xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 68198dca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 
101 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
103 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
104 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
105 
106 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
107 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
108 
109 #define REXMIT_NONE	0 /* no loss recovery to do */
110 #define REXMIT_LOST	1 /* retransmit packets marked lost */
111 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
112 
113 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 			     unsigned int len)
115 {
116 	static bool __once __read_mostly;
117 
118 	if (!__once) {
119 		struct net_device *dev;
120 
121 		__once = true;
122 
123 		rcu_read_lock();
124 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
125 		if (!dev || len >= dev->mtu)
126 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 				dev ? dev->name : "Unknown driver");
128 		rcu_read_unlock();
129 	}
130 }
131 
132 /* Adapt the MSS value used to make delayed ack decision to the
133  * real world.
134  */
135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
136 {
137 	struct inet_connection_sock *icsk = inet_csk(sk);
138 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
139 	unsigned int len;
140 
141 	icsk->icsk_ack.last_seg_size = 0;
142 
143 	/* skb->len may jitter because of SACKs, even if peer
144 	 * sends good full-sized frames.
145 	 */
146 	len = skb_shinfo(skb)->gso_size ? : skb->len;
147 	if (len >= icsk->icsk_ack.rcv_mss) {
148 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 					       tcp_sk(sk)->advmss);
150 		/* Account for possibly-removed options */
151 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 				   MAX_TCP_OPTION_SPACE))
153 			tcp_gro_dev_warn(sk, skb, len);
154 	} else {
155 		/* Otherwise, we make more careful check taking into account,
156 		 * that SACKs block is variable.
157 		 *
158 		 * "len" is invariant segment length, including TCP header.
159 		 */
160 		len += skb->data - skb_transport_header(skb);
161 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
162 		    /* If PSH is not set, packet should be
163 		     * full sized, provided peer TCP is not badly broken.
164 		     * This observation (if it is correct 8)) allows
165 		     * to handle super-low mtu links fairly.
166 		     */
167 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
168 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
169 			/* Subtract also invariant (if peer is RFC compliant),
170 			 * tcp header plus fixed timestamp option length.
171 			 * Resulting "len" is MSS free of SACK jitter.
172 			 */
173 			len -= tcp_sk(sk)->tcp_header_len;
174 			icsk->icsk_ack.last_seg_size = len;
175 			if (len == lss) {
176 				icsk->icsk_ack.rcv_mss = len;
177 				return;
178 			}
179 		}
180 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
182 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
183 	}
184 }
185 
186 static void tcp_incr_quickack(struct sock *sk)
187 {
188 	struct inet_connection_sock *icsk = inet_csk(sk);
189 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
190 
191 	if (quickacks == 0)
192 		quickacks = 2;
193 	if (quickacks > icsk->icsk_ack.quick)
194 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
195 }
196 
197 static void tcp_enter_quickack_mode(struct sock *sk)
198 {
199 	struct inet_connection_sock *icsk = inet_csk(sk);
200 	tcp_incr_quickack(sk);
201 	icsk->icsk_ack.pingpong = 0;
202 	icsk->icsk_ack.ato = TCP_ATO_MIN;
203 }
204 
205 /* Send ACKs quickly, if "quick" count is not exhausted
206  * and the session is not interactive.
207  */
208 
209 static bool tcp_in_quickack_mode(struct sock *sk)
210 {
211 	const struct inet_connection_sock *icsk = inet_csk(sk);
212 	const struct dst_entry *dst = __sk_dst_get(sk);
213 
214 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
215 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
216 }
217 
218 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
219 {
220 	if (tp->ecn_flags & TCP_ECN_OK)
221 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
222 }
223 
224 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
225 {
226 	if (tcp_hdr(skb)->cwr)
227 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228 }
229 
230 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
231 {
232 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
233 }
234 
235 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
236 {
237 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
238 	case INET_ECN_NOT_ECT:
239 		/* Funny extension: if ECT is not set on a segment,
240 		 * and we already seen ECT on a previous segment,
241 		 * it is probably a retransmit.
242 		 */
243 		if (tp->ecn_flags & TCP_ECN_SEEN)
244 			tcp_enter_quickack_mode((struct sock *)tp);
245 		break;
246 	case INET_ECN_CE:
247 		if (tcp_ca_needs_ecn((struct sock *)tp))
248 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
249 
250 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
251 			/* Better not delay acks, sender can have a very low cwnd */
252 			tcp_enter_quickack_mode((struct sock *)tp);
253 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
254 		}
255 		tp->ecn_flags |= TCP_ECN_SEEN;
256 		break;
257 	default:
258 		if (tcp_ca_needs_ecn((struct sock *)tp))
259 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
260 		tp->ecn_flags |= TCP_ECN_SEEN;
261 		break;
262 	}
263 }
264 
265 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
266 {
267 	if (tp->ecn_flags & TCP_ECN_OK)
268 		__tcp_ecn_check_ce(tp, skb);
269 }
270 
271 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
280 		tp->ecn_flags &= ~TCP_ECN_OK;
281 }
282 
283 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
284 {
285 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
286 		return true;
287 	return false;
288 }
289 
290 /* Buffer size and advertised window tuning.
291  *
292  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293  */
294 
295 static void tcp_sndbuf_expand(struct sock *sk)
296 {
297 	const struct tcp_sock *tp = tcp_sk(sk);
298 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
299 	int sndmem, per_mss;
300 	u32 nr_segs;
301 
302 	/* Worst case is non GSO/TSO : each frame consumes one skb
303 	 * and skb->head is kmalloced using power of two area of memory
304 	 */
305 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
306 		  MAX_TCP_HEADER +
307 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308 
309 	per_mss = roundup_pow_of_two(per_mss) +
310 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
311 
312 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
313 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
314 
315 	/* Fast Recovery (RFC 5681 3.2) :
316 	 * Cubic needs 1.7 factor, rounded to 2 to include
317 	 * extra cushion (application might react slowly to POLLOUT)
318 	 */
319 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
320 	sndmem *= nr_segs * per_mss;
321 
322 	if (sk->sk_sndbuf < sndmem)
323 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
324 }
325 
326 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
327  *
328  * All tcp_full_space() is split to two parts: "network" buffer, allocated
329  * forward and advertised in receiver window (tp->rcv_wnd) and
330  * "application buffer", required to isolate scheduling/application
331  * latencies from network.
332  * window_clamp is maximal advertised window. It can be less than
333  * tcp_full_space(), in this case tcp_full_space() - window_clamp
334  * is reserved for "application" buffer. The less window_clamp is
335  * the smoother our behaviour from viewpoint of network, but the lower
336  * throughput and the higher sensitivity of the connection to losses. 8)
337  *
338  * rcv_ssthresh is more strict window_clamp used at "slow start"
339  * phase to predict further behaviour of this connection.
340  * It is used for two goals:
341  * - to enforce header prediction at sender, even when application
342  *   requires some significant "application buffer". It is check #1.
343  * - to prevent pruning of receive queue because of misprediction
344  *   of receiver window. Check #2.
345  *
346  * The scheme does not work when sender sends good segments opening
347  * window and then starts to feed us spaghetti. But it should work
348  * in common situations. Otherwise, we have to rely on queue collapsing.
349  */
350 
351 /* Slow part of check#2. */
352 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 	/* Optimize this! */
356 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
357 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
358 
359 	while (tp->rcv_ssthresh <= window) {
360 		if (truesize <= skb->len)
361 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
362 
363 		truesize >>= 1;
364 		window >>= 1;
365 	}
366 	return 0;
367 }
368 
369 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
370 {
371 	struct tcp_sock *tp = tcp_sk(sk);
372 
373 	/* Check #1 */
374 	if (tp->rcv_ssthresh < tp->window_clamp &&
375 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
376 	    !tcp_under_memory_pressure(sk)) {
377 		int incr;
378 
379 		/* Check #2. Increase window, if skb with such overhead
380 		 * will fit to rcvbuf in future.
381 		 */
382 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
383 			incr = 2 * tp->advmss;
384 		else
385 			incr = __tcp_grow_window(sk, skb);
386 
387 		if (incr) {
388 			incr = max_t(int, incr, 2 * skb->len);
389 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
390 					       tp->window_clamp);
391 			inet_csk(sk)->icsk_ack.quick |= 1;
392 		}
393 	}
394 }
395 
396 /* 3. Tuning rcvbuf, when connection enters established state. */
397 static void tcp_fixup_rcvbuf(struct sock *sk)
398 {
399 	u32 mss = tcp_sk(sk)->advmss;
400 	int rcvmem;
401 
402 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
403 		 tcp_default_init_rwnd(mss);
404 
405 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
406 	 * Allow enough cushion so that sender is not limited by our window
407 	 */
408 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
409 		rcvmem <<= 2;
410 
411 	if (sk->sk_rcvbuf < rcvmem)
412 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
413 }
414 
415 /* 4. Try to fixup all. It is made immediately after connection enters
416  *    established state.
417  */
418 void tcp_init_buffer_space(struct sock *sk)
419 {
420 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
421 	struct tcp_sock *tp = tcp_sk(sk);
422 	int maxwin;
423 
424 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
425 		tcp_fixup_rcvbuf(sk);
426 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
427 		tcp_sndbuf_expand(sk);
428 
429 	tp->rcvq_space.space = tp->rcv_wnd;
430 	tcp_mstamp_refresh(tp);
431 	tp->rcvq_space.time = tp->tcp_mstamp;
432 	tp->rcvq_space.seq = tp->copied_seq;
433 
434 	maxwin = tcp_full_space(sk);
435 
436 	if (tp->window_clamp >= maxwin) {
437 		tp->window_clamp = maxwin;
438 
439 		if (tcp_app_win && maxwin > 4 * tp->advmss)
440 			tp->window_clamp = max(maxwin -
441 					       (maxwin >> tcp_app_win),
442 					       4 * tp->advmss);
443 	}
444 
445 	/* Force reservation of one segment. */
446 	if (tcp_app_win &&
447 	    tp->window_clamp > 2 * tp->advmss &&
448 	    tp->window_clamp + tp->advmss > maxwin)
449 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
450 
451 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
452 	tp->snd_cwnd_stamp = tcp_jiffies32;
453 }
454 
455 /* 5. Recalculate window clamp after socket hit its memory bounds. */
456 static void tcp_clamp_window(struct sock *sk)
457 {
458 	struct tcp_sock *tp = tcp_sk(sk);
459 	struct inet_connection_sock *icsk = inet_csk(sk);
460 	struct net *net = sock_net(sk);
461 
462 	icsk->icsk_ack.quick = 0;
463 
464 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
465 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
466 	    !tcp_under_memory_pressure(sk) &&
467 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
468 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
469 				    net->ipv4.sysctl_tcp_rmem[2]);
470 	}
471 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
472 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
473 }
474 
475 /* Initialize RCV_MSS value.
476  * RCV_MSS is an our guess about MSS used by the peer.
477  * We haven't any direct information about the MSS.
478  * It's better to underestimate the RCV_MSS rather than overestimate.
479  * Overestimations make us ACKing less frequently than needed.
480  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
481  */
482 void tcp_initialize_rcv_mss(struct sock *sk)
483 {
484 	const struct tcp_sock *tp = tcp_sk(sk);
485 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
486 
487 	hint = min(hint, tp->rcv_wnd / 2);
488 	hint = min(hint, TCP_MSS_DEFAULT);
489 	hint = max(hint, TCP_MIN_MSS);
490 
491 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
492 }
493 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
494 
495 /* Receiver "autotuning" code.
496  *
497  * The algorithm for RTT estimation w/o timestamps is based on
498  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
499  * <http://public.lanl.gov/radiant/pubs.html#DRS>
500  *
501  * More detail on this code can be found at
502  * <http://staff.psc.edu/jheffner/>,
503  * though this reference is out of date.  A new paper
504  * is pending.
505  */
506 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
507 {
508 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
509 	long m = sample;
510 
511 	if (new_sample != 0) {
512 		/* If we sample in larger samples in the non-timestamp
513 		 * case, we could grossly overestimate the RTT especially
514 		 * with chatty applications or bulk transfer apps which
515 		 * are stalled on filesystem I/O.
516 		 *
517 		 * Also, since we are only going for a minimum in the
518 		 * non-timestamp case, we do not smooth things out
519 		 * else with timestamps disabled convergence takes too
520 		 * long.
521 		 */
522 		if (!win_dep) {
523 			m -= (new_sample >> 3);
524 			new_sample += m;
525 		} else {
526 			m <<= 3;
527 			if (m < new_sample)
528 				new_sample = m;
529 		}
530 	} else {
531 		/* No previous measure. */
532 		new_sample = m << 3;
533 	}
534 
535 	tp->rcv_rtt_est.rtt_us = new_sample;
536 }
537 
538 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
539 {
540 	u32 delta_us;
541 
542 	if (tp->rcv_rtt_est.time == 0)
543 		goto new_measure;
544 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
545 		return;
546 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
547 	if (!delta_us)
548 		delta_us = 1;
549 	tcp_rcv_rtt_update(tp, delta_us, 1);
550 
551 new_measure:
552 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
553 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
554 }
555 
556 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
557 					  const struct sk_buff *skb)
558 {
559 	struct tcp_sock *tp = tcp_sk(sk);
560 
561 	if (tp->rx_opt.rcv_tsecr &&
562 	    (TCP_SKB_CB(skb)->end_seq -
563 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
564 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
565 		u32 delta_us;
566 
567 		if (!delta)
568 			delta = 1;
569 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
570 		tcp_rcv_rtt_update(tp, delta_us, 0);
571 	}
572 }
573 
574 /*
575  * This function should be called every time data is copied to user space.
576  * It calculates the appropriate TCP receive buffer space.
577  */
578 void tcp_rcv_space_adjust(struct sock *sk)
579 {
580 	struct tcp_sock *tp = tcp_sk(sk);
581 	int time;
582 	int copied;
583 
584 	tcp_mstamp_refresh(tp);
585 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
586 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
587 		return;
588 
589 	/* Number of bytes copied to user in last RTT */
590 	copied = tp->copied_seq - tp->rcvq_space.seq;
591 	if (copied <= tp->rcvq_space.space)
592 		goto new_measure;
593 
594 	/* A bit of theory :
595 	 * copied = bytes received in previous RTT, our base window
596 	 * To cope with packet losses, we need a 2x factor
597 	 * To cope with slow start, and sender growing its cwin by 100 %
598 	 * every RTT, we need a 4x factor, because the ACK we are sending
599 	 * now is for the next RTT, not the current one :
600 	 * <prev RTT . ><current RTT .. ><next RTT .... >
601 	 */
602 
603 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
604 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
605 		int rcvwin, rcvmem, rcvbuf;
606 
607 		/* minimal window to cope with packet losses, assuming
608 		 * steady state. Add some cushion because of small variations.
609 		 */
610 		rcvwin = (copied << 1) + 16 * tp->advmss;
611 
612 		/* If rate increased by 25%,
613 		 *	assume slow start, rcvwin = 3 * copied
614 		 * If rate increased by 50%,
615 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
616 		 */
617 		if (copied >=
618 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
619 			if (copied >=
620 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
621 				rcvwin <<= 1;
622 			else
623 				rcvwin += (rcvwin >> 1);
624 		}
625 
626 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
627 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
628 			rcvmem += 128;
629 
630 		rcvbuf = min(rcvwin / tp->advmss * rcvmem,
631 			     sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
632 		if (rcvbuf > sk->sk_rcvbuf) {
633 			sk->sk_rcvbuf = rcvbuf;
634 
635 			/* Make the window clamp follow along.  */
636 			tp->window_clamp = rcvwin;
637 		}
638 	}
639 	tp->rcvq_space.space = copied;
640 
641 new_measure:
642 	tp->rcvq_space.seq = tp->copied_seq;
643 	tp->rcvq_space.time = tp->tcp_mstamp;
644 }
645 
646 /* There is something which you must keep in mind when you analyze the
647  * behavior of the tp->ato delayed ack timeout interval.  When a
648  * connection starts up, we want to ack as quickly as possible.  The
649  * problem is that "good" TCP's do slow start at the beginning of data
650  * transmission.  The means that until we send the first few ACK's the
651  * sender will sit on his end and only queue most of his data, because
652  * he can only send snd_cwnd unacked packets at any given time.  For
653  * each ACK we send, he increments snd_cwnd and transmits more of his
654  * queue.  -DaveM
655  */
656 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
657 {
658 	struct tcp_sock *tp = tcp_sk(sk);
659 	struct inet_connection_sock *icsk = inet_csk(sk);
660 	u32 now;
661 
662 	inet_csk_schedule_ack(sk);
663 
664 	tcp_measure_rcv_mss(sk, skb);
665 
666 	tcp_rcv_rtt_measure(tp);
667 
668 	now = tcp_jiffies32;
669 
670 	if (!icsk->icsk_ack.ato) {
671 		/* The _first_ data packet received, initialize
672 		 * delayed ACK engine.
673 		 */
674 		tcp_incr_quickack(sk);
675 		icsk->icsk_ack.ato = TCP_ATO_MIN;
676 	} else {
677 		int m = now - icsk->icsk_ack.lrcvtime;
678 
679 		if (m <= TCP_ATO_MIN / 2) {
680 			/* The fastest case is the first. */
681 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
682 		} else if (m < icsk->icsk_ack.ato) {
683 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
684 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
685 				icsk->icsk_ack.ato = icsk->icsk_rto;
686 		} else if (m > icsk->icsk_rto) {
687 			/* Too long gap. Apparently sender failed to
688 			 * restart window, so that we send ACKs quickly.
689 			 */
690 			tcp_incr_quickack(sk);
691 			sk_mem_reclaim(sk);
692 		}
693 	}
694 	icsk->icsk_ack.lrcvtime = now;
695 
696 	tcp_ecn_check_ce(tp, skb);
697 
698 	if (skb->len >= 128)
699 		tcp_grow_window(sk, skb);
700 }
701 
702 /* Called to compute a smoothed rtt estimate. The data fed to this
703  * routine either comes from timestamps, or from segments that were
704  * known _not_ to have been retransmitted [see Karn/Partridge
705  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
706  * piece by Van Jacobson.
707  * NOTE: the next three routines used to be one big routine.
708  * To save cycles in the RFC 1323 implementation it was better to break
709  * it up into three procedures. -- erics
710  */
711 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
712 {
713 	struct tcp_sock *tp = tcp_sk(sk);
714 	long m = mrtt_us; /* RTT */
715 	u32 srtt = tp->srtt_us;
716 
717 	/*	The following amusing code comes from Jacobson's
718 	 *	article in SIGCOMM '88.  Note that rtt and mdev
719 	 *	are scaled versions of rtt and mean deviation.
720 	 *	This is designed to be as fast as possible
721 	 *	m stands for "measurement".
722 	 *
723 	 *	On a 1990 paper the rto value is changed to:
724 	 *	RTO = rtt + 4 * mdev
725 	 *
726 	 * Funny. This algorithm seems to be very broken.
727 	 * These formulae increase RTO, when it should be decreased, increase
728 	 * too slowly, when it should be increased quickly, decrease too quickly
729 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
730 	 * does not matter how to _calculate_ it. Seems, it was trap
731 	 * that VJ failed to avoid. 8)
732 	 */
733 	if (srtt != 0) {
734 		m -= (srtt >> 3);	/* m is now error in rtt est */
735 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
736 		if (m < 0) {
737 			m = -m;		/* m is now abs(error) */
738 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
739 			/* This is similar to one of Eifel findings.
740 			 * Eifel blocks mdev updates when rtt decreases.
741 			 * This solution is a bit different: we use finer gain
742 			 * for mdev in this case (alpha*beta).
743 			 * Like Eifel it also prevents growth of rto,
744 			 * but also it limits too fast rto decreases,
745 			 * happening in pure Eifel.
746 			 */
747 			if (m > 0)
748 				m >>= 3;
749 		} else {
750 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
751 		}
752 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
753 		if (tp->mdev_us > tp->mdev_max_us) {
754 			tp->mdev_max_us = tp->mdev_us;
755 			if (tp->mdev_max_us > tp->rttvar_us)
756 				tp->rttvar_us = tp->mdev_max_us;
757 		}
758 		if (after(tp->snd_una, tp->rtt_seq)) {
759 			if (tp->mdev_max_us < tp->rttvar_us)
760 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
761 			tp->rtt_seq = tp->snd_nxt;
762 			tp->mdev_max_us = tcp_rto_min_us(sk);
763 		}
764 	} else {
765 		/* no previous measure. */
766 		srtt = m << 3;		/* take the measured time to be rtt */
767 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
768 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
769 		tp->mdev_max_us = tp->rttvar_us;
770 		tp->rtt_seq = tp->snd_nxt;
771 	}
772 	tp->srtt_us = max(1U, srtt);
773 }
774 
775 static void tcp_update_pacing_rate(struct sock *sk)
776 {
777 	const struct tcp_sock *tp = tcp_sk(sk);
778 	u64 rate;
779 
780 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
781 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
782 
783 	/* current rate is (cwnd * mss) / srtt
784 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
785 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
786 	 *
787 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
788 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
789 	 *	 end of slow start and should slow down.
790 	 */
791 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
792 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
793 	else
794 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
795 
796 	rate *= max(tp->snd_cwnd, tp->packets_out);
797 
798 	if (likely(tp->srtt_us))
799 		do_div(rate, tp->srtt_us);
800 
801 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
802 	 * without any lock. We want to make sure compiler wont store
803 	 * intermediate values in this location.
804 	 */
805 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
806 					     sk->sk_max_pacing_rate));
807 }
808 
809 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
810  * routine referred to above.
811  */
812 static void tcp_set_rto(struct sock *sk)
813 {
814 	const struct tcp_sock *tp = tcp_sk(sk);
815 	/* Old crap is replaced with new one. 8)
816 	 *
817 	 * More seriously:
818 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
819 	 *    It cannot be less due to utterly erratic ACK generation made
820 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
821 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
822 	 *    is invisible. Actually, Linux-2.4 also generates erratic
823 	 *    ACKs in some circumstances.
824 	 */
825 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
826 
827 	/* 2. Fixups made earlier cannot be right.
828 	 *    If we do not estimate RTO correctly without them,
829 	 *    all the algo is pure shit and should be replaced
830 	 *    with correct one. It is exactly, which we pretend to do.
831 	 */
832 
833 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
834 	 * guarantees that rto is higher.
835 	 */
836 	tcp_bound_rto(sk);
837 }
838 
839 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
840 {
841 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
842 
843 	if (!cwnd)
844 		cwnd = TCP_INIT_CWND;
845 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
846 }
847 
848 /* Take a notice that peer is sending D-SACKs */
849 static void tcp_dsack_seen(struct tcp_sock *tp)
850 {
851 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
852 	tp->rack.dsack_seen = 1;
853 }
854 
855 /* It's reordering when higher sequence was delivered (i.e. sacked) before
856  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
857  * distance is approximated in full-mss packet distance ("reordering").
858  */
859 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
860 				      const int ts)
861 {
862 	struct tcp_sock *tp = tcp_sk(sk);
863 	const u32 mss = tp->mss_cache;
864 	u32 fack, metric;
865 
866 	fack = tcp_highest_sack_seq(tp);
867 	if (!before(low_seq, fack))
868 		return;
869 
870 	metric = fack - low_seq;
871 	if ((metric > tp->reordering * mss) && mss) {
872 #if FASTRETRANS_DEBUG > 1
873 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
874 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
875 			 tp->reordering,
876 			 0,
877 			 tp->sacked_out,
878 			 tp->undo_marker ? tp->undo_retrans : 0);
879 #endif
880 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
881 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
882 	}
883 
884 	tp->rack.reord = 1;
885 	/* This exciting event is worth to be remembered. 8) */
886 	NET_INC_STATS(sock_net(sk),
887 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
888 }
889 
890 /* This must be called before lost_out is incremented */
891 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
892 {
893 	if (!tp->retransmit_skb_hint ||
894 	    before(TCP_SKB_CB(skb)->seq,
895 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
896 		tp->retransmit_skb_hint = skb;
897 }
898 
899 /* Sum the number of packets on the wire we have marked as lost.
900  * There are two cases we care about here:
901  * a) Packet hasn't been marked lost (nor retransmitted),
902  *    and this is the first loss.
903  * b) Packet has been marked both lost and retransmitted,
904  *    and this means we think it was lost again.
