1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 84 EXPORT_SYMBOL(sysctl_tcp_reordering); 85 int sysctl_tcp_dsack __read_mostly = 1; 86 int sysctl_tcp_app_win __read_mostly = 31; 87 int sysctl_tcp_adv_win_scale __read_mostly = 1; 88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 89 90 /* rfc5961 challenge ack rate limiting */ 91 int sysctl_tcp_challenge_ack_limit = 100; 92 93 int sysctl_tcp_stdurg __read_mostly; 94 int sysctl_tcp_rfc1337 __read_mostly; 95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 96 int sysctl_tcp_frto __read_mostly = 2; 97 98 int sysctl_tcp_thin_dupack __read_mostly; 99 100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101 int sysctl_tcp_early_retrans __read_mostly = 3; 102 103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 109 #define FLAG_ECE 0x40 /* ECE in this ACK */ 110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 116 117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 /* Adapt the MSS value used to make delayed ack decision to the 126 * real world. 127 */ 128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const unsigned int lss = icsk->icsk_ack.last_seg_size; 132 unsigned int len; 133 134 icsk->icsk_ack.last_seg_size = 0; 135 136 /* skb->len may jitter because of SACKs, even if peer 137 * sends good full-sized frames. 138 */ 139 len = skb_shinfo(skb)->gso_size ? : skb->len; 140 if (len >= icsk->icsk_ack.rcv_mss) { 141 icsk->icsk_ack.rcv_mss = len; 142 } else { 143 /* Otherwise, we make more careful check taking into account, 144 * that SACKs block is variable. 145 * 146 * "len" is invariant segment length, including TCP header. 147 */ 148 len += skb->data - skb_transport_header(skb); 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 150 /* If PSH is not set, packet should be 151 * full sized, provided peer TCP is not badly broken. 152 * This observation (if it is correct 8)) allows 153 * to handle super-low mtu links fairly. 154 */ 155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 157 /* Subtract also invariant (if peer is RFC compliant), 158 * tcp header plus fixed timestamp option length. 159 * Resulting "len" is MSS free of SACK jitter. 160 */ 161 len -= tcp_sk(sk)->tcp_header_len; 162 icsk->icsk_ack.last_seg_size = len; 163 if (len == lss) { 164 icsk->icsk_ack.rcv_mss = len; 165 return; 166 } 167 } 168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 171 } 172 } 173 174 static void tcp_incr_quickack(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 178 179 if (quickacks == 0) 180 quickacks = 2; 181 if (quickacks > icsk->icsk_ack.quick) 182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 183 } 184 185 static void tcp_enter_quickack_mode(struct sock *sk) 186 { 187 struct inet_connection_sock *icsk = inet_csk(sk); 188 tcp_incr_quickack(sk); 189 icsk->icsk_ack.pingpong = 0; 190 icsk->icsk_ack.ato = TCP_ATO_MIN; 191 } 192 193 /* Send ACKs quickly, if "quick" count is not exhausted 194 * and the session is not interactive. 195 */ 196 197 static inline bool tcp_in_quickack_mode(const struct sock *sk) 198 { 199 const struct inet_connection_sock *icsk = inet_csk(sk); 200 201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 202 } 203 204 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 205 { 206 if (tp->ecn_flags & TCP_ECN_OK) 207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 208 } 209 210 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 211 { 212 if (tcp_hdr(skb)->cwr) 213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 214 } 215 216 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 217 { 218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 219 } 220 221 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 222 { 223 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 224 case INET_ECN_NOT_ECT: 225 /* Funny extension: if ECT is not set on a segment, 226 * and we already seen ECT on a previous segment, 227 * it is probably a retransmit. 228 */ 229 if (tp->ecn_flags & TCP_ECN_SEEN) 230 tcp_enter_quickack_mode((struct sock *)tp); 231 break; 232 case INET_ECN_CE: 233 if (tcp_ca_needs_ecn((struct sock *)tp)) 234 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 235 236 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 237 /* Better not delay acks, sender can have a very low cwnd */ 238 tcp_enter_quickack_mode((struct sock *)tp); 239 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 240 } 241 tp->ecn_flags |= TCP_ECN_SEEN; 242 break; 243 default: 244 if (tcp_ca_needs_ecn((struct sock *)tp)) 245 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 246 tp->ecn_flags |= TCP_ECN_SEEN; 247 break; 248 } 249 } 250 251 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 252 { 253 if (tp->ecn_flags & TCP_ECN_OK) 254 __tcp_ecn_check_ce(tp, skb); 255 } 256 257 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 258 { 259 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 260 tp->ecn_flags &= ~TCP_ECN_OK; 261 } 262 263 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 264 { 265 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 266 tp->ecn_flags &= ~TCP_ECN_OK; 267 } 268 269 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 270 { 271 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 272 return true; 273 return false; 274 } 275 276 /* Buffer size and advertised window tuning. 277 * 278 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 279 */ 280 281 static void tcp_sndbuf_expand(struct sock *sk) 282 { 283 const struct tcp_sock *tp = tcp_sk(sk); 284 int sndmem, per_mss; 285 u32 nr_segs; 286 287 /* Worst case is non GSO/TSO : each frame consumes one skb 288 * and skb->head is kmalloced using power of two area of memory 289 */ 290 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 291 MAX_TCP_HEADER + 292 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 293 294 per_mss = roundup_pow_of_two(per_mss) + 295 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 296 297 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 298 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 299 300 /* Fast Recovery (RFC 5681 3.2) : 301 * Cubic needs 1.7 factor, rounded to 2 to include 302 * extra cushion (application might react slowly to POLLOUT) 303 */ 304 sndmem = 2 * nr_segs * per_mss; 305 306 if (sk->sk_sndbuf < sndmem) 307 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 308 } 309 310 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 311 * 312 * All tcp_full_space() is split to two parts: "network" buffer, allocated 313 * forward and advertised in receiver window (tp->rcv_wnd) and 314 * "application buffer", required to isolate scheduling/application 315 * latencies from network. 316 * window_clamp is maximal advertised window. It can be less than 317 * tcp_full_space(), in this case tcp_full_space() - window_clamp 318 * is reserved for "application" buffer. The less window_clamp is 319 * the smoother our behaviour from viewpoint of network, but the lower 320 * throughput and the higher sensitivity of the connection to losses. 8) 321 * 322 * rcv_ssthresh is more strict window_clamp used at "slow start" 323 * phase to predict further behaviour of this connection. 324 * It is used for two goals: 325 * - to enforce header prediction at sender, even when application 326 * requires some significant "application buffer". It is check #1. 327 * - to prevent pruning of receive queue because of misprediction 328 * of receiver window. Check #2. 329 * 330 * The scheme does not work when sender sends good segments opening 331 * window and then starts to feed us spaghetti. But it should work 332 * in common situations. Otherwise, we have to rely on queue collapsing. 333 */ 334 335 /* Slow part of check#2. */ 336 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 337 { 338 struct tcp_sock *tp = tcp_sk(sk); 339 /* Optimize this! */ 340 int truesize = tcp_win_from_space(skb->truesize) >> 1; 341 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 342 343 while (tp->rcv_ssthresh <= window) { 344 if (truesize <= skb->len) 345 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 346 347 truesize >>= 1; 348 window >>= 1; 349 } 350 return 0; 351 } 352 353 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 357 /* Check #1 */ 358 if (tp->rcv_ssthresh < tp->window_clamp && 359 (int)tp->rcv_ssthresh < tcp_space(sk) && 360 !sk_under_memory_pressure(sk)) { 361 int incr; 362 363 /* Check #2. Increase window, if skb with such overhead 364 * will fit to rcvbuf in future. 365 */ 366 if (tcp_win_from_space(skb->truesize) <= skb->len) 367 incr = 2 * tp->advmss; 368 else 369 incr = __tcp_grow_window(sk, skb); 370 371 if (incr) { 372 incr = max_t(int, incr, 2 * skb->len); 373 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 374 tp->window_clamp); 375 inet_csk(sk)->icsk_ack.quick |= 1; 376 } 377 } 378 } 379 380 /* 3. Tuning rcvbuf, when connection enters established state. */ 381 static void tcp_fixup_rcvbuf(struct sock *sk) 382 { 383 u32 mss = tcp_sk(sk)->advmss; 384 int rcvmem; 385 386 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 387 tcp_default_init_rwnd(mss); 388 389 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 390 * Allow enough cushion so that sender is not limited by our window 391 */ 392 if (sysctl_tcp_moderate_rcvbuf) 393 rcvmem <<= 2; 394 395 if (sk->sk_rcvbuf < rcvmem) 396 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 397 } 398 399 /* 4. Try to fixup all. It is made immediately after connection enters 400 * established state. 401 */ 402 void tcp_init_buffer_space(struct sock *sk) 403 { 404 struct tcp_sock *tp = tcp_sk(sk); 405 int maxwin; 406 407 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 408 tcp_fixup_rcvbuf(sk); 409 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 410 tcp_sndbuf_expand(sk); 411 412 tp->rcvq_space.space = tp->rcv_wnd; 413 tp->rcvq_space.time = tcp_time_stamp; 414 tp->rcvq_space.seq = tp->copied_seq; 415 416 maxwin = tcp_full_space(sk); 417 418 if (tp->window_clamp >= maxwin) { 419 tp->window_clamp = maxwin; 420 421 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 422 tp->window_clamp = max(maxwin - 423 (maxwin >> sysctl_tcp_app_win), 424 4 * tp->advmss); 425 } 426 427 /* Force reservation of one segment. */ 428 if (sysctl_tcp_app_win && 429 tp->window_clamp > 2 * tp->advmss && 430 tp->window_clamp + tp->advmss > maxwin) 431 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 432 433 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 434 tp->snd_cwnd_stamp = tcp_time_stamp; 435 } 436 437 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 438 static void tcp_clamp_window(struct sock *sk) 439 { 440 struct tcp_sock *tp = tcp_sk(sk); 441 struct inet_connection_sock *icsk = inet_csk(sk); 442 443 icsk->icsk_ack.quick = 0; 444 445 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 446 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 447 !sk_under_memory_pressure(sk) && 448 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 449 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 450 sysctl_tcp_rmem[2]); 451 } 452 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 453 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 454 } 455 456 /* Initialize RCV_MSS value. 457 * RCV_MSS is an our guess about MSS used by the peer. 458 * We haven't any direct information about the MSS. 459 * It's better to underestimate the RCV_MSS rather than overestimate. 460 * Overestimations make us ACKing less frequently than needed. 461 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 462 */ 463 void tcp_initialize_rcv_mss(struct sock *sk) 464 { 465 const struct tcp_sock *tp = tcp_sk(sk); 466 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 467 468 hint = min(hint, tp->rcv_wnd / 2); 469 hint = min(hint, TCP_MSS_DEFAULT); 470 hint = max(hint, TCP_MIN_MSS); 471 472 inet_csk(sk)->icsk_ack.rcv_mss = hint; 473 } 474 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 475 476 /* Receiver "autotuning" code. 477 * 478 * The algorithm for RTT estimation w/o timestamps is based on 479 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 480 * <http://public.lanl.gov/radiant/pubs.html#DRS> 481 * 482 * More detail on this code can be found at 483 * <http://staff.psc.edu/jheffner/>, 484 * though this reference is out of date. A new paper 485 * is pending. 486 */ 487 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 488 { 489 u32 new_sample = tp->rcv_rtt_est.rtt; 490 long m = sample; 491 492 if (m == 0) 493 m = 1; 494 495 if (new_sample != 0) { 496 /* If we sample in larger samples in the non-timestamp 497 * case, we could grossly overestimate the RTT especially 498 * with chatty applications or bulk transfer apps which 499 * are stalled on filesystem I/O. 500 * 501 * Also, since we are only going for a minimum in the 502 * non-timestamp case, we do not smooth things out 503 * else with timestamps disabled convergence takes too 504 * long. 505 */ 506 if (!win_dep) { 507 m -= (new_sample >> 3); 508 new_sample += m; 509 } else { 510 m <<= 3; 511 if (m < new_sample) 512 new_sample = m; 513 } 514 } else { 515 /* No previous measure. */ 516 new_sample = m << 3; 517 } 518 519 if (tp->rcv_rtt_est.rtt != new_sample) 520 tp->rcv_rtt_est.rtt = new_sample; 521 } 522 523 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 524 { 525 if (tp->rcv_rtt_est.time == 0) 526 goto new_measure; 527 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 528 return; 529 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 530 531 new_measure: 532 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 533 tp->rcv_rtt_est.time = tcp_time_stamp; 534 } 535 536 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 537 const struct sk_buff *skb) 538 { 539 struct tcp_sock *tp = tcp_sk(sk); 540 if (tp->rx_opt.rcv_tsecr && 541 (TCP_SKB_CB(skb)->end_seq - 542 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 543 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 544 } 545 546 /* 547 * This function should be called every time data is copied to user space. 548 * It calculates the appropriate TCP receive buffer space. 549 */ 550 void tcp_rcv_space_adjust(struct sock *sk) 551 { 552 struct tcp_sock *tp = tcp_sk(sk); 553 int time; 554 int copied; 555 556 time = tcp_time_stamp - tp->rcvq_space.time; 557 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 558 return; 559 560 /* Number of bytes copied to user in last RTT */ 561 copied = tp->copied_seq - tp->rcvq_space.seq; 562 if (copied <= tp->rcvq_space.space) 563 goto new_measure; 564 565 /* A bit of theory : 566 * copied = bytes received in previous RTT, our base window 567 * To cope with packet losses, we need a 2x factor 568 * To cope with slow start, and sender growing its cwin by 100 % 569 * every RTT, we need a 4x factor, because the ACK we are sending 570 * now is for the next RTT, not the current one : 571 * <prev RTT . ><current RTT .. ><next RTT .... > 572 */ 573 574 if (sysctl_tcp_moderate_rcvbuf && 575 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 576 int rcvwin, rcvmem, rcvbuf; 577 578 /* minimal window to cope with packet losses, assuming 579 * steady state. Add some cushion because of small variations. 580 */ 581 rcvwin = (copied << 1) + 16 * tp->advmss; 582 583 /* If rate increased by 25%, 584 * assume slow start, rcvwin = 3 * copied 585 * If rate increased by 50%, 586 * assume sender can use 2x growth, rcvwin = 4 * copied 587 */ 588 if (copied >= 589 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 590 if (copied >= 591 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 592 rcvwin <<= 1; 593 else 594 rcvwin += (rcvwin >> 1); 595 } 596 597 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 598 while (tcp_win_from_space(rcvmem) < tp->advmss) 599 rcvmem += 128; 600 601 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 602 if (rcvbuf > sk->sk_rcvbuf) { 603 sk->sk_rcvbuf = rcvbuf; 604 605 /* Make the window clamp follow along. */ 606 tp->window_clamp = rcvwin; 607 } 608 } 609 tp->rcvq_space.space = copied; 610 611 new_measure: 612 tp->rcvq_space.seq = tp->copied_seq; 613 tp->rcvq_space.time = tcp_time_stamp; 614 } 615 616 /* There is something which you must keep in mind when you analyze the 617 * behavior of the tp->ato delayed ack timeout interval. When a 618 * connection starts up, we want to ack as quickly as possible. The 619 * problem is that "good" TCP's do slow start at the beginning of data 620 * transmission. The means that until we send the first few ACK's the 621 * sender will sit on his end and only queue most of his data, because 622 * he can only send snd_cwnd unacked packets at any given time. For 623 * each ACK we send, he increments snd_cwnd and transmits more of his 624 * queue. -DaveM 625 */ 626 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 627 { 628 struct tcp_sock *tp = tcp_sk(sk); 629 struct inet_connection_sock *icsk = inet_csk(sk); 630 u32 now; 631 632 inet_csk_schedule_ack(sk); 633 634 tcp_measure_rcv_mss(sk, skb); 635 636 tcp_rcv_rtt_measure(tp); 637 638 now = tcp_time_stamp; 639 640 if (!icsk->icsk_ack.ato) { 641 /* The _first_ data packet received, initialize 642 * delayed ACK engine. 643 */ 644 tcp_incr_quickack(sk); 645 icsk->icsk_ack.ato = TCP_ATO_MIN; 646 } else { 647 int m = now - icsk->icsk_ack.lrcvtime; 648 649 if (m <= TCP_ATO_MIN / 2) { 650 /* The fastest case is the first. */ 651 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 652 } else if (m < icsk->icsk_ack.ato) { 653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 654 if (icsk->icsk_ack.ato > icsk->icsk_rto) 655 icsk->icsk_ack.ato = icsk->icsk_rto; 656 } else if (m > icsk->icsk_rto) { 657 /* Too long gap. Apparently sender failed to 658 * restart window, so that we send ACKs quickly. 659 */ 660 tcp_incr_quickack(sk); 661 sk_mem_reclaim(sk); 662 } 663 } 664 icsk->icsk_ack.lrcvtime = now; 665 666 tcp_ecn_check_ce(tp, skb); 667 668 if (skb->len >= 128) 669 tcp_grow_window(sk, skb); 670 } 671 672 /* Called to compute a smoothed rtt estimate. The data fed to this 673 * routine either comes from timestamps, or from segments that were 674 * known _not_ to have been retransmitted [see Karn/Partridge 675 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 676 * piece by Van Jacobson. 677 * NOTE: the next three routines used to be one big routine. 678 * To save cycles in the RFC 1323 implementation it was better to break 679 * it up into three procedures. -- erics 680 */ 681 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 682 { 683 struct tcp_sock *tp = tcp_sk(sk); 684 long m = mrtt_us; /* RTT */ 685 u32 srtt = tp->srtt_us; 686 687 /* The following amusing code comes from Jacobson's 688 * article in SIGCOMM '88. Note that rtt and mdev 689 * are scaled versions of rtt and mean deviation. 690 * This is designed to be as fast as possible 691 * m stands for "measurement". 692 * 693 * On a 1990 paper the rto value is changed to: 694 * RTO = rtt + 4 * mdev 695 * 696 * Funny. This algorithm seems to be very broken. 697 * These formulae increase RTO, when it should be decreased, increase 698 * too slowly, when it should be increased quickly, decrease too quickly 699 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 700 * does not matter how to _calculate_ it. Seems, it was trap 701 * that VJ failed to avoid. 8) 702 */ 703 if (srtt != 0) { 704 m -= (srtt >> 3); /* m is now error in rtt est */ 705 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 706 if (m < 0) { 707 m = -m; /* m is now abs(error) */ 708 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 709 /* This is similar to one of Eifel findings. 710 * Eifel blocks mdev updates when rtt decreases. 711 * This solution is a bit different: we use finer gain 712 * for mdev in this case (alpha*beta). 713 * Like Eifel it also prevents growth of rto, 714 * but also it limits too fast rto decreases, 715 * happening in pure Eifel. 716 */ 717 if (m > 0) 718 m >>= 3; 719 } else { 720 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 721 } 722 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 723 if (tp->mdev_us > tp->mdev_max_us) { 724 tp->mdev_max_us = tp->mdev_us; 725 if (tp->mdev_max_us > tp->rttvar_us) 726 tp->rttvar_us = tp->mdev_max_us; 727 } 728 if (after(tp->snd_una, tp->rtt_seq)) { 729 if (tp->mdev_max_us < tp->rttvar_us) 730 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 731 tp->rtt_seq = tp->snd_nxt; 732 tp->mdev_max_us = tcp_rto_min_us(sk); 733 } 734 } else { 735 /* no previous measure. */ 736 srtt = m << 3; /* take the measured time to be rtt */ 737 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 738 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 739 tp->mdev_max_us = tp->rttvar_us; 740 tp->rtt_seq = tp->snd_nxt; 741 } 742 tp->srtt_us = max(1U, srtt); 743 } 744 745 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 746 * Note: TCP stack does not yet implement pacing. 747 * FQ packet scheduler can be used to implement cheap but effective 748 * TCP pacing, to smooth the burst on large writes when packets 749 * in flight is significantly lower than cwnd (or rwin) 750 */ 751 static void tcp_update_pacing_rate(struct sock *sk) 752 { 753 const struct tcp_sock *tp = tcp_sk(sk); 754 u64 rate; 755 756 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 757 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 758 759 rate *= max(tp->snd_cwnd, tp->packets_out); 760 761 if (likely(tp->srtt_us)) 762 do_div(rate, tp->srtt_us); 763 764 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 765 * without any lock. We want to make sure compiler wont store 766 * intermediate values in this location. 767 */ 768 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 769 sk->sk_max_pacing_rate); 770 } 771 772 /* Calculate rto without backoff. This is the second half of Van Jacobson's 773 * routine referred to above. 774 */ 775 static void tcp_set_rto(struct sock *sk) 776 { 777 const struct tcp_sock *tp = tcp_sk(sk); 778 /* Old crap is replaced with new one. 8) 779 * 780 * More seriously: 781 * 1. If rtt variance happened to be less 50msec, it is hallucination. 782 * It cannot be less due to utterly erratic ACK generation made 783 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 784 * to do with delayed acks, because at cwnd>2 true delack timeout 785 * is invisible. Actually, Linux-2.4 also generates erratic 786 * ACKs in some circumstances. 787 */ 788 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 789 790 /* 2. Fixups made earlier cannot be right. 791 * If we do not estimate RTO correctly without them, 792 * all the algo is pure shit and should be replaced 793 * with correct one. It is exactly, which we pretend to do. 794 */ 795 796 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 797 * guarantees that rto is higher. 