1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 84 int sysctl_tcp_max_reordering __read_mostly = 300; 85 EXPORT_SYMBOL(sysctl_tcp_reordering); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 /* rfc5961 challenge ack rate limiting */ 92 int sysctl_tcp_challenge_ack_limit = 100; 93 94 int sysctl_tcp_stdurg __read_mostly; 95 int sysctl_tcp_rfc1337 __read_mostly; 96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 97 int sysctl_tcp_frto __read_mostly = 2; 98 99 int sysctl_tcp_thin_dupack __read_mostly; 100 101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 102 int sysctl_tcp_early_retrans __read_mostly = 3; 103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 104 105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 111 #define FLAG_ECE 0x40 /* ECE in this ACK */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 /* Adapt the MSS value used to make delayed ack decision to the 128 * real world. 129 */ 130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 131 { 132 struct inet_connection_sock *icsk = inet_csk(sk); 133 const unsigned int lss = icsk->icsk_ack.last_seg_size; 134 unsigned int len; 135 136 icsk->icsk_ack.last_seg_size = 0; 137 138 /* skb->len may jitter because of SACKs, even if peer 139 * sends good full-sized frames. 140 */ 141 len = skb_shinfo(skb)->gso_size ? : skb->len; 142 if (len >= icsk->icsk_ack.rcv_mss) { 143 icsk->icsk_ack.rcv_mss = len; 144 } else { 145 /* Otherwise, we make more careful check taking into account, 146 * that SACKs block is variable. 147 * 148 * "len" is invariant segment length, including TCP header. 149 */ 150 len += skb->data - skb_transport_header(skb); 151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 152 /* If PSH is not set, packet should be 153 * full sized, provided peer TCP is not badly broken. 154 * This observation (if it is correct 8)) allows 155 * to handle super-low mtu links fairly. 156 */ 157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 159 /* Subtract also invariant (if peer is RFC compliant), 160 * tcp header plus fixed timestamp option length. 161 * Resulting "len" is MSS free of SACK jitter. 162 */ 163 len -= tcp_sk(sk)->tcp_header_len; 164 icsk->icsk_ack.last_seg_size = len; 165 if (len == lss) { 166 icsk->icsk_ack.rcv_mss = len; 167 return; 168 } 169 } 170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 173 } 174 } 175 176 static void tcp_incr_quickack(struct sock *sk) 177 { 178 struct inet_connection_sock *icsk = inet_csk(sk); 179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 180 181 if (quickacks == 0) 182 quickacks = 2; 183 if (quickacks > icsk->icsk_ack.quick) 184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 185 } 186 187 static void tcp_enter_quickack_mode(struct sock *sk) 188 { 189 struct inet_connection_sock *icsk = inet_csk(sk); 190 tcp_incr_quickack(sk); 191 icsk->icsk_ack.pingpong = 0; 192 icsk->icsk_ack.ato = TCP_ATO_MIN; 193 } 194 195 /* Send ACKs quickly, if "quick" count is not exhausted 196 * and the session is not interactive. 197 */ 198 199 static inline bool tcp_in_quickack_mode(const struct sock *sk) 200 { 201 const struct inet_connection_sock *icsk = inet_csk(sk); 202 203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 204 } 205 206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 207 { 208 if (tp->ecn_flags & TCP_ECN_OK) 209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 210 } 211 212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 213 { 214 if (tcp_hdr(skb)->cwr) 215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 216 } 217 218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 219 { 220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 221 } 222 223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 224 { 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (tcp_ca_needs_ecn((struct sock *)tp)) 236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 237 238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 239 /* Better not delay acks, sender can have a very low cwnd */ 240 tcp_enter_quickack_mode((struct sock *)tp); 241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 242 } 243 tp->ecn_flags |= TCP_ECN_SEEN; 244 break; 245 default: 246 if (tcp_ca_needs_ecn((struct sock *)tp)) 247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 248 tp->ecn_flags |= TCP_ECN_SEEN; 249 break; 250 } 251 } 252 253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 254 { 255 if (tp->ecn_flags & TCP_ECN_OK) 256 __tcp_ecn_check_ce(tp, skb); 257 } 258 259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 260 { 261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 262 tp->ecn_flags &= ~TCP_ECN_OK; 263 } 264 265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 266 { 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 268 tp->ecn_flags &= ~TCP_ECN_OK; 269 } 270 271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 274 return true; 275 return false; 276 } 277 278 /* Buffer size and advertised window tuning. 279 * 280 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 281 */ 282 283 static void tcp_sndbuf_expand(struct sock *sk) 284 { 285 const struct tcp_sock *tp = tcp_sk(sk); 286 int sndmem, per_mss; 287 u32 nr_segs; 288 289 /* Worst case is non GSO/TSO : each frame consumes one skb 290 * and skb->head is kmalloced using power of two area of memory 291 */ 292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 293 MAX_TCP_HEADER + 294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 295 296 per_mss = roundup_pow_of_two(per_mss) + 297 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 298 299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 301 302 /* Fast Recovery (RFC 5681 3.2) : 303 * Cubic needs 1.7 factor, rounded to 2 to include 304 * extra cushion (application might react slowly to POLLOUT) 305 */ 306 sndmem = 2 * nr_segs * per_mss; 307 308 if (sk->sk_sndbuf < sndmem) 309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 310 } 311 312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 313 * 314 * All tcp_full_space() is split to two parts: "network" buffer, allocated 315 * forward and advertised in receiver window (tp->rcv_wnd) and 316 * "application buffer", required to isolate scheduling/application 317 * latencies from network. 318 * window_clamp is maximal advertised window. It can be less than 319 * tcp_full_space(), in this case tcp_full_space() - window_clamp 320 * is reserved for "application" buffer. The less window_clamp is 321 * the smoother our behaviour from viewpoint of network, but the lower 322 * throughput and the higher sensitivity of the connection to losses. 8) 323 * 324 * rcv_ssthresh is more strict window_clamp used at "slow start" 325 * phase to predict further behaviour of this connection. 326 * It is used for two goals: 327 * - to enforce header prediction at sender, even when application 328 * requires some significant "application buffer". It is check #1. 329 * - to prevent pruning of receive queue because of misprediction 330 * of receiver window. Check #2. 331 * 332 * The scheme does not work when sender sends good segments opening 333 * window and then starts to feed us spaghetti. But it should work 334 * in common situations. Otherwise, we have to rely on queue collapsing. 335 */ 336 337 /* Slow part of check#2. */ 338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 /* Optimize this! */ 342 int truesize = tcp_win_from_space(skb->truesize) >> 1; 343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 344 345 while (tp->rcv_ssthresh <= window) { 346 if (truesize <= skb->len) 347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 348 349 truesize >>= 1; 350 window >>= 1; 351 } 352 return 0; 353 } 354 355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 359 /* Check #1 */ 360 if (tp->rcv_ssthresh < tp->window_clamp && 361 (int)tp->rcv_ssthresh < tcp_space(sk) && 362 !sk_under_memory_pressure(sk)) { 363 int incr; 364 365 /* Check #2. Increase window, if skb with such overhead 366 * will fit to rcvbuf in future. 367 */ 368 if (tcp_win_from_space(skb->truesize) <= skb->len) 369 incr = 2 * tp->advmss; 370 else 371 incr = __tcp_grow_window(sk, skb); 372 373 if (incr) { 374 incr = max_t(int, incr, 2 * skb->len); 375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 376 tp->window_clamp); 377 inet_csk(sk)->icsk_ack.quick |= 1; 378 } 379 } 380 } 381 382 /* 3. Tuning rcvbuf, when connection enters established state. */ 383 static void tcp_fixup_rcvbuf(struct sock *sk) 384 { 385 u32 mss = tcp_sk(sk)->advmss; 386 int rcvmem; 387 388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 389 tcp_default_init_rwnd(mss); 390 391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 392 * Allow enough cushion so that sender is not limited by our window 393 */ 394 if (sysctl_tcp_moderate_rcvbuf) 395 rcvmem <<= 2; 396 397 if (sk->sk_rcvbuf < rcvmem) 398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 399 } 400 401 /* 4. Try to fixup all. It is made immediately after connection enters 402 * established state. 403 */ 404 void tcp_init_buffer_space(struct sock *sk) 405 { 406 struct tcp_sock *tp = tcp_sk(sk); 407 int maxwin; 408 409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 410 tcp_fixup_rcvbuf(sk); 411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 412 tcp_sndbuf_expand(sk); 413 414 tp->rcvq_space.space = tp->rcv_wnd; 415 tp->rcvq_space.time = tcp_time_stamp; 416 tp->rcvq_space.seq = tp->copied_seq; 417 418 maxwin = tcp_full_space(sk); 419 420 if (tp->window_clamp >= maxwin) { 421 tp->window_clamp = maxwin; 422 423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 424 tp->window_clamp = max(maxwin - 425 (maxwin >> sysctl_tcp_app_win), 426 4 * tp->advmss); 427 } 428 429 /* Force reservation of one segment. */ 430 if (sysctl_tcp_app_win && 431 tp->window_clamp > 2 * tp->advmss && 432 tp->window_clamp + tp->advmss > maxwin) 433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 434 435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 436 tp->snd_cwnd_stamp = tcp_time_stamp; 437 } 438 439 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 440 static void tcp_clamp_window(struct sock *sk) 441 { 442 struct tcp_sock *tp = tcp_sk(sk); 443 struct inet_connection_sock *icsk = inet_csk(sk); 444 445 icsk->icsk_ack.quick = 0; 446 447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 449 !sk_under_memory_pressure(sk) && 450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 452 sysctl_tcp_rmem[2]); 453 } 454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 456 } 457 458 /* Initialize RCV_MSS value. 459 * RCV_MSS is an our guess about MSS used by the peer. 460 * We haven't any direct information about the MSS. 461 * It's better to underestimate the RCV_MSS rather than overestimate. 462 * Overestimations make us ACKing less frequently than needed. 463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 464 */ 465 void tcp_initialize_rcv_mss(struct sock *sk) 466 { 467 const struct tcp_sock *tp = tcp_sk(sk); 468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 469 470 hint = min(hint, tp->rcv_wnd / 2); 471 hint = min(hint, TCP_MSS_DEFAULT); 472 hint = max(hint, TCP_MIN_MSS); 473 474 inet_csk(sk)->icsk_ack.rcv_mss = hint; 475 } 476 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 477 478 /* Receiver "autotuning" code. 479 * 480 * The algorithm for RTT estimation w/o timestamps is based on 481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 482 * <http://public.lanl.gov/radiant/pubs.html#DRS> 483 * 484 * More detail on this code can be found at 485 * <http://staff.psc.edu/jheffner/>, 486 * though this reference is out of date. A new paper 487 * is pending. 488 */ 489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 490 { 491 u32 new_sample = tp->rcv_rtt_est.rtt; 492 long m = sample; 493 494 if (m == 0) 495 m = 1; 496 497 if (new_sample != 0) { 498 /* If we sample in larger samples in the non-timestamp 499 * case, we could grossly overestimate the RTT especially 500 * with chatty applications or bulk transfer apps which 501 * are stalled on filesystem I/O. 502 * 503 * Also, since we are only going for a minimum in the 504 * non-timestamp case, we do not smooth things out 505 * else with timestamps disabled convergence takes too 506 * long. 507 */ 508 if (!win_dep) { 509 m -= (new_sample >> 3); 510 new_sample += m; 511 } else { 512 m <<= 3; 513 if (m < new_sample) 514 new_sample = m; 515 } 516 } else { 517 /* No previous measure. */ 518 new_sample = m << 3; 519 } 520 521 if (tp->rcv_rtt_est.rtt != new_sample) 522 tp->rcv_rtt_est.rtt = new_sample; 523 } 524 525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 526 { 527 if (tp->rcv_rtt_est.time == 0) 528 goto new_measure; 529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 530 return; 531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 532 533 new_measure: 534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 535 tp->rcv_rtt_est.time = tcp_time_stamp; 536 } 537 538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 539 const struct sk_buff *skb) 540 { 541 struct tcp_sock *tp = tcp_sk(sk); 542 if (tp->rx_opt.rcv_tsecr && 543 (TCP_SKB_CB(skb)->end_seq - 544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 546 } 547 548 /* 549 * This function should be called every time data is copied to user space. 550 * It calculates the appropriate TCP receive buffer space. 551 */ 552 void tcp_rcv_space_adjust(struct sock *sk) 553 { 554 struct tcp_sock *tp = tcp_sk(sk); 555 int time; 556 int copied; 557 558 time = tcp_time_stamp - tp->rcvq_space.time; 559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 560 return; 561 562 /* Number of bytes copied to user in last RTT */ 563 copied = tp->copied_seq - tp->rcvq_space.seq; 564 if (copied <= tp->rcvq_space.space) 565 goto new_measure; 566 567 /* A bit of theory : 568 * copied = bytes received in previous RTT, our base window 569 * To cope with packet losses, we need a 2x factor 570 * To cope with slow start, and sender growing its cwin by 100 % 571 * every RTT, we need a 4x factor, because the ACK we are sending 572 * now is for the next RTT, not the current one : 573 * <prev RTT . ><current RTT .. ><next RTT .... > 574 */ 575 576 if (sysctl_tcp_moderate_rcvbuf && 577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 578 int rcvwin, rcvmem, rcvbuf; 579 580 /* minimal window to cope with packet losses, assuming 581 * steady state. Add some cushion because of small variations. 582 */ 583 rcvwin = (copied << 1) + 16 * tp->advmss; 584 585 /* If rate increased by 25%, 586 * assume slow start, rcvwin = 3 * copied 587 * If rate increased by 50%, 588 * assume sender can use 2x growth, rcvwin = 4 * copied 589 */ 590 if (copied >= 591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 592 if (copied >= 593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 594 rcvwin <<= 1; 595 else 596 rcvwin += (rcvwin >> 1); 597 } 598 599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 600 while (tcp_win_from_space(rcvmem) < tp->advmss) 601 rcvmem += 128; 602 603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 604 if (rcvbuf > sk->sk_rcvbuf) { 605 sk->sk_rcvbuf = rcvbuf; 606 607 /* Make the window clamp follow along. */ 608 tp->window_clamp = rcvwin; 609 } 610 } 611 tp->rcvq_space.space = copied; 612 613 new_measure: 614 tp->rcvq_space.seq = tp->copied_seq; 615 tp->rcvq_space.time = tcp_time_stamp; 616 } 617 618 /* There is something which you must keep in mind when you analyze the 619 * behavior of the tp->ato delayed ack timeout interval. When a 620 * connection starts up, we want to ack as quickly as possible. The 621 * problem is that "good" TCP's do slow start at the beginning of data 622 * transmission. The means that until we send the first few ACK's the 623 * sender will sit on his end and only queue most of his data, because 624 * he can only send snd_cwnd unacked packets at any given time. For 625 * each ACK we send, he increments snd_cwnd and transmits more of his 626 * queue. -DaveM 627 */ 628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 629 { 630 struct tcp_sock *tp = tcp_sk(sk); 631 struct inet_connection_sock *icsk = inet_csk(sk); 632 u32 now; 633 634 inet_csk_schedule_ack(sk); 635 636 tcp_measure_rcv_mss(sk, skb); 637 638 tcp_rcv_rtt_measure(tp); 639 640 now = tcp_time_stamp; 641 642 if (!icsk->icsk_ack.ato) { 643 /* The _first_ data packet received, initialize 644 * delayed ACK engine. 645 */ 646 tcp_incr_quickack(sk); 647 icsk->icsk_ack.ato = TCP_ATO_MIN; 648 } else { 649 int m = now - icsk->icsk_ack.lrcvtime; 650 651 if (m <= TCP_ATO_MIN / 2) { 652 /* The fastest case is the first. */ 653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 654 } else if (m < icsk->icsk_ack.ato) { 655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 656 if (icsk->icsk_ack.ato > icsk->icsk_rto) 657 icsk->icsk_ack.ato = icsk->icsk_rto; 658 } else if (m > icsk->icsk_rto) { 659 /* Too long gap. Apparently sender failed to 660 * restart window, so that we send ACKs quickly. 661 */ 662 tcp_incr_quickack(sk); 663 sk_mem_reclaim(sk); 664 } 665 } 666 icsk->icsk_ack.lrcvtime = now; 667 668 tcp_ecn_check_ce(tp, skb); 669 670 if (skb->len >= 128) 671 tcp_grow_window(sk, skb); 672 } 673 674 /* Called to compute a smoothed rtt estimate. The data fed to this 675 * routine either comes from timestamps, or from segments that were 676 * known _not_ to have been retransmitted [see Karn/Partridge 677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 678 * piece by Van Jacobson. 679 * NOTE: the next three routines used to be one big routine. 680 * To save cycles in the RFC 1323 implementation it was better to break 681 * it up into three procedures. -- erics 682 */ 683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 684 { 685 struct tcp_sock *tp = tcp_sk(sk); 686 long m = mrtt_us; /* RTT */ 687 u32 srtt = tp->srtt_us; 688 689 /* The following amusing code comes from Jacobson's 690 * article in SIGCOMM '88. Note that rtt and mdev 691 * are scaled versions of rtt and mean deviation. 692 * This is designed to be as fast as possible 693 * m stands for "measurement". 694 * 695 * On a 1990 paper the rto value is changed to: 696 * RTO = rtt + 4 * mdev 697 * 698 * Funny. This algorithm seems to be very broken. 699 * These formulae increase RTO, when it should be decreased, increase 700 * too slowly, when it should be increased quickly, decrease too quickly 701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 702 * does not matter how to _calculate_ it. Seems, it was trap 703 * that VJ failed to avoid. 8) 704 */ 705 if (srtt != 0) { 706 m -= (srtt >> 3); /* m is now error in rtt est */ 707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 708 if (m < 0) { 709 m = -m; /* m is now abs(error) */ 710 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 711 /* This is similar to one of Eifel findings. 712 * Eifel blocks mdev updates when rtt decreases. 713 * This solution is a bit different: we use finer gain 714 * for mdev in this case (alpha*beta). 715 * Like Eifel it also prevents growth of rto, 716 * but also it limits too fast rto decreases, 717 * happening in pure Eifel. 718 */ 719 if (m > 0) 720 m >>= 3; 721 } else { 722 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 723 } 724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 725 if (tp->mdev_us > tp->mdev_max_us) { 726 tp->mdev_max_us = tp->mdev_us; 727 if (tp->mdev_max_us > tp->rttvar_us) 728 tp->rttvar_us = tp->mdev_max_us; 729 } 730 if (after(tp->snd_una, tp->rtt_seq)) { 731 if (tp->mdev_max_us < tp->rttvar_us) 732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 733 tp->rtt_seq = tp->snd_nxt; 734 tp->mdev_max_us = tcp_rto_min_us(sk); 735 } 736 } else { 737 /* no previous measure. */ 738 srtt = m << 3; /* take the measured time to be rtt */ 739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 741 tp->mdev_max_us = tp->rttvar_us; 742 tp->rtt_seq = tp->snd_nxt; 743 } 744 tp->srtt_us = max(1U, srtt); 745 } 746 747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 748 * Note: TCP stack does not yet implement pacing. 749 * FQ packet scheduler can be used to implement cheap but effective 750 * TCP pacing, to smooth the burst on large writes when packets 751 * in flight is significantly lower than cwnd (or rwin) 752 */ 753 static void tcp_update_pacing_rate(struct sock *sk) 754 { 755 const struct tcp_sock *tp = tcp_sk(sk); 756 u64 rate; 757 758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 760 761 rate *= max(tp->snd_cwnd, tp->packets_out); 762 763 if (likely(tp->srtt_us)) 764 do_div(rate, tp->srtt_us); 765 766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 767 * without any lock. We want to make sure compiler wont store 768 * intermediate values in this location. 769 */ 770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 771 sk->sk_max_pacing_rate); 772 } 773 774 /* Calculate rto without backoff. This is the second half of Van Jacobson's 775 * routine referred to above. 776 */ 777 static void tcp_set_rto(struct sock *sk) 778 { 779 const struct tcp_sock *tp = tcp_sk(sk); 780 /* Old crap is replaced with new one. 8) 781 * 782 * More seriously: 783 * 1. If rtt variance happened to be less 50msec, it is hallucination. 784 * It cannot be less due to utterly erratic ACK generation made 785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 786 * to do with delayed acks, because at cwnd>2 true delack timeout 787 * is invisible. Actually, Linux-2.4 also generates erratic 788 * ACKs in some circumstances. 789 */ 790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 791 792 /* 2. Fixups made earlier cannot be right. 793 * If we do not estimate RTO correctly without them, 794 * all the algo is pure shit and should be replaced 795 * with correct one. It is exactly, which we pretend to do. 796 */ 797 798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 799 * guarantees that rto is higher. 800 */ 801 tcp_bound_rto(sk); 802 } 803 804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 805 { 806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 807 808 if (!cwnd) 809 cwnd = TCP_INIT_CWND; 810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 811 } 812 813 /* 814 * Packet counting of FACK is based on in-order assumptions, therefore TCP 815 * disables it when reordering is detected 816 */ 817 void tcp_disable_fack(struct tcp_sock *tp) 818 { 819 /* RFC3517 uses different metric in lost marker => reset on change */ 820 if (tcp_is_fack(tp)) 821 tp->lost_skb_hint = NULL; 822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 823 } 824 825 /* Take a notice that peer is sending D-SACKs */ 826 static void tcp_dsack_seen(struct tcp_sock *tp) 827 { 828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 829 } 830 831 static void tcp_update_reordering(struct sock *sk, const int metric, 832 const int ts) 833 { 834 struct tcp_sock *tp = tcp_sk(sk); 835 if (metric > tp->reordering) { 836 int mib_idx; 837 838 tp->reordering = min(sysctl_tcp_max_reordering, metric); 839 840 /* This exciting event is worth to be remembered. 