else 5223 * Send a challenge ACK 5224 */ 5225 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5226 tcp_reset_check(sk, skb)) { 5227 rst_seq_match = true; 5228 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5229 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5230 int max_sack = sp[0].end_seq; 5231 int this_sack; 5232 5233 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5234 ++this_sack) { 5235 max_sack = after(sp[this_sack].end_seq, 5236 max_sack) ? 5237 sp[this_sack].end_seq : max_sack; 5238 } 5239 5240 if (TCP_SKB_CB(skb)->seq == max_sack) 5241 rst_seq_match = true; 5242 } 5243 5244 if (rst_seq_match) 5245 tcp_reset(sk); 5246 else { 5247 /* Disable TFO if RST is out-of-order 5248 * and no data has been received 5249 * for current active TFO socket 5250 */ 5251 if (tp->syn_fastopen && !tp->data_segs_in && 5252 sk->sk_state == TCP_ESTABLISHED) 5253 tcp_fastopen_active_disable(sk); 5254 tcp_send_challenge_ack(sk, skb); 5255 } 5256 goto discard; 5257 } 5258 5259 /* step 3: check security and precedence [ignored] */ 5260 5261 /* step 4: Check for a SYN 5262 * RFC 5961 4.2 : Send a challenge ack 5263 */ 5264 if (th->syn) { 5265 syn_challenge: 5266 if (syn_inerr) 5267 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5268 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5269 tcp_send_challenge_ack(sk, skb); 5270 goto discard; 5271 } 5272 5273 return true; 5274 5275 discard: 5276 tcp_drop(sk, skb); 5277 return false; 5278 } 5279 5280 /* 5281 * TCP receive function for the ESTABLISHED state. 5282 * 5283 * It is split into a fast path and a slow path. The fast path is 5284 * disabled when: 5285 * - A zero window was announced from us - zero window probing 5286 * is only handled properly in the slow path. 5287 * - Out of order segments arrived. 5288 * - Urgent data is expected. 5289 * - There is no buffer space left 5290 * - Unexpected TCP flags/window values/header lengths are received 5291 * (detected by checking the TCP header against pred_flags) 5292 * - Data is sent in both directions. Fast path only supports pure senders 5293 * or pure receivers (this means either the sequence number or the ack 5294 * value must stay constant) 5295 * - Unexpected TCP option. 5296 * 5297 * When these conditions are not satisfied it drops into a standard 5298 * receive procedure patterned after RFC793 to handle all cases. 5299 * The first three cases are guaranteed by proper pred_flags setting, 5300 * the rest is checked inline. Fast processing is turned on in 5301 * tcp_data_queue when everything is OK. 5302 */ 5303 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5304 const struct tcphdr *th) 5305 { 5306 unsigned int len = skb->len; 5307 struct tcp_sock *tp = tcp_sk(sk); 5308 5309 tcp_mstamp_refresh(tp); 5310 if (unlikely(!sk->sk_rx_dst)) 5311 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5312 /* 5313 * Header prediction. 5314 * The code loosely follows the one in the famous 5315 * "30 instruction TCP receive" Van Jacobson mail. 5316 * 5317 * Van's trick is to deposit buffers into socket queue 5318 * on a device interrupt, to call tcp_recv function 5319 * on the receive process context and checksum and copy 5320 * the buffer to user space. smart... 5321 * 5322 * Our current scheme is not silly either but we take the 5323 * extra cost of the net_bh soft interrupt processing... 5324 * We do checksum and copy also but from device to kernel. 5325 */ 5326 5327 tp->rx_opt.saw_tstamp = 0; 5328 5329 /* pred_flags is 0xS?10 << 16 + snd_wnd 5330 * if header_prediction is to be made 5331 * 'S' will always be tp->tcp_header_len >> 2 5332 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5333 * turn it off (when there are holes in the receive 5334 * space for instance) 5335 * PSH flag is ignored. 5336 */ 5337 5338 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5339 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5340 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5341 int tcp_header_len = tp->tcp_header_len; 5342 5343 /* Timestamp header prediction: tcp_header_len 5344 * is automatically equal to th->doff*4 due to pred_flags 5345 * match. 