798 */ 799 tcp_bound_rto(sk); 800 } 801 802 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 803 { 804 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 805 806 if (!cwnd) 807 cwnd = TCP_INIT_CWND; 808 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 809 } 810 811 /* 812 * Packet counting of FACK is based on in-order assumptions, therefore TCP 813 * disables it when reordering is detected 814 */ 815 void tcp_disable_fack(struct tcp_sock *tp) 816 { 817 /* RFC3517 uses different metric in lost marker => reset on change */ 818 if (tcp_is_fack(tp)) 819 tp->lost_skb_hint = NULL; 820 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 821 } 822 823 /* Take a notice that peer is sending D-SACKs */ 824 static void tcp_dsack_seen(struct tcp_sock *tp) 825 { 826 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 827 } 828 829 static void tcp_update_reordering(struct sock *sk, const int metric, 830 const int ts) 831 { 832 struct tcp_sock *tp = tcp_sk(sk); 833 if (metric > tp->reordering) { 834 int mib_idx; 835 836 tp->reordering = min(TCP_MAX_REORDERING, metric); 837 838 /* This exciting event is worth to be remembered. 8) */ 839 if (ts) 840 mib_idx = LINUX_MIB_TCPTSREORDER; 841 else if (tcp_is_reno(tp)) 842 mib_idx = LINUX_MIB_TCPRENOREORDER; 843 else if (tcp_is_fack(tp)) 844 mib_idx = LINUX_MIB_TCPFACKREORDER; 845 else 846 mib_idx = LINUX_MIB_TCPSACKREORDER; 847 848 NET_INC_STATS_BH(sock_net(sk), mib_idx); 849 #if FASTRETRANS_DEBUG > 1 850 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 851 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 852 tp->reordering, 853 tp->fackets_out, 854 tp->sacked_out, 855 tp->undo_marker ? tp->undo_retrans : 0); 856 #endif 857 tcp_disable_fack(tp); 858 } 859 860 if (metric > 0) 861 tcp_disable_early_retrans(tp); 862 } 863 864 /* This must be called before lost_out is incremented */ 865 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 866 { 867 if ((tp->retransmit_skb_hint == NULL) || 868 before(TCP_SKB_CB(skb)->seq, 869 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 870 tp->retransmit_skb_hint = skb; 871 872 if (!tp->lost_out || 873 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 874 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 875 } 876 877 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 878 { 879 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 880 tcp_verify_retransmit_hint(tp, skb); 881 882 tp->lost_out += tcp_skb_pcount(skb); 883 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 884 } 885 } 886 887 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 888 struct sk_buff *skb) 889 { 890 tcp_verify_retransmit_hint(tp, skb); 891 892 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 893 tp->lost_out += tcp_skb_pcount(skb); 894 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 895 } 896 } 897 898 /* This procedure tags the retransmission queue when SACKs arrive. 899 * 900 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 901 * Packets in queue with these bits set are counted in variables 902 * sacked_out, retrans_out and lost_out, correspondingly. 903 * 904 * Valid combinations are: 905 * Tag InFlight Description 906 * 0 1 - orig segment is in flight. 907 * S 0 - nothing flies, orig reached receiver. 908 * L 0 - nothing flies, orig lost by net. 909 * R 2 - both orig and retransmit are in flight. 910 * L|R 1 - orig is lost, retransmit is in flight. 911 * S|R 1 - orig reached receiver, retrans is still in flight. 912 * (L|S|R is logically valid, it could occur when L|R is sacked, 913 * but it is equivalent to plain S and code short-curcuits it to S. 914 * L|S is logically invalid, it would mean -1 packet in flight 8)) 915 * 916 * These 6 states form finite state machine, controlled by the following events: 917 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 918 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 919 * 3. Loss detection event of two flavors: 920 * A. Scoreboard estimator decided the packet is lost. 921 * A'. Reno "three dupacks" marks head of queue lost. 922 * A''. Its FACK modification, head until snd.fack is lost. 923 * B. SACK arrives sacking SND.NXT at the moment, when the 924 * segment was retransmitted. 925 * 4. D-SACK added new rule: D-SACK changes any tag to S. 926 * 927 * It is pleasant to note, that state diagram turns out to be commutative, 928 * so that we are allowed not to be bothered by order of our actions, 929 * when multiple events arrive simultaneously. (see the function below). 930 * 931 * Reordering detection. 932 * -------------------- 933 * Reordering metric is maximal distance, which a packet can be displaced 934 * in packet stream. With SACKs we can estimate it: 935 * 936 * 1. SACK fills old hole and the corresponding segment was not 937 * ever retransmitted -> reordering. Alas, we cannot use it 938 * when segment was retransmitted. 939 * 2. The last flaw is solved with D-SACK. D-SACK arrives 940 * for retransmitted and already SACKed segment -> reordering.. 941 * Both of these heuristics are not used in Loss state, when we cannot 942 * account for retransmits accurately. 943 * 944 * SACK block validation. 945 * ---------------------- 946 * 947 * SACK block range validation checks that the received SACK block fits to 948 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 949 * Note that SND.UNA is not included to the range though being valid because 950 * it means that the receiver is rather inconsistent with itself reporting 951 * SACK reneging when it should advance SND.UNA. Such SACK block this is 952 * perfectly valid, however, in light of RFC2018 which explicitly states 953 * that "SACK block MUST reflect the newest segment. Even if the newest 954 * segment is going to be discarded ...", not that it looks very clever 955 * in case of head skb. Due to potentional receiver driven attacks, we 956 * choose to avoid immediate execution of a walk in write queue due to 957 * reneging and defer head skb's loss recovery to standard loss recovery 958 * procedure that will eventually trigger (nothing forbids us doing this). 959 * 960 * Implements also blockage to start_seq wrap-around. Problem lies in the 961 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 962 * there's no guarantee that it will be before snd_nxt (n). The problem 963 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 964 * wrap (s_w): 965 * 966 * <- outs wnd -> <- wrapzone -> 967 * u e n u_w e_w s n_w 968 * | | | | | | | 969 * |<------------+------+----- TCP seqno space --------------+---------->| 970 * ...-- <2^31 ->| |<--------... 971 * ...---- >2^31 ------>| |<--------... 972 * 973 * Current code wouldn't be vulnerable but it's better still to discard such 974 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 975 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 976 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 977 * equal to the ideal case (infinite seqno space without wrap caused issues). 978 * 979 * With D-SACK the lower bound is extended to cover sequence space below 980 * SND.UNA down to undo_marker, which is the last point of interest. Yet 981 * again, D-SACK block must not to go across snd_una (for the same reason as 982 * for the normal SACK blocks, explained above). But there all simplicity 983 * ends, TCP might receive valid D-SACKs below that. As long as they reside 984 * fully below undo_marker they do not affect behavior in anyway and can 985 * therefore be safely ignored. In rare cases (which are more or less 986 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 987 * fragmentation and packet reordering past skb's retransmission. To consider 988 * them correctly, the acceptable range must be extended even more though 989 * the exact amount is rather hard to quantify. However, tp->max_window can 990 * be used as an exaggerated estimate. 991 */ 992 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 993 u32 start_seq, u32 end_seq) 994 { 995 /* Too far in future, or reversed (interpretation is ambiguous) */ 996 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 997 return false; 998 999 /* Nasty start_seq wrap-around check (see comments above) */ 1000 if (!before(start_seq, tp->snd_nxt)) 1001 return false; 1002 1003 /* In outstanding window? ...This is valid exit for D-SACKs too. 1004 * start_seq == snd_una is non-sensical (see comments above) 1005 */ 1006 if (after(start_seq, tp->snd_una)) 1007 return true; 1008 1009 if (!is_dsack || !tp->undo_marker) 1010 return false; 1011 1012 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1013 if (after(end_seq, tp->snd_una)) 1014 return false; 1015 1016 if (!before(start_seq, tp->undo_marker)) 1017 return true; 1018 1019 /* Too old */ 1020 if (!after(end_seq, tp->undo_marker)) 1021 return false; 1022 1023 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1024 * start_seq < undo_marker and end_seq >= undo_marker. 1025 */ 1026 return !before(start_seq, end_seq - tp->max_window); 1027 } 1028 1029 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1030 * Event "B". Later note: FACK people cheated me again 8), we have to account 1031 * for reordering! Ugly, but should help. 1032 * 1033 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1034 * less than what is now known to be received by the other end (derived from 1035 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1036 * retransmitted skbs to avoid some costly processing per ACKs. 1037 */ 1038 static void tcp_mark_lost_retrans(struct sock *sk) 1039 { 1040 const struct inet_connection_sock *icsk = inet_csk(sk); 1041 struct tcp_sock *tp = tcp_sk(sk); 1042 struct sk_buff *skb; 1043 int cnt = 0; 1044 u32 new_low_seq = tp->snd_nxt; 1045 u32 received_upto = tcp_highest_sack_seq(tp); 1046 1047 if (!tcp_is_fack(tp) || !tp->retrans_out || 1048 !after(received_upto, tp->lost_retrans_low) || 1049 icsk->icsk_ca_state != TCP_CA_Recovery) 1050 return; 1051 1052 tcp_for_write_queue(skb, sk) { 1053 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1054 1055 if (skb == tcp_send_head(sk)) 1056 break; 1057 if (cnt == tp->retrans_out) 1058 break; 1059 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1060 continue; 1061 1062 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1063 continue; 1064 1065 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1066 * constraint here (see above) but figuring out that at 1067 * least tp->reordering SACK blocks reside between ack_seq 1068 * and received_upto is not easy task to do cheaply with 1069 * the available datastructures. 1070 * 1071 * Whether FACK should check here for tp->reordering segs 1072 * in-between one could argue for either way (it would be 1073 * rather simple to implement as we could count fack_count 1074 * during the walk and do tp->fackets_out - fack_count). 1075 */ 1076 if (after(received_upto, ack_seq)) { 1077 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1078 tp->retrans_out -= tcp_skb_pcount(skb); 1079 1080 tcp_skb_mark_lost_uncond_verify(tp, skb); 1081 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1082 } else { 1083 if (before(ack_seq, new_low_seq)) 1084 new_low_seq = ack_seq; 1085 cnt += tcp_skb_pcount(skb); 1086 } 1087 } 1088 1089 if (tp->retrans_out) 1090 tp->lost_retrans_low = new_low_seq; 1091 } 1092 1093 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1094 struct tcp_sack_block_wire *sp, int num_sacks, 1095 u32 prior_snd_una) 1096 { 1097 struct tcp_sock *tp = tcp_sk(sk); 1098 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1099 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1100 bool dup_sack = false; 1101 1102 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1103 dup_sack = true; 1104 tcp_dsack_seen(tp); 1105 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1106 } else if (num_sacks > 1) { 1107 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1108 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1109 1110 if (!after(end_seq_0, end_seq_1) && 1111 !before(start_seq_0, start_seq_1)) { 1112 dup_sack = true; 1113 tcp_dsack_seen(tp); 1114 NET_INC_STATS_BH(sock_net(sk), 1115 LINUX_MIB_TCPDSACKOFORECV); 1116 } 1117 } 1118 1119 /* D-SACK for already forgotten data... Do dumb counting. */ 1120 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1121 !after(end_seq_0, prior_snd_una) && 1122 after(end_seq_0, tp->undo_marker)) 1123 tp->undo_retrans--; 1124 1125 return dup_sack; 1126 } 1127 1128 struct tcp_sacktag_state { 1129 int reord; 1130 int fack_count; 1131 long rtt_us; /* RTT measured by SACKing never-retransmitted data */ 1132 int flag; 1133 }; 1134 1135 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1136 * the incoming SACK may not exactly match but we can find smaller MSS 1137 * aligned portion of it that matches. Therefore we might need to fragment 1138 * which may fail and creates some hassle (caller must handle error case 1139 * returns). 1140 * 1141 * FIXME: this could be merged to shift decision code 1142 */ 1143 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1144 u32 start_seq, u32 end_seq) 1145 { 1146 int err; 1147 bool in_sack; 1148 unsigned int pkt_len; 1149 unsigned int mss; 1150 1151 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1152 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1153 1154 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1155 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1156 mss = tcp_skb_mss(skb); 1157 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1158 1159 if (!in_sack) { 1160 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1161 if (pkt_len < mss) 1162 pkt_len = mss; 1163 } else { 1164 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1165 if (pkt_len < mss) 1166 return -EINVAL; 1167 } 1168 1169 /* Round if necessary so that SACKs cover only full MSSes 1170 * and/or the remaining small portion (if present) 1171 */ 1172 if (pkt_len > mss) { 1173 unsigned int new_len = (pkt_len / mss) * mss; 1174 if (!in_sack && new_len < pkt_len) { 1175 new_len += mss; 1176 if (new_len >= skb->len) 1177 return 0; 1178 } 1179 pkt_len = new_len; 1180 } 1181 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1182 if (err < 0) 1183 return err; 1184 } 1185 1186 return in_sack; 1187 } 1188 1189 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1190 static u8 tcp_sacktag_one(struct sock *sk, 1191 struct tcp_sacktag_state *state, u8 sacked, 1192 u32 start_seq, u32 end_seq, 1193 int dup_sack, int pcount, 1194 const struct skb_mstamp *xmit_time) 1195 { 1196 struct tcp_sock *tp = tcp_sk(sk); 1197 int fack_count = state->fack_count; 1198 1199 /* Account D-SACK for retransmitted packet. */ 1200 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1201 if (tp->undo_marker && tp->undo_retrans > 0 && 1202 after(end_seq, tp->undo_marker)) 1203 tp->undo_retrans--; 1204 if (sacked & TCPCB_SACKED_ACKED) 1205 state->reord = min(fack_count, state->reord); 1206 } 1207 1208 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1209 if (!after(end_seq, tp->snd_una)) 1210 return sacked; 1211 1212 if (!(sacked & TCPCB_SACKED_ACKED)) { 1213 if (sacked & TCPCB_SACKED_RETRANS) { 1214 /* If the segment is not tagged as lost, 1215 * we do not clear RETRANS, believing 1216 * that retransmission is still in flight. 1217 */ 1218 if (sacked & TCPCB_LOST) { 1219 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1220 tp->lost_out -= pcount; 1221 tp->retrans_out -= pcount; 1222 } 1223 } else { 1224 if (!(sacked & TCPCB_RETRANS)) { 1225 /* New sack for not retransmitted frame, 1226 * which was in hole. It is reordering. 1227 */ 1228 if (before(start_seq, 1229 tcp_highest_sack_seq(tp))) 1230 state->reord = min(fack_count, 1231 state->reord); 1232 if (!after(end_seq, tp->high_seq)) 1233 state->flag |= FLAG_ORIG_SACK_ACKED; 1234 /* Pick the earliest sequence sacked for RTT */ 1235 if (state->rtt_us < 0) { 1236 struct skb_mstamp now; 1237 1238 skb_mstamp_get(&now); 1239 state->rtt_us = skb_mstamp_us_delta(&now, 1240 xmit_time); 1241 } 1242 } 1243 1244 if (sacked & TCPCB_LOST) { 1245 sacked &= ~TCPCB_LOST; 1246 tp->lost_out -= pcount; 1247 } 1248 } 1249 1250 sacked |= TCPCB_SACKED_ACKED; 1251 state->flag |= FLAG_DATA_SACKED; 1252 tp->sacked_out += pcount; 1253 1254 fack_count += pcount; 1255 1256 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1257 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1258 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1259 tp->lost_cnt_hint += pcount; 1260 1261 if (fack_count > tp->fackets_out) 1262 tp->fackets_out = fack_count; 1263 } 1264 1265 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1266 * frames and clear it. undo_retrans is decreased above, L|R frames 1267 * are accounted above as well. 1268 */ 1269 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1270 sacked &= ~TCPCB_SACKED_RETRANS; 1271 tp->retrans_out -= pcount; 1272 } 1273 1274 return sacked; 1275 } 1276 1277 /* Shift newly-SACKed bytes from this skb to the immediately previous 1278 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1279 */ 1280 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1281 struct tcp_sacktag_state *state, 1282 unsigned int pcount, int shifted, int mss, 1283 bool dup_sack) 1284 { 1285 struct tcp_sock *tp = tcp_sk(sk); 1286 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1287 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1288 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1289 1290 BUG_ON(!pcount); 1291 1292 /* Adjust counters and hints for the newly sacked sequence 1293 * range but discard the return value since prev is already 1294 * marked. We must tag the range first because the seq 1295 * advancement below implicitly advances 1296 * tcp_highest_sack_seq() when skb is highest_sack. 1297 */ 1298 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1299 start_seq, end_seq, dup_sack, pcount, 1300 &skb->skb_mstamp); 1301 1302 if (skb == tp->lost_skb_hint) 1303 tp->lost_cnt_hint += pcount; 1304 1305 TCP_SKB_CB(prev)->end_seq += shifted; 1306 TCP_SKB_CB(skb)->seq += shifted; 1307 1308 tcp_skb_pcount_add(prev, pcount); 1309 BUG_ON(tcp_skb_pcount(skb) < pcount); 1310 tcp_skb_pcount_add(skb, -pcount); 1311 1312 /* When we're adding to gso_segs == 1, gso_size will be zero, 1313 * in theory this shouldn't be necessary but as long as DSACK 1314 * code can come after this skb later on it's better to keep 1315 * setting gso_size to something. 1316 */ 1317 if (!skb_shinfo(prev)->gso_size) { 1318 skb_shinfo(prev)->gso_size = mss; 1319 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1320 } 1321 1322 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1323 if (tcp_skb_pcount(skb) <= 1) { 1324 skb_shinfo(skb)->gso_size = 0; 1325 skb_shinfo(skb)->gso_type = 0; 1326 } 1327 1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1330 1331 if (skb->len > 0) { 1332 BUG_ON(!tcp_skb_pcount(skb)); 1333 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1334 return false; 1335 } 1336 1337 /* Whole SKB was eaten :-) */ 1338 1339 if (skb == tp->retransmit_skb_hint) 1340 tp->retransmit_skb_hint = prev; 1341 if (skb == tp->lost_skb_hint) { 1342 tp->lost_skb_hint = prev; 1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1344 } 1345 1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1347 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1348 TCP_SKB_CB(prev)->end_seq++; 1349 1350 if (skb == tcp_highest_sack(sk)) 1351 tcp_advance_highest_sack(sk, skb); 1352 1353 tcp_unlink_write_queue(skb, sk); 1354 sk_wmem_free_skb(sk, skb); 1355 1356 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1357 1358 return true; 1359 } 1360 1361 /* I wish gso_size would have a bit more sane initialization than 1362 * something-or-zero which complicates things 1363 */ 1364 static int tcp_skb_seglen(const struct sk_buff *skb) 1365 { 1366 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1367 } 1368 1369 /* Shifting pages past head area doesn't work */ 1370 static int skb_can_shift(const struct sk_buff *skb) 1371 { 1372 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1373 } 1374 1375 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1376 * skb. 1377 */ 1378 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1379 struct tcp_sacktag_state *state, 1380 u32 start_seq, u32 end_seq, 1381 bool dup_sack) 1382 { 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 struct sk_buff *prev; 1385 int mss; 1386 int pcount = 0; 1387 int len; 1388 int in_sack; 1389 1390 if (!sk_can_gso(sk)) 1391 goto fallback; 1392 1393 /* Normally R but no L won't result in plain S */ 1394 if (!dup_sack && 1395 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1396 goto fallback; 1397 if (!skb_can_shift(skb)) 1398 goto fallback; 1399 /* This frame is about to be dropped (was ACKed). */ 1400 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1401 goto fallback; 1402 1403 /* Can only happen with delayed DSACK + discard craziness */ 1404 if (unlikely(skb == tcp_write_queue_head(sk))) 1405 goto fallback; 1406 prev = tcp_write_queue_prev(sk, skb); 1407 1408 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1409 goto fallback; 1410 1411 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1412 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1413 1414 if (in_sack) { 1415 len = skb->len; 1416 pcount = tcp_skb_pcount(skb); 1417 mss = tcp_skb_seglen(skb); 1418 1419 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1420 * drop this restriction as unnecessary 1421 */ 1422 if (mss != tcp_skb_seglen(prev)) 1423 goto fallback; 1424 } else { 1425 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1426 goto noop; 1427 /* CHECKME: This is non-MSS split case only?, this will 1428 * cause skipped skbs due to advancing loop btw, original 1429 * has that feature too 1430 */ 1431 if (tcp_skb_pcount(skb) <= 1) 1432 goto noop; 1433 1434 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1435 if (!in_sack) { 1436 /* TODO: head merge to next could be attempted here 1437 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1438 * though it might not be worth of the additional hassle 1439 * 1440 * ...we can probably just fallback to what was done 1441 * previously. We could try merging non-SACKed ones 1442 * as well but it probably isn't going to buy off 1443 * because later SACKs might again split them, and 1444 * it would make skb timestamp tracking considerably 1445 * harder problem. 1446 */ 1447 goto fallback; 1448 } 1449 1450 len = end_seq - TCP_SKB_CB(skb)->seq; 1451 BUG_ON(len < 0); 1452 BUG_ON(len > skb->len); 1453 1454 /* MSS boundaries should be honoured or else pcount will 1455 * severely break even though it makes things bit trickier. 