1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 84 int sysctl_tcp_max_reordering __read_mostly = 300; 85 EXPORT_SYMBOL(sysctl_tcp_reordering); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 /* rfc5961 challenge ack rate limiting */ 92 int sysctl_tcp_challenge_ack_limit = 100; 93 94 int sysctl_tcp_stdurg __read_mostly; 95 int sysctl_tcp_rfc1337 __read_mostly; 96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 97 int sysctl_tcp_frto __read_mostly = 2; 98 99 int sysctl_tcp_thin_dupack __read_mostly; 100 101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 102 int sysctl_tcp_early_retrans __read_mostly = 3; 103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 104 105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 111 #define FLAG_ECE 0x40 /* ECE in this ACK */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 /* Adapt the MSS value used to make delayed ack decision to the 128 * real world. 129 */ 130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 131 { 132 struct inet_connection_sock *icsk = inet_csk(sk); 133 const unsigned int lss = icsk->icsk_ack.last_seg_size; 134 unsigned int len; 135 136 icsk->icsk_ack.last_seg_size = 0; 137 138 /* skb->len may jitter because of SACKs, even if peer 139 * sends good full-sized frames. 140 */ 141 len = skb_shinfo(skb)->gso_size ? : skb->len; 142 if (len >= icsk->icsk_ack.rcv_mss) { 143 icsk->icsk_ack.rcv_mss = len; 144 } else { 145 /* Otherwise, we make more careful check taking into account, 146 * that SACKs block is variable. 147 * 148 * "len" is invariant segment length, including TCP header. 149 */ 150 len += skb->data - skb_transport_header(skb); 151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 152 /* If PSH is not set, packet should be 153 * full sized, provided peer TCP is not badly broken. 154 * This observation (if it is correct 8)) allows 155 * to handle super-low mtu links fairly. 156 */ 157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 159 /* Subtract also invariant (if peer is RFC compliant), 160 * tcp header plus fixed timestamp option length. 161 * Resulting "len" is MSS free of SACK jitter. 162 */ 163 len -= tcp_sk(sk)->tcp_header_len; 164 icsk->icsk_ack.last_seg_size = len; 165 if (len == lss) { 166 icsk->icsk_ack.rcv_mss = len; 167 return; 168 } 169 } 170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 173 } 174 } 175 176 static void tcp_incr_quickack(struct sock *sk) 177 { 178 struct inet_connection_sock *icsk = inet_csk(sk); 179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 180 181 if (quickacks == 0) 182 quickacks = 2; 183 if (quickacks > icsk->icsk_ack.quick) 184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 185 } 186 187 static void tcp_enter_quickack_mode(struct sock *sk) 188 { 189 struct inet_connection_sock *icsk = inet_csk(sk); 190 tcp_incr_quickack(sk); 191 icsk->icsk_ack.pingpong = 0; 192 icsk->icsk_ack.ato = TCP_ATO_MIN; 193 } 194 195 /* Send ACKs quickly, if "quick" count is not exhausted 196 * and the session is not interactive. 197 */ 198 199 static inline bool tcp_in_quickack_mode(const struct sock *sk) 200 { 201 const struct inet_connection_sock *icsk = inet_csk(sk); 202 203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 204 } 205 206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 207 { 208 if (tp->ecn_flags & TCP_ECN_OK) 209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 210 } 211 212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 213 { 214 if (tcp_hdr(skb)->cwr) 215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 216 } 217 218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 219 { 220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 221 } 222 223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 224 { 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (tcp_ca_needs_ecn((struct sock *)tp)) 236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 237 238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 239 /* Better not delay acks, sender can have a very low cwnd */ 240 tcp_enter_quickack_mode((struct sock *)tp); 241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 242 } 243 tp->ecn_flags |= TCP_ECN_SEEN; 244 break; 245 default: 246 if (tcp_ca_needs_ecn((struct sock *)tp)) 247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 248 tp->ecn_flags |= TCP_ECN_SEEN; 249 break; 250 } 251 } 252 253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 254 { 255 if (tp->ecn_flags & TCP_ECN_OK) 256 __tcp_ecn_check_ce(tp, skb); 257 } 258 259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 260 { 261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 262 tp->ecn_flags &= ~TCP_ECN_OK; 263 } 264 265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 266 { 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 268 tp->ecn_flags &= ~TCP_ECN_OK; 269 } 270 271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 274 return true; 275 return false; 276 } 277 278 /* Buffer size and advertised window tuning. 279 * 280 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 281 */ 282 283 static void tcp_sndbuf_expand(struct sock *sk) 284 { 285 const struct tcp_sock *tp = tcp_sk(sk); 286 int sndmem, per_mss; 287 u32 nr_segs; 288 289 /* Worst case is non GSO/TSO : each frame consumes one skb 290 * and skb->head is kmalloced using power of two area of memory 291 */ 292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 293 MAX_TCP_HEADER + 294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 295 296 per_mss = roundup_pow_of_two(per_mss) + 297 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 298 299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 301 302 /* Fast Recovery (RFC 5681 3.2) : 303 * Cubic needs 1.7 factor, rounded to 2 to include 304 * extra cushion (application might react slowly to POLLOUT) 305 */ 306 sndmem = 2 * nr_segs * per_mss; 307 308 if (sk->sk_sndbuf < sndmem) 309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 310 } 311 312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 313 * 314 * All tcp_full_space() is split to two parts: "network" buffer, allocated 315 * forward and advertised in receiver window (tp->rcv_wnd) and 316 * "application buffer", required to isolate scheduling/application 317 * latencies from network. 318 * window_clamp is maximal advertised window. It can be less than 319 * tcp_full_space(), in this case tcp_full_space() - window_clamp 320 * is reserved for "application" buffer. The less window_clamp is 321 * the smoother our behaviour from viewpoint of network, but the lower 322 * throughput and the higher sensitivity of the connection to losses. 8) 323 * 324 * rcv_ssthresh is more strict window_clamp used at "slow start" 325 * phase to predict further behaviour of this connection. 326 * It is used for two goals: 327 * - to enforce header prediction at sender, even when application 328 * requires some significant "application buffer". It is check #1. 329 * - to prevent pruning of receive queue because of misprediction 330 * of receiver window. Check #2. 331 * 332 * The scheme does not work when sender sends good segments opening 333 * window and then starts to feed us spaghetti. But it should work 334 * in common situations. Otherwise, we have to rely on queue collapsing. 335 */ 336 337 /* Slow part of check#2. */ 338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 /* Optimize this! */ 342 int truesize = tcp_win_from_space(skb->truesize) >> 1; 343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 344 345 while (tp->rcv_ssthresh <= window) { 346 if (truesize <= skb->len) 347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 348 349 truesize >>= 1; 350 window >>= 1; 351 } 352 return 0; 353 } 354 355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 359 /* Check #1 */ 360 if (tp->rcv_ssthresh < tp->window_clamp && 361 (int)tp->rcv_ssthresh < tcp_space(sk) && 362 !sk_under_memory_pressure(sk)) { 363 int incr; 364 365 /* Check #2. Increase window, if skb with such overhead 366 * will fit to rcvbuf in future. 367 */ 368 if (tcp_win_from_space(skb->truesize) <= skb->len) 369 incr = 2 * tp->advmss; 370 else 371 incr = __tcp_grow_window(sk, skb); 372 373 if (incr) { 374 incr = max_t(int, incr, 2 * skb->len); 375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 376 tp->window_clamp); 377 inet_csk(sk)->icsk_ack.quick |= 1; 378 } 379 } 380 } 381 382 /* 3. Tuning rcvbuf, when connection enters established state. */ 383 static void tcp_fixup_rcvbuf(struct sock *sk) 384 { 385 u32 mss = tcp_sk(sk)->advmss; 386 int rcvmem; 387 388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 389 tcp_default_init_rwnd(mss); 390 391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 392 * Allow enough cushion so that sender is not limited by our window 393 */ 394 if (sysctl_tcp_moderate_rcvbuf) 395 rcvmem <<= 2; 396 397 if (sk->sk_rcvbuf < rcvmem) 398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 399 } 400 401 /* 4. Try to fixup all. It is made immediately after connection enters 402 * established state. 403 */ 404 void tcp_init_buffer_space(struct sock *sk) 405 { 406 struct tcp_sock *tp = tcp_sk(sk); 407 int maxwin; 408 409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 410 tcp_fixup_rcvbuf(sk); 411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 412 tcp_sndbuf_expand(sk); 413 414 tp->rcvq_space.space = tp->rcv_wnd; 415 tp->rcvq_space.time = tcp_time_stamp; 416 tp->rcvq_space.seq = tp->copied_seq; 417 418 maxwin = tcp_full_space(sk); 419 420 if (tp->window_clamp >= maxwin) { 421 tp->window_clamp = maxwin; 422 423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 424 tp->window_clamp = max(maxwin - 425 (maxwin >> sysctl_tcp_app_win), 426 4 * tp->advmss); 427 } 428 429 /* Force reservation of one segment. */ 430 if (sysctl_tcp_app_win && 431 tp->window_clamp > 2 * tp->advmss && 432 tp->window_clamp + tp->advmss > maxwin) 433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 434 435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 436 tp->snd_cwnd_stamp = tcp_time_stamp; 437 } 438 439 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 440 static void tcp_clamp_window(struct sock *sk) 441 { 442 struct tcp_sock *tp = tcp_sk(sk); 443 struct inet_connection_sock *icsk = inet_csk(sk); 444 445 icsk->icsk_ack.quick = 0; 446 447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 449 !sk_under_memory_pressure(sk) && 450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 452 sysctl_tcp_rmem[2]); 453 } 454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 456 } 457 458 /* Initialize RCV_MSS value. 459 * RCV_MSS is an our guess about MSS used by the peer. 460 * We haven't any direct information about the MSS. 461 * It's better to underestimate the RCV_MSS rather than overestimate. 462 * Overestimations make us ACKing less frequently than needed. 463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 464 */ 465 void tcp_initialize_rcv_mss(struct sock *sk) 466 { 467 const struct tcp_sock *tp = tcp_sk(sk); 468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 469 470 hint = min(hint, tp->rcv_wnd / 2); 471 hint = min(hint, TCP_MSS_DEFAULT); 472 hint = max(hint, TCP_MIN_MSS); 473 474 inet_csk(sk)->icsk_ack.rcv_mss = hint; 475 } 476 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 477 478 /* Receiver "autotuning" code. 479 * 480 * The algorithm for RTT estimation w/o timestamps is based on 481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 482 * <http://public.lanl.gov/radiant/pubs.html#DRS> 483 * 484 * More detail on this code can be found at 485 * <http://staff.psc.edu/jheffner/>, 486 * though this reference is out of date. A new paper 487 * is pending. 488 */ 489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 490 { 491 u32 new_sample = tp->rcv_rtt_est.rtt; 492 long m = sample; 493 494 if (m == 0) 495 m = 1; 496 497 if (new_sample != 0) { 498 /* If we sample in larger samples in the non-timestamp 499 * case, we could grossly overestimate the RTT especially 500 * with chatty applications or bulk transfer apps which 501 * are stalled on filesystem I/O. 502 * 503 * Also, since we are only going for a minimum in the 504 * non-timestamp case, we do not smooth things out 505 * else with timestamps disabled convergence takes too 506 * long. 507 */ 508 if (!win_dep) { 509 m -= (new_sample >> 3); 510 new_sample += m; 511 } else { 512 m <<= 3; 513 if (m < new_sample) 514 new_sample = m; 515 } 516 } else { 517 /* No previous measure. */ 518 new_sample = m << 3; 519 } 520 521 if (tp->rcv_rtt_est.rtt != new_sample) 522 tp->rcv_rtt_est.rtt = new_sample; 523 } 524 525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 526 { 527 if (tp->rcv_rtt_est.time == 0) 528 goto new_measure; 529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 530 return; 531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 532 533 new_measure: 534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 535 tp->rcv_rtt_est.time = tcp_time_stamp; 536 } 537 538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 539 const struct sk_buff *skb) 540 { 541 struct tcp_sock *tp = tcp_sk(sk); 542 if (tp->rx_opt.rcv_tsecr && 543 (TCP_SKB_CB(skb)->end_seq - 544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 546 } 547 548 /* 549 * This function should be called every time data is copied to user space. 550 * It calculates the appropriate TCP receive buffer space. 551 */ 552 void tcp_rcv_space_adjust(struct sock *sk) 553 { 554 struct tcp_sock *tp = tcp_sk(sk); 555 int time; 556 int copied; 557 558 time = tcp_time_stamp - tp->rcvq_space.time; 559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 560 return; 561 562 /* Number of bytes copied to user in last RTT */ 563 copied = tp->copied_seq - tp->rcvq_space.seq; 564 if (copied <= tp->rcvq_space.space) 565 goto new_measure; 566 567 /* A bit of theory : 568 * copied = bytes received in previous RTT, our base window 569 * To cope with packet losses, we need a 2x factor 570 * To cope with slow start, and sender growing its cwin by 100 % 571 * every RTT, we need a 4x factor, because the ACK we are sending 572 * now is for the next RTT, not the current one : 573 * <prev RTT . ><current RTT .. ><next RTT .... > 574 */ 575 576 if (sysctl_tcp_moderate_rcvbuf && 577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 578 int rcvwin, rcvmem, rcvbuf; 579 580 /* minimal window to cope with packet losses, assuming 581 * steady state. Add some cushion because of small variations. 582 */ 583 rcvwin = (copied << 1) + 16 * tp->advmss; 584 585 /* If rate increased by 25%, 586 * assume slow start, rcvwin = 3 * copied 587 * If rate increased by 50%, 588 * assume sender can use 2x growth, rcvwin = 4 * copied 589 */ 590 if (copied >= 591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 592 if (copied >= 593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 594 rcvwin <<= 1; 595 else 596 rcvwin += (rcvwin >> 1); 597 } 598 599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 600 while (tcp_win_from_space(rcvmem) < tp->advmss) 601 rcvmem += 128; 602 603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 604 if (rcvbuf > sk->sk_rcvbuf) { 605 sk->sk_rcvbuf = rcvbuf; 606 607 /* Make the window clamp follow along. */ 608 tp->window_clamp = rcvwin; 609 } 610 } 611 tp->rcvq_space.space = copied; 612 613 new_measure: 614 tp->rcvq_space.seq = tp->copied_seq; 615 tp->rcvq_space.time = tcp_time_stamp; 616 } 617 618 /* There is something which you must keep in mind when you analyze the 619 * behavior of the tp->ato delayed ack timeout interval. When a 620 * connection starts up, we want to ack as quickly as possible. The 621 * problem is that "good" TCP's do slow start at the beginning of data 622 * transmission. The means that until we send the first few ACK's the 623 * sender will sit on his end and only queue most of his data, because 624 * he can only send snd_cwnd unacked packets at any given time. For 625 * each ACK we send, he increments snd_cwnd and transmits more of his 626 * queue. -DaveM 627 */ 628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 629 { 630 struct tcp_sock *tp = tcp_sk(sk); 631 struct inet_connection_sock *icsk = inet_csk(sk); 632 u32 now; 633 634 inet_csk_schedule_ack(sk); 635 636 tcp_measure_rcv_mss(sk, skb); 637 638 tcp_rcv_rtt_measure(tp); 639 640 now = tcp_time_stamp; 641 642 if (!icsk->icsk_ack.ato) { 643 /* The _first_ data packet received, initialize 644 * delayed ACK engine. 645 */ 646 tcp_incr_quickack(sk); 647 icsk->icsk_ack.ato = TCP_ATO_MIN; 648 } else { 649 int m = now - icsk->icsk_ack.lrcvtime; 650 651 if (m <= TCP_ATO_MIN / 2) { 652 /* The fastest case is the first. */ 653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 654 } else if (m < icsk->icsk_ack.ato) { 655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 656 if (icsk->icsk_ack.ato > icsk->icsk_rto) 657 icsk->icsk_ack.ato = icsk->icsk_rto; 658 } else if (m > icsk->icsk_rto) { 659 /* Too long gap. Apparently sender failed to 660 * restart window, so that we send ACKs quickly. 661 */ 662 tcp_incr_quickack(sk); 663 sk_mem_reclaim(sk); 664 } 665 } 666 icsk->icsk_ack.lrcvtime = now; 667 668 tcp_ecn_check_ce(tp, skb); 669 670 if (skb->len >= 128) 671 tcp_grow_window(sk, skb); 672 } 673 674 /* Called to compute a smoothed rtt estimate. The data fed to this 675 * routine either comes from timestamps, or from segments that were 676 * known _not_ to have been retransmitted [see Karn/Partridge 677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 678 * piece by Van Jacobson. 679 * NOTE: the next three routines used to be one big routine. 680 * To save cycles in the RFC 1323 implementation it was better to break 681 * it up into three procedures. -- erics 682 */ 683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 684 { 685 struct tcp_sock *tp = tcp_sk(sk); 686 long m = mrtt_us; /* RTT */ 687 u32 srtt = tp->srtt_us; 688 689 /* The following amusing code comes from Jacobson's 690 * article in SIGCOMM '88. Note that rtt and mdev 691 * are scaled versions of rtt and mean deviation. 692 * This is designed to be as fast as possible 693 * m stands for "measurement". 694 * 695 * On a 1990 paper the rto value is changed to: 696 * RTO = rtt + 4 * mdev 697 * 698 * Funny. This algorithm seems to be very broken. 699 * These formulae increase RTO, when it should be decreased, increase 700 * too slowly, when it should be increased quickly, decrease too quickly 701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 702 * does not matter how to _calculate_ it. Seems, it was trap 703 * that VJ failed to avoid. 8) 704 */ 705 if (srtt != 0) { 706 m -= (srtt >> 3); /* m is now error in rtt est */ 707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 708 if (m < 0) { 709 m = -m; /* m is now abs(error) */ 710 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 711 /* This is similar to one of Eifel findings. 712 * Eifel blocks mdev updates when rtt decreases. 713 * This solution is a bit different: we use finer gain 714 * for mdev in this case (alpha*beta). 715 * Like Eifel it also prevents growth of rto, 716 * but also it limits too fast rto decreases, 717 * happening in pure Eifel. 718 */ 719 if (m > 0) 720 m >>= 3; 721 } else { 722 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 723 } 724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 725 if (tp->mdev_us > tp->mdev_max_us) { 726 tp->mdev_max_us = tp->mdev_us; 727 if (tp->mdev_max_us > tp->rttvar_us) 728 tp->rttvar_us = tp->mdev_max_us; 729 } 730 if (after(tp->snd_una, tp->rtt_seq)) { 731 if (tp->mdev_max_us < tp->rttvar_us) 732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 733 tp->rtt_seq = tp->snd_nxt; 734 tp->mdev_max_us = tcp_rto_min_us(sk); 735 } 736 } else { 737 /* no previous measure. */ 738 srtt = m << 3; /* take the measured time to be rtt */ 739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 741 tp->mdev_max_us = tp->rttvar_us; 742 tp->rtt_seq = tp->snd_nxt; 743 } 744 tp->srtt_us = max(1U, srtt); 745 } 746 747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 748 * Note: TCP stack does not yet implement pacing. 749 * FQ packet scheduler can be used to implement cheap but effective 750 * TCP pacing, to smooth the burst on large writes when packets 751 * in flight is significantly lower than cwnd (or rwin) 752 */ 753 static void tcp_update_pacing_rate(struct sock *sk) 754 { 755 const struct tcp_sock *tp = tcp_sk(sk); 756 u64 rate; 757 758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 760 761 rate *= max(tp->snd_cwnd, tp->packets_out); 762 763 if (likely(tp->srtt_us)) 764 do_div(rate, tp->srtt_us); 765 766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 767 * without any lock. We want to make sure compiler wont store 768 * intermediate values in this location. 769 */ 770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 771 sk->sk_max_pacing_rate); 772 } 773 774 /* Calculate rto without backoff. This is the second half of Van Jacobson's 775 * routine referred to above. 776 */ 777 static void tcp_set_rto(struct sock *sk) 778 { 779 const struct tcp_sock *tp = tcp_sk(sk); 780 /* Old crap is replaced with new one. 8) 781 * 782 * More seriously: 783 * 1. If rtt variance happened to be less 50msec, it is hallucination. 784 * It cannot be less due to utterly erratic ACK generation made 785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 786 * to do with delayed acks, because at cwnd>2 true delack timeout 787 * is invisible. Actually, Linux-2.4 also generates erratic 788 * ACKs in some circumstances. 789 */ 790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 791 792 /* 2. Fixups made earlier cannot be right. 793 * If we do not estimate RTO correctly without them, 794 * all the algo is pure shit and should be replaced 795 * with correct one. It is exactly, which we pretend to do. 796 */ 797 798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 799 * guarantees that rto is higher. 800 */ 801 tcp_bound_rto(sk); 802 } 803 804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 805 { 806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 807 808 if (!cwnd) 809 cwnd = TCP_INIT_CWND; 810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 811 } 812 813 /* 814 * Packet counting of FACK is based on in-order assumptions, therefore TCP 815 * disables it when reordering is detected 816 */ 817 void tcp_disable_fack(struct tcp_sock *tp) 818 { 819 /* RFC3517 uses different metric in lost marker => reset on change */ 820 if (tcp_is_fack(tp)) 821 tp->lost_skb_hint = NULL; 822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 823 } 824 825 /* Take a notice that peer is sending D-SACKs */ 826 static void tcp_dsack_seen(struct tcp_sock *tp) 827 { 828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 829 } 830 831 static void tcp_update_reordering(struct sock *sk, const int metric, 832 const int ts) 833 { 834 struct tcp_sock *tp = tcp_sk(sk); 835 if (metric > tp->reordering) { 836 int mib_idx; 837 838 tp->reordering = min(sysctl_tcp_max_reordering, metric); 839 840 /* This exciting event is worth to be remembered. 