1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 247 do_div(val, skb->truesize); 248 tcp_sk(sk)->scaling_ratio = val ? val : 1; 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 if (unlikely(len > icsk->icsk_ack.rcv_mss + 254 MAX_TCP_OPTION_SPACE)) 255 tcp_gro_dev_warn(sk, skb, len); 256 } else { 257 /* Otherwise, we make more careful check taking into account, 258 * that SACKs block is variable. 259 * 260 * "len" is invariant segment length, including TCP header. 261 */ 262 len += skb->data - skb_transport_header(skb); 263 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 264 /* If PSH is not set, packet should be 265 * full sized, provided peer TCP is not badly broken. 266 * This observation (if it is correct 8)) allows 267 * to handle super-low mtu links fairly. 268 */ 269 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 270 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 271 /* Subtract also invariant (if peer is RFC compliant), 272 * tcp header plus fixed timestamp option length. 273 * Resulting "len" is MSS free of SACK jitter. 274 */ 275 len -= tcp_sk(sk)->tcp_header_len; 276 icsk->icsk_ack.last_seg_size = len; 277 if (len == lss) { 278 icsk->icsk_ack.rcv_mss = len; 279 return; 280 } 281 } 282 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 283 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 284 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 285 } 286 } 287 288 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 289 { 290 struct inet_connection_sock *icsk = inet_csk(sk); 291 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 292 293 if (quickacks == 0) 294 quickacks = 2; 295 quickacks = min(quickacks, max_quickacks); 296 if (quickacks > icsk->icsk_ack.quick) 297 icsk->icsk_ack.quick = quickacks; 298 } 299 300 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 301 { 302 struct inet_connection_sock *icsk = inet_csk(sk); 303 304 tcp_incr_quickack(sk, max_quickacks); 305 inet_csk_exit_pingpong_mode(sk); 306 icsk->icsk_ack.ato = TCP_ATO_MIN; 307 } 308 309 /* Send ACKs quickly, if "quick" count is not exhausted 310 * and the session is not interactive. 311 */ 312 313 static bool tcp_in_quickack_mode(struct sock *sk) 314 { 315 const struct inet_connection_sock *icsk = inet_csk(sk); 316 const struct dst_entry *dst = __sk_dst_get(sk); 317 318 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 319 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 320 } 321 322 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 323 { 324 if (tp->ecn_flags & TCP_ECN_OK) 325 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 326 } 327 328 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 329 { 330 if (tcp_hdr(skb)->cwr) { 331 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 332 333 /* If the sender is telling us it has entered CWR, then its 334 * cwnd may be very low (even just 1 packet), so we should ACK 335 * immediately. 336 */ 337 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 338 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 339 } 340 } 341 342 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 343 { 344 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 345 } 346 347 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 348 { 349 struct tcp_sock *tp = tcp_sk(sk); 350 351 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 352 case INET_ECN_NOT_ECT: 353 /* Funny extension: if ECT is not set on a segment, 354 * and we already seen ECT on a previous segment, 355 * it is probably a retransmit. 356 */ 357 if (tp->ecn_flags & TCP_ECN_SEEN) 358 tcp_enter_quickack_mode(sk, 2); 359 break; 360 case INET_ECN_CE: 361 if (tcp_ca_needs_ecn(sk)) 362 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 363 364 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 365 /* Better not delay acks, sender can have a very low cwnd */ 366 tcp_enter_quickack_mode(sk, 2); 367 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 368 } 369 tp->ecn_flags |= TCP_ECN_SEEN; 370 break; 371 default: 372 if (tcp_ca_needs_ecn(sk)) 373 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 374 tp->ecn_flags |= TCP_ECN_SEEN; 375 break; 376 } 377 } 378 379 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 380 { 381 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 382 __tcp_ecn_check_ce(sk, skb); 383 } 384 385 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 386 { 387 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 388 tp->ecn_flags &= ~TCP_ECN_OK; 389 } 390 391 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 392 { 393 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 394 tp->ecn_flags &= ~TCP_ECN_OK; 395 } 396 397 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 398 { 399 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 400 return true; 401 return false; 402 } 403 404 /* Buffer size and advertised window tuning. 405 * 406 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 407 */ 408 409 static void tcp_sndbuf_expand(struct sock *sk) 410 { 411 const struct tcp_sock *tp = tcp_sk(sk); 412 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 413 int sndmem, per_mss; 414 u32 nr_segs; 415 416 /* Worst case is non GSO/TSO : each frame consumes one skb 417 * and skb->head is kmalloced using power of two area of memory 418 */ 419 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 420 MAX_TCP_HEADER + 421 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 422 423 per_mss = roundup_pow_of_two(per_mss) + 424 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 425 426 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 427 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 428 429 /* Fast Recovery (RFC 5681 3.2) : 430 * Cubic needs 1.7 factor, rounded to 2 to include 431 * extra cushion (application might react slowly to EPOLLOUT) 432 */ 433 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 434 sndmem *= nr_segs * per_mss; 435 436 if (sk->sk_sndbuf < sndmem) 437 WRITE_ONCE(sk->sk_sndbuf, 438 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 439 } 440 441 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 442 * 443 * All tcp_full_space() is split to two parts: "network" buffer, allocated 444 * forward and advertised in receiver window (tp->rcv_wnd) and 445 * "application buffer", required to isolate scheduling/application 446 * latencies from network. 447 * window_clamp is maximal advertised window. It can be less than 448 * tcp_full_space(), in this case tcp_full_space() - window_clamp 449 * is reserved for "application" buffer. The less window_clamp is 450 * the smoother our behaviour from viewpoint of network, but the lower 451 * throughput and the higher sensitivity of the connection to losses. 8) 452 * 453 * rcv_ssthresh is more strict window_clamp used at "slow start" 454 * phase to predict further behaviour of this connection. 455 * It is used for two goals: 456 * - to enforce header prediction at sender, even when application 457 * requires some significant "application buffer". It is check #1. 458 * - to prevent pruning of receive queue because of misprediction 459 * of receiver window. Check #2. 460 * 461 * The scheme does not work when sender sends good segments opening 462 * window and then starts to feed us spaghetti. But it should work 463 * in common situations. Otherwise, we have to rely on queue collapsing. 464 */ 465 466 /* Slow part of check#2. */ 467 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 468 unsigned int skbtruesize) 469 { 470 const struct tcp_sock *tp = tcp_sk(sk); 471 /* Optimize this! */ 472 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 473 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 474 475 while (tp->rcv_ssthresh <= window) { 476 if (truesize <= skb->len) 477 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 478 479 truesize >>= 1; 480 window >>= 1; 481 } 482 return 0; 483 } 484 485 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 486 * can play nice with us, as sk_buff and skb->head might be either 487 * freed or shared with up to MAX_SKB_FRAGS segments. 488 * Only give a boost to drivers using page frag(s) to hold the frame(s), 489 * and if no payload was pulled in skb->head before reaching us. 490 */ 491 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 492 { 493 u32 truesize = skb->truesize; 494 495 if (adjust && !skb_headlen(skb)) { 496 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 497 /* paranoid check, some drivers might be buggy */ 498 if (unlikely((int)truesize < (int)skb->len)) 499 truesize = skb->truesize; 500 } 501 return truesize; 502 } 503 504 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 505 bool adjust) 506 { 507 struct tcp_sock *tp = tcp_sk(sk); 508 int room; 509 510 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 511 512 if (room <= 0) 513 return; 514 515 /* Check #1 */ 516 if (!tcp_under_memory_pressure(sk)) { 517 unsigned int truesize = truesize_adjust(adjust, skb); 518 int incr; 519 520 /* Check #2. Increase window, if skb with such overhead 521 * will fit to rcvbuf in future. 522 */ 523 if (tcp_win_from_space(sk, truesize) <= skb->len) 524 incr = 2 * tp->advmss; 525 else 526 incr = __tcp_grow_window(sk, skb, truesize); 527 528 if (incr) { 529 incr = max_t(int, incr, 2 * skb->len); 530 tp->rcv_ssthresh += min(room, incr); 531 inet_csk(sk)->icsk_ack.quick |= 1; 532 } 533 } else { 534 /* Under pressure: 535 * Adjust rcv_ssthresh according to reserved mem 536 */ 537 tcp_adjust_rcv_ssthresh(sk); 538 } 539 } 540 541 /* 3. Try to fixup all. It is made immediately after connection enters 542 * established state. 543 */ 544 static void tcp_init_buffer_space(struct sock *sk) 545 { 546 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 547 struct tcp_sock *tp = tcp_sk(sk); 548 int maxwin; 549 550 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 551 tcp_sndbuf_expand(sk); 552 553 tcp_mstamp_refresh(tp); 554 tp->rcvq_space.time = tp->tcp_mstamp; 555 tp->rcvq_space.seq = tp->copied_seq; 556 557 maxwin = tcp_full_space(sk); 558 559 if (tp->window_clamp >= maxwin) { 560 tp->window_clamp = maxwin; 561 562 if (tcp_app_win && maxwin > 4 * tp->advmss) 563 tp->window_clamp = max(maxwin - 564 (maxwin >> tcp_app_win), 565 4 * tp->advmss); 566 } 567 568 /* Force reservation of one segment. */ 569 if (tcp_app_win && 570 tp->window_clamp > 2 * tp->advmss && 571 tp->window_clamp + tp->advmss > maxwin) 572 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 573 574 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 575 tp->snd_cwnd_stamp = tcp_jiffies32; 576 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 577 (u32)TCP_INIT_CWND * tp->advmss); 578 } 579 580 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 581 static void tcp_clamp_window(struct sock *sk) 582 { 583 struct tcp_sock *tp = tcp_sk(sk); 584 struct inet_connection_sock *icsk = inet_csk(sk); 585 struct net *net = sock_net(sk); 586 int rmem2; 587 588 icsk->icsk_ack.quick = 0; 589 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 590 591 if (sk->sk_rcvbuf < rmem2 && 592 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 593 !tcp_under_memory_pressure(sk) && 594 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 595 WRITE_ONCE(sk->sk_rcvbuf, 596 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 597 } 598 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 599 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 600 } 601 602 /* Initialize RCV_MSS value. 603 * RCV_MSS is an our guess about MSS used by the peer. 604 * We haven't any direct information about the MSS. 605 * It's better to underestimate the RCV_MSS rather than overestimate. 606 * Overestimations make us ACKing less frequently than needed. 607 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 608 */ 609 void tcp_initialize_rcv_mss(struct sock *sk) 610 { 611 const struct tcp_sock *tp = tcp_sk(sk); 612 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 613 614 hint = min(hint, tp->rcv_wnd / 2); 615 hint = min(hint, TCP_MSS_DEFAULT); 616 hint = max(hint, TCP_MIN_MSS); 617 618 inet_csk(sk)->icsk_ack.rcv_mss = hint; 619 } 620 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 621 622 /* Receiver "autotuning" code. 623 * 624 * The algorithm for RTT estimation w/o timestamps is based on 625 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 626 * <https://public.lanl.gov/radiant/pubs.html#DRS> 627 * 628 * More detail on this code can be found at 629 * <http://staff.psc.edu/jheffner/>, 630 * though this reference is out of date. A new paper 631 * is pending. 632 */ 633 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 634 { 635 u32 new_sample = tp->rcv_rtt_est.rtt_us; 636 long m = sample; 637 638 if (new_sample != 0) { 639 /* If we sample in larger samples in the non-timestamp 640 * case, we could grossly overestimate the RTT especially 641 * with chatty applications or bulk transfer apps which 642 * are stalled on filesystem I/O. 643 * 644 * Also, since we are only going for a minimum in the 645 * non-timestamp case, we do not smooth things out 646 * else with timestamps disabled convergence takes too 647 * long. 648 */ 649 if (!win_dep) { 650 m -= (new_sample >> 3); 651 new_sample += m; 652 } else { 653 m <<= 3; 654 if (m < new_sample) 655 new_sample = m; 656 } 657 } else { 658 /* No previous measure. */ 659 new_sample = m << 3; 660 } 661 662 tp->rcv_rtt_est.rtt_us = new_sample; 663 } 664 665 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 666 { 667 u32 delta_us; 668 669 if (tp->rcv_rtt_est.time == 0) 670 goto new_measure; 671 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 672 return; 673 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 674 if (!delta_us) 675 delta_us = 1; 676 tcp_rcv_rtt_update(tp, delta_us, 1); 677 678 new_measure: 679 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 680 tp->rcv_rtt_est.time = tp->tcp_mstamp; 681 } 682 683 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 684 const struct sk_buff *skb) 685 { 686 struct tcp_sock *tp = tcp_sk(sk); 687 688 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 689 return; 690 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 691 692 if (TCP_SKB_CB(skb)->end_seq - 693 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 694 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 695 u32 delta_us; 696 697 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 698 if (!delta) 699 delta = 1; 700 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 701 tcp_rcv_rtt_update(tp, delta_us, 0); 702 } 703 } 704 } 705 706 /* 707 * This function should be called every time data is copied to user space. 708 * It calculates the appropriate TCP receive buffer space. 709 */ 710 void tcp_rcv_space_adjust(struct sock *sk) 711 { 712 struct tcp_sock *tp = tcp_sk(sk); 713 u32 copied; 714 int time; 715 716 trace_tcp_rcv_space_adjust(sk); 717 718 tcp_mstamp_refresh(tp); 719 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 720 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 721 return; 722 723 /* Number of bytes copied to user in last RTT */ 724 copied = tp->copied_seq - tp->rcvq_space.seq; 725 if (copied <= tp->rcvq_space.space) 726 goto new_measure; 727 728 /* A bit of theory : 729 * copied = bytes received in previous RTT, our base window 730 * To cope with packet losses, we need a 2x factor 731 * To cope with slow start, and sender growing its cwin by 100 % 732 * every RTT, we need a 4x factor, because the ACK we are sending 733 * now is for the next RTT, not the current one : 734 * <prev RTT . ><current RTT .. ><next RTT .... > 735 */ 736 737 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 738 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 739 u64 rcvwin, grow; 740 int rcvbuf; 741 742 /* minimal window to cope with packet losses, assuming 743 * steady state. Add some cushion because of small variations. 744 */ 745 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 746 747 /* Accommodate for sender rate increase (eg. slow start) */ 748 grow = rcvwin * (copied - tp->rcvq_space.space); 749 do_div(grow, tp->rcvq_space.space); 750 rcvwin += (grow << 1); 751 752 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 753 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 754 if (rcvbuf > sk->sk_rcvbuf) { 755 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 756 757 /* Make the window clamp follow along. */ 758 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 759 } 760 } 761 tp->rcvq_space.space = copied; 762 763 new_measure: 764 tp->rcvq_space.seq = tp->copied_seq; 765 tp->rcvq_space.time = tp->tcp_mstamp; 766 } 767 768 /* There is something which you must keep in mind when you analyze the 769 * behavior of the tp->ato delayed ack timeout interval. When a 770 * connection starts up, we want to ack as quickly as possible. The 771 * problem is that "good" TCP's do slow start at the beginning of data 772 * transmission. The means that until we send the first few ACK's the 773 * sender will sit on his end and only queue most of his data, because 774 * he can only send snd_cwnd unacked packets at any given time. For 775 * each ACK we send, he increments snd_cwnd and transmits more of his 776 * queue. -DaveM 777 */ 778 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 779 { 780 struct tcp_sock *tp = tcp_sk(sk); 781 struct inet_connection_sock *icsk = inet_csk(sk); 782 u32 now; 783 784 inet_csk_schedule_ack(sk); 785 786 tcp_measure_rcv_mss(sk, skb); 787 788 tcp_rcv_rtt_measure(tp); 789 790 now = tcp_jiffies32; 791 792 if (!icsk->icsk_ack.ato) { 793 /* The _first_ data packet received, initialize 794 * delayed ACK engine. 795 */ 796 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 797 icsk->icsk_ack.ato = TCP_ATO_MIN; 798 } else { 799 int m = now - icsk->icsk_ack.lrcvtime; 800 801 if (m <= TCP_ATO_MIN / 2) { 802 /* The fastest case is the first. */ 803 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 804 } else if (m < icsk->icsk_ack.ato) { 805 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 806 if (icsk->icsk_ack.ato > icsk->icsk_rto) 807 icsk->icsk_ack.ato = icsk->icsk_rto; 808 } else if (m > icsk->icsk_rto) { 809 /* Too long gap. Apparently sender failed to 810 * restart window, so that we send ACKs quickly. 811 */ 812 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 813 } 814 } 815 icsk->icsk_ack.lrcvtime = now; 816 817 tcp_ecn_check_ce(sk, skb); 818 819 if (skb->len >= 128) 820 tcp_grow_window(sk, skb, true); 821 } 822 823 /* Called to compute a smoothed rtt estimate. The data fed to this 824 * routine either comes from timestamps, or from segments that were 825 * known _not_ to have been retransmitted [see Karn/Partridge 826 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 827 * piece by Van Jacobson. 828 * NOTE: the next three routines used to be one big routine. 829 * To save cycles in the RFC 1323 implementation it was better to break 830 * it up into three procedures. -- erics 831 */ 832 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 833 { 834 struct tcp_sock *tp = tcp_sk(sk); 835 long m = mrtt_us; /* RTT */ 836 u32 srtt = tp->srtt_us; 837 838 /* The following amusing code comes from Jacobson's 839 * article in SIGCOMM '88. Note that rtt and mdev 840 * are scaled versions of rtt and mean deviation. 841 * This is designed to be as fast as possible 842 * m stands for "measurement". 843 * 844 * On a 1990 paper the rto value is changed to: 845 * RTO = rtt + 4 * mdev 846 * 847 * Funny. This algorithm seems to be very broken. 848 * These formulae increase RTO, when it should be decreased, increase 849 * too slowly, when it should be increased quickly, decrease too quickly 850 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 851 * does not matter how to _calculate_ it. Seems, it was trap 852 * that VJ failed to avoid. 8) 853 */ 854 if (srtt != 0) { 855 m -= (srtt >> 3); /* m is now error in rtt est */ 856 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 857 if (m < 0) { 858 m = -m; /* m is now abs(error) */ 859 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 860 /* This is similar to one of Eifel findings. 861 * Eifel blocks mdev updates when rtt decreases. 862 * This solution is a bit different: we use finer gain 863 * for mdev in this case (alpha*beta). 864 * Like Eifel it also prevents growth of rto, 865 * but also it limits too fast rto decreases, 866 * happening in pure Eifel. 867 */ 868 if (m > 0) 869 m >>= 3; 870 } else { 871 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 872 } 873 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 874 if (tp->mdev_us > tp->mdev_max_us) { 875 tp->mdev_max_us = tp->mdev_us; 876 if (tp->mdev_max_us > tp->rttvar_us) 877 tp->rttvar_us = tp->mdev_max_us; 878 } 879 if (after(tp->snd_una, tp->rtt_seq)) { 880 if (tp->mdev_max_us < tp->rttvar_us) 881 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 882 tp->rtt_seq = tp->snd_nxt; 883 tp->mdev_max_us = tcp_rto_min_us(sk); 884 885 tcp_bpf_rtt(sk); 886 } 887 } else { 888 /* no previous measure. */ 889 srtt = m << 3; /* take the measured time to be rtt */ 890 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 891 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 892 tp->mdev_max_us = tp->rttvar_us; 893 tp->rtt_seq = tp->snd_nxt; 894 895 tcp_bpf_rtt(sk); 896 } 897 tp->srtt_us = max(1U, srtt); 898 } 899 900 static void tcp_update_pacing_rate(struct sock *sk) 901 { 902 const struct tcp_sock *tp = tcp_sk(sk); 903 u64 rate; 904 905 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 906 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 907 908 /* current rate is (cwnd * mss) / srtt 909 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 910 * In Congestion Avoidance phase, set it to 120 % the current rate. 911 * 912 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 913 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 914 * end of slow start and should slow down. 915 */ 916 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 917 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 918 else 919 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 920 921 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 922 923 if (likely(tp->srtt_us)) 924 do_div(rate, tp->srtt_us); 925 926 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 927 * without any lock. We want to make sure compiler wont store 928 * intermediate values in this location. 929 */ 930 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 931 sk->sk_max_pacing_rate)); 932 } 933 934 /* Calculate rto without backoff. This is the second half of Van Jacobson's 935 * routine referred to above. 936 */ 937 static void tcp_set_rto(struct sock *sk) 938 { 939 const struct tcp_sock *tp = tcp_sk(sk); 940 /* Old crap is replaced with new one. 8) 941 * 942 * More seriously: 943 * 1. If rtt variance happened to be less 50msec, it is hallucination. 944 * It cannot be less due to utterly erratic ACK generation made 945 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 946 * to do with delayed acks, because at cwnd>2 true delack timeout 947 * is invisible. Actually, Linux-2.4 also generates erratic 948 * ACKs in some circumstances. 949 */ 950 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 951 952 /* 2. Fixups made earlier cannot be right. 953 * If we do not estimate RTO correctly without them, 954 * all the algo is pure shit and should be replaced 955 * with correct one. It is exactly, which we pretend to do. 956 */ 957 958 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 959 * guarantees that rto is higher. 960 */ 961 tcp_bound_rto(sk); 962 } 963 964 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 965 { 966 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 967 968 if (!cwnd) 969 cwnd = TCP_INIT_CWND; 970 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 971 } 972 973 struct tcp_sacktag_state { 974 /* Timestamps for earliest and latest never-retransmitted segment 975 * that was SACKed. RTO needs the earliest RTT to stay conservative, 976 * but congestion control should still get an accurate delay signal. 977 */ 978 u64 first_sackt; 979 u64 last_sackt; 980 u32 reord; 981 u32 sack_delivered; 982 int flag; 983 unsigned int mss_now; 984 struct rate_sample *rate; 985 }; 986 987 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 988 * and spurious retransmission information if this DSACK is unlikely caused by 989 * sender's action: 990 * - DSACKed sequence range is larger than maximum receiver's window. 991 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 992 */ 993 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 994 u32 end_seq, struct tcp_sacktag_state *state) 995 { 996 u32 seq_len, dup_segs = 1; 997 998 if (!before(start_seq, end_seq)) 999 return 0; 1000 1001 seq_len = end_seq - start_seq; 1002 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1003 if (seq_len > tp->max_window) 1004 return 0; 1005 if (seq_len > tp->mss_cache) 1006 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1007 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1008 state->flag |= FLAG_DSACK_TLP; 1009 1010 tp->dsack_dups += dup_segs; 1011 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1012 if (tp->dsack_dups > tp->total_retrans) 1013 return 0; 1014 1015 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1016 /* We increase the RACK ordering window in rounds where we receive 1017 * DSACKs that may have been due to reordering causing RACK to trigger 1018 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1019 * without having seen reordering, or that match TLP probes (TLP 1020 * is timer-driven, not triggered by RACK). 1021 */ 1022 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1023 tp->rack.dsack_seen = 1; 1024 1025 state->flag |= FLAG_DSACKING_ACK; 1026 /* A spurious retransmission is delivered */ 1027 state->sack_delivered += dup_segs; 1028 1029 return dup_segs; 1030 } 1031 1032 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1033 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1034 * distance is approximated in full-mss packet distance ("reordering"). 1035 */ 1036 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1037 const int ts) 1038 { 1039 struct tcp_sock *tp = tcp_sk(sk); 1040 const u32 mss = tp->mss_cache; 1041 u32 fack, metric; 1042 1043 fack = tcp_highest_sack_seq(tp); 1044 if (!before(low_seq, fack)) 1045 return; 1046 1047 metric = fack - low_seq; 1048 if ((metric > tp->reordering * mss) && mss) { 1049 #if FASTRETRANS_DEBUG > 1 1050 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1051 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1052 tp->reordering, 1053 0, 1054 tp->sacked_out, 1055 tp->undo_marker ? tp->undo_retrans : 0); 1056 #endif 1057 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1058 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1059 } 1060 1061 /* This exciting event is worth to be remembered. 