8) */ 841 if (ts) 842 mib_idx = LINUX_MIB_TCPTSREORDER; 843 else if (tcp_is_reno(tp)) 844 mib_idx = LINUX_MIB_TCPRENOREORDER; 845 else if (tcp_is_fack(tp)) 846 mib_idx = LINUX_MIB_TCPFACKREORDER; 847 else 848 mib_idx = LINUX_MIB_TCPSACKREORDER; 849 850 NET_INC_STATS_BH(sock_net(sk), mib_idx); 851 #if FASTRETRANS_DEBUG > 1 852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 854 tp->reordering, 855 tp->fackets_out, 856 tp->sacked_out, 857 tp->undo_marker ? tp->undo_retrans : 0); 858 #endif 859 tcp_disable_fack(tp); 860 } 861 862 if (metric > 0) 863 tcp_disable_early_retrans(tp); 864 } 865 866 /* This must be called before lost_out is incremented */ 867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 868 { 869 if ((tp->retransmit_skb_hint == NULL) || 870 before(TCP_SKB_CB(skb)->seq, 871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 872 tp->retransmit_skb_hint = skb; 873 874 if (!tp->lost_out || 875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 877 } 878 879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 880 { 881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 882 tcp_verify_retransmit_hint(tp, skb); 883 884 tp->lost_out += tcp_skb_pcount(skb); 885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 886 } 887 } 888 889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 890 struct sk_buff *skb) 891 { 892 tcp_verify_retransmit_hint(tp, skb); 893 894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 895 tp->lost_out += tcp_skb_pcount(skb); 896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 897 } 898 } 899 900 /* This procedure tags the retransmission queue when SACKs arrive. 901 * 902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 903 * Packets in queue with these bits set are counted in variables 904 * sacked_out, retrans_out and lost_out, correspondingly. 905 * 906 * Valid combinations are: 907 * Tag InFlight Description 908 * 0 1 - orig segment is in flight. 909 * S 0 - nothing flies, orig reached receiver. 910 * L 0 - nothing flies, orig lost by net. 911 * R 2 - both orig and retransmit are in flight. 912 * L|R 1 - orig is lost, retransmit is in flight. 913 * S|R 1 - orig reached receiver, retrans is still in flight. 914 * (L|S|R is logically valid, it could occur when L|R is sacked, 915 * but it is equivalent to plain S and code short-curcuits it to S. 916 * L|S is logically invalid, it would mean -1 packet in flight 8)) 917 * 918 * These 6 states form finite state machine, controlled by the following events: 919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 921 * 3. Loss detection event of two flavors: 922 * A. Scoreboard estimator decided the packet is lost. 923 * A'. Reno "three dupacks" marks head of queue lost. 924 * A''. Its FACK modification, head until snd.fack is lost. 925 * B. SACK arrives sacking SND.NXT at the moment, when the 926 * segment was retransmitted. 927 * 4. D-SACK added new rule: D-SACK changes any tag to S. 928 * 929 * It is pleasant to note, that state diagram turns out to be commutative, 930 * so that we are allowed not to be bothered by order of our actions, 931 * when multiple events arrive simultaneously. (see the function below). 932 * 933 * Reordering detection. 934 * -------------------- 935 * Reordering metric is maximal distance, which a packet can be displaced 936 * in packet stream. With SACKs we can estimate it: 937 * 938 * 1. SACK fills old hole and the corresponding segment was not 939 * ever retransmitted -> reordering. Alas, we cannot use it 940 * when segment was retransmitted. 941 * 2. The last flaw is solved with D-SACK. D-SACK arrives 942 * for retransmitted and already SACKed segment -> reordering.. 943 * Both of these heuristics are not used in Loss state, when we cannot 944 * account for retransmits accurately. 945 * 946 * SACK block validation. 947 * ---------------------- 948 * 949 * SACK block range validation checks that the received SACK block fits to 950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 951 * Note that SND.UNA is not included to the range though being valid because 952 * it means that the receiver is rather inconsistent with itself reporting 953 * SACK reneging when it should advance SND.UNA. Such SACK block this is 954 * perfectly valid, however, in light of RFC2018 which explicitly states 955 * that "SACK block MUST reflect the newest segment. Even if the newest 956 * segment is going to be discarded ...", not that it looks very clever 957 * in case of head skb. Due to potentional receiver driven attacks, we 958 * choose to avoid immediate execution of a walk in write queue due to 959 * reneging and defer head skb's loss recovery to standard loss recovery 960 * procedure that will eventually trigger (nothing forbids us doing this). 961 * 962 * Implements also blockage to start_seq wrap-around. Problem lies in the 963 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 964 * there's no guarantee that it will be before snd_nxt (n). The problem 965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 966 * wrap (s_w): 967 * 968 * <- outs wnd -> <- wrapzone -> 969 * u e n u_w e_w s n_w 970 * | | | | | | | 971 * |<------------+------+----- TCP seqno space --------------+---------->| 972 * ...-- <2^31 ->| |<--------... 973 * ...---- >2^31 ------>| |<--------... 974 * 975 * Current code wouldn't be vulnerable but it's better still to discard such 976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 979 * equal to the ideal case (infinite seqno space without wrap caused issues). 980 * 981 * With D-SACK the lower bound is extended to cover sequence space below 982 * SND.UNA down to undo_marker, which is the last point of interest. Yet 983 * again, D-SACK block must not to go across snd_una (for the same reason as 984 * for the normal SACK blocks, explained above). But there all simplicity 985 * ends, TCP might receive valid D-SACKs below that. As long as they reside 986 * fully below undo_marker they do not affect behavior in anyway and can 987 * therefore be safely ignored. In rare cases (which are more or less 988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 989 * fragmentation and packet reordering past skb's retransmission. To consider 990 * them correctly, the acceptable range must be extended even more though 991 * the exact amount is rather hard to quantify. However, tp->max_window can 992 * be used as an exaggerated estimate. 993 */ 994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 995 u32 start_seq, u32 end_seq) 996 { 997 /* Too far in future, or reversed (interpretation is ambiguous) */ 998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 999 return false; 1000 1001 /* Nasty start_seq wrap-around check (see comments above) */ 1002 if (!before(start_seq, tp->snd_nxt)) 1003 return false; 1004 1005 /* In outstanding window? ...This is valid exit for D-SACKs too. 1006 * start_seq == snd_una is non-sensical (see comments above) 1007 */ 1008 if (after(start_seq, tp->snd_una)) 1009 return true; 1010 1011 if (!is_dsack || !tp->undo_marker) 1012 return false; 1013 1014 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1015 if (after(end_seq, tp->snd_una)) 1016 return false; 1017 1018 if (!before(start_seq, tp->undo_marker)) 1019 return true; 1020 1021 /* Too old */ 1022 if (!after(end_seq, tp->undo_marker)) 1023 return false; 1024 1025 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1026 * start_seq < undo_marker and end_seq >= undo_marker. 1027 */ 1028 return !before(start_seq, end_seq - tp->max_window); 1029 } 1030 1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1032 * Event "B". Later note: FACK people cheated me again 8), we have to account 1033 * for reordering! Ugly, but should help. 1034 * 1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1036 * less than what is now known to be received by the other end (derived from 1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1038 * retransmitted skbs to avoid some costly processing per ACKs. 1039 */ 1040 static void tcp_mark_lost_retrans(struct sock *sk) 1041 { 1042 const struct inet_connection_sock *icsk = inet_csk(sk); 1043 struct tcp_sock *tp = tcp_sk(sk); 1044 struct sk_buff *skb; 1045 int cnt = 0; 1046 u32 new_low_seq = tp->snd_nxt; 1047 u32 received_upto = tcp_highest_sack_seq(tp); 1048 1049 if (!tcp_is_fack(tp) || !tp->retrans_out || 1050 !after(received_upto, tp->lost_retrans_low) || 1051 icsk->icsk_ca_state != TCP_CA_Recovery) 1052 return; 1053 1054 tcp_for_write_queue(skb, sk) { 1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1056 1057 if (skb == tcp_send_head(sk)) 1058 break; 1059 if (cnt == tp->retrans_out) 1060 break; 1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1062 continue; 1063 1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1065 continue; 1066 1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1068 * constraint here (see above) but figuring out that at 1069 * least tp->reordering SACK blocks reside between ack_seq 1070 * and received_upto is not easy task to do cheaply with 1071 * the available datastructures. 1072 * 1073 * Whether FACK should check here for tp->reordering segs 1074 * in-between one could argue for either way (it would be 1075 * rather simple to implement as we could count fack_count 1076 * during the walk and do tp->fackets_out - fack_count). 1077 */ 1078 if (after(received_upto, ack_seq)) { 1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1080 tp->retrans_out -= tcp_skb_pcount(skb); 1081 1082 tcp_skb_mark_lost_uncond_verify(tp, skb); 1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1084 } else { 1085 if (before(ack_seq, new_low_seq)) 1086 new_low_seq = ack_seq; 1087 cnt += tcp_skb_pcount(skb); 1088 } 1089 } 1090 1091 if (tp->retrans_out) 1092 tp->lost_retrans_low = new_low_seq; 1093 } 1094 1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1096 struct tcp_sack_block_wire *sp, int num_sacks, 1097 u32 prior_snd_una) 1098 { 1099 struct tcp_sock *tp = tcp_sk(sk); 1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1102 bool dup_sack = false; 1103 1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1108 } else if (num_sacks > 1) { 1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1111 1112 if (!after(end_seq_0, end_seq_1) && 1113 !before(start_seq_0, start_seq_1)) { 1114 dup_sack = true; 1115 tcp_dsack_seen(tp); 1116 NET_INC_STATS_BH(sock_net(sk), 1117 LINUX_MIB_TCPDSACKOFORECV); 1118 } 1119 } 1120 1121 /* D-SACK for already forgotten data... Do dumb counting. */ 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1123 !after(end_seq_0, prior_snd_una) && 1124 after(end_seq_0, tp->undo_marker)) 1125 tp->undo_retrans--; 1126 1127 return dup_sack; 1128 } 1129 1130 struct tcp_sacktag_state { 1131 int reord; 1132 int fack_count; 1133 long rtt_us; /* RTT measured by SACKing never-retransmitted data */ 1134 int flag; 1135 }; 1136 1137 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1138 * the incoming SACK may not exactly match but we can find smaller MSS 1139 * aligned portion of it that matches. Therefore we might need to fragment 1140 * which may fail and creates some hassle (caller must handle error case 1141 * returns). 1142 * 1143 * FIXME: this could be merged to shift decision code 1144 */ 1145 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1146 u32 start_seq, u32 end_seq) 1147 { 1148 int err; 1149 bool in_sack; 1150 unsigned int pkt_len; 1151 unsigned int mss; 1152 1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1154 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1155 1156 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1157 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1158 mss = tcp_skb_mss(skb); 1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1160 1161 if (!in_sack) { 1162 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1163 if (pkt_len < mss) 1164 pkt_len = mss; 1165 } else { 1166 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1167 if (pkt_len < mss) 1168 return -EINVAL; 1169 } 1170 1171 /* Round if necessary so that SACKs cover only full MSSes 1172 * and/or the remaining small portion (if present) 1173 */ 1174 if (pkt_len > mss) { 1175 unsigned int new_len = (pkt_len / mss) * mss; 1176 if (!in_sack && new_len < pkt_len) { 1177 new_len += mss; 1178 if (new_len >= skb->len) 1179 return 0; 1180 } 1181 pkt_len = new_len; 1182 } 1183 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1184 if (err < 0) 1185 return err; 1186 } 1187 1188 return in_sack; 1189 } 1190 1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1192 static u8 tcp_sacktag_one(struct sock *sk, 1193 struct tcp_sacktag_state *state, u8 sacked, 1194 u32 start_seq, u32 end_seq, 1195 int dup_sack, int pcount, 1196 const struct skb_mstamp *xmit_time) 1197 { 1198 struct tcp_sock *tp = tcp_sk(sk); 1199 int fack_count = state->fack_count; 1200 1201 /* Account D-SACK for retransmitted packet. */ 1202 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1203 if (tp->undo_marker && tp->undo_retrans > 0 && 1204 after(end_seq, tp->undo_marker)) 1205 tp->undo_retrans--; 1206 if (sacked & TCPCB_SACKED_ACKED) 1207 state->reord = min(fack_count, state->reord); 1208 } 1209 1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1211 if (!after(end_seq, tp->snd_una)) 1212 return sacked; 1213 1214 if (!(sacked & TCPCB_SACKED_ACKED)) { 1215 if (sacked & TCPCB_SACKED_RETRANS) { 1216 /* If the segment is not tagged as lost, 1217 * we do not clear RETRANS, believing 1218 * that retransmission is still in flight. 1219 */ 1220 if (sacked & TCPCB_LOST) { 1221 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1222 tp->lost_out -= pcount; 1223 tp->retrans_out -= pcount; 1224 } 1225 } else { 1226 if (!(sacked & TCPCB_RETRANS)) { 1227 /* New sack for not retransmitted frame, 1228 * which was in hole. It is reordering. 1229 */ 1230 if (before(start_seq, 1231 tcp_highest_sack_seq(tp))) 1232 state->reord = min(fack_count, 1233 state->reord); 1234 if (!after(end_seq, tp->high_seq)) 1235 state->flag |= FLAG_ORIG_SACK_ACKED; 1236 /* Pick the earliest sequence sacked for RTT */ 1237 if (state->rtt_us < 0) { 1238 struct skb_mstamp now; 1239 1240 skb_mstamp_get(&now); 1241 state->rtt_us = skb_mstamp_us_delta(&now, 1242 xmit_time); 1243 } 1244 } 1245 1246 if (sacked & TCPCB_LOST) { 1247 sacked &= ~TCPCB_LOST; 1248 tp->lost_out -= pcount; 1249 } 1250 } 1251 1252 sacked |= TCPCB_SACKED_ACKED; 1253 state->flag |= FLAG_DATA_SACKED; 1254 tp->sacked_out += pcount; 1255 1256 fack_count += pcount; 1257 1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1259 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1261 tp->lost_cnt_hint += pcount; 1262 1263 if (fack_count > tp->fackets_out) 1264 tp->fackets_out = fack_count; 1265 } 1266 1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1268 * frames and clear it. undo_retrans is decreased above, L|R frames 1269 * are accounted above as well. 1270 */ 1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1272 sacked &= ~TCPCB_SACKED_RETRANS; 1273 tp->retrans_out -= pcount; 1274 } 1275 1276 return sacked; 1277 } 1278 1279 /* Shift newly-SACKed bytes from this skb to the immediately previous 1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1281 */ 1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1283 struct tcp_sacktag_state *state, 1284 unsigned int pcount, int shifted, int mss, 1285 bool dup_sack) 1286 { 1287 struct tcp_sock *tp = tcp_sk(sk); 1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1291 1292 BUG_ON(!pcount); 1293 1294 /* Adjust counters and hints for the newly sacked sequence 1295 * range but discard the return value since prev is already 1296 * marked. We must tag the range first because the seq 1297 * advancement below implicitly advances 1298 * tcp_highest_sack_seq() when skb is highest_sack. 1299 */ 1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1301 start_seq, end_seq, dup_sack, pcount, 1302 &skb->skb_mstamp); 1303 1304 if (skb == tp->lost_skb_hint) 1305 tp->lost_cnt_hint += pcount; 1306 1307 TCP_SKB_CB(prev)->end_seq += shifted; 1308 TCP_SKB_CB(skb)->seq += shifted; 1309 1310 tcp_skb_pcount_add(prev, pcount); 1311 BUG_ON(tcp_skb_pcount(skb) < pcount); 1312 tcp_skb_pcount_add(skb, -pcount); 1313 1314 /* When we're adding to gso_segs == 1, gso_size will be zero, 1315 * in theory this shouldn't be necessary but as long as DSACK 1316 * code can come after this skb later on it's better to keep 1317 * setting gso_size to something. 1318 */ 1319 if (!skb_shinfo(prev)->gso_size) { 1320 skb_shinfo(prev)->gso_size = mss; 1321 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1322 } 1323 1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1325 if (tcp_skb_pcount(skb) <= 1) { 1326 skb_shinfo(skb)->gso_size = 0; 1327 skb_shinfo(skb)->gso_type = 0; 1328 } 1329 1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1332 1333 if (skb->len > 0) { 1334 BUG_ON(!tcp_skb_pcount(skb)); 1335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1336 return false; 1337 } 1338 1339 /* Whole SKB was eaten :-) */ 1340 1341 if (skb == tp->retransmit_skb_hint) 1342 tp->retransmit_skb_hint = prev; 1343 if (skb == tp->lost_skb_hint) { 1344 tp->lost_skb_hint = prev; 1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1346 } 1347 1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1350 TCP_SKB_CB(prev)->end_seq++; 1351 1352 if (skb == tcp_highest_sack(sk)) 1353 tcp_advance_highest_sack(sk, skb); 1354 1355 tcp_unlink_write_queue(skb, sk); 1356 sk_wmem_free_skb(sk, skb); 1357 1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1359 1360 return true; 1361 } 1362 1363 /* I wish gso_size would have a bit more sane initialization than 1364 * something-or-zero which complicates things 1365 */ 1366 static int tcp_skb_seglen(const struct sk_buff *skb) 1367 { 1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1369 } 1370 1371 /* Shifting pages past head area doesn't work */ 1372 static int skb_can_shift(const struct sk_buff *skb) 1373 { 1374 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1375 } 1376 1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1378 * skb. 1379 */ 1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1381 struct tcp_sacktag_state *state, 1382 u32 start_seq, u32 end_seq, 1383 bool dup_sack) 1384 { 1385 struct tcp_sock *tp = tcp_sk(sk); 1386 struct sk_buff *prev; 1387 int mss; 1388 int pcount = 0; 1389 int len; 1390 int in_sack; 1391 1392 if (!sk_can_gso(sk)) 1393 goto fallback; 1394 1395 /* Normally R but no L won't result in plain S */ 1396 if (!dup_sack && 1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1398 goto fallback; 1399 if (!skb_can_shift(skb)) 1400 goto fallback; 1401 /* This frame is about to be dropped (was ACKed). */ 1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1403 goto fallback; 1404 1405 /* Can only happen with delayed DSACK + discard craziness */ 1406 if (unlikely(skb == tcp_write_queue_head(sk))) 1407 goto fallback; 1408 prev = tcp_write_queue_prev(sk, skb); 1409 1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1411 goto fallback; 1412 1413 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1414 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1415 1416 if (in_sack) { 1417 len = skb->len; 1418 pcount = tcp_skb_pcount(skb); 1419 mss = tcp_skb_seglen(skb); 1420 1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1422 * drop this restriction as unnecessary 1423 */ 1424 if (mss != tcp_skb_seglen(prev)) 1425 goto fallback; 1426 } else { 1427 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1428 goto noop; 1429 /* CHECKME: This is non-MSS split case only?, this will 1430 * cause skipped skbs due to advancing loop btw, original 1431 * has that feature too 1432 */ 1433 if (tcp_skb_pcount(skb) <= 1) 1434 goto noop; 1435 1436 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1437 if (!in_sack) { 1438 /* TODO: head merge to next could be attempted here 1439 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1440 * though it might not be worth of the additional hassle 1441 * 1442 * ...we can probably just fallback to what was done 1443 * previously. We could try merging non-SACKed ones 1444 * as well but it probably isn't going to buy off 1445 * because later SACKs might again split them, and 1446 * it would make skb timestamp tracking considerably 1447 * harder problem. 1448 */ 1449 goto fallback; 1450 } 1451 1452 len = end_seq - TCP_SKB_CB(skb)->seq; 1453 BUG_ON(len < 0); 1454 BUG_ON(len > skb->len); 1455 1456 /* MSS boundaries should be honoured or else pcount will 1457 * severely break even though it makes things bit trickier. 1458 * Optimize common case to avoid most of the divides 1459 */ 1460 mss = tcp_skb_mss(skb); 1461 1462 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1463 * drop this restriction as unnecessary 1464 */ 1465 if (mss != tcp_skb_seglen(prev)) 1466 goto fallback; 1467 1468 if (len == mss) { 1469 pcount = 1; 1470 } else if (len < mss) { 1471 goto noop; 1472 } else { 1473 pcount = len / mss; 1474 len = pcount * mss; 1475 } 1476 } 1477 1478 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1479 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1480 goto fallback; 1481 1482 if (!skb_shift(prev, skb, len)) 1483 goto fallback; 1484 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1485 goto out; 1486 1487 /* Hole filled allows collapsing with the next as well, this is very 1488 * useful when hole on every nth skb pattern happens 1489 */ 1490 if (prev == tcp_write_queue_tail(sk)) 1491 goto out; 1492 skb = tcp_write_queue_next(sk, prev); 1493 1494 if (!skb_can_shift(skb) || 1495 (skb == tcp_send_head(sk)) || 1496 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1497 (mss != tcp_skb_seglen(skb))) 1498 goto out; 1499 1500 len = skb->len; 1501 if (skb_shift(prev, skb, len)) { 1502 pcount += tcp_skb_pcount(skb); 1503 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1504 } 1505 1506 out: 1507 state->fack_count += pcount; 1508 return prev; 1509 1510 noop: 1511 return skb; 1512 1513 fallback: 1514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1515 return NULL; 1516 } 1517 1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1519 struct tcp_sack_block *next_dup, 1520 struct tcp_sacktag_state *state, 1521 u32 start_seq, u32 end_seq, 1522 bool dup_sack_in) 1523 { 1524 struct tcp_sock *tp = tcp_sk(sk); 1525 struct sk_buff *tmp; 1526 1527 tcp_for_write_queue_from(skb, sk) { 1528 int in_sack = 0; 1529 bool dup_sack = dup_sack_in; 1530 1531 if (skb == tcp_send_head(sk)) 1532 break; 1533 1534 /* queue is in-order => we can short-circuit the walk early */ 1535 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1536 break; 1537 1538 if ((next_dup != NULL) && 1539 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1540 in_sack = tcp_match_skb_to_sack(sk, skb, 1541 next_dup->start_seq, 1542 next_dup->end_seq); 1543 if (in_sack > 0) 1544 dup_sack = true; 1545 } 1546 1547 /* skb reference here is a bit tricky to get right, since 1548 * shifting can eat and free both this skb and the next, 1549 * so not even _safe variant of the loop is enough. 