5346 */ 5347 5348 /* Check timestamp */ 5349 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5350 /* No? Slow path! */ 5351 if (!tcp_parse_aligned_timestamp(tp, th)) 5352 goto slow_path; 5353 5354 /* If PAWS failed, check it more carefully in slow path */ 5355 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5356 goto slow_path; 5357 5358 /* DO NOT update ts_recent here, if checksum fails 5359 * and timestamp was corrupted part, it will result 5360 * in a hung connection since we will drop all 5361 * future packets due to the PAWS test. 5362 */ 5363 } 5364 5365 if (len <= tcp_header_len) { 5366 /* Bulk data transfer: sender */ 5367 if (len == tcp_header_len) { 5368 /* Predicted packet is in window by definition. 5369 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5370 * Hence, check seq<=rcv_wup reduces to: 5371 */ 5372 if (tcp_header_len == 5373 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5374 tp->rcv_nxt == tp->rcv_wup) 5375 tcp_store_ts_recent(tp); 5376 5377 /* We know that such packets are checksummed 5378 * on entry. 5379 */ 5380 tcp_ack(sk, skb, 0); 5381 __kfree_skb(skb); 5382 tcp_data_snd_check(sk); 5383 return; 5384 } else { /* Header too small */ 5385 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5386 goto discard; 5387 } 5388 } else { 5389 int eaten = 0; 5390 bool fragstolen = false; 5391 5392 if (tcp_checksum_complete(skb)) 5393 goto csum_error; 5394 5395 if ((int)skb->truesize > sk->sk_forward_alloc) 5396 goto step5; 5397 5398 /* Predicted packet is in window by definition. 5399 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5400 * Hence, check seq<=rcv_wup reduces to: 5401 */ 5402 if (tcp_header_len == 5403 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5404 tp->rcv_nxt == tp->rcv_wup) 5405 tcp_store_ts_recent(tp); 5406 5407 tcp_rcv_rtt_measure_ts(sk, skb); 5408 5409 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5410 5411 /* Bulk data transfer: receiver */ 5412 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5413 &fragstolen); 5414 5415 tcp_event_data_recv(sk, skb); 5416 5417 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5418 /* Well, only one small jumplet in fast path... */ 5419 tcp_ack(sk, skb, FLAG_DATA); 5420 tcp_data_snd_check(sk); 5421 if (!inet_csk_ack_scheduled(sk)) 5422 goto no_ack; 5423 } 5424 5425 __tcp_ack_snd_check(sk, 0); 5426 no_ack: 5427 if (eaten) 5428 kfree_skb_partial(skb, fragstolen); 5429 sk->sk_data_ready(sk); 5430 return; 5431 } 5432 } 5433 5434 slow_path: 5435 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5436 goto csum_error; 5437 5438 if (!th->ack && !th->rst && !th->syn) 5439 goto discard; 5440 5441 /* 5442 * Standard slow path. 5443 */ 5444 5445 if (!tcp_validate_incoming(sk, skb, th, 1)) 5446 return; 5447 5448 step5: 5449 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5450 goto discard; 5451 5452 tcp_rcv_rtt_measure_ts(sk, skb); 5453 5454 /* Process urgent data. */ 5455 tcp_urg(sk, skb, th); 5456 5457 /* step 7: process the segment text */ 5458 tcp_data_queue(sk, skb); 5459 5460 tcp_data_snd_check(sk); 5461 tcp_ack_snd_check(sk); 5462 return; 5463 5464 csum_error: 5465 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5466 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5467 5468 discard: 5469 tcp_drop(sk, skb); 5470 } 5471 EXPORT_SYMBOL(tcp_rcv_established); 5472 5473 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5474 { 5475 struct tcp_sock *tp = tcp_sk(sk); 5476 struct inet_connection_sock *icsk = inet_csk(sk); 5477 5478 tcp_set_state(sk, TCP_ESTABLISHED); 5479 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5480 5481 if (skb) { 5482 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5483 security_inet_conn_established(sk, skb); 5484 } 5485 5486 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5487 5488 /* Prevent spurious tcp_cwnd_restart() on first data 5489 * packet. 