xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 61f4d204)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 
247 			do_div(val, skb->truesize);
248 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
249 		}
250 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
251 					       tcp_sk(sk)->advmss);
252 		/* Account for possibly-removed options */
253 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
254 				   MAX_TCP_OPTION_SPACE))
255 			tcp_gro_dev_warn(sk, skb, len);
256 	} else {
257 		/* Otherwise, we make more careful check taking into account,
258 		 * that SACKs block is variable.
259 		 *
260 		 * "len" is invariant segment length, including TCP header.
261 		 */
262 		len += skb->data - skb_transport_header(skb);
263 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
264 		    /* If PSH is not set, packet should be
265 		     * full sized, provided peer TCP is not badly broken.
266 		     * This observation (if it is correct 8)) allows
267 		     * to handle super-low mtu links fairly.
268 		     */
269 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
270 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
271 			/* Subtract also invariant (if peer is RFC compliant),
272 			 * tcp header plus fixed timestamp option length.
273 			 * Resulting "len" is MSS free of SACK jitter.
274 			 */
275 			len -= tcp_sk(sk)->tcp_header_len;
276 			icsk->icsk_ack.last_seg_size = len;
277 			if (len == lss) {
278 				icsk->icsk_ack.rcv_mss = len;
279 				return;
280 			}
281 		}
282 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
283 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
284 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
285 	}
286 }
287 
288 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
289 {
290 	struct inet_connection_sock *icsk = inet_csk(sk);
291 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
292 
293 	if (quickacks == 0)
294 		quickacks = 2;
295 	quickacks = min(quickacks, max_quickacks);
296 	if (quickacks > icsk->icsk_ack.quick)
297 		icsk->icsk_ack.quick = quickacks;
298 }
299 
300 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
301 {
302 	struct inet_connection_sock *icsk = inet_csk(sk);
303 
304 	tcp_incr_quickack(sk, max_quickacks);
305 	inet_csk_exit_pingpong_mode(sk);
306 	icsk->icsk_ack.ato = TCP_ATO_MIN;
307 }
308 
309 /* Send ACKs quickly, if "quick" count is not exhausted
310  * and the session is not interactive.
311  */
312 
313 static bool tcp_in_quickack_mode(struct sock *sk)
314 {
315 	const struct inet_connection_sock *icsk = inet_csk(sk);
316 	const struct dst_entry *dst = __sk_dst_get(sk);
317 
318 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
319 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
320 }
321 
322 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
323 {
324 	if (tp->ecn_flags & TCP_ECN_OK)
325 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
326 }
327 
328 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
329 {
330 	if (tcp_hdr(skb)->cwr) {
331 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
332 
333 		/* If the sender is telling us it has entered CWR, then its
334 		 * cwnd may be very low (even just 1 packet), so we should ACK
335 		 * immediately.
336 		 */
337 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
338 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
339 	}
340 }
341 
342 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
343 {
344 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
345 }
346 
347 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
348 {
349 	struct tcp_sock *tp = tcp_sk(sk);
350 
351 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
352 	case INET_ECN_NOT_ECT:
353 		/* Funny extension: if ECT is not set on a segment,
354 		 * and we already seen ECT on a previous segment,
355 		 * it is probably a retransmit.
356 		 */
357 		if (tp->ecn_flags & TCP_ECN_SEEN)
358 			tcp_enter_quickack_mode(sk, 2);
359 		break;
360 	case INET_ECN_CE:
361 		if (tcp_ca_needs_ecn(sk))
362 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
363 
364 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
365 			/* Better not delay acks, sender can have a very low cwnd */
366 			tcp_enter_quickack_mode(sk, 2);
367 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
368 		}
369 		tp->ecn_flags |= TCP_ECN_SEEN;
370 		break;
371 	default:
372 		if (tcp_ca_needs_ecn(sk))
373 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
374 		tp->ecn_flags |= TCP_ECN_SEEN;
375 		break;
376 	}
377 }
378 
379 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
380 {
381 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
382 		__tcp_ecn_check_ce(sk, skb);
383 }
384 
385 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
386 {
387 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
388 		tp->ecn_flags &= ~TCP_ECN_OK;
389 }
390 
391 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
392 {
393 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
394 		tp->ecn_flags &= ~TCP_ECN_OK;
395 }
396 
397 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
398 {
399 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
400 		return true;
401 	return false;
402 }
403 
404 /* Buffer size and advertised window tuning.
405  *
406  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
407  */
408 
409 static void tcp_sndbuf_expand(struct sock *sk)
410 {
411 	const struct tcp_sock *tp = tcp_sk(sk);
412 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
413 	int sndmem, per_mss;
414 	u32 nr_segs;
415 
416 	/* Worst case is non GSO/TSO : each frame consumes one skb
417 	 * and skb->head is kmalloced using power of two area of memory
418 	 */
419 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
420 		  MAX_TCP_HEADER +
421 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
422 
423 	per_mss = roundup_pow_of_two(per_mss) +
424 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
425 
426 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
427 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
428 
429 	/* Fast Recovery (RFC 5681 3.2) :
430 	 * Cubic needs 1.7 factor, rounded to 2 to include
431 	 * extra cushion (application might react slowly to EPOLLOUT)
432 	 */
433 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
434 	sndmem *= nr_segs * per_mss;
435 
436 	if (sk->sk_sndbuf < sndmem)
437 		WRITE_ONCE(sk->sk_sndbuf,
438 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
439 }
440 
441 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
442  *
443  * All tcp_full_space() is split to two parts: "network" buffer, allocated
444  * forward and advertised in receiver window (tp->rcv_wnd) and
445  * "application buffer", required to isolate scheduling/application
446  * latencies from network.
447  * window_clamp is maximal advertised window. It can be less than
448  * tcp_full_space(), in this case tcp_full_space() - window_clamp
449  * is reserved for "application" buffer. The less window_clamp is
450  * the smoother our behaviour from viewpoint of network, but the lower
451  * throughput and the higher sensitivity of the connection to losses. 8)
452  *
453  * rcv_ssthresh is more strict window_clamp used at "slow start"
454  * phase to predict further behaviour of this connection.
455  * It is used for two goals:
456  * - to enforce header prediction at sender, even when application
457  *   requires some significant "application buffer". It is check #1.
458  * - to prevent pruning of receive queue because of misprediction
459  *   of receiver window. Check #2.
460  *
461  * The scheme does not work when sender sends good segments opening
462  * window and then starts to feed us spaghetti. But it should work
463  * in common situations. Otherwise, we have to rely on queue collapsing.
464  */
465 
466 /* Slow part of check#2. */
467 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
468 			     unsigned int skbtruesize)
469 {
470 	const struct tcp_sock *tp = tcp_sk(sk);
471 	/* Optimize this! */
472 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
473 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
474 
475 	while (tp->rcv_ssthresh <= window) {
476 		if (truesize <= skb->len)
477 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
478 
479 		truesize >>= 1;
480 		window >>= 1;
481 	}
482 	return 0;
483 }
484 
485 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
486  * can play nice with us, as sk_buff and skb->head might be either
487  * freed or shared with up to MAX_SKB_FRAGS segments.
488  * Only give a boost to drivers using page frag(s) to hold the frame(s),
489  * and if no payload was pulled in skb->head before reaching us.
490  */
491 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
492 {
493 	u32 truesize = skb->truesize;
494 
495 	if (adjust && !skb_headlen(skb)) {
496 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
497 		/* paranoid check, some drivers might be buggy */
498 		if (unlikely((int)truesize < (int)skb->len))
499 			truesize = skb->truesize;
500 	}
501 	return truesize;
502 }
503 
504 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
505 			    bool adjust)
506 {
507 	struct tcp_sock *tp = tcp_sk(sk);
508 	int room;
509 
510 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
511 
512 	if (room <= 0)
513 		return;
514 
515 	/* Check #1 */
516 	if (!tcp_under_memory_pressure(sk)) {
517 		unsigned int truesize = truesize_adjust(adjust, skb);
518 		int incr;
519 
520 		/* Check #2. Increase window, if skb with such overhead
521 		 * will fit to rcvbuf in future.
522 		 */
523 		if (tcp_win_from_space(sk, truesize) <= skb->len)
524 			incr = 2 * tp->advmss;
525 		else
526 			incr = __tcp_grow_window(sk, skb, truesize);
527 
528 		if (incr) {
529 			incr = max_t(int, incr, 2 * skb->len);
530 			tp->rcv_ssthresh += min(room, incr);
531 			inet_csk(sk)->icsk_ack.quick |= 1;
532 		}
533 	} else {
534 		/* Under pressure:
535 		 * Adjust rcv_ssthresh according to reserved mem
536 		 */
537 		tcp_adjust_rcv_ssthresh(sk);
538 	}
539 }
540 
541 /* 3. Try to fixup all. It is made immediately after connection enters
542  *    established state.
543  */
544 static void tcp_init_buffer_space(struct sock *sk)
545 {
546 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
547 	struct tcp_sock *tp = tcp_sk(sk);
548 	int maxwin;
549 
550 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
551 		tcp_sndbuf_expand(sk);
552 
553 	tcp_mstamp_refresh(tp);
554 	tp->rcvq_space.time = tp->tcp_mstamp;
555 	tp->rcvq_space.seq = tp->copied_seq;
556 
557 	maxwin = tcp_full_space(sk);
558 
559 	if (tp->window_clamp >= maxwin) {
560 		tp->window_clamp = maxwin;
561 
562 		if (tcp_app_win && maxwin > 4 * tp->advmss)
563 			tp->window_clamp = max(maxwin -
564 					       (maxwin >> tcp_app_win),
565 					       4 * tp->advmss);
566 	}
567 
568 	/* Force reservation of one segment. */
569 	if (tcp_app_win &&
570 	    tp->window_clamp > 2 * tp->advmss &&
571 	    tp->window_clamp + tp->advmss > maxwin)
572 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
573 
574 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
575 	tp->snd_cwnd_stamp = tcp_jiffies32;
576 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
577 				    (u32)TCP_INIT_CWND * tp->advmss);
578 }
579 
580 /* 4. Recalculate window clamp after socket hit its memory bounds. */
581 static void tcp_clamp_window(struct sock *sk)
582 {
583 	struct tcp_sock *tp = tcp_sk(sk);
584 	struct inet_connection_sock *icsk = inet_csk(sk);
585 	struct net *net = sock_net(sk);
586 	int rmem2;
587 
588 	icsk->icsk_ack.quick = 0;
589 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
590 
591 	if (sk->sk_rcvbuf < rmem2 &&
592 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
593 	    !tcp_under_memory_pressure(sk) &&
594 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
595 		WRITE_ONCE(sk->sk_rcvbuf,
596 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
597 	}
598 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
599 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
600 }
601 
602 /* Initialize RCV_MSS value.
603  * RCV_MSS is an our guess about MSS used by the peer.
604  * We haven't any direct information about the MSS.
605  * It's better to underestimate the RCV_MSS rather than overestimate.
606  * Overestimations make us ACKing less frequently than needed.
607  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
608  */
609 void tcp_initialize_rcv_mss(struct sock *sk)
610 {
611 	const struct tcp_sock *tp = tcp_sk(sk);
612 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
613 
614 	hint = min(hint, tp->rcv_wnd / 2);
615 	hint = min(hint, TCP_MSS_DEFAULT);
616 	hint = max(hint, TCP_MIN_MSS);
617 
618 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
619 }
620 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
621 
622 /* Receiver "autotuning" code.
623  *
624  * The algorithm for RTT estimation w/o timestamps is based on
625  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
626  * <https://public.lanl.gov/radiant/pubs.html#DRS>
627  *
628  * More detail on this code can be found at
629  * <http://staff.psc.edu/jheffner/>,
630  * though this reference is out of date.  A new paper
631  * is pending.
632  */
633 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
634 {
635 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
636 	long m = sample;
637 
638 	if (new_sample != 0) {
639 		/* If we sample in larger samples in the non-timestamp
640 		 * case, we could grossly overestimate the RTT especially
641 		 * with chatty applications or bulk transfer apps which
642 		 * are stalled on filesystem I/O.
643 		 *
644 		 * Also, since we are only going for a minimum in the
645 		 * non-timestamp case, we do not smooth things out
646 		 * else with timestamps disabled convergence takes too
647 		 * long.
648 		 */
649 		if (!win_dep) {
650 			m -= (new_sample >> 3);
651 			new_sample += m;
652 		} else {
653 			m <<= 3;
654 			if (m < new_sample)
655 				new_sample = m;
656 		}
657 	} else {
658 		/* No previous measure. */
659 		new_sample = m << 3;
660 	}
661 
662 	tp->rcv_rtt_est.rtt_us = new_sample;
663 }
664 
665 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
666 {
667 	u32 delta_us;
668 
669 	if (tp->rcv_rtt_est.time == 0)
670 		goto new_measure;
671 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
672 		return;
673 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
674 	if (!delta_us)
675 		delta_us = 1;
676 	tcp_rcv_rtt_update(tp, delta_us, 1);
677 
678 new_measure:
679 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
680 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
681 }
682 
683 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
684 					  const struct sk_buff *skb)
685 {
686 	struct tcp_sock *tp = tcp_sk(sk);
687 
688 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
689 		return;
690 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
691 
692 	if (TCP_SKB_CB(skb)->end_seq -
693 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
694 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
695 		u32 delta_us;
696 
697 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
698 			if (!delta)
699 				delta = 1;
700 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
701 			tcp_rcv_rtt_update(tp, delta_us, 0);
702 		}
703 	}
704 }
705 
706 /*
707  * This function should be called every time data is copied to user space.
708  * It calculates the appropriate TCP receive buffer space.
709  */
710 void tcp_rcv_space_adjust(struct sock *sk)
711 {
712 	struct tcp_sock *tp = tcp_sk(sk);
713 	u32 copied;
714 	int time;
715 
716 	trace_tcp_rcv_space_adjust(sk);
717 
718 	tcp_mstamp_refresh(tp);
719 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
720 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
721 		return;
722 
723 	/* Number of bytes copied to user in last RTT */
724 	copied = tp->copied_seq - tp->rcvq_space.seq;
725 	if (copied <= tp->rcvq_space.space)
726 		goto new_measure;
727 
728 	/* A bit of theory :
729 	 * copied = bytes received in previous RTT, our base window
730 	 * To cope with packet losses, we need a 2x factor
731 	 * To cope with slow start, and sender growing its cwin by 100 %
732 	 * every RTT, we need a 4x factor, because the ACK we are sending
733 	 * now is for the next RTT, not the current one :
734 	 * <prev RTT . ><current RTT .. ><next RTT .... >
735 	 */
736 
737 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
738 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
739 		u64 rcvwin, grow;
740 		int rcvbuf;
741 
742 		/* minimal window to cope with packet losses, assuming
743 		 * steady state. Add some cushion because of small variations.
744 		 */
745 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
746 
747 		/* Accommodate for sender rate increase (eg. slow start) */
748 		grow = rcvwin * (copied - tp->rcvq_space.space);
749 		do_div(grow, tp->rcvq_space.space);
750 		rcvwin += (grow << 1);
751 
752 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
753 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
754 		if (rcvbuf > sk->sk_rcvbuf) {
755 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
756 
757 			/* Make the window clamp follow along.  */
758 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
759 		}
760 	}
761 	tp->rcvq_space.space = copied;
762 
763 new_measure:
764 	tp->rcvq_space.seq = tp->copied_seq;
765 	tp->rcvq_space.time = tp->tcp_mstamp;
766 }
767 
768 /* There is something which you must keep in mind when you analyze the
769  * behavior of the tp->ato delayed ack timeout interval.  When a
770  * connection starts up, we want to ack as quickly as possible.  The
771  * problem is that "good" TCP's do slow start at the beginning of data
772  * transmission.  The means that until we send the first few ACK's the
773  * sender will sit on his end and only queue most of his data, because
774  * he can only send snd_cwnd unacked packets at any given time.  For
775  * each ACK we send, he increments snd_cwnd and transmits more of his
776  * queue.  -DaveM
777  */
778 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
779 {
780 	struct tcp_sock *tp = tcp_sk(sk);
781 	struct inet_connection_sock *icsk = inet_csk(sk);
782 	u32 now;
783 
784 	inet_csk_schedule_ack(sk);
785 
786 	tcp_measure_rcv_mss(sk, skb);
787 
788 	tcp_rcv_rtt_measure(tp);
789 
790 	now = tcp_jiffies32;
791 
792 	if (!icsk->icsk_ack.ato) {
793 		/* The _first_ data packet received, initialize
794 		 * delayed ACK engine.
795 		 */
796 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
797 		icsk->icsk_ack.ato = TCP_ATO_MIN;
798 	} else {
799 		int m = now - icsk->icsk_ack.lrcvtime;
800 
801 		if (m <= TCP_ATO_MIN / 2) {
802 			/* The fastest case is the first. */
803 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
804 		} else if (m < icsk->icsk_ack.ato) {
805 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
806 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
807 				icsk->icsk_ack.ato = icsk->icsk_rto;
808 		} else if (m > icsk->icsk_rto) {
809 			/* Too long gap. Apparently sender failed to
810 			 * restart window, so that we send ACKs quickly.
811 			 */
812 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
813 		}
814 	}
815 	icsk->icsk_ack.lrcvtime = now;
816 
817 	tcp_ecn_check_ce(sk, skb);
818 
819 	if (skb->len >= 128)
820 		tcp_grow_window(sk, skb, true);
821 }
822 
823 /* Called to compute a smoothed rtt estimate. The data fed to this
824  * routine either comes from timestamps, or from segments that were
825  * known _not_ to have been retransmitted [see Karn/Partridge
826  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
827  * piece by Van Jacobson.
828  * NOTE: the next three routines used to be one big routine.
829  * To save cycles in the RFC 1323 implementation it was better to break
830  * it up into three procedures. -- erics
831  */
832 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
833 {
834 	struct tcp_sock *tp = tcp_sk(sk);
835 	long m = mrtt_us; /* RTT */
836 	u32 srtt = tp->srtt_us;
837 
838 	/*	The following amusing code comes from Jacobson's
839 	 *	article in SIGCOMM '88.  Note that rtt and mdev
840 	 *	are scaled versions of rtt and mean deviation.
841 	 *	This is designed to be as fast as possible
842 	 *	m stands for "measurement".
843 	 *
844 	 *	On a 1990 paper the rto value is changed to:
845 	 *	RTO = rtt + 4 * mdev
846 	 *
847 	 * Funny. This algorithm seems to be very broken.
848 	 * These formulae increase RTO, when it should be decreased, increase
849 	 * too slowly, when it should be increased quickly, decrease too quickly
850 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
851 	 * does not matter how to _calculate_ it. Seems, it was trap
852 	 * that VJ failed to avoid. 8)
853 	 */
854 	if (srtt != 0) {
855 		m -= (srtt >> 3);	/* m is now error in rtt est */
856 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
857 		if (m < 0) {
858 			m = -m;		/* m is now abs(error) */
859 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
860 			/* This is similar to one of Eifel findings.
861 			 * Eifel blocks mdev updates when rtt decreases.
862 			 * This solution is a bit different: we use finer gain
863 			 * for mdev in this case (alpha*beta).
864 			 * Like Eifel it also prevents growth of rto,
865 			 * but also it limits too fast rto decreases,
866 			 * happening in pure Eifel.
867 			 */
868 			if (m > 0)
869 				m >>= 3;
870 		} else {
871 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
872 		}
873 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
874 		if (tp->mdev_us > tp->mdev_max_us) {
875 			tp->mdev_max_us = tp->mdev_us;
876 			if (tp->mdev_max_us > tp->rttvar_us)
877 				tp->rttvar_us = tp->mdev_max_us;
878 		}
879 		if (after(tp->snd_una, tp->rtt_seq)) {
880 			if (tp->mdev_max_us < tp->rttvar_us)
881 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
882 			tp->rtt_seq = tp->snd_nxt;
883 			tp->mdev_max_us = tcp_rto_min_us(sk);
884 
885 			tcp_bpf_rtt(sk);
886 		}
887 	} else {
888 		/* no previous measure. */
889 		srtt = m << 3;		/* take the measured time to be rtt */
890 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
891 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
892 		tp->mdev_max_us = tp->rttvar_us;
893 		tp->rtt_seq = tp->snd_nxt;
894 
895 		tcp_bpf_rtt(sk);
896 	}
897 	tp->srtt_us = max(1U, srtt);
898 }
899 
900 static void tcp_update_pacing_rate(struct sock *sk)
901 {
902 	const struct tcp_sock *tp = tcp_sk(sk);
903 	u64 rate;
904 
905 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
906 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
907 
908 	/* current rate is (cwnd * mss) / srtt
909 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
910 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
911 	 *
912 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
913 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
914 	 *	 end of slow start and should slow down.
915 	 */
916 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
917 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
918 	else
919 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
920 
921 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
922 
923 	if (likely(tp->srtt_us))
924 		do_div(rate, tp->srtt_us);
925 
926 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
927 	 * without any lock. We want to make sure compiler wont store
928 	 * intermediate values in this location.
929 	 */
930 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
931 					     sk->sk_max_pacing_rate));
932 }
933 
934 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
935  * routine referred to above.
936  */
937 static void tcp_set_rto(struct sock *sk)
938 {
939 	const struct tcp_sock *tp = tcp_sk(sk);
940 	/* Old crap is replaced with new one. 8)
941 	 *
942 	 * More seriously:
943 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
944 	 *    It cannot be less due to utterly erratic ACK generation made
945 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
946 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
947 	 *    is invisible. Actually, Linux-2.4 also generates erratic
948 	 *    ACKs in some circumstances.
949 	 */
950 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
951 
952 	/* 2. Fixups made earlier cannot be right.
953 	 *    If we do not estimate RTO correctly without them,
954 	 *    all the algo is pure shit and should be replaced
955 	 *    with correct one. It is exactly, which we pretend to do.
956 	 */
957 
958 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
959 	 * guarantees that rto is higher.
960 	 */
961 	tcp_bound_rto(sk);
962 }
963 
964 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
965 {
966 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
967 
968 	if (!cwnd)
969 		cwnd = TCP_INIT_CWND;
970 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
971 }
972 
973 struct tcp_sacktag_state {
974 	/* Timestamps for earliest and latest never-retransmitted segment
975 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
976 	 * but congestion control should still get an accurate delay signal.
977 	 */
978 	u64	first_sackt;
979 	u64	last_sackt;
980 	u32	reord;
981 	u32	sack_delivered;
982 	int	flag;
983 	unsigned int mss_now;
984 	struct rate_sample *rate;
985 };
986 
987 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
988  * and spurious retransmission information if this DSACK is unlikely caused by
989  * sender's action:
990  * - DSACKed sequence range is larger than maximum receiver's window.
991  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
992  */
993 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
994 			  u32 end_seq, struct tcp_sacktag_state *state)
995 {
996 	u32 seq_len, dup_segs = 1;
997 
998 	if (!before(start_seq, end_seq))
999 		return 0;
1000 
1001 	seq_len = end_seq - start_seq;
1002 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1003 	if (seq_len > tp->max_window)
1004 		return 0;
1005 	if (seq_len > tp->mss_cache)
1006 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1007 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1008 		state->flag |= FLAG_DSACK_TLP;
1009 
1010 	tp->dsack_dups += dup_segs;
1011 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1012 	if (tp->dsack_dups > tp->total_retrans)
1013 		return 0;
1014 
1015 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1016 	/* We increase the RACK ordering window in rounds where we receive
1017 	 * DSACKs that may have been due to reordering causing RACK to trigger
1018 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1019 	 * without having seen reordering, or that match TLP probes (TLP
1020 	 * is timer-driven, not triggered by RACK).
1021 	 */
1022 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1023 		tp->rack.dsack_seen = 1;
1024 
1025 	state->flag |= FLAG_DSACKING_ACK;
1026 	/* A spurious retransmission is delivered */
1027 	state->sack_delivered += dup_segs;
1028 
1029 	return dup_segs;
1030 }
1031 
1032 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1033  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1034  * distance is approximated in full-mss packet distance ("reordering").
1035  */
1036 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1037 				      const int ts)
1038 {
1039 	struct tcp_sock *tp = tcp_sk(sk);
1040 	const u32 mss = tp->mss_cache;
1041 	u32 fack, metric;
1042 
1043 	fack = tcp_highest_sack_seq(tp);
1044 	if (!before(low_seq, fack))
1045 		return;
1046 
1047 	metric = fack - low_seq;
1048 	if ((metric > tp->reordering * mss) && mss) {
1049 #if FASTRETRANS_DEBUG > 1
1050 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1051 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1052 			 tp->reordering,
1053 			 0,
1054 			 tp->sacked_out,
1055 			 tp->undo_marker ? tp->undo_retrans : 0);
1056 #endif
1057 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1058 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1059 	}
1060 
1061 	/* This exciting event is worth to be remembered. 8) */
1062 	tp->reord_seen++;
1063 	NET_INC_STATS(sock_net(sk),
1064 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1065 }
1066 
1067  /* This must be called before lost_out or retrans_out are updated
1068   * on a new loss, because we want to know if all skbs previously
1069   * known to be lost have already been retransmitted, indicating
1070   * that this newly lost skb is our next skb to retransmit.
1071   */
1072 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1073 {
1074 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1075 	    (tp->retransmit_skb_hint &&
1076 	     before(TCP_SKB_CB(skb)->seq,
1077 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1078 		tp->retransmit_skb_hint = skb;
1079 }
1080 
1081 /* Sum the number of packets on the wire we have marked as lost, and
1082  * notify the congestion control module that the given skb was marked lost.
1083  */
1084 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1085 {
1086 	tp->lost += tcp_skb_pcount(skb);
1087 }
1088 
1089 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1090 {
1091 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1092 	struct tcp_sock *tp = tcp_sk(sk);
1093 
1094 	if (sacked & TCPCB_SACKED_ACKED)
1095 		return;
1096 
1097 	tcp_verify_retransmit_hint(tp, skb);
1098 	if (sacked & TCPCB_LOST) {
1099 		if (sacked & TCPCB_SACKED_RETRANS) {
1100 			/* Account for retransmits that are lost again */
1101 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1102 			tp->retrans_out -= tcp_skb_pcount(skb);
1103 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1104 				      tcp_skb_pcount(skb));
1105 			tcp_notify_skb_loss_event(tp, skb);
1106 		}
1107 	} else {
1108 		tp->lost_out += tcp_skb_pcount(skb);
1109 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1110 		tcp_notify_skb_loss_event(tp, skb);
1111 	}
1112 }
1113 
1114 /* Updates the delivered and delivered_ce counts */
1115 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1116 				bool ece_ack)
1117 {
1118 	tp->delivered += delivered;
1119 	if (ece_ack)
1120 		tp->delivered_ce += delivered;
1121 }
1122 
1123 /* This procedure tags the retransmission queue when SACKs arrive.