905  */
906 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
907 {
908 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
909 
910 	if (!(sacked & TCPCB_LOST) ||
911 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
912 		tp->lost += tcp_skb_pcount(skb);
913 }
914 
915 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
916 {
917 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
918 		tcp_verify_retransmit_hint(tp, skb);
919 
920 		tp->lost_out += tcp_skb_pcount(skb);
921 		tcp_sum_lost(tp, skb);
922 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
923 	}
924 }
925 
926 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
927 {
928 	tcp_verify_retransmit_hint(tp, skb);
929 
930 	tcp_sum_lost(tp, skb);
931 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
932 		tp->lost_out += tcp_skb_pcount(skb);
933 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
934 	}
935 }
936 
937 /* This procedure tags the retransmission queue when SACKs arrive.
938  *
939  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
940  * Packets in queue with these bits set are counted in variables
941  * sacked_out, retrans_out and lost_out, correspondingly.
942  *
943  * Valid combinations are:
944  * Tag  InFlight	Description
945  * 0	1		- orig segment is in flight.
946  * S	0		- nothing flies, orig reached receiver.
947  * L	0		- nothing flies, orig lost by net.
948  * R	2		- both orig and retransmit are in flight.
949  * L|R	1		- orig is lost, retransmit is in flight.
950  * S|R  1		- orig reached receiver, retrans is still in flight.
951  * (L|S|R is logically valid, it could occur when L|R is sacked,
952  *  but it is equivalent to plain S and code short-curcuits it to S.
953  *  L|S is logically invalid, it would mean -1 packet in flight 8))
954  *
955  * These 6 states form finite state machine, controlled by the following events:
956  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
957  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
958  * 3. Loss detection event of two flavors:
959  *	A. Scoreboard estimator decided the packet is lost.
960  *	   A'. Reno "three dupacks" marks head of queue lost.
961  *	B. SACK arrives sacking SND.NXT at the moment, when the
962  *	   segment was retransmitted.
963  * 4. D-SACK added new rule: D-SACK changes any tag to S.
964  *
965  * It is pleasant to note, that state diagram turns out to be commutative,
966  * so that we are allowed not to be bothered by order of our actions,
967  * when multiple events arrive simultaneously. (see the function below).
968  *
969  * Reordering detection.
970  * --------------------
971  * Reordering metric is maximal distance, which a packet can be displaced
972  * in packet stream. With SACKs we can estimate it:
973  *
974  * 1. SACK fills old hole and the corresponding segment was not
975  *    ever retransmitted -> reordering. Alas, we cannot use it
976  *    when segment was retransmitted.
977  * 2. The last flaw is solved with D-SACK. D-SACK arrives
978  *    for retransmitted and already SACKed segment -> reordering..
979  * Both of these heuristics are not used in Loss state, when we cannot
980  * account for retransmits accurately.
981  *
982  * SACK block validation.
983  * ----------------------
984  *
985  * SACK block range validation checks that the received SACK block fits to
986  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
987  * Note that SND.UNA is not included to the range though being valid because
988  * it means that the receiver is rather inconsistent with itself reporting
989  * SACK reneging when it should advance SND.UNA. Such SACK block this is
990  * perfectly valid, however, in light of RFC2018 which explicitly states
991  * that "SACK block MUST reflect the newest segment.  Even if the newest
992  * segment is going to be discarded ...", not that it looks very clever
993  * in case of head skb. Due to potentional receiver driven attacks, we
994  * choose to avoid immediate execution of a walk in write queue due to
995  * reneging and defer head skb's loss recovery to standard loss recovery
996  * procedure that will eventually trigger (nothing forbids us doing this).
997  *
998  * Implements also blockage to start_seq wrap-around. Problem lies in the
999  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1000  * there's no guarantee that it will be before snd_nxt (n). The problem
1001  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1002  * wrap (s_w):
1003  *
1004  *         <- outs wnd ->                          <- wrapzone ->
1005  *         u     e      n                         u_w   e_w  s n_w
1006  *         |     |      |                          |     |   |  |
1007  * |<------------+------+----- TCP seqno space --------------+---------->|
1008  * ...-- <2^31 ->|                                           |<--------...
1009  * ...---- >2^31 ------>|                                    |<--------...
1010  *
1011  * Current code wouldn't be vulnerable but it's better still to discard such
1012  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1013  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1014  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1015  * equal to the ideal case (infinite seqno space without wrap caused issues).
1016  *
1017  * With D-SACK the lower bound is extended to cover sequence space below
1018  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1019  * again, D-SACK block must not to go across snd_una (for the same reason as
1020  * for the normal SACK blocks, explained above). But there all simplicity
1021  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1022  * fully below undo_marker they do not affect behavior in anyway and can
1023  * therefore be safely ignored. In rare cases (which are more or less
1024  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1025  * fragmentation and packet reordering past skb's retransmission. To consider
1026  * them correctly, the acceptable range must be extended even more though
1027  * the exact amount is rather hard to quantify. However, tp->max_window can
1028  * be used as an exaggerated estimate.
1029  */
1030 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1031 				   u32 start_seq, u32 end_seq)
1032 {
1033 	/* Too far in future, or reversed (interpretation is ambiguous) */
1034 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1035 		return false;
1036 
1037 	/* Nasty start_seq wrap-around check (see comments above) */
1038 	if (!before(start_seq, tp->snd_nxt))
1039 		return false;
1040 
1041 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1042 	 * start_seq == snd_una is non-sensical (see comments above)
1043 	 */
1044 	if (after(start_seq, tp->snd_una))
1045 		return true;
1046 
1047 	if (!is_dsack || !tp->undo_marker)
1048 		return false;
1049 
1050 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1051 	if (after(end_seq, tp->snd_una))
1052 		return false;
1053 
1054 	if (!before(start_seq, tp->undo_marker))
1055 		return true;
1056 
1057 	/* Too old */
1058 	if (!after(end_seq, tp->undo_marker))
1059 		return false;
1060 
1061 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1062 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1063 	 */
1064 	return !before(start_seq, end_seq - tp->max_window);
1065 }
1066 
1067 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1068 			    struct tcp_sack_block_wire *sp, int num_sacks,
1069 			    u32 prior_snd_una)
1070 {
1071 	struct tcp_sock *tp = tcp_sk(sk);
1072 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1073 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1074 	bool dup_sack = false;
1075 
1076 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1077 		dup_sack = true;
1078 		tcp_dsack_seen(tp);
1079 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1080 	} else if (num_sacks > 1) {
1081 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1082 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1083 
1084 		if (!after(end_seq_0, end_seq_1) &&
1085 		    !before(start_seq_0, start_seq_1)) {
1086 			dup_sack = true;
1087 			tcp_dsack_seen(tp);
1088 			NET_INC_STATS(sock_net(sk),
1089 					LINUX_MIB_TCPDSACKOFORECV);
1090 		}
1091 	}
1092 
1093 	/* D-SACK for already forgotten data... Do dumb counting. */
1094 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1095 	    !after(end_seq_0, prior_snd_una) &&
1096 	    after(end_seq_0, tp->undo_marker))
1097 		tp->undo_retrans--;
1098 
1099 	return dup_sack;
1100 }
1101 
1102 struct tcp_sacktag_state {
1103 	u32	reord;
1104 	/* Timestamps for earliest and latest never-retransmitted segment
1105 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1106 	 * but congestion control should still get an accurate delay signal.
1107 	 */
1108 	u64	first_sackt;
1109 	u64	last_sackt;
1110 	struct rate_sample *rate;
1111 	int	flag;
1112 	unsigned int mss_now;
1113 };
1114 
1115 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1116  * the incoming SACK may not exactly match but we can find smaller MSS
1117  * aligned portion of it that matches. Therefore we might need to fragment
1118  * which may fail and creates some hassle (caller must handle error case
1119  * returns).
1120  *
1121  * FIXME: this could be merged to shift decision code
1122  */
1123 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1124 				  u32 start_seq, u32 end_seq)
1125 {
1126 	int err;
1127 	bool in_sack;
1128 	unsigned int pkt_len;
1129 	unsigned int mss;
1130 
1131 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1132 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1133 
1134 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1135 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1136 		mss = tcp_skb_mss(skb);
1137 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1138 
1139 		if (!in_sack) {
1140 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1141 			if (pkt_len < mss)
1142 				pkt_len = mss;
1143 		} else {
1144 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1145 			if (pkt_len < mss)
1146 				return -EINVAL;
1147 		}
1148 
1149 		/* Round if necessary so that SACKs cover only full MSSes
1150 		 * and/or the remaining small portion (if present)
1151 		 */
1152 		if (pkt_len > mss) {
1153 			unsigned int new_len = (pkt_len / mss) * mss;
1154 			if (!in_sack && new_len < pkt_len)
1155 				new_len += mss;
1156 			pkt_len = new_len;
1157 		}
1158 
1159 		if (pkt_len >= skb->len && !in_sack)
1160 			return 0;
1161 
1162 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1163 				   pkt_len, mss, GFP_ATOMIC);
1164 		if (err < 0)
1165 			return err;
1166 	}
1167 
1168 	return in_sack;
1169 }
1170 
1171 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1172 static u8 tcp_sacktag_one(struct sock *sk,
1173 			  struct tcp_sacktag_state *state, u8 sacked,
1174 			  u32 start_seq, u32 end_seq,
1175 			  int dup_sack, int pcount,
1176 			  u64 xmit_time)
1177 {
1178 	struct tcp_sock *tp = tcp_sk(sk);
1179 
1180 	/* Account D-SACK for retransmitted packet. */
1181 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1182 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1183 		    after(end_seq, tp->undo_marker))
1184 			tp->undo_retrans--;
1185 		if ((sacked & TCPCB_SACKED_ACKED) &&
1186 		    before(start_seq, state->reord))
1187 				state->reord = start_seq;
1188 	}
1189 
1190 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1191 	if (!after(end_seq, tp->snd_una))
1192 		return sacked;
1193 
1194 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1195 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1196 
1197 		if (sacked & TCPCB_SACKED_RETRANS) {
1198 			/* If the segment is not tagged as lost,
1199 			 * we do not clear RETRANS, believing
1200 			 * that retransmission is still in flight.
1201 			 */
1202 			if (sacked & TCPCB_LOST) {
1203 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1204 				tp->lost_out -= pcount;
1205 				tp->retrans_out -= pcount;
1206 			}
1207 		} else {
1208 			if (!(sacked & TCPCB_RETRANS)) {
1209 				/* New sack for not retransmitted frame,
1210 				 * which was in hole. It is reordering.
1211 				 */
1212 				if (before(start_seq,
1213 					   tcp_highest_sack_seq(tp)) &&
1214 				    before(start_seq, state->reord))
1215 					state->reord = start_seq;
1216 
1217 				if (!after(end_seq, tp->high_seq))
1218 					state->flag |= FLAG_ORIG_SACK_ACKED;
1219 				if (state->first_sackt == 0)
1220 					state->first_sackt = xmit_time;
1221 				state->last_sackt = xmit_time;
1222 			}
1223 
1224 			if (sacked & TCPCB_LOST) {
1225 				sacked &= ~TCPCB_LOST;
1226 				tp->lost_out -= pcount;
1227 			}
1228 		}
1229 
1230 		sacked |= TCPCB_SACKED_ACKED;
1231 		state->flag |= FLAG_DATA_SACKED;
1232 		tp->sacked_out += pcount;
1233 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1234 
1235 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1236 		if (tp->lost_skb_hint &&
1237 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1238 			tp->lost_cnt_hint += pcount;
1239 	}
1240 
1241 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1242 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1243 	 * are accounted above as well.
1244 	 */
1245 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1246 		sacked &= ~TCPCB_SACKED_RETRANS;
1247 		tp->retrans_out -= pcount;
1248 	}
1249 
1250 	return sacked;
1251 }
1252 
1253 /* Shift newly-SACKed bytes from this skb to the immediately previous
1254  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1255  */
1256 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1257 			    struct sk_buff *skb,
1258 			    struct tcp_sacktag_state *state,
1259 			    unsigned int pcount, int shifted, int mss,
1260 			    bool dup_sack)
1261 {
1262 	struct tcp_sock *tp = tcp_sk(sk);
1263 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1264 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1265 
1266 	BUG_ON(!pcount);
1267 
1268 	/* Adjust counters and hints for the newly sacked sequence
1269 	 * range but discard the return value since prev is already
1270 	 * marked. We must tag the range first because the seq
1271 	 * advancement below implicitly advances
1272 	 * tcp_highest_sack_seq() when skb is highest_sack.
1273 	 */
1274 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1275 			start_seq, end_seq, dup_sack, pcount,
1276 			skb->skb_mstamp);
1277 	tcp_rate_skb_delivered(sk, skb, state->rate);
1278 
1279 	if (skb == tp->lost_skb_hint)
1280 		tp->lost_cnt_hint += pcount;
1281 
1282 	TCP_SKB_CB(prev)->end_seq += shifted;
1283 	TCP_SKB_CB(skb)->seq += shifted;
1284 
1285 	tcp_skb_pcount_add(prev, pcount);
1286 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1287 	tcp_skb_pcount_add(skb, -pcount);
1288 
1289 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1290 	 * in theory this shouldn't be necessary but as long as DSACK
1291 	 * code can come after this skb later on it's better to keep
1292 	 * setting gso_size to something.
1293 	 */
1294 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1295 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1296 
1297 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1298 	if (tcp_skb_pcount(skb) <= 1)
1299 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1300 
1301 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1302 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1303 
1304 	if (skb->len > 0) {
1305 		BUG_ON(!tcp_skb_pcount(skb));
1306 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1307 		return false;
1308 	}
1309 
1310 	/* Whole SKB was eaten :-) */
1311 
1312 	if (skb == tp->retransmit_skb_hint)
1313 		tp->retransmit_skb_hint = prev;
1314 	if (skb == tp->lost_skb_hint) {
1315 		tp->lost_skb_hint = prev;
1316 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1317 	}
1318 
1319 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1320 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1321 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1322 		TCP_SKB_CB(prev)->end_seq++;
1323 
1324 	if (skb == tcp_highest_sack(sk))
1325 		tcp_advance_highest_sack(sk, skb);
1326 
1327 	tcp_skb_collapse_tstamp(prev, skb);
1328 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1329 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1330 
1331 	tcp_rtx_queue_unlink_and_free(skb, sk);
1332 
1333 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1334 
1335 	return true;
1336 }
1337 
1338 /* I wish gso_size would have a bit more sane initialization than
1339  * something-or-zero which complicates things
1340  */
1341 static int tcp_skb_seglen(const struct sk_buff *skb)
1342 {
1343 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1344 }
1345 
1346 /* Shifting pages past head area doesn't work */
1347 static int skb_can_shift(const struct sk_buff *skb)
1348 {
1349 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1350 }
1351 
1352 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1353  * skb.
1354  */
1355 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1356 					  struct tcp_sacktag_state *state,
1357 					  u32 start_seq, u32 end_seq,
1358 					  bool dup_sack)
1359 {
1360 	struct tcp_sock *tp = tcp_sk(sk);
1361 	struct sk_buff *prev;
1362 	int mss;
1363 	int pcount = 0;
1364 	int len;
1365 	int in_sack;
1366 
1367 	if (!sk_can_gso(sk))
1368 		goto fallback;
1369 
1370 	/* Normally R but no L won't result in plain S */
1371 	if (!dup_sack &&
1372 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1373 		goto fallback;
1374 	if (!skb_can_shift(skb))
1375 		goto fallback;
1376 	/* This frame is about to be dropped (was ACKed). */
1377 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1378 		goto fallback;
1379 
1380 	/* Can only happen with delayed DSACK + discard craziness */
1381 	prev = skb_rb_prev(skb);
1382 	if (!prev)
1383 		goto fallback;
1384 
1385 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1386 		goto fallback;
1387 
1388 	if (!tcp_skb_can_collapse_to(prev))
1389 		goto fallback;
1390 
1391 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1392 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1393 
1394 	if (in_sack) {
1395 		len = skb->len;
1396 		pcount = tcp_skb_pcount(skb);
1397 		mss = tcp_skb_seglen(skb);
1398 
1399 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1400 		 * drop this restriction as unnecessary
1401 		 */
1402 		if (mss != tcp_skb_seglen(prev))
1403 			goto fallback;
1404 	} else {
1405 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1406 			goto noop;
1407 		/* CHECKME: This is non-MSS split case only?, this will
1408 		 * cause skipped skbs due to advancing loop btw, original
1409 		 * has that feature too
1410 		 */
1411 		if (tcp_skb_pcount(skb) <= 1)
1412 			goto noop;
1413 
1414 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1415 		if (!in_sack) {
1416 			/* TODO: head merge to next could be attempted here
1417 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1418 			 * though it might not be worth of the additional hassle
1419 			 *
1420 			 * ...we can probably just fallback to what was done
1421 			 * previously. We could try merging non-SACKed ones
1422 			 * as well but it probably isn't going to buy off
1423 			 * because later SACKs might again split them, and
1424 			 * it would make skb timestamp tracking considerably
1425 			 * harder problem.
1426 			 */
1427 			goto fallback;
1428 		}
1429 
1430 		len = end_seq - TCP_SKB_CB(skb)->seq;
1431 		BUG_ON(len < 0);
1432 		BUG_ON(len > skb->len);
1433 
1434 		/* MSS boundaries should be honoured or else pcount will
1435 		 * severely break even though it makes things bit trickier.
1436 		 * Optimize common case to avoid most of the divides
1437 		 */
1438 		mss = tcp_skb_mss(skb);
1439 
1440 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1441 		 * drop this restriction as unnecessary
1442 		 */
1443 		if (mss != tcp_skb_seglen(prev))
1444 			goto fallback;
1445 
1446 		if (len == mss) {
1447 			pcount = 1;
1448 		} else if (len < mss) {
1449 			goto noop;
1450 		} else {
1451 			pcount = len / mss;
1452 			len = pcount * mss;
1453 		}
1454 	}
1455 
1456 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1457 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1458 		goto fallback;
1459 
1460 	if (!skb_shift(prev, skb, len))
1461 		goto fallback;
1462 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1463 		goto out;
1464 
1465 	/* Hole filled allows collapsing with the next as well, this is very
1466 	 * useful when hole on every nth skb pattern happens
1467 	 */
1468 	skb = skb_rb_next(prev);
1469 	if (!skb)
1470 		goto out;
1471 
1472 	if (!skb_can_shift(skb) ||
1473 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1474 	    (mss != tcp_skb_seglen(skb)))
1475 		goto out;
1476 
1477 	len = skb->len;
1478 	if (skb_shift(prev, skb, len)) {
1479 		pcount += tcp_skb_pcount(skb);
1480 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1481 				len, mss, 0);
1482 	}
1483 
1484 out:
1485 	return prev;
1486 
1487 noop:
1488 	return skb;
1489 
1490 fallback:
1491 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1492 	return NULL;
1493 }
1494 
1495 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1496 					struct tcp_sack_block *next_dup,
1497 					struct tcp_sacktag_state *state,
1498 					u32 start_seq, u32 end_seq,
1499 					bool dup_sack_in)
1500 {
1501 	struct tcp_sock *tp = tcp_sk(sk);
1502 	struct sk_buff *tmp;
1503 
1504 	skb_rbtree_walk_from(skb) {
1505 		int in_sack = 0;
1506 		bool dup_sack = dup_sack_in;
1507 
1508 		/* queue is in-order => we can short-circuit the walk early */
1509 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1510 			break;
1511 
1512 		if (next_dup  &&
1513 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1514 			in_sack = tcp_match_skb_to_sack(sk, skb,
1515 							next_dup->start_seq,
1516 							next_dup->end_seq);
1517 			if (in_sack > 0)
1518 				dup_sack = true;
1519 		}
1520 
1521 		/* skb reference here is a bit tricky to get right, since
1522 		 * shifting can eat and free both this skb and the next,
1523 		 * so not even _safe variant of the loop is enough.
1524 		 */
1525 		if (in_sack <= 0) {
1526 			tmp = tcp_shift_skb_data(sk, skb, state,
1527 						 start_seq, end_seq, dup_sack);
1528 			if (tmp) {
1529 				if (tmp != skb) {
1530 					skb = tmp;
1531 					continue;
1532 				}
1533 
1534 				in_sack = 0;
1535 			} else {
1536 				in_sack = tcp_match_skb_to_sack(sk, skb,
1537 								start_seq,
1538 								end_seq);
1539 			}
1540 		}
1541 
1542 		if (unlikely(in_sack < 0))
1543 			break;
1544 
1545 		if (in_sack) {
1546 			TCP_SKB_CB(skb)->sacked =
1547 				tcp_sacktag_one(sk,
1548 						state,
1549 						TCP_SKB_CB(skb)->sacked,
1550 						TCP_SKB_CB(skb)->seq,
1551 						TCP_SKB_CB(skb)->end_seq,
1552 						dup_sack,
1553 						tcp_skb_pcount(skb),
1554 						skb->skb_mstamp);
1555 			tcp_rate_skb_delivered(sk, skb, state->rate);
1556 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1557 				list_del_init(&skb->tcp_tsorted_anchor);
1558 
1559 			if (!before(TCP_SKB_CB(skb)->seq,
1560 				    tcp_highest_sack_seq(tp)))
1561 				tcp_advance_highest_sack(sk, skb);
1562 		}
1563 	}
1564 	return skb;
1565 }
1566 
1567 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1568 					   struct tcp_sacktag_state *state,
1569 					   u32 seq)
1570 {
1571 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1572 	struct sk_buff *skb;
1573 
1574 	while (*p) {
1575 		parent = *p;
1576 		skb = rb_to_skb(parent);
1577 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1578 			p = &parent->rb_left;
1579 			continue;
1580 		}
1581 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1582 			p = &parent->rb_right;
1583 			continue;
1584 		}
1585 		return skb;
1586 	}
1587 	return NULL;
1588 }
1589 
1590 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1591 					struct tcp_sacktag_state *state,
1592 					u32 skip_to_seq)
1593 {
1594 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1595 		return skb;
1596 
1597 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1598 }
1599 
1600 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1601 						struct sock *sk,
1602 						struct tcp_sack_block *next_dup,
1603 						struct tcp_sacktag_state *state,
1604 						u32 skip_to_seq)
1605 {
1606 	if (!next_dup)
1607 		return skb;
1608 
1609 	if (before(next_dup->start_seq, skip_to_seq)) {
1610 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1611 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1612 				       next_dup->start_seq, next_dup->end_seq,
1613 				       1);
1614 	}
1615 
1616 	return skb;
1617 }
1618 
1619 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1620 {
1621 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1622 }
1623 
1624 static int
1625 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1626 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1627 {
1628 	struct tcp_sock *tp = tcp_sk(sk);
1629 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1630 				    TCP_SKB_CB(ack_skb)->sacked);
1631 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1632 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1633 	struct tcp_sack_block *cache;
1634 	struct sk_buff *skb;
1635 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1636 	int used_sacks;
1637 	bool found_dup_sack = false;
1638 	int i, j;
1639 	int first_sack_index;
1640 
1641 	state->flag = 0;
1642 	state->reord = tp->snd_nxt;
1643 
1644 	if (!tp->sacked_out)
1645 		tcp_highest_sack_reset(sk);
1646 
1647 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1648 					 num_sacks, prior_snd_una);
1649 	if (found_dup_sack) {
1650 		state->flag |= FLAG_DSACKING_ACK;
1651 		tp->delivered++; /* A spurious retransmission is delivered */
1652 	}
1653 
1654 	/* Eliminate too old ACKs, but take into
1655 	 * account more or less fresh ones, they can
1656 	 * contain valid SACK info.