8) */ 1062 tp->reord_seen++; 1063 NET_INC_STATS(sock_net(sk), 1064 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1065 } 1066 1067 /* This must be called before lost_out or retrans_out are updated 1068 * on a new loss, because we want to know if all skbs previously 1069 * known to be lost have already been retransmitted, indicating 1070 * that this newly lost skb is our next skb to retransmit. 1071 */ 1072 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1073 { 1074 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1075 (tp->retransmit_skb_hint && 1076 before(TCP_SKB_CB(skb)->seq, 1077 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1078 tp->retransmit_skb_hint = skb; 1079 } 1080 1081 /* Sum the number of packets on the wire we have marked as lost, and 1082 * notify the congestion control module that the given skb was marked lost. 1083 */ 1084 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1085 { 1086 tp->lost += tcp_skb_pcount(skb); 1087 } 1088 1089 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1090 { 1091 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1092 struct tcp_sock *tp = tcp_sk(sk); 1093 1094 if (sacked & TCPCB_SACKED_ACKED) 1095 return; 1096 1097 tcp_verify_retransmit_hint(tp, skb); 1098 if (sacked & TCPCB_LOST) { 1099 if (sacked & TCPCB_SACKED_RETRANS) { 1100 /* Account for retransmits that are lost again */ 1101 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1102 tp->retrans_out -= tcp_skb_pcount(skb); 1103 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1104 tcp_skb_pcount(skb)); 1105 tcp_notify_skb_loss_event(tp, skb); 1106 } 1107 } else { 1108 tp->lost_out += tcp_skb_pcount(skb); 1109 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1110 tcp_notify_skb_loss_event(tp, skb); 1111 } 1112 } 1113 1114 /* Updates the delivered and delivered_ce counts */ 1115 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1116 bool ece_ack) 1117 { 1118 tp->delivered += delivered; 1119 if (ece_ack) 1120 tp->delivered_ce += delivered; 1121 } 1122 1123 /* This procedure tags the retransmission queue when SACKs arrive. 1124 * 1125 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1126 * Packets in queue with these bits set are counted in variables 1127 * sacked_out, retrans_out and lost_out, correspondingly. 1128 * 1129 * Valid combinations are: 1130 * Tag InFlight Description 1131 * 0 1 - orig segment is in flight. 1132 * S 0 - nothing flies, orig reached receiver. 1133 * L 0 - nothing flies, orig lost by net. 1134 * R 2 - both orig and retransmit are in flight. 1135 * L|R 1 - orig is lost, retransmit is in flight. 1136 * S|R 1 - orig reached receiver, retrans is still in flight. 1137 * (L|S|R is logically valid, it could occur when L|R is sacked, 1138 * but it is equivalent to plain S and code short-curcuits it to S. 1139 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1140 * 1141 * These 6 states form finite state machine, controlled by the following events: 1142 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1143 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1144 * 3. Loss detection event of two flavors: 1145 * A. Scoreboard estimator decided the packet is lost. 1146 * A'. Reno "three dupacks" marks head of queue lost. 1147 * B. SACK arrives sacking SND.NXT at the moment, when the 1148 * segment was retransmitted. 1149 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1150 * 1151 * It is pleasant to note, that state diagram turns out to be commutative, 1152 * so that we are allowed not to be bothered by order of our actions, 1153 * when multiple events arrive simultaneously. (see the function below). 1154 * 1155 * Reordering detection. 1156 * -------------------- 1157 * Reordering metric is maximal distance, which a packet can be displaced 1158 * in packet stream. With SACKs we can estimate it: 1159 * 1160 * 1. SACK fills old hole and the corresponding segment was not 1161 * ever retransmitted -> reordering. Alas, we cannot use it 1162 * when segment was retransmitted. 1163 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1164 * for retransmitted and already SACKed segment -> reordering.. 1165 * Both of these heuristics are not used in Loss state, when we cannot 1166 * account for retransmits accurately. 1167 * 1168 * SACK block validation. 1169 * ---------------------- 1170 * 1171 * SACK block range validation checks that the received SACK block fits to 1172 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1173 * Note that SND.UNA is not included to the range though being valid because 1174 * it means that the receiver is rather inconsistent with itself reporting 1175 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1176 * perfectly valid, however, in light of RFC2018 which explicitly states 1177 * that "SACK block MUST reflect the newest segment. Even if the newest 1178 * segment is going to be discarded ...", not that it looks very clever 1179 * in case of head skb. Due to potentional receiver driven attacks, we 1180 * choose to avoid immediate execution of a walk in write queue due to 1181 * reneging and defer head skb's loss recovery to standard loss recovery 1182 * procedure that will eventually trigger (nothing forbids us doing this). 1183 * 1184 * Implements also blockage to start_seq wrap-around. Problem lies in the 1185 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1186 * there's no guarantee that it will be before snd_nxt (n). The problem 1187 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1188 * wrap (s_w): 1189 * 1190 * <- outs wnd -> <- wrapzone -> 1191 * u e n u_w e_w s n_w 1192 * | | | | | | | 1193 * |<------------+------+----- TCP seqno space --------------+---------->| 1194 * ...-- <2^31 ->| |<--------... 1195 * ...---- >2^31 ------>| |<--------... 1196 * 1197 * Current code wouldn't be vulnerable but it's better still to discard such 1198 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1199 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1200 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1201 * equal to the ideal case (infinite seqno space without wrap caused issues). 1202 * 1203 * With D-SACK the lower bound is extended to cover sequence space below 1204 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1205 * again, D-SACK block must not to go across snd_una (for the same reason as 1206 * for the normal SACK blocks, explained above). But there all simplicity 1207 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1208 * fully below undo_marker they do not affect behavior in anyway and can 1209 * therefore be safely ignored. In rare cases (which are more or less 1210 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1211 * fragmentation and packet reordering past skb's retransmission. To consider 1212 * them correctly, the acceptable range must be extended even more though 1213 * the exact amount is rather hard to quantify. However, tp->max_window can 1214 * be used as an exaggerated estimate. 1215 */ 1216 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1217 u32 start_seq, u32 end_seq) 1218 { 1219 /* Too far in future, or reversed (interpretation is ambiguous) */ 1220 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1221 return false; 1222 1223 /* Nasty start_seq wrap-around check (see comments above) */ 1224 if (!before(start_seq, tp->snd_nxt)) 1225 return false; 1226 1227 /* In outstanding window? ...This is valid exit for D-SACKs too. 1228 * start_seq == snd_una is non-sensical (see comments above) 1229 */ 1230 if (after(start_seq, tp->snd_una)) 1231 return true; 1232 1233 if (!is_dsack || !tp->undo_marker) 1234 return false; 1235 1236 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1237 if (after(end_seq, tp->snd_una)) 1238 return false; 1239 1240 if (!before(start_seq, tp->undo_marker)) 1241 return true; 1242 1243 /* Too old */ 1244 if (!after(end_seq, tp->undo_marker)) 1245 return false; 1246 1247 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1248 * start_seq < undo_marker and end_seq >= undo_marker. 1249 */ 1250 return !before(start_seq, end_seq - tp->max_window); 1251 } 1252 1253 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1254 struct tcp_sack_block_wire *sp, int num_sacks, 1255 u32 prior_snd_una, struct tcp_sacktag_state *state) 1256 { 1257 struct tcp_sock *tp = tcp_sk(sk); 1258 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1259 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1260 u32 dup_segs; 1261 1262 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1263 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1264 } else if (num_sacks > 1) { 1265 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1266 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1267 1268 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1269 return false; 1270 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1271 } else { 1272 return false; 1273 } 1274 1275 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1276 if (!dup_segs) { /* Skip dubious DSACK */ 1277 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1278 return false; 1279 } 1280 1281 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1282 1283 /* D-SACK for already forgotten data... Do dumb counting. */ 1284 if (tp->undo_marker && tp->undo_retrans > 0 && 1285 !after(end_seq_0, prior_snd_una) && 1286 after(end_seq_0, tp->undo_marker)) 1287 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1288 1289 return true; 1290 } 1291 1292 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1293 * the incoming SACK may not exactly match but we can find smaller MSS 1294 * aligned portion of it that matches. Therefore we might need to fragment 1295 * which may fail and creates some hassle (caller must handle error case 1296 * returns). 1297 * 1298 * FIXME: this could be merged to shift decision code 1299 */ 1300 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1301 u32 start_seq, u32 end_seq) 1302 { 1303 int err; 1304 bool in_sack; 1305 unsigned int pkt_len; 1306 unsigned int mss; 1307 1308 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1309 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1310 1311 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1312 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1313 mss = tcp_skb_mss(skb); 1314 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1315 1316 if (!in_sack) { 1317 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1318 if (pkt_len < mss) 1319 pkt_len = mss; 1320 } else { 1321 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1322 if (pkt_len < mss) 1323 return -EINVAL; 1324 } 1325 1326 /* Round if necessary so that SACKs cover only full MSSes 1327 * and/or the remaining small portion (if present) 1328 */ 1329 if (pkt_len > mss) { 1330 unsigned int new_len = (pkt_len / mss) * mss; 1331 if (!in_sack && new_len < pkt_len) 1332 new_len += mss; 1333 pkt_len = new_len; 1334 } 1335 1336 if (pkt_len >= skb->len && !in_sack) 1337 return 0; 1338 1339 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1340 pkt_len, mss, GFP_ATOMIC); 1341 if (err < 0) 1342 return err; 1343 } 1344 1345 return in_sack; 1346 } 1347 1348 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1349 static u8 tcp_sacktag_one(struct sock *sk, 1350 struct tcp_sacktag_state *state, u8 sacked, 1351 u32 start_seq, u32 end_seq, 1352 int dup_sack, int pcount, 1353 u64 xmit_time) 1354 { 1355 struct tcp_sock *tp = tcp_sk(sk); 1356 1357 /* Account D-SACK for retransmitted packet. */ 1358 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1359 if (tp->undo_marker && tp->undo_retrans > 0 && 1360 after(end_seq, tp->undo_marker)) 1361 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1362 if ((sacked & TCPCB_SACKED_ACKED) && 1363 before(start_seq, state->reord)) 1364 state->reord = start_seq; 1365 } 1366 1367 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1368 if (!after(end_seq, tp->snd_una)) 1369 return sacked; 1370 1371 if (!(sacked & TCPCB_SACKED_ACKED)) { 1372 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1373 1374 if (sacked & TCPCB_SACKED_RETRANS) { 1375 /* If the segment is not tagged as lost, 1376 * we do not clear RETRANS, believing 1377 * that retransmission is still in flight. 1378 */ 1379 if (sacked & TCPCB_LOST) { 1380 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1381 tp->lost_out -= pcount; 1382 tp->retrans_out -= pcount; 1383 } 1384 } else { 1385 if (!(sacked & TCPCB_RETRANS)) { 1386 /* New sack for not retransmitted frame, 1387 * which was in hole. It is reordering. 1388 */ 1389 if (before(start_seq, 1390 tcp_highest_sack_seq(tp)) && 1391 before(start_seq, state->reord)) 1392 state->reord = start_seq; 1393 1394 if (!after(end_seq, tp->high_seq)) 1395 state->flag |= FLAG_ORIG_SACK_ACKED; 1396 if (state->first_sackt == 0) 1397 state->first_sackt = xmit_time; 1398 state->last_sackt = xmit_time; 1399 } 1400 1401 if (sacked & TCPCB_LOST) { 1402 sacked &= ~TCPCB_LOST; 1403 tp->lost_out -= pcount; 1404 } 1405 } 1406 1407 sacked |= TCPCB_SACKED_ACKED; 1408 state->flag |= FLAG_DATA_SACKED; 1409 tp->sacked_out += pcount; 1410 /* Out-of-order packets delivered */ 1411 state->sack_delivered += pcount; 1412 1413 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1414 if (tp->lost_skb_hint && 1415 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1416 tp->lost_cnt_hint += pcount; 1417 } 1418 1419 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1420 * frames and clear it. undo_retrans is decreased above, L|R frames 1421 * are accounted above as well. 1422 */ 1423 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1424 sacked &= ~TCPCB_SACKED_RETRANS; 1425 tp->retrans_out -= pcount; 1426 } 1427 1428 return sacked; 1429 } 1430 1431 /* Shift newly-SACKed bytes from this skb to the immediately previous 1432 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1433 */ 1434 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1435 struct sk_buff *skb, 1436 struct tcp_sacktag_state *state, 1437 unsigned int pcount, int shifted, int mss, 1438 bool dup_sack) 1439 { 1440 struct tcp_sock *tp = tcp_sk(sk); 1441 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1442 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1443 1444 BUG_ON(!pcount); 1445 1446 /* Adjust counters and hints for the newly sacked sequence 1447 * range but discard the return value since prev is already 1448 * marked. We must tag the range first because the seq 1449 * advancement below implicitly advances 1450 * tcp_highest_sack_seq() when skb is highest_sack. 1451 */ 1452 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1453 start_seq, end_seq, dup_sack, pcount, 1454 tcp_skb_timestamp_us(skb)); 1455 tcp_rate_skb_delivered(sk, skb, state->rate); 1456 1457 if (skb == tp->lost_skb_hint) 1458 tp->lost_cnt_hint += pcount; 1459 1460 TCP_SKB_CB(prev)->end_seq += shifted; 1461 TCP_SKB_CB(skb)->seq += shifted; 1462 1463 tcp_skb_pcount_add(prev, pcount); 1464 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1465 tcp_skb_pcount_add(skb, -pcount); 1466 1467 /* When we're adding to gso_segs == 1, gso_size will be zero, 1468 * in theory this shouldn't be necessary but as long as DSACK 1469 * code can come after this skb later on it's better to keep 1470 * setting gso_size to something. 1471 */ 1472 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1473 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1474 1475 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1476 if (tcp_skb_pcount(skb) <= 1) 1477 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1478 1479 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1480 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1481 1482 if (skb->len > 0) { 1483 BUG_ON(!tcp_skb_pcount(skb)); 1484 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1485 return false; 1486 } 1487 1488 /* Whole SKB was eaten :-) */ 1489 1490 if (skb == tp->retransmit_skb_hint) 1491 tp->retransmit_skb_hint = prev; 1492 if (skb == tp->lost_skb_hint) { 1493 tp->lost_skb_hint = prev; 1494 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1495 } 1496 1497 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1498 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1499 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1500 TCP_SKB_CB(prev)->end_seq++; 1501 1502 if (skb == tcp_highest_sack(sk)) 1503 tcp_advance_highest_sack(sk, skb); 1504 1505 tcp_skb_collapse_tstamp(prev, skb); 1506 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1507 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1508 1509 tcp_rtx_queue_unlink_and_free(skb, sk); 1510 1511 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1512 1513 return true; 1514 } 1515 1516 /* I wish gso_size would have a bit more sane initialization than 1517 * something-or-zero which complicates things 1518 */ 1519 static int tcp_skb_seglen(const struct sk_buff *skb) 1520 { 1521 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1522 } 1523 1524 /* Shifting pages past head area doesn't work */ 1525 static int skb_can_shift(const struct sk_buff *skb) 1526 { 1527 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1528 } 1529 1530 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1531 int pcount, int shiftlen) 1532 { 1533 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1534 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1535 * to make sure not storing more than 65535 * 8 bytes per skb, 1536 * even if current MSS is bigger. 1537 */ 1538 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1539 return 0; 1540 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1541 return 0; 1542 return skb_shift(to, from, shiftlen); 1543 } 1544 1545 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1546 * skb. 1547 */ 1548 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1549 struct tcp_sacktag_state *state, 1550 u32 start_seq, u32 end_seq, 1551 bool dup_sack) 1552 { 1553 struct tcp_sock *tp = tcp_sk(sk); 1554 struct sk_buff *prev; 1555 int mss; 1556 int pcount = 0; 1557 int len; 1558 int in_sack; 1559 1560 /* Normally R but no L won't result in plain S */ 1561 if (!dup_sack && 1562 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1563 goto fallback; 1564 if (!skb_can_shift(skb)) 1565 goto fallback; 1566 /* This frame is about to be dropped (was ACKed). */ 1567 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1568 goto fallback; 1569 1570 /* Can only happen with delayed DSACK + discard craziness */ 1571 prev = skb_rb_prev(skb); 1572 if (!prev) 1573 goto fallback; 1574 1575 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1576 goto fallback; 1577 1578 if (!tcp_skb_can_collapse(prev, skb)) 1579 goto fallback; 1580 1581 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1582 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1583 1584 if (in_sack) { 1585 len = skb->len; 1586 pcount = tcp_skb_pcount(skb); 1587 mss = tcp_skb_seglen(skb); 1588 1589 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1590 * drop this restriction as unnecessary 1591 */ 1592 if (mss != tcp_skb_seglen(prev)) 1593 goto fallback; 1594 } else { 1595 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1596 goto noop; 1597 /* CHECKME: This is non-MSS split case only?, this will 1598 * cause skipped skbs due to advancing loop btw, original 1599 * has that feature too 1600 */ 1601 if (tcp_skb_pcount(skb) <= 1) 1602 goto noop; 1603 1604 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1605 if (!in_sack) { 1606 /* TODO: head merge to next could be attempted here 1607 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1608 * though it might not be worth of the additional hassle 1609 * 1610 * ...we can probably just fallback to what was done 1611 * previously. We could try merging non-SACKed ones 1612 * as well but it probably isn't going to buy off 1613 * because later SACKs might again split them, and 1614 * it would make skb timestamp tracking considerably 1615 * harder problem. 1616 */ 1617 goto fallback; 1618 } 1619 1620 len = end_seq - TCP_SKB_CB(skb)->seq; 1621 BUG_ON(len < 0); 1622 BUG_ON(len > skb->len); 1623 1624 /* MSS boundaries should be honoured or else pcount will 1625 * severely break even though it makes things bit trickier. 1626 * Optimize common case to avoid most of the divides 1627 */ 1628 mss = tcp_skb_mss(skb); 1629 1630 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1631 * drop this restriction as unnecessary 1632 */ 1633 if (mss != tcp_skb_seglen(prev)) 1634 goto fallback; 1635 1636 if (len == mss) { 1637 pcount = 1; 1638 } else if (len < mss) { 1639 goto noop; 1640 } else { 1641 pcount = len / mss; 1642 len = pcount * mss; 1643 } 1644 } 1645 1646 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1647 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1648 goto fallback; 1649 1650 if (!tcp_skb_shift(prev, skb, pcount, len)) 1651 goto fallback; 1652 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1653 goto out; 1654 1655 /* Hole filled allows collapsing with the next as well, this is very 1656 * useful when hole on every nth skb pattern happens 1657 */ 1658 skb = skb_rb_next(prev); 1659 if (!skb) 1660 goto out; 1661 1662 if (!skb_can_shift(skb) || 1663 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1664 (mss != tcp_skb_seglen(skb))) 1665 goto out; 1666 1667 if (!tcp_skb_can_collapse(prev, skb)) 1668 goto out; 1669 len = skb->len; 1670 pcount = tcp_skb_pcount(skb); 1671 if (tcp_skb_shift(prev, skb, pcount, len)) 1672 tcp_shifted_skb(sk, prev, skb, state, pcount, 1673 len, mss, 0); 1674 1675 out: 1676 return prev; 1677 1678 noop: 1679 return skb; 1680 1681 fallback: 1682 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1683 return NULL; 1684 } 1685 1686 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1687 struct tcp_sack_block *next_dup, 1688 struct tcp_sacktag_state *state, 1689 u32 start_seq, u32 end_seq, 1690 bool dup_sack_in) 1691 { 1692 struct tcp_sock *tp = tcp_sk(sk); 1693 struct sk_buff *tmp; 1694 1695 skb_rbtree_walk_from(skb) { 1696 int in_sack = 0; 1697 bool dup_sack = dup_sack_in; 1698 1699 /* queue is in-order => we can short-circuit the walk early */ 1700 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1701 break; 1702 1703 if (next_dup && 1704 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1705 in_sack = tcp_match_skb_to_sack(sk, skb, 1706 next_dup->start_seq, 1707 next_dup->end_seq); 1708 if (in_sack > 0) 1709 dup_sack = true; 1710 } 1711 1712 /* skb reference here is a bit tricky to get right, since 1713 * shifting can eat and free both this skb and the next, 1714 * so not even _safe variant of the loop is enough. 1715 */ 1716 if (in_sack <= 0) { 1717 tmp = tcp_shift_skb_data(sk, skb, state, 1718 start_seq, end_seq, dup_sack); 1719 if (tmp) { 1720 if (tmp != skb) { 1721 skb = tmp; 1722 continue; 1723 } 1724 1725 in_sack = 0; 1726 } else { 1727 in_sack = tcp_match_skb_to_sack(sk, skb, 1728 start_seq, 1729 end_seq); 1730 } 1731 } 1732 1733 if (unlikely(in_sack < 0)) 1734 break; 1735 1736 if (in_sack) { 1737 TCP_SKB_CB(skb)->sacked = 1738 tcp_sacktag_one(sk, 1739 state, 1740 TCP_SKB_CB(skb)->sacked, 1741 TCP_SKB_CB(skb)->seq, 1742 TCP_SKB_CB(skb)->end_seq, 1743 dup_sack, 1744 tcp_skb_pcount(skb), 1745 tcp_skb_timestamp_us(skb)); 1746 tcp_rate_skb_delivered(sk, skb, state->rate); 1747 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1748 list_del_init(&skb->tcp_tsorted_anchor); 1749 1750 if (!before(TCP_SKB_CB(skb)->seq, 1751 tcp_highest_sack_seq(tp))) 1752 tcp_advance_highest_sack(sk, skb); 1753 } 1754 } 1755 return skb; 1756 } 1757 1758 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1759 { 1760 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1761 struct sk_buff *skb; 1762 1763 while (*p) { 1764 parent = *p; 1765 skb = rb_to_skb(parent); 1766 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1767 p = &parent->rb_left; 1768 continue; 1769 } 1770 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1771 p = &parent->rb_right; 1772 continue; 1773 } 1774 return skb; 1775 } 1776 return NULL; 1777 } 1778 1779 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1780 u32 skip_to_seq) 1781 { 1782 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1783 return skb; 1784 1785 return tcp_sacktag_bsearch(sk, skip_to_seq); 1786 } 1787 1788 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1789 struct sock *sk, 1790 struct tcp_sack_block *next_dup, 1791 struct tcp_sacktag_state *state, 1792 u32 skip_to_seq) 1793 { 1794 if (!next_dup) 1795 return skb; 1796 1797 if (before(next_dup->start_seq, skip_to_seq)) { 1798 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1799 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1800 next_dup->start_seq, next_dup->end_seq, 1801 1); 1802 } 1803 1804 return skb; 1805 } 1806 1807 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1808 { 1809 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1810 } 1811 1812 static int 1813 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1814 u32 prior_snd_una, struct tcp_sacktag_state *state) 1815 { 1816 struct tcp_sock *tp = tcp_sk(sk); 1817 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1818 TCP_SKB_CB(ack_skb)->sacked); 1819 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1820 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1821 struct tcp_sack_block *cache; 1822 struct sk_buff *skb; 1823 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1824 int used_sacks; 1825 bool found_dup_sack = false; 1826 int i, j; 1827 int first_sack_index; 1828 1829 state->flag = 0; 1830 state->reord = tp->snd_nxt; 1831 1832 if (!tp->sacked_out) 1833 tcp_highest_sack_reset(sk); 1834 1835 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1836 num_sacks, prior_snd_una, state); 1837 1838 /* Eliminate too old ACKs, but take into 1839 * account more or less fresh ones, they can 1840 * contain valid SACK info. 1841 */ 1842 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1843 return 0; 1844 1845 if (!tp->packets_out) 1846 goto out; 1847 1848 used_sacks = 0; 1849 first_sack_index = 0; 1850 for (i = 0; i < num_sacks; i++) { 1851 bool dup_sack = !i && found_dup_sack; 1852 1853 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1854 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1855 1856 if (!tcp_is_sackblock_valid(tp, dup_sack, 1857 sp[used_sacks].start_seq, 1858 sp[used_sacks].end_seq)) { 1859 int mib_idx; 1860 1861 if (dup_sack) { 1862 if (!tp->undo_marker) 1863 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1864 else 1865 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1866 } else { 1867 /* Don't count olds caused by ACK reordering */ 1868 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1869 !after(sp[used_sacks].end_seq, tp->snd_una)) 1870 continue; 1871 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1872 } 1873 1874 NET_INC_STATS(sock_net(sk), mib_idx); 1875 if (i == 0) 1876 first_sack_index = -1; 1877 continue; 1878 } 1879 1880 /* Ignore very old stuff early */ 1881 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1882 if (i == 0) 1883 first_sack_index = -1; 1884 continue; 1885 } 1886 1887 used_sacks++; 1888 } 1889 1890 /* order SACK blocks to allow in order walk of the retrans queue */ 1891 for (i = used_sacks - 1; i > 0; i--) { 1892 for (j = 0; j < i; j++) { 1893 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1894 swap(sp[j], sp[j + 1]); 1895 1896 /* Track where the first SACK block goes to */ 1897 if (j == first_sack_index) 1898 first_sack_index = j + 1; 1899 } 1900 } 1901 } 1902 1903 state->mss_now = tcp_current_mss(sk); 1904 skb = NULL; 1905 i = 0; 1906 1907 if (!tp->sacked_out) { 1908 /* It's already past, so skip checking against it */ 1909 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1910 } else { 1911 cache = tp->recv_sack_cache; 1912 /* Skip empty blocks in at head of the cache */ 1913 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1914 !cache->end_seq) 1915 cache++; 1916 } 1917 1918 while (i < used_sacks) { 1919 u32 start_seq = sp[i].start_seq; 1920 u32 end_seq = sp[i].end_seq; 1921 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1922 struct tcp_sack_block *next_dup = NULL; 1923 1924 if (found_dup_sack && ((i + 1) == first_sack_index)) 1925 next_dup = &sp[i + 1]; 1926 1927 /* Skip too early cached blocks */ 1928 while (tcp_sack_cache_ok(tp, cache) && 1929 !before(start_seq, cache->end_seq)) 1930 cache++; 1931 1932 /* Can skip some work by looking recv_sack_cache? */ 1933 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1934 after(end_seq, cache->start_seq)) { 1935 1936 /* Head todo? */ 1937 if (before(start_seq, cache->start_seq)) { 1938 skb = tcp_sacktag_skip(skb, sk, start_seq); 1939 skb = tcp_sacktag_walk(skb, sk, next_dup, 1940 state, 1941 start_seq, 1942 cache->start_seq, 1943 dup_sack); 1944 } 1945 1946 /* Rest of the block already fully processed? */ 1947 if (!after(end_seq, cache->end_seq)) 1948 goto advance_sp; 1949 1950 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1951 state, 1952 cache->end_seq); 1953 1954 /* ...tail remains todo... */ 1955 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1956 /* ...but better entrypoint exists! */ 1957 skb = tcp_highest_sack(sk); 1958 if (!skb) 1959 break; 1960 cache++; 1961 goto walk; 1962 } 1963 1964 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1965 /* Check overlap against next cached too (past this one already) */ 1966 cache++; 1967 continue; 1968 } 1969 1970 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1971 skb = tcp_highest_sack(sk); 1972 if (!skb) 1973 break; 1974 } 1975 skb = tcp_sacktag_skip(skb, sk, start_seq); 1976 1977 walk: 1978 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1979 start_seq, end_seq, dup_sack); 1980 1981 advance_sp: 1982 i++; 1983 } 1984 1985 /* Clear the head of the cache sack blocks so we can skip it next time */ 1986 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1987 tp->recv_sack_cache[i].start_seq = 0; 1988 tp->recv_sack_cache[i].end_seq = 0; 1989 } 1990 for (j = 0; j < used_sacks; j++) 1991 tp->recv_sack_cache[i++] = sp[j]; 1992 1993 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1994 tcp_check_sack_reordering(sk, state->reord, 0); 1995 1996 tcp_verify_left_out(tp); 1997 out: 1998 1999 #if FASTRETRANS_DEBUG > 0 2000 WARN_ON((int)tp->sacked_out < 0); 2001 WARN_ON((int)tp->lost_out < 0); 2002 WARN_ON((int)tp->retrans_out < 0); 2003 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2004 #endif 2005 return state->flag; 2006 } 2007 2008 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2009 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2010 */ 2011 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2012 { 2013 u32 holes; 2014 2015 holes = max(tp->lost_out, 1U); 2016 holes = min(holes, tp->packets_out); 2017 2018 if ((tp->sacked_out + holes) > tp->packets_out) { 2019 tp->sacked_out = tp->packets_out - holes; 2020 return true; 2021 } 2022 return false; 2023 } 2024 2025 /* If we receive more dupacks than we expected counting segments 2026 * in assumption of absent reordering, interpret this as reordering. 