1124  *
1125  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1126  * Packets in queue with these bits set are counted in variables
1127  * sacked_out, retrans_out and lost_out, correspondingly.
1128  *
1129  * Valid combinations are:
1130  * Tag  InFlight	Description
1131  * 0	1		- orig segment is in flight.
1132  * S	0		- nothing flies, orig reached receiver.
1133  * L	0		- nothing flies, orig lost by net.
1134  * R	2		- both orig and retransmit are in flight.
1135  * L|R	1		- orig is lost, retransmit is in flight.
1136  * S|R  1		- orig reached receiver, retrans is still in flight.
1137  * (L|S|R is logically valid, it could occur when L|R is sacked,
1138  *  but it is equivalent to plain S and code short-curcuits it to S.
1139  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1140  *
1141  * These 6 states form finite state machine, controlled by the following events:
1142  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1143  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1144  * 3. Loss detection event of two flavors:
1145  *	A. Scoreboard estimator decided the packet is lost.
1146  *	   A'. Reno "three dupacks" marks head of queue lost.
1147  *	B. SACK arrives sacking SND.NXT at the moment, when the
1148  *	   segment was retransmitted.
1149  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1150  *
1151  * It is pleasant to note, that state diagram turns out to be commutative,
1152  * so that we are allowed not to be bothered by order of our actions,
1153  * when multiple events arrive simultaneously. (see the function below).
1154  *
1155  * Reordering detection.
1156  * --------------------
1157  * Reordering metric is maximal distance, which a packet can be displaced
1158  * in packet stream. With SACKs we can estimate it:
1159  *
1160  * 1. SACK fills old hole and the corresponding segment was not
1161  *    ever retransmitted -> reordering. Alas, we cannot use it
1162  *    when segment was retransmitted.
1163  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1164  *    for retransmitted and already SACKed segment -> reordering..
1165  * Both of these heuristics are not used in Loss state, when we cannot
1166  * account for retransmits accurately.
1167  *
1168  * SACK block validation.
1169  * ----------------------
1170  *
1171  * SACK block range validation checks that the received SACK block fits to
1172  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1173  * Note that SND.UNA is not included to the range though being valid because
1174  * it means that the receiver is rather inconsistent with itself reporting
1175  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1176  * perfectly valid, however, in light of RFC2018 which explicitly states
1177  * that "SACK block MUST reflect the newest segment.  Even if the newest
1178  * segment is going to be discarded ...", not that it looks very clever
1179  * in case of head skb. Due to potentional receiver driven attacks, we
1180  * choose to avoid immediate execution of a walk in write queue due to
1181  * reneging and defer head skb's loss recovery to standard loss recovery
1182  * procedure that will eventually trigger (nothing forbids us doing this).
1183  *
1184  * Implements also blockage to start_seq wrap-around. Problem lies in the
1185  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1186  * there's no guarantee that it will be before snd_nxt (n). The problem
1187  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1188  * wrap (s_w):
1189  *
1190  *         <- outs wnd ->                          <- wrapzone ->
1191  *         u     e      n                         u_w   e_w  s n_w
1192  *         |     |      |                          |     |   |  |
1193  * |<------------+------+----- TCP seqno space --------------+---------->|
1194  * ...-- <2^31 ->|                                           |<--------...
1195  * ...---- >2^31 ------>|                                    |<--------...
1196  *
1197  * Current code wouldn't be vulnerable but it's better still to discard such
1198  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1199  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1200  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1201  * equal to the ideal case (infinite seqno space without wrap caused issues).
1202  *
1203  * With D-SACK the lower bound is extended to cover sequence space below
1204  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1205  * again, D-SACK block must not to go across snd_una (for the same reason as
1206  * for the normal SACK blocks, explained above). But there all simplicity
1207  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1208  * fully below undo_marker they do not affect behavior in anyway and can
1209  * therefore be safely ignored. In rare cases (which are more or less
1210  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1211  * fragmentation and packet reordering past skb's retransmission. To consider
1212  * them correctly, the acceptable range must be extended even more though
1213  * the exact amount is rather hard to quantify. However, tp->max_window can
1214  * be used as an exaggerated estimate.
1215  */
1216 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1217 				   u32 start_seq, u32 end_seq)
1218 {
1219 	/* Too far in future, or reversed (interpretation is ambiguous) */
1220 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1221 		return false;
1222 
1223 	/* Nasty start_seq wrap-around check (see comments above) */
1224 	if (!before(start_seq, tp->snd_nxt))
1225 		return false;
1226 
1227 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1228 	 * start_seq == snd_una is non-sensical (see comments above)
1229 	 */
1230 	if (after(start_seq, tp->snd_una))
1231 		return true;
1232 
1233 	if (!is_dsack || !tp->undo_marker)
1234 		return false;
1235 
1236 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1237 	if (after(end_seq, tp->snd_una))
1238 		return false;
1239 
1240 	if (!before(start_seq, tp->undo_marker))
1241 		return true;
1242 
1243 	/* Too old */
1244 	if (!after(end_seq, tp->undo_marker))
1245 		return false;
1246 
1247 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1248 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1249 	 */
1250 	return !before(start_seq, end_seq - tp->max_window);
1251 }
1252 
1253 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1254 			    struct tcp_sack_block_wire *sp, int num_sacks,
1255 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1256 {
1257 	struct tcp_sock *tp = tcp_sk(sk);
1258 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1259 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1260 	u32 dup_segs;
1261 
1262 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1263 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1264 	} else if (num_sacks > 1) {
1265 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1266 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1267 
1268 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1269 			return false;
1270 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1271 	} else {
1272 		return false;
1273 	}
1274 
1275 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1276 	if (!dup_segs) {	/* Skip dubious DSACK */
1277 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1278 		return false;
1279 	}
1280 
1281 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1282 
1283 	/* D-SACK for already forgotten data... Do dumb counting. */
1284 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1285 	    !after(end_seq_0, prior_snd_una) &&
1286 	    after(end_seq_0, tp->undo_marker))
1287 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1288 
1289 	return true;
1290 }
1291 
1292 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1293  * the incoming SACK may not exactly match but we can find smaller MSS
1294  * aligned portion of it that matches. Therefore we might need to fragment
1295  * which may fail and creates some hassle (caller must handle error case
1296  * returns).
1297  *
1298  * FIXME: this could be merged to shift decision code
1299  */
1300 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1301 				  u32 start_seq, u32 end_seq)
1302 {
1303 	int err;
1304 	bool in_sack;
1305 	unsigned int pkt_len;
1306 	unsigned int mss;
1307 
1308 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1309 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1310 
1311 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1312 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1313 		mss = tcp_skb_mss(skb);
1314 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1315 
1316 		if (!in_sack) {
1317 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1318 			if (pkt_len < mss)
1319 				pkt_len = mss;
1320 		} else {
1321 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1322 			if (pkt_len < mss)
1323 				return -EINVAL;
1324 		}
1325 
1326 		/* Round if necessary so that SACKs cover only full MSSes
1327 		 * and/or the remaining small portion (if present)
1328 		 */
1329 		if (pkt_len > mss) {
1330 			unsigned int new_len = (pkt_len / mss) * mss;
1331 			if (!in_sack && new_len < pkt_len)
1332 				new_len += mss;
1333 			pkt_len = new_len;
1334 		}
1335 
1336 		if (pkt_len >= skb->len && !in_sack)
1337 			return 0;
1338 
1339 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1340 				   pkt_len, mss, GFP_ATOMIC);
1341 		if (err < 0)
1342 			return err;
1343 	}
1344 
1345 	return in_sack;
1346 }
1347 
1348 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1349 static u8 tcp_sacktag_one(struct sock *sk,
1350 			  struct tcp_sacktag_state *state, u8 sacked,
1351 			  u32 start_seq, u32 end_seq,
1352 			  int dup_sack, int pcount,
1353 			  u64 xmit_time)
1354 {
1355 	struct tcp_sock *tp = tcp_sk(sk);
1356 
1357 	/* Account D-SACK for retransmitted packet. */
1358 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1359 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1360 		    after(end_seq, tp->undo_marker))
1361 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1362 		if ((sacked & TCPCB_SACKED_ACKED) &&
1363 		    before(start_seq, state->reord))
1364 				state->reord = start_seq;
1365 	}
1366 
1367 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1368 	if (!after(end_seq, tp->snd_una))
1369 		return sacked;
1370 
1371 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1372 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1373 
1374 		if (sacked & TCPCB_SACKED_RETRANS) {
1375 			/* If the segment is not tagged as lost,
1376 			 * we do not clear RETRANS, believing
1377 			 * that retransmission is still in flight.
1378 			 */
1379 			if (sacked & TCPCB_LOST) {
1380 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1381 				tp->lost_out -= pcount;
1382 				tp->retrans_out -= pcount;
1383 			}
1384 		} else {
1385 			if (!(sacked & TCPCB_RETRANS)) {
1386 				/* New sack for not retransmitted frame,
1387 				 * which was in hole. It is reordering.
1388 				 */
1389 				if (before(start_seq,
1390 					   tcp_highest_sack_seq(tp)) &&
1391 				    before(start_seq, state->reord))
1392 					state->reord = start_seq;
1393 
1394 				if (!after(end_seq, tp->high_seq))
1395 					state->flag |= FLAG_ORIG_SACK_ACKED;
1396 				if (state->first_sackt == 0)
1397 					state->first_sackt = xmit_time;
1398 				state->last_sackt = xmit_time;
1399 			}
1400 
1401 			if (sacked & TCPCB_LOST) {
1402 				sacked &= ~TCPCB_LOST;
1403 				tp->lost_out -= pcount;
1404 			}
1405 		}
1406 
1407 		sacked |= TCPCB_SACKED_ACKED;
1408 		state->flag |= FLAG_DATA_SACKED;
1409 		tp->sacked_out += pcount;
1410 		/* Out-of-order packets delivered */
1411 		state->sack_delivered += pcount;
1412 
1413 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1414 		if (tp->lost_skb_hint &&
1415 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1416 			tp->lost_cnt_hint += pcount;
1417 	}
1418 
1419 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1420 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1421 	 * are accounted above as well.
1422 	 */
1423 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1424 		sacked &= ~TCPCB_SACKED_RETRANS;
1425 		tp->retrans_out -= pcount;
1426 	}
1427 
1428 	return sacked;
1429 }
1430 
1431 /* Shift newly-SACKed bytes from this skb to the immediately previous
1432  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1433  */
1434 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1435 			    struct sk_buff *skb,
1436 			    struct tcp_sacktag_state *state,
1437 			    unsigned int pcount, int shifted, int mss,
1438 			    bool dup_sack)
1439 {
1440 	struct tcp_sock *tp = tcp_sk(sk);
1441 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1442 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1443 
1444 	BUG_ON(!pcount);
1445 
1446 	/* Adjust counters and hints for the newly sacked sequence
1447 	 * range but discard the return value since prev is already
1448 	 * marked. We must tag the range first because the seq
1449 	 * advancement below implicitly advances
1450 	 * tcp_highest_sack_seq() when skb is highest_sack.
1451 	 */
1452 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1453 			start_seq, end_seq, dup_sack, pcount,
1454 			tcp_skb_timestamp_us(skb));
1455 	tcp_rate_skb_delivered(sk, skb, state->rate);
1456 
1457 	if (skb == tp->lost_skb_hint)
1458 		tp->lost_cnt_hint += pcount;
1459 
1460 	TCP_SKB_CB(prev)->end_seq += shifted;
1461 	TCP_SKB_CB(skb)->seq += shifted;
1462 
1463 	tcp_skb_pcount_add(prev, pcount);
1464 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1465 	tcp_skb_pcount_add(skb, -pcount);
1466 
1467 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1468 	 * in theory this shouldn't be necessary but as long as DSACK
1469 	 * code can come after this skb later on it's better to keep
1470 	 * setting gso_size to something.
1471 	 */
1472 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1473 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1474 
1475 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1476 	if (tcp_skb_pcount(skb) <= 1)
1477 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1478 
1479 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1480 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1481 
1482 	if (skb->len > 0) {
1483 		BUG_ON(!tcp_skb_pcount(skb));
1484 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1485 		return false;
1486 	}
1487 
1488 	/* Whole SKB was eaten :-) */
1489 
1490 	if (skb == tp->retransmit_skb_hint)
1491 		tp->retransmit_skb_hint = prev;
1492 	if (skb == tp->lost_skb_hint) {
1493 		tp->lost_skb_hint = prev;
1494 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1495 	}
1496 
1497 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1498 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1499 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1500 		TCP_SKB_CB(prev)->end_seq++;
1501 
1502 	if (skb == tcp_highest_sack(sk))
1503 		tcp_advance_highest_sack(sk, skb);
1504 
1505 	tcp_skb_collapse_tstamp(prev, skb);
1506 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1507 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1508 
1509 	tcp_rtx_queue_unlink_and_free(skb, sk);
1510 
1511 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1512 
1513 	return true;
1514 }
1515 
1516 /* I wish gso_size would have a bit more sane initialization than
1517  * something-or-zero which complicates things
1518  */
1519 static int tcp_skb_seglen(const struct sk_buff *skb)
1520 {
1521 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1522 }
1523 
1524 /* Shifting pages past head area doesn't work */
1525 static int skb_can_shift(const struct sk_buff *skb)
1526 {
1527 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1528 }
1529 
1530 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1531 		  int pcount, int shiftlen)
1532 {
1533 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1534 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1535 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1536 	 * even if current MSS is bigger.
1537 	 */
1538 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1539 		return 0;
1540 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1541 		return 0;
1542 	return skb_shift(to, from, shiftlen);
1543 }
1544 
1545 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1546  * skb.
1547  */
1548 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1549 					  struct tcp_sacktag_state *state,
1550 					  u32 start_seq, u32 end_seq,
1551 					  bool dup_sack)
1552 {
1553 	struct tcp_sock *tp = tcp_sk(sk);
1554 	struct sk_buff *prev;
1555 	int mss;
1556 	int pcount = 0;
1557 	int len;
1558 	int in_sack;
1559 
1560 	/* Normally R but no L won't result in plain S */
1561 	if (!dup_sack &&
1562 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1563 		goto fallback;
1564 	if (!skb_can_shift(skb))
1565 		goto fallback;
1566 	/* This frame is about to be dropped (was ACKed). */
1567 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1568 		goto fallback;
1569 
1570 	/* Can only happen with delayed DSACK + discard craziness */
1571 	prev = skb_rb_prev(skb);
1572 	if (!prev)
1573 		goto fallback;
1574 
1575 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1576 		goto fallback;
1577 
1578 	if (!tcp_skb_can_collapse(prev, skb))
1579 		goto fallback;
1580 
1581 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1582 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1583 
1584 	if (in_sack) {
1585 		len = skb->len;
1586 		pcount = tcp_skb_pcount(skb);
1587 		mss = tcp_skb_seglen(skb);
1588 
1589 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1590 		 * drop this restriction as unnecessary
1591 		 */
1592 		if (mss != tcp_skb_seglen(prev))
1593 			goto fallback;
1594 	} else {
1595 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1596 			goto noop;
1597 		/* CHECKME: This is non-MSS split case only?, this will
1598 		 * cause skipped skbs due to advancing loop btw, original
1599 		 * has that feature too
1600 		 */
1601 		if (tcp_skb_pcount(skb) <= 1)
1602 			goto noop;
1603 
1604 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1605 		if (!in_sack) {
1606 			/* TODO: head merge to next could be attempted here
1607 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1608 			 * though it might not be worth of the additional hassle
1609 			 *
1610 			 * ...we can probably just fallback to what was done
1611 			 * previously. We could try merging non-SACKed ones
1612 			 * as well but it probably isn't going to buy off
1613 			 * because later SACKs might again split them, and
1614 			 * it would make skb timestamp tracking considerably
1615 			 * harder problem.
1616 			 */
1617 			goto fallback;
1618 		}
1619 
1620 		len = end_seq - TCP_SKB_CB(skb)->seq;
1621 		BUG_ON(len < 0);
1622 		BUG_ON(len > skb->len);
1623 
1624 		/* MSS boundaries should be honoured or else pcount will
1625 		 * severely break even though it makes things bit trickier.
1626 		 * Optimize common case to avoid most of the divides
1627 		 */
1628 		mss = tcp_skb_mss(skb);
1629 
1630 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1631 		 * drop this restriction as unnecessary
1632 		 */
1633 		if (mss != tcp_skb_seglen(prev))
1634 			goto fallback;
1635 
1636 		if (len == mss) {
1637 			pcount = 1;
1638 		} else if (len < mss) {
1639 			goto noop;
1640 		} else {
1641 			pcount = len / mss;
1642 			len = pcount * mss;
1643 		}
1644 	}
1645 
1646 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1647 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1648 		goto fallback;
1649 
1650 	if (!tcp_skb_shift(prev, skb, pcount, len))
1651 		goto fallback;
1652 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1653 		goto out;
1654 
1655 	/* Hole filled allows collapsing with the next as well, this is very
1656 	 * useful when hole on every nth skb pattern happens
1657 	 */
1658 	skb = skb_rb_next(prev);
1659 	if (!skb)
1660 		goto out;
1661 
1662 	if (!skb_can_shift(skb) ||
1663 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1664 	    (mss != tcp_skb_seglen(skb)))
1665 		goto out;
1666 
1667 	if (!tcp_skb_can_collapse(prev, skb))
1668 		goto out;
1669 	len = skb->len;
1670 	pcount = tcp_skb_pcount(skb);
1671 	if (tcp_skb_shift(prev, skb, pcount, len))
1672 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1673 				len, mss, 0);
1674 
1675 out:
1676 	return prev;
1677 
1678 noop:
1679 	return skb;
1680 
1681 fallback:
1682 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1683 	return NULL;
1684 }
1685 
1686 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1687 					struct tcp_sack_block *next_dup,
1688 					struct tcp_sacktag_state *state,
1689 					u32 start_seq, u32 end_seq,
1690 					bool dup_sack_in)
1691 {
1692 	struct tcp_sock *tp = tcp_sk(sk);
1693 	struct sk_buff *tmp;
1694 
1695 	skb_rbtree_walk_from(skb) {
1696 		int in_sack = 0;
1697 		bool dup_sack = dup_sack_in;
1698 
1699 		/* queue is in-order => we can short-circuit the walk early */
1700 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1701 			break;
1702 
1703 		if (next_dup  &&
1704 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1705 			in_sack = tcp_match_skb_to_sack(sk, skb,
1706 							next_dup->start_seq,
1707 							next_dup->end_seq);
1708 			if (in_sack > 0)
1709 				dup_sack = true;
1710 		}
1711 
1712 		/* skb reference here is a bit tricky to get right, since
1713 		 * shifting can eat and free both this skb and the next,
1714 		 * so not even _safe variant of the loop is enough.
1715 		 */
1716 		if (in_sack <= 0) {
1717 			tmp = tcp_shift_skb_data(sk, skb, state,
1718 						 start_seq, end_seq, dup_sack);
1719 			if (tmp) {
1720 				if (tmp != skb) {
1721 					skb = tmp;
1722 					continue;
1723 				}
1724 
1725 				in_sack = 0;
1726 			} else {
1727 				in_sack = tcp_match_skb_to_sack(sk, skb,
1728 								start_seq,
1729 								end_seq);
1730 			}
1731 		}
1732 
1733 		if (unlikely(in_sack < 0))
1734 			break;
1735 
1736 		if (in_sack) {
1737 			TCP_SKB_CB(skb)->sacked =
1738 				tcp_sacktag_one(sk,
1739 						state,
1740 						TCP_SKB_CB(skb)->sacked,
1741 						TCP_SKB_CB(skb)->seq,
1742 						TCP_SKB_CB(skb)->end_seq,
1743 						dup_sack,
1744 						tcp_skb_pcount(skb),
1745 						tcp_skb_timestamp_us(skb));
1746 			tcp_rate_skb_delivered(sk, skb, state->rate);
1747 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1748 				list_del_init(&skb->tcp_tsorted_anchor);
1749 
1750 			if (!before(TCP_SKB_CB(skb)->seq,
1751 				    tcp_highest_sack_seq(tp)))
1752 				tcp_advance_highest_sack(sk, skb);
1753 		}
1754 	}
1755 	return skb;
1756 }
1757 
1758 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1759 {
1760 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1761 	struct sk_buff *skb;
1762 
1763 	while (*p) {
1764 		parent = *p;
1765 		skb = rb_to_skb(parent);
1766 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1767 			p = &parent->rb_left;
1768 			continue;
1769 		}
1770 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1771 			p = &parent->rb_right;
1772 			continue;
1773 		}
1774 		return skb;
1775 	}
1776 	return NULL;
1777 }
1778 
1779 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1780 					u32 skip_to_seq)
1781 {
1782 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1783 		return skb;
1784 
1785 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1786 }
1787 
1788 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1789 						struct sock *sk,
1790 						struct tcp_sack_block *next_dup,
1791 						struct tcp_sacktag_state *state,
1792 						u32 skip_to_seq)
1793 {
1794 	if (!next_dup)
1795 		return skb;
1796 
1797 	if (before(next_dup->start_seq, skip_to_seq)) {
1798 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1799 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1800 				       next_dup->start_seq, next_dup->end_seq,
1801 				       1);
1802 	}
1803 
1804 	return skb;
1805 }
1806 
1807 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1808 {
1809 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1810 }
1811 
1812 static int
1813 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1814 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1815 {
1816 	struct tcp_sock *tp = tcp_sk(sk);
1817 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1818 				    TCP_SKB_CB(ack_skb)->sacked);
1819 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1820 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1821 	struct tcp_sack_block *cache;
1822 	struct sk_buff *skb;
1823 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1824 	int used_sacks;
1825 	bool found_dup_sack = false;
1826 	int i, j;
1827 	int first_sack_index;
1828 
1829 	state->flag = 0;
1830 	state->reord = tp->snd_nxt;
1831 
1832 	if (!tp->sacked_out)
1833 		tcp_highest_sack_reset(sk);
1834 
1835 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1836 					 num_sacks, prior_snd_una, state);
1837 
1838 	/* Eliminate too old ACKs, but take into
1839 	 * account more or less fresh ones, they can
1840 	 * contain valid SACK info.
1841 	 */
1842 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1843 		return 0;
1844 
1845 	if (!tp->packets_out)
1846 		goto out;
1847 
1848 	used_sacks = 0;
1849 	first_sack_index = 0;
1850 	for (i = 0; i < num_sacks; i++) {
1851 		bool dup_sack = !i && found_dup_sack;
1852 
1853 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1854 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1855 
1856 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1857 					    sp[used_sacks].start_seq,
1858 					    sp[used_sacks].end_seq)) {
1859 			int mib_idx;
1860 
1861 			if (dup_sack) {
1862 				if (!tp->undo_marker)
1863 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1864 				else
1865 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1866 			} else {
1867 				/* Don't count olds caused by ACK reordering */
1868 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1869 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1870 					continue;
1871 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1872 			}
1873 
1874 			NET_INC_STATS(sock_net(sk), mib_idx);
1875 			if (i == 0)
1876 				first_sack_index = -1;
1877 			continue;
1878 		}
1879 
1880 		/* Ignore very old stuff early */
1881 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1882 			if (i == 0)
1883 				first_sack_index = -1;
1884 			continue;
1885 		}
1886 
1887 		used_sacks++;
1888 	}
1889 
1890 	/* order SACK blocks to allow in order walk of the retrans queue */
1891 	for (i = used_sacks - 1; i > 0; i--) {
1892 		for (j = 0; j < i; j++) {
1893 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1894 				swap(sp[j], sp[j + 1]);
1895 
1896 				/* Track where the first SACK block goes to */
1897 				if (j == first_sack_index)
1898 					first_sack_index = j + 1;
1899 			}
1900 		}
1901 	}
1902 
1903 	state->mss_now = tcp_current_mss(sk);
1904 	skb = NULL;
1905 	i = 0;
1906 
1907 	if (!tp->sacked_out) {
1908 		/* It's already past, so skip checking against it */
1909 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1910 	} else {
1911 		cache = tp->recv_sack_cache;
1912 		/* Skip empty blocks in at head of the cache */
1913 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1914 		       !cache->end_seq)
1915 			cache++;
1916 	}
1917 
1918 	while (i < used_sacks) {
1919 		u32 start_seq = sp[i].start_seq;
1920 		u32 end_seq = sp[i].end_seq;
1921 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1922 		struct tcp_sack_block *next_dup = NULL;
1923 
1924 		if (found_dup_sack && ((i + 1) == first_sack_index))
1925 			next_dup = &sp[i + 1];
1926 
1927 		/* Skip too early cached blocks */
1928 		while (tcp_sack_cache_ok(tp, cache) &&
1929 		       !before(start_seq, cache->end_seq))
1930 			cache++;
1931 
1932 		/* Can skip some work by looking recv_sack_cache? */
1933 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1934 		    after(end_seq, cache->start_seq)) {
1935 
1936 			/* Head todo? */
1937 			if (before(start_seq, cache->start_seq)) {
1938 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1939 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1940 						       state,
1941 						       start_seq,
1942 						       cache->start_seq,
1943 						       dup_sack);
1944 			}
1945 
1946 			/* Rest of the block already fully processed? */
1947 			if (!after(end_seq, cache->end_seq))
1948 				goto advance_sp;
1949 
1950 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1951 						       state,
1952 						       cache->end_seq);
1953 
1954 			/* ...tail remains todo... */
1955 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1956 				/* ...but better entrypoint exists! */
1957 				skb = tcp_highest_sack(sk);
1958 				if (!skb)
1959 					break;
1960 				cache++;
1961 				goto walk;
1962 			}
1963 
1964 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1965 			/* Check overlap against next cached too (past this one already) */
1966 			cache++;
1967 			continue;
1968 		}
1969 
1970 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1971 			skb = tcp_highest_sack(sk);
1972 			if (!skb)
1973 				break;
1974 		}
1975 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1976 
1977 walk:
1978 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1979 				       start_seq, end_seq, dup_sack);
1980 
1981 advance_sp:
1982 		i++;
1983 	}
1984 
1985 	/* Clear the head of the cache sack blocks so we can skip it next time */
1986 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1987 		tp->recv_sack_cache[i].start_seq = 0;
1988 		tp->recv_sack_cache[i].end_seq = 0;
1989 	}
1990 	for (j = 0; j < used_sacks; j++)
1991 		tp->recv_sack_cache[i++] = sp[j];
1992 
1993 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1994 		tcp_check_sack_reordering(sk, state->reord, 0);
1995 
1996 	tcp_verify_left_out(tp);
1997 out:
1998 
1999 #if FASTRETRANS_DEBUG > 0
2000 	WARN_ON((int)tp->sacked_out < 0);
2001 	WARN_ON((int)tp->lost_out < 0);
2002 	WARN_ON((int)tp->retrans_out < 0);
2003 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2004 #endif
2005 	return state->flag;
2006 }
2007 
2008 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2009  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2010  */
2011 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2012 {
2013 	u32 holes;
2014 
2015 	holes = max(tp->lost_out, 1U);
2016 	holes = min(holes, tp->packets_out);
2017 
2018 	if ((tp->sacked_out + holes) > tp->packets_out) {
2019 		tp->sacked_out = tp->packets_out - holes;
2020 		return true;
2021 	}
2022 	return false;
2023 }
2024 
2025 /* If we receive more dupacks than we expected counting segments
2026  * in assumption of absent reordering, interpret this as reordering.