1657 	 */
1658 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1659 		return 0;
1660 
1661 	if (!tp->packets_out)
1662 		goto out;
1663 
1664 	used_sacks = 0;
1665 	first_sack_index = 0;
1666 	for (i = 0; i < num_sacks; i++) {
1667 		bool dup_sack = !i && found_dup_sack;
1668 
1669 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1670 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1671 
1672 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1673 					    sp[used_sacks].start_seq,
1674 					    sp[used_sacks].end_seq)) {
1675 			int mib_idx;
1676 
1677 			if (dup_sack) {
1678 				if (!tp->undo_marker)
1679 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1680 				else
1681 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1682 			} else {
1683 				/* Don't count olds caused by ACK reordering */
1684 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1685 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1686 					continue;
1687 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1688 			}
1689 
1690 			NET_INC_STATS(sock_net(sk), mib_idx);
1691 			if (i == 0)
1692 				first_sack_index = -1;
1693 			continue;
1694 		}
1695 
1696 		/* Ignore very old stuff early */
1697 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1698 			continue;
1699 
1700 		used_sacks++;
1701 	}
1702 
1703 	/* order SACK blocks to allow in order walk of the retrans queue */
1704 	for (i = used_sacks - 1; i > 0; i--) {
1705 		for (j = 0; j < i; j++) {
1706 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1707 				swap(sp[j], sp[j + 1]);
1708 
1709 				/* Track where the first SACK block goes to */
1710 				if (j == first_sack_index)
1711 					first_sack_index = j + 1;
1712 			}
1713 		}
1714 	}
1715 
1716 	state->mss_now = tcp_current_mss(sk);
1717 	skb = NULL;
1718 	i = 0;
1719 
1720 	if (!tp->sacked_out) {
1721 		/* It's already past, so skip checking against it */
1722 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1723 	} else {
1724 		cache = tp->recv_sack_cache;
1725 		/* Skip empty blocks in at head of the cache */
1726 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1727 		       !cache->end_seq)
1728 			cache++;
1729 	}
1730 
1731 	while (i < used_sacks) {
1732 		u32 start_seq = sp[i].start_seq;
1733 		u32 end_seq = sp[i].end_seq;
1734 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1735 		struct tcp_sack_block *next_dup = NULL;
1736 
1737 		if (found_dup_sack && ((i + 1) == first_sack_index))
1738 			next_dup = &sp[i + 1];
1739 
1740 		/* Skip too early cached blocks */
1741 		while (tcp_sack_cache_ok(tp, cache) &&
1742 		       !before(start_seq, cache->end_seq))
1743 			cache++;
1744 
1745 		/* Can skip some work by looking recv_sack_cache? */
1746 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1747 		    after(end_seq, cache->start_seq)) {
1748 
1749 			/* Head todo? */
1750 			if (before(start_seq, cache->start_seq)) {
1751 				skb = tcp_sacktag_skip(skb, sk, state,
1752 						       start_seq);
1753 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1754 						       state,
1755 						       start_seq,
1756 						       cache->start_seq,
1757 						       dup_sack);
1758 			}
1759 
1760 			/* Rest of the block already fully processed? */
1761 			if (!after(end_seq, cache->end_seq))
1762 				goto advance_sp;
1763 
1764 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1765 						       state,
1766 						       cache->end_seq);
1767 
1768 			/* ...tail remains todo... */
1769 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1770 				/* ...but better entrypoint exists! */
1771 				skb = tcp_highest_sack(sk);
1772 				if (!skb)
1773 					break;
1774 				cache++;
1775 				goto walk;
1776 			}
1777 
1778 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1779 			/* Check overlap against next cached too (past this one already) */
1780 			cache++;
1781 			continue;
1782 		}
1783 
1784 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1785 			skb = tcp_highest_sack(sk);
1786 			if (!skb)
1787 				break;
1788 		}
1789 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1790 
1791 walk:
1792 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1793 				       start_seq, end_seq, dup_sack);
1794 
1795 advance_sp:
1796 		i++;
1797 	}
1798 
1799 	/* Clear the head of the cache sack blocks so we can skip it next time */
1800 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1801 		tp->recv_sack_cache[i].start_seq = 0;
1802 		tp->recv_sack_cache[i].end_seq = 0;
1803 	}
1804 	for (j = 0; j < used_sacks; j++)
1805 		tp->recv_sack_cache[i++] = sp[j];
1806 
1807 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1808 		tcp_check_sack_reordering(sk, state->reord, 0);
1809 
1810 	tcp_verify_left_out(tp);
1811 out:
1812 
1813 #if FASTRETRANS_DEBUG > 0
1814 	WARN_ON((int)tp->sacked_out < 0);
1815 	WARN_ON((int)tp->lost_out < 0);
1816 	WARN_ON((int)tp->retrans_out < 0);
1817 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1818 #endif
1819 	return state->flag;
1820 }
1821 
1822 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1823  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1824  */
1825 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1826 {
1827 	u32 holes;
1828 
1829 	holes = max(tp->lost_out, 1U);
1830 	holes = min(holes, tp->packets_out);
1831 
1832 	if ((tp->sacked_out + holes) > tp->packets_out) {
1833 		tp->sacked_out = tp->packets_out - holes;
1834 		return true;
1835 	}
1836 	return false;
1837 }
1838 
1839 /* If we receive more dupacks than we expected counting segments
1840  * in assumption of absent reordering, interpret this as reordering.
1841  * The only another reason could be bug in receiver TCP.
1842  */
1843 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1844 {
1845 	struct tcp_sock *tp = tcp_sk(sk);
1846 
1847 	if (!tcp_limit_reno_sacked(tp))
1848 		return;
1849 
1850 	tp->reordering = min_t(u32, tp->packets_out + addend,
1851 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1852 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1853 }
1854 
1855 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1856 
1857 static void tcp_add_reno_sack(struct sock *sk)
1858 {
1859 	struct tcp_sock *tp = tcp_sk(sk);
1860 	u32 prior_sacked = tp->sacked_out;
1861 
1862 	tp->sacked_out++;
1863 	tcp_check_reno_reordering(sk, 0);
1864 	if (tp->sacked_out > prior_sacked)
1865 		tp->delivered++; /* Some out-of-order packet is delivered */
1866 	tcp_verify_left_out(tp);
1867 }
1868 
1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1870 
1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 
1875 	if (acked > 0) {
1876 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1877 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1878 		if (acked - 1 >= tp->sacked_out)
1879 			tp->sacked_out = 0;
1880 		else
1881 			tp->sacked_out -= acked - 1;
1882 	}
1883 	tcp_check_reno_reordering(sk, acked);
1884 	tcp_verify_left_out(tp);
1885 }
1886 
1887 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1888 {
1889 	tp->sacked_out = 0;
1890 }
1891 
1892 void tcp_clear_retrans(struct tcp_sock *tp)
1893 {
1894 	tp->retrans_out = 0;
1895 	tp->lost_out = 0;
1896 	tp->undo_marker = 0;
1897 	tp->undo_retrans = -1;
1898 	tp->sacked_out = 0;
1899 }
1900 
1901 static inline void tcp_init_undo(struct tcp_sock *tp)
1902 {
1903 	tp->undo_marker = tp->snd_una;
1904 	/* Retransmission still in flight may cause DSACKs later. */
1905 	tp->undo_retrans = tp->retrans_out ? : -1;
1906 }
1907 
1908 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1909  * and reset tags completely, otherwise preserve SACKs. If receiver
1910  * dropped its ofo queue, we will know this due to reneging detection.
1911  */
1912 void tcp_enter_loss(struct sock *sk)
1913 {
1914 	const struct inet_connection_sock *icsk = inet_csk(sk);
1915 	struct tcp_sock *tp = tcp_sk(sk);
1916 	struct net *net = sock_net(sk);
1917 	struct sk_buff *skb;
1918 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1919 	bool is_reneg;			/* is receiver reneging on SACKs? */
1920 	bool mark_lost;
1921 
1922 	/* Reduce ssthresh if it has not yet been made inside this window. */
1923 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1924 	    !after(tp->high_seq, tp->snd_una) ||
1925 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1926 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1927 		tp->prior_cwnd = tp->snd_cwnd;
1928 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1929 		tcp_ca_event(sk, CA_EVENT_LOSS);
1930 		tcp_init_undo(tp);
1931 	}
1932 	tp->snd_cwnd	   = 1;
1933 	tp->snd_cwnd_cnt   = 0;
1934 	tp->snd_cwnd_stamp = tcp_jiffies32;
1935 
1936 	tp->retrans_out = 0;
1937 	tp->lost_out = 0;
1938 
1939 	if (tcp_is_reno(tp))
1940 		tcp_reset_reno_sack(tp);
1941 
1942 	skb = tcp_rtx_queue_head(sk);
1943 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1944 	if (is_reneg) {
1945 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1946 		tp->sacked_out = 0;
1947 		/* Mark SACK reneging until we recover from this loss event. */
1948 		tp->is_sack_reneg = 1;
1949 	}
1950 	tcp_clear_all_retrans_hints(tp);
1951 
1952 	skb_rbtree_walk_from(skb) {
1953 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1954 			     is_reneg);
1955 		if (mark_lost)
1956 			tcp_sum_lost(tp, skb);
1957 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1958 		if (mark_lost) {
1959 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1960 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1961 			tp->lost_out += tcp_skb_pcount(skb);
1962 		}
1963 	}
1964 	tcp_verify_left_out(tp);
1965 
1966 	/* Timeout in disordered state after receiving substantial DUPACKs
1967 	 * suggests that the degree of reordering is over-estimated.
1968 	 */
1969 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1970 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1971 		tp->reordering = min_t(unsigned int, tp->reordering,
1972 				       net->ipv4.sysctl_tcp_reordering);
1973 	tcp_set_ca_state(sk, TCP_CA_Loss);
1974 	tp->high_seq = tp->snd_nxt;
1975 	tcp_ecn_queue_cwr(tp);
1976 
1977 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1978 	 * loss recovery is underway except recurring timeout(s) on
1979 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1980 	 *
1981 	 * In theory F-RTO can be used repeatedly during loss recovery.
1982 	 * In practice this interacts badly with broken middle-boxes that
1983 	 * falsely raise the receive window, which results in repeated
1984 	 * timeouts and stop-and-go behavior.
1985 	 */
1986 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1987 		   (new_recovery || icsk->icsk_retransmits) &&
1988 		   !inet_csk(sk)->icsk_mtup.probe_size;
1989 }
1990 
1991 /* If ACK arrived pointing to a remembered SACK, it means that our
1992  * remembered SACKs do not reflect real state of receiver i.e.
1993  * receiver _host_ is heavily congested (or buggy).
1994  *
1995  * To avoid big spurious retransmission bursts due to transient SACK
1996  * scoreboard oddities that look like reneging, we give the receiver a
1997  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1998  * restore sanity to the SACK scoreboard. If the apparent reneging
1999  * persists until this RTO then we'll clear the SACK scoreboard.
2000  */
2001 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2002 {
2003 	if (flag & FLAG_SACK_RENEGING) {
2004 		struct tcp_sock *tp = tcp_sk(sk);
2005 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2006 					  msecs_to_jiffies(10));
2007 
2008 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2009 					  delay, TCP_RTO_MAX);
2010 		return true;
2011 	}
2012 	return false;
2013 }
2014 
2015 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2016  * counter when SACK is enabled (without SACK, sacked_out is used for
2017  * that purpose).
2018  *
2019  * With reordering, holes may still be in flight, so RFC3517 recovery
2020  * uses pure sacked_out (total number of SACKed segments) even though
2021  * it violates the RFC that uses duplicate ACKs, often these are equal
2022  * but when e.g. out-of-window ACKs or packet duplication occurs,
2023  * they differ. Since neither occurs due to loss, TCP should really
2024  * ignore them.
2025  */
2026 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2027 {
2028 	return tp->sacked_out + 1;
2029 }
2030 
2031 /* Linux NewReno/SACK/ECN state machine.
2032  * --------------------------------------
2033  *
2034  * "Open"	Normal state, no dubious events, fast path.
2035  * "Disorder"   In all the respects it is "Open",
2036  *		but requires a bit more attention. It is entered when
2037  *		we see some SACKs or dupacks. It is split of "Open"
2038  *		mainly to move some processing from fast path to slow one.
2039  * "CWR"	CWND was reduced due to some Congestion Notification event.
2040  *		It can be ECN, ICMP source quench, local device congestion.
2041  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2042  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2043  *
2044  * tcp_fastretrans_alert() is entered:
2045  * - each incoming ACK, if state is not "Open"
2046  * - when arrived ACK is unusual, namely:
2047  *	* SACK
2048  *	* Duplicate ACK.
2049  *	* ECN ECE.
2050  *
2051  * Counting packets in flight is pretty simple.
2052  *
2053  *	in_flight = packets_out - left_out + retrans_out
2054  *
2055  *	packets_out is SND.NXT-SND.UNA counted in packets.
2056  *
2057  *	retrans_out is number of retransmitted segments.
2058  *
2059  *	left_out is number of segments left network, but not ACKed yet.
2060  *
2061  *		left_out = sacked_out + lost_out
2062  *
2063  *     sacked_out: Packets, which arrived to receiver out of order
2064  *		   and hence not ACKed. With SACKs this number is simply
2065  *		   amount of SACKed data. Even without SACKs
2066  *		   it is easy to give pretty reliable estimate of this number,
2067  *		   counting duplicate ACKs.
2068  *
2069  *       lost_out: Packets lost by network. TCP has no explicit
2070  *		   "loss notification" feedback from network (for now).
2071  *		   It means that this number can be only _guessed_.
2072  *		   Actually, it is the heuristics to predict lossage that
2073  *		   distinguishes different algorithms.
2074  *
2075  *	F.e. after RTO, when all the queue is considered as lost,
2076  *	lost_out = packets_out and in_flight = retrans_out.
2077  *
2078  *		Essentially, we have now a few algorithms detecting
2079  *		lost packets.
2080  *
2081  *		If the receiver supports SACK:
2082  *
2083  *		RFC6675/3517: It is the conventional algorithm. A packet is
2084  *		considered lost if the number of higher sequence packets
2085  *		SACKed is greater than or equal the DUPACK thoreshold
2086  *		(reordering). This is implemented in tcp_mark_head_lost and
2087  *		tcp_update_scoreboard.
2088  *
2089  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2090  *		(2017-) that checks timing instead of counting DUPACKs.
2091  *		Essentially a packet is considered lost if it's not S/ACKed
2092  *		after RTT + reordering_window, where both metrics are
2093  *		dynamically measured and adjusted. This is implemented in
2094  *		tcp_rack_mark_lost.
2095  *
2096  *		If the receiver does not support SACK:
2097  *
2098  *		NewReno (RFC6582): in Recovery we assume that one segment
2099  *		is lost (classic Reno). While we are in Recovery and
2100  *		a partial ACK arrives, we assume that one more packet
2101  *		is lost (NewReno). This heuristics are the same in NewReno
2102  *		and SACK.
2103  *
2104  * Really tricky (and requiring careful tuning) part of algorithm
2105  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2106  * The first determines the moment _when_ we should reduce CWND and,
2107  * hence, slow down forward transmission. In fact, it determines the moment
2108  * when we decide that hole is caused by loss, rather than by a reorder.
2109  *
2110  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2111  * holes, caused by lost packets.
2112  *
2113  * And the most logically complicated part of algorithm is undo
2114  * heuristics. We detect false retransmits due to both too early
2115  * fast retransmit (reordering) and underestimated RTO, analyzing
2116  * timestamps and D-SACKs. When we detect that some segments were
2117  * retransmitted by mistake and CWND reduction was wrong, we undo
2118  * window reduction and abort recovery phase. This logic is hidden
2119  * inside several functions named tcp_try_undo_<something>.
2120  */
2121 
2122 /* This function decides, when we should leave Disordered state
2123  * and enter Recovery phase, reducing congestion window.
2124  *
2125  * Main question: may we further continue forward transmission
2126  * with the same cwnd?
2127  */
2128 static bool tcp_time_to_recover(struct sock *sk, int flag)
2129 {
2130 	struct tcp_sock *tp = tcp_sk(sk);
2131 
2132 	/* Trick#1: The loss is proven. */
2133 	if (tp->lost_out)
2134 		return true;
2135 
2136 	/* Not-A-Trick#2 : Classic rule... */
2137 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2138 		return true;
2139 
2140 	return false;
2141 }
2142 
2143 /* Detect loss in event "A" above by marking head of queue up as lost.
2144  * For non-SACK(Reno) senders, the first "packets" number of segments
2145  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2146  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2147  * the maximum SACKed segments to pass before reaching this limit.
2148  */
2149 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2150 {
2151 	struct tcp_sock *tp = tcp_sk(sk);
2152 	struct sk_buff *skb;
2153 	int cnt, oldcnt, lost;
2154 	unsigned int mss;
2155 	/* Use SACK to deduce losses of new sequences sent during recovery */
2156 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2157 
2158 	WARN_ON(packets > tp->packets_out);
2159 	skb = tp->lost_skb_hint;
2160 	if (skb) {
2161 		/* Head already handled? */
2162 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2163 			return;
2164 		cnt = tp->lost_cnt_hint;
2165 	} else {
2166 		skb = tcp_rtx_queue_head(sk);
2167 		cnt = 0;
2168 	}
2169 
2170 	skb_rbtree_walk_from(skb) {
2171 		/* TODO: do this better */
2172 		/* this is not the most efficient way to do this... */
2173 		tp->lost_skb_hint = skb;
2174 		tp->lost_cnt_hint = cnt;
2175 
2176 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2177 			break;
2178 
2179 		oldcnt = cnt;
2180 		if (tcp_is_reno(tp) ||
2181 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2182 			cnt += tcp_skb_pcount(skb);
2183 
2184 		if (cnt > packets) {
2185 			if (tcp_is_sack(tp) ||
2186 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2187 			    (oldcnt >= packets))
2188 				break;
2189 
2190 			mss = tcp_skb_mss(skb);
2191 			/* If needed, chop off the prefix to mark as lost. */
2192 			lost = (packets - oldcnt) * mss;
2193 			if (lost < skb->len &&
2194 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2195 					 lost, mss, GFP_ATOMIC) < 0)
2196 				break;
2197 			cnt = packets;
2198 		}
2199 
2200 		tcp_skb_mark_lost(tp, skb);
2201 
2202 		if (mark_head)
2203 			break;
2204 	}
2205 	tcp_verify_left_out(tp);
2206 }
2207 
2208 /* Account newly detected lost packet(s) */
2209 
2210 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2211 {
2212 	struct tcp_sock *tp = tcp_sk(sk);
2213 
2214 	if (tcp_is_reno(tp)) {
2215 		tcp_mark_head_lost(sk, 1, 1);
2216 	} else {
2217 		int sacked_upto = tp->sacked_out - tp->reordering;
2218 		if (sacked_upto >= 0)
2219 			tcp_mark_head_lost(sk, sacked_upto, 0);
2220 		else if (fast_rexmit)
2221 			tcp_mark_head_lost(sk, 1, 1);
2222 	}
2223 }
2224 
2225 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2226 {
2227 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2228 	       before(tp->rx_opt.rcv_tsecr, when);
2229 }
2230 
2231 /* skb is spurious retransmitted if the returned timestamp echo
2232  * reply is prior to the skb transmission time
2233  */
2234 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2235 				     const struct sk_buff *skb)
2236 {
2237 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2238 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2239 }
2240 
2241 /* Nothing was retransmitted or returned timestamp is less
2242  * than timestamp of the first retransmission.
2243  */
2244 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2245 {
2246 	return !tp->retrans_stamp ||
2247 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2248 }
2249 
2250 /* Undo procedures. */
2251 
2252 /* We can clear retrans_stamp when there are no retransmissions in the
2253  * window. It would seem that it is trivially available for us in
2254  * tp->retrans_out, however, that kind of assumptions doesn't consider
2255  * what will happen if errors occur when sending retransmission for the
2256  * second time. ...It could the that such segment has only
2257  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2258  * the head skb is enough except for some reneging corner cases that
2259  * are not worth the effort.
2260  *
2261  * Main reason for all this complexity is the fact that connection dying
2262  * time now depends on the validity of the retrans_stamp, in particular,
2263  * that successive retransmissions of a segment must not advance
2264  * retrans_stamp under any conditions.
2265  */
2266 static bool tcp_any_retrans_done(const struct sock *sk)
2267 {
2268 	const struct tcp_sock *tp = tcp_sk(sk);
2269 	struct sk_buff *skb;
2270 
2271 	if (tp->retrans_out)
2272 		return true;
2273 
2274 	skb = tcp_rtx_queue_head(sk);
2275 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2276 		return true;
2277 
2278 	return false;
2279 }
2280 
2281 static void DBGUNDO(struct sock *sk, const char *msg)
2282 {
2283 #if FASTRETRANS_DEBUG > 1
2284 	struct tcp_sock *tp = tcp_sk(sk);
2285 	struct inet_sock *inet = inet_sk(sk);
2286 
2287 	if (sk->sk_family == AF_INET) {
2288 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2289 			 msg,
2290 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2291 			 tp->snd_cwnd, tcp_left_out(tp),
2292 			 tp->snd_ssthresh, tp->prior_ssthresh,
2293 			 tp->packets_out);
2294 	}
2295 #if IS_ENABLED(CONFIG_IPV6)
2296 	else if (sk->sk_family == AF_INET6) {
2297 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2298 			 msg,
2299 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2300 			 tp->snd_cwnd, tcp_left_out(tp),
2301 			 tp->snd_ssthresh, tp->prior_ssthresh,
2302 			 tp->packets_out);
2303 	}
2304 #endif
2305 #endif
2306 }
2307 
2308 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2309 {
2310 	struct tcp_sock *tp = tcp_sk(sk);
2311 
2312 	if (unmark_loss) {
2313 		struct sk_buff *skb;
2314 
2315 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2316 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2317 		}
2318 		tp->lost_out = 0;
2319 		tcp_clear_all_retrans_hints(tp);
2320 	}
2321 
2322 	if (tp->prior_ssthresh) {
2323 		const struct inet_connection_sock *icsk = inet_csk(sk);
2324 
2325 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2326 
2327 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2328 			tp->snd_ssthresh = tp->prior_ssthresh;
2329 			tcp_ecn_withdraw_cwr(tp);
2330 		}
2331 	}
2332 	tp->snd_cwnd_stamp = tcp_jiffies32;
2333 	tp->undo_marker = 0;
2334 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2335 }
2336 
2337 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2338 {
2339 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2340 }
2341 
2342 /* People celebrate: "We love our President!" */
2343 static bool tcp_try_undo_recovery(struct sock *sk)
2344 {
2345 	struct tcp_sock *tp = tcp_sk(sk);
2346 
2347 	if (tcp_may_undo(tp)) {
2348 		int mib_idx;
2349 
2350 		/* Happy end! We did not retransmit anything
2351 		 * or our original transmission succeeded.
2352 		 */
2353 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2354 		tcp_undo_cwnd_reduction(sk, false);
2355 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2356 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2357 		else
2358 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2359 
2360 		NET_INC_STATS(sock_net(sk), mib_idx);
2361 	} else if (tp->rack.reo_wnd_persist) {
2362 		tp->rack.reo_wnd_persist--;
2363 	}
2364 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2365 		/* Hold old state until something *above* high_seq
2366 		 * is ACKed. For Reno it is MUST to prevent false
2367 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2368 		if (!tcp_any_retrans_done(sk))
2369 			tp->retrans_stamp = 0;
2370 		return true;
2371 	}
2372 	tcp_set_ca_state(sk, TCP_CA_Open);
2373 	tp->is_sack_reneg = 0;
2374 	return false;
2375 }
2376 
2377 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2378 static bool tcp_try_undo_dsack(struct sock *sk)
2379 {
2380 	struct tcp_sock *tp = tcp_sk(sk);
2381 
2382 	if (tp->undo_marker && !tp->undo_retrans) {
2383 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2384 					       tp->rack.reo_wnd_persist + 1);
2385 		DBGUNDO(sk, "D-SACK");
2386 		tcp_undo_cwnd_reduction(sk, false);
2387 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2388 		return true;
2389 	}
2390 	return false;
2391 }
2392 
2393 /* Undo during loss recovery after partial ACK or using F-RTO. */
2394 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2395 {
2396 	struct tcp_sock *tp = tcp_sk(sk);
2397 
2398 	if (frto_undo || tcp_may_undo(tp)) {
2399 		tcp_undo_cwnd_reduction(sk, true);
2400 
2401 		DBGUNDO(sk, "partial loss");
2402 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2403 		if (frto_undo)
2404 			NET_INC_STATS(sock_net(sk),
2405 					LINUX_MIB_TCPSPURIOUSRTOS);
2406 		inet_csk(sk)->icsk_retransmits = 0;
2407 		if (frto_undo || tcp_is_sack(tp)) {
2408 			tcp_set_ca_state(sk, TCP_CA_Open);
2409 			tp->is_sack_reneg = 0;
2410 		}
2411 		return true;
2412 	}
2413 	return false;
2414 }
2415 
2416 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2417  * It computes the number of packets to send (sndcnt) based on packets newly
2418  * delivered:
2419  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2420  *	cwnd reductions across a full RTT.
2421  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2422  *      But when the retransmits are acked without further losses, PRR
2423  *      slow starts cwnd up to ssthresh to speed up the recovery.