5490 */ 5491 tp->lsndtime = tcp_jiffies32; 5492 5493 if (sock_flag(sk, SOCK_KEEPOPEN)) 5494 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5495 5496 if (!tp->rx_opt.snd_wscale) 5497 __tcp_fast_path_on(tp, tp->snd_wnd); 5498 else 5499 tp->pred_flags = 0; 5500 } 5501 5502 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5503 struct tcp_fastopen_cookie *cookie) 5504 { 5505 struct tcp_sock *tp = tcp_sk(sk); 5506 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5507 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5508 bool syn_drop = false; 5509 5510 if (mss == tp->rx_opt.user_mss) { 5511 struct tcp_options_received opt; 5512 5513 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5514 tcp_clear_options(&opt); 5515 opt.user_mss = opt.mss_clamp = 0; 5516 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5517 mss = opt.mss_clamp; 5518 } 5519 5520 if (!tp->syn_fastopen) { 5521 /* Ignore an unsolicited cookie */ 5522 cookie->len = -1; 5523 } else if (tp->total_retrans) { 5524 /* SYN timed out and the SYN-ACK neither has a cookie nor 5525 * acknowledges data. Presumably the remote received only 5526 * the retransmitted (regular) SYNs: either the original 5527 * SYN-data or the corresponding SYN-ACK was dropped. 5528 */ 5529 syn_drop = (cookie->len < 0 && data); 5530 } else if (cookie->len < 0 && !tp->syn_data) { 5531 /* We requested a cookie but didn't get it. If we did not use 5532 * the (old) exp opt format then try so next time (try_exp=1). 5533 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5534 */ 5535 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5536 } 5537 5538 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5539 5540 if (data) { /* Retransmit unacked data in SYN */ 5541 skb_rbtree_walk_from(data) { 5542 if (__tcp_retransmit_skb(sk, data, 1)) 5543 break; 5544 } 5545 tcp_rearm_rto(sk); 5546 NET_INC_STATS(sock_net(sk), 5547 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5548 return true; 5549 } 5550 tp->syn_data_acked = tp->syn_data; 5551 if (tp->syn_data_acked) 5552 NET_INC_STATS(sock_net(sk), 5553 LINUX_MIB_TCPFASTOPENACTIVE); 5554 5555 tcp_fastopen_add_skb(sk, synack); 5556 5557 return false; 5558 } 5559 5560 static void smc_check_reset_syn(struct tcp_sock *tp) 5561 { 5562 #if IS_ENABLED(CONFIG_SMC) 5563 if (static_branch_unlikely(&tcp_have_smc)) { 5564 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5565 tp->syn_smc = 0; 5566 } 5567 #endif 5568 } 5569 5570 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5571 const struct tcphdr *th) 5572 { 5573 struct inet_connection_sock *icsk = inet_csk(sk); 5574 struct tcp_sock *tp = tcp_sk(sk); 5575 struct tcp_fastopen_cookie foc = { .len = -1 }; 5576 int saved_clamp = tp->rx_opt.mss_clamp; 5577 bool fastopen_fail; 5578 5579 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5580 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5581 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5582 5583 if (th->ack) { 5584 /* rfc793: 5585 * "If the state is SYN-SENT then 5586 * first check the ACK bit 5587 * If the ACK bit is set 5588 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5589 * a reset (unless the RST bit is set, if so drop 5590 * the segment and return)" 5591 */ 5592 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5593 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5594 goto reset_and_undo; 5595 5596 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5597 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5598 tcp_time_stamp(tp))) { 5599 NET_INC_STATS(sock_net(sk), 5600 LINUX_MIB_PAWSACTIVEREJECTED); 5601 goto reset_and_undo; 5602 } 5603 5604 /* Now ACK is acceptable. 5605 * 5606 * "If the RST bit is set 5607 * If the ACK was acceptable then signal the user "error: 5608 * connection reset", drop the segment, enter CLOSED state, 5609 * delete TCB, and return." 5610 */ 5611 5612 if (th->rst) { 5613 tcp_reset(sk); 5614 goto discard; 5615 } 5616 5617 /* rfc793: 5618 * "fifth, if neither of the SYN or RST bits is set then 5619 * drop the segment and return." 5620 * 5621 * See note below! 5622 * --ANK(990513) 5623 */ 5624 if (!th->syn) 5625 goto discard_and_undo; 5626 5627 /* rfc793: 5628 * "If the SYN bit is on ... 5629 * are acceptable then ... 5630 * (our SYN has been ACKed), change the connection 5631 * state to ESTABLISHED..." 