2027  * The only another reason could be bug in receiver TCP.
2028  */
2029 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2030 {
2031 	struct tcp_sock *tp = tcp_sk(sk);
2032 
2033 	if (!tcp_limit_reno_sacked(tp))
2034 		return;
2035 
2036 	tp->reordering = min_t(u32, tp->packets_out + addend,
2037 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2038 	tp->reord_seen++;
2039 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2040 }
2041 
2042 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2043 
2044 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2045 {
2046 	if (num_dupack) {
2047 		struct tcp_sock *tp = tcp_sk(sk);
2048 		u32 prior_sacked = tp->sacked_out;
2049 		s32 delivered;
2050 
2051 		tp->sacked_out += num_dupack;
2052 		tcp_check_reno_reordering(sk, 0);
2053 		delivered = tp->sacked_out - prior_sacked;
2054 		if (delivered > 0)
2055 			tcp_count_delivered(tp, delivered, ece_ack);
2056 		tcp_verify_left_out(tp);
2057 	}
2058 }
2059 
2060 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2061 
2062 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2063 {
2064 	struct tcp_sock *tp = tcp_sk(sk);
2065 
2066 	if (acked > 0) {
2067 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2068 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2069 				    ece_ack);
2070 		if (acked - 1 >= tp->sacked_out)
2071 			tp->sacked_out = 0;
2072 		else
2073 			tp->sacked_out -= acked - 1;
2074 	}
2075 	tcp_check_reno_reordering(sk, acked);
2076 	tcp_verify_left_out(tp);
2077 }
2078 
2079 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2080 {
2081 	tp->sacked_out = 0;
2082 }
2083 
2084 void tcp_clear_retrans(struct tcp_sock *tp)
2085 {
2086 	tp->retrans_out = 0;
2087 	tp->lost_out = 0;
2088 	tp->undo_marker = 0;
2089 	tp->undo_retrans = -1;
2090 	tp->sacked_out = 0;
2091 }
2092 
2093 static inline void tcp_init_undo(struct tcp_sock *tp)
2094 {
2095 	tp->undo_marker = tp->snd_una;
2096 	/* Retransmission still in flight may cause DSACKs later. */
2097 	tp->undo_retrans = tp->retrans_out ? : -1;
2098 }
2099 
2100 static bool tcp_is_rack(const struct sock *sk)
2101 {
2102 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2103 		TCP_RACK_LOSS_DETECTION;
2104 }
2105 
2106 /* If we detect SACK reneging, forget all SACK information
2107  * and reset tags completely, otherwise preserve SACKs. If receiver
2108  * dropped its ofo queue, we will know this due to reneging detection.
2109  */
2110 static void tcp_timeout_mark_lost(struct sock *sk)
2111 {
2112 	struct tcp_sock *tp = tcp_sk(sk);
2113 	struct sk_buff *skb, *head;
2114 	bool is_reneg;			/* is receiver reneging on SACKs? */
2115 
2116 	head = tcp_rtx_queue_head(sk);
2117 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2118 	if (is_reneg) {
2119 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2120 		tp->sacked_out = 0;
2121 		/* Mark SACK reneging until we recover from this loss event. */
2122 		tp->is_sack_reneg = 1;
2123 	} else if (tcp_is_reno(tp)) {
2124 		tcp_reset_reno_sack(tp);
2125 	}
2126 
2127 	skb = head;
2128 	skb_rbtree_walk_from(skb) {
2129 		if (is_reneg)
2130 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2131 		else if (tcp_is_rack(sk) && skb != head &&
2132 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2133 			continue; /* Don't mark recently sent ones lost yet */
2134 		tcp_mark_skb_lost(sk, skb);
2135 	}
2136 	tcp_verify_left_out(tp);
2137 	tcp_clear_all_retrans_hints(tp);
2138 }
2139 
2140 /* Enter Loss state. */
2141 void tcp_enter_loss(struct sock *sk)
2142 {
2143 	const struct inet_connection_sock *icsk = inet_csk(sk);
2144 	struct tcp_sock *tp = tcp_sk(sk);
2145 	struct net *net = sock_net(sk);
2146 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2147 	u8 reordering;
2148 
2149 	tcp_timeout_mark_lost(sk);
2150 
2151 	/* Reduce ssthresh if it has not yet been made inside this window. */
2152 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2153 	    !after(tp->high_seq, tp->snd_una) ||
2154 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2155 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2156 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2157 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2158 		tcp_ca_event(sk, CA_EVENT_LOSS);
2159 		tcp_init_undo(tp);
2160 	}
2161 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2162 	tp->snd_cwnd_cnt   = 0;
2163 	tp->snd_cwnd_stamp = tcp_jiffies32;
2164 
2165 	/* Timeout in disordered state after receiving substantial DUPACKs
2166 	 * suggests that the degree of reordering is over-estimated.
2167 	 */
2168 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2169 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2170 	    tp->sacked_out >= reordering)
2171 		tp->reordering = min_t(unsigned int, tp->reordering,
2172 				       reordering);
2173 
2174 	tcp_set_ca_state(sk, TCP_CA_Loss);
2175 	tp->high_seq = tp->snd_nxt;
2176 	tcp_ecn_queue_cwr(tp);
2177 
2178 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2179 	 * loss recovery is underway except recurring timeout(s) on
2180 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2181 	 */
2182 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2183 		   (new_recovery || icsk->icsk_retransmits) &&
2184 		   !inet_csk(sk)->icsk_mtup.probe_size;
2185 }
2186 
2187 /* If ACK arrived pointing to a remembered SACK, it means that our
2188  * remembered SACKs do not reflect real state of receiver i.e.
2189  * receiver _host_ is heavily congested (or buggy).
2190  *
2191  * To avoid big spurious retransmission bursts due to transient SACK
2192  * scoreboard oddities that look like reneging, we give the receiver a
2193  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2194  * restore sanity to the SACK scoreboard. If the apparent reneging
2195  * persists until this RTO then we'll clear the SACK scoreboard.
2196  */
2197 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2198 {
2199 	if (flag & FLAG_SACK_RENEGING &&
2200 	    flag & FLAG_SND_UNA_ADVANCED) {
2201 		struct tcp_sock *tp = tcp_sk(sk);
2202 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2203 					  msecs_to_jiffies(10));
2204 
2205 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2206 					  delay, TCP_RTO_MAX);
2207 		return true;
2208 	}
2209 	return false;
2210 }
2211 
2212 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2213  * counter when SACK is enabled (without SACK, sacked_out is used for
2214  * that purpose).
2215  *
2216  * With reordering, holes may still be in flight, so RFC3517 recovery
2217  * uses pure sacked_out (total number of SACKed segments) even though
2218  * it violates the RFC that uses duplicate ACKs, often these are equal
2219  * but when e.g. out-of-window ACKs or packet duplication occurs,
2220  * they differ. Since neither occurs due to loss, TCP should really
2221  * ignore them.
2222  */
2223 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2224 {
2225 	return tp->sacked_out + 1;
2226 }
2227 
2228 /* Linux NewReno/SACK/ECN state machine.
2229  * --------------------------------------
2230  *
2231  * "Open"	Normal state, no dubious events, fast path.
2232  * "Disorder"   In all the respects it is "Open",
2233  *		but requires a bit more attention. It is entered when
2234  *		we see some SACKs or dupacks. It is split of "Open"
2235  *		mainly to move some processing from fast path to slow one.
2236  * "CWR"	CWND was reduced due to some Congestion Notification event.
2237  *		It can be ECN, ICMP source quench, local device congestion.
2238  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2239  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2240  *
2241  * tcp_fastretrans_alert() is entered:
2242  * - each incoming ACK, if state is not "Open"
2243  * - when arrived ACK is unusual, namely:
2244  *	* SACK
2245  *	* Duplicate ACK.
2246  *	* ECN ECE.
2247  *
2248  * Counting packets in flight is pretty simple.
2249  *
2250  *	in_flight = packets_out - left_out + retrans_out
2251  *
2252  *	packets_out is SND.NXT-SND.UNA counted in packets.
2253  *
2254  *	retrans_out is number of retransmitted segments.
2255  *
2256  *	left_out is number of segments left network, but not ACKed yet.
2257  *
2258  *		left_out = sacked_out + lost_out
2259  *
2260  *     sacked_out: Packets, which arrived to receiver out of order
2261  *		   and hence not ACKed. With SACKs this number is simply
2262  *		   amount of SACKed data. Even without SACKs
2263  *		   it is easy to give pretty reliable estimate of this number,
2264  *		   counting duplicate ACKs.
2265  *
2266  *       lost_out: Packets lost by network. TCP has no explicit
2267  *		   "loss notification" feedback from network (for now).
2268  *		   It means that this number can be only _guessed_.
2269  *		   Actually, it is the heuristics to predict lossage that
2270  *		   distinguishes different algorithms.
2271  *
2272  *	F.e. after RTO, when all the queue is considered as lost,
2273  *	lost_out = packets_out and in_flight = retrans_out.
2274  *
2275  *		Essentially, we have now a few algorithms detecting
2276  *		lost packets.
2277  *
2278  *		If the receiver supports SACK:
2279  *
2280  *		RFC6675/3517: It is the conventional algorithm. A packet is
2281  *		considered lost if the number of higher sequence packets
2282  *		SACKed is greater than or equal the DUPACK thoreshold
2283  *		(reordering). This is implemented in tcp_mark_head_lost and
2284  *		tcp_update_scoreboard.
2285  *
2286  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2287  *		(2017-) that checks timing instead of counting DUPACKs.
2288  *		Essentially a packet is considered lost if it's not S/ACKed
2289  *		after RTT + reordering_window, where both metrics are
2290  *		dynamically measured and adjusted. This is implemented in
2291  *		tcp_rack_mark_lost.
2292  *
2293  *		If the receiver does not support SACK:
2294  *
2295  *		NewReno (RFC6582): in Recovery we assume that one segment
2296  *		is lost (classic Reno). While we are in Recovery and
2297  *		a partial ACK arrives, we assume that one more packet
2298  *		is lost (NewReno). This heuristics are the same in NewReno
2299  *		and SACK.
2300  *
2301  * Really tricky (and requiring careful tuning) part of algorithm
2302  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2303  * The first determines the moment _when_ we should reduce CWND and,
2304  * hence, slow down forward transmission. In fact, it determines the moment
2305  * when we decide that hole is caused by loss, rather than by a reorder.
2306  *
2307  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2308  * holes, caused by lost packets.
2309  *
2310  * And the most logically complicated part of algorithm is undo
2311  * heuristics. We detect false retransmits due to both too early
2312  * fast retransmit (reordering) and underestimated RTO, analyzing
2313  * timestamps and D-SACKs. When we detect that some segments were
2314  * retransmitted by mistake and CWND reduction was wrong, we undo
2315  * window reduction and abort recovery phase. This logic is hidden
2316  * inside several functions named tcp_try_undo_<something>.
2317  */
2318 
2319 /* This function decides, when we should leave Disordered state
2320  * and enter Recovery phase, reducing congestion window.
2321  *
2322  * Main question: may we further continue forward transmission
2323  * with the same cwnd?
2324  */
2325 static bool tcp_time_to_recover(struct sock *sk, int flag)
2326 {
2327 	struct tcp_sock *tp = tcp_sk(sk);
2328 
2329 	/* Trick#1: The loss is proven. */
2330 	if (tp->lost_out)
2331 		return true;
2332 
2333 	/* Not-A-Trick#2 : Classic rule... */
2334 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2335 		return true;
2336 
2337 	return false;
2338 }
2339 
2340 /* Detect loss in event "A" above by marking head of queue up as lost.
2341  * For RFC3517 SACK, a segment is considered lost if it
2342  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2343  * the maximum SACKed segments to pass before reaching this limit.
2344  */
2345 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2346 {
2347 	struct tcp_sock *tp = tcp_sk(sk);
2348 	struct sk_buff *skb;
2349 	int cnt;
2350 	/* Use SACK to deduce losses of new sequences sent during recovery */
2351 	const u32 loss_high = tp->snd_nxt;
2352 
2353 	WARN_ON(packets > tp->packets_out);
2354 	skb = tp->lost_skb_hint;
2355 	if (skb) {
2356 		/* Head already handled? */
2357 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2358 			return;
2359 		cnt = tp->lost_cnt_hint;
2360 	} else {
2361 		skb = tcp_rtx_queue_head(sk);
2362 		cnt = 0;
2363 	}
2364 
2365 	skb_rbtree_walk_from(skb) {
2366 		/* TODO: do this better */
2367 		/* this is not the most efficient way to do this... */
2368 		tp->lost_skb_hint = skb;
2369 		tp->lost_cnt_hint = cnt;
2370 
2371 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2372 			break;
2373 
2374 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2375 			cnt += tcp_skb_pcount(skb);
2376 
2377 		if (cnt > packets)
2378 			break;
2379 
2380 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2381 			tcp_mark_skb_lost(sk, skb);
2382 
2383 		if (mark_head)
2384 			break;
2385 	}
2386 	tcp_verify_left_out(tp);
2387 }
2388 
2389 /* Account newly detected lost packet(s) */
2390 
2391 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2392 {
2393 	struct tcp_sock *tp = tcp_sk(sk);
2394 
2395 	if (tcp_is_sack(tp)) {
2396 		int sacked_upto = tp->sacked_out - tp->reordering;
2397 		if (sacked_upto >= 0)
2398 			tcp_mark_head_lost(sk, sacked_upto, 0);
2399 		else if (fast_rexmit)
2400 			tcp_mark_head_lost(sk, 1, 1);
2401 	}
2402 }
2403 
2404 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2405 {
2406 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2407 	       before(tp->rx_opt.rcv_tsecr, when);
2408 }
2409 
2410 /* skb is spurious retransmitted if the returned timestamp echo
2411  * reply is prior to the skb transmission time
2412  */
2413 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2414 				     const struct sk_buff *skb)
2415 {
2416 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2417 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2418 }
2419 
2420 /* Nothing was retransmitted or returned timestamp is less
2421  * than timestamp of the first retransmission.
2422  */
2423 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2424 {
2425 	return tp->retrans_stamp &&
2426 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2427 }
2428 
2429 /* Undo procedures. */
2430 
2431 /* We can clear retrans_stamp when there are no retransmissions in the
2432  * window. It would seem that it is trivially available for us in
2433  * tp->retrans_out, however, that kind of assumptions doesn't consider
2434  * what will happen if errors occur when sending retransmission for the
2435  * second time. ...It could the that such segment has only
2436  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2437  * the head skb is enough except for some reneging corner cases that
2438  * are not worth the effort.
2439  *
2440  * Main reason for all this complexity is the fact that connection dying
2441  * time now depends on the validity of the retrans_stamp, in particular,
2442  * that successive retransmissions of a segment must not advance
2443  * retrans_stamp under any conditions.
2444  */
2445 static bool tcp_any_retrans_done(const struct sock *sk)
2446 {
2447 	const struct tcp_sock *tp = tcp_sk(sk);
2448 	struct sk_buff *skb;
2449 
2450 	if (tp->retrans_out)
2451 		return true;
2452 
2453 	skb = tcp_rtx_queue_head(sk);
2454 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2455 		return true;
2456 
2457 	return false;
2458 }
2459 
2460 static void DBGUNDO(struct sock *sk, const char *msg)
2461 {
2462 #if FASTRETRANS_DEBUG > 1
2463 	struct tcp_sock *tp = tcp_sk(sk);
2464 	struct inet_sock *inet = inet_sk(sk);
2465 
2466 	if (sk->sk_family == AF_INET) {
2467 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2468 			 msg,
2469 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2470 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2471 			 tp->snd_ssthresh, tp->prior_ssthresh,
2472 			 tp->packets_out);
2473 	}
2474 #if IS_ENABLED(CONFIG_IPV6)
2475 	else if (sk->sk_family == AF_INET6) {
2476 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2477 			 msg,
2478 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2479 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2480 			 tp->snd_ssthresh, tp->prior_ssthresh,
2481 			 tp->packets_out);
2482 	}
2483 #endif
2484 #endif
2485 }
2486 
2487 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2488 {
2489 	struct tcp_sock *tp = tcp_sk(sk);
2490 
2491 	if (unmark_loss) {
2492 		struct sk_buff *skb;
2493 
2494 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2495 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2496 		}
2497 		tp->lost_out = 0;
2498 		tcp_clear_all_retrans_hints(tp);
2499 	}
2500 
2501 	if (tp->prior_ssthresh) {
2502 		const struct inet_connection_sock *icsk = inet_csk(sk);
2503 
2504 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2505 
2506 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2507 			tp->snd_ssthresh = tp->prior_ssthresh;
2508 			tcp_ecn_withdraw_cwr(tp);
2509 		}
2510 	}
2511 	tp->snd_cwnd_stamp = tcp_jiffies32;
2512 	tp->undo_marker = 0;
2513 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2514 }
2515 
2516 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2517 {
2518 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2519 }
2520 
2521 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2522 {
2523 	struct tcp_sock *tp = tcp_sk(sk);
2524 
2525 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2526 		/* Hold old state until something *above* high_seq
2527 		 * is ACKed. For Reno it is MUST to prevent false
2528 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2529 		if (!tcp_any_retrans_done(sk))
2530 			tp->retrans_stamp = 0;
2531 		return true;
2532 	}
2533 	return false;
2534 }
2535 
2536 /* People celebrate: "We love our President!" */
2537 static bool tcp_try_undo_recovery(struct sock *sk)
2538 {
2539 	struct tcp_sock *tp = tcp_sk(sk);
2540 
2541 	if (tcp_may_undo(tp)) {
2542 		int mib_idx;
2543 
2544 		/* Happy end! We did not retransmit anything
2545 		 * or our original transmission succeeded.
2546 		 */
2547 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2548 		tcp_undo_cwnd_reduction(sk, false);
2549 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2550 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2551 		else
2552 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2553 
2554 		NET_INC_STATS(sock_net(sk), mib_idx);
2555 	} else if (tp->rack.reo_wnd_persist) {
2556 		tp->rack.reo_wnd_persist--;
2557 	}
2558 	if (tcp_is_non_sack_preventing_reopen(sk))
2559 		return true;
2560 	tcp_set_ca_state(sk, TCP_CA_Open);
2561 	tp->is_sack_reneg = 0;
2562 	return false;
2563 }
2564 
2565 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2566 static bool tcp_try_undo_dsack(struct sock *sk)
2567 {
2568 	struct tcp_sock *tp = tcp_sk(sk);
2569 
2570 	if (tp->undo_marker && !tp->undo_retrans) {
2571 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2572 					       tp->rack.reo_wnd_persist + 1);
2573 		DBGUNDO(sk, "D-SACK");
2574 		tcp_undo_cwnd_reduction(sk, false);
2575 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2576 		return true;
2577 	}
2578 	return false;
2579 }
2580 
2581 /* Undo during loss recovery after partial ACK or using F-RTO. */
2582 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2583 {
2584 	struct tcp_sock *tp = tcp_sk(sk);
2585 
2586 	if (frto_undo || tcp_may_undo(tp)) {
2587 		tcp_undo_cwnd_reduction(sk, true);
2588 
2589 		DBGUNDO(sk, "partial loss");
2590 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2591 		if (frto_undo)
2592 			NET_INC_STATS(sock_net(sk),
2593 					LINUX_MIB_TCPSPURIOUSRTOS);
2594 		inet_csk(sk)->icsk_retransmits = 0;
2595 		if (tcp_is_non_sack_preventing_reopen(sk))
2596 			return true;
2597 		if (frto_undo || tcp_is_sack(tp)) {
2598 			tcp_set_ca_state(sk, TCP_CA_Open);
2599 			tp->is_sack_reneg = 0;
2600 		}
2601 		return true;
2602 	}
2603 	return false;
2604 }
2605 
2606 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2607  * It computes the number of packets to send (sndcnt) based on packets newly
2608  * delivered:
2609  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2610  *	cwnd reductions across a full RTT.
2611  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2612  *      But when SND_UNA is acked without further losses,
2613  *      slow starts cwnd up to ssthresh to speed up the recovery.
2614  */
2615 static void tcp_init_cwnd_reduction(struct sock *sk)
2616 {
2617 	struct tcp_sock *tp = tcp_sk(sk);
2618 
2619 	tp->high_seq = tp->snd_nxt;
2620 	tp->tlp_high_seq = 0;
2621 	tp->snd_cwnd_cnt = 0;
2622 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2623 	tp->prr_delivered = 0;
2624 	tp->prr_out = 0;
2625 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2626 	tcp_ecn_queue_cwr(tp);
2627 }
2628 
2629 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2630 {
2631 	struct tcp_sock *tp = tcp_sk(sk);
2632 	int sndcnt = 0;
2633 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2634 
2635 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2636 		return;
2637 
2638 	tp->prr_delivered += newly_acked_sacked;
2639 	if (delta < 0) {
2640 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2641 			       tp->prior_cwnd - 1;
2642 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2643 	} else {
2644 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2645 			       newly_acked_sacked);
2646 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2647 			sndcnt++;
2648 		sndcnt = min(delta, sndcnt);
2649 	}
2650 	/* Force a fast retransmit upon entering fast recovery */
2651 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2652 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2653 }
2654 
2655 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2656 {
2657 	struct tcp_sock *tp = tcp_sk(sk);
2658 
2659 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2660 		return;
2661 
2662 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2663 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2664 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2665 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2666 		tp->snd_cwnd_stamp = tcp_jiffies32;
2667 	}
2668 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2669 }
2670 
2671 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2672 void tcp_enter_cwr(struct sock *sk)
2673 {
2674 	struct tcp_sock *tp = tcp_sk(sk);
2675 
2676 	tp->prior_ssthresh = 0;
2677 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2678 		tp->undo_marker = 0;
2679 		tcp_init_cwnd_reduction(sk);
2680 		tcp_set_ca_state(sk, TCP_CA_CWR);
2681 	}
2682 }
2683 EXPORT_SYMBOL(tcp_enter_cwr);
2684 
2685 static void tcp_try_keep_open(struct sock *sk)
2686 {
2687 	struct tcp_sock *tp = tcp_sk(sk);
2688 	int state = TCP_CA_Open;
2689 
2690 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2691 		state = TCP_CA_Disorder;
2692 
2693 	if (inet_csk(sk)->icsk_ca_state != state) {
2694 		tcp_set_ca_state(sk, state);
2695 		tp->high_seq = tp->snd_nxt;
2696 	}
2697 }
2698 
2699 static void tcp_try_to_open(struct sock *sk, int flag)
2700 {
2701 	struct tcp_sock *tp = tcp_sk(sk);
2702 
2703 	tcp_verify_left_out(tp);
2704 
2705 	if (!tcp_any_retrans_done(sk))
2706 		tp->retrans_stamp = 0;
2707 
2708 	if (flag & FLAG_ECE)
2709 		tcp_enter_cwr(sk);
2710 
2711 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2712 		tcp_try_keep_open(sk);
2713 	}
2714 }
2715 
2716 static void tcp_mtup_probe_failed(struct sock *sk)
2717 {
2718 	struct inet_connection_sock *icsk = inet_csk(sk);
2719 
2720 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2721 	icsk->icsk_mtup.probe_size = 0;
2722 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2723 }
2724 
2725 static void tcp_mtup_probe_success(struct sock *sk)
2726 {
2727 	struct tcp_sock *tp = tcp_sk(sk);
2728 	struct inet_connection_sock *icsk = inet_csk(sk);
2729 	u64 val;
2730 
2731 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2732 
2733 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2734 	do_div(val, icsk->icsk_mtup.probe_size);
2735 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2736 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2737 
2738 	tp->snd_cwnd_cnt = 0;
2739 	tp->snd_cwnd_stamp = tcp_jiffies32;
2740 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2741 
2742 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2743 	icsk->icsk_mtup.probe_size = 0;
2744 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2745 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2746 }
2747 
2748 /* Do a simple retransmit without using the backoff mechanisms in
2749  * tcp_timer. This is used for path mtu discovery.
2750  * The socket is already locked here.
2751  */
2752 void tcp_simple_retransmit(struct sock *sk)
2753 {
2754 	const struct inet_connection_sock *icsk = inet_csk(sk);
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 	struct sk_buff *skb;
2757 	int mss;
2758 
2759 	/* A fastopen SYN request is stored as two separate packets within
2760 	 * the retransmit queue, this is done by tcp_send_syn_data().
2761 	 * As a result simply checking the MSS of the frames in the queue
2762 	 * will not work for the SYN packet.
2763 	 *
2764 	 * Us being here is an indication of a path MTU issue so we can
2765 	 * assume that the fastopen SYN was lost and just mark all the
2766 	 * frames in the retransmit queue as lost. We will use an MSS of
2767 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2768 	 */
2769 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2770 		mss = -1;
2771 	else
2772 		mss = tcp_current_mss(sk);
2773 
2774 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2775 		if (tcp_skb_seglen(skb) > mss)
2776 			tcp_mark_skb_lost(sk, skb);
2777 	}
2778 
2779 	tcp_clear_retrans_hints_partial(tp);
2780 
2781 	if (!tp->lost_out)
2782 		return;
2783 
2784 	if (tcp_is_reno(tp))
2785 		tcp_limit_reno_sacked(tp);
2786 
2787 	tcp_verify_left_out(tp);
2788 
2789 	/* Don't muck with the congestion window here.
2790 	 * Reason is that we do not increase amount of _data_
2791 	 * in network, but units changed and effective
2792 	 * cwnd/ssthresh really reduced now.