1456 * Optimize common case to avoid most of the divides 1457 */ 1458 mss = tcp_skb_mss(skb); 1459 1460 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1461 * drop this restriction as unnecessary 1462 */ 1463 if (mss != tcp_skb_seglen(prev)) 1464 goto fallback; 1465 1466 if (len == mss) { 1467 pcount = 1; 1468 } else if (len < mss) { 1469 goto noop; 1470 } else { 1471 pcount = len / mss; 1472 len = pcount * mss; 1473 } 1474 } 1475 1476 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1477 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1478 goto fallback; 1479 1480 if (!skb_shift(prev, skb, len)) 1481 goto fallback; 1482 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1483 goto out; 1484 1485 /* Hole filled allows collapsing with the next as well, this is very 1486 * useful when hole on every nth skb pattern happens 1487 */ 1488 if (prev == tcp_write_queue_tail(sk)) 1489 goto out; 1490 skb = tcp_write_queue_next(sk, prev); 1491 1492 if (!skb_can_shift(skb) || 1493 (skb == tcp_send_head(sk)) || 1494 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1495 (mss != tcp_skb_seglen(skb))) 1496 goto out; 1497 1498 len = skb->len; 1499 if (skb_shift(prev, skb, len)) { 1500 pcount += tcp_skb_pcount(skb); 1501 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1502 } 1503 1504 out: 1505 state->fack_count += pcount; 1506 return prev; 1507 1508 noop: 1509 return skb; 1510 1511 fallback: 1512 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1513 return NULL; 1514 } 1515 1516 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1517 struct tcp_sack_block *next_dup, 1518 struct tcp_sacktag_state *state, 1519 u32 start_seq, u32 end_seq, 1520 bool dup_sack_in) 1521 { 1522 struct tcp_sock *tp = tcp_sk(sk); 1523 struct sk_buff *tmp; 1524 1525 tcp_for_write_queue_from(skb, sk) { 1526 int in_sack = 0; 1527 bool dup_sack = dup_sack_in; 1528 1529 if (skb == tcp_send_head(sk)) 1530 break; 1531 1532 /* queue is in-order => we can short-circuit the walk early */ 1533 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1534 break; 1535 1536 if ((next_dup != NULL) && 1537 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1538 in_sack = tcp_match_skb_to_sack(sk, skb, 1539 next_dup->start_seq, 1540 next_dup->end_seq); 1541 if (in_sack > 0) 1542 dup_sack = true; 1543 } 1544 1545 /* skb reference here is a bit tricky to get right, since 1546 * shifting can eat and free both this skb and the next, 1547 * so not even _safe variant of the loop is enough. 1548 */ 1549 if (in_sack <= 0) { 1550 tmp = tcp_shift_skb_data(sk, skb, state, 1551 start_seq, end_seq, dup_sack); 1552 if (tmp != NULL) { 1553 if (tmp != skb) { 1554 skb = tmp; 1555 continue; 1556 } 1557 1558 in_sack = 0; 1559 } else { 1560 in_sack = tcp_match_skb_to_sack(sk, skb, 1561 start_seq, 1562 end_seq); 1563 } 1564 } 1565 1566 if (unlikely(in_sack < 0)) 1567 break; 1568 1569 if (in_sack) { 1570 TCP_SKB_CB(skb)->sacked = 1571 tcp_sacktag_one(sk, 1572 state, 1573 TCP_SKB_CB(skb)->sacked, 1574 TCP_SKB_CB(skb)->seq, 1575 TCP_SKB_CB(skb)->end_seq, 1576 dup_sack, 1577 tcp_skb_pcount(skb), 1578 &skb->skb_mstamp); 1579 1580 if (!before(TCP_SKB_CB(skb)->seq, 1581 tcp_highest_sack_seq(tp))) 1582 tcp_advance_highest_sack(sk, skb); 1583 } 1584 1585 state->fack_count += tcp_skb_pcount(skb); 1586 } 1587 return skb; 1588 } 1589 1590 /* Avoid all extra work that is being done by sacktag while walking in 1591 * a normal way 1592 */ 1593 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1594 struct tcp_sacktag_state *state, 1595 u32 skip_to_seq) 1596 { 1597 tcp_for_write_queue_from(skb, sk) { 1598 if (skb == tcp_send_head(sk)) 1599 break; 1600 1601 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1602 break; 1603 1604 state->fack_count += tcp_skb_pcount(skb); 1605 } 1606 return skb; 1607 } 1608 1609 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1610 struct sock *sk, 1611 struct tcp_sack_block *next_dup, 1612 struct tcp_sacktag_state *state, 1613 u32 skip_to_seq) 1614 { 1615 if (next_dup == NULL) 1616 return skb; 1617 1618 if (before(next_dup->start_seq, skip_to_seq)) { 1619 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1620 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1621 next_dup->start_seq, next_dup->end_seq, 1622 1); 1623 } 1624 1625 return skb; 1626 } 1627 1628 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1629 { 1630 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1631 } 1632 1633 static int 1634 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1635 u32 prior_snd_una, long *sack_rtt_us) 1636 { 1637 struct tcp_sock *tp = tcp_sk(sk); 1638 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1639 TCP_SKB_CB(ack_skb)->sacked); 1640 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1641 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1642 struct tcp_sack_block *cache; 1643 struct tcp_sacktag_state state; 1644 struct sk_buff *skb; 1645 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1646 int used_sacks; 1647 bool found_dup_sack = false; 1648 int i, j; 1649 int first_sack_index; 1650 1651 state.flag = 0; 1652 state.reord = tp->packets_out; 1653 state.rtt_us = -1L; 1654 1655 if (!tp->sacked_out) { 1656 if (WARN_ON(tp->fackets_out)) 1657 tp->fackets_out = 0; 1658 tcp_highest_sack_reset(sk); 1659 } 1660 1661 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1662 num_sacks, prior_snd_una); 1663 if (found_dup_sack) 1664 state.flag |= FLAG_DSACKING_ACK; 1665 1666 /* Eliminate too old ACKs, but take into 1667 * account more or less fresh ones, they can 1668 * contain valid SACK info. 1669 */ 1670 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1671 return 0; 1672 1673 if (!tp->packets_out) 1674 goto out; 1675 1676 used_sacks = 0; 1677 first_sack_index = 0; 1678 for (i = 0; i < num_sacks; i++) { 1679 bool dup_sack = !i && found_dup_sack; 1680 1681 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1682 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1683 1684 if (!tcp_is_sackblock_valid(tp, dup_sack, 1685 sp[used_sacks].start_seq, 1686 sp[used_sacks].end_seq)) { 1687 int mib_idx; 1688 1689 if (dup_sack) { 1690 if (!tp->undo_marker) 1691 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1692 else 1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1694 } else { 1695 /* Don't count olds caused by ACK reordering */ 1696 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1697 !after(sp[used_sacks].end_seq, tp->snd_una)) 1698 continue; 1699 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1700 } 1701 1702 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1703 if (i == 0) 1704 first_sack_index = -1; 1705 continue; 1706 } 1707 1708 /* Ignore very old stuff early */ 1709 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1710 continue; 1711 1712 used_sacks++; 1713 } 1714 1715 /* order SACK blocks to allow in order walk of the retrans queue */ 1716 for (i = used_sacks - 1; i > 0; i--) { 1717 for (j = 0; j < i; j++) { 1718 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1719 swap(sp[j], sp[j + 1]); 1720 1721 /* Track where the first SACK block goes to */ 1722 if (j == first_sack_index) 1723 first_sack_index = j + 1; 1724 } 1725 } 1726 } 1727 1728 skb = tcp_write_queue_head(sk); 1729 state.fack_count = 0; 1730 i = 0; 1731 1732 if (!tp->sacked_out) { 1733 /* It's already past, so skip checking against it */ 1734 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1735 } else { 1736 cache = tp->recv_sack_cache; 1737 /* Skip empty blocks in at head of the cache */ 1738 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1739 !cache->end_seq) 1740 cache++; 1741 } 1742 1743 while (i < used_sacks) { 1744 u32 start_seq = sp[i].start_seq; 1745 u32 end_seq = sp[i].end_seq; 1746 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1747 struct tcp_sack_block *next_dup = NULL; 1748 1749 if (found_dup_sack && ((i + 1) == first_sack_index)) 1750 next_dup = &sp[i + 1]; 1751 1752 /* Skip too early cached blocks */ 1753 while (tcp_sack_cache_ok(tp, cache) && 1754 !before(start_seq, cache->end_seq)) 1755 cache++; 1756 1757 /* Can skip some work by looking recv_sack_cache? */ 1758 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1759 after(end_seq, cache->start_seq)) { 1760 1761 /* Head todo? */ 1762 if (before(start_seq, cache->start_seq)) { 1763 skb = tcp_sacktag_skip(skb, sk, &state, 1764 start_seq); 1765 skb = tcp_sacktag_walk(skb, sk, next_dup, 1766 &state, 1767 start_seq, 1768 cache->start_seq, 1769 dup_sack); 1770 } 1771 1772 /* Rest of the block already fully processed? */ 1773 if (!after(end_seq, cache->end_seq)) 1774 goto advance_sp; 1775 1776 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1777 &state, 1778 cache->end_seq); 1779 1780 /* ...tail remains todo... */ 1781 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1782 /* ...but better entrypoint exists! */ 1783 skb = tcp_highest_sack(sk); 1784 if (skb == NULL) 1785 break; 1786 state.fack_count = tp->fackets_out; 1787 cache++; 1788 goto walk; 1789 } 1790 1791 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1792 /* Check overlap against next cached too (past this one already) */ 1793 cache++; 1794 continue; 1795 } 1796 1797 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1798 skb = tcp_highest_sack(sk); 1799 if (skb == NULL) 1800 break; 1801 state.fack_count = tp->fackets_out; 1802 } 1803 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1804 1805 walk: 1806 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1807 start_seq, end_seq, dup_sack); 1808 1809 advance_sp: 1810 i++; 1811 } 1812 1813 /* Clear the head of the cache sack blocks so we can skip it next time */ 1814 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1815 tp->recv_sack_cache[i].start_seq = 0; 1816 tp->recv_sack_cache[i].end_seq = 0; 1817 } 1818 for (j = 0; j < used_sacks; j++) 1819 tp->recv_sack_cache[i++] = sp[j]; 1820 1821 tcp_mark_lost_retrans(sk); 1822 1823 tcp_verify_left_out(tp); 1824 1825 if ((state.reord < tp->fackets_out) && 1826 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1827 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1828 1829 out: 1830 1831 #if FASTRETRANS_DEBUG > 0 1832 WARN_ON((int)tp->sacked_out < 0); 1833 WARN_ON((int)tp->lost_out < 0); 1834 WARN_ON((int)tp->retrans_out < 0); 1835 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1836 #endif 1837 *sack_rtt_us = state.rtt_us; 1838 return state.flag; 1839 } 1840 1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1842 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1843 */ 1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1845 { 1846 u32 holes; 1847 1848 holes = max(tp->lost_out, 1U); 1849 holes = min(holes, tp->packets_out); 1850 1851 if ((tp->sacked_out + holes) > tp->packets_out) { 1852 tp->sacked_out = tp->packets_out - holes; 1853 return true; 1854 } 1855 return false; 1856 } 1857 1858 /* If we receive more dupacks than we expected counting segments 1859 * in assumption of absent reordering, interpret this as reordering. 1860 * The only another reason could be bug in receiver TCP. 1861 */ 1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1863 { 1864 struct tcp_sock *tp = tcp_sk(sk); 1865 if (tcp_limit_reno_sacked(tp)) 1866 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1867 } 1868 1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1870 1871 static void tcp_add_reno_sack(struct sock *sk) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 tp->sacked_out++; 1875 tcp_check_reno_reordering(sk, 0); 1876 tcp_verify_left_out(tp); 1877 } 1878 1879 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1880 1881 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1882 { 1883 struct tcp_sock *tp = tcp_sk(sk); 1884 1885 if (acked > 0) { 1886 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1887 if (acked - 1 >= tp->sacked_out) 1888 tp->sacked_out = 0; 1889 else 1890 tp->sacked_out -= acked - 1; 1891 } 1892 tcp_check_reno_reordering(sk, acked); 1893 tcp_verify_left_out(tp); 1894 } 1895 1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1897 { 1898 tp->sacked_out = 0; 1899 } 1900 1901 void tcp_clear_retrans(struct tcp_sock *tp) 1902 { 1903 tp->retrans_out = 0; 1904 tp->lost_out = 0; 1905 tp->undo_marker = 0; 1906 tp->undo_retrans = -1; 1907 tp->fackets_out = 0; 1908 tp->sacked_out = 0; 1909 } 1910 1911 static inline void tcp_init_undo(struct tcp_sock *tp) 1912 { 1913 tp->undo_marker = tp->snd_una; 1914 /* Retransmission still in flight may cause DSACKs later. */ 1915 tp->undo_retrans = tp->retrans_out ? : -1; 1916 } 1917 1918 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1919 * and reset tags completely, otherwise preserve SACKs. If receiver 1920 * dropped its ofo queue, we will know this due to reneging detection. 1921 */ 1922 void tcp_enter_loss(struct sock *sk) 1923 { 1924 const struct inet_connection_sock *icsk = inet_csk(sk); 1925 struct tcp_sock *tp = tcp_sk(sk); 1926 struct sk_buff *skb; 1927 bool new_recovery = false; 1928 bool is_reneg; /* is receiver reneging on SACKs? */ 1929 1930 /* Reduce ssthresh if it has not yet been made inside this window. */ 1931 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1932 !after(tp->high_seq, tp->snd_una) || 1933 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1934 new_recovery = true; 1935 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1936 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1937 tcp_ca_event(sk, CA_EVENT_LOSS); 1938 tcp_init_undo(tp); 1939 } 1940 tp->snd_cwnd = 1; 1941 tp->snd_cwnd_cnt = 0; 1942 tp->snd_cwnd_stamp = tcp_time_stamp; 1943 1944 tp->retrans_out = 0; 1945 tp->lost_out = 0; 1946 1947 if (tcp_is_reno(tp)) 1948 tcp_reset_reno_sack(tp); 1949 1950 skb = tcp_write_queue_head(sk); 1951 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1952 if (is_reneg) { 1953 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1954 tp->sacked_out = 0; 1955 tp->fackets_out = 0; 1956 } 1957 tcp_clear_all_retrans_hints(tp); 1958 1959 tcp_for_write_queue(skb, sk) { 1960 if (skb == tcp_send_head(sk)) 1961 break; 1962 1963 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1964 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1965 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1966 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1967 tp->lost_out += tcp_skb_pcount(skb); 1968 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1969 } 1970 } 1971 tcp_verify_left_out(tp); 1972 1973 /* Timeout in disordered state after receiving substantial DUPACKs 1974 * suggests that the degree of reordering is over-estimated. 1975 */ 1976 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1977 tp->sacked_out >= sysctl_tcp_reordering) 1978 tp->reordering = min_t(unsigned int, tp->reordering, 1979 sysctl_tcp_reordering); 1980 tcp_set_ca_state(sk, TCP_CA_Loss); 1981 tp->high_seq = tp->snd_nxt; 1982 tcp_ecn_queue_cwr(tp); 1983 1984 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1985 * loss recovery is underway except recurring timeout(s) on 1986 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1987 */ 1988 tp->frto = sysctl_tcp_frto && 1989 (new_recovery || icsk->icsk_retransmits) && 1990 !inet_csk(sk)->icsk_mtup.probe_size; 1991 } 1992 1993 /* If ACK arrived pointing to a remembered SACK, it means that our 1994 * remembered SACKs do not reflect real state of receiver i.e. 1995 * receiver _host_ is heavily congested (or buggy). 1996 * 1997 * To avoid big spurious retransmission bursts due to transient SACK 1998 * scoreboard oddities that look like reneging, we give the receiver a 1999 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2000 * restore sanity to the SACK scoreboard. If the apparent reneging 2001 * persists until this RTO then we'll clear the SACK scoreboard. 2002 */ 2003 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2004 { 2005 if (flag & FLAG_SACK_RENEGING) { 2006 struct tcp_sock *tp = tcp_sk(sk); 2007 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2008 msecs_to_jiffies(10)); 2009 2010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2011 delay, TCP_RTO_MAX); 2012 return true; 2013 } 2014 return false; 2015 } 2016 2017 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2018 { 2019 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2020 } 2021 2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2023 * counter when SACK is enabled (without SACK, sacked_out is used for 2024 * that purpose). 2025 * 2026 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2027 * segments up to the highest received SACK block so far and holes in 2028 * between them. 2029 * 2030 * With reordering, holes may still be in flight, so RFC3517 recovery 2031 * uses pure sacked_out (total number of SACKed segments) even though 2032 * it violates the RFC that uses duplicate ACKs, often these are equal 2033 * but when e.g. out-of-window ACKs or packet duplication occurs, 2034 * they differ. Since neither occurs due to loss, TCP should really 2035 * ignore them. 2036 */ 2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2038 { 2039 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2040 } 2041 2042 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2043 { 2044 struct tcp_sock *tp = tcp_sk(sk); 2045 unsigned long delay; 2046 2047 /* Delay early retransmit and entering fast recovery for 2048 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2049 * available, or RTO is scheduled to fire first. 2050 */ 2051 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2052 (flag & FLAG_ECE) || !tp->srtt_us) 2053 return false; 2054 2055 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2056 msecs_to_jiffies(2)); 2057 2058 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2059 return false; 2060 2061 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2062 TCP_RTO_MAX); 2063 return true; 2064 } 2065 2066 /* Linux NewReno/SACK/FACK/ECN state machine. 2067 * -------------------------------------- 2068 * 2069 * "Open" Normal state, no dubious events, fast path. 2070 * "Disorder" In all the respects it is "Open", 2071 * but requires a bit more attention. It is entered when 2072 * we see some SACKs or dupacks. It is split of "Open" 2073 * mainly to move some processing from fast path to slow one. 2074 * "CWR" CWND was reduced due to some Congestion Notification event. 2075 * It can be ECN, ICMP source quench, local device congestion. 2076 * "Recovery" CWND was reduced, we are fast-retransmitting. 2077 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2078 * 2079 * tcp_fastretrans_alert() is entered: 2080 * - each incoming ACK, if state is not "Open" 2081 * - when arrived ACK is unusual, namely: 2082 * * SACK 2083 * * Duplicate ACK. 2084 * * ECN ECE. 2085 * 2086 * Counting packets in flight is pretty simple. 2087 * 2088 * in_flight = packets_out - left_out + retrans_out 2089 * 2090 * packets_out is SND.NXT-SND.UNA counted in packets. 2091 * 2092 * retrans_out is number of retransmitted segments. 2093 * 2094 * left_out is number of segments left network, but not ACKed yet. 2095 * 2096 * left_out = sacked_out + lost_out 2097 * 2098 * sacked_out: Packets, which arrived to receiver out of order 2099 * and hence not ACKed. With SACKs this number is simply 2100 * amount of SACKed data. Even without SACKs 2101 * it is easy to give pretty reliable estimate of this number, 2102 * counting duplicate ACKs. 2103 * 2104 * lost_out: Packets lost by network. TCP has no explicit 2105 * "loss notification" feedback from network (for now). 2106 * It means that this number can be only _guessed_. 2107 * Actually, it is the heuristics to predict lossage that 2108 * distinguishes different algorithms. 2109 * 2110 * F.e. after RTO, when all the queue is considered as lost, 2111 * lost_out = packets_out and in_flight = retrans_out. 2112 * 2113 * Essentially, we have now two algorithms counting 2114 * lost packets. 2115 * 2116 * FACK: It is the simplest heuristics. As soon as we decided 2117 * that something is lost, we decide that _all_ not SACKed 2118 * packets until the most forward SACK are lost. I.e. 2119 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2120 * It is absolutely correct estimate, if network does not reorder 2121 * packets. And it loses any connection to reality when reordering 2122 * takes place. We use FACK by default until reordering 2123 * is suspected on the path to this destination. 2124 * 2125 * NewReno: when Recovery is entered, we assume that one segment 2126 * is lost (classic Reno). While we are in Recovery and 2127 * a partial ACK arrives, we assume that one more packet 2128 * is lost (NewReno). This heuristics are the same in NewReno 2129 * and SACK. 2130 * 2131 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2132 * deflation etc. CWND is real congestion window, never inflated, changes 2133 * only according to classic VJ rules. 2134 * 2135 * Really tricky (and requiring careful tuning) part of algorithm 2136 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2137 * The first determines the moment _when_ we should reduce CWND and, 2138 * hence, slow down forward transmission. In fact, it determines the moment 2139 * when we decide that hole is caused by loss, rather than by a reorder. 2140 * 2141 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2142 * holes, caused by lost packets. 2143 * 2144 * And the most logically complicated part of algorithm is undo 2145 * heuristics. We detect false retransmits due to both too early 2146 * fast retransmit (reordering) and underestimated RTO, analyzing 2147 * timestamps and D-SACKs. When we detect that some segments were 2148 * retransmitted by mistake and CWND reduction was wrong, we undo 2149 * window reduction and abort recovery phase. This logic is hidden 2150 * inside several functions named tcp_try_undo_<something>. 2151 */ 2152 2153 /* This function decides, when we should leave Disordered state 2154 * and enter Recovery phase, reducing congestion window. 2155 * 2156 * Main question: may we further continue forward transmission 2157 * with the same cwnd? 2158 */ 2159 static bool tcp_time_to_recover(struct sock *sk, int flag) 2160 { 2161 struct tcp_sock *tp = tcp_sk(sk); 2162 __u32 packets_out; 2163 2164 /* Trick#1: The loss is proven. */ 2165 if (tp->lost_out) 2166 return true; 2167 2168 /* Not-A-Trick#2 : Classic rule... */ 2169 if (tcp_dupack_heuristics(tp) > tp->reordering) 2170 return true; 2171 2172 /* Trick#4: It is still not OK... But will it be useful to delay 2173 * recovery more? 2174 */ 2175 packets_out = tp->packets_out; 2176 if (packets_out <= tp->reordering && 2177 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2178 !tcp_may_send_now(sk)) { 2179 /* We have nothing to send. This connection is limited 2180 * either by receiver window or by application. 2181 */ 2182 return true; 2183 } 2184 2185 /* If a thin stream is detected, retransmit after first 2186 * received dupack. Employ only if SACK is supported in order 2187 * to avoid possible corner-case series of spurious retransmissions 2188 * Use only if there are no unsent data. 2189 */ 2190 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2191 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2192 tcp_is_sack(tp) && !tcp_send_head(sk)) 2193 return true; 2194 2195 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2196 * retransmissions due to small network reorderings, we implement 2197 * Mitigation A.3 in the RFC and delay the retransmission for a short 2198 * interval if appropriate. 2199 */ 2200 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2201 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2202 !tcp_may_send_now(sk)) 2203 return !tcp_pause_early_retransmit(sk, flag); 2204 2205 return false; 2206 } 2207 2208 /* Detect loss in event "A" above by marking head of queue up as lost. 2209 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2210 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2211 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2212 * the maximum SACKed segments to pass before reaching this limit. 