1550 */ 1551 if (in_sack <= 0) { 1552 tmp = tcp_shift_skb_data(sk, skb, state, 1553 start_seq, end_seq, dup_sack); 1554 if (tmp != NULL) { 1555 if (tmp != skb) { 1556 skb = tmp; 1557 continue; 1558 } 1559 1560 in_sack = 0; 1561 } else { 1562 in_sack = tcp_match_skb_to_sack(sk, skb, 1563 start_seq, 1564 end_seq); 1565 } 1566 } 1567 1568 if (unlikely(in_sack < 0)) 1569 break; 1570 1571 if (in_sack) { 1572 TCP_SKB_CB(skb)->sacked = 1573 tcp_sacktag_one(sk, 1574 state, 1575 TCP_SKB_CB(skb)->sacked, 1576 TCP_SKB_CB(skb)->seq, 1577 TCP_SKB_CB(skb)->end_seq, 1578 dup_sack, 1579 tcp_skb_pcount(skb), 1580 &skb->skb_mstamp); 1581 1582 if (!before(TCP_SKB_CB(skb)->seq, 1583 tcp_highest_sack_seq(tp))) 1584 tcp_advance_highest_sack(sk, skb); 1585 } 1586 1587 state->fack_count += tcp_skb_pcount(skb); 1588 } 1589 return skb; 1590 } 1591 1592 /* Avoid all extra work that is being done by sacktag while walking in 1593 * a normal way 1594 */ 1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1596 struct tcp_sacktag_state *state, 1597 u32 skip_to_seq) 1598 { 1599 tcp_for_write_queue_from(skb, sk) { 1600 if (skb == tcp_send_head(sk)) 1601 break; 1602 1603 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1604 break; 1605 1606 state->fack_count += tcp_skb_pcount(skb); 1607 } 1608 return skb; 1609 } 1610 1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1612 struct sock *sk, 1613 struct tcp_sack_block *next_dup, 1614 struct tcp_sacktag_state *state, 1615 u32 skip_to_seq) 1616 { 1617 if (next_dup == NULL) 1618 return skb; 1619 1620 if (before(next_dup->start_seq, skip_to_seq)) { 1621 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1622 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1623 next_dup->start_seq, next_dup->end_seq, 1624 1); 1625 } 1626 1627 return skb; 1628 } 1629 1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1631 { 1632 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1633 } 1634 1635 static int 1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1637 u32 prior_snd_una, long *sack_rtt_us) 1638 { 1639 struct tcp_sock *tp = tcp_sk(sk); 1640 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1641 TCP_SKB_CB(ack_skb)->sacked); 1642 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1643 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1644 struct tcp_sack_block *cache; 1645 struct tcp_sacktag_state state; 1646 struct sk_buff *skb; 1647 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1648 int used_sacks; 1649 bool found_dup_sack = false; 1650 int i, j; 1651 int first_sack_index; 1652 1653 state.flag = 0; 1654 state.reord = tp->packets_out; 1655 state.rtt_us = -1L; 1656 1657 if (!tp->sacked_out) { 1658 if (WARN_ON(tp->fackets_out)) 1659 tp->fackets_out = 0; 1660 tcp_highest_sack_reset(sk); 1661 } 1662 1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1664 num_sacks, prior_snd_una); 1665 if (found_dup_sack) 1666 state.flag |= FLAG_DSACKING_ACK; 1667 1668 /* Eliminate too old ACKs, but take into 1669 * account more or less fresh ones, they can 1670 * contain valid SACK info. 1671 */ 1672 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1673 return 0; 1674 1675 if (!tp->packets_out) 1676 goto out; 1677 1678 used_sacks = 0; 1679 first_sack_index = 0; 1680 for (i = 0; i < num_sacks; i++) { 1681 bool dup_sack = !i && found_dup_sack; 1682 1683 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1684 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1685 1686 if (!tcp_is_sackblock_valid(tp, dup_sack, 1687 sp[used_sacks].start_seq, 1688 sp[used_sacks].end_seq)) { 1689 int mib_idx; 1690 1691 if (dup_sack) { 1692 if (!tp->undo_marker) 1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1694 else 1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1696 } else { 1697 /* Don't count olds caused by ACK reordering */ 1698 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1699 !after(sp[used_sacks].end_seq, tp->snd_una)) 1700 continue; 1701 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1702 } 1703 1704 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1705 if (i == 0) 1706 first_sack_index = -1; 1707 continue; 1708 } 1709 1710 /* Ignore very old stuff early */ 1711 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1712 continue; 1713 1714 used_sacks++; 1715 } 1716 1717 /* order SACK blocks to allow in order walk of the retrans queue */ 1718 for (i = used_sacks - 1; i > 0; i--) { 1719 for (j = 0; j < i; j++) { 1720 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1721 swap(sp[j], sp[j + 1]); 1722 1723 /* Track where the first SACK block goes to */ 1724 if (j == first_sack_index) 1725 first_sack_index = j + 1; 1726 } 1727 } 1728 } 1729 1730 skb = tcp_write_queue_head(sk); 1731 state.fack_count = 0; 1732 i = 0; 1733 1734 if (!tp->sacked_out) { 1735 /* It's already past, so skip checking against it */ 1736 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1737 } else { 1738 cache = tp->recv_sack_cache; 1739 /* Skip empty blocks in at head of the cache */ 1740 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1741 !cache->end_seq) 1742 cache++; 1743 } 1744 1745 while (i < used_sacks) { 1746 u32 start_seq = sp[i].start_seq; 1747 u32 end_seq = sp[i].end_seq; 1748 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1749 struct tcp_sack_block *next_dup = NULL; 1750 1751 if (found_dup_sack && ((i + 1) == first_sack_index)) 1752 next_dup = &sp[i + 1]; 1753 1754 /* Skip too early cached blocks */ 1755 while (tcp_sack_cache_ok(tp, cache) && 1756 !before(start_seq, cache->end_seq)) 1757 cache++; 1758 1759 /* Can skip some work by looking recv_sack_cache? */ 1760 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1761 after(end_seq, cache->start_seq)) { 1762 1763 /* Head todo? */ 1764 if (before(start_seq, cache->start_seq)) { 1765 skb = tcp_sacktag_skip(skb, sk, &state, 1766 start_seq); 1767 skb = tcp_sacktag_walk(skb, sk, next_dup, 1768 &state, 1769 start_seq, 1770 cache->start_seq, 1771 dup_sack); 1772 } 1773 1774 /* Rest of the block already fully processed? */ 1775 if (!after(end_seq, cache->end_seq)) 1776 goto advance_sp; 1777 1778 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1779 &state, 1780 cache->end_seq); 1781 1782 /* ...tail remains todo... */ 1783 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1784 /* ...but better entrypoint exists! */ 1785 skb = tcp_highest_sack(sk); 1786 if (skb == NULL) 1787 break; 1788 state.fack_count = tp->fackets_out; 1789 cache++; 1790 goto walk; 1791 } 1792 1793 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1794 /* Check overlap against next cached too (past this one already) */ 1795 cache++; 1796 continue; 1797 } 1798 1799 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1800 skb = tcp_highest_sack(sk); 1801 if (skb == NULL) 1802 break; 1803 state.fack_count = tp->fackets_out; 1804 } 1805 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1806 1807 walk: 1808 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1809 start_seq, end_seq, dup_sack); 1810 1811 advance_sp: 1812 i++; 1813 } 1814 1815 /* Clear the head of the cache sack blocks so we can skip it next time */ 1816 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1817 tp->recv_sack_cache[i].start_seq = 0; 1818 tp->recv_sack_cache[i].end_seq = 0; 1819 } 1820 for (j = 0; j < used_sacks; j++) 1821 tp->recv_sack_cache[i++] = sp[j]; 1822 1823 tcp_mark_lost_retrans(sk); 1824 1825 tcp_verify_left_out(tp); 1826 1827 if ((state.reord < tp->fackets_out) && 1828 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1829 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1830 1831 out: 1832 1833 #if FASTRETRANS_DEBUG > 0 1834 WARN_ON((int)tp->sacked_out < 0); 1835 WARN_ON((int)tp->lost_out < 0); 1836 WARN_ON((int)tp->retrans_out < 0); 1837 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1838 #endif 1839 *sack_rtt_us = state.rtt_us; 1840 return state.flag; 1841 } 1842 1843 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1844 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1845 */ 1846 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1847 { 1848 u32 holes; 1849 1850 holes = max(tp->lost_out, 1U); 1851 holes = min(holes, tp->packets_out); 1852 1853 if ((tp->sacked_out + holes) > tp->packets_out) { 1854 tp->sacked_out = tp->packets_out - holes; 1855 return true; 1856 } 1857 return false; 1858 } 1859 1860 /* If we receive more dupacks than we expected counting segments 1861 * in assumption of absent reordering, interpret this as reordering. 1862 * The only another reason could be bug in receiver TCP. 1863 */ 1864 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1865 { 1866 struct tcp_sock *tp = tcp_sk(sk); 1867 if (tcp_limit_reno_sacked(tp)) 1868 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1869 } 1870 1871 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1872 1873 static void tcp_add_reno_sack(struct sock *sk) 1874 { 1875 struct tcp_sock *tp = tcp_sk(sk); 1876 tp->sacked_out++; 1877 tcp_check_reno_reordering(sk, 0); 1878 tcp_verify_left_out(tp); 1879 } 1880 1881 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1882 1883 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1884 { 1885 struct tcp_sock *tp = tcp_sk(sk); 1886 1887 if (acked > 0) { 1888 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1889 if (acked - 1 >= tp->sacked_out) 1890 tp->sacked_out = 0; 1891 else 1892 tp->sacked_out -= acked - 1; 1893 } 1894 tcp_check_reno_reordering(sk, acked); 1895 tcp_verify_left_out(tp); 1896 } 1897 1898 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1899 { 1900 tp->sacked_out = 0; 1901 } 1902 1903 void tcp_clear_retrans(struct tcp_sock *tp) 1904 { 1905 tp->retrans_out = 0; 1906 tp->lost_out = 0; 1907 tp->undo_marker = 0; 1908 tp->undo_retrans = -1; 1909 tp->fackets_out = 0; 1910 tp->sacked_out = 0; 1911 } 1912 1913 static inline void tcp_init_undo(struct tcp_sock *tp) 1914 { 1915 tp->undo_marker = tp->snd_una; 1916 /* Retransmission still in flight may cause DSACKs later. */ 1917 tp->undo_retrans = tp->retrans_out ? : -1; 1918 } 1919 1920 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1921 * and reset tags completely, otherwise preserve SACKs. If receiver 1922 * dropped its ofo queue, we will know this due to reneging detection. 1923 */ 1924 void tcp_enter_loss(struct sock *sk) 1925 { 1926 const struct inet_connection_sock *icsk = inet_csk(sk); 1927 struct tcp_sock *tp = tcp_sk(sk); 1928 struct sk_buff *skb; 1929 bool new_recovery = false; 1930 bool is_reneg; /* is receiver reneging on SACKs? */ 1931 1932 /* Reduce ssthresh if it has not yet been made inside this window. */ 1933 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1934 !after(tp->high_seq, tp->snd_una) || 1935 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1936 new_recovery = true; 1937 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1938 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1939 tcp_ca_event(sk, CA_EVENT_LOSS); 1940 tcp_init_undo(tp); 1941 } 1942 tp->snd_cwnd = 1; 1943 tp->snd_cwnd_cnt = 0; 1944 tp->snd_cwnd_stamp = tcp_time_stamp; 1945 1946 tp->retrans_out = 0; 1947 tp->lost_out = 0; 1948 1949 if (tcp_is_reno(tp)) 1950 tcp_reset_reno_sack(tp); 1951 1952 skb = tcp_write_queue_head(sk); 1953 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1954 if (is_reneg) { 1955 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1956 tp->sacked_out = 0; 1957 tp->fackets_out = 0; 1958 } 1959 tcp_clear_all_retrans_hints(tp); 1960 1961 tcp_for_write_queue(skb, sk) { 1962 if (skb == tcp_send_head(sk)) 1963 break; 1964 1965 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1966 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1967 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1968 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1969 tp->lost_out += tcp_skb_pcount(skb); 1970 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1971 } 1972 } 1973 tcp_verify_left_out(tp); 1974 1975 /* Timeout in disordered state after receiving substantial DUPACKs 1976 * suggests that the degree of reordering is over-estimated. 1977 */ 1978 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1979 tp->sacked_out >= sysctl_tcp_reordering) 1980 tp->reordering = min_t(unsigned int, tp->reordering, 1981 sysctl_tcp_reordering); 1982 tcp_set_ca_state(sk, TCP_CA_Loss); 1983 tp->high_seq = tp->snd_nxt; 1984 tcp_ecn_queue_cwr(tp); 1985 1986 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1987 * loss recovery is underway except recurring timeout(s) on 1988 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1989 */ 1990 tp->frto = sysctl_tcp_frto && 1991 (new_recovery || icsk->icsk_retransmits) && 1992 !inet_csk(sk)->icsk_mtup.probe_size; 1993 } 1994 1995 /* If ACK arrived pointing to a remembered SACK, it means that our 1996 * remembered SACKs do not reflect real state of receiver i.e. 1997 * receiver _host_ is heavily congested (or buggy). 1998 * 1999 * To avoid big spurious retransmission bursts due to transient SACK 2000 * scoreboard oddities that look like reneging, we give the receiver a 2001 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2002 * restore sanity to the SACK scoreboard. If the apparent reneging 2003 * persists until this RTO then we'll clear the SACK scoreboard. 2004 */ 2005 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2006 { 2007 if (flag & FLAG_SACK_RENEGING) { 2008 struct tcp_sock *tp = tcp_sk(sk); 2009 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2010 msecs_to_jiffies(10)); 2011 2012 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2013 delay, TCP_RTO_MAX); 2014 return true; 2015 } 2016 return false; 2017 } 2018 2019 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2020 { 2021 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2022 } 2023 2024 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2025 * counter when SACK is enabled (without SACK, sacked_out is used for 2026 * that purpose). 2027 * 2028 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2029 * segments up to the highest received SACK block so far and holes in 2030 * between them. 2031 * 2032 * With reordering, holes may still be in flight, so RFC3517 recovery 2033 * uses pure sacked_out (total number of SACKed segments) even though 2034 * it violates the RFC that uses duplicate ACKs, often these are equal 2035 * but when e.g. out-of-window ACKs or packet duplication occurs, 2036 * they differ. Since neither occurs due to loss, TCP should really 2037 * ignore them. 2038 */ 2039 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2040 { 2041 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2042 } 2043 2044 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2045 { 2046 struct tcp_sock *tp = tcp_sk(sk); 2047 unsigned long delay; 2048 2049 /* Delay early retransmit and entering fast recovery for 2050 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2051 * available, or RTO is scheduled to fire first. 2052 */ 2053 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2054 (flag & FLAG_ECE) || !tp->srtt_us) 2055 return false; 2056 2057 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2058 msecs_to_jiffies(2)); 2059 2060 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2061 return false; 2062 2063 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2064 TCP_RTO_MAX); 2065 return true; 2066 } 2067 2068 /* Linux NewReno/SACK/FACK/ECN state machine. 2069 * -------------------------------------- 2070 * 2071 * "Open" Normal state, no dubious events, fast path. 2072 * "Disorder" In all the respects it is "Open", 2073 * but requires a bit more attention. It is entered when 2074 * we see some SACKs or dupacks. It is split of "Open" 2075 * mainly to move some processing from fast path to slow one. 2076 * "CWR" CWND was reduced due to some Congestion Notification event. 2077 * It can be ECN, ICMP source quench, local device congestion. 2078 * "Recovery" CWND was reduced, we are fast-retransmitting. 2079 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2080 * 2081 * tcp_fastretrans_alert() is entered: 2082 * - each incoming ACK, if state is not "Open" 2083 * - when arrived ACK is unusual, namely: 2084 * * SACK 2085 * * Duplicate ACK. 2086 * * ECN ECE. 2087 * 2088 * Counting packets in flight is pretty simple. 2089 * 2090 * in_flight = packets_out - left_out + retrans_out 2091 * 2092 * packets_out is SND.NXT-SND.UNA counted in packets. 2093 * 2094 * retrans_out is number of retransmitted segments. 2095 * 2096 * left_out is number of segments left network, but not ACKed yet. 2097 * 2098 * left_out = sacked_out + lost_out 2099 * 2100 * sacked_out: Packets, which arrived to receiver out of order 2101 * and hence not ACKed. With SACKs this number is simply 2102 * amount of SACKed data. Even without SACKs 2103 * it is easy to give pretty reliable estimate of this number, 2104 * counting duplicate ACKs. 2105 * 2106 * lost_out: Packets lost by network. TCP has no explicit 2107 * "loss notification" feedback from network (for now). 2108 * It means that this number can be only _guessed_. 2109 * Actually, it is the heuristics to predict lossage that 2110 * distinguishes different algorithms. 2111 * 2112 * F.e. after RTO, when all the queue is considered as lost, 2113 * lost_out = packets_out and in_flight = retrans_out. 2114 * 2115 * Essentially, we have now two algorithms counting 2116 * lost packets. 2117 * 2118 * FACK: It is the simplest heuristics. As soon as we decided 2119 * that something is lost, we decide that _all_ not SACKed 2120 * packets until the most forward SACK are lost. I.e. 2121 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2122 * It is absolutely correct estimate, if network does not reorder 2123 * packets. And it loses any connection to reality when reordering 2124 * takes place. We use FACK by default until reordering 2125 * is suspected on the path to this destination. 2126 * 2127 * NewReno: when Recovery is entered, we assume that one segment 2128 * is lost (classic Reno). While we are in Recovery and 2129 * a partial ACK arrives, we assume that one more packet 2130 * is lost (NewReno). This heuristics are the same in NewReno 2131 * and SACK. 2132 * 2133 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2134 * deflation etc. CWND is real congestion window, never inflated, changes 2135 * only according to classic VJ rules. 2136 * 2137 * Really tricky (and requiring careful tuning) part of algorithm 2138 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2139 * The first determines the moment _when_ we should reduce CWND and, 2140 * hence, slow down forward transmission. In fact, it determines the moment 2141 * when we decide that hole is caused by loss, rather than by a reorder. 2142 * 2143 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2144 * holes, caused by lost packets. 2145 * 2146 * And the most logically complicated part of algorithm is undo 2147 * heuristics. We detect false retransmits due to both too early 2148 * fast retransmit (reordering) and underestimated RTO, analyzing 2149 * timestamps and D-SACKs. When we detect that some segments were 2150 * retransmitted by mistake and CWND reduction was wrong, we undo 2151 * window reduction and abort recovery phase. This logic is hidden 2152 * inside several functions named tcp_try_undo_<something>. 2153 */ 2154 2155 /* This function decides, when we should leave Disordered state 2156 * and enter Recovery phase, reducing congestion window. 2157 * 2158 * Main question: may we further continue forward transmission 2159 * with the same cwnd? 2160 */ 2161 static bool tcp_time_to_recover(struct sock *sk, int flag) 2162 { 2163 struct tcp_sock *tp = tcp_sk(sk); 2164 __u32 packets_out; 2165 2166 /* Trick#1: The loss is proven. */ 2167 if (tp->lost_out) 2168 return true; 2169 2170 /* Not-A-Trick#2 : Classic rule... */ 2171 if (tcp_dupack_heuristics(tp) > tp->reordering) 2172 return true; 2173 2174 /* Trick#4: It is still not OK... But will it be useful to delay 2175 * recovery more? 2176 */ 2177 packets_out = tp->packets_out; 2178 if (packets_out <= tp->reordering && 2179 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2180 !tcp_may_send_now(sk)) { 2181 /* We have nothing to send. This connection is limited 2182 * either by receiver window or by application. 2183 */ 2184 return true; 2185 } 2186 2187 /* If a thin stream is detected, retransmit after first 2188 * received dupack. Employ only if SACK is supported in order 2189 * to avoid possible corner-case series of spurious retransmissions 2190 * Use only if there are no unsent data. 2191 */ 2192 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2193 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2194 tcp_is_sack(tp) && !tcp_send_head(sk)) 2195 return true; 2196 2197 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2198 * retransmissions due to small network reorderings, we implement 2199 * Mitigation A.3 in the RFC and delay the retransmission for a short 2200 * interval if appropriate. 2201 */ 2202 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2203 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2204 !tcp_may_send_now(sk)) 2205 return !tcp_pause_early_retransmit(sk, flag); 2206 2207 return false; 2208 } 2209 2210 /* Detect loss in event "A" above by marking head of queue up as lost. 2211 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2212 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2213 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2214 * the maximum SACKed segments to pass before reaching this limit. 2215 */ 2216 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2217 { 2218 struct tcp_sock *tp = tcp_sk(sk); 2219 struct sk_buff *skb; 2220 int cnt, oldcnt; 2221 int err; 2222 unsigned int mss; 2223 /* Use SACK to deduce losses of new sequences sent during recovery */ 2224 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2225 2226 WARN_ON(packets > tp->packets_out); 2227 if (tp->lost_skb_hint) { 2228 skb = tp->lost_skb_hint; 2229 cnt = tp->lost_cnt_hint; 2230 /* Head already handled? */ 2231 if (mark_head && skb != tcp_write_queue_head(sk)) 2232 return; 2233 } else { 2234 skb = tcp_write_queue_head(sk); 2235 cnt = 0; 2236 } 2237 2238 tcp_for_write_queue_from(skb, sk) { 2239 if (skb == tcp_send_head(sk)) 2240 break; 2241 /* TODO: do this better */ 2242 /* this is not the most efficient way to do this... */ 2243 tp->lost_skb_hint = skb; 2244 tp->lost_cnt_hint = cnt; 2245 2246 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2247 break; 2248 2249 oldcnt = cnt; 2250 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2251 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2252 cnt += tcp_skb_pcount(skb); 2253 2254 if (cnt > packets) { 2255 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2256 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2257 (oldcnt >= packets)) 2258 break; 2259 2260 mss = skb_shinfo(skb)->gso_size; 2261 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2262 mss, GFP_ATOMIC); 2263 if (err < 0) 2264 break; 2265 cnt = packets; 2266 } 2267 2268 tcp_skb_mark_lost(tp, skb); 2269 2270 if (mark_head) 2271 break; 2272 } 2273 tcp_verify_left_out(tp); 2274 } 2275 2276 /* Account newly detected lost packet(s) */ 2277 2278 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2279 { 2280 struct tcp_sock *tp = tcp_sk(sk); 2281 2282 if (tcp_is_reno(tp)) { 2283 tcp_mark_head_lost(sk, 1, 1); 2284 } else if (tcp_is_fack(tp)) { 2285 int lost = tp->fackets_out - tp->reordering; 2286 if (lost <= 0) 2287 lost = 1; 2288 tcp_mark_head_lost(sk, lost, 0); 2289 } else { 2290 int sacked_upto = tp->sacked_out - tp->reordering; 2291 if (sacked_upto >= 0) 2292 tcp_mark_head_lost(sk, sacked_upto, 0); 2293 else if (fast_rexmit) 2294 tcp_mark_head_lost(sk, 1, 1); 2295 } 2296 } 2297 2298 /* CWND moderation, preventing bursts due to too big ACKs 2299 * in dubious situations. 