2424  */
2425 static void tcp_init_cwnd_reduction(struct sock *sk)
2426 {
2427 	struct tcp_sock *tp = tcp_sk(sk);
2428 
2429 	tp->high_seq = tp->snd_nxt;
2430 	tp->tlp_high_seq = 0;
2431 	tp->snd_cwnd_cnt = 0;
2432 	tp->prior_cwnd = tp->snd_cwnd;
2433 	tp->prr_delivered = 0;
2434 	tp->prr_out = 0;
2435 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2436 	tcp_ecn_queue_cwr(tp);
2437 }
2438 
2439 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2440 {
2441 	struct tcp_sock *tp = tcp_sk(sk);
2442 	int sndcnt = 0;
2443 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2444 
2445 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2446 		return;
2447 
2448 	tp->prr_delivered += newly_acked_sacked;
2449 	if (delta < 0) {
2450 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2451 			       tp->prior_cwnd - 1;
2452 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2453 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2454 		   !(flag & FLAG_LOST_RETRANS)) {
2455 		sndcnt = min_t(int, delta,
2456 			       max_t(int, tp->prr_delivered - tp->prr_out,
2457 				     newly_acked_sacked) + 1);
2458 	} else {
2459 		sndcnt = min(delta, newly_acked_sacked);
2460 	}
2461 	/* Force a fast retransmit upon entering fast recovery */
2462 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2463 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2464 }
2465 
2466 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2467 {
2468 	struct tcp_sock *tp = tcp_sk(sk);
2469 
2470 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2471 		return;
2472 
2473 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2474 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2475 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2476 		tp->snd_cwnd = tp->snd_ssthresh;
2477 		tp->snd_cwnd_stamp = tcp_jiffies32;
2478 	}
2479 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2480 }
2481 
2482 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2483 void tcp_enter_cwr(struct sock *sk)
2484 {
2485 	struct tcp_sock *tp = tcp_sk(sk);
2486 
2487 	tp->prior_ssthresh = 0;
2488 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2489 		tp->undo_marker = 0;
2490 		tcp_init_cwnd_reduction(sk);
2491 		tcp_set_ca_state(sk, TCP_CA_CWR);
2492 	}
2493 }
2494 EXPORT_SYMBOL(tcp_enter_cwr);
2495 
2496 static void tcp_try_keep_open(struct sock *sk)
2497 {
2498 	struct tcp_sock *tp = tcp_sk(sk);
2499 	int state = TCP_CA_Open;
2500 
2501 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2502 		state = TCP_CA_Disorder;
2503 
2504 	if (inet_csk(sk)->icsk_ca_state != state) {
2505 		tcp_set_ca_state(sk, state);
2506 		tp->high_seq = tp->snd_nxt;
2507 	}
2508 }
2509 
2510 static void tcp_try_to_open(struct sock *sk, int flag)
2511 {
2512 	struct tcp_sock *tp = tcp_sk(sk);
2513 
2514 	tcp_verify_left_out(tp);
2515 
2516 	if (!tcp_any_retrans_done(sk))
2517 		tp->retrans_stamp = 0;
2518 
2519 	if (flag & FLAG_ECE)
2520 		tcp_enter_cwr(sk);
2521 
2522 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2523 		tcp_try_keep_open(sk);
2524 	}
2525 }
2526 
2527 static void tcp_mtup_probe_failed(struct sock *sk)
2528 {
2529 	struct inet_connection_sock *icsk = inet_csk(sk);
2530 
2531 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2532 	icsk->icsk_mtup.probe_size = 0;
2533 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2534 }
2535 
2536 static void tcp_mtup_probe_success(struct sock *sk)
2537 {
2538 	struct tcp_sock *tp = tcp_sk(sk);
2539 	struct inet_connection_sock *icsk = inet_csk(sk);
2540 
2541 	/* FIXME: breaks with very large cwnd */
2542 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2543 	tp->snd_cwnd = tp->snd_cwnd *
2544 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2545 		       icsk->icsk_mtup.probe_size;
2546 	tp->snd_cwnd_cnt = 0;
2547 	tp->snd_cwnd_stamp = tcp_jiffies32;
2548 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2549 
2550 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2551 	icsk->icsk_mtup.probe_size = 0;
2552 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2553 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2554 }
2555 
2556 /* Do a simple retransmit without using the backoff mechanisms in
2557  * tcp_timer. This is used for path mtu discovery.
2558  * The socket is already locked here.
2559  */
2560 void tcp_simple_retransmit(struct sock *sk)
2561 {
2562 	const struct inet_connection_sock *icsk = inet_csk(sk);
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 	struct sk_buff *skb;
2565 	unsigned int mss = tcp_current_mss(sk);
2566 
2567 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2568 		if (tcp_skb_seglen(skb) > mss &&
2569 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2570 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2571 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2572 				tp->retrans_out -= tcp_skb_pcount(skb);
2573 			}
2574 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2575 		}
2576 	}
2577 
2578 	tcp_clear_retrans_hints_partial(tp);
2579 
2580 	if (!tp->lost_out)
2581 		return;
2582 
2583 	if (tcp_is_reno(tp))
2584 		tcp_limit_reno_sacked(tp);
2585 
2586 	tcp_verify_left_out(tp);
2587 
2588 	/* Don't muck with the congestion window here.
2589 	 * Reason is that we do not increase amount of _data_
2590 	 * in network, but units changed and effective
2591 	 * cwnd/ssthresh really reduced now.
2592 	 */
2593 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2594 		tp->high_seq = tp->snd_nxt;
2595 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2596 		tp->prior_ssthresh = 0;
2597 		tp->undo_marker = 0;
2598 		tcp_set_ca_state(sk, TCP_CA_Loss);
2599 	}
2600 	tcp_xmit_retransmit_queue(sk);
2601 }
2602 EXPORT_SYMBOL(tcp_simple_retransmit);
2603 
2604 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2605 {
2606 	struct tcp_sock *tp = tcp_sk(sk);
2607 	int mib_idx;
2608 
2609 	if (tcp_is_reno(tp))
2610 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2611 	else
2612 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2613 
2614 	NET_INC_STATS(sock_net(sk), mib_idx);
2615 
2616 	tp->prior_ssthresh = 0;
2617 	tcp_init_undo(tp);
2618 
2619 	if (!tcp_in_cwnd_reduction(sk)) {
2620 		if (!ece_ack)
2621 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2622 		tcp_init_cwnd_reduction(sk);
2623 	}
2624 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2625 }
2626 
2627 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2628  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2629  */
2630 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2631 			     int *rexmit)
2632 {
2633 	struct tcp_sock *tp = tcp_sk(sk);
2634 	bool recovered = !before(tp->snd_una, tp->high_seq);
2635 
2636 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2637 	    tcp_try_undo_loss(sk, false))
2638 		return;
2639 
2640 	/* The ACK (s)acks some never-retransmitted data meaning not all
2641 	 * the data packets before the timeout were lost. Therefore we
2642 	 * undo the congestion window and state. This is essentially
2643 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2644 	 * a retransmitted skb is permantly marked, we can apply such an
2645 	 * operation even if F-RTO was not used.
2646 	 */
2647 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2648 	    tcp_try_undo_loss(sk, tp->undo_marker))
2649 		return;
2650 
2651 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2652 		if (after(tp->snd_nxt, tp->high_seq)) {
2653 			if (flag & FLAG_DATA_SACKED || is_dupack)
2654 				tp->frto = 0; /* Step 3.a. loss was real */
2655 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2656 			tp->high_seq = tp->snd_nxt;
2657 			/* Step 2.b. Try send new data (but deferred until cwnd
2658 			 * is updated in tcp_ack()). Otherwise fall back to
2659 			 * the conventional recovery.
2660 			 */
2661 			if (!tcp_write_queue_empty(sk) &&
2662 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2663 				*rexmit = REXMIT_NEW;
2664 				return;
2665 			}
2666 			tp->frto = 0;
2667 		}
2668 	}
2669 
2670 	if (recovered) {
2671 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2672 		tcp_try_undo_recovery(sk);
2673 		return;
2674 	}
2675 	if (tcp_is_reno(tp)) {
2676 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2677 		 * delivered. Lower inflight to clock out (re)tranmissions.
2678 		 */
2679 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2680 			tcp_add_reno_sack(sk);
2681 		else if (flag & FLAG_SND_UNA_ADVANCED)
2682 			tcp_reset_reno_sack(tp);
2683 	}
2684 	*rexmit = REXMIT_LOST;
2685 }
2686 
2687 /* Undo during fast recovery after partial ACK. */
2688 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2689 {
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 
2692 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2693 		/* Plain luck! Hole if filled with delayed
2694 		 * packet, rather than with a retransmit. Check reordering.
2695 		 */
2696 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2697 
2698 		/* We are getting evidence that the reordering degree is higher
2699 		 * than we realized. If there are no retransmits out then we
2700 		 * can undo. Otherwise we clock out new packets but do not
2701 		 * mark more packets lost or retransmit more.
2702 		 */
2703 		if (tp->retrans_out)
2704 			return true;
2705 
2706 		if (!tcp_any_retrans_done(sk))
2707 			tp->retrans_stamp = 0;
2708 
2709 		DBGUNDO(sk, "partial recovery");
2710 		tcp_undo_cwnd_reduction(sk, true);
2711 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2712 		tcp_try_keep_open(sk);
2713 		return true;
2714 	}
2715 	return false;
2716 }
2717 
2718 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2719 {
2720 	struct tcp_sock *tp = tcp_sk(sk);
2721 
2722 	/* Use RACK to detect loss */
2723 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2724 		u32 prior_retrans = tp->retrans_out;
2725 
2726 		tcp_rack_mark_lost(sk);
2727 		if (prior_retrans > tp->retrans_out)
2728 			*ack_flag |= FLAG_LOST_RETRANS;
2729 	}
2730 }
2731 
2732 static bool tcp_force_fast_retransmit(struct sock *sk)
2733 {
2734 	struct tcp_sock *tp = tcp_sk(sk);
2735 
2736 	return after(tcp_highest_sack_seq(tp),
2737 		     tp->snd_una + tp->reordering * tp->mss_cache);
2738 }
2739 
2740 /* Process an event, which can update packets-in-flight not trivially.
2741  * Main goal of this function is to calculate new estimate for left_out,
2742  * taking into account both packets sitting in receiver's buffer and
2743  * packets lost by network.
2744  *
2745  * Besides that it updates the congestion state when packet loss or ECN
2746  * is detected. But it does not reduce the cwnd, it is done by the
2747  * congestion control later.
2748  *
2749  * It does _not_ decide what to send, it is made in function
2750  * tcp_xmit_retransmit_queue().
2751  */
2752 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2753 				  bool is_dupack, int *ack_flag, int *rexmit)
2754 {
2755 	struct inet_connection_sock *icsk = inet_csk(sk);
2756 	struct tcp_sock *tp = tcp_sk(sk);
2757 	int fast_rexmit = 0, flag = *ack_flag;
2758 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2759 				     tcp_force_fast_retransmit(sk));
2760 
2761 	if (!tp->packets_out && tp->sacked_out)
2762 		tp->sacked_out = 0;
2763 
2764 	/* Now state machine starts.
2765 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2766 	if (flag & FLAG_ECE)
2767 		tp->prior_ssthresh = 0;
2768 
2769 	/* B. In all the states check for reneging SACKs. */
2770 	if (tcp_check_sack_reneging(sk, flag))
2771 		return;
2772 
2773 	/* C. Check consistency of the current state. */
2774 	tcp_verify_left_out(tp);
2775 
2776 	/* D. Check state exit conditions. State can be terminated
2777 	 *    when high_seq is ACKed. */
2778 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2779 		WARN_ON(tp->retrans_out != 0);
2780 		tp->retrans_stamp = 0;
2781 	} else if (!before(tp->snd_una, tp->high_seq)) {
2782 		switch (icsk->icsk_ca_state) {
2783 		case TCP_CA_CWR:
2784 			/* CWR is to be held something *above* high_seq
2785 			 * is ACKed for CWR bit to reach receiver. */
2786 			if (tp->snd_una != tp->high_seq) {
2787 				tcp_end_cwnd_reduction(sk);
2788 				tcp_set_ca_state(sk, TCP_CA_Open);
2789 			}
2790 			break;
2791 
2792 		case TCP_CA_Recovery:
2793 			if (tcp_is_reno(tp))
2794 				tcp_reset_reno_sack(tp);
2795 			if (tcp_try_undo_recovery(sk))
2796 				return;
2797 			tcp_end_cwnd_reduction(sk);
2798 			break;
2799 		}
2800 	}
2801 
2802 	/* E. Process state. */
2803 	switch (icsk->icsk_ca_state) {
2804 	case TCP_CA_Recovery:
2805 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2806 			if (tcp_is_reno(tp) && is_dupack)
2807 				tcp_add_reno_sack(sk);
2808 		} else {
2809 			if (tcp_try_undo_partial(sk, prior_snd_una))
2810 				return;
2811 			/* Partial ACK arrived. Force fast retransmit. */
2812 			do_lost = tcp_is_reno(tp) ||
2813 				  tcp_force_fast_retransmit(sk);
2814 		}
2815 		if (tcp_try_undo_dsack(sk)) {
2816 			tcp_try_keep_open(sk);
2817 			return;
2818 		}
2819 		tcp_rack_identify_loss(sk, ack_flag);
2820 		break;
2821 	case TCP_CA_Loss:
2822 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2823 		tcp_rack_identify_loss(sk, ack_flag);
2824 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2825 		      (*ack_flag & FLAG_LOST_RETRANS)))
2826 			return;
2827 		/* Change state if cwnd is undone or retransmits are lost */
2828 		/* fall through */
2829 	default:
2830 		if (tcp_is_reno(tp)) {
2831 			if (flag & FLAG_SND_UNA_ADVANCED)
2832 				tcp_reset_reno_sack(tp);
2833 			if (is_dupack)
2834 				tcp_add_reno_sack(sk);
2835 		}
2836 
2837 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2838 			tcp_try_undo_dsack(sk);
2839 
2840 		tcp_rack_identify_loss(sk, ack_flag);
2841 		if (!tcp_time_to_recover(sk, flag)) {
2842 			tcp_try_to_open(sk, flag);
2843 			return;
2844 		}
2845 
2846 		/* MTU probe failure: don't reduce cwnd */
2847 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2848 		    icsk->icsk_mtup.probe_size &&
2849 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2850 			tcp_mtup_probe_failed(sk);
2851 			/* Restores the reduction we did in tcp_mtup_probe() */
2852 			tp->snd_cwnd++;
2853 			tcp_simple_retransmit(sk);
2854 			return;
2855 		}
2856 
2857 		/* Otherwise enter Recovery state */
2858 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2859 		fast_rexmit = 1;
2860 	}
2861 
2862 	if (do_lost)
2863 		tcp_update_scoreboard(sk, fast_rexmit);
2864 	*rexmit = REXMIT_LOST;
2865 }
2866 
2867 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2868 {
2869 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2870 	struct tcp_sock *tp = tcp_sk(sk);
2871 
2872 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2873 			   rtt_us ? : jiffies_to_usecs(1));
2874 }
2875 
2876 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2877 			       long seq_rtt_us, long sack_rtt_us,
2878 			       long ca_rtt_us, struct rate_sample *rs)
2879 {
2880 	const struct tcp_sock *tp = tcp_sk(sk);
2881 
2882 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2883 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2884 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2885 	 * is acked (RFC6298).
2886 	 */
2887 	if (seq_rtt_us < 0)
2888 		seq_rtt_us = sack_rtt_us;
2889 
2890 	/* RTTM Rule: A TSecr value received in a segment is used to
2891 	 * update the averaged RTT measurement only if the segment
2892 	 * acknowledges some new data, i.e., only if it advances the
2893 	 * left edge of the send window.
2894 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2895 	 */
2896 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2897 	    flag & FLAG_ACKED) {
2898 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2899 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2900 
2901 		seq_rtt_us = ca_rtt_us = delta_us;
2902 	}
2903 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2904 	if (seq_rtt_us < 0)
2905 		return false;
2906 
2907 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2908 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2909 	 * values will be skipped with the seq_rtt_us < 0 check above.
2910 	 */
2911 	tcp_update_rtt_min(sk, ca_rtt_us);
2912 	tcp_rtt_estimator(sk, seq_rtt_us);
2913 	tcp_set_rto(sk);
2914 
2915 	/* RFC6298: only reset backoff on valid RTT measurement. */
2916 	inet_csk(sk)->icsk_backoff = 0;
2917 	return true;
2918 }
2919 
2920 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2921 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2922 {
2923 	struct rate_sample rs;
2924 	long rtt_us = -1L;
2925 
2926 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2927 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2928 
2929 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2930 }
2931 
2932 
2933 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2934 {
2935 	const struct inet_connection_sock *icsk = inet_csk(sk);
2936 
2937 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2938 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2939 }
2940 
2941 /* Restart timer after forward progress on connection.
2942  * RFC2988 recommends to restart timer to now+rto.
2943  */
2944 void tcp_rearm_rto(struct sock *sk)
2945 {
2946 	const struct inet_connection_sock *icsk = inet_csk(sk);
2947 	struct tcp_sock *tp = tcp_sk(sk);
2948 
2949 	/* If the retrans timer is currently being used by Fast Open
2950 	 * for SYN-ACK retrans purpose, stay put.
2951 	 */
2952 	if (tp->fastopen_rsk)
2953 		return;
2954 
2955 	if (!tp->packets_out) {
2956 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2957 	} else {
2958 		u32 rto = inet_csk(sk)->icsk_rto;
2959 		/* Offset the time elapsed after installing regular RTO */
2960 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2961 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2962 			s64 delta_us = tcp_rto_delta_us(sk);
2963 			/* delta_us may not be positive if the socket is locked
2964 			 * when the retrans timer fires and is rescheduled.
2965 			 */
2966 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2967 		}
2968 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2969 					  TCP_RTO_MAX);
2970 	}
2971 }
2972 
2973 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2974 static void tcp_set_xmit_timer(struct sock *sk)
2975 {
2976 	if (!tcp_schedule_loss_probe(sk, true))
2977 		tcp_rearm_rto(sk);
2978 }
2979 
2980 /* If we get here, the whole TSO packet has not been acked. */
2981 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2982 {
2983 	struct tcp_sock *tp = tcp_sk(sk);
2984 	u32 packets_acked;
2985 
2986 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2987 
2988 	packets_acked = tcp_skb_pcount(skb);
2989 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2990 		return 0;
2991 	packets_acked -= tcp_skb_pcount(skb);
2992 
2993 	if (packets_acked) {
2994 		BUG_ON(tcp_skb_pcount(skb) == 0);
2995 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2996 	}
2997 
2998 	return packets_acked;
2999 }
3000 
3001 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3002 			   u32 prior_snd_una)
3003 {
3004 	const struct skb_shared_info *shinfo;
3005 
3006 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3007 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3008 		return;
3009 
3010 	shinfo = skb_shinfo(skb);
3011 	if (!before(shinfo->tskey, prior_snd_una) &&
3012 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3013 		tcp_skb_tsorted_save(skb) {
3014 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3015 		} tcp_skb_tsorted_restore(skb);
3016 	}
3017 }
3018 
3019 /* Remove acknowledged frames from the retransmission queue. If our packet
3020  * is before the ack sequence we can discard it as it's confirmed to have
3021  * arrived at the other end.
3022  */
3023 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3024 			       u32 prior_snd_una,
3025 			       struct tcp_sacktag_state *sack)
3026 {
3027 	const struct inet_connection_sock *icsk = inet_csk(sk);
3028 	u64 first_ackt, last_ackt;
3029 	struct tcp_sock *tp = tcp_sk(sk);
3030 	u32 prior_sacked = tp->sacked_out;
3031 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3032 	struct sk_buff *skb, *next;
3033 	bool fully_acked = true;
3034 	long sack_rtt_us = -1L;
3035 	long seq_rtt_us = -1L;
3036 	long ca_rtt_us = -1L;
3037 	u32 pkts_acked = 0;
3038 	u32 last_in_flight = 0;
3039 	bool rtt_update;
3040 	int flag = 0;
3041 
3042 	first_ackt = 0;
3043 
3044 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3045 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3046 		const u32 start_seq = scb->seq;
3047 		u8 sacked = scb->sacked;
3048 		u32 acked_pcount;
3049 
3050 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3051 
3052 		/* Determine how many packets and what bytes were acked, tso and else */
3053 		if (after(scb->end_seq, tp->snd_una)) {
3054 			if (tcp_skb_pcount(skb) == 1 ||
3055 			    !after(tp->snd_una, scb->seq))
3056 				break;
3057 
3058 			acked_pcount = tcp_tso_acked(sk, skb);
3059 			if (!acked_pcount)
3060 				break;
3061 			fully_acked = false;
3062 		} else {
3063 			acked_pcount = tcp_skb_pcount(skb);
3064 		}
3065 
3066 		if (unlikely(sacked & TCPCB_RETRANS)) {
3067 			if (sacked & TCPCB_SACKED_RETRANS)
3068 				tp->retrans_out -= acked_pcount;
3069 			flag |= FLAG_RETRANS_DATA_ACKED;
3070 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3071 			last_ackt = skb->skb_mstamp;
3072 			WARN_ON_ONCE(last_ackt == 0);
3073 			if (!first_ackt)
3074 				first_ackt = last_ackt;
3075 
3076 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3077 			if (before(start_seq, reord))
3078 				reord = start_seq;
3079 			if (!after(scb->end_seq, tp->high_seq))
3080 				flag |= FLAG_ORIG_SACK_ACKED;
3081 		}
3082 
3083 		if (sacked & TCPCB_SACKED_ACKED) {
3084 			tp->sacked_out -= acked_pcount;
3085 		} else if (tcp_is_sack(tp)) {
3086 			tp->delivered += acked_pcount;
3087 			if (!tcp_skb_spurious_retrans(tp, skb))
3088 				tcp_rack_advance(tp, sacked, scb->end_seq,
3089 						 skb->skb_mstamp);
3090 		}
3091 		if (sacked & TCPCB_LOST)
3092 			tp->lost_out -= acked_pcount;
3093 
3094 		tp->packets_out -= acked_pcount;
3095 		pkts_acked += acked_pcount;
3096 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3097 
3098 		/* Initial outgoing SYN's get put onto the write_queue
3099 		 * just like anything else we transmit.  It is not
3100 		 * true data, and if we misinform our callers that
3101 		 * this ACK acks real data, we will erroneously exit
3102 		 * connection startup slow start one packet too
3103 		 * quickly.  This is severely frowned upon behavior.
3104 		 */
3105 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3106 			flag |= FLAG_DATA_ACKED;
3107 		} else {
3108 			flag |= FLAG_SYN_ACKED;
3109 			tp->retrans_stamp = 0;
3110 		}
3111 
3112 		if (!fully_acked)
3113 			break;
3114 
3115 		next = skb_rb_next(skb);
3116 		if (unlikely(skb == tp->retransmit_skb_hint))
3117 			tp->retransmit_skb_hint = NULL;
3118 		if (unlikely(skb == tp->lost_skb_hint))
3119 			tp->lost_skb_hint = NULL;
3120 		tcp_rtx_queue_unlink_and_free(skb, sk);
3121 	}
3122 
3123 	if (!skb)
3124 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3125 
3126 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3127 		tp->snd_up = tp->snd_una;
3128 
3129 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3130 		flag |= FLAG_SACK_RENEGING;
3131 
3132 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3133 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3134 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3135 	}
3136 	if (sack->first_sackt) {
3137 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3138 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3139 	}
3140 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3141 					ca_rtt_us, sack->rate);
3142 
3143 	if (flag & FLAG_ACKED) {
3144 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3145 		if (unlikely(icsk->icsk_mtup.probe_size &&
3146 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3147 			tcp_mtup_probe_success(sk);
3148 		}
3149 
3150 		if (tcp_is_reno(tp)) {
3151 			tcp_remove_reno_sacks(sk, pkts_acked);
3152 		} else {
3153 			int delta;
3154 
3155 			/* Non-retransmitted hole got filled? That's reordering */
3156 			if (before(reord, prior_fack))
3157 				tcp_check_sack_reordering(sk, reord, 0);
3158 
3159 			delta = prior_sacked - tp->sacked_out;
3160 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3161 		}
3162 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3163 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3164 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3165 		 * after when the head was last (re)transmitted. Otherwise the
3166 		 * timeout may continue to extend in loss recovery.
