1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 111 112 #define REXMIT_NONE 0 /* no loss recovery to do */ 113 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 115 116 #if IS_ENABLED(CONFIG_TLS_DEVICE) 117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 118 119 void clean_acked_data_enable(struct inet_connection_sock *icsk, 120 void (*cad)(struct sock *sk, u32 ack_seq)) 121 { 122 icsk->icsk_clean_acked = cad; 123 static_branch_deferred_inc(&clean_acked_data_enabled); 124 } 125 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 126 127 void clean_acked_data_disable(struct inet_connection_sock *icsk) 128 { 129 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 130 icsk->icsk_clean_acked = NULL; 131 } 132 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 133 134 void clean_acked_data_flush(void) 135 { 136 static_key_deferred_flush(&clean_acked_data_enabled); 137 } 138 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 139 #endif 140 141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 142 unsigned int len) 143 { 144 static bool __once __read_mostly; 145 146 if (!__once) { 147 struct net_device *dev; 148 149 __once = true; 150 151 rcu_read_lock(); 152 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 153 if (!dev || len >= dev->mtu) 154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 155 dev ? dev->name : "Unknown driver"); 156 rcu_read_unlock(); 157 } 158 } 159 160 /* Adapt the MSS value used to make delayed ack decision to the 161 * real world. 162 */ 163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 const unsigned int lss = icsk->icsk_ack.last_seg_size; 167 unsigned int len; 168 169 icsk->icsk_ack.last_seg_size = 0; 170 171 /* skb->len may jitter because of SACKs, even if peer 172 * sends good full-sized frames. 173 */ 174 len = skb_shinfo(skb)->gso_size ? : skb->len; 175 if (len >= icsk->icsk_ack.rcv_mss) { 176 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 177 tcp_sk(sk)->advmss); 178 /* Account for possibly-removed options */ 179 if (unlikely(len > icsk->icsk_ack.rcv_mss + 180 MAX_TCP_OPTION_SPACE)) 181 tcp_gro_dev_warn(sk, skb, len); 182 } else { 183 /* Otherwise, we make more careful check taking into account, 184 * that SACKs block is variable. 185 * 186 * "len" is invariant segment length, including TCP header. 187 */ 188 len += skb->data - skb_transport_header(skb); 189 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 190 /* If PSH is not set, packet should be 191 * full sized, provided peer TCP is not badly broken. 192 * This observation (if it is correct 8)) allows 193 * to handle super-low mtu links fairly. 194 */ 195 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 196 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 197 /* Subtract also invariant (if peer is RFC compliant), 198 * tcp header plus fixed timestamp option length. 199 * Resulting "len" is MSS free of SACK jitter. 200 */ 201 len -= tcp_sk(sk)->tcp_header_len; 202 icsk->icsk_ack.last_seg_size = len; 203 if (len == lss) { 204 icsk->icsk_ack.rcv_mss = len; 205 return; 206 } 207 } 208 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 210 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 211 } 212 } 213 214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 215 { 216 struct inet_connection_sock *icsk = inet_csk(sk); 217 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 218 219 if (quickacks == 0) 220 quickacks = 2; 221 quickacks = min(quickacks, max_quickacks); 222 if (quickacks > icsk->icsk_ack.quick) 223 icsk->icsk_ack.quick = quickacks; 224 } 225 226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 227 { 228 struct inet_connection_sock *icsk = inet_csk(sk); 229 230 tcp_incr_quickack(sk, max_quickacks); 231 inet_csk_exit_pingpong_mode(sk); 232 icsk->icsk_ack.ato = TCP_ATO_MIN; 233 } 234 EXPORT_SYMBOL(tcp_enter_quickack_mode); 235 236 /* Send ACKs quickly, if "quick" count is not exhausted 237 * and the session is not interactive. 238 */ 239 240 static bool tcp_in_quickack_mode(struct sock *sk) 241 { 242 const struct inet_connection_sock *icsk = inet_csk(sk); 243 const struct dst_entry *dst = __sk_dst_get(sk); 244 245 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 246 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 247 } 248 249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 250 { 251 if (tp->ecn_flags & TCP_ECN_OK) 252 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 253 } 254 255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 256 { 257 if (tcp_hdr(skb)->cwr) { 258 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 259 260 /* If the sender is telling us it has entered CWR, then its 261 * cwnd may be very low (even just 1 packet), so we should ACK 262 * immediately. 263 */ 264 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 265 } 266 } 267 268 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 269 { 270 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 271 } 272 273 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 274 { 275 struct tcp_sock *tp = tcp_sk(sk); 276 277 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 278 case INET_ECN_NOT_ECT: 279 /* Funny extension: if ECT is not set on a segment, 280 * and we already seen ECT on a previous segment, 281 * it is probably a retransmit. 282 */ 283 if (tp->ecn_flags & TCP_ECN_SEEN) 284 tcp_enter_quickack_mode(sk, 2); 285 break; 286 case INET_ECN_CE: 287 if (tcp_ca_needs_ecn(sk)) 288 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 289 290 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 291 /* Better not delay acks, sender can have a very low cwnd */ 292 tcp_enter_quickack_mode(sk, 2); 293 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 294 } 295 tp->ecn_flags |= TCP_ECN_SEEN; 296 break; 297 default: 298 if (tcp_ca_needs_ecn(sk)) 299 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 300 tp->ecn_flags |= TCP_ECN_SEEN; 301 break; 302 } 303 } 304 305 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 306 { 307 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 308 __tcp_ecn_check_ce(sk, skb); 309 } 310 311 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 312 { 313 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 314 tp->ecn_flags &= ~TCP_ECN_OK; 315 } 316 317 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 318 { 319 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 320 tp->ecn_flags &= ~TCP_ECN_OK; 321 } 322 323 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 324 { 325 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 326 return true; 327 return false; 328 } 329 330 /* Buffer size and advertised window tuning. 331 * 332 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 333 */ 334 335 static void tcp_sndbuf_expand(struct sock *sk) 336 { 337 const struct tcp_sock *tp = tcp_sk(sk); 338 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 339 int sndmem, per_mss; 340 u32 nr_segs; 341 342 /* Worst case is non GSO/TSO : each frame consumes one skb 343 * and skb->head is kmalloced using power of two area of memory 344 */ 345 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 346 MAX_TCP_HEADER + 347 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 348 349 per_mss = roundup_pow_of_two(per_mss) + 350 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 351 352 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 353 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 354 355 /* Fast Recovery (RFC 5681 3.2) : 356 * Cubic needs 1.7 factor, rounded to 2 to include 357 * extra cushion (application might react slowly to EPOLLOUT) 358 */ 359 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 360 sndmem *= nr_segs * per_mss; 361 362 if (sk->sk_sndbuf < sndmem) 363 WRITE_ONCE(sk->sk_sndbuf, 364 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 365 } 366 367 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 368 * 369 * All tcp_full_space() is split to two parts: "network" buffer, allocated 370 * forward and advertised in receiver window (tp->rcv_wnd) and 371 * "application buffer", required to isolate scheduling/application 372 * latencies from network. 373 * window_clamp is maximal advertised window. It can be less than 374 * tcp_full_space(), in this case tcp_full_space() - window_clamp 375 * is reserved for "application" buffer. The less window_clamp is 376 * the smoother our behaviour from viewpoint of network, but the lower 377 * throughput and the higher sensitivity of the connection to losses. 8) 378 * 379 * rcv_ssthresh is more strict window_clamp used at "slow start" 380 * phase to predict further behaviour of this connection. 381 * It is used for two goals: 382 * - to enforce header prediction at sender, even when application 383 * requires some significant "application buffer". It is check #1. 384 * - to prevent pruning of receive queue because of misprediction 385 * of receiver window. Check #2. 386 * 387 * The scheme does not work when sender sends good segments opening 388 * window and then starts to feed us spaghetti. But it should work 389 * in common situations. Otherwise, we have to rely on queue collapsing. 390 */ 391 392 /* Slow part of check#2. */ 393 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 394 { 395 struct tcp_sock *tp = tcp_sk(sk); 396 /* Optimize this! */ 397 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 398 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 399 400 while (tp->rcv_ssthresh <= window) { 401 if (truesize <= skb->len) 402 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 403 404 truesize >>= 1; 405 window >>= 1; 406 } 407 return 0; 408 } 409 410 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 411 { 412 struct tcp_sock *tp = tcp_sk(sk); 413 int room; 414 415 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 416 417 /* Check #1 */ 418 if (room > 0 && !tcp_under_memory_pressure(sk)) { 419 int incr; 420 421 /* Check #2. Increase window, if skb with such overhead 422 * will fit to rcvbuf in future. 423 */ 424 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 425 incr = 2 * tp->advmss; 426 else 427 incr = __tcp_grow_window(sk, skb); 428 429 if (incr) { 430 incr = max_t(int, incr, 2 * skb->len); 431 tp->rcv_ssthresh += min(room, incr); 432 inet_csk(sk)->icsk_ack.quick |= 1; 433 } 434 } 435 } 436 437 /* 3. Try to fixup all. It is made immediately after connection enters 438 * established state. 439 */ 440 static void tcp_init_buffer_space(struct sock *sk) 441 { 442 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 443 struct tcp_sock *tp = tcp_sk(sk); 444 int maxwin; 445 446 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 447 tcp_sndbuf_expand(sk); 448 449 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 450 tcp_mstamp_refresh(tp); 451 tp->rcvq_space.time = tp->tcp_mstamp; 452 tp->rcvq_space.seq = tp->copied_seq; 453 454 maxwin = tcp_full_space(sk); 455 456 if (tp->window_clamp >= maxwin) { 457 tp->window_clamp = maxwin; 458 459 if (tcp_app_win && maxwin > 4 * tp->advmss) 460 tp->window_clamp = max(maxwin - 461 (maxwin >> tcp_app_win), 462 4 * tp->advmss); 463 } 464 465 /* Force reservation of one segment. */ 466 if (tcp_app_win && 467 tp->window_clamp > 2 * tp->advmss && 468 tp->window_clamp + tp->advmss > maxwin) 469 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 470 471 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 472 tp->snd_cwnd_stamp = tcp_jiffies32; 473 } 474 475 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 476 static void tcp_clamp_window(struct sock *sk) 477 { 478 struct tcp_sock *tp = tcp_sk(sk); 479 struct inet_connection_sock *icsk = inet_csk(sk); 480 struct net *net = sock_net(sk); 481 482 icsk->icsk_ack.quick = 0; 483 484 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 485 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 486 !tcp_under_memory_pressure(sk) && 487 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 488 WRITE_ONCE(sk->sk_rcvbuf, 489 min(atomic_read(&sk->sk_rmem_alloc), 490 net->ipv4.sysctl_tcp_rmem[2])); 491 } 492 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 493 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 494 } 495 496 /* Initialize RCV_MSS value. 497 * RCV_MSS is an our guess about MSS used by the peer. 498 * We haven't any direct information about the MSS. 499 * It's better to underestimate the RCV_MSS rather than overestimate. 500 * Overestimations make us ACKing less frequently than needed. 501 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 502 */ 503 void tcp_initialize_rcv_mss(struct sock *sk) 504 { 505 const struct tcp_sock *tp = tcp_sk(sk); 506 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 507 508 hint = min(hint, tp->rcv_wnd / 2); 509 hint = min(hint, TCP_MSS_DEFAULT); 510 hint = max(hint, TCP_MIN_MSS); 511 512 inet_csk(sk)->icsk_ack.rcv_mss = hint; 513 } 514 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 515 516 /* Receiver "autotuning" code. 517 * 518 * The algorithm for RTT estimation w/o timestamps is based on 519 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 520 * <http://public.lanl.gov/radiant/pubs.html#DRS> 521 * 522 * More detail on this code can be found at 523 * <http://staff.psc.edu/jheffner/>, 524 * though this reference is out of date. A new paper 525 * is pending. 526 */ 527 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 528 { 529 u32 new_sample = tp->rcv_rtt_est.rtt_us; 530 long m = sample; 531 532 if (new_sample != 0) { 533 /* If we sample in larger samples in the non-timestamp 534 * case, we could grossly overestimate the RTT especially 535 * with chatty applications or bulk transfer apps which 536 * are stalled on filesystem I/O. 537 * 538 * Also, since we are only going for a minimum in the 539 * non-timestamp case, we do not smooth things out 540 * else with timestamps disabled convergence takes too 541 * long. 542 */ 543 if (!win_dep) { 544 m -= (new_sample >> 3); 545 new_sample += m; 546 } else { 547 m <<= 3; 548 if (m < new_sample) 549 new_sample = m; 550 } 551 } else { 552 /* No previous measure. */ 553 new_sample = m << 3; 554 } 555 556 tp->rcv_rtt_est.rtt_us = new_sample; 557 } 558 559 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 560 { 561 u32 delta_us; 562 563 if (tp->rcv_rtt_est.time == 0) 564 goto new_measure; 565 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 566 return; 567 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 568 if (!delta_us) 569 delta_us = 1; 570 tcp_rcv_rtt_update(tp, delta_us, 1); 571 572 new_measure: 573 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 574 tp->rcv_rtt_est.time = tp->tcp_mstamp; 575 } 576 577 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 578 const struct sk_buff *skb) 579 { 580 struct tcp_sock *tp = tcp_sk(sk); 581 582 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 583 return; 584 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 585 586 if (TCP_SKB_CB(skb)->end_seq - 587 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 588 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 589 u32 delta_us; 590 591 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 592 if (!delta) 593 delta = 1; 594 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 595 tcp_rcv_rtt_update(tp, delta_us, 0); 596 } 597 } 598 } 599 600 /* 601 * This function should be called every time data is copied to user space. 602 * It calculates the appropriate TCP receive buffer space. 603 */ 604 void tcp_rcv_space_adjust(struct sock *sk) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 u32 copied; 608 int time; 609 610 trace_tcp_rcv_space_adjust(sk); 611 612 tcp_mstamp_refresh(tp); 613 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 614 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 615 return; 616 617 /* Number of bytes copied to user in last RTT */ 618 copied = tp->copied_seq - tp->rcvq_space.seq; 619 if (copied <= tp->rcvq_space.space) 620 goto new_measure; 621 622 /* A bit of theory : 623 * copied = bytes received in previous RTT, our base window 624 * To cope with packet losses, we need a 2x factor 625 * To cope with slow start, and sender growing its cwin by 100 % 626 * every RTT, we need a 4x factor, because the ACK we are sending 627 * now is for the next RTT, not the current one : 628 * <prev RTT . ><current RTT .. ><next RTT .... > 629 */ 630 631 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 632 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 633 int rcvmem, rcvbuf; 634 u64 rcvwin, grow; 635 636 /* minimal window to cope with packet losses, assuming 637 * steady state. Add some cushion because of small variations. 638 */ 639 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 640 641 /* Accommodate for sender rate increase (eg. slow start) */ 642 grow = rcvwin * (copied - tp->rcvq_space.space); 643 do_div(grow, tp->rcvq_space.space); 644 rcvwin += (grow << 1); 645 646 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 647 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 648 rcvmem += 128; 649 650 do_div(rcvwin, tp->advmss); 651 rcvbuf = min_t(u64, rcvwin * rcvmem, 652 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 653 if (rcvbuf > sk->sk_rcvbuf) { 654 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 655 656 /* Make the window clamp follow along. */ 657 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 658 } 659 } 660 tp->rcvq_space.space = copied; 661 662 new_measure: 663 tp->rcvq_space.seq = tp->copied_seq; 664 tp->rcvq_space.time = tp->tcp_mstamp; 665 } 666 667 /* There is something which you must keep in mind when you analyze the 668 * behavior of the tp->ato delayed ack timeout interval. When a 669 * connection starts up, we want to ack as quickly as possible. The 670 * problem is that "good" TCP's do slow start at the beginning of data 671 * transmission. The means that until we send the first few ACK's the 672 * sender will sit on his end and only queue most of his data, because 673 * he can only send snd_cwnd unacked packets at any given time. For 674 * each ACK we send, he increments snd_cwnd and transmits more of his 675 * queue. -DaveM 676 */ 677 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 678 { 679 struct tcp_sock *tp = tcp_sk(sk); 680 struct inet_connection_sock *icsk = inet_csk(sk); 681 u32 now; 682 683 inet_csk_schedule_ack(sk); 684 685 tcp_measure_rcv_mss(sk, skb); 686 687 tcp_rcv_rtt_measure(tp); 688 689 now = tcp_jiffies32; 690 691 if (!icsk->icsk_ack.ato) { 692 /* The _first_ data packet received, initialize 693 * delayed ACK engine. 694 */ 695 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 696 icsk->icsk_ack.ato = TCP_ATO_MIN; 697 } else { 698 int m = now - icsk->icsk_ack.lrcvtime; 699 700 if (m <= TCP_ATO_MIN / 2) { 701 /* The fastest case is the first. */ 702 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 703 } else if (m < icsk->icsk_ack.ato) { 704 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 705 if (icsk->icsk_ack.ato > icsk->icsk_rto) 706 icsk->icsk_ack.ato = icsk->icsk_rto; 707 } else if (m > icsk->icsk_rto) { 708 /* Too long gap. Apparently sender failed to 709 * restart window, so that we send ACKs quickly. 710 */ 711 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 712 sk_mem_reclaim(sk); 713 } 714 } 715 icsk->icsk_ack.lrcvtime = now; 716 717 tcp_ecn_check_ce(sk, skb); 718 719 if (skb->len >= 128) 720 tcp_grow_window(sk, skb); 721 } 722 723 /* Called to compute a smoothed rtt estimate. The data fed to this 724 * routine either comes from timestamps, or from segments that were 725 * known _not_ to have been retransmitted [see Karn/Partridge 726 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 727 * piece by Van Jacobson. 728 * NOTE: the next three routines used to be one big routine. 729 * To save cycles in the RFC 1323 implementation it was better to break 730 * it up into three procedures. -- erics 731 */ 732 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 733 { 734 struct tcp_sock *tp = tcp_sk(sk); 735 long m = mrtt_us; /* RTT */ 736 u32 srtt = tp->srtt_us; 737 738 /* The following amusing code comes from Jacobson's 739 * article in SIGCOMM '88. Note that rtt and mdev 740 * are scaled versions of rtt and mean deviation. 741 * This is designed to be as fast as possible 742 * m stands for "measurement". 743 * 744 * On a 1990 paper the rto value is changed to: 745 * RTO = rtt + 4 * mdev 746 * 747 * Funny. This algorithm seems to be very broken. 748 * These formulae increase RTO, when it should be decreased, increase 749 * too slowly, when it should be increased quickly, decrease too quickly 750 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 751 * does not matter how to _calculate_ it. Seems, it was trap 752 * that VJ failed to avoid. 8) 753 */ 754 if (srtt != 0) { 755 m -= (srtt >> 3); /* m is now error in rtt est */ 756 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 757 if (m < 0) { 758 m = -m; /* m is now abs(error) */ 759 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 760 /* This is similar to one of Eifel findings. 761 * Eifel blocks mdev updates when rtt decreases. 762 * This solution is a bit different: we use finer gain 763 * for mdev in this case (alpha*beta). 764 * Like Eifel it also prevents growth of rto, 765 * but also it limits too fast rto decreases, 766 * happening in pure Eifel. 767 */ 768 if (m > 0) 769 m >>= 3; 770 } else { 771 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 772 } 773 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 774 if (tp->mdev_us > tp->mdev_max_us) { 775 tp->mdev_max_us = tp->mdev_us; 776 if (tp->mdev_max_us > tp->rttvar_us) 777 tp->rttvar_us = tp->mdev_max_us; 778 } 779 if (after(tp->snd_una, tp->rtt_seq)) { 780 if (tp->mdev_max_us < tp->rttvar_us) 781 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 782 tp->rtt_seq = tp->snd_nxt; 783 tp->mdev_max_us = tcp_rto_min_us(sk); 784 785 tcp_bpf_rtt(sk); 786 } 787 } else { 788 /* no previous measure. */ 789 srtt = m << 3; /* take the measured time to be rtt */ 790 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 791 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 792 tp->mdev_max_us = tp->rttvar_us; 793 tp->rtt_seq = tp->snd_nxt; 794 795 tcp_bpf_rtt(sk); 796 } 797 tp->srtt_us = max(1U, srtt); 798 } 799 800 static void tcp_update_pacing_rate(struct sock *sk) 801 { 802 const struct tcp_sock *tp = tcp_sk(sk); 803 u64 rate; 804 805 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 806 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 807 808 /* current rate is (cwnd * mss) / srtt 809 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 810 * In Congestion Avoidance phase, set it to 120 % the current rate. 811 * 812 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 813 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 814 * end of slow start and should slow down. 815 */ 816 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 817 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 818 else 819 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 820 821 rate *= max(tp->snd_cwnd, tp->packets_out); 822 823 if (likely(tp->srtt_us)) 824 do_div(rate, tp->srtt_us); 825 826 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 827 * without any lock. We want to make sure compiler wont store 828 * intermediate values in this location. 829 */ 830 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 831 sk->sk_max_pacing_rate)); 832 } 833 834 /* Calculate rto without backoff. This is the second half of Van Jacobson's 835 * routine referred to above. 836 */ 837 static void tcp_set_rto(struct sock *sk) 838 { 839 const struct tcp_sock *tp = tcp_sk(sk); 840 /* Old crap is replaced with new one. 8) 841 * 842 * More seriously: 843 * 1. If rtt variance happened to be less 50msec, it is hallucination. 844 * It cannot be less due to utterly erratic ACK generation made 845 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 846 * to do with delayed acks, because at cwnd>2 true delack timeout 847 * is invisible. Actually, Linux-2.4 also generates erratic 848 * ACKs in some circumstances. 849 */ 850 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 851 852 /* 2. Fixups made earlier cannot be right. 853 * If we do not estimate RTO correctly without them, 854 * all the algo is pure shit and should be replaced 855 * with correct one. It is exactly, which we pretend to do. 856 */ 857 858 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 859 * guarantees that rto is higher. 860 */ 861 tcp_bound_rto(sk); 862 } 863 864 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 865 { 866 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 867 868 if (!cwnd) 869 cwnd = TCP_INIT_CWND; 870 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 871 } 872 873 /* Take a notice that peer is sending D-SACKs */ 874 static void tcp_dsack_seen(struct tcp_sock *tp) 875 { 876 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 877 tp->rack.dsack_seen = 1; 878 tp->dsack_dups++; 879 } 880 881 /* It's reordering when higher sequence was delivered (i.e. sacked) before 882 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 883 * distance is approximated in full-mss packet distance ("reordering"). 884 */ 885 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 886 const int ts) 887 { 888 struct tcp_sock *tp = tcp_sk(sk); 889 const u32 mss = tp->mss_cache; 890 u32 fack, metric; 891 892 fack = tcp_highest_sack_seq(tp); 893 if (!before(low_seq, fack)) 894 return; 895 896 metric = fack - low_seq; 897 if ((metric > tp->reordering * mss) && mss) { 898 #if FASTRETRANS_DEBUG > 1 899 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 900 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 901 tp->reordering, 902 0, 903 tp->sacked_out, 904 tp->undo_marker ? tp->undo_retrans : 0); 905 #endif 906 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 907 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 908 } 909 910 /* This exciting event is worth to be remembered. 