2027 * The only another reason could be bug in receiver TCP. 2028 */ 2029 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2030 { 2031 struct tcp_sock *tp = tcp_sk(sk); 2032 2033 if (!tcp_limit_reno_sacked(tp)) 2034 return; 2035 2036 tp->reordering = min_t(u32, tp->packets_out + addend, 2037 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2038 tp->reord_seen++; 2039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2040 } 2041 2042 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2043 2044 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2045 { 2046 if (num_dupack) { 2047 struct tcp_sock *tp = tcp_sk(sk); 2048 u32 prior_sacked = tp->sacked_out; 2049 s32 delivered; 2050 2051 tp->sacked_out += num_dupack; 2052 tcp_check_reno_reordering(sk, 0); 2053 delivered = tp->sacked_out - prior_sacked; 2054 if (delivered > 0) 2055 tcp_count_delivered(tp, delivered, ece_ack); 2056 tcp_verify_left_out(tp); 2057 } 2058 } 2059 2060 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2061 2062 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2063 { 2064 struct tcp_sock *tp = tcp_sk(sk); 2065 2066 if (acked > 0) { 2067 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2068 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2069 ece_ack); 2070 if (acked - 1 >= tp->sacked_out) 2071 tp->sacked_out = 0; 2072 else 2073 tp->sacked_out -= acked - 1; 2074 } 2075 tcp_check_reno_reordering(sk, acked); 2076 tcp_verify_left_out(tp); 2077 } 2078 2079 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2080 { 2081 tp->sacked_out = 0; 2082 } 2083 2084 void tcp_clear_retrans(struct tcp_sock *tp) 2085 { 2086 tp->retrans_out = 0; 2087 tp->lost_out = 0; 2088 tp->undo_marker = 0; 2089 tp->undo_retrans = -1; 2090 tp->sacked_out = 0; 2091 } 2092 2093 static inline void tcp_init_undo(struct tcp_sock *tp) 2094 { 2095 tp->undo_marker = tp->snd_una; 2096 /* Retransmission still in flight may cause DSACKs later. */ 2097 tp->undo_retrans = tp->retrans_out ? : -1; 2098 } 2099 2100 static bool tcp_is_rack(const struct sock *sk) 2101 { 2102 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2103 TCP_RACK_LOSS_DETECTION; 2104 } 2105 2106 /* If we detect SACK reneging, forget all SACK information 2107 * and reset tags completely, otherwise preserve SACKs. If receiver 2108 * dropped its ofo queue, we will know this due to reneging detection. 2109 */ 2110 static void tcp_timeout_mark_lost(struct sock *sk) 2111 { 2112 struct tcp_sock *tp = tcp_sk(sk); 2113 struct sk_buff *skb, *head; 2114 bool is_reneg; /* is receiver reneging on SACKs? */ 2115 2116 head = tcp_rtx_queue_head(sk); 2117 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2118 if (is_reneg) { 2119 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2120 tp->sacked_out = 0; 2121 /* Mark SACK reneging until we recover from this loss event. */ 2122 tp->is_sack_reneg = 1; 2123 } else if (tcp_is_reno(tp)) { 2124 tcp_reset_reno_sack(tp); 2125 } 2126 2127 skb = head; 2128 skb_rbtree_walk_from(skb) { 2129 if (is_reneg) 2130 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2131 else if (tcp_is_rack(sk) && skb != head && 2132 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2133 continue; /* Don't mark recently sent ones lost yet */ 2134 tcp_mark_skb_lost(sk, skb); 2135 } 2136 tcp_verify_left_out(tp); 2137 tcp_clear_all_retrans_hints(tp); 2138 } 2139 2140 /* Enter Loss state. */ 2141 void tcp_enter_loss(struct sock *sk) 2142 { 2143 const struct inet_connection_sock *icsk = inet_csk(sk); 2144 struct tcp_sock *tp = tcp_sk(sk); 2145 struct net *net = sock_net(sk); 2146 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2147 u8 reordering; 2148 2149 tcp_timeout_mark_lost(sk); 2150 2151 /* Reduce ssthresh if it has not yet been made inside this window. */ 2152 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2153 !after(tp->high_seq, tp->snd_una) || 2154 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2155 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2156 tp->prior_cwnd = tcp_snd_cwnd(tp); 2157 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2158 tcp_ca_event(sk, CA_EVENT_LOSS); 2159 tcp_init_undo(tp); 2160 } 2161 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2162 tp->snd_cwnd_cnt = 0; 2163 tp->snd_cwnd_stamp = tcp_jiffies32; 2164 2165 /* Timeout in disordered state after receiving substantial DUPACKs 2166 * suggests that the degree of reordering is over-estimated. 2167 */ 2168 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2169 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2170 tp->sacked_out >= reordering) 2171 tp->reordering = min_t(unsigned int, tp->reordering, 2172 reordering); 2173 2174 tcp_set_ca_state(sk, TCP_CA_Loss); 2175 tp->high_seq = tp->snd_nxt; 2176 tcp_ecn_queue_cwr(tp); 2177 2178 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2179 * loss recovery is underway except recurring timeout(s) on 2180 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2181 */ 2182 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2183 (new_recovery || icsk->icsk_retransmits) && 2184 !inet_csk(sk)->icsk_mtup.probe_size; 2185 } 2186 2187 /* If ACK arrived pointing to a remembered SACK, it means that our 2188 * remembered SACKs do not reflect real state of receiver i.e. 2189 * receiver _host_ is heavily congested (or buggy). 2190 * 2191 * To avoid big spurious retransmission bursts due to transient SACK 2192 * scoreboard oddities that look like reneging, we give the receiver a 2193 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2194 * restore sanity to the SACK scoreboard. If the apparent reneging 2195 * persists until this RTO then we'll clear the SACK scoreboard. 2196 */ 2197 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2198 { 2199 if (flag & FLAG_SACK_RENEGING && 2200 flag & FLAG_SND_UNA_ADVANCED) { 2201 struct tcp_sock *tp = tcp_sk(sk); 2202 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2203 msecs_to_jiffies(10)); 2204 2205 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2206 delay, TCP_RTO_MAX); 2207 return true; 2208 } 2209 return false; 2210 } 2211 2212 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2213 * counter when SACK is enabled (without SACK, sacked_out is used for 2214 * that purpose). 2215 * 2216 * With reordering, holes may still be in flight, so RFC3517 recovery 2217 * uses pure sacked_out (total number of SACKed segments) even though 2218 * it violates the RFC that uses duplicate ACKs, often these are equal 2219 * but when e.g. out-of-window ACKs or packet duplication occurs, 2220 * they differ. Since neither occurs due to loss, TCP should really 2221 * ignore them. 2222 */ 2223 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2224 { 2225 return tp->sacked_out + 1; 2226 } 2227 2228 /* Linux NewReno/SACK/ECN state machine. 2229 * -------------------------------------- 2230 * 2231 * "Open" Normal state, no dubious events, fast path. 2232 * "Disorder" In all the respects it is "Open", 2233 * but requires a bit more attention. It is entered when 2234 * we see some SACKs or dupacks. It is split of "Open" 2235 * mainly to move some processing from fast path to slow one. 2236 * "CWR" CWND was reduced due to some Congestion Notification event. 2237 * It can be ECN, ICMP source quench, local device congestion. 2238 * "Recovery" CWND was reduced, we are fast-retransmitting. 2239 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2240 * 2241 * tcp_fastretrans_alert() is entered: 2242 * - each incoming ACK, if state is not "Open" 2243 * - when arrived ACK is unusual, namely: 2244 * * SACK 2245 * * Duplicate ACK. 2246 * * ECN ECE. 2247 * 2248 * Counting packets in flight is pretty simple. 2249 * 2250 * in_flight = packets_out - left_out + retrans_out 2251 * 2252 * packets_out is SND.NXT-SND.UNA counted in packets. 2253 * 2254 * retrans_out is number of retransmitted segments. 2255 * 2256 * left_out is number of segments left network, but not ACKed yet. 2257 * 2258 * left_out = sacked_out + lost_out 2259 * 2260 * sacked_out: Packets, which arrived to receiver out of order 2261 * and hence not ACKed. With SACKs this number is simply 2262 * amount of SACKed data. Even without SACKs 2263 * it is easy to give pretty reliable estimate of this number, 2264 * counting duplicate ACKs. 2265 * 2266 * lost_out: Packets lost by network. TCP has no explicit 2267 * "loss notification" feedback from network (for now). 2268 * It means that this number can be only _guessed_. 2269 * Actually, it is the heuristics to predict lossage that 2270 * distinguishes different algorithms. 2271 * 2272 * F.e. after RTO, when all the queue is considered as lost, 2273 * lost_out = packets_out and in_flight = retrans_out. 2274 * 2275 * Essentially, we have now a few algorithms detecting 2276 * lost packets. 2277 * 2278 * If the receiver supports SACK: 2279 * 2280 * RFC6675/3517: It is the conventional algorithm. A packet is 2281 * considered lost if the number of higher sequence packets 2282 * SACKed is greater than or equal the DUPACK thoreshold 2283 * (reordering). This is implemented in tcp_mark_head_lost and 2284 * tcp_update_scoreboard. 2285 * 2286 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2287 * (2017-) that checks timing instead of counting DUPACKs. 2288 * Essentially a packet is considered lost if it's not S/ACKed 2289 * after RTT + reordering_window, where both metrics are 2290 * dynamically measured and adjusted. This is implemented in 2291 * tcp_rack_mark_lost. 2292 * 2293 * If the receiver does not support SACK: 2294 * 2295 * NewReno (RFC6582): in Recovery we assume that one segment 2296 * is lost (classic Reno). While we are in Recovery and 2297 * a partial ACK arrives, we assume that one more packet 2298 * is lost (NewReno). This heuristics are the same in NewReno 2299 * and SACK. 2300 * 2301 * Really tricky (and requiring careful tuning) part of algorithm 2302 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2303 * The first determines the moment _when_ we should reduce CWND and, 2304 * hence, slow down forward transmission. In fact, it determines the moment 2305 * when we decide that hole is caused by loss, rather than by a reorder. 2306 * 2307 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2308 * holes, caused by lost packets. 2309 * 2310 * And the most logically complicated part of algorithm is undo 2311 * heuristics. We detect false retransmits due to both too early 2312 * fast retransmit (reordering) and underestimated RTO, analyzing 2313 * timestamps and D-SACKs. When we detect that some segments were 2314 * retransmitted by mistake and CWND reduction was wrong, we undo 2315 * window reduction and abort recovery phase. This logic is hidden 2316 * inside several functions named tcp_try_undo_<something>. 2317 */ 2318 2319 /* This function decides, when we should leave Disordered state 2320 * and enter Recovery phase, reducing congestion window. 2321 * 2322 * Main question: may we further continue forward transmission 2323 * with the same cwnd? 2324 */ 2325 static bool tcp_time_to_recover(struct sock *sk, int flag) 2326 { 2327 struct tcp_sock *tp = tcp_sk(sk); 2328 2329 /* Trick#1: The loss is proven. */ 2330 if (tp->lost_out) 2331 return true; 2332 2333 /* Not-A-Trick#2 : Classic rule... */ 2334 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2335 return true; 2336 2337 return false; 2338 } 2339 2340 /* Detect loss in event "A" above by marking head of queue up as lost. 2341 * For RFC3517 SACK, a segment is considered lost if it 2342 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2343 * the maximum SACKed segments to pass before reaching this limit. 2344 */ 2345 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2346 { 2347 struct tcp_sock *tp = tcp_sk(sk); 2348 struct sk_buff *skb; 2349 int cnt; 2350 /* Use SACK to deduce losses of new sequences sent during recovery */ 2351 const u32 loss_high = tp->snd_nxt; 2352 2353 WARN_ON(packets > tp->packets_out); 2354 skb = tp->lost_skb_hint; 2355 if (skb) { 2356 /* Head already handled? */ 2357 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2358 return; 2359 cnt = tp->lost_cnt_hint; 2360 } else { 2361 skb = tcp_rtx_queue_head(sk); 2362 cnt = 0; 2363 } 2364 2365 skb_rbtree_walk_from(skb) { 2366 /* TODO: do this better */ 2367 /* this is not the most efficient way to do this... */ 2368 tp->lost_skb_hint = skb; 2369 tp->lost_cnt_hint = cnt; 2370 2371 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2372 break; 2373 2374 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2375 cnt += tcp_skb_pcount(skb); 2376 2377 if (cnt > packets) 2378 break; 2379 2380 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2381 tcp_mark_skb_lost(sk, skb); 2382 2383 if (mark_head) 2384 break; 2385 } 2386 tcp_verify_left_out(tp); 2387 } 2388 2389 /* Account newly detected lost packet(s) */ 2390 2391 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2392 { 2393 struct tcp_sock *tp = tcp_sk(sk); 2394 2395 if (tcp_is_sack(tp)) { 2396 int sacked_upto = tp->sacked_out - tp->reordering; 2397 if (sacked_upto >= 0) 2398 tcp_mark_head_lost(sk, sacked_upto, 0); 2399 else if (fast_rexmit) 2400 tcp_mark_head_lost(sk, 1, 1); 2401 } 2402 } 2403 2404 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2405 { 2406 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2407 before(tp->rx_opt.rcv_tsecr, when); 2408 } 2409 2410 /* skb is spurious retransmitted if the returned timestamp echo 2411 * reply is prior to the skb transmission time 2412 */ 2413 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2414 const struct sk_buff *skb) 2415 { 2416 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2417 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2418 } 2419 2420 /* Nothing was retransmitted or returned timestamp is less 2421 * than timestamp of the first retransmission. 2422 */ 2423 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2424 { 2425 return tp->retrans_stamp && 2426 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2427 } 2428 2429 /* Undo procedures. */ 2430 2431 /* We can clear retrans_stamp when there are no retransmissions in the 2432 * window. It would seem that it is trivially available for us in 2433 * tp->retrans_out, however, that kind of assumptions doesn't consider 2434 * what will happen if errors occur when sending retransmission for the 2435 * second time. ...It could the that such segment has only 2436 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2437 * the head skb is enough except for some reneging corner cases that 2438 * are not worth the effort. 2439 * 2440 * Main reason for all this complexity is the fact that connection dying 2441 * time now depends on the validity of the retrans_stamp, in particular, 2442 * that successive retransmissions of a segment must not advance 2443 * retrans_stamp under any conditions. 2444 */ 2445 static bool tcp_any_retrans_done(const struct sock *sk) 2446 { 2447 const struct tcp_sock *tp = tcp_sk(sk); 2448 struct sk_buff *skb; 2449 2450 if (tp->retrans_out) 2451 return true; 2452 2453 skb = tcp_rtx_queue_head(sk); 2454 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2455 return true; 2456 2457 return false; 2458 } 2459 2460 static void DBGUNDO(struct sock *sk, const char *msg) 2461 { 2462 #if FASTRETRANS_DEBUG > 1 2463 struct tcp_sock *tp = tcp_sk(sk); 2464 struct inet_sock *inet = inet_sk(sk); 2465 2466 if (sk->sk_family == AF_INET) { 2467 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2468 msg, 2469 &inet->inet_daddr, ntohs(inet->inet_dport), 2470 tcp_snd_cwnd(tp), tcp_left_out(tp), 2471 tp->snd_ssthresh, tp->prior_ssthresh, 2472 tp->packets_out); 2473 } 2474 #if IS_ENABLED(CONFIG_IPV6) 2475 else if (sk->sk_family == AF_INET6) { 2476 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2477 msg, 2478 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2479 tcp_snd_cwnd(tp), tcp_left_out(tp), 2480 tp->snd_ssthresh, tp->prior_ssthresh, 2481 tp->packets_out); 2482 } 2483 #endif 2484 #endif 2485 } 2486 2487 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2488 { 2489 struct tcp_sock *tp = tcp_sk(sk); 2490 2491 if (unmark_loss) { 2492 struct sk_buff *skb; 2493 2494 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2495 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2496 } 2497 tp->lost_out = 0; 2498 tcp_clear_all_retrans_hints(tp); 2499 } 2500 2501 if (tp->prior_ssthresh) { 2502 const struct inet_connection_sock *icsk = inet_csk(sk); 2503 2504 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2505 2506 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2507 tp->snd_ssthresh = tp->prior_ssthresh; 2508 tcp_ecn_withdraw_cwr(tp); 2509 } 2510 } 2511 tp->snd_cwnd_stamp = tcp_jiffies32; 2512 tp->undo_marker = 0; 2513 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2514 } 2515 2516 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2517 { 2518 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2519 } 2520 2521 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2522 { 2523 struct tcp_sock *tp = tcp_sk(sk); 2524 2525 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2526 /* Hold old state until something *above* high_seq 2527 * is ACKed. For Reno it is MUST to prevent false 2528 * fast retransmits (RFC2582). SACK TCP is safe. */ 2529 if (!tcp_any_retrans_done(sk)) 2530 tp->retrans_stamp = 0; 2531 return true; 2532 } 2533 return false; 2534 } 2535 2536 /* People celebrate: "We love our President!" */ 2537 static bool tcp_try_undo_recovery(struct sock *sk) 2538 { 2539 struct tcp_sock *tp = tcp_sk(sk); 2540 2541 if (tcp_may_undo(tp)) { 2542 int mib_idx; 2543 2544 /* Happy end! We did not retransmit anything 2545 * or our original transmission succeeded. 2546 */ 2547 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2548 tcp_undo_cwnd_reduction(sk, false); 2549 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2550 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2551 else 2552 mib_idx = LINUX_MIB_TCPFULLUNDO; 2553 2554 NET_INC_STATS(sock_net(sk), mib_idx); 2555 } else if (tp->rack.reo_wnd_persist) { 2556 tp->rack.reo_wnd_persist--; 2557 } 2558 if (tcp_is_non_sack_preventing_reopen(sk)) 2559 return true; 2560 tcp_set_ca_state(sk, TCP_CA_Open); 2561 tp->is_sack_reneg = 0; 2562 return false; 2563 } 2564 2565 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2566 static bool tcp_try_undo_dsack(struct sock *sk) 2567 { 2568 struct tcp_sock *tp = tcp_sk(sk); 2569 2570 if (tp->undo_marker && !tp->undo_retrans) { 2571 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2572 tp->rack.reo_wnd_persist + 1); 2573 DBGUNDO(sk, "D-SACK"); 2574 tcp_undo_cwnd_reduction(sk, false); 2575 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2576 return true; 2577 } 2578 return false; 2579 } 2580 2581 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2582 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2583 { 2584 struct tcp_sock *tp = tcp_sk(sk); 2585 2586 if (frto_undo || tcp_may_undo(tp)) { 2587 tcp_undo_cwnd_reduction(sk, true); 2588 2589 DBGUNDO(sk, "partial loss"); 2590 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2591 if (frto_undo) 2592 NET_INC_STATS(sock_net(sk), 2593 LINUX_MIB_TCPSPURIOUSRTOS); 2594 inet_csk(sk)->icsk_retransmits = 0; 2595 if (tcp_is_non_sack_preventing_reopen(sk)) 2596 return true; 2597 if (frto_undo || tcp_is_sack(tp)) { 2598 tcp_set_ca_state(sk, TCP_CA_Open); 2599 tp->is_sack_reneg = 0; 2600 } 2601 return true; 2602 } 2603 return false; 2604 } 2605 2606 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2607 * It computes the number of packets to send (sndcnt) based on packets newly 2608 * delivered: 2609 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2610 * cwnd reductions across a full RTT. 2611 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2612 * But when SND_UNA is acked without further losses, 2613 * slow starts cwnd up to ssthresh to speed up the recovery. 2614 */ 2615 static void tcp_init_cwnd_reduction(struct sock *sk) 2616 { 2617 struct tcp_sock *tp = tcp_sk(sk); 2618 2619 tp->high_seq = tp->snd_nxt; 2620 tp->tlp_high_seq = 0; 2621 tp->snd_cwnd_cnt = 0; 2622 tp->prior_cwnd = tcp_snd_cwnd(tp); 2623 tp->prr_delivered = 0; 2624 tp->prr_out = 0; 2625 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2626 tcp_ecn_queue_cwr(tp); 2627 } 2628 2629 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2630 { 2631 struct tcp_sock *tp = tcp_sk(sk); 2632 int sndcnt = 0; 2633 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2634 2635 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2636 return; 2637 2638 tp->prr_delivered += newly_acked_sacked; 2639 if (delta < 0) { 2640 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2641 tp->prior_cwnd - 1; 2642 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2643 } else { 2644 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2645 newly_acked_sacked); 2646 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2647 sndcnt++; 2648 sndcnt = min(delta, sndcnt); 2649 } 2650 /* Force a fast retransmit upon entering fast recovery */ 2651 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2652 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2653 } 2654 2655 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2656 { 2657 struct tcp_sock *tp = tcp_sk(sk); 2658 2659 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2660 return; 2661 2662 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2663 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2664 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2665 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2666 tp->snd_cwnd_stamp = tcp_jiffies32; 2667 } 2668 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2669 } 2670 2671 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2672 void tcp_enter_cwr(struct sock *sk) 2673 { 2674 struct tcp_sock *tp = tcp_sk(sk); 2675 2676 tp->prior_ssthresh = 0; 2677 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2678 tp->undo_marker = 0; 2679 tcp_init_cwnd_reduction(sk); 2680 tcp_set_ca_state(sk, TCP_CA_CWR); 2681 } 2682 } 2683 EXPORT_SYMBOL(tcp_enter_cwr); 2684 2685 static void tcp_try_keep_open(struct sock *sk) 2686 { 2687 struct tcp_sock *tp = tcp_sk(sk); 2688 int state = TCP_CA_Open; 2689 2690 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2691 state = TCP_CA_Disorder; 2692 2693 if (inet_csk(sk)->icsk_ca_state != state) { 2694 tcp_set_ca_state(sk, state); 2695 tp->high_seq = tp->snd_nxt; 2696 } 2697 } 2698 2699 static void tcp_try_to_open(struct sock *sk, int flag) 2700 { 2701 struct tcp_sock *tp = tcp_sk(sk); 2702 2703 tcp_verify_left_out(tp); 2704 2705 if (!tcp_any_retrans_done(sk)) 2706 tp->retrans_stamp = 0; 2707 2708 if (flag & FLAG_ECE) 2709 tcp_enter_cwr(sk); 2710 2711 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2712 tcp_try_keep_open(sk); 2713 } 2714 } 2715 2716 static void tcp_mtup_probe_failed(struct sock *sk) 2717 { 2718 struct inet_connection_sock *icsk = inet_csk(sk); 2719 2720 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2721 icsk->icsk_mtup.probe_size = 0; 2722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2723 } 2724 2725 static void tcp_mtup_probe_success(struct sock *sk) 2726 { 2727 struct tcp_sock *tp = tcp_sk(sk); 2728 struct inet_connection_sock *icsk = inet_csk(sk); 2729 u64 val; 2730 2731 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2732 2733 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2734 do_div(val, icsk->icsk_mtup.probe_size); 2735 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2736 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2737 2738 tp->snd_cwnd_cnt = 0; 2739 tp->snd_cwnd_stamp = tcp_jiffies32; 2740 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2741 2742 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2743 icsk->icsk_mtup.probe_size = 0; 2744 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2746 } 2747 2748 /* Do a simple retransmit without using the backoff mechanisms in 2749 * tcp_timer. This is used for path mtu discovery. 