5632 */ 5633 5634 tcp_ecn_rcv_synack(tp, th); 5635 5636 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5637 tcp_ack(sk, skb, FLAG_SLOWPATH); 5638 5639 /* Ok.. it's good. Set up sequence numbers and 5640 * move to established. 5641 */ 5642 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5643 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5644 5645 /* RFC1323: The window in SYN & SYN/ACK segments is 5646 * never scaled. 5647 */ 5648 tp->snd_wnd = ntohs(th->window); 5649 5650 if (!tp->rx_opt.wscale_ok) { 5651 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5652 tp->window_clamp = min(tp->window_clamp, 65535U); 5653 } 5654 5655 if (tp->rx_opt.saw_tstamp) { 5656 tp->rx_opt.tstamp_ok = 1; 5657 tp->tcp_header_len = 5658 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5659 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5660 tcp_store_ts_recent(tp); 5661 } else { 5662 tp->tcp_header_len = sizeof(struct tcphdr); 5663 } 5664 5665 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5666 tcp_initialize_rcv_mss(sk); 5667 5668 /* Remember, tcp_poll() does not lock socket! 5669 * Change state from SYN-SENT only after copied_seq 5670 * is initialized. */ 5671 tp->copied_seq = tp->rcv_nxt; 5672 5673 smc_check_reset_syn(tp); 5674 5675 smp_mb(); 5676 5677 tcp_finish_connect(sk, skb); 5678 5679 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5680 tcp_rcv_fastopen_synack(sk, skb, &foc); 5681 5682 if (!sock_flag(sk, SOCK_DEAD)) { 5683 sk->sk_state_change(sk); 5684 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5685 } 5686 if (fastopen_fail) 5687 return -1; 5688 if (sk->sk_write_pending || 5689 icsk->icsk_accept_queue.rskq_defer_accept || 5690 icsk->icsk_ack.pingpong) { 5691 /* Save one ACK. Data will be ready after 5692 * several ticks, if write_pending is set. 5693 * 5694 * It may be deleted, but with this feature tcpdumps 5695 * look so _wonderfully_ clever, that I was not able 5696 * to stand against the temptation 8) --ANK 5697 */ 5698 inet_csk_schedule_ack(sk); 5699 tcp_enter_quickack_mode(sk); 5700 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5701 TCP_DELACK_MAX, TCP_RTO_MAX); 5702 5703 discard: 5704 tcp_drop(sk, skb); 5705 return 0; 5706 } else { 5707 tcp_send_ack(sk); 5708 } 5709 return -1; 5710 } 5711 5712 /* No ACK in the segment */ 5713 5714 if (th->rst) { 5715 /* rfc793: 5716 * "If the RST bit is set 5717 * 5718 * Otherwise (no ACK) drop the segment and return." 5719 */ 5720 5721 goto discard_and_undo; 5722 } 5723 5724 /* PAWS check. */ 5725 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5726 tcp_paws_reject(&tp->rx_opt, 0)) 5727 goto discard_and_undo; 5728 5729 if (th->syn) { 5730 /* We see SYN without ACK. It is attempt of 5731 * simultaneous connect with crossed SYNs. 5732 * Particularly, it can be connect to self. 5733 */ 5734 tcp_set_state(sk, TCP_SYN_RECV); 5735 5736 if (tp->rx_opt.saw_tstamp) { 5737 tp->rx_opt.tstamp_ok = 1; 5738 tcp_store_ts_recent(tp); 5739 tp->tcp_header_len = 5740 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5741 } else { 5742 tp->tcp_header_len = sizeof(struct tcphdr); 5743 } 5744 5745 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5746 tp->copied_seq = tp->rcv_nxt; 5747 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5748 5749 /* RFC1323: The window in SYN & SYN/ACK segments is 5750 * never scaled. 5751 */ 5752 tp->snd_wnd = ntohs(th->window); 5753 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5754 tp->max_window = tp->snd_wnd; 5755 5756 tcp_ecn_rcv_syn(tp, th); 5757 5758 tcp_mtup_init(sk); 5759 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5760 tcp_initialize_rcv_mss(sk); 5761 5762 tcp_send_synack(sk); 5763 #if 0 5764 /* Note, we could accept data and URG from this segment. 5765 * There are no obstacles to make this (except that we must 5766 * either change tcp_recvmsg() to prevent it from returning data 5767 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5768 * 5769 * However, if we ignore data in ACKless segments sometimes, 5770 * we have no reasons to accept it sometimes. 5771 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5772 * is not flawless. So, discard packet for sanity. 