8) */ 911 tp->reord_seen++; 912 NET_INC_STATS(sock_net(sk), 913 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 914 } 915 916 /* This must be called before lost_out is incremented */ 917 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 918 { 919 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 920 (tp->retransmit_skb_hint && 921 before(TCP_SKB_CB(skb)->seq, 922 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 923 tp->retransmit_skb_hint = skb; 924 } 925 926 /* Sum the number of packets on the wire we have marked as lost. 927 * There are two cases we care about here: 928 * a) Packet hasn't been marked lost (nor retransmitted), 929 * and this is the first loss. 930 * b) Packet has been marked both lost and retransmitted, 931 * and this means we think it was lost again. 932 */ 933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 934 { 935 __u8 sacked = TCP_SKB_CB(skb)->sacked; 936 937 if (!(sacked & TCPCB_LOST) || 938 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 939 tp->lost += tcp_skb_pcount(skb); 940 } 941 942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 943 { 944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 945 tcp_verify_retransmit_hint(tp, skb); 946 947 tp->lost_out += tcp_skb_pcount(skb); 948 tcp_sum_lost(tp, skb); 949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 950 } 951 } 952 953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 954 { 955 tcp_verify_retransmit_hint(tp, skb); 956 957 tcp_sum_lost(tp, skb); 958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 959 tp->lost_out += tcp_skb_pcount(skb); 960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 961 } 962 } 963 964 /* This procedure tags the retransmission queue when SACKs arrive. 965 * 966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 967 * Packets in queue with these bits set are counted in variables 968 * sacked_out, retrans_out and lost_out, correspondingly. 969 * 970 * Valid combinations are: 971 * Tag InFlight Description 972 * 0 1 - orig segment is in flight. 973 * S 0 - nothing flies, orig reached receiver. 974 * L 0 - nothing flies, orig lost by net. 975 * R 2 - both orig and retransmit are in flight. 976 * L|R 1 - orig is lost, retransmit is in flight. 977 * S|R 1 - orig reached receiver, retrans is still in flight. 978 * (L|S|R is logically valid, it could occur when L|R is sacked, 979 * but it is equivalent to plain S and code short-curcuits it to S. 980 * L|S is logically invalid, it would mean -1 packet in flight 8)) 981 * 982 * These 6 states form finite state machine, controlled by the following events: 983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 985 * 3. Loss detection event of two flavors: 986 * A. Scoreboard estimator decided the packet is lost. 987 * A'. Reno "three dupacks" marks head of queue lost. 988 * B. SACK arrives sacking SND.NXT at the moment, when the 989 * segment was retransmitted. 990 * 4. D-SACK added new rule: D-SACK changes any tag to S. 991 * 992 * It is pleasant to note, that state diagram turns out to be commutative, 993 * so that we are allowed not to be bothered by order of our actions, 994 * when multiple events arrive simultaneously. (see the function below). 995 * 996 * Reordering detection. 997 * -------------------- 998 * Reordering metric is maximal distance, which a packet can be displaced 999 * in packet stream. With SACKs we can estimate it: 1000 * 1001 * 1. SACK fills old hole and the corresponding segment was not 1002 * ever retransmitted -> reordering. Alas, we cannot use it 1003 * when segment was retransmitted. 1004 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1005 * for retransmitted and already SACKed segment -> reordering.. 1006 * Both of these heuristics are not used in Loss state, when we cannot 1007 * account for retransmits accurately. 1008 * 1009 * SACK block validation. 1010 * ---------------------- 1011 * 1012 * SACK block range validation checks that the received SACK block fits to 1013 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1014 * Note that SND.UNA is not included to the range though being valid because 1015 * it means that the receiver is rather inconsistent with itself reporting 1016 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1017 * perfectly valid, however, in light of RFC2018 which explicitly states 1018 * that "SACK block MUST reflect the newest segment. Even if the newest 1019 * segment is going to be discarded ...", not that it looks very clever 1020 * in case of head skb. Due to potentional receiver driven attacks, we 1021 * choose to avoid immediate execution of a walk in write queue due to 1022 * reneging and defer head skb's loss recovery to standard loss recovery 1023 * procedure that will eventually trigger (nothing forbids us doing this). 1024 * 1025 * Implements also blockage to start_seq wrap-around. Problem lies in the 1026 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1027 * there's no guarantee that it will be before snd_nxt (n). The problem 1028 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1029 * wrap (s_w): 1030 * 1031 * <- outs wnd -> <- wrapzone -> 1032 * u e n u_w e_w s n_w 1033 * | | | | | | | 1034 * |<------------+------+----- TCP seqno space --------------+---------->| 1035 * ...-- <2^31 ->| |<--------... 1036 * ...---- >2^31 ------>| |<--------... 1037 * 1038 * Current code wouldn't be vulnerable but it's better still to discard such 1039 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1040 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1041 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1042 * equal to the ideal case (infinite seqno space without wrap caused issues). 1043 * 1044 * With D-SACK the lower bound is extended to cover sequence space below 1045 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1046 * again, D-SACK block must not to go across snd_una (for the same reason as 1047 * for the normal SACK blocks, explained above). But there all simplicity 1048 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1049 * fully below undo_marker they do not affect behavior in anyway and can 1050 * therefore be safely ignored. In rare cases (which are more or less 1051 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1052 * fragmentation and packet reordering past skb's retransmission. To consider 1053 * them correctly, the acceptable range must be extended even more though 1054 * the exact amount is rather hard to quantify. However, tp->max_window can 1055 * be used as an exaggerated estimate. 1056 */ 1057 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1058 u32 start_seq, u32 end_seq) 1059 { 1060 /* Too far in future, or reversed (interpretation is ambiguous) */ 1061 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1062 return false; 1063 1064 /* Nasty start_seq wrap-around check (see comments above) */ 1065 if (!before(start_seq, tp->snd_nxt)) 1066 return false; 1067 1068 /* In outstanding window? ...This is valid exit for D-SACKs too. 1069 * start_seq == snd_una is non-sensical (see comments above) 1070 */ 1071 if (after(start_seq, tp->snd_una)) 1072 return true; 1073 1074 if (!is_dsack || !tp->undo_marker) 1075 return false; 1076 1077 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1078 if (after(end_seq, tp->snd_una)) 1079 return false; 1080 1081 if (!before(start_seq, tp->undo_marker)) 1082 return true; 1083 1084 /* Too old */ 1085 if (!after(end_seq, tp->undo_marker)) 1086 return false; 1087 1088 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1089 * start_seq < undo_marker and end_seq >= undo_marker. 1090 */ 1091 return !before(start_seq, end_seq - tp->max_window); 1092 } 1093 1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1095 struct tcp_sack_block_wire *sp, int num_sacks, 1096 u32 prior_snd_una) 1097 { 1098 struct tcp_sock *tp = tcp_sk(sk); 1099 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1100 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1101 bool dup_sack = false; 1102 1103 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1104 dup_sack = true; 1105 tcp_dsack_seen(tp); 1106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1107 } else if (num_sacks > 1) { 1108 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1109 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1110 1111 if (!after(end_seq_0, end_seq_1) && 1112 !before(start_seq_0, start_seq_1)) { 1113 dup_sack = true; 1114 tcp_dsack_seen(tp); 1115 NET_INC_STATS(sock_net(sk), 1116 LINUX_MIB_TCPDSACKOFORECV); 1117 } 1118 } 1119 1120 /* D-SACK for already forgotten data... Do dumb counting. */ 1121 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1122 !after(end_seq_0, prior_snd_una) && 1123 after(end_seq_0, tp->undo_marker)) 1124 tp->undo_retrans--; 1125 1126 return dup_sack; 1127 } 1128 1129 struct tcp_sacktag_state { 1130 u32 reord; 1131 /* Timestamps for earliest and latest never-retransmitted segment 1132 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1133 * but congestion control should still get an accurate delay signal. 1134 */ 1135 u64 first_sackt; 1136 u64 last_sackt; 1137 struct rate_sample *rate; 1138 int flag; 1139 unsigned int mss_now; 1140 }; 1141 1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1143 * the incoming SACK may not exactly match but we can find smaller MSS 1144 * aligned portion of it that matches. Therefore we might need to fragment 1145 * which may fail and creates some hassle (caller must handle error case 1146 * returns). 1147 * 1148 * FIXME: this could be merged to shift decision code 1149 */ 1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1151 u32 start_seq, u32 end_seq) 1152 { 1153 int err; 1154 bool in_sack; 1155 unsigned int pkt_len; 1156 unsigned int mss; 1157 1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1159 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1160 1161 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1162 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1163 mss = tcp_skb_mss(skb); 1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1165 1166 if (!in_sack) { 1167 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1168 if (pkt_len < mss) 1169 pkt_len = mss; 1170 } else { 1171 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1172 if (pkt_len < mss) 1173 return -EINVAL; 1174 } 1175 1176 /* Round if necessary so that SACKs cover only full MSSes 1177 * and/or the remaining small portion (if present) 1178 */ 1179 if (pkt_len > mss) { 1180 unsigned int new_len = (pkt_len / mss) * mss; 1181 if (!in_sack && new_len < pkt_len) 1182 new_len += mss; 1183 pkt_len = new_len; 1184 } 1185 1186 if (pkt_len >= skb->len && !in_sack) 1187 return 0; 1188 1189 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1190 pkt_len, mss, GFP_ATOMIC); 1191 if (err < 0) 1192 return err; 1193 } 1194 1195 return in_sack; 1196 } 1197 1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1199 static u8 tcp_sacktag_one(struct sock *sk, 1200 struct tcp_sacktag_state *state, u8 sacked, 1201 u32 start_seq, u32 end_seq, 1202 int dup_sack, int pcount, 1203 u64 xmit_time) 1204 { 1205 struct tcp_sock *tp = tcp_sk(sk); 1206 1207 /* Account D-SACK for retransmitted packet. */ 1208 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1209 if (tp->undo_marker && tp->undo_retrans > 0 && 1210 after(end_seq, tp->undo_marker)) 1211 tp->undo_retrans--; 1212 if ((sacked & TCPCB_SACKED_ACKED) && 1213 before(start_seq, state->reord)) 1214 state->reord = start_seq; 1215 } 1216 1217 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1218 if (!after(end_seq, tp->snd_una)) 1219 return sacked; 1220 1221 if (!(sacked & TCPCB_SACKED_ACKED)) { 1222 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1223 1224 if (sacked & TCPCB_SACKED_RETRANS) { 1225 /* If the segment is not tagged as lost, 1226 * we do not clear RETRANS, believing 1227 * that retransmission is still in flight. 1228 */ 1229 if (sacked & TCPCB_LOST) { 1230 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1231 tp->lost_out -= pcount; 1232 tp->retrans_out -= pcount; 1233 } 1234 } else { 1235 if (!(sacked & TCPCB_RETRANS)) { 1236 /* New sack for not retransmitted frame, 1237 * which was in hole. It is reordering. 1238 */ 1239 if (before(start_seq, 1240 tcp_highest_sack_seq(tp)) && 1241 before(start_seq, state->reord)) 1242 state->reord = start_seq; 1243 1244 if (!after(end_seq, tp->high_seq)) 1245 state->flag |= FLAG_ORIG_SACK_ACKED; 1246 if (state->first_sackt == 0) 1247 state->first_sackt = xmit_time; 1248 state->last_sackt = xmit_time; 1249 } 1250 1251 if (sacked & TCPCB_LOST) { 1252 sacked &= ~TCPCB_LOST; 1253 tp->lost_out -= pcount; 1254 } 1255 } 1256 1257 sacked |= TCPCB_SACKED_ACKED; 1258 state->flag |= FLAG_DATA_SACKED; 1259 tp->sacked_out += pcount; 1260 tp->delivered += pcount; /* Out-of-order packets delivered */ 1261 1262 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1263 if (tp->lost_skb_hint && 1264 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1265 tp->lost_cnt_hint += pcount; 1266 } 1267 1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1269 * frames and clear it. undo_retrans is decreased above, L|R frames 1270 * are accounted above as well. 1271 */ 1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1273 sacked &= ~TCPCB_SACKED_RETRANS; 1274 tp->retrans_out -= pcount; 1275 } 1276 1277 return sacked; 1278 } 1279 1280 /* Shift newly-SACKed bytes from this skb to the immediately previous 1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1282 */ 1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1284 struct sk_buff *skb, 1285 struct tcp_sacktag_state *state, 1286 unsigned int pcount, int shifted, int mss, 1287 bool dup_sack) 1288 { 1289 struct tcp_sock *tp = tcp_sk(sk); 1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1292 1293 BUG_ON(!pcount); 1294 1295 /* Adjust counters and hints for the newly sacked sequence 1296 * range but discard the return value since prev is already 1297 * marked. We must tag the range first because the seq 1298 * advancement below implicitly advances 1299 * tcp_highest_sack_seq() when skb is highest_sack. 1300 */ 1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1302 start_seq, end_seq, dup_sack, pcount, 1303 tcp_skb_timestamp_us(skb)); 1304 tcp_rate_skb_delivered(sk, skb, state->rate); 1305 1306 if (skb == tp->lost_skb_hint) 1307 tp->lost_cnt_hint += pcount; 1308 1309 TCP_SKB_CB(prev)->end_seq += shifted; 1310 TCP_SKB_CB(skb)->seq += shifted; 1311 1312 tcp_skb_pcount_add(prev, pcount); 1313 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1314 tcp_skb_pcount_add(skb, -pcount); 1315 1316 /* When we're adding to gso_segs == 1, gso_size will be zero, 1317 * in theory this shouldn't be necessary but as long as DSACK 1318 * code can come after this skb later on it's better to keep 1319 * setting gso_size to something. 1320 */ 1321 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1322 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1323 1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1325 if (tcp_skb_pcount(skb) <= 1) 1326 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1327 1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1330 1331 if (skb->len > 0) { 1332 BUG_ON(!tcp_skb_pcount(skb)); 1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1334 return false; 1335 } 1336 1337 /* Whole SKB was eaten :-) */ 1338 1339 if (skb == tp->retransmit_skb_hint) 1340 tp->retransmit_skb_hint = prev; 1341 if (skb == tp->lost_skb_hint) { 1342 tp->lost_skb_hint = prev; 1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1344 } 1345 1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1347 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1349 TCP_SKB_CB(prev)->end_seq++; 1350 1351 if (skb == tcp_highest_sack(sk)) 1352 tcp_advance_highest_sack(sk, skb); 1353 1354 tcp_skb_collapse_tstamp(prev, skb); 1355 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1356 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1357 1358 tcp_rtx_queue_unlink_and_free(skb, sk); 1359 1360 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1361 1362 return true; 1363 } 1364 1365 /* I wish gso_size would have a bit more sane initialization than 1366 * something-or-zero which complicates things 1367 */ 1368 static int tcp_skb_seglen(const struct sk_buff *skb) 1369 { 1370 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1371 } 1372 1373 /* Shifting pages past head area doesn't work */ 1374 static int skb_can_shift(const struct sk_buff *skb) 1375 { 1376 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1377 } 1378 1379 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1380 int pcount, int shiftlen) 1381 { 1382 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1383 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1384 * to make sure not storing more than 65535 * 8 bytes per skb, 1385 * even if current MSS is bigger. 1386 */ 1387 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1388 return 0; 1389 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1390 return 0; 1391 return skb_shift(to, from, shiftlen); 1392 } 1393 1394 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1395 * skb. 1396 */ 1397 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1398 struct tcp_sacktag_state *state, 1399 u32 start_seq, u32 end_seq, 1400 bool dup_sack) 1401 { 1402 struct tcp_sock *tp = tcp_sk(sk); 1403 struct sk_buff *prev; 1404 int mss; 1405 int pcount = 0; 1406 int len; 1407 int in_sack; 1408 1409 /* Normally R but no L won't result in plain S */ 1410 if (!dup_sack && 1411 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1412 goto fallback; 1413 if (!skb_can_shift(skb)) 1414 goto fallback; 1415 /* This frame is about to be dropped (was ACKed). */ 1416 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1417 goto fallback; 1418 1419 /* Can only happen with delayed DSACK + discard craziness */ 1420 prev = skb_rb_prev(skb); 1421 if (!prev) 1422 goto fallback; 1423 1424 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1425 goto fallback; 1426 1427 if (!tcp_skb_can_collapse(prev, skb)) 1428 goto fallback; 1429 1430 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1431 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1432 1433 if (in_sack) { 1434 len = skb->len; 1435 pcount = tcp_skb_pcount(skb); 1436 mss = tcp_skb_seglen(skb); 1437 1438 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1439 * drop this restriction as unnecessary 1440 */ 1441 if (mss != tcp_skb_seglen(prev)) 1442 goto fallback; 1443 } else { 1444 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1445 goto noop; 1446 /* CHECKME: This is non-MSS split case only?, this will 1447 * cause skipped skbs due to advancing loop btw, original 1448 * has that feature too 1449 */ 1450 if (tcp_skb_pcount(skb) <= 1) 1451 goto noop; 1452 1453 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1454 if (!in_sack) { 1455 /* TODO: head merge to next could be attempted here 1456 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1457 * though it might not be worth of the additional hassle 1458 * 1459 * ...we can probably just fallback to what was done 1460 * previously. We could try merging non-SACKed ones 1461 * as well but it probably isn't going to buy off 1462 * because later SACKs might again split them, and 1463 * it would make skb timestamp tracking considerably 1464 * harder problem. 1465 */ 1466 goto fallback; 1467 } 1468 1469 len = end_seq - TCP_SKB_CB(skb)->seq; 1470 BUG_ON(len < 0); 1471 BUG_ON(len > skb->len); 1472 1473 /* MSS boundaries should be honoured or else pcount will 1474 * severely break even though it makes things bit trickier. 1475 * Optimize common case to avoid most of the divides 1476 */ 1477 mss = tcp_skb_mss(skb); 1478 1479 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1480 * drop this restriction as unnecessary 1481 */ 1482 if (mss != tcp_skb_seglen(prev)) 1483 goto fallback; 1484 1485 if (len == mss) { 1486 pcount = 1; 1487 } else if (len < mss) { 1488 goto noop; 1489 } else { 1490 pcount = len / mss; 1491 len = pcount * mss; 1492 } 1493 } 1494 1495 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1496 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1497 goto fallback; 1498 1499 if (!tcp_skb_shift(prev, skb, pcount, len)) 1500 goto fallback; 1501 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1502 goto out; 1503 1504 /* Hole filled allows collapsing with the next as well, this is very 1505 * useful when hole on every nth skb pattern happens 1506 */ 1507 skb = skb_rb_next(prev); 1508 if (!skb) 1509 goto out; 1510 1511 if (!skb_can_shift(skb) || 1512 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1513 (mss != tcp_skb_seglen(skb))) 1514 goto out; 1515 1516 len = skb->len; 1517 pcount = tcp_skb_pcount(skb); 1518 if (tcp_skb_shift(prev, skb, pcount, len)) 1519 tcp_shifted_skb(sk, prev, skb, state, pcount, 1520 len, mss, 0); 1521 1522 out: 1523 return prev; 1524 1525 noop: 1526 return skb; 1527 1528 fallback: 1529 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1530 return NULL; 1531 } 1532 1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1534 struct tcp_sack_block *next_dup, 1535 struct tcp_sacktag_state *state, 1536 u32 start_seq, u32 end_seq, 1537 bool dup_sack_in) 1538 { 1539 struct tcp_sock *tp = tcp_sk(sk); 1540 struct sk_buff *tmp; 1541 1542 skb_rbtree_walk_from(skb) { 1543 int in_sack = 0; 1544 bool dup_sack = dup_sack_in; 1545 1546 /* queue is in-order => we can short-circuit the walk early */ 1547 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1548 break; 1549 1550 if (next_dup && 1551 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1552 in_sack = tcp_match_skb_to_sack(sk, skb, 1553 next_dup->start_seq, 1554 next_dup->end_seq); 1555 if (in_sack > 0) 1556 dup_sack = true; 1557 } 1558 1559 /* skb reference here is a bit tricky to get right, since 1560 * shifting can eat and free both this skb and the next, 1561 * so not even _safe variant of the loop is enough. 1562 */ 1563 if (in_sack <= 0) { 1564 tmp = tcp_shift_skb_data(sk, skb, state, 1565 start_seq, end_seq, dup_sack); 1566 if (tmp) { 1567 if (tmp != skb) { 1568 skb = tmp; 1569 continue; 1570 } 1571 1572 in_sack = 0; 1573 } else { 1574 in_sack = tcp_match_skb_to_sack(sk, skb, 1575 start_seq, 1576 end_seq); 1577 } 1578 } 1579 1580 if (unlikely(in_sack < 0)) 1581 break; 1582 1583 if (in_sack) { 1584 TCP_SKB_CB(skb)->sacked = 1585 tcp_sacktag_one(sk, 1586 state, 1587 TCP_SKB_CB(skb)->sacked, 1588 TCP_SKB_CB(skb)->seq, 1589 TCP_SKB_CB(skb)->end_seq, 1590 dup_sack, 1591 tcp_skb_pcount(skb), 1592 tcp_skb_timestamp_us(skb)); 1593 tcp_rate_skb_delivered(sk, skb, state->rate); 1594 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1595 list_del_init(&skb->tcp_tsorted_anchor); 1596 1597 if (!before(TCP_SKB_CB(skb)->seq, 1598 tcp_highest_sack_seq(tp))) 1599 tcp_advance_highest_sack(sk, skb); 1600 } 1601 } 1602 return skb; 1603 } 1604 1605 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1606 { 1607 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1608 struct sk_buff *skb; 1609 1610 while (*p) { 1611 parent = *p; 1612 skb = rb_to_skb(parent); 1613 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1614 p = &parent->rb_left; 1615 continue; 1616 } 1617 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1618 p = &parent->rb_right; 1619 continue; 1620 } 1621 return skb; 1622 } 1623 return NULL; 1624 } 1625 1626 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1627 u32 skip_to_seq) 1628 { 1629 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1630 return skb; 1631 1632 return tcp_sacktag_bsearch(sk, skip_to_seq); 1633 } 1634 1635 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1636 struct sock *sk, 1637 struct tcp_sack_block *next_dup, 1638 struct tcp_sacktag_state *state, 1639 u32 skip_to_seq) 1640 { 1641 if (!next_dup) 1642 return skb; 1643 1644 if (before(next_dup->start_seq, skip_to_seq)) { 1645 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1646 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1647 next_dup->start_seq, next_dup->end_seq, 1648 1); 1649 } 1650 1651 return skb; 1652 } 1653 1654 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1655 { 1656 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1657 } 1658 1659 static int 1660 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1661 u32 prior_snd_una, struct tcp_sacktag_state *state) 1662 { 1663 struct tcp_sock *tp = tcp_sk(sk); 1664 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1665 TCP_SKB_CB(ack_skb)->sacked); 1666 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1667 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1668 struct tcp_sack_block *cache; 1669 struct sk_buff *skb; 1670 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1671 int used_sacks; 1672 bool found_dup_sack = false; 1673 int i, j; 1674 int first_sack_index; 1675 1676 state->flag = 0; 1677 state->reord = tp->snd_nxt; 1678 1679 if (!tp->sacked_out) 1680 tcp_highest_sack_reset(sk); 1681 1682 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1683 num_sacks, prior_snd_una); 1684 if (found_dup_sack) { 1685 state->flag |= FLAG_DSACKING_ACK; 1686 tp->delivered++; /* A spurious retransmission is delivered */ 1687 } 1688 1689 /* Eliminate too old ACKs, but take into 1690 * account more or less fresh ones, they can 1691 * contain valid SACK info. 1692 */ 1693 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1694 return 0; 1695 1696 if (!tp->packets_out) 1697 goto out; 1698 1699 used_sacks = 0; 1700 first_sack_index = 0; 1701 for (i = 0; i < num_sacks; i++) { 1702 bool dup_sack = !i && found_dup_sack; 1703 1704 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1705 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1706 1707 if (!tcp_is_sackblock_valid(tp, dup_sack, 1708 sp[used_sacks].start_seq, 1709 sp[used_sacks].end_seq)) { 1710 int mib_idx; 1711 1712 if (dup_sack) { 1713 if (!tp->undo_marker) 1714 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1715 else 1716 