2750 * The socket is already locked here. 2751 */ 2752 void tcp_simple_retransmit(struct sock *sk) 2753 { 2754 const struct inet_connection_sock *icsk = inet_csk(sk); 2755 struct tcp_sock *tp = tcp_sk(sk); 2756 struct sk_buff *skb; 2757 int mss; 2758 2759 /* A fastopen SYN request is stored as two separate packets within 2760 * the retransmit queue, this is done by tcp_send_syn_data(). 2761 * As a result simply checking the MSS of the frames in the queue 2762 * will not work for the SYN packet. 2763 * 2764 * Us being here is an indication of a path MTU issue so we can 2765 * assume that the fastopen SYN was lost and just mark all the 2766 * frames in the retransmit queue as lost. We will use an MSS of 2767 * -1 to mark all frames as lost, otherwise compute the current MSS. 2768 */ 2769 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2770 mss = -1; 2771 else 2772 mss = tcp_current_mss(sk); 2773 2774 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2775 if (tcp_skb_seglen(skb) > mss) 2776 tcp_mark_skb_lost(sk, skb); 2777 } 2778 2779 tcp_clear_retrans_hints_partial(tp); 2780 2781 if (!tp->lost_out) 2782 return; 2783 2784 if (tcp_is_reno(tp)) 2785 tcp_limit_reno_sacked(tp); 2786 2787 tcp_verify_left_out(tp); 2788 2789 /* Don't muck with the congestion window here. 2790 * Reason is that we do not increase amount of _data_ 2791 * in network, but units changed and effective 2792 * cwnd/ssthresh really reduced now. 2793 */ 2794 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2795 tp->high_seq = tp->snd_nxt; 2796 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2797 tp->prior_ssthresh = 0; 2798 tp->undo_marker = 0; 2799 tcp_set_ca_state(sk, TCP_CA_Loss); 2800 } 2801 tcp_xmit_retransmit_queue(sk); 2802 } 2803 EXPORT_SYMBOL(tcp_simple_retransmit); 2804 2805 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2806 { 2807 struct tcp_sock *tp = tcp_sk(sk); 2808 int mib_idx; 2809 2810 if (tcp_is_reno(tp)) 2811 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2812 else 2813 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2814 2815 NET_INC_STATS(sock_net(sk), mib_idx); 2816 2817 tp->prior_ssthresh = 0; 2818 tcp_init_undo(tp); 2819 2820 if (!tcp_in_cwnd_reduction(sk)) { 2821 if (!ece_ack) 2822 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2823 tcp_init_cwnd_reduction(sk); 2824 } 2825 tcp_set_ca_state(sk, TCP_CA_Recovery); 2826 } 2827 2828 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2829 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2830 */ 2831 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2832 int *rexmit) 2833 { 2834 struct tcp_sock *tp = tcp_sk(sk); 2835 bool recovered = !before(tp->snd_una, tp->high_seq); 2836 2837 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2838 tcp_try_undo_loss(sk, false)) 2839 return; 2840 2841 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2842 /* Step 3.b. A timeout is spurious if not all data are 2843 * lost, i.e., never-retransmitted data are (s)acked. 2844 */ 2845 if ((flag & FLAG_ORIG_SACK_ACKED) && 2846 tcp_try_undo_loss(sk, true)) 2847 return; 2848 2849 if (after(tp->snd_nxt, tp->high_seq)) { 2850 if (flag & FLAG_DATA_SACKED || num_dupack) 2851 tp->frto = 0; /* Step 3.a. loss was real */ 2852 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2853 tp->high_seq = tp->snd_nxt; 2854 /* Step 2.b. Try send new data (but deferred until cwnd 2855 * is updated in tcp_ack()). Otherwise fall back to 2856 * the conventional recovery. 2857 */ 2858 if (!tcp_write_queue_empty(sk) && 2859 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2860 *rexmit = REXMIT_NEW; 2861 return; 2862 } 2863 tp->frto = 0; 2864 } 2865 } 2866 2867 if (recovered) { 2868 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2869 tcp_try_undo_recovery(sk); 2870 return; 2871 } 2872 if (tcp_is_reno(tp)) { 2873 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2874 * delivered. Lower inflight to clock out (re)transmissions. 2875 */ 2876 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2877 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2878 else if (flag & FLAG_SND_UNA_ADVANCED) 2879 tcp_reset_reno_sack(tp); 2880 } 2881 *rexmit = REXMIT_LOST; 2882 } 2883 2884 static bool tcp_force_fast_retransmit(struct sock *sk) 2885 { 2886 struct tcp_sock *tp = tcp_sk(sk); 2887 2888 return after(tcp_highest_sack_seq(tp), 2889 tp->snd_una + tp->reordering * tp->mss_cache); 2890 } 2891 2892 /* Undo during fast recovery after partial ACK. */ 2893 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2894 bool *do_lost) 2895 { 2896 struct tcp_sock *tp = tcp_sk(sk); 2897 2898 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2899 /* Plain luck! Hole if filled with delayed 2900 * packet, rather than with a retransmit. Check reordering. 2901 */ 2902 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2903 2904 /* We are getting evidence that the reordering degree is higher 2905 * than we realized. If there are no retransmits out then we 2906 * can undo. Otherwise we clock out new packets but do not 2907 * mark more packets lost or retransmit more. 2908 */ 2909 if (tp->retrans_out) 2910 return true; 2911 2912 if (!tcp_any_retrans_done(sk)) 2913 tp->retrans_stamp = 0; 2914 2915 DBGUNDO(sk, "partial recovery"); 2916 tcp_undo_cwnd_reduction(sk, true); 2917 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2918 tcp_try_keep_open(sk); 2919 } else { 2920 /* Partial ACK arrived. Force fast retransmit. */ 2921 *do_lost = tcp_force_fast_retransmit(sk); 2922 } 2923 return false; 2924 } 2925 2926 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2927 { 2928 struct tcp_sock *tp = tcp_sk(sk); 2929 2930 if (tcp_rtx_queue_empty(sk)) 2931 return; 2932 2933 if (unlikely(tcp_is_reno(tp))) { 2934 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2935 } else if (tcp_is_rack(sk)) { 2936 u32 prior_retrans = tp->retrans_out; 2937 2938 if (tcp_rack_mark_lost(sk)) 2939 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2940 if (prior_retrans > tp->retrans_out) 2941 *ack_flag |= FLAG_LOST_RETRANS; 2942 } 2943 } 2944 2945 /* Process an event, which can update packets-in-flight not trivially. 2946 * Main goal of this function is to calculate new estimate for left_out, 2947 * taking into account both packets sitting in receiver's buffer and 2948 * packets lost by network. 2949 * 2950 * Besides that it updates the congestion state when packet loss or ECN 2951 * is detected. But it does not reduce the cwnd, it is done by the 2952 * congestion control later. 2953 * 2954 * It does _not_ decide what to send, it is made in function 2955 * tcp_xmit_retransmit_queue(). 2956 */ 2957 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2958 int num_dupack, int *ack_flag, int *rexmit) 2959 { 2960 struct inet_connection_sock *icsk = inet_csk(sk); 2961 struct tcp_sock *tp = tcp_sk(sk); 2962 int fast_rexmit = 0, flag = *ack_flag; 2963 bool ece_ack = flag & FLAG_ECE; 2964 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2965 tcp_force_fast_retransmit(sk)); 2966 2967 if (!tp->packets_out && tp->sacked_out) 2968 tp->sacked_out = 0; 2969 2970 /* Now state machine starts. 2971 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2972 if (ece_ack) 2973 tp->prior_ssthresh = 0; 2974 2975 /* B. In all the states check for reneging SACKs. */ 2976 if (tcp_check_sack_reneging(sk, flag)) 2977 return; 2978 2979 /* C. Check consistency of the current state. */ 2980 tcp_verify_left_out(tp); 2981 2982 /* D. Check state exit conditions. State can be terminated 2983 * when high_seq is ACKed. */ 2984 if (icsk->icsk_ca_state == TCP_CA_Open) { 2985 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2986 tp->retrans_stamp = 0; 2987 } else if (!before(tp->snd_una, tp->high_seq)) { 2988 switch (icsk->icsk_ca_state) { 2989 case TCP_CA_CWR: 2990 /* CWR is to be held something *above* high_seq 2991 * is ACKed for CWR bit to reach receiver. */ 2992 if (tp->snd_una != tp->high_seq) { 2993 tcp_end_cwnd_reduction(sk); 2994 tcp_set_ca_state(sk, TCP_CA_Open); 2995 } 2996 break; 2997 2998 case TCP_CA_Recovery: 2999 if (tcp_is_reno(tp)) 3000 tcp_reset_reno_sack(tp); 3001 if (tcp_try_undo_recovery(sk)) 3002 return; 3003 tcp_end_cwnd_reduction(sk); 3004 break; 3005 } 3006 } 3007 3008 /* E. Process state. */ 3009 switch (icsk->icsk_ca_state) { 3010 case TCP_CA_Recovery: 3011 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3012 if (tcp_is_reno(tp)) 3013 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3014 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3015 return; 3016 3017 if (tcp_try_undo_dsack(sk)) 3018 tcp_try_keep_open(sk); 3019 3020 tcp_identify_packet_loss(sk, ack_flag); 3021 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3022 if (!tcp_time_to_recover(sk, flag)) 3023 return; 3024 /* Undo reverts the recovery state. If loss is evident, 3025 * starts a new recovery (e.g. reordering then loss); 3026 */ 3027 tcp_enter_recovery(sk, ece_ack); 3028 } 3029 break; 3030 case TCP_CA_Loss: 3031 tcp_process_loss(sk, flag, num_dupack, rexmit); 3032 tcp_identify_packet_loss(sk, ack_flag); 3033 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3034 (*ack_flag & FLAG_LOST_RETRANS))) 3035 return; 3036 /* Change state if cwnd is undone or retransmits are lost */ 3037 fallthrough; 3038 default: 3039 if (tcp_is_reno(tp)) { 3040 if (flag & FLAG_SND_UNA_ADVANCED) 3041 tcp_reset_reno_sack(tp); 3042 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3043 } 3044 3045 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3046 tcp_try_undo_dsack(sk); 3047 3048 tcp_identify_packet_loss(sk, ack_flag); 3049 if (!tcp_time_to_recover(sk, flag)) { 3050 tcp_try_to_open(sk, flag); 3051 return; 3052 } 3053 3054 /* MTU probe failure: don't reduce cwnd */ 3055 if (icsk->icsk_ca_state < TCP_CA_CWR && 3056 icsk->icsk_mtup.probe_size && 3057 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3058 tcp_mtup_probe_failed(sk); 3059 /* Restores the reduction we did in tcp_mtup_probe() */ 3060 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3061 tcp_simple_retransmit(sk); 3062 return; 3063 } 3064 3065 /* Otherwise enter Recovery state */ 3066 tcp_enter_recovery(sk, ece_ack); 3067 fast_rexmit = 1; 3068 } 3069 3070 if (!tcp_is_rack(sk) && do_lost) 3071 tcp_update_scoreboard(sk, fast_rexmit); 3072 *rexmit = REXMIT_LOST; 3073 } 3074 3075 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3076 { 3077 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3078 struct tcp_sock *tp = tcp_sk(sk); 3079 3080 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3081 /* If the remote keeps returning delayed ACKs, eventually 3082 * the min filter would pick it up and overestimate the 3083 * prop. delay when it expires. Skip suspected delayed ACKs. 3084 */ 3085 return; 3086 } 3087 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3088 rtt_us ? : jiffies_to_usecs(1)); 3089 } 3090 3091 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3092 long seq_rtt_us, long sack_rtt_us, 3093 long ca_rtt_us, struct rate_sample *rs) 3094 { 3095 const struct tcp_sock *tp = tcp_sk(sk); 3096 3097 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3098 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3099 * Karn's algorithm forbids taking RTT if some retransmitted data 3100 * is acked (RFC6298). 3101 */ 3102 if (seq_rtt_us < 0) 3103 seq_rtt_us = sack_rtt_us; 3104 3105 /* RTTM Rule: A TSecr value received in a segment is used to 3106 * update the averaged RTT measurement only if the segment 3107 * acknowledges some new data, i.e., only if it advances the 3108 * left edge of the send window. 3109 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3110 */ 3111 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3112 flag & FLAG_ACKED) { 3113 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3114 3115 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3116 if (!delta) 3117 delta = 1; 3118 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3119 ca_rtt_us = seq_rtt_us; 3120 } 3121 } 3122 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3123 if (seq_rtt_us < 0) 3124 return false; 3125 3126 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3127 * always taken together with ACK, SACK, or TS-opts. Any negative 3128 * values will be skipped with the seq_rtt_us < 0 check above. 3129 */ 3130 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3131 tcp_rtt_estimator(sk, seq_rtt_us); 3132 tcp_set_rto(sk); 3133 3134 /* RFC6298: only reset backoff on valid RTT measurement. */ 3135 inet_csk(sk)->icsk_backoff = 0; 3136 return true; 3137 } 3138 3139 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3140 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3141 { 3142 struct rate_sample rs; 3143 long rtt_us = -1L; 3144 3145 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3146 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3147 3148 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3149 } 3150 3151 3152 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3153 { 3154 const struct inet_connection_sock *icsk = inet_csk(sk); 3155 3156 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3157 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3158 } 3159 3160 /* Restart timer after forward progress on connection. 3161 * RFC2988 recommends to restart timer to now+rto. 3162 */ 3163 void tcp_rearm_rto(struct sock *sk) 3164 { 3165 const struct inet_connection_sock *icsk = inet_csk(sk); 3166 struct tcp_sock *tp = tcp_sk(sk); 3167 3168 /* If the retrans timer is currently being used by Fast Open 3169 * for SYN-ACK retrans purpose, stay put. 3170 */ 3171 if (rcu_access_pointer(tp->fastopen_rsk)) 3172 return; 3173 3174 if (!tp->packets_out) { 3175 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3176 } else { 3177 u32 rto = inet_csk(sk)->icsk_rto; 3178 /* Offset the time elapsed after installing regular RTO */ 3179 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3180 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3181 s64 delta_us = tcp_rto_delta_us(sk); 3182 /* delta_us may not be positive if the socket is locked 3183 * when the retrans timer fires and is rescheduled. 3184 */ 3185 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3186 } 3187 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3188 TCP_RTO_MAX); 3189 } 3190 } 3191 3192 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3193 static void tcp_set_xmit_timer(struct sock *sk) 3194 { 3195 if (!tcp_schedule_loss_probe(sk, true)) 3196 tcp_rearm_rto(sk); 3197 } 3198 3199 /* If we get here, the whole TSO packet has not been acked. */ 3200 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3201 { 3202 struct tcp_sock *tp = tcp_sk(sk); 3203 u32 packets_acked; 3204 3205 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3206 3207 packets_acked = tcp_skb_pcount(skb); 3208 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3209 return 0; 3210 packets_acked -= tcp_skb_pcount(skb); 3211 3212 if (packets_acked) { 3213 BUG_ON(tcp_skb_pcount(skb) == 0); 3214 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3215 } 3216 3217 return packets_acked; 3218 } 3219 3220 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3221 const struct sk_buff *ack_skb, u32 prior_snd_una) 3222 { 3223 const struct skb_shared_info *shinfo; 3224 3225 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3226 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3227 return; 3228 3229 shinfo = skb_shinfo(skb); 3230 if (!before(shinfo->tskey, prior_snd_una) && 3231 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3232 tcp_skb_tsorted_save(skb) { 3233 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3234 } tcp_skb_tsorted_restore(skb); 3235 } 3236 } 3237 3238 /* Remove acknowledged frames from the retransmission queue. If our packet 3239 * is before the ack sequence we can discard it as it's confirmed to have 3240 * arrived at the other end. 3241 */ 3242 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3243 u32 prior_fack, u32 prior_snd_una, 3244 struct tcp_sacktag_state *sack, bool ece_ack) 3245 { 3246 const struct inet_connection_sock *icsk = inet_csk(sk); 3247 u64 first_ackt, last_ackt; 3248 struct tcp_sock *tp = tcp_sk(sk); 3249 u32 prior_sacked = tp->sacked_out; 3250 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3251 struct sk_buff *skb, *next; 3252 bool fully_acked = true; 3253 long sack_rtt_us = -1L; 3254 long seq_rtt_us = -1L; 3255 long ca_rtt_us = -1L; 3256 u32 pkts_acked = 0; 3257 bool rtt_update; 3258 int flag = 0; 3259 3260 first_ackt = 0; 3261 3262 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3263 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3264 const u32 start_seq = scb->seq; 3265 u8 sacked = scb->sacked; 3266 u32 acked_pcount; 3267 3268 /* Determine how many packets and what bytes were acked, tso and else */ 3269 if (after(scb->end_seq, tp->snd_una)) { 3270 if (tcp_skb_pcount(skb) == 1 || 3271 !after(tp->snd_una, scb->seq)) 3272 break; 3273 3274 acked_pcount = tcp_tso_acked(sk, skb); 3275 if (!acked_pcount) 3276 break; 3277 fully_acked = false; 3278 } else { 3279 acked_pcount = tcp_skb_pcount(skb); 3280 } 3281 3282 if (unlikely(sacked & TCPCB_RETRANS)) { 3283 if (sacked & TCPCB_SACKED_RETRANS) 3284 tp->retrans_out -= acked_pcount; 3285 flag |= FLAG_RETRANS_DATA_ACKED; 3286 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3287 last_ackt = tcp_skb_timestamp_us(skb); 3288 WARN_ON_ONCE(last_ackt == 0); 3289 if (!first_ackt) 3290 first_ackt = last_ackt; 3291 3292 if (before(start_seq, reord)) 3293 reord = start_seq; 3294 if (!after(scb->end_seq, tp->high_seq)) 3295 flag |= FLAG_ORIG_SACK_ACKED; 3296 } 3297 3298 if (sacked & TCPCB_SACKED_ACKED) { 3299 tp->sacked_out -= acked_pcount; 3300 } else if (tcp_is_sack(tp)) { 3301 tcp_count_delivered(tp, acked_pcount, ece_ack); 3302 if (!tcp_skb_spurious_retrans(tp, skb)) 3303 tcp_rack_advance(tp, sacked, scb->end_seq, 3304 tcp_skb_timestamp_us(skb)); 3305 } 3306 if (sacked & TCPCB_LOST) 3307 tp->lost_out -= acked_pcount; 3308 3309 tp->packets_out -= acked_pcount; 3310 pkts_acked += acked_pcount; 3311 tcp_rate_skb_delivered(sk, skb, sack->rate); 3312 3313 /* Initial outgoing SYN's get put onto the write_queue 3314 * just like anything else we transmit. It is not 3315 * true data, and if we misinform our callers that 3316 * this ACK acks real data, we will erroneously exit 3317 * connection startup slow start one packet too 3318 * quickly. This is severely frowned upon behavior. 3319 */ 3320 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3321 flag |= FLAG_DATA_ACKED; 3322 } else { 3323 flag |= FLAG_SYN_ACKED; 3324 tp->retrans_stamp = 0; 3325 } 3326 3327 if (!fully_acked) 3328 break; 3329 3330 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3331 3332 next = skb_rb_next(skb); 3333 if (unlikely(skb == tp->retransmit_skb_hint)) 3334 tp->retransmit_skb_hint = NULL; 3335 if (unlikely(skb == tp->lost_skb_hint)) 3336 tp->lost_skb_hint = NULL; 3337 tcp_highest_sack_replace(sk, skb, next); 3338 tcp_rtx_queue_unlink_and_free(skb, sk); 3339 } 3340 3341 if (!skb) 3342 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3343 3344 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3345 tp->snd_up = tp->snd_una; 3346 3347 if (skb) { 3348 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3349 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3350 flag |= FLAG_SACK_RENEGING; 3351 } 3352 3353 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3354 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3355 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3356 3357 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3358 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3359 sack->rate->prior_delivered + 1 == tp->delivered && 3360 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3361 /* Conservatively mark a delayed ACK. It's typically 3362 * from a lone runt packet over the round trip to 3363 * a receiver w/o out-of-order or CE events. 3364 */ 3365 flag |= FLAG_ACK_MAYBE_DELAYED; 3366 } 3367 } 3368 if (sack->first_sackt) { 3369 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3370 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3371 } 3372 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3373 ca_rtt_us, sack->rate); 3374 3375 if (flag & FLAG_ACKED) { 3376 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3377 if (unlikely(icsk->icsk_mtup.probe_size && 3378 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3379 tcp_mtup_probe_success(sk); 3380 } 3381 3382 if (tcp_is_reno(tp)) { 3383 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3384 3385 /* If any of the cumulatively ACKed segments was 3386 * retransmitted, non-SACK case cannot confirm that 3387 * progress was due to original transmission due to 3388 * lack of TCPCB_SACKED_ACKED bits even if some of 3389 * the packets may have been never retransmitted. 3390 */ 3391 if (flag & FLAG_RETRANS_DATA_ACKED) 3392 flag &= ~FLAG_ORIG_SACK_ACKED; 3393 } else { 3394 int delta; 3395 3396 /* Non-retransmitted hole got filled? That's reordering */ 3397 if (before(reord, prior_fack)) 3398 tcp_check_sack_reordering(sk, reord, 0); 3399 3400 delta = prior_sacked - tp->sacked_out; 3401 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3402 } 3403 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3404 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3405 tcp_skb_timestamp_us(skb))) { 3406 /* Do not re-arm RTO if the sack RTT is measured from data sent 3407 * after when the head was last (re)transmitted. Otherwise the 3408 * timeout may continue to extend in loss recovery. 3409 */ 3410 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3411 } 3412 3413 if (icsk->icsk_ca_ops->pkts_acked) { 3414 struct ack_sample sample = { .pkts_acked = pkts_acked, 3415 .rtt_us = sack->rate->rtt_us }; 3416 3417 sample.in_flight = tp->mss_cache * 3418 (tp->delivered - sack->rate->prior_delivered); 3419 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3420 } 3421 3422 #if FASTRETRANS_DEBUG > 0 3423 WARN_ON((int)tp->sacked_out < 0); 3424 WARN_ON((int)tp->lost_out < 0); 3425 WARN_ON((int)tp->retrans_out < 0); 3426 if (!tp->packets_out && tcp_is_sack(tp)) { 3427 icsk = inet_csk(sk); 3428 if (tp->lost_out) { 3429 pr_debug("Leak l=%u %d\n", 3430 tp->lost_out, icsk->icsk_ca_state); 3431 tp->lost_out = 0; 3432 } 3433 if (tp->sacked_out) { 3434 pr_debug("Leak s=%u %d\n", 3435 tp->sacked_out, icsk->icsk_ca_state); 3436 tp->sacked_out = 0; 3437 } 3438 if (tp->retrans_out) { 3439 pr_debug("Leak r=%u %d\n", 3440 tp->retrans_out, icsk->icsk_ca_state); 3441 tp->retrans_out = 0; 3442 } 3443 } 3444 #endif 3445 return flag; 3446 } 3447 3448 static void tcp_ack_probe(struct sock *sk) 3449 { 3450 struct inet_connection_sock *icsk = inet_csk(sk); 3451 struct sk_buff *head = tcp_send_head(sk); 3452 const struct tcp_sock *tp = tcp_sk(sk); 3453 3454 /* Was it a usable window open? */ 3455 if (!head) 3456 return; 3457 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3458 icsk->icsk_backoff = 0; 3459 icsk->icsk_probes_tstamp = 0; 3460 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3461 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3462 * This function is not for random using! 3463 */ 3464 } else { 3465 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3466 3467 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3468 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3469 } 3470 } 3471 3472 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3473 { 3474 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3475 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3476 } 3477 3478 /* Decide wheather to run the increase function of congestion control. */ 3479 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3480 { 3481 /* If reordering is high then always grow cwnd whenever data is 3482 * delivered regardless of its ordering. Otherwise stay conservative 3483 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3484 * new SACK or ECE mark may first advance cwnd here and later reduce 3485 * cwnd in tcp_fastretrans_alert() based on more states. 3486 */ 3487 if (tcp_sk(sk)->reordering > 3488 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3489 return flag & FLAG_FORWARD_PROGRESS; 3490 3491 return flag & FLAG_DATA_ACKED; 3492 } 3493 3494 /* The "ultimate" congestion control function that aims to replace the rigid 3495 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3496 * It's called toward the end of processing an ACK with precise rate 3497 * information. All transmission or retransmission are delayed afterwards. 3498 */ 3499 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3500 int flag, const struct rate_sample *rs) 3501 { 3502 const struct inet_connection_sock *icsk = inet_csk(sk); 3503 3504 if (icsk->icsk_ca_ops->cong_control) { 3505 icsk->icsk_ca_ops->cong_control(sk, rs); 3506 return; 3507 } 3508 3509 if (tcp_in_cwnd_reduction(sk)) { 3510 /* Reduce cwnd if state mandates */ 3511 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3512 } else if (tcp_may_raise_cwnd(sk, flag)) { 3513 /* Advance cwnd if state allows */ 3514 tcp_cong_avoid(sk, ack, acked_sacked); 3515 } 3516 tcp_update_pacing_rate(sk); 3517 } 3518 3519 /* Check that window update is acceptable. 3520 * The function assumes that snd_una<=ack<=snd_next. 3521 */ 3522 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3523 const u32 ack, const u32 ack_seq, 3524 const u32 nwin) 3525 { 3526 return after(ack, tp->snd_una) || 3527 after(ack_seq, tp->snd_wl1) || 3528 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3529 } 3530 3531 /* If we update tp->snd_una, also update tp->bytes_acked */ 3532 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3533 { 3534 u32 delta = ack - tp->snd_una; 3535 3536 sock_owned_by_me((struct sock *)tp); 3537 tp->bytes_acked += delta; 3538 tp->snd_una = ack; 3539 } 3540 3541 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3542 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3543 { 3544 u32 delta = seq - tp->rcv_nxt; 3545 3546 sock_owned_by_me((struct sock *)tp); 3547 tp->bytes_received += delta; 3548 WRITE_ONCE(tp->rcv_nxt, seq); 3549 } 3550 3551 /* Update our send window. 