2213 */ 2214 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2215 { 2216 struct tcp_sock *tp = tcp_sk(sk); 2217 struct sk_buff *skb; 2218 int cnt, oldcnt; 2219 int err; 2220 unsigned int mss; 2221 /* Use SACK to deduce losses of new sequences sent during recovery */ 2222 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2223 2224 WARN_ON(packets > tp->packets_out); 2225 if (tp->lost_skb_hint) { 2226 skb = tp->lost_skb_hint; 2227 cnt = tp->lost_cnt_hint; 2228 /* Head already handled? */ 2229 if (mark_head && skb != tcp_write_queue_head(sk)) 2230 return; 2231 } else { 2232 skb = tcp_write_queue_head(sk); 2233 cnt = 0; 2234 } 2235 2236 tcp_for_write_queue_from(skb, sk) { 2237 if (skb == tcp_send_head(sk)) 2238 break; 2239 /* TODO: do this better */ 2240 /* this is not the most efficient way to do this... */ 2241 tp->lost_skb_hint = skb; 2242 tp->lost_cnt_hint = cnt; 2243 2244 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2245 break; 2246 2247 oldcnt = cnt; 2248 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2249 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2250 cnt += tcp_skb_pcount(skb); 2251 2252 if (cnt > packets) { 2253 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2254 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2255 (oldcnt >= packets)) 2256 break; 2257 2258 mss = skb_shinfo(skb)->gso_size; 2259 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2260 mss, GFP_ATOMIC); 2261 if (err < 0) 2262 break; 2263 cnt = packets; 2264 } 2265 2266 tcp_skb_mark_lost(tp, skb); 2267 2268 if (mark_head) 2269 break; 2270 } 2271 tcp_verify_left_out(tp); 2272 } 2273 2274 /* Account newly detected lost packet(s) */ 2275 2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2277 { 2278 struct tcp_sock *tp = tcp_sk(sk); 2279 2280 if (tcp_is_reno(tp)) { 2281 tcp_mark_head_lost(sk, 1, 1); 2282 } else if (tcp_is_fack(tp)) { 2283 int lost = tp->fackets_out - tp->reordering; 2284 if (lost <= 0) 2285 lost = 1; 2286 tcp_mark_head_lost(sk, lost, 0); 2287 } else { 2288 int sacked_upto = tp->sacked_out - tp->reordering; 2289 if (sacked_upto >= 0) 2290 tcp_mark_head_lost(sk, sacked_upto, 0); 2291 else if (fast_rexmit) 2292 tcp_mark_head_lost(sk, 1, 1); 2293 } 2294 } 2295 2296 /* CWND moderation, preventing bursts due to too big ACKs 2297 * in dubious situations. 2298 */ 2299 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2300 { 2301 tp->snd_cwnd = min(tp->snd_cwnd, 2302 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2303 tp->snd_cwnd_stamp = tcp_time_stamp; 2304 } 2305 2306 /* Nothing was retransmitted or returned timestamp is less 2307 * than timestamp of the first retransmission. 2308 */ 2309 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2310 { 2311 return !tp->retrans_stamp || 2312 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2313 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2314 } 2315 2316 /* Undo procedures. */ 2317 2318 #if FASTRETRANS_DEBUG > 1 2319 static void DBGUNDO(struct sock *sk, const char *msg) 2320 { 2321 struct tcp_sock *tp = tcp_sk(sk); 2322 struct inet_sock *inet = inet_sk(sk); 2323 2324 if (sk->sk_family == AF_INET) { 2325 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2326 msg, 2327 &inet->inet_daddr, ntohs(inet->inet_dport), 2328 tp->snd_cwnd, tcp_left_out(tp), 2329 tp->snd_ssthresh, tp->prior_ssthresh, 2330 tp->packets_out); 2331 } 2332 #if IS_ENABLED(CONFIG_IPV6) 2333 else if (sk->sk_family == AF_INET6) { 2334 struct ipv6_pinfo *np = inet6_sk(sk); 2335 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2336 msg, 2337 &np->daddr, ntohs(inet->inet_dport), 2338 tp->snd_cwnd, tcp_left_out(tp), 2339 tp->snd_ssthresh, tp->prior_ssthresh, 2340 tp->packets_out); 2341 } 2342 #endif 2343 } 2344 #else 2345 #define DBGUNDO(x...) do { } while (0) 2346 #endif 2347 2348 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2349 { 2350 struct tcp_sock *tp = tcp_sk(sk); 2351 2352 if (unmark_loss) { 2353 struct sk_buff *skb; 2354 2355 tcp_for_write_queue(skb, sk) { 2356 if (skb == tcp_send_head(sk)) 2357 break; 2358 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2359 } 2360 tp->lost_out = 0; 2361 tcp_clear_all_retrans_hints(tp); 2362 } 2363 2364 if (tp->prior_ssthresh) { 2365 const struct inet_connection_sock *icsk = inet_csk(sk); 2366 2367 if (icsk->icsk_ca_ops->undo_cwnd) 2368 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2369 else 2370 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2371 2372 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2373 tp->snd_ssthresh = tp->prior_ssthresh; 2374 tcp_ecn_withdraw_cwr(tp); 2375 } 2376 } else { 2377 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2378 } 2379 tp->snd_cwnd_stamp = tcp_time_stamp; 2380 tp->undo_marker = 0; 2381 } 2382 2383 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2384 { 2385 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2386 } 2387 2388 /* People celebrate: "We love our President!" */ 2389 static bool tcp_try_undo_recovery(struct sock *sk) 2390 { 2391 struct tcp_sock *tp = tcp_sk(sk); 2392 2393 if (tcp_may_undo(tp)) { 2394 int mib_idx; 2395 2396 /* Happy end! We did not retransmit anything 2397 * or our original transmission succeeded. 2398 */ 2399 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2400 tcp_undo_cwnd_reduction(sk, false); 2401 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2402 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2403 else 2404 mib_idx = LINUX_MIB_TCPFULLUNDO; 2405 2406 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2407 } 2408 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2409 /* Hold old state until something *above* high_seq 2410 * is ACKed. For Reno it is MUST to prevent false 2411 * fast retransmits (RFC2582). SACK TCP is safe. */ 2412 tcp_moderate_cwnd(tp); 2413 return true; 2414 } 2415 tcp_set_ca_state(sk, TCP_CA_Open); 2416 return false; 2417 } 2418 2419 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2420 static bool tcp_try_undo_dsack(struct sock *sk) 2421 { 2422 struct tcp_sock *tp = tcp_sk(sk); 2423 2424 if (tp->undo_marker && !tp->undo_retrans) { 2425 DBGUNDO(sk, "D-SACK"); 2426 tcp_undo_cwnd_reduction(sk, false); 2427 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2428 return true; 2429 } 2430 return false; 2431 } 2432 2433 /* We can clear retrans_stamp when there are no retransmissions in the 2434 * window. It would seem that it is trivially available for us in 2435 * tp->retrans_out, however, that kind of assumptions doesn't consider 2436 * what will happen if errors occur when sending retransmission for the 2437 * second time. ...It could the that such segment has only 2438 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2439 * the head skb is enough except for some reneging corner cases that 2440 * are not worth the effort. 2441 * 2442 * Main reason for all this complexity is the fact that connection dying 2443 * time now depends on the validity of the retrans_stamp, in particular, 2444 * that successive retransmissions of a segment must not advance 2445 * retrans_stamp under any conditions. 2446 */ 2447 static bool tcp_any_retrans_done(const struct sock *sk) 2448 { 2449 const struct tcp_sock *tp = tcp_sk(sk); 2450 struct sk_buff *skb; 2451 2452 if (tp->retrans_out) 2453 return true; 2454 2455 skb = tcp_write_queue_head(sk); 2456 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2457 return true; 2458 2459 return false; 2460 } 2461 2462 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2463 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2464 { 2465 struct tcp_sock *tp = tcp_sk(sk); 2466 2467 if (frto_undo || tcp_may_undo(tp)) { 2468 tcp_undo_cwnd_reduction(sk, true); 2469 2470 DBGUNDO(sk, "partial loss"); 2471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2472 if (frto_undo) 2473 NET_INC_STATS_BH(sock_net(sk), 2474 LINUX_MIB_TCPSPURIOUSRTOS); 2475 inet_csk(sk)->icsk_retransmits = 0; 2476 if (frto_undo || tcp_is_sack(tp)) 2477 tcp_set_ca_state(sk, TCP_CA_Open); 2478 return true; 2479 } 2480 return false; 2481 } 2482 2483 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2484 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2485 * It computes the number of packets to send (sndcnt) based on packets newly 2486 * delivered: 2487 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2488 * cwnd reductions across a full RTT. 2489 * 2) If packets in flight is lower than ssthresh (such as due to excess 2490 * losses and/or application stalls), do not perform any further cwnd 2491 * reductions, but instead slow start up to ssthresh. 2492 */ 2493 static void tcp_init_cwnd_reduction(struct sock *sk) 2494 { 2495 struct tcp_sock *tp = tcp_sk(sk); 2496 2497 tp->high_seq = tp->snd_nxt; 2498 tp->tlp_high_seq = 0; 2499 tp->snd_cwnd_cnt = 0; 2500 tp->prior_cwnd = tp->snd_cwnd; 2501 tp->prr_delivered = 0; 2502 tp->prr_out = 0; 2503 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2504 tcp_ecn_queue_cwr(tp); 2505 } 2506 2507 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2508 int fast_rexmit) 2509 { 2510 struct tcp_sock *tp = tcp_sk(sk); 2511 int sndcnt = 0; 2512 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2513 int newly_acked_sacked = prior_unsacked - 2514 (tp->packets_out - tp->sacked_out); 2515 2516 tp->prr_delivered += newly_acked_sacked; 2517 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2518 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2519 tp->prior_cwnd - 1; 2520 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2521 } else { 2522 sndcnt = min_t(int, delta, 2523 max_t(int, tp->prr_delivered - tp->prr_out, 2524 newly_acked_sacked) + 1); 2525 } 2526 2527 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2528 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2529 } 2530 2531 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2532 { 2533 struct tcp_sock *tp = tcp_sk(sk); 2534 2535 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2536 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2537 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2538 tp->snd_cwnd = tp->snd_ssthresh; 2539 tp->snd_cwnd_stamp = tcp_time_stamp; 2540 } 2541 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2542 } 2543 2544 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2545 void tcp_enter_cwr(struct sock *sk) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 2549 tp->prior_ssthresh = 0; 2550 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2551 tp->undo_marker = 0; 2552 tcp_init_cwnd_reduction(sk); 2553 tcp_set_ca_state(sk, TCP_CA_CWR); 2554 } 2555 } 2556 2557 static void tcp_try_keep_open(struct sock *sk) 2558 { 2559 struct tcp_sock *tp = tcp_sk(sk); 2560 int state = TCP_CA_Open; 2561 2562 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2563 state = TCP_CA_Disorder; 2564 2565 if (inet_csk(sk)->icsk_ca_state != state) { 2566 tcp_set_ca_state(sk, state); 2567 tp->high_seq = tp->snd_nxt; 2568 } 2569 } 2570 2571 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2572 { 2573 struct tcp_sock *tp = tcp_sk(sk); 2574 2575 tcp_verify_left_out(tp); 2576 2577 if (!tcp_any_retrans_done(sk)) 2578 tp->retrans_stamp = 0; 2579 2580 if (flag & FLAG_ECE) 2581 tcp_enter_cwr(sk); 2582 2583 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2584 tcp_try_keep_open(sk); 2585 } else { 2586 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2587 } 2588 } 2589 2590 static void tcp_mtup_probe_failed(struct sock *sk) 2591 { 2592 struct inet_connection_sock *icsk = inet_csk(sk); 2593 2594 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2595 icsk->icsk_mtup.probe_size = 0; 2596 } 2597 2598 static void tcp_mtup_probe_success(struct sock *sk) 2599 { 2600 struct tcp_sock *tp = tcp_sk(sk); 2601 struct inet_connection_sock *icsk = inet_csk(sk); 2602 2603 /* FIXME: breaks with very large cwnd */ 2604 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2605 tp->snd_cwnd = tp->snd_cwnd * 2606 tcp_mss_to_mtu(sk, tp->mss_cache) / 2607 icsk->icsk_mtup.probe_size; 2608 tp->snd_cwnd_cnt = 0; 2609 tp->snd_cwnd_stamp = tcp_time_stamp; 2610 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2611 2612 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2613 icsk->icsk_mtup.probe_size = 0; 2614 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2615 } 2616 2617 /* Do a simple retransmit without using the backoff mechanisms in 2618 * tcp_timer. This is used for path mtu discovery. 2619 * The socket is already locked here. 2620 */ 2621 void tcp_simple_retransmit(struct sock *sk) 2622 { 2623 const struct inet_connection_sock *icsk = inet_csk(sk); 2624 struct tcp_sock *tp = tcp_sk(sk); 2625 struct sk_buff *skb; 2626 unsigned int mss = tcp_current_mss(sk); 2627 u32 prior_lost = tp->lost_out; 2628 2629 tcp_for_write_queue(skb, sk) { 2630 if (skb == tcp_send_head(sk)) 2631 break; 2632 if (tcp_skb_seglen(skb) > mss && 2633 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2634 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2635 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2636 tp->retrans_out -= tcp_skb_pcount(skb); 2637 } 2638 tcp_skb_mark_lost_uncond_verify(tp, skb); 2639 } 2640 } 2641 2642 tcp_clear_retrans_hints_partial(tp); 2643 2644 if (prior_lost == tp->lost_out) 2645 return; 2646 2647 if (tcp_is_reno(tp)) 2648 tcp_limit_reno_sacked(tp); 2649 2650 tcp_verify_left_out(tp); 2651 2652 /* Don't muck with the congestion window here. 2653 * Reason is that we do not increase amount of _data_ 2654 * in network, but units changed and effective 2655 * cwnd/ssthresh really reduced now. 2656 */ 2657 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2658 tp->high_seq = tp->snd_nxt; 2659 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2660 tp->prior_ssthresh = 0; 2661 tp->undo_marker = 0; 2662 tcp_set_ca_state(sk, TCP_CA_Loss); 2663 } 2664 tcp_xmit_retransmit_queue(sk); 2665 } 2666 EXPORT_SYMBOL(tcp_simple_retransmit); 2667 2668 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2669 { 2670 struct tcp_sock *tp = tcp_sk(sk); 2671 int mib_idx; 2672 2673 if (tcp_is_reno(tp)) 2674 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2675 else 2676 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2677 2678 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2679 2680 tp->prior_ssthresh = 0; 2681 tcp_init_undo(tp); 2682 2683 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2684 if (!ece_ack) 2685 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2686 tcp_init_cwnd_reduction(sk); 2687 } 2688 tcp_set_ca_state(sk, TCP_CA_Recovery); 2689 } 2690 2691 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2692 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2693 */ 2694 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2695 { 2696 struct tcp_sock *tp = tcp_sk(sk); 2697 bool recovered = !before(tp->snd_una, tp->high_seq); 2698 2699 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2700 /* Step 3.b. A timeout is spurious if not all data are 2701 * lost, i.e., never-retransmitted data are (s)acked. 2702 */ 2703 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED)) 2704 return; 2705 2706 if (after(tp->snd_nxt, tp->high_seq) && 2707 (flag & FLAG_DATA_SACKED || is_dupack)) { 2708 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2709 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2710 tp->high_seq = tp->snd_nxt; 2711 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2712 TCP_NAGLE_OFF); 2713 if (after(tp->snd_nxt, tp->high_seq)) 2714 return; /* Step 2.b */ 2715 tp->frto = 0; 2716 } 2717 } 2718 2719 if (recovered) { 2720 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2721 tcp_try_undo_recovery(sk); 2722 return; 2723 } 2724 if (tcp_is_reno(tp)) { 2725 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2726 * delivered. Lower inflight to clock out (re)tranmissions. 2727 */ 2728 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2729 tcp_add_reno_sack(sk); 2730 else if (flag & FLAG_SND_UNA_ADVANCED) 2731 tcp_reset_reno_sack(tp); 2732 } 2733 if (tcp_try_undo_loss(sk, false)) 2734 return; 2735 tcp_xmit_retransmit_queue(sk); 2736 } 2737 2738 /* Undo during fast recovery after partial ACK. */ 2739 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2740 const int prior_unsacked) 2741 { 2742 struct tcp_sock *tp = tcp_sk(sk); 2743 2744 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2745 /* Plain luck! Hole if filled with delayed 2746 * packet, rather than with a retransmit. 2747 */ 2748 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2749 2750 /* We are getting evidence that the reordering degree is higher 2751 * than we realized. If there are no retransmits out then we 2752 * can undo. Otherwise we clock out new packets but do not 2753 * mark more packets lost or retransmit more. 2754 */ 2755 if (tp->retrans_out) { 2756 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2757 return true; 2758 } 2759 2760 if (!tcp_any_retrans_done(sk)) 2761 tp->retrans_stamp = 0; 2762 2763 DBGUNDO(sk, "partial recovery"); 2764 tcp_undo_cwnd_reduction(sk, true); 2765 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2766 tcp_try_keep_open(sk); 2767 return true; 2768 } 2769 return false; 2770 } 2771 2772 /* Process an event, which can update packets-in-flight not trivially. 2773 * Main goal of this function is to calculate new estimate for left_out, 2774 * taking into account both packets sitting in receiver's buffer and 2775 * packets lost by network. 2776 * 2777 * Besides that it does CWND reduction, when packet loss is detected 2778 * and changes state of machine. 2779 * 2780 * It does _not_ decide what to send, it is made in function 2781 * tcp_xmit_retransmit_queue(). 2782 */ 2783 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2784 const int prior_unsacked, 2785 bool is_dupack, int flag) 2786 { 2787 struct inet_connection_sock *icsk = inet_csk(sk); 2788 struct tcp_sock *tp = tcp_sk(sk); 2789 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2790 (tcp_fackets_out(tp) > tp->reordering)); 2791 int fast_rexmit = 0; 2792 2793 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2794 tp->sacked_out = 0; 2795 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2796 tp->fackets_out = 0; 2797 2798 /* Now state machine starts. 2799 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2800 if (flag & FLAG_ECE) 2801 tp->prior_ssthresh = 0; 2802 2803 /* B. In all the states check for reneging SACKs. */ 2804 if (tcp_check_sack_reneging(sk, flag)) 2805 return; 2806 2807 /* C. Check consistency of the current state. */ 2808 tcp_verify_left_out(tp); 2809 2810 /* D. Check state exit conditions. State can be terminated 2811 * when high_seq is ACKed. */ 2812 if (icsk->icsk_ca_state == TCP_CA_Open) { 2813 WARN_ON(tp->retrans_out != 0); 2814 tp->retrans_stamp = 0; 2815 } else if (!before(tp->snd_una, tp->high_seq)) { 2816 switch (icsk->icsk_ca_state) { 2817 case TCP_CA_CWR: 2818 /* CWR is to be held something *above* high_seq 2819 * is ACKed for CWR bit to reach receiver. */ 2820 if (tp->snd_una != tp->high_seq) { 2821 tcp_end_cwnd_reduction(sk); 2822 tcp_set_ca_state(sk, TCP_CA_Open); 2823 } 2824 break; 2825 2826 case TCP_CA_Recovery: 2827 if (tcp_is_reno(tp)) 2828 tcp_reset_reno_sack(tp); 2829 if (tcp_try_undo_recovery(sk)) 2830 return; 2831 tcp_end_cwnd_reduction(sk); 2832 break; 2833 } 2834 } 2835 2836 /* E. Process state. */ 2837 switch (icsk->icsk_ca_state) { 2838 case TCP_CA_Recovery: 2839 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2840 if (tcp_is_reno(tp) && is_dupack) 2841 tcp_add_reno_sack(sk); 2842 } else { 2843 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2844 return; 2845 /* Partial ACK arrived. Force fast retransmit. */ 2846 do_lost = tcp_is_reno(tp) || 2847 tcp_fackets_out(tp) > tp->reordering; 2848 } 2849 if (tcp_try_undo_dsack(sk)) { 2850 tcp_try_keep_open(sk); 2851 return; 2852 } 2853 break; 2854 case TCP_CA_Loss: 2855 tcp_process_loss(sk, flag, is_dupack); 2856 if (icsk->icsk_ca_state != TCP_CA_Open) 2857 return; 2858 /* Fall through to processing in Open state. */ 2859 default: 2860 if (tcp_is_reno(tp)) { 2861 if (flag & FLAG_SND_UNA_ADVANCED) 2862 tcp_reset_reno_sack(tp); 2863 if (is_dupack) 2864 tcp_add_reno_sack(sk); 2865 } 2866 2867 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2868 tcp_try_undo_dsack(sk); 2869 2870 if (!tcp_time_to_recover(sk, flag)) { 2871 tcp_try_to_open(sk, flag, prior_unsacked); 2872 return; 2873 } 2874 2875 /* MTU probe failure: don't reduce cwnd */ 2876 if (icsk->icsk_ca_state < TCP_CA_CWR && 2877 icsk->icsk_mtup.probe_size && 2878 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2879 tcp_mtup_probe_failed(sk); 2880 /* Restores the reduction we did in tcp_mtup_probe() */ 2881 tp->snd_cwnd++; 2882 tcp_simple_retransmit(sk); 2883 return; 2884 } 2885 2886 /* Otherwise enter Recovery state */ 2887 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2888 fast_rexmit = 1; 2889 } 2890 2891 if (do_lost) 2892 tcp_update_scoreboard(sk, fast_rexmit); 2893 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2894 tcp_xmit_retransmit_queue(sk); 2895 } 2896 2897 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2898 long seq_rtt_us, long sack_rtt_us) 2899 { 2900 const struct tcp_sock *tp = tcp_sk(sk); 2901 2902 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2903 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2904 * Karn's algorithm forbids taking RTT if some retransmitted data 2905 * is acked (RFC6298). 2906 */ 2907 if (flag & FLAG_RETRANS_DATA_ACKED) 2908 seq_rtt_us = -1L; 2909 2910 if (seq_rtt_us < 0) 2911 seq_rtt_us = sack_rtt_us; 2912 2913 /* RTTM Rule: A TSecr value received in a segment is used to 2914 * update the averaged RTT measurement only if the segment 2915 * acknowledges some new data, i.e., only if it advances the 2916 * left edge of the send window. 2917 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2918 */ 2919 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2920 flag & FLAG_ACKED) 2921 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2922 2923 if (seq_rtt_us < 0) 2924 return false; 2925 2926 tcp_rtt_estimator(sk, seq_rtt_us); 2927 tcp_set_rto(sk); 2928 2929 /* RFC6298: only reset backoff on valid RTT measurement. */ 2930 inet_csk(sk)->icsk_backoff = 0; 2931 return true; 2932 } 2933 2934 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2935 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2936 { 2937 struct tcp_sock *tp = tcp_sk(sk); 2938 long seq_rtt_us = -1L; 2939 2940 if (synack_stamp && !tp->total_retrans) 2941 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2942 2943 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2944 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2945 */ 2946 if (!tp->srtt_us) 2947 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2948 } 2949 2950 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2951 { 2952 const struct inet_connection_sock *icsk = inet_csk(sk); 2953 2954 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2955 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2956 } 2957 2958 /* Restart timer after forward progress on connection. 