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1717 } else { 1718 /* Don't count olds caused by ACK reordering */ 1719 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1720 !after(sp[used_sacks].end_seq, tp->snd_una)) 1721 continue; 1722 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1723 } 1724 1725 NET_INC_STATS(sock_net(sk), mib_idx); 1726 if (i == 0) 1727 first_sack_index = -1; 1728 continue; 1729 } 1730 1731 /* Ignore very old stuff early */ 1732 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1733 if (i == 0) 1734 first_sack_index = -1; 1735 continue; 1736 } 1737 1738 used_sacks++; 1739 } 1740 1741 /* order SACK blocks to allow in order walk of the retrans queue */ 1742 for (i = used_sacks - 1; i > 0; i--) { 1743 for (j = 0; j < i; j++) { 1744 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1745 swap(sp[j], sp[j + 1]); 1746 1747 /* Track where the first SACK block goes to */ 1748 if (j == first_sack_index) 1749 first_sack_index = j + 1; 1750 } 1751 } 1752 } 1753 1754 state->mss_now = tcp_current_mss(sk); 1755 skb = NULL; 1756 i = 0; 1757 1758 if (!tp->sacked_out) { 1759 /* It's already past, so skip checking against it */ 1760 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1761 } else { 1762 cache = tp->recv_sack_cache; 1763 /* Skip empty blocks in at head of the cache */ 1764 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1765 !cache->end_seq) 1766 cache++; 1767 } 1768 1769 while (i < used_sacks) { 1770 u32 start_seq = sp[i].start_seq; 1771 u32 end_seq = sp[i].end_seq; 1772 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1773 struct tcp_sack_block *next_dup = NULL; 1774 1775 if (found_dup_sack && ((i + 1) == first_sack_index)) 1776 next_dup = &sp[i + 1]; 1777 1778 /* Skip too early cached blocks */ 1779 while (tcp_sack_cache_ok(tp, cache) && 1780 !before(start_seq, cache->end_seq)) 1781 cache++; 1782 1783 /* Can skip some work by looking recv_sack_cache? */ 1784 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1785 after(end_seq, cache->start_seq)) { 1786 1787 /* Head todo? */ 1788 if (before(start_seq, cache->start_seq)) { 1789 skb = tcp_sacktag_skip(skb, sk, start_seq); 1790 skb = tcp_sacktag_walk(skb, sk, next_dup, 1791 state, 1792 start_seq, 1793 cache->start_seq, 1794 dup_sack); 1795 } 1796 1797 /* Rest of the block already fully processed? */ 1798 if (!after(end_seq, cache->end_seq)) 1799 goto advance_sp; 1800 1801 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1802 state, 1803 cache->end_seq); 1804 1805 /* ...tail remains todo... */ 1806 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1807 /* ...but better entrypoint exists! */ 1808 skb = tcp_highest_sack(sk); 1809 if (!skb) 1810 break; 1811 cache++; 1812 goto walk; 1813 } 1814 1815 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1816 /* Check overlap against next cached too (past this one already) */ 1817 cache++; 1818 continue; 1819 } 1820 1821 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1822 skb = tcp_highest_sack(sk); 1823 if (!skb) 1824 break; 1825 } 1826 skb = tcp_sacktag_skip(skb, sk, start_seq); 1827 1828 walk: 1829 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1830 start_seq, end_seq, dup_sack); 1831 1832 advance_sp: 1833 i++; 1834 } 1835 1836 /* Clear the head of the cache sack blocks so we can skip it next time */ 1837 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1838 tp->recv_sack_cache[i].start_seq = 0; 1839 tp->recv_sack_cache[i].end_seq = 0; 1840 } 1841 for (j = 0; j < used_sacks; j++) 1842 tp->recv_sack_cache[i++] = sp[j]; 1843 1844 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1845 tcp_check_sack_reordering(sk, state->reord, 0); 1846 1847 tcp_verify_left_out(tp); 1848 out: 1849 1850 #if FASTRETRANS_DEBUG > 0 1851 WARN_ON((int)tp->sacked_out < 0); 1852 WARN_ON((int)tp->lost_out < 0); 1853 WARN_ON((int)tp->retrans_out < 0); 1854 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1855 #endif 1856 return state->flag; 1857 } 1858 1859 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1860 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1861 */ 1862 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1863 { 1864 u32 holes; 1865 1866 holes = max(tp->lost_out, 1U); 1867 holes = min(holes, tp->packets_out); 1868 1869 if ((tp->sacked_out + holes) > tp->packets_out) { 1870 tp->sacked_out = tp->packets_out - holes; 1871 return true; 1872 } 1873 return false; 1874 } 1875 1876 /* If we receive more dupacks than we expected counting segments 1877 * in assumption of absent reordering, interpret this as reordering. 1878 * The only another reason could be bug in receiver TCP. 1879 */ 1880 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1881 { 1882 struct tcp_sock *tp = tcp_sk(sk); 1883 1884 if (!tcp_limit_reno_sacked(tp)) 1885 return; 1886 1887 tp->reordering = min_t(u32, tp->packets_out + addend, 1888 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1889 tp->reord_seen++; 1890 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1891 } 1892 1893 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1894 1895 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1896 { 1897 if (num_dupack) { 1898 struct tcp_sock *tp = tcp_sk(sk); 1899 u32 prior_sacked = tp->sacked_out; 1900 s32 delivered; 1901 1902 tp->sacked_out += num_dupack; 1903 tcp_check_reno_reordering(sk, 0); 1904 delivered = tp->sacked_out - prior_sacked; 1905 if (delivered > 0) 1906 tp->delivered += delivered; 1907 tcp_verify_left_out(tp); 1908 } 1909 } 1910 1911 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1912 1913 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1914 { 1915 struct tcp_sock *tp = tcp_sk(sk); 1916 1917 if (acked > 0) { 1918 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1919 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1920 if (acked - 1 >= tp->sacked_out) 1921 tp->sacked_out = 0; 1922 else 1923 tp->sacked_out -= acked - 1; 1924 } 1925 tcp_check_reno_reordering(sk, acked); 1926 tcp_verify_left_out(tp); 1927 } 1928 1929 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1930 { 1931 tp->sacked_out = 0; 1932 } 1933 1934 void tcp_clear_retrans(struct tcp_sock *tp) 1935 { 1936 tp->retrans_out = 0; 1937 tp->lost_out = 0; 1938 tp->undo_marker = 0; 1939 tp->undo_retrans = -1; 1940 tp->sacked_out = 0; 1941 } 1942 1943 static inline void tcp_init_undo(struct tcp_sock *tp) 1944 { 1945 tp->undo_marker = tp->snd_una; 1946 /* Retransmission still in flight may cause DSACKs later. */ 1947 tp->undo_retrans = tp->retrans_out ? : -1; 1948 } 1949 1950 static bool tcp_is_rack(const struct sock *sk) 1951 { 1952 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1953 } 1954 1955 /* If we detect SACK reneging, forget all SACK information 1956 * and reset tags completely, otherwise preserve SACKs. If receiver 1957 * dropped its ofo queue, we will know this due to reneging detection. 1958 */ 1959 static void tcp_timeout_mark_lost(struct sock *sk) 1960 { 1961 struct tcp_sock *tp = tcp_sk(sk); 1962 struct sk_buff *skb, *head; 1963 bool is_reneg; /* is receiver reneging on SACKs? */ 1964 1965 head = tcp_rtx_queue_head(sk); 1966 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1967 if (is_reneg) { 1968 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1969 tp->sacked_out = 0; 1970 /* Mark SACK reneging until we recover from this loss event. */ 1971 tp->is_sack_reneg = 1; 1972 } else if (tcp_is_reno(tp)) { 1973 tcp_reset_reno_sack(tp); 1974 } 1975 1976 skb = head; 1977 skb_rbtree_walk_from(skb) { 1978 if (is_reneg) 1979 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1980 else if (tcp_is_rack(sk) && skb != head && 1981 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1982 continue; /* Don't mark recently sent ones lost yet */ 1983 tcp_mark_skb_lost(sk, skb); 1984 } 1985 tcp_verify_left_out(tp); 1986 tcp_clear_all_retrans_hints(tp); 1987 } 1988 1989 /* Enter Loss state. */ 1990 void tcp_enter_loss(struct sock *sk) 1991 { 1992 const struct inet_connection_sock *icsk = inet_csk(sk); 1993 struct tcp_sock *tp = tcp_sk(sk); 1994 struct net *net = sock_net(sk); 1995 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1996 1997 tcp_timeout_mark_lost(sk); 1998 1999 /* Reduce ssthresh if it has not yet been made inside this window. */ 2000 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2001 !after(tp->high_seq, tp->snd_una) || 2002 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2003 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2004 tp->prior_cwnd = tp->snd_cwnd; 2005 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2006 tcp_ca_event(sk, CA_EVENT_LOSS); 2007 tcp_init_undo(tp); 2008 } 2009 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2010 tp->snd_cwnd_cnt = 0; 2011 tp->snd_cwnd_stamp = tcp_jiffies32; 2012 2013 /* Timeout in disordered state after receiving substantial DUPACKs 2014 * suggests that the degree of reordering is over-estimated. 2015 */ 2016 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2017 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2018 tp->reordering = min_t(unsigned int, tp->reordering, 2019 net->ipv4.sysctl_tcp_reordering); 2020 tcp_set_ca_state(sk, TCP_CA_Loss); 2021 tp->high_seq = tp->snd_nxt; 2022 tcp_ecn_queue_cwr(tp); 2023 2024 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2025 * loss recovery is underway except recurring timeout(s) on 2026 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2027 */ 2028 tp->frto = net->ipv4.sysctl_tcp_frto && 2029 (new_recovery || icsk->icsk_retransmits) && 2030 !inet_csk(sk)->icsk_mtup.probe_size; 2031 } 2032 2033 /* If ACK arrived pointing to a remembered SACK, it means that our 2034 * remembered SACKs do not reflect real state of receiver i.e. 2035 * receiver _host_ is heavily congested (or buggy). 2036 * 2037 * To avoid big spurious retransmission bursts due to transient SACK 2038 * scoreboard oddities that look like reneging, we give the receiver a 2039 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2040 * restore sanity to the SACK scoreboard. If the apparent reneging 2041 * persists until this RTO then we'll clear the SACK scoreboard. 2042 */ 2043 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2044 { 2045 if (flag & FLAG_SACK_RENEGING) { 2046 struct tcp_sock *tp = tcp_sk(sk); 2047 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2048 msecs_to_jiffies(10)); 2049 2050 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2051 delay, TCP_RTO_MAX); 2052 return true; 2053 } 2054 return false; 2055 } 2056 2057 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2058 * counter when SACK is enabled (without SACK, sacked_out is used for 2059 * that purpose). 2060 * 2061 * With reordering, holes may still be in flight, so RFC3517 recovery 2062 * uses pure sacked_out (total number of SACKed segments) even though 2063 * it violates the RFC that uses duplicate ACKs, often these are equal 2064 * but when e.g. out-of-window ACKs or packet duplication occurs, 2065 * they differ. Since neither occurs due to loss, TCP should really 2066 * ignore them. 2067 */ 2068 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2069 { 2070 return tp->sacked_out + 1; 2071 } 2072 2073 /* Linux NewReno/SACK/ECN state machine. 2074 * -------------------------------------- 2075 * 2076 * "Open" Normal state, no dubious events, fast path. 2077 * "Disorder" In all the respects it is "Open", 2078 * but requires a bit more attention. It is entered when 2079 * we see some SACKs or dupacks. It is split of "Open" 2080 * mainly to move some processing from fast path to slow one. 2081 * "CWR" CWND was reduced due to some Congestion Notification event. 2082 * It can be ECN, ICMP source quench, local device congestion. 2083 * "Recovery" CWND was reduced, we are fast-retransmitting. 2084 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2085 * 2086 * tcp_fastretrans_alert() is entered: 2087 * - each incoming ACK, if state is not "Open" 2088 * - when arrived ACK is unusual, namely: 2089 * * SACK 2090 * * Duplicate ACK. 2091 * * ECN ECE. 2092 * 2093 * Counting packets in flight is pretty simple. 2094 * 2095 * in_flight = packets_out - left_out + retrans_out 2096 * 2097 * packets_out is SND.NXT-SND.UNA counted in packets. 2098 * 2099 * retrans_out is number of retransmitted segments. 2100 * 2101 * left_out is number of segments left network, but not ACKed yet. 2102 * 2103 * left_out = sacked_out + lost_out 2104 * 2105 * sacked_out: Packets, which arrived to receiver out of order 2106 * and hence not ACKed. With SACKs this number is simply 2107 * amount of SACKed data. Even without SACKs 2108 * it is easy to give pretty reliable estimate of this number, 2109 * counting duplicate ACKs. 2110 * 2111 * lost_out: Packets lost by network. TCP has no explicit 2112 * "loss notification" feedback from network (for now). 2113 * It means that this number can be only _guessed_. 2114 * Actually, it is the heuristics to predict lossage that 2115 * distinguishes different algorithms. 2116 * 2117 * F.e. after RTO, when all the queue is considered as lost, 2118 * lost_out = packets_out and in_flight = retrans_out. 2119 * 2120 * Essentially, we have now a few algorithms detecting 2121 * lost packets. 2122 * 2123 * If the receiver supports SACK: 2124 * 2125 * RFC6675/3517: It is the conventional algorithm. A packet is 2126 * considered lost if the number of higher sequence packets 2127 * SACKed is greater than or equal the DUPACK thoreshold 2128 * (reordering). This is implemented in tcp_mark_head_lost and 2129 * tcp_update_scoreboard. 2130 * 2131 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2132 * (2017-) that checks timing instead of counting DUPACKs. 2133 * Essentially a packet is considered lost if it's not S/ACKed 2134 * after RTT + reordering_window, where both metrics are 2135 * dynamically measured and adjusted. This is implemented in 2136 * tcp_rack_mark_lost. 2137 * 2138 * If the receiver does not support SACK: 2139 * 2140 * NewReno (RFC6582): in Recovery we assume that one segment 2141 * is lost (classic Reno). While we are in Recovery and 2142 * a partial ACK arrives, we assume that one more packet 2143 * is lost (NewReno). This heuristics are the same in NewReno 2144 * and SACK. 2145 * 2146 * Really tricky (and requiring careful tuning) part of algorithm 2147 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2148 * The first determines the moment _when_ we should reduce CWND and, 2149 * hence, slow down forward transmission. In fact, it determines the moment 2150 * when we decide that hole is caused by loss, rather than by a reorder. 2151 * 2152 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2153 * holes, caused by lost packets. 2154 * 2155 * And the most logically complicated part of algorithm is undo 2156 * heuristics. We detect false retransmits due to both too early 2157 * fast retransmit (reordering) and underestimated RTO, analyzing 2158 * timestamps and D-SACKs. When we detect that some segments were 2159 * retransmitted by mistake and CWND reduction was wrong, we undo 2160 * window reduction and abort recovery phase. This logic is hidden 2161 * inside several functions named tcp_try_undo_<something>. 2162 */ 2163 2164 /* This function decides, when we should leave Disordered state 2165 * and enter Recovery phase, reducing congestion window. 2166 * 2167 * Main question: may we further continue forward transmission 2168 * with the same cwnd? 2169 */ 2170 static bool tcp_time_to_recover(struct sock *sk, int flag) 2171 { 2172 struct tcp_sock *tp = tcp_sk(sk); 2173 2174 /* Trick#1: The loss is proven. */ 2175 if (tp->lost_out) 2176 return true; 2177 2178 /* Not-A-Trick#2 : Classic rule... */ 2179 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2180 return true; 2181 2182 return false; 2183 } 2184 2185 /* Detect loss in event "A" above by marking head of queue up as lost. 2186 * For RFC3517 SACK, a segment is considered lost if it 2187 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2188 * the maximum SACKed segments to pass before reaching this limit. 2189 */ 2190 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2191 { 2192 struct tcp_sock *tp = tcp_sk(sk); 2193 struct sk_buff *skb; 2194 int cnt; 2195 /* Use SACK to deduce losses of new sequences sent during recovery */ 2196 const u32 loss_high = tp->snd_nxt; 2197 2198 WARN_ON(packets > tp->packets_out); 2199 skb = tp->lost_skb_hint; 2200 if (skb) { 2201 /* Head already handled? */ 2202 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2203 return; 2204 cnt = tp->lost_cnt_hint; 2205 } else { 2206 skb = tcp_rtx_queue_head(sk); 2207 cnt = 0; 2208 } 2209 2210 skb_rbtree_walk_from(skb) { 2211 /* TODO: do this better */ 2212 /* this is not the most efficient way to do this... */ 2213 tp->lost_skb_hint = skb; 2214 tp->lost_cnt_hint = cnt; 2215 2216 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2217 break; 2218 2219 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2220 cnt += tcp_skb_pcount(skb); 2221 2222 if (cnt > packets) 2223 break; 2224 2225 tcp_skb_mark_lost(tp, skb); 2226 2227 if (mark_head) 2228 break; 2229 } 2230 tcp_verify_left_out(tp); 2231 } 2232 2233 /* Account newly detected lost packet(s) */ 2234 2235 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2236 { 2237 struct tcp_sock *tp = tcp_sk(sk); 2238 2239 if (tcp_is_sack(tp)) { 2240 int sacked_upto = tp->sacked_out - tp->reordering; 2241 if (sacked_upto >= 0) 2242 tcp_mark_head_lost(sk, sacked_upto, 0); 2243 else if (fast_rexmit) 2244 tcp_mark_head_lost(sk, 1, 1); 2245 } 2246 } 2247 2248 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2249 { 2250 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2251 before(tp->rx_opt.rcv_tsecr, when); 2252 } 2253 2254 /* skb is spurious retransmitted if the returned timestamp echo 2255 * reply is prior to the skb transmission time 2256 */ 2257 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2258 const struct sk_buff *skb) 2259 { 2260 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2261 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2262 } 2263 2264 /* Nothing was retransmitted or returned timestamp is less 2265 * than timestamp of the first retransmission. 2266 */ 2267 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2268 { 2269 return tp->retrans_stamp && 2270 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2271 } 2272 2273 /* Undo procedures. */ 2274 2275 /* We can clear retrans_stamp when there are no retransmissions in the 2276 * window. It would seem that it is trivially available for us in 2277 * tp->retrans_out, however, that kind of assumptions doesn't consider 2278 * what will happen if errors occur when sending retransmission for the 2279 * second time. ...It could the that such segment has only 2280 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2281 * the head skb is enough except for some reneging corner cases that 2282 * are not worth the effort. 2283 * 2284 * Main reason for all this complexity is the fact that connection dying 2285 * time now depends on the validity of the retrans_stamp, in particular, 2286 * that successive retransmissions of a segment must not advance 2287 * retrans_stamp under any conditions. 2288 */ 2289 static bool tcp_any_retrans_done(const struct sock *sk) 2290 { 2291 const struct tcp_sock *tp = tcp_sk(sk); 2292 struct sk_buff *skb; 2293 2294 if (tp->retrans_out) 2295 return true; 2296 2297 skb = tcp_rtx_queue_head(sk); 2298 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2299 return true; 2300 2301 return false; 2302 } 2303 2304 static void DBGUNDO(struct sock *sk, const char *msg) 2305 { 2306 #if FASTRETRANS_DEBUG > 1 2307 struct tcp_sock *tp = tcp_sk(sk); 2308 struct inet_sock *inet = inet_sk(sk); 2309 2310 if (sk->sk_family == AF_INET) { 2311 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2312 msg, 2313 &inet->inet_daddr, ntohs(inet->inet_dport), 2314 tp->snd_cwnd, tcp_left_out(tp), 2315 tp->snd_ssthresh, tp->prior_ssthresh, 2316 tp->packets_out); 2317 } 2318 #if IS_ENABLED(CONFIG_IPV6) 2319 else if (sk->sk_family == AF_INET6) { 2320 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2321 msg, 2322 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2323 tp->snd_cwnd, tcp_left_out(tp), 2324 tp->snd_ssthresh, tp->prior_ssthresh, 2325 tp->packets_out); 2326 } 2327 #endif 2328 #endif 2329 } 2330 2331 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2332 { 2333 struct tcp_sock *tp = tcp_sk(sk); 2334 2335 if (unmark_loss) { 2336 struct sk_buff *skb; 2337 2338 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2339 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2340 } 2341 tp->lost_out = 0; 2342 tcp_clear_all_retrans_hints(tp); 2343 } 2344 2345 if (tp->prior_ssthresh) { 2346 const struct inet_connection_sock *icsk = inet_csk(sk); 2347 2348 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2349 2350 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2351 tp->snd_ssthresh = tp->prior_ssthresh; 2352 tcp_ecn_withdraw_cwr(tp); 2353 } 2354 } 2355 tp->snd_cwnd_stamp = tcp_jiffies32; 2356 tp->undo_marker = 0; 2357 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2358 } 2359 2360 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2361 { 2362 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2363 } 2364 2365 /* People celebrate: "We love our President!" */ 2366 static bool tcp_try_undo_recovery(struct sock *sk) 2367 { 2368 struct tcp_sock *tp = tcp_sk(sk); 2369 2370 if (tcp_may_undo(tp)) { 2371 int mib_idx; 2372 2373 /* Happy end! We did not retransmit anything 2374 * or our original transmission succeeded. 2375 */ 2376 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2377 tcp_undo_cwnd_reduction(sk, false); 2378 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2379 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2380 else 2381 mib_idx = LINUX_MIB_TCPFULLUNDO; 2382 2383 NET_INC_STATS(sock_net(sk), mib_idx); 2384 } else if (tp->rack.reo_wnd_persist) { 2385 tp->rack.reo_wnd_persist--; 2386 } 2387 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2388 /* Hold old state until something *above* high_seq 2389 * is ACKed. For Reno it is MUST to prevent false 2390 * fast retransmits (RFC2582). SACK TCP is safe. */ 2391 if (!tcp_any_retrans_done(sk)) 2392 tp->retrans_stamp = 0; 2393 return true; 2394 } 2395 tcp_set_ca_state(sk, TCP_CA_Open); 2396 tp->is_sack_reneg = 0; 2397 return false; 2398 } 2399 2400 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2401 static bool tcp_try_undo_dsack(struct sock *sk) 2402 { 2403 struct tcp_sock *tp = tcp_sk(sk); 2404 2405 if (tp->undo_marker && !tp->undo_retrans) { 2406 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2407 tp->rack.reo_wnd_persist + 1); 2408 DBGUNDO(sk, "D-SACK"); 2409 tcp_undo_cwnd_reduction(sk, false); 2410 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2411 return true; 2412 } 2413 return false; 2414 } 2415 2416 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2417 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2418 { 2419 struct tcp_sock *tp = tcp_sk(sk); 2420 2421 if (frto_undo || tcp_may_undo(tp)) { 2422 tcp_undo_cwnd_reduction(sk, true); 2423 2424 DBGUNDO(sk, "partial loss"); 2425 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2426 if (frto_undo) 2427 NET_INC_STATS(sock_net(sk), 2428 LINUX_MIB_TCPSPURIOUSRTOS); 2429 inet_csk(sk)->icsk_retransmits = 0; 2430 if (frto_undo || tcp_is_sack(tp)) { 2431 tcp_set_ca_state(sk, TCP_CA_Open); 2432 tp->is_sack_reneg = 0; 2433 } 2434 return true; 2435 } 2436 return false; 2437 } 2438 2439 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2440 * It computes the number of packets to send (sndcnt) based on packets newly 2441 * delivered: 2442 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2443 * cwnd reductions across a full RTT. 2444 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2445 * But when the retransmits are acked without further losses, PRR 2446 * slow starts cwnd up to ssthresh to speed up the recovery. 2447 */ 2448 static void tcp_init_cwnd_reduction(struct sock *sk) 2449 { 2450 struct tcp_sock *tp = tcp_sk(sk); 2451 2452 tp->high_seq = tp->snd_nxt; 2453 tp->tlp_high_seq = 0; 2454 tp->snd_cwnd_cnt = 0; 2455 tp->prior_cwnd = tp->snd_cwnd; 2456 tp->prr_delivered = 0; 2457 tp->prr_out = 0; 2458 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2459 tcp_ecn_queue_cwr(tp); 2460 } 2461 2462 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2463 { 2464 struct tcp_sock *tp = tcp_sk(sk); 2465 int sndcnt = 0; 2466 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2467 2468 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2469 return; 2470 2471 tp->prr_delivered += newly_acked_sacked; 2472 if (delta < 0) { 2473 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2474 tp->prior_cwnd - 1; 2475 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2476 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2477 FLAG_RETRANS_DATA_ACKED) { 2478 sndcnt = min_t(int, delta, 2479 max_t(int, tp->prr_delivered - tp->prr_out, 2480 newly_acked_sacked) + 1); 2481 } else { 2482 sndcnt = min(delta, newly_acked_sacked); 2483 } 2484 /* Force a fast retransmit upon entering fast recovery */ 2485 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2486 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2487 } 2488 2489 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2490 { 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 2493 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2494 return; 2495 2496 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2497 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2498 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2499 tp->snd_cwnd = tp->snd_ssthresh; 2500 tp->snd_cwnd_stamp = tcp_jiffies32; 2501 } 2502 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2503 } 2504 2505 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2506 void tcp_enter_cwr(struct sock *sk) 2507 { 2508 struct tcp_sock *tp = tcp_sk(sk); 2509 2510 tp->prior_ssthresh = 0; 2511 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2512 tp->undo_marker = 0; 2513 tcp_init_cwnd_reduction(sk); 2514 tcp_set_ca_state(sk, TCP_CA_CWR); 2515 } 2516 } 2517 EXPORT_SYMBOL(tcp_enter_cwr); 2518 2519 static void tcp_try_keep_open(struct sock *sk) 2520 { 2521 struct tcp_sock *tp = tcp_sk(sk); 2522 int state = TCP_CA_Open; 2523 2524 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2525 state = TCP_CA_Disorder; 2526 2527 if (inet_csk(sk)->icsk_ca_state != state) { 2528 tcp_set_ca_state(sk, state); 2529 tp->high_seq = tp->snd_nxt; 2530 } 2531 } 2532 2533 static void tcp_try_to_open(struct sock *sk, int flag) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 2537 tcp_verify_left_out(tp); 2538 2539 if (!tcp_any_retrans_done(sk)) 2540 tp->retrans_stamp = 0; 2541 2542 if (flag & FLAG_ECE) 2543 tcp_enter_cwr(sk); 2544 2545 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2546 tcp_try_keep_open(sk); 2547 } 2548 } 2549 2550 static void tcp_mtup_probe_failed(struct sock *sk) 2551 { 2552 struct inet_connection_sock *icsk = inet_csk(sk); 2553 2554 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2555 icsk->icsk_mtup.probe_size = 0; 2556 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2557 } 2558 2559 static void tcp_mtup_probe_success(struct sock *sk) 2560 { 2561 struct tcp_sock *tp = tcp_sk(sk); 2562 struct inet_connection_sock *icsk = inet_csk(sk); 2563 2564 /* FIXME: breaks with very large cwnd */ 2565 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2566 tp->snd_cwnd = tp->snd_cwnd * 2567 tcp_mss_to_mtu(sk, tp->mss_cache) / 2568 icsk->icsk_mtup.probe_size; 2569 tp->snd_cwnd_cnt = 0; 2570 tp->snd_cwnd_stamp = tcp_jiffies32; 2571 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2572 2573 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2574 icsk->icsk_mtup.probe_size = 0; 2575 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2577 } 2578 2579 /* Do a simple retransmit without using the backoff mechanisms in 2580 * tcp_timer. This is used for path mtu discovery. 