3552 * 3553 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3554 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3555 */ 3556 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3557 u32 ack_seq) 3558 { 3559 struct tcp_sock *tp = tcp_sk(sk); 3560 int flag = 0; 3561 u32 nwin = ntohs(tcp_hdr(skb)->window); 3562 3563 if (likely(!tcp_hdr(skb)->syn)) 3564 nwin <<= tp->rx_opt.snd_wscale; 3565 3566 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3567 flag |= FLAG_WIN_UPDATE; 3568 tcp_update_wl(tp, ack_seq); 3569 3570 if (tp->snd_wnd != nwin) { 3571 tp->snd_wnd = nwin; 3572 3573 /* Note, it is the only place, where 3574 * fast path is recovered for sending TCP. 3575 */ 3576 tp->pred_flags = 0; 3577 tcp_fast_path_check(sk); 3578 3579 if (!tcp_write_queue_empty(sk)) 3580 tcp_slow_start_after_idle_check(sk); 3581 3582 if (nwin > tp->max_window) { 3583 tp->max_window = nwin; 3584 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3585 } 3586 } 3587 } 3588 3589 tcp_snd_una_update(tp, ack); 3590 3591 return flag; 3592 } 3593 3594 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3595 u32 *last_oow_ack_time) 3596 { 3597 /* Paired with the WRITE_ONCE() in this function. */ 3598 u32 val = READ_ONCE(*last_oow_ack_time); 3599 3600 if (val) { 3601 s32 elapsed = (s32)(tcp_jiffies32 - val); 3602 3603 if (0 <= elapsed && 3604 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3605 NET_INC_STATS(net, mib_idx); 3606 return true; /* rate-limited: don't send yet! */ 3607 } 3608 } 3609 3610 /* Paired with the prior READ_ONCE() and with itself, 3611 * as we might be lockless. 3612 */ 3613 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3614 3615 return false; /* not rate-limited: go ahead, send dupack now! */ 3616 } 3617 3618 /* Return true if we're currently rate-limiting out-of-window ACKs and 3619 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3620 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3621 * attacks that send repeated SYNs or ACKs for the same connection. To 3622 * do this, we do not send a duplicate SYNACK or ACK if the remote 3623 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3624 */ 3625 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3626 int mib_idx, u32 *last_oow_ack_time) 3627 { 3628 /* Data packets without SYNs are not likely part of an ACK loop. */ 3629 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3630 !tcp_hdr(skb)->syn) 3631 return false; 3632 3633 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3634 } 3635 3636 /* RFC 5961 7 [ACK Throttling] */ 3637 static void tcp_send_challenge_ack(struct sock *sk) 3638 { 3639 struct tcp_sock *tp = tcp_sk(sk); 3640 struct net *net = sock_net(sk); 3641 u32 count, now, ack_limit; 3642 3643 /* First check our per-socket dupack rate limit. */ 3644 if (__tcp_oow_rate_limited(net, 3645 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3646 &tp->last_oow_ack_time)) 3647 return; 3648 3649 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3650 if (ack_limit == INT_MAX) 3651 goto send_ack; 3652 3653 /* Then check host-wide RFC 5961 rate limit. */ 3654 now = jiffies / HZ; 3655 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3656 u32 half = (ack_limit + 1) >> 1; 3657 3658 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3659 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3660 get_random_u32_inclusive(half, ack_limit + half - 1)); 3661 } 3662 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3663 if (count > 0) { 3664 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3665 send_ack: 3666 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3667 tcp_send_ack(sk); 3668 } 3669 } 3670 3671 static void tcp_store_ts_recent(struct tcp_sock *tp) 3672 { 3673 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3674 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3675 } 3676 3677 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3678 { 3679 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3680 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3681 * extra check below makes sure this can only happen 3682 * for pure ACK frames. -DaveM 3683 * 3684 * Not only, also it occurs for expired timestamps. 3685 */ 3686 3687 if (tcp_paws_check(&tp->rx_opt, 0)) 3688 tcp_store_ts_recent(tp); 3689 } 3690 } 3691 3692 /* This routine deals with acks during a TLP episode and ends an episode by 3693 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3694 */ 3695 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3696 { 3697 struct tcp_sock *tp = tcp_sk(sk); 3698 3699 if (before(ack, tp->tlp_high_seq)) 3700 return; 3701 3702 if (!tp->tlp_retrans) { 3703 /* TLP of new data has been acknowledged */ 3704 tp->tlp_high_seq = 0; 3705 } else if (flag & FLAG_DSACK_TLP) { 3706 /* This DSACK means original and TLP probe arrived; no loss */ 3707 tp->tlp_high_seq = 0; 3708 } else if (after(ack, tp->tlp_high_seq)) { 3709 /* ACK advances: there was a loss, so reduce cwnd. Reset 3710 * tlp_high_seq in tcp_init_cwnd_reduction() 3711 */ 3712 tcp_init_cwnd_reduction(sk); 3713 tcp_set_ca_state(sk, TCP_CA_CWR); 3714 tcp_end_cwnd_reduction(sk); 3715 tcp_try_keep_open(sk); 3716 NET_INC_STATS(sock_net(sk), 3717 LINUX_MIB_TCPLOSSPROBERECOVERY); 3718 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3719 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3720 /* Pure dupack: original and TLP probe arrived; no loss */ 3721 tp->tlp_high_seq = 0; 3722 } 3723 } 3724 3725 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3726 { 3727 const struct inet_connection_sock *icsk = inet_csk(sk); 3728 3729 if (icsk->icsk_ca_ops->in_ack_event) 3730 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3731 } 3732 3733 /* Congestion control has updated the cwnd already. So if we're in 3734 * loss recovery then now we do any new sends (for FRTO) or 3735 * retransmits (for CA_Loss or CA_recovery) that make sense. 3736 */ 3737 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3738 { 3739 struct tcp_sock *tp = tcp_sk(sk); 3740 3741 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3742 return; 3743 3744 if (unlikely(rexmit == REXMIT_NEW)) { 3745 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3746 TCP_NAGLE_OFF); 3747 if (after(tp->snd_nxt, tp->high_seq)) 3748 return; 3749 tp->frto = 0; 3750 } 3751 tcp_xmit_retransmit_queue(sk); 3752 } 3753 3754 /* Returns the number of packets newly acked or sacked by the current ACK */ 3755 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3756 { 3757 const struct net *net = sock_net(sk); 3758 struct tcp_sock *tp = tcp_sk(sk); 3759 u32 delivered; 3760 3761 delivered = tp->delivered - prior_delivered; 3762 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3763 if (flag & FLAG_ECE) 3764 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3765 3766 return delivered; 3767 } 3768 3769 /* This routine deals with incoming acks, but not outgoing ones. */ 3770 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3771 { 3772 struct inet_connection_sock *icsk = inet_csk(sk); 3773 struct tcp_sock *tp = tcp_sk(sk); 3774 struct tcp_sacktag_state sack_state; 3775 struct rate_sample rs = { .prior_delivered = 0 }; 3776 u32 prior_snd_una = tp->snd_una; 3777 bool is_sack_reneg = tp->is_sack_reneg; 3778 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3779 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3780 int num_dupack = 0; 3781 int prior_packets = tp->packets_out; 3782 u32 delivered = tp->delivered; 3783 u32 lost = tp->lost; 3784 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3785 u32 prior_fack; 3786 3787 sack_state.first_sackt = 0; 3788 sack_state.rate = &rs; 3789 sack_state.sack_delivered = 0; 3790 3791 /* We very likely will need to access rtx queue. */ 3792 prefetch(sk->tcp_rtx_queue.rb_node); 3793 3794 /* If the ack is older than previous acks 3795 * then we can probably ignore it. 3796 */ 3797 if (before(ack, prior_snd_una)) { 3798 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3799 if (before(ack, prior_snd_una - tp->max_window)) { 3800 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3801 tcp_send_challenge_ack(sk); 3802 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3803 } 3804 goto old_ack; 3805 } 3806 3807 /* If the ack includes data we haven't sent yet, discard 3808 * this segment (RFC793 Section 3.9). 3809 */ 3810 if (after(ack, tp->snd_nxt)) 3811 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3812 3813 if (after(ack, prior_snd_una)) { 3814 flag |= FLAG_SND_UNA_ADVANCED; 3815 icsk->icsk_retransmits = 0; 3816 3817 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3818 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3819 if (icsk->icsk_clean_acked) 3820 icsk->icsk_clean_acked(sk, ack); 3821 #endif 3822 } 3823 3824 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3825 rs.prior_in_flight = tcp_packets_in_flight(tp); 3826 3827 /* ts_recent update must be made after we are sure that the packet 3828 * is in window. 3829 */ 3830 if (flag & FLAG_UPDATE_TS_RECENT) 3831 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3832 3833 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3834 FLAG_SND_UNA_ADVANCED) { 3835 /* Window is constant, pure forward advance. 3836 * No more checks are required. 3837 * Note, we use the fact that SND.UNA>=SND.WL2. 3838 */ 3839 tcp_update_wl(tp, ack_seq); 3840 tcp_snd_una_update(tp, ack); 3841 flag |= FLAG_WIN_UPDATE; 3842 3843 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3844 3845 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3846 } else { 3847 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3848 3849 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3850 flag |= FLAG_DATA; 3851 else 3852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3853 3854 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3855 3856 if (TCP_SKB_CB(skb)->sacked) 3857 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3858 &sack_state); 3859 3860 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3861 flag |= FLAG_ECE; 3862 ack_ev_flags |= CA_ACK_ECE; 3863 } 3864 3865 if (sack_state.sack_delivered) 3866 tcp_count_delivered(tp, sack_state.sack_delivered, 3867 flag & FLAG_ECE); 3868 3869 if (flag & FLAG_WIN_UPDATE) 3870 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3871 3872 tcp_in_ack_event(sk, ack_ev_flags); 3873 } 3874 3875 /* This is a deviation from RFC3168 since it states that: 3876 * "When the TCP data sender is ready to set the CWR bit after reducing 3877 * the congestion window, it SHOULD set the CWR bit only on the first 3878 * new data packet that it transmits." 3879 * We accept CWR on pure ACKs to be more robust 3880 * with widely-deployed TCP implementations that do this. 3881 */ 3882 tcp_ecn_accept_cwr(sk, skb); 3883 3884 /* We passed data and got it acked, remove any soft error 3885 * log. Something worked... 3886 */ 3887 WRITE_ONCE(sk->sk_err_soft, 0); 3888 icsk->icsk_probes_out = 0; 3889 tp->rcv_tstamp = tcp_jiffies32; 3890 if (!prior_packets) 3891 goto no_queue; 3892 3893 /* See if we can take anything off of the retransmit queue. */ 3894 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3895 &sack_state, flag & FLAG_ECE); 3896 3897 tcp_rack_update_reo_wnd(sk, &rs); 3898 3899 if (tp->tlp_high_seq) 3900 tcp_process_tlp_ack(sk, ack, flag); 3901 3902 if (tcp_ack_is_dubious(sk, flag)) { 3903 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3904 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3905 num_dupack = 1; 3906 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3907 if (!(flag & FLAG_DATA)) 3908 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3909 } 3910 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3911 &rexmit); 3912 } 3913 3914 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3915 if (flag & FLAG_SET_XMIT_TIMER) 3916 tcp_set_xmit_timer(sk); 3917 3918 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3919 sk_dst_confirm(sk); 3920 3921 delivered = tcp_newly_delivered(sk, delivered, flag); 3922 lost = tp->lost - lost; /* freshly marked lost */ 3923 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3924 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3925 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3926 tcp_xmit_recovery(sk, rexmit); 3927 return 1; 3928 3929 no_queue: 3930 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3931 if (flag & FLAG_DSACKING_ACK) { 3932 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3933 &rexmit); 3934 tcp_newly_delivered(sk, delivered, flag); 3935 } 3936 /* If this ack opens up a zero window, clear backoff. It was 3937 * being used to time the probes, and is probably far higher than 3938 * it needs to be for normal retransmission. 3939 */ 3940 tcp_ack_probe(sk); 3941 3942 if (tp->tlp_high_seq) 3943 tcp_process_tlp_ack(sk, ack, flag); 3944 return 1; 3945 3946 old_ack: 3947 /* If data was SACKed, tag it and see if we should send more data. 3948 * If data was DSACKed, see if we can undo a cwnd reduction. 3949 */ 3950 if (TCP_SKB_CB(skb)->sacked) { 3951 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3952 &sack_state); 3953 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3954 &rexmit); 3955 tcp_newly_delivered(sk, delivered, flag); 3956 tcp_xmit_recovery(sk, rexmit); 3957 } 3958 3959 return 0; 3960 } 3961 3962 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3963 bool syn, struct tcp_fastopen_cookie *foc, 3964 bool exp_opt) 3965 { 3966 /* Valid only in SYN or SYN-ACK with an even length. */ 3967 if (!foc || !syn || len < 0 || (len & 1)) 3968 return; 3969 3970 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3971 len <= TCP_FASTOPEN_COOKIE_MAX) 3972 memcpy(foc->val, cookie, len); 3973 else if (len != 0) 3974 len = -1; 3975 foc->len = len; 3976 foc->exp = exp_opt; 3977 } 3978 3979 static bool smc_parse_options(const struct tcphdr *th, 3980 struct tcp_options_received *opt_rx, 3981 const unsigned char *ptr, 3982 int opsize) 3983 { 3984 #if IS_ENABLED(CONFIG_SMC) 3985 if (static_branch_unlikely(&tcp_have_smc)) { 3986 if (th->syn && !(opsize & 1) && 3987 opsize >= TCPOLEN_EXP_SMC_BASE && 3988 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3989 opt_rx->smc_ok = 1; 3990 return true; 3991 } 3992 } 3993 #endif 3994 return false; 3995 } 3996 3997 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3998 * value on success. 3999 */ 4000 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4001 { 4002 const unsigned char *ptr = (const unsigned char *)(th + 1); 4003 int length = (th->doff * 4) - sizeof(struct tcphdr); 4004 u16 mss = 0; 4005 4006 while (length > 0) { 4007 int opcode = *ptr++; 4008 int opsize; 4009 4010 switch (opcode) { 4011 case TCPOPT_EOL: 4012 return mss; 4013 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4014 length--; 4015 continue; 4016 default: 4017 if (length < 2) 4018 return mss; 4019 opsize = *ptr++; 4020 if (opsize < 2) /* "silly options" */ 4021 return mss; 4022 if (opsize > length) 4023 return mss; /* fail on partial options */ 4024 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4025 u16 in_mss = get_unaligned_be16(ptr); 4026 4027 if (in_mss) { 4028 if (user_mss && user_mss < in_mss) 4029 in_mss = user_mss; 4030 mss = in_mss; 4031 } 4032 } 4033 ptr += opsize - 2; 4034 length -= opsize; 4035 } 4036 } 4037 return mss; 4038 } 4039 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4040 4041 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4042 * But, this can also be called on packets in the established flow when 4043 * the fast version below fails. 4044 */ 4045 void tcp_parse_options(const struct net *net, 4046 const struct sk_buff *skb, 4047 struct tcp_options_received *opt_rx, int estab, 4048 struct tcp_fastopen_cookie *foc) 4049 { 4050 const unsigned char *ptr; 4051 const struct tcphdr *th = tcp_hdr(skb); 4052 int length = (th->doff * 4) - sizeof(struct tcphdr); 4053 4054 ptr = (const unsigned char *)(th + 1); 4055 opt_rx->saw_tstamp = 0; 4056 opt_rx->saw_unknown = 0; 4057 4058 while (length > 0) { 4059 int opcode = *ptr++; 4060 int opsize; 4061 4062 switch (opcode) { 4063 case TCPOPT_EOL: 4064 return; 4065 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4066 length--; 4067 continue; 4068 default: 4069 if (length < 2) 4070 return; 4071 opsize = *ptr++; 4072 if (opsize < 2) /* "silly options" */ 4073 return; 4074 if (opsize > length) 4075 return; /* don't parse partial options */ 4076 switch (opcode) { 4077 case TCPOPT_MSS: 4078 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4079 u16 in_mss = get_unaligned_be16(ptr); 4080 if (in_mss) { 4081 if (opt_rx->user_mss && 4082 opt_rx->user_mss < in_mss) 4083 in_mss = opt_rx->user_mss; 4084 opt_rx->mss_clamp = in_mss; 4085 } 4086 } 4087 break; 4088 case TCPOPT_WINDOW: 4089 if (opsize == TCPOLEN_WINDOW && th->syn && 4090 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4091 __u8 snd_wscale = *(__u8 *)ptr; 4092 opt_rx->wscale_ok = 1; 4093 if (snd_wscale > TCP_MAX_WSCALE) { 4094 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4095 __func__, 4096 snd_wscale, 4097 TCP_MAX_WSCALE); 4098 snd_wscale = TCP_MAX_WSCALE; 4099 } 4100 opt_rx->snd_wscale = snd_wscale; 4101 } 4102 break; 4103 case TCPOPT_TIMESTAMP: 4104 if ((opsize == TCPOLEN_TIMESTAMP) && 4105 ((estab && opt_rx->tstamp_ok) || 4106 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4107 opt_rx->saw_tstamp = 1; 4108 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4109 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4110 } 4111 break; 4112 case TCPOPT_SACK_PERM: 4113 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4114 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4115 opt_rx->sack_ok = TCP_SACK_SEEN; 4116 tcp_sack_reset(opt_rx); 4117 } 4118 break; 4119 4120 case TCPOPT_SACK: 4121 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4122 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4123 opt_rx->sack_ok) { 4124 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4125 } 4126 break; 4127 #ifdef CONFIG_TCP_MD5SIG 4128 case TCPOPT_MD5SIG: 4129 /* 4130 * The MD5 Hash has already been 4131 * checked (see tcp_v{4,6}_do_rcv()). 4132 */ 4133 break; 4134 #endif 4135 case TCPOPT_FASTOPEN: 4136 tcp_parse_fastopen_option( 4137 opsize - TCPOLEN_FASTOPEN_BASE, 4138 ptr, th->syn, foc, false); 4139 break; 4140 4141 case TCPOPT_EXP: 4142 /* Fast Open option shares code 254 using a 4143 * 16 bits magic number. 4144 */ 4145 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4146 get_unaligned_be16(ptr) == 4147 TCPOPT_FASTOPEN_MAGIC) { 4148 tcp_parse_fastopen_option(opsize - 4149 TCPOLEN_EXP_FASTOPEN_BASE, 4150 ptr + 2, th->syn, foc, true); 4151 break; 4152 } 4153 4154 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4155 break; 4156 4157 opt_rx->saw_unknown = 1; 4158 break; 4159 4160 default: 4161 opt_rx->saw_unknown = 1; 4162 } 4163 ptr += opsize-2; 4164 length -= opsize; 4165 } 4166 } 4167 } 4168 EXPORT_SYMBOL(tcp_parse_options); 4169 4170 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4171 { 4172 const __be32 *ptr = (const __be32 *)(th + 1); 4173 4174 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4175 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4176 tp->rx_opt.saw_tstamp = 1; 4177 ++ptr; 4178 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4179 ++ptr; 4180 if (*ptr) 4181 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4182 else 4183 tp->rx_opt.rcv_tsecr = 0; 4184 return true; 4185 } 4186 return false; 4187 } 4188 4189 /* Fast parse options. This hopes to only see timestamps. 4190 * If it is wrong it falls back on tcp_parse_options(). 4191 */ 4192 static bool tcp_fast_parse_options(const struct net *net, 4193 const struct sk_buff *skb, 4194 const struct tcphdr *th, struct tcp_sock *tp) 4195 { 4196 /* In the spirit of fast parsing, compare doff directly to constant 4197 * values. Because equality is used, short doff can be ignored here. 4198 */ 4199 if (th->doff == (sizeof(*th) / 4)) { 4200 tp->rx_opt.saw_tstamp = 0; 4201 return false; 4202 } else if (tp->rx_opt.tstamp_ok && 4203 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4204 if (tcp_parse_aligned_timestamp(tp, th)) 4205 return true; 4206 } 4207 4208 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4209 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4210 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4211 4212 return true; 4213 } 4214 4215 #ifdef CONFIG_TCP_MD5SIG 4216 /* 4217 * Parse MD5 Signature option 4218 */ 4219 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4220 { 4221 int length = (th->doff << 2) - sizeof(*th); 4222 const u8 *ptr = (const u8 *)(th + 1); 4223 4224 /* If not enough data remaining, we can short cut */ 4225 while (length >= TCPOLEN_MD5SIG) { 4226 int opcode = *ptr++; 4227 int opsize; 4228 4229 switch (opcode) { 4230 case TCPOPT_EOL: 4231 return NULL; 4232 case TCPOPT_NOP: 4233 length--; 4234 continue; 4235 default: 4236 opsize = *ptr++; 4237 if (opsize < 2 || opsize > length) 4238 return NULL; 4239 if (opcode == TCPOPT_MD5SIG) 4240 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4241 } 4242 ptr += opsize - 2; 4243 length -= opsize; 4244 } 4245 return NULL; 4246 } 4247 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4248 #endif 4249 4250 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4251 * 4252 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4253 * it can pass through stack. So, the following predicate verifies that 4254 * this segment is not used for anything but congestion avoidance or 4255 * fast retransmit. Moreover, we even are able to eliminate most of such 4256 * second order effects, if we apply some small "replay" window (~RTO) 4257 * to timestamp space. 4258 * 4259 * All these measures still do not guarantee that we reject wrapped ACKs 4260 * on networks with high bandwidth, when sequence space is recycled fastly, 4261 * but it guarantees that such events will be very rare and do not affect 4262 * connection seriously. This doesn't look nice, but alas, PAWS is really 4263 * buggy extension. 4264 * 4265 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4266 * states that events when retransmit arrives after original data are rare. 4267 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4268 * the biggest problem on large power networks even with minor reordering. 4269 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4270 * up to bandwidth of 18Gigabit/sec. 8) ] 4271 */ 4272 4273 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4274 { 4275 const struct tcp_sock *tp = tcp_sk(sk); 4276 const struct tcphdr *th = tcp_hdr(skb); 4277 u32 seq = TCP_SKB_CB(skb)->seq; 4278 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4279 4280 return (/* 1. Pure ACK with correct sequence number. */ 4281 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4282 4283 /* 2. ... and duplicate ACK. */ 4284 ack == tp->snd_una && 4285 4286 /* 3. ... and does not update window. */ 4287 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4288 4289 /* 4. ... and sits in replay window. */ 4290 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4291 } 4292 4293 static inline bool tcp_paws_discard(const struct sock *sk, 4294 const struct sk_buff *skb) 4295 { 4296 const struct tcp_sock *tp = tcp_sk(sk); 4297 4298 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4299 !tcp_disordered_ack(sk, skb); 4300 } 4301 4302 /* Check segment sequence number for validity. 4303 * 4304 * Segment controls are considered valid, if the segment 4305 * fits to the window after truncation to the window. Acceptability 4306 * of data (and SYN, FIN, of course) is checked separately. 4307 * See tcp_data_queue(), for example. 4308 * 4309 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4310 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4311 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4312 * (borrowed from freebsd) 4313 */ 4314 4315 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4316 u32 seq, u32 end_seq) 4317 { 4318 if (before(end_seq, tp->rcv_wup)) 4319 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4320 4321 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4322 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4323 4324 return SKB_NOT_DROPPED_YET; 4325 } 4326 4327 /* When we get a reset we do this. */ 4328 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4329 { 4330 trace_tcp_receive_reset(sk); 4331 4332 /* mptcp can't tell us to ignore reset pkts, 4333 * so just ignore the return value of mptcp_incoming_options(). 4334 */ 4335 if (sk_is_mptcp(sk)) 4336 mptcp_incoming_options(sk, skb); 4337 4338 /* We want the right error as BSD sees it (and indeed as we do). */ 4339 switch (sk->sk_state) { 4340 case TCP_SYN_SENT: 4341 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4342 break; 4343 case TCP_CLOSE_WAIT: 4344 WRITE_ONCE(sk->sk_err, EPIPE); 4345 break; 4346 case TCP_CLOSE: 4347 return; 4348 default: 4349 WRITE_ONCE(sk->sk_err, ECONNRESET); 4350 } 4351 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4352 smp_wmb(); 4353 4354 tcp_write_queue_purge(sk); 4355 tcp_done(sk); 4356 4357 if (!sock_flag(sk, SOCK_DEAD)) 4358 sk_error_report(sk); 4359 } 4360 4361 /* 4362 * Process the FIN bit. This now behaves as it is supposed to work 4363 * and the FIN takes effect when it is validly part of sequence 4364 * space. Not before when we get holes. 4365 * 4366 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4367 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4368 * TIME-WAIT) 4369 * 4370 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4371 * close and we go into CLOSING (and later onto TIME-WAIT) 4372 * 4373 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4374 */ 4375 void tcp_fin(struct sock *sk) 4376 { 4377 struct tcp_sock *tp = tcp_sk(sk); 4378 4379 inet_csk_schedule_ack(sk); 4380 4381 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4382 sock_set_flag(sk, SOCK_DONE); 4383 4384 switch (sk->sk_state) { 4385 case TCP_SYN_RECV: 4386 case TCP_ESTABLISHED: 4387 /* Move to CLOSE_WAIT */ 4388 tcp_set_state(sk, TCP_CLOSE_WAIT); 4389 inet_csk_enter_pingpong_mode(sk); 4390 break; 4391 4392 case TCP_CLOSE_WAIT: 4393 case TCP_CLOSING: 4394 /* Received a retransmission of the FIN, do 4395 * nothing. 4396 */ 4397 break; 4398 case TCP_LAST_ACK: 4399 /* RFC793: Remain in the LAST-ACK state. */ 4400 break; 4401 4402 case TCP_FIN_WAIT1: 4403 /* This case occurs when a simultaneous close 4404 * happens, we must ack the received FIN and 4405 * enter the CLOSING state. 