2959 * RFC2988 recommends to restart timer to now+rto. 2960 */ 2961 void tcp_rearm_rto(struct sock *sk) 2962 { 2963 const struct inet_connection_sock *icsk = inet_csk(sk); 2964 struct tcp_sock *tp = tcp_sk(sk); 2965 2966 /* If the retrans timer is currently being used by Fast Open 2967 * for SYN-ACK retrans purpose, stay put. 2968 */ 2969 if (tp->fastopen_rsk) 2970 return; 2971 2972 if (!tp->packets_out) { 2973 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2974 } else { 2975 u32 rto = inet_csk(sk)->icsk_rto; 2976 /* Offset the time elapsed after installing regular RTO */ 2977 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2978 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2979 struct sk_buff *skb = tcp_write_queue_head(sk); 2980 const u32 rto_time_stamp = 2981 tcp_skb_timestamp(skb) + rto; 2982 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2983 /* delta may not be positive if the socket is locked 2984 * when the retrans timer fires and is rescheduled. 2985 */ 2986 if (delta > 0) 2987 rto = delta; 2988 } 2989 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2990 TCP_RTO_MAX); 2991 } 2992 } 2993 2994 /* This function is called when the delayed ER timer fires. TCP enters 2995 * fast recovery and performs fast-retransmit. 2996 */ 2997 void tcp_resume_early_retransmit(struct sock *sk) 2998 { 2999 struct tcp_sock *tp = tcp_sk(sk); 3000 3001 tcp_rearm_rto(sk); 3002 3003 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3004 if (!tp->do_early_retrans) 3005 return; 3006 3007 tcp_enter_recovery(sk, false); 3008 tcp_update_scoreboard(sk, 1); 3009 tcp_xmit_retransmit_queue(sk); 3010 } 3011 3012 /* If we get here, the whole TSO packet has not been acked. */ 3013 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3014 { 3015 struct tcp_sock *tp = tcp_sk(sk); 3016 u32 packets_acked; 3017 3018 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3019 3020 packets_acked = tcp_skb_pcount(skb); 3021 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3022 return 0; 3023 packets_acked -= tcp_skb_pcount(skb); 3024 3025 if (packets_acked) { 3026 BUG_ON(tcp_skb_pcount(skb) == 0); 3027 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3028 } 3029 3030 return packets_acked; 3031 } 3032 3033 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3034 u32 prior_snd_una) 3035 { 3036 const struct skb_shared_info *shinfo; 3037 3038 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3039 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) 3040 return; 3041 3042 shinfo = skb_shinfo(skb); 3043 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3044 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) 3045 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3046 } 3047 3048 /* Remove acknowledged frames from the retransmission queue. If our packet 3049 * is before the ack sequence we can discard it as it's confirmed to have 3050 * arrived at the other end. 3051 */ 3052 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3053 u32 prior_snd_una, long sack_rtt_us) 3054 { 3055 const struct inet_connection_sock *icsk = inet_csk(sk); 3056 struct skb_mstamp first_ackt, last_ackt, now; 3057 struct tcp_sock *tp = tcp_sk(sk); 3058 u32 prior_sacked = tp->sacked_out; 3059 u32 reord = tp->packets_out; 3060 bool fully_acked = true; 3061 long ca_seq_rtt_us = -1L; 3062 long seq_rtt_us = -1L; 3063 struct sk_buff *skb; 3064 u32 pkts_acked = 0; 3065 bool rtt_update; 3066 int flag = 0; 3067 3068 first_ackt.v64 = 0; 3069 3070 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3071 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3072 u8 sacked = scb->sacked; 3073 u32 acked_pcount; 3074 3075 tcp_ack_tstamp(sk, skb, prior_snd_una); 3076 3077 /* Determine how many packets and what bytes were acked, tso and else */ 3078 if (after(scb->end_seq, tp->snd_una)) { 3079 if (tcp_skb_pcount(skb) == 1 || 3080 !after(tp->snd_una, scb->seq)) 3081 break; 3082 3083 acked_pcount = tcp_tso_acked(sk, skb); 3084 if (!acked_pcount) 3085 break; 3086 3087 fully_acked = false; 3088 } else { 3089 /* Speedup tcp_unlink_write_queue() and next loop */ 3090 prefetchw(skb->next); 3091 acked_pcount = tcp_skb_pcount(skb); 3092 } 3093 3094 if (unlikely(sacked & TCPCB_RETRANS)) { 3095 if (sacked & TCPCB_SACKED_RETRANS) 3096 tp->retrans_out -= acked_pcount; 3097 flag |= FLAG_RETRANS_DATA_ACKED; 3098 } else { 3099 last_ackt = skb->skb_mstamp; 3100 WARN_ON_ONCE(last_ackt.v64 == 0); 3101 if (!first_ackt.v64) 3102 first_ackt = last_ackt; 3103 3104 if (!(sacked & TCPCB_SACKED_ACKED)) 3105 reord = min(pkts_acked, reord); 3106 if (!after(scb->end_seq, tp->high_seq)) 3107 flag |= FLAG_ORIG_SACK_ACKED; 3108 } 3109 3110 if (sacked & TCPCB_SACKED_ACKED) 3111 tp->sacked_out -= acked_pcount; 3112 if (sacked & TCPCB_LOST) 3113 tp->lost_out -= acked_pcount; 3114 3115 tp->packets_out -= acked_pcount; 3116 pkts_acked += acked_pcount; 3117 3118 /* Initial outgoing SYN's get put onto the write_queue 3119 * just like anything else we transmit. It is not 3120 * true data, and if we misinform our callers that 3121 * this ACK acks real data, we will erroneously exit 3122 * connection startup slow start one packet too 3123 * quickly. This is severely frowned upon behavior. 3124 */ 3125 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3126 flag |= FLAG_DATA_ACKED; 3127 } else { 3128 flag |= FLAG_SYN_ACKED; 3129 tp->retrans_stamp = 0; 3130 } 3131 3132 if (!fully_acked) 3133 break; 3134 3135 tcp_unlink_write_queue(skb, sk); 3136 sk_wmem_free_skb(sk, skb); 3137 if (unlikely(skb == tp->retransmit_skb_hint)) 3138 tp->retransmit_skb_hint = NULL; 3139 if (unlikely(skb == tp->lost_skb_hint)) 3140 tp->lost_skb_hint = NULL; 3141 } 3142 3143 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3144 tp->snd_up = tp->snd_una; 3145 3146 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3147 flag |= FLAG_SACK_RENEGING; 3148 3149 skb_mstamp_get(&now); 3150 if (likely(first_ackt.v64)) { 3151 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3152 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3153 } 3154 3155 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3156 3157 if (flag & FLAG_ACKED) { 3158 const struct tcp_congestion_ops *ca_ops 3159 = inet_csk(sk)->icsk_ca_ops; 3160 3161 tcp_rearm_rto(sk); 3162 if (unlikely(icsk->icsk_mtup.probe_size && 3163 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3164 tcp_mtup_probe_success(sk); 3165 } 3166 3167 if (tcp_is_reno(tp)) { 3168 tcp_remove_reno_sacks(sk, pkts_acked); 3169 } else { 3170 int delta; 3171 3172 /* Non-retransmitted hole got filled? That's reordering */ 3173 if (reord < prior_fackets) 3174 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3175 3176 delta = tcp_is_fack(tp) ? pkts_acked : 3177 prior_sacked - tp->sacked_out; 3178 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3179 } 3180 3181 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3182 3183 if (ca_ops->pkts_acked) 3184 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us); 3185 3186 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3187 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3188 /* Do not re-arm RTO if the sack RTT is measured from data sent 3189 * after when the head was last (re)transmitted. Otherwise the 3190 * timeout may continue to extend in loss recovery. 3191 */ 3192 tcp_rearm_rto(sk); 3193 } 3194 3195 #if FASTRETRANS_DEBUG > 0 3196 WARN_ON((int)tp->sacked_out < 0); 3197 WARN_ON((int)tp->lost_out < 0); 3198 WARN_ON((int)tp->retrans_out < 0); 3199 if (!tp->packets_out && tcp_is_sack(tp)) { 3200 icsk = inet_csk(sk); 3201 if (tp->lost_out) { 3202 pr_debug("Leak l=%u %d\n", 3203 tp->lost_out, icsk->icsk_ca_state); 3204 tp->lost_out = 0; 3205 } 3206 if (tp->sacked_out) { 3207 pr_debug("Leak s=%u %d\n", 3208 tp->sacked_out, icsk->icsk_ca_state); 3209 tp->sacked_out = 0; 3210 } 3211 if (tp->retrans_out) { 3212 pr_debug("Leak r=%u %d\n", 3213 tp->retrans_out, icsk->icsk_ca_state); 3214 tp->retrans_out = 0; 3215 } 3216 } 3217 #endif 3218 return flag; 3219 } 3220 3221 static void tcp_ack_probe(struct sock *sk) 3222 { 3223 const struct tcp_sock *tp = tcp_sk(sk); 3224 struct inet_connection_sock *icsk = inet_csk(sk); 3225 3226 /* Was it a usable window open? */ 3227 3228 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3229 icsk->icsk_backoff = 0; 3230 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3231 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3232 * This function is not for random using! 3233 */ 3234 } else { 3235 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 3236 3237 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3238 when, TCP_RTO_MAX); 3239 } 3240 } 3241 3242 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3243 { 3244 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3245 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3246 } 3247 3248 /* Decide wheather to run the increase function of congestion control. */ 3249 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3250 { 3251 if (tcp_in_cwnd_reduction(sk)) 3252 return false; 3253 3254 /* If reordering is high then always grow cwnd whenever data is 3255 * delivered regardless of its ordering. Otherwise stay conservative 3256 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3257 * new SACK or ECE mark may first advance cwnd here and later reduce 3258 * cwnd in tcp_fastretrans_alert() based on more states. 3259 */ 3260 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3261 return flag & FLAG_FORWARD_PROGRESS; 3262 3263 return flag & FLAG_DATA_ACKED; 3264 } 3265 3266 /* Check that window update is acceptable. 3267 * The function assumes that snd_una<=ack<=snd_next. 3268 */ 3269 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3270 const u32 ack, const u32 ack_seq, 3271 const u32 nwin) 3272 { 3273 return after(ack, tp->snd_una) || 3274 after(ack_seq, tp->snd_wl1) || 3275 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3276 } 3277 3278 /* Update our send window. 3279 * 3280 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3281 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3282 */ 3283 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3284 u32 ack_seq) 3285 { 3286 struct tcp_sock *tp = tcp_sk(sk); 3287 int flag = 0; 3288 u32 nwin = ntohs(tcp_hdr(skb)->window); 3289 3290 if (likely(!tcp_hdr(skb)->syn)) 3291 nwin <<= tp->rx_opt.snd_wscale; 3292 3293 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3294 flag |= FLAG_WIN_UPDATE; 3295 tcp_update_wl(tp, ack_seq); 3296 3297 if (tp->snd_wnd != nwin) { 3298 tp->snd_wnd = nwin; 3299 3300 /* Note, it is the only place, where 3301 * fast path is recovered for sending TCP. 3302 */ 3303 tp->pred_flags = 0; 3304 tcp_fast_path_check(sk); 3305 3306 if (nwin > tp->max_window) { 3307 tp->max_window = nwin; 3308 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3309 } 3310 } 3311 } 3312 3313 tp->snd_una = ack; 3314 3315 return flag; 3316 } 3317 3318 /* RFC 5961 7 [ACK Throttling] */ 3319 static void tcp_send_challenge_ack(struct sock *sk) 3320 { 3321 /* unprotected vars, we dont care of overwrites */ 3322 static u32 challenge_timestamp; 3323 static unsigned int challenge_count; 3324 u32 now = jiffies / HZ; 3325 3326 if (now != challenge_timestamp) { 3327 challenge_timestamp = now; 3328 challenge_count = 0; 3329 } 3330 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3331 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3332 tcp_send_ack(sk); 3333 } 3334 } 3335 3336 static void tcp_store_ts_recent(struct tcp_sock *tp) 3337 { 3338 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3339 tp->rx_opt.ts_recent_stamp = get_seconds(); 3340 } 3341 3342 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3343 { 3344 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3345 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3346 * extra check below makes sure this can only happen 3347 * for pure ACK frames. -DaveM 3348 * 3349 * Not only, also it occurs for expired timestamps. 3350 */ 3351 3352 if (tcp_paws_check(&tp->rx_opt, 0)) 3353 tcp_store_ts_recent(tp); 3354 } 3355 } 3356 3357 /* This routine deals with acks during a TLP episode. 3358 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3359 */ 3360 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3361 { 3362 struct tcp_sock *tp = tcp_sk(sk); 3363 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3364 !(flag & (FLAG_SND_UNA_ADVANCED | 3365 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3366 3367 /* Mark the end of TLP episode on receiving TLP dupack or when 3368 * ack is after tlp_high_seq. 3369 */ 3370 if (is_tlp_dupack) { 3371 tp->tlp_high_seq = 0; 3372 return; 3373 } 3374 3375 if (after(ack, tp->tlp_high_seq)) { 3376 tp->tlp_high_seq = 0; 3377 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3378 if (!(flag & FLAG_DSACKING_ACK)) { 3379 tcp_init_cwnd_reduction(sk); 3380 tcp_set_ca_state(sk, TCP_CA_CWR); 3381 tcp_end_cwnd_reduction(sk); 3382 tcp_try_keep_open(sk); 3383 NET_INC_STATS_BH(sock_net(sk), 3384 LINUX_MIB_TCPLOSSPROBERECOVERY); 3385 } 3386 } 3387 } 3388 3389 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3390 { 3391 const struct inet_connection_sock *icsk = inet_csk(sk); 3392 3393 if (icsk->icsk_ca_ops->in_ack_event) 3394 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3395 } 3396 3397 /* This routine deals with incoming acks, but not outgoing ones. */ 3398 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3399 { 3400 struct inet_connection_sock *icsk = inet_csk(sk); 3401 struct tcp_sock *tp = tcp_sk(sk); 3402 u32 prior_snd_una = tp->snd_una; 3403 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3404 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3405 bool is_dupack = false; 3406 u32 prior_fackets; 3407 int prior_packets = tp->packets_out; 3408 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3409 int acked = 0; /* Number of packets newly acked */ 3410 long sack_rtt_us = -1L; 3411 3412 /* We very likely will need to access write queue head. */ 3413 prefetchw(sk->sk_write_queue.next); 3414 3415 /* If the ack is older than previous acks 3416 * then we can probably ignore it. 3417 */ 3418 if (before(ack, prior_snd_una)) { 3419 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3420 if (before(ack, prior_snd_una - tp->max_window)) { 3421 tcp_send_challenge_ack(sk); 3422 return -1; 3423 } 3424 goto old_ack; 3425 } 3426 3427 /* If the ack includes data we haven't sent yet, discard 3428 * this segment (RFC793 Section 3.9). 3429 */ 3430 if (after(ack, tp->snd_nxt)) 3431 goto invalid_ack; 3432 3433 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3434 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3435 tcp_rearm_rto(sk); 3436 3437 if (after(ack, prior_snd_una)) { 3438 flag |= FLAG_SND_UNA_ADVANCED; 3439 icsk->icsk_retransmits = 0; 3440 } 3441 3442 prior_fackets = tp->fackets_out; 3443 3444 /* ts_recent update must be made after we are sure that the packet 3445 * is in window. 3446 */ 3447 if (flag & FLAG_UPDATE_TS_RECENT) 3448 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3449 3450 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3451 /* Window is constant, pure forward advance. 3452 * No more checks are required. 3453 * Note, we use the fact that SND.UNA>=SND.WL2. 3454 */ 3455 tcp_update_wl(tp, ack_seq); 3456 tp->snd_una = ack; 3457 flag |= FLAG_WIN_UPDATE; 3458 3459 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3460 3461 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3462 } else { 3463 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3464 3465 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3466 flag |= FLAG_DATA; 3467 else 3468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3469 3470 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3471 3472 if (TCP_SKB_CB(skb)->sacked) 3473 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3474 &sack_rtt_us); 3475 3476 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3477 flag |= FLAG_ECE; 3478 ack_ev_flags |= CA_ACK_ECE; 3479 } 3480 3481 if (flag & FLAG_WIN_UPDATE) 3482 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3483 3484 tcp_in_ack_event(sk, ack_ev_flags); 3485 } 3486 3487 /* We passed data and got it acked, remove any soft error 3488 * log. Something worked... 3489 */ 3490 sk->sk_err_soft = 0; 3491 icsk->icsk_probes_out = 0; 3492 tp->rcv_tstamp = tcp_time_stamp; 3493 if (!prior_packets) 3494 goto no_queue; 3495 3496 /* See if we can take anything off of the retransmit queue. */ 3497 acked = tp->packets_out; 3498 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3499 sack_rtt_us); 3500 acked -= tp->packets_out; 3501 3502 /* Advance cwnd if state allows */ 3503 if (tcp_may_raise_cwnd(sk, flag)) 3504 tcp_cong_avoid(sk, ack, acked); 3505 3506 if (tcp_ack_is_dubious(sk, flag)) { 3507 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3508 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3509 is_dupack, flag); 3510 } 3511 if (tp->tlp_high_seq) 3512 tcp_process_tlp_ack(sk, ack, flag); 3513 3514 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3515 struct dst_entry *dst = __sk_dst_get(sk); 3516 if (dst) 3517 dst_confirm(dst); 3518 } 3519 3520 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3521 tcp_schedule_loss_probe(sk); 3522 tcp_update_pacing_rate(sk); 3523 return 1; 3524 3525 no_queue: 3526 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3527 if (flag & FLAG_DSACKING_ACK) 3528 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3529 is_dupack, flag); 3530 /* If this ack opens up a zero window, clear backoff. It was 3531 * being used to time the probes, and is probably far higher than 3532 * it needs to be for normal retransmission. 3533 */ 3534 if (tcp_send_head(sk)) 3535 tcp_ack_probe(sk); 3536 3537 if (tp->tlp_high_seq) 3538 tcp_process_tlp_ack(sk, ack, flag); 3539 return 1; 3540 3541 invalid_ack: 3542 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3543 return -1; 3544 3545 old_ack: 3546 /* If data was SACKed, tag it and see if we should send more data. 3547 * If data was DSACKed, see if we can undo a cwnd reduction. 3548 */ 3549 if (TCP_SKB_CB(skb)->sacked) { 3550 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3551 &sack_rtt_us); 3552 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3553 is_dupack, flag); 3554 } 3555 3556 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3557 return 0; 3558 } 3559 3560 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3561 * But, this can also be called on packets in the established flow when 3562 * the fast version below fails. 3563 */ 3564 void tcp_parse_options(const struct sk_buff *skb, 3565 struct tcp_options_received *opt_rx, int estab, 3566 struct tcp_fastopen_cookie *foc) 3567 { 3568 const unsigned char *ptr; 3569 const struct tcphdr *th = tcp_hdr(skb); 3570 int length = (th->doff * 4) - sizeof(struct tcphdr); 3571 3572 ptr = (const unsigned char *)(th + 1); 3573 opt_rx->saw_tstamp = 0; 3574 3575 while (length > 0) { 3576 int opcode = *ptr++; 3577 int opsize; 3578 3579 switch (opcode) { 3580 case TCPOPT_EOL: 3581 return; 3582 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3583 length--; 3584 continue; 3585 default: 3586 opsize = *ptr++; 3587 if (opsize < 2) /* "silly options" */ 3588 return; 3589 if (opsize > length) 3590 return; /* don't parse partial options */ 3591 switch (opcode) { 3592 case TCPOPT_MSS: 3593 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3594 u16 in_mss = get_unaligned_be16(ptr); 3595 if (in_mss) { 3596 if (opt_rx->user_mss && 3597 opt_rx->user_mss < in_mss) 3598 in_mss = opt_rx->user_mss; 3599 opt_rx->mss_clamp = in_mss; 3600 } 3601 } 3602 break; 3603 case TCPOPT_WINDOW: 3604 if (opsize == TCPOLEN_WINDOW && th->syn && 3605 !estab && sysctl_tcp_window_scaling) { 3606 __u8 snd_wscale = *(__u8 *)ptr; 3607 opt_rx->wscale_ok = 1; 3608 if (snd_wscale > 14) { 3609 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3610 __func__, 3611 snd_wscale); 3612 snd_wscale = 14; 3613 } 3614 opt_rx->snd_wscale = snd_wscale; 3615 } 3616 break; 3617 case TCPOPT_TIMESTAMP: 3618 if ((opsize == TCPOLEN_TIMESTAMP) && 3619 ((estab && opt_rx->tstamp_ok) || 3620 (!estab && sysctl_tcp_timestamps))) { 3621 opt_rx->saw_tstamp = 1; 3622 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3623 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3624 } 3625 break; 3626 case TCPOPT_SACK_PERM: 3627 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3628 !estab && sysctl_tcp_sack) { 3629 opt_rx->sack_ok = TCP_SACK_SEEN; 3630 tcp_sack_reset(opt_rx); 3631 } 3632 break; 3633 3634 case TCPOPT_SACK: 3635 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3636 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3637 opt_rx->sack_ok) { 3638 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3639 } 3640 break; 3641 #ifdef CONFIG_TCP_MD5SIG 3642 case TCPOPT_MD5SIG: 3643 /* 3644 * The MD5 Hash has already been 3645 * checked (see tcp_v{4,6}_do_rcv()). 3646 */ 3647 break; 3648 #endif 3649 case TCPOPT_EXP: 3650 /* Fast Open option shares code 254 using a 3651 * 16 bits magic number. It's valid only in 3652 * SYN or SYN-ACK with an even size. 3653 */ 3654 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3655 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3656 foc == NULL || !th->syn || (opsize & 1)) 3657 break; 3658 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3659 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3660 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3661 memcpy(foc->val, ptr + 2, foc->len); 3662 else if (foc->len != 0) 3663 foc->len = -1; 3664 break; 3665 3666 } 3667 ptr += opsize-2; 3668 length -= opsize; 3669 } 3670 } 3671 } 3672 EXPORT_SYMBOL(tcp_parse_options); 3673 3674 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3675 { 3676 const __be32 *ptr = (const __be32 *)(th + 1); 3677 3678 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3679 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3680 tp->rx_opt.saw_tstamp = 1; 3681 ++ptr; 3682 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3683 ++ptr; 3684 if (*ptr) 3685 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3686 else 3687 tp->rx_opt.rcv_tsecr = 0; 3688 return true; 3689 } 3690 return false; 3691 } 3692 3693 /* Fast parse options. This hopes to only see timestamps. 3694 * If it is wrong it falls back on tcp_parse_options(). 