5773 * Uncomment this return to process the data. 5774 */ 5775 return -1; 5776 #else 5777 goto discard; 5778 #endif 5779 } 5780 /* "fifth, if neither of the SYN or RST bits is set then 5781 * drop the segment and return." 5782 */ 5783 5784 discard_and_undo: 5785 tcp_clear_options(&tp->rx_opt); 5786 tp->rx_opt.mss_clamp = saved_clamp; 5787 goto discard; 5788 5789 reset_and_undo: 5790 tcp_clear_options(&tp->rx_opt); 5791 tp->rx_opt.mss_clamp = saved_clamp; 5792 return 1; 5793 } 5794 5795 /* 5796 * This function implements the receiving procedure of RFC 793 for 5797 * all states except ESTABLISHED and TIME_WAIT. 5798 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5799 * address independent. 5800 */ 5801 5802 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5803 { 5804 struct tcp_sock *tp = tcp_sk(sk); 5805 struct inet_connection_sock *icsk = inet_csk(sk); 5806 const struct tcphdr *th = tcp_hdr(skb); 5807 struct request_sock *req; 5808 int queued = 0; 5809 bool acceptable; 5810 5811 switch (sk->sk_state) { 5812 case TCP_CLOSE: 5813 goto discard; 5814 5815 case TCP_LISTEN: 5816 if (th->ack) 5817 return 1; 5818 5819 if (th->rst) 5820 goto discard; 5821 5822 if (th->syn) { 5823 if (th->fin) 5824 goto discard; 5825 /* It is possible that we process SYN packets from backlog, 5826 * so we need to make sure to disable BH right there. 5827 */ 5828 local_bh_disable(); 5829 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5830 local_bh_enable(); 5831 5832 if (!acceptable) 5833 return 1; 5834 consume_skb(skb); 5835 return 0; 5836 } 5837 goto discard; 5838 5839 case TCP_SYN_SENT: 5840 tp->rx_opt.saw_tstamp = 0; 5841 tcp_mstamp_refresh(tp); 5842 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5843 if (queued >= 0) 5844 return queued; 5845 5846 /* Do step6 onward by hand. */ 5847 tcp_urg(sk, skb, th); 5848 __kfree_skb(skb); 5849 tcp_data_snd_check(sk); 5850 return 0; 5851 } 5852 5853 tcp_mstamp_refresh(tp); 5854 tp->rx_opt.saw_tstamp = 0; 5855 req = tp->fastopen_rsk; 5856 if (req) { 5857 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5858 sk->sk_state != TCP_FIN_WAIT1); 5859 5860 if (!tcp_check_req(sk, skb, req, true)) 5861 goto discard; 5862 } 5863 5864 if (!th->ack && !th->rst && !th->syn) 5865 goto discard; 5866 5867 if (!tcp_validate_incoming(sk, skb, th, 0)) 5868 return 0; 5869 5870 /* step 5: check the ACK field */ 5871 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5872 FLAG_UPDATE_TS_RECENT | 5873 FLAG_NO_CHALLENGE_ACK) > 0; 5874 5875 if (!acceptable) { 5876 if (sk->sk_state == TCP_SYN_RECV) 5877 return 1; /* send one RST */ 5878 tcp_send_challenge_ack(sk, skb); 5879 goto discard; 5880 } 5881 switch (sk->sk_state) { 5882 case TCP_SYN_RECV: 5883 if (!tp->srtt_us) 5884 tcp_synack_rtt_meas(sk, req); 5885 5886 /* Once we leave TCP_SYN_RECV, we no longer need req 5887 * so release it. 5888 */ 5889 if (req) { 5890 inet_csk(sk)->icsk_retransmits = 0; 5891 reqsk_fastopen_remove(sk, req, false); 5892 /* Re-arm the timer because data may have been sent out. 5893 * This is similar to the regular data transmission case 5894 * when new data has just been ack'ed. 5895 * 5896 * (TFO) - we could try to be more aggressive and 5897 * retransmitting any data sooner based on when they 5898 * are sent out. 5899 */ 5900 tcp_rearm_rto(sk); 5901 } else { 5902 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5903 tp->copied_seq = tp->rcv_nxt; 5904 } 5905 smp_mb(); 5906 tcp_set_state(sk, TCP_ESTABLISHED); 5907 sk->sk_state_change(sk); 5908 5909 /* Note, that this wakeup is only for marginal crossed SYN case. 5910 * Passively open sockets are not waked up, because 5911 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5912 */ 5913 if (sk->sk_socket) 5914 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5915 5916 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5917 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5918 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5919 5920 if (tp->rx_opt.tstamp_ok) 5921 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5922 5923 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5924 tcp_update_pacing_rate(sk); 5925 5926 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5927 tp->lsndtime = tcp_jiffies32; 5928 5929 tcp_initialize_rcv_mss(sk); 5930 tcp_fast_path_on(tp); 5931 break; 5932 5933 case TCP_FIN_WAIT1: { 5934 int tmo; 5935 5936 /* If we enter the TCP_FIN_WAIT1 state and we are a 5937 * Fast Open socket and this is the first acceptable 5938 * ACK we have received, this would have acknowledged 5939 * our SYNACK so stop the SYNACK timer. 