2581 * The socket is already locked here. 2582 */ 2583 void tcp_simple_retransmit(struct sock *sk) 2584 { 2585 const struct inet_connection_sock *icsk = inet_csk(sk); 2586 struct tcp_sock *tp = tcp_sk(sk); 2587 struct sk_buff *skb; 2588 unsigned int mss = tcp_current_mss(sk); 2589 2590 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2591 if (tcp_skb_seglen(skb) > mss && 2592 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2593 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2594 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2595 tp->retrans_out -= tcp_skb_pcount(skb); 2596 } 2597 tcp_skb_mark_lost_uncond_verify(tp, skb); 2598 } 2599 } 2600 2601 tcp_clear_retrans_hints_partial(tp); 2602 2603 if (!tp->lost_out) 2604 return; 2605 2606 if (tcp_is_reno(tp)) 2607 tcp_limit_reno_sacked(tp); 2608 2609 tcp_verify_left_out(tp); 2610 2611 /* Don't muck with the congestion window here. 2612 * Reason is that we do not increase amount of _data_ 2613 * in network, but units changed and effective 2614 * cwnd/ssthresh really reduced now. 2615 */ 2616 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2617 tp->high_seq = tp->snd_nxt; 2618 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2619 tp->prior_ssthresh = 0; 2620 tp->undo_marker = 0; 2621 tcp_set_ca_state(sk, TCP_CA_Loss); 2622 } 2623 tcp_xmit_retransmit_queue(sk); 2624 } 2625 EXPORT_SYMBOL(tcp_simple_retransmit); 2626 2627 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2628 { 2629 struct tcp_sock *tp = tcp_sk(sk); 2630 int mib_idx; 2631 2632 if (tcp_is_reno(tp)) 2633 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2634 else 2635 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2636 2637 NET_INC_STATS(sock_net(sk), mib_idx); 2638 2639 tp->prior_ssthresh = 0; 2640 tcp_init_undo(tp); 2641 2642 if (!tcp_in_cwnd_reduction(sk)) { 2643 if (!ece_ack) 2644 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2645 tcp_init_cwnd_reduction(sk); 2646 } 2647 tcp_set_ca_state(sk, TCP_CA_Recovery); 2648 } 2649 2650 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2651 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2652 */ 2653 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2654 int *rexmit) 2655 { 2656 struct tcp_sock *tp = tcp_sk(sk); 2657 bool recovered = !before(tp->snd_una, tp->high_seq); 2658 2659 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2660 tcp_try_undo_loss(sk, false)) 2661 return; 2662 2663 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2664 /* Step 3.b. A timeout is spurious if not all data are 2665 * lost, i.e., never-retransmitted data are (s)acked. 2666 */ 2667 if ((flag & FLAG_ORIG_SACK_ACKED) && 2668 tcp_try_undo_loss(sk, true)) 2669 return; 2670 2671 if (after(tp->snd_nxt, tp->high_seq)) { 2672 if (flag & FLAG_DATA_SACKED || num_dupack) 2673 tp->frto = 0; /* Step 3.a. loss was real */ 2674 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2675 tp->high_seq = tp->snd_nxt; 2676 /* Step 2.b. Try send new data (but deferred until cwnd 2677 * is updated in tcp_ack()). Otherwise fall back to 2678 * the conventional recovery. 2679 */ 2680 if (!tcp_write_queue_empty(sk) && 2681 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2682 *rexmit = REXMIT_NEW; 2683 return; 2684 } 2685 tp->frto = 0; 2686 } 2687 } 2688 2689 if (recovered) { 2690 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2691 tcp_try_undo_recovery(sk); 2692 return; 2693 } 2694 if (tcp_is_reno(tp)) { 2695 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2696 * delivered. Lower inflight to clock out (re)tranmissions. 2697 */ 2698 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2699 tcp_add_reno_sack(sk, num_dupack); 2700 else if (flag & FLAG_SND_UNA_ADVANCED) 2701 tcp_reset_reno_sack(tp); 2702 } 2703 *rexmit = REXMIT_LOST; 2704 } 2705 2706 /* Undo during fast recovery after partial ACK. */ 2707 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2708 { 2709 struct tcp_sock *tp = tcp_sk(sk); 2710 2711 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2712 /* Plain luck! Hole if filled with delayed 2713 * packet, rather than with a retransmit. Check reordering. 2714 */ 2715 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2716 2717 /* We are getting evidence that the reordering degree is higher 2718 * than we realized. If there are no retransmits out then we 2719 * can undo. Otherwise we clock out new packets but do not 2720 * mark more packets lost or retransmit more. 2721 */ 2722 if (tp->retrans_out) 2723 return true; 2724 2725 if (!tcp_any_retrans_done(sk)) 2726 tp->retrans_stamp = 0; 2727 2728 DBGUNDO(sk, "partial recovery"); 2729 tcp_undo_cwnd_reduction(sk, true); 2730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2731 tcp_try_keep_open(sk); 2732 return true; 2733 } 2734 return false; 2735 } 2736 2737 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2738 { 2739 struct tcp_sock *tp = tcp_sk(sk); 2740 2741 if (tcp_rtx_queue_empty(sk)) 2742 return; 2743 2744 if (unlikely(tcp_is_reno(tp))) { 2745 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2746 } else if (tcp_is_rack(sk)) { 2747 u32 prior_retrans = tp->retrans_out; 2748 2749 tcp_rack_mark_lost(sk); 2750 if (prior_retrans > tp->retrans_out) 2751 *ack_flag |= FLAG_LOST_RETRANS; 2752 } 2753 } 2754 2755 static bool tcp_force_fast_retransmit(struct sock *sk) 2756 { 2757 struct tcp_sock *tp = tcp_sk(sk); 2758 2759 return after(tcp_highest_sack_seq(tp), 2760 tp->snd_una + tp->reordering * tp->mss_cache); 2761 } 2762 2763 /* Process an event, which can update packets-in-flight not trivially. 2764 * Main goal of this function is to calculate new estimate for left_out, 2765 * taking into account both packets sitting in receiver's buffer and 2766 * packets lost by network. 2767 * 2768 * Besides that it updates the congestion state when packet loss or ECN 2769 * is detected. But it does not reduce the cwnd, it is done by the 2770 * congestion control later. 2771 * 2772 * It does _not_ decide what to send, it is made in function 2773 * tcp_xmit_retransmit_queue(). 2774 */ 2775 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2776 int num_dupack, int *ack_flag, int *rexmit) 2777 { 2778 struct inet_connection_sock *icsk = inet_csk(sk); 2779 struct tcp_sock *tp = tcp_sk(sk); 2780 int fast_rexmit = 0, flag = *ack_flag; 2781 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2782 tcp_force_fast_retransmit(sk)); 2783 2784 if (!tp->packets_out && tp->sacked_out) 2785 tp->sacked_out = 0; 2786 2787 /* Now state machine starts. 2788 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2789 if (flag & FLAG_ECE) 2790 tp->prior_ssthresh = 0; 2791 2792 /* B. In all the states check for reneging SACKs. */ 2793 if (tcp_check_sack_reneging(sk, flag)) 2794 return; 2795 2796 /* C. Check consistency of the current state. */ 2797 tcp_verify_left_out(tp); 2798 2799 /* D. Check state exit conditions. State can be terminated 2800 * when high_seq is ACKed. */ 2801 if (icsk->icsk_ca_state == TCP_CA_Open) { 2802 WARN_ON(tp->retrans_out != 0); 2803 tp->retrans_stamp = 0; 2804 } else if (!before(tp->snd_una, tp->high_seq)) { 2805 switch (icsk->icsk_ca_state) { 2806 case TCP_CA_CWR: 2807 /* CWR is to be held something *above* high_seq 2808 * is ACKed for CWR bit to reach receiver. */ 2809 if (tp->snd_una != tp->high_seq) { 2810 tcp_end_cwnd_reduction(sk); 2811 tcp_set_ca_state(sk, TCP_CA_Open); 2812 } 2813 break; 2814 2815 case TCP_CA_Recovery: 2816 if (tcp_is_reno(tp)) 2817 tcp_reset_reno_sack(tp); 2818 if (tcp_try_undo_recovery(sk)) 2819 return; 2820 tcp_end_cwnd_reduction(sk); 2821 break; 2822 } 2823 } 2824 2825 /* E. Process state. */ 2826 switch (icsk->icsk_ca_state) { 2827 case TCP_CA_Recovery: 2828 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2829 if (tcp_is_reno(tp)) 2830 tcp_add_reno_sack(sk, num_dupack); 2831 } else { 2832 if (tcp_try_undo_partial(sk, prior_snd_una)) 2833 return; 2834 /* Partial ACK arrived. Force fast retransmit. */ 2835 do_lost = tcp_force_fast_retransmit(sk); 2836 } 2837 if (tcp_try_undo_dsack(sk)) { 2838 tcp_try_keep_open(sk); 2839 return; 2840 } 2841 tcp_identify_packet_loss(sk, ack_flag); 2842 break; 2843 case TCP_CA_Loss: 2844 tcp_process_loss(sk, flag, num_dupack, rexmit); 2845 tcp_identify_packet_loss(sk, ack_flag); 2846 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2847 (*ack_flag & FLAG_LOST_RETRANS))) 2848 return; 2849 /* Change state if cwnd is undone or retransmits are lost */ 2850 fallthrough; 2851 default: 2852 if (tcp_is_reno(tp)) { 2853 if (flag & FLAG_SND_UNA_ADVANCED) 2854 tcp_reset_reno_sack(tp); 2855 tcp_add_reno_sack(sk, num_dupack); 2856 } 2857 2858 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2859 tcp_try_undo_dsack(sk); 2860 2861 tcp_identify_packet_loss(sk, ack_flag); 2862 if (!tcp_time_to_recover(sk, flag)) { 2863 tcp_try_to_open(sk, flag); 2864 return; 2865 } 2866 2867 /* MTU probe failure: don't reduce cwnd */ 2868 if (icsk->icsk_ca_state < TCP_CA_CWR && 2869 icsk->icsk_mtup.probe_size && 2870 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2871 tcp_mtup_probe_failed(sk); 2872 /* Restores the reduction we did in tcp_mtup_probe() */ 2873 tp->snd_cwnd++; 2874 tcp_simple_retransmit(sk); 2875 return; 2876 } 2877 2878 /* Otherwise enter Recovery state */ 2879 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2880 fast_rexmit = 1; 2881 } 2882 2883 if (!tcp_is_rack(sk) && do_lost) 2884 tcp_update_scoreboard(sk, fast_rexmit); 2885 *rexmit = REXMIT_LOST; 2886 } 2887 2888 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2889 { 2890 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2891 struct tcp_sock *tp = tcp_sk(sk); 2892 2893 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2894 /* If the remote keeps returning delayed ACKs, eventually 2895 * the min filter would pick it up and overestimate the 2896 * prop. delay when it expires. Skip suspected delayed ACKs. 2897 */ 2898 return; 2899 } 2900 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2901 rtt_us ? : jiffies_to_usecs(1)); 2902 } 2903 2904 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2905 long seq_rtt_us, long sack_rtt_us, 2906 long ca_rtt_us, struct rate_sample *rs) 2907 { 2908 const struct tcp_sock *tp = tcp_sk(sk); 2909 2910 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2911 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2912 * Karn's algorithm forbids taking RTT if some retransmitted data 2913 * is acked (RFC6298). 2914 */ 2915 if (seq_rtt_us < 0) 2916 seq_rtt_us = sack_rtt_us; 2917 2918 /* RTTM Rule: A TSecr value received in a segment is used to 2919 * update the averaged RTT measurement only if the segment 2920 * acknowledges some new data, i.e., only if it advances the 2921 * left edge of the send window. 2922 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2923 */ 2924 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2925 flag & FLAG_ACKED) { 2926 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2927 2928 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2929 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2930 ca_rtt_us = seq_rtt_us; 2931 } 2932 } 2933 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2934 if (seq_rtt_us < 0) 2935 return false; 2936 2937 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2938 * always taken together with ACK, SACK, or TS-opts. Any negative 2939 * values will be skipped with the seq_rtt_us < 0 check above. 2940 */ 2941 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2942 tcp_rtt_estimator(sk, seq_rtt_us); 2943 tcp_set_rto(sk); 2944 2945 /* RFC6298: only reset backoff on valid RTT measurement. */ 2946 inet_csk(sk)->icsk_backoff = 0; 2947 return true; 2948 } 2949 2950 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2951 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2952 { 2953 struct rate_sample rs; 2954 long rtt_us = -1L; 2955 2956 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2957 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2958 2959 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2960 } 2961 2962 2963 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2964 { 2965 const struct inet_connection_sock *icsk = inet_csk(sk); 2966 2967 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2968 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2969 } 2970 2971 /* Restart timer after forward progress on connection. 2972 * RFC2988 recommends to restart timer to now+rto. 2973 */ 2974 void tcp_rearm_rto(struct sock *sk) 2975 { 2976 const struct inet_connection_sock *icsk = inet_csk(sk); 2977 struct tcp_sock *tp = tcp_sk(sk); 2978 2979 /* If the retrans timer is currently being used by Fast Open 2980 * for SYN-ACK retrans purpose, stay put. 2981 */ 2982 if (rcu_access_pointer(tp->fastopen_rsk)) 2983 return; 2984 2985 if (!tp->packets_out) { 2986 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2987 } else { 2988 u32 rto = inet_csk(sk)->icsk_rto; 2989 /* Offset the time elapsed after installing regular RTO */ 2990 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2991 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2992 s64 delta_us = tcp_rto_delta_us(sk); 2993 /* delta_us may not be positive if the socket is locked 2994 * when the retrans timer fires and is rescheduled. 2995 */ 2996 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2997 } 2998 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2999 TCP_RTO_MAX); 3000 } 3001 } 3002 3003 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3004 static void tcp_set_xmit_timer(struct sock *sk) 3005 { 3006 if (!tcp_schedule_loss_probe(sk, true)) 3007 tcp_rearm_rto(sk); 3008 } 3009 3010 /* If we get here, the whole TSO packet has not been acked. */ 3011 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3012 { 3013 struct tcp_sock *tp = tcp_sk(sk); 3014 u32 packets_acked; 3015 3016 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3017 3018 packets_acked = tcp_skb_pcount(skb); 3019 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3020 return 0; 3021 packets_acked -= tcp_skb_pcount(skb); 3022 3023 if (packets_acked) { 3024 BUG_ON(tcp_skb_pcount(skb) == 0); 3025 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3026 } 3027 3028 return packets_acked; 3029 } 3030 3031 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3032 u32 prior_snd_una) 3033 { 3034 const struct skb_shared_info *shinfo; 3035 3036 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3037 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3038 return; 3039 3040 shinfo = skb_shinfo(skb); 3041 if (!before(shinfo->tskey, prior_snd_una) && 3042 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3043 tcp_skb_tsorted_save(skb) { 3044 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3045 } tcp_skb_tsorted_restore(skb); 3046 } 3047 } 3048 3049 /* Remove acknowledged frames from the retransmission queue. If our packet 3050 * is before the ack sequence we can discard it as it's confirmed to have 3051 * arrived at the other end. 3052 */ 3053 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3054 u32 prior_snd_una, 3055 struct tcp_sacktag_state *sack) 3056 { 3057 const struct inet_connection_sock *icsk = inet_csk(sk); 3058 u64 first_ackt, last_ackt; 3059 struct tcp_sock *tp = tcp_sk(sk); 3060 u32 prior_sacked = tp->sacked_out; 3061 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3062 struct sk_buff *skb, *next; 3063 bool fully_acked = true; 3064 long sack_rtt_us = -1L; 3065 long seq_rtt_us = -1L; 3066 long ca_rtt_us = -1L; 3067 u32 pkts_acked = 0; 3068 u32 last_in_flight = 0; 3069 bool rtt_update; 3070 int flag = 0; 3071 3072 first_ackt = 0; 3073 3074 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3075 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3076 const u32 start_seq = scb->seq; 3077 u8 sacked = scb->sacked; 3078 u32 acked_pcount; 3079 3080 tcp_ack_tstamp(sk, skb, prior_snd_una); 3081 3082 /* Determine how many packets and what bytes were acked, tso and else */ 3083 if (after(scb->end_seq, tp->snd_una)) { 3084 if (tcp_skb_pcount(skb) == 1 || 3085 !after(tp->snd_una, scb->seq)) 3086 break; 3087 3088 acked_pcount = tcp_tso_acked(sk, skb); 3089 if (!acked_pcount) 3090 break; 3091 fully_acked = false; 3092 } else { 3093 acked_pcount = tcp_skb_pcount(skb); 3094 } 3095 3096 if (unlikely(sacked & TCPCB_RETRANS)) { 3097 if (sacked & TCPCB_SACKED_RETRANS) 3098 tp->retrans_out -= acked_pcount; 3099 flag |= FLAG_RETRANS_DATA_ACKED; 3100 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3101 last_ackt = tcp_skb_timestamp_us(skb); 3102 WARN_ON_ONCE(last_ackt == 0); 3103 if (!first_ackt) 3104 first_ackt = last_ackt; 3105 3106 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3107 if (before(start_seq, reord)) 3108 reord = start_seq; 3109 if (!after(scb->end_seq, tp->high_seq)) 3110 flag |= FLAG_ORIG_SACK_ACKED; 3111 } 3112 3113 if (sacked & TCPCB_SACKED_ACKED) { 3114 tp->sacked_out -= acked_pcount; 3115 } else if (tcp_is_sack(tp)) { 3116 tp->delivered += acked_pcount; 3117 if (!tcp_skb_spurious_retrans(tp, skb)) 3118 tcp_rack_advance(tp, sacked, scb->end_seq, 3119 tcp_skb_timestamp_us(skb)); 3120 } 3121 if (sacked & TCPCB_LOST) 3122 tp->lost_out -= acked_pcount; 3123 3124 tp->packets_out -= acked_pcount; 3125 pkts_acked += acked_pcount; 3126 tcp_rate_skb_delivered(sk, skb, sack->rate); 3127 3128 /* Initial outgoing SYN's get put onto the write_queue 3129 * just like anything else we transmit. It is not 3130 * true data, and if we misinform our callers that 3131 * this ACK acks real data, we will erroneously exit 3132 * connection startup slow start one packet too 3133 * quickly. This is severely frowned upon behavior. 3134 */ 3135 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3136 flag |= FLAG_DATA_ACKED; 3137 } else { 3138 flag |= FLAG_SYN_ACKED; 3139 tp->retrans_stamp = 0; 3140 } 3141 3142 if (!fully_acked) 3143 break; 3144 3145 next = skb_rb_next(skb); 3146 if (unlikely(skb == tp->retransmit_skb_hint)) 3147 tp->retransmit_skb_hint = NULL; 3148 if (unlikely(skb == tp->lost_skb_hint)) 3149 tp->lost_skb_hint = NULL; 3150 tcp_highest_sack_replace(sk, skb, next); 3151 tcp_rtx_queue_unlink_and_free(skb, sk); 3152 } 3153 3154 if (!skb) 3155 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3156 3157 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3158 tp->snd_up = tp->snd_una; 3159 3160 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3161 flag |= FLAG_SACK_RENEGING; 3162 3163 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3164 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3165 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3166 3167 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3168 last_in_flight && !prior_sacked && fully_acked && 3169 sack->rate->prior_delivered + 1 == tp->delivered && 3170 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3171 /* Conservatively mark a delayed ACK. It's typically 3172 * from a lone runt packet over the round trip to 3173 * a receiver w/o out-of-order or CE events. 3174 */ 3175 flag |= FLAG_ACK_MAYBE_DELAYED; 3176 } 3177 } 3178 if (sack->first_sackt) { 3179 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3180 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3181 } 3182 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3183 ca_rtt_us, sack->rate); 3184 3185 if (flag & FLAG_ACKED) { 3186 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3187 if (unlikely(icsk->icsk_mtup.probe_size && 3188 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3189 tcp_mtup_probe_success(sk); 3190 } 3191 3192 if (tcp_is_reno(tp)) { 3193 tcp_remove_reno_sacks(sk, pkts_acked); 3194 3195 /* If any of the cumulatively ACKed segments was 3196 * retransmitted, non-SACK case cannot confirm that 3197 * progress was due to original transmission due to 3198 * lack of TCPCB_SACKED_ACKED bits even if some of 3199 * the packets may have been never retransmitted. 3200 */ 3201 if (flag & FLAG_RETRANS_DATA_ACKED) 3202 flag &= ~FLAG_ORIG_SACK_ACKED; 3203 } else { 3204 int delta; 3205 3206 /* Non-retransmitted hole got filled? That's reordering */ 3207 if (before(reord, prior_fack)) 3208 tcp_check_sack_reordering(sk, reord, 0); 3209 3210 delta = prior_sacked - tp->sacked_out; 3211 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3212 } 3213 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3214 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3215 tcp_skb_timestamp_us(skb))) { 3216 /* Do not re-arm RTO if the sack RTT is measured from data sent 3217 * after when the head was last (re)transmitted. Otherwise the 3218 * timeout may continue to extend in loss recovery. 3219 */ 3220 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3221 } 3222 3223 if (icsk->icsk_ca_ops->pkts_acked) { 3224 struct ack_sample sample = { .pkts_acked = pkts_acked, 3225 .rtt_us = sack->rate->rtt_us, 3226 .in_flight = last_in_flight }; 3227 3228 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3229 } 3230 3231 #if FASTRETRANS_DEBUG > 0 3232 WARN_ON((int)tp->sacked_out < 0); 3233 WARN_ON((int)tp->lost_out < 0); 3234 WARN_ON((int)tp->retrans_out < 0); 3235 if (!tp->packets_out && tcp_is_sack(tp)) { 3236 icsk = inet_csk(sk); 3237 if (tp->lost_out) { 3238 pr_debug("Leak l=%u %d\n", 3239 tp->lost_out, icsk->icsk_ca_state); 3240 tp->lost_out = 0; 3241 } 3242 if (tp->sacked_out) { 3243 pr_debug("Leak s=%u %d\n", 3244 tp->sacked_out, icsk->icsk_ca_state); 3245 tp->sacked_out = 0; 3246 } 3247 if (tp->retrans_out) { 3248 pr_debug("Leak r=%u %d\n", 3249 tp->retrans_out, icsk->icsk_ca_state); 3250 tp->retrans_out = 0; 3251 } 3252 } 3253 #endif 3254 return flag; 3255 } 3256 3257 static void tcp_ack_probe(struct sock *sk) 3258 { 3259 struct inet_connection_sock *icsk = inet_csk(sk); 3260 struct sk_buff *head = tcp_send_head(sk); 3261 const struct tcp_sock *tp = tcp_sk(sk); 3262 3263 /* Was it a usable window open? */ 3264 if (!head) 3265 return; 3266 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3267 icsk->icsk_backoff = 0; 3268 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3269 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3270 * This function is not for random using! 3271 */ 3272 } else { 3273 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3274 3275 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3276 when, TCP_RTO_MAX); 3277 } 3278 } 3279 3280 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3281 { 3282 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3283 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3284 } 3285 3286 /* Decide wheather to run the increase function of congestion control. */ 3287 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3288 { 3289 /* If reordering is high then always grow cwnd whenever data is 3290 * delivered regardless of its ordering. Otherwise stay conservative 3291 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3292 * new SACK or ECE mark may first advance cwnd here and later reduce 3293 * cwnd in tcp_fastretrans_alert() based on more states. 3294 */ 3295 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3296 return flag & FLAG_FORWARD_PROGRESS; 3297 3298 return flag & FLAG_DATA_ACKED; 3299 } 3300 3301 /* The "ultimate" congestion control function that aims to replace the rigid 3302 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3303 * It's called toward the end of processing an ACK with precise rate 3304 * information. All transmission or retransmission are delayed afterwards. 3305 */ 3306 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3307 int flag, const struct rate_sample *rs) 3308 { 3309 const struct inet_connection_sock *icsk = inet_csk(sk); 3310 3311 if (icsk->icsk_ca_ops->cong_control) { 3312 icsk->icsk_ca_ops->cong_control(sk, rs); 3313 return; 3314 } 3315 3316 if (tcp_in_cwnd_reduction(sk)) { 3317 /* Reduce cwnd if state mandates */ 3318 tcp_cwnd_reduction(sk, acked_sacked, flag); 3319 } else if (tcp_may_raise_cwnd(sk, flag)) { 3320 /* Advance cwnd if state allows */ 3321 tcp_cong_avoid(sk, ack, acked_sacked); 3322 } 3323 tcp_update_pacing_rate(sk); 3324 } 3325 3326 /* Check that window update is acceptable. 