2300 */ 2301 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2302 { 2303 tp->snd_cwnd = min(tp->snd_cwnd, 2304 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2305 tp->snd_cwnd_stamp = tcp_time_stamp; 2306 } 2307 2308 /* Nothing was retransmitted or returned timestamp is less 2309 * than timestamp of the first retransmission. 2310 */ 2311 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2312 { 2313 return !tp->retrans_stamp || 2314 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2315 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2316 } 2317 2318 /* Undo procedures. */ 2319 2320 /* We can clear retrans_stamp when there are no retransmissions in the 2321 * window. It would seem that it is trivially available for us in 2322 * tp->retrans_out, however, that kind of assumptions doesn't consider 2323 * what will happen if errors occur when sending retransmission for the 2324 * second time. ...It could the that such segment has only 2325 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2326 * the head skb is enough except for some reneging corner cases that 2327 * are not worth the effort. 2328 * 2329 * Main reason for all this complexity is the fact that connection dying 2330 * time now depends on the validity of the retrans_stamp, in particular, 2331 * that successive retransmissions of a segment must not advance 2332 * retrans_stamp under any conditions. 2333 */ 2334 static bool tcp_any_retrans_done(const struct sock *sk) 2335 { 2336 const struct tcp_sock *tp = tcp_sk(sk); 2337 struct sk_buff *skb; 2338 2339 if (tp->retrans_out) 2340 return true; 2341 2342 skb = tcp_write_queue_head(sk); 2343 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2344 return true; 2345 2346 return false; 2347 } 2348 2349 #if FASTRETRANS_DEBUG > 1 2350 static void DBGUNDO(struct sock *sk, const char *msg) 2351 { 2352 struct tcp_sock *tp = tcp_sk(sk); 2353 struct inet_sock *inet = inet_sk(sk); 2354 2355 if (sk->sk_family == AF_INET) { 2356 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2357 msg, 2358 &inet->inet_daddr, ntohs(inet->inet_dport), 2359 tp->snd_cwnd, tcp_left_out(tp), 2360 tp->snd_ssthresh, tp->prior_ssthresh, 2361 tp->packets_out); 2362 } 2363 #if IS_ENABLED(CONFIG_IPV6) 2364 else if (sk->sk_family == AF_INET6) { 2365 struct ipv6_pinfo *np = inet6_sk(sk); 2366 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2367 msg, 2368 &np->daddr, ntohs(inet->inet_dport), 2369 tp->snd_cwnd, tcp_left_out(tp), 2370 tp->snd_ssthresh, tp->prior_ssthresh, 2371 tp->packets_out); 2372 } 2373 #endif 2374 } 2375 #else 2376 #define DBGUNDO(x...) do { } while (0) 2377 #endif 2378 2379 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 2383 if (unmark_loss) { 2384 struct sk_buff *skb; 2385 2386 tcp_for_write_queue(skb, sk) { 2387 if (skb == tcp_send_head(sk)) 2388 break; 2389 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2390 } 2391 tp->lost_out = 0; 2392 tcp_clear_all_retrans_hints(tp); 2393 } 2394 2395 if (tp->prior_ssthresh) { 2396 const struct inet_connection_sock *icsk = inet_csk(sk); 2397 2398 if (icsk->icsk_ca_ops->undo_cwnd) 2399 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2400 else 2401 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2402 2403 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2404 tp->snd_ssthresh = tp->prior_ssthresh; 2405 tcp_ecn_withdraw_cwr(tp); 2406 } 2407 } else { 2408 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2409 } 2410 tp->snd_cwnd_stamp = tcp_time_stamp; 2411 tp->undo_marker = 0; 2412 } 2413 2414 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2415 { 2416 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2417 } 2418 2419 /* People celebrate: "We love our President!" */ 2420 static bool tcp_try_undo_recovery(struct sock *sk) 2421 { 2422 struct tcp_sock *tp = tcp_sk(sk); 2423 2424 if (tcp_may_undo(tp)) { 2425 int mib_idx; 2426 2427 /* Happy end! We did not retransmit anything 2428 * or our original transmission succeeded. 2429 */ 2430 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2431 tcp_undo_cwnd_reduction(sk, false); 2432 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2433 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2434 else 2435 mib_idx = LINUX_MIB_TCPFULLUNDO; 2436 2437 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2438 } 2439 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2440 /* Hold old state until something *above* high_seq 2441 * is ACKed. For Reno it is MUST to prevent false 2442 * fast retransmits (RFC2582). SACK TCP is safe. */ 2443 tcp_moderate_cwnd(tp); 2444 if (!tcp_any_retrans_done(sk)) 2445 tp->retrans_stamp = 0; 2446 return true; 2447 } 2448 tcp_set_ca_state(sk, TCP_CA_Open); 2449 return false; 2450 } 2451 2452 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2453 static bool tcp_try_undo_dsack(struct sock *sk) 2454 { 2455 struct tcp_sock *tp = tcp_sk(sk); 2456 2457 if (tp->undo_marker && !tp->undo_retrans) { 2458 DBGUNDO(sk, "D-SACK"); 2459 tcp_undo_cwnd_reduction(sk, false); 2460 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2461 return true; 2462 } 2463 return false; 2464 } 2465 2466 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2467 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2468 { 2469 struct tcp_sock *tp = tcp_sk(sk); 2470 2471 if (frto_undo || tcp_may_undo(tp)) { 2472 tcp_undo_cwnd_reduction(sk, true); 2473 2474 DBGUNDO(sk, "partial loss"); 2475 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2476 if (frto_undo) 2477 NET_INC_STATS_BH(sock_net(sk), 2478 LINUX_MIB_TCPSPURIOUSRTOS); 2479 inet_csk(sk)->icsk_retransmits = 0; 2480 if (frto_undo || tcp_is_sack(tp)) 2481 tcp_set_ca_state(sk, TCP_CA_Open); 2482 return true; 2483 } 2484 return false; 2485 } 2486 2487 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2488 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2489 * It computes the number of packets to send (sndcnt) based on packets newly 2490 * delivered: 2491 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2492 * cwnd reductions across a full RTT. 2493 * 2) If packets in flight is lower than ssthresh (such as due to excess 2494 * losses and/or application stalls), do not perform any further cwnd 2495 * reductions, but instead slow start up to ssthresh. 2496 */ 2497 static void tcp_init_cwnd_reduction(struct sock *sk) 2498 { 2499 struct tcp_sock *tp = tcp_sk(sk); 2500 2501 tp->high_seq = tp->snd_nxt; 2502 tp->tlp_high_seq = 0; 2503 tp->snd_cwnd_cnt = 0; 2504 tp->prior_cwnd = tp->snd_cwnd; 2505 tp->prr_delivered = 0; 2506 tp->prr_out = 0; 2507 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2508 tcp_ecn_queue_cwr(tp); 2509 } 2510 2511 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2512 int fast_rexmit) 2513 { 2514 struct tcp_sock *tp = tcp_sk(sk); 2515 int sndcnt = 0; 2516 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2517 int newly_acked_sacked = prior_unsacked - 2518 (tp->packets_out - tp->sacked_out); 2519 2520 tp->prr_delivered += newly_acked_sacked; 2521 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2522 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2523 tp->prior_cwnd - 1; 2524 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2525 } else { 2526 sndcnt = min_t(int, delta, 2527 max_t(int, tp->prr_delivered - tp->prr_out, 2528 newly_acked_sacked) + 1); 2529 } 2530 2531 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2532 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2533 } 2534 2535 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2536 { 2537 struct tcp_sock *tp = tcp_sk(sk); 2538 2539 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2540 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2541 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2542 tp->snd_cwnd = tp->snd_ssthresh; 2543 tp->snd_cwnd_stamp = tcp_time_stamp; 2544 } 2545 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2546 } 2547 2548 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2549 void tcp_enter_cwr(struct sock *sk) 2550 { 2551 struct tcp_sock *tp = tcp_sk(sk); 2552 2553 tp->prior_ssthresh = 0; 2554 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2555 tp->undo_marker = 0; 2556 tcp_init_cwnd_reduction(sk); 2557 tcp_set_ca_state(sk, TCP_CA_CWR); 2558 } 2559 } 2560 2561 static void tcp_try_keep_open(struct sock *sk) 2562 { 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 int state = TCP_CA_Open; 2565 2566 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2567 state = TCP_CA_Disorder; 2568 2569 if (inet_csk(sk)->icsk_ca_state != state) { 2570 tcp_set_ca_state(sk, state); 2571 tp->high_seq = tp->snd_nxt; 2572 } 2573 } 2574 2575 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2576 { 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 2579 tcp_verify_left_out(tp); 2580 2581 if (!tcp_any_retrans_done(sk)) 2582 tp->retrans_stamp = 0; 2583 2584 if (flag & FLAG_ECE) 2585 tcp_enter_cwr(sk); 2586 2587 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2588 tcp_try_keep_open(sk); 2589 } else { 2590 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2591 } 2592 } 2593 2594 static void tcp_mtup_probe_failed(struct sock *sk) 2595 { 2596 struct inet_connection_sock *icsk = inet_csk(sk); 2597 2598 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2599 icsk->icsk_mtup.probe_size = 0; 2600 } 2601 2602 static void tcp_mtup_probe_success(struct sock *sk) 2603 { 2604 struct tcp_sock *tp = tcp_sk(sk); 2605 struct inet_connection_sock *icsk = inet_csk(sk); 2606 2607 /* FIXME: breaks with very large cwnd */ 2608 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2609 tp->snd_cwnd = tp->snd_cwnd * 2610 tcp_mss_to_mtu(sk, tp->mss_cache) / 2611 icsk->icsk_mtup.probe_size; 2612 tp->snd_cwnd_cnt = 0; 2613 tp->snd_cwnd_stamp = tcp_time_stamp; 2614 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2615 2616 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2617 icsk->icsk_mtup.probe_size = 0; 2618 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2619 } 2620 2621 /* Do a simple retransmit without using the backoff mechanisms in 2622 * tcp_timer. This is used for path mtu discovery. 2623 * The socket is already locked here. 2624 */ 2625 void tcp_simple_retransmit(struct sock *sk) 2626 { 2627 const struct inet_connection_sock *icsk = inet_csk(sk); 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 struct sk_buff *skb; 2630 unsigned int mss = tcp_current_mss(sk); 2631 u32 prior_lost = tp->lost_out; 2632 2633 tcp_for_write_queue(skb, sk) { 2634 if (skb == tcp_send_head(sk)) 2635 break; 2636 if (tcp_skb_seglen(skb) > mss && 2637 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2638 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2639 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2640 tp->retrans_out -= tcp_skb_pcount(skb); 2641 } 2642 tcp_skb_mark_lost_uncond_verify(tp, skb); 2643 } 2644 } 2645 2646 tcp_clear_retrans_hints_partial(tp); 2647 2648 if (prior_lost == tp->lost_out) 2649 return; 2650 2651 if (tcp_is_reno(tp)) 2652 tcp_limit_reno_sacked(tp); 2653 2654 tcp_verify_left_out(tp); 2655 2656 /* Don't muck with the congestion window here. 2657 * Reason is that we do not increase amount of _data_ 2658 * in network, but units changed and effective 2659 * cwnd/ssthresh really reduced now. 2660 */ 2661 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2662 tp->high_seq = tp->snd_nxt; 2663 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2664 tp->prior_ssthresh = 0; 2665 tp->undo_marker = 0; 2666 tcp_set_ca_state(sk, TCP_CA_Loss); 2667 } 2668 tcp_xmit_retransmit_queue(sk); 2669 } 2670 EXPORT_SYMBOL(tcp_simple_retransmit); 2671 2672 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2673 { 2674 struct tcp_sock *tp = tcp_sk(sk); 2675 int mib_idx; 2676 2677 if (tcp_is_reno(tp)) 2678 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2679 else 2680 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2681 2682 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2683 2684 tp->prior_ssthresh = 0; 2685 tcp_init_undo(tp); 2686 2687 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2688 if (!ece_ack) 2689 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2690 tcp_init_cwnd_reduction(sk); 2691 } 2692 tcp_set_ca_state(sk, TCP_CA_Recovery); 2693 } 2694 2695 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2696 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2697 */ 2698 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2699 { 2700 struct tcp_sock *tp = tcp_sk(sk); 2701 bool recovered = !before(tp->snd_una, tp->high_seq); 2702 2703 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2704 /* Step 3.b. A timeout is spurious if not all data are 2705 * lost, i.e., never-retransmitted data are (s)acked. 2706 */ 2707 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED)) 2708 return; 2709 2710 if (after(tp->snd_nxt, tp->high_seq) && 2711 (flag & FLAG_DATA_SACKED || is_dupack)) { 2712 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2713 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2714 tp->high_seq = tp->snd_nxt; 2715 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2716 TCP_NAGLE_OFF); 2717 if (after(tp->snd_nxt, tp->high_seq)) 2718 return; /* Step 2.b */ 2719 tp->frto = 0; 2720 } 2721 } 2722 2723 if (recovered) { 2724 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2725 tcp_try_undo_recovery(sk); 2726 return; 2727 } 2728 if (tcp_is_reno(tp)) { 2729 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2730 * delivered. Lower inflight to clock out (re)tranmissions. 2731 */ 2732 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2733 tcp_add_reno_sack(sk); 2734 else if (flag & FLAG_SND_UNA_ADVANCED) 2735 tcp_reset_reno_sack(tp); 2736 } 2737 if (tcp_try_undo_loss(sk, false)) 2738 return; 2739 tcp_xmit_retransmit_queue(sk); 2740 } 2741 2742 /* Undo during fast recovery after partial ACK. */ 2743 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2744 const int prior_unsacked) 2745 { 2746 struct tcp_sock *tp = tcp_sk(sk); 2747 2748 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2749 /* Plain luck! Hole if filled with delayed 2750 * packet, rather than with a retransmit. 2751 */ 2752 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2753 2754 /* We are getting evidence that the reordering degree is higher 2755 * than we realized. If there are no retransmits out then we 2756 * can undo. Otherwise we clock out new packets but do not 2757 * mark more packets lost or retransmit more. 2758 */ 2759 if (tp->retrans_out) { 2760 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2761 return true; 2762 } 2763 2764 if (!tcp_any_retrans_done(sk)) 2765 tp->retrans_stamp = 0; 2766 2767 DBGUNDO(sk, "partial recovery"); 2768 tcp_undo_cwnd_reduction(sk, true); 2769 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2770 tcp_try_keep_open(sk); 2771 return true; 2772 } 2773 return false; 2774 } 2775 2776 /* Process an event, which can update packets-in-flight not trivially. 2777 * Main goal of this function is to calculate new estimate for left_out, 2778 * taking into account both packets sitting in receiver's buffer and 2779 * packets lost by network. 2780 * 2781 * Besides that it does CWND reduction, when packet loss is detected 2782 * and changes state of machine. 2783 * 2784 * It does _not_ decide what to send, it is made in function 2785 * tcp_xmit_retransmit_queue(). 2786 */ 2787 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2788 const int prior_unsacked, 2789 bool is_dupack, int flag) 2790 { 2791 struct inet_connection_sock *icsk = inet_csk(sk); 2792 struct tcp_sock *tp = tcp_sk(sk); 2793 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2794 (tcp_fackets_out(tp) > tp->reordering)); 2795 int fast_rexmit = 0; 2796 2797 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2798 tp->sacked_out = 0; 2799 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2800 tp->fackets_out = 0; 2801 2802 /* Now state machine starts. 2803 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2804 if (flag & FLAG_ECE) 2805 tp->prior_ssthresh = 0; 2806 2807 /* B. In all the states check for reneging SACKs. */ 2808 if (tcp_check_sack_reneging(sk, flag)) 2809 return; 2810 2811 /* C. Check consistency of the current state. */ 2812 tcp_verify_left_out(tp); 2813 2814 /* D. Check state exit conditions. State can be terminated 2815 * when high_seq is ACKed. */ 2816 if (icsk->icsk_ca_state == TCP_CA_Open) { 2817 WARN_ON(tp->retrans_out != 0); 2818 tp->retrans_stamp = 0; 2819 } else if (!before(tp->snd_una, tp->high_seq)) { 2820 switch (icsk->icsk_ca_state) { 2821 case TCP_CA_CWR: 2822 /* CWR is to be held something *above* high_seq 2823 * is ACKed for CWR bit to reach receiver. */ 2824 if (tp->snd_una != tp->high_seq) { 2825 tcp_end_cwnd_reduction(sk); 2826 tcp_set_ca_state(sk, TCP_CA_Open); 2827 } 2828 break; 2829 2830 case TCP_CA_Recovery: 2831 if (tcp_is_reno(tp)) 2832 tcp_reset_reno_sack(tp); 2833 if (tcp_try_undo_recovery(sk)) 2834 return; 2835 tcp_end_cwnd_reduction(sk); 2836 break; 2837 } 2838 } 2839 2840 /* E. Process state. */ 2841 switch (icsk->icsk_ca_state) { 2842 case TCP_CA_Recovery: 2843 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2844 if (tcp_is_reno(tp) && is_dupack) 2845 tcp_add_reno_sack(sk); 2846 } else { 2847 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2848 return; 2849 /* Partial ACK arrived. Force fast retransmit. */ 2850 do_lost = tcp_is_reno(tp) || 2851 tcp_fackets_out(tp) > tp->reordering; 2852 } 2853 if (tcp_try_undo_dsack(sk)) { 2854 tcp_try_keep_open(sk); 2855 return; 2856 } 2857 break; 2858 case TCP_CA_Loss: 2859 tcp_process_loss(sk, flag, is_dupack); 2860 if (icsk->icsk_ca_state != TCP_CA_Open) 2861 return; 2862 /* Fall through to processing in Open state. */ 2863 default: 2864 if (tcp_is_reno(tp)) { 2865 if (flag & FLAG_SND_UNA_ADVANCED) 2866 tcp_reset_reno_sack(tp); 2867 if (is_dupack) 2868 tcp_add_reno_sack(sk); 2869 } 2870 2871 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2872 tcp_try_undo_dsack(sk); 2873 2874 if (!tcp_time_to_recover(sk, flag)) { 2875 tcp_try_to_open(sk, flag, prior_unsacked); 2876 return; 2877 } 2878 2879 /* MTU probe failure: don't reduce cwnd */ 2880 if (icsk->icsk_ca_state < TCP_CA_CWR && 2881 icsk->icsk_mtup.probe_size && 2882 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2883 tcp_mtup_probe_failed(sk); 2884 /* Restores the reduction we did in tcp_mtup_probe() */ 2885 tp->snd_cwnd++; 2886 tcp_simple_retransmit(sk); 2887 return; 2888 } 2889 2890 /* Otherwise enter Recovery state */ 2891 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2892 fast_rexmit = 1; 2893 } 2894 2895 if (do_lost) 2896 tcp_update_scoreboard(sk, fast_rexmit); 2897 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2898 tcp_xmit_retransmit_queue(sk); 2899 } 2900 2901 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2902 long seq_rtt_us, long sack_rtt_us) 2903 { 2904 const struct tcp_sock *tp = tcp_sk(sk); 2905 2906 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2907 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2908 * Karn's algorithm forbids taking RTT if some retransmitted data 2909 * is acked (RFC6298). 2910 */ 2911 if (flag & FLAG_RETRANS_DATA_ACKED) 2912 seq_rtt_us = -1L; 2913 2914 if (seq_rtt_us < 0) 2915 seq_rtt_us = sack_rtt_us; 2916 2917 /* RTTM Rule: A TSecr value received in a segment is used to 2918 * update the averaged RTT measurement only if the segment 2919 * acknowledges some new data, i.e., only if it advances the 2920 * left edge of the send window. 2921 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2922 */ 2923 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2924 flag & FLAG_ACKED) 2925 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2926 2927 if (seq_rtt_us < 0) 2928 return false; 2929 2930 tcp_rtt_estimator(sk, seq_rtt_us); 2931 tcp_set_rto(sk); 2932 2933 /* RFC6298: only reset backoff on valid RTT measurement. */ 2934 inet_csk(sk)->icsk_backoff = 0; 2935 return true; 2936 } 2937 2938 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2939 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2940 { 2941 struct tcp_sock *tp = tcp_sk(sk); 2942 long seq_rtt_us = -1L; 2943 2944 if (synack_stamp && !tp->total_retrans) 2945 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2946 2947 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2948 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2949 */ 2950 if (!tp->srtt_us) 2951 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2952 } 2953 2954 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2955 { 2956 const struct inet_connection_sock *icsk = inet_csk(sk); 2957 2958 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2959 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2960 } 2961 2962 /* Restart timer after forward progress on connection. 2963 * RFC2988 recommends to restart timer to now+rto. 2964 */ 2965 void tcp_rearm_rto(struct sock *sk) 2966 { 2967 const struct inet_connection_sock *icsk = inet_csk(sk); 2968 struct tcp_sock *tp = tcp_sk(sk); 2969 2970 /* If the retrans timer is currently being used by Fast Open 2971 * for SYN-ACK retrans purpose, stay put. 2972 */ 2973 if (tp->fastopen_rsk) 2974 return; 2975 2976 if (!tp->packets_out) { 2977 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2978 } else { 2979 u32 rto = inet_csk(sk)->icsk_rto; 2980 /* Offset the time elapsed after installing regular RTO */ 2981 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2982 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2983 struct sk_buff *skb = tcp_write_queue_head(sk); 2984 const u32 rto_time_stamp = 2985 tcp_skb_timestamp(skb) + rto; 2986 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2987 /* delta may not be positive if the socket is locked 2988 * when the retrans timer fires and is rescheduled. 2989 */ 2990 if (delta > 0) 2991 rto = delta; 2992 } 2993 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2994 TCP_RTO_MAX); 2995 } 2996 } 2997 2998 /* This function is called when the delayed ER timer fires. TCP enters 2999 * fast recovery and performs fast-retransmit. 