5940 */ 5941 if (req) { 5942 /* We no longer need the request sock. */ 5943 reqsk_fastopen_remove(sk, req, false); 5944 tcp_rearm_rto(sk); 5945 } 5946 if (tp->snd_una != tp->write_seq) 5947 break; 5948 5949 tcp_set_state(sk, TCP_FIN_WAIT2); 5950 sk->sk_shutdown |= SEND_SHUTDOWN; 5951 5952 sk_dst_confirm(sk); 5953 5954 if (!sock_flag(sk, SOCK_DEAD)) { 5955 /* Wake up lingering close() */ 5956 sk->sk_state_change(sk); 5957 break; 5958 } 5959 5960 if (tp->linger2 < 0) { 5961 tcp_done(sk); 5962 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5963 return 1; 5964 } 5965 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5966 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5967 /* Receive out of order FIN after close() */ 5968 if (tp->syn_fastopen && th->fin) 5969 tcp_fastopen_active_disable(sk); 5970 tcp_done(sk); 5971 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5972 return 1; 5973 } 5974 5975 tmo = tcp_fin_time(sk); 5976 if (tmo > TCP_TIMEWAIT_LEN) { 5977 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5978 } else if (th->fin || sock_owned_by_user(sk)) { 5979 /* Bad case. We could lose such FIN otherwise. 5980 * It is not a big problem, but it looks confusing 5981 * and not so rare event. We still can lose it now, 5982 * if it spins in bh_lock_sock(), but it is really 5983 * marginal case. 5984 */ 5985 inet_csk_reset_keepalive_timer(sk, tmo); 5986 } else { 5987 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5988 goto discard; 5989 } 5990 break; 5991 } 5992 5993 case TCP_CLOSING: 5994 if (tp->snd_una == tp->write_seq) { 5995 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5996 goto discard; 5997 } 5998 break; 5999 6000 case TCP_LAST_ACK: 6001 if (tp->snd_una == tp->write_seq) { 6002 tcp_update_metrics(sk); 6003 tcp_done(sk); 6004 goto discard; 6005 } 6006 break; 6007 } 6008 6009 /* step 6: check the URG bit */ 6010 tcp_urg(sk, skb, th); 6011 6012 /* step 7: process the segment text */ 6013 switch (sk->sk_state) { 6014 case TCP_CLOSE_WAIT: 6015 case TCP_CLOSING: 6016 case TCP_LAST_ACK: 6017 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6018 break; 6019 /* fall through */ 6020 case TCP_FIN_WAIT1: 6021 case TCP_FIN_WAIT2: 6022 /* RFC 793 says to queue data in these states, 6023 * RFC 1122 says we MUST send a reset. 6024 * BSD 4.4 also does reset. 6025 */ 6026 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6027 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6028 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6029 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6030 tcp_reset(sk); 6031 return 1; 6032 } 6033 } 6034 /* Fall through */ 6035 case TCP_ESTABLISHED: 6036 tcp_data_queue(sk, skb); 6037 queued = 1; 6038 break; 6039 } 6040 6041 /* tcp_data could move socket to TIME-WAIT */ 6042 if (sk->sk_state != TCP_CLOSE) { 6043 tcp_data_snd_check(sk); 6044 tcp_ack_snd_check(sk); 6045 } 6046 6047 if (!queued) { 6048 discard: 6049 tcp_drop(sk, skb); 6050 } 6051 return 0; 6052 } 6053 EXPORT_SYMBOL(tcp_rcv_state_process); 6054 6055 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6056 { 6057 struct inet_request_sock *ireq = inet_rsk(req); 6058 6059 if (family == AF_INET) 6060 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6061 &ireq->ir_rmt_addr, port); 6062 #if IS_ENABLED(CONFIG_IPV6) 6063 else if (family == AF_INET6) 6064 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6065 &ireq->ir_v6_rmt_addr, port); 6066 #endif 6067 } 6068 6069 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6070 * 6071 * If we receive a SYN packet with these bits set, it means a 6072 * network is playing bad games with TOS bits. In order to 6073 * avoid possible false congestion notifications, we disable 6074 * TCP ECN negotiation. 