2793 	 */
2794 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2795 		tp->high_seq = tp->snd_nxt;
2796 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2797 		tp->prior_ssthresh = 0;
2798 		tp->undo_marker = 0;
2799 		tcp_set_ca_state(sk, TCP_CA_Loss);
2800 	}
2801 	tcp_xmit_retransmit_queue(sk);
2802 }
2803 EXPORT_SYMBOL(tcp_simple_retransmit);
2804 
2805 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2806 {
2807 	struct tcp_sock *tp = tcp_sk(sk);
2808 	int mib_idx;
2809 
2810 	if (tcp_is_reno(tp))
2811 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2812 	else
2813 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2814 
2815 	NET_INC_STATS(sock_net(sk), mib_idx);
2816 
2817 	tp->prior_ssthresh = 0;
2818 	tcp_init_undo(tp);
2819 
2820 	if (!tcp_in_cwnd_reduction(sk)) {
2821 		if (!ece_ack)
2822 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2823 		tcp_init_cwnd_reduction(sk);
2824 	}
2825 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2826 }
2827 
2828 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2829  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2830  */
2831 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2832 			     int *rexmit)
2833 {
2834 	struct tcp_sock *tp = tcp_sk(sk);
2835 	bool recovered = !before(tp->snd_una, tp->high_seq);
2836 
2837 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2838 	    tcp_try_undo_loss(sk, false))
2839 		return;
2840 
2841 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2842 		/* Step 3.b. A timeout is spurious if not all data are
2843 		 * lost, i.e., never-retransmitted data are (s)acked.
2844 		 */
2845 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2846 		    tcp_try_undo_loss(sk, true))
2847 			return;
2848 
2849 		if (after(tp->snd_nxt, tp->high_seq)) {
2850 			if (flag & FLAG_DATA_SACKED || num_dupack)
2851 				tp->frto = 0; /* Step 3.a. loss was real */
2852 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2853 			tp->high_seq = tp->snd_nxt;
2854 			/* Step 2.b. Try send new data (but deferred until cwnd
2855 			 * is updated in tcp_ack()). Otherwise fall back to
2856 			 * the conventional recovery.
2857 			 */
2858 			if (!tcp_write_queue_empty(sk) &&
2859 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2860 				*rexmit = REXMIT_NEW;
2861 				return;
2862 			}
2863 			tp->frto = 0;
2864 		}
2865 	}
2866 
2867 	if (recovered) {
2868 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2869 		tcp_try_undo_recovery(sk);
2870 		return;
2871 	}
2872 	if (tcp_is_reno(tp)) {
2873 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2874 		 * delivered. Lower inflight to clock out (re)transmissions.
2875 		 */
2876 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2877 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2878 		else if (flag & FLAG_SND_UNA_ADVANCED)
2879 			tcp_reset_reno_sack(tp);
2880 	}
2881 	*rexmit = REXMIT_LOST;
2882 }
2883 
2884 static bool tcp_force_fast_retransmit(struct sock *sk)
2885 {
2886 	struct tcp_sock *tp = tcp_sk(sk);
2887 
2888 	return after(tcp_highest_sack_seq(tp),
2889 		     tp->snd_una + tp->reordering * tp->mss_cache);
2890 }
2891 
2892 /* Undo during fast recovery after partial ACK. */
2893 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2894 				 bool *do_lost)
2895 {
2896 	struct tcp_sock *tp = tcp_sk(sk);
2897 
2898 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2899 		/* Plain luck! Hole if filled with delayed
2900 		 * packet, rather than with a retransmit. Check reordering.
2901 		 */
2902 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2903 
2904 		/* We are getting evidence that the reordering degree is higher
2905 		 * than we realized. If there are no retransmits out then we
2906 		 * can undo. Otherwise we clock out new packets but do not
2907 		 * mark more packets lost or retransmit more.
2908 		 */
2909 		if (tp->retrans_out)
2910 			return true;
2911 
2912 		if (!tcp_any_retrans_done(sk))
2913 			tp->retrans_stamp = 0;
2914 
2915 		DBGUNDO(sk, "partial recovery");
2916 		tcp_undo_cwnd_reduction(sk, true);
2917 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2918 		tcp_try_keep_open(sk);
2919 	} else {
2920 		/* Partial ACK arrived. Force fast retransmit. */
2921 		*do_lost = tcp_force_fast_retransmit(sk);
2922 	}
2923 	return false;
2924 }
2925 
2926 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2927 {
2928 	struct tcp_sock *tp = tcp_sk(sk);
2929 
2930 	if (tcp_rtx_queue_empty(sk))
2931 		return;
2932 
2933 	if (unlikely(tcp_is_reno(tp))) {
2934 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2935 	} else if (tcp_is_rack(sk)) {
2936 		u32 prior_retrans = tp->retrans_out;
2937 
2938 		if (tcp_rack_mark_lost(sk))
2939 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2940 		if (prior_retrans > tp->retrans_out)
2941 			*ack_flag |= FLAG_LOST_RETRANS;
2942 	}
2943 }
2944 
2945 /* Process an event, which can update packets-in-flight not trivially.
2946  * Main goal of this function is to calculate new estimate for left_out,
2947  * taking into account both packets sitting in receiver's buffer and
2948  * packets lost by network.
2949  *
2950  * Besides that it updates the congestion state when packet loss or ECN
2951  * is detected. But it does not reduce the cwnd, it is done by the
2952  * congestion control later.
2953  *
2954  * It does _not_ decide what to send, it is made in function
2955  * tcp_xmit_retransmit_queue().
2956  */
2957 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2958 				  int num_dupack, int *ack_flag, int *rexmit)
2959 {
2960 	struct inet_connection_sock *icsk = inet_csk(sk);
2961 	struct tcp_sock *tp = tcp_sk(sk);
2962 	int fast_rexmit = 0, flag = *ack_flag;
2963 	bool ece_ack = flag & FLAG_ECE;
2964 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2965 				      tcp_force_fast_retransmit(sk));
2966 
2967 	if (!tp->packets_out && tp->sacked_out)
2968 		tp->sacked_out = 0;
2969 
2970 	/* Now state machine starts.
2971 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2972 	if (ece_ack)
2973 		tp->prior_ssthresh = 0;
2974 
2975 	/* B. In all the states check for reneging SACKs. */
2976 	if (tcp_check_sack_reneging(sk, flag))
2977 		return;
2978 
2979 	/* C. Check consistency of the current state. */
2980 	tcp_verify_left_out(tp);
2981 
2982 	/* D. Check state exit conditions. State can be terminated
2983 	 *    when high_seq is ACKed. */
2984 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2985 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2986 		tp->retrans_stamp = 0;
2987 	} else if (!before(tp->snd_una, tp->high_seq)) {
2988 		switch (icsk->icsk_ca_state) {
2989 		case TCP_CA_CWR:
2990 			/* CWR is to be held something *above* high_seq
2991 			 * is ACKed for CWR bit to reach receiver. */
2992 			if (tp->snd_una != tp->high_seq) {
2993 				tcp_end_cwnd_reduction(sk);
2994 				tcp_set_ca_state(sk, TCP_CA_Open);
2995 			}
2996 			break;
2997 
2998 		case TCP_CA_Recovery:
2999 			if (tcp_is_reno(tp))
3000 				tcp_reset_reno_sack(tp);
3001 			if (tcp_try_undo_recovery(sk))
3002 				return;
3003 			tcp_end_cwnd_reduction(sk);
3004 			break;
3005 		}
3006 	}
3007 
3008 	/* E. Process state. */
3009 	switch (icsk->icsk_ca_state) {
3010 	case TCP_CA_Recovery:
3011 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3012 			if (tcp_is_reno(tp))
3013 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3014 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3015 			return;
3016 
3017 		if (tcp_try_undo_dsack(sk))
3018 			tcp_try_keep_open(sk);
3019 
3020 		tcp_identify_packet_loss(sk, ack_flag);
3021 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3022 			if (!tcp_time_to_recover(sk, flag))
3023 				return;
3024 			/* Undo reverts the recovery state. If loss is evident,
3025 			 * starts a new recovery (e.g. reordering then loss);
3026 			 */
3027 			tcp_enter_recovery(sk, ece_ack);
3028 		}
3029 		break;
3030 	case TCP_CA_Loss:
3031 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3032 		tcp_identify_packet_loss(sk, ack_flag);
3033 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3034 		      (*ack_flag & FLAG_LOST_RETRANS)))
3035 			return;
3036 		/* Change state if cwnd is undone or retransmits are lost */
3037 		fallthrough;
3038 	default:
3039 		if (tcp_is_reno(tp)) {
3040 			if (flag & FLAG_SND_UNA_ADVANCED)
3041 				tcp_reset_reno_sack(tp);
3042 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3043 		}
3044 
3045 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3046 			tcp_try_undo_dsack(sk);
3047 
3048 		tcp_identify_packet_loss(sk, ack_flag);
3049 		if (!tcp_time_to_recover(sk, flag)) {
3050 			tcp_try_to_open(sk, flag);
3051 			return;
3052 		}
3053 
3054 		/* MTU probe failure: don't reduce cwnd */
3055 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3056 		    icsk->icsk_mtup.probe_size &&
3057 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3058 			tcp_mtup_probe_failed(sk);
3059 			/* Restores the reduction we did in tcp_mtup_probe() */
3060 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3061 			tcp_simple_retransmit(sk);
3062 			return;
3063 		}
3064 
3065 		/* Otherwise enter Recovery state */
3066 		tcp_enter_recovery(sk, ece_ack);
3067 		fast_rexmit = 1;
3068 	}
3069 
3070 	if (!tcp_is_rack(sk) && do_lost)
3071 		tcp_update_scoreboard(sk, fast_rexmit);
3072 	*rexmit = REXMIT_LOST;
3073 }
3074 
3075 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3076 {
3077 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3078 	struct tcp_sock *tp = tcp_sk(sk);
3079 
3080 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3081 		/* If the remote keeps returning delayed ACKs, eventually
3082 		 * the min filter would pick it up and overestimate the
3083 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3084 		 */
3085 		return;
3086 	}
3087 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3088 			   rtt_us ? : jiffies_to_usecs(1));
3089 }
3090 
3091 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3092 			       long seq_rtt_us, long sack_rtt_us,
3093 			       long ca_rtt_us, struct rate_sample *rs)
3094 {
3095 	const struct tcp_sock *tp = tcp_sk(sk);
3096 
3097 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3098 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3099 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3100 	 * is acked (RFC6298).
3101 	 */
3102 	if (seq_rtt_us < 0)
3103 		seq_rtt_us = sack_rtt_us;
3104 
3105 	/* RTTM Rule: A TSecr value received in a segment is used to
3106 	 * update the averaged RTT measurement only if the segment
3107 	 * acknowledges some new data, i.e., only if it advances the
3108 	 * left edge of the send window.
3109 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3110 	 */
3111 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3112 	    flag & FLAG_ACKED) {
3113 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3114 
3115 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3116 			if (!delta)
3117 				delta = 1;
3118 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3119 			ca_rtt_us = seq_rtt_us;
3120 		}
3121 	}
3122 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3123 	if (seq_rtt_us < 0)
3124 		return false;
3125 
3126 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3127 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3128 	 * values will be skipped with the seq_rtt_us < 0 check above.
3129 	 */
3130 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3131 	tcp_rtt_estimator(sk, seq_rtt_us);
3132 	tcp_set_rto(sk);
3133 
3134 	/* RFC6298: only reset backoff on valid RTT measurement. */
3135 	inet_csk(sk)->icsk_backoff = 0;
3136 	return true;
3137 }
3138 
3139 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3140 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3141 {
3142 	struct rate_sample rs;
3143 	long rtt_us = -1L;
3144 
3145 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3146 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3147 
3148 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3149 }
3150 
3151 
3152 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3153 {
3154 	const struct inet_connection_sock *icsk = inet_csk(sk);
3155 
3156 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3157 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3158 }
3159 
3160 /* Restart timer after forward progress on connection.
3161  * RFC2988 recommends to restart timer to now+rto.
3162  */
3163 void tcp_rearm_rto(struct sock *sk)
3164 {
3165 	const struct inet_connection_sock *icsk = inet_csk(sk);
3166 	struct tcp_sock *tp = tcp_sk(sk);
3167 
3168 	/* If the retrans timer is currently being used by Fast Open
3169 	 * for SYN-ACK retrans purpose, stay put.
3170 	 */
3171 	if (rcu_access_pointer(tp->fastopen_rsk))
3172 		return;
3173 
3174 	if (!tp->packets_out) {
3175 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3176 	} else {
3177 		u32 rto = inet_csk(sk)->icsk_rto;
3178 		/* Offset the time elapsed after installing regular RTO */
3179 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3180 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3181 			s64 delta_us = tcp_rto_delta_us(sk);
3182 			/* delta_us may not be positive if the socket is locked
3183 			 * when the retrans timer fires and is rescheduled.
3184 			 */
3185 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3186 		}
3187 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3188 				     TCP_RTO_MAX);
3189 	}
3190 }
3191 
3192 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3193 static void tcp_set_xmit_timer(struct sock *sk)
3194 {
3195 	if (!tcp_schedule_loss_probe(sk, true))
3196 		tcp_rearm_rto(sk);
3197 }
3198 
3199 /* If we get here, the whole TSO packet has not been acked. */
3200 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3201 {
3202 	struct tcp_sock *tp = tcp_sk(sk);
3203 	u32 packets_acked;
3204 
3205 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3206 
3207 	packets_acked = tcp_skb_pcount(skb);
3208 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3209 		return 0;
3210 	packets_acked -= tcp_skb_pcount(skb);
3211 
3212 	if (packets_acked) {
3213 		BUG_ON(tcp_skb_pcount(skb) == 0);
3214 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3215 	}
3216 
3217 	return packets_acked;
3218 }
3219 
3220 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3221 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3222 {
3223 	const struct skb_shared_info *shinfo;
3224 
3225 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3226 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3227 		return;
3228 
3229 	shinfo = skb_shinfo(skb);
3230 	if (!before(shinfo->tskey, prior_snd_una) &&
3231 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3232 		tcp_skb_tsorted_save(skb) {
3233 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3234 		} tcp_skb_tsorted_restore(skb);
3235 	}
3236 }
3237 
3238 /* Remove acknowledged frames from the retransmission queue. If our packet
3239  * is before the ack sequence we can discard it as it's confirmed to have
3240  * arrived at the other end.
3241  */
3242 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3243 			       u32 prior_fack, u32 prior_snd_una,
3244 			       struct tcp_sacktag_state *sack, bool ece_ack)
3245 {
3246 	const struct inet_connection_sock *icsk = inet_csk(sk);
3247 	u64 first_ackt, last_ackt;
3248 	struct tcp_sock *tp = tcp_sk(sk);
3249 	u32 prior_sacked = tp->sacked_out;
3250 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3251 	struct sk_buff *skb, *next;
3252 	bool fully_acked = true;
3253 	long sack_rtt_us = -1L;
3254 	long seq_rtt_us = -1L;
3255 	long ca_rtt_us = -1L;
3256 	u32 pkts_acked = 0;
3257 	bool rtt_update;
3258 	int flag = 0;
3259 
3260 	first_ackt = 0;
3261 
3262 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3263 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3264 		const u32 start_seq = scb->seq;
3265 		u8 sacked = scb->sacked;
3266 		u32 acked_pcount;
3267 
3268 		/* Determine how many packets and what bytes were acked, tso and else */
3269 		if (after(scb->end_seq, tp->snd_una)) {
3270 			if (tcp_skb_pcount(skb) == 1 ||
3271 			    !after(tp->snd_una, scb->seq))
3272 				break;
3273 
3274 			acked_pcount = tcp_tso_acked(sk, skb);
3275 			if (!acked_pcount)
3276 				break;
3277 			fully_acked = false;
3278 		} else {
3279 			acked_pcount = tcp_skb_pcount(skb);
3280 		}
3281 
3282 		if (unlikely(sacked & TCPCB_RETRANS)) {
3283 			if (sacked & TCPCB_SACKED_RETRANS)
3284 				tp->retrans_out -= acked_pcount;
3285 			flag |= FLAG_RETRANS_DATA_ACKED;
3286 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3287 			last_ackt = tcp_skb_timestamp_us(skb);
3288 			WARN_ON_ONCE(last_ackt == 0);
3289 			if (!first_ackt)
3290 				first_ackt = last_ackt;
3291 
3292 			if (before(start_seq, reord))
3293 				reord = start_seq;
3294 			if (!after(scb->end_seq, tp->high_seq))
3295 				flag |= FLAG_ORIG_SACK_ACKED;
3296 		}
3297 
3298 		if (sacked & TCPCB_SACKED_ACKED) {
3299 			tp->sacked_out -= acked_pcount;
3300 		} else if (tcp_is_sack(tp)) {
3301 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3302 			if (!tcp_skb_spurious_retrans(tp, skb))
3303 				tcp_rack_advance(tp, sacked, scb->end_seq,
3304 						 tcp_skb_timestamp_us(skb));
3305 		}
3306 		if (sacked & TCPCB_LOST)
3307 			tp->lost_out -= acked_pcount;
3308 
3309 		tp->packets_out -= acked_pcount;
3310 		pkts_acked += acked_pcount;
3311 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3312 
3313 		/* Initial outgoing SYN's get put onto the write_queue
3314 		 * just like anything else we transmit.  It is not
3315 		 * true data, and if we misinform our callers that
3316 		 * this ACK acks real data, we will erroneously exit
3317 		 * connection startup slow start one packet too
3318 		 * quickly.  This is severely frowned upon behavior.
3319 		 */
3320 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3321 			flag |= FLAG_DATA_ACKED;
3322 		} else {
3323 			flag |= FLAG_SYN_ACKED;
3324 			tp->retrans_stamp = 0;
3325 		}
3326 
3327 		if (!fully_acked)
3328 			break;
3329 
3330 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3331 
3332 		next = skb_rb_next(skb);
3333 		if (unlikely(skb == tp->retransmit_skb_hint))
3334 			tp->retransmit_skb_hint = NULL;
3335 		if (unlikely(skb == tp->lost_skb_hint))
3336 			tp->lost_skb_hint = NULL;
3337 		tcp_highest_sack_replace(sk, skb, next);
3338 		tcp_rtx_queue_unlink_and_free(skb, sk);
3339 	}
3340 
3341 	if (!skb)
3342 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3343 
3344 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3345 		tp->snd_up = tp->snd_una;
3346 
3347 	if (skb) {
3348 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3349 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3350 			flag |= FLAG_SACK_RENEGING;
3351 	}
3352 
3353 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3354 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3355 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3356 
3357 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3358 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3359 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3360 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3361 			/* Conservatively mark a delayed ACK. It's typically
3362 			 * from a lone runt packet over the round trip to
3363 			 * a receiver w/o out-of-order or CE events.
3364 			 */
3365 			flag |= FLAG_ACK_MAYBE_DELAYED;
3366 		}
3367 	}
3368 	if (sack->first_sackt) {
3369 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3370 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3371 	}
3372 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3373 					ca_rtt_us, sack->rate);
3374 
3375 	if (flag & FLAG_ACKED) {
3376 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3377 		if (unlikely(icsk->icsk_mtup.probe_size &&
3378 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3379 			tcp_mtup_probe_success(sk);
3380 		}
3381 
3382 		if (tcp_is_reno(tp)) {
3383 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3384 
3385 			/* If any of the cumulatively ACKed segments was
3386 			 * retransmitted, non-SACK case cannot confirm that
3387 			 * progress was due to original transmission due to
3388 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3389 			 * the packets may have been never retransmitted.
3390 			 */
3391 			if (flag & FLAG_RETRANS_DATA_ACKED)
3392 				flag &= ~FLAG_ORIG_SACK_ACKED;
3393 		} else {
3394 			int delta;
3395 
3396 			/* Non-retransmitted hole got filled? That's reordering */
3397 			if (before(reord, prior_fack))
3398 				tcp_check_sack_reordering(sk, reord, 0);
3399 
3400 			delta = prior_sacked - tp->sacked_out;
3401 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3402 		}
3403 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3404 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3405 						    tcp_skb_timestamp_us(skb))) {
3406 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3407 		 * after when the head was last (re)transmitted. Otherwise the
3408 		 * timeout may continue to extend in loss recovery.
3409 		 */
3410 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3411 	}
3412 
3413 	if (icsk->icsk_ca_ops->pkts_acked) {
3414 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3415 					     .rtt_us = sack->rate->rtt_us };
3416 
3417 		sample.in_flight = tp->mss_cache *
3418 			(tp->delivered - sack->rate->prior_delivered);
3419 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3420 	}
3421 
3422 #if FASTRETRANS_DEBUG > 0
3423 	WARN_ON((int)tp->sacked_out < 0);
3424 	WARN_ON((int)tp->lost_out < 0);
3425 	WARN_ON((int)tp->retrans_out < 0);
3426 	if (!tp->packets_out && tcp_is_sack(tp)) {
3427 		icsk = inet_csk(sk);
3428 		if (tp->lost_out) {
3429 			pr_debug("Leak l=%u %d\n",
3430 				 tp->lost_out, icsk->icsk_ca_state);
3431 			tp->lost_out = 0;
3432 		}
3433 		if (tp->sacked_out) {
3434 			pr_debug("Leak s=%u %d\n",
3435 				 tp->sacked_out, icsk->icsk_ca_state);
3436 			tp->sacked_out = 0;
3437 		}
3438 		if (tp->retrans_out) {
3439 			pr_debug("Leak r=%u %d\n",
3440 				 tp->retrans_out, icsk->icsk_ca_state);
3441 			tp->retrans_out = 0;
3442 		}
3443 	}
3444 #endif
3445 	return flag;
3446 }
3447 
3448 static void tcp_ack_probe(struct sock *sk)
3449 {
3450 	struct inet_connection_sock *icsk = inet_csk(sk);
3451 	struct sk_buff *head = tcp_send_head(sk);
3452 	const struct tcp_sock *tp = tcp_sk(sk);
3453 
3454 	/* Was it a usable window open? */
3455 	if (!head)
3456 		return;
3457 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3458 		icsk->icsk_backoff = 0;
3459 		icsk->icsk_probes_tstamp = 0;
3460 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3461 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3462 		 * This function is not for random using!
3463 		 */
3464 	} else {
3465 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3466 
3467 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3468 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3469 	}
3470 }
3471 
3472 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3473 {
3474 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3475 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3476 }
3477 
3478 /* Decide wheather to run the increase function of congestion control. */
3479 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3480 {
3481 	/* If reordering is high then always grow cwnd whenever data is
3482 	 * delivered regardless of its ordering. Otherwise stay conservative
3483 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3484 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3485 	 * cwnd in tcp_fastretrans_alert() based on more states.
3486 	 */
3487 	if (tcp_sk(sk)->reordering >
3488 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3489 		return flag & FLAG_FORWARD_PROGRESS;
3490 
3491 	return flag & FLAG_DATA_ACKED;
3492 }
3493 
3494 /* The "ultimate" congestion control function that aims to replace the rigid
3495  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3496  * It's called toward the end of processing an ACK with precise rate
3497  * information. All transmission or retransmission are delayed afterwards.
3498  */
3499 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3500 			     int flag, const struct rate_sample *rs)
3501 {
3502 	const struct inet_connection_sock *icsk = inet_csk(sk);
3503 
3504 	if (icsk->icsk_ca_ops->cong_control) {
3505 		icsk->icsk_ca_ops->cong_control(sk, rs);
3506 		return;
3507 	}
3508 
3509 	if (tcp_in_cwnd_reduction(sk)) {
3510 		/* Reduce cwnd if state mandates */
3511 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3512 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3513 		/* Advance cwnd if state allows */
3514 		tcp_cong_avoid(sk, ack, acked_sacked);
3515 	}
3516 	tcp_update_pacing_rate(sk);
3517 }
3518 
3519 /* Check that window update is acceptable.
3520  * The function assumes that snd_una<=ack<=snd_next.
3521  */
3522 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3523 					const u32 ack, const u32 ack_seq,
3524 					const u32 nwin)
3525 {
3526 	return	after(ack, tp->snd_una) ||
3527 		after(ack_seq, tp->snd_wl1) ||
3528 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3529 }
3530 
3531 /* If we update tp->snd_una, also update tp->bytes_acked */
3532 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3533 {
3534 	u32 delta = ack - tp->snd_una;
3535 
3536 	sock_owned_by_me((struct sock *)tp);
3537 	tp->bytes_acked += delta;
3538 	tp->snd_una = ack;
3539 }
3540 
3541 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3542 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3543 {
3544 	u32 delta = seq - tp->rcv_nxt;
3545 
3546 	sock_owned_by_me((struct sock *)tp);
3547 	tp->bytes_received += delta;
3548 	WRITE_ONCE(tp->rcv_nxt, seq);
3549 }
3550 
3551 /* Update our send window.
3552  *
3553  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3554  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3555  */
3556 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3557 				 u32 ack_seq)
3558 {
3559 	struct tcp_sock *tp = tcp_sk(sk);
3560 	int flag = 0;
3561 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3562 
3563 	if (likely(!tcp_hdr(skb)->syn))
3564 		nwin <<= tp->rx_opt.snd_wscale;
3565 
3566 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3567 		flag |= FLAG_WIN_UPDATE;
3568 		tcp_update_wl(tp, ack_seq);
3569 
3570 		if (tp->snd_wnd != nwin) {
3571 			tp->snd_wnd = nwin;
3572 
3573 			/* Note, it is the only place, where
3574 			 * fast path is recovered for sending TCP.
3575 			 */
3576 			tp->pred_flags = 0;
3577 			tcp_fast_path_check(sk);
3578 
3579 			if (!tcp_write_queue_empty(sk))
3580 				tcp_slow_start_after_idle_check(sk);
3581 
3582 			if (nwin > tp->max_window) {
3583 				tp->max_window = nwin;
3584 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3585 			}
3586 		}
3587 	}
3588 
3589 	tcp_snd_una_update(tp, ack);
3590 
3591 	return flag;
3592 }
3593 
3594 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3595 				   u32 *last_oow_ack_time)
3596 {
3597 	/* Paired with the WRITE_ONCE() in this function. */
3598 	u32 val = READ_ONCE(*last_oow_ack_time);
3599 
3600 	if (val) {
3601 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3602 
3603 		if (0 <= elapsed &&
3604 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3605 			NET_INC_STATS(net, mib_idx);
3606 			return true;	/* rate-limited: don't send yet! */
3607 		}
3608 	}
3609 
3610 	/* Paired with the prior READ_ONCE() and with itself,
3611 	 * as we might be lockless.