3695 */ 3696 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3697 const struct tcphdr *th, struct tcp_sock *tp) 3698 { 3699 /* In the spirit of fast parsing, compare doff directly to constant 3700 * values. Because equality is used, short doff can be ignored here. 3701 */ 3702 if (th->doff == (sizeof(*th) / 4)) { 3703 tp->rx_opt.saw_tstamp = 0; 3704 return false; 3705 } else if (tp->rx_opt.tstamp_ok && 3706 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3707 if (tcp_parse_aligned_timestamp(tp, th)) 3708 return true; 3709 } 3710 3711 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3712 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3713 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3714 3715 return true; 3716 } 3717 3718 #ifdef CONFIG_TCP_MD5SIG 3719 /* 3720 * Parse MD5 Signature option 3721 */ 3722 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3723 { 3724 int length = (th->doff << 2) - sizeof(*th); 3725 const u8 *ptr = (const u8 *)(th + 1); 3726 3727 /* If the TCP option is too short, we can short cut */ 3728 if (length < TCPOLEN_MD5SIG) 3729 return NULL; 3730 3731 while (length > 0) { 3732 int opcode = *ptr++; 3733 int opsize; 3734 3735 switch (opcode) { 3736 case TCPOPT_EOL: 3737 return NULL; 3738 case TCPOPT_NOP: 3739 length--; 3740 continue; 3741 default: 3742 opsize = *ptr++; 3743 if (opsize < 2 || opsize > length) 3744 return NULL; 3745 if (opcode == TCPOPT_MD5SIG) 3746 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3747 } 3748 ptr += opsize - 2; 3749 length -= opsize; 3750 } 3751 return NULL; 3752 } 3753 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3754 #endif 3755 3756 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3757 * 3758 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3759 * it can pass through stack. So, the following predicate verifies that 3760 * this segment is not used for anything but congestion avoidance or 3761 * fast retransmit. Moreover, we even are able to eliminate most of such 3762 * second order effects, if we apply some small "replay" window (~RTO) 3763 * to timestamp space. 3764 * 3765 * All these measures still do not guarantee that we reject wrapped ACKs 3766 * on networks with high bandwidth, when sequence space is recycled fastly, 3767 * but it guarantees that such events will be very rare and do not affect 3768 * connection seriously. This doesn't look nice, but alas, PAWS is really 3769 * buggy extension. 3770 * 3771 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3772 * states that events when retransmit arrives after original data are rare. 3773 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3774 * the biggest problem on large power networks even with minor reordering. 3775 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3776 * up to bandwidth of 18Gigabit/sec. 8) ] 3777 */ 3778 3779 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3780 { 3781 const struct tcp_sock *tp = tcp_sk(sk); 3782 const struct tcphdr *th = tcp_hdr(skb); 3783 u32 seq = TCP_SKB_CB(skb)->seq; 3784 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3785 3786 return (/* 1. Pure ACK with correct sequence number. */ 3787 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3788 3789 /* 2. ... and duplicate ACK. */ 3790 ack == tp->snd_una && 3791 3792 /* 3. ... and does not update window. */ 3793 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3794 3795 /* 4. ... and sits in replay window. */ 3796 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3797 } 3798 3799 static inline bool tcp_paws_discard(const struct sock *sk, 3800 const struct sk_buff *skb) 3801 { 3802 const struct tcp_sock *tp = tcp_sk(sk); 3803 3804 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3805 !tcp_disordered_ack(sk, skb); 3806 } 3807 3808 /* Check segment sequence number for validity. 3809 * 3810 * Segment controls are considered valid, if the segment 3811 * fits to the window after truncation to the window. Acceptability 3812 * of data (and SYN, FIN, of course) is checked separately. 3813 * See tcp_data_queue(), for example. 3814 * 3815 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3816 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3817 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3818 * (borrowed from freebsd) 3819 */ 3820 3821 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3822 { 3823 return !before(end_seq, tp->rcv_wup) && 3824 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3825 } 3826 3827 /* When we get a reset we do this. */ 3828 void tcp_reset(struct sock *sk) 3829 { 3830 /* We want the right error as BSD sees it (and indeed as we do). */ 3831 switch (sk->sk_state) { 3832 case TCP_SYN_SENT: 3833 sk->sk_err = ECONNREFUSED; 3834 break; 3835 case TCP_CLOSE_WAIT: 3836 sk->sk_err = EPIPE; 3837 break; 3838 case TCP_CLOSE: 3839 return; 3840 default: 3841 sk->sk_err = ECONNRESET; 3842 } 3843 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3844 smp_wmb(); 3845 3846 if (!sock_flag(sk, SOCK_DEAD)) 3847 sk->sk_error_report(sk); 3848 3849 tcp_done(sk); 3850 } 3851 3852 /* 3853 * Process the FIN bit. This now behaves as it is supposed to work 3854 * and the FIN takes effect when it is validly part of sequence 3855 * space. Not before when we get holes. 3856 * 3857 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3858 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3859 * TIME-WAIT) 3860 * 3861 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3862 * close and we go into CLOSING (and later onto TIME-WAIT) 3863 * 3864 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3865 */ 3866 static void tcp_fin(struct sock *sk) 3867 { 3868 struct tcp_sock *tp = tcp_sk(sk); 3869 const struct dst_entry *dst; 3870 3871 inet_csk_schedule_ack(sk); 3872 3873 sk->sk_shutdown |= RCV_SHUTDOWN; 3874 sock_set_flag(sk, SOCK_DONE); 3875 3876 switch (sk->sk_state) { 3877 case TCP_SYN_RECV: 3878 case TCP_ESTABLISHED: 3879 /* Move to CLOSE_WAIT */ 3880 tcp_set_state(sk, TCP_CLOSE_WAIT); 3881 dst = __sk_dst_get(sk); 3882 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3883 inet_csk(sk)->icsk_ack.pingpong = 1; 3884 break; 3885 3886 case TCP_CLOSE_WAIT: 3887 case TCP_CLOSING: 3888 /* Received a retransmission of the FIN, do 3889 * nothing. 3890 */ 3891 break; 3892 case TCP_LAST_ACK: 3893 /* RFC793: Remain in the LAST-ACK state. */ 3894 break; 3895 3896 case TCP_FIN_WAIT1: 3897 /* This case occurs when a simultaneous close 3898 * happens, we must ack the received FIN and 3899 * enter the CLOSING state. 3900 */ 3901 tcp_send_ack(sk); 3902 tcp_set_state(sk, TCP_CLOSING); 3903 break; 3904 case TCP_FIN_WAIT2: 3905 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3906 tcp_send_ack(sk); 3907 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3908 break; 3909 default: 3910 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3911 * cases we should never reach this piece of code. 3912 */ 3913 pr_err("%s: Impossible, sk->sk_state=%d\n", 3914 __func__, sk->sk_state); 3915 break; 3916 } 3917 3918 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3919 * Probably, we should reset in this case. For now drop them. 3920 */ 3921 __skb_queue_purge(&tp->out_of_order_queue); 3922 if (tcp_is_sack(tp)) 3923 tcp_sack_reset(&tp->rx_opt); 3924 sk_mem_reclaim(sk); 3925 3926 if (!sock_flag(sk, SOCK_DEAD)) { 3927 sk->sk_state_change(sk); 3928 3929 /* Do not send POLL_HUP for half duplex close. */ 3930 if (sk->sk_shutdown == SHUTDOWN_MASK || 3931 sk->sk_state == TCP_CLOSE) 3932 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3933 else 3934 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3935 } 3936 } 3937 3938 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3939 u32 end_seq) 3940 { 3941 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3942 if (before(seq, sp->start_seq)) 3943 sp->start_seq = seq; 3944 if (after(end_seq, sp->end_seq)) 3945 sp->end_seq = end_seq; 3946 return true; 3947 } 3948 return false; 3949 } 3950 3951 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3952 { 3953 struct tcp_sock *tp = tcp_sk(sk); 3954 3955 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3956 int mib_idx; 3957 3958 if (before(seq, tp->rcv_nxt)) 3959 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3960 else 3961 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3962 3963 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3964 3965 tp->rx_opt.dsack = 1; 3966 tp->duplicate_sack[0].start_seq = seq; 3967 tp->duplicate_sack[0].end_seq = end_seq; 3968 } 3969 } 3970 3971 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3972 { 3973 struct tcp_sock *tp = tcp_sk(sk); 3974 3975 if (!tp->rx_opt.dsack) 3976 tcp_dsack_set(sk, seq, end_seq); 3977 else 3978 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3979 } 3980 3981 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3982 { 3983 struct tcp_sock *tp = tcp_sk(sk); 3984 3985 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3986 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3987 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3988 tcp_enter_quickack_mode(sk); 3989 3990 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3991 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3992 3993 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3994 end_seq = tp->rcv_nxt; 3995 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3996 } 3997 } 3998 3999 tcp_send_ack(sk); 4000 } 4001 4002 /* These routines update the SACK block as out-of-order packets arrive or 4003 * in-order packets close up the sequence space. 4004 */ 4005 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4006 { 4007 int this_sack; 4008 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4009 struct tcp_sack_block *swalk = sp + 1; 4010 4011 /* See if the recent change to the first SACK eats into 4012 * or hits the sequence space of other SACK blocks, if so coalesce. 4013 */ 4014 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4015 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4016 int i; 4017 4018 /* Zap SWALK, by moving every further SACK up by one slot. 4019 * Decrease num_sacks. 4020 */ 4021 tp->rx_opt.num_sacks--; 4022 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4023 sp[i] = sp[i + 1]; 4024 continue; 4025 } 4026 this_sack++, swalk++; 4027 } 4028 } 4029 4030 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4031 { 4032 struct tcp_sock *tp = tcp_sk(sk); 4033 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4034 int cur_sacks = tp->rx_opt.num_sacks; 4035 int this_sack; 4036 4037 if (!cur_sacks) 4038 goto new_sack; 4039 4040 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4041 if (tcp_sack_extend(sp, seq, end_seq)) { 4042 /* Rotate this_sack to the first one. */ 4043 for (; this_sack > 0; this_sack--, sp--) 4044 swap(*sp, *(sp - 1)); 4045 if (cur_sacks > 1) 4046 tcp_sack_maybe_coalesce(tp); 4047 return; 4048 } 4049 } 4050 4051 /* Could not find an adjacent existing SACK, build a new one, 4052 * put it at the front, and shift everyone else down. We 4053 * always know there is at least one SACK present already here. 4054 * 4055 * If the sack array is full, forget about the last one. 4056 */ 4057 if (this_sack >= TCP_NUM_SACKS) { 4058 this_sack--; 4059 tp->rx_opt.num_sacks--; 4060 sp--; 4061 } 4062 for (; this_sack > 0; this_sack--, sp--) 4063 *sp = *(sp - 1); 4064 4065 new_sack: 4066 /* Build the new head SACK, and we're done. */ 4067 sp->start_seq = seq; 4068 sp->end_seq = end_seq; 4069 tp->rx_opt.num_sacks++; 4070 } 4071 4072 /* RCV.NXT advances, some SACKs should be eaten. */ 4073 4074 static void tcp_sack_remove(struct tcp_sock *tp) 4075 { 4076 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4077 int num_sacks = tp->rx_opt.num_sacks; 4078 int this_sack; 4079 4080 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4081 if (skb_queue_empty(&tp->out_of_order_queue)) { 4082 tp->rx_opt.num_sacks = 0; 4083 return; 4084 } 4085 4086 for (this_sack = 0; this_sack < num_sacks;) { 4087 /* Check if the start of the sack is covered by RCV.NXT. */ 4088 if (!before(tp->rcv_nxt, sp->start_seq)) { 4089 int i; 4090 4091 /* RCV.NXT must cover all the block! */ 4092 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4093 4094 /* Zap this SACK, by moving forward any other SACKS. */ 4095 for (i = this_sack+1; i < num_sacks; i++) 4096 tp->selective_acks[i-1] = tp->selective_acks[i]; 4097 num_sacks--; 4098 continue; 4099 } 4100 this_sack++; 4101 sp++; 4102 } 4103 tp->rx_opt.num_sacks = num_sacks; 4104 } 4105 4106 /** 4107 * tcp_try_coalesce - try to merge skb to prior one 4108 * @sk: socket 4109 * @to: prior buffer 4110 * @from: buffer to add in queue 4111 * @fragstolen: pointer to boolean 4112 * 4113 * Before queueing skb @from after @to, try to merge them 4114 * to reduce overall memory use and queue lengths, if cost is small. 4115 * Packets in ofo or receive queues can stay a long time. 4116 * Better try to coalesce them right now to avoid future collapses. 4117 * Returns true if caller should free @from instead of queueing it 4118 */ 4119 static bool tcp_try_coalesce(struct sock *sk, 4120 struct sk_buff *to, 4121 struct sk_buff *from, 4122 bool *fragstolen) 4123 { 4124 int delta; 4125 4126 *fragstolen = false; 4127 4128 /* Its possible this segment overlaps with prior segment in queue */ 4129 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4130 return false; 4131 4132 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4133 return false; 4134 4135 atomic_add(delta, &sk->sk_rmem_alloc); 4136 sk_mem_charge(sk, delta); 4137 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4138 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4139 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4140 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4141 return true; 4142 } 4143 4144 /* This one checks to see if we can put data from the 4145 * out_of_order queue into the receive_queue. 4146 */ 4147 static void tcp_ofo_queue(struct sock *sk) 4148 { 4149 struct tcp_sock *tp = tcp_sk(sk); 4150 __u32 dsack_high = tp->rcv_nxt; 4151 struct sk_buff *skb, *tail; 4152 bool fragstolen, eaten; 4153 4154 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4155 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4156 break; 4157 4158 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4159 __u32 dsack = dsack_high; 4160 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4161 dsack_high = TCP_SKB_CB(skb)->end_seq; 4162 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4163 } 4164 4165 __skb_unlink(skb, &tp->out_of_order_queue); 4166 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4167 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4168 __kfree_skb(skb); 4169 continue; 4170 } 4171 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4172 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4173 TCP_SKB_CB(skb)->end_seq); 4174 4175 tail = skb_peek_tail(&sk->sk_receive_queue); 4176 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4177 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4178 if (!eaten) 4179 __skb_queue_tail(&sk->sk_receive_queue, skb); 4180 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4181 tcp_fin(sk); 4182 if (eaten) 4183 kfree_skb_partial(skb, fragstolen); 4184 } 4185 } 4186 4187 static bool tcp_prune_ofo_queue(struct sock *sk); 4188 static int tcp_prune_queue(struct sock *sk); 4189 4190 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4191 unsigned int size) 4192 { 4193 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4194 !sk_rmem_schedule(sk, skb, size)) { 4195 4196 if (tcp_prune_queue(sk) < 0) 4197 return -1; 4198 4199 if (!sk_rmem_schedule(sk, skb, size)) { 4200 if (!tcp_prune_ofo_queue(sk)) 4201 return -1; 4202 4203 if (!sk_rmem_schedule(sk, skb, size)) 4204 return -1; 4205 } 4206 } 4207 return 0; 4208 } 4209 4210 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4211 { 4212 struct tcp_sock *tp = tcp_sk(sk); 4213 struct sk_buff *skb1; 4214 u32 seq, end_seq; 4215 4216 tcp_ecn_check_ce(tp, skb); 4217 4218 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4219 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4220 __kfree_skb(skb); 4221 return; 4222 } 4223 4224 /* Disable header prediction. */ 4225 tp->pred_flags = 0; 4226 inet_csk_schedule_ack(sk); 4227 4228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4229 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4230 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4231 4232 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4233 if (!skb1) { 4234 /* Initial out of order segment, build 1 SACK. */ 4235 if (tcp_is_sack(tp)) { 4236 tp->rx_opt.num_sacks = 1; 4237 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4238 tp->selective_acks[0].end_seq = 4239 TCP_SKB_CB(skb)->end_seq; 4240 } 4241 __skb_queue_head(&tp->out_of_order_queue, skb); 4242 goto end; 4243 } 4244 4245 seq = TCP_SKB_CB(skb)->seq; 4246 end_seq = TCP_SKB_CB(skb)->end_seq; 4247 4248 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4249 bool fragstolen; 4250 4251 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4252 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4253 } else { 4254 tcp_grow_window(sk, skb); 4255 kfree_skb_partial(skb, fragstolen); 4256 skb = NULL; 4257 } 4258 4259 if (!tp->rx_opt.num_sacks || 4260 tp->selective_acks[0].end_seq != seq) 4261 goto add_sack; 4262 4263 /* Common case: data arrive in order after hole. */ 4264 tp->selective_acks[0].end_seq = end_seq; 4265 goto end; 4266 } 4267 4268 /* Find place to insert this segment. */ 4269 while (1) { 4270 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4271 break; 4272 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4273 skb1 = NULL; 4274 break; 4275 } 4276 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4277 } 4278 4279 /* Do skb overlap to previous one? */ 4280 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4281 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4282 /* All the bits are present. Drop. */ 4283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4284 __kfree_skb(skb); 4285 skb = NULL; 4286 tcp_dsack_set(sk, seq, end_seq); 4287 goto add_sack; 4288 } 4289 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4290 /* Partial overlap. */ 4291 tcp_dsack_set(sk, seq, 4292 TCP_SKB_CB(skb1)->end_seq); 4293 } else { 4294 if (skb_queue_is_first(&tp->out_of_order_queue, 4295 skb1)) 4296 skb1 = NULL; 4297 else 4298 skb1 = skb_queue_prev( 4299 &tp->out_of_order_queue, 4300 skb1); 4301 } 4302 } 4303 if (!skb1) 4304 __skb_queue_head(&tp->out_of_order_queue, skb); 4305 else 4306 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4307 4308 /* And clean segments covered by new one as whole. */ 4309 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4310 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4311 4312 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4313 break; 4314 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4315 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4316 end_seq); 4317 break; 4318 } 4319 __skb_unlink(skb1, &tp->out_of_order_queue); 4320 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4321 TCP_SKB_CB(skb1)->end_seq); 4322 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4323 __kfree_skb(skb1); 4324 } 4325 4326 add_sack: 4327 if (tcp_is_sack(tp)) 4328 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4329 end: 4330 if (skb) { 4331 tcp_grow_window(sk, skb); 4332 skb_set_owner_r(skb, sk); 4333 } 4334 } 4335 4336 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4337 bool *fragstolen) 4338 { 4339 int eaten; 4340 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4341 4342 __skb_pull(skb, hdrlen); 4343 eaten = (tail && 4344 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4345 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4346 if (!eaten) { 4347 __skb_queue_tail(&sk->sk_receive_queue, skb); 4348 skb_set_owner_r(skb, sk); 4349 } 4350 return eaten; 4351 } 4352 4353 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4354 { 4355 struct sk_buff *skb; 4356 bool fragstolen; 4357 4358 if (size == 0) 4359 return 0; 4360 4361 skb = alloc_skb(size, sk->sk_allocation); 4362 if (!skb) 4363 goto err; 4364 4365 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4366 goto err_free; 4367 4368 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4369 goto err_free; 4370 4371 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4372 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4373 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4374 4375 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4376 WARN_ON_ONCE(fragstolen); /* should not happen */ 4377 __kfree_skb(skb); 4378 } 4379 return size; 4380 4381 err_free: 4382 kfree_skb(skb); 4383 err: 4384 return -ENOMEM; 4385 } 4386 4387 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4388 { 4389 struct tcp_sock *tp = tcp_sk(sk); 4390 int eaten = -1; 4391 bool fragstolen = false; 4392 4393 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4394 goto drop; 4395 4396 skb_dst_drop(skb); 4397 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4398 4399 tcp_ecn_accept_cwr(tp, skb); 4400 4401 tp->rx_opt.dsack = 0; 4402 4403 /* Queue data for delivery to the user. 4404 * Packets in sequence go to the receive queue. 4405 * Out of sequence packets to the out_of_order_queue. 4406 */ 4407 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4408 if (tcp_receive_window(tp) == 0) 4409 goto out_of_window; 4410 4411 /* Ok. In sequence. In window. */ 4412 if (tp->ucopy.task == current && 4413 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4414 sock_owned_by_user(sk) && !tp->urg_data) { 4415 int chunk = min_t(unsigned int, skb->len, 4416 tp->ucopy.len); 4417 4418 __set_current_state(TASK_RUNNING); 4419 4420 local_bh_enable(); 4421 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4422 tp->ucopy.len -= chunk; 4423 tp->copied_seq += chunk; 4424 eaten = (chunk == skb->len); 4425 tcp_rcv_space_adjust(sk); 4426 } 4427 local_bh_disable(); 4428 } 4429 4430 if (eaten <= 0) { 4431 queue_and_out: 4432 if (eaten < 0 && 4433 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4434 goto drop; 4435 4436 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4437 } 4438 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4439 if (skb->len) 4440 tcp_event_data_recv(sk, skb); 4441 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4442 tcp_fin(sk); 4443 4444 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4445 tcp_ofo_queue(sk); 4446 4447 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4448 * gap in queue is filled. 