8) */ 841 if (ts) 842 mib_idx = LINUX_MIB_TCPTSREORDER; 843 else if (tcp_is_reno(tp)) 844 mib_idx = LINUX_MIB_TCPRENOREORDER; 845 else if (tcp_is_fack(tp)) 846 mib_idx = LINUX_MIB_TCPFACKREORDER; 847 else 848 mib_idx = LINUX_MIB_TCPSACKREORDER; 849 850 NET_INC_STATS_BH(sock_net(sk), mib_idx); 851 #if FASTRETRANS_DEBUG > 1 852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 854 tp->reordering, 855 tp->fackets_out, 856 tp->sacked_out, 857 tp->undo_marker ? tp->undo_retrans : 0); 858 #endif 859 tcp_disable_fack(tp); 860 } 861 862 if (metric > 0) 863 tcp_disable_early_retrans(tp); 864 } 865 866 /* This must be called before lost_out is incremented */ 867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 868 { 869 if (!tp->retransmit_skb_hint || 870 before(TCP_SKB_CB(skb)->seq, 871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 872 tp->retransmit_skb_hint = skb; 873 874 if (!tp->lost_out || 875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 877 } 878 879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 880 { 881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 882 tcp_verify_retransmit_hint(tp, skb); 883 884 tp->lost_out += tcp_skb_pcount(skb); 885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 886 } 887 } 888 889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 890 struct sk_buff *skb) 891 { 892 tcp_verify_retransmit_hint(tp, skb); 893 894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 895 tp->lost_out += tcp_skb_pcount(skb); 896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 897 } 898 } 899 900 /* This procedure tags the retransmission queue when SACKs arrive. 901 * 902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 903 * Packets in queue with these bits set are counted in variables 904 * sacked_out, retrans_out and lost_out, correspondingly. 905 * 906 * Valid combinations are: 907 * Tag InFlight Description 908 * 0 1 - orig segment is in flight. 909 * S 0 - nothing flies, orig reached receiver. 910 * L 0 - nothing flies, orig lost by net. 911 * R 2 - both orig and retransmit are in flight. 912 * L|R 1 - orig is lost, retransmit is in flight. 913 * S|R 1 - orig reached receiver, retrans is still in flight. 914 * (L|S|R is logically valid, it could occur when L|R is sacked, 915 * but it is equivalent to plain S and code short-curcuits it to S. 916 * L|S is logically invalid, it would mean -1 packet in flight 8)) 917 * 918 * These 6 states form finite state machine, controlled by the following events: 919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 921 * 3. Loss detection event of two flavors: 922 * A. Scoreboard estimator decided the packet is lost. 923 * A'. Reno "three dupacks" marks head of queue lost. 924 * A''. Its FACK modification, head until snd.fack is lost. 925 * B. SACK arrives sacking SND.NXT at the moment, when the 926 * segment was retransmitted. 927 * 4. D-SACK added new rule: D-SACK changes any tag to S. 928 * 929 * It is pleasant to note, that state diagram turns out to be commutative, 930 * so that we are allowed not to be bothered by order of our actions, 931 * when multiple events arrive simultaneously. (see the function below). 932 * 933 * Reordering detection. 934 * -------------------- 935 * Reordering metric is maximal distance, which a packet can be displaced 936 * in packet stream. With SACKs we can estimate it: 937 * 938 * 1. SACK fills old hole and the corresponding segment was not 939 * ever retransmitted -> reordering. Alas, we cannot use it 940 * when segment was retransmitted. 941 * 2. The last flaw is solved with D-SACK. D-SACK arrives 942 * for retransmitted and already SACKed segment -> reordering.. 943 * Both of these heuristics are not used in Loss state, when we cannot 944 * account for retransmits accurately. 945 * 946 * SACK block validation. 947 * ---------------------- 948 * 949 * SACK block range validation checks that the received SACK block fits to 950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 951 * Note that SND.UNA is not included to the range though being valid because 952 * it means that the receiver is rather inconsistent with itself reporting 953 * SACK reneging when it should advance SND.UNA. Such SACK block this is 954 * perfectly valid, however, in light of RFC2018 which explicitly states 955 * that "SACK block MUST reflect the newest segment. Even if the newest 956 * segment is going to be discarded ...", not that it looks very clever 957 * in case of head skb. Due to potentional receiver driven attacks, we 958 * choose to avoid immediate execution of a walk in write queue due to 959 * reneging and defer head skb's loss recovery to standard loss recovery 960 * procedure that will eventually trigger (nothing forbids us doing this). 961 * 962 * Implements also blockage to start_seq wrap-around. Problem lies in the 963 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 964 * there's no guarantee that it will be before snd_nxt (n). The problem 965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 966 * wrap (s_w): 967 * 968 * <- outs wnd -> <- wrapzone -> 969 * u e n u_w e_w s n_w 970 * | | | | | | | 971 * |<------------+------+----- TCP seqno space --------------+---------->| 972 * ...-- <2^31 ->| |<--------... 973 * ...---- >2^31 ------>| |<--------... 974 * 975 * Current code wouldn't be vulnerable but it's better still to discard such 976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 979 * equal to the ideal case (infinite seqno space without wrap caused issues). 980 * 981 * With D-SACK the lower bound is extended to cover sequence space below 982 * SND.UNA down to undo_marker, which is the last point of interest. Yet 983 * again, D-SACK block must not to go across snd_una (for the same reason as 984 * for the normal SACK blocks, explained above). But there all simplicity 985 * ends, TCP might receive valid D-SACKs below that. As long as they reside 986 * fully below undo_marker they do not affect behavior in anyway and can 987 * therefore be safely ignored. In rare cases (which are more or less 988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 989 * fragmentation and packet reordering past skb's retransmission. To consider 990 * them correctly, the acceptable range must be extended even more though 991 * the exact amount is rather hard to quantify. However, tp->max_window can 992 * be used as an exaggerated estimate. 993 */ 994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 995 u32 start_seq, u32 end_seq) 996 { 997 /* Too far in future, or reversed (interpretation is ambiguous) */ 998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 999 return false; 1000 1001 /* Nasty start_seq wrap-around check (see comments above) */ 1002 if (!before(start_seq, tp->snd_nxt)) 1003 return false; 1004 1005 /* In outstanding window? ...This is valid exit for D-SACKs too. 1006 * start_seq == snd_una is non-sensical (see comments above) 1007 */ 1008 if (after(start_seq, tp->snd_una)) 1009 return true; 1010 1011 if (!is_dsack || !tp->undo_marker) 1012 return false; 1013 1014 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1015 if (after(end_seq, tp->snd_una)) 1016 return false; 1017 1018 if (!before(start_seq, tp->undo_marker)) 1019 return true; 1020 1021 /* Too old */ 1022 if (!after(end_seq, tp->undo_marker)) 1023 return false; 1024 1025 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1026 * start_seq < undo_marker and end_seq >= undo_marker. 1027 */ 1028 return !before(start_seq, end_seq - tp->max_window); 1029 } 1030 1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1032 * Event "B". Later note: FACK people cheated me again 8), we have to account 1033 * for reordering! Ugly, but should help. 1034 * 1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1036 * less than what is now known to be received by the other end (derived from 1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1038 * retransmitted skbs to avoid some costly processing per ACKs. 1039 */ 1040 static void tcp_mark_lost_retrans(struct sock *sk) 1041 { 1042 const struct inet_connection_sock *icsk = inet_csk(sk); 1043 struct tcp_sock *tp = tcp_sk(sk); 1044 struct sk_buff *skb; 1045 int cnt = 0; 1046 u32 new_low_seq = tp->snd_nxt; 1047 u32 received_upto = tcp_highest_sack_seq(tp); 1048 1049 if (!tcp_is_fack(tp) || !tp->retrans_out || 1050 !after(received_upto, tp->lost_retrans_low) || 1051 icsk->icsk_ca_state != TCP_CA_Recovery) 1052 return; 1053 1054 tcp_for_write_queue(skb, sk) { 1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1056 1057 if (skb == tcp_send_head(sk)) 1058 break; 1059 if (cnt == tp->retrans_out) 1060 break; 1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1062 continue; 1063 1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1065 continue; 1066 1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1068 * constraint here (see above) but figuring out that at 1069 * least tp->reordering SACK blocks reside between ack_seq 1070 * and received_upto is not easy task to do cheaply with 1071 * the available datastructures. 1072 * 1073 * Whether FACK should check here for tp->reordering segs 1074 * in-between one could argue for either way (it would be 1075 * rather simple to implement as we could count fack_count 1076 * during the walk and do tp->fackets_out - fack_count). 1077 */ 1078 if (after(received_upto, ack_seq)) { 1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1080 tp->retrans_out -= tcp_skb_pcount(skb); 1081 1082 tcp_skb_mark_lost_uncond_verify(tp, skb); 1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1084 } else { 1085 if (before(ack_seq, new_low_seq)) 1086 new_low_seq = ack_seq; 1087 cnt += tcp_skb_pcount(skb); 1088 } 1089 } 1090 1091 if (tp->retrans_out) 1092 tp->lost_retrans_low = new_low_seq; 1093 } 1094 1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1096 struct tcp_sack_block_wire *sp, int num_sacks, 1097 u32 prior_snd_una) 1098 { 1099 struct tcp_sock *tp = tcp_sk(sk); 1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1102 bool dup_sack = false; 1103 1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1108 } else if (num_sacks > 1) { 1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1111 1112 if (!after(end_seq_0, end_seq_1) && 1113 !before(start_seq_0, start_seq_1)) { 1114 dup_sack = true; 1115 tcp_dsack_seen(tp); 1116 NET_INC_STATS_BH(sock_net(sk), 1117 LINUX_MIB_TCPDSACKOFORECV); 1118 } 1119 } 1120 1121 /* D-SACK for already forgotten data... Do dumb counting. */ 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1123 !after(end_seq_0, prior_snd_una) && 1124 after(end_seq_0, tp->undo_marker)) 1125 tp->undo_retrans--; 1126 1127 return dup_sack; 1128 } 1129 1130 struct tcp_sacktag_state { 1131 int reord; 1132 int fack_count; 1133 long rtt_us; /* RTT measured by SACKing never-retransmitted data */ 1134 int flag; 1135 }; 1136 1137 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1138 * the incoming SACK may not exactly match but we can find smaller MSS 1139 * aligned portion of it that matches. Therefore we might need to fragment 1140 * which may fail and creates some hassle (caller must handle error case 1141 * returns). 1142 * 1143 * FIXME: this could be merged to shift decision code 1144 */ 1145 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1146 u32 start_seq, u32 end_seq) 1147 { 1148 int err; 1149 bool in_sack; 1150 unsigned int pkt_len; 1151 unsigned int mss; 1152 1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1154 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1155 1156 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1157 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1158 mss = tcp_skb_mss(skb); 1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1160 1161 if (!in_sack) { 1162 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1163 if (pkt_len < mss) 1164 pkt_len = mss; 1165 } else { 1166 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1167 if (pkt_len < mss) 1168 return -EINVAL; 1169 } 1170 1171 /* Round if necessary so that SACKs cover only full MSSes 1172 * and/or the remaining small portion (if present) 1173 */ 1174 if (pkt_len > mss) { 1175 unsigned int new_len = (pkt_len / mss) * mss; 1176 if (!in_sack && new_len < pkt_len) { 1177 new_len += mss; 1178 if (new_len >= skb->len) 1179 return 0; 1180 } 1181 pkt_len = new_len; 1182 } 1183 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1184 if (err < 0) 1185 return err; 1186 } 1187 1188 return in_sack; 1189 } 1190 1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1192 static u8 tcp_sacktag_one(struct sock *sk, 1193 struct tcp_sacktag_state *state, u8 sacked, 1194 u32 start_seq, u32 end_seq, 1195 int dup_sack, int pcount, 1196 const struct skb_mstamp *xmit_time) 1197 { 1198 struct tcp_sock *tp = tcp_sk(sk); 1199 int fack_count = state->fack_count; 1200 1201 /* Account D-SACK for retransmitted packet. */ 1202 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1203 if (tp->undo_marker && tp->undo_retrans > 0 && 1204 after(end_seq, tp->undo_marker)) 1205 tp->undo_retrans--; 1206 if (sacked & TCPCB_SACKED_ACKED) 1207 state->reord = min(fack_count, state->reord); 1208 } 1209 1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1211 if (!after(end_seq, tp->snd_una)) 1212 return sacked; 1213 1214 if (!(sacked & TCPCB_SACKED_ACKED)) { 1215 if (sacked & TCPCB_SACKED_RETRANS) { 1216 /* If the segment is not tagged as lost, 1217 * we do not clear RETRANS, believing 1218 * that retransmission is still in flight. 1219 */ 1220 if (sacked & TCPCB_LOST) { 1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1222 tp->lost_out -= pcount; 1223 tp->retrans_out -= pcount; 1224 } 1225 } else { 1226 if (!(sacked & TCPCB_RETRANS)) { 1227 /* New sack for not retransmitted frame, 1228 * which was in hole. It is reordering. 1229 */ 1230 if (before(start_seq, 1231 tcp_highest_sack_seq(tp))) 1232 state->reord = min(fack_count, 1233 state->reord); 1234 if (!after(end_seq, tp->high_seq)) 1235 state->flag |= FLAG_ORIG_SACK_ACKED; 1236 /* Pick the earliest sequence sacked for RTT */ 1237 if (state->rtt_us < 0) { 1238 struct skb_mstamp now; 1239 1240 skb_mstamp_get(&now); 1241 state->rtt_us = skb_mstamp_us_delta(&now, 1242 xmit_time); 1243 } 1244 } 1245 1246 if (sacked & TCPCB_LOST) { 1247 sacked &= ~TCPCB_LOST; 1248 tp->lost_out -= pcount; 1249 } 1250 } 1251 1252 sacked |= TCPCB_SACKED_ACKED; 1253 state->flag |= FLAG_DATA_SACKED; 1254 tp->sacked_out += pcount; 1255 1256 fack_count += pcount; 1257 1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1259 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1261 tp->lost_cnt_hint += pcount; 1262 1263 if (fack_count > tp->fackets_out) 1264 tp->fackets_out = fack_count; 1265 } 1266 1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1268 * frames and clear it. undo_retrans is decreased above, L|R frames 1269 * are accounted above as well. 1270 */ 1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1272 sacked &= ~TCPCB_SACKED_RETRANS; 1273 tp->retrans_out -= pcount; 1274 } 1275 1276 return sacked; 1277 } 1278 1279 /* Shift newly-SACKed bytes from this skb to the immediately previous 1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1281 */ 1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1283 struct tcp_sacktag_state *state, 1284 unsigned int pcount, int shifted, int mss, 1285 bool dup_sack) 1286 { 1287 struct tcp_sock *tp = tcp_sk(sk); 1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1291 1292 BUG_ON(!pcount); 1293 1294 /* Adjust counters and hints for the newly sacked sequence 1295 * range but discard the return value since prev is already 1296 * marked. We must tag the range first because the seq 1297 * advancement below implicitly advances 1298 * tcp_highest_sack_seq() when skb is highest_sack. 1299 */ 1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1301 start_seq, end_seq, dup_sack, pcount, 1302 &skb->skb_mstamp); 1303 1304 if (skb == tp->lost_skb_hint) 1305 tp->lost_cnt_hint += pcount; 1306 1307 TCP_SKB_CB(prev)->end_seq += shifted; 1308 TCP_SKB_CB(skb)->seq += shifted; 1309 1310 tcp_skb_pcount_add(prev, pcount); 1311 BUG_ON(tcp_skb_pcount(skb) < pcount); 1312 tcp_skb_pcount_add(skb, -pcount); 1313 1314 /* When we're adding to gso_segs == 1, gso_size will be zero, 1315 * in theory this shouldn't be necessary but as long as DSACK 1316 * code can come after this skb later on it's better to keep 1317 * setting gso_size to something. 1318 */ 1319 if (!skb_shinfo(prev)->gso_size) { 1320 skb_shinfo(prev)->gso_size = mss; 1321 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1322 } 1323 1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1325 if (tcp_skb_pcount(skb) <= 1) { 1326 skb_shinfo(skb)->gso_size = 0; 1327 skb_shinfo(skb)->gso_type = 0; 1328 } 1329 1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1332 1333 if (skb->len > 0) { 1334 BUG_ON(!tcp_skb_pcount(skb)); 1335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1336 return false; 1337 } 1338 1339 /* Whole SKB was eaten :-) */ 1340 1341 if (skb == tp->retransmit_skb_hint) 1342 tp->retransmit_skb_hint = prev; 1343 if (skb == tp->lost_skb_hint) { 1344 tp->lost_skb_hint = prev; 1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1346 } 1347 1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1350 TCP_SKB_CB(prev)->end_seq++; 1351 1352 if (skb == tcp_highest_sack(sk)) 1353 tcp_advance_highest_sack(sk, skb); 1354 1355 tcp_unlink_write_queue(skb, sk); 1356 sk_wmem_free_skb(sk, skb); 1357 1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1359 1360 return true; 1361 } 1362 1363 /* I wish gso_size would have a bit more sane initialization than 1364 * something-or-zero which complicates things 1365 */ 1366 static int tcp_skb_seglen(const struct sk_buff *skb) 1367 { 1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1369 } 1370 1371 /* Shifting pages past head area doesn't work */ 1372 static int skb_can_shift(const struct sk_buff *skb) 1373 { 1374 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1375 } 1376 1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1378 * skb. 1379 */ 1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1381 struct tcp_sacktag_state *state, 1382 u32 start_seq, u32 end_seq, 1383 bool dup_sack) 1384 { 1385 struct tcp_sock *tp = tcp_sk(sk); 1386 struct sk_buff *prev; 1387 int mss; 1388 int pcount = 0; 1389 int len; 1390 int in_sack; 1391 1392 if (!sk_can_gso(sk)) 1393 goto fallback; 1394 1395 /* Normally R but no L won't result in plain S */ 1396 if (!dup_sack && 1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1398 goto fallback; 1399 if (!skb_can_shift(skb)) 1400 goto fallback; 1401 /* This frame is about to be dropped (was ACKed). */ 1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1403 goto fallback; 1404 1405 /* Can only happen with delayed DSACK + discard craziness */ 1406 if (unlikely(skb == tcp_write_queue_head(sk))) 1407 goto fallback; 1408 prev = tcp_write_queue_prev(sk, skb); 1409 1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1411 goto fallback; 1412 1413 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1414 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1415 1416 if (in_sack) { 1417 len = skb->len; 1418 pcount = tcp_skb_pcount(skb); 1419 mss = tcp_skb_seglen(skb); 1420 1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1422 * drop this restriction as unnecessary 1423 */ 1424 if (mss != tcp_skb_seglen(prev)) 1425 goto fallback; 1426 } else { 1427 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1428 goto noop; 1429 /* CHECKME: This is non-MSS split case only?, this will 1430 * cause skipped skbs due to advancing loop btw, original 1431 * has that feature too 1432 */ 1433 if (tcp_skb_pcount(skb) <= 1) 1434 goto noop; 1435 1436 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1437 if (!in_sack) { 1438 /* TODO: head merge to next could be attempted here 1439 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1440 * though it might not be worth of the additional hassle 1441 * 1442 * ...we can probably just fallback to what was done 1443 * previously. We could try merging non-SACKed ones 1444 * as well but it probably isn't going to buy off 1445 * because later SACKs might again split them, and 1446 * it would make skb timestamp tracking considerably 1447 * harder problem. 1448 */ 1449 goto fallback; 1450 } 1451 1452 len = end_seq - TCP_SKB_CB(skb)->seq; 1453 BUG_ON(len < 0); 1454 BUG_ON(len > skb->len); 1455 1456 /* MSS boundaries should be honoured or else pcount will 1457 * severely break even though it makes things bit trickier. 1458 * Optimize common case to avoid most of the divides 1459 */ 1460 mss = tcp_skb_mss(skb); 1461 1462 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1463 * drop this restriction as unnecessary 1464 */ 1465 if (mss != tcp_skb_seglen(prev)) 1466 goto fallback; 1467 1468 if (len == mss) { 1469 pcount = 1; 1470 } else if (len < mss) { 1471 goto noop; 1472 } else { 1473 pcount = len / mss; 1474 len = pcount * mss; 1475 } 1476 } 1477 1478 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1479 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1480 goto fallback; 1481 1482 if (!skb_shift(prev, skb, len)) 1483 goto fallback; 1484 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1485 goto out; 1486 1487 /* Hole filled allows collapsing with the next as well, this is very 1488 * useful when hole on every nth skb pattern happens 1489 */ 1490 if (prev == tcp_write_queue_tail(sk)) 1491 goto out; 1492 skb = tcp_write_queue_next(sk, prev); 1493 1494 if (!skb_can_shift(skb) || 1495 (skb == tcp_send_head(sk)) || 1496 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1497 (mss != tcp_skb_seglen(skb))) 1498 goto out; 1499 1500 len = skb->len; 1501 if (skb_shift(prev, skb, len)) { 1502 pcount += tcp_skb_pcount(skb); 1503 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1504 } 1505 1506 out: 1507 state->fack_count += pcount; 1508 return prev; 1509 1510 noop: 1511 return skb; 1512 1513 fallback: 1514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1515 return NULL; 1516 } 1517 1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1519 struct tcp_sack_block *next_dup, 1520 struct tcp_sacktag_state *state, 1521 u32 start_seq, u32 end_seq, 1522 bool dup_sack_in) 1523 { 1524 struct tcp_sock *tp = tcp_sk(sk); 1525 struct sk_buff *tmp; 1526 1527 tcp_for_write_queue_from(skb, sk) { 1528 int in_sack = 0; 1529 bool dup_sack = dup_sack_in; 1530 1531 if (skb == tcp_send_head(sk)) 1532 break; 1533 1534 /* queue is in-order => we can short-circuit the walk early */ 1535 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1536 break; 1537 1538 if (next_dup && 1539 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1540 in_sack = tcp_match_skb_to_sack(sk, skb, 1541 next_dup->start_seq, 1542 next_dup->end_seq); 1543 if (in_sack > 0) 1544 dup_sack = true; 1545 } 1546 1547 /* skb reference here is a bit tricky to get right, since 1548 * shifting can eat and free both this skb and the next, 1549 * so not even _safe variant of the loop is enough. 