3327 * The function assumes that snd_una<=ack<=snd_next. 3328 */ 3329 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3330 const u32 ack, const u32 ack_seq, 3331 const u32 nwin) 3332 { 3333 return after(ack, tp->snd_una) || 3334 after(ack_seq, tp->snd_wl1) || 3335 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3336 } 3337 3338 /* If we update tp->snd_una, also update tp->bytes_acked */ 3339 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3340 { 3341 u32 delta = ack - tp->snd_una; 3342 3343 sock_owned_by_me((struct sock *)tp); 3344 tp->bytes_acked += delta; 3345 tp->snd_una = ack; 3346 } 3347 3348 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3349 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3350 { 3351 u32 delta = seq - tp->rcv_nxt; 3352 3353 sock_owned_by_me((struct sock *)tp); 3354 tp->bytes_received += delta; 3355 WRITE_ONCE(tp->rcv_nxt, seq); 3356 } 3357 3358 /* Update our send window. 3359 * 3360 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3361 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3362 */ 3363 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3364 u32 ack_seq) 3365 { 3366 struct tcp_sock *tp = tcp_sk(sk); 3367 int flag = 0; 3368 u32 nwin = ntohs(tcp_hdr(skb)->window); 3369 3370 if (likely(!tcp_hdr(skb)->syn)) 3371 nwin <<= tp->rx_opt.snd_wscale; 3372 3373 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3374 flag |= FLAG_WIN_UPDATE; 3375 tcp_update_wl(tp, ack_seq); 3376 3377 if (tp->snd_wnd != nwin) { 3378 tp->snd_wnd = nwin; 3379 3380 /* Note, it is the only place, where 3381 * fast path is recovered for sending TCP. 3382 */ 3383 tp->pred_flags = 0; 3384 tcp_fast_path_check(sk); 3385 3386 if (!tcp_write_queue_empty(sk)) 3387 tcp_slow_start_after_idle_check(sk); 3388 3389 if (nwin > tp->max_window) { 3390 tp->max_window = nwin; 3391 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3392 } 3393 } 3394 } 3395 3396 tcp_snd_una_update(tp, ack); 3397 3398 return flag; 3399 } 3400 3401 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3402 u32 *last_oow_ack_time) 3403 { 3404 if (*last_oow_ack_time) { 3405 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3406 3407 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3408 NET_INC_STATS(net, mib_idx); 3409 return true; /* rate-limited: don't send yet! */ 3410 } 3411 } 3412 3413 *last_oow_ack_time = tcp_jiffies32; 3414 3415 return false; /* not rate-limited: go ahead, send dupack now! */ 3416 } 3417 3418 /* Return true if we're currently rate-limiting out-of-window ACKs and 3419 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3420 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3421 * attacks that send repeated SYNs or ACKs for the same connection. To 3422 * do this, we do not send a duplicate SYNACK or ACK if the remote 3423 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3424 */ 3425 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3426 int mib_idx, u32 *last_oow_ack_time) 3427 { 3428 /* Data packets without SYNs are not likely part of an ACK loop. */ 3429 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3430 !tcp_hdr(skb)->syn) 3431 return false; 3432 3433 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3434 } 3435 3436 /* RFC 5961 7 [ACK Throttling] */ 3437 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3438 { 3439 /* unprotected vars, we dont care of overwrites */ 3440 static u32 challenge_timestamp; 3441 static unsigned int challenge_count; 3442 struct tcp_sock *tp = tcp_sk(sk); 3443 struct net *net = sock_net(sk); 3444 u32 count, now; 3445 3446 /* First check our per-socket dupack rate limit. */ 3447 if (__tcp_oow_rate_limited(net, 3448 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3449 &tp->last_oow_ack_time)) 3450 return; 3451 3452 /* Then check host-wide RFC 5961 rate limit. */ 3453 now = jiffies / HZ; 3454 if (now != challenge_timestamp) { 3455 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3456 u32 half = (ack_limit + 1) >> 1; 3457 3458 challenge_timestamp = now; 3459 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3460 } 3461 count = READ_ONCE(challenge_count); 3462 if (count > 0) { 3463 WRITE_ONCE(challenge_count, count - 1); 3464 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3465 tcp_send_ack(sk); 3466 } 3467 } 3468 3469 static void tcp_store_ts_recent(struct tcp_sock *tp) 3470 { 3471 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3472 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3473 } 3474 3475 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3476 { 3477 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3478 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3479 * extra check below makes sure this can only happen 3480 * for pure ACK frames. -DaveM 3481 * 3482 * Not only, also it occurs for expired timestamps. 3483 */ 3484 3485 if (tcp_paws_check(&tp->rx_opt, 0)) 3486 tcp_store_ts_recent(tp); 3487 } 3488 } 3489 3490 /* This routine deals with acks during a TLP episode. 3491 * We mark the end of a TLP episode on receiving TLP dupack or when 3492 * ack is after tlp_high_seq. 3493 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3494 */ 3495 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3496 { 3497 struct tcp_sock *tp = tcp_sk(sk); 3498 3499 if (before(ack, tp->tlp_high_seq)) 3500 return; 3501 3502 if (flag & FLAG_DSACKING_ACK) { 3503 /* This DSACK means original and TLP probe arrived; no loss */ 3504 tp->tlp_high_seq = 0; 3505 } else if (after(ack, tp->tlp_high_seq)) { 3506 /* ACK advances: there was a loss, so reduce cwnd. Reset 3507 * tlp_high_seq in tcp_init_cwnd_reduction() 3508 */ 3509 tcp_init_cwnd_reduction(sk); 3510 tcp_set_ca_state(sk, TCP_CA_CWR); 3511 tcp_end_cwnd_reduction(sk); 3512 tcp_try_keep_open(sk); 3513 NET_INC_STATS(sock_net(sk), 3514 LINUX_MIB_TCPLOSSPROBERECOVERY); 3515 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3516 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3517 /* Pure dupack: original and TLP probe arrived; no loss */ 3518 tp->tlp_high_seq = 0; 3519 } 3520 } 3521 3522 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3523 { 3524 const struct inet_connection_sock *icsk = inet_csk(sk); 3525 3526 if (icsk->icsk_ca_ops->in_ack_event) 3527 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3528 } 3529 3530 /* Congestion control has updated the cwnd already. So if we're in 3531 * loss recovery then now we do any new sends (for FRTO) or 3532 * retransmits (for CA_Loss or CA_recovery) that make sense. 3533 */ 3534 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3535 { 3536 struct tcp_sock *tp = tcp_sk(sk); 3537 3538 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3539 return; 3540 3541 if (unlikely(rexmit == REXMIT_NEW)) { 3542 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3543 TCP_NAGLE_OFF); 3544 if (after(tp->snd_nxt, tp->high_seq)) 3545 return; 3546 tp->frto = 0; 3547 } 3548 tcp_xmit_retransmit_queue(sk); 3549 } 3550 3551 /* Returns the number of packets newly acked or sacked by the current ACK */ 3552 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3553 { 3554 const struct net *net = sock_net(sk); 3555 struct tcp_sock *tp = tcp_sk(sk); 3556 u32 delivered; 3557 3558 delivered = tp->delivered - prior_delivered; 3559 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3560 if (flag & FLAG_ECE) { 3561 tp->delivered_ce += delivered; 3562 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3563 } 3564 return delivered; 3565 } 3566 3567 /* This routine deals with incoming acks, but not outgoing ones. */ 3568 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3569 { 3570 struct inet_connection_sock *icsk = inet_csk(sk); 3571 struct tcp_sock *tp = tcp_sk(sk); 3572 struct tcp_sacktag_state sack_state; 3573 struct rate_sample rs = { .prior_delivered = 0 }; 3574 u32 prior_snd_una = tp->snd_una; 3575 bool is_sack_reneg = tp->is_sack_reneg; 3576 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3577 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3578 int num_dupack = 0; 3579 int prior_packets = tp->packets_out; 3580 u32 delivered = tp->delivered; 3581 u32 lost = tp->lost; 3582 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3583 u32 prior_fack; 3584 3585 sack_state.first_sackt = 0; 3586 sack_state.rate = &rs; 3587 3588 /* We very likely will need to access rtx queue. */ 3589 prefetch(sk->tcp_rtx_queue.rb_node); 3590 3591 /* If the ack is older than previous acks 3592 * then we can probably ignore it. 3593 */ 3594 if (before(ack, prior_snd_una)) { 3595 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3596 if (before(ack, prior_snd_una - tp->max_window)) { 3597 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3598 tcp_send_challenge_ack(sk, skb); 3599 return -1; 3600 } 3601 goto old_ack; 3602 } 3603 3604 /* If the ack includes data we haven't sent yet, discard 3605 * this segment (RFC793 Section 3.9). 3606 */ 3607 if (after(ack, tp->snd_nxt)) 3608 return -1; 3609 3610 if (after(ack, prior_snd_una)) { 3611 flag |= FLAG_SND_UNA_ADVANCED; 3612 icsk->icsk_retransmits = 0; 3613 3614 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3615 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3616 if (icsk->icsk_clean_acked) 3617 icsk->icsk_clean_acked(sk, ack); 3618 #endif 3619 } 3620 3621 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3622 rs.prior_in_flight = tcp_packets_in_flight(tp); 3623 3624 /* ts_recent update must be made after we are sure that the packet 3625 * is in window. 3626 */ 3627 if (flag & FLAG_UPDATE_TS_RECENT) 3628 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3629 3630 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3631 FLAG_SND_UNA_ADVANCED) { 3632 /* Window is constant, pure forward advance. 3633 * No more checks are required. 3634 * Note, we use the fact that SND.UNA>=SND.WL2. 3635 */ 3636 tcp_update_wl(tp, ack_seq); 3637 tcp_snd_una_update(tp, ack); 3638 flag |= FLAG_WIN_UPDATE; 3639 3640 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3641 3642 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3643 } else { 3644 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3645 3646 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3647 flag |= FLAG_DATA; 3648 else 3649 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3650 3651 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3652 3653 if (TCP_SKB_CB(skb)->sacked) 3654 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3655 &sack_state); 3656 3657 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3658 flag |= FLAG_ECE; 3659 ack_ev_flags |= CA_ACK_ECE; 3660 } 3661 3662 if (flag & FLAG_WIN_UPDATE) 3663 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3664 3665 tcp_in_ack_event(sk, ack_ev_flags); 3666 } 3667 3668 /* We passed data and got it acked, remove any soft error 3669 * log. Something worked... 3670 */ 3671 sk->sk_err_soft = 0; 3672 icsk->icsk_probes_out = 0; 3673 tp->rcv_tstamp = tcp_jiffies32; 3674 if (!prior_packets) 3675 goto no_queue; 3676 3677 /* See if we can take anything off of the retransmit queue. */ 3678 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3679 3680 tcp_rack_update_reo_wnd(sk, &rs); 3681 3682 if (tp->tlp_high_seq) 3683 tcp_process_tlp_ack(sk, ack, flag); 3684 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3685 if (flag & FLAG_SET_XMIT_TIMER) 3686 tcp_set_xmit_timer(sk); 3687 3688 if (tcp_ack_is_dubious(sk, flag)) { 3689 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3690 num_dupack = 1; 3691 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3692 if (!(flag & FLAG_DATA)) 3693 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3694 } 3695 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3696 &rexmit); 3697 } 3698 3699 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3700 sk_dst_confirm(sk); 3701 3702 delivered = tcp_newly_delivered(sk, delivered, flag); 3703 lost = tp->lost - lost; /* freshly marked lost */ 3704 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3705 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3706 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3707 tcp_xmit_recovery(sk, rexmit); 3708 return 1; 3709 3710 no_queue: 3711 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3712 if (flag & FLAG_DSACKING_ACK) { 3713 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3714 &rexmit); 3715 tcp_newly_delivered(sk, delivered, flag); 3716 } 3717 /* If this ack opens up a zero window, clear backoff. It was 3718 * being used to time the probes, and is probably far higher than 3719 * it needs to be for normal retransmission. 3720 */ 3721 tcp_ack_probe(sk); 3722 3723 if (tp->tlp_high_seq) 3724 tcp_process_tlp_ack(sk, ack, flag); 3725 return 1; 3726 3727 old_ack: 3728 /* If data was SACKed, tag it and see if we should send more data. 3729 * If data was DSACKed, see if we can undo a cwnd reduction. 3730 */ 3731 if (TCP_SKB_CB(skb)->sacked) { 3732 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3733 &sack_state); 3734 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3735 &rexmit); 3736 tcp_newly_delivered(sk, delivered, flag); 3737 tcp_xmit_recovery(sk, rexmit); 3738 } 3739 3740 return 0; 3741 } 3742 3743 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3744 bool syn, struct tcp_fastopen_cookie *foc, 3745 bool exp_opt) 3746 { 3747 /* Valid only in SYN or SYN-ACK with an even length. */ 3748 if (!foc || !syn || len < 0 || (len & 1)) 3749 return; 3750 3751 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3752 len <= TCP_FASTOPEN_COOKIE_MAX) 3753 memcpy(foc->val, cookie, len); 3754 else if (len != 0) 3755 len = -1; 3756 foc->len = len; 3757 foc->exp = exp_opt; 3758 } 3759 3760 static void smc_parse_options(const struct tcphdr *th, 3761 struct tcp_options_received *opt_rx, 3762 const unsigned char *ptr, 3763 int opsize) 3764 { 3765 #if IS_ENABLED(CONFIG_SMC) 3766 if (static_branch_unlikely(&tcp_have_smc)) { 3767 if (th->syn && !(opsize & 1) && 3768 opsize >= TCPOLEN_EXP_SMC_BASE && 3769 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3770 opt_rx->smc_ok = 1; 3771 } 3772 #endif 3773 } 3774 3775 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3776 * value on success. 3777 */ 3778 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3779 { 3780 const unsigned char *ptr = (const unsigned char *)(th + 1); 3781 int length = (th->doff * 4) - sizeof(struct tcphdr); 3782 u16 mss = 0; 3783 3784 while (length > 0) { 3785 int opcode = *ptr++; 3786 int opsize; 3787 3788 switch (opcode) { 3789 case TCPOPT_EOL: 3790 return mss; 3791 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3792 length--; 3793 continue; 3794 default: 3795 if (length < 2) 3796 return mss; 3797 opsize = *ptr++; 3798 if (opsize < 2) /* "silly options" */ 3799 return mss; 3800 if (opsize > length) 3801 return mss; /* fail on partial options */ 3802 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3803 u16 in_mss = get_unaligned_be16(ptr); 3804 3805 if (in_mss) { 3806 if (user_mss && user_mss < in_mss) 3807 in_mss = user_mss; 3808 mss = in_mss; 3809 } 3810 } 3811 ptr += opsize - 2; 3812 length -= opsize; 3813 } 3814 } 3815 return mss; 3816 } 3817 3818 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3819 * But, this can also be called on packets in the established flow when 3820 * the fast version below fails. 3821 */ 3822 void tcp_parse_options(const struct net *net, 3823 const struct sk_buff *skb, 3824 struct tcp_options_received *opt_rx, int estab, 3825 struct tcp_fastopen_cookie *foc) 3826 { 3827 const unsigned char *ptr; 3828 const struct tcphdr *th = tcp_hdr(skb); 3829 int length = (th->doff * 4) - sizeof(struct tcphdr); 3830 3831 ptr = (const unsigned char *)(th + 1); 3832 opt_rx->saw_tstamp = 0; 3833 3834 while (length > 0) { 3835 int opcode = *ptr++; 3836 int opsize; 3837 3838 switch (opcode) { 3839 case TCPOPT_EOL: 3840 return; 3841 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3842 length--; 3843 continue; 3844 default: 3845 if (length < 2) 3846 return; 3847 opsize = *ptr++; 3848 if (opsize < 2) /* "silly options" */ 3849 return; 3850 if (opsize > length) 3851 return; /* don't parse partial options */ 3852 switch (opcode) { 3853 case TCPOPT_MSS: 3854 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3855 u16 in_mss = get_unaligned_be16(ptr); 3856 if (in_mss) { 3857 if (opt_rx->user_mss && 3858 opt_rx->user_mss < in_mss) 3859 in_mss = opt_rx->user_mss; 3860 opt_rx->mss_clamp = in_mss; 3861 } 3862 } 3863 break; 3864 case TCPOPT_WINDOW: 3865 if (opsize == TCPOLEN_WINDOW && th->syn && 3866 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3867 __u8 snd_wscale = *(__u8 *)ptr; 3868 opt_rx->wscale_ok = 1; 3869 if (snd_wscale > TCP_MAX_WSCALE) { 3870 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3871 __func__, 3872 snd_wscale, 3873 TCP_MAX_WSCALE); 3874 snd_wscale = TCP_MAX_WSCALE; 3875 } 3876 opt_rx->snd_wscale = snd_wscale; 3877 } 3878 break; 3879 case TCPOPT_TIMESTAMP: 3880 if ((opsize == TCPOLEN_TIMESTAMP) && 3881 ((estab && opt_rx->tstamp_ok) || 3882 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3883 opt_rx->saw_tstamp = 1; 3884 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3885 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3886 } 3887 break; 3888 case TCPOPT_SACK_PERM: 3889 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3890 !estab && net->ipv4.sysctl_tcp_sack) { 3891 opt_rx->sack_ok = TCP_SACK_SEEN; 3892 tcp_sack_reset(opt_rx); 3893 } 3894 break; 3895 3896 case TCPOPT_SACK: 3897 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3898 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3899 opt_rx->sack_ok) { 3900 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3901 } 3902 break; 3903 #ifdef CONFIG_TCP_MD5SIG 3904 case TCPOPT_MD5SIG: 3905 /* 3906 * The MD5 Hash has already been 3907 * checked (see tcp_v{4,6}_do_rcv()). 3908 */ 3909 break; 3910 #endif 3911 case TCPOPT_FASTOPEN: 3912 tcp_parse_fastopen_option( 3913 opsize - TCPOLEN_FASTOPEN_BASE, 3914 ptr, th->syn, foc, false); 3915 break; 3916 3917 case TCPOPT_EXP: 3918 /* Fast Open option shares code 254 using a 3919 * 16 bits magic number. 3920 */ 3921 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3922 get_unaligned_be16(ptr) == 3923 TCPOPT_FASTOPEN_MAGIC) 3924 tcp_parse_fastopen_option(opsize - 3925 TCPOLEN_EXP_FASTOPEN_BASE, 3926 ptr + 2, th->syn, foc, true); 3927 else 3928 smc_parse_options(th, opt_rx, ptr, 3929 opsize); 3930 break; 3931 3932 } 3933 ptr += opsize-2; 3934 length -= opsize; 3935 } 3936 } 3937 } 3938 EXPORT_SYMBOL(tcp_parse_options); 3939 3940 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3941 { 3942 const __be32 *ptr = (const __be32 *)(th + 1); 3943 3944 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3945 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3946 tp->rx_opt.saw_tstamp = 1; 3947 ++ptr; 3948 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3949 ++ptr; 3950 if (*ptr) 3951 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3952 else 3953 tp->rx_opt.rcv_tsecr = 0; 3954 return true; 3955 } 3956 return false; 3957 } 3958 3959 /* Fast parse options. This hopes to only see timestamps. 3960 * If it is wrong it falls back on tcp_parse_options(). 3961 */ 3962 static bool tcp_fast_parse_options(const struct net *net, 3963 const struct sk_buff *skb, 3964 const struct tcphdr *th, struct tcp_sock *tp) 3965 { 3966 /* In the spirit of fast parsing, compare doff directly to constant 3967 * values. Because equality is used, short doff can be ignored here. 3968 */ 3969 if (th->doff == (sizeof(*th) / 4)) { 3970 tp->rx_opt.saw_tstamp = 0; 3971 return false; 3972 } else if (tp->rx_opt.tstamp_ok && 3973 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3974 if (tcp_parse_aligned_timestamp(tp, th)) 3975 return true; 3976 } 3977 3978 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3979 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3980 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3981 3982 return true; 3983 } 3984 3985 #ifdef CONFIG_TCP_MD5SIG 3986 /* 3987 * Parse MD5 Signature option 3988 */ 3989 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3990 { 3991 int length = (th->doff << 2) - sizeof(*th); 3992 const u8 *ptr = (const u8 *)(th + 1); 3993 3994 /* If not enough data remaining, we can short cut */ 3995 while (length >= TCPOLEN_MD5SIG) { 3996 int opcode = *ptr++; 3997 int opsize; 3998 3999 switch (opcode) { 4000 case TCPOPT_EOL: 4001 return NULL; 4002 case TCPOPT_NOP: 4003 length--; 4004 continue; 4005 default: 4006 opsize = *ptr++; 4007 if (opsize < 2 || opsize > length) 4008 return NULL; 4009 if (opcode == TCPOPT_MD5SIG) 4010 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4011 } 4012 ptr += opsize - 2; 4013 length -= opsize; 4014 } 4015 return NULL; 4016 } 4017 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4018 #endif 4019 4020 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4021 * 4022 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4023 * it can pass through stack. So, the following predicate verifies that 4024 * this segment is not used for anything but congestion avoidance or 4025 * fast retransmit. Moreover, we even are able to eliminate most of such 4026 * second order effects, if we apply some small "replay" window (~RTO) 4027 * to timestamp space. 4028 * 4029 * All these measures still do not guarantee that we reject wrapped ACKs 4030 * on networks with high bandwidth, when sequence space is recycled fastly, 4031 * but it guarantees that such events will be very rare and do not affect 4032 * connection seriously. This doesn't look nice, but alas, PAWS is really 4033 * buggy extension. 4034 * 4035 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4036 * states that events when retransmit arrives after original data are rare. 4037 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4038 * the biggest problem on large power networks even with minor reordering. 4039 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4040 * up to bandwidth of 18Gigabit/sec. 8) ] 4041 */ 4042 4043 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4044 { 4045 const struct tcp_sock *tp = tcp_sk(sk); 4046 const struct tcphdr *th = tcp_hdr(skb); 4047 u32 seq = TCP_SKB_CB(skb)->seq; 4048 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4049 4050 return (/* 1. Pure ACK with correct sequence number. */ 4051 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4052 4053 /* 2. ... and duplicate ACK. */ 4054 ack == tp->snd_una && 4055 4056 /* 3. ... and does not update window. */ 4057 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4058 4059 /* 4. ... and sits in replay window. */ 4060 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4061 } 4062 4063 static inline bool tcp_paws_discard(const struct sock *sk, 4064 const struct sk_buff *skb) 4065 { 4066 const struct tcp_sock *tp = tcp_sk(sk); 4067 4068 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4069 !tcp_disordered_ack(sk, skb); 4070 } 4071 4072 /* Check segment sequence number for validity. 4073 * 4074 * Segment controls are considered valid, if the segment 4075 * fits to the window after truncation to the window. Acceptability 4076 * of data (and SYN, FIN, of course) is checked separately. 4077 * See tcp_data_queue(), for example. 4078 * 4079 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4080 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4081 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4082 * (borrowed from freebsd) 4083 */ 4084 4085 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4086 { 4087 return !before(end_seq, tp->rcv_wup) && 4088 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4089 } 4090 4091 /* When we get a reset we do this. */ 4092 void tcp_reset(struct sock *sk) 4093 { 4094 trace_tcp_receive_reset(sk); 4095 4096 /* We want the right error as BSD sees it (and indeed as we do). */ 4097 switch (sk->sk_state) { 4098 case TCP_SYN_SENT: 4099 sk->sk_err = ECONNREFUSED; 4100 break; 4101 case TCP_CLOSE_WAIT: 4102 sk->sk_err = EPIPE; 4103 break; 4104 case TCP_CLOSE: 4105 return; 4106 default: 4107 sk->sk_err = ECONNRESET; 4108 } 4109 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4110 smp_wmb(); 4111 4112 tcp_write_queue_purge(sk); 4113 tcp_done(sk); 4114 4115 if (!sock_flag(sk, SOCK_DEAD)) 4116 sk->sk_error_report(sk); 4117 } 4118 4119 /* 4120 * Process the FIN bit. This now behaves as it is supposed to work 4121 * and the FIN takes effect when it is validly part of sequence 4122 * space. Not before when we get holes. 4123 * 4124 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4125 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4126 * TIME-WAIT) 4127 * 4128 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4129 * close and we go into CLOSING (and later onto TIME-WAIT) 4130 * 4131 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4132 */ 4133 void tcp_fin(struct sock *sk) 4134 { 4135 struct tcp_sock *tp = tcp_sk(sk); 4136 4137 inet_csk_schedule_ack(sk); 4138 4139 sk->sk_shutdown |= RCV_SHUTDOWN; 4140 sock_set_flag(sk, SOCK_DONE); 4141 4142 switch (sk->sk_state) { 4143 case TCP_SYN_RECV: 4144 case TCP_ESTABLISHED: 4145 /* Move to CLOSE_WAIT */ 4146 tcp_set_state(sk, TCP_CLOSE_WAIT); 4147 inet_csk_enter_pingpong_mode(sk); 4148 break; 4149 4150 case TCP_CLOSE_WAIT: 4151 case TCP_CLOSING: 4152 /* Received a retransmission of the FIN, do 4153 * nothing. 4154 */ 4155 break; 4156 case TCP_LAST_ACK: 4157 /* RFC793: Remain in the LAST-ACK state. */ 4158 break; 4159 4160 case TCP_FIN_WAIT1: 4161 /* This case occurs when a simultaneous close 4162 * happens, we must ack the received FIN and 4163 * enter the CLOSING state. 