3000 */ 3001 void tcp_resume_early_retransmit(struct sock *sk) 3002 { 3003 struct tcp_sock *tp = tcp_sk(sk); 3004 3005 tcp_rearm_rto(sk); 3006 3007 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3008 if (!tp->do_early_retrans) 3009 return; 3010 3011 tcp_enter_recovery(sk, false); 3012 tcp_update_scoreboard(sk, 1); 3013 tcp_xmit_retransmit_queue(sk); 3014 } 3015 3016 /* If we get here, the whole TSO packet has not been acked. */ 3017 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3018 { 3019 struct tcp_sock *tp = tcp_sk(sk); 3020 u32 packets_acked; 3021 3022 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3023 3024 packets_acked = tcp_skb_pcount(skb); 3025 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3026 return 0; 3027 packets_acked -= tcp_skb_pcount(skb); 3028 3029 if (packets_acked) { 3030 BUG_ON(tcp_skb_pcount(skb) == 0); 3031 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3032 } 3033 3034 return packets_acked; 3035 } 3036 3037 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3038 u32 prior_snd_una) 3039 { 3040 const struct skb_shared_info *shinfo; 3041 3042 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3043 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) 3044 return; 3045 3046 shinfo = skb_shinfo(skb); 3047 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3048 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) 3049 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3050 } 3051 3052 /* Remove acknowledged frames from the retransmission queue. If our packet 3053 * is before the ack sequence we can discard it as it's confirmed to have 3054 * arrived at the other end. 3055 */ 3056 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3057 u32 prior_snd_una, long sack_rtt_us) 3058 { 3059 const struct inet_connection_sock *icsk = inet_csk(sk); 3060 struct skb_mstamp first_ackt, last_ackt, now; 3061 struct tcp_sock *tp = tcp_sk(sk); 3062 u32 prior_sacked = tp->sacked_out; 3063 u32 reord = tp->packets_out; 3064 bool fully_acked = true; 3065 long ca_seq_rtt_us = -1L; 3066 long seq_rtt_us = -1L; 3067 struct sk_buff *skb; 3068 u32 pkts_acked = 0; 3069 bool rtt_update; 3070 int flag = 0; 3071 3072 first_ackt.v64 = 0; 3073 3074 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3075 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3076 u8 sacked = scb->sacked; 3077 u32 acked_pcount; 3078 3079 tcp_ack_tstamp(sk, skb, prior_snd_una); 3080 3081 /* Determine how many packets and what bytes were acked, tso and else */ 3082 if (after(scb->end_seq, tp->snd_una)) { 3083 if (tcp_skb_pcount(skb) == 1 || 3084 !after(tp->snd_una, scb->seq)) 3085 break; 3086 3087 acked_pcount = tcp_tso_acked(sk, skb); 3088 if (!acked_pcount) 3089 break; 3090 3091 fully_acked = false; 3092 } else { 3093 /* Speedup tcp_unlink_write_queue() and next loop */ 3094 prefetchw(skb->next); 3095 acked_pcount = tcp_skb_pcount(skb); 3096 } 3097 3098 if (unlikely(sacked & TCPCB_RETRANS)) { 3099 if (sacked & TCPCB_SACKED_RETRANS) 3100 tp->retrans_out -= acked_pcount; 3101 flag |= FLAG_RETRANS_DATA_ACKED; 3102 } else { 3103 last_ackt = skb->skb_mstamp; 3104 WARN_ON_ONCE(last_ackt.v64 == 0); 3105 if (!first_ackt.v64) 3106 first_ackt = last_ackt; 3107 3108 if (!(sacked & TCPCB_SACKED_ACKED)) 3109 reord = min(pkts_acked, reord); 3110 if (!after(scb->end_seq, tp->high_seq)) 3111 flag |= FLAG_ORIG_SACK_ACKED; 3112 } 3113 3114 if (sacked & TCPCB_SACKED_ACKED) 3115 tp->sacked_out -= acked_pcount; 3116 if (sacked & TCPCB_LOST) 3117 tp->lost_out -= acked_pcount; 3118 3119 tp->packets_out -= acked_pcount; 3120 pkts_acked += acked_pcount; 3121 3122 /* Initial outgoing SYN's get put onto the write_queue 3123 * just like anything else we transmit. It is not 3124 * true data, and if we misinform our callers that 3125 * this ACK acks real data, we will erroneously exit 3126 * connection startup slow start one packet too 3127 * quickly. This is severely frowned upon behavior. 3128 */ 3129 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3130 flag |= FLAG_DATA_ACKED; 3131 } else { 3132 flag |= FLAG_SYN_ACKED; 3133 tp->retrans_stamp = 0; 3134 } 3135 3136 if (!fully_acked) 3137 break; 3138 3139 tcp_unlink_write_queue(skb, sk); 3140 sk_wmem_free_skb(sk, skb); 3141 if (unlikely(skb == tp->retransmit_skb_hint)) 3142 tp->retransmit_skb_hint = NULL; 3143 if (unlikely(skb == tp->lost_skb_hint)) 3144 tp->lost_skb_hint = NULL; 3145 } 3146 3147 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3148 tp->snd_up = tp->snd_una; 3149 3150 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3151 flag |= FLAG_SACK_RENEGING; 3152 3153 skb_mstamp_get(&now); 3154 if (likely(first_ackt.v64)) { 3155 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3156 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3157 } 3158 3159 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3160 3161 if (flag & FLAG_ACKED) { 3162 const struct tcp_congestion_ops *ca_ops 3163 = inet_csk(sk)->icsk_ca_ops; 3164 3165 tcp_rearm_rto(sk); 3166 if (unlikely(icsk->icsk_mtup.probe_size && 3167 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3168 tcp_mtup_probe_success(sk); 3169 } 3170 3171 if (tcp_is_reno(tp)) { 3172 tcp_remove_reno_sacks(sk, pkts_acked); 3173 } else { 3174 int delta; 3175 3176 /* Non-retransmitted hole got filled? That's reordering */ 3177 if (reord < prior_fackets) 3178 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3179 3180 delta = tcp_is_fack(tp) ? pkts_acked : 3181 prior_sacked - tp->sacked_out; 3182 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3183 } 3184 3185 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3186 3187 if (ca_ops->pkts_acked) { 3188 long rtt_us = min_t(ulong, ca_seq_rtt_us, sack_rtt_us); 3189 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3190 } 3191 3192 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3193 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3194 /* Do not re-arm RTO if the sack RTT is measured from data sent 3195 * after when the head was last (re)transmitted. Otherwise the 3196 * timeout may continue to extend in loss recovery. 3197 */ 3198 tcp_rearm_rto(sk); 3199 } 3200 3201 #if FASTRETRANS_DEBUG > 0 3202 WARN_ON((int)tp->sacked_out < 0); 3203 WARN_ON((int)tp->lost_out < 0); 3204 WARN_ON((int)tp->retrans_out < 0); 3205 if (!tp->packets_out && tcp_is_sack(tp)) { 3206 icsk = inet_csk(sk); 3207 if (tp->lost_out) { 3208 pr_debug("Leak l=%u %d\n", 3209 tp->lost_out, icsk->icsk_ca_state); 3210 tp->lost_out = 0; 3211 } 3212 if (tp->sacked_out) { 3213 pr_debug("Leak s=%u %d\n", 3214 tp->sacked_out, icsk->icsk_ca_state); 3215 tp->sacked_out = 0; 3216 } 3217 if (tp->retrans_out) { 3218 pr_debug("Leak r=%u %d\n", 3219 tp->retrans_out, icsk->icsk_ca_state); 3220 tp->retrans_out = 0; 3221 } 3222 } 3223 #endif 3224 return flag; 3225 } 3226 3227 static void tcp_ack_probe(struct sock *sk) 3228 { 3229 const struct tcp_sock *tp = tcp_sk(sk); 3230 struct inet_connection_sock *icsk = inet_csk(sk); 3231 3232 /* Was it a usable window open? */ 3233 3234 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3235 icsk->icsk_backoff = 0; 3236 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3237 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3238 * This function is not for random using! 3239 */ 3240 } else { 3241 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 3242 3243 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3244 when, TCP_RTO_MAX); 3245 } 3246 } 3247 3248 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3249 { 3250 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3251 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3252 } 3253 3254 /* Decide wheather to run the increase function of congestion control. */ 3255 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3256 { 3257 if (tcp_in_cwnd_reduction(sk)) 3258 return false; 3259 3260 /* If reordering is high then always grow cwnd whenever data is 3261 * delivered regardless of its ordering. Otherwise stay conservative 3262 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3263 * new SACK or ECE mark may first advance cwnd here and later reduce 3264 * cwnd in tcp_fastretrans_alert() based on more states. 3265 */ 3266 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3267 return flag & FLAG_FORWARD_PROGRESS; 3268 3269 return flag & FLAG_DATA_ACKED; 3270 } 3271 3272 /* Check that window update is acceptable. 3273 * The function assumes that snd_una<=ack<=snd_next. 3274 */ 3275 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3276 const u32 ack, const u32 ack_seq, 3277 const u32 nwin) 3278 { 3279 return after(ack, tp->snd_una) || 3280 after(ack_seq, tp->snd_wl1) || 3281 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3282 } 3283 3284 /* Update our send window. 3285 * 3286 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3287 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3288 */ 3289 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3290 u32 ack_seq) 3291 { 3292 struct tcp_sock *tp = tcp_sk(sk); 3293 int flag = 0; 3294 u32 nwin = ntohs(tcp_hdr(skb)->window); 3295 3296 if (likely(!tcp_hdr(skb)->syn)) 3297 nwin <<= tp->rx_opt.snd_wscale; 3298 3299 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3300 flag |= FLAG_WIN_UPDATE; 3301 tcp_update_wl(tp, ack_seq); 3302 3303 if (tp->snd_wnd != nwin) { 3304 tp->snd_wnd = nwin; 3305 3306 /* Note, it is the only place, where 3307 * fast path is recovered for sending TCP. 3308 */ 3309 tp->pred_flags = 0; 3310 tcp_fast_path_check(sk); 3311 3312 if (nwin > tp->max_window) { 3313 tp->max_window = nwin; 3314 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3315 } 3316 } 3317 } 3318 3319 tp->snd_una = ack; 3320 3321 return flag; 3322 } 3323 3324 /* RFC 5961 7 [ACK Throttling] */ 3325 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3326 { 3327 /* unprotected vars, we dont care of overwrites */ 3328 static u32 challenge_timestamp; 3329 static unsigned int challenge_count; 3330 struct tcp_sock *tp = tcp_sk(sk); 3331 u32 now; 3332 3333 /* First check our per-socket dupack rate limit. */ 3334 if (tcp_oow_rate_limited(sock_net(sk), skb, 3335 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3336 &tp->last_oow_ack_time)) 3337 return; 3338 3339 /* Then check the check host-wide RFC 5961 rate limit. */ 3340 now = jiffies / HZ; 3341 if (now != challenge_timestamp) { 3342 challenge_timestamp = now; 3343 challenge_count = 0; 3344 } 3345 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3347 tcp_send_ack(sk); 3348 } 3349 } 3350 3351 static void tcp_store_ts_recent(struct tcp_sock *tp) 3352 { 3353 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3354 tp->rx_opt.ts_recent_stamp = get_seconds(); 3355 } 3356 3357 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3358 { 3359 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3360 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3361 * extra check below makes sure this can only happen 3362 * for pure ACK frames. -DaveM 3363 * 3364 * Not only, also it occurs for expired timestamps. 3365 */ 3366 3367 if (tcp_paws_check(&tp->rx_opt, 0)) 3368 tcp_store_ts_recent(tp); 3369 } 3370 } 3371 3372 /* This routine deals with acks during a TLP episode. 3373 * We mark the end of a TLP episode on receiving TLP dupack or when 3374 * ack is after tlp_high_seq. 3375 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3376 */ 3377 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3378 { 3379 struct tcp_sock *tp = tcp_sk(sk); 3380 3381 if (before(ack, tp->tlp_high_seq)) 3382 return; 3383 3384 if (flag & FLAG_DSACKING_ACK) { 3385 /* This DSACK means original and TLP probe arrived; no loss */ 3386 tp->tlp_high_seq = 0; 3387 } else if (after(ack, tp->tlp_high_seq)) { 3388 /* ACK advances: there was a loss, so reduce cwnd. Reset 3389 * tlp_high_seq in tcp_init_cwnd_reduction() 3390 */ 3391 tcp_init_cwnd_reduction(sk); 3392 tcp_set_ca_state(sk, TCP_CA_CWR); 3393 tcp_end_cwnd_reduction(sk); 3394 tcp_try_keep_open(sk); 3395 NET_INC_STATS_BH(sock_net(sk), 3396 LINUX_MIB_TCPLOSSPROBERECOVERY); 3397 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3398 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3399 /* Pure dupack: original and TLP probe arrived; no loss */ 3400 tp->tlp_high_seq = 0; 3401 } 3402 } 3403 3404 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3405 { 3406 const struct inet_connection_sock *icsk = inet_csk(sk); 3407 3408 if (icsk->icsk_ca_ops->in_ack_event) 3409 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3410 } 3411 3412 /* This routine deals with incoming acks, but not outgoing ones. */ 3413 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3414 { 3415 struct inet_connection_sock *icsk = inet_csk(sk); 3416 struct tcp_sock *tp = tcp_sk(sk); 3417 u32 prior_snd_una = tp->snd_una; 3418 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3419 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3420 bool is_dupack = false; 3421 u32 prior_fackets; 3422 int prior_packets = tp->packets_out; 3423 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3424 int acked = 0; /* Number of packets newly acked */ 3425 long sack_rtt_us = -1L; 3426 3427 /* We very likely will need to access write queue head. */ 3428 prefetchw(sk->sk_write_queue.next); 3429 3430 /* If the ack is older than previous acks 3431 * then we can probably ignore it. 3432 */ 3433 if (before(ack, prior_snd_una)) { 3434 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3435 if (before(ack, prior_snd_una - tp->max_window)) { 3436 tcp_send_challenge_ack(sk, skb); 3437 return -1; 3438 } 3439 goto old_ack; 3440 } 3441 3442 /* If the ack includes data we haven't sent yet, discard 3443 * this segment (RFC793 Section 3.9). 3444 */ 3445 if (after(ack, tp->snd_nxt)) 3446 goto invalid_ack; 3447 3448 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3449 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3450 tcp_rearm_rto(sk); 3451 3452 if (after(ack, prior_snd_una)) { 3453 flag |= FLAG_SND_UNA_ADVANCED; 3454 icsk->icsk_retransmits = 0; 3455 } 3456 3457 prior_fackets = tp->fackets_out; 3458 3459 /* ts_recent update must be made after we are sure that the packet 3460 * is in window. 3461 */ 3462 if (flag & FLAG_UPDATE_TS_RECENT) 3463 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3464 3465 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3466 /* Window is constant, pure forward advance. 3467 * No more checks are required. 3468 * Note, we use the fact that SND.UNA>=SND.WL2. 3469 */ 3470 tcp_update_wl(tp, ack_seq); 3471 tp->snd_una = ack; 3472 flag |= FLAG_WIN_UPDATE; 3473 3474 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3475 3476 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3477 } else { 3478 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3479 3480 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3481 flag |= FLAG_DATA; 3482 else 3483 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3484 3485 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3486 3487 if (TCP_SKB_CB(skb)->sacked) 3488 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3489 &sack_rtt_us); 3490 3491 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3492 flag |= FLAG_ECE; 3493 ack_ev_flags |= CA_ACK_ECE; 3494 } 3495 3496 if (flag & FLAG_WIN_UPDATE) 3497 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3498 3499 tcp_in_ack_event(sk, ack_ev_flags); 3500 } 3501 3502 /* We passed data and got it acked, remove any soft error 3503 * log. Something worked... 3504 */ 3505 sk->sk_err_soft = 0; 3506 icsk->icsk_probes_out = 0; 3507 tp->rcv_tstamp = tcp_time_stamp; 3508 if (!prior_packets) 3509 goto no_queue; 3510 3511 /* See if we can take anything off of the retransmit queue. */ 3512 acked = tp->packets_out; 3513 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3514 sack_rtt_us); 3515 acked -= tp->packets_out; 3516 3517 /* Advance cwnd if state allows */ 3518 if (tcp_may_raise_cwnd(sk, flag)) 3519 tcp_cong_avoid(sk, ack, acked); 3520 3521 if (tcp_ack_is_dubious(sk, flag)) { 3522 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3523 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3524 is_dupack, flag); 3525 } 3526 if (tp->tlp_high_seq) 3527 tcp_process_tlp_ack(sk, ack, flag); 3528 3529 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3530 struct dst_entry *dst = __sk_dst_get(sk); 3531 if (dst) 3532 dst_confirm(dst); 3533 } 3534 3535 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3536 tcp_schedule_loss_probe(sk); 3537 tcp_update_pacing_rate(sk); 3538 return 1; 3539 3540 no_queue: 3541 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3542 if (flag & FLAG_DSACKING_ACK) 3543 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3544 is_dupack, flag); 3545 /* If this ack opens up a zero window, clear backoff. It was 3546 * being used to time the probes, and is probably far higher than 3547 * it needs to be for normal retransmission. 3548 */ 3549 if (tcp_send_head(sk)) 3550 tcp_ack_probe(sk); 3551 3552 if (tp->tlp_high_seq) 3553 tcp_process_tlp_ack(sk, ack, flag); 3554 return 1; 3555 3556 invalid_ack: 3557 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3558 return -1; 3559 3560 old_ack: 3561 /* If data was SACKed, tag it and see if we should send more data. 3562 * If data was DSACKed, see if we can undo a cwnd reduction. 3563 */ 3564 if (TCP_SKB_CB(skb)->sacked) { 3565 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3566 &sack_rtt_us); 3567 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3568 is_dupack, flag); 3569 } 3570 3571 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3572 return 0; 3573 } 3574 3575 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3576 * But, this can also be called on packets in the established flow when 3577 * the fast version below fails. 3578 */ 3579 void tcp_parse_options(const struct sk_buff *skb, 3580 struct tcp_options_received *opt_rx, int estab, 3581 struct tcp_fastopen_cookie *foc) 3582 { 3583 const unsigned char *ptr; 3584 const struct tcphdr *th = tcp_hdr(skb); 3585 int length = (th->doff * 4) - sizeof(struct tcphdr); 3586 3587 ptr = (const unsigned char *)(th + 1); 3588 opt_rx->saw_tstamp = 0; 3589 3590 while (length > 0) { 3591 int opcode = *ptr++; 3592 int opsize; 3593 3594 switch (opcode) { 3595 case TCPOPT_EOL: 3596 return; 3597 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3598 length--; 3599 continue; 3600 default: 3601 opsize = *ptr++; 3602 if (opsize < 2) /* "silly options" */ 3603 return; 3604 if (opsize > length) 3605 return; /* don't parse partial options */ 3606 switch (opcode) { 3607 case TCPOPT_MSS: 3608 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3609 u16 in_mss = get_unaligned_be16(ptr); 3610 if (in_mss) { 3611 if (opt_rx->user_mss && 3612 opt_rx->user_mss < in_mss) 3613 in_mss = opt_rx->user_mss; 3614 opt_rx->mss_clamp = in_mss; 3615 } 3616 } 3617 break; 3618 case TCPOPT_WINDOW: 3619 if (opsize == TCPOLEN_WINDOW && th->syn && 3620 !estab && sysctl_tcp_window_scaling) { 3621 __u8 snd_wscale = *(__u8 *)ptr; 3622 opt_rx->wscale_ok = 1; 3623 if (snd_wscale > 14) { 3624 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3625 __func__, 3626 snd_wscale); 3627 snd_wscale = 14; 3628 } 3629 opt_rx->snd_wscale = snd_wscale; 3630 } 3631 break; 3632 case TCPOPT_TIMESTAMP: 3633 if ((opsize == TCPOLEN_TIMESTAMP) && 3634 ((estab && opt_rx->tstamp_ok) || 3635 (!estab && sysctl_tcp_timestamps))) { 3636 opt_rx->saw_tstamp = 1; 3637 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3638 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3639 } 3640 break; 3641 case TCPOPT_SACK_PERM: 3642 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3643 !estab && sysctl_tcp_sack) { 3644 opt_rx->sack_ok = TCP_SACK_SEEN; 3645 tcp_sack_reset(opt_rx); 3646 } 3647 break; 3648 3649 case TCPOPT_SACK: 3650 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3651 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3652 opt_rx->sack_ok) { 3653 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3654 } 3655 break; 3656 #ifdef CONFIG_TCP_MD5SIG 3657 case TCPOPT_MD5SIG: 3658 /* 3659 * The MD5 Hash has already been 3660 * checked (see tcp_v{4,6}_do_rcv()). 3661 */ 3662 break; 3663 #endif 3664 case TCPOPT_EXP: 3665 /* Fast Open option shares code 254 using a 3666 * 16 bits magic number. It's valid only in 3667 * SYN or SYN-ACK with an even size. 3668 */ 3669 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3670 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3671 foc == NULL || !th->syn || (opsize & 1)) 3672 break; 3673 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3674 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3675 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3676 memcpy(foc->val, ptr + 2, foc->len); 3677 else if (foc->len != 0) 3678 foc->len = -1; 3679 break; 3680 3681 } 3682 ptr += opsize-2; 3683 length -= opsize; 3684 } 3685 } 3686 } 3687 EXPORT_SYMBOL(tcp_parse_options); 3688 3689 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3690 { 3691 const __be32 *ptr = (const __be32 *)(th + 1); 3692 3693 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3694 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3695 tp->rx_opt.saw_tstamp = 1; 3696 ++ptr; 3697 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3698 ++ptr; 3699 if (*ptr) 3700 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3701 else 3702 tp->rx_opt.rcv_tsecr = 0; 3703 return true; 3704 } 3705 return false; 3706 } 3707 3708 /* Fast parse options. This hopes to only see timestamps. 3709 * If it is wrong it falls back on tcp_parse_options(). 3710 */ 3711 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3712 const struct tcphdr *th, struct tcp_sock *tp) 3713 { 3714 /* In the spirit of fast parsing, compare doff directly to constant 3715 * values. Because equality is used, short doff can be ignored here. 3716 */ 3717 if (th->doff == (sizeof(*th) / 4)) { 3718 tp->rx_opt.saw_tstamp = 0; 3719 return false; 3720 } else if (tp->rx_opt.tstamp_ok && 3721 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3722 if (tcp_parse_aligned_timestamp(tp, th)) 3723 return true; 3724 } 3725 3726 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3727 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3728 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3729 3730 return true; 3731 } 3732 3733 #ifdef CONFIG_TCP_MD5SIG 3734 /* 3735 * Parse MD5 Signature option 3736 */ 3737 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3738 { 3739 int length = (th->doff << 2) - sizeof(*th); 3740 const u8 *ptr = (const u8 *)(th + 1); 3741 3742 /* If the TCP option is too short, we can short cut */ 3743 if (length < TCPOLEN_MD5SIG) 3744 return NULL; 3745 3746 while (length > 0) { 3747 int opcode = *ptr++; 3748 int opsize; 3749 3750 switch (opcode) { 3751 case TCPOPT_EOL: 3752 return NULL; 3753 case TCPOPT_NOP: 3754 length--; 3755 continue; 3756 default: 3757 opsize = *ptr++; 3758 if (opsize < 2 || opsize > length) 3759 return NULL; 3760 if (opcode == TCPOPT_MD5SIG) 3761 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3762 } 3763 ptr += opsize - 2; 3764 length -= opsize; 3765 } 3766 return NULL; 3767 } 3768 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3769 #endif 3770 3771 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3772 * 3773 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3774 * it can pass through stack. So, the following predicate verifies that 3775 * this segment is not used for anything but congestion avoidance or 3776 * fast retransmit. Moreover, we even are able to eliminate most of such 3777 * second order effects, if we apply some small "replay" window (~RTO) 3778 * to timestamp space. 