1550 */ 1551 if (in_sack <= 0) { 1552 tmp = tcp_shift_skb_data(sk, skb, state, 1553 start_seq, end_seq, dup_sack); 1554 if (tmp) { 1555 if (tmp != skb) { 1556 skb = tmp; 1557 continue; 1558 } 1559 1560 in_sack = 0; 1561 } else { 1562 in_sack = tcp_match_skb_to_sack(sk, skb, 1563 start_seq, 1564 end_seq); 1565 } 1566 } 1567 1568 if (unlikely(in_sack < 0)) 1569 break; 1570 1571 if (in_sack) { 1572 TCP_SKB_CB(skb)->sacked = 1573 tcp_sacktag_one(sk, 1574 state, 1575 TCP_SKB_CB(skb)->sacked, 1576 TCP_SKB_CB(skb)->seq, 1577 TCP_SKB_CB(skb)->end_seq, 1578 dup_sack, 1579 tcp_skb_pcount(skb), 1580 &skb->skb_mstamp); 1581 1582 if (!before(TCP_SKB_CB(skb)->seq, 1583 tcp_highest_sack_seq(tp))) 1584 tcp_advance_highest_sack(sk, skb); 1585 } 1586 1587 state->fack_count += tcp_skb_pcount(skb); 1588 } 1589 return skb; 1590 } 1591 1592 /* Avoid all extra work that is being done by sacktag while walking in 1593 * a normal way 1594 */ 1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1596 struct tcp_sacktag_state *state, 1597 u32 skip_to_seq) 1598 { 1599 tcp_for_write_queue_from(skb, sk) { 1600 if (skb == tcp_send_head(sk)) 1601 break; 1602 1603 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1604 break; 1605 1606 state->fack_count += tcp_skb_pcount(skb); 1607 } 1608 return skb; 1609 } 1610 1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1612 struct sock *sk, 1613 struct tcp_sack_block *next_dup, 1614 struct tcp_sacktag_state *state, 1615 u32 skip_to_seq) 1616 { 1617 if (!next_dup) 1618 return skb; 1619 1620 if (before(next_dup->start_seq, skip_to_seq)) { 1621 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1622 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1623 next_dup->start_seq, next_dup->end_seq, 1624 1); 1625 } 1626 1627 return skb; 1628 } 1629 1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1631 { 1632 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1633 } 1634 1635 static int 1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1637 u32 prior_snd_una, long *sack_rtt_us) 1638 { 1639 struct tcp_sock *tp = tcp_sk(sk); 1640 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1641 TCP_SKB_CB(ack_skb)->sacked); 1642 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1643 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1644 struct tcp_sack_block *cache; 1645 struct tcp_sacktag_state state; 1646 struct sk_buff *skb; 1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1648 int used_sacks; 1649 bool found_dup_sack = false; 1650 int i, j; 1651 int first_sack_index; 1652 1653 state.flag = 0; 1654 state.reord = tp->packets_out; 1655 state.rtt_us = -1L; 1656 1657 if (!tp->sacked_out) { 1658 if (WARN_ON(tp->fackets_out)) 1659 tp->fackets_out = 0; 1660 tcp_highest_sack_reset(sk); 1661 } 1662 1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1664 num_sacks, prior_snd_una); 1665 if (found_dup_sack) 1666 state.flag |= FLAG_DSACKING_ACK; 1667 1668 /* Eliminate too old ACKs, but take into 1669 * account more or less fresh ones, they can 1670 * contain valid SACK info. 1671 */ 1672 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1673 return 0; 1674 1675 if (!tp->packets_out) 1676 goto out; 1677 1678 used_sacks = 0; 1679 first_sack_index = 0; 1680 for (i = 0; i < num_sacks; i++) { 1681 bool dup_sack = !i && found_dup_sack; 1682 1683 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1684 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1685 1686 if (!tcp_is_sackblock_valid(tp, dup_sack, 1687 sp[used_sacks].start_seq, 1688 sp[used_sacks].end_seq)) { 1689 int mib_idx; 1690 1691 if (dup_sack) { 1692 if (!tp->undo_marker) 1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1694 else 1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1696 } else { 1697 /* Don't count olds caused by ACK reordering */ 1698 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1699 !after(sp[used_sacks].end_seq, tp->snd_una)) 1700 continue; 1701 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1702 } 1703 1704 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1705 if (i == 0) 1706 first_sack_index = -1; 1707 continue; 1708 } 1709 1710 /* Ignore very old stuff early */ 1711 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1712 continue; 1713 1714 used_sacks++; 1715 } 1716 1717 /* order SACK blocks to allow in order walk of the retrans queue */ 1718 for (i = used_sacks - 1; i > 0; i--) { 1719 for (j = 0; j < i; j++) { 1720 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1721 swap(sp[j], sp[j + 1]); 1722 1723 /* Track where the first SACK block goes to */ 1724 if (j == first_sack_index) 1725 first_sack_index = j + 1; 1726 } 1727 } 1728 } 1729 1730 skb = tcp_write_queue_head(sk); 1731 state.fack_count = 0; 1732 i = 0; 1733 1734 if (!tp->sacked_out) { 1735 /* It's already past, so skip checking against it */ 1736 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1737 } else { 1738 cache = tp->recv_sack_cache; 1739 /* Skip empty blocks in at head of the cache */ 1740 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1741 !cache->end_seq) 1742 cache++; 1743 } 1744 1745 while (i < used_sacks) { 1746 u32 start_seq = sp[i].start_seq; 1747 u32 end_seq = sp[i].end_seq; 1748 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1749 struct tcp_sack_block *next_dup = NULL; 1750 1751 if (found_dup_sack && ((i + 1) == first_sack_index)) 1752 next_dup = &sp[i + 1]; 1753 1754 /* Skip too early cached blocks */ 1755 while (tcp_sack_cache_ok(tp, cache) && 1756 !before(start_seq, cache->end_seq)) 1757 cache++; 1758 1759 /* Can skip some work by looking recv_sack_cache? */ 1760 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1761 after(end_seq, cache->start_seq)) { 1762 1763 /* Head todo? */ 1764 if (before(start_seq, cache->start_seq)) { 1765 skb = tcp_sacktag_skip(skb, sk, &state, 1766 start_seq); 1767 skb = tcp_sacktag_walk(skb, sk, next_dup, 1768 &state, 1769 start_seq, 1770 cache->start_seq, 1771 dup_sack); 1772 } 1773 1774 /* Rest of the block already fully processed? */ 1775 if (!after(end_seq, cache->end_seq)) 1776 goto advance_sp; 1777 1778 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1779 &state, 1780 cache->end_seq); 1781 1782 /* ...tail remains todo... */ 1783 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1784 /* ...but better entrypoint exists! */ 1785 skb = tcp_highest_sack(sk); 1786 if (!skb) 1787 break; 1788 state.fack_count = tp->fackets_out; 1789 cache++; 1790 goto walk; 1791 } 1792 1793 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1794 /* Check overlap against next cached too (past this one already) */ 1795 cache++; 1796 continue; 1797 } 1798 1799 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1800 skb = tcp_highest_sack(sk); 1801 if (!skb) 1802 break; 1803 state.fack_count = tp->fackets_out; 1804 } 1805 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1806 1807 walk: 1808 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1809 start_seq, end_seq, dup_sack); 1810 1811 advance_sp: 1812 i++; 1813 } 1814 1815 /* Clear the head of the cache sack blocks so we can skip it next time */ 1816 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1817 tp->recv_sack_cache[i].start_seq = 0; 1818 tp->recv_sack_cache[i].end_seq = 0; 1819 } 1820 for (j = 0; j < used_sacks; j++) 1821 tp->recv_sack_cache[i++] = sp[j]; 1822 1823 if ((state.reord < tp->fackets_out) && 1824 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1825 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1826 1827 tcp_mark_lost_retrans(sk); 1828 tcp_verify_left_out(tp); 1829 out: 1830 1831 #if FASTRETRANS_DEBUG > 0 1832 WARN_ON((int)tp->sacked_out < 0); 1833 WARN_ON((int)tp->lost_out < 0); 1834 WARN_ON((int)tp->retrans_out < 0); 1835 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1836 #endif 1837 *sack_rtt_us = state.rtt_us; 1838 return state.flag; 1839 } 1840 1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1843 */ 1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1845 { 1846 u32 holes; 1847 1848 holes = max(tp->lost_out, 1U); 1849 holes = min(holes, tp->packets_out); 1850 1851 if ((tp->sacked_out + holes) > tp->packets_out) { 1852 tp->sacked_out = tp->packets_out - holes; 1853 return true; 1854 } 1855 return false; 1856 } 1857 1858 /* If we receive more dupacks than we expected counting segments 1859 * in assumption of absent reordering, interpret this as reordering. 1860 * The only another reason could be bug in receiver TCP. 1861 */ 1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1863 { 1864 struct tcp_sock *tp = tcp_sk(sk); 1865 if (tcp_limit_reno_sacked(tp)) 1866 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1867 } 1868 1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1870 1871 static void tcp_add_reno_sack(struct sock *sk) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 tp->sacked_out++; 1875 tcp_check_reno_reordering(sk, 0); 1876 tcp_verify_left_out(tp); 1877 } 1878 1879 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1880 1881 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1882 { 1883 struct tcp_sock *tp = tcp_sk(sk); 1884 1885 if (acked > 0) { 1886 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1887 if (acked - 1 >= tp->sacked_out) 1888 tp->sacked_out = 0; 1889 else 1890 tp->sacked_out -= acked - 1; 1891 } 1892 tcp_check_reno_reordering(sk, acked); 1893 tcp_verify_left_out(tp); 1894 } 1895 1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1897 { 1898 tp->sacked_out = 0; 1899 } 1900 1901 void tcp_clear_retrans(struct tcp_sock *tp) 1902 { 1903 tp->retrans_out = 0; 1904 tp->lost_out = 0; 1905 tp->undo_marker = 0; 1906 tp->undo_retrans = -1; 1907 tp->fackets_out = 0; 1908 tp->sacked_out = 0; 1909 } 1910 1911 static inline void tcp_init_undo(struct tcp_sock *tp) 1912 { 1913 tp->undo_marker = tp->snd_una; 1914 /* Retransmission still in flight may cause DSACKs later. */ 1915 tp->undo_retrans = tp->retrans_out ? : -1; 1916 } 1917 1918 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1919 * and reset tags completely, otherwise preserve SACKs. If receiver 1920 * dropped its ofo queue, we will know this due to reneging detection. 1921 */ 1922 void tcp_enter_loss(struct sock *sk) 1923 { 1924 const struct inet_connection_sock *icsk = inet_csk(sk); 1925 struct tcp_sock *tp = tcp_sk(sk); 1926 struct sk_buff *skb; 1927 bool new_recovery = false; 1928 bool is_reneg; /* is receiver reneging on SACKs? */ 1929 1930 /* Reduce ssthresh if it has not yet been made inside this window. */ 1931 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1932 !after(tp->high_seq, tp->snd_una) || 1933 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1934 new_recovery = true; 1935 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1936 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1937 tcp_ca_event(sk, CA_EVENT_LOSS); 1938 tcp_init_undo(tp); 1939 } 1940 tp->snd_cwnd = 1; 1941 tp->snd_cwnd_cnt = 0; 1942 tp->snd_cwnd_stamp = tcp_time_stamp; 1943 1944 tp->retrans_out = 0; 1945 tp->lost_out = 0; 1946 1947 if (tcp_is_reno(tp)) 1948 tcp_reset_reno_sack(tp); 1949 1950 skb = tcp_write_queue_head(sk); 1951 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1952 if (is_reneg) { 1953 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1954 tp->sacked_out = 0; 1955 tp->fackets_out = 0; 1956 } 1957 tcp_clear_all_retrans_hints(tp); 1958 1959 tcp_for_write_queue(skb, sk) { 1960 if (skb == tcp_send_head(sk)) 1961 break; 1962 1963 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1964 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1965 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1966 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1967 tp->lost_out += tcp_skb_pcount(skb); 1968 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1969 } 1970 } 1971 tcp_verify_left_out(tp); 1972 1973 /* Timeout in disordered state after receiving substantial DUPACKs 1974 * suggests that the degree of reordering is over-estimated. 1975 */ 1976 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1977 tp->sacked_out >= sysctl_tcp_reordering) 1978 tp->reordering = min_t(unsigned int, tp->reordering, 1979 sysctl_tcp_reordering); 1980 tcp_set_ca_state(sk, TCP_CA_Loss); 1981 tp->high_seq = tp->snd_nxt; 1982 tcp_ecn_queue_cwr(tp); 1983 1984 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1985 * loss recovery is underway except recurring timeout(s) on 1986 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1987 */ 1988 tp->frto = sysctl_tcp_frto && 1989 (new_recovery || icsk->icsk_retransmits) && 1990 !inet_csk(sk)->icsk_mtup.probe_size; 1991 } 1992 1993 /* If ACK arrived pointing to a remembered SACK, it means that our 1994 * remembered SACKs do not reflect real state of receiver i.e. 1995 * receiver _host_ is heavily congested (or buggy). 1996 * 1997 * To avoid big spurious retransmission bursts due to transient SACK 1998 * scoreboard oddities that look like reneging, we give the receiver a 1999 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2000 * restore sanity to the SACK scoreboard. If the apparent reneging 2001 * persists until this RTO then we'll clear the SACK scoreboard. 2002 */ 2003 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2004 { 2005 if (flag & FLAG_SACK_RENEGING) { 2006 struct tcp_sock *tp = tcp_sk(sk); 2007 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2008 msecs_to_jiffies(10)); 2009 2010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2011 delay, TCP_RTO_MAX); 2012 return true; 2013 } 2014 return false; 2015 } 2016 2017 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2018 { 2019 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2020 } 2021 2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2023 * counter when SACK is enabled (without SACK, sacked_out is used for 2024 * that purpose). 2025 * 2026 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2027 * segments up to the highest received SACK block so far and holes in 2028 * between them. 2029 * 2030 * With reordering, holes may still be in flight, so RFC3517 recovery 2031 * uses pure sacked_out (total number of SACKed segments) even though 2032 * it violates the RFC that uses duplicate ACKs, often these are equal 2033 * but when e.g. out-of-window ACKs or packet duplication occurs, 2034 * they differ. Since neither occurs due to loss, TCP should really 2035 * ignore them. 2036 */ 2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2038 { 2039 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2040 } 2041 2042 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2043 { 2044 struct tcp_sock *tp = tcp_sk(sk); 2045 unsigned long delay; 2046 2047 /* Delay early retransmit and entering fast recovery for 2048 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2049 * available, or RTO is scheduled to fire first. 2050 */ 2051 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2052 (flag & FLAG_ECE) || !tp->srtt_us) 2053 return false; 2054 2055 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2056 msecs_to_jiffies(2)); 2057 2058 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2059 return false; 2060 2061 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2062 TCP_RTO_MAX); 2063 return true; 2064 } 2065 2066 /* Linux NewReno/SACK/FACK/ECN state machine. 2067 * -------------------------------------- 2068 * 2069 * "Open" Normal state, no dubious events, fast path. 2070 * "Disorder" In all the respects it is "Open", 2071 * but requires a bit more attention. It is entered when 2072 * we see some SACKs or dupacks. It is split of "Open" 2073 * mainly to move some processing from fast path to slow one. 2074 * "CWR" CWND was reduced due to some Congestion Notification event. 2075 * It can be ECN, ICMP source quench, local device congestion. 2076 * "Recovery" CWND was reduced, we are fast-retransmitting. 2077 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2078 * 2079 * tcp_fastretrans_alert() is entered: 2080 * - each incoming ACK, if state is not "Open" 2081 * - when arrived ACK is unusual, namely: 2082 * * SACK 2083 * * Duplicate ACK. 2084 * * ECN ECE. 2085 * 2086 * Counting packets in flight is pretty simple. 2087 * 2088 * in_flight = packets_out - left_out + retrans_out 2089 * 2090 * packets_out is SND.NXT-SND.UNA counted in packets. 2091 * 2092 * retrans_out is number of retransmitted segments. 2093 * 2094 * left_out is number of segments left network, but not ACKed yet. 2095 * 2096 * left_out = sacked_out + lost_out 2097 * 2098 * sacked_out: Packets, which arrived to receiver out of order 2099 * and hence not ACKed. With SACKs this number is simply 2100 * amount of SACKed data. Even without SACKs 2101 * it is easy to give pretty reliable estimate of this number, 2102 * counting duplicate ACKs. 2103 * 2104 * lost_out: Packets lost by network. TCP has no explicit 2105 * "loss notification" feedback from network (for now). 2106 * It means that this number can be only _guessed_. 2107 * Actually, it is the heuristics to predict lossage that 2108 * distinguishes different algorithms. 2109 * 2110 * F.e. after RTO, when all the queue is considered as lost, 2111 * lost_out = packets_out and in_flight = retrans_out. 2112 * 2113 * Essentially, we have now two algorithms counting 2114 * lost packets. 2115 * 2116 * FACK: It is the simplest heuristics. As soon as we decided 2117 * that something is lost, we decide that _all_ not SACKed 2118 * packets until the most forward SACK are lost. I.e. 2119 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2120 * It is absolutely correct estimate, if network does not reorder 2121 * packets. And it loses any connection to reality when reordering 2122 * takes place. We use FACK by default until reordering 2123 * is suspected on the path to this destination. 2124 * 2125 * NewReno: when Recovery is entered, we assume that one segment 2126 * is lost (classic Reno). While we are in Recovery and 2127 * a partial ACK arrives, we assume that one more packet 2128 * is lost (NewReno). This heuristics are the same in NewReno 2129 * and SACK. 2130 * 2131 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2132 * deflation etc. CWND is real congestion window, never inflated, changes 2133 * only according to classic VJ rules. 2134 * 2135 * Really tricky (and requiring careful tuning) part of algorithm 2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2137 * The first determines the moment _when_ we should reduce CWND and, 2138 * hence, slow down forward transmission. In fact, it determines the moment 2139 * when we decide that hole is caused by loss, rather than by a reorder. 2140 * 2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2142 * holes, caused by lost packets. 2143 * 2144 * And the most logically complicated part of algorithm is undo 2145 * heuristics. We detect false retransmits due to both too early 2146 * fast retransmit (reordering) and underestimated RTO, analyzing 2147 * timestamps and D-SACKs. When we detect that some segments were 2148 * retransmitted by mistake and CWND reduction was wrong, we undo 2149 * window reduction and abort recovery phase. This logic is hidden 2150 * inside several functions named tcp_try_undo_<something>. 2151 */ 2152 2153 /* This function decides, when we should leave Disordered state 2154 * and enter Recovery phase, reducing congestion window. 2155 * 2156 * Main question: may we further continue forward transmission 2157 * with the same cwnd? 2158 */ 2159 static bool tcp_time_to_recover(struct sock *sk, int flag) 2160 { 2161 struct tcp_sock *tp = tcp_sk(sk); 2162 __u32 packets_out; 2163 2164 /* Trick#1: The loss is proven. */ 2165 if (tp->lost_out) 2166 return true; 2167 2168 /* Not-A-Trick#2 : Classic rule... */ 2169 if (tcp_dupack_heuristics(tp) > tp->reordering) 2170 return true; 2171 2172 /* Trick#4: It is still not OK... But will it be useful to delay 2173 * recovery more? 2174 */ 2175 packets_out = tp->packets_out; 2176 if (packets_out <= tp->reordering && 2177 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2178 !tcp_may_send_now(sk)) { 2179 /* We have nothing to send. This connection is limited 2180 * either by receiver window or by application. 2181 */ 2182 return true; 2183 } 2184 2185 /* If a thin stream is detected, retransmit after first 2186 * received dupack. Employ only if SACK is supported in order 2187 * to avoid possible corner-case series of spurious retransmissions 2188 * Use only if there are no unsent data. 2189 */ 2190 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2191 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2192 tcp_is_sack(tp) && !tcp_send_head(sk)) 2193 return true; 2194 2195 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2196 * retransmissions due to small network reorderings, we implement 2197 * Mitigation A.3 in the RFC and delay the retransmission for a short 2198 * interval if appropriate. 2199 */ 2200 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2201 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2202 !tcp_may_send_now(sk)) 2203 return !tcp_pause_early_retransmit(sk, flag); 2204 2205 return false; 2206 } 2207 2208 /* Detect loss in event "A" above by marking head of queue up as lost. 2209 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2210 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2211 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2212 * the maximum SACKed segments to pass before reaching this limit. 2213 */ 2214 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2215 { 2216 struct tcp_sock *tp = tcp_sk(sk); 2217 struct sk_buff *skb; 2218 int cnt, oldcnt; 2219 int err; 2220 unsigned int mss; 2221 /* Use SACK to deduce losses of new sequences sent during recovery */ 2222 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2223 2224 WARN_ON(packets > tp->packets_out); 2225 if (tp->lost_skb_hint) { 2226 skb = tp->lost_skb_hint; 2227 cnt = tp->lost_cnt_hint; 2228 /* Head already handled? */ 2229 if (mark_head && skb != tcp_write_queue_head(sk)) 2230 return; 2231 } else { 2232 skb = tcp_write_queue_head(sk); 2233 cnt = 0; 2234 } 2235 2236 tcp_for_write_queue_from(skb, sk) { 2237 if (skb == tcp_send_head(sk)) 2238 break; 2239 /* TODO: do this better */ 2240 /* this is not the most efficient way to do this... */ 2241 tp->lost_skb_hint = skb; 2242 tp->lost_cnt_hint = cnt; 2243 2244 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2245 break; 2246 2247 oldcnt = cnt; 2248 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2249 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2250 cnt += tcp_skb_pcount(skb); 2251 2252 if (cnt > packets) { 2253 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2254 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2255 (oldcnt >= packets)) 2256 break; 2257 2258 mss = skb_shinfo(skb)->gso_size; 2259 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2260 mss, GFP_ATOMIC); 2261 if (err < 0) 2262 break; 2263 cnt = packets; 2264 } 2265 2266 tcp_skb_mark_lost(tp, skb); 2267 2268 if (mark_head) 2269 break; 2270 } 2271 tcp_verify_left_out(tp); 2272 } 2273 2274 /* Account newly detected lost packet(s) */ 2275 2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2277 { 2278 struct tcp_sock *tp = tcp_sk(sk); 2279 2280 if (tcp_is_reno(tp)) { 2281 tcp_mark_head_lost(sk, 1, 1); 2282 } else if (tcp_is_fack(tp)) { 2283 int lost = tp->fackets_out - tp->reordering; 2284 if (lost <= 0) 2285 lost = 1; 2286 tcp_mark_head_lost(sk, lost, 0); 2287 } else { 2288 int sacked_upto = tp->sacked_out - tp->reordering; 2289 if (sacked_upto >= 0) 2290 tcp_mark_head_lost(sk, sacked_upto, 0); 2291 else if (fast_rexmit) 2292 tcp_mark_head_lost(sk, 1, 1); 2293 } 2294 } 2295 2296 /* CWND moderation, preventing bursts due to too big ACKs 2297 * in dubious situations. 2298 */ 2299 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2300 { 2301 tp->snd_cwnd = min(tp->snd_cwnd, 2302 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2303 tp->snd_cwnd_stamp = tcp_time_stamp; 2304 } 2305 2306 /* Nothing was retransmitted or returned timestamp is less 2307 * than timestamp of the first retransmission. 2308 */ 2309 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2310 { 2311 return !tp->retrans_stamp || 2312 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2313 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2314 } 2315 2316 /* Undo procedures. */ 2317 2318 /* We can clear retrans_stamp when there are no retransmissions in the 2319 * window. It would seem that it is trivially available for us in 2320 * tp->retrans_out, however, that kind of assumptions doesn't consider 2321 * what will happen if errors occur when sending retransmission for the 2322 * second time. ...It could the that such segment has only 2323 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2324 * the head skb is enough except for some reneging corner cases that 2325 * are not worth the effort. 