4164 */ 4165 tcp_send_ack(sk); 4166 tcp_set_state(sk, TCP_CLOSING); 4167 break; 4168 case TCP_FIN_WAIT2: 4169 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4170 tcp_send_ack(sk); 4171 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4172 break; 4173 default: 4174 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4175 * cases we should never reach this piece of code. 4176 */ 4177 pr_err("%s: Impossible, sk->sk_state=%d\n", 4178 __func__, sk->sk_state); 4179 break; 4180 } 4181 4182 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4183 * Probably, we should reset in this case. For now drop them. 4184 */ 4185 skb_rbtree_purge(&tp->out_of_order_queue); 4186 if (tcp_is_sack(tp)) 4187 tcp_sack_reset(&tp->rx_opt); 4188 sk_mem_reclaim(sk); 4189 4190 if (!sock_flag(sk, SOCK_DEAD)) { 4191 sk->sk_state_change(sk); 4192 4193 /* Do not send POLL_HUP for half duplex close. */ 4194 if (sk->sk_shutdown == SHUTDOWN_MASK || 4195 sk->sk_state == TCP_CLOSE) 4196 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4197 else 4198 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4199 } 4200 } 4201 4202 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4203 u32 end_seq) 4204 { 4205 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4206 if (before(seq, sp->start_seq)) 4207 sp->start_seq = seq; 4208 if (after(end_seq, sp->end_seq)) 4209 sp->end_seq = end_seq; 4210 return true; 4211 } 4212 return false; 4213 } 4214 4215 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4216 { 4217 struct tcp_sock *tp = tcp_sk(sk); 4218 4219 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4220 int mib_idx; 4221 4222 if (before(seq, tp->rcv_nxt)) 4223 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4224 else 4225 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4226 4227 NET_INC_STATS(sock_net(sk), mib_idx); 4228 4229 tp->rx_opt.dsack = 1; 4230 tp->duplicate_sack[0].start_seq = seq; 4231 tp->duplicate_sack[0].end_seq = end_seq; 4232 } 4233 } 4234 4235 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4236 { 4237 struct tcp_sock *tp = tcp_sk(sk); 4238 4239 if (!tp->rx_opt.dsack) 4240 tcp_dsack_set(sk, seq, end_seq); 4241 else 4242 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4243 } 4244 4245 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4246 { 4247 /* When the ACK path fails or drops most ACKs, the sender would 4248 * timeout and spuriously retransmit the same segment repeatedly. 4249 * The receiver remembers and reflects via DSACKs. Leverage the 4250 * DSACK state and change the txhash to re-route speculatively. 4251 */ 4252 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) { 4253 sk_rethink_txhash(sk); 4254 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4255 } 4256 } 4257 4258 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4259 { 4260 struct tcp_sock *tp = tcp_sk(sk); 4261 4262 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4263 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4264 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4265 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4266 4267 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4268 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4269 4270 tcp_rcv_spurious_retrans(sk, skb); 4271 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4272 end_seq = tp->rcv_nxt; 4273 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4274 } 4275 } 4276 4277 tcp_send_ack(sk); 4278 } 4279 4280 /* These routines update the SACK block as out-of-order packets arrive or 4281 * in-order packets close up the sequence space. 4282 */ 4283 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4284 { 4285 int this_sack; 4286 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4287 struct tcp_sack_block *swalk = sp + 1; 4288 4289 /* See if the recent change to the first SACK eats into 4290 * or hits the sequence space of other SACK blocks, if so coalesce. 4291 */ 4292 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4293 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4294 int i; 4295 4296 /* Zap SWALK, by moving every further SACK up by one slot. 4297 * Decrease num_sacks. 4298 */ 4299 tp->rx_opt.num_sacks--; 4300 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4301 sp[i] = sp[i + 1]; 4302 continue; 4303 } 4304 this_sack++, swalk++; 4305 } 4306 } 4307 4308 static void tcp_sack_compress_send_ack(struct sock *sk) 4309 { 4310 struct tcp_sock *tp = tcp_sk(sk); 4311 4312 if (!tp->compressed_ack) 4313 return; 4314 4315 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4316 __sock_put(sk); 4317 4318 /* Since we have to send one ack finally, 4319 * substract one from tp->compressed_ack to keep 4320 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4321 */ 4322 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4323 tp->compressed_ack - 1); 4324 4325 tp->compressed_ack = 0; 4326 tcp_send_ack(sk); 4327 } 4328 4329 /* Reasonable amount of sack blocks included in TCP SACK option 4330 * The max is 4, but this becomes 3 if TCP timestamps are there. 4331 * Given that SACK packets might be lost, be conservative and use 2. 4332 */ 4333 #define TCP_SACK_BLOCKS_EXPECTED 2 4334 4335 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4336 { 4337 struct tcp_sock *tp = tcp_sk(sk); 4338 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4339 int cur_sacks = tp->rx_opt.num_sacks; 4340 int this_sack; 4341 4342 if (!cur_sacks) 4343 goto new_sack; 4344 4345 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4346 if (tcp_sack_extend(sp, seq, end_seq)) { 4347 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4348 tcp_sack_compress_send_ack(sk); 4349 /* Rotate this_sack to the first one. */ 4350 for (; this_sack > 0; this_sack--, sp--) 4351 swap(*sp, *(sp - 1)); 4352 if (cur_sacks > 1) 4353 tcp_sack_maybe_coalesce(tp); 4354 return; 4355 } 4356 } 4357 4358 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4359 tcp_sack_compress_send_ack(sk); 4360 4361 /* Could not find an adjacent existing SACK, build a new one, 4362 * put it at the front, and shift everyone else down. We 4363 * always know there is at least one SACK present already here. 4364 * 4365 * If the sack array is full, forget about the last one. 4366 */ 4367 if (this_sack >= TCP_NUM_SACKS) { 4368 this_sack--; 4369 tp->rx_opt.num_sacks--; 4370 sp--; 4371 } 4372 for (; this_sack > 0; this_sack--, sp--) 4373 *sp = *(sp - 1); 4374 4375 new_sack: 4376 /* Build the new head SACK, and we're done. */ 4377 sp->start_seq = seq; 4378 sp->end_seq = end_seq; 4379 tp->rx_opt.num_sacks++; 4380 } 4381 4382 /* RCV.NXT advances, some SACKs should be eaten. */ 4383 4384 static void tcp_sack_remove(struct tcp_sock *tp) 4385 { 4386 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4387 int num_sacks = tp->rx_opt.num_sacks; 4388 int this_sack; 4389 4390 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4391 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4392 tp->rx_opt.num_sacks = 0; 4393 return; 4394 } 4395 4396 for (this_sack = 0; this_sack < num_sacks;) { 4397 /* Check if the start of the sack is covered by RCV.NXT. */ 4398 if (!before(tp->rcv_nxt, sp->start_seq)) { 4399 int i; 4400 4401 /* RCV.NXT must cover all the block! */ 4402 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4403 4404 /* Zap this SACK, by moving forward any other SACKS. */ 4405 for (i = this_sack+1; i < num_sacks; i++) 4406 tp->selective_acks[i-1] = tp->selective_acks[i]; 4407 num_sacks--; 4408 continue; 4409 } 4410 this_sack++; 4411 sp++; 4412 } 4413 tp->rx_opt.num_sacks = num_sacks; 4414 } 4415 4416 /** 4417 * tcp_try_coalesce - try to merge skb to prior one 4418 * @sk: socket 4419 * @dest: destination queue 4420 * @to: prior buffer 4421 * @from: buffer to add in queue 4422 * @fragstolen: pointer to boolean 4423 * 4424 * Before queueing skb @from after @to, try to merge them 4425 * to reduce overall memory use and queue lengths, if cost is small. 4426 * Packets in ofo or receive queues can stay a long time. 4427 * Better try to coalesce them right now to avoid future collapses. 4428 * Returns true if caller should free @from instead of queueing it 4429 */ 4430 static bool tcp_try_coalesce(struct sock *sk, 4431 struct sk_buff *to, 4432 struct sk_buff *from, 4433 bool *fragstolen) 4434 { 4435 int delta; 4436 4437 *fragstolen = false; 4438 4439 /* Its possible this segment overlaps with prior segment in queue */ 4440 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4441 return false; 4442 4443 if (!mptcp_skb_can_collapse(to, from)) 4444 return false; 4445 4446 #ifdef CONFIG_TLS_DEVICE 4447 if (from->decrypted != to->decrypted) 4448 return false; 4449 #endif 4450 4451 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4452 return false; 4453 4454 atomic_add(delta, &sk->sk_rmem_alloc); 4455 sk_mem_charge(sk, delta); 4456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4457 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4458 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4459 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4460 4461 if (TCP_SKB_CB(from)->has_rxtstamp) { 4462 TCP_SKB_CB(to)->has_rxtstamp = true; 4463 to->tstamp = from->tstamp; 4464 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4465 } 4466 4467 return true; 4468 } 4469 4470 static bool tcp_ooo_try_coalesce(struct sock *sk, 4471 struct sk_buff *to, 4472 struct sk_buff *from, 4473 bool *fragstolen) 4474 { 4475 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4476 4477 /* In case tcp_drop() is called later, update to->gso_segs */ 4478 if (res) { 4479 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4480 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4481 4482 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4483 } 4484 return res; 4485 } 4486 4487 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4488 { 4489 sk_drops_add(sk, skb); 4490 __kfree_skb(skb); 4491 } 4492 4493 /* This one checks to see if we can put data from the 4494 * out_of_order queue into the receive_queue. 4495 */ 4496 static void tcp_ofo_queue(struct sock *sk) 4497 { 4498 struct tcp_sock *tp = tcp_sk(sk); 4499 __u32 dsack_high = tp->rcv_nxt; 4500 bool fin, fragstolen, eaten; 4501 struct sk_buff *skb, *tail; 4502 struct rb_node *p; 4503 4504 p = rb_first(&tp->out_of_order_queue); 4505 while (p) { 4506 skb = rb_to_skb(p); 4507 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4508 break; 4509 4510 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4511 __u32 dsack = dsack_high; 4512 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4513 dsack_high = TCP_SKB_CB(skb)->end_seq; 4514 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4515 } 4516 p = rb_next(p); 4517 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4518 4519 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4520 tcp_drop(sk, skb); 4521 continue; 4522 } 4523 4524 tail = skb_peek_tail(&sk->sk_receive_queue); 4525 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4526 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4527 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4528 if (!eaten) 4529 __skb_queue_tail(&sk->sk_receive_queue, skb); 4530 else 4531 kfree_skb_partial(skb, fragstolen); 4532 4533 if (unlikely(fin)) { 4534 tcp_fin(sk); 4535 /* tcp_fin() purges tp->out_of_order_queue, 4536 * so we must end this loop right now. 4537 */ 4538 break; 4539 } 4540 } 4541 } 4542 4543 static bool tcp_prune_ofo_queue(struct sock *sk); 4544 static int tcp_prune_queue(struct sock *sk); 4545 4546 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4547 unsigned int size) 4548 { 4549 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4550 !sk_rmem_schedule(sk, skb, size)) { 4551 4552 if (tcp_prune_queue(sk) < 0) 4553 return -1; 4554 4555 while (!sk_rmem_schedule(sk, skb, size)) { 4556 if (!tcp_prune_ofo_queue(sk)) 4557 return -1; 4558 } 4559 } 4560 return 0; 4561 } 4562 4563 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4564 { 4565 struct tcp_sock *tp = tcp_sk(sk); 4566 struct rb_node **p, *parent; 4567 struct sk_buff *skb1; 4568 u32 seq, end_seq; 4569 bool fragstolen; 4570 4571 tcp_ecn_check_ce(sk, skb); 4572 4573 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4574 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4575 tcp_drop(sk, skb); 4576 return; 4577 } 4578 4579 /* Disable header prediction. */ 4580 tp->pred_flags = 0; 4581 inet_csk_schedule_ack(sk); 4582 4583 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4584 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4585 seq = TCP_SKB_CB(skb)->seq; 4586 end_seq = TCP_SKB_CB(skb)->end_seq; 4587 4588 p = &tp->out_of_order_queue.rb_node; 4589 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4590 /* Initial out of order segment, build 1 SACK. */ 4591 if (tcp_is_sack(tp)) { 4592 tp->rx_opt.num_sacks = 1; 4593 tp->selective_acks[0].start_seq = seq; 4594 tp->selective_acks[0].end_seq = end_seq; 4595 } 4596 rb_link_node(&skb->rbnode, NULL, p); 4597 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4598 tp->ooo_last_skb = skb; 4599 goto end; 4600 } 4601 4602 /* In the typical case, we are adding an skb to the end of the list. 4603 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4604 */ 4605 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4606 skb, &fragstolen)) { 4607 coalesce_done: 4608 /* For non sack flows, do not grow window to force DUPACK 4609 * and trigger fast retransmit. 4610 */ 4611 if (tcp_is_sack(tp)) 4612 tcp_grow_window(sk, skb); 4613 kfree_skb_partial(skb, fragstolen); 4614 skb = NULL; 4615 goto add_sack; 4616 } 4617 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4618 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4619 parent = &tp->ooo_last_skb->rbnode; 4620 p = &parent->rb_right; 4621 goto insert; 4622 } 4623 4624 /* Find place to insert this segment. Handle overlaps on the way. */ 4625 parent = NULL; 4626 while (*p) { 4627 parent = *p; 4628 skb1 = rb_to_skb(parent); 4629 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4630 p = &parent->rb_left; 4631 continue; 4632 } 4633 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4634 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4635 /* All the bits are present. Drop. */ 4636 NET_INC_STATS(sock_net(sk), 4637 LINUX_MIB_TCPOFOMERGE); 4638 tcp_drop(sk, skb); 4639 skb = NULL; 4640 tcp_dsack_set(sk, seq, end_seq); 4641 goto add_sack; 4642 } 4643 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4644 /* Partial overlap. */ 4645 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4646 } else { 4647 /* skb's seq == skb1's seq and skb covers skb1. 4648 * Replace skb1 with skb. 4649 */ 4650 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4651 &tp->out_of_order_queue); 4652 tcp_dsack_extend(sk, 4653 TCP_SKB_CB(skb1)->seq, 4654 TCP_SKB_CB(skb1)->end_seq); 4655 NET_INC_STATS(sock_net(sk), 4656 LINUX_MIB_TCPOFOMERGE); 4657 tcp_drop(sk, skb1); 4658 goto merge_right; 4659 } 4660 } else if (tcp_ooo_try_coalesce(sk, skb1, 4661 skb, &fragstolen)) { 4662 goto coalesce_done; 4663 } 4664 p = &parent->rb_right; 4665 } 4666 insert: 4667 /* Insert segment into RB tree. */ 4668 rb_link_node(&skb->rbnode, parent, p); 4669 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4670 4671 merge_right: 4672 /* Remove other segments covered by skb. */ 4673 while ((skb1 = skb_rb_next(skb)) != NULL) { 4674 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4675 break; 4676 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4677 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4678 end_seq); 4679 break; 4680 } 4681 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4682 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4683 TCP_SKB_CB(skb1)->end_seq); 4684 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4685 tcp_drop(sk, skb1); 4686 } 4687 /* If there is no skb after us, we are the last_skb ! */ 4688 if (!skb1) 4689 tp->ooo_last_skb = skb; 4690 4691 add_sack: 4692 if (tcp_is_sack(tp)) 4693 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4694 end: 4695 if (skb) { 4696 /* For non sack flows, do not grow window to force DUPACK 4697 * and trigger fast retransmit. 4698 */ 4699 if (tcp_is_sack(tp)) 4700 tcp_grow_window(sk, skb); 4701 skb_condense(skb); 4702 skb_set_owner_r(skb, sk); 4703 } 4704 } 4705 4706 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4707 bool *fragstolen) 4708 { 4709 int eaten; 4710 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4711 4712 eaten = (tail && 4713 tcp_try_coalesce(sk, tail, 4714 skb, fragstolen)) ? 1 : 0; 4715 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4716 if (!eaten) { 4717 __skb_queue_tail(&sk->sk_receive_queue, skb); 4718 skb_set_owner_r(skb, sk); 4719 } 4720 return eaten; 4721 } 4722 4723 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4724 { 4725 struct sk_buff *skb; 4726 int err = -ENOMEM; 4727 int data_len = 0; 4728 bool fragstolen; 4729 4730 if (size == 0) 4731 return 0; 4732 4733 if (size > PAGE_SIZE) { 4734 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4735 4736 data_len = npages << PAGE_SHIFT; 4737 size = data_len + (size & ~PAGE_MASK); 4738 } 4739 skb = alloc_skb_with_frags(size - data_len, data_len, 4740 PAGE_ALLOC_COSTLY_ORDER, 4741 &err, sk->sk_allocation); 4742 if (!skb) 4743 goto err; 4744 4745 skb_put(skb, size - data_len); 4746 skb->data_len = data_len; 4747 skb->len = size; 4748 4749 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4750 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4751 goto err_free; 4752 } 4753 4754 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4755 if (err) 4756 goto err_free; 4757 4758 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4759 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4760 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4761 4762 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4763 WARN_ON_ONCE(fragstolen); /* should not happen */ 4764 __kfree_skb(skb); 4765 } 4766 return size; 4767 4768 err_free: 4769 kfree_skb(skb); 4770 err: 4771 return err; 4772 4773 } 4774 4775 void tcp_data_ready(struct sock *sk) 4776 { 4777 const struct tcp_sock *tp = tcp_sk(sk); 4778 int avail = tp->rcv_nxt - tp->copied_seq; 4779 4780 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) && 4781 !sock_flag(sk, SOCK_DONE)) 4782 return; 4783 4784 sk->sk_data_ready(sk); 4785 } 4786 4787 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4788 { 4789 struct tcp_sock *tp = tcp_sk(sk); 4790 bool fragstolen; 4791 int eaten; 4792 4793 if (sk_is_mptcp(sk)) 4794 mptcp_incoming_options(sk, skb, &tp->rx_opt); 4795 4796 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4797 __kfree_skb(skb); 4798 return; 4799 } 4800 skb_dst_drop(skb); 4801 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4802 4803 tcp_ecn_accept_cwr(sk, skb); 4804 4805 tp->rx_opt.dsack = 0; 4806 4807 /* Queue data for delivery to the user. 4808 * Packets in sequence go to the receive queue. 4809 * Out of sequence packets to the out_of_order_queue. 4810 */ 4811 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4812 if (tcp_receive_window(tp) == 0) { 4813 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4814 goto out_of_window; 4815 } 4816 4817 /* Ok. In sequence. In window. */ 4818 queue_and_out: 4819 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4820 sk_forced_mem_schedule(sk, skb->truesize); 4821 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4822 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4823 goto drop; 4824 } 4825 4826 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4827 if (skb->len) 4828 tcp_event_data_recv(sk, skb); 4829 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4830 tcp_fin(sk); 4831 4832 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4833 tcp_ofo_queue(sk); 4834 4835 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4836 * gap in queue is filled. 4837 */ 4838 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4839 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4840 } 4841 4842 if (tp->rx_opt.num_sacks) 4843 tcp_sack_remove(tp); 4844 4845 tcp_fast_path_check(sk); 4846 4847 if (eaten > 0) 4848 kfree_skb_partial(skb, fragstolen); 4849 if (!sock_flag(sk, SOCK_DEAD)) 4850 tcp_data_ready(sk); 4851 return; 4852 } 4853 4854 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4855 tcp_rcv_spurious_retrans(sk, skb); 4856 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4857 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4858 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4859 4860 out_of_window: 4861 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4862 inet_csk_schedule_ack(sk); 4863 drop: 4864 tcp_drop(sk, skb); 4865 return; 4866 } 4867 4868 /* Out of window. F.e. zero window probe. */ 4869 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4870 goto out_of_window; 4871 4872 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4873 /* Partial packet, seq < rcv_next < end_seq */ 4874 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4875 4876 /* If window is closed, drop tail of packet. But after 4877 * remembering D-SACK for its head made in previous line. 4878 */ 4879 if (!tcp_receive_window(tp)) { 4880 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4881 goto out_of_window; 4882 } 4883 goto queue_and_out; 4884 } 4885 4886 tcp_data_queue_ofo(sk, skb); 4887 } 4888 4889 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4890 { 4891 if (list) 4892 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4893 4894 return skb_rb_next(skb); 4895 } 4896 4897 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4898 struct sk_buff_head *list, 4899 struct rb_root *root) 4900 { 4901 struct sk_buff *next = tcp_skb_next(skb, list); 4902 4903 if (list) 4904 __skb_unlink(skb, list); 4905 else 4906 rb_erase(&skb->rbnode, root); 4907 4908 __kfree_skb(skb); 4909 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4910 4911 return next; 4912 } 4913 4914 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4915 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4916 { 4917 struct rb_node **p = &root->rb_node; 4918 struct rb_node *parent = NULL; 4919 struct sk_buff *skb1; 4920 4921 while (*p) { 4922 parent = *p; 4923 skb1 = rb_to_skb(parent); 4924 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4925 p = &parent->rb_left; 4926 else 4927 p = &parent->rb_right; 4928 } 4929 rb_link_node(&skb->rbnode, parent, p); 4930 rb_insert_color(&skb->rbnode, root); 4931 } 4932 4933 /* Collapse contiguous sequence of skbs head..tail with 4934 * sequence numbers start..end. 4935 * 4936 * If tail is NULL, this means until the end of the queue. 4937 * 4938 * Segments with FIN/SYN are not collapsed (only because this 4939 * simplifies code) 4940 */ 4941 static void 4942 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4943 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4944 { 4945 struct sk_buff *skb = head, *n; 4946 struct sk_buff_head tmp; 4947 bool end_of_skbs; 4948 4949 /* First, check that queue is collapsible and find 4950 * the point where collapsing can be useful. 4951 */ 4952 restart: 4953 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4954 n = tcp_skb_next(skb, list); 4955 4956 /* No new bits? It is possible on ofo queue. */ 4957 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4958 skb = tcp_collapse_one(sk, skb, list, root); 4959 if (!skb) 4960 break; 4961 goto restart; 4962 } 4963 4964 /* The first skb to collapse is: 4965 * - not SYN/FIN and 4966 * - bloated or contains data before "start" or 4967 * overlaps to the next one and mptcp allow collapsing. 4968 */ 4969 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4970 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4971 before(TCP_SKB_CB(skb)->seq, start))) { 4972 end_of_skbs = false; 4973 break; 4974 } 4975 4976 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 4977 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4978 end_of_skbs = false; 4979 break; 4980 } 4981 4982 /* Decided to skip this, advance start seq. */ 4983 start = TCP_SKB_CB(skb)->end_seq; 4984 } 4985 if (end_of_skbs || 4986 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4987 return; 4988 4989 __skb_queue_head_init(&tmp); 4990 4991 while (before(start, end)) { 4992 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4993 struct sk_buff *nskb; 4994 4995 nskb = alloc_skb(copy, GFP_ATOMIC); 4996 if (!nskb) 4997 break; 4998 4999 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5000 #ifdef CONFIG_TLS_DEVICE 5001 nskb->decrypted = skb->decrypted; 5002 #endif 5003 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5004 if (list) 5005 __skb_queue_before(list, skb, nskb); 5006 else 5007 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5008 skb_set_owner_r(nskb, sk); 5009 mptcp_skb_ext_move(nskb, skb); 5010 5011 /* Copy data, releasing collapsed skbs. */ 5012 while (copy > 0) { 5013 int offset = start - TCP_SKB_CB(skb)->seq; 5014 int size = TCP_SKB_CB(skb)->end_seq - start; 5015 5016 BUG_ON(offset < 0); 5017 if (size > 0) { 5018 size = min(copy, size); 5019 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5020 BUG(); 5021 TCP_SKB_CB(nskb)->end_seq += size; 5022 copy -= size; 5023 start += size; 5024 } 5025 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5026 skb = tcp_collapse_one(sk, skb, list, root); 5027 if (!skb || 5028 skb == tail || 5029 !mptcp_skb_can_collapse(nskb, skb) || 5030 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5031 goto end; 5032 #ifdef CONFIG_TLS_DEVICE 5033 if (skb->decrypted != nskb->decrypted) 5034 goto end; 5035 #endif 5036 } 5037 } 5038 } 5039 end: 5040 skb_queue_walk_safe(&tmp, skb, n) 5041 tcp_rbtree_insert(root, skb); 5042 } 5043 5044 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5045 * and tcp_collapse() them until all the queue is collapsed. 