3779 * 3780 * All these measures still do not guarantee that we reject wrapped ACKs 3781 * on networks with high bandwidth, when sequence space is recycled fastly, 3782 * but it guarantees that such events will be very rare and do not affect 3783 * connection seriously. This doesn't look nice, but alas, PAWS is really 3784 * buggy extension. 3785 * 3786 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3787 * states that events when retransmit arrives after original data are rare. 3788 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3789 * the biggest problem on large power networks even with minor reordering. 3790 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3791 * up to bandwidth of 18Gigabit/sec. 8) ] 3792 */ 3793 3794 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3795 { 3796 const struct tcp_sock *tp = tcp_sk(sk); 3797 const struct tcphdr *th = tcp_hdr(skb); 3798 u32 seq = TCP_SKB_CB(skb)->seq; 3799 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3800 3801 return (/* 1. Pure ACK with correct sequence number. */ 3802 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3803 3804 /* 2. ... and duplicate ACK. */ 3805 ack == tp->snd_una && 3806 3807 /* 3. ... and does not update window. */ 3808 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3809 3810 /* 4. ... and sits in replay window. */ 3811 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3812 } 3813 3814 static inline bool tcp_paws_discard(const struct sock *sk, 3815 const struct sk_buff *skb) 3816 { 3817 const struct tcp_sock *tp = tcp_sk(sk); 3818 3819 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3820 !tcp_disordered_ack(sk, skb); 3821 } 3822 3823 /* Check segment sequence number for validity. 3824 * 3825 * Segment controls are considered valid, if the segment 3826 * fits to the window after truncation to the window. Acceptability 3827 * of data (and SYN, FIN, of course) is checked separately. 3828 * See tcp_data_queue(), for example. 3829 * 3830 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3831 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3832 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3833 * (borrowed from freebsd) 3834 */ 3835 3836 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3837 { 3838 return !before(end_seq, tp->rcv_wup) && 3839 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3840 } 3841 3842 /* When we get a reset we do this. */ 3843 void tcp_reset(struct sock *sk) 3844 { 3845 /* We want the right error as BSD sees it (and indeed as we do). */ 3846 switch (sk->sk_state) { 3847 case TCP_SYN_SENT: 3848 sk->sk_err = ECONNREFUSED; 3849 break; 3850 case TCP_CLOSE_WAIT: 3851 sk->sk_err = EPIPE; 3852 break; 3853 case TCP_CLOSE: 3854 return; 3855 default: 3856 sk->sk_err = ECONNRESET; 3857 } 3858 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3859 smp_wmb(); 3860 3861 if (!sock_flag(sk, SOCK_DEAD)) 3862 sk->sk_error_report(sk); 3863 3864 tcp_done(sk); 3865 } 3866 3867 /* 3868 * Process the FIN bit. This now behaves as it is supposed to work 3869 * and the FIN takes effect when it is validly part of sequence 3870 * space. Not before when we get holes. 3871 * 3872 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3873 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3874 * TIME-WAIT) 3875 * 3876 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3877 * close and we go into CLOSING (and later onto TIME-WAIT) 3878 * 3879 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3880 */ 3881 static void tcp_fin(struct sock *sk) 3882 { 3883 struct tcp_sock *tp = tcp_sk(sk); 3884 const struct dst_entry *dst; 3885 3886 inet_csk_schedule_ack(sk); 3887 3888 sk->sk_shutdown |= RCV_SHUTDOWN; 3889 sock_set_flag(sk, SOCK_DONE); 3890 3891 switch (sk->sk_state) { 3892 case TCP_SYN_RECV: 3893 case TCP_ESTABLISHED: 3894 /* Move to CLOSE_WAIT */ 3895 tcp_set_state(sk, TCP_CLOSE_WAIT); 3896 dst = __sk_dst_get(sk); 3897 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3898 inet_csk(sk)->icsk_ack.pingpong = 1; 3899 break; 3900 3901 case TCP_CLOSE_WAIT: 3902 case TCP_CLOSING: 3903 /* Received a retransmission of the FIN, do 3904 * nothing. 3905 */ 3906 break; 3907 case TCP_LAST_ACK: 3908 /* RFC793: Remain in the LAST-ACK state. */ 3909 break; 3910 3911 case TCP_FIN_WAIT1: 3912 /* This case occurs when a simultaneous close 3913 * happens, we must ack the received FIN and 3914 * enter the CLOSING state. 3915 */ 3916 tcp_send_ack(sk); 3917 tcp_set_state(sk, TCP_CLOSING); 3918 break; 3919 case TCP_FIN_WAIT2: 3920 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3921 tcp_send_ack(sk); 3922 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3923 break; 3924 default: 3925 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3926 * cases we should never reach this piece of code. 3927 */ 3928 pr_err("%s: Impossible, sk->sk_state=%d\n", 3929 __func__, sk->sk_state); 3930 break; 3931 } 3932 3933 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3934 * Probably, we should reset in this case. For now drop them. 3935 */ 3936 __skb_queue_purge(&tp->out_of_order_queue); 3937 if (tcp_is_sack(tp)) 3938 tcp_sack_reset(&tp->rx_opt); 3939 sk_mem_reclaim(sk); 3940 3941 if (!sock_flag(sk, SOCK_DEAD)) { 3942 sk->sk_state_change(sk); 3943 3944 /* Do not send POLL_HUP for half duplex close. */ 3945 if (sk->sk_shutdown == SHUTDOWN_MASK || 3946 sk->sk_state == TCP_CLOSE) 3947 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3948 else 3949 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3950 } 3951 } 3952 3953 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3954 u32 end_seq) 3955 { 3956 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3957 if (before(seq, sp->start_seq)) 3958 sp->start_seq = seq; 3959 if (after(end_seq, sp->end_seq)) 3960 sp->end_seq = end_seq; 3961 return true; 3962 } 3963 return false; 3964 } 3965 3966 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3967 { 3968 struct tcp_sock *tp = tcp_sk(sk); 3969 3970 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3971 int mib_idx; 3972 3973 if (before(seq, tp->rcv_nxt)) 3974 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3975 else 3976 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3977 3978 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3979 3980 tp->rx_opt.dsack = 1; 3981 tp->duplicate_sack[0].start_seq = seq; 3982 tp->duplicate_sack[0].end_seq = end_seq; 3983 } 3984 } 3985 3986 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3987 { 3988 struct tcp_sock *tp = tcp_sk(sk); 3989 3990 if (!tp->rx_opt.dsack) 3991 tcp_dsack_set(sk, seq, end_seq); 3992 else 3993 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3994 } 3995 3996 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3997 { 3998 struct tcp_sock *tp = tcp_sk(sk); 3999 4000 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4001 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4002 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4003 tcp_enter_quickack_mode(sk); 4004 4005 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4006 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4007 4008 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4009 end_seq = tp->rcv_nxt; 4010 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4011 } 4012 } 4013 4014 tcp_send_ack(sk); 4015 } 4016 4017 /* These routines update the SACK block as out-of-order packets arrive or 4018 * in-order packets close up the sequence space. 4019 */ 4020 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4021 { 4022 int this_sack; 4023 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4024 struct tcp_sack_block *swalk = sp + 1; 4025 4026 /* See if the recent change to the first SACK eats into 4027 * or hits the sequence space of other SACK blocks, if so coalesce. 4028 */ 4029 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4030 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4031 int i; 4032 4033 /* Zap SWALK, by moving every further SACK up by one slot. 4034 * Decrease num_sacks. 4035 */ 4036 tp->rx_opt.num_sacks--; 4037 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4038 sp[i] = sp[i + 1]; 4039 continue; 4040 } 4041 this_sack++, swalk++; 4042 } 4043 } 4044 4045 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4046 { 4047 struct tcp_sock *tp = tcp_sk(sk); 4048 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4049 int cur_sacks = tp->rx_opt.num_sacks; 4050 int this_sack; 4051 4052 if (!cur_sacks) 4053 goto new_sack; 4054 4055 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4056 if (tcp_sack_extend(sp, seq, end_seq)) { 4057 /* Rotate this_sack to the first one. */ 4058 for (; this_sack > 0; this_sack--, sp--) 4059 swap(*sp, *(sp - 1)); 4060 if (cur_sacks > 1) 4061 tcp_sack_maybe_coalesce(tp); 4062 return; 4063 } 4064 } 4065 4066 /* Could not find an adjacent existing SACK, build a new one, 4067 * put it at the front, and shift everyone else down. We 4068 * always know there is at least one SACK present already here. 4069 * 4070 * If the sack array is full, forget about the last one. 4071 */ 4072 if (this_sack >= TCP_NUM_SACKS) { 4073 this_sack--; 4074 tp->rx_opt.num_sacks--; 4075 sp--; 4076 } 4077 for (; this_sack > 0; this_sack--, sp--) 4078 *sp = *(sp - 1); 4079 4080 new_sack: 4081 /* Build the new head SACK, and we're done. */ 4082 sp->start_seq = seq; 4083 sp->end_seq = end_seq; 4084 tp->rx_opt.num_sacks++; 4085 } 4086 4087 /* RCV.NXT advances, some SACKs should be eaten. */ 4088 4089 static void tcp_sack_remove(struct tcp_sock *tp) 4090 { 4091 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4092 int num_sacks = tp->rx_opt.num_sacks; 4093 int this_sack; 4094 4095 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4096 if (skb_queue_empty(&tp->out_of_order_queue)) { 4097 tp->rx_opt.num_sacks = 0; 4098 return; 4099 } 4100 4101 for (this_sack = 0; this_sack < num_sacks;) { 4102 /* Check if the start of the sack is covered by RCV.NXT. */ 4103 if (!before(tp->rcv_nxt, sp->start_seq)) { 4104 int i; 4105 4106 /* RCV.NXT must cover all the block! */ 4107 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4108 4109 /* Zap this SACK, by moving forward any other SACKS. */ 4110 for (i = this_sack+1; i < num_sacks; i++) 4111 tp->selective_acks[i-1] = tp->selective_acks[i]; 4112 num_sacks--; 4113 continue; 4114 } 4115 this_sack++; 4116 sp++; 4117 } 4118 tp->rx_opt.num_sacks = num_sacks; 4119 } 4120 4121 /** 4122 * tcp_try_coalesce - try to merge skb to prior one 4123 * @sk: socket 4124 * @to: prior buffer 4125 * @from: buffer to add in queue 4126 * @fragstolen: pointer to boolean 4127 * 4128 * Before queueing skb @from after @to, try to merge them 4129 * to reduce overall memory use and queue lengths, if cost is small. 4130 * Packets in ofo or receive queues can stay a long time. 4131 * Better try to coalesce them right now to avoid future collapses. 4132 * Returns true if caller should free @from instead of queueing it 4133 */ 4134 static bool tcp_try_coalesce(struct sock *sk, 4135 struct sk_buff *to, 4136 struct sk_buff *from, 4137 bool *fragstolen) 4138 { 4139 int delta; 4140 4141 *fragstolen = false; 4142 4143 /* Its possible this segment overlaps with prior segment in queue */ 4144 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4145 return false; 4146 4147 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4148 return false; 4149 4150 atomic_add(delta, &sk->sk_rmem_alloc); 4151 sk_mem_charge(sk, delta); 4152 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4153 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4154 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4155 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4156 return true; 4157 } 4158 4159 /* This one checks to see if we can put data from the 4160 * out_of_order queue into the receive_queue. 4161 */ 4162 static void tcp_ofo_queue(struct sock *sk) 4163 { 4164 struct tcp_sock *tp = tcp_sk(sk); 4165 __u32 dsack_high = tp->rcv_nxt; 4166 struct sk_buff *skb, *tail; 4167 bool fragstolen, eaten; 4168 4169 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4170 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4171 break; 4172 4173 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4174 __u32 dsack = dsack_high; 4175 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4176 dsack_high = TCP_SKB_CB(skb)->end_seq; 4177 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4178 } 4179 4180 __skb_unlink(skb, &tp->out_of_order_queue); 4181 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4182 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4183 __kfree_skb(skb); 4184 continue; 4185 } 4186 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4187 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4188 TCP_SKB_CB(skb)->end_seq); 4189 4190 tail = skb_peek_tail(&sk->sk_receive_queue); 4191 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4192 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4193 if (!eaten) 4194 __skb_queue_tail(&sk->sk_receive_queue, skb); 4195 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4196 tcp_fin(sk); 4197 if (eaten) 4198 kfree_skb_partial(skb, fragstolen); 4199 } 4200 } 4201 4202 static bool tcp_prune_ofo_queue(struct sock *sk); 4203 static int tcp_prune_queue(struct sock *sk); 4204 4205 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4206 unsigned int size) 4207 { 4208 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4209 !sk_rmem_schedule(sk, skb, size)) { 4210 4211 if (tcp_prune_queue(sk) < 0) 4212 return -1; 4213 4214 if (!sk_rmem_schedule(sk, skb, size)) { 4215 if (!tcp_prune_ofo_queue(sk)) 4216 return -1; 4217 4218 if (!sk_rmem_schedule(sk, skb, size)) 4219 return -1; 4220 } 4221 } 4222 return 0; 4223 } 4224 4225 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4226 { 4227 struct tcp_sock *tp = tcp_sk(sk); 4228 struct sk_buff *skb1; 4229 u32 seq, end_seq; 4230 4231 tcp_ecn_check_ce(tp, skb); 4232 4233 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4234 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4235 __kfree_skb(skb); 4236 return; 4237 } 4238 4239 /* Disable header prediction. */ 4240 tp->pred_flags = 0; 4241 inet_csk_schedule_ack(sk); 4242 4243 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4244 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4245 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4246 4247 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4248 if (!skb1) { 4249 /* Initial out of order segment, build 1 SACK. */ 4250 if (tcp_is_sack(tp)) { 4251 tp->rx_opt.num_sacks = 1; 4252 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4253 tp->selective_acks[0].end_seq = 4254 TCP_SKB_CB(skb)->end_seq; 4255 } 4256 __skb_queue_head(&tp->out_of_order_queue, skb); 4257 goto end; 4258 } 4259 4260 seq = TCP_SKB_CB(skb)->seq; 4261 end_seq = TCP_SKB_CB(skb)->end_seq; 4262 4263 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4264 bool fragstolen; 4265 4266 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4267 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4268 } else { 4269 tcp_grow_window(sk, skb); 4270 kfree_skb_partial(skb, fragstolen); 4271 skb = NULL; 4272 } 4273 4274 if (!tp->rx_opt.num_sacks || 4275 tp->selective_acks[0].end_seq != seq) 4276 goto add_sack; 4277 4278 /* Common case: data arrive in order after hole. */ 4279 tp->selective_acks[0].end_seq = end_seq; 4280 goto end; 4281 } 4282 4283 /* Find place to insert this segment. */ 4284 while (1) { 4285 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4286 break; 4287 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4288 skb1 = NULL; 4289 break; 4290 } 4291 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4292 } 4293 4294 /* Do skb overlap to previous one? */ 4295 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4296 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4297 /* All the bits are present. Drop. */ 4298 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4299 __kfree_skb(skb); 4300 skb = NULL; 4301 tcp_dsack_set(sk, seq, end_seq); 4302 goto add_sack; 4303 } 4304 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4305 /* Partial overlap. */ 4306 tcp_dsack_set(sk, seq, 4307 TCP_SKB_CB(skb1)->end_seq); 4308 } else { 4309 if (skb_queue_is_first(&tp->out_of_order_queue, 4310 skb1)) 4311 skb1 = NULL; 4312 else 4313 skb1 = skb_queue_prev( 4314 &tp->out_of_order_queue, 4315 skb1); 4316 } 4317 } 4318 if (!skb1) 4319 __skb_queue_head(&tp->out_of_order_queue, skb); 4320 else 4321 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4322 4323 /* And clean segments covered by new one as whole. */ 4324 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4325 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4326 4327 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4328 break; 4329 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4330 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4331 end_seq); 4332 break; 4333 } 4334 __skb_unlink(skb1, &tp->out_of_order_queue); 4335 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4336 TCP_SKB_CB(skb1)->end_seq); 4337 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4338 __kfree_skb(skb1); 4339 } 4340 4341 add_sack: 4342 if (tcp_is_sack(tp)) 4343 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4344 end: 4345 if (skb) { 4346 tcp_grow_window(sk, skb); 4347 skb_set_owner_r(skb, sk); 4348 } 4349 } 4350 4351 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4352 bool *fragstolen) 4353 { 4354 int eaten; 4355 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4356 4357 __skb_pull(skb, hdrlen); 4358 eaten = (tail && 4359 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4360 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4361 if (!eaten) { 4362 __skb_queue_tail(&sk->sk_receive_queue, skb); 4363 skb_set_owner_r(skb, sk); 4364 } 4365 return eaten; 4366 } 4367 4368 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4369 { 4370 struct sk_buff *skb; 4371 bool fragstolen; 4372 4373 if (size == 0) 4374 return 0; 4375 4376 skb = alloc_skb(size, sk->sk_allocation); 4377 if (!skb) 4378 goto err; 4379 4380 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4381 goto err_free; 4382 4383 if (memcpy_from_msg(skb_put(skb, size), msg, size)) 4384 goto err_free; 4385 4386 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4387 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4388 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4389 4390 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4391 WARN_ON_ONCE(fragstolen); /* should not happen */ 4392 __kfree_skb(skb); 4393 } 4394 return size; 4395 4396 err_free: 4397 kfree_skb(skb); 4398 err: 4399 return -ENOMEM; 4400 } 4401 4402 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4403 { 4404 struct tcp_sock *tp = tcp_sk(sk); 4405 int eaten = -1; 4406 bool fragstolen = false; 4407 4408 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4409 goto drop; 4410 4411 skb_dst_drop(skb); 4412 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4413 4414 tcp_ecn_accept_cwr(tp, skb); 4415 4416 tp->rx_opt.dsack = 0; 4417 4418 /* Queue data for delivery to the user. 4419 * Packets in sequence go to the receive queue. 4420 * Out of sequence packets to the out_of_order_queue. 4421 */ 4422 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4423 if (tcp_receive_window(tp) == 0) 4424 goto out_of_window; 4425 4426 /* Ok. In sequence. In window. */ 4427 if (tp->ucopy.task == current && 4428 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4429 sock_owned_by_user(sk) && !tp->urg_data) { 4430 int chunk = min_t(unsigned int, skb->len, 4431 tp->ucopy.len); 4432 4433 __set_current_state(TASK_RUNNING); 4434 4435 local_bh_enable(); 4436 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4437 tp->ucopy.len -= chunk; 4438 tp->copied_seq += chunk; 4439 eaten = (chunk == skb->len); 4440 tcp_rcv_space_adjust(sk); 4441 } 4442 local_bh_disable(); 4443 } 4444 4445 if (eaten <= 0) { 4446 queue_and_out: 4447 if (eaten < 0 && 4448 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4449 goto drop; 4450 4451 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4452 } 4453 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4454 if (skb->len) 4455 tcp_event_data_recv(sk, skb); 4456 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4457 tcp_fin(sk); 4458 4459 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4460 tcp_ofo_queue(sk); 4461 4462 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4463 * gap in queue is filled. 