2326 * 2327 * Main reason for all this complexity is the fact that connection dying 2328 * time now depends on the validity of the retrans_stamp, in particular, 2329 * that successive retransmissions of a segment must not advance 2330 * retrans_stamp under any conditions. 2331 */ 2332 static bool tcp_any_retrans_done(const struct sock *sk) 2333 { 2334 const struct tcp_sock *tp = tcp_sk(sk); 2335 struct sk_buff *skb; 2336 2337 if (tp->retrans_out) 2338 return true; 2339 2340 skb = tcp_write_queue_head(sk); 2341 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2342 return true; 2343 2344 return false; 2345 } 2346 2347 #if FASTRETRANS_DEBUG > 1 2348 static void DBGUNDO(struct sock *sk, const char *msg) 2349 { 2350 struct tcp_sock *tp = tcp_sk(sk); 2351 struct inet_sock *inet = inet_sk(sk); 2352 2353 if (sk->sk_family == AF_INET) { 2354 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2355 msg, 2356 &inet->inet_daddr, ntohs(inet->inet_dport), 2357 tp->snd_cwnd, tcp_left_out(tp), 2358 tp->snd_ssthresh, tp->prior_ssthresh, 2359 tp->packets_out); 2360 } 2361 #if IS_ENABLED(CONFIG_IPV6) 2362 else if (sk->sk_family == AF_INET6) { 2363 struct ipv6_pinfo *np = inet6_sk(sk); 2364 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2365 msg, 2366 &np->daddr, ntohs(inet->inet_dport), 2367 tp->snd_cwnd, tcp_left_out(tp), 2368 tp->snd_ssthresh, tp->prior_ssthresh, 2369 tp->packets_out); 2370 } 2371 #endif 2372 } 2373 #else 2374 #define DBGUNDO(x...) do { } while (0) 2375 #endif 2376 2377 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2378 { 2379 struct tcp_sock *tp = tcp_sk(sk); 2380 2381 if (unmark_loss) { 2382 struct sk_buff *skb; 2383 2384 tcp_for_write_queue(skb, sk) { 2385 if (skb == tcp_send_head(sk)) 2386 break; 2387 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2388 } 2389 tp->lost_out = 0; 2390 tcp_clear_all_retrans_hints(tp); 2391 } 2392 2393 if (tp->prior_ssthresh) { 2394 const struct inet_connection_sock *icsk = inet_csk(sk); 2395 2396 if (icsk->icsk_ca_ops->undo_cwnd) 2397 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2398 else 2399 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2400 2401 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2402 tp->snd_ssthresh = tp->prior_ssthresh; 2403 tcp_ecn_withdraw_cwr(tp); 2404 } 2405 } else { 2406 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2407 } 2408 tp->snd_cwnd_stamp = tcp_time_stamp; 2409 tp->undo_marker = 0; 2410 } 2411 2412 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2413 { 2414 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2415 } 2416 2417 /* People celebrate: "We love our President!" */ 2418 static bool tcp_try_undo_recovery(struct sock *sk) 2419 { 2420 struct tcp_sock *tp = tcp_sk(sk); 2421 2422 if (tcp_may_undo(tp)) { 2423 int mib_idx; 2424 2425 /* Happy end! We did not retransmit anything 2426 * or our original transmission succeeded. 2427 */ 2428 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2429 tcp_undo_cwnd_reduction(sk, false); 2430 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2431 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2432 else 2433 mib_idx = LINUX_MIB_TCPFULLUNDO; 2434 2435 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2436 } 2437 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2438 /* Hold old state until something *above* high_seq 2439 * is ACKed. For Reno it is MUST to prevent false 2440 * fast retransmits (RFC2582). SACK TCP is safe. */ 2441 tcp_moderate_cwnd(tp); 2442 if (!tcp_any_retrans_done(sk)) 2443 tp->retrans_stamp = 0; 2444 return true; 2445 } 2446 tcp_set_ca_state(sk, TCP_CA_Open); 2447 return false; 2448 } 2449 2450 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2451 static bool tcp_try_undo_dsack(struct sock *sk) 2452 { 2453 struct tcp_sock *tp = tcp_sk(sk); 2454 2455 if (tp->undo_marker && !tp->undo_retrans) { 2456 DBGUNDO(sk, "D-SACK"); 2457 tcp_undo_cwnd_reduction(sk, false); 2458 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2459 return true; 2460 } 2461 return false; 2462 } 2463 2464 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2465 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 2469 if (frto_undo || tcp_may_undo(tp)) { 2470 tcp_undo_cwnd_reduction(sk, true); 2471 2472 DBGUNDO(sk, "partial loss"); 2473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2474 if (frto_undo) 2475 NET_INC_STATS_BH(sock_net(sk), 2476 LINUX_MIB_TCPSPURIOUSRTOS); 2477 inet_csk(sk)->icsk_retransmits = 0; 2478 if (frto_undo || tcp_is_sack(tp)) 2479 tcp_set_ca_state(sk, TCP_CA_Open); 2480 return true; 2481 } 2482 return false; 2483 } 2484 2485 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2486 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2487 * It computes the number of packets to send (sndcnt) based on packets newly 2488 * delivered: 2489 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2490 * cwnd reductions across a full RTT. 2491 * 2) If packets in flight is lower than ssthresh (such as due to excess 2492 * losses and/or application stalls), do not perform any further cwnd 2493 * reductions, but instead slow start up to ssthresh. 2494 */ 2495 static void tcp_init_cwnd_reduction(struct sock *sk) 2496 { 2497 struct tcp_sock *tp = tcp_sk(sk); 2498 2499 tp->high_seq = tp->snd_nxt; 2500 tp->tlp_high_seq = 0; 2501 tp->snd_cwnd_cnt = 0; 2502 tp->prior_cwnd = tp->snd_cwnd; 2503 tp->prr_delivered = 0; 2504 tp->prr_out = 0; 2505 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2506 tcp_ecn_queue_cwr(tp); 2507 } 2508 2509 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2510 int fast_rexmit) 2511 { 2512 struct tcp_sock *tp = tcp_sk(sk); 2513 int sndcnt = 0; 2514 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2515 int newly_acked_sacked = prior_unsacked - 2516 (tp->packets_out - tp->sacked_out); 2517 2518 tp->prr_delivered += newly_acked_sacked; 2519 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2520 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2521 tp->prior_cwnd - 1; 2522 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2523 } else { 2524 sndcnt = min_t(int, delta, 2525 max_t(int, tp->prr_delivered - tp->prr_out, 2526 newly_acked_sacked) + 1); 2527 } 2528 2529 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2530 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2531 } 2532 2533 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 2537 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2538 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2539 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2540 tp->snd_cwnd = tp->snd_ssthresh; 2541 tp->snd_cwnd_stamp = tcp_time_stamp; 2542 } 2543 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2544 } 2545 2546 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2547 void tcp_enter_cwr(struct sock *sk) 2548 { 2549 struct tcp_sock *tp = tcp_sk(sk); 2550 2551 tp->prior_ssthresh = 0; 2552 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2553 tp->undo_marker = 0; 2554 tcp_init_cwnd_reduction(sk); 2555 tcp_set_ca_state(sk, TCP_CA_CWR); 2556 } 2557 } 2558 2559 static void tcp_try_keep_open(struct sock *sk) 2560 { 2561 struct tcp_sock *tp = tcp_sk(sk); 2562 int state = TCP_CA_Open; 2563 2564 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2565 state = TCP_CA_Disorder; 2566 2567 if (inet_csk(sk)->icsk_ca_state != state) { 2568 tcp_set_ca_state(sk, state); 2569 tp->high_seq = tp->snd_nxt; 2570 } 2571 } 2572 2573 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2574 { 2575 struct tcp_sock *tp = tcp_sk(sk); 2576 2577 tcp_verify_left_out(tp); 2578 2579 if (!tcp_any_retrans_done(sk)) 2580 tp->retrans_stamp = 0; 2581 2582 if (flag & FLAG_ECE) 2583 tcp_enter_cwr(sk); 2584 2585 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2586 tcp_try_keep_open(sk); 2587 } else { 2588 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2589 } 2590 } 2591 2592 static void tcp_mtup_probe_failed(struct sock *sk) 2593 { 2594 struct inet_connection_sock *icsk = inet_csk(sk); 2595 2596 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2597 icsk->icsk_mtup.probe_size = 0; 2598 } 2599 2600 static void tcp_mtup_probe_success(struct sock *sk) 2601 { 2602 struct tcp_sock *tp = tcp_sk(sk); 2603 struct inet_connection_sock *icsk = inet_csk(sk); 2604 2605 /* FIXME: breaks with very large cwnd */ 2606 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2607 tp->snd_cwnd = tp->snd_cwnd * 2608 tcp_mss_to_mtu(sk, tp->mss_cache) / 2609 icsk->icsk_mtup.probe_size; 2610 tp->snd_cwnd_cnt = 0; 2611 tp->snd_cwnd_stamp = tcp_time_stamp; 2612 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2613 2614 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2615 icsk->icsk_mtup.probe_size = 0; 2616 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2617 } 2618 2619 /* Do a simple retransmit without using the backoff mechanisms in 2620 * tcp_timer. This is used for path mtu discovery. 2621 * The socket is already locked here. 2622 */ 2623 void tcp_simple_retransmit(struct sock *sk) 2624 { 2625 const struct inet_connection_sock *icsk = inet_csk(sk); 2626 struct tcp_sock *tp = tcp_sk(sk); 2627 struct sk_buff *skb; 2628 unsigned int mss = tcp_current_mss(sk); 2629 u32 prior_lost = tp->lost_out; 2630 2631 tcp_for_write_queue(skb, sk) { 2632 if (skb == tcp_send_head(sk)) 2633 break; 2634 if (tcp_skb_seglen(skb) > mss && 2635 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2636 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2637 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2638 tp->retrans_out -= tcp_skb_pcount(skb); 2639 } 2640 tcp_skb_mark_lost_uncond_verify(tp, skb); 2641 } 2642 } 2643 2644 tcp_clear_retrans_hints_partial(tp); 2645 2646 if (prior_lost == tp->lost_out) 2647 return; 2648 2649 if (tcp_is_reno(tp)) 2650 tcp_limit_reno_sacked(tp); 2651 2652 tcp_verify_left_out(tp); 2653 2654 /* Don't muck with the congestion window here. 2655 * Reason is that we do not increase amount of _data_ 2656 * in network, but units changed and effective 2657 * cwnd/ssthresh really reduced now. 2658 */ 2659 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2660 tp->high_seq = tp->snd_nxt; 2661 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2662 tp->prior_ssthresh = 0; 2663 tp->undo_marker = 0; 2664 tcp_set_ca_state(sk, TCP_CA_Loss); 2665 } 2666 tcp_xmit_retransmit_queue(sk); 2667 } 2668 EXPORT_SYMBOL(tcp_simple_retransmit); 2669 2670 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2671 { 2672 struct tcp_sock *tp = tcp_sk(sk); 2673 int mib_idx; 2674 2675 if (tcp_is_reno(tp)) 2676 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2677 else 2678 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2679 2680 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2681 2682 tp->prior_ssthresh = 0; 2683 tcp_init_undo(tp); 2684 2685 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2686 if (!ece_ack) 2687 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2688 tcp_init_cwnd_reduction(sk); 2689 } 2690 tcp_set_ca_state(sk, TCP_CA_Recovery); 2691 } 2692 2693 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2694 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2695 */ 2696 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2697 { 2698 struct tcp_sock *tp = tcp_sk(sk); 2699 bool recovered = !before(tp->snd_una, tp->high_seq); 2700 2701 if ((flag & FLAG_SND_UNA_ADVANCED) && 2702 tcp_try_undo_loss(sk, false)) 2703 return; 2704 2705 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2706 /* Step 3.b. A timeout is spurious if not all data are 2707 * lost, i.e., never-retransmitted data are (s)acked. 2708 */ 2709 if ((flag & FLAG_ORIG_SACK_ACKED) && 2710 tcp_try_undo_loss(sk, true)) 2711 return; 2712 2713 if (after(tp->snd_nxt, tp->high_seq)) { 2714 if (flag & FLAG_DATA_SACKED || is_dupack) 2715 tp->frto = 0; /* Step 3.a. loss was real */ 2716 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2717 tp->high_seq = tp->snd_nxt; 2718 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2719 TCP_NAGLE_OFF); 2720 if (after(tp->snd_nxt, tp->high_seq)) 2721 return; /* Step 2.b */ 2722 tp->frto = 0; 2723 } 2724 } 2725 2726 if (recovered) { 2727 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2728 tcp_try_undo_recovery(sk); 2729 return; 2730 } 2731 if (tcp_is_reno(tp)) { 2732 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2733 * delivered. Lower inflight to clock out (re)tranmissions. 2734 */ 2735 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2736 tcp_add_reno_sack(sk); 2737 else if (flag & FLAG_SND_UNA_ADVANCED) 2738 tcp_reset_reno_sack(tp); 2739 } 2740 tcp_xmit_retransmit_queue(sk); 2741 } 2742 2743 /* Undo during fast recovery after partial ACK. */ 2744 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2745 const int prior_unsacked) 2746 { 2747 struct tcp_sock *tp = tcp_sk(sk); 2748 2749 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2750 /* Plain luck! Hole if filled with delayed 2751 * packet, rather than with a retransmit. 2752 */ 2753 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2754 2755 /* We are getting evidence that the reordering degree is higher 2756 * than we realized. If there are no retransmits out then we 2757 * can undo. Otherwise we clock out new packets but do not 2758 * mark more packets lost or retransmit more. 2759 */ 2760 if (tp->retrans_out) { 2761 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2762 return true; 2763 } 2764 2765 if (!tcp_any_retrans_done(sk)) 2766 tp->retrans_stamp = 0; 2767 2768 DBGUNDO(sk, "partial recovery"); 2769 tcp_undo_cwnd_reduction(sk, true); 2770 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2771 tcp_try_keep_open(sk); 2772 return true; 2773 } 2774 return false; 2775 } 2776 2777 /* Process an event, which can update packets-in-flight not trivially. 2778 * Main goal of this function is to calculate new estimate for left_out, 2779 * taking into account both packets sitting in receiver's buffer and 2780 * packets lost by network. 2781 * 2782 * Besides that it does CWND reduction, when packet loss is detected 2783 * and changes state of machine. 2784 * 2785 * It does _not_ decide what to send, it is made in function 2786 * tcp_xmit_retransmit_queue(). 2787 */ 2788 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2789 const int prior_unsacked, 2790 bool is_dupack, int flag) 2791 { 2792 struct inet_connection_sock *icsk = inet_csk(sk); 2793 struct tcp_sock *tp = tcp_sk(sk); 2794 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2795 (tcp_fackets_out(tp) > tp->reordering)); 2796 int fast_rexmit = 0; 2797 2798 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2799 tp->sacked_out = 0; 2800 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2801 tp->fackets_out = 0; 2802 2803 /* Now state machine starts. 2804 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2805 if (flag & FLAG_ECE) 2806 tp->prior_ssthresh = 0; 2807 2808 /* B. In all the states check for reneging SACKs. */ 2809 if (tcp_check_sack_reneging(sk, flag)) 2810 return; 2811 2812 /* C. Check consistency of the current state. */ 2813 tcp_verify_left_out(tp); 2814 2815 /* D. Check state exit conditions. State can be terminated 2816 * when high_seq is ACKed. */ 2817 if (icsk->icsk_ca_state == TCP_CA_Open) { 2818 WARN_ON(tp->retrans_out != 0); 2819 tp->retrans_stamp = 0; 2820 } else if (!before(tp->snd_una, tp->high_seq)) { 2821 switch (icsk->icsk_ca_state) { 2822 case TCP_CA_CWR: 2823 /* CWR is to be held something *above* high_seq 2824 * is ACKed for CWR bit to reach receiver. */ 2825 if (tp->snd_una != tp->high_seq) { 2826 tcp_end_cwnd_reduction(sk); 2827 tcp_set_ca_state(sk, TCP_CA_Open); 2828 } 2829 break; 2830 2831 case TCP_CA_Recovery: 2832 if (tcp_is_reno(tp)) 2833 tcp_reset_reno_sack(tp); 2834 if (tcp_try_undo_recovery(sk)) 2835 return; 2836 tcp_end_cwnd_reduction(sk); 2837 break; 2838 } 2839 } 2840 2841 /* E. Process state. */ 2842 switch (icsk->icsk_ca_state) { 2843 case TCP_CA_Recovery: 2844 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2845 if (tcp_is_reno(tp) && is_dupack) 2846 tcp_add_reno_sack(sk); 2847 } else { 2848 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2849 return; 2850 /* Partial ACK arrived. Force fast retransmit. */ 2851 do_lost = tcp_is_reno(tp) || 2852 tcp_fackets_out(tp) > tp->reordering; 2853 } 2854 if (tcp_try_undo_dsack(sk)) { 2855 tcp_try_keep_open(sk); 2856 return; 2857 } 2858 break; 2859 case TCP_CA_Loss: 2860 tcp_process_loss(sk, flag, is_dupack); 2861 if (icsk->icsk_ca_state != TCP_CA_Open) 2862 return; 2863 /* Fall through to processing in Open state. */ 2864 default: 2865 if (tcp_is_reno(tp)) { 2866 if (flag & FLAG_SND_UNA_ADVANCED) 2867 tcp_reset_reno_sack(tp); 2868 if (is_dupack) 2869 tcp_add_reno_sack(sk); 2870 } 2871 2872 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2873 tcp_try_undo_dsack(sk); 2874 2875 if (!tcp_time_to_recover(sk, flag)) { 2876 tcp_try_to_open(sk, flag, prior_unsacked); 2877 return; 2878 } 2879 2880 /* MTU probe failure: don't reduce cwnd */ 2881 if (icsk->icsk_ca_state < TCP_CA_CWR && 2882 icsk->icsk_mtup.probe_size && 2883 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2884 tcp_mtup_probe_failed(sk); 2885 /* Restores the reduction we did in tcp_mtup_probe() */ 2886 tp->snd_cwnd++; 2887 tcp_simple_retransmit(sk); 2888 return; 2889 } 2890 2891 /* Otherwise enter Recovery state */ 2892 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2893 fast_rexmit = 1; 2894 } 2895 2896 if (do_lost) 2897 tcp_update_scoreboard(sk, fast_rexmit); 2898 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2899 tcp_xmit_retransmit_queue(sk); 2900 } 2901 2902 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2903 long seq_rtt_us, long sack_rtt_us) 2904 { 2905 const struct tcp_sock *tp = tcp_sk(sk); 2906 2907 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2908 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2909 * Karn's algorithm forbids taking RTT if some retransmitted data 2910 * is acked (RFC6298). 2911 */ 2912 if (flag & FLAG_RETRANS_DATA_ACKED) 2913 seq_rtt_us = -1L; 2914 2915 if (seq_rtt_us < 0) 2916 seq_rtt_us = sack_rtt_us; 2917 2918 /* RTTM Rule: A TSecr value received in a segment is used to 2919 * update the averaged RTT measurement only if the segment 2920 * acknowledges some new data, i.e., only if it advances the 2921 * left edge of the send window. 2922 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2923 */ 2924 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2925 flag & FLAG_ACKED) 2926 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2927 2928 if (seq_rtt_us < 0) 2929 return false; 2930 2931 tcp_rtt_estimator(sk, seq_rtt_us); 2932 tcp_set_rto(sk); 2933 2934 /* RFC6298: only reset backoff on valid RTT measurement. */ 2935 inet_csk(sk)->icsk_backoff = 0; 2936 return true; 2937 } 2938 2939 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2940 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2941 { 2942 struct tcp_sock *tp = tcp_sk(sk); 2943 long seq_rtt_us = -1L; 2944 2945 if (synack_stamp && !tp->total_retrans) 2946 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2947 2948 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2949 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2950 */ 2951 if (!tp->srtt_us) 2952 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2953 } 2954 2955 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2956 { 2957 const struct inet_connection_sock *icsk = inet_csk(sk); 2958 2959 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2960 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2961 } 2962 2963 /* Restart timer after forward progress on connection. 2964 * RFC2988 recommends to restart timer to now+rto. 2965 */ 2966 void tcp_rearm_rto(struct sock *sk) 2967 { 2968 const struct inet_connection_sock *icsk = inet_csk(sk); 2969 struct tcp_sock *tp = tcp_sk(sk); 2970 2971 /* If the retrans timer is currently being used by Fast Open 2972 * for SYN-ACK retrans purpose, stay put. 2973 */ 2974 if (tp->fastopen_rsk) 2975 return; 2976 2977 if (!tp->packets_out) { 2978 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2979 } else { 2980 u32 rto = inet_csk(sk)->icsk_rto; 2981 /* Offset the time elapsed after installing regular RTO */ 2982 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2983 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2984 struct sk_buff *skb = tcp_write_queue_head(sk); 2985 const u32 rto_time_stamp = 2986 tcp_skb_timestamp(skb) + rto; 2987 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2988 /* delta may not be positive if the socket is locked 2989 * when the retrans timer fires and is rescheduled. 2990 */ 2991 if (delta > 0) 2992 rto = delta; 2993 } 2994 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2995 TCP_RTO_MAX); 2996 } 2997 } 2998 2999 /* This function is called when the delayed ER timer fires. TCP enters 3000 * fast recovery and performs fast-retransmit. 3001 */ 3002 void tcp_resume_early_retransmit(struct sock *sk) 3003 { 3004 struct tcp_sock *tp = tcp_sk(sk); 3005 3006 tcp_rearm_rto(sk); 3007 3008 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3009 if (!tp->do_early_retrans) 3010 return; 3011 3012 tcp_enter_recovery(sk, false); 3013 tcp_update_scoreboard(sk, 1); 3014 tcp_xmit_retransmit_queue(sk); 3015 } 3016 3017 /* If we get here, the whole TSO packet has not been acked. */ 3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3019 { 3020 struct tcp_sock *tp = tcp_sk(sk); 3021 u32 packets_acked; 3022 3023 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3024 3025 packets_acked = tcp_skb_pcount(skb); 3026 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3027 return 0; 3028 packets_acked -= tcp_skb_pcount(skb); 3029 3030 if (packets_acked) { 3031 BUG_ON(tcp_skb_pcount(skb) == 0); 3032 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3033 } 3034 3035 return packets_acked; 3036 } 3037 3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3039 u32 prior_snd_una) 3040 { 3041 const struct skb_shared_info *shinfo; 3042 3043 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3044 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) 3045 return; 3046 3047 shinfo = skb_shinfo(skb); 3048 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3049 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) 3050 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3051 } 3052 3053 /* Remove acknowledged frames from the retransmission queue. If our packet 3054 * is before the ack sequence we can discard it as it's confirmed to have 3055 * arrived at the other end. 3056 */ 3057 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3058 u32 prior_snd_una, long sack_rtt_us) 3059 { 3060 const struct inet_connection_sock *icsk = inet_csk(sk); 3061 struct skb_mstamp first_ackt, last_ackt, now; 3062 struct tcp_sock *tp = tcp_sk(sk); 3063 u32 prior_sacked = tp->sacked_out; 3064 u32 reord = tp->packets_out; 3065 bool fully_acked = true; 3066 long ca_seq_rtt_us = -1L; 3067 long seq_rtt_us = -1L; 3068 struct sk_buff *skb; 3069 u32 pkts_acked = 0; 3070 bool rtt_update; 3071 int flag = 0; 3072 3073 first_ackt.v64 = 0; 3074 3075 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3076 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3077 u8 sacked = scb->sacked; 3078 u32 acked_pcount; 3079 3080 tcp_ack_tstamp(sk, skb, prior_snd_una); 3081 3082 /* Determine how many packets and what bytes were acked, tso and else */ 3083 if (after(scb->end_seq, tp->snd_una)) { 3084 if (tcp_skb_pcount(skb) == 1 || 3085 !after(tp->snd_una, scb->seq)) 3086 break; 3087 3088 acked_pcount = tcp_tso_acked(sk, skb); 3089 if (!acked_pcount) 3090 break; 3091 3092 fully_acked = false; 3093 } else { 3094 /* Speedup tcp_unlink_write_queue() and next loop */ 3095 prefetchw(skb->next); 3096 acked_pcount = tcp_skb_pcount(skb); 3097 } 3098 3099 if (unlikely(sacked & TCPCB_RETRANS)) { 3100 if (sacked & TCPCB_SACKED_RETRANS) 3101 tp->retrans_out -= acked_pcount; 3102 flag |= FLAG_RETRANS_DATA_ACKED; 3103 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3104 last_ackt = skb->skb_mstamp; 3105 WARN_ON_ONCE(last_ackt.v64 == 0); 3106 if (!first_ackt.v64) 3107 first_ackt = last_ackt; 3108 3109 reord = min(pkts_acked, reord); 3110 if (!after(scb->end_seq, tp->high_seq)) 3111 flag |= FLAG_ORIG_SACK_ACKED; 3112 } 3113 3114 if (sacked & TCPCB_SACKED_ACKED) 3115 tp->sacked_out -= acked_pcount; 3116 if (sacked & TCPCB_LOST) 3117 tp->lost_out -= acked_pcount; 3118 3119 tp->packets_out -= acked_pcount; 3120 pkts_acked += acked_pcount; 3121 3122 /* Initial outgoing SYN's get put onto the write_queue 3123 * just like anything else we transmit. It is not 3124 * true data, and if we misinform our callers that 3125 * this ACK acks real data, we will erroneously exit 3126 * connection startup slow start one packet too 3127 * quickly. This is severely frowned upon behavior. 