5046 */ 5047 static void tcp_collapse_ofo_queue(struct sock *sk) 5048 { 5049 struct tcp_sock *tp = tcp_sk(sk); 5050 u32 range_truesize, sum_tiny = 0; 5051 struct sk_buff *skb, *head; 5052 u32 start, end; 5053 5054 skb = skb_rb_first(&tp->out_of_order_queue); 5055 new_range: 5056 if (!skb) { 5057 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5058 return; 5059 } 5060 start = TCP_SKB_CB(skb)->seq; 5061 end = TCP_SKB_CB(skb)->end_seq; 5062 range_truesize = skb->truesize; 5063 5064 for (head = skb;;) { 5065 skb = skb_rb_next(skb); 5066 5067 /* Range is terminated when we see a gap or when 5068 * we are at the queue end. 5069 */ 5070 if (!skb || 5071 after(TCP_SKB_CB(skb)->seq, end) || 5072 before(TCP_SKB_CB(skb)->end_seq, start)) { 5073 /* Do not attempt collapsing tiny skbs */ 5074 if (range_truesize != head->truesize || 5075 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5076 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5077 head, skb, start, end); 5078 } else { 5079 sum_tiny += range_truesize; 5080 if (sum_tiny > sk->sk_rcvbuf >> 3) 5081 return; 5082 } 5083 goto new_range; 5084 } 5085 5086 range_truesize += skb->truesize; 5087 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5088 start = TCP_SKB_CB(skb)->seq; 5089 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5090 end = TCP_SKB_CB(skb)->end_seq; 5091 } 5092 } 5093 5094 /* 5095 * Clean the out-of-order queue to make room. 5096 * We drop high sequences packets to : 5097 * 1) Let a chance for holes to be filled. 5098 * 2) not add too big latencies if thousands of packets sit there. 5099 * (But if application shrinks SO_RCVBUF, we could still end up 5100 * freeing whole queue here) 5101 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5102 * 5103 * Return true if queue has shrunk. 5104 */ 5105 static bool tcp_prune_ofo_queue(struct sock *sk) 5106 { 5107 struct tcp_sock *tp = tcp_sk(sk); 5108 struct rb_node *node, *prev; 5109 int goal; 5110 5111 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5112 return false; 5113 5114 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5115 goal = sk->sk_rcvbuf >> 3; 5116 node = &tp->ooo_last_skb->rbnode; 5117 do { 5118 prev = rb_prev(node); 5119 rb_erase(node, &tp->out_of_order_queue); 5120 goal -= rb_to_skb(node)->truesize; 5121 tcp_drop(sk, rb_to_skb(node)); 5122 if (!prev || goal <= 0) { 5123 sk_mem_reclaim(sk); 5124 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5125 !tcp_under_memory_pressure(sk)) 5126 break; 5127 goal = sk->sk_rcvbuf >> 3; 5128 } 5129 node = prev; 5130 } while (node); 5131 tp->ooo_last_skb = rb_to_skb(prev); 5132 5133 /* Reset SACK state. A conforming SACK implementation will 5134 * do the same at a timeout based retransmit. When a connection 5135 * is in a sad state like this, we care only about integrity 5136 * of the connection not performance. 5137 */ 5138 if (tp->rx_opt.sack_ok) 5139 tcp_sack_reset(&tp->rx_opt); 5140 return true; 5141 } 5142 5143 /* Reduce allocated memory if we can, trying to get 5144 * the socket within its memory limits again. 5145 * 5146 * Return less than zero if we should start dropping frames 5147 * until the socket owning process reads some of the data 5148 * to stabilize the situation. 5149 */ 5150 static int tcp_prune_queue(struct sock *sk) 5151 { 5152 struct tcp_sock *tp = tcp_sk(sk); 5153 5154 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5155 5156 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5157 tcp_clamp_window(sk); 5158 else if (tcp_under_memory_pressure(sk)) 5159 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5160 5161 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5162 return 0; 5163 5164 tcp_collapse_ofo_queue(sk); 5165 if (!skb_queue_empty(&sk->sk_receive_queue)) 5166 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5167 skb_peek(&sk->sk_receive_queue), 5168 NULL, 5169 tp->copied_seq, tp->rcv_nxt); 5170 sk_mem_reclaim(sk); 5171 5172 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5173 return 0; 5174 5175 /* Collapsing did not help, destructive actions follow. 5176 * This must not ever occur. */ 5177 5178 tcp_prune_ofo_queue(sk); 5179 5180 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5181 return 0; 5182 5183 /* If we are really being abused, tell the caller to silently 5184 * drop receive data on the floor. It will get retransmitted 5185 * and hopefully then we'll have sufficient space. 5186 */ 5187 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5188 5189 /* Massive buffer overcommit. */ 5190 tp->pred_flags = 0; 5191 return -1; 5192 } 5193 5194 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5195 { 5196 const struct tcp_sock *tp = tcp_sk(sk); 5197 5198 /* If the user specified a specific send buffer setting, do 5199 * not modify it. 5200 */ 5201 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5202 return false; 5203 5204 /* If we are under global TCP memory pressure, do not expand. */ 5205 if (tcp_under_memory_pressure(sk)) 5206 return false; 5207 5208 /* If we are under soft global TCP memory pressure, do not expand. */ 5209 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5210 return false; 5211 5212 /* If we filled the congestion window, do not expand. */ 5213 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5214 return false; 5215 5216 return true; 5217 } 5218 5219 /* When incoming ACK allowed to free some skb from write_queue, 5220 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5221 * on the exit from tcp input handler. 5222 * 5223 * PROBLEM: sndbuf expansion does not work well with largesend. 5224 */ 5225 static void tcp_new_space(struct sock *sk) 5226 { 5227 struct tcp_sock *tp = tcp_sk(sk); 5228 5229 if (tcp_should_expand_sndbuf(sk)) { 5230 tcp_sndbuf_expand(sk); 5231 tp->snd_cwnd_stamp = tcp_jiffies32; 5232 } 5233 5234 sk->sk_write_space(sk); 5235 } 5236 5237 static void tcp_check_space(struct sock *sk) 5238 { 5239 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5240 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5241 /* pairs with tcp_poll() */ 5242 smp_mb(); 5243 if (sk->sk_socket && 5244 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5245 tcp_new_space(sk); 5246 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5247 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5248 } 5249 } 5250 } 5251 5252 static inline void tcp_data_snd_check(struct sock *sk) 5253 { 5254 tcp_push_pending_frames(sk); 5255 tcp_check_space(sk); 5256 } 5257 5258 /* 5259 * Check if sending an ack is needed. 5260 */ 5261 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5262 { 5263 struct tcp_sock *tp = tcp_sk(sk); 5264 unsigned long rtt, delay; 5265 5266 /* More than one full frame received... */ 5267 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5268 /* ... and right edge of window advances far enough. 5269 * (tcp_recvmsg() will send ACK otherwise). 5270 * If application uses SO_RCVLOWAT, we want send ack now if 5271 * we have not received enough bytes to satisfy the condition. 5272 */ 5273 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5274 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5275 /* We ACK each frame or... */ 5276 tcp_in_quickack_mode(sk) || 5277 /* Protocol state mandates a one-time immediate ACK */ 5278 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5279 send_now: 5280 tcp_send_ack(sk); 5281 return; 5282 } 5283 5284 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5285 tcp_send_delayed_ack(sk); 5286 return; 5287 } 5288 5289 if (!tcp_is_sack(tp) || 5290 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5291 goto send_now; 5292 5293 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5294 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5295 tp->dup_ack_counter = 0; 5296 } 5297 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5298 tp->dup_ack_counter++; 5299 goto send_now; 5300 } 5301 tp->compressed_ack++; 5302 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5303 return; 5304 5305 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5306 5307 rtt = tp->rcv_rtt_est.rtt_us; 5308 if (tp->srtt_us && tp->srtt_us < rtt) 5309 rtt = tp->srtt_us; 5310 5311 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5312 rtt * (NSEC_PER_USEC >> 3)/20); 5313 sock_hold(sk); 5314 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5315 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5316 HRTIMER_MODE_REL_PINNED_SOFT); 5317 } 5318 5319 static inline void tcp_ack_snd_check(struct sock *sk) 5320 { 5321 if (!inet_csk_ack_scheduled(sk)) { 5322 /* We sent a data segment already. */ 5323 return; 5324 } 5325 __tcp_ack_snd_check(sk, 1); 5326 } 5327 5328 /* 5329 * This routine is only called when we have urgent data 5330 * signaled. Its the 'slow' part of tcp_urg. It could be 5331 * moved inline now as tcp_urg is only called from one 5332 * place. We handle URGent data wrong. We have to - as 5333 * BSD still doesn't use the correction from RFC961. 5334 * For 1003.1g we should support a new option TCP_STDURG to permit 5335 * either form (or just set the sysctl tcp_stdurg). 5336 */ 5337 5338 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5339 { 5340 struct tcp_sock *tp = tcp_sk(sk); 5341 u32 ptr = ntohs(th->urg_ptr); 5342 5343 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5344 ptr--; 5345 ptr += ntohl(th->seq); 5346 5347 /* Ignore urgent data that we've already seen and read. */ 5348 if (after(tp->copied_seq, ptr)) 5349 return; 5350 5351 /* Do not replay urg ptr. 5352 * 5353 * NOTE: interesting situation not covered by specs. 5354 * Misbehaving sender may send urg ptr, pointing to segment, 5355 * which we already have in ofo queue. We are not able to fetch 5356 * such data and will stay in TCP_URG_NOTYET until will be eaten 5357 * by recvmsg(). Seems, we are not obliged to handle such wicked 5358 * situations. But it is worth to think about possibility of some 5359 * DoSes using some hypothetical application level deadlock. 5360 */ 5361 if (before(ptr, tp->rcv_nxt)) 5362 return; 5363 5364 /* Do we already have a newer (or duplicate) urgent pointer? */ 5365 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5366 return; 5367 5368 /* Tell the world about our new urgent pointer. */ 5369 sk_send_sigurg(sk); 5370 5371 /* We may be adding urgent data when the last byte read was 5372 * urgent. To do this requires some care. We cannot just ignore 5373 * tp->copied_seq since we would read the last urgent byte again 5374 * as data, nor can we alter copied_seq until this data arrives 5375 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5376 * 5377 * NOTE. Double Dutch. Rendering to plain English: author of comment 5378 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5379 * and expect that both A and B disappear from stream. This is _wrong_. 5380 * Though this happens in BSD with high probability, this is occasional. 5381 * Any application relying on this is buggy. Note also, that fix "works" 5382 * only in this artificial test. Insert some normal data between A and B and we will 5383 * decline of BSD again. Verdict: it is better to remove to trap 5384 * buggy users. 5385 */ 5386 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5387 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5388 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5389 tp->copied_seq++; 5390 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5391 __skb_unlink(skb, &sk->sk_receive_queue); 5392 __kfree_skb(skb); 5393 } 5394 } 5395 5396 tp->urg_data = TCP_URG_NOTYET; 5397 WRITE_ONCE(tp->urg_seq, ptr); 5398 5399 /* Disable header prediction. */ 5400 tp->pred_flags = 0; 5401 } 5402 5403 /* This is the 'fast' part of urgent handling. */ 5404 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5405 { 5406 struct tcp_sock *tp = tcp_sk(sk); 5407 5408 /* Check if we get a new urgent pointer - normally not. */ 5409 if (th->urg) 5410 tcp_check_urg(sk, th); 5411 5412 /* Do we wait for any urgent data? - normally not... */ 5413 if (tp->urg_data == TCP_URG_NOTYET) { 5414 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5415 th->syn; 5416 5417 /* Is the urgent pointer pointing into this packet? */ 5418 if (ptr < skb->len) { 5419 u8 tmp; 5420 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5421 BUG(); 5422 tp->urg_data = TCP_URG_VALID | tmp; 5423 if (!sock_flag(sk, SOCK_DEAD)) 5424 sk->sk_data_ready(sk); 5425 } 5426 } 5427 } 5428 5429 /* Accept RST for rcv_nxt - 1 after a FIN. 5430 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5431 * FIN is sent followed by a RST packet. The RST is sent with the same 5432 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5433 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5434 * ACKs on the closed socket. In addition middleboxes can drop either the 5435 * challenge ACK or a subsequent RST. 5436 */ 5437 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5438 { 5439 struct tcp_sock *tp = tcp_sk(sk); 5440 5441 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5442 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5443 TCPF_CLOSING)); 5444 } 5445 5446 /* Does PAWS and seqno based validation of an incoming segment, flags will 5447 * play significant role here. 5448 */ 5449 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5450 const struct tcphdr *th, int syn_inerr) 5451 { 5452 struct tcp_sock *tp = tcp_sk(sk); 5453 bool rst_seq_match = false; 5454 5455 /* RFC1323: H1. Apply PAWS check first. */ 5456 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5457 tp->rx_opt.saw_tstamp && 5458 tcp_paws_discard(sk, skb)) { 5459 if (!th->rst) { 5460 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5461 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5462 LINUX_MIB_TCPACKSKIPPEDPAWS, 5463 &tp->last_oow_ack_time)) 5464 tcp_send_dupack(sk, skb); 5465 goto discard; 5466 } 5467 /* Reset is accepted even if it did not pass PAWS. */ 5468 } 5469 5470 /* Step 1: check sequence number */ 5471 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5472 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5473 * (RST) segments are validated by checking their SEQ-fields." 5474 * And page 69: "If an incoming segment is not acceptable, 5475 * an acknowledgment should be sent in reply (unless the RST 5476 * bit is set, if so drop the segment and return)". 5477 */ 5478 if (!th->rst) { 5479 if (th->syn) 5480 goto syn_challenge; 5481 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5482 LINUX_MIB_TCPACKSKIPPEDSEQ, 5483 &tp->last_oow_ack_time)) 5484 tcp_send_dupack(sk, skb); 5485 } else if (tcp_reset_check(sk, skb)) { 5486 tcp_reset(sk); 5487 } 5488 goto discard; 5489 } 5490 5491 /* Step 2: check RST bit */ 5492 if (th->rst) { 5493 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5494 * FIN and SACK too if available): 5495 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5496 * the right-most SACK block, 5497 * then 5498 * RESET the connection 5499 * else 5500 * Send a challenge ACK 5501 */ 5502 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5503 tcp_reset_check(sk, skb)) { 5504 rst_seq_match = true; 5505 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5506 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5507 int max_sack = sp[0].end_seq; 5508 int this_sack; 5509 5510 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5511 ++this_sack) { 5512 max_sack = after(sp[this_sack].end_seq, 5513 max_sack) ? 5514 sp[this_sack].end_seq : max_sack; 5515 } 5516 5517 if (TCP_SKB_CB(skb)->seq == max_sack) 5518 rst_seq_match = true; 5519 } 5520 5521 if (rst_seq_match) 5522 tcp_reset(sk); 5523 else { 5524 /* Disable TFO if RST is out-of-order 5525 * and no data has been received 5526 * for current active TFO socket 5527 */ 5528 if (tp->syn_fastopen && !tp->data_segs_in && 5529 sk->sk_state == TCP_ESTABLISHED) 5530 tcp_fastopen_active_disable(sk); 5531 tcp_send_challenge_ack(sk, skb); 5532 } 5533 goto discard; 5534 } 5535 5536 /* step 3: check security and precedence [ignored] */ 5537 5538 /* step 4: Check for a SYN 5539 * RFC 5961 4.2 : Send a challenge ack 5540 */ 5541 if (th->syn) { 5542 syn_challenge: 5543 if (syn_inerr) 5544 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5545 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5546 tcp_send_challenge_ack(sk, skb); 5547 goto discard; 5548 } 5549 5550 return true; 5551 5552 discard: 5553 tcp_drop(sk, skb); 5554 return false; 5555 } 5556 5557 /* 5558 * TCP receive function for the ESTABLISHED state. 5559 * 5560 * It is split into a fast path and a slow path. The fast path is 5561 * disabled when: 5562 * - A zero window was announced from us - zero window probing 5563 * is only handled properly in the slow path. 5564 * - Out of order segments arrived. 5565 * - Urgent data is expected. 5566 * - There is no buffer space left 5567 * - Unexpected TCP flags/window values/header lengths are received 5568 * (detected by checking the TCP header against pred_flags) 5569 * - Data is sent in both directions. Fast path only supports pure senders 5570 * or pure receivers (this means either the sequence number or the ack 5571 * value must stay constant) 5572 * - Unexpected TCP option. 5573 * 5574 * When these conditions are not satisfied it drops into a standard 5575 * receive procedure patterned after RFC793 to handle all cases. 5576 * The first three cases are guaranteed by proper pred_flags setting, 5577 * the rest is checked inline. Fast processing is turned on in 5578 * tcp_data_queue when everything is OK. 5579 */ 5580 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5581 { 5582 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5583 struct tcp_sock *tp = tcp_sk(sk); 5584 unsigned int len = skb->len; 5585 5586 /* TCP congestion window tracking */ 5587 trace_tcp_probe(sk, skb); 5588 5589 tcp_mstamp_refresh(tp); 5590 if (unlikely(!sk->sk_rx_dst)) 5591 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5592 /* 5593 * Header prediction. 5594 * The code loosely follows the one in the famous 5595 * "30 instruction TCP receive" Van Jacobson mail. 5596 * 5597 * Van's trick is to deposit buffers into socket queue 5598 * on a device interrupt, to call tcp_recv function 5599 * on the receive process context and checksum and copy 5600 * the buffer to user space. smart... 5601 * 5602 * Our current scheme is not silly either but we take the 5603 * extra cost of the net_bh soft interrupt processing... 5604 * We do checksum and copy also but from device to kernel. 5605 */ 5606 5607 tp->rx_opt.saw_tstamp = 0; 5608 5609 /* pred_flags is 0xS?10 << 16 + snd_wnd 5610 * if header_prediction is to be made 5611 * 'S' will always be tp->tcp_header_len >> 2 5612 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5613 * turn it off (when there are holes in the receive 5614 * space for instance) 5615 * PSH flag is ignored. 5616 */ 5617 5618 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5619 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5620 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5621 int tcp_header_len = tp->tcp_header_len; 5622 5623 /* Timestamp header prediction: tcp_header_len 5624 * is automatically equal to th->doff*4 due to pred_flags 5625 * match. 5626 */ 5627 5628 /* Check timestamp */ 5629 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5630 /* No? Slow path! */ 5631 if (!tcp_parse_aligned_timestamp(tp, th)) 5632 goto slow_path; 5633 5634 /* If PAWS failed, check it more carefully in slow path */ 5635 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5636 goto slow_path; 5637 5638 /* DO NOT update ts_recent here, if checksum fails 5639 * and timestamp was corrupted part, it will result 5640 * in a hung connection since we will drop all 5641 * future packets due to the PAWS test. 5642 */ 5643 } 5644 5645 if (len <= tcp_header_len) { 5646 /* Bulk data transfer: sender */ 5647 if (len == tcp_header_len) { 5648 /* Predicted packet is in window by definition. 5649 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5650 * Hence, check seq<=rcv_wup reduces to: 5651 */ 5652 if (tcp_header_len == 5653 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5654 tp->rcv_nxt == tp->rcv_wup) 5655 tcp_store_ts_recent(tp); 5656 5657 /* We know that such packets are checksummed 5658 * on entry. 5659 */ 5660 tcp_ack(sk, skb, 0); 5661 __kfree_skb(skb); 5662 tcp_data_snd_check(sk); 5663 /* When receiving pure ack in fast path, update 5664 * last ts ecr directly instead of calling 5665 * tcp_rcv_rtt_measure_ts() 5666 */ 5667 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5668 return; 5669 } else { /* Header too small */ 5670 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5671 goto discard; 5672 } 5673 } else { 5674 int eaten = 0; 5675 bool fragstolen = false; 5676 5677 if (tcp_checksum_complete(skb)) 5678 goto csum_error; 5679 5680 if ((int)skb->truesize > sk->sk_forward_alloc) 5681 goto step5; 5682 5683 /* Predicted packet is in window by definition. 5684 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5685 * Hence, check seq<=rcv_wup reduces to: 5686 */ 5687 if (tcp_header_len == 5688 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5689 tp->rcv_nxt == tp->rcv_wup) 5690 tcp_store_ts_recent(tp); 5691 5692 tcp_rcv_rtt_measure_ts(sk, skb); 5693 5694 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5695 5696 /* Bulk data transfer: receiver */ 5697 __skb_pull(skb, tcp_header_len); 5698 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5699 5700 tcp_event_data_recv(sk, skb); 5701 5702 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5703 /* Well, only one small jumplet in fast path... */ 5704 tcp_ack(sk, skb, FLAG_DATA); 5705 tcp_data_snd_check(sk); 5706 if (!inet_csk_ack_scheduled(sk)) 5707 goto no_ack; 5708 } 5709 5710 __tcp_ack_snd_check(sk, 0); 5711 no_ack: 5712 if (eaten) 5713 kfree_skb_partial(skb, fragstolen); 5714 tcp_data_ready(sk); 5715 return; 5716 } 5717 } 5718 5719 slow_path: 5720 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5721 goto csum_error; 5722 5723 if (!th->ack && !th->rst && !th->syn) 5724 goto discard; 5725 5726 /* 5727 * Standard slow path. 5728 */ 5729 5730 if (!tcp_validate_incoming(sk, skb, th, 1)) 5731 return; 5732 5733 step5: 5734 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5735 goto discard; 5736 5737 tcp_rcv_rtt_measure_ts(sk, skb); 5738 5739 /* Process urgent data. */ 5740 tcp_urg(sk, skb, th); 5741 5742 /* step 7: process the segment text */ 5743 tcp_data_queue(sk, skb); 5744 5745 tcp_data_snd_check(sk); 5746 tcp_ack_snd_check(sk); 5747 return; 5748 5749 csum_error: 5750 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5751 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5752 5753 discard: 5754 tcp_drop(sk, skb); 5755 } 5756 EXPORT_SYMBOL(tcp_rcv_established); 5757 5758 void tcp_init_transfer(struct sock *sk, int bpf_op) 5759 { 5760 struct inet_connection_sock *icsk = inet_csk(sk); 5761 struct tcp_sock *tp = tcp_sk(sk); 5762 5763 tcp_mtup_init(sk); 5764 icsk->icsk_af_ops->rebuild_header(sk); 5765 tcp_init_metrics(sk); 5766 5767 /* Initialize the congestion window to start the transfer. 5768 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5769 * retransmitted. In light of RFC6298 more aggressive 1sec 5770 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5771 * retransmission has occurred. 5772 */ 5773 if (tp->total_retrans > 1 && tp->undo_marker) 5774 tp->snd_cwnd = 1; 5775 else 5776 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5777 tp->snd_cwnd_stamp = tcp_jiffies32; 5778 5779 tcp_call_bpf(sk, bpf_op, 0, NULL); 5780 tcp_init_congestion_control(sk); 5781 tcp_init_buffer_space(sk); 5782 } 5783 5784 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5785 { 5786 struct tcp_sock *tp = tcp_sk(sk); 5787 struct inet_connection_sock *icsk = inet_csk(sk); 5788 5789 tcp_set_state(sk, TCP_ESTABLISHED); 5790 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5791 5792 if (skb) { 5793 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5794 security_inet_conn_established(sk, skb); 5795 sk_mark_napi_id(sk, skb); 5796 } 5797 5798 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5799 5800 /* Prevent spurious tcp_cwnd_restart() on first data 5801 * packet. 5802 */ 5803 tp->lsndtime = tcp_jiffies32; 5804 5805 if (sock_flag(sk, SOCK_KEEPOPEN)) 5806 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5807 5808 if (!tp->rx_opt.snd_wscale) 5809 __tcp_fast_path_on(tp, tp->snd_wnd); 5810 else 5811 tp->pred_flags = 0; 5812 } 5813 5814 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5815 struct tcp_fastopen_cookie *cookie) 5816 { 5817 struct tcp_sock *tp = tcp_sk(sk); 5818 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5819 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5820 bool syn_drop = false; 5821 5822 if (mss == tp->rx_opt.user_mss) { 5823 struct tcp_options_received opt; 5824 5825 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5826 tcp_clear_options(&opt); 5827 opt.user_mss = opt.mss_clamp = 0; 5828 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5829 mss = opt.mss_clamp; 5830 } 5831 5832 if (!tp->syn_fastopen) { 5833 /* Ignore an unsolicited cookie */ 5834 cookie->len = -1; 5835 } else if (tp->total_retrans) { 5836 /* SYN timed out and the SYN-ACK neither has a cookie nor 5837 * acknowledges data. Presumably the remote received only 5838 * the retransmitted (regular) SYNs: either the original 5839 * SYN-data or the corresponding SYN-ACK was dropped. 5840 */ 5841 syn_drop = (cookie->len < 0 && data); 5842 } else if (cookie->len < 0 && !tp->syn_data) { 5843 /* We requested a cookie but didn't get it. If we did not use 5844 * the (old) exp opt format then try so next time (try_exp=1). 5845 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5846 */ 5847 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5848 } 5849 5850 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5851 5852 if (data) { /* Retransmit unacked data in SYN */ 5853 if (tp->total_retrans) 5854 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5855 else 5856 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5857 skb_rbtree_walk_from(data) { 5858 if (__tcp_retransmit_skb(sk, data, 1)) 5859 break; 5860 } 5861 tcp_rearm_rto(sk); 5862 NET_INC_STATS(sock_net(sk), 5863 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5864 return true; 5865 } 5866 tp->syn_data_acked = tp->syn_data; 5867 if (tp->syn_data_acked) { 5868 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5869 /* SYN-data is counted as two separate packets in tcp_ack() */ 5870 if (tp->delivered > 1) 5871 --tp->delivered; 5872 } 5873 5874 tcp_fastopen_add_skb(sk, synack); 5875 5876 return false; 5877 } 5878 5879 static void smc_check_reset_syn(struct tcp_sock *tp) 5880 { 5881 #if IS_ENABLED(CONFIG_SMC) 5882 if (static_branch_unlikely(&tcp_have_smc)) { 5883 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5884 tp->syn_smc = 0; 5885 } 5886 #endif 5887 } 5888 5889 static void tcp_try_undo_spurious_syn(struct sock *sk) 5890 { 5891 struct tcp_sock *tp = tcp_sk(sk); 5892 u32 syn_stamp; 5893 5894 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5895 * spurious if the ACK's timestamp option echo value matches the 5896 * original SYN timestamp. 