3612 	 */
3613 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3614 
3615 	return false;	/* not rate-limited: go ahead, send dupack now! */
3616 }
3617 
3618 /* Return true if we're currently rate-limiting out-of-window ACKs and
3619  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3620  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3621  * attacks that send repeated SYNs or ACKs for the same connection. To
3622  * do this, we do not send a duplicate SYNACK or ACK if the remote
3623  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3624  */
3625 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3626 			  int mib_idx, u32 *last_oow_ack_time)
3627 {
3628 	/* Data packets without SYNs are not likely part of an ACK loop. */
3629 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3630 	    !tcp_hdr(skb)->syn)
3631 		return false;
3632 
3633 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3634 }
3635 
3636 /* RFC 5961 7 [ACK Throttling] */
3637 static void tcp_send_challenge_ack(struct sock *sk)
3638 {
3639 	struct tcp_sock *tp = tcp_sk(sk);
3640 	struct net *net = sock_net(sk);
3641 	u32 count, now, ack_limit;
3642 
3643 	/* First check our per-socket dupack rate limit. */
3644 	if (__tcp_oow_rate_limited(net,
3645 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3646 				   &tp->last_oow_ack_time))
3647 		return;
3648 
3649 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3650 	if (ack_limit == INT_MAX)
3651 		goto send_ack;
3652 
3653 	/* Then check host-wide RFC 5961 rate limit. */
3654 	now = jiffies / HZ;
3655 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3656 		u32 half = (ack_limit + 1) >> 1;
3657 
3658 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3659 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3660 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3661 	}
3662 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3663 	if (count > 0) {
3664 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3665 send_ack:
3666 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3667 		tcp_send_ack(sk);
3668 	}
3669 }
3670 
3671 static void tcp_store_ts_recent(struct tcp_sock *tp)
3672 {
3673 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3674 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3675 }
3676 
3677 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3678 {
3679 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3680 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3681 		 * extra check below makes sure this can only happen
3682 		 * for pure ACK frames.  -DaveM
3683 		 *
3684 		 * Not only, also it occurs for expired timestamps.
3685 		 */
3686 
3687 		if (tcp_paws_check(&tp->rx_opt, 0))
3688 			tcp_store_ts_recent(tp);
3689 	}
3690 }
3691 
3692 /* This routine deals with acks during a TLP episode and ends an episode by
3693  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3694  */
3695 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3696 {
3697 	struct tcp_sock *tp = tcp_sk(sk);
3698 
3699 	if (before(ack, tp->tlp_high_seq))
3700 		return;
3701 
3702 	if (!tp->tlp_retrans) {
3703 		/* TLP of new data has been acknowledged */
3704 		tp->tlp_high_seq = 0;
3705 	} else if (flag & FLAG_DSACK_TLP) {
3706 		/* This DSACK means original and TLP probe arrived; no loss */
3707 		tp->tlp_high_seq = 0;
3708 	} else if (after(ack, tp->tlp_high_seq)) {
3709 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3710 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3711 		 */
3712 		tcp_init_cwnd_reduction(sk);
3713 		tcp_set_ca_state(sk, TCP_CA_CWR);
3714 		tcp_end_cwnd_reduction(sk);
3715 		tcp_try_keep_open(sk);
3716 		NET_INC_STATS(sock_net(sk),
3717 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3718 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3719 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3720 		/* Pure dupack: original and TLP probe arrived; no loss */
3721 		tp->tlp_high_seq = 0;
3722 	}
3723 }
3724 
3725 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3726 {
3727 	const struct inet_connection_sock *icsk = inet_csk(sk);
3728 
3729 	if (icsk->icsk_ca_ops->in_ack_event)
3730 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3731 }
3732 
3733 /* Congestion control has updated the cwnd already. So if we're in
3734  * loss recovery then now we do any new sends (for FRTO) or
3735  * retransmits (for CA_Loss or CA_recovery) that make sense.
3736  */
3737 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3738 {
3739 	struct tcp_sock *tp = tcp_sk(sk);
3740 
3741 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3742 		return;
3743 
3744 	if (unlikely(rexmit == REXMIT_NEW)) {
3745 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3746 					  TCP_NAGLE_OFF);
3747 		if (after(tp->snd_nxt, tp->high_seq))
3748 			return;
3749 		tp->frto = 0;
3750 	}
3751 	tcp_xmit_retransmit_queue(sk);
3752 }
3753 
3754 /* Returns the number of packets newly acked or sacked by the current ACK */
3755 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3756 {
3757 	const struct net *net = sock_net(sk);
3758 	struct tcp_sock *tp = tcp_sk(sk);
3759 	u32 delivered;
3760 
3761 	delivered = tp->delivered - prior_delivered;
3762 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3763 	if (flag & FLAG_ECE)
3764 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3765 
3766 	return delivered;
3767 }
3768 
3769 /* This routine deals with incoming acks, but not outgoing ones. */
3770 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3771 {
3772 	struct inet_connection_sock *icsk = inet_csk(sk);
3773 	struct tcp_sock *tp = tcp_sk(sk);
3774 	struct tcp_sacktag_state sack_state;
3775 	struct rate_sample rs = { .prior_delivered = 0 };
3776 	u32 prior_snd_una = tp->snd_una;
3777 	bool is_sack_reneg = tp->is_sack_reneg;
3778 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3779 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3780 	int num_dupack = 0;
3781 	int prior_packets = tp->packets_out;
3782 	u32 delivered = tp->delivered;
3783 	u32 lost = tp->lost;
3784 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3785 	u32 prior_fack;
3786 
3787 	sack_state.first_sackt = 0;
3788 	sack_state.rate = &rs;
3789 	sack_state.sack_delivered = 0;
3790 
3791 	/* We very likely will need to access rtx queue. */
3792 	prefetch(sk->tcp_rtx_queue.rb_node);
3793 
3794 	/* If the ack is older than previous acks
3795 	 * then we can probably ignore it.
3796 	 */
3797 	if (before(ack, prior_snd_una)) {
3798 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3799 		if (before(ack, prior_snd_una - tp->max_window)) {
3800 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3801 				tcp_send_challenge_ack(sk);
3802 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3803 		}
3804 		goto old_ack;
3805 	}
3806 
3807 	/* If the ack includes data we haven't sent yet, discard
3808 	 * this segment (RFC793 Section 3.9).
3809 	 */
3810 	if (after(ack, tp->snd_nxt))
3811 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3812 
3813 	if (after(ack, prior_snd_una)) {
3814 		flag |= FLAG_SND_UNA_ADVANCED;
3815 		icsk->icsk_retransmits = 0;
3816 
3817 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3818 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3819 			if (icsk->icsk_clean_acked)
3820 				icsk->icsk_clean_acked(sk, ack);
3821 #endif
3822 	}
3823 
3824 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3825 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3826 
3827 	/* ts_recent update must be made after we are sure that the packet
3828 	 * is in window.
3829 	 */
3830 	if (flag & FLAG_UPDATE_TS_RECENT)
3831 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3832 
3833 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3834 	    FLAG_SND_UNA_ADVANCED) {
3835 		/* Window is constant, pure forward advance.
3836 		 * No more checks are required.
3837 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3838 		 */
3839 		tcp_update_wl(tp, ack_seq);
3840 		tcp_snd_una_update(tp, ack);
3841 		flag |= FLAG_WIN_UPDATE;
3842 
3843 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3844 
3845 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3846 	} else {
3847 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3848 
3849 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3850 			flag |= FLAG_DATA;
3851 		else
3852 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3853 
3854 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3855 
3856 		if (TCP_SKB_CB(skb)->sacked)
3857 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3858 							&sack_state);
3859 
3860 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3861 			flag |= FLAG_ECE;
3862 			ack_ev_flags |= CA_ACK_ECE;
3863 		}
3864 
3865 		if (sack_state.sack_delivered)
3866 			tcp_count_delivered(tp, sack_state.sack_delivered,
3867 					    flag & FLAG_ECE);
3868 
3869 		if (flag & FLAG_WIN_UPDATE)
3870 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3871 
3872 		tcp_in_ack_event(sk, ack_ev_flags);
3873 	}
3874 
3875 	/* This is a deviation from RFC3168 since it states that:
3876 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3877 	 * the congestion window, it SHOULD set the CWR bit only on the first
3878 	 * new data packet that it transmits."
3879 	 * We accept CWR on pure ACKs to be more robust
3880 	 * with widely-deployed TCP implementations that do this.
3881 	 */
3882 	tcp_ecn_accept_cwr(sk, skb);
3883 
3884 	/* We passed data and got it acked, remove any soft error
3885 	 * log. Something worked...
3886 	 */
3887 	WRITE_ONCE(sk->sk_err_soft, 0);
3888 	icsk->icsk_probes_out = 0;
3889 	tp->rcv_tstamp = tcp_jiffies32;
3890 	if (!prior_packets)
3891 		goto no_queue;
3892 
3893 	/* See if we can take anything off of the retransmit queue. */
3894 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3895 				    &sack_state, flag & FLAG_ECE);
3896 
3897 	tcp_rack_update_reo_wnd(sk, &rs);
3898 
3899 	if (tp->tlp_high_seq)
3900 		tcp_process_tlp_ack(sk, ack, flag);
3901 
3902 	if (tcp_ack_is_dubious(sk, flag)) {
3903 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3904 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3905 			num_dupack = 1;
3906 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3907 			if (!(flag & FLAG_DATA))
3908 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3909 		}
3910 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3911 				      &rexmit);
3912 	}
3913 
3914 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3915 	if (flag & FLAG_SET_XMIT_TIMER)
3916 		tcp_set_xmit_timer(sk);
3917 
3918 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3919 		sk_dst_confirm(sk);
3920 
3921 	delivered = tcp_newly_delivered(sk, delivered, flag);
3922 	lost = tp->lost - lost;			/* freshly marked lost */
3923 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3924 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3925 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3926 	tcp_xmit_recovery(sk, rexmit);
3927 	return 1;
3928 
3929 no_queue:
3930 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3931 	if (flag & FLAG_DSACKING_ACK) {
3932 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3933 				      &rexmit);
3934 		tcp_newly_delivered(sk, delivered, flag);
3935 	}
3936 	/* If this ack opens up a zero window, clear backoff.  It was
3937 	 * being used to time the probes, and is probably far higher than
3938 	 * it needs to be for normal retransmission.
3939 	 */
3940 	tcp_ack_probe(sk);
3941 
3942 	if (tp->tlp_high_seq)
3943 		tcp_process_tlp_ack(sk, ack, flag);
3944 	return 1;
3945 
3946 old_ack:
3947 	/* If data was SACKed, tag it and see if we should send more data.
3948 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3949 	 */
3950 	if (TCP_SKB_CB(skb)->sacked) {
3951 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3952 						&sack_state);
3953 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3954 				      &rexmit);
3955 		tcp_newly_delivered(sk, delivered, flag);
3956 		tcp_xmit_recovery(sk, rexmit);
3957 	}
3958 
3959 	return 0;
3960 }
3961 
3962 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3963 				      bool syn, struct tcp_fastopen_cookie *foc,
3964 				      bool exp_opt)
3965 {
3966 	/* Valid only in SYN or SYN-ACK with an even length.  */
3967 	if (!foc || !syn || len < 0 || (len & 1))
3968 		return;
3969 
3970 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3971 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3972 		memcpy(foc->val, cookie, len);
3973 	else if (len != 0)
3974 		len = -1;
3975 	foc->len = len;
3976 	foc->exp = exp_opt;
3977 }
3978 
3979 static bool smc_parse_options(const struct tcphdr *th,
3980 			      struct tcp_options_received *opt_rx,
3981 			      const unsigned char *ptr,
3982 			      int opsize)
3983 {
3984 #if IS_ENABLED(CONFIG_SMC)
3985 	if (static_branch_unlikely(&tcp_have_smc)) {
3986 		if (th->syn && !(opsize & 1) &&
3987 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3988 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3989 			opt_rx->smc_ok = 1;
3990 			return true;
3991 		}
3992 	}
3993 #endif
3994 	return false;
3995 }
3996 
3997 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3998  * value on success.
3999  */
4000 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4001 {
4002 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4003 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4004 	u16 mss = 0;
4005 
4006 	while (length > 0) {
4007 		int opcode = *ptr++;
4008 		int opsize;
4009 
4010 		switch (opcode) {
4011 		case TCPOPT_EOL:
4012 			return mss;
4013 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4014 			length--;
4015 			continue;
4016 		default:
4017 			if (length < 2)
4018 				return mss;
4019 			opsize = *ptr++;
4020 			if (opsize < 2) /* "silly options" */
4021 				return mss;
4022 			if (opsize > length)
4023 				return mss;	/* fail on partial options */
4024 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4025 				u16 in_mss = get_unaligned_be16(ptr);
4026 
4027 				if (in_mss) {
4028 					if (user_mss && user_mss < in_mss)
4029 						in_mss = user_mss;
4030 					mss = in_mss;
4031 				}
4032 			}
4033 			ptr += opsize - 2;
4034 			length -= opsize;
4035 		}
4036 	}
4037 	return mss;
4038 }
4039 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4040 
4041 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4042  * But, this can also be called on packets in the established flow when
4043  * the fast version below fails.
4044  */
4045 void tcp_parse_options(const struct net *net,
4046 		       const struct sk_buff *skb,
4047 		       struct tcp_options_received *opt_rx, int estab,
4048 		       struct tcp_fastopen_cookie *foc)
4049 {
4050 	const unsigned char *ptr;
4051 	const struct tcphdr *th = tcp_hdr(skb);
4052 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4053 
4054 	ptr = (const unsigned char *)(th + 1);
4055 	opt_rx->saw_tstamp = 0;
4056 	opt_rx->saw_unknown = 0;
4057 
4058 	while (length > 0) {
4059 		int opcode = *ptr++;
4060 		int opsize;
4061 
4062 		switch (opcode) {
4063 		case TCPOPT_EOL:
4064 			return;
4065 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4066 			length--;
4067 			continue;
4068 		default:
4069 			if (length < 2)
4070 				return;
4071 			opsize = *ptr++;
4072 			if (opsize < 2) /* "silly options" */
4073 				return;
4074 			if (opsize > length)
4075 				return;	/* don't parse partial options */
4076 			switch (opcode) {
4077 			case TCPOPT_MSS:
4078 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4079 					u16 in_mss = get_unaligned_be16(ptr);
4080 					if (in_mss) {
4081 						if (opt_rx->user_mss &&
4082 						    opt_rx->user_mss < in_mss)
4083 							in_mss = opt_rx->user_mss;
4084 						opt_rx->mss_clamp = in_mss;
4085 					}
4086 				}
4087 				break;
4088 			case TCPOPT_WINDOW:
4089 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4090 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4091 					__u8 snd_wscale = *(__u8 *)ptr;
4092 					opt_rx->wscale_ok = 1;
4093 					if (snd_wscale > TCP_MAX_WSCALE) {
4094 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4095 								     __func__,
4096 								     snd_wscale,
4097 								     TCP_MAX_WSCALE);
4098 						snd_wscale = TCP_MAX_WSCALE;
4099 					}
4100 					opt_rx->snd_wscale = snd_wscale;
4101 				}
4102 				break;
4103 			case TCPOPT_TIMESTAMP:
4104 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4105 				    ((estab && opt_rx->tstamp_ok) ||
4106 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4107 					opt_rx->saw_tstamp = 1;
4108 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4109 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4110 				}
4111 				break;
4112 			case TCPOPT_SACK_PERM:
4113 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4114 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4115 					opt_rx->sack_ok = TCP_SACK_SEEN;
4116 					tcp_sack_reset(opt_rx);
4117 				}
4118 				break;
4119 
4120 			case TCPOPT_SACK:
4121 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4122 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4123 				   opt_rx->sack_ok) {
4124 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4125 				}
4126 				break;
4127 #ifdef CONFIG_TCP_MD5SIG
4128 			case TCPOPT_MD5SIG:
4129 				/*
4130 				 * The MD5 Hash has already been
4131 				 * checked (see tcp_v{4,6}_do_rcv()).
4132 				 */
4133 				break;
4134 #endif
4135 			case TCPOPT_FASTOPEN:
4136 				tcp_parse_fastopen_option(
4137 					opsize - TCPOLEN_FASTOPEN_BASE,
4138 					ptr, th->syn, foc, false);
4139 				break;
4140 
4141 			case TCPOPT_EXP:
4142 				/* Fast Open option shares code 254 using a
4143 				 * 16 bits magic number.
4144 				 */
4145 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4146 				    get_unaligned_be16(ptr) ==
4147 				    TCPOPT_FASTOPEN_MAGIC) {
4148 					tcp_parse_fastopen_option(opsize -
4149 						TCPOLEN_EXP_FASTOPEN_BASE,
4150 						ptr + 2, th->syn, foc, true);
4151 					break;
4152 				}
4153 
4154 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4155 					break;
4156 
4157 				opt_rx->saw_unknown = 1;
4158 				break;
4159 
4160 			default:
4161 				opt_rx->saw_unknown = 1;
4162 			}
4163 			ptr += opsize-2;
4164 			length -= opsize;
4165 		}
4166 	}
4167 }
4168 EXPORT_SYMBOL(tcp_parse_options);
4169 
4170 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4171 {
4172 	const __be32 *ptr = (const __be32 *)(th + 1);
4173 
4174 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4175 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4176 		tp->rx_opt.saw_tstamp = 1;
4177 		++ptr;
4178 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4179 		++ptr;
4180 		if (*ptr)
4181 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4182 		else
4183 			tp->rx_opt.rcv_tsecr = 0;
4184 		return true;
4185 	}
4186 	return false;
4187 }
4188 
4189 /* Fast parse options. This hopes to only see timestamps.
4190  * If it is wrong it falls back on tcp_parse_options().
4191  */
4192 static bool tcp_fast_parse_options(const struct net *net,
4193 				   const struct sk_buff *skb,
4194 				   const struct tcphdr *th, struct tcp_sock *tp)
4195 {
4196 	/* In the spirit of fast parsing, compare doff directly to constant
4197 	 * values.  Because equality is used, short doff can be ignored here.
4198 	 */
4199 	if (th->doff == (sizeof(*th) / 4)) {
4200 		tp->rx_opt.saw_tstamp = 0;
4201 		return false;
4202 	} else if (tp->rx_opt.tstamp_ok &&
4203 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4204 		if (tcp_parse_aligned_timestamp(tp, th))
4205 			return true;
4206 	}
4207 
4208 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4209 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4210 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4211 
4212 	return true;
4213 }
4214 
4215 #ifdef CONFIG_TCP_MD5SIG
4216 /*
4217  * Parse MD5 Signature option
4218  */
4219 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4220 {
4221 	int length = (th->doff << 2) - sizeof(*th);
4222 	const u8 *ptr = (const u8 *)(th + 1);
4223 
4224 	/* If not enough data remaining, we can short cut */
4225 	while (length >= TCPOLEN_MD5SIG) {
4226 		int opcode = *ptr++;
4227 		int opsize;
4228 
4229 		switch (opcode) {
4230 		case TCPOPT_EOL:
4231 			return NULL;
4232 		case TCPOPT_NOP:
4233 			length--;
4234 			continue;
4235 		default:
4236 			opsize = *ptr++;
4237 			if (opsize < 2 || opsize > length)
4238 				return NULL;
4239 			if (opcode == TCPOPT_MD5SIG)
4240 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4241 		}
4242 		ptr += opsize - 2;
4243 		length -= opsize;
4244 	}
4245 	return NULL;
4246 }
4247 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4248 #endif
4249 
4250 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4251  *
4252  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4253  * it can pass through stack. So, the following predicate verifies that
4254  * this segment is not used for anything but congestion avoidance or
4255  * fast retransmit. Moreover, we even are able to eliminate most of such
4256  * second order effects, if we apply some small "replay" window (~RTO)
4257  * to timestamp space.
4258  *
4259  * All these measures still do not guarantee that we reject wrapped ACKs
4260  * on networks with high bandwidth, when sequence space is recycled fastly,
4261  * but it guarantees that such events will be very rare and do not affect
4262  * connection seriously. This doesn't look nice, but alas, PAWS is really
4263  * buggy extension.
4264  *
4265  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4266  * states that events when retransmit arrives after original data are rare.
4267  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4268  * the biggest problem on large power networks even with minor reordering.
4269  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4270  * up to bandwidth of 18Gigabit/sec. 8) ]
4271  */
4272 
4273 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4274 {
4275 	const struct tcp_sock *tp = tcp_sk(sk);
4276 	const struct tcphdr *th = tcp_hdr(skb);
4277 	u32 seq = TCP_SKB_CB(skb)->seq;
4278 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4279 
4280 	return (/* 1. Pure ACK with correct sequence number. */
4281 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4282 
4283 		/* 2. ... and duplicate ACK. */
4284 		ack == tp->snd_una &&
4285 
4286 		/* 3. ... and does not update window. */
4287 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4288 
4289 		/* 4. ... and sits in replay window. */
4290 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4291 }
4292 
4293 static inline bool tcp_paws_discard(const struct sock *sk,
4294 				   const struct sk_buff *skb)
4295 {
4296 	const struct tcp_sock *tp = tcp_sk(sk);
4297 
4298 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4299 	       !tcp_disordered_ack(sk, skb);
4300 }
4301 
4302 /* Check segment sequence number for validity.
4303  *
4304  * Segment controls are considered valid, if the segment
4305  * fits to the window after truncation to the window. Acceptability
4306  * of data (and SYN, FIN, of course) is checked separately.
4307  * See tcp_data_queue(), for example.
4308  *
4309  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4310  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4311  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4312  * (borrowed from freebsd)
4313  */
4314 
4315 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4316 					 u32 seq, u32 end_seq)
4317 {
4318 	if (before(end_seq, tp->rcv_wup))
4319 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4320 
4321 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4322 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4323 
4324 	return SKB_NOT_DROPPED_YET;
4325 }
4326 
4327 /* When we get a reset we do this. */
4328 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4329 {
4330 	trace_tcp_receive_reset(sk);
4331 
4332 	/* mptcp can't tell us to ignore reset pkts,
4333 	 * so just ignore the return value of mptcp_incoming_options().
4334 	 */
4335 	if (sk_is_mptcp(sk))
4336 		mptcp_incoming_options(sk, skb);
4337 
4338 	/* We want the right error as BSD sees it (and indeed as we do). */
4339 	switch (sk->sk_state) {
4340 	case TCP_SYN_SENT:
4341 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4342 		break;
4343 	case TCP_CLOSE_WAIT:
4344 		WRITE_ONCE(sk->sk_err, EPIPE);
4345 		break;
4346 	case TCP_CLOSE:
4347 		return;
4348 	default:
4349 		WRITE_ONCE(sk->sk_err, ECONNRESET);
4350 	}
4351 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4352 	smp_wmb();
4353 
4354 	tcp_write_queue_purge(sk);
4355 	tcp_done(sk);
4356 
4357 	if (!sock_flag(sk, SOCK_DEAD))
4358 		sk_error_report(sk);
4359 }
4360 
4361 /*
4362  * 	Process the FIN bit. This now behaves as it is supposed to work
4363  *	and the FIN takes effect when it is validly part of sequence
4364  *	space. Not before when we get holes.
4365  *
4366  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4367  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4368  *	TIME-WAIT)
4369  *
4370  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4371  *	close and we go into CLOSING (and later onto TIME-WAIT)
4372  *
4373  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4374  */
4375 void tcp_fin(struct sock *sk)
4376 {
4377 	struct tcp_sock *tp = tcp_sk(sk);
4378 
4379 	inet_csk_schedule_ack(sk);
4380 
4381 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4382 	sock_set_flag(sk, SOCK_DONE);
4383 
4384 	switch (sk->sk_state) {
4385 	case TCP_SYN_RECV:
4386 	case TCP_ESTABLISHED:
4387 		/* Move to CLOSE_WAIT */
4388 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4389 		inet_csk_enter_pingpong_mode(sk);
4390 		break;
4391 
4392 	case TCP_CLOSE_WAIT:
4393 	case TCP_CLOSING:
4394 		/* Received a retransmission of the FIN, do
4395 		 * nothing.
4396 		 */
4397 		break;
4398 	case TCP_LAST_ACK:
4399 		/* RFC793: Remain in the LAST-ACK state. */
4400 		break;
4401 
4402 	case TCP_FIN_WAIT1:
4403 		/* This case occurs when a simultaneous close
4404 		 * happens, we must ack the received FIN and
4405 		 * enter the CLOSING state.
4406 		 */
4407 		tcp_send_ack(sk);
4408 		tcp_set_state(sk, TCP_CLOSING);
4409 		break;
4410 	case TCP_FIN_WAIT2:
4411 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4412 		tcp_send_ack(sk);
4413 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4414 		break;
4415 	default:
4416 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4417 		 * cases we should never reach this piece of code.
4418 		 */
4419 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4420 		       __func__, sk->sk_state);
4421 		break;
4422 	}
4423 
4424 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4425 	 * Probably, we should reset in this case. For now drop them.
4426 	 */
4427 	skb_rbtree_purge(&tp->out_of_order_queue);
4428 	if (tcp_is_sack(tp))
4429 		tcp_sack_reset(&tp->rx_opt);
4430 
4431 	if (!sock_flag(sk, SOCK_DEAD)) {
4432 		sk->sk_state_change(sk);
4433 
4434 		/* Do not send POLL_HUP for half duplex close. */
4435 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4436 		    sk->sk_state == TCP_CLOSE)
4437 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4438 		else
4439 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4440 	}
4441 }
4442 
4443 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4444 				  u32 end_seq)
4445 {
4446 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4447 		if (before(seq, sp->start_seq))
4448 			sp->start_seq = seq;
4449 		if (after(end_seq, sp->end_seq))
4450 			sp->end_seq = end_seq;
4451 		return true;
4452 	}
4453 	return false;
4454 }
4455 
4456 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4457 {
4458 	struct tcp_sock *tp = tcp_sk(sk);
4459 
4460 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4461 		int mib_idx;
4462 
4463 		if (before(seq, tp->rcv_nxt))
4464 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4465 		else
4466 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4467 
4468 		NET_INC_STATS(sock_net(sk), mib_idx);
4469 
4470 		tp->rx_opt.dsack = 1;
4471 		tp->duplicate_sack[0].start_seq = seq;
4472 		tp->duplicate_sack[0].end_seq = end_seq;
4473 	}
4474 }
4475 
4476 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4477 {
4478 	struct tcp_sock *tp = tcp_sk(sk);
4479 
4480 	if (!tp->rx_opt.dsack)
4481 		tcp_dsack_set(sk, seq, end_seq);
4482 	else
4483 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4484 }
4485 
4486 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4487 {
4488 	/* When the ACK path fails or drops most ACKs, the sender would
4489 	 * timeout and spuriously retransmit the same segment repeatedly.