4406 */ 4407 tcp_send_ack(sk); 4408 tcp_set_state(sk, TCP_CLOSING); 4409 break; 4410 case TCP_FIN_WAIT2: 4411 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4412 tcp_send_ack(sk); 4413 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4414 break; 4415 default: 4416 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4417 * cases we should never reach this piece of code. 4418 */ 4419 pr_err("%s: Impossible, sk->sk_state=%d\n", 4420 __func__, sk->sk_state); 4421 break; 4422 } 4423 4424 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4425 * Probably, we should reset in this case. For now drop them. 4426 */ 4427 skb_rbtree_purge(&tp->out_of_order_queue); 4428 if (tcp_is_sack(tp)) 4429 tcp_sack_reset(&tp->rx_opt); 4430 4431 if (!sock_flag(sk, SOCK_DEAD)) { 4432 sk->sk_state_change(sk); 4433 4434 /* Do not send POLL_HUP for half duplex close. */ 4435 if (sk->sk_shutdown == SHUTDOWN_MASK || 4436 sk->sk_state == TCP_CLOSE) 4437 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4438 else 4439 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4440 } 4441 } 4442 4443 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4444 u32 end_seq) 4445 { 4446 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4447 if (before(seq, sp->start_seq)) 4448 sp->start_seq = seq; 4449 if (after(end_seq, sp->end_seq)) 4450 sp->end_seq = end_seq; 4451 return true; 4452 } 4453 return false; 4454 } 4455 4456 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4457 { 4458 struct tcp_sock *tp = tcp_sk(sk); 4459 4460 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4461 int mib_idx; 4462 4463 if (before(seq, tp->rcv_nxt)) 4464 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4465 else 4466 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4467 4468 NET_INC_STATS(sock_net(sk), mib_idx); 4469 4470 tp->rx_opt.dsack = 1; 4471 tp->duplicate_sack[0].start_seq = seq; 4472 tp->duplicate_sack[0].end_seq = end_seq; 4473 } 4474 } 4475 4476 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4477 { 4478 struct tcp_sock *tp = tcp_sk(sk); 4479 4480 if (!tp->rx_opt.dsack) 4481 tcp_dsack_set(sk, seq, end_seq); 4482 else 4483 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4484 } 4485 4486 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4487 { 4488 /* When the ACK path fails or drops most ACKs, the sender would 4489 * timeout and spuriously retransmit the same segment repeatedly. 4490 * The receiver remembers and reflects via DSACKs. Leverage the 4491 * DSACK state and change the txhash to re-route speculatively. 4492 */ 4493 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4494 sk_rethink_txhash(sk)) 4495 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4496 } 4497 4498 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4499 { 4500 struct tcp_sock *tp = tcp_sk(sk); 4501 4502 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4503 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4504 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4505 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4506 4507 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4508 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4509 4510 tcp_rcv_spurious_retrans(sk, skb); 4511 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4512 end_seq = tp->rcv_nxt; 4513 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4514 } 4515 } 4516 4517 tcp_send_ack(sk); 4518 } 4519 4520 /* These routines update the SACK block as out-of-order packets arrive or 4521 * in-order packets close up the sequence space. 4522 */ 4523 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4524 { 4525 int this_sack; 4526 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4527 struct tcp_sack_block *swalk = sp + 1; 4528 4529 /* See if the recent change to the first SACK eats into 4530 * or hits the sequence space of other SACK blocks, if so coalesce. 4531 */ 4532 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4533 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4534 int i; 4535 4536 /* Zap SWALK, by moving every further SACK up by one slot. 4537 * Decrease num_sacks. 4538 */ 4539 tp->rx_opt.num_sacks--; 4540 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4541 sp[i] = sp[i + 1]; 4542 continue; 4543 } 4544 this_sack++; 4545 swalk++; 4546 } 4547 } 4548 4549 void tcp_sack_compress_send_ack(struct sock *sk) 4550 { 4551 struct tcp_sock *tp = tcp_sk(sk); 4552 4553 if (!tp->compressed_ack) 4554 return; 4555 4556 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4557 __sock_put(sk); 4558 4559 /* Since we have to send one ack finally, 4560 * substract one from tp->compressed_ack to keep 4561 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4562 */ 4563 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4564 tp->compressed_ack - 1); 4565 4566 tp->compressed_ack = 0; 4567 tcp_send_ack(sk); 4568 } 4569 4570 /* Reasonable amount of sack blocks included in TCP SACK option 4571 * The max is 4, but this becomes 3 if TCP timestamps are there. 4572 * Given that SACK packets might be lost, be conservative and use 2. 4573 */ 4574 #define TCP_SACK_BLOCKS_EXPECTED 2 4575 4576 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4577 { 4578 struct tcp_sock *tp = tcp_sk(sk); 4579 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4580 int cur_sacks = tp->rx_opt.num_sacks; 4581 int this_sack; 4582 4583 if (!cur_sacks) 4584 goto new_sack; 4585 4586 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4587 if (tcp_sack_extend(sp, seq, end_seq)) { 4588 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4589 tcp_sack_compress_send_ack(sk); 4590 /* Rotate this_sack to the first one. */ 4591 for (; this_sack > 0; this_sack--, sp--) 4592 swap(*sp, *(sp - 1)); 4593 if (cur_sacks > 1) 4594 tcp_sack_maybe_coalesce(tp); 4595 return; 4596 } 4597 } 4598 4599 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4600 tcp_sack_compress_send_ack(sk); 4601 4602 /* Could not find an adjacent existing SACK, build a new one, 4603 * put it at the front, and shift everyone else down. We 4604 * always know there is at least one SACK present already here. 4605 * 4606 * If the sack array is full, forget about the last one. 4607 */ 4608 if (this_sack >= TCP_NUM_SACKS) { 4609 this_sack--; 4610 tp->rx_opt.num_sacks--; 4611 sp--; 4612 } 4613 for (; this_sack > 0; this_sack--, sp--) 4614 *sp = *(sp - 1); 4615 4616 new_sack: 4617 /* Build the new head SACK, and we're done. */ 4618 sp->start_seq = seq; 4619 sp->end_seq = end_seq; 4620 tp->rx_opt.num_sacks++; 4621 } 4622 4623 /* RCV.NXT advances, some SACKs should be eaten. */ 4624 4625 static void tcp_sack_remove(struct tcp_sock *tp) 4626 { 4627 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4628 int num_sacks = tp->rx_opt.num_sacks; 4629 int this_sack; 4630 4631 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4632 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4633 tp->rx_opt.num_sacks = 0; 4634 return; 4635 } 4636 4637 for (this_sack = 0; this_sack < num_sacks;) { 4638 /* Check if the start of the sack is covered by RCV.NXT. */ 4639 if (!before(tp->rcv_nxt, sp->start_seq)) { 4640 int i; 4641 4642 /* RCV.NXT must cover all the block! */ 4643 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4644 4645 /* Zap this SACK, by moving forward any other SACKS. */ 4646 for (i = this_sack+1; i < num_sacks; i++) 4647 tp->selective_acks[i-1] = tp->selective_acks[i]; 4648 num_sacks--; 4649 continue; 4650 } 4651 this_sack++; 4652 sp++; 4653 } 4654 tp->rx_opt.num_sacks = num_sacks; 4655 } 4656 4657 /** 4658 * tcp_try_coalesce - try to merge skb to prior one 4659 * @sk: socket 4660 * @to: prior buffer 4661 * @from: buffer to add in queue 4662 * @fragstolen: pointer to boolean 4663 * 4664 * Before queueing skb @from after @to, try to merge them 4665 * to reduce overall memory use and queue lengths, if cost is small. 4666 * Packets in ofo or receive queues can stay a long time. 4667 * Better try to coalesce them right now to avoid future collapses. 4668 * Returns true if caller should free @from instead of queueing it 4669 */ 4670 static bool tcp_try_coalesce(struct sock *sk, 4671 struct sk_buff *to, 4672 struct sk_buff *from, 4673 bool *fragstolen) 4674 { 4675 int delta; 4676 4677 *fragstolen = false; 4678 4679 /* Its possible this segment overlaps with prior segment in queue */ 4680 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4681 return false; 4682 4683 if (!mptcp_skb_can_collapse(to, from)) 4684 return false; 4685 4686 #ifdef CONFIG_TLS_DEVICE 4687 if (from->decrypted != to->decrypted) 4688 return false; 4689 #endif 4690 4691 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4692 return false; 4693 4694 atomic_add(delta, &sk->sk_rmem_alloc); 4695 sk_mem_charge(sk, delta); 4696 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4697 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4698 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4699 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4700 4701 if (TCP_SKB_CB(from)->has_rxtstamp) { 4702 TCP_SKB_CB(to)->has_rxtstamp = true; 4703 to->tstamp = from->tstamp; 4704 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4705 } 4706 4707 return true; 4708 } 4709 4710 static bool tcp_ooo_try_coalesce(struct sock *sk, 4711 struct sk_buff *to, 4712 struct sk_buff *from, 4713 bool *fragstolen) 4714 { 4715 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4716 4717 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4718 if (res) { 4719 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4720 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4721 4722 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4723 } 4724 return res; 4725 } 4726 4727 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4728 enum skb_drop_reason reason) 4729 { 4730 sk_drops_add(sk, skb); 4731 kfree_skb_reason(skb, reason); 4732 } 4733 4734 /* This one checks to see if we can put data from the 4735 * out_of_order queue into the receive_queue. 4736 */ 4737 static void tcp_ofo_queue(struct sock *sk) 4738 { 4739 struct tcp_sock *tp = tcp_sk(sk); 4740 __u32 dsack_high = tp->rcv_nxt; 4741 bool fin, fragstolen, eaten; 4742 struct sk_buff *skb, *tail; 4743 struct rb_node *p; 4744 4745 p = rb_first(&tp->out_of_order_queue); 4746 while (p) { 4747 skb = rb_to_skb(p); 4748 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4749 break; 4750 4751 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4752 __u32 dsack = dsack_high; 4753 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4754 dsack_high = TCP_SKB_CB(skb)->end_seq; 4755 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4756 } 4757 p = rb_next(p); 4758 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4759 4760 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4761 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4762 continue; 4763 } 4764 4765 tail = skb_peek_tail(&sk->sk_receive_queue); 4766 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4767 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4768 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4769 if (!eaten) 4770 __skb_queue_tail(&sk->sk_receive_queue, skb); 4771 else 4772 kfree_skb_partial(skb, fragstolen); 4773 4774 if (unlikely(fin)) { 4775 tcp_fin(sk); 4776 /* tcp_fin() purges tp->out_of_order_queue, 4777 * so we must end this loop right now. 4778 */ 4779 break; 4780 } 4781 } 4782 } 4783 4784 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4785 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4786 4787 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4788 unsigned int size) 4789 { 4790 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4791 !sk_rmem_schedule(sk, skb, size)) { 4792 4793 if (tcp_prune_queue(sk, skb) < 0) 4794 return -1; 4795 4796 while (!sk_rmem_schedule(sk, skb, size)) { 4797 if (!tcp_prune_ofo_queue(sk, skb)) 4798 return -1; 4799 } 4800 } 4801 return 0; 4802 } 4803 4804 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4805 { 4806 struct tcp_sock *tp = tcp_sk(sk); 4807 struct rb_node **p, *parent; 4808 struct sk_buff *skb1; 4809 u32 seq, end_seq; 4810 bool fragstolen; 4811 4812 tcp_ecn_check_ce(sk, skb); 4813 4814 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4815 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4816 sk->sk_data_ready(sk); 4817 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4818 return; 4819 } 4820 4821 /* Disable header prediction. */ 4822 tp->pred_flags = 0; 4823 inet_csk_schedule_ack(sk); 4824 4825 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4826 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4827 seq = TCP_SKB_CB(skb)->seq; 4828 end_seq = TCP_SKB_CB(skb)->end_seq; 4829 4830 p = &tp->out_of_order_queue.rb_node; 4831 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4832 /* Initial out of order segment, build 1 SACK. */ 4833 if (tcp_is_sack(tp)) { 4834 tp->rx_opt.num_sacks = 1; 4835 tp->selective_acks[0].start_seq = seq; 4836 tp->selective_acks[0].end_seq = end_seq; 4837 } 4838 rb_link_node(&skb->rbnode, NULL, p); 4839 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4840 tp->ooo_last_skb = skb; 4841 goto end; 4842 } 4843 4844 /* In the typical case, we are adding an skb to the end of the list. 4845 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4846 */ 4847 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4848 skb, &fragstolen)) { 4849 coalesce_done: 4850 /* For non sack flows, do not grow window to force DUPACK 4851 * and trigger fast retransmit. 4852 */ 4853 if (tcp_is_sack(tp)) 4854 tcp_grow_window(sk, skb, true); 4855 kfree_skb_partial(skb, fragstolen); 4856 skb = NULL; 4857 goto add_sack; 4858 } 4859 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4860 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4861 parent = &tp->ooo_last_skb->rbnode; 4862 p = &parent->rb_right; 4863 goto insert; 4864 } 4865 4866 /* Find place to insert this segment. Handle overlaps on the way. */ 4867 parent = NULL; 4868 while (*p) { 4869 parent = *p; 4870 skb1 = rb_to_skb(parent); 4871 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4872 p = &parent->rb_left; 4873 continue; 4874 } 4875 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4876 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4877 /* All the bits are present. Drop. */ 4878 NET_INC_STATS(sock_net(sk), 4879 LINUX_MIB_TCPOFOMERGE); 4880 tcp_drop_reason(sk, skb, 4881 SKB_DROP_REASON_TCP_OFOMERGE); 4882 skb = NULL; 4883 tcp_dsack_set(sk, seq, end_seq); 4884 goto add_sack; 4885 } 4886 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4887 /* Partial overlap. */ 4888 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4889 } else { 4890 /* skb's seq == skb1's seq and skb covers skb1. 4891 * Replace skb1 with skb. 4892 */ 4893 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4894 &tp->out_of_order_queue); 4895 tcp_dsack_extend(sk, 4896 TCP_SKB_CB(skb1)->seq, 4897 TCP_SKB_CB(skb1)->end_seq); 4898 NET_INC_STATS(sock_net(sk), 4899 LINUX_MIB_TCPOFOMERGE); 4900 tcp_drop_reason(sk, skb1, 4901 SKB_DROP_REASON_TCP_OFOMERGE); 4902 goto merge_right; 4903 } 4904 } else if (tcp_ooo_try_coalesce(sk, skb1, 4905 skb, &fragstolen)) { 4906 goto coalesce_done; 4907 } 4908 p = &parent->rb_right; 4909 } 4910 insert: 4911 /* Insert segment into RB tree. */ 4912 rb_link_node(&skb->rbnode, parent, p); 4913 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4914 4915 merge_right: 4916 /* Remove other segments covered by skb. */ 4917 while ((skb1 = skb_rb_next(skb)) != NULL) { 4918 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4919 break; 4920 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4921 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4922 end_seq); 4923 break; 4924 } 4925 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4926 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4927 TCP_SKB_CB(skb1)->end_seq); 4928 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4929 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4930 } 4931 /* If there is no skb after us, we are the last_skb ! */ 4932 if (!skb1) 4933 tp->ooo_last_skb = skb; 4934 4935 add_sack: 4936 if (tcp_is_sack(tp)) 4937 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4938 end: 4939 if (skb) { 4940 /* For non sack flows, do not grow window to force DUPACK 4941 * and trigger fast retransmit. 4942 */ 4943 if (tcp_is_sack(tp)) 4944 tcp_grow_window(sk, skb, false); 4945 skb_condense(skb); 4946 skb_set_owner_r(skb, sk); 4947 } 4948 } 4949 4950 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4951 bool *fragstolen) 4952 { 4953 int eaten; 4954 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4955 4956 eaten = (tail && 4957 tcp_try_coalesce(sk, tail, 4958 skb, fragstolen)) ? 1 : 0; 4959 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4960 if (!eaten) { 4961 __skb_queue_tail(&sk->sk_receive_queue, skb); 4962 skb_set_owner_r(skb, sk); 4963 } 4964 return eaten; 4965 } 4966 4967 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4968 { 4969 struct sk_buff *skb; 4970 int err = -ENOMEM; 4971 int data_len = 0; 4972 bool fragstolen; 4973 4974 if (size == 0) 4975 return 0; 4976 4977 if (size > PAGE_SIZE) { 4978 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4979 4980 data_len = npages << PAGE_SHIFT; 4981 size = data_len + (size & ~PAGE_MASK); 4982 } 4983 skb = alloc_skb_with_frags(size - data_len, data_len, 4984 PAGE_ALLOC_COSTLY_ORDER, 4985 &err, sk->sk_allocation); 4986 if (!skb) 4987 goto err; 4988 4989 skb_put(skb, size - data_len); 4990 skb->data_len = data_len; 4991 skb->len = size; 4992 4993 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4994 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4995 goto err_free; 4996 } 4997 4998 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4999 if (err) 5000 goto err_free; 5001 5002 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5003 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5004 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5005 5006 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5007 WARN_ON_ONCE(fragstolen); /* should not happen */ 5008 __kfree_skb(skb); 5009 } 5010 return size; 5011 5012 err_free: 5013 kfree_skb(skb); 5014 err: 5015 return err; 5016 5017 } 5018 5019 void tcp_data_ready(struct sock *sk) 5020 { 5021 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5022 sk->sk_data_ready(sk); 5023 } 5024 5025 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5026 { 5027 struct tcp_sock *tp = tcp_sk(sk); 5028 enum skb_drop_reason reason; 5029 bool fragstolen; 5030 int eaten; 5031 5032 /* If a subflow has been reset, the packet should not continue 5033 * to be processed, drop the packet. 5034 */ 5035 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5036 __kfree_skb(skb); 5037 return; 5038 } 5039 5040 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5041 __kfree_skb(skb); 5042 return; 5043 } 5044 skb_dst_drop(skb); 5045 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5046 5047 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5048 tp->rx_opt.dsack = 0; 5049 5050 /* Queue data for delivery to the user. 5051 * Packets in sequence go to the receive queue. 5052 * Out of sequence packets to the out_of_order_queue. 5053 */ 5054 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5055 if (tcp_receive_window(tp) == 0) { 5056 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5057 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5058 goto out_of_window; 5059 } 5060 5061 /* Ok. In sequence. In window. */ 5062 queue_and_out: 5063 if (skb_queue_len(&sk->sk_receive_queue) == 0) 5064 sk_forced_mem_schedule(sk, skb->truesize); 5065 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5066 reason = SKB_DROP_REASON_PROTO_MEM; 5067 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5068 sk->sk_data_ready(sk); 5069 goto drop; 5070 } 5071 5072 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5073 if (skb->len) 5074 tcp_event_data_recv(sk, skb); 5075 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5076 tcp_fin(sk); 5077 5078 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5079 tcp_ofo_queue(sk); 5080 5081 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5082 * gap in queue is filled. 5083 */ 5084 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5085 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5086 } 5087 5088 if (tp->rx_opt.num_sacks) 5089 tcp_sack_remove(tp); 5090 5091 tcp_fast_path_check(sk); 5092 5093 if (eaten > 0) 5094 kfree_skb_partial(skb, fragstolen); 5095 if (!sock_flag(sk, SOCK_DEAD)) 5096 tcp_data_ready(sk); 5097 return; 5098 } 5099 5100 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5101 tcp_rcv_spurious_retrans(sk, skb); 5102 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5103 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5104 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5105 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5106 5107 out_of_window: 5108 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5109 inet_csk_schedule_ack(sk); 5110 drop: 5111 tcp_drop_reason(sk, skb, reason); 5112 return; 5113 } 5114 5115 /* Out of window. F.e. zero window probe. */ 5116 if (!before(TCP_SKB_CB(skb)->seq, 5117 tp->rcv_nxt + tcp_receive_window(tp))) { 5118 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5119 goto out_of_window; 5120 } 5121 5122 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5123 /* Partial packet, seq < rcv_next < end_seq */ 5124 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5125 5126 /* If window is closed, drop tail of packet. But after 5127 * remembering D-SACK for its head made in previous line. 5128 */ 5129 if (!tcp_receive_window(tp)) { 5130 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5131 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5132 goto out_of_window; 5133 } 5134 goto queue_and_out; 5135 } 5136 5137 tcp_data_queue_ofo(sk, skb); 5138 } 5139 5140 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5141 { 5142 if (list) 5143 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5144 5145 return skb_rb_next(skb); 5146 } 5147 5148 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5149 struct sk_buff_head *list, 5150 struct rb_root *root) 5151 { 5152 struct sk_buff *next = tcp_skb_next(skb, list); 5153 5154 if (list) 5155 __skb_unlink(skb, list); 5156 else 5157 rb_erase(&skb->rbnode, root); 5158 5159 __kfree_skb(skb); 5160 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5161 5162 return next; 5163 } 5164 5165 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5166 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5167 { 5168 struct rb_node **p = &root->rb_node; 5169 struct rb_node *parent = NULL; 5170 struct sk_buff *skb1; 5171 5172 while (*p) { 5173 parent = *p; 5174 skb1 = rb_to_skb(parent); 5175 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5176 p = &parent->rb_left; 5177 else 5178 p = &parent->rb_right; 5179 } 5180 rb_link_node(&skb->rbnode, parent, p); 5181 rb_insert_color(&skb->rbnode, root); 5182 } 5183 5184 /* Collapse contiguous sequence of skbs head..tail with 5185 * sequence numbers start..end. 5186 * 5187 * If tail is NULL, this means until the end of the queue. 5188 * 5189 * Segments with FIN/SYN are not collapsed (only because this 5190 * simplifies code) 5191 */ 5192 static void 5193 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5194 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5195 { 5196 struct sk_buff *skb = head, *n; 5197 struct sk_buff_head tmp; 5198 bool end_of_skbs; 5199 5200 /* First, check that queue is collapsible and find 5201 * the point where collapsing can be useful. 5202 */ 5203 restart: 5204 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5205 n = tcp_skb_next(skb, list); 5206 5207 /* No new bits? It is possible on ofo queue. */ 5208 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5209 skb = tcp_collapse_one(sk, skb, list, root); 5210 if (!skb) 5211 break; 5212 goto restart; 5213 } 5214 5215 /* The first skb to collapse is: 5216 * - not SYN/FIN and 5217 * - bloated or contains data before "start" or 5218 * overlaps to the next one and mptcp allow collapsing. 5219 */ 5220 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5221 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5222 before(TCP_SKB_CB(skb)->seq, start))) { 5223 end_of_skbs = false; 5224 break; 5225 } 5226 5227 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5228 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5229 end_of_skbs = false; 5230 break; 5231 } 5232 5233 /* Decided to skip this, advance start seq. */ 5234 start = TCP_SKB_CB(skb)->end_seq; 5235 } 5236 if (end_of_skbs || 5237 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5238 return; 5239 5240 __skb_queue_head_init(&tmp); 5241 5242 while (before(start, end)) { 5243 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5244 struct sk_buff *nskb; 5245 5246 nskb = alloc_skb(copy, GFP_ATOMIC); 5247 if (!nskb) 5248 break; 5249 5250 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5251 #ifdef CONFIG_TLS_DEVICE 5252 nskb->decrypted = skb->decrypted; 5253 #endif 5254 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5255 if (list) 5256 __skb_queue_before(list, skb, nskb); 5257 else 5258 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5259 skb_set_owner_r(nskb, sk); 5260 mptcp_skb_ext_move(nskb, skb); 5261 5262 /* Copy data, releasing collapsed skbs. */ 5263 while (copy > 0) { 5264 int offset = start - TCP_SKB_CB(skb)->seq; 5265 int size = TCP_SKB_CB(skb)->end_seq - start; 5266 5267 BUG_ON(offset < 0); 5268 if (size > 0) { 5269 size = min(copy, size); 5270 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5271 BUG(); 5272 TCP_SKB_CB(nskb)->end_seq += size; 5273 copy -= size; 5274 start += size; 5275 } 5276 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5277 skb = tcp_collapse_one(sk, skb, list, root); 5278 if (!skb || 5279 skb == tail || 5280 !mptcp_skb_can_collapse(nskb, skb) || 5281 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5282 goto end; 5283 #ifdef CONFIG_TLS_DEVICE 5284 if (skb->decrypted != nskb->decrypted) 5285 goto end; 5286 #endif 5287 } 5288 } 5289 } 5290 end: 5291 skb_queue_walk_safe(&tmp, skb, n) 5292 tcp_rbtree_insert(root, skb); 5293 } 5294 5295 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5296 * and tcp_collapse() them until all the queue is collapsed. 5297 */ 5298 static void tcp_collapse_ofo_queue(struct sock *sk) 5299 { 5300 struct tcp_sock *tp = tcp_sk(sk); 5301 u32 range_truesize, sum_tiny = 0; 5302 struct sk_buff *skb, *head; 5303 u32 start, end; 5304 5305 skb = skb_rb_first(&tp->out_of_order_queue); 5306 new_range: 5307 if (!skb) { 5308 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5309 return; 5310 } 5311 start = TCP_SKB_CB(skb)->seq; 5312 end = TCP_SKB_CB(skb)->end_seq; 5313 range_truesize = skb->truesize; 5314 5315 for (head = skb;;) { 5316 skb = skb_rb_next(skb); 5317 5318 /* Range is terminated when we see a gap or when 5319 * we are at the queue end. 5320 */ 5321 if (!skb || 5322 after(TCP_SKB_CB(skb)->seq, end) || 5323 before(TCP_SKB_CB(skb)->end_seq, start)) { 5324 /* Do not attempt collapsing tiny skbs */ 5325 if (range_truesize != head->truesize || 5326 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5327 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5328 head, skb, start, end); 5329 } else { 5330 sum_tiny += range_truesize; 5331 if (sum_tiny > sk->sk_rcvbuf >> 3) 5332 return; 5333 } 5334 goto new_range; 5335 } 5336 5337 range_truesize += skb->truesize; 5338 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5339 start = TCP_SKB_CB(skb)->seq; 5340 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5341 end = TCP_SKB_CB(skb)->end_seq; 5342 } 5343 } 5344 5345 /* 5346 * Clean the out-of-order queue to make room. 5347 * We drop high sequences packets to : 5348 * 1) Let a chance for holes to be filled. 