3128 */ 3129 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3130 flag |= FLAG_DATA_ACKED; 3131 } else { 3132 flag |= FLAG_SYN_ACKED; 3133 tp->retrans_stamp = 0; 3134 } 3135 3136 if (!fully_acked) 3137 break; 3138 3139 tcp_unlink_write_queue(skb, sk); 3140 sk_wmem_free_skb(sk, skb); 3141 if (unlikely(skb == tp->retransmit_skb_hint)) 3142 tp->retransmit_skb_hint = NULL; 3143 if (unlikely(skb == tp->lost_skb_hint)) 3144 tp->lost_skb_hint = NULL; 3145 } 3146 3147 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3148 tp->snd_up = tp->snd_una; 3149 3150 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3151 flag |= FLAG_SACK_RENEGING; 3152 3153 skb_mstamp_get(&now); 3154 if (likely(first_ackt.v64)) { 3155 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3156 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3157 } 3158 3159 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3160 3161 if (flag & FLAG_ACKED) { 3162 const struct tcp_congestion_ops *ca_ops 3163 = inet_csk(sk)->icsk_ca_ops; 3164 3165 tcp_rearm_rto(sk); 3166 if (unlikely(icsk->icsk_mtup.probe_size && 3167 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3168 tcp_mtup_probe_success(sk); 3169 } 3170 3171 if (tcp_is_reno(tp)) { 3172 tcp_remove_reno_sacks(sk, pkts_acked); 3173 } else { 3174 int delta; 3175 3176 /* Non-retransmitted hole got filled? That's reordering */ 3177 if (reord < prior_fackets) 3178 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3179 3180 delta = tcp_is_fack(tp) ? pkts_acked : 3181 prior_sacked - tp->sacked_out; 3182 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3183 } 3184 3185 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3186 3187 if (ca_ops->pkts_acked) { 3188 long rtt_us = min_t(ulong, ca_seq_rtt_us, sack_rtt_us); 3189 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3190 } 3191 3192 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3193 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3194 /* Do not re-arm RTO if the sack RTT is measured from data sent 3195 * after when the head was last (re)transmitted. Otherwise the 3196 * timeout may continue to extend in loss recovery. 3197 */ 3198 tcp_rearm_rto(sk); 3199 } 3200 3201 #if FASTRETRANS_DEBUG > 0 3202 WARN_ON((int)tp->sacked_out < 0); 3203 WARN_ON((int)tp->lost_out < 0); 3204 WARN_ON((int)tp->retrans_out < 0); 3205 if (!tp->packets_out && tcp_is_sack(tp)) { 3206 icsk = inet_csk(sk); 3207 if (tp->lost_out) { 3208 pr_debug("Leak l=%u %d\n", 3209 tp->lost_out, icsk->icsk_ca_state); 3210 tp->lost_out = 0; 3211 } 3212 if (tp->sacked_out) { 3213 pr_debug("Leak s=%u %d\n", 3214 tp->sacked_out, icsk->icsk_ca_state); 3215 tp->sacked_out = 0; 3216 } 3217 if (tp->retrans_out) { 3218 pr_debug("Leak r=%u %d\n", 3219 tp->retrans_out, icsk->icsk_ca_state); 3220 tp->retrans_out = 0; 3221 } 3222 } 3223 #endif 3224 return flag; 3225 } 3226 3227 static void tcp_ack_probe(struct sock *sk) 3228 { 3229 const struct tcp_sock *tp = tcp_sk(sk); 3230 struct inet_connection_sock *icsk = inet_csk(sk); 3231 3232 /* Was it a usable window open? */ 3233 3234 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3235 icsk->icsk_backoff = 0; 3236 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3237 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3238 * This function is not for random using! 3239 */ 3240 } else { 3241 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 3242 3243 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3244 when, TCP_RTO_MAX); 3245 } 3246 } 3247 3248 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3249 { 3250 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3251 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3252 } 3253 3254 /* Decide wheather to run the increase function of congestion control. */ 3255 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3256 { 3257 if (tcp_in_cwnd_reduction(sk)) 3258 return false; 3259 3260 /* If reordering is high then always grow cwnd whenever data is 3261 * delivered regardless of its ordering. Otherwise stay conservative 3262 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3263 * new SACK or ECE mark may first advance cwnd here and later reduce 3264 * cwnd in tcp_fastretrans_alert() based on more states. 3265 */ 3266 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3267 return flag & FLAG_FORWARD_PROGRESS; 3268 3269 return flag & FLAG_DATA_ACKED; 3270 } 3271 3272 /* Check that window update is acceptable. 3273 * The function assumes that snd_una<=ack<=snd_next. 3274 */ 3275 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3276 const u32 ack, const u32 ack_seq, 3277 const u32 nwin) 3278 { 3279 return after(ack, tp->snd_una) || 3280 after(ack_seq, tp->snd_wl1) || 3281 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3282 } 3283 3284 /* If we update tp->snd_una, also update tp->bytes_acked */ 3285 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3286 { 3287 u32 delta = ack - tp->snd_una; 3288 3289 u64_stats_update_begin(&tp->syncp); 3290 tp->bytes_acked += delta; 3291 u64_stats_update_end(&tp->syncp); 3292 tp->snd_una = ack; 3293 } 3294 3295 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3296 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3297 { 3298 u32 delta = seq - tp->rcv_nxt; 3299 3300 u64_stats_update_begin(&tp->syncp); 3301 tp->bytes_received += delta; 3302 u64_stats_update_end(&tp->syncp); 3303 tp->rcv_nxt = seq; 3304 } 3305 3306 /* Update our send window. 3307 * 3308 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3309 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3310 */ 3311 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3312 u32 ack_seq) 3313 { 3314 struct tcp_sock *tp = tcp_sk(sk); 3315 int flag = 0; 3316 u32 nwin = ntohs(tcp_hdr(skb)->window); 3317 3318 if (likely(!tcp_hdr(skb)->syn)) 3319 nwin <<= tp->rx_opt.snd_wscale; 3320 3321 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3322 flag |= FLAG_WIN_UPDATE; 3323 tcp_update_wl(tp, ack_seq); 3324 3325 if (tp->snd_wnd != nwin) { 3326 tp->snd_wnd = nwin; 3327 3328 /* Note, it is the only place, where 3329 * fast path is recovered for sending TCP. 3330 */ 3331 tp->pred_flags = 0; 3332 tcp_fast_path_check(sk); 3333 3334 if (nwin > tp->max_window) { 3335 tp->max_window = nwin; 3336 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3337 } 3338 } 3339 } 3340 3341 tcp_snd_una_update(tp, ack); 3342 3343 return flag; 3344 } 3345 3346 /* Return true if we're currently rate-limiting out-of-window ACKs and 3347 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3348 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3349 * attacks that send repeated SYNs or ACKs for the same connection. To 3350 * do this, we do not send a duplicate SYNACK or ACK if the remote 3351 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3352 */ 3353 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3354 int mib_idx, u32 *last_oow_ack_time) 3355 { 3356 /* Data packets without SYNs are not likely part of an ACK loop. */ 3357 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3358 !tcp_hdr(skb)->syn) 3359 goto not_rate_limited; 3360 3361 if (*last_oow_ack_time) { 3362 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3363 3364 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3365 NET_INC_STATS_BH(net, mib_idx); 3366 return true; /* rate-limited: don't send yet! */ 3367 } 3368 } 3369 3370 *last_oow_ack_time = tcp_time_stamp; 3371 3372 not_rate_limited: 3373 return false; /* not rate-limited: go ahead, send dupack now! */ 3374 } 3375 3376 /* RFC 5961 7 [ACK Throttling] */ 3377 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3378 { 3379 /* unprotected vars, we dont care of overwrites */ 3380 static u32 challenge_timestamp; 3381 static unsigned int challenge_count; 3382 struct tcp_sock *tp = tcp_sk(sk); 3383 u32 now; 3384 3385 /* First check our per-socket dupack rate limit. */ 3386 if (tcp_oow_rate_limited(sock_net(sk), skb, 3387 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3388 &tp->last_oow_ack_time)) 3389 return; 3390 3391 /* Then check the check host-wide RFC 5961 rate limit. */ 3392 now = jiffies / HZ; 3393 if (now != challenge_timestamp) { 3394 challenge_timestamp = now; 3395 challenge_count = 0; 3396 } 3397 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3398 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3399 tcp_send_ack(sk); 3400 } 3401 } 3402 3403 static void tcp_store_ts_recent(struct tcp_sock *tp) 3404 { 3405 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3406 tp->rx_opt.ts_recent_stamp = get_seconds(); 3407 } 3408 3409 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3410 { 3411 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3412 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3413 * extra check below makes sure this can only happen 3414 * for pure ACK frames. -DaveM 3415 * 3416 * Not only, also it occurs for expired timestamps. 3417 */ 3418 3419 if (tcp_paws_check(&tp->rx_opt, 0)) 3420 tcp_store_ts_recent(tp); 3421 } 3422 } 3423 3424 /* This routine deals with acks during a TLP episode. 3425 * We mark the end of a TLP episode on receiving TLP dupack or when 3426 * ack is after tlp_high_seq. 3427 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3428 */ 3429 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3430 { 3431 struct tcp_sock *tp = tcp_sk(sk); 3432 3433 if (before(ack, tp->tlp_high_seq)) 3434 return; 3435 3436 if (flag & FLAG_DSACKING_ACK) { 3437 /* This DSACK means original and TLP probe arrived; no loss */ 3438 tp->tlp_high_seq = 0; 3439 } else if (after(ack, tp->tlp_high_seq)) { 3440 /* ACK advances: there was a loss, so reduce cwnd. Reset 3441 * tlp_high_seq in tcp_init_cwnd_reduction() 3442 */ 3443 tcp_init_cwnd_reduction(sk); 3444 tcp_set_ca_state(sk, TCP_CA_CWR); 3445 tcp_end_cwnd_reduction(sk); 3446 tcp_try_keep_open(sk); 3447 NET_INC_STATS_BH(sock_net(sk), 3448 LINUX_MIB_TCPLOSSPROBERECOVERY); 3449 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3450 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3451 /* Pure dupack: original and TLP probe arrived; no loss */ 3452 tp->tlp_high_seq = 0; 3453 } 3454 } 3455 3456 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3457 { 3458 const struct inet_connection_sock *icsk = inet_csk(sk); 3459 3460 if (icsk->icsk_ca_ops->in_ack_event) 3461 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3462 } 3463 3464 /* This routine deals with incoming acks, but not outgoing ones. */ 3465 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3466 { 3467 struct inet_connection_sock *icsk = inet_csk(sk); 3468 struct tcp_sock *tp = tcp_sk(sk); 3469 u32 prior_snd_una = tp->snd_una; 3470 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3471 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3472 bool is_dupack = false; 3473 u32 prior_fackets; 3474 int prior_packets = tp->packets_out; 3475 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3476 int acked = 0; /* Number of packets newly acked */ 3477 long sack_rtt_us = -1L; 3478 3479 /* We very likely will need to access write queue head. */ 3480 prefetchw(sk->sk_write_queue.next); 3481 3482 /* If the ack is older than previous acks 3483 * then we can probably ignore it. 3484 */ 3485 if (before(ack, prior_snd_una)) { 3486 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3487 if (before(ack, prior_snd_una - tp->max_window)) { 3488 tcp_send_challenge_ack(sk, skb); 3489 return -1; 3490 } 3491 goto old_ack; 3492 } 3493 3494 /* If the ack includes data we haven't sent yet, discard 3495 * this segment (RFC793 Section 3.9). 3496 */ 3497 if (after(ack, tp->snd_nxt)) 3498 goto invalid_ack; 3499 3500 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3501 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3502 tcp_rearm_rto(sk); 3503 3504 if (after(ack, prior_snd_una)) { 3505 flag |= FLAG_SND_UNA_ADVANCED; 3506 icsk->icsk_retransmits = 0; 3507 } 3508 3509 prior_fackets = tp->fackets_out; 3510 3511 /* ts_recent update must be made after we are sure that the packet 3512 * is in window. 3513 */ 3514 if (flag & FLAG_UPDATE_TS_RECENT) 3515 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3516 3517 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3518 /* Window is constant, pure forward advance. 3519 * No more checks are required. 3520 * Note, we use the fact that SND.UNA>=SND.WL2. 3521 */ 3522 tcp_update_wl(tp, ack_seq); 3523 tcp_snd_una_update(tp, ack); 3524 flag |= FLAG_WIN_UPDATE; 3525 3526 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3527 3528 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3529 } else { 3530 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3531 3532 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3533 flag |= FLAG_DATA; 3534 else 3535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3536 3537 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3538 3539 if (TCP_SKB_CB(skb)->sacked) 3540 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3541 &sack_rtt_us); 3542 3543 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3544 flag |= FLAG_ECE; 3545 ack_ev_flags |= CA_ACK_ECE; 3546 } 3547 3548 if (flag & FLAG_WIN_UPDATE) 3549 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3550 3551 tcp_in_ack_event(sk, ack_ev_flags); 3552 } 3553 3554 /* We passed data and got it acked, remove any soft error 3555 * log. Something worked... 3556 */ 3557 sk->sk_err_soft = 0; 3558 icsk->icsk_probes_out = 0; 3559 tp->rcv_tstamp = tcp_time_stamp; 3560 if (!prior_packets) 3561 goto no_queue; 3562 3563 /* See if we can take anything off of the retransmit queue. */ 3564 acked = tp->packets_out; 3565 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3566 sack_rtt_us); 3567 acked -= tp->packets_out; 3568 3569 /* Advance cwnd if state allows */ 3570 if (tcp_may_raise_cwnd(sk, flag)) 3571 tcp_cong_avoid(sk, ack, acked); 3572 3573 if (tcp_ack_is_dubious(sk, flag)) { 3574 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3575 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3576 is_dupack, flag); 3577 } 3578 if (tp->tlp_high_seq) 3579 tcp_process_tlp_ack(sk, ack, flag); 3580 3581 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3582 struct dst_entry *dst = __sk_dst_get(sk); 3583 if (dst) 3584 dst_confirm(dst); 3585 } 3586 3587 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3588 tcp_schedule_loss_probe(sk); 3589 tcp_update_pacing_rate(sk); 3590 return 1; 3591 3592 no_queue: 3593 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3594 if (flag & FLAG_DSACKING_ACK) 3595 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3596 is_dupack, flag); 3597 /* If this ack opens up a zero window, clear backoff. It was 3598 * being used to time the probes, and is probably far higher than 3599 * it needs to be for normal retransmission. 3600 */ 3601 if (tcp_send_head(sk)) 3602 tcp_ack_probe(sk); 3603 3604 if (tp->tlp_high_seq) 3605 tcp_process_tlp_ack(sk, ack, flag); 3606 return 1; 3607 3608 invalid_ack: 3609 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3610 return -1; 3611 3612 old_ack: 3613 /* If data was SACKed, tag it and see if we should send more data. 3614 * If data was DSACKed, see if we can undo a cwnd reduction. 3615 */ 3616 if (TCP_SKB_CB(skb)->sacked) { 3617 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3618 &sack_rtt_us); 3619 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3620 is_dupack, flag); 3621 } 3622 3623 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3624 return 0; 3625 } 3626 3627 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3628 bool syn, struct tcp_fastopen_cookie *foc, 3629 bool exp_opt) 3630 { 3631 /* Valid only in SYN or SYN-ACK with an even length. */ 3632 if (!foc || !syn || len < 0 || (len & 1)) 3633 return; 3634 3635 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3636 len <= TCP_FASTOPEN_COOKIE_MAX) 3637 memcpy(foc->val, cookie, len); 3638 else if (len != 0) 3639 len = -1; 3640 foc->len = len; 3641 foc->exp = exp_opt; 3642 } 3643 3644 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3645 * But, this can also be called on packets in the established flow when 3646 * the fast version below fails. 3647 */ 3648 void tcp_parse_options(const struct sk_buff *skb, 3649 struct tcp_options_received *opt_rx, int estab, 3650 struct tcp_fastopen_cookie *foc) 3651 { 3652 const unsigned char *ptr; 3653 const struct tcphdr *th = tcp_hdr(skb); 3654 int length = (th->doff * 4) - sizeof(struct tcphdr); 3655 3656 ptr = (const unsigned char *)(th + 1); 3657 opt_rx->saw_tstamp = 0; 3658 3659 while (length > 0) { 3660 int opcode = *ptr++; 3661 int opsize; 3662 3663 switch (opcode) { 3664 case TCPOPT_EOL: 3665 return; 3666 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3667 length--; 3668 continue; 3669 default: 3670 opsize = *ptr++; 3671 if (opsize < 2) /* "silly options" */ 3672 return; 3673 if (opsize > length) 3674 return; /* don't parse partial options */ 3675 switch (opcode) { 3676 case TCPOPT_MSS: 3677 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3678 u16 in_mss = get_unaligned_be16(ptr); 3679 if (in_mss) { 3680 if (opt_rx->user_mss && 3681 opt_rx->user_mss < in_mss) 3682 in_mss = opt_rx->user_mss; 3683 opt_rx->mss_clamp = in_mss; 3684 } 3685 } 3686 break; 3687 case TCPOPT_WINDOW: 3688 if (opsize == TCPOLEN_WINDOW && th->syn && 3689 !estab && sysctl_tcp_window_scaling) { 3690 __u8 snd_wscale = *(__u8 *)ptr; 3691 opt_rx->wscale_ok = 1; 3692 if (snd_wscale > 14) { 3693 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3694 __func__, 3695 snd_wscale); 3696 snd_wscale = 14; 3697 } 3698 opt_rx->snd_wscale = snd_wscale; 3699 } 3700 break; 3701 case TCPOPT_TIMESTAMP: 3702 if ((opsize == TCPOLEN_TIMESTAMP) && 3703 ((estab && opt_rx->tstamp_ok) || 3704 (!estab && sysctl_tcp_timestamps))) { 3705 opt_rx->saw_tstamp = 1; 3706 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3707 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3708 } 3709 break; 3710 case TCPOPT_SACK_PERM: 3711 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3712 !estab && sysctl_tcp_sack) { 3713 opt_rx->sack_ok = TCP_SACK_SEEN; 3714 tcp_sack_reset(opt_rx); 3715 } 3716 break; 3717 3718 case TCPOPT_SACK: 3719 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3720 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3721 opt_rx->sack_ok) { 3722 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3723 } 3724 break; 3725 #ifdef CONFIG_TCP_MD5SIG 3726 case TCPOPT_MD5SIG: 3727 /* 3728 * The MD5 Hash has already been 3729 * checked (see tcp_v{4,6}_do_rcv()). 3730 */ 3731 break; 3732 #endif 3733 case TCPOPT_FASTOPEN: 3734 tcp_parse_fastopen_option( 3735 opsize - TCPOLEN_FASTOPEN_BASE, 3736 ptr, th->syn, foc, false); 3737 break; 3738 3739 case TCPOPT_EXP: 3740 /* Fast Open option shares code 254 using a 3741 * 16 bits magic number. 3742 */ 3743 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3744 get_unaligned_be16(ptr) == 3745 TCPOPT_FASTOPEN_MAGIC) 3746 tcp_parse_fastopen_option(opsize - 3747 TCPOLEN_EXP_FASTOPEN_BASE, 3748 ptr + 2, th->syn, foc, true); 3749 break; 3750 3751 } 3752 ptr += opsize-2; 3753 length -= opsize; 3754 } 3755 } 3756 } 3757 EXPORT_SYMBOL(tcp_parse_options); 3758 3759 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3760 { 3761 const __be32 *ptr = (const __be32 *)(th + 1); 3762 3763 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3764 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3765 tp->rx_opt.saw_tstamp = 1; 3766 ++ptr; 3767 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3768 ++ptr; 3769 if (*ptr) 3770 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3771 else 3772 tp->rx_opt.rcv_tsecr = 0; 3773 return true; 3774 } 3775 return false; 3776 } 3777 3778 /* Fast parse options. This hopes to only see timestamps. 3779 * If it is wrong it falls back on tcp_parse_options(). 3780 */ 3781 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3782 const struct tcphdr *th, struct tcp_sock *tp) 3783 { 3784 /* In the spirit of fast parsing, compare doff directly to constant 3785 * values. Because equality is used, short doff can be ignored here. 3786 */ 3787 if (th->doff == (sizeof(*th) / 4)) { 3788 tp->rx_opt.saw_tstamp = 0; 3789 return false; 3790 } else if (tp->rx_opt.tstamp_ok && 3791 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3792 if (tcp_parse_aligned_timestamp(tp, th)) 3793 return true; 3794 } 3795 3796 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3797 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3798 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3799 3800 return true; 3801 } 3802 3803 #ifdef CONFIG_TCP_MD5SIG 3804 /* 3805 * Parse MD5 Signature option 3806 */ 3807 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3808 { 3809 int length = (th->doff << 2) - sizeof(*th); 3810 const u8 *ptr = (const u8 *)(th + 1); 3811 3812 /* If the TCP option is too short, we can short cut */ 3813 if (length < TCPOLEN_MD5SIG) 3814 return NULL; 3815 3816 while (length > 0) { 3817 int opcode = *ptr++; 3818 int opsize; 3819 3820 switch (opcode) { 3821 case TCPOPT_EOL: 3822 return NULL; 3823 case TCPOPT_NOP: 3824 length--; 3825 continue; 3826 default: 3827 opsize = *ptr++; 3828 if (opsize < 2 || opsize > length) 3829 return NULL; 3830 if (opcode == TCPOPT_MD5SIG) 3831 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3832 } 3833 ptr += opsize - 2; 3834 length -= opsize; 3835 } 3836 return NULL; 3837 } 3838 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3839 #endif 3840 3841 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3842 * 3843 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3844 * it can pass through stack. So, the following predicate verifies that 3845 * this segment is not used for anything but congestion avoidance or 3846 * fast retransmit. Moreover, we even are able to eliminate most of such 3847 * second order effects, if we apply some small "replay" window (~RTO) 3848 * to timestamp space. 3849 * 3850 * All these measures still do not guarantee that we reject wrapped ACKs 3851 * on networks with high bandwidth, when sequence space is recycled fastly, 3852 * but it guarantees that such events will be very rare and do not affect 3853 * connection seriously. This doesn't look nice, but alas, PAWS is really 3854 * buggy extension. 