3167 		 */
3168 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3169 	}
3170 
3171 	if (icsk->icsk_ca_ops->pkts_acked) {
3172 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3173 					     .rtt_us = sack->rate->rtt_us,
3174 					     .in_flight = last_in_flight };
3175 
3176 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3177 	}
3178 
3179 #if FASTRETRANS_DEBUG > 0
3180 	WARN_ON((int)tp->sacked_out < 0);
3181 	WARN_ON((int)tp->lost_out < 0);
3182 	WARN_ON((int)tp->retrans_out < 0);
3183 	if (!tp->packets_out && tcp_is_sack(tp)) {
3184 		icsk = inet_csk(sk);
3185 		if (tp->lost_out) {
3186 			pr_debug("Leak l=%u %d\n",
3187 				 tp->lost_out, icsk->icsk_ca_state);
3188 			tp->lost_out = 0;
3189 		}
3190 		if (tp->sacked_out) {
3191 			pr_debug("Leak s=%u %d\n",
3192 				 tp->sacked_out, icsk->icsk_ca_state);
3193 			tp->sacked_out = 0;
3194 		}
3195 		if (tp->retrans_out) {
3196 			pr_debug("Leak r=%u %d\n",
3197 				 tp->retrans_out, icsk->icsk_ca_state);
3198 			tp->retrans_out = 0;
3199 		}
3200 	}
3201 #endif
3202 	return flag;
3203 }
3204 
3205 static void tcp_ack_probe(struct sock *sk)
3206 {
3207 	struct inet_connection_sock *icsk = inet_csk(sk);
3208 	struct sk_buff *head = tcp_send_head(sk);
3209 	const struct tcp_sock *tp = tcp_sk(sk);
3210 
3211 	/* Was it a usable window open? */
3212 	if (!head)
3213 		return;
3214 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3215 		icsk->icsk_backoff = 0;
3216 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3217 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3218 		 * This function is not for random using!
3219 		 */
3220 	} else {
3221 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3222 
3223 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3224 					  when, TCP_RTO_MAX);
3225 	}
3226 }
3227 
3228 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3229 {
3230 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3231 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3232 }
3233 
3234 /* Decide wheather to run the increase function of congestion control. */
3235 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3236 {
3237 	/* If reordering is high then always grow cwnd whenever data is
3238 	 * delivered regardless of its ordering. Otherwise stay conservative
3239 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3240 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3241 	 * cwnd in tcp_fastretrans_alert() based on more states.
3242 	 */
3243 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3244 		return flag & FLAG_FORWARD_PROGRESS;
3245 
3246 	return flag & FLAG_DATA_ACKED;
3247 }
3248 
3249 /* The "ultimate" congestion control function that aims to replace the rigid
3250  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3251  * It's called toward the end of processing an ACK with precise rate
3252  * information. All transmission or retransmission are delayed afterwards.
3253  */
3254 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3255 			     int flag, const struct rate_sample *rs)
3256 {
3257 	const struct inet_connection_sock *icsk = inet_csk(sk);
3258 
3259 	if (icsk->icsk_ca_ops->cong_control) {
3260 		icsk->icsk_ca_ops->cong_control(sk, rs);
3261 		return;
3262 	}
3263 
3264 	if (tcp_in_cwnd_reduction(sk)) {
3265 		/* Reduce cwnd if state mandates */
3266 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3267 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3268 		/* Advance cwnd if state allows */
3269 		tcp_cong_avoid(sk, ack, acked_sacked);
3270 	}
3271 	tcp_update_pacing_rate(sk);
3272 }
3273 
3274 /* Check that window update is acceptable.
3275  * The function assumes that snd_una<=ack<=snd_next.
3276  */
3277 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3278 					const u32 ack, const u32 ack_seq,
3279 					const u32 nwin)
3280 {
3281 	return	after(ack, tp->snd_una) ||
3282 		after(ack_seq, tp->snd_wl1) ||
3283 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3284 }
3285 
3286 /* If we update tp->snd_una, also update tp->bytes_acked */
3287 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3288 {
3289 	u32 delta = ack - tp->snd_una;
3290 
3291 	sock_owned_by_me((struct sock *)tp);
3292 	tp->bytes_acked += delta;
3293 	tp->snd_una = ack;
3294 }
3295 
3296 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3297 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3298 {
3299 	u32 delta = seq - tp->rcv_nxt;
3300 
3301 	sock_owned_by_me((struct sock *)tp);
3302 	tp->bytes_received += delta;
3303 	tp->rcv_nxt = seq;
3304 }
3305 
3306 /* Update our send window.
3307  *
3308  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3309  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3310  */
3311 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3312 				 u32 ack_seq)
3313 {
3314 	struct tcp_sock *tp = tcp_sk(sk);
3315 	int flag = 0;
3316 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3317 
3318 	if (likely(!tcp_hdr(skb)->syn))
3319 		nwin <<= tp->rx_opt.snd_wscale;
3320 
3321 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3322 		flag |= FLAG_WIN_UPDATE;
3323 		tcp_update_wl(tp, ack_seq);
3324 
3325 		if (tp->snd_wnd != nwin) {
3326 			tp->snd_wnd = nwin;
3327 
3328 			/* Note, it is the only place, where
3329 			 * fast path is recovered for sending TCP.
3330 			 */
3331 			tp->pred_flags = 0;
3332 			tcp_fast_path_check(sk);
3333 
3334 			if (!tcp_write_queue_empty(sk))
3335 				tcp_slow_start_after_idle_check(sk);
3336 
3337 			if (nwin > tp->max_window) {
3338 				tp->max_window = nwin;
3339 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3340 			}
3341 		}
3342 	}
3343 
3344 	tcp_snd_una_update(tp, ack);
3345 
3346 	return flag;
3347 }
3348 
3349 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3350 				   u32 *last_oow_ack_time)
3351 {
3352 	if (*last_oow_ack_time) {
3353 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3354 
3355 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3356 			NET_INC_STATS(net, mib_idx);
3357 			return true;	/* rate-limited: don't send yet! */
3358 		}
3359 	}
3360 
3361 	*last_oow_ack_time = tcp_jiffies32;
3362 
3363 	return false;	/* not rate-limited: go ahead, send dupack now! */
3364 }
3365 
3366 /* Return true if we're currently rate-limiting out-of-window ACKs and
3367  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3368  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3369  * attacks that send repeated SYNs or ACKs for the same connection. To
3370  * do this, we do not send a duplicate SYNACK or ACK if the remote
3371  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3372  */
3373 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3374 			  int mib_idx, u32 *last_oow_ack_time)
3375 {
3376 	/* Data packets without SYNs are not likely part of an ACK loop. */
3377 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3378 	    !tcp_hdr(skb)->syn)
3379 		return false;
3380 
3381 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3382 }
3383 
3384 /* RFC 5961 7 [ACK Throttling] */
3385 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3386 {
3387 	/* unprotected vars, we dont care of overwrites */
3388 	static u32 challenge_timestamp;
3389 	static unsigned int challenge_count;
3390 	struct tcp_sock *tp = tcp_sk(sk);
3391 	struct net *net = sock_net(sk);
3392 	u32 count, now;
3393 
3394 	/* First check our per-socket dupack rate limit. */
3395 	if (__tcp_oow_rate_limited(net,
3396 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3397 				   &tp->last_oow_ack_time))
3398 		return;
3399 
3400 	/* Then check host-wide RFC 5961 rate limit. */
3401 	now = jiffies / HZ;
3402 	if (now != challenge_timestamp) {
3403 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3404 		u32 half = (ack_limit + 1) >> 1;
3405 
3406 		challenge_timestamp = now;
3407 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3408 	}
3409 	count = READ_ONCE(challenge_count);
3410 	if (count > 0) {
3411 		WRITE_ONCE(challenge_count, count - 1);
3412 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3413 		tcp_send_ack(sk);
3414 	}
3415 }
3416 
3417 static void tcp_store_ts_recent(struct tcp_sock *tp)
3418 {
3419 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3420 	tp->rx_opt.ts_recent_stamp = get_seconds();
3421 }
3422 
3423 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3424 {
3425 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3426 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3427 		 * extra check below makes sure this can only happen
3428 		 * for pure ACK frames.  -DaveM
3429 		 *
3430 		 * Not only, also it occurs for expired timestamps.
3431 		 */
3432 
3433 		if (tcp_paws_check(&tp->rx_opt, 0))
3434 			tcp_store_ts_recent(tp);
3435 	}
3436 }
3437 
3438 /* This routine deals with acks during a TLP episode.
3439  * We mark the end of a TLP episode on receiving TLP dupack or when
3440  * ack is after tlp_high_seq.
3441  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3442  */
3443 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3444 {
3445 	struct tcp_sock *tp = tcp_sk(sk);
3446 
3447 	if (before(ack, tp->tlp_high_seq))
3448 		return;
3449 
3450 	if (flag & FLAG_DSACKING_ACK) {
3451 		/* This DSACK means original and TLP probe arrived; no loss */
3452 		tp->tlp_high_seq = 0;
3453 	} else if (after(ack, tp->tlp_high_seq)) {
3454 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3455 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3456 		 */
3457 		tcp_init_cwnd_reduction(sk);
3458 		tcp_set_ca_state(sk, TCP_CA_CWR);
3459 		tcp_end_cwnd_reduction(sk);
3460 		tcp_try_keep_open(sk);
3461 		NET_INC_STATS(sock_net(sk),
3462 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3463 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3464 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3465 		/* Pure dupack: original and TLP probe arrived; no loss */
3466 		tp->tlp_high_seq = 0;
3467 	}
3468 }
3469 
3470 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3471 {
3472 	const struct inet_connection_sock *icsk = inet_csk(sk);
3473 
3474 	if (icsk->icsk_ca_ops->in_ack_event)
3475 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3476 }
3477 
3478 /* Congestion control has updated the cwnd already. So if we're in
3479  * loss recovery then now we do any new sends (for FRTO) or
3480  * retransmits (for CA_Loss or CA_recovery) that make sense.
3481  */
3482 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3483 {
3484 	struct tcp_sock *tp = tcp_sk(sk);
3485 
3486 	if (rexmit == REXMIT_NONE)
3487 		return;
3488 
3489 	if (unlikely(rexmit == 2)) {
3490 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3491 					  TCP_NAGLE_OFF);
3492 		if (after(tp->snd_nxt, tp->high_seq))
3493 			return;
3494 		tp->frto = 0;
3495 	}
3496 	tcp_xmit_retransmit_queue(sk);
3497 }
3498 
3499 /* This routine deals with incoming acks, but not outgoing ones. */
3500 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3501 {
3502 	struct inet_connection_sock *icsk = inet_csk(sk);
3503 	struct tcp_sock *tp = tcp_sk(sk);
3504 	struct tcp_sacktag_state sack_state;
3505 	struct rate_sample rs = { .prior_delivered = 0 };
3506 	u32 prior_snd_una = tp->snd_una;
3507 	bool is_sack_reneg = tp->is_sack_reneg;
3508 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3509 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3510 	bool is_dupack = false;
3511 	int prior_packets = tp->packets_out;
3512 	u32 delivered = tp->delivered;
3513 	u32 lost = tp->lost;
3514 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3515 	u32 prior_fack;
3516 
3517 	sack_state.first_sackt = 0;
3518 	sack_state.rate = &rs;
3519 
3520 	/* We very likely will need to access rtx queue. */
3521 	prefetch(sk->tcp_rtx_queue.rb_node);
3522 
3523 	/* If the ack is older than previous acks
3524 	 * then we can probably ignore it.
3525 	 */
3526 	if (before(ack, prior_snd_una)) {
3527 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3528 		if (before(ack, prior_snd_una - tp->max_window)) {
3529 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3530 				tcp_send_challenge_ack(sk, skb);
3531 			return -1;
3532 		}
3533 		goto old_ack;
3534 	}
3535 
3536 	/* If the ack includes data we haven't sent yet, discard
3537 	 * this segment (RFC793 Section 3.9).
3538 	 */
3539 	if (after(ack, tp->snd_nxt))
3540 		goto invalid_ack;
3541 
3542 	if (after(ack, prior_snd_una)) {
3543 		flag |= FLAG_SND_UNA_ADVANCED;
3544 		icsk->icsk_retransmits = 0;
3545 	}
3546 
3547 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3548 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3549 
3550 	/* ts_recent update must be made after we are sure that the packet
3551 	 * is in window.
3552 	 */
3553 	if (flag & FLAG_UPDATE_TS_RECENT)
3554 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3555 
3556 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3557 		/* Window is constant, pure forward advance.
3558 		 * No more checks are required.
3559 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3560 		 */
3561 		tcp_update_wl(tp, ack_seq);
3562 		tcp_snd_una_update(tp, ack);
3563 		flag |= FLAG_WIN_UPDATE;
3564 
3565 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3566 
3567 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3568 	} else {
3569 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3570 
3571 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3572 			flag |= FLAG_DATA;
3573 		else
3574 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3575 
3576 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3577 
3578 		if (TCP_SKB_CB(skb)->sacked)
3579 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3580 							&sack_state);
3581 
3582 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3583 			flag |= FLAG_ECE;
3584 			ack_ev_flags |= CA_ACK_ECE;
3585 		}
3586 
3587 		if (flag & FLAG_WIN_UPDATE)
3588 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3589 
3590 		tcp_in_ack_event(sk, ack_ev_flags);
3591 	}
3592 
3593 	/* We passed data and got it acked, remove any soft error
3594 	 * log. Something worked...
3595 	 */
3596 	sk->sk_err_soft = 0;
3597 	icsk->icsk_probes_out = 0;
3598 	tp->rcv_tstamp = tcp_jiffies32;
3599 	if (!prior_packets)
3600 		goto no_queue;
3601 
3602 	/* See if we can take anything off of the retransmit queue. */
3603 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3604 
3605 	tcp_rack_update_reo_wnd(sk, &rs);
3606 
3607 	if (tp->tlp_high_seq)
3608 		tcp_process_tlp_ack(sk, ack, flag);
3609 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3610 	if (flag & FLAG_SET_XMIT_TIMER)
3611 		tcp_set_xmit_timer(sk);
3612 
3613 	if (tcp_ack_is_dubious(sk, flag)) {
3614 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3615 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3616 				      &rexmit);
3617 	}
3618 
3619 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3620 		sk_dst_confirm(sk);
3621 
3622 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3623 	lost = tp->lost - lost;			/* freshly marked lost */
3624 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3625 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3626 	tcp_xmit_recovery(sk, rexmit);
3627 	return 1;
3628 
3629 no_queue:
3630 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3631 	if (flag & FLAG_DSACKING_ACK)
3632 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3633 				      &rexmit);
3634 	/* If this ack opens up a zero window, clear backoff.  It was
3635 	 * being used to time the probes, and is probably far higher than
3636 	 * it needs to be for normal retransmission.
3637 	 */
3638 	tcp_ack_probe(sk);
3639 
3640 	if (tp->tlp_high_seq)
3641 		tcp_process_tlp_ack(sk, ack, flag);
3642 	return 1;
3643 
3644 invalid_ack:
3645 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3646 	return -1;
3647 
3648 old_ack:
3649 	/* If data was SACKed, tag it and see if we should send more data.
3650 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3651 	 */
3652 	if (TCP_SKB_CB(skb)->sacked) {
3653 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3654 						&sack_state);
3655 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3656 				      &rexmit);
3657 		tcp_xmit_recovery(sk, rexmit);
3658 	}
3659 
3660 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3661 	return 0;
3662 }
3663 
3664 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3665 				      bool syn, struct tcp_fastopen_cookie *foc,
3666 				      bool exp_opt)
3667 {
3668 	/* Valid only in SYN or SYN-ACK with an even length.  */
3669 	if (!foc || !syn || len < 0 || (len & 1))
3670 		return;
3671 
3672 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3673 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3674 		memcpy(foc->val, cookie, len);
3675 	else if (len != 0)
3676 		len = -1;
3677 	foc->len = len;
3678 	foc->exp = exp_opt;
3679 }
3680 
3681 static void smc_parse_options(const struct tcphdr *th,
3682 			      struct tcp_options_received *opt_rx,
3683 			      const unsigned char *ptr,
3684 			      int opsize)
3685 {
3686 #if IS_ENABLED(CONFIG_SMC)
3687 	if (static_branch_unlikely(&tcp_have_smc)) {
3688 		if (th->syn && !(opsize & 1) &&
3689 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3690 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3691 			opt_rx->smc_ok = 1;
3692 	}
3693 #endif
3694 }
3695 
3696 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3697  * But, this can also be called on packets in the established flow when
3698  * the fast version below fails.
3699  */
3700 void tcp_parse_options(const struct net *net,
3701 		       const struct sk_buff *skb,
3702 		       struct tcp_options_received *opt_rx, int estab,
3703 		       struct tcp_fastopen_cookie *foc)
3704 {
3705 	const unsigned char *ptr;
3706 	const struct tcphdr *th = tcp_hdr(skb);
3707 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3708 
3709 	ptr = (const unsigned char *)(th + 1);
3710 	opt_rx->saw_tstamp = 0;
3711 
3712 	while (length > 0) {
3713 		int opcode = *ptr++;
3714 		int opsize;
3715 
3716 		switch (opcode) {
3717 		case TCPOPT_EOL:
3718 			return;
3719 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3720 			length--;
3721 			continue;
3722 		default:
3723 			opsize = *ptr++;
3724 			if (opsize < 2) /* "silly options" */
3725 				return;
3726 			if (opsize > length)
3727 				return;	/* don't parse partial options */
3728 			switch (opcode) {
3729 			case TCPOPT_MSS:
3730 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3731 					u16 in_mss = get_unaligned_be16(ptr);
3732 					if (in_mss) {
3733 						if (opt_rx->user_mss &&
3734 						    opt_rx->user_mss < in_mss)
3735 							in_mss = opt_rx->user_mss;
3736 						opt_rx->mss_clamp = in_mss;
3737 					}
3738 				}
3739 				break;
3740 			case TCPOPT_WINDOW:
3741 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3742 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3743 					__u8 snd_wscale = *(__u8 *)ptr;
3744 					opt_rx->wscale_ok = 1;
3745 					if (snd_wscale > TCP_MAX_WSCALE) {
3746 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3747 								     __func__,
3748 								     snd_wscale,
3749 								     TCP_MAX_WSCALE);
3750 						snd_wscale = TCP_MAX_WSCALE;
3751 					}
3752 					opt_rx->snd_wscale = snd_wscale;
3753 				}
3754 				break;
3755 			case TCPOPT_TIMESTAMP:
3756 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3757 				    ((estab && opt_rx->tstamp_ok) ||
3758 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3759 					opt_rx->saw_tstamp = 1;
3760 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3761 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3762 				}
3763 				break;
3764 			case TCPOPT_SACK_PERM:
3765 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3766 				    !estab && net->ipv4.sysctl_tcp_sack) {
3767 					opt_rx->sack_ok = TCP_SACK_SEEN;
3768 					tcp_sack_reset(opt_rx);
3769 				}
3770 				break;
3771 
3772 			case TCPOPT_SACK:
3773 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3774 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3775 				   opt_rx->sack_ok) {
3776 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3777 				}
3778 				break;
3779 #ifdef CONFIG_TCP_MD5SIG
3780 			case TCPOPT_MD5SIG:
3781 				/*
3782 				 * The MD5 Hash has already been
3783 				 * checked (see tcp_v{4,6}_do_rcv()).
3784 				 */
3785 				break;
3786 #endif
3787 			case TCPOPT_FASTOPEN:
3788 				tcp_parse_fastopen_option(
3789 					opsize - TCPOLEN_FASTOPEN_BASE,
3790 					ptr, th->syn, foc, false);
3791 				break;
3792 
3793 			case TCPOPT_EXP:
3794 				/* Fast Open option shares code 254 using a
3795 				 * 16 bits magic number.
3796 				 */
3797 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3798 				    get_unaligned_be16(ptr) ==
3799 				    TCPOPT_FASTOPEN_MAGIC)
3800 					tcp_parse_fastopen_option(opsize -
3801 						TCPOLEN_EXP_FASTOPEN_BASE,
3802 						ptr + 2, th->syn, foc, true);
3803 				else
3804 					smc_parse_options(th, opt_rx, ptr,
3805 							  opsize);
3806 				break;
3807 
3808 			}
3809 			ptr += opsize-2;
3810 			length -= opsize;
3811 		}
3812 	}
3813 }
3814 EXPORT_SYMBOL(tcp_parse_options);
3815 
3816 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3817 {
3818 	const __be32 *ptr = (const __be32 *)(th + 1);
3819 
3820 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3821 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3822 		tp->rx_opt.saw_tstamp = 1;
3823 		++ptr;
3824 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3825 		++ptr;
3826 		if (*ptr)
3827 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3828 		else
3829 			tp->rx_opt.rcv_tsecr = 0;
3830 		return true;
3831 	}
3832 	return false;
3833 }
3834 
3835 /* Fast parse options. This hopes to only see timestamps.
3836  * If it is wrong it falls back on tcp_parse_options().
3837  */
3838 static bool tcp_fast_parse_options(const struct net *net,
3839 				   const struct sk_buff *skb,
3840 				   const struct tcphdr *th, struct tcp_sock *tp)
3841 {
3842 	/* In the spirit of fast parsing, compare doff directly to constant
3843 	 * values.  Because equality is used, short doff can be ignored here.
3844 	 */
3845 	if (th->doff == (sizeof(*th) / 4)) {
3846 		tp->rx_opt.saw_tstamp = 0;
3847 		return false;
3848 	} else if (tp->rx_opt.tstamp_ok &&
3849 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3850 		if (tcp_parse_aligned_timestamp(tp, th))
3851 			return true;
3852 	}
3853 
3854 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3855 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3856 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3857 
3858 	return true;
3859 }
3860 
3861 #ifdef CONFIG_TCP_MD5SIG
3862 /*
3863  * Parse MD5 Signature option
3864  */
3865 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3866 {
3867 	int length = (th->doff << 2) - sizeof(*th);
3868 	const u8 *ptr = (const u8 *)(th + 1);
3869 
3870 	/* If the TCP option is too short, we can short cut */
3871 	if (length < TCPOLEN_MD5SIG)
3872 		return NULL;
3873 
3874 	while (length > 0) {
3875 		int opcode = *ptr++;
3876 		int opsize;
3877 
3878 		switch (opcode) {
3879 		case TCPOPT_EOL:
3880 			return NULL;
3881 		case TCPOPT_NOP:
3882 			length--;
3883 			continue;
3884 		default:
3885 			opsize = *ptr++;
3886 			if (opsize < 2 || opsize > length)
3887 				return NULL;
3888 			if (opcode == TCPOPT_MD5SIG)
3889 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3890 		}
3891 		ptr += opsize - 2;
3892 		length -= opsize;
3893 	}
3894 	return NULL;
3895 }
3896 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3897 #endif
3898 
3899 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3900  *
3901  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3902  * it can pass through stack. So, the following predicate verifies that
3903  * this segment is not used for anything but congestion avoidance or
3904  * fast retransmit. Moreover, we even are able to eliminate most of such
3905  * second order effects, if we apply some small "replay" window (~RTO)
3906  * to timestamp space.
3907  *
3908  * All these measures still do not guarantee that we reject wrapped ACKs
3909  * on networks with high bandwidth, when sequence space is recycled fastly,
3910  * but it guarantees that such events will be very rare and do not affect
3911  * connection seriously. This doesn't look nice, but alas, PAWS is really
3912  * buggy extension.
3913  *
3914  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3915  * states that events when retransmit arrives after original data are rare.
3916  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3917  * the biggest problem on large power networks even with minor reordering.
3918  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3919  * up to bandwidth of 18Gigabit/sec. 8) ]
3920  */
3921 
3922 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3923 {
3924 	const struct tcp_sock *tp = tcp_sk(sk);
3925 	const struct tcphdr *th = tcp_hdr(skb);
3926 	u32 seq = TCP_SKB_CB(skb)->seq;
3927 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3928 
3929 	return (/* 1. Pure ACK with correct sequence number. */
3930 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3931 
3932 		/* 2. ... and duplicate ACK. */
3933 		ack == tp->snd_una &&
3934 
3935 		/* 3. ... and does not update window. */
3936 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3937 
3938 		/* 4. ... and sits in replay window. */
3939 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3940 }
3941 
3942 static inline bool tcp_paws_discard(const struct sock *sk,
3943 				   const struct sk_buff *skb)
3944 {
3945 	const struct tcp_sock *tp = tcp_sk(sk);
3946 
3947 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3948 	       !tcp_disordered_ack(sk, skb);
3949 }
3950 
3951 /* Check segment sequence number for validity.
3952  *
3953  * Segment controls are considered valid, if the segment
3954  * fits to the window after truncation to the window. Acceptability
3955  * of data (and SYN, FIN, of course) is checked separately.
3956  * See tcp_data_queue(), for example.