5349 * This means we do not drop packets from ooo queue if their sequence 5350 * is before incoming packet sequence. 5351 * 2) not add too big latencies if thousands of packets sit there. 5352 * (But if application shrinks SO_RCVBUF, we could still end up 5353 * freeing whole queue here) 5354 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5355 * 5356 * Return true if queue has shrunk. 5357 */ 5358 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5359 { 5360 struct tcp_sock *tp = tcp_sk(sk); 5361 struct rb_node *node, *prev; 5362 bool pruned = false; 5363 int goal; 5364 5365 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5366 return false; 5367 5368 goal = sk->sk_rcvbuf >> 3; 5369 node = &tp->ooo_last_skb->rbnode; 5370 5371 do { 5372 struct sk_buff *skb = rb_to_skb(node); 5373 5374 /* If incoming skb would land last in ofo queue, stop pruning. */ 5375 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5376 break; 5377 pruned = true; 5378 prev = rb_prev(node); 5379 rb_erase(node, &tp->out_of_order_queue); 5380 goal -= skb->truesize; 5381 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5382 tp->ooo_last_skb = rb_to_skb(prev); 5383 if (!prev || goal <= 0) { 5384 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5385 !tcp_under_memory_pressure(sk)) 5386 break; 5387 goal = sk->sk_rcvbuf >> 3; 5388 } 5389 node = prev; 5390 } while (node); 5391 5392 if (pruned) { 5393 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5394 /* Reset SACK state. A conforming SACK implementation will 5395 * do the same at a timeout based retransmit. When a connection 5396 * is in a sad state like this, we care only about integrity 5397 * of the connection not performance. 5398 */ 5399 if (tp->rx_opt.sack_ok) 5400 tcp_sack_reset(&tp->rx_opt); 5401 } 5402 return pruned; 5403 } 5404 5405 /* Reduce allocated memory if we can, trying to get 5406 * the socket within its memory limits again. 5407 * 5408 * Return less than zero if we should start dropping frames 5409 * until the socket owning process reads some of the data 5410 * to stabilize the situation. 5411 */ 5412 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5413 { 5414 struct tcp_sock *tp = tcp_sk(sk); 5415 5416 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5417 5418 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5419 tcp_clamp_window(sk); 5420 else if (tcp_under_memory_pressure(sk)) 5421 tcp_adjust_rcv_ssthresh(sk); 5422 5423 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5424 return 0; 5425 5426 tcp_collapse_ofo_queue(sk); 5427 if (!skb_queue_empty(&sk->sk_receive_queue)) 5428 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5429 skb_peek(&sk->sk_receive_queue), 5430 NULL, 5431 tp->copied_seq, tp->rcv_nxt); 5432 5433 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5434 return 0; 5435 5436 /* Collapsing did not help, destructive actions follow. 5437 * This must not ever occur. */ 5438 5439 tcp_prune_ofo_queue(sk, in_skb); 5440 5441 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5442 return 0; 5443 5444 /* If we are really being abused, tell the caller to silently 5445 * drop receive data on the floor. It will get retransmitted 5446 * and hopefully then we'll have sufficient space. 5447 */ 5448 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5449 5450 /* Massive buffer overcommit. */ 5451 tp->pred_flags = 0; 5452 return -1; 5453 } 5454 5455 static bool tcp_should_expand_sndbuf(struct sock *sk) 5456 { 5457 const struct tcp_sock *tp = tcp_sk(sk); 5458 5459 /* If the user specified a specific send buffer setting, do 5460 * not modify it. 5461 */ 5462 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5463 return false; 5464 5465 /* If we are under global TCP memory pressure, do not expand. */ 5466 if (tcp_under_memory_pressure(sk)) { 5467 int unused_mem = sk_unused_reserved_mem(sk); 5468 5469 /* Adjust sndbuf according to reserved mem. But make sure 5470 * it never goes below SOCK_MIN_SNDBUF. 5471 * See sk_stream_moderate_sndbuf() for more details. 5472 */ 5473 if (unused_mem > SOCK_MIN_SNDBUF) 5474 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5475 5476 return false; 5477 } 5478 5479 /* If we are under soft global TCP memory pressure, do not expand. */ 5480 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5481 return false; 5482 5483 /* If we filled the congestion window, do not expand. */ 5484 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5485 return false; 5486 5487 return true; 5488 } 5489 5490 static void tcp_new_space(struct sock *sk) 5491 { 5492 struct tcp_sock *tp = tcp_sk(sk); 5493 5494 if (tcp_should_expand_sndbuf(sk)) { 5495 tcp_sndbuf_expand(sk); 5496 tp->snd_cwnd_stamp = tcp_jiffies32; 5497 } 5498 5499 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5500 } 5501 5502 /* Caller made space either from: 5503 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5504 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5505 * 5506 * We might be able to generate EPOLLOUT to the application if: 5507 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5508 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5509 * small enough that tcp_stream_memory_free() decides it 5510 * is time to generate EPOLLOUT. 5511 */ 5512 void tcp_check_space(struct sock *sk) 5513 { 5514 /* pairs with tcp_poll() */ 5515 smp_mb(); 5516 if (sk->sk_socket && 5517 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5518 tcp_new_space(sk); 5519 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5520 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5521 } 5522 } 5523 5524 static inline void tcp_data_snd_check(struct sock *sk) 5525 { 5526 tcp_push_pending_frames(sk); 5527 tcp_check_space(sk); 5528 } 5529 5530 /* 5531 * Check if sending an ack is needed. 5532 */ 5533 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5534 { 5535 struct tcp_sock *tp = tcp_sk(sk); 5536 unsigned long rtt, delay; 5537 5538 /* More than one full frame received... */ 5539 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5540 /* ... and right edge of window advances far enough. 5541 * (tcp_recvmsg() will send ACK otherwise). 5542 * If application uses SO_RCVLOWAT, we want send ack now if 5543 * we have not received enough bytes to satisfy the condition. 5544 */ 5545 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5546 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5547 /* We ACK each frame or... */ 5548 tcp_in_quickack_mode(sk) || 5549 /* Protocol state mandates a one-time immediate ACK */ 5550 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5551 send_now: 5552 tcp_send_ack(sk); 5553 return; 5554 } 5555 5556 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5557 tcp_send_delayed_ack(sk); 5558 return; 5559 } 5560 5561 if (!tcp_is_sack(tp) || 5562 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5563 goto send_now; 5564 5565 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5566 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5567 tp->dup_ack_counter = 0; 5568 } 5569 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5570 tp->dup_ack_counter++; 5571 goto send_now; 5572 } 5573 tp->compressed_ack++; 5574 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5575 return; 5576 5577 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5578 5579 rtt = tp->rcv_rtt_est.rtt_us; 5580 if (tp->srtt_us && tp->srtt_us < rtt) 5581 rtt = tp->srtt_us; 5582 5583 delay = min_t(unsigned long, 5584 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5585 rtt * (NSEC_PER_USEC >> 3)/20); 5586 sock_hold(sk); 5587 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5588 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5589 HRTIMER_MODE_REL_PINNED_SOFT); 5590 } 5591 5592 static inline void tcp_ack_snd_check(struct sock *sk) 5593 { 5594 if (!inet_csk_ack_scheduled(sk)) { 5595 /* We sent a data segment already. */ 5596 return; 5597 } 5598 __tcp_ack_snd_check(sk, 1); 5599 } 5600 5601 /* 5602 * This routine is only called when we have urgent data 5603 * signaled. Its the 'slow' part of tcp_urg. It could be 5604 * moved inline now as tcp_urg is only called from one 5605 * place. We handle URGent data wrong. We have to - as 5606 * BSD still doesn't use the correction from RFC961. 5607 * For 1003.1g we should support a new option TCP_STDURG to permit 5608 * either form (or just set the sysctl tcp_stdurg). 5609 */ 5610 5611 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5612 { 5613 struct tcp_sock *tp = tcp_sk(sk); 5614 u32 ptr = ntohs(th->urg_ptr); 5615 5616 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5617 ptr--; 5618 ptr += ntohl(th->seq); 5619 5620 /* Ignore urgent data that we've already seen and read. */ 5621 if (after(tp->copied_seq, ptr)) 5622 return; 5623 5624 /* Do not replay urg ptr. 5625 * 5626 * NOTE: interesting situation not covered by specs. 5627 * Misbehaving sender may send urg ptr, pointing to segment, 5628 * which we already have in ofo queue. We are not able to fetch 5629 * such data and will stay in TCP_URG_NOTYET until will be eaten 5630 * by recvmsg(). Seems, we are not obliged to handle such wicked 5631 * situations. But it is worth to think about possibility of some 5632 * DoSes using some hypothetical application level deadlock. 5633 */ 5634 if (before(ptr, tp->rcv_nxt)) 5635 return; 5636 5637 /* Do we already have a newer (or duplicate) urgent pointer? */ 5638 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5639 return; 5640 5641 /* Tell the world about our new urgent pointer. */ 5642 sk_send_sigurg(sk); 5643 5644 /* We may be adding urgent data when the last byte read was 5645 * urgent. To do this requires some care. We cannot just ignore 5646 * tp->copied_seq since we would read the last urgent byte again 5647 * as data, nor can we alter copied_seq until this data arrives 5648 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5649 * 5650 * NOTE. Double Dutch. Rendering to plain English: author of comment 5651 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5652 * and expect that both A and B disappear from stream. This is _wrong_. 5653 * Though this happens in BSD with high probability, this is occasional. 5654 * Any application relying on this is buggy. Note also, that fix "works" 5655 * only in this artificial test. Insert some normal data between A and B and we will 5656 * decline of BSD again. Verdict: it is better to remove to trap 5657 * buggy users. 5658 */ 5659 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5660 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5661 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5662 tp->copied_seq++; 5663 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5664 __skb_unlink(skb, &sk->sk_receive_queue); 5665 __kfree_skb(skb); 5666 } 5667 } 5668 5669 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5670 WRITE_ONCE(tp->urg_seq, ptr); 5671 5672 /* Disable header prediction. */ 5673 tp->pred_flags = 0; 5674 } 5675 5676 /* This is the 'fast' part of urgent handling. */ 5677 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5678 { 5679 struct tcp_sock *tp = tcp_sk(sk); 5680 5681 /* Check if we get a new urgent pointer - normally not. */ 5682 if (unlikely(th->urg)) 5683 tcp_check_urg(sk, th); 5684 5685 /* Do we wait for any urgent data? - normally not... */ 5686 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5687 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5688 th->syn; 5689 5690 /* Is the urgent pointer pointing into this packet? */ 5691 if (ptr < skb->len) { 5692 u8 tmp; 5693 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5694 BUG(); 5695 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5696 if (!sock_flag(sk, SOCK_DEAD)) 5697 sk->sk_data_ready(sk); 5698 } 5699 } 5700 } 5701 5702 /* Accept RST for rcv_nxt - 1 after a FIN. 5703 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5704 * FIN is sent followed by a RST packet. The RST is sent with the same 5705 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5706 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5707 * ACKs on the closed socket. In addition middleboxes can drop either the 5708 * challenge ACK or a subsequent RST. 5709 */ 5710 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5711 { 5712 const struct tcp_sock *tp = tcp_sk(sk); 5713 5714 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5715 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5716 TCPF_CLOSING)); 5717 } 5718 5719 /* Does PAWS and seqno based validation of an incoming segment, flags will 5720 * play significant role here. 5721 */ 5722 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5723 const struct tcphdr *th, int syn_inerr) 5724 { 5725 struct tcp_sock *tp = tcp_sk(sk); 5726 SKB_DR(reason); 5727 5728 /* RFC1323: H1. Apply PAWS check first. */ 5729 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5730 tp->rx_opt.saw_tstamp && 5731 tcp_paws_discard(sk, skb)) { 5732 if (!th->rst) { 5733 if (unlikely(th->syn)) 5734 goto syn_challenge; 5735 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5736 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5737 LINUX_MIB_TCPACKSKIPPEDPAWS, 5738 &tp->last_oow_ack_time)) 5739 tcp_send_dupack(sk, skb); 5740 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5741 goto discard; 5742 } 5743 /* Reset is accepted even if it did not pass PAWS. */ 5744 } 5745 5746 /* Step 1: check sequence number */ 5747 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5748 if (reason) { 5749 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5750 * (RST) segments are validated by checking their SEQ-fields." 5751 * And page 69: "If an incoming segment is not acceptable, 5752 * an acknowledgment should be sent in reply (unless the RST 5753 * bit is set, if so drop the segment and return)". 5754 */ 5755 if (!th->rst) { 5756 if (th->syn) 5757 goto syn_challenge; 5758 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5759 LINUX_MIB_TCPACKSKIPPEDSEQ, 5760 &tp->last_oow_ack_time)) 5761 tcp_send_dupack(sk, skb); 5762 } else if (tcp_reset_check(sk, skb)) { 5763 goto reset; 5764 } 5765 goto discard; 5766 } 5767 5768 /* Step 2: check RST bit */ 5769 if (th->rst) { 5770 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5771 * FIN and SACK too if available): 5772 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5773 * the right-most SACK block, 5774 * then 5775 * RESET the connection 5776 * else 5777 * Send a challenge ACK 5778 */ 5779 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5780 tcp_reset_check(sk, skb)) 5781 goto reset; 5782 5783 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5784 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5785 int max_sack = sp[0].end_seq; 5786 int this_sack; 5787 5788 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5789 ++this_sack) { 5790 max_sack = after(sp[this_sack].end_seq, 5791 max_sack) ? 5792 sp[this_sack].end_seq : max_sack; 5793 } 5794 5795 if (TCP_SKB_CB(skb)->seq == max_sack) 5796 goto reset; 5797 } 5798 5799 /* Disable TFO if RST is out-of-order 5800 * and no data has been received 5801 * for current active TFO socket 5802 */ 5803 if (tp->syn_fastopen && !tp->data_segs_in && 5804 sk->sk_state == TCP_ESTABLISHED) 5805 tcp_fastopen_active_disable(sk); 5806 tcp_send_challenge_ack(sk); 5807 SKB_DR_SET(reason, TCP_RESET); 5808 goto discard; 5809 } 5810 5811 /* step 3: check security and precedence [ignored] */ 5812 5813 /* step 4: Check for a SYN 5814 * RFC 5961 4.2 : Send a challenge ack 5815 */ 5816 if (th->syn) { 5817 syn_challenge: 5818 if (syn_inerr) 5819 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5820 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5821 tcp_send_challenge_ack(sk); 5822 SKB_DR_SET(reason, TCP_INVALID_SYN); 5823 goto discard; 5824 } 5825 5826 bpf_skops_parse_hdr(sk, skb); 5827 5828 return true; 5829 5830 discard: 5831 tcp_drop_reason(sk, skb, reason); 5832 return false; 5833 5834 reset: 5835 tcp_reset(sk, skb); 5836 __kfree_skb(skb); 5837 return false; 5838 } 5839 5840 /* 5841 * TCP receive function for the ESTABLISHED state. 5842 * 5843 * It is split into a fast path and a slow path. The fast path is 5844 * disabled when: 5845 * - A zero window was announced from us - zero window probing 5846 * is only handled properly in the slow path. 5847 * - Out of order segments arrived. 5848 * - Urgent data is expected. 5849 * - There is no buffer space left 5850 * - Unexpected TCP flags/window values/header lengths are received 5851 * (detected by checking the TCP header against pred_flags) 5852 * - Data is sent in both directions. Fast path only supports pure senders 5853 * or pure receivers (this means either the sequence number or the ack 5854 * value must stay constant) 5855 * - Unexpected TCP option. 5856 * 5857 * When these conditions are not satisfied it drops into a standard 5858 * receive procedure patterned after RFC793 to handle all cases. 5859 * The first three cases are guaranteed by proper pred_flags setting, 5860 * the rest is checked inline. Fast processing is turned on in 5861 * tcp_data_queue when everything is OK. 5862 */ 5863 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5864 { 5865 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5866 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5867 struct tcp_sock *tp = tcp_sk(sk); 5868 unsigned int len = skb->len; 5869 5870 /* TCP congestion window tracking */ 5871 trace_tcp_probe(sk, skb); 5872 5873 tcp_mstamp_refresh(tp); 5874 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5875 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5876 /* 5877 * Header prediction. 5878 * The code loosely follows the one in the famous 5879 * "30 instruction TCP receive" Van Jacobson mail. 5880 * 5881 * Van's trick is to deposit buffers into socket queue 5882 * on a device interrupt, to call tcp_recv function 5883 * on the receive process context and checksum and copy 5884 * the buffer to user space. smart... 5885 * 5886 * Our current scheme is not silly either but we take the 5887 * extra cost of the net_bh soft interrupt processing... 5888 * We do checksum and copy also but from device to kernel. 5889 */ 5890 5891 tp->rx_opt.saw_tstamp = 0; 5892 5893 /* pred_flags is 0xS?10 << 16 + snd_wnd 5894 * if header_prediction is to be made 5895 * 'S' will always be tp->tcp_header_len >> 2 5896 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5897 * turn it off (when there are holes in the receive 5898 * space for instance) 5899 * PSH flag is ignored. 5900 */ 5901 5902 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5903 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5904 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5905 int tcp_header_len = tp->tcp_header_len; 5906 5907 /* Timestamp header prediction: tcp_header_len 5908 * is automatically equal to th->doff*4 due to pred_flags 5909 * match. 5910 */ 5911 5912 /* Check timestamp */ 5913 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5914 /* No? Slow path! */ 5915 if (!tcp_parse_aligned_timestamp(tp, th)) 5916 goto slow_path; 5917 5918 /* If PAWS failed, check it more carefully in slow path */ 5919 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5920 goto slow_path; 5921 5922 /* DO NOT update ts_recent here, if checksum fails 5923 * and timestamp was corrupted part, it will result 5924 * in a hung connection since we will drop all 5925 * future packets due to the PAWS test. 5926 */ 5927 } 5928 5929 if (len <= tcp_header_len) { 5930 /* Bulk data transfer: sender */ 5931 if (len == tcp_header_len) { 5932 /* Predicted packet is in window by definition. 5933 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5934 * Hence, check seq<=rcv_wup reduces to: 5935 */ 5936 if (tcp_header_len == 5937 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5938 tp->rcv_nxt == tp->rcv_wup) 5939 tcp_store_ts_recent(tp); 5940 5941 /* We know that such packets are checksummed 5942 * on entry. 5943 */ 5944 tcp_ack(sk, skb, 0); 5945 __kfree_skb(skb); 5946 tcp_data_snd_check(sk); 5947 /* When receiving pure ack in fast path, update 5948 * last ts ecr directly instead of calling 5949 * tcp_rcv_rtt_measure_ts() 5950 */ 5951 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5952 return; 5953 } else { /* Header too small */ 5954 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 5955 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5956 goto discard; 5957 } 5958 } else { 5959 int eaten = 0; 5960 bool fragstolen = false; 5961 5962 if (tcp_checksum_complete(skb)) 5963 goto csum_error; 5964 5965 if ((int)skb->truesize > sk->sk_forward_alloc) 5966 goto step5; 5967 5968 /* Predicted packet is in window by definition. 5969 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5970 * Hence, check seq<=rcv_wup reduces to: 5971 */ 5972 if (tcp_header_len == 5973 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5974 tp->rcv_nxt == tp->rcv_wup) 5975 tcp_store_ts_recent(tp); 5976 5977 tcp_rcv_rtt_measure_ts(sk, skb); 5978 5979 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5980 5981 /* Bulk data transfer: receiver */ 5982 skb_dst_drop(skb); 5983 __skb_pull(skb, tcp_header_len); 5984 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5985 5986 tcp_event_data_recv(sk, skb); 5987 5988 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5989 /* Well, only one small jumplet in fast path... */ 5990 tcp_ack(sk, skb, FLAG_DATA); 5991 tcp_data_snd_check(sk); 5992 if (!inet_csk_ack_scheduled(sk)) 5993 goto no_ack; 5994 } else { 5995 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5996 } 5997 5998 __tcp_ack_snd_check(sk, 0); 5999 no_ack: 6000 if (eaten) 6001 kfree_skb_partial(skb, fragstolen); 6002 tcp_data_ready(sk); 6003 return; 6004 } 6005 } 6006 6007 slow_path: 6008 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6009 goto csum_error; 6010 6011 if (!th->ack && !th->rst && !th->syn) { 6012 reason = SKB_DROP_REASON_TCP_FLAGS; 6013 goto discard; 6014 } 6015 6016 /* 6017 * Standard slow path. 6018 */ 6019 6020 if (!tcp_validate_incoming(sk, skb, th, 1)) 6021 return; 6022 6023 step5: 6024 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6025 if ((int)reason < 0) { 6026 reason = -reason; 6027 goto discard; 6028 } 6029 tcp_rcv_rtt_measure_ts(sk, skb); 6030 6031 /* Process urgent data. */ 6032 tcp_urg(sk, skb, th); 6033 6034 /* step 7: process the segment text */ 6035 tcp_data_queue(sk, skb); 6036 6037 tcp_data_snd_check(sk); 6038 tcp_ack_snd_check(sk); 6039 return; 6040 6041 csum_error: 6042 reason = SKB_DROP_REASON_TCP_CSUM; 6043 trace_tcp_bad_csum(skb); 6044 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6045 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6046 6047 discard: 6048 tcp_drop_reason(sk, skb, reason); 6049 } 6050 EXPORT_SYMBOL(tcp_rcv_established); 6051 6052 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6053 { 6054 struct inet_connection_sock *icsk = inet_csk(sk); 6055 struct tcp_sock *tp = tcp_sk(sk); 6056 6057 tcp_mtup_init(sk); 6058 icsk->icsk_af_ops->rebuild_header(sk); 6059 tcp_init_metrics(sk); 6060 6061 /* Initialize the congestion window to start the transfer. 6062 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6063 * retransmitted. In light of RFC6298 more aggressive 1sec 6064 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6065 * retransmission has occurred. 6066 */ 6067 if (tp->total_retrans > 1 && tp->undo_marker) 6068 tcp_snd_cwnd_set(tp, 1); 6069 else 6070 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6071 tp->snd_cwnd_stamp = tcp_jiffies32; 6072 6073 bpf_skops_established(sk, bpf_op, skb); 6074 /* Initialize congestion control unless BPF initialized it already: */ 6075 if (!icsk->icsk_ca_initialized) 6076 tcp_init_congestion_control(sk); 6077 tcp_init_buffer_space(sk); 6078 } 6079 6080 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6081 { 6082 struct tcp_sock *tp = tcp_sk(sk); 6083 struct inet_connection_sock *icsk = inet_csk(sk); 6084 6085 tcp_set_state(sk, TCP_ESTABLISHED); 6086 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6087 6088 if (skb) { 6089 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6090 security_inet_conn_established(sk, skb); 6091 sk_mark_napi_id(sk, skb); 6092 } 6093 6094 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6095 6096 /* Prevent spurious tcp_cwnd_restart() on first data 6097 * packet. 6098 */ 6099 tp->lsndtime = tcp_jiffies32; 6100 6101 if (sock_flag(sk, SOCK_KEEPOPEN)) 6102 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6103 6104 if (!tp->rx_opt.snd_wscale) 6105 __tcp_fast_path_on(tp, tp->snd_wnd); 6106 else 6107 tp->pred_flags = 0; 6108 } 6109 6110 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6111 struct tcp_fastopen_cookie *cookie) 6112 { 6113 struct tcp_sock *tp = tcp_sk(sk); 6114 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6115 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6116 bool syn_drop = false; 6117 6118 if (mss == tp->rx_opt.user_mss) { 6119 struct tcp_options_received opt; 6120 6121 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6122 tcp_clear_options(&opt); 6123 opt.user_mss = opt.mss_clamp = 0; 6124 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6125 mss = opt.mss_clamp; 6126 } 6127 6128 if (!tp->syn_fastopen) { 6129 /* Ignore an unsolicited cookie */ 6130 cookie->len = -1; 6131 } else if (tp->total_retrans) { 6132 /* SYN timed out and the SYN-ACK neither has a cookie nor 6133 * acknowledges data. Presumably the remote received only 6134 * the retransmitted (regular) SYNs: either the original 6135 * SYN-data or the corresponding SYN-ACK was dropped. 6136 */ 6137 syn_drop = (cookie->len < 0 && data); 6138 } else if (cookie->len < 0 && !tp->syn_data) { 6139 /* We requested a cookie but didn't get it. If we did not use 6140 * the (old) exp opt format then try so next time (try_exp=1). 6141 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6142 */ 6143 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6144 } 6145 6146 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6147 6148 if (data) { /* Retransmit unacked data in SYN */ 6149 if (tp->total_retrans) 6150 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6151 else 6152 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6153 skb_rbtree_walk_from(data) 6154 tcp_mark_skb_lost(sk, data); 6155 tcp_xmit_retransmit_queue(sk); 6156 NET_INC_STATS(sock_net(sk), 6157 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6158 return true; 6159 } 6160 tp->syn_data_acked = tp->syn_data; 6161 if (tp->syn_data_acked) { 6162 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6163 /* SYN-data is counted as two separate packets in tcp_ack() */ 6164 if (tp->delivered > 1) 6165 --tp->delivered; 6166 } 6167 6168 tcp_fastopen_add_skb(sk, synack); 6169 6170 return false; 6171 } 6172 6173 static void smc_check_reset_syn(struct tcp_sock *tp) 6174 { 6175 #if IS_ENABLED(CONFIG_SMC) 6176 if (static_branch_unlikely(&tcp_have_smc)) { 6177 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6178 tp->syn_smc = 0; 6179 } 6180 #endif 6181 } 6182 6183 static void tcp_try_undo_spurious_syn(struct sock *sk) 6184 { 6185 struct tcp_sock *tp = tcp_sk(sk); 6186 u32 syn_stamp; 6187 6188 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6189 * spurious if the ACK's timestamp option echo value matches the 6190 * original SYN timestamp. 