4490 	 * The receiver remembers and reflects via DSACKs. Leverage the
4491 	 * DSACK state and change the txhash to re-route speculatively.
4492 	 */
4493 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4494 	    sk_rethink_txhash(sk))
4495 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4496 }
4497 
4498 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4499 {
4500 	struct tcp_sock *tp = tcp_sk(sk);
4501 
4502 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4503 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4504 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4505 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4506 
4507 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4508 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4509 
4510 			tcp_rcv_spurious_retrans(sk, skb);
4511 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4512 				end_seq = tp->rcv_nxt;
4513 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4514 		}
4515 	}
4516 
4517 	tcp_send_ack(sk);
4518 }
4519 
4520 /* These routines update the SACK block as out-of-order packets arrive or
4521  * in-order packets close up the sequence space.
4522  */
4523 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4524 {
4525 	int this_sack;
4526 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4527 	struct tcp_sack_block *swalk = sp + 1;
4528 
4529 	/* See if the recent change to the first SACK eats into
4530 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4531 	 */
4532 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4533 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4534 			int i;
4535 
4536 			/* Zap SWALK, by moving every further SACK up by one slot.
4537 			 * Decrease num_sacks.
4538 			 */
4539 			tp->rx_opt.num_sacks--;
4540 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4541 				sp[i] = sp[i + 1];
4542 			continue;
4543 		}
4544 		this_sack++;
4545 		swalk++;
4546 	}
4547 }
4548 
4549 void tcp_sack_compress_send_ack(struct sock *sk)
4550 {
4551 	struct tcp_sock *tp = tcp_sk(sk);
4552 
4553 	if (!tp->compressed_ack)
4554 		return;
4555 
4556 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4557 		__sock_put(sk);
4558 
4559 	/* Since we have to send one ack finally,
4560 	 * substract one from tp->compressed_ack to keep
4561 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4562 	 */
4563 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4564 		      tp->compressed_ack - 1);
4565 
4566 	tp->compressed_ack = 0;
4567 	tcp_send_ack(sk);
4568 }
4569 
4570 /* Reasonable amount of sack blocks included in TCP SACK option
4571  * The max is 4, but this becomes 3 if TCP timestamps are there.
4572  * Given that SACK packets might be lost, be conservative and use 2.
4573  */
4574 #define TCP_SACK_BLOCKS_EXPECTED 2
4575 
4576 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4577 {
4578 	struct tcp_sock *tp = tcp_sk(sk);
4579 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4580 	int cur_sacks = tp->rx_opt.num_sacks;
4581 	int this_sack;
4582 
4583 	if (!cur_sacks)
4584 		goto new_sack;
4585 
4586 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4587 		if (tcp_sack_extend(sp, seq, end_seq)) {
4588 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4589 				tcp_sack_compress_send_ack(sk);
4590 			/* Rotate this_sack to the first one. */
4591 			for (; this_sack > 0; this_sack--, sp--)
4592 				swap(*sp, *(sp - 1));
4593 			if (cur_sacks > 1)
4594 				tcp_sack_maybe_coalesce(tp);
4595 			return;
4596 		}
4597 	}
4598 
4599 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4600 		tcp_sack_compress_send_ack(sk);
4601 
4602 	/* Could not find an adjacent existing SACK, build a new one,
4603 	 * put it at the front, and shift everyone else down.  We
4604 	 * always know there is at least one SACK present already here.
4605 	 *
4606 	 * If the sack array is full, forget about the last one.
4607 	 */
4608 	if (this_sack >= TCP_NUM_SACKS) {
4609 		this_sack--;
4610 		tp->rx_opt.num_sacks--;
4611 		sp--;
4612 	}
4613 	for (; this_sack > 0; this_sack--, sp--)
4614 		*sp = *(sp - 1);
4615 
4616 new_sack:
4617 	/* Build the new head SACK, and we're done. */
4618 	sp->start_seq = seq;
4619 	sp->end_seq = end_seq;
4620 	tp->rx_opt.num_sacks++;
4621 }
4622 
4623 /* RCV.NXT advances, some SACKs should be eaten. */
4624 
4625 static void tcp_sack_remove(struct tcp_sock *tp)
4626 {
4627 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4628 	int num_sacks = tp->rx_opt.num_sacks;
4629 	int this_sack;
4630 
4631 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4632 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4633 		tp->rx_opt.num_sacks = 0;
4634 		return;
4635 	}
4636 
4637 	for (this_sack = 0; this_sack < num_sacks;) {
4638 		/* Check if the start of the sack is covered by RCV.NXT. */
4639 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4640 			int i;
4641 
4642 			/* RCV.NXT must cover all the block! */
4643 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4644 
4645 			/* Zap this SACK, by moving forward any other SACKS. */
4646 			for (i = this_sack+1; i < num_sacks; i++)
4647 				tp->selective_acks[i-1] = tp->selective_acks[i];
4648 			num_sacks--;
4649 			continue;
4650 		}
4651 		this_sack++;
4652 		sp++;
4653 	}
4654 	tp->rx_opt.num_sacks = num_sacks;
4655 }
4656 
4657 /**
4658  * tcp_try_coalesce - try to merge skb to prior one
4659  * @sk: socket
4660  * @to: prior buffer
4661  * @from: buffer to add in queue
4662  * @fragstolen: pointer to boolean
4663  *
4664  * Before queueing skb @from after @to, try to merge them
4665  * to reduce overall memory use and queue lengths, if cost is small.
4666  * Packets in ofo or receive queues can stay a long time.
4667  * Better try to coalesce them right now to avoid future collapses.
4668  * Returns true if caller should free @from instead of queueing it
4669  */
4670 static bool tcp_try_coalesce(struct sock *sk,
4671 			     struct sk_buff *to,
4672 			     struct sk_buff *from,
4673 			     bool *fragstolen)
4674 {
4675 	int delta;
4676 
4677 	*fragstolen = false;
4678 
4679 	/* Its possible this segment overlaps with prior segment in queue */
4680 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4681 		return false;
4682 
4683 	if (!mptcp_skb_can_collapse(to, from))
4684 		return false;
4685 
4686 #ifdef CONFIG_TLS_DEVICE
4687 	if (from->decrypted != to->decrypted)
4688 		return false;
4689 #endif
4690 
4691 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4692 		return false;
4693 
4694 	atomic_add(delta, &sk->sk_rmem_alloc);
4695 	sk_mem_charge(sk, delta);
4696 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4697 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4698 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4699 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4700 
4701 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4702 		TCP_SKB_CB(to)->has_rxtstamp = true;
4703 		to->tstamp = from->tstamp;
4704 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4705 	}
4706 
4707 	return true;
4708 }
4709 
4710 static bool tcp_ooo_try_coalesce(struct sock *sk,
4711 			     struct sk_buff *to,
4712 			     struct sk_buff *from,
4713 			     bool *fragstolen)
4714 {
4715 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4716 
4717 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4718 	if (res) {
4719 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4720 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4721 
4722 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4723 	}
4724 	return res;
4725 }
4726 
4727 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4728 			    enum skb_drop_reason reason)
4729 {
4730 	sk_drops_add(sk, skb);
4731 	kfree_skb_reason(skb, reason);
4732 }
4733 
4734 /* This one checks to see if we can put data from the
4735  * out_of_order queue into the receive_queue.
4736  */
4737 static void tcp_ofo_queue(struct sock *sk)
4738 {
4739 	struct tcp_sock *tp = tcp_sk(sk);
4740 	__u32 dsack_high = tp->rcv_nxt;
4741 	bool fin, fragstolen, eaten;
4742 	struct sk_buff *skb, *tail;
4743 	struct rb_node *p;
4744 
4745 	p = rb_first(&tp->out_of_order_queue);
4746 	while (p) {
4747 		skb = rb_to_skb(p);
4748 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4749 			break;
4750 
4751 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4752 			__u32 dsack = dsack_high;
4753 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4754 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4755 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4756 		}
4757 		p = rb_next(p);
4758 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4759 
4760 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4761 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4762 			continue;
4763 		}
4764 
4765 		tail = skb_peek_tail(&sk->sk_receive_queue);
4766 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4767 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4768 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4769 		if (!eaten)
4770 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4771 		else
4772 			kfree_skb_partial(skb, fragstolen);
4773 
4774 		if (unlikely(fin)) {
4775 			tcp_fin(sk);
4776 			/* tcp_fin() purges tp->out_of_order_queue,
4777 			 * so we must end this loop right now.
4778 			 */
4779 			break;
4780 		}
4781 	}
4782 }
4783 
4784 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4785 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4786 
4787 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4788 				 unsigned int size)
4789 {
4790 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4791 	    !sk_rmem_schedule(sk, skb, size)) {
4792 
4793 		if (tcp_prune_queue(sk, skb) < 0)
4794 			return -1;
4795 
4796 		while (!sk_rmem_schedule(sk, skb, size)) {
4797 			if (!tcp_prune_ofo_queue(sk, skb))
4798 				return -1;
4799 		}
4800 	}
4801 	return 0;
4802 }
4803 
4804 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4805 {
4806 	struct tcp_sock *tp = tcp_sk(sk);
4807 	struct rb_node **p, *parent;
4808 	struct sk_buff *skb1;
4809 	u32 seq, end_seq;
4810 	bool fragstolen;
4811 
4812 	tcp_ecn_check_ce(sk, skb);
4813 
4814 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4815 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4816 		sk->sk_data_ready(sk);
4817 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4818 		return;
4819 	}
4820 
4821 	/* Disable header prediction. */
4822 	tp->pred_flags = 0;
4823 	inet_csk_schedule_ack(sk);
4824 
4825 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4826 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4827 	seq = TCP_SKB_CB(skb)->seq;
4828 	end_seq = TCP_SKB_CB(skb)->end_seq;
4829 
4830 	p = &tp->out_of_order_queue.rb_node;
4831 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4832 		/* Initial out of order segment, build 1 SACK. */
4833 		if (tcp_is_sack(tp)) {
4834 			tp->rx_opt.num_sacks = 1;
4835 			tp->selective_acks[0].start_seq = seq;
4836 			tp->selective_acks[0].end_seq = end_seq;
4837 		}
4838 		rb_link_node(&skb->rbnode, NULL, p);
4839 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4840 		tp->ooo_last_skb = skb;
4841 		goto end;
4842 	}
4843 
4844 	/* In the typical case, we are adding an skb to the end of the list.
4845 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4846 	 */
4847 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4848 				 skb, &fragstolen)) {
4849 coalesce_done:
4850 		/* For non sack flows, do not grow window to force DUPACK
4851 		 * and trigger fast retransmit.
4852 		 */
4853 		if (tcp_is_sack(tp))
4854 			tcp_grow_window(sk, skb, true);
4855 		kfree_skb_partial(skb, fragstolen);
4856 		skb = NULL;
4857 		goto add_sack;
4858 	}
4859 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4860 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4861 		parent = &tp->ooo_last_skb->rbnode;
4862 		p = &parent->rb_right;
4863 		goto insert;
4864 	}
4865 
4866 	/* Find place to insert this segment. Handle overlaps on the way. */
4867 	parent = NULL;
4868 	while (*p) {
4869 		parent = *p;
4870 		skb1 = rb_to_skb(parent);
4871 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4872 			p = &parent->rb_left;
4873 			continue;
4874 		}
4875 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4876 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4877 				/* All the bits are present. Drop. */
4878 				NET_INC_STATS(sock_net(sk),
4879 					      LINUX_MIB_TCPOFOMERGE);
4880 				tcp_drop_reason(sk, skb,
4881 						SKB_DROP_REASON_TCP_OFOMERGE);
4882 				skb = NULL;
4883 				tcp_dsack_set(sk, seq, end_seq);
4884 				goto add_sack;
4885 			}
4886 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4887 				/* Partial overlap. */
4888 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4889 			} else {
4890 				/* skb's seq == skb1's seq and skb covers skb1.
4891 				 * Replace skb1 with skb.
4892 				 */
4893 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4894 						&tp->out_of_order_queue);
4895 				tcp_dsack_extend(sk,
4896 						 TCP_SKB_CB(skb1)->seq,
4897 						 TCP_SKB_CB(skb1)->end_seq);
4898 				NET_INC_STATS(sock_net(sk),
4899 					      LINUX_MIB_TCPOFOMERGE);
4900 				tcp_drop_reason(sk, skb1,
4901 						SKB_DROP_REASON_TCP_OFOMERGE);
4902 				goto merge_right;
4903 			}
4904 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4905 						skb, &fragstolen)) {
4906 			goto coalesce_done;
4907 		}
4908 		p = &parent->rb_right;
4909 	}
4910 insert:
4911 	/* Insert segment into RB tree. */
4912 	rb_link_node(&skb->rbnode, parent, p);
4913 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4914 
4915 merge_right:
4916 	/* Remove other segments covered by skb. */
4917 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4918 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4919 			break;
4920 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4921 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4922 					 end_seq);
4923 			break;
4924 		}
4925 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4926 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4927 				 TCP_SKB_CB(skb1)->end_seq);
4928 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4929 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4930 	}
4931 	/* If there is no skb after us, we are the last_skb ! */
4932 	if (!skb1)
4933 		tp->ooo_last_skb = skb;
4934 
4935 add_sack:
4936 	if (tcp_is_sack(tp))
4937 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4938 end:
4939 	if (skb) {
4940 		/* For non sack flows, do not grow window to force DUPACK
4941 		 * and trigger fast retransmit.
4942 		 */
4943 		if (tcp_is_sack(tp))
4944 			tcp_grow_window(sk, skb, false);
4945 		skb_condense(skb);
4946 		skb_set_owner_r(skb, sk);
4947 	}
4948 }
4949 
4950 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4951 				      bool *fragstolen)
4952 {
4953 	int eaten;
4954 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4955 
4956 	eaten = (tail &&
4957 		 tcp_try_coalesce(sk, tail,
4958 				  skb, fragstolen)) ? 1 : 0;
4959 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4960 	if (!eaten) {
4961 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4962 		skb_set_owner_r(skb, sk);
4963 	}
4964 	return eaten;
4965 }
4966 
4967 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4968 {
4969 	struct sk_buff *skb;
4970 	int err = -ENOMEM;
4971 	int data_len = 0;
4972 	bool fragstolen;
4973 
4974 	if (size == 0)
4975 		return 0;
4976 
4977 	if (size > PAGE_SIZE) {
4978 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4979 
4980 		data_len = npages << PAGE_SHIFT;
4981 		size = data_len + (size & ~PAGE_MASK);
4982 	}
4983 	skb = alloc_skb_with_frags(size - data_len, data_len,
4984 				   PAGE_ALLOC_COSTLY_ORDER,
4985 				   &err, sk->sk_allocation);
4986 	if (!skb)
4987 		goto err;
4988 
4989 	skb_put(skb, size - data_len);
4990 	skb->data_len = data_len;
4991 	skb->len = size;
4992 
4993 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4994 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4995 		goto err_free;
4996 	}
4997 
4998 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4999 	if (err)
5000 		goto err_free;
5001 
5002 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5003 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5004 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5005 
5006 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5007 		WARN_ON_ONCE(fragstolen); /* should not happen */
5008 		__kfree_skb(skb);
5009 	}
5010 	return size;
5011 
5012 err_free:
5013 	kfree_skb(skb);
5014 err:
5015 	return err;
5016 
5017 }
5018 
5019 void tcp_data_ready(struct sock *sk)
5020 {
5021 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5022 		sk->sk_data_ready(sk);
5023 }
5024 
5025 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5026 {
5027 	struct tcp_sock *tp = tcp_sk(sk);
5028 	enum skb_drop_reason reason;
5029 	bool fragstolen;
5030 	int eaten;
5031 
5032 	/* If a subflow has been reset, the packet should not continue
5033 	 * to be processed, drop the packet.
5034 	 */
5035 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5036 		__kfree_skb(skb);
5037 		return;
5038 	}
5039 
5040 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5041 		__kfree_skb(skb);
5042 		return;
5043 	}
5044 	skb_dst_drop(skb);
5045 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5046 
5047 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5048 	tp->rx_opt.dsack = 0;
5049 
5050 	/*  Queue data for delivery to the user.
5051 	 *  Packets in sequence go to the receive queue.
5052 	 *  Out of sequence packets to the out_of_order_queue.
5053 	 */
5054 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5055 		if (tcp_receive_window(tp) == 0) {
5056 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5057 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5058 			goto out_of_window;
5059 		}
5060 
5061 		/* Ok. In sequence. In window. */
5062 queue_and_out:
5063 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5064 			sk_forced_mem_schedule(sk, skb->truesize);
5065 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5066 			reason = SKB_DROP_REASON_PROTO_MEM;
5067 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5068 			sk->sk_data_ready(sk);
5069 			goto drop;
5070 		}
5071 
5072 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5073 		if (skb->len)
5074 			tcp_event_data_recv(sk, skb);
5075 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5076 			tcp_fin(sk);
5077 
5078 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5079 			tcp_ofo_queue(sk);
5080 
5081 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5082 			 * gap in queue is filled.
5083 			 */
5084 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5085 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5086 		}
5087 
5088 		if (tp->rx_opt.num_sacks)
5089 			tcp_sack_remove(tp);
5090 
5091 		tcp_fast_path_check(sk);
5092 
5093 		if (eaten > 0)
5094 			kfree_skb_partial(skb, fragstolen);
5095 		if (!sock_flag(sk, SOCK_DEAD))
5096 			tcp_data_ready(sk);
5097 		return;
5098 	}
5099 
5100 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5101 		tcp_rcv_spurious_retrans(sk, skb);
5102 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5103 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5104 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5105 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5106 
5107 out_of_window:
5108 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5109 		inet_csk_schedule_ack(sk);
5110 drop:
5111 		tcp_drop_reason(sk, skb, reason);
5112 		return;
5113 	}
5114 
5115 	/* Out of window. F.e. zero window probe. */
5116 	if (!before(TCP_SKB_CB(skb)->seq,
5117 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5118 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5119 		goto out_of_window;
5120 	}
5121 
5122 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5123 		/* Partial packet, seq < rcv_next < end_seq */
5124 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5125 
5126 		/* If window is closed, drop tail of packet. But after
5127 		 * remembering D-SACK for its head made in previous line.
5128 		 */
5129 		if (!tcp_receive_window(tp)) {
5130 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5131 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5132 			goto out_of_window;
5133 		}
5134 		goto queue_and_out;
5135 	}
5136 
5137 	tcp_data_queue_ofo(sk, skb);
5138 }
5139 
5140 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5141 {
5142 	if (list)
5143 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5144 
5145 	return skb_rb_next(skb);
5146 }
5147 
5148 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5149 					struct sk_buff_head *list,
5150 					struct rb_root *root)
5151 {
5152 	struct sk_buff *next = tcp_skb_next(skb, list);
5153 
5154 	if (list)
5155 		__skb_unlink(skb, list);
5156 	else
5157 		rb_erase(&skb->rbnode, root);
5158 
5159 	__kfree_skb(skb);
5160 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5161 
5162 	return next;
5163 }
5164 
5165 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5166 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5167 {
5168 	struct rb_node **p = &root->rb_node;
5169 	struct rb_node *parent = NULL;
5170 	struct sk_buff *skb1;
5171 
5172 	while (*p) {
5173 		parent = *p;
5174 		skb1 = rb_to_skb(parent);
5175 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5176 			p = &parent->rb_left;
5177 		else
5178 			p = &parent->rb_right;
5179 	}
5180 	rb_link_node(&skb->rbnode, parent, p);
5181 	rb_insert_color(&skb->rbnode, root);
5182 }
5183 
5184 /* Collapse contiguous sequence of skbs head..tail with
5185  * sequence numbers start..end.
5186  *
5187  * If tail is NULL, this means until the end of the queue.
5188  *
5189  * Segments with FIN/SYN are not collapsed (only because this
5190  * simplifies code)
5191  */
5192 static void
5193 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5194 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5195 {
5196 	struct sk_buff *skb = head, *n;
5197 	struct sk_buff_head tmp;
5198 	bool end_of_skbs;
5199 
5200 	/* First, check that queue is collapsible and find
5201 	 * the point where collapsing can be useful.
5202 	 */
5203 restart:
5204 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5205 		n = tcp_skb_next(skb, list);
5206 
5207 		/* No new bits? It is possible on ofo queue. */
5208 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5209 			skb = tcp_collapse_one(sk, skb, list, root);
5210 			if (!skb)
5211 				break;
5212 			goto restart;
5213 		}
5214 
5215 		/* The first skb to collapse is:
5216 		 * - not SYN/FIN and
5217 		 * - bloated or contains data before "start" or
5218 		 *   overlaps to the next one and mptcp allow collapsing.
5219 		 */
5220 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5221 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5222 		     before(TCP_SKB_CB(skb)->seq, start))) {
5223 			end_of_skbs = false;
5224 			break;
5225 		}
5226 
5227 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5228 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5229 			end_of_skbs = false;
5230 			break;
5231 		}
5232 
5233 		/* Decided to skip this, advance start seq. */
5234 		start = TCP_SKB_CB(skb)->end_seq;
5235 	}
5236 	if (end_of_skbs ||
5237 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5238 		return;
5239 
5240 	__skb_queue_head_init(&tmp);
5241 
5242 	while (before(start, end)) {
5243 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5244 		struct sk_buff *nskb;
5245 
5246 		nskb = alloc_skb(copy, GFP_ATOMIC);
5247 		if (!nskb)
5248 			break;
5249 
5250 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5251 #ifdef CONFIG_TLS_DEVICE
5252 		nskb->decrypted = skb->decrypted;
5253 #endif
5254 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5255 		if (list)
5256 			__skb_queue_before(list, skb, nskb);
5257 		else
5258 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5259 		skb_set_owner_r(nskb, sk);
5260 		mptcp_skb_ext_move(nskb, skb);
5261 
5262 		/* Copy data, releasing collapsed skbs. */
5263 		while (copy > 0) {
5264 			int offset = start - TCP_SKB_CB(skb)->seq;
5265 			int size = TCP_SKB_CB(skb)->end_seq - start;
5266 
5267 			BUG_ON(offset < 0);
5268 			if (size > 0) {
5269 				size = min(copy, size);
5270 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5271 					BUG();
5272 				TCP_SKB_CB(nskb)->end_seq += size;
5273 				copy -= size;
5274 				start += size;
5275 			}
5276 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5277 				skb = tcp_collapse_one(sk, skb, list, root);
5278 				if (!skb ||
5279 				    skb == tail ||
5280 				    !mptcp_skb_can_collapse(nskb, skb) ||
5281 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5282 					goto end;
5283 #ifdef CONFIG_TLS_DEVICE
5284 				if (skb->decrypted != nskb->decrypted)
5285 					goto end;
5286 #endif
5287 			}
5288 		}
5289 	}
5290 end:
5291 	skb_queue_walk_safe(&tmp, skb, n)
5292 		tcp_rbtree_insert(root, skb);
5293 }
5294 
5295 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5296  * and tcp_collapse() them until all the queue is collapsed.
5297  */
5298 static void tcp_collapse_ofo_queue(struct sock *sk)
5299 {
5300 	struct tcp_sock *tp = tcp_sk(sk);
5301 	u32 range_truesize, sum_tiny = 0;
5302 	struct sk_buff *skb, *head;
5303 	u32 start, end;
5304 
5305 	skb = skb_rb_first(&tp->out_of_order_queue);
5306 new_range:
5307 	if (!skb) {
5308 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5309 		return;
5310 	}
5311 	start = TCP_SKB_CB(skb)->seq;
5312 	end = TCP_SKB_CB(skb)->end_seq;
5313 	range_truesize = skb->truesize;
5314 
5315 	for (head = skb;;) {
5316 		skb = skb_rb_next(skb);
5317 
5318 		/* Range is terminated when we see a gap or when
5319 		 * we are at the queue end.
5320 		 */
5321 		if (!skb ||
5322 		    after(TCP_SKB_CB(skb)->seq, end) ||
5323 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5324 			/* Do not attempt collapsing tiny skbs */
5325 			if (range_truesize != head->truesize ||
5326 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5327 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5328 					     head, skb, start, end);
5329 			} else {
5330 				sum_tiny += range_truesize;
5331 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5332 					return;
5333 			}
5334 			goto new_range;
5335 		}
5336 
5337 		range_truesize += skb->truesize;
5338 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5339 			start = TCP_SKB_CB(skb)->seq;
5340 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5341 			end = TCP_SKB_CB(skb)->end_seq;
5342 	}
5343 }
5344 
5345 /*
5346  * Clean the out-of-order queue to make room.
5347  * We drop high sequences packets to :
5348  * 1) Let a chance for holes to be filled.
5349  *    This means we do not drop packets from ooo queue if their sequence
5350  *    is before incoming packet sequence.
5351  * 2) not add too big latencies if thousands of packets sit there.
5352  *    (But if application shrinks SO_RCVBUF, we could still end up
5353  *     freeing whole queue here)
5354  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5355  *
5356  * Return true if queue has shrunk.
5357  */
5358 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5359 {
5360 	struct tcp_sock *tp = tcp_sk(sk);
5361 	struct rb_node *node, *prev;
5362 	bool pruned = false;
5363 	int goal;
5364 
5365 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5366 		return false;
5367 
5368 	goal = sk->sk_rcvbuf >> 3;
5369 	node = &tp->ooo_last_skb->rbnode;
5370 
5371 	do {
5372 		struct sk_buff *skb = rb_to_skb(node);
5373 
5374 		/* If incoming skb would land last in ofo queue, stop pruning. */
5375 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5376 			break;
5377 		pruned = true;
5378 		prev = rb_prev(node);
5379 		rb_erase(node, &tp->out_of_order_queue);
5380 		goal -= skb->truesize;
5381 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5382 		tp->ooo_last_skb = rb_to_skb(prev);
5383 		if (!prev || goal <= 0) {
5384 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5385 			    !tcp_under_memory_pressure(sk))
5386 				break;
5387 			goal = sk->sk_rcvbuf >> 3;
5388 		}
5389 		node = prev;
5390 	} while (node);
5391 
5392 	if (pruned) {
5393 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5394 		/* Reset SACK state.  A conforming SACK implementation will
5395 		 * do the same at a timeout based retransmit.  When a connection
5396 		 * is in a sad state like this, we care only about integrity
5397 		 * of the connection not performance.