3855 * 3856 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3857 * states that events when retransmit arrives after original data are rare. 3858 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3859 * the biggest problem on large power networks even with minor reordering. 3860 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3861 * up to bandwidth of 18Gigabit/sec. 8) ] 3862 */ 3863 3864 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3865 { 3866 const struct tcp_sock *tp = tcp_sk(sk); 3867 const struct tcphdr *th = tcp_hdr(skb); 3868 u32 seq = TCP_SKB_CB(skb)->seq; 3869 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3870 3871 return (/* 1. Pure ACK with correct sequence number. */ 3872 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3873 3874 /* 2. ... and duplicate ACK. */ 3875 ack == tp->snd_una && 3876 3877 /* 3. ... and does not update window. */ 3878 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3879 3880 /* 4. ... and sits in replay window. */ 3881 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3882 } 3883 3884 static inline bool tcp_paws_discard(const struct sock *sk, 3885 const struct sk_buff *skb) 3886 { 3887 const struct tcp_sock *tp = tcp_sk(sk); 3888 3889 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3890 !tcp_disordered_ack(sk, skb); 3891 } 3892 3893 /* Check segment sequence number for validity. 3894 * 3895 * Segment controls are considered valid, if the segment 3896 * fits to the window after truncation to the window. Acceptability 3897 * of data (and SYN, FIN, of course) is checked separately. 3898 * See tcp_data_queue(), for example. 3899 * 3900 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3901 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3902 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3903 * (borrowed from freebsd) 3904 */ 3905 3906 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3907 { 3908 return !before(end_seq, tp->rcv_wup) && 3909 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3910 } 3911 3912 /* When we get a reset we do this. */ 3913 void tcp_reset(struct sock *sk) 3914 { 3915 /* We want the right error as BSD sees it (and indeed as we do). */ 3916 switch (sk->sk_state) { 3917 case TCP_SYN_SENT: 3918 sk->sk_err = ECONNREFUSED; 3919 break; 3920 case TCP_CLOSE_WAIT: 3921 sk->sk_err = EPIPE; 3922 break; 3923 case TCP_CLOSE: 3924 return; 3925 default: 3926 sk->sk_err = ECONNRESET; 3927 } 3928 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3929 smp_wmb(); 3930 3931 if (!sock_flag(sk, SOCK_DEAD)) 3932 sk->sk_error_report(sk); 3933 3934 tcp_done(sk); 3935 } 3936 3937 /* 3938 * Process the FIN bit. This now behaves as it is supposed to work 3939 * and the FIN takes effect when it is validly part of sequence 3940 * space. Not before when we get holes. 3941 * 3942 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3943 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3944 * TIME-WAIT) 3945 * 3946 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3947 * close and we go into CLOSING (and later onto TIME-WAIT) 3948 * 3949 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3950 */ 3951 static void tcp_fin(struct sock *sk) 3952 { 3953 struct tcp_sock *tp = tcp_sk(sk); 3954 const struct dst_entry *dst; 3955 3956 inet_csk_schedule_ack(sk); 3957 3958 sk->sk_shutdown |= RCV_SHUTDOWN; 3959 sock_set_flag(sk, SOCK_DONE); 3960 3961 switch (sk->sk_state) { 3962 case TCP_SYN_RECV: 3963 case TCP_ESTABLISHED: 3964 /* Move to CLOSE_WAIT */ 3965 tcp_set_state(sk, TCP_CLOSE_WAIT); 3966 dst = __sk_dst_get(sk); 3967 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3968 inet_csk(sk)->icsk_ack.pingpong = 1; 3969 break; 3970 3971 case TCP_CLOSE_WAIT: 3972 case TCP_CLOSING: 3973 /* Received a retransmission of the FIN, do 3974 * nothing. 3975 */ 3976 break; 3977 case TCP_LAST_ACK: 3978 /* RFC793: Remain in the LAST-ACK state. */ 3979 break; 3980 3981 case TCP_FIN_WAIT1: 3982 /* This case occurs when a simultaneous close 3983 * happens, we must ack the received FIN and 3984 * enter the CLOSING state. 3985 */ 3986 tcp_send_ack(sk); 3987 tcp_set_state(sk, TCP_CLOSING); 3988 break; 3989 case TCP_FIN_WAIT2: 3990 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3991 tcp_send_ack(sk); 3992 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3993 break; 3994 default: 3995 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3996 * cases we should never reach this piece of code. 3997 */ 3998 pr_err("%s: Impossible, sk->sk_state=%d\n", 3999 __func__, sk->sk_state); 4000 break; 4001 } 4002 4003 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4004 * Probably, we should reset in this case. For now drop them. 4005 */ 4006 __skb_queue_purge(&tp->out_of_order_queue); 4007 if (tcp_is_sack(tp)) 4008 tcp_sack_reset(&tp->rx_opt); 4009 sk_mem_reclaim(sk); 4010 4011 if (!sock_flag(sk, SOCK_DEAD)) { 4012 sk->sk_state_change(sk); 4013 4014 /* Do not send POLL_HUP for half duplex close. */ 4015 if (sk->sk_shutdown == SHUTDOWN_MASK || 4016 sk->sk_state == TCP_CLOSE) 4017 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4018 else 4019 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4020 } 4021 } 4022 4023 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4024 u32 end_seq) 4025 { 4026 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4027 if (before(seq, sp->start_seq)) 4028 sp->start_seq = seq; 4029 if (after(end_seq, sp->end_seq)) 4030 sp->end_seq = end_seq; 4031 return true; 4032 } 4033 return false; 4034 } 4035 4036 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4037 { 4038 struct tcp_sock *tp = tcp_sk(sk); 4039 4040 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4041 int mib_idx; 4042 4043 if (before(seq, tp->rcv_nxt)) 4044 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4045 else 4046 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4047 4048 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4049 4050 tp->rx_opt.dsack = 1; 4051 tp->duplicate_sack[0].start_seq = seq; 4052 tp->duplicate_sack[0].end_seq = end_seq; 4053 } 4054 } 4055 4056 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4057 { 4058 struct tcp_sock *tp = tcp_sk(sk); 4059 4060 if (!tp->rx_opt.dsack) 4061 tcp_dsack_set(sk, seq, end_seq); 4062 else 4063 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4064 } 4065 4066 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4067 { 4068 struct tcp_sock *tp = tcp_sk(sk); 4069 4070 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4071 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4072 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4073 tcp_enter_quickack_mode(sk); 4074 4075 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4076 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4077 4078 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4079 end_seq = tp->rcv_nxt; 4080 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4081 } 4082 } 4083 4084 tcp_send_ack(sk); 4085 } 4086 4087 /* These routines update the SACK block as out-of-order packets arrive or 4088 * in-order packets close up the sequence space. 4089 */ 4090 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4091 { 4092 int this_sack; 4093 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4094 struct tcp_sack_block *swalk = sp + 1; 4095 4096 /* See if the recent change to the first SACK eats into 4097 * or hits the sequence space of other SACK blocks, if so coalesce. 4098 */ 4099 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4100 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4101 int i; 4102 4103 /* Zap SWALK, by moving every further SACK up by one slot. 4104 * Decrease num_sacks. 4105 */ 4106 tp->rx_opt.num_sacks--; 4107 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4108 sp[i] = sp[i + 1]; 4109 continue; 4110 } 4111 this_sack++, swalk++; 4112 } 4113 } 4114 4115 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4116 { 4117 struct tcp_sock *tp = tcp_sk(sk); 4118 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4119 int cur_sacks = tp->rx_opt.num_sacks; 4120 int this_sack; 4121 4122 if (!cur_sacks) 4123 goto new_sack; 4124 4125 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4126 if (tcp_sack_extend(sp, seq, end_seq)) { 4127 /* Rotate this_sack to the first one. */ 4128 for (; this_sack > 0; this_sack--, sp--) 4129 swap(*sp, *(sp - 1)); 4130 if (cur_sacks > 1) 4131 tcp_sack_maybe_coalesce(tp); 4132 return; 4133 } 4134 } 4135 4136 /* Could not find an adjacent existing SACK, build a new one, 4137 * put it at the front, and shift everyone else down. We 4138 * always know there is at least one SACK present already here. 4139 * 4140 * If the sack array is full, forget about the last one. 4141 */ 4142 if (this_sack >= TCP_NUM_SACKS) { 4143 this_sack--; 4144 tp->rx_opt.num_sacks--; 4145 sp--; 4146 } 4147 for (; this_sack > 0; this_sack--, sp--) 4148 *sp = *(sp - 1); 4149 4150 new_sack: 4151 /* Build the new head SACK, and we're done. */ 4152 sp->start_seq = seq; 4153 sp->end_seq = end_seq; 4154 tp->rx_opt.num_sacks++; 4155 } 4156 4157 /* RCV.NXT advances, some SACKs should be eaten. */ 4158 4159 static void tcp_sack_remove(struct tcp_sock *tp) 4160 { 4161 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4162 int num_sacks = tp->rx_opt.num_sacks; 4163 int this_sack; 4164 4165 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4166 if (skb_queue_empty(&tp->out_of_order_queue)) { 4167 tp->rx_opt.num_sacks = 0; 4168 return; 4169 } 4170 4171 for (this_sack = 0; this_sack < num_sacks;) { 4172 /* Check if the start of the sack is covered by RCV.NXT. */ 4173 if (!before(tp->rcv_nxt, sp->start_seq)) { 4174 int i; 4175 4176 /* RCV.NXT must cover all the block! */ 4177 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4178 4179 /* Zap this SACK, by moving forward any other SACKS. */ 4180 for (i = this_sack+1; i < num_sacks; i++) 4181 tp->selective_acks[i-1] = tp->selective_acks[i]; 4182 num_sacks--; 4183 continue; 4184 } 4185 this_sack++; 4186 sp++; 4187 } 4188 tp->rx_opt.num_sacks = num_sacks; 4189 } 4190 4191 /** 4192 * tcp_try_coalesce - try to merge skb to prior one 4193 * @sk: socket 4194 * @to: prior buffer 4195 * @from: buffer to add in queue 4196 * @fragstolen: pointer to boolean 4197 * 4198 * Before queueing skb @from after @to, try to merge them 4199 * to reduce overall memory use and queue lengths, if cost is small. 4200 * Packets in ofo or receive queues can stay a long time. 4201 * Better try to coalesce them right now to avoid future collapses. 4202 * Returns true if caller should free @from instead of queueing it 4203 */ 4204 static bool tcp_try_coalesce(struct sock *sk, 4205 struct sk_buff *to, 4206 struct sk_buff *from, 4207 bool *fragstolen) 4208 { 4209 int delta; 4210 4211 *fragstolen = false; 4212 4213 /* Its possible this segment overlaps with prior segment in queue */ 4214 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4215 return false; 4216 4217 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4218 return false; 4219 4220 atomic_add(delta, &sk->sk_rmem_alloc); 4221 sk_mem_charge(sk, delta); 4222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4223 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4224 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4225 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4226 return true; 4227 } 4228 4229 /* This one checks to see if we can put data from the 4230 * out_of_order queue into the receive_queue. 4231 */ 4232 static void tcp_ofo_queue(struct sock *sk) 4233 { 4234 struct tcp_sock *tp = tcp_sk(sk); 4235 __u32 dsack_high = tp->rcv_nxt; 4236 struct sk_buff *skb, *tail; 4237 bool fragstolen, eaten; 4238 4239 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4240 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4241 break; 4242 4243 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4244 __u32 dsack = dsack_high; 4245 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4246 dsack_high = TCP_SKB_CB(skb)->end_seq; 4247 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4248 } 4249 4250 __skb_unlink(skb, &tp->out_of_order_queue); 4251 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4252 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4253 __kfree_skb(skb); 4254 continue; 4255 } 4256 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4257 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4258 TCP_SKB_CB(skb)->end_seq); 4259 4260 tail = skb_peek_tail(&sk->sk_receive_queue); 4261 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4262 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4263 if (!eaten) 4264 __skb_queue_tail(&sk->sk_receive_queue, skb); 4265 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4266 tcp_fin(sk); 4267 if (eaten) 4268 kfree_skb_partial(skb, fragstolen); 4269 } 4270 } 4271 4272 static bool tcp_prune_ofo_queue(struct sock *sk); 4273 static int tcp_prune_queue(struct sock *sk); 4274 4275 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4276 unsigned int size) 4277 { 4278 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4279 !sk_rmem_schedule(sk, skb, size)) { 4280 4281 if (tcp_prune_queue(sk) < 0) 4282 return -1; 4283 4284 if (!sk_rmem_schedule(sk, skb, size)) { 4285 if (!tcp_prune_ofo_queue(sk)) 4286 return -1; 4287 4288 if (!sk_rmem_schedule(sk, skb, size)) 4289 return -1; 4290 } 4291 } 4292 return 0; 4293 } 4294 4295 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4296 { 4297 struct tcp_sock *tp = tcp_sk(sk); 4298 struct sk_buff *skb1; 4299 u32 seq, end_seq; 4300 4301 tcp_ecn_check_ce(tp, skb); 4302 4303 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4304 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4305 __kfree_skb(skb); 4306 return; 4307 } 4308 4309 /* Disable header prediction. */ 4310 tp->pred_flags = 0; 4311 inet_csk_schedule_ack(sk); 4312 4313 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4314 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4315 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4316 4317 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4318 if (!skb1) { 4319 /* Initial out of order segment, build 1 SACK. */ 4320 if (tcp_is_sack(tp)) { 4321 tp->rx_opt.num_sacks = 1; 4322 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4323 tp->selective_acks[0].end_seq = 4324 TCP_SKB_CB(skb)->end_seq; 4325 } 4326 __skb_queue_head(&tp->out_of_order_queue, skb); 4327 goto end; 4328 } 4329 4330 seq = TCP_SKB_CB(skb)->seq; 4331 end_seq = TCP_SKB_CB(skb)->end_seq; 4332 4333 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4334 bool fragstolen; 4335 4336 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4337 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4338 } else { 4339 tcp_grow_window(sk, skb); 4340 kfree_skb_partial(skb, fragstolen); 4341 skb = NULL; 4342 } 4343 4344 if (!tp->rx_opt.num_sacks || 4345 tp->selective_acks[0].end_seq != seq) 4346 goto add_sack; 4347 4348 /* Common case: data arrive in order after hole. */ 4349 tp->selective_acks[0].end_seq = end_seq; 4350 goto end; 4351 } 4352 4353 /* Find place to insert this segment. */ 4354 while (1) { 4355 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4356 break; 4357 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4358 skb1 = NULL; 4359 break; 4360 } 4361 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4362 } 4363 4364 /* Do skb overlap to previous one? */ 4365 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4366 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4367 /* All the bits are present. Drop. */ 4368 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4369 __kfree_skb(skb); 4370 skb = NULL; 4371 tcp_dsack_set(sk, seq, end_seq); 4372 goto add_sack; 4373 } 4374 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4375 /* Partial overlap. */ 4376 tcp_dsack_set(sk, seq, 4377 TCP_SKB_CB(skb1)->end_seq); 4378 } else { 4379 if (skb_queue_is_first(&tp->out_of_order_queue, 4380 skb1)) 4381 skb1 = NULL; 4382 else 4383 skb1 = skb_queue_prev( 4384 &tp->out_of_order_queue, 4385 skb1); 4386 } 4387 } 4388 if (!skb1) 4389 __skb_queue_head(&tp->out_of_order_queue, skb); 4390 else 4391 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4392 4393 /* And clean segments covered by new one as whole. */ 4394 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4395 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4396 4397 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4398 break; 4399 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4400 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4401 end_seq); 4402 break; 4403 } 4404 __skb_unlink(skb1, &tp->out_of_order_queue); 4405 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4406 TCP_SKB_CB(skb1)->end_seq); 4407 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4408 __kfree_skb(skb1); 4409 } 4410 4411 add_sack: 4412 if (tcp_is_sack(tp)) 4413 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4414 end: 4415 if (skb) { 4416 tcp_grow_window(sk, skb); 4417 skb_set_owner_r(skb, sk); 4418 } 4419 } 4420 4421 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4422 bool *fragstolen) 4423 { 4424 int eaten; 4425 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4426 4427 __skb_pull(skb, hdrlen); 4428 eaten = (tail && 4429 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4430 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4431 if (!eaten) { 4432 __skb_queue_tail(&sk->sk_receive_queue, skb); 4433 skb_set_owner_r(skb, sk); 4434 } 4435 return eaten; 4436 } 4437 4438 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4439 { 4440 struct sk_buff *skb; 4441 bool fragstolen; 4442 4443 if (size == 0) 4444 return 0; 4445 4446 skb = alloc_skb(size, sk->sk_allocation); 4447 if (!skb) 4448 goto err; 4449 4450 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4451 goto err_free; 4452 4453 if (memcpy_from_msg(skb_put(skb, size), msg, size)) 4454 goto err_free; 4455 4456 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4457 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4458 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4459 4460 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4461 WARN_ON_ONCE(fragstolen); /* should not happen */ 4462 __kfree_skb(skb); 4463 } 4464 return size; 4465 4466 err_free: 4467 kfree_skb(skb); 4468 err: 4469 return -ENOMEM; 4470 } 4471 4472 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4473 { 4474 struct tcp_sock *tp = tcp_sk(sk); 4475 int eaten = -1; 4476 bool fragstolen = false; 4477 4478 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4479 goto drop; 4480 4481 skb_dst_drop(skb); 4482 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4483 4484 tcp_ecn_accept_cwr(tp, skb); 4485 4486 tp->rx_opt.dsack = 0; 4487 4488 /* Queue data for delivery to the user. 4489 * Packets in sequence go to the receive queue. 4490 * Out of sequence packets to the out_of_order_queue. 4491 */ 4492 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4493 if (tcp_receive_window(tp) == 0) 4494 goto out_of_window; 4495 4496 /* Ok. In sequence. In window. */ 4497 if (tp->ucopy.task == current && 4498 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4499 sock_owned_by_user(sk) && !tp->urg_data) { 4500 int chunk = min_t(unsigned int, skb->len, 4501 tp->ucopy.len); 4502 4503 __set_current_state(TASK_RUNNING); 4504 4505 local_bh_enable(); 4506 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4507 tp->ucopy.len -= chunk; 4508 tp->copied_seq += chunk; 4509 eaten = (chunk == skb->len); 4510 tcp_rcv_space_adjust(sk); 4511 } 4512 local_bh_disable(); 4513 } 4514 4515 if (eaten <= 0) { 4516 queue_and_out: 4517 if (eaten < 0 && 4518 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4519 goto drop; 4520 4521 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4522 } 4523 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4524 if (skb->len) 4525 tcp_event_data_recv(sk, skb); 4526 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4527 tcp_fin(sk); 4528 4529 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4530 tcp_ofo_queue(sk); 4531 4532 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4533 * gap in queue is filled. 4534 */ 4535 if (skb_queue_empty(&tp->out_of_order_queue)) 4536 inet_csk(sk)->icsk_ack.pingpong = 0; 4537 } 4538 4539 if (tp->rx_opt.num_sacks) 4540 tcp_sack_remove(tp); 4541 4542 tcp_fast_path_check(sk); 4543 4544 if (eaten > 0) 4545 kfree_skb_partial(skb, fragstolen); 4546 if (!sock_flag(sk, SOCK_DEAD)) 4547 sk->sk_data_ready(sk); 4548 return; 4549 } 4550 4551 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4552 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4553 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4554 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4555 4556 out_of_window: 4557 tcp_enter_quickack_mode(sk); 4558 inet_csk_schedule_ack(sk); 4559 drop: 4560 __kfree_skb(skb); 4561 return; 4562 } 4563 4564 /* Out of window. F.e. zero window probe. */ 4565 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4566 goto out_of_window; 4567 4568 tcp_enter_quickack_mode(sk); 4569 4570 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4571 /* Partial packet, seq < rcv_next < end_seq */ 4572 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4573 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4574 TCP_SKB_CB(skb)->end_seq); 4575 4576 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4577 4578 /* If window is closed, drop tail of packet. But after 4579 * remembering D-SACK for its head made in previous line. 4580 */ 4581 if (!tcp_receive_window(tp)) 4582 goto out_of_window; 4583 goto queue_and_out; 4584 } 4585 4586 tcp_data_queue_ofo(sk, skb); 4587 } 4588 4589 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4590 struct sk_buff_head *list) 4591 { 4592 struct sk_buff *next = NULL; 4593 4594 if (!skb_queue_is_last(list, skb)) 4595 next = skb_queue_next(list, skb); 4596 4597 __skb_unlink(skb, list); 4598 __kfree_skb(skb); 4599 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4600 4601 return next; 4602 } 4603 4604 /* Collapse contiguous sequence of skbs head..tail with 4605 * sequence numbers start..end. 4606 * 4607 * If tail is NULL, this means until the end of the list. 4608 * 4609 * Segments with FIN/SYN are not collapsed (only because this 4610 * simplifies code) 4611 */ 4612 static void 4613 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4614 struct sk_buff *head, struct sk_buff *tail, 4615 u32 start, u32 end) 4616 { 4617 struct sk_buff *skb, *n; 4618 bool end_of_skbs; 4619 4620 /* First, check that queue is collapsible and find 4621 * the point where collapsing can be useful. */ 4622 skb = head; 4623 restart: 4624 end_of_skbs = true; 4625 skb_queue_walk_from_safe(list, skb, n) { 4626 if (skb == tail) 4627 break; 4628 /* No new bits? It is possible on ofo queue. */ 4629 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4630 skb = tcp_collapse_one(sk, skb, list); 4631 if (!skb) 4632 break; 4633 goto restart; 4634 } 4635 4636 /* The first skb to collapse is: 4637 * - not SYN/FIN and 4638 * - bloated or contains data before "start" or 4639 * overlaps to the next one. 4640 */ 4641 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4642 (tcp_win_from_space(skb->truesize) > skb->len || 4643 before(TCP_SKB_CB(skb)->seq, start))) { 4644 end_of_skbs = false; 4645 break; 4646 } 4647 4648 if (!skb_queue_is_last(list, skb)) { 4649 struct sk_buff *next = skb_queue_next(list, skb); 4650 if (next != tail && 4651 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4652 end_of_skbs = false; 4653 break; 4654 } 4655 } 4656 4657 /* Decided to skip this, advance start seq. */ 4658 start = TCP_SKB_CB(skb)->end_seq; 4659 } 4660 if (end_of_skbs || 4661 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4662 return; 4663 4664 while (before(start, end)) { 4665 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4666 struct sk_buff *nskb; 4667 4668 nskb = alloc_skb(copy, GFP_ATOMIC); 4669 if (!nskb) 4670 return; 4671 4672 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4673 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4674 __skb_queue_before(list, skb, nskb); 4675 skb_set_owner_r(nskb, sk); 4676 4677 /* Copy data, releasing collapsed skbs. */ 4678 while (copy > 0) { 4679 int offset = start - TCP_SKB_CB(skb)->seq; 4680 int size = TCP_SKB_CB(skb)->end_seq - start; 4681 4682 BUG_ON(offset < 0); 4683 if (size > 0) { 4684 size = min(copy, size); 4685 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4686 BUG(); 4687 TCP_SKB_CB(nskb)->end_seq += size; 4688 copy -= size; 4689 start += size; 4690 } 4691 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4692 skb = tcp_collapse_one(sk, skb, list); 4693 if (!skb || 4694 skb == tail || 4695 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4696 return; 4697 } 4698 } 4699 } 4700 } 4701 4702 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4703 * and tcp_collapse() them until all the queue is collapsed. 