4464 */ 4465 if (skb_queue_empty(&tp->out_of_order_queue)) 4466 inet_csk(sk)->icsk_ack.pingpong = 0; 4467 } 4468 4469 if (tp->rx_opt.num_sacks) 4470 tcp_sack_remove(tp); 4471 4472 tcp_fast_path_check(sk); 4473 4474 if (eaten > 0) 4475 kfree_skb_partial(skb, fragstolen); 4476 if (!sock_flag(sk, SOCK_DEAD)) 4477 sk->sk_data_ready(sk); 4478 return; 4479 } 4480 4481 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4482 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4483 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4484 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4485 4486 out_of_window: 4487 tcp_enter_quickack_mode(sk); 4488 inet_csk_schedule_ack(sk); 4489 drop: 4490 __kfree_skb(skb); 4491 return; 4492 } 4493 4494 /* Out of window. F.e. zero window probe. */ 4495 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4496 goto out_of_window; 4497 4498 tcp_enter_quickack_mode(sk); 4499 4500 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4501 /* Partial packet, seq < rcv_next < end_seq */ 4502 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4503 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4504 TCP_SKB_CB(skb)->end_seq); 4505 4506 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4507 4508 /* If window is closed, drop tail of packet. But after 4509 * remembering D-SACK for its head made in previous line. 4510 */ 4511 if (!tcp_receive_window(tp)) 4512 goto out_of_window; 4513 goto queue_and_out; 4514 } 4515 4516 tcp_data_queue_ofo(sk, skb); 4517 } 4518 4519 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4520 struct sk_buff_head *list) 4521 { 4522 struct sk_buff *next = NULL; 4523 4524 if (!skb_queue_is_last(list, skb)) 4525 next = skb_queue_next(list, skb); 4526 4527 __skb_unlink(skb, list); 4528 __kfree_skb(skb); 4529 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4530 4531 return next; 4532 } 4533 4534 /* Collapse contiguous sequence of skbs head..tail with 4535 * sequence numbers start..end. 4536 * 4537 * If tail is NULL, this means until the end of the list. 4538 * 4539 * Segments with FIN/SYN are not collapsed (only because this 4540 * simplifies code) 4541 */ 4542 static void 4543 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4544 struct sk_buff *head, struct sk_buff *tail, 4545 u32 start, u32 end) 4546 { 4547 struct sk_buff *skb, *n; 4548 bool end_of_skbs; 4549 4550 /* First, check that queue is collapsible and find 4551 * the point where collapsing can be useful. */ 4552 skb = head; 4553 restart: 4554 end_of_skbs = true; 4555 skb_queue_walk_from_safe(list, skb, n) { 4556 if (skb == tail) 4557 break; 4558 /* No new bits? It is possible on ofo queue. */ 4559 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4560 skb = tcp_collapse_one(sk, skb, list); 4561 if (!skb) 4562 break; 4563 goto restart; 4564 } 4565 4566 /* The first skb to collapse is: 4567 * - not SYN/FIN and 4568 * - bloated or contains data before "start" or 4569 * overlaps to the next one. 4570 */ 4571 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4572 (tcp_win_from_space(skb->truesize) > skb->len || 4573 before(TCP_SKB_CB(skb)->seq, start))) { 4574 end_of_skbs = false; 4575 break; 4576 } 4577 4578 if (!skb_queue_is_last(list, skb)) { 4579 struct sk_buff *next = skb_queue_next(list, skb); 4580 if (next != tail && 4581 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4582 end_of_skbs = false; 4583 break; 4584 } 4585 } 4586 4587 /* Decided to skip this, advance start seq. */ 4588 start = TCP_SKB_CB(skb)->end_seq; 4589 } 4590 if (end_of_skbs || 4591 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4592 return; 4593 4594 while (before(start, end)) { 4595 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4596 struct sk_buff *nskb; 4597 4598 nskb = alloc_skb(copy, GFP_ATOMIC); 4599 if (!nskb) 4600 return; 4601 4602 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4603 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4604 __skb_queue_before(list, skb, nskb); 4605 skb_set_owner_r(nskb, sk); 4606 4607 /* Copy data, releasing collapsed skbs. */ 4608 while (copy > 0) { 4609 int offset = start - TCP_SKB_CB(skb)->seq; 4610 int size = TCP_SKB_CB(skb)->end_seq - start; 4611 4612 BUG_ON(offset < 0); 4613 if (size > 0) { 4614 size = min(copy, size); 4615 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4616 BUG(); 4617 TCP_SKB_CB(nskb)->end_seq += size; 4618 copy -= size; 4619 start += size; 4620 } 4621 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4622 skb = tcp_collapse_one(sk, skb, list); 4623 if (!skb || 4624 skb == tail || 4625 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4626 return; 4627 } 4628 } 4629 } 4630 } 4631 4632 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4633 * and tcp_collapse() them until all the queue is collapsed. 4634 */ 4635 static void tcp_collapse_ofo_queue(struct sock *sk) 4636 { 4637 struct tcp_sock *tp = tcp_sk(sk); 4638 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4639 struct sk_buff *head; 4640 u32 start, end; 4641 4642 if (skb == NULL) 4643 return; 4644 4645 start = TCP_SKB_CB(skb)->seq; 4646 end = TCP_SKB_CB(skb)->end_seq; 4647 head = skb; 4648 4649 for (;;) { 4650 struct sk_buff *next = NULL; 4651 4652 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4653 next = skb_queue_next(&tp->out_of_order_queue, skb); 4654 skb = next; 4655 4656 /* Segment is terminated when we see gap or when 4657 * we are at the end of all the queue. */ 4658 if (!skb || 4659 after(TCP_SKB_CB(skb)->seq, end) || 4660 before(TCP_SKB_CB(skb)->end_seq, start)) { 4661 tcp_collapse(sk, &tp->out_of_order_queue, 4662 head, skb, start, end); 4663 head = skb; 4664 if (!skb) 4665 break; 4666 /* Start new segment */ 4667 start = TCP_SKB_CB(skb)->seq; 4668 end = TCP_SKB_CB(skb)->end_seq; 4669 } else { 4670 if (before(TCP_SKB_CB(skb)->seq, start)) 4671 start = TCP_SKB_CB(skb)->seq; 4672 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4673 end = TCP_SKB_CB(skb)->end_seq; 4674 } 4675 } 4676 } 4677 4678 /* 4679 * Purge the out-of-order queue. 4680 * Return true if queue was pruned. 4681 */ 4682 static bool tcp_prune_ofo_queue(struct sock *sk) 4683 { 4684 struct tcp_sock *tp = tcp_sk(sk); 4685 bool res = false; 4686 4687 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4688 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4689 __skb_queue_purge(&tp->out_of_order_queue); 4690 4691 /* Reset SACK state. A conforming SACK implementation will 4692 * do the same at a timeout based retransmit. When a connection 4693 * is in a sad state like this, we care only about integrity 4694 * of the connection not performance. 4695 */ 4696 if (tp->rx_opt.sack_ok) 4697 tcp_sack_reset(&tp->rx_opt); 4698 sk_mem_reclaim(sk); 4699 res = true; 4700 } 4701 return res; 4702 } 4703 4704 /* Reduce allocated memory if we can, trying to get 4705 * the socket within its memory limits again. 4706 * 4707 * Return less than zero if we should start dropping frames 4708 * until the socket owning process reads some of the data 4709 * to stabilize the situation. 4710 */ 4711 static int tcp_prune_queue(struct sock *sk) 4712 { 4713 struct tcp_sock *tp = tcp_sk(sk); 4714 4715 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4716 4717 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4718 4719 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4720 tcp_clamp_window(sk); 4721 else if (sk_under_memory_pressure(sk)) 4722 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4723 4724 tcp_collapse_ofo_queue(sk); 4725 if (!skb_queue_empty(&sk->sk_receive_queue)) 4726 tcp_collapse(sk, &sk->sk_receive_queue, 4727 skb_peek(&sk->sk_receive_queue), 4728 NULL, 4729 tp->copied_seq, tp->rcv_nxt); 4730 sk_mem_reclaim(sk); 4731 4732 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4733 return 0; 4734 4735 /* Collapsing did not help, destructive actions follow. 4736 * This must not ever occur. */ 4737 4738 tcp_prune_ofo_queue(sk); 4739 4740 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4741 return 0; 4742 4743 /* If we are really being abused, tell the caller to silently 4744 * drop receive data on the floor. It will get retransmitted 4745 * and hopefully then we'll have sufficient space. 4746 */ 4747 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4748 4749 /* Massive buffer overcommit. */ 4750 tp->pred_flags = 0; 4751 return -1; 4752 } 4753 4754 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4755 { 4756 const struct tcp_sock *tp = tcp_sk(sk); 4757 4758 /* If the user specified a specific send buffer setting, do 4759 * not modify it. 4760 */ 4761 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4762 return false; 4763 4764 /* If we are under global TCP memory pressure, do not expand. */ 4765 if (sk_under_memory_pressure(sk)) 4766 return false; 4767 4768 /* If we are under soft global TCP memory pressure, do not expand. */ 4769 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4770 return false; 4771 4772 /* If we filled the congestion window, do not expand. */ 4773 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4774 return false; 4775 4776 return true; 4777 } 4778 4779 /* When incoming ACK allowed to free some skb from write_queue, 4780 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4781 * on the exit from tcp input handler. 4782 * 4783 * PROBLEM: sndbuf expansion does not work well with largesend. 4784 */ 4785 static void tcp_new_space(struct sock *sk) 4786 { 4787 struct tcp_sock *tp = tcp_sk(sk); 4788 4789 if (tcp_should_expand_sndbuf(sk)) { 4790 tcp_sndbuf_expand(sk); 4791 tp->snd_cwnd_stamp = tcp_time_stamp; 4792 } 4793 4794 sk->sk_write_space(sk); 4795 } 4796 4797 static void tcp_check_space(struct sock *sk) 4798 { 4799 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4800 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4801 if (sk->sk_socket && 4802 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4803 tcp_new_space(sk); 4804 } 4805 } 4806 4807 static inline void tcp_data_snd_check(struct sock *sk) 4808 { 4809 tcp_push_pending_frames(sk); 4810 tcp_check_space(sk); 4811 } 4812 4813 /* 4814 * Check if sending an ack is needed. 4815 */ 4816 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4817 { 4818 struct tcp_sock *tp = tcp_sk(sk); 4819 4820 /* More than one full frame received... */ 4821 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4822 /* ... and right edge of window advances far enough. 4823 * (tcp_recvmsg() will send ACK otherwise). Or... 4824 */ 4825 __tcp_select_window(sk) >= tp->rcv_wnd) || 4826 /* We ACK each frame or... */ 4827 tcp_in_quickack_mode(sk) || 4828 /* We have out of order data. */ 4829 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4830 /* Then ack it now */ 4831 tcp_send_ack(sk); 4832 } else { 4833 /* Else, send delayed ack. */ 4834 tcp_send_delayed_ack(sk); 4835 } 4836 } 4837 4838 static inline void tcp_ack_snd_check(struct sock *sk) 4839 { 4840 if (!inet_csk_ack_scheduled(sk)) { 4841 /* We sent a data segment already. */ 4842 return; 4843 } 4844 __tcp_ack_snd_check(sk, 1); 4845 } 4846 4847 /* 4848 * This routine is only called when we have urgent data 4849 * signaled. Its the 'slow' part of tcp_urg. It could be 4850 * moved inline now as tcp_urg is only called from one 4851 * place. We handle URGent data wrong. We have to - as 4852 * BSD still doesn't use the correction from RFC961. 4853 * For 1003.1g we should support a new option TCP_STDURG to permit 4854 * either form (or just set the sysctl tcp_stdurg). 4855 */ 4856 4857 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4858 { 4859 struct tcp_sock *tp = tcp_sk(sk); 4860 u32 ptr = ntohs(th->urg_ptr); 4861 4862 if (ptr && !sysctl_tcp_stdurg) 4863 ptr--; 4864 ptr += ntohl(th->seq); 4865 4866 /* Ignore urgent data that we've already seen and read. */ 4867 if (after(tp->copied_seq, ptr)) 4868 return; 4869 4870 /* Do not replay urg ptr. 4871 * 4872 * NOTE: interesting situation not covered by specs. 4873 * Misbehaving sender may send urg ptr, pointing to segment, 4874 * which we already have in ofo queue. We are not able to fetch 4875 * such data and will stay in TCP_URG_NOTYET until will be eaten 4876 * by recvmsg(). Seems, we are not obliged to handle such wicked 4877 * situations. But it is worth to think about possibility of some 4878 * DoSes using some hypothetical application level deadlock. 4879 */ 4880 if (before(ptr, tp->rcv_nxt)) 4881 return; 4882 4883 /* Do we already have a newer (or duplicate) urgent pointer? */ 4884 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4885 return; 4886 4887 /* Tell the world about our new urgent pointer. */ 4888 sk_send_sigurg(sk); 4889 4890 /* We may be adding urgent data when the last byte read was 4891 * urgent. To do this requires some care. We cannot just ignore 4892 * tp->copied_seq since we would read the last urgent byte again 4893 * as data, nor can we alter copied_seq until this data arrives 4894 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4895 * 4896 * NOTE. Double Dutch. Rendering to plain English: author of comment 4897 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4898 * and expect that both A and B disappear from stream. This is _wrong_. 4899 * Though this happens in BSD with high probability, this is occasional. 4900 * Any application relying on this is buggy. Note also, that fix "works" 4901 * only in this artificial test. Insert some normal data between A and B and we will 4902 * decline of BSD again. Verdict: it is better to remove to trap 4903 * buggy users. 4904 */ 4905 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4906 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4907 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4908 tp->copied_seq++; 4909 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4910 __skb_unlink(skb, &sk->sk_receive_queue); 4911 __kfree_skb(skb); 4912 } 4913 } 4914 4915 tp->urg_data = TCP_URG_NOTYET; 4916 tp->urg_seq = ptr; 4917 4918 /* Disable header prediction. */ 4919 tp->pred_flags = 0; 4920 } 4921 4922 /* This is the 'fast' part of urgent handling. */ 4923 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4924 { 4925 struct tcp_sock *tp = tcp_sk(sk); 4926 4927 /* Check if we get a new urgent pointer - normally not. */ 4928 if (th->urg) 4929 tcp_check_urg(sk, th); 4930 4931 /* Do we wait for any urgent data? - normally not... */ 4932 if (tp->urg_data == TCP_URG_NOTYET) { 4933 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4934 th->syn; 4935 4936 /* Is the urgent pointer pointing into this packet? */ 4937 if (ptr < skb->len) { 4938 u8 tmp; 4939 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4940 BUG(); 4941 tp->urg_data = TCP_URG_VALID | tmp; 4942 if (!sock_flag(sk, SOCK_DEAD)) 4943 sk->sk_data_ready(sk); 4944 } 4945 } 4946 } 4947 4948 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4949 { 4950 struct tcp_sock *tp = tcp_sk(sk); 4951 int chunk = skb->len - hlen; 4952 int err; 4953 4954 local_bh_enable(); 4955 if (skb_csum_unnecessary(skb)) 4956 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 4957 else 4958 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 4959 4960 if (!err) { 4961 tp->ucopy.len -= chunk; 4962 tp->copied_seq += chunk; 4963 tcp_rcv_space_adjust(sk); 4964 } 4965 4966 local_bh_disable(); 4967 return err; 4968 } 4969 4970 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4971 struct sk_buff *skb) 4972 { 4973 __sum16 result; 4974 4975 if (sock_owned_by_user(sk)) { 4976 local_bh_enable(); 4977 result = __tcp_checksum_complete(skb); 4978 local_bh_disable(); 4979 } else { 4980 result = __tcp_checksum_complete(skb); 4981 } 4982 return result; 4983 } 4984 4985 static inline bool tcp_checksum_complete_user(struct sock *sk, 4986 struct sk_buff *skb) 4987 { 4988 return !skb_csum_unnecessary(skb) && 4989 __tcp_checksum_complete_user(sk, skb); 4990 } 4991 4992 /* Does PAWS and seqno based validation of an incoming segment, flags will 4993 * play significant role here. 4994 */ 4995 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 4996 const struct tcphdr *th, int syn_inerr) 4997 { 4998 struct tcp_sock *tp = tcp_sk(sk); 4999 5000 /* RFC1323: H1. Apply PAWS check first. */ 5001 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5002 tcp_paws_discard(sk, skb)) { 5003 if (!th->rst) { 5004 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5005 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5006 LINUX_MIB_TCPACKSKIPPEDPAWS, 5007 &tp->last_oow_ack_time)) 5008 tcp_send_dupack(sk, skb); 5009 goto discard; 5010 } 5011 /* Reset is accepted even if it did not pass PAWS. */ 5012 } 5013 5014 /* Step 1: check sequence number */ 5015 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5016 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5017 * (RST) segments are validated by checking their SEQ-fields." 5018 * And page 69: "If an incoming segment is not acceptable, 5019 * an acknowledgment should be sent in reply (unless the RST 5020 * bit is set, if so drop the segment and return)". 5021 */ 5022 if (!th->rst) { 5023 if (th->syn) 5024 goto syn_challenge; 5025 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5026 LINUX_MIB_TCPACKSKIPPEDSEQ, 5027 &tp->last_oow_ack_time)) 5028 tcp_send_dupack(sk, skb); 5029 } 5030 goto discard; 5031 } 5032 5033 /* Step 2: check RST bit */ 5034 if (th->rst) { 5035 /* RFC 5961 3.2 : 5036 * If sequence number exactly matches RCV.NXT, then 5037 * RESET the connection 5038 * else 5039 * Send a challenge ACK 5040 */ 5041 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5042 tcp_reset(sk); 5043 else 5044 tcp_send_challenge_ack(sk, skb); 5045 goto discard; 5046 } 5047 5048 /* step 3: check security and precedence [ignored] */ 5049 5050 /* step 4: Check for a SYN 5051 * RFC 5961 4.2 : Send a challenge ack 5052 */ 5053 if (th->syn) { 5054 syn_challenge: 5055 if (syn_inerr) 5056 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5057 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5058 tcp_send_challenge_ack(sk, skb); 5059 goto discard; 5060 } 5061 5062 return true; 5063 5064 discard: 5065 __kfree_skb(skb); 5066 return false; 5067 } 5068 5069 /* 5070 * TCP receive function for the ESTABLISHED state. 5071 * 5072 * It is split into a fast path and a slow path. The fast path is 5073 * disabled when: 5074 * - A zero window was announced from us - zero window probing 5075 * is only handled properly in the slow path. 5076 * - Out of order segments arrived. 5077 * - Urgent data is expected. 5078 * - There is no buffer space left 5079 * - Unexpected TCP flags/window values/header lengths are received 5080 * (detected by checking the TCP header against pred_flags) 5081 * - Data is sent in both directions. Fast path only supports pure senders 5082 * or pure receivers (this means either the sequence number or the ack 5083 * value must stay constant) 5084 * - Unexpected TCP option. 5085 * 5086 * When these conditions are not satisfied it drops into a standard 5087 * receive procedure patterned after RFC793 to handle all cases. 5088 * The first three cases are guaranteed by proper pred_flags setting, 5089 * the rest is checked inline. Fast processing is turned on in 5090 * tcp_data_queue when everything is OK. 5091 */ 5092 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5093 const struct tcphdr *th, unsigned int len) 5094 { 5095 struct tcp_sock *tp = tcp_sk(sk); 5096 5097 if (unlikely(sk->sk_rx_dst == NULL)) 5098 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5099 /* 5100 * Header prediction. 5101 * The code loosely follows the one in the famous 5102 * "30 instruction TCP receive" Van Jacobson mail. 5103 * 5104 * Van's trick is to deposit buffers into socket queue 5105 * on a device interrupt, to call tcp_recv function 5106 * on the receive process context and checksum and copy 5107 * the buffer to user space. smart... 5108 * 5109 * Our current scheme is not silly either but we take the 5110 * extra cost of the net_bh soft interrupt processing... 5111 * We do checksum and copy also but from device to kernel. 5112 */ 5113 5114 tp->rx_opt.saw_tstamp = 0; 5115 5116 /* pred_flags is 0xS?10 << 16 + snd_wnd 5117 * if header_prediction is to be made 5118 * 'S' will always be tp->tcp_header_len >> 2 5119 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5120 * turn it off (when there are holes in the receive 5121 * space for instance) 5122 * PSH flag is ignored. 5123 */ 5124 5125 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5126 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5127 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5128 int tcp_header_len = tp->tcp_header_len; 5129 5130 /* Timestamp header prediction: tcp_header_len 5131 * is automatically equal to th->doff*4 due to pred_flags 5132 * match. 5133 */ 5134 5135 /* Check timestamp */ 5136 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5137 /* No? Slow path! */ 5138 if (!tcp_parse_aligned_timestamp(tp, th)) 5139 goto slow_path; 5140 5141 /* If PAWS failed, check it more carefully in slow path */ 5142 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5143 goto slow_path; 5144 5145 /* DO NOT update ts_recent here, if checksum fails 5146 * and timestamp was corrupted part, it will result 5147 * in a hung connection since we will drop all 5148 * future packets due to the PAWS test. 5149 */ 5150 } 5151 5152 if (len <= tcp_header_len) { 5153 /* Bulk data transfer: sender */ 5154 if (len == tcp_header_len) { 5155 /* Predicted packet is in window by definition. 5156 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5157 * Hence, check seq<=rcv_wup reduces to: 5158 */ 5159 if (tcp_header_len == 5160 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5161 tp->rcv_nxt == tp->rcv_wup) 5162 tcp_store_ts_recent(tp); 5163 5164 /* We know that such packets are checksummed 5165 * on entry. 5166 */ 5167 tcp_ack(sk, skb, 0); 5168 __kfree_skb(skb); 5169 tcp_data_snd_check(sk); 5170 return; 5171 } else { /* Header too small */ 5172 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5173 goto discard; 5174 } 5175 } else { 5176 int eaten = 0; 5177 bool fragstolen = false; 5178 5179 if (tp->ucopy.task == current && 5180 tp->copied_seq == tp->rcv_nxt && 5181 len - tcp_header_len <= tp->ucopy.len && 5182 sock_owned_by_user(sk)) { 5183 __set_current_state(TASK_RUNNING); 5184 5185 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5186 /* Predicted packet is in window by definition. 5187 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5188 * Hence, check seq<=rcv_wup reduces to: 5189 */ 5190 if (tcp_header_len == 5191 (sizeof(struct tcphdr) + 5192 TCPOLEN_TSTAMP_ALIGNED) && 5193 tp->rcv_nxt == tp->rcv_wup) 5194 tcp_store_ts_recent(tp); 5195 5196 tcp_rcv_rtt_measure_ts(sk, skb); 5197 5198 __skb_pull(skb, tcp_header_len); 5199 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5200 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5201 eaten = 1; 5202 } 5203 } 5204 if (!eaten) { 5205 if (tcp_checksum_complete_user(sk, skb)) 5206 goto csum_error; 5207 5208 if ((int)skb->truesize > sk->sk_forward_alloc) 5209 goto step5; 5210 5211 /* Predicted packet is in window by definition. 5212 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5213 * Hence, check seq<=rcv_wup reduces to: 5214 */ 5215 if (tcp_header_len == 5216 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5217 tp->rcv_nxt == tp->rcv_wup) 5218 tcp_store_ts_recent(tp); 5219 5220 tcp_rcv_rtt_measure_ts(sk, skb); 5221 5222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5223 5224 /* Bulk data transfer: receiver */ 5225 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5226 &fragstolen); 5227 } 5228 5229 tcp_event_data_recv(sk, skb); 5230 5231 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5232 /* Well, only one small jumplet in fast path... */ 5233 tcp_ack(sk, skb, FLAG_DATA); 5234 tcp_data_snd_check(sk); 5235 if (!inet_csk_ack_scheduled(sk)) 5236 goto no_ack; 5237 } 5238 5239 __tcp_ack_snd_check(sk, 0); 5240 no_ack: 5241 if (eaten) 5242 kfree_skb_partial(skb, fragstolen); 5243 sk->sk_data_ready(sk); 5244 return; 5245 } 5246 } 5247 5248 slow_path: 5249 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5250 goto csum_error; 5251 5252 if (!th->ack && !th->rst && !th->syn) 5253 goto discard; 5254 5255 /* 5256 * Standard slow path. 5257 */ 5258 5259 if (!tcp_validate_incoming(sk, skb, th, 1)) 5260 return; 5261 5262 step5: 5263 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5264 goto discard; 5265 5266 tcp_rcv_rtt_measure_ts(sk, skb); 5267 5268 /* Process urgent data. */ 5269 tcp_urg(sk, skb, th); 5270 5271 /* step 7: process the segment text */ 5272 tcp_data_queue(sk, skb); 5273 5274 tcp_data_snd_check(sk); 5275 tcp_ack_snd_check(sk); 5276 return; 5277 5278 csum_error: 5279 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5280 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5281 5282 discard: 5283 __kfree_skb(skb); 5284 } 5285 EXPORT_SYMBOL(tcp_rcv_established); 5286 5287 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5288 { 5289 struct tcp_sock *tp = tcp_sk(sk); 5290 struct inet_connection_sock *icsk = inet_csk(sk); 5291 5292 tcp_set_state(sk, TCP_ESTABLISHED); 5293 5294 if (skb != NULL) { 5295 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5296 security_inet_conn_established(sk, skb); 5297 } 5298 5299 /* Make sure socket is routed, for correct metrics. */ 5300 icsk->icsk_af_ops->rebuild_header(sk); 5301 5302 tcp_init_metrics(sk); 5303 5304 tcp_init_congestion_control(sk); 5305 5306 /* Prevent spurious tcp_cwnd_restart() on first data 5307 * packet. 