5398 		 */
5399 		if (tp->rx_opt.sack_ok)
5400 			tcp_sack_reset(&tp->rx_opt);
5401 	}
5402 	return pruned;
5403 }
5404 
5405 /* Reduce allocated memory if we can, trying to get
5406  * the socket within its memory limits again.
5407  *
5408  * Return less than zero if we should start dropping frames
5409  * until the socket owning process reads some of the data
5410  * to stabilize the situation.
5411  */
5412 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5413 {
5414 	struct tcp_sock *tp = tcp_sk(sk);
5415 
5416 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5417 
5418 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5419 		tcp_clamp_window(sk);
5420 	else if (tcp_under_memory_pressure(sk))
5421 		tcp_adjust_rcv_ssthresh(sk);
5422 
5423 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5424 		return 0;
5425 
5426 	tcp_collapse_ofo_queue(sk);
5427 	if (!skb_queue_empty(&sk->sk_receive_queue))
5428 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5429 			     skb_peek(&sk->sk_receive_queue),
5430 			     NULL,
5431 			     tp->copied_seq, tp->rcv_nxt);
5432 
5433 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5434 		return 0;
5435 
5436 	/* Collapsing did not help, destructive actions follow.
5437 	 * This must not ever occur. */
5438 
5439 	tcp_prune_ofo_queue(sk, in_skb);
5440 
5441 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5442 		return 0;
5443 
5444 	/* If we are really being abused, tell the caller to silently
5445 	 * drop receive data on the floor.  It will get retransmitted
5446 	 * and hopefully then we'll have sufficient space.
5447 	 */
5448 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5449 
5450 	/* Massive buffer overcommit. */
5451 	tp->pred_flags = 0;
5452 	return -1;
5453 }
5454 
5455 static bool tcp_should_expand_sndbuf(struct sock *sk)
5456 {
5457 	const struct tcp_sock *tp = tcp_sk(sk);
5458 
5459 	/* If the user specified a specific send buffer setting, do
5460 	 * not modify it.
5461 	 */
5462 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5463 		return false;
5464 
5465 	/* If we are under global TCP memory pressure, do not expand.  */
5466 	if (tcp_under_memory_pressure(sk)) {
5467 		int unused_mem = sk_unused_reserved_mem(sk);
5468 
5469 		/* Adjust sndbuf according to reserved mem. But make sure
5470 		 * it never goes below SOCK_MIN_SNDBUF.
5471 		 * See sk_stream_moderate_sndbuf() for more details.
5472 		 */
5473 		if (unused_mem > SOCK_MIN_SNDBUF)
5474 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5475 
5476 		return false;
5477 	}
5478 
5479 	/* If we are under soft global TCP memory pressure, do not expand.  */
5480 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5481 		return false;
5482 
5483 	/* If we filled the congestion window, do not expand.  */
5484 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5485 		return false;
5486 
5487 	return true;
5488 }
5489 
5490 static void tcp_new_space(struct sock *sk)
5491 {
5492 	struct tcp_sock *tp = tcp_sk(sk);
5493 
5494 	if (tcp_should_expand_sndbuf(sk)) {
5495 		tcp_sndbuf_expand(sk);
5496 		tp->snd_cwnd_stamp = tcp_jiffies32;
5497 	}
5498 
5499 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5500 }
5501 
5502 /* Caller made space either from:
5503  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5504  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5505  *
5506  * We might be able to generate EPOLLOUT to the application if:
5507  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5508  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5509  *    small enough that tcp_stream_memory_free() decides it
5510  *    is time to generate EPOLLOUT.
5511  */
5512 void tcp_check_space(struct sock *sk)
5513 {
5514 	/* pairs with tcp_poll() */
5515 	smp_mb();
5516 	if (sk->sk_socket &&
5517 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5518 		tcp_new_space(sk);
5519 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5520 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5521 	}
5522 }
5523 
5524 static inline void tcp_data_snd_check(struct sock *sk)
5525 {
5526 	tcp_push_pending_frames(sk);
5527 	tcp_check_space(sk);
5528 }
5529 
5530 /*
5531  * Check if sending an ack is needed.
5532  */
5533 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5534 {
5535 	struct tcp_sock *tp = tcp_sk(sk);
5536 	unsigned long rtt, delay;
5537 
5538 	    /* More than one full frame received... */
5539 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5540 	     /* ... and right edge of window advances far enough.
5541 	      * (tcp_recvmsg() will send ACK otherwise).
5542 	      * If application uses SO_RCVLOWAT, we want send ack now if
5543 	      * we have not received enough bytes to satisfy the condition.
5544 	      */
5545 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5546 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5547 	    /* We ACK each frame or... */
5548 	    tcp_in_quickack_mode(sk) ||
5549 	    /* Protocol state mandates a one-time immediate ACK */
5550 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5551 send_now:
5552 		tcp_send_ack(sk);
5553 		return;
5554 	}
5555 
5556 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5557 		tcp_send_delayed_ack(sk);
5558 		return;
5559 	}
5560 
5561 	if (!tcp_is_sack(tp) ||
5562 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5563 		goto send_now;
5564 
5565 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5566 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5567 		tp->dup_ack_counter = 0;
5568 	}
5569 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5570 		tp->dup_ack_counter++;
5571 		goto send_now;
5572 	}
5573 	tp->compressed_ack++;
5574 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5575 		return;
5576 
5577 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5578 
5579 	rtt = tp->rcv_rtt_est.rtt_us;
5580 	if (tp->srtt_us && tp->srtt_us < rtt)
5581 		rtt = tp->srtt_us;
5582 
5583 	delay = min_t(unsigned long,
5584 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5585 		      rtt * (NSEC_PER_USEC >> 3)/20);
5586 	sock_hold(sk);
5587 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5588 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5589 			       HRTIMER_MODE_REL_PINNED_SOFT);
5590 }
5591 
5592 static inline void tcp_ack_snd_check(struct sock *sk)
5593 {
5594 	if (!inet_csk_ack_scheduled(sk)) {
5595 		/* We sent a data segment already. */
5596 		return;
5597 	}
5598 	__tcp_ack_snd_check(sk, 1);
5599 }
5600 
5601 /*
5602  *	This routine is only called when we have urgent data
5603  *	signaled. Its the 'slow' part of tcp_urg. It could be
5604  *	moved inline now as tcp_urg is only called from one
5605  *	place. We handle URGent data wrong. We have to - as
5606  *	BSD still doesn't use the correction from RFC961.
5607  *	For 1003.1g we should support a new option TCP_STDURG to permit
5608  *	either form (or just set the sysctl tcp_stdurg).
5609  */
5610 
5611 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5612 {
5613 	struct tcp_sock *tp = tcp_sk(sk);
5614 	u32 ptr = ntohs(th->urg_ptr);
5615 
5616 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5617 		ptr--;
5618 	ptr += ntohl(th->seq);
5619 
5620 	/* Ignore urgent data that we've already seen and read. */
5621 	if (after(tp->copied_seq, ptr))
5622 		return;
5623 
5624 	/* Do not replay urg ptr.
5625 	 *
5626 	 * NOTE: interesting situation not covered by specs.
5627 	 * Misbehaving sender may send urg ptr, pointing to segment,
5628 	 * which we already have in ofo queue. We are not able to fetch
5629 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5630 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5631 	 * situations. But it is worth to think about possibility of some
5632 	 * DoSes using some hypothetical application level deadlock.
5633 	 */
5634 	if (before(ptr, tp->rcv_nxt))
5635 		return;
5636 
5637 	/* Do we already have a newer (or duplicate) urgent pointer? */
5638 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5639 		return;
5640 
5641 	/* Tell the world about our new urgent pointer. */
5642 	sk_send_sigurg(sk);
5643 
5644 	/* We may be adding urgent data when the last byte read was
5645 	 * urgent. To do this requires some care. We cannot just ignore
5646 	 * tp->copied_seq since we would read the last urgent byte again
5647 	 * as data, nor can we alter copied_seq until this data arrives
5648 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5649 	 *
5650 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5651 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5652 	 * and expect that both A and B disappear from stream. This is _wrong_.
5653 	 * Though this happens in BSD with high probability, this is occasional.
5654 	 * Any application relying on this is buggy. Note also, that fix "works"
5655 	 * only in this artificial test. Insert some normal data between A and B and we will
5656 	 * decline of BSD again. Verdict: it is better to remove to trap
5657 	 * buggy users.
5658 	 */
5659 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5660 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5661 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5662 		tp->copied_seq++;
5663 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5664 			__skb_unlink(skb, &sk->sk_receive_queue);
5665 			__kfree_skb(skb);
5666 		}
5667 	}
5668 
5669 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5670 	WRITE_ONCE(tp->urg_seq, ptr);
5671 
5672 	/* Disable header prediction. */
5673 	tp->pred_flags = 0;
5674 }
5675 
5676 /* This is the 'fast' part of urgent handling. */
5677 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5678 {
5679 	struct tcp_sock *tp = tcp_sk(sk);
5680 
5681 	/* Check if we get a new urgent pointer - normally not. */
5682 	if (unlikely(th->urg))
5683 		tcp_check_urg(sk, th);
5684 
5685 	/* Do we wait for any urgent data? - normally not... */
5686 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5687 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5688 			  th->syn;
5689 
5690 		/* Is the urgent pointer pointing into this packet? */
5691 		if (ptr < skb->len) {
5692 			u8 tmp;
5693 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5694 				BUG();
5695 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5696 			if (!sock_flag(sk, SOCK_DEAD))
5697 				sk->sk_data_ready(sk);
5698 		}
5699 	}
5700 }
5701 
5702 /* Accept RST for rcv_nxt - 1 after a FIN.
5703  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5704  * FIN is sent followed by a RST packet. The RST is sent with the same
5705  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5706  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5707  * ACKs on the closed socket. In addition middleboxes can drop either the
5708  * challenge ACK or a subsequent RST.
5709  */
5710 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5711 {
5712 	const struct tcp_sock *tp = tcp_sk(sk);
5713 
5714 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5715 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5716 					       TCPF_CLOSING));
5717 }
5718 
5719 /* Does PAWS and seqno based validation of an incoming segment, flags will
5720  * play significant role here.
5721  */
5722 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5723 				  const struct tcphdr *th, int syn_inerr)
5724 {
5725 	struct tcp_sock *tp = tcp_sk(sk);
5726 	SKB_DR(reason);
5727 
5728 	/* RFC1323: H1. Apply PAWS check first. */
5729 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5730 	    tp->rx_opt.saw_tstamp &&
5731 	    tcp_paws_discard(sk, skb)) {
5732 		if (!th->rst) {
5733 			if (unlikely(th->syn))
5734 				goto syn_challenge;
5735 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5736 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5737 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5738 						  &tp->last_oow_ack_time))
5739 				tcp_send_dupack(sk, skb);
5740 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5741 			goto discard;
5742 		}
5743 		/* Reset is accepted even if it did not pass PAWS. */
5744 	}
5745 
5746 	/* Step 1: check sequence number */
5747 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5748 	if (reason) {
5749 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5750 		 * (RST) segments are validated by checking their SEQ-fields."
5751 		 * And page 69: "If an incoming segment is not acceptable,
5752 		 * an acknowledgment should be sent in reply (unless the RST
5753 		 * bit is set, if so drop the segment and return)".
5754 		 */
5755 		if (!th->rst) {
5756 			if (th->syn)
5757 				goto syn_challenge;
5758 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5759 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5760 						  &tp->last_oow_ack_time))
5761 				tcp_send_dupack(sk, skb);
5762 		} else if (tcp_reset_check(sk, skb)) {
5763 			goto reset;
5764 		}
5765 		goto discard;
5766 	}
5767 
5768 	/* Step 2: check RST bit */
5769 	if (th->rst) {
5770 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5771 		 * FIN and SACK too if available):
5772 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5773 		 * the right-most SACK block,
5774 		 * then
5775 		 *     RESET the connection
5776 		 * else
5777 		 *     Send a challenge ACK
5778 		 */
5779 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5780 		    tcp_reset_check(sk, skb))
5781 			goto reset;
5782 
5783 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5784 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5785 			int max_sack = sp[0].end_seq;
5786 			int this_sack;
5787 
5788 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5789 			     ++this_sack) {
5790 				max_sack = after(sp[this_sack].end_seq,
5791 						 max_sack) ?
5792 					sp[this_sack].end_seq : max_sack;
5793 			}
5794 
5795 			if (TCP_SKB_CB(skb)->seq == max_sack)
5796 				goto reset;
5797 		}
5798 
5799 		/* Disable TFO if RST is out-of-order
5800 		 * and no data has been received
5801 		 * for current active TFO socket
5802 		 */
5803 		if (tp->syn_fastopen && !tp->data_segs_in &&
5804 		    sk->sk_state == TCP_ESTABLISHED)
5805 			tcp_fastopen_active_disable(sk);
5806 		tcp_send_challenge_ack(sk);
5807 		SKB_DR_SET(reason, TCP_RESET);
5808 		goto discard;
5809 	}
5810 
5811 	/* step 3: check security and precedence [ignored] */
5812 
5813 	/* step 4: Check for a SYN
5814 	 * RFC 5961 4.2 : Send a challenge ack
5815 	 */
5816 	if (th->syn) {
5817 syn_challenge:
5818 		if (syn_inerr)
5819 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5820 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5821 		tcp_send_challenge_ack(sk);
5822 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5823 		goto discard;
5824 	}
5825 
5826 	bpf_skops_parse_hdr(sk, skb);
5827 
5828 	return true;
5829 
5830 discard:
5831 	tcp_drop_reason(sk, skb, reason);
5832 	return false;
5833 
5834 reset:
5835 	tcp_reset(sk, skb);
5836 	__kfree_skb(skb);
5837 	return false;
5838 }
5839 
5840 /*
5841  *	TCP receive function for the ESTABLISHED state.
5842  *
5843  *	It is split into a fast path and a slow path. The fast path is
5844  * 	disabled when:
5845  *	- A zero window was announced from us - zero window probing
5846  *        is only handled properly in the slow path.
5847  *	- Out of order segments arrived.
5848  *	- Urgent data is expected.
5849  *	- There is no buffer space left
5850  *	- Unexpected TCP flags/window values/header lengths are received
5851  *	  (detected by checking the TCP header against pred_flags)
5852  *	- Data is sent in both directions. Fast path only supports pure senders
5853  *	  or pure receivers (this means either the sequence number or the ack
5854  *	  value must stay constant)
5855  *	- Unexpected TCP option.
5856  *
5857  *	When these conditions are not satisfied it drops into a standard
5858  *	receive procedure patterned after RFC793 to handle all cases.
5859  *	The first three cases are guaranteed by proper pred_flags setting,
5860  *	the rest is checked inline. Fast processing is turned on in
5861  *	tcp_data_queue when everything is OK.
5862  */
5863 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5864 {
5865 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5866 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5867 	struct tcp_sock *tp = tcp_sk(sk);
5868 	unsigned int len = skb->len;
5869 
5870 	/* TCP congestion window tracking */
5871 	trace_tcp_probe(sk, skb);
5872 
5873 	tcp_mstamp_refresh(tp);
5874 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5875 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5876 	/*
5877 	 *	Header prediction.
5878 	 *	The code loosely follows the one in the famous
5879 	 *	"30 instruction TCP receive" Van Jacobson mail.
5880 	 *
5881 	 *	Van's trick is to deposit buffers into socket queue
5882 	 *	on a device interrupt, to call tcp_recv function
5883 	 *	on the receive process context and checksum and copy
5884 	 *	the buffer to user space. smart...
5885 	 *
5886 	 *	Our current scheme is not silly either but we take the
5887 	 *	extra cost of the net_bh soft interrupt processing...
5888 	 *	We do checksum and copy also but from device to kernel.
5889 	 */
5890 
5891 	tp->rx_opt.saw_tstamp = 0;
5892 
5893 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5894 	 *	if header_prediction is to be made
5895 	 *	'S' will always be tp->tcp_header_len >> 2
5896 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5897 	 *  turn it off	(when there are holes in the receive
5898 	 *	 space for instance)
5899 	 *	PSH flag is ignored.
5900 	 */
5901 
5902 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5903 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5904 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5905 		int tcp_header_len = tp->tcp_header_len;
5906 
5907 		/* Timestamp header prediction: tcp_header_len
5908 		 * is automatically equal to th->doff*4 due to pred_flags
5909 		 * match.
5910 		 */
5911 
5912 		/* Check timestamp */
5913 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5914 			/* No? Slow path! */
5915 			if (!tcp_parse_aligned_timestamp(tp, th))
5916 				goto slow_path;
5917 
5918 			/* If PAWS failed, check it more carefully in slow path */
5919 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5920 				goto slow_path;
5921 
5922 			/* DO NOT update ts_recent here, if checksum fails
5923 			 * and timestamp was corrupted part, it will result
5924 			 * in a hung connection since we will drop all
5925 			 * future packets due to the PAWS test.
5926 			 */
5927 		}
5928 
5929 		if (len <= tcp_header_len) {
5930 			/* Bulk data transfer: sender */
5931 			if (len == tcp_header_len) {
5932 				/* Predicted packet is in window by definition.
5933 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5934 				 * Hence, check seq<=rcv_wup reduces to:
5935 				 */
5936 				if (tcp_header_len ==
5937 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5938 				    tp->rcv_nxt == tp->rcv_wup)
5939 					tcp_store_ts_recent(tp);
5940 
5941 				/* We know that such packets are checksummed
5942 				 * on entry.
5943 				 */
5944 				tcp_ack(sk, skb, 0);
5945 				__kfree_skb(skb);
5946 				tcp_data_snd_check(sk);
5947 				/* When receiving pure ack in fast path, update
5948 				 * last ts ecr directly instead of calling
5949 				 * tcp_rcv_rtt_measure_ts()
5950 				 */
5951 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5952 				return;
5953 			} else { /* Header too small */
5954 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5955 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5956 				goto discard;
5957 			}
5958 		} else {
5959 			int eaten = 0;
5960 			bool fragstolen = false;
5961 
5962 			if (tcp_checksum_complete(skb))
5963 				goto csum_error;
5964 
5965 			if ((int)skb->truesize > sk->sk_forward_alloc)
5966 				goto step5;
5967 
5968 			/* Predicted packet is in window by definition.
5969 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5970 			 * Hence, check seq<=rcv_wup reduces to:
5971 			 */
5972 			if (tcp_header_len ==
5973 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5974 			    tp->rcv_nxt == tp->rcv_wup)
5975 				tcp_store_ts_recent(tp);
5976 
5977 			tcp_rcv_rtt_measure_ts(sk, skb);
5978 
5979 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5980 
5981 			/* Bulk data transfer: receiver */
5982 			skb_dst_drop(skb);
5983 			__skb_pull(skb, tcp_header_len);
5984 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5985 
5986 			tcp_event_data_recv(sk, skb);
5987 
5988 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5989 				/* Well, only one small jumplet in fast path... */
5990 				tcp_ack(sk, skb, FLAG_DATA);
5991 				tcp_data_snd_check(sk);
5992 				if (!inet_csk_ack_scheduled(sk))
5993 					goto no_ack;
5994 			} else {
5995 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5996 			}
5997 
5998 			__tcp_ack_snd_check(sk, 0);
5999 no_ack:
6000 			if (eaten)
6001 				kfree_skb_partial(skb, fragstolen);
6002 			tcp_data_ready(sk);
6003 			return;
6004 		}
6005 	}
6006 
6007 slow_path:
6008 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6009 		goto csum_error;
6010 
6011 	if (!th->ack && !th->rst && !th->syn) {
6012 		reason = SKB_DROP_REASON_TCP_FLAGS;
6013 		goto discard;
6014 	}
6015 
6016 	/*
6017 	 *	Standard slow path.
6018 	 */
6019 
6020 	if (!tcp_validate_incoming(sk, skb, th, 1))
6021 		return;
6022 
6023 step5:
6024 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6025 	if ((int)reason < 0) {
6026 		reason = -reason;
6027 		goto discard;
6028 	}
6029 	tcp_rcv_rtt_measure_ts(sk, skb);
6030 
6031 	/* Process urgent data. */
6032 	tcp_urg(sk, skb, th);
6033 
6034 	/* step 7: process the segment text */
6035 	tcp_data_queue(sk, skb);
6036 
6037 	tcp_data_snd_check(sk);
6038 	tcp_ack_snd_check(sk);
6039 	return;
6040 
6041 csum_error:
6042 	reason = SKB_DROP_REASON_TCP_CSUM;
6043 	trace_tcp_bad_csum(skb);
6044 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6045 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6046 
6047 discard:
6048 	tcp_drop_reason(sk, skb, reason);
6049 }
6050 EXPORT_SYMBOL(tcp_rcv_established);
6051 
6052 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6053 {
6054 	struct inet_connection_sock *icsk = inet_csk(sk);
6055 	struct tcp_sock *tp = tcp_sk(sk);
6056 
6057 	tcp_mtup_init(sk);
6058 	icsk->icsk_af_ops->rebuild_header(sk);
6059 	tcp_init_metrics(sk);
6060 
6061 	/* Initialize the congestion window to start the transfer.
6062 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6063 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6064 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6065 	 * retransmission has occurred.
6066 	 */
6067 	if (tp->total_retrans > 1 && tp->undo_marker)
6068 		tcp_snd_cwnd_set(tp, 1);
6069 	else
6070 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6071 	tp->snd_cwnd_stamp = tcp_jiffies32;
6072 
6073 	bpf_skops_established(sk, bpf_op, skb);
6074 	/* Initialize congestion control unless BPF initialized it already: */
6075 	if (!icsk->icsk_ca_initialized)
6076 		tcp_init_congestion_control(sk);
6077 	tcp_init_buffer_space(sk);
6078 }
6079 
6080 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6081 {
6082 	struct tcp_sock *tp = tcp_sk(sk);
6083 	struct inet_connection_sock *icsk = inet_csk(sk);
6084 
6085 	tcp_set_state(sk, TCP_ESTABLISHED);
6086 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6087 
6088 	if (skb) {
6089 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6090 		security_inet_conn_established(sk, skb);
6091 		sk_mark_napi_id(sk, skb);
6092 	}
6093 
6094 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6095 
6096 	/* Prevent spurious tcp_cwnd_restart() on first data
6097 	 * packet.
6098 	 */
6099 	tp->lsndtime = tcp_jiffies32;
6100 
6101 	if (sock_flag(sk, SOCK_KEEPOPEN))
6102 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6103 
6104 	if (!tp->rx_opt.snd_wscale)
6105 		__tcp_fast_path_on(tp, tp->snd_wnd);
6106 	else
6107 		tp->pred_flags = 0;
6108 }
6109 
6110 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6111 				    struct tcp_fastopen_cookie *cookie)
6112 {
6113 	struct tcp_sock *tp = tcp_sk(sk);
6114 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6115 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6116 	bool syn_drop = false;
6117 
6118 	if (mss == tp->rx_opt.user_mss) {
6119 		struct tcp_options_received opt;
6120 
6121 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6122 		tcp_clear_options(&opt);
6123 		opt.user_mss = opt.mss_clamp = 0;
6124 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6125 		mss = opt.mss_clamp;
6126 	}
6127 
6128 	if (!tp->syn_fastopen) {
6129 		/* Ignore an unsolicited cookie */
6130 		cookie->len = -1;
6131 	} else if (tp->total_retrans) {
6132 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6133 		 * acknowledges data. Presumably the remote received only
6134 		 * the retransmitted (regular) SYNs: either the original
6135 		 * SYN-data or the corresponding SYN-ACK was dropped.
6136 		 */
6137 		syn_drop = (cookie->len < 0 && data);
6138 	} else if (cookie->len < 0 && !tp->syn_data) {
6139 		/* We requested a cookie but didn't get it. If we did not use
6140 		 * the (old) exp opt format then try so next time (try_exp=1).
6141 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6142 		 */
6143 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6144 	}
6145 
6146 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6147 
6148 	if (data) { /* Retransmit unacked data in SYN */
6149 		if (tp->total_retrans)
6150 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6151 		else
6152 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6153 		skb_rbtree_walk_from(data)
6154 			 tcp_mark_skb_lost(sk, data);
6155 		tcp_xmit_retransmit_queue(sk);
6156 		NET_INC_STATS(sock_net(sk),
6157 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6158 		return true;
6159 	}
6160 	tp->syn_data_acked = tp->syn_data;
6161 	if (tp->syn_data_acked) {
6162 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6163 		/* SYN-data is counted as two separate packets in tcp_ack() */
6164 		if (tp->delivered > 1)
6165 			--tp->delivered;
6166 	}
6167 
6168 	tcp_fastopen_add_skb(sk, synack);
6169 
6170 	return false;
6171 }
6172 
6173 static void smc_check_reset_syn(struct tcp_sock *tp)
6174 {
6175 #if IS_ENABLED(CONFIG_SMC)
6176 	if (static_branch_unlikely(&tcp_have_smc)) {
6177 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6178 			tp->syn_smc = 0;
6179 	}
6180 #endif
6181 }
6182 
6183 static void tcp_try_undo_spurious_syn(struct sock *sk)
6184 {
6185 	struct tcp_sock *tp = tcp_sk(sk);
6186 	u32 syn_stamp;
6187 
6188 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6189 	 * spurious if the ACK's timestamp option echo value matches the
6190 	 * original SYN timestamp.
6191 	 */
6192 	syn_stamp = tp->retrans_stamp;
6193 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6194 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6195 		tp->undo_marker = 0;
6196 }
6197 
6198 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6199 					 const struct tcphdr *th)
6200 {
6201 	struct inet_connection_sock *icsk = inet_csk(sk);
6202 	struct tcp_sock *tp = tcp_sk(sk);
6203 	struct tcp_fastopen_cookie foc = { .len = -1 };
6204 	int saved_clamp = tp->rx_opt.mss_clamp;
6205 	bool fastopen_fail;
6206 	SKB_DR(reason);
6207 
6208 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6209 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6210 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6211 
6212 	if (th->ack) {
6213 		/* rfc793:
6214 		 * "If the state is SYN-SENT then
6215 		 *    first check the ACK bit
6216 		 *      If the ACK bit is set
6217 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6218 		 *        a reset (unless the RST bit is set, if so drop
6219 		 *        the segment and return)"
6220 		 */
6221 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6222 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6223 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6224 			if (icsk->icsk_retransmits == 0)
6225 				inet_csk_reset_xmit_timer(sk,
6226 						ICSK_TIME_RETRANS,
6227 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6228 			goto reset_and_undo;
6229 		}
6230 
6231 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6232 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6233 			     tcp_time_stamp(tp))) {
6234 			NET_INC_STATS(sock_net(sk),
6235 					LINUX_MIB_PAWSACTIVEREJECTED);
6236 			goto reset_and_undo;
6237 		}
6238 
6239 		/* Now ACK is acceptable.