6075 * 6076 * Exception: tcp_ca wants ECN. This is required for DCTCP 6077 * congestion control: Linux DCTCP asserts ECT on all packets, 6078 * including SYN, which is most optimal solution; however, 6079 * others, such as FreeBSD do not. 6080 */ 6081 static void tcp_ecn_create_request(struct request_sock *req, 6082 const struct sk_buff *skb, 6083 const struct sock *listen_sk, 6084 const struct dst_entry *dst) 6085 { 6086 const struct tcphdr *th = tcp_hdr(skb); 6087 const struct net *net = sock_net(listen_sk); 6088 bool th_ecn = th->ece && th->cwr; 6089 bool ect, ecn_ok; 6090 u32 ecn_ok_dst; 6091 6092 if (!th_ecn) 6093 return; 6094 6095 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6096 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6097 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6098 6099 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6100 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6101 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6102 inet_rsk(req)->ecn_ok = 1; 6103 } 6104 6105 static void tcp_openreq_init(struct request_sock *req, 6106 const struct tcp_options_received *rx_opt, 6107 struct sk_buff *skb, const struct sock *sk) 6108 { 6109 struct inet_request_sock *ireq = inet_rsk(req); 6110 6111 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6112 req->cookie_ts = 0; 6113 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6114 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6115 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6116 tcp_rsk(req)->last_oow_ack_time = 0; 6117 req->mss = rx_opt->mss_clamp; 6118 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6119 ireq->tstamp_ok = rx_opt->tstamp_ok; 6120 ireq->sack_ok = rx_opt->sack_ok; 6121 ireq->snd_wscale = rx_opt->snd_wscale; 6122 ireq->wscale_ok = rx_opt->wscale_ok; 6123 ireq->acked = 0; 6124 ireq->ecn_ok = 0; 6125 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6126 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6127 ireq->ir_mark = inet_request_mark(sk, skb); 6128 #if IS_ENABLED(CONFIG_SMC) 6129 ireq->smc_ok = rx_opt->smc_ok; 6130 #endif 6131 } 6132 6133 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6134 struct sock *sk_listener, 6135 bool attach_listener) 6136 { 6137 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6138 attach_listener); 6139 6140 if (req) { 6141 struct inet_request_sock *ireq = inet_rsk(req); 6142 6143 ireq->ireq_opt = NULL; 6144 #if IS_ENABLED(CONFIG_IPV6) 6145 ireq->pktopts = NULL; 6146 #endif 6147 atomic64_set(&ireq->ir_cookie, 0); 6148 ireq->ireq_state = TCP_NEW_SYN_RECV; 6149 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6150 ireq->ireq_family = sk_listener->sk_family; 6151 } 6152 6153 return req; 6154 } 6155 EXPORT_SYMBOL(inet_reqsk_alloc); 6156 6157 /* 6158 * Return true if a syncookie should be sent 6159 */ 6160 static bool tcp_syn_flood_action(const struct sock *sk, 6161 const struct sk_buff *skb, 6162 const char *proto) 6163 { 6164 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6165 const char *msg = "Dropping request"; 6166 bool want_cookie = false; 6167 struct net *net = sock_net(sk); 6168 6169 #ifdef CONFIG_SYN_COOKIES 6170 if (net->ipv4.sysctl_tcp_syncookies) { 6171 msg = "Sending cookies"; 6172 want_cookie = true; 6173 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6174 } else 6175 #endif 6176 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6177 6178 if (!queue->synflood_warned && 6179 net->ipv4.sysctl_tcp_syncookies != 2 && 6180 xchg(&queue->synflood_warned, 1) == 0) 6181 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6182 proto, ntohs(tcp_hdr(skb)->dest), msg); 6183 6184 return want_cookie; 6185 } 6186 6187 static void tcp_reqsk_record_syn(const struct sock *sk, 6188 struct request_sock *req, 6189 const struct sk_buff *skb) 6190 { 6191 if (tcp_sk(sk)->save_syn) { 6192 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6193 u32 *copy; 6194 6195 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6196 if (copy) { 6197 copy[0] = len; 6198 memcpy(©[1], skb_network_header(skb), len); 6199 req->saved_syn = copy; 6200 } 6201 } 6202 } 6203 6204 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6205 const struct