3957  *
3958  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3959  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3960  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3961  * (borrowed from freebsd)
3962  */
3963 
3964 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3965 {
3966 	return	!before(end_seq, tp->rcv_wup) &&
3967 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3968 }
3969 
3970 /* When we get a reset we do this. */
3971 void tcp_reset(struct sock *sk)
3972 {
3973 	trace_tcp_receive_reset(sk);
3974 
3975 	/* We want the right error as BSD sees it (and indeed as we do). */
3976 	switch (sk->sk_state) {
3977 	case TCP_SYN_SENT:
3978 		sk->sk_err = ECONNREFUSED;
3979 		break;
3980 	case TCP_CLOSE_WAIT:
3981 		sk->sk_err = EPIPE;
3982 		break;
3983 	case TCP_CLOSE:
3984 		return;
3985 	default:
3986 		sk->sk_err = ECONNRESET;
3987 	}
3988 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3989 	smp_wmb();
3990 
3991 	tcp_done(sk);
3992 
3993 	if (!sock_flag(sk, SOCK_DEAD))
3994 		sk->sk_error_report(sk);
3995 }
3996 
3997 /*
3998  * 	Process the FIN bit. This now behaves as it is supposed to work
3999  *	and the FIN takes effect when it is validly part of sequence
4000  *	space. Not before when we get holes.
4001  *
4002  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4003  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4004  *	TIME-WAIT)
4005  *
4006  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4007  *	close and we go into CLOSING (and later onto TIME-WAIT)
4008  *
4009  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4010  */
4011 void tcp_fin(struct sock *sk)
4012 {
4013 	struct tcp_sock *tp = tcp_sk(sk);
4014 
4015 	inet_csk_schedule_ack(sk);
4016 
4017 	sk->sk_shutdown |= RCV_SHUTDOWN;
4018 	sock_set_flag(sk, SOCK_DONE);
4019 
4020 	switch (sk->sk_state) {
4021 	case TCP_SYN_RECV:
4022 	case TCP_ESTABLISHED:
4023 		/* Move to CLOSE_WAIT */
4024 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4025 		inet_csk(sk)->icsk_ack.pingpong = 1;
4026 		break;
4027 
4028 	case TCP_CLOSE_WAIT:
4029 	case TCP_CLOSING:
4030 		/* Received a retransmission of the FIN, do
4031 		 * nothing.
4032 		 */
4033 		break;
4034 	case TCP_LAST_ACK:
4035 		/* RFC793: Remain in the LAST-ACK state. */
4036 		break;
4037 
4038 	case TCP_FIN_WAIT1:
4039 		/* This case occurs when a simultaneous close
4040 		 * happens, we must ack the received FIN and
4041 		 * enter the CLOSING state.
4042 		 */
4043 		tcp_send_ack(sk);
4044 		tcp_set_state(sk, TCP_CLOSING);
4045 		break;
4046 	case TCP_FIN_WAIT2:
4047 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4048 		tcp_send_ack(sk);
4049 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4050 		break;
4051 	default:
4052 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4053 		 * cases we should never reach this piece of code.
4054 		 */
4055 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4056 		       __func__, sk->sk_state);
4057 		break;
4058 	}
4059 
4060 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4061 	 * Probably, we should reset in this case. For now drop them.
4062 	 */
4063 	skb_rbtree_purge(&tp->out_of_order_queue);
4064 	if (tcp_is_sack(tp))
4065 		tcp_sack_reset(&tp->rx_opt);
4066 	sk_mem_reclaim(sk);
4067 
4068 	if (!sock_flag(sk, SOCK_DEAD)) {
4069 		sk->sk_state_change(sk);
4070 
4071 		/* Do not send POLL_HUP for half duplex close. */
4072 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4073 		    sk->sk_state == TCP_CLOSE)
4074 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4075 		else
4076 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4077 	}
4078 }
4079 
4080 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4081 				  u32 end_seq)
4082 {
4083 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4084 		if (before(seq, sp->start_seq))
4085 			sp->start_seq = seq;
4086 		if (after(end_seq, sp->end_seq))
4087 			sp->end_seq = end_seq;
4088 		return true;
4089 	}
4090 	return false;
4091 }
4092 
4093 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4094 {
4095 	struct tcp_sock *tp = tcp_sk(sk);
4096 
4097 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4098 		int mib_idx;
4099 
4100 		if (before(seq, tp->rcv_nxt))
4101 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4102 		else
4103 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4104 
4105 		NET_INC_STATS(sock_net(sk), mib_idx);
4106 
4107 		tp->rx_opt.dsack = 1;
4108 		tp->duplicate_sack[0].start_seq = seq;
4109 		tp->duplicate_sack[0].end_seq = end_seq;
4110 	}
4111 }
4112 
4113 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4114 {
4115 	struct tcp_sock *tp = tcp_sk(sk);
4116 
4117 	if (!tp->rx_opt.dsack)
4118 		tcp_dsack_set(sk, seq, end_seq);
4119 	else
4120 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4121 }
4122 
4123 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4124 {
4125 	struct tcp_sock *tp = tcp_sk(sk);
4126 
4127 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4128 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4129 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4130 		tcp_enter_quickack_mode(sk);
4131 
4132 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4133 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4134 
4135 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4136 				end_seq = tp->rcv_nxt;
4137 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4138 		}
4139 	}
4140 
4141 	tcp_send_ack(sk);
4142 }
4143 
4144 /* These routines update the SACK block as out-of-order packets arrive or
4145  * in-order packets close up the sequence space.
4146  */
4147 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4148 {
4149 	int this_sack;
4150 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4151 	struct tcp_sack_block *swalk = sp + 1;
4152 
4153 	/* See if the recent change to the first SACK eats into
4154 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4155 	 */
4156 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4157 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4158 			int i;
4159 
4160 			/* Zap SWALK, by moving every further SACK up by one slot.
4161 			 * Decrease num_sacks.
4162 			 */
4163 			tp->rx_opt.num_sacks--;
4164 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4165 				sp[i] = sp[i + 1];
4166 			continue;
4167 		}
4168 		this_sack++, swalk++;
4169 	}
4170 }
4171 
4172 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4173 {
4174 	struct tcp_sock *tp = tcp_sk(sk);
4175 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4176 	int cur_sacks = tp->rx_opt.num_sacks;
4177 	int this_sack;
4178 
4179 	if (!cur_sacks)
4180 		goto new_sack;
4181 
4182 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4183 		if (tcp_sack_extend(sp, seq, end_seq)) {
4184 			/* Rotate this_sack to the first one. */
4185 			for (; this_sack > 0; this_sack--, sp--)
4186 				swap(*sp, *(sp - 1));
4187 			if (cur_sacks > 1)
4188 				tcp_sack_maybe_coalesce(tp);
4189 			return;
4190 		}
4191 	}
4192 
4193 	/* Could not find an adjacent existing SACK, build a new one,
4194 	 * put it at the front, and shift everyone else down.  We
4195 	 * always know there is at least one SACK present already here.
4196 	 *
4197 	 * If the sack array is full, forget about the last one.
4198 	 */
4199 	if (this_sack >= TCP_NUM_SACKS) {
4200 		this_sack--;
4201 		tp->rx_opt.num_sacks--;
4202 		sp--;
4203 	}
4204 	for (; this_sack > 0; this_sack--, sp--)
4205 		*sp = *(sp - 1);
4206 
4207 new_sack:
4208 	/* Build the new head SACK, and we're done. */
4209 	sp->start_seq = seq;
4210 	sp->end_seq = end_seq;
4211 	tp->rx_opt.num_sacks++;
4212 }
4213 
4214 /* RCV.NXT advances, some SACKs should be eaten. */
4215 
4216 static void tcp_sack_remove(struct tcp_sock *tp)
4217 {
4218 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4219 	int num_sacks = tp->rx_opt.num_sacks;
4220 	int this_sack;
4221 
4222 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4223 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4224 		tp->rx_opt.num_sacks = 0;
4225 		return;
4226 	}
4227 
4228 	for (this_sack = 0; this_sack < num_sacks;) {
4229 		/* Check if the start of the sack is covered by RCV.NXT. */
4230 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4231 			int i;
4232 
4233 			/* RCV.NXT must cover all the block! */
4234 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4235 
4236 			/* Zap this SACK, by moving forward any other SACKS. */
4237 			for (i = this_sack+1; i < num_sacks; i++)
4238 				tp->selective_acks[i-1] = tp->selective_acks[i];
4239 			num_sacks--;
4240 			continue;
4241 		}
4242 		this_sack++;
4243 		sp++;
4244 	}
4245 	tp->rx_opt.num_sacks = num_sacks;
4246 }
4247 
4248 /**
4249  * tcp_try_coalesce - try to merge skb to prior one
4250  * @sk: socket
4251  * @dest: destination queue
4252  * @to: prior buffer
4253  * @from: buffer to add in queue
4254  * @fragstolen: pointer to boolean
4255  *
4256  * Before queueing skb @from after @to, try to merge them
4257  * to reduce overall memory use and queue lengths, if cost is small.
4258  * Packets in ofo or receive queues can stay a long time.
4259  * Better try to coalesce them right now to avoid future collapses.
4260  * Returns true if caller should free @from instead of queueing it
4261  */
4262 static bool tcp_try_coalesce(struct sock *sk,
4263 			     struct sk_buff *to,
4264 			     struct sk_buff *from,
4265 			     bool *fragstolen)
4266 {
4267 	int delta;
4268 
4269 	*fragstolen = false;
4270 
4271 	/* Its possible this segment overlaps with prior segment in queue */
4272 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4273 		return false;
4274 
4275 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4276 		return false;
4277 
4278 	atomic_add(delta, &sk->sk_rmem_alloc);
4279 	sk_mem_charge(sk, delta);
4280 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4281 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4282 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4283 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4284 
4285 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4286 		TCP_SKB_CB(to)->has_rxtstamp = true;
4287 		to->tstamp = from->tstamp;
4288 	}
4289 
4290 	return true;
4291 }
4292 
4293 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4294 {
4295 	sk_drops_add(sk, skb);
4296 	__kfree_skb(skb);
4297 }
4298 
4299 /* This one checks to see if we can put data from the
4300  * out_of_order queue into the receive_queue.
4301  */
4302 static void tcp_ofo_queue(struct sock *sk)
4303 {
4304 	struct tcp_sock *tp = tcp_sk(sk);
4305 	__u32 dsack_high = tp->rcv_nxt;
4306 	bool fin, fragstolen, eaten;
4307 	struct sk_buff *skb, *tail;
4308 	struct rb_node *p;
4309 
4310 	p = rb_first(&tp->out_of_order_queue);
4311 	while (p) {
4312 		skb = rb_to_skb(p);
4313 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4314 			break;
4315 
4316 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4317 			__u32 dsack = dsack_high;
4318 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4319 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4320 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4321 		}
4322 		p = rb_next(p);
4323 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4324 
4325 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4326 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4327 			tcp_drop(sk, skb);
4328 			continue;
4329 		}
4330 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4331 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4332 			   TCP_SKB_CB(skb)->end_seq);
4333 
4334 		tail = skb_peek_tail(&sk->sk_receive_queue);
4335 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4336 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4337 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4338 		if (!eaten)
4339 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4340 		else
4341 			kfree_skb_partial(skb, fragstolen);
4342 
4343 		if (unlikely(fin)) {
4344 			tcp_fin(sk);
4345 			/* tcp_fin() purges tp->out_of_order_queue,
4346 			 * so we must end this loop right now.
4347 			 */
4348 			break;
4349 		}
4350 	}
4351 }
4352 
4353 static bool tcp_prune_ofo_queue(struct sock *sk);
4354 static int tcp_prune_queue(struct sock *sk);
4355 
4356 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4357 				 unsigned int size)
4358 {
4359 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4360 	    !sk_rmem_schedule(sk, skb, size)) {
4361 
4362 		if (tcp_prune_queue(sk) < 0)
4363 			return -1;
4364 
4365 		while (!sk_rmem_schedule(sk, skb, size)) {
4366 			if (!tcp_prune_ofo_queue(sk))
4367 				return -1;
4368 		}
4369 	}
4370 	return 0;
4371 }
4372 
4373 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4374 {
4375 	struct tcp_sock *tp = tcp_sk(sk);
4376 	struct rb_node **p, *parent;
4377 	struct sk_buff *skb1;
4378 	u32 seq, end_seq;
4379 	bool fragstolen;
4380 
4381 	tcp_ecn_check_ce(tp, skb);
4382 
4383 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4384 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4385 		tcp_drop(sk, skb);
4386 		return;
4387 	}
4388 
4389 	/* Disable header prediction. */
4390 	tp->pred_flags = 0;
4391 	inet_csk_schedule_ack(sk);
4392 
4393 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4394 	seq = TCP_SKB_CB(skb)->seq;
4395 	end_seq = TCP_SKB_CB(skb)->end_seq;
4396 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4397 		   tp->rcv_nxt, seq, end_seq);
4398 
4399 	p = &tp->out_of_order_queue.rb_node;
4400 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4401 		/* Initial out of order segment, build 1 SACK. */
4402 		if (tcp_is_sack(tp)) {
4403 			tp->rx_opt.num_sacks = 1;
4404 			tp->selective_acks[0].start_seq = seq;
4405 			tp->selective_acks[0].end_seq = end_seq;
4406 		}
4407 		rb_link_node(&skb->rbnode, NULL, p);
4408 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4409 		tp->ooo_last_skb = skb;
4410 		goto end;
4411 	}
4412 
4413 	/* In the typical case, we are adding an skb to the end of the list.
4414 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4415 	 */
4416 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4417 			     skb, &fragstolen)) {
4418 coalesce_done:
4419 		tcp_grow_window(sk, skb);
4420 		kfree_skb_partial(skb, fragstolen);
4421 		skb = NULL;
4422 		goto add_sack;
4423 	}
4424 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4425 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4426 		parent = &tp->ooo_last_skb->rbnode;
4427 		p = &parent->rb_right;
4428 		goto insert;
4429 	}
4430 
4431 	/* Find place to insert this segment. Handle overlaps on the way. */
4432 	parent = NULL;
4433 	while (*p) {
4434 		parent = *p;
4435 		skb1 = rb_to_skb(parent);
4436 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4437 			p = &parent->rb_left;
4438 			continue;
4439 		}
4440 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4441 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4442 				/* All the bits are present. Drop. */
4443 				NET_INC_STATS(sock_net(sk),
4444 					      LINUX_MIB_TCPOFOMERGE);
4445 				__kfree_skb(skb);
4446 				skb = NULL;
4447 				tcp_dsack_set(sk, seq, end_seq);
4448 				goto add_sack;
4449 			}
4450 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4451 				/* Partial overlap. */
4452 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4453 			} else {
4454 				/* skb's seq == skb1's seq and skb covers skb1.
4455 				 * Replace skb1 with skb.
4456 				 */
4457 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4458 						&tp->out_of_order_queue);
4459 				tcp_dsack_extend(sk,
4460 						 TCP_SKB_CB(skb1)->seq,
4461 						 TCP_SKB_CB(skb1)->end_seq);
4462 				NET_INC_STATS(sock_net(sk),
4463 					      LINUX_MIB_TCPOFOMERGE);
4464 				__kfree_skb(skb1);
4465 				goto merge_right;
4466 			}
4467 		} else if (tcp_try_coalesce(sk, skb1,
4468 					    skb, &fragstolen)) {
4469 			goto coalesce_done;
4470 		}
4471 		p = &parent->rb_right;
4472 	}
4473 insert:
4474 	/* Insert segment into RB tree. */
4475 	rb_link_node(&skb->rbnode, parent, p);
4476 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4477 
4478 merge_right:
4479 	/* Remove other segments covered by skb. */
4480 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4481 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4482 			break;
4483 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4484 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4485 					 end_seq);
4486 			break;
4487 		}
4488 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4489 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4490 				 TCP_SKB_CB(skb1)->end_seq);
4491 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4492 		tcp_drop(sk, skb1);
4493 	}
4494 	/* If there is no skb after us, we are the last_skb ! */
4495 	if (!skb1)
4496 		tp->ooo_last_skb = skb;
4497 
4498 add_sack:
4499 	if (tcp_is_sack(tp))
4500 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4501 end:
4502 	if (skb) {
4503 		tcp_grow_window(sk, skb);
4504 		skb_condense(skb);
4505 		skb_set_owner_r(skb, sk);
4506 	}
4507 }
4508 
4509 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4510 		  bool *fragstolen)
4511 {
4512 	int eaten;
4513 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4514 
4515 	__skb_pull(skb, hdrlen);
4516 	eaten = (tail &&
4517 		 tcp_try_coalesce(sk, tail,
4518 				  skb, fragstolen)) ? 1 : 0;
4519 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4520 	if (!eaten) {
4521 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4522 		skb_set_owner_r(skb, sk);
4523 	}
4524 	return eaten;
4525 }
4526 
4527 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4528 {
4529 	struct sk_buff *skb;
4530 	int err = -ENOMEM;
4531 	int data_len = 0;
4532 	bool fragstolen;
4533 
4534 	if (size == 0)
4535 		return 0;
4536 
4537 	if (size > PAGE_SIZE) {
4538 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4539 
4540 		data_len = npages << PAGE_SHIFT;
4541 		size = data_len + (size & ~PAGE_MASK);
4542 	}
4543 	skb = alloc_skb_with_frags(size - data_len, data_len,
4544 				   PAGE_ALLOC_COSTLY_ORDER,
4545 				   &err, sk->sk_allocation);
4546 	if (!skb)
4547 		goto err;
4548 
4549 	skb_put(skb, size - data_len);
4550 	skb->data_len = data_len;
4551 	skb->len = size;
4552 
4553 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4554 		goto err_free;
4555 
4556 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4557 	if (err)
4558 		goto err_free;
4559 
4560 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4561 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4562 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4563 
4564 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4565 		WARN_ON_ONCE(fragstolen); /* should not happen */
4566 		__kfree_skb(skb);
4567 	}
4568 	return size;
4569 
4570 err_free:
4571 	kfree_skb(skb);
4572 err:
4573 	return err;
4574 
4575 }
4576 
4577 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4578 {
4579 	struct tcp_sock *tp = tcp_sk(sk);
4580 	bool fragstolen;
4581 	int eaten;
4582 
4583 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4584 		__kfree_skb(skb);
4585 		return;
4586 	}
4587 	skb_dst_drop(skb);
4588 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4589 
4590 	tcp_ecn_accept_cwr(tp, skb);
4591 
4592 	tp->rx_opt.dsack = 0;
4593 
4594 	/*  Queue data for delivery to the user.
4595 	 *  Packets in sequence go to the receive queue.
4596 	 *  Out of sequence packets to the out_of_order_queue.
4597 	 */
4598 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4599 		if (tcp_receive_window(tp) == 0)
4600 			goto out_of_window;
4601 
4602 		/* Ok. In sequence. In window. */
4603 queue_and_out:
4604 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4605 			sk_forced_mem_schedule(sk, skb->truesize);
4606 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4607 			goto drop;
4608 
4609 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4610 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4611 		if (skb->len)
4612 			tcp_event_data_recv(sk, skb);
4613 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4614 			tcp_fin(sk);
4615 
4616 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4617 			tcp_ofo_queue(sk);
4618 
4619 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4620 			 * gap in queue is filled.
4621 			 */
4622 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4623 				inet_csk(sk)->icsk_ack.pingpong = 0;
4624 		}
4625 
4626 		if (tp->rx_opt.num_sacks)
4627 			tcp_sack_remove(tp);
4628 
4629 		tcp_fast_path_check(sk);
4630 
4631 		if (eaten > 0)
4632 			kfree_skb_partial(skb, fragstolen);
4633 		if (!sock_flag(sk, SOCK_DEAD))
4634 			sk->sk_data_ready(sk);
4635 		return;
4636 	}
4637 
4638 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4639 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4640 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4641 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4642 
4643 out_of_window:
4644 		tcp_enter_quickack_mode(sk);
4645 		inet_csk_schedule_ack(sk);
4646 drop:
4647 		tcp_drop(sk, skb);
4648 		return;
4649 	}
4650 
4651 	/* Out of window. F.e. zero window probe. */
4652 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4653 		goto out_of_window;
4654 
4655 	tcp_enter_quickack_mode(sk);
4656 
4657 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4658 		/* Partial packet, seq < rcv_next < end_seq */
4659 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4660 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4661 			   TCP_SKB_CB(skb)->end_seq);
4662 
4663 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4664 
4665 		/* If window is closed, drop tail of packet. But after
4666 		 * remembering D-SACK for its head made in previous line.
4667 		 */
4668 		if (!tcp_receive_window(tp))
4669 			goto out_of_window;
4670 		goto queue_and_out;
4671 	}
4672 
4673 	tcp_data_queue_ofo(sk, skb);
4674 }
4675 
4676 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4677 {
4678 	if (list)
4679 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4680 
4681 	return skb_rb_next(skb);
4682 }
4683 
4684 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4685 					struct sk_buff_head *list,
4686 					struct rb_root *root)
4687 {
4688 	struct sk_buff *next = tcp_skb_next(skb, list);
4689 
4690 	if (list)
4691 		__skb_unlink(skb, list);
4692 	else
4693 		rb_erase(&skb->rbnode, root);
4694 
4695 	__kfree_skb(skb);
4696 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4697 
4698 	return next;
4699 }
4700 
4701 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4702 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4703 {
4704 	struct rb_node **p = &root->rb_node;
4705 	struct rb_node *parent = NULL;
4706 	struct sk_buff *skb1;
4707 
4708 	while (*p) {
4709 		parent = *p;
4710 		skb1 = rb_to_skb(parent);
4711 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4712 			p = &parent->rb_left;
4713 		else
4714 			p = &parent->rb_right;
4715 	}
4716 	rb_link_node(&skb->rbnode, parent, p);
4717 	rb_insert_color(&skb->rbnode, root);
4718 }
4719 
4720 /* Collapse contiguous sequence of skbs head..tail with
4721  * sequence numbers start..end.
4722  *
4723  * If tail is NULL, this means until the end of the queue.
4724  *
4725  * Segments with FIN/SYN are not collapsed (only because this
4726  * simplifies code)
4727  */
4728 static void
4729 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4730 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4731 {
4732 	struct sk_buff *skb = head, *n;
4733 	struct sk_buff_head tmp;
4734 	bool end_of_skbs;
4735 
4736 	/* First, check that queue is collapsible and find
4737 	 * the point where collapsing can be useful.
4738 	 */
4739 restart:
4740 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4741 		n = tcp_skb_next(skb, list);
4742 
4743 		/* No new bits? It is possible on ofo queue. */
4744 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4745 			skb = tcp_collapse_one(sk, skb, list, root);
4746 			if (!skb)
4747 				break;
4748 			goto restart;
4749 		}
4750 
4751 		/* The first skb to collapse is:
4752 		 * - not SYN/FIN and
4753 		 * - bloated or contains data before "start" or
4754 		 *   overlaps to the next one.
4755 		 */
4756 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4757 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4758 		     before(TCP_SKB_CB(skb)->seq, start))) {
4759 			end_of_skbs = false;
4760 			break;
4761 		}
4762 
4763 		if (n && n != tail &&
4764 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4765 			end_of_skbs = false;
4766 			break;
4767 		}
4768 
4769 		/* Decided to skip this, advance start seq. */
4770 		start = TCP_SKB_CB(skb)->end_seq;
4771 	}
4772 	if (end_of_skbs ||
4773 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4774 		return;
4775 
4776 	__skb_queue_head_init(&tmp);
4777 
4778 	while (before(start, end)) {
4779 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4780 		struct sk_buff *nskb;
4781 
4782 		nskb = alloc_skb(copy, GFP_ATOMIC);
4783 		if (!nskb)
4784 			break;
4785 
4786 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4787 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4788 		if (list)
4789 			__skb_queue_before(list, skb, nskb);
4790 		else
4791 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4792 		skb_set_owner_r(nskb, sk);
4793 
4794 		/* Copy data, releasing collapsed skbs. */
4795 		while (copy > 0) {
4796 			int offset = start - TCP_SKB_CB(skb)->seq;
4797 			int size = TCP_SKB_CB(skb)->end_seq - start;
4798 
4799 			BUG_ON(offset < 0);
4800 			if (size > 0) {
4801 				size = min(copy, size);
4802 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4803 					BUG();
4804 				TCP_SKB_CB(nskb)->end_seq += size;
4805 				copy -= size;
4806 				start += size;
4807 			}
4808 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4809 				skb = tcp_collapse_one(sk, skb, list, root);
4810 				if (!skb ||
4811 				    skb == tail ||
4812 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4813 					goto end;
4814 			}
4815 		}
4816 	}
4817 end:
4818 	skb_queue_walk_safe(&tmp, skb, n)
4819 		tcp_rbtree_insert(root, skb);
4820 }
4821 
4822 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4823  * and tcp_collapse() them until all the queue is collapsed.