4449 */ 4450 if (skb_queue_empty(&tp->out_of_order_queue)) 4451 inet_csk(sk)->icsk_ack.pingpong = 0; 4452 } 4453 4454 if (tp->rx_opt.num_sacks) 4455 tcp_sack_remove(tp); 4456 4457 tcp_fast_path_check(sk); 4458 4459 if (eaten > 0) 4460 kfree_skb_partial(skb, fragstolen); 4461 if (!sock_flag(sk, SOCK_DEAD)) 4462 sk->sk_data_ready(sk); 4463 return; 4464 } 4465 4466 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4467 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4469 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4470 4471 out_of_window: 4472 tcp_enter_quickack_mode(sk); 4473 inet_csk_schedule_ack(sk); 4474 drop: 4475 __kfree_skb(skb); 4476 return; 4477 } 4478 4479 /* Out of window. F.e. zero window probe. */ 4480 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4481 goto out_of_window; 4482 4483 tcp_enter_quickack_mode(sk); 4484 4485 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4486 /* Partial packet, seq < rcv_next < end_seq */ 4487 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4488 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4489 TCP_SKB_CB(skb)->end_seq); 4490 4491 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4492 4493 /* If window is closed, drop tail of packet. But after 4494 * remembering D-SACK for its head made in previous line. 4495 */ 4496 if (!tcp_receive_window(tp)) 4497 goto out_of_window; 4498 goto queue_and_out; 4499 } 4500 4501 tcp_data_queue_ofo(sk, skb); 4502 } 4503 4504 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4505 struct sk_buff_head *list) 4506 { 4507 struct sk_buff *next = NULL; 4508 4509 if (!skb_queue_is_last(list, skb)) 4510 next = skb_queue_next(list, skb); 4511 4512 __skb_unlink(skb, list); 4513 __kfree_skb(skb); 4514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4515 4516 return next; 4517 } 4518 4519 /* Collapse contiguous sequence of skbs head..tail with 4520 * sequence numbers start..end. 4521 * 4522 * If tail is NULL, this means until the end of the list. 4523 * 4524 * Segments with FIN/SYN are not collapsed (only because this 4525 * simplifies code) 4526 */ 4527 static void 4528 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4529 struct sk_buff *head, struct sk_buff *tail, 4530 u32 start, u32 end) 4531 { 4532 struct sk_buff *skb, *n; 4533 bool end_of_skbs; 4534 4535 /* First, check that queue is collapsible and find 4536 * the point where collapsing can be useful. */ 4537 skb = head; 4538 restart: 4539 end_of_skbs = true; 4540 skb_queue_walk_from_safe(list, skb, n) { 4541 if (skb == tail) 4542 break; 4543 /* No new bits? It is possible on ofo queue. */ 4544 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4545 skb = tcp_collapse_one(sk, skb, list); 4546 if (!skb) 4547 break; 4548 goto restart; 4549 } 4550 4551 /* The first skb to collapse is: 4552 * - not SYN/FIN and 4553 * - bloated or contains data before "start" or 4554 * overlaps to the next one. 4555 */ 4556 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4557 (tcp_win_from_space(skb->truesize) > skb->len || 4558 before(TCP_SKB_CB(skb)->seq, start))) { 4559 end_of_skbs = false; 4560 break; 4561 } 4562 4563 if (!skb_queue_is_last(list, skb)) { 4564 struct sk_buff *next = skb_queue_next(list, skb); 4565 if (next != tail && 4566 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4567 end_of_skbs = false; 4568 break; 4569 } 4570 } 4571 4572 /* Decided to skip this, advance start seq. */ 4573 start = TCP_SKB_CB(skb)->end_seq; 4574 } 4575 if (end_of_skbs || 4576 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4577 return; 4578 4579 while (before(start, end)) { 4580 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4581 struct sk_buff *nskb; 4582 4583 nskb = alloc_skb(copy, GFP_ATOMIC); 4584 if (!nskb) 4585 return; 4586 4587 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4588 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4589 __skb_queue_before(list, skb, nskb); 4590 skb_set_owner_r(nskb, sk); 4591 4592 /* Copy data, releasing collapsed skbs. */ 4593 while (copy > 0) { 4594 int offset = start - TCP_SKB_CB(skb)->seq; 4595 int size = TCP_SKB_CB(skb)->end_seq - start; 4596 4597 BUG_ON(offset < 0); 4598 if (size > 0) { 4599 size = min(copy, size); 4600 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4601 BUG(); 4602 TCP_SKB_CB(nskb)->end_seq += size; 4603 copy -= size; 4604 start += size; 4605 } 4606 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4607 skb = tcp_collapse_one(sk, skb, list); 4608 if (!skb || 4609 skb == tail || 4610 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4611 return; 4612 } 4613 } 4614 } 4615 } 4616 4617 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4618 * and tcp_collapse() them until all the queue is collapsed. 4619 */ 4620 static void tcp_collapse_ofo_queue(struct sock *sk) 4621 { 4622 struct tcp_sock *tp = tcp_sk(sk); 4623 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4624 struct sk_buff *head; 4625 u32 start, end; 4626 4627 if (skb == NULL) 4628 return; 4629 4630 start = TCP_SKB_CB(skb)->seq; 4631 end = TCP_SKB_CB(skb)->end_seq; 4632 head = skb; 4633 4634 for (;;) { 4635 struct sk_buff *next = NULL; 4636 4637 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4638 next = skb_queue_next(&tp->out_of_order_queue, skb); 4639 skb = next; 4640 4641 /* Segment is terminated when we see gap or when 4642 * we are at the end of all the queue. */ 4643 if (!skb || 4644 after(TCP_SKB_CB(skb)->seq, end) || 4645 before(TCP_SKB_CB(skb)->end_seq, start)) { 4646 tcp_collapse(sk, &tp->out_of_order_queue, 4647 head, skb, start, end); 4648 head = skb; 4649 if (!skb) 4650 break; 4651 /* Start new segment */ 4652 start = TCP_SKB_CB(skb)->seq; 4653 end = TCP_SKB_CB(skb)->end_seq; 4654 } else { 4655 if (before(TCP_SKB_CB(skb)->seq, start)) 4656 start = TCP_SKB_CB(skb)->seq; 4657 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4658 end = TCP_SKB_CB(skb)->end_seq; 4659 } 4660 } 4661 } 4662 4663 /* 4664 * Purge the out-of-order queue. 4665 * Return true if queue was pruned. 4666 */ 4667 static bool tcp_prune_ofo_queue(struct sock *sk) 4668 { 4669 struct tcp_sock *tp = tcp_sk(sk); 4670 bool res = false; 4671 4672 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4673 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4674 __skb_queue_purge(&tp->out_of_order_queue); 4675 4676 /* Reset SACK state. A conforming SACK implementation will 4677 * do the same at a timeout based retransmit. When a connection 4678 * is in a sad state like this, we care only about integrity 4679 * of the connection not performance. 4680 */ 4681 if (tp->rx_opt.sack_ok) 4682 tcp_sack_reset(&tp->rx_opt); 4683 sk_mem_reclaim(sk); 4684 res = true; 4685 } 4686 return res; 4687 } 4688 4689 /* Reduce allocated memory if we can, trying to get 4690 * the socket within its memory limits again. 4691 * 4692 * Return less than zero if we should start dropping frames 4693 * until the socket owning process reads some of the data 4694 * to stabilize the situation. 4695 */ 4696 static int tcp_prune_queue(struct sock *sk) 4697 { 4698 struct tcp_sock *tp = tcp_sk(sk); 4699 4700 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4701 4702 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4703 4704 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4705 tcp_clamp_window(sk); 4706 else if (sk_under_memory_pressure(sk)) 4707 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4708 4709 tcp_collapse_ofo_queue(sk); 4710 if (!skb_queue_empty(&sk->sk_receive_queue)) 4711 tcp_collapse(sk, &sk->sk_receive_queue, 4712 skb_peek(&sk->sk_receive_queue), 4713 NULL, 4714 tp->copied_seq, tp->rcv_nxt); 4715 sk_mem_reclaim(sk); 4716 4717 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4718 return 0; 4719 4720 /* Collapsing did not help, destructive actions follow. 4721 * This must not ever occur. */ 4722 4723 tcp_prune_ofo_queue(sk); 4724 4725 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4726 return 0; 4727 4728 /* If we are really being abused, tell the caller to silently 4729 * drop receive data on the floor. It will get retransmitted 4730 * and hopefully then we'll have sufficient space. 4731 */ 4732 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4733 4734 /* Massive buffer overcommit. */ 4735 tp->pred_flags = 0; 4736 return -1; 4737 } 4738 4739 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4740 { 4741 const struct tcp_sock *tp = tcp_sk(sk); 4742 4743 /* If the user specified a specific send buffer setting, do 4744 * not modify it. 4745 */ 4746 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4747 return false; 4748 4749 /* If we are under global TCP memory pressure, do not expand. */ 4750 if (sk_under_memory_pressure(sk)) 4751 return false; 4752 4753 /* If we are under soft global TCP memory pressure, do not expand. */ 4754 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4755 return false; 4756 4757 /* If we filled the congestion window, do not expand. */ 4758 if (tp->packets_out >= tp->snd_cwnd) 4759 return false; 4760 4761 return true; 4762 } 4763 4764 /* When incoming ACK allowed to free some skb from write_queue, 4765 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4766 * on the exit from tcp input handler. 4767 * 4768 * PROBLEM: sndbuf expansion does not work well with largesend. 4769 */ 4770 static void tcp_new_space(struct sock *sk) 4771 { 4772 struct tcp_sock *tp = tcp_sk(sk); 4773 4774 if (tcp_should_expand_sndbuf(sk)) { 4775 tcp_sndbuf_expand(sk); 4776 tp->snd_cwnd_stamp = tcp_time_stamp; 4777 } 4778 4779 sk->sk_write_space(sk); 4780 } 4781 4782 static void tcp_check_space(struct sock *sk) 4783 { 4784 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4785 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4786 if (sk->sk_socket && 4787 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4788 tcp_new_space(sk); 4789 } 4790 } 4791 4792 static inline void tcp_data_snd_check(struct sock *sk) 4793 { 4794 tcp_push_pending_frames(sk); 4795 tcp_check_space(sk); 4796 } 4797 4798 /* 4799 * Check if sending an ack is needed. 4800 */ 4801 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4802 { 4803 struct tcp_sock *tp = tcp_sk(sk); 4804 4805 /* More than one full frame received... */ 4806 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4807 /* ... and right edge of window advances far enough. 4808 * (tcp_recvmsg() will send ACK otherwise). Or... 4809 */ 4810 __tcp_select_window(sk) >= tp->rcv_wnd) || 4811 /* We ACK each frame or... */ 4812 tcp_in_quickack_mode(sk) || 4813 /* We have out of order data. */ 4814 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4815 /* Then ack it now */ 4816 tcp_send_ack(sk); 4817 } else { 4818 /* Else, send delayed ack. */ 4819 tcp_send_delayed_ack(sk); 4820 } 4821 } 4822 4823 static inline void tcp_ack_snd_check(struct sock *sk) 4824 { 4825 if (!inet_csk_ack_scheduled(sk)) { 4826 /* We sent a data segment already. */ 4827 return; 4828 } 4829 __tcp_ack_snd_check(sk, 1); 4830 } 4831 4832 /* 4833 * This routine is only called when we have urgent data 4834 * signaled. Its the 'slow' part of tcp_urg. It could be 4835 * moved inline now as tcp_urg is only called from one 4836 * place. We handle URGent data wrong. We have to - as 4837 * BSD still doesn't use the correction from RFC961. 4838 * For 1003.1g we should support a new option TCP_STDURG to permit 4839 * either form (or just set the sysctl tcp_stdurg). 4840 */ 4841 4842 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4843 { 4844 struct tcp_sock *tp = tcp_sk(sk); 4845 u32 ptr = ntohs(th->urg_ptr); 4846 4847 if (ptr && !sysctl_tcp_stdurg) 4848 ptr--; 4849 ptr += ntohl(th->seq); 4850 4851 /* Ignore urgent data that we've already seen and read. */ 4852 if (after(tp->copied_seq, ptr)) 4853 return; 4854 4855 /* Do not replay urg ptr. 4856 * 4857 * NOTE: interesting situation not covered by specs. 4858 * Misbehaving sender may send urg ptr, pointing to segment, 4859 * which we already have in ofo queue. We are not able to fetch 4860 * such data and will stay in TCP_URG_NOTYET until will be eaten 4861 * by recvmsg(). Seems, we are not obliged to handle such wicked 4862 * situations. But it is worth to think about possibility of some 4863 * DoSes using some hypothetical application level deadlock. 4864 */ 4865 if (before(ptr, tp->rcv_nxt)) 4866 return; 4867 4868 /* Do we already have a newer (or duplicate) urgent pointer? */ 4869 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4870 return; 4871 4872 /* Tell the world about our new urgent pointer. */ 4873 sk_send_sigurg(sk); 4874 4875 /* We may be adding urgent data when the last byte read was 4876 * urgent. To do this requires some care. We cannot just ignore 4877 * tp->copied_seq since we would read the last urgent byte again 4878 * as data, nor can we alter copied_seq until this data arrives 4879 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4880 * 4881 * NOTE. Double Dutch. Rendering to plain English: author of comment 4882 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4883 * and expect that both A and B disappear from stream. This is _wrong_. 4884 * Though this happens in BSD with high probability, this is occasional. 4885 * Any application relying on this is buggy. Note also, that fix "works" 4886 * only in this artificial test. Insert some normal data between A and B and we will 4887 * decline of BSD again. Verdict: it is better to remove to trap 4888 * buggy users. 4889 */ 4890 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4891 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4892 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4893 tp->copied_seq++; 4894 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4895 __skb_unlink(skb, &sk->sk_receive_queue); 4896 __kfree_skb(skb); 4897 } 4898 } 4899 4900 tp->urg_data = TCP_URG_NOTYET; 4901 tp->urg_seq = ptr; 4902 4903 /* Disable header prediction. */ 4904 tp->pred_flags = 0; 4905 } 4906 4907 /* This is the 'fast' part of urgent handling. */ 4908 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4909 { 4910 struct tcp_sock *tp = tcp_sk(sk); 4911 4912 /* Check if we get a new urgent pointer - normally not. */ 4913 if (th->urg) 4914 tcp_check_urg(sk, th); 4915 4916 /* Do we wait for any urgent data? - normally not... */ 4917 if (tp->urg_data == TCP_URG_NOTYET) { 4918 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4919 th->syn; 4920 4921 /* Is the urgent pointer pointing into this packet? */ 4922 if (ptr < skb->len) { 4923 u8 tmp; 4924 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4925 BUG(); 4926 tp->urg_data = TCP_URG_VALID | tmp; 4927 if (!sock_flag(sk, SOCK_DEAD)) 4928 sk->sk_data_ready(sk); 4929 } 4930 } 4931 } 4932 4933 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4934 { 4935 struct tcp_sock *tp = tcp_sk(sk); 4936 int chunk = skb->len - hlen; 4937 int err; 4938 4939 local_bh_enable(); 4940 if (skb_csum_unnecessary(skb)) 4941 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4942 else 4943 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4944 tp->ucopy.iov); 4945 4946 if (!err) { 4947 tp->ucopy.len -= chunk; 4948 tp->copied_seq += chunk; 4949 tcp_rcv_space_adjust(sk); 4950 } 4951 4952 local_bh_disable(); 4953 return err; 4954 } 4955 4956 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4957 struct sk_buff *skb) 4958 { 4959 __sum16 result; 4960 4961 if (sock_owned_by_user(sk)) { 4962 local_bh_enable(); 4963 result = __tcp_checksum_complete(skb); 4964 local_bh_disable(); 4965 } else { 4966 result = __tcp_checksum_complete(skb); 4967 } 4968 return result; 4969 } 4970 4971 static inline bool tcp_checksum_complete_user(struct sock *sk, 4972 struct sk_buff *skb) 4973 { 4974 return !skb_csum_unnecessary(skb) && 4975 __tcp_checksum_complete_user(sk, skb); 4976 } 4977 4978 /* Does PAWS and seqno based validation of an incoming segment, flags will 4979 * play significant role here. 4980 */ 4981 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 4982 const struct tcphdr *th, int syn_inerr) 4983 { 4984 struct tcp_sock *tp = tcp_sk(sk); 4985 4986 /* RFC1323: H1. Apply PAWS check first. */ 4987 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4988 tcp_paws_discard(sk, skb)) { 4989 if (!th->rst) { 4990 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 4991 tcp_send_dupack(sk, skb); 4992 goto discard; 4993 } 4994 /* Reset is accepted even if it did not pass PAWS. */ 4995 } 4996 4997 /* Step 1: check sequence number */ 4998 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4999 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5000 * (RST) segments are validated by checking their SEQ-fields." 5001 * And page 69: "If an incoming segment is not acceptable, 5002 * an acknowledgment should be sent in reply (unless the RST 5003 * bit is set, if so drop the segment and return)". 5004 */ 5005 if (!th->rst) { 5006 if (th->syn) 5007 goto syn_challenge; 5008 tcp_send_dupack(sk, skb); 5009 } 5010 goto discard; 5011 } 5012 5013 /* Step 2: check RST bit */ 5014 if (th->rst) { 5015 /* RFC 5961 3.2 : 5016 * If sequence number exactly matches RCV.NXT, then 5017 * RESET the connection 5018 * else 5019 * Send a challenge ACK 5020 */ 5021 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5022 tcp_reset(sk); 5023 else 5024 tcp_send_challenge_ack(sk); 5025 goto discard; 5026 } 5027 5028 /* step 3: check security and precedence [ignored] */ 5029 5030 /* step 4: Check for a SYN 5031 * RFC 5691 4.2 : Send a challenge ack 5032 */ 5033 if (th->syn) { 5034 syn_challenge: 5035 if (syn_inerr) 5036 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5037 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5038 tcp_send_challenge_ack(sk); 5039 goto discard; 5040 } 5041 5042 return true; 5043 5044 discard: 5045 __kfree_skb(skb); 5046 return false; 5047 } 5048 5049 /* 5050 * TCP receive function for the ESTABLISHED state. 5051 * 5052 * It is split into a fast path and a slow path. The fast path is 5053 * disabled when: 5054 * - A zero window was announced from us - zero window probing 5055 * is only handled properly in the slow path. 5056 * - Out of order segments arrived. 5057 * - Urgent data is expected. 5058 * - There is no buffer space left 5059 * - Unexpected TCP flags/window values/header lengths are received 5060 * (detected by checking the TCP header against pred_flags) 5061 * - Data is sent in both directions. Fast path only supports pure senders 5062 * or pure receivers (this means either the sequence number or the ack 5063 * value must stay constant) 5064 * - Unexpected TCP option. 5065 * 5066 * When these conditions are not satisfied it drops into a standard 5067 * receive procedure patterned after RFC793 to handle all cases. 5068 * The first three cases are guaranteed by proper pred_flags setting, 5069 * the rest is checked inline. Fast processing is turned on in 5070 * tcp_data_queue when everything is OK. 5071 */ 5072 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5073 const struct tcphdr *th, unsigned int len) 5074 { 5075 struct tcp_sock *tp = tcp_sk(sk); 5076 5077 if (unlikely(sk->sk_rx_dst == NULL)) 5078 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5079 /* 5080 * Header prediction. 5081 * The code loosely follows the one in the famous 5082 * "30 instruction TCP receive" Van Jacobson mail. 5083 * 5084 * Van's trick is to deposit buffers into socket queue 5085 * on a device interrupt, to call tcp_recv function 5086 * on the receive process context and checksum and copy 5087 * the buffer to user space. smart... 5088 * 5089 * Our current scheme is not silly either but we take the 5090 * extra cost of the net_bh soft interrupt processing... 5091 * We do checksum and copy also but from device to kernel. 5092 */ 5093 5094 tp->rx_opt.saw_tstamp = 0; 5095 5096 /* pred_flags is 0xS?10 << 16 + snd_wnd 5097 * if header_prediction is to be made 5098 * 'S' will always be tp->tcp_header_len >> 2 5099 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5100 * turn it off (when there are holes in the receive 5101 * space for instance) 5102 * PSH flag is ignored. 5103 */ 5104 5105 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5106 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5107 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5108 int tcp_header_len = tp->tcp_header_len; 5109 5110 /* Timestamp header prediction: tcp_header_len 5111 * is automatically equal to th->doff*4 due to pred_flags 5112 * match. 5113 */ 5114 5115 /* Check timestamp */ 5116 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5117 /* No? Slow path! */ 5118 if (!tcp_parse_aligned_timestamp(tp, th)) 5119 goto slow_path; 5120 5121 /* If PAWS failed, check it more carefully in slow path */ 5122 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5123 goto slow_path; 5124 5125 /* DO NOT update ts_recent here, if checksum fails 5126 * and timestamp was corrupted part, it will result 5127 * in a hung connection since we will drop all 5128 * future packets due to the PAWS test. 5129 */ 5130 } 5131 5132 if (len <= tcp_header_len) { 5133 /* Bulk data transfer: sender */ 5134 if (len == tcp_header_len) { 5135 /* Predicted packet is in window by definition. 5136 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5137 * Hence, check seq<=rcv_wup reduces to: 5138 */ 5139 if (tcp_header_len == 5140 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5141 tp->rcv_nxt == tp->rcv_wup) 5142 tcp_store_ts_recent(tp); 5143 5144 /* We know that such packets are checksummed 5145 * on entry. 5146 */ 5147 tcp_ack(sk, skb, 0); 5148 __kfree_skb(skb); 5149 tcp_data_snd_check(sk); 5150 return; 5151 } else { /* Header too small */ 5152 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5153 goto discard; 5154 } 5155 } else { 5156 int eaten = 0; 5157 bool fragstolen = false; 5158 5159 if (tp->ucopy.task == current && 5160 tp->copied_seq == tp->rcv_nxt && 5161 len - tcp_header_len <= tp->ucopy.len && 5162 sock_owned_by_user(sk)) { 5163 __set_current_state(TASK_RUNNING); 5164 5165 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5166 /* Predicted packet is in window by definition. 5167 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5168 * Hence, check seq<=rcv_wup reduces to: 5169 */ 5170 if (tcp_header_len == 5171 (sizeof(struct tcphdr) + 5172 TCPOLEN_TSTAMP_ALIGNED) && 5173 tp->rcv_nxt == tp->rcv_wup) 5174 tcp_store_ts_recent(tp); 5175 5176 tcp_rcv_rtt_measure_ts(sk, skb); 5177 5178 __skb_pull(skb, tcp_header_len); 5179 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5180 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5181 eaten = 1; 5182 } 5183 } 5184 if (!eaten) { 5185 if (tcp_checksum_complete_user(sk, skb)) 5186 goto csum_error; 5187 5188 if ((int)skb->truesize > sk->sk_forward_alloc) 5189 goto step5; 5190 5191 /* Predicted packet is in window by definition. 5192 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5193 * Hence, check seq<=rcv_wup reduces to: 5194 */ 5195 if (tcp_header_len == 5196 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5197 tp->rcv_nxt == tp->rcv_wup) 5198 tcp_store_ts_recent(tp); 5199 5200 tcp_rcv_rtt_measure_ts(sk, skb); 5201 5202 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5203 5204 /* Bulk data transfer: receiver */ 5205 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5206 &fragstolen); 5207 } 5208 5209 tcp_event_data_recv(sk, skb); 5210 5211 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5212 /* Well, only one small jumplet in fast path... */ 5213 tcp_ack(sk, skb, FLAG_DATA); 5214 tcp_data_snd_check(sk); 5215 if (!inet_csk_ack_scheduled(sk)) 5216 goto no_ack; 5217 } 5218 5219 __tcp_ack_snd_check(sk, 0); 5220 no_ack: 5221 if (eaten) 5222 kfree_skb_partial(skb, fragstolen); 5223 sk->sk_data_ready(sk); 5224 return; 5225 } 5226 } 5227 5228 slow_path: 5229 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5230 goto csum_error; 5231 5232 if (!th->ack && !th->rst) 5233 goto discard; 5234 5235 /* 5236 * Standard slow path. 5237 */ 5238 5239 if (!tcp_validate_incoming(sk, skb, th, 1)) 5240 return; 5241 5242 step5: 5243 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5244 goto discard; 5245 5246 tcp_rcv_rtt_measure_ts(sk, skb); 5247 5248 /* Process urgent data. */ 5249 tcp_urg(sk, skb, th); 5250 5251 /* step 7: process the segment text */ 5252 tcp_data_queue(sk, skb); 5253 5254 tcp_data_snd_check(sk); 5255 tcp_ack_snd_check(sk); 5256 return; 5257 5258 csum_error: 5259 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5260 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5261 5262 discard: 5263 __kfree_skb(skb); 5264 } 5265 EXPORT_SYMBOL(tcp_rcv_established); 5266 5267 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5268 { 5269 struct tcp_sock *tp = tcp_sk(sk); 5270 struct inet_connection_sock *icsk = inet_csk(sk); 5271 5272 tcp_set_state(sk, TCP_ESTABLISHED); 5273 5274 if (skb != NULL) { 5275 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5276 security_inet_conn_established(sk, skb); 5277 } 5278 5279 /* Make sure socket is routed, for correct metrics. */ 5280 icsk->icsk_af_ops->rebuild_header(sk); 5281 5282 tcp_init_metrics(sk); 5283 5284 tcp_init_congestion_control(sk); 5285 5286 /* Prevent spurious tcp_cwnd_restart() on first data 5287 * packet. 