tcp_request_sock_ops *af_ops, 6206 struct sock *sk, struct sk_buff *skb) 6207 { 6208 struct tcp_fastopen_cookie foc = { .len = -1 }; 6209 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6210 struct tcp_options_received tmp_opt; 6211 struct tcp_sock *tp = tcp_sk(sk); 6212 struct net *net = sock_net(sk); 6213 struct sock *fastopen_sk = NULL; 6214 struct request_sock *req; 6215 bool want_cookie = false; 6216 struct dst_entry *dst; 6217 struct flowi fl; 6218 6219 /* TW buckets are converted to open requests without 6220 * limitations, they conserve resources and peer is 6221 * evidently real one. 6222 */ 6223 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6224 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6225 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6226 if (!want_cookie) 6227 goto drop; 6228 } 6229 6230 if (sk_acceptq_is_full(sk)) { 6231 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6232 goto drop; 6233 } 6234 6235 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6236 if (!req) 6237 goto drop; 6238 6239 tcp_rsk(req)->af_specific = af_ops; 6240 tcp_rsk(req)->ts_off = 0; 6241 6242 tcp_clear_options(&tmp_opt); 6243 tmp_opt.mss_clamp = af_ops->mss_clamp; 6244 tmp_opt.user_mss = tp->rx_opt.user_mss; 6245 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6246 want_cookie ? NULL : &foc); 6247 6248 if (want_cookie && !tmp_opt.saw_tstamp) 6249 tcp_clear_options(&tmp_opt); 6250 6251 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6252 tcp_openreq_init(req, &tmp_opt, skb, sk); 6253 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6254 6255 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6256 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6257 6258 af_ops->init_req(req, sk, skb); 6259 6260 if (security_inet_conn_request(sk, skb, req)) 6261 goto drop_and_free; 6262 6263 if (tmp_opt.tstamp_ok) 6264 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6265 6266 dst = af_ops->route_req(sk, &fl, req); 6267 if (!dst) 6268 goto drop_and_free; 6269 6270 if (!want_cookie && !isn) { 6271 /* Kill the following clause, if you dislike this way. */ 6272 if (!net->ipv4.sysctl_tcp_syncookies && 6273 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6274 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6275 !tcp_peer_is_proven(req, dst)) { 6276 /* Without syncookies last quarter of 6277 * backlog is filled with destinations, 6278 * proven to be alive. 6279 * It means that we continue to communicate 6280 * to destinations, already remembered 6281 * to the moment of synflood. 6282 */ 6283 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6284 rsk_ops->family); 6285 goto drop_and_release; 6286 } 6287 6288 isn = af_ops->init_seq(skb); 6289 } 6290 6291 tcp_ecn_create_request(req, skb, sk, dst); 6292 6293 if (want_cookie) { 6294 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6295 req->cookie_ts = tmp_opt.tstamp_ok; 6296 if (!tmp_opt.tstamp_ok) 6297 inet_rsk(req)->ecn_ok = 0; 6298 } 6299 6300 tcp_rsk(req)->snt_isn = isn; 6301 tcp_rsk(req)->txhash = net_tx_rndhash(); 6302 tcp_openreq_init_rwin(req, sk, dst); 6303 if (!want_cookie) { 6304 tcp_reqsk_record_syn(sk, req, skb); 6305 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6306 } 6307 if (fastopen_sk) { 6308 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6309 &foc, TCP_SYNACK_FASTOPEN); 6310 /* Add the child socket directly into the accept queue */ 6311 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6312 sk->sk_data_ready(sk); 6313 bh_unlock_sock(fastopen_sk); 6314 sock_put(fastopen_sk); 6315 } else { 6316 tcp_rsk(req)->tfo_listener = false; 6317 if (!want_cookie) 6318 inet_csk_reqsk_queue_hash_add(sk, req, 6319 tcp_timeout_init((struct sock *)req)); 6320 af_ops->send_synack(sk, dst, &fl, req, &foc, 6321 !want_cookie ? TCP_SYNACK_NORMAL : 6322 TCP_SYNACK_COOKIE); 6323 if (want_cookie) { 6324 reqsk_free(req); 6325 return 0; 6326 } 6327 } 6328 reqsk_put(req); 6329 return 0; 6330 6331 drop_and_release: 6332 dst_release(dst); 6333 drop_and_free: 6334 reqsk_free(req); 6335 drop: 6336 tcp_listendrop(sk); 6337 return 0; 6338 } 6339 EXPORT_SYMBOL(tcp_conn_request); 6340