4824  */
4825 static void tcp_collapse_ofo_queue(struct sock *sk)
4826 {
4827 	struct tcp_sock *tp = tcp_sk(sk);
4828 	struct sk_buff *skb, *head;
4829 	u32 start, end;
4830 
4831 	skb = skb_rb_first(&tp->out_of_order_queue);
4832 new_range:
4833 	if (!skb) {
4834 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4835 		return;
4836 	}
4837 	start = TCP_SKB_CB(skb)->seq;
4838 	end = TCP_SKB_CB(skb)->end_seq;
4839 
4840 	for (head = skb;;) {
4841 		skb = skb_rb_next(skb);
4842 
4843 		/* Range is terminated when we see a gap or when
4844 		 * we are at the queue end.
4845 		 */
4846 		if (!skb ||
4847 		    after(TCP_SKB_CB(skb)->seq, end) ||
4848 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4849 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4850 				     head, skb, start, end);
4851 			goto new_range;
4852 		}
4853 
4854 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4855 			start = TCP_SKB_CB(skb)->seq;
4856 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4857 			end = TCP_SKB_CB(skb)->end_seq;
4858 	}
4859 }
4860 
4861 /*
4862  * Clean the out-of-order queue to make room.
4863  * We drop high sequences packets to :
4864  * 1) Let a chance for holes to be filled.
4865  * 2) not add too big latencies if thousands of packets sit there.
4866  *    (But if application shrinks SO_RCVBUF, we could still end up
4867  *     freeing whole queue here)
4868  *
4869  * Return true if queue has shrunk.
4870  */
4871 static bool tcp_prune_ofo_queue(struct sock *sk)
4872 {
4873 	struct tcp_sock *tp = tcp_sk(sk);
4874 	struct rb_node *node, *prev;
4875 
4876 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4877 		return false;
4878 
4879 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4880 	node = &tp->ooo_last_skb->rbnode;
4881 	do {
4882 		prev = rb_prev(node);
4883 		rb_erase(node, &tp->out_of_order_queue);
4884 		tcp_drop(sk, rb_to_skb(node));
4885 		sk_mem_reclaim(sk);
4886 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4887 		    !tcp_under_memory_pressure(sk))
4888 			break;
4889 		node = prev;
4890 	} while (node);
4891 	tp->ooo_last_skb = rb_to_skb(prev);
4892 
4893 	/* Reset SACK state.  A conforming SACK implementation will
4894 	 * do the same at a timeout based retransmit.  When a connection
4895 	 * is in a sad state like this, we care only about integrity
4896 	 * of the connection not performance.
4897 	 */
4898 	if (tp->rx_opt.sack_ok)
4899 		tcp_sack_reset(&tp->rx_opt);
4900 	return true;
4901 }
4902 
4903 /* Reduce allocated memory if we can, trying to get
4904  * the socket within its memory limits again.
4905  *
4906  * Return less than zero if we should start dropping frames
4907  * until the socket owning process reads some of the data
4908  * to stabilize the situation.
4909  */
4910 static int tcp_prune_queue(struct sock *sk)
4911 {
4912 	struct tcp_sock *tp = tcp_sk(sk);
4913 
4914 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4915 
4916 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4917 
4918 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4919 		tcp_clamp_window(sk);
4920 	else if (tcp_under_memory_pressure(sk))
4921 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4922 
4923 	tcp_collapse_ofo_queue(sk);
4924 	if (!skb_queue_empty(&sk->sk_receive_queue))
4925 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4926 			     skb_peek(&sk->sk_receive_queue),
4927 			     NULL,
4928 			     tp->copied_seq, tp->rcv_nxt);
4929 	sk_mem_reclaim(sk);
4930 
4931 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4932 		return 0;
4933 
4934 	/* Collapsing did not help, destructive actions follow.
4935 	 * This must not ever occur. */
4936 
4937 	tcp_prune_ofo_queue(sk);
4938 
4939 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4940 		return 0;
4941 
4942 	/* If we are really being abused, tell the caller to silently
4943 	 * drop receive data on the floor.  It will get retransmitted
4944 	 * and hopefully then we'll have sufficient space.
4945 	 */
4946 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4947 
4948 	/* Massive buffer overcommit. */
4949 	tp->pred_flags = 0;
4950 	return -1;
4951 }
4952 
4953 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4954 {
4955 	const struct tcp_sock *tp = tcp_sk(sk);
4956 
4957 	/* If the user specified a specific send buffer setting, do
4958 	 * not modify it.
4959 	 */
4960 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4961 		return false;
4962 
4963 	/* If we are under global TCP memory pressure, do not expand.  */
4964 	if (tcp_under_memory_pressure(sk))
4965 		return false;
4966 
4967 	/* If we are under soft global TCP memory pressure, do not expand.  */
4968 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4969 		return false;
4970 
4971 	/* If we filled the congestion window, do not expand.  */
4972 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4973 		return false;
4974 
4975 	return true;
4976 }
4977 
4978 /* When incoming ACK allowed to free some skb from write_queue,
4979  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4980  * on the exit from tcp input handler.
4981  *
4982  * PROBLEM: sndbuf expansion does not work well with largesend.
4983  */
4984 static void tcp_new_space(struct sock *sk)
4985 {
4986 	struct tcp_sock *tp = tcp_sk(sk);
4987 
4988 	if (tcp_should_expand_sndbuf(sk)) {
4989 		tcp_sndbuf_expand(sk);
4990 		tp->snd_cwnd_stamp = tcp_jiffies32;
4991 	}
4992 
4993 	sk->sk_write_space(sk);
4994 }
4995 
4996 static void tcp_check_space(struct sock *sk)
4997 {
4998 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4999 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5000 		/* pairs with tcp_poll() */
5001 		smp_mb();
5002 		if (sk->sk_socket &&
5003 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5004 			tcp_new_space(sk);
5005 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5006 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5007 		}
5008 	}
5009 }
5010 
5011 static inline void tcp_data_snd_check(struct sock *sk)
5012 {
5013 	tcp_push_pending_frames(sk);
5014 	tcp_check_space(sk);
5015 }
5016 
5017 /*
5018  * Check if sending an ack is needed.
5019  */
5020 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5021 {
5022 	struct tcp_sock *tp = tcp_sk(sk);
5023 
5024 	    /* More than one full frame received... */
5025 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5026 	     /* ... and right edge of window advances far enough.
5027 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5028 	      */
5029 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5030 	    /* We ACK each frame or... */
5031 	    tcp_in_quickack_mode(sk) ||
5032 	    /* We have out of order data. */
5033 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5034 		/* Then ack it now */
5035 		tcp_send_ack(sk);
5036 	} else {
5037 		/* Else, send delayed ack. */
5038 		tcp_send_delayed_ack(sk);
5039 	}
5040 }
5041 
5042 static inline void tcp_ack_snd_check(struct sock *sk)
5043 {
5044 	if (!inet_csk_ack_scheduled(sk)) {
5045 		/* We sent a data segment already. */
5046 		return;
5047 	}
5048 	__tcp_ack_snd_check(sk, 1);
5049 }
5050 
5051 /*
5052  *	This routine is only called when we have urgent data
5053  *	signaled. Its the 'slow' part of tcp_urg. It could be
5054  *	moved inline now as tcp_urg is only called from one
5055  *	place. We handle URGent data wrong. We have to - as
5056  *	BSD still doesn't use the correction from RFC961.
5057  *	For 1003.1g we should support a new option TCP_STDURG to permit
5058  *	either form (or just set the sysctl tcp_stdurg).
5059  */
5060 
5061 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5062 {
5063 	struct tcp_sock *tp = tcp_sk(sk);
5064 	u32 ptr = ntohs(th->urg_ptr);
5065 
5066 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5067 		ptr--;
5068 	ptr += ntohl(th->seq);
5069 
5070 	/* Ignore urgent data that we've already seen and read. */
5071 	if (after(tp->copied_seq, ptr))
5072 		return;
5073 
5074 	/* Do not replay urg ptr.
5075 	 *
5076 	 * NOTE: interesting situation not covered by specs.
5077 	 * Misbehaving sender may send urg ptr, pointing to segment,
5078 	 * which we already have in ofo queue. We are not able to fetch
5079 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5080 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5081 	 * situations. But it is worth to think about possibility of some
5082 	 * DoSes using some hypothetical application level deadlock.
5083 	 */
5084 	if (before(ptr, tp->rcv_nxt))
5085 		return;
5086 
5087 	/* Do we already have a newer (or duplicate) urgent pointer? */
5088 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5089 		return;
5090 
5091 	/* Tell the world about our new urgent pointer. */
5092 	sk_send_sigurg(sk);
5093 
5094 	/* We may be adding urgent data when the last byte read was
5095 	 * urgent. To do this requires some care. We cannot just ignore
5096 	 * tp->copied_seq since we would read the last urgent byte again
5097 	 * as data, nor can we alter copied_seq until this data arrives
5098 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5099 	 *
5100 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5101 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5102 	 * and expect that both A and B disappear from stream. This is _wrong_.
5103 	 * Though this happens in BSD with high probability, this is occasional.
5104 	 * Any application relying on this is buggy. Note also, that fix "works"
5105 	 * only in this artificial test. Insert some normal data between A and B and we will
5106 	 * decline of BSD again. Verdict: it is better to remove to trap
5107 	 * buggy users.
5108 	 */
5109 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5110 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5111 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5112 		tp->copied_seq++;
5113 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5114 			__skb_unlink(skb, &sk->sk_receive_queue);
5115 			__kfree_skb(skb);
5116 		}
5117 	}
5118 
5119 	tp->urg_data = TCP_URG_NOTYET;
5120 	tp->urg_seq = ptr;
5121 
5122 	/* Disable header prediction. */
5123 	tp->pred_flags = 0;
5124 }
5125 
5126 /* This is the 'fast' part of urgent handling. */
5127 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5128 {
5129 	struct tcp_sock *tp = tcp_sk(sk);
5130 
5131 	/* Check if we get a new urgent pointer - normally not. */
5132 	if (th->urg)
5133 		tcp_check_urg(sk, th);
5134 
5135 	/* Do we wait for any urgent data? - normally not... */
5136 	if (tp->urg_data == TCP_URG_NOTYET) {
5137 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5138 			  th->syn;
5139 
5140 		/* Is the urgent pointer pointing into this packet? */
5141 		if (ptr < skb->len) {
5142 			u8 tmp;
5143 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5144 				BUG();
5145 			tp->urg_data = TCP_URG_VALID | tmp;
5146 			if (!sock_flag(sk, SOCK_DEAD))
5147 				sk->sk_data_ready(sk);
5148 		}
5149 	}
5150 }
5151 
5152 /* Accept RST for rcv_nxt - 1 after a FIN.
5153  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5154  * FIN is sent followed by a RST packet. The RST is sent with the same
5155  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5156  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5157  * ACKs on the closed socket. In addition middleboxes can drop either the
5158  * challenge ACK or a subsequent RST.
5159  */
5160 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5161 {
5162 	struct tcp_sock *tp = tcp_sk(sk);
5163 
5164 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5165 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5166 					       TCPF_CLOSING));
5167 }
5168 
5169 /* Does PAWS and seqno based validation of an incoming segment, flags will
5170  * play significant role here.
5171  */
5172 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5173 				  const struct tcphdr *th, int syn_inerr)
5174 {
5175 	struct tcp_sock *tp = tcp_sk(sk);
5176 	bool rst_seq_match = false;
5177 
5178 	/* RFC1323: H1. Apply PAWS check first. */
5179 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5180 	    tp->rx_opt.saw_tstamp &&
5181 	    tcp_paws_discard(sk, skb)) {
5182 		if (!th->rst) {
5183 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5184 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5185 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5186 						  &tp->last_oow_ack_time))
5187 				tcp_send_dupack(sk, skb);
5188 			goto discard;
5189 		}
5190 		/* Reset is accepted even if it did not pass PAWS. */
5191 	}
5192 
5193 	/* Step 1: check sequence number */
5194 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5195 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5196 		 * (RST) segments are validated by checking their SEQ-fields."
5197 		 * And page 69: "If an incoming segment is not acceptable,
5198 		 * an acknowledgment should be sent in reply (unless the RST
5199 		 * bit is set, if so drop the segment and return)".
5200 		 */
5201 		if (!th->rst) {
5202 			if (th->syn)
5203 				goto syn_challenge;
5204 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5205 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5206 						  &tp->last_oow_ack_time))
5207 				tcp_send_dupack(sk, skb);
5208 		} else if (tcp_reset_check(sk, skb)) {
5209 			tcp_reset(sk);
5210 		}
5211 		goto discard;
5212 	}
5213 
5214 	/* Step 2: check RST bit */
5215 	if (th->rst) {
5216 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5217 		 * FIN and SACK too if available):
5218 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5219 		 * the right-most SACK block,
5220 		 * then
5221 		 *     RESET the connection
5222 		 * else
5223 		 *     Send a challenge ACK
5224 		 */
5225 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5226 		    tcp_reset_check(sk, skb)) {
5227 			rst_seq_match = true;
5228 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5229 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5230 			int max_sack = sp[0].end_seq;
5231 			int this_sack;
5232 
5233 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5234 			     ++this_sack) {
5235 				max_sack = after(sp[this_sack].end_seq,
5236 						 max_sack) ?
5237 					sp[this_sack].end_seq : max_sack;
5238 			}
5239 
5240 			if (TCP_SKB_CB(skb)->seq == max_sack)
5241 				rst_seq_match = true;
5242 		}
5243 
5244 		if (rst_seq_match)
5245 			tcp_reset(sk);
5246 		else {
5247 			/* Disable TFO if RST is out-of-order
5248 			 * and no data has been received
5249 			 * for current active TFO socket
5250 			 */
5251 			if (tp->syn_fastopen && !tp->data_segs_in &&
5252 			    sk->sk_state == TCP_ESTABLISHED)
5253 				tcp_fastopen_active_disable(sk);
5254 			tcp_send_challenge_ack(sk, skb);
5255 		}
5256 		goto discard;
5257 	}
5258 
5259 	/* step 3: check security and precedence [ignored] */
5260 
5261 	/* step 4: Check for a SYN
5262 	 * RFC 5961 4.2 : Send a challenge ack
5263 	 */
5264 	if (th->syn) {
5265 syn_challenge:
5266 		if (syn_inerr)
5267 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5268 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5269 		tcp_send_challenge_ack(sk, skb);
5270 		goto discard;
5271 	}
5272 
5273 	return true;
5274 
5275 discard:
5276 	tcp_drop(sk, skb);
5277 	return false;
5278 }
5279 
5280 /*
5281  *	TCP receive function for the ESTABLISHED state.
5282  *
5283  *	It is split into a fast path and a slow path. The fast path is
5284  * 	disabled when:
5285  *	- A zero window was announced from us - zero window probing
5286  *        is only handled properly in the slow path.
5287  *	- Out of order segments arrived.
5288  *	- Urgent data is expected.
5289  *	- There is no buffer space left
5290  *	- Unexpected TCP flags/window values/header lengths are received
5291  *	  (detected by checking the TCP header against pred_flags)
5292  *	- Data is sent in both directions. Fast path only supports pure senders
5293  *	  or pure receivers (this means either the sequence number or the ack
5294  *	  value must stay constant)
5295  *	- Unexpected TCP option.
5296  *
5297  *	When these conditions are not satisfied it drops into a standard
5298  *	receive procedure patterned after RFC793 to handle all cases.
5299  *	The first three cases are guaranteed by proper pred_flags setting,
5300  *	the rest is checked inline. Fast processing is turned on in
5301  *	tcp_data_queue when everything is OK.
5302  */
5303 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5304 			 const struct tcphdr *th)
5305 {
5306 	unsigned int len = skb->len;
5307 	struct tcp_sock *tp = tcp_sk(sk);
5308 
5309 	tcp_mstamp_refresh(tp);
5310 	if (unlikely(!sk->sk_rx_dst))
5311 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5312 	/*
5313 	 *	Header prediction.
5314 	 *	The code loosely follows the one in the famous
5315 	 *	"30 instruction TCP receive" Van Jacobson mail.
5316 	 *
5317 	 *	Van's trick is to deposit buffers into socket queue
5318 	 *	on a device interrupt, to call tcp_recv function
5319 	 *	on the receive process context and checksum and copy
5320 	 *	the buffer to user space. smart...
5321 	 *
5322 	 *	Our current scheme is not silly either but we take the
5323 	 *	extra cost of the net_bh soft interrupt processing...
5324 	 *	We do checksum and copy also but from device to kernel.
5325 	 */
5326 
5327 	tp->rx_opt.saw_tstamp = 0;
5328 
5329 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5330 	 *	if header_prediction is to be made
5331 	 *	'S' will always be tp->tcp_header_len >> 2
5332 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5333 	 *  turn it off	(when there are holes in the receive
5334 	 *	 space for instance)
5335 	 *	PSH flag is ignored.
5336 	 */
5337 
5338 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5339 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5340 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5341 		int tcp_header_len = tp->tcp_header_len;
5342 
5343 		/* Timestamp header prediction: tcp_header_len
5344 		 * is automatically equal to th->doff*4 due to pred_flags
5345 		 * match.
5346 		 */
5347 
5348 		/* Check timestamp */
5349 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5350 			/* No? Slow path! */
5351 			if (!tcp_parse_aligned_timestamp(tp, th))
5352 				goto slow_path;
5353 
5354 			/* If PAWS failed, check it more carefully in slow path */
5355 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5356 				goto slow_path;
5357 
5358 			/* DO NOT update ts_recent here, if checksum fails
5359 			 * and timestamp was corrupted part, it will result
5360 			 * in a hung connection since we will drop all
5361 			 * future packets due to the PAWS test.
5362 			 */
5363 		}
5364 
5365 		if (len <= tcp_header_len) {
5366 			/* Bulk data transfer: sender */
5367 			if (len == tcp_header_len) {
5368 				/* Predicted packet is in window by definition.
5369 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5370 				 * Hence, check seq<=rcv_wup reduces to:
5371 				 */
5372 				if (tcp_header_len ==
5373 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5374 				    tp->rcv_nxt == tp->rcv_wup)
5375 					tcp_store_ts_recent(tp);
5376 
5377 				/* We know that such packets are checksummed
5378 				 * on entry.
5379 				 */
5380 				tcp_ack(sk, skb, 0);
5381 				__kfree_skb(skb);
5382 				tcp_data_snd_check(sk);
5383 				return;
5384 			} else { /* Header too small */
5385 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5386 				goto discard;
5387 			}
5388 		} else {
5389 			int eaten = 0;
5390 			bool fragstolen = false;
5391 
5392 			if (tcp_checksum_complete(skb))
5393 				goto csum_error;
5394 
5395 			if ((int)skb->truesize > sk->sk_forward_alloc)
5396 				goto step5;
5397 
5398 			/* Predicted packet is in window by definition.
5399 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5400 			 * Hence, check seq<=rcv_wup reduces to:
5401 			 */
5402 			if (tcp_header_len ==
5403 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5404 			    tp->rcv_nxt == tp->rcv_wup)
5405 				tcp_store_ts_recent(tp);
5406 
5407 			tcp_rcv_rtt_measure_ts(sk, skb);
5408 
5409 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5410 
5411 			/* Bulk data transfer: receiver */
5412 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5413 					      &fragstolen);
5414 
5415 			tcp_event_data_recv(sk, skb);
5416 
5417 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5418 				/* Well, only one small jumplet in fast path... */
5419 				tcp_ack(sk, skb, FLAG_DATA);
5420 				tcp_data_snd_check(sk);
5421 				if (!inet_csk_ack_scheduled(sk))
5422 					goto no_ack;
5423 			}
5424 
5425 			__tcp_ack_snd_check(sk, 0);
5426 no_ack:
5427 			if (eaten)
5428 				kfree_skb_partial(skb, fragstolen);
5429 			sk->sk_data_ready(sk);
5430 			return;
5431 		}
5432 	}
5433 
5434 slow_path:
5435 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5436 		goto csum_error;
5437 
5438 	if (!th->ack && !th->rst && !th->syn)
5439 		goto discard;
5440 
5441 	/*
5442 	 *	Standard slow path.
5443 	 */
5444 
5445 	if (!tcp_validate_incoming(sk, skb, th, 1))
5446 		return;
5447 
5448 step5:
5449 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5450 		goto discard;
5451 
5452 	tcp_rcv_rtt_measure_ts(sk, skb);
5453 
5454 	/* Process urgent data. */
5455 	tcp_urg(sk, skb, th);
5456 
5457 	/* step 7: process the segment text */
5458 	tcp_data_queue(sk, skb);
5459 
5460 	tcp_data_snd_check(sk);
5461 	tcp_ack_snd_check(sk);
5462 	return;
5463 
5464 csum_error:
5465 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5466 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5467 
5468 discard:
5469 	tcp_drop(sk, skb);
5470 }
5471 EXPORT_SYMBOL(tcp_rcv_established);
5472 
5473 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5474 {
5475 	struct tcp_sock *tp = tcp_sk(sk);
5476 	struct inet_connection_sock *icsk = inet_csk(sk);
5477 
5478 	tcp_set_state(sk, TCP_ESTABLISHED);
5479 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5480 
5481 	if (skb) {
5482 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5483 		security_inet_conn_established(sk, skb);
5484 	}
5485 
5486 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5487 
5488 	/* Prevent spurious tcp_cwnd_restart() on first data
5489 	 * packet.
5490 	 */
5491 	tp->lsndtime = tcp_jiffies32;
5492 
5493 	if (sock_flag(sk, SOCK_KEEPOPEN))
5494 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5495 
5496 	if (!tp->rx_opt.snd_wscale)
5497 		__tcp_fast_path_on(tp, tp->snd_wnd);
5498 	else
5499 		tp->pred_flags = 0;
5500 }
5501 
5502 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5503 				    struct tcp_fastopen_cookie *cookie)
5504 {
5505 	struct tcp_sock *tp = tcp_sk(sk);
5506 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5507 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5508 	bool syn_drop = false;
5509 
5510 	if (mss == tp->rx_opt.user_mss) {
5511 		struct tcp_options_received opt;
5512 
5513 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5514 		tcp_clear_options(&opt);
5515 		opt.user_mss = opt.mss_clamp = 0;
5516 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5517 		mss = opt.mss_clamp;
5518 	}
5519 
5520 	if (!tp->syn_fastopen) {
5521 		/* Ignore an unsolicited cookie */
5522 		cookie->len = -1;
5523 	} else if (tp->total_retrans) {
5524 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5525 		 * acknowledges data. Presumably the remote received only
5526 		 * the retransmitted (regular) SYNs: either the original
5527 		 * SYN-data or the corresponding SYN-ACK was dropped.
5528 		 */
5529 		syn_drop = (cookie->len < 0 && data);
5530 	} else if (cookie->len < 0 && !tp->syn_data) {
5531 		/* We requested a cookie but didn't get it. If we did not use
5532 		 * the (old) exp opt format then try so next time (try_exp=1).
5533 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5534 		 */
5535 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5536 	}
5537 
5538 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5539 
5540 	if (data) { /* Retransmit unacked data in SYN */
5541 		skb_rbtree_walk_from(data) {
5542 			if (__tcp_retransmit_skb(sk, data, 1))
5543 				break;
5544 		}
5545 		tcp_rearm_rto(sk);
5546 		NET_INC_STATS(sock_net(sk),
5547 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5548 		return true;
5549 	}
5550 	tp->syn_data_acked = tp->syn_data;
5551 	if (tp->syn_data_acked)
5552 		NET_INC_STATS(sock_net(sk),
5553 				LINUX_MIB_TCPFASTOPENACTIVE);
5554 
5555 	tcp_fastopen_add_skb(sk, synack);
5556 
5557 	return false;
5558 }
5559 
5560 static void smc_check_reset_syn(struct tcp_sock *tp)
5561 {
5562 #if IS_ENABLED(CONFIG_SMC)
5563 	if (static_branch_unlikely(&tcp_have_smc)) {
5564 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5565 			tp->syn_smc = 0;
5566 	}
5567 #endif
5568 }
5569 
5570 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5571 					 const struct tcphdr *th)
5572 {
5573 	struct inet_connection_sock *icsk = inet_csk(sk);
5574 	struct tcp_sock *tp = tcp_sk(sk);
5575 	struct tcp_fastopen_cookie foc = { .len = -1 };
5576 	int saved_clamp = tp->rx_opt.mss_clamp;
5577 	bool fastopen_fail;
5578 
5579 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5580 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5581 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5582 
5583 	if (th->ack) {
5584 		/* rfc793:
5585 		 * "If the state is SYN-SENT then
5586 		 *    first check the ACK bit
5587 		 *      If the ACK bit is set
5588 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5589 		 *        a reset (unless the RST bit is set, if so drop
5590 		 *        the segment and return)"
5591 		 */
5592 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5593 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5594 			goto reset_and_undo;
5595 
5596 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5597 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5598 			     tcp_time_stamp(tp))) {
5599 			NET_INC_STATS(sock_net(sk),
5600 					LINUX_MIB_PAWSACTIVEREJECTED);
5601 			goto reset_and_undo;
5602 		}
5603 
5604 		/* Now ACK is acceptable.