4704 */ 4705 static void tcp_collapse_ofo_queue(struct sock *sk) 4706 { 4707 struct tcp_sock *tp = tcp_sk(sk); 4708 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4709 struct sk_buff *head; 4710 u32 start, end; 4711 4712 if (!skb) 4713 return; 4714 4715 start = TCP_SKB_CB(skb)->seq; 4716 end = TCP_SKB_CB(skb)->end_seq; 4717 head = skb; 4718 4719 for (;;) { 4720 struct sk_buff *next = NULL; 4721 4722 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4723 next = skb_queue_next(&tp->out_of_order_queue, skb); 4724 skb = next; 4725 4726 /* Segment is terminated when we see gap or when 4727 * we are at the end of all the queue. */ 4728 if (!skb || 4729 after(TCP_SKB_CB(skb)->seq, end) || 4730 before(TCP_SKB_CB(skb)->end_seq, start)) { 4731 tcp_collapse(sk, &tp->out_of_order_queue, 4732 head, skb, start, end); 4733 head = skb; 4734 if (!skb) 4735 break; 4736 /* Start new segment */ 4737 start = TCP_SKB_CB(skb)->seq; 4738 end = TCP_SKB_CB(skb)->end_seq; 4739 } else { 4740 if (before(TCP_SKB_CB(skb)->seq, start)) 4741 start = TCP_SKB_CB(skb)->seq; 4742 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4743 end = TCP_SKB_CB(skb)->end_seq; 4744 } 4745 } 4746 } 4747 4748 /* 4749 * Purge the out-of-order queue. 4750 * Return true if queue was pruned. 4751 */ 4752 static bool tcp_prune_ofo_queue(struct sock *sk) 4753 { 4754 struct tcp_sock *tp = tcp_sk(sk); 4755 bool res = false; 4756 4757 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4758 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4759 __skb_queue_purge(&tp->out_of_order_queue); 4760 4761 /* Reset SACK state. A conforming SACK implementation will 4762 * do the same at a timeout based retransmit. When a connection 4763 * is in a sad state like this, we care only about integrity 4764 * of the connection not performance. 4765 */ 4766 if (tp->rx_opt.sack_ok) 4767 tcp_sack_reset(&tp->rx_opt); 4768 sk_mem_reclaim(sk); 4769 res = true; 4770 } 4771 return res; 4772 } 4773 4774 /* Reduce allocated memory if we can, trying to get 4775 * the socket within its memory limits again. 4776 * 4777 * Return less than zero if we should start dropping frames 4778 * until the socket owning process reads some of the data 4779 * to stabilize the situation. 4780 */ 4781 static int tcp_prune_queue(struct sock *sk) 4782 { 4783 struct tcp_sock *tp = tcp_sk(sk); 4784 4785 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4786 4787 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4788 4789 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4790 tcp_clamp_window(sk); 4791 else if (sk_under_memory_pressure(sk)) 4792 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4793 4794 tcp_collapse_ofo_queue(sk); 4795 if (!skb_queue_empty(&sk->sk_receive_queue)) 4796 tcp_collapse(sk, &sk->sk_receive_queue, 4797 skb_peek(&sk->sk_receive_queue), 4798 NULL, 4799 tp->copied_seq, tp->rcv_nxt); 4800 sk_mem_reclaim(sk); 4801 4802 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4803 return 0; 4804 4805 /* Collapsing did not help, destructive actions follow. 4806 * This must not ever occur. */ 4807 4808 tcp_prune_ofo_queue(sk); 4809 4810 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4811 return 0; 4812 4813 /* If we are really being abused, tell the caller to silently 4814 * drop receive data on the floor. It will get retransmitted 4815 * and hopefully then we'll have sufficient space. 4816 */ 4817 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4818 4819 /* Massive buffer overcommit. */ 4820 tp->pred_flags = 0; 4821 return -1; 4822 } 4823 4824 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4825 { 4826 const struct tcp_sock *tp = tcp_sk(sk); 4827 4828 /* If the user specified a specific send buffer setting, do 4829 * not modify it. 4830 */ 4831 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4832 return false; 4833 4834 /* If we are under global TCP memory pressure, do not expand. */ 4835 if (sk_under_memory_pressure(sk)) 4836 return false; 4837 4838 /* If we are under soft global TCP memory pressure, do not expand. */ 4839 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4840 return false; 4841 4842 /* If we filled the congestion window, do not expand. */ 4843 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4844 return false; 4845 4846 return true; 4847 } 4848 4849 /* When incoming ACK allowed to free some skb from write_queue, 4850 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4851 * on the exit from tcp input handler. 4852 * 4853 * PROBLEM: sndbuf expansion does not work well with largesend. 4854 */ 4855 static void tcp_new_space(struct sock *sk) 4856 { 4857 struct tcp_sock *tp = tcp_sk(sk); 4858 4859 if (tcp_should_expand_sndbuf(sk)) { 4860 tcp_sndbuf_expand(sk); 4861 tp->snd_cwnd_stamp = tcp_time_stamp; 4862 } 4863 4864 sk->sk_write_space(sk); 4865 } 4866 4867 static void tcp_check_space(struct sock *sk) 4868 { 4869 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4870 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4871 /* pairs with tcp_poll() */ 4872 smp_mb__after_atomic(); 4873 if (sk->sk_socket && 4874 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4875 tcp_new_space(sk); 4876 } 4877 } 4878 4879 static inline void tcp_data_snd_check(struct sock *sk) 4880 { 4881 tcp_push_pending_frames(sk); 4882 tcp_check_space(sk); 4883 } 4884 4885 /* 4886 * Check if sending an ack is needed. 4887 */ 4888 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4889 { 4890 struct tcp_sock *tp = tcp_sk(sk); 4891 4892 /* More than one full frame received... */ 4893 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4894 /* ... and right edge of window advances far enough. 4895 * (tcp_recvmsg() will send ACK otherwise). Or... 4896 */ 4897 __tcp_select_window(sk) >= tp->rcv_wnd) || 4898 /* We ACK each frame or... */ 4899 tcp_in_quickack_mode(sk) || 4900 /* We have out of order data. */ 4901 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4902 /* Then ack it now */ 4903 tcp_send_ack(sk); 4904 } else { 4905 /* Else, send delayed ack. */ 4906 tcp_send_delayed_ack(sk); 4907 } 4908 } 4909 4910 static inline void tcp_ack_snd_check(struct sock *sk) 4911 { 4912 if (!inet_csk_ack_scheduled(sk)) { 4913 /* We sent a data segment already. */ 4914 return; 4915 } 4916 __tcp_ack_snd_check(sk, 1); 4917 } 4918 4919 /* 4920 * This routine is only called when we have urgent data 4921 * signaled. Its the 'slow' part of tcp_urg. It could be 4922 * moved inline now as tcp_urg is only called from one 4923 * place. We handle URGent data wrong. We have to - as 4924 * BSD still doesn't use the correction from RFC961. 4925 * For 1003.1g we should support a new option TCP_STDURG to permit 4926 * either form (or just set the sysctl tcp_stdurg). 4927 */ 4928 4929 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4930 { 4931 struct tcp_sock *tp = tcp_sk(sk); 4932 u32 ptr = ntohs(th->urg_ptr); 4933 4934 if (ptr && !sysctl_tcp_stdurg) 4935 ptr--; 4936 ptr += ntohl(th->seq); 4937 4938 /* Ignore urgent data that we've already seen and read. */ 4939 if (after(tp->copied_seq, ptr)) 4940 return; 4941 4942 /* Do not replay urg ptr. 4943 * 4944 * NOTE: interesting situation not covered by specs. 4945 * Misbehaving sender may send urg ptr, pointing to segment, 4946 * which we already have in ofo queue. We are not able to fetch 4947 * such data and will stay in TCP_URG_NOTYET until will be eaten 4948 * by recvmsg(). Seems, we are not obliged to handle such wicked 4949 * situations. But it is worth to think about possibility of some 4950 * DoSes using some hypothetical application level deadlock. 4951 */ 4952 if (before(ptr, tp->rcv_nxt)) 4953 return; 4954 4955 /* Do we already have a newer (or duplicate) urgent pointer? */ 4956 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4957 return; 4958 4959 /* Tell the world about our new urgent pointer. */ 4960 sk_send_sigurg(sk); 4961 4962 /* We may be adding urgent data when the last byte read was 4963 * urgent. To do this requires some care. We cannot just ignore 4964 * tp->copied_seq since we would read the last urgent byte again 4965 * as data, nor can we alter copied_seq until this data arrives 4966 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4967 * 4968 * NOTE. Double Dutch. Rendering to plain English: author of comment 4969 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4970 * and expect that both A and B disappear from stream. This is _wrong_. 4971 * Though this happens in BSD with high probability, this is occasional. 4972 * Any application relying on this is buggy. Note also, that fix "works" 4973 * only in this artificial test. Insert some normal data between A and B and we will 4974 * decline of BSD again. Verdict: it is better to remove to trap 4975 * buggy users. 4976 */ 4977 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4978 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4979 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4980 tp->copied_seq++; 4981 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4982 __skb_unlink(skb, &sk->sk_receive_queue); 4983 __kfree_skb(skb); 4984 } 4985 } 4986 4987 tp->urg_data = TCP_URG_NOTYET; 4988 tp->urg_seq = ptr; 4989 4990 /* Disable header prediction. */ 4991 tp->pred_flags = 0; 4992 } 4993 4994 /* This is the 'fast' part of urgent handling. */ 4995 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4996 { 4997 struct tcp_sock *tp = tcp_sk(sk); 4998 4999 /* Check if we get a new urgent pointer - normally not. */ 5000 if (th->urg) 5001 tcp_check_urg(sk, th); 5002 5003 /* Do we wait for any urgent data? - normally not... */ 5004 if (tp->urg_data == TCP_URG_NOTYET) { 5005 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5006 th->syn; 5007 5008 /* Is the urgent pointer pointing into this packet? */ 5009 if (ptr < skb->len) { 5010 u8 tmp; 5011 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5012 BUG(); 5013 tp->urg_data = TCP_URG_VALID | tmp; 5014 if (!sock_flag(sk, SOCK_DEAD)) 5015 sk->sk_data_ready(sk); 5016 } 5017 } 5018 } 5019 5020 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5021 { 5022 struct tcp_sock *tp = tcp_sk(sk); 5023 int chunk = skb->len - hlen; 5024 int err; 5025 5026 local_bh_enable(); 5027 if (skb_csum_unnecessary(skb)) 5028 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5029 else 5030 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5031 5032 if (!err) { 5033 tp->ucopy.len -= chunk; 5034 tp->copied_seq += chunk; 5035 tcp_rcv_space_adjust(sk); 5036 } 5037 5038 local_bh_disable(); 5039 return err; 5040 } 5041 5042 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5043 struct sk_buff *skb) 5044 { 5045 __sum16 result; 5046 5047 if (sock_owned_by_user(sk)) { 5048 local_bh_enable(); 5049 result = __tcp_checksum_complete(skb); 5050 local_bh_disable(); 5051 } else { 5052 result = __tcp_checksum_complete(skb); 5053 } 5054 return result; 5055 } 5056 5057 static inline bool tcp_checksum_complete_user(struct sock *sk, 5058 struct sk_buff *skb) 5059 { 5060 return !skb_csum_unnecessary(skb) && 5061 __tcp_checksum_complete_user(sk, skb); 5062 } 5063 5064 /* Does PAWS and seqno based validation of an incoming segment, flags will 5065 * play significant role here. 5066 */ 5067 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5068 const struct tcphdr *th, int syn_inerr) 5069 { 5070 struct tcp_sock *tp = tcp_sk(sk); 5071 5072 /* RFC1323: H1. Apply PAWS check first. */ 5073 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5074 tcp_paws_discard(sk, skb)) { 5075 if (!th->rst) { 5076 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5077 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5078 LINUX_MIB_TCPACKSKIPPEDPAWS, 5079 &tp->last_oow_ack_time)) 5080 tcp_send_dupack(sk, skb); 5081 goto discard; 5082 } 5083 /* Reset is accepted even if it did not pass PAWS. */ 5084 } 5085 5086 /* Step 1: check sequence number */ 5087 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5088 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5089 * (RST) segments are validated by checking their SEQ-fields." 5090 * And page 69: "If an incoming segment is not acceptable, 5091 * an acknowledgment should be sent in reply (unless the RST 5092 * bit is set, if so drop the segment and return)". 5093 */ 5094 if (!th->rst) { 5095 if (th->syn) 5096 goto syn_challenge; 5097 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5098 LINUX_MIB_TCPACKSKIPPEDSEQ, 5099 &tp->last_oow_ack_time)) 5100 tcp_send_dupack(sk, skb); 5101 } 5102 goto discard; 5103 } 5104 5105 /* Step 2: check RST bit */ 5106 if (th->rst) { 5107 /* RFC 5961 3.2 : 5108 * If sequence number exactly matches RCV.NXT, then 5109 * RESET the connection 5110 * else 5111 * Send a challenge ACK 5112 */ 5113 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5114 tcp_reset(sk); 5115 else 5116 tcp_send_challenge_ack(sk, skb); 5117 goto discard; 5118 } 5119 5120 /* step 3: check security and precedence [ignored] */ 5121 5122 /* step 4: Check for a SYN 5123 * RFC 5961 4.2 : Send a challenge ack 5124 */ 5125 if (th->syn) { 5126 syn_challenge: 5127 if (syn_inerr) 5128 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5129 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5130 tcp_send_challenge_ack(sk, skb); 5131 goto discard; 5132 } 5133 5134 return true; 5135 5136 discard: 5137 __kfree_skb(skb); 5138 return false; 5139 } 5140 5141 /* 5142 * TCP receive function for the ESTABLISHED state. 5143 * 5144 * It is split into a fast path and a slow path. The fast path is 5145 * disabled when: 5146 * - A zero window was announced from us - zero window probing 5147 * is only handled properly in the slow path. 5148 * - Out of order segments arrived. 5149 * - Urgent data is expected. 5150 * - There is no buffer space left 5151 * - Unexpected TCP flags/window values/header lengths are received 5152 * (detected by checking the TCP header against pred_flags) 5153 * - Data is sent in both directions. Fast path only supports pure senders 5154 * or pure receivers (this means either the sequence number or the ack 5155 * value must stay constant) 5156 * - Unexpected TCP option. 5157 * 5158 * When these conditions are not satisfied it drops into a standard 5159 * receive procedure patterned after RFC793 to handle all cases. 5160 * The first three cases are guaranteed by proper pred_flags setting, 5161 * the rest is checked inline. Fast processing is turned on in 5162 * tcp_data_queue when everything is OK. 5163 */ 5164 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5165 const struct tcphdr *th, unsigned int len) 5166 { 5167 struct tcp_sock *tp = tcp_sk(sk); 5168 5169 if (unlikely(!sk->sk_rx_dst)) 5170 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5171 /* 5172 * Header prediction. 5173 * The code loosely follows the one in the famous 5174 * "30 instruction TCP receive" Van Jacobson mail. 5175 * 5176 * Van's trick is to deposit buffers into socket queue 5177 * on a device interrupt, to call tcp_recv function 5178 * on the receive process context and checksum and copy 5179 * the buffer to user space. smart... 5180 * 5181 * Our current scheme is not silly either but we take the 5182 * extra cost of the net_bh soft interrupt processing... 5183 * We do checksum and copy also but from device to kernel. 5184 */ 5185 5186 tp->rx_opt.saw_tstamp = 0; 5187 5188 /* pred_flags is 0xS?10 << 16 + snd_wnd 5189 * if header_prediction is to be made 5190 * 'S' will always be tp->tcp_header_len >> 2 5191 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5192 * turn it off (when there are holes in the receive 5193 * space for instance) 5194 * PSH flag is ignored. 5195 */ 5196 5197 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5198 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5199 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5200 int tcp_header_len = tp->tcp_header_len; 5201 5202 /* Timestamp header prediction: tcp_header_len 5203 * is automatically equal to th->doff*4 due to pred_flags 5204 * match. 5205 */ 5206 5207 /* Check timestamp */ 5208 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5209 /* No? Slow path! */ 5210 if (!tcp_parse_aligned_timestamp(tp, th)) 5211 goto slow_path; 5212 5213 /* If PAWS failed, check it more carefully in slow path */ 5214 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5215 goto slow_path; 5216 5217 /* DO NOT update ts_recent here, if checksum fails 5218 * and timestamp was corrupted part, it will result 5219 * in a hung connection since we will drop all 5220 * future packets due to the PAWS test. 5221 */ 5222 } 5223 5224 if (len <= tcp_header_len) { 5225 /* Bulk data transfer: sender */ 5226 if (len == tcp_header_len) { 5227 /* Predicted packet is in window by definition. 5228 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5229 * Hence, check seq<=rcv_wup reduces to: 5230 */ 5231 if (tcp_header_len == 5232 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5233 tp->rcv_nxt == tp->rcv_wup) 5234 tcp_store_ts_recent(tp); 5235 5236 /* We know that such packets are checksummed 5237 * on entry. 5238 */ 5239 tcp_ack(sk, skb, 0); 5240 __kfree_skb(skb); 5241 tcp_data_snd_check(sk); 5242 return; 5243 } else { /* Header too small */ 5244 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5245 goto discard; 5246 } 5247 } else { 5248 int eaten = 0; 5249 bool fragstolen = false; 5250 5251 if (tp->ucopy.task == current && 5252 tp->copied_seq == tp->rcv_nxt && 5253 len - tcp_header_len <= tp->ucopy.len && 5254 sock_owned_by_user(sk)) { 5255 __set_current_state(TASK_RUNNING); 5256 5257 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5258 /* Predicted packet is in window by definition. 5259 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5260 * Hence, check seq<=rcv_wup reduces to: 5261 */ 5262 if (tcp_header_len == 5263 (sizeof(struct tcphdr) + 5264 TCPOLEN_TSTAMP_ALIGNED) && 5265 tp->rcv_nxt == tp->rcv_wup) 5266 tcp_store_ts_recent(tp); 5267 5268 tcp_rcv_rtt_measure_ts(sk, skb); 5269 5270 __skb_pull(skb, tcp_header_len); 5271 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5272 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5273 eaten = 1; 5274 } 5275 } 5276 if (!eaten) { 5277 if (tcp_checksum_complete_user(sk, skb)) 5278 goto csum_error; 5279 5280 if ((int)skb->truesize > sk->sk_forward_alloc) 5281 goto step5; 5282 5283 /* Predicted packet is in window by definition. 5284 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5285 * Hence, check seq<=rcv_wup reduces to: 5286 */ 5287 if (tcp_header_len == 5288 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5289 tp->rcv_nxt == tp->rcv_wup) 5290 tcp_store_ts_recent(tp); 5291 5292 tcp_rcv_rtt_measure_ts(sk, skb); 5293 5294 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5295 5296 /* Bulk data transfer: receiver */ 5297 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5298 &fragstolen); 5299 } 5300 5301 tcp_event_data_recv(sk, skb); 5302 5303 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5304 /* Well, only one small jumplet in fast path... */ 5305 tcp_ack(sk, skb, FLAG_DATA); 5306 tcp_data_snd_check(sk); 5307 if (!inet_csk_ack_scheduled(sk)) 5308 goto no_ack; 5309 } 5310 5311 __tcp_ack_snd_check(sk, 0); 5312 no_ack: 5313 if (eaten) 5314 kfree_skb_partial(skb, fragstolen); 5315 sk->sk_data_ready(sk); 5316 return; 5317 } 5318 } 5319 5320 slow_path: 5321 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5322 goto csum_error; 5323 5324 if (!th->ack && !th->rst && !th->syn) 5325 goto discard; 5326 5327 /* 5328 * Standard slow path. 5329 */ 5330 5331 if (!tcp_validate_incoming(sk, skb, th, 1)) 5332 return; 5333 5334 step5: 5335 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5336 goto discard; 5337 5338 tcp_rcv_rtt_measure_ts(sk, skb); 5339 5340 /* Process urgent data. */ 5341 tcp_urg(sk, skb, th); 5342 5343 /* step 7: process the segment text */ 5344 tcp_data_queue(sk, skb); 5345 5346 tcp_data_snd_check(sk); 5347 tcp_ack_snd_check(sk); 5348 return; 5349 5350 csum_error: 5351 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5352 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5353 5354 discard: 5355 __kfree_skb(skb); 5356 } 5357 EXPORT_SYMBOL(tcp_rcv_established); 5358 5359 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5360 { 5361 struct tcp_sock *tp = tcp_sk(sk); 5362 struct inet_connection_sock *icsk = inet_csk(sk); 5363 5364 tcp_set_state(sk, TCP_ESTABLISHED); 5365 5366 if (skb) { 5367 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5368 security_inet_conn_established(sk, skb); 5369 } 5370 5371 /* Make sure socket is routed, for correct metrics. */ 5372 icsk->icsk_af_ops->rebuild_header(sk); 5373 5374 tcp_init_metrics(sk); 5375 5376 tcp_init_congestion_control(sk); 5377 5378 /* Prevent spurious tcp_cwnd_restart() on first data 5379 * packet. 5380 */ 5381 tp->lsndtime = tcp_time_stamp; 5382 5383 tcp_init_buffer_space(sk); 5384 5385 if (sock_flag(sk, SOCK_KEEPOPEN)) 5386 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5387 5388 if (!tp->rx_opt.snd_wscale) 5389 __tcp_fast_path_on(tp, tp->snd_wnd); 5390 else 5391 tp->pred_flags = 0; 5392 5393 if (!sock_flag(sk, SOCK_DEAD)) { 5394 sk->sk_state_change(sk); 5395 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5396 } 5397 } 5398 5399 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5400 struct tcp_fastopen_cookie *cookie) 5401 { 5402 struct tcp_sock *tp = tcp_sk(sk); 5403 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5404 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5405 bool syn_drop = false; 5406 5407 if (mss == tp->rx_opt.user_mss) { 5408 struct tcp_options_received opt; 5409 5410 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5411 tcp_clear_options(&opt); 5412 opt.user_mss = opt.mss_clamp = 0; 5413 tcp_parse_options(synack, &opt, 0, NULL); 5414 mss = opt.mss_clamp; 5415 } 5416 5417 if (!tp->syn_fastopen) { 5418 /* Ignore an unsolicited cookie */ 5419 cookie->len = -1; 5420 } else if (tp->total_retrans) { 5421 /* SYN timed out and the SYN-ACK neither has a cookie nor 5422 * acknowledges data. Presumably the remote received only 5423 * the retransmitted (regular) SYNs: either the original 5424 * SYN-data or the corresponding SYN-ACK was dropped. 