5897 */ 5898 syn_stamp = tp->retrans_stamp; 5899 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5900 syn_stamp == tp->rx_opt.rcv_tsecr) 5901 tp->undo_marker = 0; 5902 } 5903 5904 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5905 const struct tcphdr *th) 5906 { 5907 struct inet_connection_sock *icsk = inet_csk(sk); 5908 struct tcp_sock *tp = tcp_sk(sk); 5909 struct tcp_fastopen_cookie foc = { .len = -1 }; 5910 int saved_clamp = tp->rx_opt.mss_clamp; 5911 bool fastopen_fail; 5912 5913 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5914 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5915 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5916 5917 if (th->ack) { 5918 /* rfc793: 5919 * "If the state is SYN-SENT then 5920 * first check the ACK bit 5921 * If the ACK bit is set 5922 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5923 * a reset (unless the RST bit is set, if so drop 5924 * the segment and return)" 5925 */ 5926 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5927 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5928 /* Previous FIN/ACK or RST/ACK might be ignored. */ 5929 if (icsk->icsk_retransmits == 0) 5930 inet_csk_reset_xmit_timer(sk, 5931 ICSK_TIME_RETRANS, 5932 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 5933 goto reset_and_undo; 5934 } 5935 5936 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5937 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5938 tcp_time_stamp(tp))) { 5939 NET_INC_STATS(sock_net(sk), 5940 LINUX_MIB_PAWSACTIVEREJECTED); 5941 goto reset_and_undo; 5942 } 5943 5944 /* Now ACK is acceptable. 5945 * 5946 * "If the RST bit is set 5947 * If the ACK was acceptable then signal the user "error: 5948 * connection reset", drop the segment, enter CLOSED state, 5949 * delete TCB, and return." 5950 */ 5951 5952 if (th->rst) { 5953 tcp_reset(sk); 5954 goto discard; 5955 } 5956 5957 /* rfc793: 5958 * "fifth, if neither of the SYN or RST bits is set then 5959 * drop the segment and return." 5960 * 5961 * See note below! 5962 * --ANK(990513) 5963 */ 5964 if (!th->syn) 5965 goto discard_and_undo; 5966 5967 /* rfc793: 5968 * "If the SYN bit is on ... 5969 * are acceptable then ... 5970 * (our SYN has been ACKed), change the connection 5971 * state to ESTABLISHED..." 5972 */ 5973 5974 tcp_ecn_rcv_synack(tp, th); 5975 5976 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5977 tcp_try_undo_spurious_syn(sk); 5978 tcp_ack(sk, skb, FLAG_SLOWPATH); 5979 5980 /* Ok.. it's good. Set up sequence numbers and 5981 * move to established. 5982 */ 5983 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 5984 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5985 5986 /* RFC1323: The window in SYN & SYN/ACK segments is 5987 * never scaled. 5988 */ 5989 tp->snd_wnd = ntohs(th->window); 5990 5991 if (!tp->rx_opt.wscale_ok) { 5992 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5993 tp->window_clamp = min(tp->window_clamp, 65535U); 5994 } 5995 5996 if (tp->rx_opt.saw_tstamp) { 5997 tp->rx_opt.tstamp_ok = 1; 5998 tp->tcp_header_len = 5999 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6000 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6001 tcp_store_ts_recent(tp); 6002 } else { 6003 tp->tcp_header_len = sizeof(struct tcphdr); 6004 } 6005 6006 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6007 tcp_initialize_rcv_mss(sk); 6008 6009 /* Remember, tcp_poll() does not lock socket! 6010 * Change state from SYN-SENT only after copied_seq 6011 * is initialized. */ 6012 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6013 6014 smc_check_reset_syn(tp); 6015 6016 smp_mb(); 6017 6018 tcp_finish_connect(sk, skb); 6019 6020 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6021 tcp_rcv_fastopen_synack(sk, skb, &foc); 6022 6023 if (!sock_flag(sk, SOCK_DEAD)) { 6024 sk->sk_state_change(sk); 6025 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6026 } 6027 if (fastopen_fail) 6028 return -1; 6029 if (sk->sk_write_pending || 6030 icsk->icsk_accept_queue.rskq_defer_accept || 6031 inet_csk_in_pingpong_mode(sk)) { 6032 /* Save one ACK. Data will be ready after 6033 * several ticks, if write_pending is set. 6034 * 6035 * It may be deleted, but with this feature tcpdumps 6036 * look so _wonderfully_ clever, that I was not able 6037 * to stand against the temptation 8) --ANK 6038 */ 6039 inet_csk_schedule_ack(sk); 6040 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6041 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6042 TCP_DELACK_MAX, TCP_RTO_MAX); 6043 6044 discard: 6045 tcp_drop(sk, skb); 6046 return 0; 6047 } else { 6048 tcp_send_ack(sk); 6049 } 6050 return -1; 6051 } 6052 6053 /* No ACK in the segment */ 6054 6055 if (th->rst) { 6056 /* rfc793: 6057 * "If the RST bit is set 6058 * 6059 * Otherwise (no ACK) drop the segment and return." 6060 */ 6061 6062 goto discard_and_undo; 6063 } 6064 6065 /* PAWS check. */ 6066 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6067 tcp_paws_reject(&tp->rx_opt, 0)) 6068 goto discard_and_undo; 6069 6070 if (th->syn) { 6071 /* We see SYN without ACK. It is attempt of 6072 * simultaneous connect with crossed SYNs. 6073 * Particularly, it can be connect to self. 6074 */ 6075 tcp_set_state(sk, TCP_SYN_RECV); 6076 6077 if (tp->rx_opt.saw_tstamp) { 6078 tp->rx_opt.tstamp_ok = 1; 6079 tcp_store_ts_recent(tp); 6080 tp->tcp_header_len = 6081 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6082 } else { 6083 tp->tcp_header_len = sizeof(struct tcphdr); 6084 } 6085 6086 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6087 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6088 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6089 6090 /* RFC1323: The window in SYN & SYN/ACK segments is 6091 * never scaled. 6092 */ 6093 tp->snd_wnd = ntohs(th->window); 6094 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6095 tp->max_window = tp->snd_wnd; 6096 6097 tcp_ecn_rcv_syn(tp, th); 6098 6099 tcp_mtup_init(sk); 6100 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6101 tcp_initialize_rcv_mss(sk); 6102 6103 tcp_send_synack(sk); 6104 #if 0 6105 /* Note, we could accept data and URG from this segment. 6106 * There are no obstacles to make this (except that we must 6107 * either change tcp_recvmsg() to prevent it from returning data 6108 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6109 * 6110 * However, if we ignore data in ACKless segments sometimes, 6111 * we have no reasons to accept it sometimes. 6112 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6113 * is not flawless. So, discard packet for sanity. 6114 * Uncomment this return to process the data. 6115 */ 6116 return -1; 6117 #else 6118 goto discard; 6119 #endif 6120 } 6121 /* "fifth, if neither of the SYN or RST bits is set then 6122 * drop the segment and return." 6123 */ 6124 6125 discard_and_undo: 6126 tcp_clear_options(&tp->rx_opt); 6127 tp->rx_opt.mss_clamp = saved_clamp; 6128 goto discard; 6129 6130 reset_and_undo: 6131 tcp_clear_options(&tp->rx_opt); 6132 tp->rx_opt.mss_clamp = saved_clamp; 6133 return 1; 6134 } 6135 6136 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6137 { 6138 struct request_sock *req; 6139 6140 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6141 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6142 */ 6143 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6144 tcp_try_undo_loss(sk, false); 6145 6146 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6147 tcp_sk(sk)->retrans_stamp = 0; 6148 inet_csk(sk)->icsk_retransmits = 0; 6149 6150 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6151 * we no longer need req so release it. 6152 */ 6153 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6154 lockdep_sock_is_held(sk)); 6155 reqsk_fastopen_remove(sk, req, false); 6156 6157 /* Re-arm the timer because data may have been sent out. 6158 * This is similar to the regular data transmission case 6159 * when new data has just been ack'ed. 6160 * 6161 * (TFO) - we could try to be more aggressive and 6162 * retransmitting any data sooner based on when they 6163 * are sent out. 6164 */ 6165 tcp_rearm_rto(sk); 6166 } 6167 6168 /* 6169 * This function implements the receiving procedure of RFC 793 for 6170 * all states except ESTABLISHED and TIME_WAIT. 6171 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6172 * address independent. 6173 */ 6174 6175 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6176 { 6177 struct tcp_sock *tp = tcp_sk(sk); 6178 struct inet_connection_sock *icsk = inet_csk(sk); 6179 const struct tcphdr *th = tcp_hdr(skb); 6180 struct request_sock *req; 6181 int queued = 0; 6182 bool acceptable; 6183 6184 switch (sk->sk_state) { 6185 case TCP_CLOSE: 6186 goto discard; 6187 6188 case TCP_LISTEN: 6189 if (th->ack) 6190 return 1; 6191 6192 if (th->rst) 6193 goto discard; 6194 6195 if (th->syn) { 6196 if (th->fin) 6197 goto discard; 6198 /* It is possible that we process SYN packets from backlog, 6199 * so we need to make sure to disable BH and RCU right there. 6200 */ 6201 rcu_read_lock(); 6202 local_bh_disable(); 6203 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6204 local_bh_enable(); 6205 rcu_read_unlock(); 6206 6207 if (!acceptable) 6208 return 1; 6209 consume_skb(skb); 6210 return 0; 6211 } 6212 goto discard; 6213 6214 case TCP_SYN_SENT: 6215 tp->rx_opt.saw_tstamp = 0; 6216 tcp_mstamp_refresh(tp); 6217 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6218 if (queued >= 0) 6219 return queued; 6220 6221 /* Do step6 onward by hand. */ 6222 tcp_urg(sk, skb, th); 6223 __kfree_skb(skb); 6224 tcp_data_snd_check(sk); 6225 return 0; 6226 } 6227 6228 tcp_mstamp_refresh(tp); 6229 tp->rx_opt.saw_tstamp = 0; 6230 req = rcu_dereference_protected(tp->fastopen_rsk, 6231 lockdep_sock_is_held(sk)); 6232 if (req) { 6233 bool req_stolen; 6234 6235 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6236 sk->sk_state != TCP_FIN_WAIT1); 6237 6238 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6239 goto discard; 6240 } 6241 6242 if (!th->ack && !th->rst && !th->syn) 6243 goto discard; 6244 6245 if (!tcp_validate_incoming(sk, skb, th, 0)) 6246 return 0; 6247 6248 /* step 5: check the ACK field */ 6249 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6250 FLAG_UPDATE_TS_RECENT | 6251 FLAG_NO_CHALLENGE_ACK) > 0; 6252 6253 if (!acceptable) { 6254 if (sk->sk_state == TCP_SYN_RECV) 6255 return 1; /* send one RST */ 6256 tcp_send_challenge_ack(sk, skb); 6257 goto discard; 6258 } 6259 switch (sk->sk_state) { 6260 case TCP_SYN_RECV: 6261 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6262 if (!tp->srtt_us) 6263 tcp_synack_rtt_meas(sk, req); 6264 6265 if (req) { 6266 tcp_rcv_synrecv_state_fastopen(sk); 6267 } else { 6268 tcp_try_undo_spurious_syn(sk); 6269 tp->retrans_stamp = 0; 6270 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6271 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6272 } 6273 smp_mb(); 6274 tcp_set_state(sk, TCP_ESTABLISHED); 6275 sk->sk_state_change(sk); 6276 6277 /* Note, that this wakeup is only for marginal crossed SYN case. 6278 * Passively open sockets are not waked up, because 6279 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6280 */ 6281 if (sk->sk_socket) 6282 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6283 6284 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6285 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6286 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6287 6288 if (tp->rx_opt.tstamp_ok) 6289 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6290 6291 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6292 tcp_update_pacing_rate(sk); 6293 6294 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6295 tp->lsndtime = tcp_jiffies32; 6296 6297 tcp_initialize_rcv_mss(sk); 6298 tcp_fast_path_on(tp); 6299 break; 6300 6301 case TCP_FIN_WAIT1: { 6302 int tmo; 6303 6304 if (req) 6305 tcp_rcv_synrecv_state_fastopen(sk); 6306 6307 if (tp->snd_una != tp->write_seq) 6308 break; 6309 6310 tcp_set_state(sk, TCP_FIN_WAIT2); 6311 sk->sk_shutdown |= SEND_SHUTDOWN; 6312 6313 sk_dst_confirm(sk); 6314 6315 if (!sock_flag(sk, SOCK_DEAD)) { 6316 /* Wake up lingering close() */ 6317 sk->sk_state_change(sk); 6318 break; 6319 } 6320 6321 if (tp->linger2 < 0) { 6322 tcp_done(sk); 6323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6324 return 1; 6325 } 6326 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6327 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6328 /* Receive out of order FIN after close() */ 6329 if (tp->syn_fastopen && th->fin) 6330 tcp_fastopen_active_disable(sk); 6331 tcp_done(sk); 6332 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6333 return 1; 6334 } 6335 6336 tmo = tcp_fin_time(sk); 6337 if (tmo > TCP_TIMEWAIT_LEN) { 6338 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6339 } else if (th->fin || sock_owned_by_user(sk)) { 6340 /* Bad case. We could lose such FIN otherwise. 6341 * It is not a big problem, but it looks confusing 6342 * and not so rare event. We still can lose it now, 6343 * if it spins in bh_lock_sock(), but it is really 6344 * marginal case. 6345 */ 6346 inet_csk_reset_keepalive_timer(sk, tmo); 6347 } else { 6348 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6349 goto discard; 6350 } 6351 break; 6352 } 6353 6354 case TCP_CLOSING: 6355 if (tp->snd_una == tp->write_seq) { 6356 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6357 goto discard; 6358 } 6359 break; 6360 6361 case TCP_LAST_ACK: 6362 if (tp->snd_una == tp->write_seq) { 6363 tcp_update_metrics(sk); 6364 tcp_done(sk); 6365 goto discard; 6366 } 6367 break; 6368 } 6369 6370 /* step 6: check the URG bit */ 6371 tcp_urg(sk, skb, th); 6372 6373 /* step 7: process the segment text */ 6374 switch (sk->sk_state) { 6375 case TCP_CLOSE_WAIT: 6376 case TCP_CLOSING: 6377 case TCP_LAST_ACK: 6378 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6379 if (sk_is_mptcp(sk)) 6380 mptcp_incoming_options(sk, skb, &tp->rx_opt); 6381 break; 6382 } 6383 fallthrough; 6384 case TCP_FIN_WAIT1: 6385 case TCP_FIN_WAIT2: 6386 /* RFC 793 says to queue data in these states, 6387 * RFC 1122 says we MUST send a reset. 6388 * BSD 4.4 also does reset. 6389 */ 6390 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6391 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6392 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6394 tcp_reset(sk); 6395 return 1; 6396 } 6397 } 6398 fallthrough; 6399 case TCP_ESTABLISHED: 6400 tcp_data_queue(sk, skb); 6401 queued = 1; 6402 break; 6403 } 6404 6405 /* tcp_data could move socket to TIME-WAIT */ 6406 if (sk->sk_state != TCP_CLOSE) { 6407 tcp_data_snd_check(sk); 6408 tcp_ack_snd_check(sk); 6409 } 6410 6411 if (!queued) { 6412 discard: 6413 tcp_drop(sk, skb); 6414 } 6415 return 0; 6416 } 6417 EXPORT_SYMBOL(tcp_rcv_state_process); 6418 6419 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6420 { 6421 struct inet_request_sock *ireq = inet_rsk(req); 6422 6423 if (family == AF_INET) 6424 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6425 &ireq->ir_rmt_addr, port); 6426 #if IS_ENABLED(CONFIG_IPV6) 6427 else if (family == AF_INET6) 6428 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6429 &ireq->ir_v6_rmt_addr, port); 6430 #endif 6431 } 6432 6433 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6434 * 6435 * If we receive a SYN packet with these bits set, it means a 6436 * network is playing bad games with TOS bits. In order to 6437 * avoid possible false congestion notifications, we disable 6438 * TCP ECN negotiation. 6439 * 6440 * Exception: tcp_ca wants ECN. This is required for DCTCP 6441 * congestion control: Linux DCTCP asserts ECT on all packets, 6442 * including SYN, which is most optimal solution; however, 6443 * others, such as FreeBSD do not. 6444 * 6445 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6446 * set, indicating the use of a future TCP extension (such as AccECN). See 6447 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6448 * extensions. 6449 */ 6450 static void tcp_ecn_create_request(struct request_sock *req, 6451 const struct sk_buff *skb, 6452 const struct sock *listen_sk, 6453 const struct dst_entry *dst) 6454 { 6455 const struct tcphdr *th = tcp_hdr(skb); 6456 const struct net *net = sock_net(listen_sk); 6457 bool th_ecn = th->ece && th->cwr; 6458 bool ect, ecn_ok; 6459 u32 ecn_ok_dst; 6460 6461 if (!th_ecn) 6462 return; 6463 6464 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6465 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6466 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6467 6468 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6469 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6470 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6471 inet_rsk(req)->ecn_ok = 1; 6472 } 6473 6474 static void tcp_openreq_init(struct request_sock *req, 6475 const struct tcp_options_received *rx_opt, 6476 struct sk_buff *skb, const struct sock *sk) 6477 { 6478 struct inet_request_sock *ireq = inet_rsk(req); 6479 6480 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6481 req->cookie_ts = 0; 6482 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6483 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6484 tcp_rsk(req)->snt_synack = 0; 6485 tcp_rsk(req)->last_oow_ack_time = 0; 6486 req->mss = rx_opt->mss_clamp; 6487 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6488 ireq->tstamp_ok = rx_opt->tstamp_ok; 6489 ireq->sack_ok = rx_opt->sack_ok; 6490 ireq->snd_wscale = rx_opt->snd_wscale; 6491 ireq->wscale_ok = rx_opt->wscale_ok; 6492 ireq->acked = 0; 6493 ireq->ecn_ok = 0; 6494 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6495 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6496 ireq->ir_mark = inet_request_mark(sk, skb); 6497 #if IS_ENABLED(CONFIG_SMC) 6498 ireq->smc_ok = rx_opt->smc_ok; 6499 #endif 6500 } 6501 6502 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6503 struct sock *sk_listener, 6504 bool attach_listener) 6505 { 6506 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6507 attach_listener); 6508 6509 if (req) { 6510 struct inet_request_sock *ireq = inet_rsk(req); 6511 6512 ireq->ireq_opt = NULL; 6513 #if IS_ENABLED(CONFIG_IPV6) 6514 ireq->pktopts = NULL; 6515 #endif 6516 atomic64_set(&ireq->ir_cookie, 0); 6517 ireq->ireq_state = TCP_NEW_SYN_RECV; 6518 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6519 ireq->ireq_family = sk_listener->sk_family; 6520 } 6521 6522 return req; 6523 } 6524 EXPORT_SYMBOL(inet_reqsk_alloc); 6525 6526 /* 6527 * Return true if a syncookie should be sent 6528 */ 6529 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6530 { 6531 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6532 const char *msg = "Dropping request"; 6533 bool want_cookie = false; 6534 struct net *net = sock_net(sk); 6535 6536 #ifdef CONFIG_SYN_COOKIES 6537 if (net->ipv4.sysctl_tcp_syncookies) { 6538 msg = "Sending cookies"; 6539 want_cookie = true; 6540 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6541 } else 6542 #endif 6543 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6544 6545 if (!queue->synflood_warned && 6546 net->ipv4.sysctl_tcp_syncookies != 2 && 6547 xchg(&queue->synflood_warned, 1) == 0) 6548 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6549 proto, sk->sk_num, msg); 6550 6551 return want_cookie; 6552 } 6553 6554 static void tcp_reqsk_record_syn(const struct sock *sk, 6555 struct request_sock *req, 6556 const struct sk_buff *skb) 6557 { 6558 if (tcp_sk(sk)->save_syn) { 6559 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6560 u32 *copy; 6561 6562 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6563 if (copy) { 6564 copy[0] = len; 6565 memcpy(©[1], skb_network_header(skb), len); 6566 req->saved_syn = copy; 6567 } 6568 } 6569 } 6570 6571 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6572 * used for SYN cookie generation. 6573 */ 6574 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6575 const struct tcp_request_sock_ops *af_ops, 6576 struct sock *sk, struct tcphdr *th) 6577 { 6578 struct tcp_sock *tp = tcp_sk(sk); 6579 u16 mss; 6580 6581 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6582 !inet_csk_reqsk_queue_is_full(sk)) 6583 return 0; 6584 6585 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6586 return 0; 6587 6588 if (sk_acceptq_is_full(sk)) { 6589 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6590 return 0; 6591 } 6592 6593 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6594 if (!mss) 6595 mss = af_ops->mss_clamp; 6596 6597 return mss; 6598 } 6599 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6600 6601 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6602 const struct tcp_request_sock_ops *af_ops, 6603 struct sock *sk, struct sk_buff *skb) 6604 { 6605 struct tcp_fastopen_cookie foc = { .len = -1 }; 6606 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6607 struct tcp_options_received tmp_opt; 6608 struct tcp_sock *tp = tcp_sk(sk); 6609 struct net *net = sock_net(sk); 6610 struct sock *fastopen_sk = NULL; 6611 struct request_sock *req; 6612 bool want_cookie = false; 6613 struct dst_entry *dst; 6614 struct flowi fl; 6615 6616 /* TW buckets are converted to open requests without 6617 * limitations, they conserve resources and peer is 6618 * evidently real one. 6619 */ 6620 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6621 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6622 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6623 if (!want_cookie) 6624 goto drop; 6625 } 6626 6627 if (sk_acceptq_is_full(sk)) { 6628 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6629 goto drop; 6630 } 6631 6632 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6633 if (!req) 6634 goto drop; 6635 6636 tcp_rsk(req)->af_specific = af_ops; 6637 tcp_rsk(req)->ts_off = 0; 6638 #if IS_ENABLED(CONFIG_MPTCP) 6639 tcp_rsk(req)->is_mptcp = 0; 6640 #endif 6641 6642 tcp_clear_options(&tmp_opt); 6643 tmp_opt.mss_clamp = af_ops->mss_clamp; 6644 tmp_opt.user_mss = tp->rx_opt.user_mss; 6645 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6646 want_cookie ? NULL : &foc); 6647 6648 if (want_cookie && !tmp_opt.saw_tstamp) 6649 tcp_clear_options(&tmp_opt); 6650 6651 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6652 tmp_opt.smc_ok = 0; 6653 6654 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6655 tcp_openreq_init(req, &tmp_opt, skb, sk); 6656 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6657 6658 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6659 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6660 6661 af_ops->init_req(req, sk, skb); 6662 6663 if (IS_ENABLED(CONFIG_MPTCP) && want_cookie) 6664 tcp_rsk(req)->is_mptcp = 0; 6665 6666 if (security_inet_conn_request(sk, skb, req)) 6667 goto drop_and_free; 6668 6669 if (tmp_opt.tstamp_ok) 6670 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6671 6672 dst = af_ops->route_req(sk, &fl, req); 6673 if (!dst) 6674 goto drop_and_free; 6675 6676 if (!want_cookie && !isn) { 6677 /* Kill the following clause, if you dislike this way. */ 6678 if (!net->ipv4.sysctl_tcp_syncookies && 6679 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6680 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6681 !tcp_peer_is_proven(req, dst)) { 6682 /* Without syncookies last quarter of 6683 * backlog is filled with destinations, 6684 * proven to be alive. 6685 * It means that we continue to communicate 6686 * to destinations, already remembered 6687 * to the moment of synflood. 6688 */ 6689 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6690 rsk_ops->family); 6691 goto drop_and_release; 6692 } 6693 6694 isn = af_ops->init_seq(skb); 6695 } 6696 6697 tcp_ecn_create_request(req, skb, sk, dst); 6698 6699 if (want_cookie) { 6700 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6701 req->cookie_ts = tmp_opt.tstamp_ok; 6702 if (!tmp_opt.tstamp_ok) 6703 inet_rsk(req)->ecn_ok = 0; 6704 } 6705 6706 tcp_rsk(req)->snt_isn = isn; 6707 tcp_rsk(req)->txhash = net_tx_rndhash(); 6708 tcp_openreq_init_rwin(req, sk, dst); 6709 sk_rx_queue_set(req_to_sk(req), skb); 6710 if (!want_cookie) { 6711 tcp_reqsk_record_syn(sk, req, skb); 6712 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6713 } 6714 if (fastopen_sk) { 6715 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6716 &foc, TCP_SYNACK_FASTOPEN); 6717 /* Add the child socket directly into the accept queue */ 6718 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6719 reqsk_fastopen_remove(fastopen_sk, req, false); 6720 bh_unlock_sock(fastopen_sk); 6721 sock_put(fastopen_sk); 6722 goto drop_and_free; 6723 } 6724 sk->sk_data_ready(sk); 6725 bh_unlock_sock(fastopen_sk); 6726 sock_put(fastopen_sk); 6727 } else { 6728 tcp_rsk(req)->tfo_listener = false; 6729 if (!want_cookie) 6730 inet_csk_reqsk_queue_hash_add(sk, req, 6731 tcp_timeout_init((struct sock *)req)); 6732 af_ops->send_synack(sk, dst, &fl, req, &foc, 6733 !want_cookie ? TCP_SYNACK_NORMAL : 6734 TCP_SYNACK_COOKIE); 6735 if (want_cookie) { 6736 reqsk_free(req); 6737 return 0; 6738 } 6739 } 6740 reqsk_put(req); 6741 return 0; 6742 6743 drop_and_release: 6744 dst_release(dst); 6745 drop_and_free: 6746 __reqsk_free(req); 6747 drop: 6748 tcp_listendrop(sk); 6749 return 0; 6750 } 6751 EXPORT_SYMBOL(tcp_conn_request); 6752