5605 		 *
5606 		 * "If the RST bit is set
5607 		 *    If the ACK was acceptable then signal the user "error:
5608 		 *    connection reset", drop the segment, enter CLOSED state,
5609 		 *    delete TCB, and return."
5610 		 */
5611 
5612 		if (th->rst) {
5613 			tcp_reset(sk);
5614 			goto discard;
5615 		}
5616 
5617 		/* rfc793:
5618 		 *   "fifth, if neither of the SYN or RST bits is set then
5619 		 *    drop the segment and return."
5620 		 *
5621 		 *    See note below!
5622 		 *                                        --ANK(990513)
5623 		 */
5624 		if (!th->syn)
5625 			goto discard_and_undo;
5626 
5627 		/* rfc793:
5628 		 *   "If the SYN bit is on ...
5629 		 *    are acceptable then ...
5630 		 *    (our SYN has been ACKed), change the connection
5631 		 *    state to ESTABLISHED..."
5632 		 */
5633 
5634 		tcp_ecn_rcv_synack(tp, th);
5635 
5636 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5637 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5638 
5639 		/* Ok.. it's good. Set up sequence numbers and
5640 		 * move to established.
5641 		 */
5642 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5643 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5644 
5645 		/* RFC1323: The window in SYN & SYN/ACK segments is
5646 		 * never scaled.
5647 		 */
5648 		tp->snd_wnd = ntohs(th->window);
5649 
5650 		if (!tp->rx_opt.wscale_ok) {
5651 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5652 			tp->window_clamp = min(tp->window_clamp, 65535U);
5653 		}
5654 
5655 		if (tp->rx_opt.saw_tstamp) {
5656 			tp->rx_opt.tstamp_ok	   = 1;
5657 			tp->tcp_header_len =
5658 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5659 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5660 			tcp_store_ts_recent(tp);
5661 		} else {
5662 			tp->tcp_header_len = sizeof(struct tcphdr);
5663 		}
5664 
5665 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5666 		tcp_initialize_rcv_mss(sk);
5667 
5668 		/* Remember, tcp_poll() does not lock socket!
5669 		 * Change state from SYN-SENT only after copied_seq
5670 		 * is initialized. */
5671 		tp->copied_seq = tp->rcv_nxt;
5672 
5673 		smc_check_reset_syn(tp);
5674 
5675 		smp_mb();
5676 
5677 		tcp_finish_connect(sk, skb);
5678 
5679 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5680 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5681 
5682 		if (!sock_flag(sk, SOCK_DEAD)) {
5683 			sk->sk_state_change(sk);
5684 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5685 		}
5686 		if (fastopen_fail)
5687 			return -1;
5688 		if (sk->sk_write_pending ||
5689 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5690 		    icsk->icsk_ack.pingpong) {
5691 			/* Save one ACK. Data will be ready after
5692 			 * several ticks, if write_pending is set.
5693 			 *
5694 			 * It may be deleted, but with this feature tcpdumps
5695 			 * look so _wonderfully_ clever, that I was not able
5696 			 * to stand against the temptation 8)     --ANK
5697 			 */
5698 			inet_csk_schedule_ack(sk);
5699 			tcp_enter_quickack_mode(sk);
5700 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5701 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5702 
5703 discard:
5704 			tcp_drop(sk, skb);
5705 			return 0;
5706 		} else {
5707 			tcp_send_ack(sk);
5708 		}
5709 		return -1;
5710 	}
5711 
5712 	/* No ACK in the segment */
5713 
5714 	if (th->rst) {
5715 		/* rfc793:
5716 		 * "If the RST bit is set
5717 		 *
5718 		 *      Otherwise (no ACK) drop the segment and return."
5719 		 */
5720 
5721 		goto discard_and_undo;
5722 	}
5723 
5724 	/* PAWS check. */
5725 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5726 	    tcp_paws_reject(&tp->rx_opt, 0))
5727 		goto discard_and_undo;
5728 
5729 	if (th->syn) {
5730 		/* We see SYN without ACK. It is attempt of
5731 		 * simultaneous connect with crossed SYNs.
5732 		 * Particularly, it can be connect to self.
5733 		 */
5734 		tcp_set_state(sk, TCP_SYN_RECV);
5735 
5736 		if (tp->rx_opt.saw_tstamp) {
5737 			tp->rx_opt.tstamp_ok = 1;
5738 			tcp_store_ts_recent(tp);
5739 			tp->tcp_header_len =
5740 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5741 		} else {
5742 			tp->tcp_header_len = sizeof(struct tcphdr);
5743 		}
5744 
5745 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5746 		tp->copied_seq = tp->rcv_nxt;
5747 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5748 
5749 		/* RFC1323: The window in SYN & SYN/ACK segments is
5750 		 * never scaled.
5751 		 */
5752 		tp->snd_wnd    = ntohs(th->window);
5753 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5754 		tp->max_window = tp->snd_wnd;
5755 
5756 		tcp_ecn_rcv_syn(tp, th);
5757 
5758 		tcp_mtup_init(sk);
5759 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5760 		tcp_initialize_rcv_mss(sk);
5761 
5762 		tcp_send_synack(sk);
5763 #if 0
5764 		/* Note, we could accept data and URG from this segment.
5765 		 * There are no obstacles to make this (except that we must
5766 		 * either change tcp_recvmsg() to prevent it from returning data
5767 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5768 		 *
5769 		 * However, if we ignore data in ACKless segments sometimes,
5770 		 * we have no reasons to accept it sometimes.
5771 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5772 		 * is not flawless. So, discard packet for sanity.
5773 		 * Uncomment this return to process the data.
5774 		 */
5775 		return -1;
5776 #else
5777 		goto discard;
5778 #endif
5779 	}
5780 	/* "fifth, if neither of the SYN or RST bits is set then
5781 	 * drop the segment and return."
5782 	 */
5783 
5784 discard_and_undo:
5785 	tcp_clear_options(&tp->rx_opt);
5786 	tp->rx_opt.mss_clamp = saved_clamp;
5787 	goto discard;
5788 
5789 reset_and_undo:
5790 	tcp_clear_options(&tp->rx_opt);
5791 	tp->rx_opt.mss_clamp = saved_clamp;
5792 	return 1;
5793 }
5794 
5795 /*
5796  *	This function implements the receiving procedure of RFC 793 for
5797  *	all states except ESTABLISHED and TIME_WAIT.
5798  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5799  *	address independent.
5800  */
5801 
5802 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5803 {
5804 	struct tcp_sock *tp = tcp_sk(sk);
5805 	struct inet_connection_sock *icsk = inet_csk(sk);
5806 	const struct tcphdr *th = tcp_hdr(skb);
5807 	struct request_sock *req;
5808 	int queued = 0;
5809 	bool acceptable;
5810 
5811 	switch (sk->sk_state) {
5812 	case TCP_CLOSE:
5813 		goto discard;
5814 
5815 	case TCP_LISTEN:
5816 		if (th->ack)
5817 			return 1;
5818 
5819 		if (th->rst)
5820 			goto discard;
5821 
5822 		if (th->syn) {
5823 			if (th->fin)
5824 				goto discard;
5825 			/* It is possible that we process SYN packets from backlog,
5826 			 * so we need to make sure to disable BH right there.
5827 			 */
5828 			local_bh_disable();
5829 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5830 			local_bh_enable();
5831 
5832 			if (!acceptable)
5833 				return 1;
5834 			consume_skb(skb);
5835 			return 0;
5836 		}
5837 		goto discard;
5838 
5839 	case TCP_SYN_SENT:
5840 		tp->rx_opt.saw_tstamp = 0;
5841 		tcp_mstamp_refresh(tp);
5842 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5843 		if (queued >= 0)
5844 			return queued;
5845 
5846 		/* Do step6 onward by hand. */
5847 		tcp_urg(sk, skb, th);
5848 		__kfree_skb(skb);
5849 		tcp_data_snd_check(sk);
5850 		return 0;
5851 	}
5852 
5853 	tcp_mstamp_refresh(tp);
5854 	tp->rx_opt.saw_tstamp = 0;
5855 	req = tp->fastopen_rsk;
5856 	if (req) {
5857 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5858 		    sk->sk_state != TCP_FIN_WAIT1);
5859 
5860 		if (!tcp_check_req(sk, skb, req, true))
5861 			goto discard;
5862 	}
5863 
5864 	if (!th->ack && !th->rst && !th->syn)
5865 		goto discard;
5866 
5867 	if (!tcp_validate_incoming(sk, skb, th, 0))
5868 		return 0;
5869 
5870 	/* step 5: check the ACK field */
5871 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5872 				      FLAG_UPDATE_TS_RECENT |
5873 				      FLAG_NO_CHALLENGE_ACK) > 0;
5874 
5875 	if (!acceptable) {
5876 		if (sk->sk_state == TCP_SYN_RECV)
5877 			return 1;	/* send one RST */
5878 		tcp_send_challenge_ack(sk, skb);
5879 		goto discard;
5880 	}
5881 	switch (sk->sk_state) {
5882 	case TCP_SYN_RECV:
5883 		if (!tp->srtt_us)
5884 			tcp_synack_rtt_meas(sk, req);
5885 
5886 		/* Once we leave TCP_SYN_RECV, we no longer need req
5887 		 * so release it.
5888 		 */
5889 		if (req) {
5890 			inet_csk(sk)->icsk_retransmits = 0;
5891 			reqsk_fastopen_remove(sk, req, false);
5892 			/* Re-arm the timer because data may have been sent out.
5893 			 * This is similar to the regular data transmission case
5894 			 * when new data has just been ack'ed.
5895 			 *
5896 			 * (TFO) - we could try to be more aggressive and
5897 			 * retransmitting any data sooner based on when they
5898 			 * are sent out.
5899 			 */
5900 			tcp_rearm_rto(sk);
5901 		} else {
5902 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5903 			tp->copied_seq = tp->rcv_nxt;
5904 		}
5905 		smp_mb();
5906 		tcp_set_state(sk, TCP_ESTABLISHED);
5907 		sk->sk_state_change(sk);
5908 
5909 		/* Note, that this wakeup is only for marginal crossed SYN case.
5910 		 * Passively open sockets are not waked up, because
5911 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5912 		 */
5913 		if (sk->sk_socket)
5914 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5915 
5916 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5917 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5918 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5919 
5920 		if (tp->rx_opt.tstamp_ok)
5921 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5922 
5923 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5924 			tcp_update_pacing_rate(sk);
5925 
5926 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5927 		tp->lsndtime = tcp_jiffies32;
5928 
5929 		tcp_initialize_rcv_mss(sk);
5930 		tcp_fast_path_on(tp);
5931 		break;
5932 
5933 	case TCP_FIN_WAIT1: {
5934 		int tmo;
5935 
5936 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5937 		 * Fast Open socket and this is the first acceptable
5938 		 * ACK we have received, this would have acknowledged
5939 		 * our SYNACK so stop the SYNACK timer.
5940 		 */
5941 		if (req) {
5942 			/* We no longer need the request sock. */
5943 			reqsk_fastopen_remove(sk, req, false);
5944 			tcp_rearm_rto(sk);
5945 		}
5946 		if (tp->snd_una != tp->write_seq)
5947 			break;
5948 
5949 		tcp_set_state(sk, TCP_FIN_WAIT2);
5950 		sk->sk_shutdown |= SEND_SHUTDOWN;
5951 
5952 		sk_dst_confirm(sk);
5953 
5954 		if (!sock_flag(sk, SOCK_DEAD)) {
5955 			/* Wake up lingering close() */
5956 			sk->sk_state_change(sk);
5957 			break;
5958 		}
5959 
5960 		if (tp->linger2 < 0) {
5961 			tcp_done(sk);
5962 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5963 			return 1;
5964 		}
5965 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5966 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5967 			/* Receive out of order FIN after close() */
5968 			if (tp->syn_fastopen && th->fin)
5969 				tcp_fastopen_active_disable(sk);
5970 			tcp_done(sk);
5971 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5972 			return 1;
5973 		}
5974 
5975 		tmo = tcp_fin_time(sk);
5976 		if (tmo > TCP_TIMEWAIT_LEN) {
5977 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5978 		} else if (th->fin || sock_owned_by_user(sk)) {
5979 			/* Bad case. We could lose such FIN otherwise.
5980 			 * It is not a big problem, but it looks confusing
5981 			 * and not so rare event. We still can lose it now,
5982 			 * if it spins in bh_lock_sock(), but it is really
5983 			 * marginal case.
5984 			 */
5985 			inet_csk_reset_keepalive_timer(sk, tmo);
5986 		} else {
5987 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5988 			goto discard;
5989 		}
5990 		break;
5991 	}
5992 
5993 	case TCP_CLOSING:
5994 		if (tp->snd_una == tp->write_seq) {
5995 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5996 			goto discard;
5997 		}
5998 		break;
5999 
6000 	case TCP_LAST_ACK:
6001 		if (tp->snd_una == tp->write_seq) {
6002 			tcp_update_metrics(sk);
6003 			tcp_done(sk);
6004 			goto discard;
6005 		}
6006 		break;
6007 	}
6008 
6009 	/* step 6: check the URG bit */
6010 	tcp_urg(sk, skb, th);
6011 
6012 	/* step 7: process the segment text */
6013 	switch (sk->sk_state) {
6014 	case TCP_CLOSE_WAIT:
6015 	case TCP_CLOSING:
6016 	case TCP_LAST_ACK:
6017 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6018 			break;
6019 		/* fall through */
6020 	case TCP_FIN_WAIT1:
6021 	case TCP_FIN_WAIT2:
6022 		/* RFC 793 says to queue data in these states,
6023 		 * RFC 1122 says we MUST send a reset.
6024 		 * BSD 4.4 also does reset.
6025 		 */
6026 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6027 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6028 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6029 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6030 				tcp_reset(sk);
6031 				return 1;
6032 			}
6033 		}
6034 		/* Fall through */
6035 	case TCP_ESTABLISHED:
6036 		tcp_data_queue(sk, skb);
6037 		queued = 1;
6038 		break;
6039 	}
6040 
6041 	/* tcp_data could move socket to TIME-WAIT */
6042 	if (sk->sk_state != TCP_CLOSE) {
6043 		tcp_data_snd_check(sk);
6044 		tcp_ack_snd_check(sk);
6045 	}
6046 
6047 	if (!queued) {
6048 discard:
6049 		tcp_drop(sk, skb);
6050 	}
6051 	return 0;
6052 }
6053 EXPORT_SYMBOL(tcp_rcv_state_process);
6054 
6055 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6056 {
6057 	struct inet_request_sock *ireq = inet_rsk(req);
6058 
6059 	if (family == AF_INET)
6060 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6061 				    &ireq->ir_rmt_addr, port);
6062 #if IS_ENABLED(CONFIG_IPV6)
6063 	else if (family == AF_INET6)
6064 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6065 				    &ireq->ir_v6_rmt_addr, port);
6066 #endif
6067 }
6068 
6069 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6070  *
6071  * If we receive a SYN packet with these bits set, it means a
6072  * network is playing bad games with TOS bits. In order to
6073  * avoid possible false congestion notifications, we disable
6074  * TCP ECN negotiation.
6075  *
6076  * Exception: tcp_ca wants ECN. This is required for DCTCP
6077  * congestion control: Linux DCTCP asserts ECT on all packets,
6078  * including SYN, which is most optimal solution; however,
6079  * others, such as FreeBSD do not.
6080  */
6081 static void tcp_ecn_create_request(struct request_sock *req,
6082 				   const struct sk_buff *skb,
6083 				   const struct sock *listen_sk,
6084 				   const struct dst_entry *dst)
6085 {
6086 	const struct tcphdr *th = tcp_hdr(skb);
6087 	const struct net *net = sock_net(listen_sk);
6088 	bool th_ecn = th->ece && th->cwr;
6089 	bool ect, ecn_ok;
6090 	u32 ecn_ok_dst;
6091 
6092 	if (!th_ecn)
6093 		return;
6094 
6095 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6096 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6097 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6098 
6099 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6100 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6101 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6102 		inet_rsk(req)->ecn_ok = 1;
6103 }
6104 
6105 static void tcp_openreq_init(struct request_sock *req,
6106 			     const struct tcp_options_received *rx_opt,
6107 			     struct sk_buff *skb, const struct sock *sk)
6108 {
6109 	struct inet_request_sock *ireq = inet_rsk(req);
6110 
6111 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6112 	req->cookie_ts = 0;
6113 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6114 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6115 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6116 	tcp_rsk(req)->last_oow_ack_time = 0;
6117 	req->mss = rx_opt->mss_clamp;
6118 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6119 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6120 	ireq->sack_ok = rx_opt->sack_ok;
6121 	ireq->snd_wscale = rx_opt->snd_wscale;
6122 	ireq->wscale_ok = rx_opt->wscale_ok;
6123 	ireq->acked = 0;
6124 	ireq->ecn_ok = 0;
6125 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6126 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6127 	ireq->ir_mark = inet_request_mark(sk, skb);
6128 #if IS_ENABLED(CONFIG_SMC)
6129 	ireq->smc_ok = rx_opt->smc_ok;
6130 #endif
6131 }
6132 
6133 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6134 				      struct sock *sk_listener,
6135 				      bool attach_listener)
6136 {
6137 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6138 					       attach_listener);
6139 
6140 	if (req) {
6141 		struct inet_request_sock *ireq = inet_rsk(req);
6142 
6143 		ireq->ireq_opt = NULL;
6144 #if IS_ENABLED(CONFIG_IPV6)
6145 		ireq->pktopts = NULL;
6146 #endif
6147 		atomic64_set(&ireq->ir_cookie, 0);
6148 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6149 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6150 		ireq->ireq_family = sk_listener->sk_family;
6151 	}
6152 
6153 	return req;
6154 }
6155 EXPORT_SYMBOL(inet_reqsk_alloc);
6156 
6157 /*
6158  * Return true if a syncookie should be sent
6159  */
6160 static bool tcp_syn_flood_action(const struct sock *sk,
6161 				 const struct sk_buff *skb,
6162 				 const char *proto)
6163 {
6164 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6165 	const char *msg = "Dropping request";
6166 	bool want_cookie = false;
6167 	struct net *net = sock_net(sk);
6168 
6169 #ifdef CONFIG_SYN_COOKIES
6170 	if (net->ipv4.sysctl_tcp_syncookies) {
6171 		msg = "Sending cookies";
6172 		want_cookie = true;
6173 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6174 	} else
6175 #endif
6176 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6177 
6178 	if (!queue->synflood_warned &&
6179 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6180 	    xchg(&queue->synflood_warned, 1) == 0)
6181 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6182 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6183 
6184 	return want_cookie;
6185 }
6186 
6187 static void tcp_reqsk_record_syn(const struct sock *sk,
6188 				 struct request_sock *req,
6189 				 const struct sk_buff *skb)
6190 {
6191 	if (tcp_sk(sk)->save_syn) {
6192 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6193 		u32 *copy;
6194 
6195 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6196 		if (copy) {
6197 			copy[0] = len;
6198 			memcpy(&copy[1], skb_network_header(skb), len);
6199 			req->saved_syn = copy;
6200 		}
6201 	}
6202 }
6203 
6204 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6205 		     const struct tcp_request_sock_ops *af_ops,
6206 		     struct sock *sk, struct sk_buff *skb)
6207 {
6208 	struct tcp_fastopen_cookie foc = { .len = -1 };
6209 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6210 	struct tcp_options_received tmp_opt;
6211 	struct tcp_sock *tp = tcp_sk(sk);
6212 	struct net *net = sock_net(sk);
6213 	struct sock *fastopen_sk = NULL;
6214 	struct request_sock *req;
6215 	bool want_cookie = false;
6216 	struct dst_entry *dst;
6217 	struct flowi fl;
6218 
6219 	/* TW buckets are converted to open requests without
6220 	 * limitations, they conserve resources and peer is
6221 	 * evidently real one.
6222 	 */
6223 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6224 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6225 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6226 		if (!want_cookie)
6227 			goto drop;
6228 	}
6229 
6230 	if (sk_acceptq_is_full(sk)) {
6231 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6232 		goto drop;
6233 	}
6234 
6235 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6236 	if (!req)
6237 		goto drop;
6238 
6239 	tcp_rsk(req)->af_specific = af_ops;
6240 	tcp_rsk(req)->ts_off = 0;
6241 
6242 	tcp_clear_options(&tmp_opt);
6243 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6244 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6245 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6246 			  want_cookie ? NULL : &foc);
6247 
6248 	if (want_cookie && !tmp_opt.saw_tstamp)
6249 		tcp_clear_options(&tmp_opt);
6250 
6251 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6252 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6253 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6254 
6255 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6256 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6257 
6258 	af_ops->init_req(req, sk, skb);
6259 
6260 	if (security_inet_conn_request(sk, skb, req))
6261 		goto drop_and_free;
6262 
6263 	if (tmp_opt.tstamp_ok)
6264 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6265 
6266 	dst = af_ops->route_req(sk, &fl, req);
6267 	if (!dst)
6268 		goto drop_and_free;
6269 
6270 	if (!want_cookie && !isn) {
6271 		/* Kill the following clause, if you dislike this way. */
6272 		if (!net->ipv4.sysctl_tcp_syncookies &&
6273 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6274 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6275 		    !tcp_peer_is_proven(req, dst)) {
6276 			/* Without syncookies last quarter of
6277 			 * backlog is filled with destinations,
6278 			 * proven to be alive.
6279 			 * It means that we continue to communicate
6280 			 * to destinations, already remembered
6281 			 * to the moment of synflood.
6282 			 */
6283 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6284 				    rsk_ops->family);
6285 			goto drop_and_release;
6286 		}
6287 
6288 		isn = af_ops->init_seq(skb);
6289 	}
6290 
6291 	tcp_ecn_create_request(req, skb, sk, dst);
6292 
6293 	if (want_cookie) {
6294 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6295 		req->cookie_ts = tmp_opt.tstamp_ok;
6296 		if (!tmp_opt.tstamp_ok)
6297 			inet_rsk(req)->ecn_ok = 0;
6298 	}
6299 
6300 	tcp_rsk(req)->snt_isn = isn;
6301 	tcp_rsk(req)->txhash = net_tx_rndhash();
6302 	tcp_openreq_init_rwin(req, sk, dst);
6303 	if (!want_cookie) {
6304 		tcp_reqsk_record_syn(sk, req, skb);
6305 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6306 	}
6307 	if (fastopen_sk) {
6308 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6309 				    &foc, TCP_SYNACK_FASTOPEN);
6310 		/* Add the child socket directly into the accept queue */
6311 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6312 		sk->sk_data_ready(sk);
6313 		bh_unlock_sock(fastopen_sk);
6314 		sock_put(fastopen_sk);
6315 	} else {
6316 		tcp_rsk(req)->tfo_listener = false;
6317 		if (!want_cookie)
6318 			inet_csk_reqsk_queue_hash_add(sk, req,
6319 				tcp_timeout_init((struct sock *)req));
6320 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6321 				    !want_cookie ? TCP_SYNACK_NORMAL :
6322 						   TCP_SYNACK_COOKIE);
6323 		if (want_cookie) {
6324 			reqsk_free(req);
6325 			return 0;
6326 		}
6327 	}
6328 	reqsk_put(req);
6329 	return 0;
6330 
6331 drop_and_release:
6332 	dst_release(dst);
6333 drop_and_free:
6334 	reqsk_free(req);
6335 drop:
6336 	tcp_listendrop(sk);
6337 	return 0;
6338 }
6339 EXPORT_SYMBOL(tcp_conn_request);
6340