5288 */ 5289 tp->lsndtime = tcp_time_stamp; 5290 5291 tcp_init_buffer_space(sk); 5292 5293 if (sock_flag(sk, SOCK_KEEPOPEN)) 5294 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5295 5296 if (!tp->rx_opt.snd_wscale) 5297 __tcp_fast_path_on(tp, tp->snd_wnd); 5298 else 5299 tp->pred_flags = 0; 5300 5301 if (!sock_flag(sk, SOCK_DEAD)) { 5302 sk->sk_state_change(sk); 5303 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5304 } 5305 } 5306 5307 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5308 struct tcp_fastopen_cookie *cookie) 5309 { 5310 struct tcp_sock *tp = tcp_sk(sk); 5311 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5312 u16 mss = tp->rx_opt.mss_clamp; 5313 bool syn_drop; 5314 5315 if (mss == tp->rx_opt.user_mss) { 5316 struct tcp_options_received opt; 5317 5318 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5319 tcp_clear_options(&opt); 5320 opt.user_mss = opt.mss_clamp = 0; 5321 tcp_parse_options(synack, &opt, 0, NULL); 5322 mss = opt.mss_clamp; 5323 } 5324 5325 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5326 cookie->len = -1; 5327 5328 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5329 * the remote receives only the retransmitted (regular) SYNs: either 5330 * the original SYN-data or the corresponding SYN-ACK is lost. 5331 */ 5332 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5333 5334 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5335 5336 if (data) { /* Retransmit unacked data in SYN */ 5337 tcp_for_write_queue_from(data, sk) { 5338 if (data == tcp_send_head(sk) || 5339 __tcp_retransmit_skb(sk, data)) 5340 break; 5341 } 5342 tcp_rearm_rto(sk); 5343 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5344 return true; 5345 } 5346 tp->syn_data_acked = tp->syn_data; 5347 if (tp->syn_data_acked) 5348 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5349 return false; 5350 } 5351 5352 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5353 const struct tcphdr *th, unsigned int len) 5354 { 5355 struct inet_connection_sock *icsk = inet_csk(sk); 5356 struct tcp_sock *tp = tcp_sk(sk); 5357 struct tcp_fastopen_cookie foc = { .len = -1 }; 5358 int saved_clamp = tp->rx_opt.mss_clamp; 5359 5360 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5361 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5362 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5363 5364 if (th->ack) { 5365 /* rfc793: 5366 * "If the state is SYN-SENT then 5367 * first check the ACK bit 5368 * If the ACK bit is set 5369 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5370 * a reset (unless the RST bit is set, if so drop 5371 * the segment and return)" 5372 */ 5373 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5374 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5375 goto reset_and_undo; 5376 5377 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5378 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5379 tcp_time_stamp)) { 5380 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5381 goto reset_and_undo; 5382 } 5383 5384 /* Now ACK is acceptable. 5385 * 5386 * "If the RST bit is set 5387 * If the ACK was acceptable then signal the user "error: 5388 * connection reset", drop the segment, enter CLOSED state, 5389 * delete TCB, and return." 5390 */ 5391 5392 if (th->rst) { 5393 tcp_reset(sk); 5394 goto discard; 5395 } 5396 5397 /* rfc793: 5398 * "fifth, if neither of the SYN or RST bits is set then 5399 * drop the segment and return." 5400 * 5401 * See note below! 5402 * --ANK(990513) 5403 */ 5404 if (!th->syn) 5405 goto discard_and_undo; 5406 5407 /* rfc793: 5408 * "If the SYN bit is on ... 5409 * are acceptable then ... 5410 * (our SYN has been ACKed), change the connection 5411 * state to ESTABLISHED..." 5412 */ 5413 5414 tcp_ecn_rcv_synack(tp, th); 5415 5416 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5417 tcp_ack(sk, skb, FLAG_SLOWPATH); 5418 5419 /* Ok.. it's good. Set up sequence numbers and 5420 * move to established. 5421 */ 5422 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5423 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5424 5425 /* RFC1323: The window in SYN & SYN/ACK segments is 5426 * never scaled. 5427 */ 5428 tp->snd_wnd = ntohs(th->window); 5429 5430 if (!tp->rx_opt.wscale_ok) { 5431 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5432 tp->window_clamp = min(tp->window_clamp, 65535U); 5433 } 5434 5435 if (tp->rx_opt.saw_tstamp) { 5436 tp->rx_opt.tstamp_ok = 1; 5437 tp->tcp_header_len = 5438 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5439 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5440 tcp_store_ts_recent(tp); 5441 } else { 5442 tp->tcp_header_len = sizeof(struct tcphdr); 5443 } 5444 5445 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5446 tcp_enable_fack(tp); 5447 5448 tcp_mtup_init(sk); 5449 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5450 tcp_initialize_rcv_mss(sk); 5451 5452 /* Remember, tcp_poll() does not lock socket! 5453 * Change state from SYN-SENT only after copied_seq 5454 * is initialized. */ 5455 tp->copied_seq = tp->rcv_nxt; 5456 5457 smp_mb(); 5458 5459 tcp_finish_connect(sk, skb); 5460 5461 if ((tp->syn_fastopen || tp->syn_data) && 5462 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5463 return -1; 5464 5465 if (sk->sk_write_pending || 5466 icsk->icsk_accept_queue.rskq_defer_accept || 5467 icsk->icsk_ack.pingpong) { 5468 /* Save one ACK. Data will be ready after 5469 * several ticks, if write_pending is set. 5470 * 5471 * It may be deleted, but with this feature tcpdumps 5472 * look so _wonderfully_ clever, that I was not able 5473 * to stand against the temptation 8) --ANK 5474 */ 5475 inet_csk_schedule_ack(sk); 5476 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5477 tcp_enter_quickack_mode(sk); 5478 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5479 TCP_DELACK_MAX, TCP_RTO_MAX); 5480 5481 discard: 5482 __kfree_skb(skb); 5483 return 0; 5484 } else { 5485 tcp_send_ack(sk); 5486 } 5487 return -1; 5488 } 5489 5490 /* No ACK in the segment */ 5491 5492 if (th->rst) { 5493 /* rfc793: 5494 * "If the RST bit is set 5495 * 5496 * Otherwise (no ACK) drop the segment and return." 5497 */ 5498 5499 goto discard_and_undo; 5500 } 5501 5502 /* PAWS check. */ 5503 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5504 tcp_paws_reject(&tp->rx_opt, 0)) 5505 goto discard_and_undo; 5506 5507 if (th->syn) { 5508 /* We see SYN without ACK. It is attempt of 5509 * simultaneous connect with crossed SYNs. 5510 * Particularly, it can be connect to self. 5511 */ 5512 tcp_set_state(sk, TCP_SYN_RECV); 5513 5514 if (tp->rx_opt.saw_tstamp) { 5515 tp->rx_opt.tstamp_ok = 1; 5516 tcp_store_ts_recent(tp); 5517 tp->tcp_header_len = 5518 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5519 } else { 5520 tp->tcp_header_len = sizeof(struct tcphdr); 5521 } 5522 5523 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5524 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5525 5526 /* RFC1323: The window in SYN & SYN/ACK segments is 5527 * never scaled. 5528 */ 5529 tp->snd_wnd = ntohs(th->window); 5530 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5531 tp->max_window = tp->snd_wnd; 5532 5533 tcp_ecn_rcv_syn(tp, th); 5534 5535 tcp_mtup_init(sk); 5536 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5537 tcp_initialize_rcv_mss(sk); 5538 5539 tcp_send_synack(sk); 5540 #if 0 5541 /* Note, we could accept data and URG from this segment. 5542 * There are no obstacles to make this (except that we must 5543 * either change tcp_recvmsg() to prevent it from returning data 5544 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5545 * 5546 * However, if we ignore data in ACKless segments sometimes, 5547 * we have no reasons to accept it sometimes. 5548 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5549 * is not flawless. So, discard packet for sanity. 5550 * Uncomment this return to process the data. 5551 */ 5552 return -1; 5553 #else 5554 goto discard; 5555 #endif 5556 } 5557 /* "fifth, if neither of the SYN or RST bits is set then 5558 * drop the segment and return." 5559 */ 5560 5561 discard_and_undo: 5562 tcp_clear_options(&tp->rx_opt); 5563 tp->rx_opt.mss_clamp = saved_clamp; 5564 goto discard; 5565 5566 reset_and_undo: 5567 tcp_clear_options(&tp->rx_opt); 5568 tp->rx_opt.mss_clamp = saved_clamp; 5569 return 1; 5570 } 5571 5572 /* 5573 * This function implements the receiving procedure of RFC 793 for 5574 * all states except ESTABLISHED and TIME_WAIT. 5575 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5576 * address independent. 5577 */ 5578 5579 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5580 const struct tcphdr *th, unsigned int len) 5581 { 5582 struct tcp_sock *tp = tcp_sk(sk); 5583 struct inet_connection_sock *icsk = inet_csk(sk); 5584 struct request_sock *req; 5585 int queued = 0; 5586 bool acceptable; 5587 u32 synack_stamp; 5588 5589 tp->rx_opt.saw_tstamp = 0; 5590 5591 switch (sk->sk_state) { 5592 case TCP_CLOSE: 5593 goto discard; 5594 5595 case TCP_LISTEN: 5596 if (th->ack) 5597 return 1; 5598 5599 if (th->rst) 5600 goto discard; 5601 5602 if (th->syn) { 5603 if (th->fin) 5604 goto discard; 5605 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5606 return 1; 5607 5608 /* Now we have several options: In theory there is 5609 * nothing else in the frame. KA9Q has an option to 5610 * send data with the syn, BSD accepts data with the 5611 * syn up to the [to be] advertised window and 5612 * Solaris 2.1 gives you a protocol error. For now 5613 * we just ignore it, that fits the spec precisely 5614 * and avoids incompatibilities. It would be nice in 5615 * future to drop through and process the data. 5616 * 5617 * Now that TTCP is starting to be used we ought to 5618 * queue this data. 5619 * But, this leaves one open to an easy denial of 5620 * service attack, and SYN cookies can't defend 5621 * against this problem. So, we drop the data 5622 * in the interest of security over speed unless 5623 * it's still in use. 5624 */ 5625 kfree_skb(skb); 5626 return 0; 5627 } 5628 goto discard; 5629 5630 case TCP_SYN_SENT: 5631 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5632 if (queued >= 0) 5633 return queued; 5634 5635 /* Do step6 onward by hand. */ 5636 tcp_urg(sk, skb, th); 5637 __kfree_skb(skb); 5638 tcp_data_snd_check(sk); 5639 return 0; 5640 } 5641 5642 req = tp->fastopen_rsk; 5643 if (req != NULL) { 5644 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5645 sk->sk_state != TCP_FIN_WAIT1); 5646 5647 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5648 goto discard; 5649 } 5650 5651 if (!th->ack && !th->rst) 5652 goto discard; 5653 5654 if (!tcp_validate_incoming(sk, skb, th, 0)) 5655 return 0; 5656 5657 /* step 5: check the ACK field */ 5658 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5659 FLAG_UPDATE_TS_RECENT) > 0; 5660 5661 switch (sk->sk_state) { 5662 case TCP_SYN_RECV: 5663 if (!acceptable) 5664 return 1; 5665 5666 /* Once we leave TCP_SYN_RECV, we no longer need req 5667 * so release it. 5668 */ 5669 if (req) { 5670 synack_stamp = tcp_rsk(req)->snt_synack; 5671 tp->total_retrans = req->num_retrans; 5672 reqsk_fastopen_remove(sk, req, false); 5673 } else { 5674 synack_stamp = tp->lsndtime; 5675 /* Make sure socket is routed, for correct metrics. */ 5676 icsk->icsk_af_ops->rebuild_header(sk); 5677 tcp_init_congestion_control(sk); 5678 5679 tcp_mtup_init(sk); 5680 tp->copied_seq = tp->rcv_nxt; 5681 tcp_init_buffer_space(sk); 5682 } 5683 smp_mb(); 5684 tcp_set_state(sk, TCP_ESTABLISHED); 5685 sk->sk_state_change(sk); 5686 5687 /* Note, that this wakeup is only for marginal crossed SYN case. 5688 * Passively open sockets are not waked up, because 5689 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5690 */ 5691 if (sk->sk_socket) 5692 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5693 5694 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5695 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5696 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5697 tcp_synack_rtt_meas(sk, synack_stamp); 5698 5699 if (tp->rx_opt.tstamp_ok) 5700 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5701 5702 if (req) { 5703 /* Re-arm the timer because data may have been sent out. 5704 * This is similar to the regular data transmission case 5705 * when new data has just been ack'ed. 5706 * 5707 * (TFO) - we could try to be more aggressive and 5708 * retransmitting any data sooner based on when they 5709 * are sent out. 5710 */ 5711 tcp_rearm_rto(sk); 5712 } else 5713 tcp_init_metrics(sk); 5714 5715 tcp_update_pacing_rate(sk); 5716 5717 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5718 tp->lsndtime = tcp_time_stamp; 5719 5720 tcp_initialize_rcv_mss(sk); 5721 tcp_fast_path_on(tp); 5722 break; 5723 5724 case TCP_FIN_WAIT1: { 5725 struct dst_entry *dst; 5726 int tmo; 5727 5728 /* If we enter the TCP_FIN_WAIT1 state and we are a 5729 * Fast Open socket and this is the first acceptable 5730 * ACK we have received, this would have acknowledged 5731 * our SYNACK so stop the SYNACK timer. 5732 */ 5733 if (req != NULL) { 5734 /* Return RST if ack_seq is invalid. 5735 * Note that RFC793 only says to generate a 5736 * DUPACK for it but for TCP Fast Open it seems 5737 * better to treat this case like TCP_SYN_RECV 5738 * above. 5739 */ 5740 if (!acceptable) 5741 return 1; 5742 /* We no longer need the request sock. */ 5743 reqsk_fastopen_remove(sk, req, false); 5744 tcp_rearm_rto(sk); 5745 } 5746 if (tp->snd_una != tp->write_seq) 5747 break; 5748 5749 tcp_set_state(sk, TCP_FIN_WAIT2); 5750 sk->sk_shutdown |= SEND_SHUTDOWN; 5751 5752 dst = __sk_dst_get(sk); 5753 if (dst) 5754 dst_confirm(dst); 5755 5756 if (!sock_flag(sk, SOCK_DEAD)) { 5757 /* Wake up lingering close() */ 5758 sk->sk_state_change(sk); 5759 break; 5760 } 5761 5762 if (tp->linger2 < 0 || 5763 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5764 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5765 tcp_done(sk); 5766 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5767 return 1; 5768 } 5769 5770 tmo = tcp_fin_time(sk); 5771 if (tmo > TCP_TIMEWAIT_LEN) { 5772 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5773 } else if (th->fin || sock_owned_by_user(sk)) { 5774 /* Bad case. We could lose such FIN otherwise. 5775 * It is not a big problem, but it looks confusing 5776 * and not so rare event. We still can lose it now, 5777 * if it spins in bh_lock_sock(), but it is really 5778 * marginal case. 5779 */ 5780 inet_csk_reset_keepalive_timer(sk, tmo); 5781 } else { 5782 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5783 goto discard; 5784 } 5785 break; 5786 } 5787 5788 case TCP_CLOSING: 5789 if (tp->snd_una == tp->write_seq) { 5790 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5791 goto discard; 5792 } 5793 break; 5794 5795 case TCP_LAST_ACK: 5796 if (tp->snd_una == tp->write_seq) { 5797 tcp_update_metrics(sk); 5798 tcp_done(sk); 5799 goto discard; 5800 } 5801 break; 5802 } 5803 5804 /* step 6: check the URG bit */ 5805 tcp_urg(sk, skb, th); 5806 5807 /* step 7: process the segment text */ 5808 switch (sk->sk_state) { 5809 case TCP_CLOSE_WAIT: 5810 case TCP_CLOSING: 5811 case TCP_LAST_ACK: 5812 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5813 break; 5814 case TCP_FIN_WAIT1: 5815 case TCP_FIN_WAIT2: 5816 /* RFC 793 says to queue data in these states, 5817 * RFC 1122 says we MUST send a reset. 5818 * BSD 4.4 also does reset. 5819 */ 5820 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5821 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5822 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5823 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5824 tcp_reset(sk); 5825 return 1; 5826 } 5827 } 5828 /* Fall through */ 5829 case TCP_ESTABLISHED: 5830 tcp_data_queue(sk, skb); 5831 queued = 1; 5832 break; 5833 } 5834 5835 /* tcp_data could move socket to TIME-WAIT */ 5836 if (sk->sk_state != TCP_CLOSE) { 5837 tcp_data_snd_check(sk); 5838 tcp_ack_snd_check(sk); 5839 } 5840 5841 if (!queued) { 5842 discard: 5843 __kfree_skb(skb); 5844 } 5845 return 0; 5846 } 5847 EXPORT_SYMBOL(tcp_rcv_state_process); 5848 5849 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5850 { 5851 struct inet_request_sock *ireq = inet_rsk(req); 5852 5853 if (family == AF_INET) 5854 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"), 5855 &ireq->ir_rmt_addr, port); 5856 #if IS_ENABLED(CONFIG_IPV6) 5857 else if (family == AF_INET6) 5858 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"), 5859 &ireq->ir_v6_rmt_addr, port); 5860 #endif 5861 } 5862 5863 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5864 * 5865 * If we receive a SYN packet with these bits set, it means a 5866 * network is playing bad games with TOS bits. In order to 5867 * avoid possible false congestion notifications, we disable 5868 * TCP ECN negociation. 5869 * 5870 * Exception: tcp_ca wants ECN. This is required for DCTCP 5871 * congestion control; it requires setting ECT on all packets, 5872 * including SYN. We inverse the test in this case: If our 5873 * local socket wants ECN, but peer only set ece/cwr (but not 5874 * ECT in IP header) its probably a non-DCTCP aware sender. 5875 */ 5876 static void tcp_ecn_create_request(struct request_sock *req, 5877 const struct sk_buff *skb, 5878 const struct sock *listen_sk) 5879 { 5880 const struct tcphdr *th = tcp_hdr(skb); 5881 const struct net *net = sock_net(listen_sk); 5882 bool th_ecn = th->ece && th->cwr; 5883 bool ect, need_ecn; 5884 5885 if (!th_ecn) 5886 return; 5887 5888 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5889 need_ecn = tcp_ca_needs_ecn(listen_sk); 5890 5891 if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn) 5892 inet_rsk(req)->ecn_ok = 1; 5893 else if (ect && need_ecn) 5894 inet_rsk(req)->ecn_ok = 1; 5895 } 5896 5897 int tcp_conn_request(struct request_sock_ops *rsk_ops, 5898 const struct tcp_request_sock_ops *af_ops, 5899 struct sock *sk, struct sk_buff *skb) 5900 { 5901 struct tcp_options_received tmp_opt; 5902 struct request_sock *req; 5903 struct tcp_sock *tp = tcp_sk(sk); 5904 struct dst_entry *dst = NULL; 5905 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 5906 bool want_cookie = false, fastopen; 5907 struct flowi fl; 5908 struct tcp_fastopen_cookie foc = { .len = -1 }; 5909 int err; 5910 5911 5912 /* TW buckets are converted to open requests without 5913 * limitations, they conserve resources and peer is 5914 * evidently real one. 5915 */ 5916 if ((sysctl_tcp_syncookies == 2 || 5917 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 5918 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 5919 if (!want_cookie) 5920 goto drop; 5921 } 5922 5923 5924 /* Accept backlog is full. If we have already queued enough 5925 * of warm entries in syn queue, drop request. It is better than 5926 * clogging syn queue with openreqs with exponentially increasing 5927 * timeout. 5928 */ 5929 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 5930 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 5931 goto drop; 5932 } 5933 5934 req = inet_reqsk_alloc(rsk_ops); 5935 if (!req) 5936 goto drop; 5937 5938 tcp_rsk(req)->af_specific = af_ops; 5939 5940 tcp_clear_options(&tmp_opt); 5941 tmp_opt.mss_clamp = af_ops->mss_clamp; 5942 tmp_opt.user_mss = tp->rx_opt.user_mss; 5943 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 5944 5945 if (want_cookie && !tmp_opt.saw_tstamp) 5946 tcp_clear_options(&tmp_opt); 5947 5948 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 5949 tcp_openreq_init(req, &tmp_opt, skb, sk); 5950 5951 af_ops->init_req(req, sk, skb); 5952 5953 if (security_inet_conn_request(sk, skb, req)) 5954 goto drop_and_free; 5955 5956 if (!want_cookie || tmp_opt.tstamp_ok) 5957 tcp_ecn_create_request(req, skb, sk); 5958 5959 if (want_cookie) { 5960 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 5961 req->cookie_ts = tmp_opt.tstamp_ok; 5962 } else if (!isn) { 5963 /* VJ's idea. We save last timestamp seen 5964 * from the destination in peer table, when entering 5965 * state TIME-WAIT, and check against it before 5966 * accepting new connection request. 5967 * 5968 * If "isn" is not zero, this request hit alive 5969 * timewait bucket, so that all the necessary checks 5970 * are made in the function processing timewait state. 5971 */ 5972 if (tcp_death_row.sysctl_tw_recycle) { 5973 bool strict; 5974 5975 dst = af_ops->route_req(sk, &fl, req, &strict); 5976 5977 if (dst && strict && 5978 !tcp_peer_is_proven(req, dst, true, 5979 tmp_opt.saw_tstamp)) { 5980 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 5981 goto drop_and_release; 5982 } 5983 } 5984 /* Kill the following clause, if you dislike this way. */ 5985 else if (!sysctl_tcp_syncookies && 5986 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 5987 (sysctl_max_syn_backlog >> 2)) && 5988 !tcp_peer_is_proven(req, dst, false, 5989 tmp_opt.saw_tstamp)) { 5990 /* Without syncookies last quarter of 5991 * backlog is filled with destinations, 5992 * proven to be alive. 5993 * It means that we continue to communicate 5994 * to destinations, already remembered 5995 * to the moment of synflood. 5996 */ 5997 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 5998 rsk_ops->family); 5999 goto drop_and_release; 6000 } 6001 6002 isn = af_ops->init_seq(skb); 6003 } 6004 if (!dst) { 6005 dst = af_ops->route_req(sk, &fl, req, NULL); 6006 if (!dst) 6007 goto drop_and_free; 6008 } 6009 6010 tcp_rsk(req)->snt_isn = isn; 6011 tcp_openreq_init_rwin(req, sk, dst); 6012 fastopen = !want_cookie && 6013 tcp_try_fastopen(sk, skb, req, &foc, dst); 6014 err = af_ops->send_synack(sk, dst, &fl, req, 6015 skb_get_queue_mapping(skb), &foc); 6016 if (!fastopen) { 6017 if (err || want_cookie) 6018 goto drop_and_free; 6019 6020 tcp_rsk(req)->listener = NULL; 6021 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6022 } 6023 6024 return 0; 6025 6026 drop_and_release: 6027 dst_release(dst); 6028 drop_and_free: 6029 reqsk_free(req); 6030 drop: 6031 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6032 return 0; 6033 } 6034 EXPORT_SYMBOL(tcp_conn_request); 6035