6240 		 *
6241 		 * "If the RST bit is set
6242 		 *    If the ACK was acceptable then signal the user "error:
6243 		 *    connection reset", drop the segment, enter CLOSED state,
6244 		 *    delete TCB, and return."
6245 		 */
6246 
6247 		if (th->rst) {
6248 			tcp_reset(sk, skb);
6249 consume:
6250 			__kfree_skb(skb);
6251 			return 0;
6252 		}
6253 
6254 		/* rfc793:
6255 		 *   "fifth, if neither of the SYN or RST bits is set then
6256 		 *    drop the segment and return."
6257 		 *
6258 		 *    See note below!
6259 		 *                                        --ANK(990513)
6260 		 */
6261 		if (!th->syn) {
6262 			SKB_DR_SET(reason, TCP_FLAGS);
6263 			goto discard_and_undo;
6264 		}
6265 		/* rfc793:
6266 		 *   "If the SYN bit is on ...
6267 		 *    are acceptable then ...
6268 		 *    (our SYN has been ACKed), change the connection
6269 		 *    state to ESTABLISHED..."
6270 		 */
6271 
6272 		tcp_ecn_rcv_synack(tp, th);
6273 
6274 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6275 		tcp_try_undo_spurious_syn(sk);
6276 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6277 
6278 		/* Ok.. it's good. Set up sequence numbers and
6279 		 * move to established.
6280 		 */
6281 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6282 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6283 
6284 		/* RFC1323: The window in SYN & SYN/ACK segments is
6285 		 * never scaled.
6286 		 */
6287 		tp->snd_wnd = ntohs(th->window);
6288 
6289 		if (!tp->rx_opt.wscale_ok) {
6290 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6291 			tp->window_clamp = min(tp->window_clamp, 65535U);
6292 		}
6293 
6294 		if (tp->rx_opt.saw_tstamp) {
6295 			tp->rx_opt.tstamp_ok	   = 1;
6296 			tp->tcp_header_len =
6297 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6298 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6299 			tcp_store_ts_recent(tp);
6300 		} else {
6301 			tp->tcp_header_len = sizeof(struct tcphdr);
6302 		}
6303 
6304 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6305 		tcp_initialize_rcv_mss(sk);
6306 
6307 		/* Remember, tcp_poll() does not lock socket!
6308 		 * Change state from SYN-SENT only after copied_seq
6309 		 * is initialized. */
6310 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6311 
6312 		smc_check_reset_syn(tp);
6313 
6314 		smp_mb();
6315 
6316 		tcp_finish_connect(sk, skb);
6317 
6318 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6319 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6320 
6321 		if (!sock_flag(sk, SOCK_DEAD)) {
6322 			sk->sk_state_change(sk);
6323 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6324 		}
6325 		if (fastopen_fail)
6326 			return -1;
6327 		if (sk->sk_write_pending ||
6328 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6329 		    inet_csk_in_pingpong_mode(sk)) {
6330 			/* Save one ACK. Data will be ready after
6331 			 * several ticks, if write_pending is set.
6332 			 *
6333 			 * It may be deleted, but with this feature tcpdumps
6334 			 * look so _wonderfully_ clever, that I was not able
6335 			 * to stand against the temptation 8)     --ANK
6336 			 */
6337 			inet_csk_schedule_ack(sk);
6338 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6339 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6340 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6341 			goto consume;
6342 		}
6343 		tcp_send_ack(sk);
6344 		return -1;
6345 	}
6346 
6347 	/* No ACK in the segment */
6348 
6349 	if (th->rst) {
6350 		/* rfc793:
6351 		 * "If the RST bit is set
6352 		 *
6353 		 *      Otherwise (no ACK) drop the segment and return."
6354 		 */
6355 		SKB_DR_SET(reason, TCP_RESET);
6356 		goto discard_and_undo;
6357 	}
6358 
6359 	/* PAWS check. */
6360 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6361 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6362 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6363 		goto discard_and_undo;
6364 	}
6365 	if (th->syn) {
6366 		/* We see SYN without ACK. It is attempt of
6367 		 * simultaneous connect with crossed SYNs.
6368 		 * Particularly, it can be connect to self.
6369 		 */
6370 		tcp_set_state(sk, TCP_SYN_RECV);
6371 
6372 		if (tp->rx_opt.saw_tstamp) {
6373 			tp->rx_opt.tstamp_ok = 1;
6374 			tcp_store_ts_recent(tp);
6375 			tp->tcp_header_len =
6376 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6377 		} else {
6378 			tp->tcp_header_len = sizeof(struct tcphdr);
6379 		}
6380 
6381 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6382 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6383 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6384 
6385 		/* RFC1323: The window in SYN & SYN/ACK segments is
6386 		 * never scaled.
6387 		 */
6388 		tp->snd_wnd    = ntohs(th->window);
6389 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6390 		tp->max_window = tp->snd_wnd;
6391 
6392 		tcp_ecn_rcv_syn(tp, th);
6393 
6394 		tcp_mtup_init(sk);
6395 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6396 		tcp_initialize_rcv_mss(sk);
6397 
6398 		tcp_send_synack(sk);
6399 #if 0
6400 		/* Note, we could accept data and URG from this segment.
6401 		 * There are no obstacles to make this (except that we must
6402 		 * either change tcp_recvmsg() to prevent it from returning data
6403 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6404 		 *
6405 		 * However, if we ignore data in ACKless segments sometimes,
6406 		 * we have no reasons to accept it sometimes.
6407 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6408 		 * is not flawless. So, discard packet for sanity.
6409 		 * Uncomment this return to process the data.
6410 		 */
6411 		return -1;
6412 #else
6413 		goto consume;
6414 #endif
6415 	}
6416 	/* "fifth, if neither of the SYN or RST bits is set then
6417 	 * drop the segment and return."
6418 	 */
6419 
6420 discard_and_undo:
6421 	tcp_clear_options(&tp->rx_opt);
6422 	tp->rx_opt.mss_clamp = saved_clamp;
6423 	tcp_drop_reason(sk, skb, reason);
6424 	return 0;
6425 
6426 reset_and_undo:
6427 	tcp_clear_options(&tp->rx_opt);
6428 	tp->rx_opt.mss_clamp = saved_clamp;
6429 	return 1;
6430 }
6431 
6432 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6433 {
6434 	struct request_sock *req;
6435 
6436 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6437 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6438 	 */
6439 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6440 		tcp_try_undo_loss(sk, false);
6441 
6442 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6443 	tcp_sk(sk)->retrans_stamp = 0;
6444 	inet_csk(sk)->icsk_retransmits = 0;
6445 
6446 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6447 	 * we no longer need req so release it.
6448 	 */
6449 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6450 					lockdep_sock_is_held(sk));
6451 	reqsk_fastopen_remove(sk, req, false);
6452 
6453 	/* Re-arm the timer because data may have been sent out.
6454 	 * This is similar to the regular data transmission case
6455 	 * when new data has just been ack'ed.
6456 	 *
6457 	 * (TFO) - we could try to be more aggressive and
6458 	 * retransmitting any data sooner based on when they
6459 	 * are sent out.
6460 	 */
6461 	tcp_rearm_rto(sk);
6462 }
6463 
6464 /*
6465  *	This function implements the receiving procedure of RFC 793 for
6466  *	all states except ESTABLISHED and TIME_WAIT.
6467  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6468  *	address independent.
6469  */
6470 
6471 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6472 {
6473 	struct tcp_sock *tp = tcp_sk(sk);
6474 	struct inet_connection_sock *icsk = inet_csk(sk);
6475 	const struct tcphdr *th = tcp_hdr(skb);
6476 	struct request_sock *req;
6477 	int queued = 0;
6478 	bool acceptable;
6479 	SKB_DR(reason);
6480 
6481 	switch (sk->sk_state) {
6482 	case TCP_CLOSE:
6483 		SKB_DR_SET(reason, TCP_CLOSE);
6484 		goto discard;
6485 
6486 	case TCP_LISTEN:
6487 		if (th->ack)
6488 			return 1;
6489 
6490 		if (th->rst) {
6491 			SKB_DR_SET(reason, TCP_RESET);
6492 			goto discard;
6493 		}
6494 		if (th->syn) {
6495 			if (th->fin) {
6496 				SKB_DR_SET(reason, TCP_FLAGS);
6497 				goto discard;
6498 			}
6499 			/* It is possible that we process SYN packets from backlog,
6500 			 * so we need to make sure to disable BH and RCU right there.
6501 			 */
6502 			rcu_read_lock();
6503 			local_bh_disable();
6504 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6505 			local_bh_enable();
6506 			rcu_read_unlock();
6507 
6508 			if (!acceptable)
6509 				return 1;
6510 			consume_skb(skb);
6511 			return 0;
6512 		}
6513 		SKB_DR_SET(reason, TCP_FLAGS);
6514 		goto discard;
6515 
6516 	case TCP_SYN_SENT:
6517 		tp->rx_opt.saw_tstamp = 0;
6518 		tcp_mstamp_refresh(tp);
6519 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6520 		if (queued >= 0)
6521 			return queued;
6522 
6523 		/* Do step6 onward by hand. */
6524 		tcp_urg(sk, skb, th);
6525 		__kfree_skb(skb);
6526 		tcp_data_snd_check(sk);
6527 		return 0;
6528 	}
6529 
6530 	tcp_mstamp_refresh(tp);
6531 	tp->rx_opt.saw_tstamp = 0;
6532 	req = rcu_dereference_protected(tp->fastopen_rsk,
6533 					lockdep_sock_is_held(sk));
6534 	if (req) {
6535 		bool req_stolen;
6536 
6537 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6538 		    sk->sk_state != TCP_FIN_WAIT1);
6539 
6540 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6541 			SKB_DR_SET(reason, TCP_FASTOPEN);
6542 			goto discard;
6543 		}
6544 	}
6545 
6546 	if (!th->ack && !th->rst && !th->syn) {
6547 		SKB_DR_SET(reason, TCP_FLAGS);
6548 		goto discard;
6549 	}
6550 	if (!tcp_validate_incoming(sk, skb, th, 0))
6551 		return 0;
6552 
6553 	/* step 5: check the ACK field */
6554 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6555 				      FLAG_UPDATE_TS_RECENT |
6556 				      FLAG_NO_CHALLENGE_ACK) > 0;
6557 
6558 	if (!acceptable) {
6559 		if (sk->sk_state == TCP_SYN_RECV)
6560 			return 1;	/* send one RST */
6561 		tcp_send_challenge_ack(sk);
6562 		SKB_DR_SET(reason, TCP_OLD_ACK);
6563 		goto discard;
6564 	}
6565 	switch (sk->sk_state) {
6566 	case TCP_SYN_RECV:
6567 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6568 		if (!tp->srtt_us)
6569 			tcp_synack_rtt_meas(sk, req);
6570 
6571 		if (req) {
6572 			tcp_rcv_synrecv_state_fastopen(sk);
6573 		} else {
6574 			tcp_try_undo_spurious_syn(sk);
6575 			tp->retrans_stamp = 0;
6576 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6577 					  skb);
6578 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6579 		}
6580 		smp_mb();
6581 		tcp_set_state(sk, TCP_ESTABLISHED);
6582 		sk->sk_state_change(sk);
6583 
6584 		/* Note, that this wakeup is only for marginal crossed SYN case.
6585 		 * Passively open sockets are not waked up, because
6586 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6587 		 */
6588 		if (sk->sk_socket)
6589 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6590 
6591 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6592 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6593 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6594 
6595 		if (tp->rx_opt.tstamp_ok)
6596 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6597 
6598 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6599 			tcp_update_pacing_rate(sk);
6600 
6601 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6602 		tp->lsndtime = tcp_jiffies32;
6603 
6604 		tcp_initialize_rcv_mss(sk);
6605 		tcp_fast_path_on(tp);
6606 		break;
6607 
6608 	case TCP_FIN_WAIT1: {
6609 		int tmo;
6610 
6611 		if (req)
6612 			tcp_rcv_synrecv_state_fastopen(sk);
6613 
6614 		if (tp->snd_una != tp->write_seq)
6615 			break;
6616 
6617 		tcp_set_state(sk, TCP_FIN_WAIT2);
6618 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6619 
6620 		sk_dst_confirm(sk);
6621 
6622 		if (!sock_flag(sk, SOCK_DEAD)) {
6623 			/* Wake up lingering close() */
6624 			sk->sk_state_change(sk);
6625 			break;
6626 		}
6627 
6628 		if (tp->linger2 < 0) {
6629 			tcp_done(sk);
6630 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6631 			return 1;
6632 		}
6633 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6634 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6635 			/* Receive out of order FIN after close() */
6636 			if (tp->syn_fastopen && th->fin)
6637 				tcp_fastopen_active_disable(sk);
6638 			tcp_done(sk);
6639 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6640 			return 1;
6641 		}
6642 
6643 		tmo = tcp_fin_time(sk);
6644 		if (tmo > TCP_TIMEWAIT_LEN) {
6645 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6646 		} else if (th->fin || sock_owned_by_user(sk)) {
6647 			/* Bad case. We could lose such FIN otherwise.
6648 			 * It is not a big problem, but it looks confusing
6649 			 * and not so rare event. We still can lose it now,
6650 			 * if it spins in bh_lock_sock(), but it is really
6651 			 * marginal case.
6652 			 */
6653 			inet_csk_reset_keepalive_timer(sk, tmo);
6654 		} else {
6655 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6656 			goto consume;
6657 		}
6658 		break;
6659 	}
6660 
6661 	case TCP_CLOSING:
6662 		if (tp->snd_una == tp->write_seq) {
6663 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6664 			goto consume;
6665 		}
6666 		break;
6667 
6668 	case TCP_LAST_ACK:
6669 		if (tp->snd_una == tp->write_seq) {
6670 			tcp_update_metrics(sk);
6671 			tcp_done(sk);
6672 			goto consume;
6673 		}
6674 		break;
6675 	}
6676 
6677 	/* step 6: check the URG bit */
6678 	tcp_urg(sk, skb, th);
6679 
6680 	/* step 7: process the segment text */
6681 	switch (sk->sk_state) {
6682 	case TCP_CLOSE_WAIT:
6683 	case TCP_CLOSING:
6684 	case TCP_LAST_ACK:
6685 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6686 			/* If a subflow has been reset, the packet should not
6687 			 * continue to be processed, drop the packet.
6688 			 */
6689 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6690 				goto discard;
6691 			break;
6692 		}
6693 		fallthrough;
6694 	case TCP_FIN_WAIT1:
6695 	case TCP_FIN_WAIT2:
6696 		/* RFC 793 says to queue data in these states,
6697 		 * RFC 1122 says we MUST send a reset.
6698 		 * BSD 4.4 also does reset.
6699 		 */
6700 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6701 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6702 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6703 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6704 				tcp_reset(sk, skb);
6705 				return 1;
6706 			}
6707 		}
6708 		fallthrough;
6709 	case TCP_ESTABLISHED:
6710 		tcp_data_queue(sk, skb);
6711 		queued = 1;
6712 		break;
6713 	}
6714 
6715 	/* tcp_data could move socket to TIME-WAIT */
6716 	if (sk->sk_state != TCP_CLOSE) {
6717 		tcp_data_snd_check(sk);
6718 		tcp_ack_snd_check(sk);
6719 	}
6720 
6721 	if (!queued) {
6722 discard:
6723 		tcp_drop_reason(sk, skb, reason);
6724 	}
6725 	return 0;
6726 
6727 consume:
6728 	__kfree_skb(skb);
6729 	return 0;
6730 }
6731 EXPORT_SYMBOL(tcp_rcv_state_process);
6732 
6733 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6734 {
6735 	struct inet_request_sock *ireq = inet_rsk(req);
6736 
6737 	if (family == AF_INET)
6738 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6739 				    &ireq->ir_rmt_addr, port);
6740 #if IS_ENABLED(CONFIG_IPV6)
6741 	else if (family == AF_INET6)
6742 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6743 				    &ireq->ir_v6_rmt_addr, port);
6744 #endif
6745 }
6746 
6747 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6748  *
6749  * If we receive a SYN packet with these bits set, it means a
6750  * network is playing bad games with TOS bits. In order to
6751  * avoid possible false congestion notifications, we disable
6752  * TCP ECN negotiation.
6753  *
6754  * Exception: tcp_ca wants ECN. This is required for DCTCP
6755  * congestion control: Linux DCTCP asserts ECT on all packets,
6756  * including SYN, which is most optimal solution; however,
6757  * others, such as FreeBSD do not.
6758  *
6759  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6760  * set, indicating the use of a future TCP extension (such as AccECN). See
6761  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6762  * extensions.
6763  */
6764 static void tcp_ecn_create_request(struct request_sock *req,
6765 				   const struct sk_buff *skb,
6766 				   const struct sock *listen_sk,
6767 				   const struct dst_entry *dst)
6768 {
6769 	const struct tcphdr *th = tcp_hdr(skb);
6770 	const struct net *net = sock_net(listen_sk);
6771 	bool th_ecn = th->ece && th->cwr;
6772 	bool ect, ecn_ok;
6773 	u32 ecn_ok_dst;
6774 
6775 	if (!th_ecn)
6776 		return;
6777 
6778 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6779 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6780 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6781 
6782 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6783 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6784 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6785 		inet_rsk(req)->ecn_ok = 1;
6786 }
6787 
6788 static void tcp_openreq_init(struct request_sock *req,
6789 			     const struct tcp_options_received *rx_opt,
6790 			     struct sk_buff *skb, const struct sock *sk)
6791 {
6792 	struct inet_request_sock *ireq = inet_rsk(req);
6793 
6794 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6795 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6796 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6797 	tcp_rsk(req)->snt_synack = 0;
6798 	tcp_rsk(req)->last_oow_ack_time = 0;
6799 	req->mss = rx_opt->mss_clamp;
6800 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6801 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6802 	ireq->sack_ok = rx_opt->sack_ok;
6803 	ireq->snd_wscale = rx_opt->snd_wscale;
6804 	ireq->wscale_ok = rx_opt->wscale_ok;
6805 	ireq->acked = 0;
6806 	ireq->ecn_ok = 0;
6807 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6808 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6809 	ireq->ir_mark = inet_request_mark(sk, skb);
6810 #if IS_ENABLED(CONFIG_SMC)
6811 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6812 			tcp_sk(sk)->smc_hs_congested(sk));
6813 #endif
6814 }
6815 
6816 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6817 				      struct sock *sk_listener,
6818 				      bool attach_listener)
6819 {
6820 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6821 					       attach_listener);
6822 
6823 	if (req) {
6824 		struct inet_request_sock *ireq = inet_rsk(req);
6825 
6826 		ireq->ireq_opt = NULL;
6827 #if IS_ENABLED(CONFIG_IPV6)
6828 		ireq->pktopts = NULL;
6829 #endif
6830 		atomic64_set(&ireq->ir_cookie, 0);
6831 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6832 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6833 		ireq->ireq_family = sk_listener->sk_family;
6834 		req->timeout = TCP_TIMEOUT_INIT;
6835 	}
6836 
6837 	return req;
6838 }
6839 EXPORT_SYMBOL(inet_reqsk_alloc);
6840 
6841 /*
6842  * Return true if a syncookie should be sent
6843  */
6844 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6845 {
6846 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6847 	const char *msg = "Dropping request";
6848 	struct net *net = sock_net(sk);
6849 	bool want_cookie = false;
6850 	u8 syncookies;
6851 
6852 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6853 
6854 #ifdef CONFIG_SYN_COOKIES
6855 	if (syncookies) {
6856 		msg = "Sending cookies";
6857 		want_cookie = true;
6858 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6859 	} else
6860 #endif
6861 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6862 
6863 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6864 	    xchg(&queue->synflood_warned, 1) == 0) {
6865 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6866 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6867 					proto, inet6_rcv_saddr(sk),
6868 					sk->sk_num, msg);
6869 		} else {
6870 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
6871 					proto, &sk->sk_rcv_saddr,
6872 					sk->sk_num, msg);
6873 		}
6874 	}
6875 
6876 	return want_cookie;
6877 }
6878 
6879 static void tcp_reqsk_record_syn(const struct sock *sk,
6880 				 struct request_sock *req,
6881 				 const struct sk_buff *skb)
6882 {
6883 	if (tcp_sk(sk)->save_syn) {
6884 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6885 		struct saved_syn *saved_syn;
6886 		u32 mac_hdrlen;
6887 		void *base;
6888 
6889 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6890 			base = skb_mac_header(skb);
6891 			mac_hdrlen = skb_mac_header_len(skb);
6892 			len += mac_hdrlen;
6893 		} else {
6894 			base = skb_network_header(skb);
6895 			mac_hdrlen = 0;
6896 		}
6897 
6898 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6899 				    GFP_ATOMIC);
6900 		if (saved_syn) {
6901 			saved_syn->mac_hdrlen = mac_hdrlen;
6902 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6903 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6904 			memcpy(saved_syn->data, base, len);
6905 			req->saved_syn = saved_syn;
6906 		}
6907 	}
6908 }
6909 
6910 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6911  * used for SYN cookie generation.
6912  */
6913 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6914 			  const struct tcp_request_sock_ops *af_ops,
6915 			  struct sock *sk, struct tcphdr *th)
6916 {
6917 	struct tcp_sock *tp = tcp_sk(sk);
6918 	u16 mss;
6919 
6920 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6921 	    !inet_csk_reqsk_queue_is_full(sk))
6922 		return 0;
6923 
6924 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6925 		return 0;
6926 
6927 	if (sk_acceptq_is_full(sk)) {
6928 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6929 		return 0;
6930 	}
6931 
6932 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6933 	if (!mss)
6934 		mss = af_ops->mss_clamp;
6935 
6936 	return mss;
6937 }
6938 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6939 
6940 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6941 		     const struct tcp_request_sock_ops *af_ops,
6942 		     struct sock *sk, struct sk_buff *skb)
6943 {
6944 	struct tcp_fastopen_cookie foc = { .len = -1 };
6945 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6946 	struct tcp_options_received tmp_opt;
6947 	struct tcp_sock *tp = tcp_sk(sk);
6948 	struct net *net = sock_net(sk);
6949 	struct sock *fastopen_sk = NULL;
6950 	struct request_sock *req;
6951 	bool want_cookie = false;
6952 	struct dst_entry *dst;
6953 	struct flowi fl;
6954 	u8 syncookies;
6955 
6956 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6957 
6958 	/* TW buckets are converted to open requests without
6959 	 * limitations, they conserve resources and peer is
6960 	 * evidently real one.
6961 	 */
6962 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6963 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6964 		if (!want_cookie)
6965 			goto drop;
6966 	}
6967 
6968 	if (sk_acceptq_is_full(sk)) {
6969 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6970 		goto drop;
6971 	}
6972 
6973 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6974 	if (!req)
6975 		goto drop;
6976 
6977 	req->syncookie = want_cookie;
6978 	tcp_rsk(req)->af_specific = af_ops;
6979 	tcp_rsk(req)->ts_off = 0;
6980 #if IS_ENABLED(CONFIG_MPTCP)
6981 	tcp_rsk(req)->is_mptcp = 0;
6982 #endif
6983 
6984 	tcp_clear_options(&tmp_opt);
6985 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6986 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6987 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6988 			  want_cookie ? NULL : &foc);
6989 
6990 	if (want_cookie && !tmp_opt.saw_tstamp)
6991 		tcp_clear_options(&tmp_opt);
6992 
6993 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6994 		tmp_opt.smc_ok = 0;
6995 
6996 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6997 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6998 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6999 
7000 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7001 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7002 
7003 	dst = af_ops->route_req(sk, skb, &fl, req);
7004 	if (!dst)
7005 		goto drop_and_free;
7006 
7007 	if (tmp_opt.tstamp_ok)
7008 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7009 
7010 	if (!want_cookie && !isn) {
7011 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7012 
7013 		/* Kill the following clause, if you dislike this way. */
7014 		if (!syncookies &&
7015 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7016 		     (max_syn_backlog >> 2)) &&
7017 		    !tcp_peer_is_proven(req, dst)) {
7018 			/* Without syncookies last quarter of
7019 			 * backlog is filled with destinations,
7020 			 * proven to be alive.
7021 			 * It means that we continue to communicate
7022 			 * to destinations, already remembered
7023 			 * to the moment of synflood.
7024 			 */
7025 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7026 				    rsk_ops->family);
7027 			goto drop_and_release;
7028 		}
7029 
7030 		isn = af_ops->init_seq(skb);
7031 	}
7032 
7033 	tcp_ecn_create_request(req, skb, sk, dst);
7034 
7035 	if (want_cookie) {
7036 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7037 		if (!tmp_opt.tstamp_ok)
7038 			inet_rsk(req)->ecn_ok = 0;
7039 	}
7040 
7041 	tcp_rsk(req)->snt_isn = isn;
7042 	tcp_rsk(req)->txhash = net_tx_rndhash();
7043 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7044 	tcp_openreq_init_rwin(req, sk, dst);
7045 	sk_rx_queue_set(req_to_sk(req), skb);
7046 	if (!want_cookie) {
7047 		tcp_reqsk_record_syn(sk, req, skb);
7048 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7049 	}
7050 	if (fastopen_sk) {
7051 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7052 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7053 		/* Add the child socket directly into the accept queue */
7054 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7055 			reqsk_fastopen_remove(fastopen_sk, req, false);
7056 			bh_unlock_sock(fastopen_sk);
7057 			sock_put(fastopen_sk);
7058 			goto drop_and_free;
7059 		}
7060 		sk->sk_data_ready(sk);
7061 		bh_unlock_sock(fastopen_sk);
7062 		sock_put(fastopen_sk);
7063 	} else {
7064 		tcp_rsk(req)->tfo_listener = false;
7065 		if (!want_cookie) {
7066 			req->timeout = tcp_timeout_init((struct sock *)req);
7067 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7068 		}
7069 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7070 				    !want_cookie ? TCP_SYNACK_NORMAL :
7071 						   TCP_SYNACK_COOKIE,
7072 				    skb);
7073 		if (want_cookie) {
7074 			reqsk_free(req);
7075 			return 0;
7076 		}
7077 	}
7078 	reqsk_put(req);
7079 	return 0;
7080 
7081 drop_and_release:
7082 	dst_release(dst);
7083 drop_and_free:
7084 	__reqsk_free(req);
7085 drop:
7086 	tcp_listendrop(sk);
7087 	return 0;
7088 }
7089 EXPORT_SYMBOL(tcp_conn_request);
7090