6191 */ 6192 syn_stamp = tp->retrans_stamp; 6193 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6194 syn_stamp == tp->rx_opt.rcv_tsecr) 6195 tp->undo_marker = 0; 6196 } 6197 6198 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6199 const struct tcphdr *th) 6200 { 6201 struct inet_connection_sock *icsk = inet_csk(sk); 6202 struct tcp_sock *tp = tcp_sk(sk); 6203 struct tcp_fastopen_cookie foc = { .len = -1 }; 6204 int saved_clamp = tp->rx_opt.mss_clamp; 6205 bool fastopen_fail; 6206 SKB_DR(reason); 6207 6208 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6209 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6210 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6211 6212 if (th->ack) { 6213 /* rfc793: 6214 * "If the state is SYN-SENT then 6215 * first check the ACK bit 6216 * If the ACK bit is set 6217 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6218 * a reset (unless the RST bit is set, if so drop 6219 * the segment and return)" 6220 */ 6221 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6222 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6223 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6224 if (icsk->icsk_retransmits == 0) 6225 inet_csk_reset_xmit_timer(sk, 6226 ICSK_TIME_RETRANS, 6227 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6228 goto reset_and_undo; 6229 } 6230 6231 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6232 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6233 tcp_time_stamp(tp))) { 6234 NET_INC_STATS(sock_net(sk), 6235 LINUX_MIB_PAWSACTIVEREJECTED); 6236 goto reset_and_undo; 6237 } 6238 6239 /* Now ACK is acceptable. 6240 * 6241 * "If the RST bit is set 6242 * If the ACK was acceptable then signal the user "error: 6243 * connection reset", drop the segment, enter CLOSED state, 6244 * delete TCB, and return." 6245 */ 6246 6247 if (th->rst) { 6248 tcp_reset(sk, skb); 6249 consume: 6250 __kfree_skb(skb); 6251 return 0; 6252 } 6253 6254 /* rfc793: 6255 * "fifth, if neither of the SYN or RST bits is set then 6256 * drop the segment and return." 6257 * 6258 * See note below! 6259 * --ANK(990513) 6260 */ 6261 if (!th->syn) { 6262 SKB_DR_SET(reason, TCP_FLAGS); 6263 goto discard_and_undo; 6264 } 6265 /* rfc793: 6266 * "If the SYN bit is on ... 6267 * are acceptable then ... 6268 * (our SYN has been ACKed), change the connection 6269 * state to ESTABLISHED..." 6270 */ 6271 6272 tcp_ecn_rcv_synack(tp, th); 6273 6274 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6275 tcp_try_undo_spurious_syn(sk); 6276 tcp_ack(sk, skb, FLAG_SLOWPATH); 6277 6278 /* Ok.. it's good. Set up sequence numbers and 6279 * move to established. 6280 */ 6281 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6282 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6283 6284 /* RFC1323: The window in SYN & SYN/ACK segments is 6285 * never scaled. 6286 */ 6287 tp->snd_wnd = ntohs(th->window); 6288 6289 if (!tp->rx_opt.wscale_ok) { 6290 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6291 tp->window_clamp = min(tp->window_clamp, 65535U); 6292 } 6293 6294 if (tp->rx_opt.saw_tstamp) { 6295 tp->rx_opt.tstamp_ok = 1; 6296 tp->tcp_header_len = 6297 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6298 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6299 tcp_store_ts_recent(tp); 6300 } else { 6301 tp->tcp_header_len = sizeof(struct tcphdr); 6302 } 6303 6304 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6305 tcp_initialize_rcv_mss(sk); 6306 6307 /* Remember, tcp_poll() does not lock socket! 6308 * Change state from SYN-SENT only after copied_seq 6309 * is initialized. */ 6310 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6311 6312 smc_check_reset_syn(tp); 6313 6314 smp_mb(); 6315 6316 tcp_finish_connect(sk, skb); 6317 6318 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6319 tcp_rcv_fastopen_synack(sk, skb, &foc); 6320 6321 if (!sock_flag(sk, SOCK_DEAD)) { 6322 sk->sk_state_change(sk); 6323 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6324 } 6325 if (fastopen_fail) 6326 return -1; 6327 if (sk->sk_write_pending || 6328 icsk->icsk_accept_queue.rskq_defer_accept || 6329 inet_csk_in_pingpong_mode(sk)) { 6330 /* Save one ACK. Data will be ready after 6331 * several ticks, if write_pending is set. 6332 * 6333 * It may be deleted, but with this feature tcpdumps 6334 * look so _wonderfully_ clever, that I was not able 6335 * to stand against the temptation 8) --ANK 6336 */ 6337 inet_csk_schedule_ack(sk); 6338 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6339 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6340 TCP_DELACK_MAX, TCP_RTO_MAX); 6341 goto consume; 6342 } 6343 tcp_send_ack(sk); 6344 return -1; 6345 } 6346 6347 /* No ACK in the segment */ 6348 6349 if (th->rst) { 6350 /* rfc793: 6351 * "If the RST bit is set 6352 * 6353 * Otherwise (no ACK) drop the segment and return." 6354 */ 6355 SKB_DR_SET(reason, TCP_RESET); 6356 goto discard_and_undo; 6357 } 6358 6359 /* PAWS check. */ 6360 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6361 tcp_paws_reject(&tp->rx_opt, 0)) { 6362 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6363 goto discard_and_undo; 6364 } 6365 if (th->syn) { 6366 /* We see SYN without ACK. It is attempt of 6367 * simultaneous connect with crossed SYNs. 6368 * Particularly, it can be connect to self. 6369 */ 6370 tcp_set_state(sk, TCP_SYN_RECV); 6371 6372 if (tp->rx_opt.saw_tstamp) { 6373 tp->rx_opt.tstamp_ok = 1; 6374 tcp_store_ts_recent(tp); 6375 tp->tcp_header_len = 6376 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6377 } else { 6378 tp->tcp_header_len = sizeof(struct tcphdr); 6379 } 6380 6381 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6382 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6383 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6384 6385 /* RFC1323: The window in SYN & SYN/ACK segments is 6386 * never scaled. 6387 */ 6388 tp->snd_wnd = ntohs(th->window); 6389 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6390 tp->max_window = tp->snd_wnd; 6391 6392 tcp_ecn_rcv_syn(tp, th); 6393 6394 tcp_mtup_init(sk); 6395 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6396 tcp_initialize_rcv_mss(sk); 6397 6398 tcp_send_synack(sk); 6399 #if 0 6400 /* Note, we could accept data and URG from this segment. 6401 * There are no obstacles to make this (except that we must 6402 * either change tcp_recvmsg() to prevent it from returning data 6403 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6404 * 6405 * However, if we ignore data in ACKless segments sometimes, 6406 * we have no reasons to accept it sometimes. 6407 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6408 * is not flawless. So, discard packet for sanity. 6409 * Uncomment this return to process the data. 6410 */ 6411 return -1; 6412 #else 6413 goto consume; 6414 #endif 6415 } 6416 /* "fifth, if neither of the SYN or RST bits is set then 6417 * drop the segment and return." 6418 */ 6419 6420 discard_and_undo: 6421 tcp_clear_options(&tp->rx_opt); 6422 tp->rx_opt.mss_clamp = saved_clamp; 6423 tcp_drop_reason(sk, skb, reason); 6424 return 0; 6425 6426 reset_and_undo: 6427 tcp_clear_options(&tp->rx_opt); 6428 tp->rx_opt.mss_clamp = saved_clamp; 6429 return 1; 6430 } 6431 6432 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6433 { 6434 struct request_sock *req; 6435 6436 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6437 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6438 */ 6439 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6440 tcp_try_undo_loss(sk, false); 6441 6442 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6443 tcp_sk(sk)->retrans_stamp = 0; 6444 inet_csk(sk)->icsk_retransmits = 0; 6445 6446 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6447 * we no longer need req so release it. 6448 */ 6449 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6450 lockdep_sock_is_held(sk)); 6451 reqsk_fastopen_remove(sk, req, false); 6452 6453 /* Re-arm the timer because data may have been sent out. 6454 * This is similar to the regular data transmission case 6455 * when new data has just been ack'ed. 6456 * 6457 * (TFO) - we could try to be more aggressive and 6458 * retransmitting any data sooner based on when they 6459 * are sent out. 6460 */ 6461 tcp_rearm_rto(sk); 6462 } 6463 6464 /* 6465 * This function implements the receiving procedure of RFC 793 for 6466 * all states except ESTABLISHED and TIME_WAIT. 6467 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6468 * address independent. 6469 */ 6470 6471 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6472 { 6473 struct tcp_sock *tp = tcp_sk(sk); 6474 struct inet_connection_sock *icsk = inet_csk(sk); 6475 const struct tcphdr *th = tcp_hdr(skb); 6476 struct request_sock *req; 6477 int queued = 0; 6478 bool acceptable; 6479 SKB_DR(reason); 6480 6481 switch (sk->sk_state) { 6482 case TCP_CLOSE: 6483 SKB_DR_SET(reason, TCP_CLOSE); 6484 goto discard; 6485 6486 case TCP_LISTEN: 6487 if (th->ack) 6488 return 1; 6489 6490 if (th->rst) { 6491 SKB_DR_SET(reason, TCP_RESET); 6492 goto discard; 6493 } 6494 if (th->syn) { 6495 if (th->fin) { 6496 SKB_DR_SET(reason, TCP_FLAGS); 6497 goto discard; 6498 } 6499 /* It is possible that we process SYN packets from backlog, 6500 * so we need to make sure to disable BH and RCU right there. 6501 */ 6502 rcu_read_lock(); 6503 local_bh_disable(); 6504 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6505 local_bh_enable(); 6506 rcu_read_unlock(); 6507 6508 if (!acceptable) 6509 return 1; 6510 consume_skb(skb); 6511 return 0; 6512 } 6513 SKB_DR_SET(reason, TCP_FLAGS); 6514 goto discard; 6515 6516 case TCP_SYN_SENT: 6517 tp->rx_opt.saw_tstamp = 0; 6518 tcp_mstamp_refresh(tp); 6519 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6520 if (queued >= 0) 6521 return queued; 6522 6523 /* Do step6 onward by hand. */ 6524 tcp_urg(sk, skb, th); 6525 __kfree_skb(skb); 6526 tcp_data_snd_check(sk); 6527 return 0; 6528 } 6529 6530 tcp_mstamp_refresh(tp); 6531 tp->rx_opt.saw_tstamp = 0; 6532 req = rcu_dereference_protected(tp->fastopen_rsk, 6533 lockdep_sock_is_held(sk)); 6534 if (req) { 6535 bool req_stolen; 6536 6537 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6538 sk->sk_state != TCP_FIN_WAIT1); 6539 6540 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6541 SKB_DR_SET(reason, TCP_FASTOPEN); 6542 goto discard; 6543 } 6544 } 6545 6546 if (!th->ack && !th->rst && !th->syn) { 6547 SKB_DR_SET(reason, TCP_FLAGS); 6548 goto discard; 6549 } 6550 if (!tcp_validate_incoming(sk, skb, th, 0)) 6551 return 0; 6552 6553 /* step 5: check the ACK field */ 6554 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6555 FLAG_UPDATE_TS_RECENT | 6556 FLAG_NO_CHALLENGE_ACK) > 0; 6557 6558 if (!acceptable) { 6559 if (sk->sk_state == TCP_SYN_RECV) 6560 return 1; /* send one RST */ 6561 tcp_send_challenge_ack(sk); 6562 SKB_DR_SET(reason, TCP_OLD_ACK); 6563 goto discard; 6564 } 6565 switch (sk->sk_state) { 6566 case TCP_SYN_RECV: 6567 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6568 if (!tp->srtt_us) 6569 tcp_synack_rtt_meas(sk, req); 6570 6571 if (req) { 6572 tcp_rcv_synrecv_state_fastopen(sk); 6573 } else { 6574 tcp_try_undo_spurious_syn(sk); 6575 tp->retrans_stamp = 0; 6576 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6577 skb); 6578 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6579 } 6580 smp_mb(); 6581 tcp_set_state(sk, TCP_ESTABLISHED); 6582 sk->sk_state_change(sk); 6583 6584 /* Note, that this wakeup is only for marginal crossed SYN case. 6585 * Passively open sockets are not waked up, because 6586 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6587 */ 6588 if (sk->sk_socket) 6589 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6590 6591 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6592 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6593 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6594 6595 if (tp->rx_opt.tstamp_ok) 6596 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6597 6598 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6599 tcp_update_pacing_rate(sk); 6600 6601 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6602 tp->lsndtime = tcp_jiffies32; 6603 6604 tcp_initialize_rcv_mss(sk); 6605 tcp_fast_path_on(tp); 6606 break; 6607 6608 case TCP_FIN_WAIT1: { 6609 int tmo; 6610 6611 if (req) 6612 tcp_rcv_synrecv_state_fastopen(sk); 6613 6614 if (tp->snd_una != tp->write_seq) 6615 break; 6616 6617 tcp_set_state(sk, TCP_FIN_WAIT2); 6618 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6619 6620 sk_dst_confirm(sk); 6621 6622 if (!sock_flag(sk, SOCK_DEAD)) { 6623 /* Wake up lingering close() */ 6624 sk->sk_state_change(sk); 6625 break; 6626 } 6627 6628 if (tp->linger2 < 0) { 6629 tcp_done(sk); 6630 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6631 return 1; 6632 } 6633 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6634 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6635 /* Receive out of order FIN after close() */ 6636 if (tp->syn_fastopen && th->fin) 6637 tcp_fastopen_active_disable(sk); 6638 tcp_done(sk); 6639 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6640 return 1; 6641 } 6642 6643 tmo = tcp_fin_time(sk); 6644 if (tmo > TCP_TIMEWAIT_LEN) { 6645 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6646 } else if (th->fin || sock_owned_by_user(sk)) { 6647 /* Bad case. We could lose such FIN otherwise. 6648 * It is not a big problem, but it looks confusing 6649 * and not so rare event. We still can lose it now, 6650 * if it spins in bh_lock_sock(), but it is really 6651 * marginal case. 6652 */ 6653 inet_csk_reset_keepalive_timer(sk, tmo); 6654 } else { 6655 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6656 goto consume; 6657 } 6658 break; 6659 } 6660 6661 case TCP_CLOSING: 6662 if (tp->snd_una == tp->write_seq) { 6663 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6664 goto consume; 6665 } 6666 break; 6667 6668 case TCP_LAST_ACK: 6669 if (tp->snd_una == tp->write_seq) { 6670 tcp_update_metrics(sk); 6671 tcp_done(sk); 6672 goto consume; 6673 } 6674 break; 6675 } 6676 6677 /* step 6: check the URG bit */ 6678 tcp_urg(sk, skb, th); 6679 6680 /* step 7: process the segment text */ 6681 switch (sk->sk_state) { 6682 case TCP_CLOSE_WAIT: 6683 case TCP_CLOSING: 6684 case TCP_LAST_ACK: 6685 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6686 /* If a subflow has been reset, the packet should not 6687 * continue to be processed, drop the packet. 6688 */ 6689 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6690 goto discard; 6691 break; 6692 } 6693 fallthrough; 6694 case TCP_FIN_WAIT1: 6695 case TCP_FIN_WAIT2: 6696 /* RFC 793 says to queue data in these states, 6697 * RFC 1122 says we MUST send a reset. 6698 * BSD 4.4 also does reset. 6699 */ 6700 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6701 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6702 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6703 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6704 tcp_reset(sk, skb); 6705 return 1; 6706 } 6707 } 6708 fallthrough; 6709 case TCP_ESTABLISHED: 6710 tcp_data_queue(sk, skb); 6711 queued = 1; 6712 break; 6713 } 6714 6715 /* tcp_data could move socket to TIME-WAIT */ 6716 if (sk->sk_state != TCP_CLOSE) { 6717 tcp_data_snd_check(sk); 6718 tcp_ack_snd_check(sk); 6719 } 6720 6721 if (!queued) { 6722 discard: 6723 tcp_drop_reason(sk, skb, reason); 6724 } 6725 return 0; 6726 6727 consume: 6728 __kfree_skb(skb); 6729 return 0; 6730 } 6731 EXPORT_SYMBOL(tcp_rcv_state_process); 6732 6733 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6734 { 6735 struct inet_request_sock *ireq = inet_rsk(req); 6736 6737 if (family == AF_INET) 6738 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6739 &ireq->ir_rmt_addr, port); 6740 #if IS_ENABLED(CONFIG_IPV6) 6741 else if (family == AF_INET6) 6742 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6743 &ireq->ir_v6_rmt_addr, port); 6744 #endif 6745 } 6746 6747 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6748 * 6749 * If we receive a SYN packet with these bits set, it means a 6750 * network is playing bad games with TOS bits. In order to 6751 * avoid possible false congestion notifications, we disable 6752 * TCP ECN negotiation. 6753 * 6754 * Exception: tcp_ca wants ECN. This is required for DCTCP 6755 * congestion control: Linux DCTCP asserts ECT on all packets, 6756 * including SYN, which is most optimal solution; however, 6757 * others, such as FreeBSD do not. 6758 * 6759 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6760 * set, indicating the use of a future TCP extension (such as AccECN). See 6761 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6762 * extensions. 6763 */ 6764 static void tcp_ecn_create_request(struct request_sock *req, 6765 const struct sk_buff *skb, 6766 const struct sock *listen_sk, 6767 const struct dst_entry *dst) 6768 { 6769 const struct tcphdr *th = tcp_hdr(skb); 6770 const struct net *net = sock_net(listen_sk); 6771 bool th_ecn = th->ece && th->cwr; 6772 bool ect, ecn_ok; 6773 u32 ecn_ok_dst; 6774 6775 if (!th_ecn) 6776 return; 6777 6778 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6779 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6780 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6781 6782 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6783 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6784 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6785 inet_rsk(req)->ecn_ok = 1; 6786 } 6787 6788 static void tcp_openreq_init(struct request_sock *req, 6789 const struct tcp_options_received *rx_opt, 6790 struct sk_buff *skb, const struct sock *sk) 6791 { 6792 struct inet_request_sock *ireq = inet_rsk(req); 6793 6794 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6795 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6796 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6797 tcp_rsk(req)->snt_synack = 0; 6798 tcp_rsk(req)->last_oow_ack_time = 0; 6799 req->mss = rx_opt->mss_clamp; 6800 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6801 ireq->tstamp_ok = rx_opt->tstamp_ok; 6802 ireq->sack_ok = rx_opt->sack_ok; 6803 ireq->snd_wscale = rx_opt->snd_wscale; 6804 ireq->wscale_ok = rx_opt->wscale_ok; 6805 ireq->acked = 0; 6806 ireq->ecn_ok = 0; 6807 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6808 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6809 ireq->ir_mark = inet_request_mark(sk, skb); 6810 #if IS_ENABLED(CONFIG_SMC) 6811 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6812 tcp_sk(sk)->smc_hs_congested(sk)); 6813 #endif 6814 } 6815 6816 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6817 struct sock *sk_listener, 6818 bool attach_listener) 6819 { 6820 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6821 attach_listener); 6822 6823 if (req) { 6824 struct inet_request_sock *ireq = inet_rsk(req); 6825 6826 ireq->ireq_opt = NULL; 6827 #if IS_ENABLED(CONFIG_IPV6) 6828 ireq->pktopts = NULL; 6829 #endif 6830 atomic64_set(&ireq->ir_cookie, 0); 6831 ireq->ireq_state = TCP_NEW_SYN_RECV; 6832 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6833 ireq->ireq_family = sk_listener->sk_family; 6834 req->timeout = TCP_TIMEOUT_INIT; 6835 } 6836 6837 return req; 6838 } 6839 EXPORT_SYMBOL(inet_reqsk_alloc); 6840 6841 /* 6842 * Return true if a syncookie should be sent 6843 */ 6844 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6845 { 6846 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6847 const char *msg = "Dropping request"; 6848 struct net *net = sock_net(sk); 6849 bool want_cookie = false; 6850 u8 syncookies; 6851 6852 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6853 6854 #ifdef CONFIG_SYN_COOKIES 6855 if (syncookies) { 6856 msg = "Sending cookies"; 6857 want_cookie = true; 6858 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6859 } else 6860 #endif 6861 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6862 6863 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6864 xchg(&queue->synflood_warned, 1) == 0) { 6865 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6866 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6867 proto, inet6_rcv_saddr(sk), 6868 sk->sk_num, msg); 6869 } else { 6870 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6871 proto, &sk->sk_rcv_saddr, 6872 sk->sk_num, msg); 6873 } 6874 } 6875 6876 return want_cookie; 6877 } 6878 6879 static void tcp_reqsk_record_syn(const struct sock *sk, 6880 struct request_sock *req, 6881 const struct sk_buff *skb) 6882 { 6883 if (tcp_sk(sk)->save_syn) { 6884 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6885 struct saved_syn *saved_syn; 6886 u32 mac_hdrlen; 6887 void *base; 6888 6889 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6890 base = skb_mac_header(skb); 6891 mac_hdrlen = skb_mac_header_len(skb); 6892 len += mac_hdrlen; 6893 } else { 6894 base = skb_network_header(skb); 6895 mac_hdrlen = 0; 6896 } 6897 6898 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6899 GFP_ATOMIC); 6900 if (saved_syn) { 6901 saved_syn->mac_hdrlen = mac_hdrlen; 6902 saved_syn->network_hdrlen = skb_network_header_len(skb); 6903 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6904 memcpy(saved_syn->data, base, len); 6905 req->saved_syn = saved_syn; 6906 } 6907 } 6908 } 6909 6910 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6911 * used for SYN cookie generation. 6912 */ 6913 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6914 const struct tcp_request_sock_ops *af_ops, 6915 struct sock *sk, struct tcphdr *th) 6916 { 6917 struct tcp_sock *tp = tcp_sk(sk); 6918 u16 mss; 6919 6920 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6921 !inet_csk_reqsk_queue_is_full(sk)) 6922 return 0; 6923 6924 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6925 return 0; 6926 6927 if (sk_acceptq_is_full(sk)) { 6928 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6929 return 0; 6930 } 6931 6932 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6933 if (!mss) 6934 mss = af_ops->mss_clamp; 6935 6936 return mss; 6937 } 6938 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6939 6940 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6941 const struct tcp_request_sock_ops *af_ops, 6942 struct sock *sk, struct sk_buff *skb) 6943 { 6944 struct tcp_fastopen_cookie foc = { .len = -1 }; 6945 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6946 struct tcp_options_received tmp_opt; 6947 struct tcp_sock *tp = tcp_sk(sk); 6948 struct net *net = sock_net(sk); 6949 struct sock *fastopen_sk = NULL; 6950 struct request_sock *req; 6951 bool want_cookie = false; 6952 struct dst_entry *dst; 6953 struct flowi fl; 6954 u8 syncookies; 6955 6956 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6957 6958 /* TW buckets are converted to open requests without 6959 * limitations, they conserve resources and peer is 6960 * evidently real one. 6961 */ 6962 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6963 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6964 if (!want_cookie) 6965 goto drop; 6966 } 6967 6968 if (sk_acceptq_is_full(sk)) { 6969 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6970 goto drop; 6971 } 6972 6973 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6974 if (!req) 6975 goto drop; 6976 6977 req->syncookie = want_cookie; 6978 tcp_rsk(req)->af_specific = af_ops; 6979 tcp_rsk(req)->ts_off = 0; 6980 #if IS_ENABLED(CONFIG_MPTCP) 6981 tcp_rsk(req)->is_mptcp = 0; 6982 #endif 6983 6984 tcp_clear_options(&tmp_opt); 6985 tmp_opt.mss_clamp = af_ops->mss_clamp; 6986 tmp_opt.user_mss = tp->rx_opt.user_mss; 6987 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6988 want_cookie ? NULL : &foc); 6989 6990 if (want_cookie && !tmp_opt.saw_tstamp) 6991 tcp_clear_options(&tmp_opt); 6992 6993 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6994 tmp_opt.smc_ok = 0; 6995 6996 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6997 tcp_openreq_init(req, &tmp_opt, skb, sk); 6998 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6999 7000 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7001 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7002 7003 dst = af_ops->route_req(sk, skb, &fl, req); 7004 if (!dst) 7005 goto drop_and_free; 7006 7007 if (tmp_opt.tstamp_ok) 7008 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7009 7010 if (!want_cookie && !isn) { 7011 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7012 7013 /* Kill the following clause, if you dislike this way. */ 7014 if (!syncookies && 7015 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7016 (max_syn_backlog >> 2)) && 7017 !tcp_peer_is_proven(req, dst)) { 7018 /* Without syncookies last quarter of 7019 * backlog is filled with destinations, 7020 * proven to be alive. 7021 * It means that we continue to communicate 7022 * to destinations, already remembered 7023 * to the moment of synflood. 7024 */ 7025 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7026 rsk_ops->family); 7027 goto drop_and_release; 7028 } 7029 7030 isn = af_ops->init_seq(skb); 7031 } 7032 7033 tcp_ecn_create_request(req, skb, sk, dst); 7034 7035 if (want_cookie) { 7036 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7037 if (!tmp_opt.tstamp_ok) 7038 inet_rsk(req)->ecn_ok = 0; 7039 } 7040 7041 tcp_rsk(req)->snt_isn = isn; 7042 tcp_rsk(req)->txhash = net_tx_rndhash(); 7043 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7044 tcp_openreq_init_rwin(req, sk, dst); 7045 sk_rx_queue_set(req_to_sk(req), skb); 7046 if (!want_cookie) { 7047 tcp_reqsk_record_syn(sk, req, skb); 7048 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7049 } 7050 if (fastopen_sk) { 7051 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7052 &foc, TCP_SYNACK_FASTOPEN, skb); 7053 /* Add the child socket directly into the accept queue */ 7054 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7055 reqsk_fastopen_remove(fastopen_sk, req, false); 7056 bh_unlock_sock(fastopen_sk); 7057 sock_put(fastopen_sk); 7058 goto drop_and_free; 7059 } 7060 sk->sk_data_ready(sk); 7061 bh_unlock_sock(fastopen_sk); 7062 sock_put(fastopen_sk); 7063 } else { 7064 tcp_rsk(req)->tfo_listener = false; 7065 if (!want_cookie) { 7066 req->timeout = tcp_timeout_init((struct sock *)req); 7067 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7068 } 7069 af_ops->send_synack(sk, dst, &fl, req, &foc, 7070 !want_cookie ? TCP_SYNACK_NORMAL : 7071 TCP_SYNACK_COOKIE, 7072 skb); 7073 if (want_cookie) { 7074 reqsk_free(req); 7075 return 0; 7076 } 7077 } 7078 reqsk_put(req); 7079 return 0; 7080 7081 drop_and_release: 7082 dst_release(dst); 7083 drop_and_free: 7084 __reqsk_free(req); 7085 drop: 7086 tcp_listendrop(sk); 7087 return 0; 7088 } 7089 EXPORT_SYMBOL(tcp_conn_request); 7090