5308 */ 5309 tp->lsndtime = tcp_time_stamp; 5310 5311 tcp_init_buffer_space(sk); 5312 5313 if (sock_flag(sk, SOCK_KEEPOPEN)) 5314 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5315 5316 if (!tp->rx_opt.snd_wscale) 5317 __tcp_fast_path_on(tp, tp->snd_wnd); 5318 else 5319 tp->pred_flags = 0; 5320 5321 if (!sock_flag(sk, SOCK_DEAD)) { 5322 sk->sk_state_change(sk); 5323 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5324 } 5325 } 5326 5327 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5328 struct tcp_fastopen_cookie *cookie) 5329 { 5330 struct tcp_sock *tp = tcp_sk(sk); 5331 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5332 u16 mss = tp->rx_opt.mss_clamp; 5333 bool syn_drop; 5334 5335 if (mss == tp->rx_opt.user_mss) { 5336 struct tcp_options_received opt; 5337 5338 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5339 tcp_clear_options(&opt); 5340 opt.user_mss = opt.mss_clamp = 0; 5341 tcp_parse_options(synack, &opt, 0, NULL); 5342 mss = opt.mss_clamp; 5343 } 5344 5345 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5346 cookie->len = -1; 5347 5348 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5349 * the remote receives only the retransmitted (regular) SYNs: either 5350 * the original SYN-data or the corresponding SYN-ACK is lost. 5351 */ 5352 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5353 5354 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5355 5356 if (data) { /* Retransmit unacked data in SYN */ 5357 tcp_for_write_queue_from(data, sk) { 5358 if (data == tcp_send_head(sk) || 5359 __tcp_retransmit_skb(sk, data)) 5360 break; 5361 } 5362 tcp_rearm_rto(sk); 5363 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5364 return true; 5365 } 5366 tp->syn_data_acked = tp->syn_data; 5367 if (tp->syn_data_acked) 5368 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5369 return false; 5370 } 5371 5372 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5373 const struct tcphdr *th, unsigned int len) 5374 { 5375 struct inet_connection_sock *icsk = inet_csk(sk); 5376 struct tcp_sock *tp = tcp_sk(sk); 5377 struct tcp_fastopen_cookie foc = { .len = -1 }; 5378 int saved_clamp = tp->rx_opt.mss_clamp; 5379 5380 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5381 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5382 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5383 5384 if (th->ack) { 5385 /* rfc793: 5386 * "If the state is SYN-SENT then 5387 * first check the ACK bit 5388 * If the ACK bit is set 5389 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5390 * a reset (unless the RST bit is set, if so drop 5391 * the segment and return)" 5392 */ 5393 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5394 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5395 goto reset_and_undo; 5396 5397 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5398 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5399 tcp_time_stamp)) { 5400 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5401 goto reset_and_undo; 5402 } 5403 5404 /* Now ACK is acceptable. 5405 * 5406 * "If the RST bit is set 5407 * If the ACK was acceptable then signal the user "error: 5408 * connection reset", drop the segment, enter CLOSED state, 5409 * delete TCB, and return." 5410 */ 5411 5412 if (th->rst) { 5413 tcp_reset(sk); 5414 goto discard; 5415 } 5416 5417 /* rfc793: 5418 * "fifth, if neither of the SYN or RST bits is set then 5419 * drop the segment and return." 5420 * 5421 * See note below! 5422 * --ANK(990513) 5423 */ 5424 if (!th->syn) 5425 goto discard_and_undo; 5426 5427 /* rfc793: 5428 * "If the SYN bit is on ... 5429 * are acceptable then ... 5430 * (our SYN has been ACKed), change the connection 5431 * state to ESTABLISHED..." 5432 */ 5433 5434 tcp_ecn_rcv_synack(tp, th); 5435 5436 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5437 tcp_ack(sk, skb, FLAG_SLOWPATH); 5438 5439 /* Ok.. it's good. Set up sequence numbers and 5440 * move to established. 5441 */ 5442 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5443 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5444 5445 /* RFC1323: The window in SYN & SYN/ACK segments is 5446 * never scaled. 5447 */ 5448 tp->snd_wnd = ntohs(th->window); 5449 5450 if (!tp->rx_opt.wscale_ok) { 5451 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5452 tp->window_clamp = min(tp->window_clamp, 65535U); 5453 } 5454 5455 if (tp->rx_opt.saw_tstamp) { 5456 tp->rx_opt.tstamp_ok = 1; 5457 tp->tcp_header_len = 5458 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5459 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5460 tcp_store_ts_recent(tp); 5461 } else { 5462 tp->tcp_header_len = sizeof(struct tcphdr); 5463 } 5464 5465 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5466 tcp_enable_fack(tp); 5467 5468 tcp_mtup_init(sk); 5469 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5470 tcp_initialize_rcv_mss(sk); 5471 5472 /* Remember, tcp_poll() does not lock socket! 5473 * Change state from SYN-SENT only after copied_seq 5474 * is initialized. */ 5475 tp->copied_seq = tp->rcv_nxt; 5476 5477 smp_mb(); 5478 5479 tcp_finish_connect(sk, skb); 5480 5481 if ((tp->syn_fastopen || tp->syn_data) && 5482 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5483 return -1; 5484 5485 if (sk->sk_write_pending || 5486 icsk->icsk_accept_queue.rskq_defer_accept || 5487 icsk->icsk_ack.pingpong) { 5488 /* Save one ACK. Data will be ready after 5489 * several ticks, if write_pending is set. 5490 * 5491 * It may be deleted, but with this feature tcpdumps 5492 * look so _wonderfully_ clever, that I was not able 5493 * to stand against the temptation 8) --ANK 5494 */ 5495 inet_csk_schedule_ack(sk); 5496 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5497 tcp_enter_quickack_mode(sk); 5498 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5499 TCP_DELACK_MAX, TCP_RTO_MAX); 5500 5501 discard: 5502 __kfree_skb(skb); 5503 return 0; 5504 } else { 5505 tcp_send_ack(sk); 5506 } 5507 return -1; 5508 } 5509 5510 /* No ACK in the segment */ 5511 5512 if (th->rst) { 5513 /* rfc793: 5514 * "If the RST bit is set 5515 * 5516 * Otherwise (no ACK) drop the segment and return." 5517 */ 5518 5519 goto discard_and_undo; 5520 } 5521 5522 /* PAWS check. */ 5523 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5524 tcp_paws_reject(&tp->rx_opt, 0)) 5525 goto discard_and_undo; 5526 5527 if (th->syn) { 5528 /* We see SYN without ACK. It is attempt of 5529 * simultaneous connect with crossed SYNs. 5530 * Particularly, it can be connect to self. 5531 */ 5532 tcp_set_state(sk, TCP_SYN_RECV); 5533 5534 if (tp->rx_opt.saw_tstamp) { 5535 tp->rx_opt.tstamp_ok = 1; 5536 tcp_store_ts_recent(tp); 5537 tp->tcp_header_len = 5538 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5539 } else { 5540 tp->tcp_header_len = sizeof(struct tcphdr); 5541 } 5542 5543 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5544 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5545 5546 /* RFC1323: The window in SYN & SYN/ACK segments is 5547 * never scaled. 5548 */ 5549 tp->snd_wnd = ntohs(th->window); 5550 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5551 tp->max_window = tp->snd_wnd; 5552 5553 tcp_ecn_rcv_syn(tp, th); 5554 5555 tcp_mtup_init(sk); 5556 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5557 tcp_initialize_rcv_mss(sk); 5558 5559 tcp_send_synack(sk); 5560 #if 0 5561 /* Note, we could accept data and URG from this segment. 5562 * There are no obstacles to make this (except that we must 5563 * either change tcp_recvmsg() to prevent it from returning data 5564 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5565 * 5566 * However, if we ignore data in ACKless segments sometimes, 5567 * we have no reasons to accept it sometimes. 5568 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5569 * is not flawless. So, discard packet for sanity. 5570 * Uncomment this return to process the data. 5571 */ 5572 return -1; 5573 #else 5574 goto discard; 5575 #endif 5576 } 5577 /* "fifth, if neither of the SYN or RST bits is set then 5578 * drop the segment and return." 5579 */ 5580 5581 discard_and_undo: 5582 tcp_clear_options(&tp->rx_opt); 5583 tp->rx_opt.mss_clamp = saved_clamp; 5584 goto discard; 5585 5586 reset_and_undo: 5587 tcp_clear_options(&tp->rx_opt); 5588 tp->rx_opt.mss_clamp = saved_clamp; 5589 return 1; 5590 } 5591 5592 /* 5593 * This function implements the receiving procedure of RFC 793 for 5594 * all states except ESTABLISHED and TIME_WAIT. 5595 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5596 * address independent. 5597 */ 5598 5599 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5600 const struct tcphdr *th, unsigned int len) 5601 { 5602 struct tcp_sock *tp = tcp_sk(sk); 5603 struct inet_connection_sock *icsk = inet_csk(sk); 5604 struct request_sock *req; 5605 int queued = 0; 5606 bool acceptable; 5607 u32 synack_stamp; 5608 5609 tp->rx_opt.saw_tstamp = 0; 5610 5611 switch (sk->sk_state) { 5612 case TCP_CLOSE: 5613 goto discard; 5614 5615 case TCP_LISTEN: 5616 if (th->ack) 5617 return 1; 5618 5619 if (th->rst) 5620 goto discard; 5621 5622 if (th->syn) { 5623 if (th->fin) 5624 goto discard; 5625 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5626 return 1; 5627 5628 /* Now we have several options: In theory there is 5629 * nothing else in the frame. KA9Q has an option to 5630 * send data with the syn, BSD accepts data with the 5631 * syn up to the [to be] advertised window and 5632 * Solaris 2.1 gives you a protocol error. For now 5633 * we just ignore it, that fits the spec precisely 5634 * and avoids incompatibilities. It would be nice in 5635 * future to drop through and process the data. 5636 * 5637 * Now that TTCP is starting to be used we ought to 5638 * queue this data. 5639 * But, this leaves one open to an easy denial of 5640 * service attack, and SYN cookies can't defend 5641 * against this problem. So, we drop the data 5642 * in the interest of security over speed unless 5643 * it's still in use. 5644 */ 5645 kfree_skb(skb); 5646 return 0; 5647 } 5648 goto discard; 5649 5650 case TCP_SYN_SENT: 5651 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5652 if (queued >= 0) 5653 return queued; 5654 5655 /* Do step6 onward by hand. */ 5656 tcp_urg(sk, skb, th); 5657 __kfree_skb(skb); 5658 tcp_data_snd_check(sk); 5659 return 0; 5660 } 5661 5662 req = tp->fastopen_rsk; 5663 if (req != NULL) { 5664 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5665 sk->sk_state != TCP_FIN_WAIT1); 5666 5667 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5668 goto discard; 5669 } 5670 5671 if (!th->ack && !th->rst && !th->syn) 5672 goto discard; 5673 5674 if (!tcp_validate_incoming(sk, skb, th, 0)) 5675 return 0; 5676 5677 /* step 5: check the ACK field */ 5678 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5679 FLAG_UPDATE_TS_RECENT) > 0; 5680 5681 switch (sk->sk_state) { 5682 case TCP_SYN_RECV: 5683 if (!acceptable) 5684 return 1; 5685 5686 /* Once we leave TCP_SYN_RECV, we no longer need req 5687 * so release it. 5688 */ 5689 if (req) { 5690 synack_stamp = tcp_rsk(req)->snt_synack; 5691 tp->total_retrans = req->num_retrans; 5692 reqsk_fastopen_remove(sk, req, false); 5693 } else { 5694 synack_stamp = tp->lsndtime; 5695 /* Make sure socket is routed, for correct metrics. */ 5696 icsk->icsk_af_ops->rebuild_header(sk); 5697 tcp_init_congestion_control(sk); 5698 5699 tcp_mtup_init(sk); 5700 tp->copied_seq = tp->rcv_nxt; 5701 tcp_init_buffer_space(sk); 5702 } 5703 smp_mb(); 5704 tcp_set_state(sk, TCP_ESTABLISHED); 5705 sk->sk_state_change(sk); 5706 5707 /* Note, that this wakeup is only for marginal crossed SYN case. 5708 * Passively open sockets are not waked up, because 5709 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5710 */ 5711 if (sk->sk_socket) 5712 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5713 5714 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5715 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5716 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5717 tcp_synack_rtt_meas(sk, synack_stamp); 5718 5719 if (tp->rx_opt.tstamp_ok) 5720 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5721 5722 if (req) { 5723 /* Re-arm the timer because data may have been sent out. 5724 * This is similar to the regular data transmission case 5725 * when new data has just been ack'ed. 5726 * 5727 * (TFO) - we could try to be more aggressive and 5728 * retransmitting any data sooner based on when they 5729 * are sent out. 5730 */ 5731 tcp_rearm_rto(sk); 5732 } else 5733 tcp_init_metrics(sk); 5734 5735 tcp_update_pacing_rate(sk); 5736 5737 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5738 tp->lsndtime = tcp_time_stamp; 5739 5740 tcp_initialize_rcv_mss(sk); 5741 tcp_fast_path_on(tp); 5742 break; 5743 5744 case TCP_FIN_WAIT1: { 5745 struct dst_entry *dst; 5746 int tmo; 5747 5748 /* If we enter the TCP_FIN_WAIT1 state and we are a 5749 * Fast Open socket and this is the first acceptable 5750 * ACK we have received, this would have acknowledged 5751 * our SYNACK so stop the SYNACK timer. 5752 */ 5753 if (req != NULL) { 5754 /* Return RST if ack_seq is invalid. 5755 * Note that RFC793 only says to generate a 5756 * DUPACK for it but for TCP Fast Open it seems 5757 * better to treat this case like TCP_SYN_RECV 5758 * above. 5759 */ 5760 if (!acceptable) 5761 return 1; 5762 /* We no longer need the request sock. */ 5763 reqsk_fastopen_remove(sk, req, false); 5764 tcp_rearm_rto(sk); 5765 } 5766 if (tp->snd_una != tp->write_seq) 5767 break; 5768 5769 tcp_set_state(sk, TCP_FIN_WAIT2); 5770 sk->sk_shutdown |= SEND_SHUTDOWN; 5771 5772 dst = __sk_dst_get(sk); 5773 if (dst) 5774 dst_confirm(dst); 5775 5776 if (!sock_flag(sk, SOCK_DEAD)) { 5777 /* Wake up lingering close() */ 5778 sk->sk_state_change(sk); 5779 break; 5780 } 5781 5782 if (tp->linger2 < 0 || 5783 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5784 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5785 tcp_done(sk); 5786 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5787 return 1; 5788 } 5789 5790 tmo = tcp_fin_time(sk); 5791 if (tmo > TCP_TIMEWAIT_LEN) { 5792 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5793 } else if (th->fin || sock_owned_by_user(sk)) { 5794 /* Bad case. We could lose such FIN otherwise. 5795 * It is not a big problem, but it looks confusing 5796 * and not so rare event. We still can lose it now, 5797 * if it spins in bh_lock_sock(), but it is really 5798 * marginal case. 5799 */ 5800 inet_csk_reset_keepalive_timer(sk, tmo); 5801 } else { 5802 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5803 goto discard; 5804 } 5805 break; 5806 } 5807 5808 case TCP_CLOSING: 5809 if (tp->snd_una == tp->write_seq) { 5810 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5811 goto discard; 5812 } 5813 break; 5814 5815 case TCP_LAST_ACK: 5816 if (tp->snd_una == tp->write_seq) { 5817 tcp_update_metrics(sk); 5818 tcp_done(sk); 5819 goto discard; 5820 } 5821 break; 5822 } 5823 5824 /* step 6: check the URG bit */ 5825 tcp_urg(sk, skb, th); 5826 5827 /* step 7: process the segment text */ 5828 switch (sk->sk_state) { 5829 case TCP_CLOSE_WAIT: 5830 case TCP_CLOSING: 5831 case TCP_LAST_ACK: 5832 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5833 break; 5834 case TCP_FIN_WAIT1: 5835 case TCP_FIN_WAIT2: 5836 /* RFC 793 says to queue data in these states, 5837 * RFC 1122 says we MUST send a reset. 5838 * BSD 4.4 also does reset. 5839 */ 5840 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5841 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5842 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5843 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5844 tcp_reset(sk); 5845 return 1; 5846 } 5847 } 5848 /* Fall through */ 5849 case TCP_ESTABLISHED: 5850 tcp_data_queue(sk, skb); 5851 queued = 1; 5852 break; 5853 } 5854 5855 /* tcp_data could move socket to TIME-WAIT */ 5856 if (sk->sk_state != TCP_CLOSE) { 5857 tcp_data_snd_check(sk); 5858 tcp_ack_snd_check(sk); 5859 } 5860 5861 if (!queued) { 5862 discard: 5863 __kfree_skb(skb); 5864 } 5865 return 0; 5866 } 5867 EXPORT_SYMBOL(tcp_rcv_state_process); 5868 5869 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5870 { 5871 struct inet_request_sock *ireq = inet_rsk(req); 5872 5873 if (family == AF_INET) 5874 net_dbg_ratelimited("drop open request from %pI4/%u\n", 5875 &ireq->ir_rmt_addr, port); 5876 #if IS_ENABLED(CONFIG_IPV6) 5877 else if (family == AF_INET6) 5878 net_dbg_ratelimited("drop open request from %pI6/%u\n", 5879 &ireq->ir_v6_rmt_addr, port); 5880 #endif 5881 } 5882 5883 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5884 * 5885 * If we receive a SYN packet with these bits set, it means a 5886 * network is playing bad games with TOS bits. In order to 5887 * avoid possible false congestion notifications, we disable 5888 * TCP ECN negotiation. 5889 * 5890 * Exception: tcp_ca wants ECN. This is required for DCTCP 5891 * congestion control: Linux DCTCP asserts ECT on all packets, 5892 * including SYN, which is most optimal solution; however, 5893 * others, such as FreeBSD do not. 5894 */ 5895 static void tcp_ecn_create_request(struct request_sock *req, 5896 const struct sk_buff *skb, 5897 const struct sock *listen_sk, 5898 const struct dst_entry *dst) 5899 { 5900 const struct tcphdr *th = tcp_hdr(skb); 5901 const struct net *net = sock_net(listen_sk); 5902 bool th_ecn = th->ece && th->cwr; 5903 bool ect, ecn_ok; 5904 5905 if (!th_ecn) 5906 return; 5907 5908 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5909 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN); 5910 5911 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk)) 5912 inet_rsk(req)->ecn_ok = 1; 5913 } 5914 5915 int tcp_conn_request(struct request_sock_ops *rsk_ops, 5916 const struct tcp_request_sock_ops *af_ops, 5917 struct sock *sk, struct sk_buff *skb) 5918 { 5919 struct tcp_options_received tmp_opt; 5920 struct request_sock *req; 5921 struct tcp_sock *tp = tcp_sk(sk); 5922 struct dst_entry *dst = NULL; 5923 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 5924 bool want_cookie = false, fastopen; 5925 struct flowi fl; 5926 struct tcp_fastopen_cookie foc = { .len = -1 }; 5927 int err; 5928 5929 5930 /* TW buckets are converted to open requests without 5931 * limitations, they conserve resources and peer is 5932 * evidently real one. 5933 */ 5934 if ((sysctl_tcp_syncookies == 2 || 5935 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 5936 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 5937 if (!want_cookie) 5938 goto drop; 5939 } 5940 5941 5942 /* Accept backlog is full. If we have already queued enough 5943 * of warm entries in syn queue, drop request. It is better than 5944 * clogging syn queue with openreqs with exponentially increasing 5945 * timeout. 5946 */ 5947 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 5948 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 5949 goto drop; 5950 } 5951 5952 req = inet_reqsk_alloc(rsk_ops); 5953 if (!req) 5954 goto drop; 5955 5956 tcp_rsk(req)->af_specific = af_ops; 5957 5958 tcp_clear_options(&tmp_opt); 5959 tmp_opt.mss_clamp = af_ops->mss_clamp; 5960 tmp_opt.user_mss = tp->rx_opt.user_mss; 5961 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 5962 5963 if (want_cookie && !tmp_opt.saw_tstamp) 5964 tcp_clear_options(&tmp_opt); 5965 5966 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 5967 tcp_openreq_init(req, &tmp_opt, skb, sk); 5968 5969 af_ops->init_req(req, sk, skb); 5970 5971 if (security_inet_conn_request(sk, skb, req)) 5972 goto drop_and_free; 5973 5974 if (!want_cookie && !isn) { 5975 /* VJ's idea. We save last timestamp seen 5976 * from the destination in peer table, when entering 5977 * state TIME-WAIT, and check against it before 5978 * accepting new connection request. 5979 * 5980 * If "isn" is not zero, this request hit alive 5981 * timewait bucket, so that all the necessary checks 5982 * are made in the function processing timewait state. 5983 */ 5984 if (tcp_death_row.sysctl_tw_recycle) { 5985 bool strict; 5986 5987 dst = af_ops->route_req(sk, &fl, req, &strict); 5988 5989 if (dst && strict && 5990 !tcp_peer_is_proven(req, dst, true, 5991 tmp_opt.saw_tstamp)) { 5992 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 5993 goto drop_and_release; 5994 } 5995 } 5996 /* Kill the following clause, if you dislike this way. */ 5997 else if (!sysctl_tcp_syncookies && 5998 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 5999 (sysctl_max_syn_backlog >> 2)) && 6000 !tcp_peer_is_proven(req, dst, false, 6001 tmp_opt.saw_tstamp)) { 6002 /* Without syncookies last quarter of 6003 * backlog is filled with destinations, 6004 * proven to be alive. 6005 * It means that we continue to communicate 6006 * to destinations, already remembered 6007 * to the moment of synflood. 6008 */ 6009 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6010 rsk_ops->family); 6011 goto drop_and_release; 6012 } 6013 6014 isn = af_ops->init_seq(skb); 6015 } 6016 if (!dst) { 6017 dst = af_ops->route_req(sk, &fl, req, NULL); 6018 if (!dst) 6019 goto drop_and_free; 6020 } 6021 6022 tcp_ecn_create_request(req, skb, sk, dst); 6023 6024 if (want_cookie) { 6025 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6026 req->cookie_ts = tmp_opt.tstamp_ok; 6027 if (!tmp_opt.tstamp_ok) 6028 inet_rsk(req)->ecn_ok = 0; 6029 } 6030 6031 tcp_rsk(req)->snt_isn = isn; 6032 tcp_openreq_init_rwin(req, sk, dst); 6033 fastopen = !want_cookie && 6034 tcp_try_fastopen(sk, skb, req, &foc, dst); 6035 err = af_ops->send_synack(sk, dst, &fl, req, 6036 skb_get_queue_mapping(skb), &foc); 6037 if (!fastopen) { 6038 if (err || want_cookie) 6039 goto drop_and_free; 6040 6041 tcp_rsk(req)->listener = NULL; 6042 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6043 } 6044 6045 return 0; 6046 6047 drop_and_release: 6048 dst_release(dst); 6049 drop_and_free: 6050 reqsk_free(req); 6051 drop: 6052 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6053 return 0; 6054 } 6055 EXPORT_SYMBOL(tcp_conn_request); 6056