5425 */ 5426 syn_drop = (cookie->len < 0 && data); 5427 } else if (cookie->len < 0 && !tp->syn_data) { 5428 /* We requested a cookie but didn't get it. If we did not use 5429 * the (old) exp opt format then try so next time (try_exp=1). 5430 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5431 */ 5432 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5433 } 5434 5435 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5436 5437 if (data) { /* Retransmit unacked data in SYN */ 5438 tcp_for_write_queue_from(data, sk) { 5439 if (data == tcp_send_head(sk) || 5440 __tcp_retransmit_skb(sk, data)) 5441 break; 5442 } 5443 tcp_rearm_rto(sk); 5444 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5445 return true; 5446 } 5447 tp->syn_data_acked = tp->syn_data; 5448 if (tp->syn_data_acked) 5449 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5450 return false; 5451 } 5452 5453 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5454 const struct tcphdr *th, unsigned int len) 5455 { 5456 struct inet_connection_sock *icsk = inet_csk(sk); 5457 struct tcp_sock *tp = tcp_sk(sk); 5458 struct tcp_fastopen_cookie foc = { .len = -1 }; 5459 int saved_clamp = tp->rx_opt.mss_clamp; 5460 5461 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5462 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5463 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5464 5465 if (th->ack) { 5466 /* rfc793: 5467 * "If the state is SYN-SENT then 5468 * first check the ACK bit 5469 * If the ACK bit is set 5470 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5471 * a reset (unless the RST bit is set, if so drop 5472 * the segment and return)" 5473 */ 5474 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5475 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5476 goto reset_and_undo; 5477 5478 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5479 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5480 tcp_time_stamp)) { 5481 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5482 goto reset_and_undo; 5483 } 5484 5485 /* Now ACK is acceptable. 5486 * 5487 * "If the RST bit is set 5488 * If the ACK was acceptable then signal the user "error: 5489 * connection reset", drop the segment, enter CLOSED state, 5490 * delete TCB, and return." 5491 */ 5492 5493 if (th->rst) { 5494 tcp_reset(sk); 5495 goto discard; 5496 } 5497 5498 /* rfc793: 5499 * "fifth, if neither of the SYN or RST bits is set then 5500 * drop the segment and return." 5501 * 5502 * See note below! 5503 * --ANK(990513) 5504 */ 5505 if (!th->syn) 5506 goto discard_and_undo; 5507 5508 /* rfc793: 5509 * "If the SYN bit is on ... 5510 * are acceptable then ... 5511 * (our SYN has been ACKed), change the connection 5512 * state to ESTABLISHED..." 5513 */ 5514 5515 tcp_ecn_rcv_synack(tp, th); 5516 5517 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5518 tcp_ack(sk, skb, FLAG_SLOWPATH); 5519 5520 /* Ok.. it's good. Set up sequence numbers and 5521 * move to established. 5522 */ 5523 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5524 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5525 5526 /* RFC1323: The window in SYN & SYN/ACK segments is 5527 * never scaled. 5528 */ 5529 tp->snd_wnd = ntohs(th->window); 5530 5531 if (!tp->rx_opt.wscale_ok) { 5532 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5533 tp->window_clamp = min(tp->window_clamp, 65535U); 5534 } 5535 5536 if (tp->rx_opt.saw_tstamp) { 5537 tp->rx_opt.tstamp_ok = 1; 5538 tp->tcp_header_len = 5539 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5540 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5541 tcp_store_ts_recent(tp); 5542 } else { 5543 tp->tcp_header_len = sizeof(struct tcphdr); 5544 } 5545 5546 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5547 tcp_enable_fack(tp); 5548 5549 tcp_mtup_init(sk); 5550 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5551 tcp_initialize_rcv_mss(sk); 5552 5553 /* Remember, tcp_poll() does not lock socket! 5554 * Change state from SYN-SENT only after copied_seq 5555 * is initialized. */ 5556 tp->copied_seq = tp->rcv_nxt; 5557 5558 smp_mb(); 5559 5560 tcp_finish_connect(sk, skb); 5561 5562 if ((tp->syn_fastopen || tp->syn_data) && 5563 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5564 return -1; 5565 5566 if (sk->sk_write_pending || 5567 icsk->icsk_accept_queue.rskq_defer_accept || 5568 icsk->icsk_ack.pingpong) { 5569 /* Save one ACK. Data will be ready after 5570 * several ticks, if write_pending is set. 5571 * 5572 * It may be deleted, but with this feature tcpdumps 5573 * look so _wonderfully_ clever, that I was not able 5574 * to stand against the temptation 8) --ANK 5575 */ 5576 inet_csk_schedule_ack(sk); 5577 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5578 tcp_enter_quickack_mode(sk); 5579 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5580 TCP_DELACK_MAX, TCP_RTO_MAX); 5581 5582 discard: 5583 __kfree_skb(skb); 5584 return 0; 5585 } else { 5586 tcp_send_ack(sk); 5587 } 5588 return -1; 5589 } 5590 5591 /* No ACK in the segment */ 5592 5593 if (th->rst) { 5594 /* rfc793: 5595 * "If the RST bit is set 5596 * 5597 * Otherwise (no ACK) drop the segment and return." 5598 */ 5599 5600 goto discard_and_undo; 5601 } 5602 5603 /* PAWS check. */ 5604 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5605 tcp_paws_reject(&tp->rx_opt, 0)) 5606 goto discard_and_undo; 5607 5608 if (th->syn) { 5609 /* We see SYN without ACK. It is attempt of 5610 * simultaneous connect with crossed SYNs. 5611 * Particularly, it can be connect to self. 5612 */ 5613 tcp_set_state(sk, TCP_SYN_RECV); 5614 5615 if (tp->rx_opt.saw_tstamp) { 5616 tp->rx_opt.tstamp_ok = 1; 5617 tcp_store_ts_recent(tp); 5618 tp->tcp_header_len = 5619 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5620 } else { 5621 tp->tcp_header_len = sizeof(struct tcphdr); 5622 } 5623 5624 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5625 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5626 5627 /* RFC1323: The window in SYN & SYN/ACK segments is 5628 * never scaled. 5629 */ 5630 tp->snd_wnd = ntohs(th->window); 5631 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5632 tp->max_window = tp->snd_wnd; 5633 5634 tcp_ecn_rcv_syn(tp, th); 5635 5636 tcp_mtup_init(sk); 5637 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5638 tcp_initialize_rcv_mss(sk); 5639 5640 tcp_send_synack(sk); 5641 #if 0 5642 /* Note, we could accept data and URG from this segment. 5643 * There are no obstacles to make this (except that we must 5644 * either change tcp_recvmsg() to prevent it from returning data 5645 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5646 * 5647 * However, if we ignore data in ACKless segments sometimes, 5648 * we have no reasons to accept it sometimes. 5649 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5650 * is not flawless. So, discard packet for sanity. 5651 * Uncomment this return to process the data. 5652 */ 5653 return -1; 5654 #else 5655 goto discard; 5656 #endif 5657 } 5658 /* "fifth, if neither of the SYN or RST bits is set then 5659 * drop the segment and return." 5660 */ 5661 5662 discard_and_undo: 5663 tcp_clear_options(&tp->rx_opt); 5664 tp->rx_opt.mss_clamp = saved_clamp; 5665 goto discard; 5666 5667 reset_and_undo: 5668 tcp_clear_options(&tp->rx_opt); 5669 tp->rx_opt.mss_clamp = saved_clamp; 5670 return 1; 5671 } 5672 5673 /* 5674 * This function implements the receiving procedure of RFC 793 for 5675 * all states except ESTABLISHED and TIME_WAIT. 5676 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5677 * address independent. 5678 */ 5679 5680 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5681 const struct tcphdr *th, unsigned int len) 5682 { 5683 struct tcp_sock *tp = tcp_sk(sk); 5684 struct inet_connection_sock *icsk = inet_csk(sk); 5685 struct request_sock *req; 5686 int queued = 0; 5687 bool acceptable; 5688 u32 synack_stamp; 5689 5690 tp->rx_opt.saw_tstamp = 0; 5691 5692 switch (sk->sk_state) { 5693 case TCP_CLOSE: 5694 goto discard; 5695 5696 case TCP_LISTEN: 5697 if (th->ack) 5698 return 1; 5699 5700 if (th->rst) 5701 goto discard; 5702 5703 if (th->syn) { 5704 if (th->fin) 5705 goto discard; 5706 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5707 return 1; 5708 5709 /* Now we have several options: In theory there is 5710 * nothing else in the frame. KA9Q has an option to 5711 * send data with the syn, BSD accepts data with the 5712 * syn up to the [to be] advertised window and 5713 * Solaris 2.1 gives you a protocol error. For now 5714 * we just ignore it, that fits the spec precisely 5715 * and avoids incompatibilities. It would be nice in 5716 * future to drop through and process the data. 5717 * 5718 * Now that TTCP is starting to be used we ought to 5719 * queue this data. 5720 * But, this leaves one open to an easy denial of 5721 * service attack, and SYN cookies can't defend 5722 * against this problem. So, we drop the data 5723 * in the interest of security over speed unless 5724 * it's still in use. 5725 */ 5726 kfree_skb(skb); 5727 return 0; 5728 } 5729 goto discard; 5730 5731 case TCP_SYN_SENT: 5732 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5733 if (queued >= 0) 5734 return queued; 5735 5736 /* Do step6 onward by hand. */ 5737 tcp_urg(sk, skb, th); 5738 __kfree_skb(skb); 5739 tcp_data_snd_check(sk); 5740 return 0; 5741 } 5742 5743 req = tp->fastopen_rsk; 5744 if (req) { 5745 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5746 sk->sk_state != TCP_FIN_WAIT1); 5747 5748 if (!tcp_check_req(sk, skb, req, true)) 5749 goto discard; 5750 } 5751 5752 if (!th->ack && !th->rst && !th->syn) 5753 goto discard; 5754 5755 if (!tcp_validate_incoming(sk, skb, th, 0)) 5756 return 0; 5757 5758 /* step 5: check the ACK field */ 5759 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5760 FLAG_UPDATE_TS_RECENT) > 0; 5761 5762 switch (sk->sk_state) { 5763 case TCP_SYN_RECV: 5764 if (!acceptable) 5765 return 1; 5766 5767 /* Once we leave TCP_SYN_RECV, we no longer need req 5768 * so release it. 5769 */ 5770 if (req) { 5771 synack_stamp = tcp_rsk(req)->snt_synack; 5772 tp->total_retrans = req->num_retrans; 5773 reqsk_fastopen_remove(sk, req, false); 5774 } else { 5775 synack_stamp = tp->lsndtime; 5776 /* Make sure socket is routed, for correct metrics. */ 5777 icsk->icsk_af_ops->rebuild_header(sk); 5778 tcp_init_congestion_control(sk); 5779 5780 tcp_mtup_init(sk); 5781 tp->copied_seq = tp->rcv_nxt; 5782 tcp_init_buffer_space(sk); 5783 } 5784 smp_mb(); 5785 tcp_set_state(sk, TCP_ESTABLISHED); 5786 sk->sk_state_change(sk); 5787 5788 /* Note, that this wakeup is only for marginal crossed SYN case. 5789 * Passively open sockets are not waked up, because 5790 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5791 */ 5792 if (sk->sk_socket) 5793 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5794 5795 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5796 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5797 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5798 tcp_synack_rtt_meas(sk, synack_stamp); 5799 5800 if (tp->rx_opt.tstamp_ok) 5801 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5802 5803 if (req) { 5804 /* Re-arm the timer because data may have been sent out. 5805 * This is similar to the regular data transmission case 5806 * when new data has just been ack'ed. 5807 * 5808 * (TFO) - we could try to be more aggressive and 5809 * retransmitting any data sooner based on when they 5810 * are sent out. 5811 */ 5812 tcp_rearm_rto(sk); 5813 } else 5814 tcp_init_metrics(sk); 5815 5816 tcp_update_pacing_rate(sk); 5817 5818 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5819 tp->lsndtime = tcp_time_stamp; 5820 5821 tcp_initialize_rcv_mss(sk); 5822 tcp_fast_path_on(tp); 5823 break; 5824 5825 case TCP_FIN_WAIT1: { 5826 struct dst_entry *dst; 5827 int tmo; 5828 5829 /* If we enter the TCP_FIN_WAIT1 state and we are a 5830 * Fast Open socket and this is the first acceptable 5831 * ACK we have received, this would have acknowledged 5832 * our SYNACK so stop the SYNACK timer. 5833 */ 5834 if (req) { 5835 /* Return RST if ack_seq is invalid. 5836 * Note that RFC793 only says to generate a 5837 * DUPACK for it but for TCP Fast Open it seems 5838 * better to treat this case like TCP_SYN_RECV 5839 * above. 5840 */ 5841 if (!acceptable) 5842 return 1; 5843 /* We no longer need the request sock. */ 5844 reqsk_fastopen_remove(sk, req, false); 5845 tcp_rearm_rto(sk); 5846 } 5847 if (tp->snd_una != tp->write_seq) 5848 break; 5849 5850 tcp_set_state(sk, TCP_FIN_WAIT2); 5851 sk->sk_shutdown |= SEND_SHUTDOWN; 5852 5853 dst = __sk_dst_get(sk); 5854 if (dst) 5855 dst_confirm(dst); 5856 5857 if (!sock_flag(sk, SOCK_DEAD)) { 5858 /* Wake up lingering close() */ 5859 sk->sk_state_change(sk); 5860 break; 5861 } 5862 5863 if (tp->linger2 < 0 || 5864 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5865 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5866 tcp_done(sk); 5867 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5868 return 1; 5869 } 5870 5871 tmo = tcp_fin_time(sk); 5872 if (tmo > TCP_TIMEWAIT_LEN) { 5873 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5874 } else if (th->fin || sock_owned_by_user(sk)) { 5875 /* Bad case. We could lose such FIN otherwise. 5876 * It is not a big problem, but it looks confusing 5877 * and not so rare event. We still can lose it now, 5878 * if it spins in bh_lock_sock(), but it is really 5879 * marginal case. 5880 */ 5881 inet_csk_reset_keepalive_timer(sk, tmo); 5882 } else { 5883 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5884 goto discard; 5885 } 5886 break; 5887 } 5888 5889 case TCP_CLOSING: 5890 if (tp->snd_una == tp->write_seq) { 5891 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5892 goto discard; 5893 } 5894 break; 5895 5896 case TCP_LAST_ACK: 5897 if (tp->snd_una == tp->write_seq) { 5898 tcp_update_metrics(sk); 5899 tcp_done(sk); 5900 goto discard; 5901 } 5902 break; 5903 } 5904 5905 /* step 6: check the URG bit */ 5906 tcp_urg(sk, skb, th); 5907 5908 /* step 7: process the segment text */ 5909 switch (sk->sk_state) { 5910 case TCP_CLOSE_WAIT: 5911 case TCP_CLOSING: 5912 case TCP_LAST_ACK: 5913 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5914 break; 5915 case TCP_FIN_WAIT1: 5916 case TCP_FIN_WAIT2: 5917 /* RFC 793 says to queue data in these states, 5918 * RFC 1122 says we MUST send a reset. 5919 * BSD 4.4 also does reset. 5920 */ 5921 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5922 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5923 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5924 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5925 tcp_reset(sk); 5926 return 1; 5927 } 5928 } 5929 /* Fall through */ 5930 case TCP_ESTABLISHED: 5931 tcp_data_queue(sk, skb); 5932 queued = 1; 5933 break; 5934 } 5935 5936 /* tcp_data could move socket to TIME-WAIT */ 5937 if (sk->sk_state != TCP_CLOSE) { 5938 tcp_data_snd_check(sk); 5939 tcp_ack_snd_check(sk); 5940 } 5941 5942 if (!queued) { 5943 discard: 5944 __kfree_skb(skb); 5945 } 5946 return 0; 5947 } 5948 EXPORT_SYMBOL(tcp_rcv_state_process); 5949 5950 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5951 { 5952 struct inet_request_sock *ireq = inet_rsk(req); 5953 5954 if (family == AF_INET) 5955 net_dbg_ratelimited("drop open request from %pI4/%u\n", 5956 &ireq->ir_rmt_addr, port); 5957 #if IS_ENABLED(CONFIG_IPV6) 5958 else if (family == AF_INET6) 5959 net_dbg_ratelimited("drop open request from %pI6/%u\n", 5960 &ireq->ir_v6_rmt_addr, port); 5961 #endif 5962 } 5963 5964 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5965 * 5966 * If we receive a SYN packet with these bits set, it means a 5967 * network is playing bad games with TOS bits. In order to 5968 * avoid possible false congestion notifications, we disable 5969 * TCP ECN negotiation. 5970 * 5971 * Exception: tcp_ca wants ECN. This is required for DCTCP 5972 * congestion control: Linux DCTCP asserts ECT on all packets, 5973 * including SYN, which is most optimal solution; however, 5974 * others, such as FreeBSD do not. 5975 */ 5976 static void tcp_ecn_create_request(struct request_sock *req, 5977 const struct sk_buff *skb, 5978 const struct sock *listen_sk, 5979 const struct dst_entry *dst) 5980 { 5981 const struct tcphdr *th = tcp_hdr(skb); 5982 const struct net *net = sock_net(listen_sk); 5983 bool th_ecn = th->ece && th->cwr; 5984 bool ect, ecn_ok; 5985 5986 if (!th_ecn) 5987 return; 5988 5989 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5990 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN); 5991 5992 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk)) 5993 inet_rsk(req)->ecn_ok = 1; 5994 } 5995 5996 static void tcp_openreq_init(struct request_sock *req, 5997 const struct tcp_options_received *rx_opt, 5998 struct sk_buff *skb, const struct sock *sk) 5999 { 6000 struct inet_request_sock *ireq = inet_rsk(req); 6001 6002 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6003 req->cookie_ts = 0; 6004 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6005 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6006 tcp_rsk(req)->snt_synack = tcp_time_stamp; 6007 tcp_rsk(req)->last_oow_ack_time = 0; 6008 req->mss = rx_opt->mss_clamp; 6009 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6010 ireq->tstamp_ok = rx_opt->tstamp_ok; 6011 ireq->sack_ok = rx_opt->sack_ok; 6012 ireq->snd_wscale = rx_opt->snd_wscale; 6013 ireq->wscale_ok = rx_opt->wscale_ok; 6014 ireq->acked = 0; 6015 ireq->ecn_ok = 0; 6016 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6017 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6018 ireq->ir_mark = inet_request_mark(sk, skb); 6019 } 6020 6021 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6022 struct sock *sk_listener) 6023 { 6024 struct request_sock *req = reqsk_alloc(ops, sk_listener); 6025 6026 if (req) { 6027 struct inet_request_sock *ireq = inet_rsk(req); 6028 6029 kmemcheck_annotate_bitfield(ireq, flags); 6030 ireq->opt = NULL; 6031 atomic64_set(&ireq->ir_cookie, 0); 6032 ireq->ireq_state = TCP_NEW_SYN_RECV; 6033 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6034 ireq->ireq_family = sk_listener->sk_family; 6035 } 6036 6037 return req; 6038 } 6039 EXPORT_SYMBOL(inet_reqsk_alloc); 6040 6041 /* 6042 * Return true if a syncookie should be sent 6043 */ 6044 static bool tcp_syn_flood_action(struct sock *sk, 6045 const struct sk_buff *skb, 6046 const char *proto) 6047 { 6048 const char *msg = "Dropping request"; 6049 bool want_cookie = false; 6050 struct listen_sock *lopt; 6051 6052 #ifdef CONFIG_SYN_COOKIES 6053 if (sysctl_tcp_syncookies) { 6054 msg = "Sending cookies"; 6055 want_cookie = true; 6056 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6057 } else 6058 #endif 6059 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6060 6061 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 6062 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) { 6063 lopt->synflood_warned = 1; 6064 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6065 proto, ntohs(tcp_hdr(skb)->dest), msg); 6066 } 6067 return want_cookie; 6068 } 6069 6070 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6071 const struct tcp_request_sock_ops *af_ops, 6072 struct sock *sk, struct sk_buff *skb) 6073 { 6074 struct tcp_options_received tmp_opt; 6075 struct request_sock *req; 6076 struct tcp_sock *tp = tcp_sk(sk); 6077 struct dst_entry *dst = NULL; 6078 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6079 bool want_cookie = false, fastopen; 6080 struct flowi fl; 6081 struct tcp_fastopen_cookie foc = { .len = -1 }; 6082 int err; 6083 6084 6085 /* TW buckets are converted to open requests without 6086 * limitations, they conserve resources and peer is 6087 * evidently real one. 6088 */ 6089 if ((sysctl_tcp_syncookies == 2 || 6090 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6091 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6092 if (!want_cookie) 6093 goto drop; 6094 } 6095 6096 6097 /* Accept backlog is full. If we have already queued enough 6098 * of warm entries in syn queue, drop request. It is better than 6099 * clogging syn queue with openreqs with exponentially increasing 6100 * timeout. 6101 */ 6102 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 6103 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6104 goto drop; 6105 } 6106 6107 req = inet_reqsk_alloc(rsk_ops, sk); 6108 if (!req) 6109 goto drop; 6110 6111 tcp_rsk(req)->af_specific = af_ops; 6112 6113 tcp_clear_options(&tmp_opt); 6114 tmp_opt.mss_clamp = af_ops->mss_clamp; 6115 tmp_opt.user_mss = tp->rx_opt.user_mss; 6116 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6117 6118 if (want_cookie && !tmp_opt.saw_tstamp) 6119 tcp_clear_options(&tmp_opt); 6120 6121 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6122 tcp_openreq_init(req, &tmp_opt, skb, sk); 6123 6124 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6125 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if; 6126 6127 af_ops->init_req(req, sk, skb); 6128 6129 if (security_inet_conn_request(sk, skb, req)) 6130 goto drop_and_free; 6131 6132 if (!want_cookie && !isn) { 6133 /* VJ's idea. We save last timestamp seen 6134 * from the destination in peer table, when entering 6135 * state TIME-WAIT, and check against it before 6136 * accepting new connection request. 6137 * 6138 * If "isn" is not zero, this request hit alive 6139 * timewait bucket, so that all the necessary checks 6140 * are made in the function processing timewait state. 6141 */ 6142 if (tcp_death_row.sysctl_tw_recycle) { 6143 bool strict; 6144 6145 dst = af_ops->route_req(sk, &fl, req, &strict); 6146 6147 if (dst && strict && 6148 !tcp_peer_is_proven(req, dst, true, 6149 tmp_opt.saw_tstamp)) { 6150 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6151 goto drop_and_release; 6152 } 6153 } 6154 /* Kill the following clause, if you dislike this way. */ 6155 else if (!sysctl_tcp_syncookies && 6156 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6157 (sysctl_max_syn_backlog >> 2)) && 6158 !tcp_peer_is_proven(req, dst, false, 6159 tmp_opt.saw_tstamp)) { 6160 /* Without syncookies last quarter of 6161 * backlog is filled with destinations, 6162 * proven to be alive. 6163 * It means that we continue to communicate 6164 * to destinations, already remembered 6165 * to the moment of synflood. 6166 */ 6167 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6168 rsk_ops->family); 6169 goto drop_and_release; 6170 } 6171 6172 isn = af_ops->init_seq(skb); 6173 } 6174 if (!dst) { 6175 dst = af_ops->route_req(sk, &fl, req, NULL); 6176 if (!dst) 6177 goto drop_and_free; 6178 } 6179 6180 tcp_ecn_create_request(req, skb, sk, dst); 6181 6182 if (want_cookie) { 6183 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6184 req->cookie_ts = tmp_opt.tstamp_ok; 6185 if (!tmp_opt.tstamp_ok) 6186 inet_rsk(req)->ecn_ok = 0; 6187 } 6188 6189 tcp_rsk(req)->snt_isn = isn; 6190 tcp_openreq_init_rwin(req, sk, dst); 6191 fastopen = !want_cookie && 6192 tcp_try_fastopen(sk, skb, req, &foc, dst); 6193 err = af_ops->send_synack(sk, dst, &fl, req, 6194 skb_get_queue_mapping(skb), &foc); 6195 if (!fastopen) { 6196 if (err || want_cookie) 6197 goto drop_and_free; 6198 6199 tcp_rsk(req)->tfo_listener = false; 6200 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6201 } 6202 6203 return 0; 6204 6205 drop_and_release: 6206 dst_release(dst); 6207 drop_and_free: 6208 reqsk_free(req); 6209 drop: 6210 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6211 return 0; 6212 } 6213 EXPORT_SYMBOL(tcp_conn_request); 6214